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PREFACE TO THE SECOND EDITION.

In thiB work will be found all the PropotitioM wkieh

usually appear in treatiflee on Theoretical Slatioi. To tiM

different Chapters Examples are appended* which ha?«

been prineipallj selected from the Unirersitj and College

Examination Papers; these will furnish ample OimjiM

in the application of the principles of the tobject

Some of the Examples in the earlier Chapters mmomm
results which are obtained at a later part of the book; tba

student who has no previous acquaintance with the subject

may therefore, on his first perusal of the book, omit the

more difficult Examples of tlic first six Chapters.

In the first three Cliapters and in the ninth Cbaplsr

I have made considerable use of Mr Pratt*s Treatise on

Mechanical Philosophy, which was placed at my disposal

by the Publishers.

In the second edition the work has been thoroughly

revised and has received large additions; these additions

have been made with the view of rendering the tabjeet

more readily intelligible by explaining and illustrating thoas

parts which were found by the experience of tcache^ to be

difficult for beginners*

L TODUUNTEB.
8t JOBV'tl OOLLIQi;

Auff. iS, 1858.
\

In the third edition many additions hare been made, in

order to illustrate the application of the principles of the

subject to the solution of problems.

JjmV, |8<^.
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STATICS.

CIIAPTKR T.

INTUuDUCTlON.

1. A BODY ii a portion of matter limit«d in

and U oonsecjnently of a determinate form and Vblnw. A
material particle is a bodr indetinitelj amall in evorj dtre^
tion ; wc shall speak of it tor ahortneii aa a particle.

2. A body is in motion when the bodj or its parts oeenpj
sQCoeasively different positions in space, Bot we a
jud^ of tne state of rest or motion of a bodj without
paring it with other bodies, and for this reason all om
which come under our observation are necessarily rtiaUm
motions.

8. Force is that which prodooes or tends to prodaoa motto
in a body.

4. When seyeral forces act simoltaneooslj on a bodr, it

may hnppen that they neutralise each other; when a Dody
t rest though acted on by forooSy il is said to be m

...iin; or, in other words, the foroea are said to main-
ain c(|uiiibrium.

5. ^Icchanics is the science which treats of the laws ci
' motion of bodies. Statica trsats of the Uwt of the

ax of bodies, and Dynamioi of the lawa of

6. things to consider in a Csfoe aetiqff

st'tion of the particle: the itt'weiim or



2 INTRODUCTION.

the force, that is, the direction in which it tends to make
the particle start; and the intensity of the force. As the

dimensions of a jmrticle arc indefinitely small its position

may be determined in the same manner as that of a point

in geometry, and the direction of the force may be determined

in the same manner fis that of a straight line in geometry.

We proceed then 10 consider the magnitude or intensity of

a force.

7. Forces can be measured by taking some force as the

unit, and expressinc: by numbers the ratios which other forces

bear to this unit. Two forces are equal when being applied

in opposite directions to a particle they maintain equilibrium.

If we take two equal forces and apply them to a particle in the

same direction we obtain a force double of eitlier ; if we unite

three equal forces we obtain a trijjle force; and so on.

When we say then that a force applied to a particle is a

certain multiple of another force, we mean that the first force

may be supposed to be composed of a certain number of forces

equal to tue second and all acting in the same direction. In

this way forces become measurable quantities, which can be

expressed by numbers, like all other quantities, by referring

them to a unit of their own kind. Forces may also be repre-

sented by straight lines proportional in length to these num-
bers, drawn from the point at which the forces act and in the

directions in which they act.

8. Experience teaches us that if a body be let free from

the hand, it will fall downwards in a certain direction ; how-
ever frequently the experiment be made, the result is i\n\

same, the body strikes the same spot on the ground in each

trial, provided the place from which it is drop|>ed remain the

same. The cause of this undeviating effect is assumed to be

an affinity which all bodies have for the earth, and is termed

the force of attraction. If the body be prevented from falling

by the interposition of a table or of the hand, the body exerts

a pressure on the table or hand. Weight is the name given to

the pressure which the attraction of the earth causes a body to

exert on another with which it is in contact.
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9. A solid bodj if ooneetfod to be
iDAtcrial [wrtiolM irhiok MB hM togidMr bj*
affinitiM. Thb t|ipeMt to be • Mfe hypoHiw, dam tiqp«l<
ments shew that any body is diTiiible into motmtMtf
and smalliT portioim without limit, if fulBeteiii Ibra be
to overcome the mutual action of the parts of the bodj*

10. A ri^d body ii one in whidi the mftidee ivtaia m*
variable positions with respect to each odier. No body fai

nature is perfectly rigid ; erery body yields more or leas to

tlic forctvs which act on it. l/, then, in anr ease this oooh
pre.s.sil)ility is of a sensible magnitttdeY we snail rappoae that

the body has assumed its figure of eqnilibriitm* and then
consider the points of application of the foi«es •§ a eirilaai of
iuYariable foruL By body, hereafter, we meen nj^ oody.

11. When a force acta on a body the eflect of the lofoe

will be unchanged at whatever point of its direction we aep-

poee it applied, provided this pomt^ either one of the pooMe
of the body or be invariably connected with the body. Thk
principle is known by the name of the trannUmhili^ of m
force to any point tii its line of actum ; it is asanmert ae

an axiom or as an experimental fact. We may ahew the

amount of assumption involved in the axiom, by the follow*

Ing process.

Suppose a body to be kept in equilibriam by a
of forceii, one of which i^ the force P applied at

! 'A, Take any point B which lies on
I t ton of this force, and supooeeB so oon*

nccted with .1 that the distance^^ is onchange-

ublc. Tlicn, if at B we introduce two fbreea,

P and F, ccjual in magnitude and aotine in oppo-

site directions along the straight line AB^ it seems

evident tiiat no change is made in the effect of

t!ie force P at -1. Let ns now ossimm ilel F
at A (wd P' at B mil neutraUm oaek cikar, amd
may therefore be removed witkoui ditbtrhing the

equilibrium of the body; then there remains the

ioice P at i^ producing the same eflect cs when
it acted at A.

1—3
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12. We thall have occajiion hereafter to assume wliat may
be cidled the comver9e of the principle of the transmissi billty of

ibroe, namely, that if a force can be transferred from its point

of application to a second point without altering its efVect,

then the second point must be in the direction of the force.

See Art 17.

1,3. "When we find it useful to change the point of applica-

tion of a force, we shall for shortness not always state tliat tlic

new point is invartably connected with the old point, but this

must be always understood.
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CHAPTER II.

THE coMPoerrioH avd bquiubsium or roacn actiyo

Oir A PABTtCLB.

I {. WiiBir a ptrticle is acted on hj fottei which do not
maintain equilibnum it will begin to more in aooM daln^
minate direction. It ia clear tl^ that a nmtil^ fanm mmj
W t'oiiiul of such a magnitude, that if it acted i cctioa

omto^iite to that in which the motion would Ui^c |ii«ce tliia

force would prevent the motion, and oonteqoentlj wo«ld be
in equilibrium with the other foroea which act on the par-
ticle* If then we were to remore the original foroea and
replace them by a single force^ equal in magnitada lo tbat
described above, but acting in the oppoaite direc^iofi, tha par-
ticle would still remain at rest. This force, which is eqaiva-

Icnt in its effect to the combined effect of the original ibroea, ia

called their resy/lanl, and the original foroea are called the

companenU of the resultant.

It will be neoeaaary then to be^n by dedndni^ nilaa Ibr

the compoaition offiren; that is, for finding thetr resaltaal

force. Af^er we have determined these, it will be aasjr Id

deduce the analytical relations which foroea mnst
in equilibrium.

15. ToJindthereniUanicfaaivmwmnbtr^jfiitrom
on a vartkie in the soais HtmalU Ume; mmd ioJmiA§ ess

whCok thijf wkuat mUufy ikai <My fmmf h§ in gfOTnWu.

Wiicn two or more foroea act on a particle in the

direction it is evident that the resultant roroe is equal to their

sum and acts in the same direction.

When two forces act in different directions, but in the mmt
straight line, on a particle, it is eqtully clear that their r»-

aultant is equal to their difference i^id acts in the direetioo oC

the greater component.
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When seTeril fbroet act in different directions, but in the

same stmight line, on a particle, the resultant of the forces

acting in one direction is equal to the sum of these forces,

and acts in the same direction; and so of the forces acting in

the opposite direction. The resultant, therefore, of nil the

forces 18 equal to the difference of these sums, and acts in the

direction of the greater sum.

If the forces acting in one direction are reckoned positive,

and those in the opposite direction negative, then their re-

sultant is equal to their algebraical sum; its sign determines

the direction in which it acts.

In order that the forces may be in equilibrium, their

resultant, and therefore their algebraical sura, must vanish.

16. There is another case in which we can easily deter-

mine the magnitude and direction of the resultant.

Let ABf ACf AD be the directions of three equal forces

acting on the particle A; suppose these forces all in the

same plane ana the three angles BACy CAD, DAB each
equal to 120®; the particle will remain at rest, for tlierc is

no reason why it should move in one direction rather than
another. P^ach of the forces is therefore equal and opposite

to the resultant of the other two.

But if we take on the directions

oftwo of them, AB, A 6\ two equal

itraight lines AG^ All to repre-

sent the forces, and complete the

parallelogram GAIIEy the diago-

nal ^J^will lie in the same straight ^
line with AD, Also the triangle

5<C ^^
jiG^^will be equilateral, and there- c>'^'^^\v ^ .^^^k^ioKAE^AQ. lience, the diago- ^^^^*<^
nal AE of the parallelogram con-

\

structed on AG, AH represents

the resultant of the two forces which AG and All rcspec-

tircly pcpreaent

This propoaition is a particular case of one to which we
now prooeecL



PARALLELOOSAM OF

1 7. // ^100 fofnm ttUmg ai '
' r. p̂ ^mUtd %m dutc

turn and iHa^mimd$ ly iwo ^ ' firamm frmm iht

OM mifaemU tidW, Ait iAe res r^^mud m di"

reelion and ww^ilud* hy that diagonal t r

wkicA pa$$e§ Iknmgk ike poimL

TLIb Propoftition it called the I^ur^Odogram ofF(^

1. ^o find the dlrtdUom of the reeultant

When the forces are equal it U clear that the direetiM
of the reeulunt will hiteci the amrie between the dii

of the forces; or, if wc represent the fbieee in Diagwitiie

and direction by two atraight lines drawn frooi the point

where thry act, and describe aparallelognuB o« these sliaight

lines, that <lin^onal of the paraflelognun which passes thiwish
the point will be the direction of the re«altaot

Let U8 sMume that this is true for forces s and m inclined

at any angle, and also for forces p and inclined at the ssflM

angle; wo can shew that it must then he true ibc two faioes

j9 and m-k-n also inclined at the same angle.

Let A be the point at which the forces p and si eel;

AH^ AC their directions and pro-

|K)rtional to them in magnitude:

complete the parallclojrram liC^ and
draw the diagonal AD\ then, bj
hvi)othe8i8, the resultant of /> and «
actji along AD.

Again, take CE in the same ratio

to -4 (7 that* bears to »•• By Art II
. . »

we may suppose the force a which acta in the direction AE
to lie applied at A or C; and therefore the f«>rccs /i, at. and a,

in the straight lines AB, AO, and C£,W the *Amc aa u aikl

fa + a in the straight lines AB and A£.

Now replaee ji and si by their resultant and transier its

point of application from A to D; then resolve thie feeee

at D into two parallel to AB and AO imyeslifiy; thees

resolved parts must evidently be p and •»» the former aeiins;

in the direction DF, and the latter in the dircetioo DO.

Then transier p to C and a» to (7.
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Bat, by the hypothesis, p and n acting at C have a re-

snltant in the direction C0\ therefore jp and n may be

mlaoed by their resultant and its point of application trans-

fcrrod to (y. And m has also been transferred to G, Ilcncc

by this process we have removed the forces which acted

at A to the point O without altering their effect. Wc may
infer then (see Art 12) that 0^ is a point in the direction of

the resultant of p and m-\-nKi A\ that is, the resultant of ;>

and m+ 11 acts in the direction of the diagonal A O, provided

the hypoUiesis is correct But the hypothesis is correct for

equal forces, as p, p, and therefore it is true for forces p, 2p;

consequently for p, 8p, and so on; hence it is true for p, r,p.

Hence it is true for p, r.p, and p, r,p, and consequently

for 2p, r,p^ and so on; and it is finally true for s.n und r.p,

where r and * are positive integers.

We have still to shew that the Proposition is true for

incommensurable forces.

This may be inferred from the fact that when two mag-
nitudes are incommensunable, so that the ratio of one to the

other cannot be expressed exactly by a fraction, we can still

find a fraction which differs from the true ratio by a fraction

less than any assigned fraction. Or it may be establislicd

indirectly thus.

Let ABf AC represent two such forces. Complete the

parallelogram BC. Then if their

resultant do not act along AD sup-

pose it to act along Ae\ draw KF
parallel to BD, Divide A C into a

number of equal portions, each less

than DE\ mark off from CD por-

tions equal to these, and let A be
the last division; this evidently

falls between D and E\ draw GK parallel to A C. Then
two fofoes represented by AC, AG have a resultant in the

dtrsction AK^ because they are commensurable; therefore the

foroes AO and AB are equivalent to ^A together with a

force equal to OB applied at A along AB. And we may
as obrious that the resultant of these forces must lie
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hetwmi AKiid AB; but by nippoftitioii Um riMllaiit it AE
which U noi between J A' and aA Tkk it abMid.

In the tame manner we maj shew that ererj direetkNi
iM-sidca AD leads to an absurdity, and therefiMW the reaoHmt
inimt act alonff AD, whether the foroee be oonuMonnibk or
incoDimcnBuraole.

ir. To find the wkupUhide of the reaoltant

lAit AB, ^C be the directions of the giTeo
that of their resultant; take AK opposite to

ADf and of such a length as to repmeol the
magnitude of the resultant Then the Cmcm

other. On AE and AB as adji

represented hr AB^ AC, AE, balance each

AE and AB as adjaeent aides

conntruct the parallelogram ABFE; then the

diagonal AF in the direction of the resultant

of^JETand^A
Hcnoe AC ib in the same straight line

with AF; hence FD is a parallelogram; and
therefore AE^FB^AD. Hence the re-

sultant is reprciicnted in maanttude aa well

as in direction by tlie diagonalof the parallelogram

Thus the proposition called the

completely established*

BatoUdogrwm cf Fi

18. Hence if P and Q r^

acting at an angle a on a pit;

by the equation

two component Ibicea

ic resultant B as givtii

19. Whtn iknt fartM otHng on a porUcU of in i^A
' * ' ~ NnM pr^foHim as lAs

dSnnsonMf of lAs

two.

»vr. WW WWVW9 —ww^m jvw^^m iM^Miy vwm

Librium ikmf aro reopeeiMw tn tko

fuie$ of ike cmgleo tnohuha hjf lk$

For if we refer to the third figure of Art 17 we hare

P:Q:B::ABiACioiBJO):AD
:: ain ADB: sin BAD : sin ABD
::8in CAEimBAEi mn BAC.

I
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ConTBTtelj if throe foroet ict on a particle, and each force

it at the me of the eagle between the directions of the other

two, it majr be abeim that one of the forces is equ.il in wi^.y-

Vultiifit to the resultant of tlie other two, and acts either in tlic

mtme direction or in the opposite direction: in the latter case

the three forces are in equiubrium.

It shonld be noticed that if the sides of a triangle be drawn

parallel to the directions of the forces, the length of any side

will be proportional to the sine of the angle between the. forces

which correspond to the other two sides.

20. Any force acting on a particle may be replaced hy
two others, if the sides of a triangle drawn parallel to the

directions of the forces have the same relative proportion

that the forces have. For by the parallelonjam of forces

the resultant of the latter two forces is ec^ual to the given

force.

This is called the resolution of a force.

21. Since the resultant of two forces acting on a particle

is represented in magnitude and direction by the diagonal

of the parallelogp*am constructed upon tlie straight lines which
represent theae forces in magnitude and direction, it follows

that, in order to obtain the resultant of the forces P„ P,, P,,...

which act on a particle -4, and are represented by the straight

lines AP^t AP^^ ^P,,...we may proceed as follows.

Find the resultant of P^ and i^, compound this resultant

with P., this new resultant with P., and so on. It follows
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from'tkis, thU if we conttnict a poWf^n AP ''^*'>. of wkiek
tho sides are rctpeotiTclpr equal and paral - ttniifiit

lincM yJ/» AP^ and join A with the U«l vertex AtM
straight lino AD will repreeeni in nuignitid* aad
the resultant of all the foroea.

We may ooncl- the neoeasary and
clition for the cou i of a number of foroea aeting o«
a {Mirticle is, tiiat the point D should coincide with A\
that is, that the figiire AP,B...D should be a mm/s*
polygon. The finroea in the ngure are not aeeeiiartly aU im

one plane.

The result here obtaltu-.l in;iy !«• mtni'Mt. 1 x'..v.*:
/''

'',f

aidtMofamy polyOifn taken i/i vrJtrarf rrnj^r, lir^i'y j.rj^,r!t n li

to iMe ma^miiuam offarceB aetimg at a point, amd ftoraUd to

the dir^ctiotu cf the foreeM^ then tkeforcee will be im tfmilibnmm.

This propoaition is ealled the Pofygam of Fonm,

The student must carefully notice the cooditioaa

whicli this proposition is asserted to hold; the loiQia are Mp
})06ed all to act at one voint, and are to be repreaenled by t&e

Hides of a polygon taieeH in order. Am an example ef the

Inttcr condition, suppose a quadrilateral ABCD; then if forc<»

which mav be represented by^/?, JiC. CD. J)A. act at a
})oint the ^rces will be in equilibrium: > >rcea will noi

DC in equilibrium if represented by AB, i»i
, i>C\ DA^ or by

AB, BC, CD, AD.

The direction and magnitude of tlie resultant may also be

determined analytically, as in the following Articles.

22. Anjf number qfjoroee act on a jioriide m one pltmt ;

required iojmd Us wyagniUnd^ amd direeiion ofUmr reem^nU

T '' ^ P,,... be the forces, and a.,«,,a^... the

til* -( make with a fixed straight fine drawn throwli

the proposed point. Take this fixed straight line for the ana
of 2, and one ))eq)cndicular to it for that of v. Then, by
Art 20, P, may be resolved into P, ooa a:., and i; sine, a

'

along the axes of x and y reapectiTely. The othermsa
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be similarly resolved. By algebraical addition of the forces

which act in the same straight line we have

P, cos 0| + P,cosa, + P, cos «,+ ... along the axis of «,

Pj sin a, + P, sin o, + P, sin tf,+ . . . along tlic axis of y.

We shall express the former by SPcos a and tlie latter by
SPsin a, where the symbol S denotes that we take the sum
of all the Quantities of which the quantity before which it is

placed is the type.

If we put P, cos a, = X^ and P^ sin a^ = F,, and use a similar

notation for the other components, wc have two forces rcplacin;^

the whole system, namely SX along the axis of x and S Y
along that of Y, If 11 denote the resultant of these forces and
a the angle at which it is inclined to the axis of cc, we have,

by Art. 17,

i2'=(sx)'+(5:r)«,

tan a = ^ncr*

Also C08a = -o^; 8ina = -T, .

23. To find the conditions of equilibrium it hen any numher

offorces act on a particle in one plane.

When the forces are in equilibrium we must have .5 = 0;

therefore

(2A7+(Sr)* = 0;

therefore SX=0; 2r=0;

and these are the conditions among the forces that they may
be in equilibrium.

24. Three forces act on a particle tn directions malcimj

right angles with each other; required to find tlie magnitude

and direction of their resultant.

Let AB, AC, AD represent the three forces X, F, Z in

magnitude and direction. Complete the parallelogram PC,
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and draw the dUgoiud AE; thtin AE ropmeoU tlie rvsolunt
of A' and Y va magnitude and diitctioo, bj Aft. 17. N<^w

the resultant of thU force and Z^ that U, of the

scnted by AE^ AD/iM repreaented in magmUide and
by A h\ the diagonal of the parallelogram DE Henea tiM
resultant of A^ i , Z is represented in magnitude and diiwlioa
by .1 F. Let i? be the nuffnitode of the resultant, and a, A, e
the angles the direction of R makes with those of X, 7, Z.

Then, since

AF'^AE'^AIt^Aff'^ACr'^Air,

therefore i? - X* + P + -^T*.

., AB X , AC Y AD Z
Al80cosa--jj.-2. «**-3ir-i^' «*«-jjr- J-

Tmus the magnitude and direction of the reatiltant are detci^

mined.

2o. It follows from the Ust Article tiiai anr focos B dw
direction of which makes the angles a» 6, c witk three lecS-

iiiinilar axes fixed in spioe, maj be rsplaesd bj the tkns
t >rcos R cosn, R 008&, A oose, at^iog stmullaiiaooaljr on fba

))articlo on which R acts, and having their directiooa parallel

to the axes of coordinates rs^wedvelj.
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26. Any number offarces act on a particle in any dircc-

items ; required to find the magnitude and direction of their

resultant.

Let Pj, P., P^,...bc tlic forces; let or., ^,, 7, be the angh
which the direction of P^ makes with turee rectangular ax(

Ics

axes

drawn through the proposed ]x>int; let «,, ^9,, 7, be the angles

which the direction of P, makes with the same axes; and

BO on.

Then, by Art. 25, the components of P, in the directions of

the axes are

PjCOsa,, PjCos^j, P,c087,, (or X^ T,,.^,, suppose).

Kesolve each of the other forces in the same way, and reduce

the system to three forces, by adding those which act in the

same straight line. Art. 15; wc thus have

P, cos a, 4- Pj cos a, + . . . or SPcos a, or 2A",

P^cos^, + P,cos/8,4-... or 2Pcos/9, or SF,

Pj cos 7j +P, COB 7, + . . . or 2P cos 7, or 2Z,

acting in the directions of the axes of a?, y, and z respectively.

If we call the resultant P, and the angles which its direc-

tion makes with the axes a, i, c, we have, by Art. 24,

p* = (2A7+(2^/^-(2;z)^

and cos a = —rr- , cos J = -^ , cos c = -^

.

27. To find tJie conditions of equilibrium when any number

offorces act on a particle.

When the forces are in equilibrium, we must have P = ;

therefore

(2Z)«+(2r)« + (2Z)«-o,

therefore 2X= 0; 2r«0; 2Z=0;

and these are the conditions among the forces that they may
be in equilibriimi.
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28. Tke exprcasion £or the nagnilnda of the nnltHil b

Art. 36 may bo reoderod indepeiiMiU of the poiilktt of tW
axe0. For, (rom Art 26,

JP-(P,oo8a. + /*,cota,+ . ..)•+(!*, cot )9, + P.cwi /J. 4.. ..)•

+ (P,oot7.+ P,coo7,4....)'.

When the cxprcssioni on tlio riglit-haad lido mm dordopttL
we shall find that the ooeffieient of P* it

cot*o,4.ooe»/9,*coi»%,

and that the ooeiBeient of P,P, is

2 (ooe«,ooia,+oosi9,cosi9,+ cos7,ooo7j.

Now we know from Analytical Geometry of thrM Jii

that

cos*a, + oos*/9. + oosV - 1;

and that

oosa, cos a,-feos)9,oos/9, + 0007, 000 7,

is equal to the cosine of the angle botweea the

the forces P, and P,, which we may dehole by ooi(P„ P^\
Similar values will be found for the ooofieientB of tlie trttur

terms ; and the result may be expresaed Ihna,

i?* -SP' + aSPP cos (P,PO

where by P, P' we mean any two of the forces.

29. The equation i?oosaa*SPoo«a, in Art 16, sbowi
tliat the rt9clwd part ofth% rmuitamt im antf Jtrfctiom it s^Mif

to ii€ mm of (As retohed partB of ike eommmmtf m ik^ mm§
direcHtm; for since the axes were taken aratnrilr, that of m
might have been made to ooinoide with any assigned dfa«o>

tion. Or we may eatabliah the proposition thna Soppose
a straight line drawn through the point of applioation of the

forces, and inclined to the axes al angles a , p, y. Take IIk

three equations of Art 26,

J{ cos a « P. cos a, -f P,cos .

2?cos6-P.cos/9, + P,oosi8, +

^cos c - P, 00S7. + P.cosr -
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Multiply the first by cos a', the second by cosyS', and the third

by cos 7, and add. Then, if ^,, ^,...denote the angles which
P^^ 1\.,. make with the arbitrarily drawn straight line, and
$ the angle which the resultant E makes with it, we have, by
the formula quoted in Art. 28 for the cosine of the angle be-

tween two straight lines

i2co8^=P,cos^, + P,cos^,+

30. From Art. 20 it is obvious that a given force may
be resolved into two others in an infinite number of ways.

When we speak of the resolved part of a force in a given

direction, as in the preceding Article, we shall always suppose,

unless the contrary is expressed, that the given force is re-

solved into two forces, one in the given direction and the

other in a direction at right angles to the given direction. The
former component we shall call the resolved force in the given

direction.

When forces act on a particle it will be in equilibrium,

provided the sums of the forces resolved along any three

directions not lying in one plane are zero. For if the forces

do not balance, they must have a single resultant; and as

a straight line cannot be at right angles to three straight

lines which meet at a point and are not in the same plane, the

resolved part of the resultant, and therefore the sum of the

resolved parts of the given forces, along these three straight

lines, could not vanish, which is contrary to the hypothesis.

31. In Art. 26 we resolved each force of a system into

three others along three rectangidar axes. In the same way
we may, if we please, resolve each force along three straight

lines forming a system of ohliqu^ axes* For whether the

figure in Art 24 represent an oblique or rectangular parallele-

piped, the force -^j^may be resolved into AD and AE, and
the latter again resolved into AB and A C, Hence the re-

sultant of a system of forces may be represented by the diago-

nal of an oblique parallelepiped, and for equilibrium it will

be necessary tliat this diagonal should vanish, and therefore

that the edges of the parallelepiped should vanish.

The following three articles are particular cases of the

equilibrium of a particle.
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82. "'- "'*— - -^ ^-^^ - /rnffffrfini \f % ^^t!X
aded on btf any farem ami tomatrmmA if tmmaim da « yStmm
9mooik emrtt,

V-y a amouk eturre we nndeittaad a fKanr% thai eta ealjr
ex* i I iuroe on the particle in a direction mofmal to the ewe
at the poiut of contact.

L«t X, 1' Z denote the force* acting on the particle in
directions narallcl to three rectangular axee, exdueive of the
action of the curve. I^t x, y^ g denote the oo-ofditiaiei of
the imrticic, and « tl 'i of the arc meaiiued fron eone
tixH i^MMi up to t: • (x, jf, g). The© hy Analrttnl
Cn { three dimensions the cosines of the angles

the ^ to the cunre at the point (x, y, m) makee m.„ :...

Ux dft ds « MM M
axes are . , ^ , , , reapectivel/. The knm mtnng eft

the particle heing resolved along the tangeiil to the mn%
their sum i.s

-. tlx „ dy
. r, ds

Unless this vanislies, there will be nothing to prevent the

particle from moving ; for equilibrium then we must have

Conversely if tliis relation holds the particle will remain at

rest, for there is no force to make it move alom^ tk§ cam,
which is the only motion of which it is capable.

Wc have 8up|)08ed the particle to be pUoed inside a tnhe

which has the form of the curve. If, however, the particle b«

merely phu -

'

a curvet it will beykrlAer neeas-

sary tor c«|u o resultant of the Ibfcei ebottld

]>rcV.s the particle wjuinM the curve and not novo it frvm
till' lKl\i',

10 determine tne conattuma ot wnmdihrimm of*^
h*f any firtet and eamatromtJ io rtmutim on m yimm
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A smooth surface is one wliich can exert no force on the

particle except in a direction normal to the surface.

Let A", F, Z denote the forces acting on the particle in

directions parallel to three rectangular axes, exclusive of the

action of the surface. The resultant of JT, F, Z must act in

a direction normal to the surface at the point where the

particle is situated; for if it did not, we might decompose

it into two forces, one in the normal and one at right angles

to the normal, of which the latter would set the particle in

motion. The cosines of the angles which the resultant of

X, y, Z makes with the axes are proportional to A^, F, Z
respectively; and if F{x^ y, 2;)=0 be the equation to the

surface, the cosines of the angles which the normal to the

surface at the point (x, y, z) makes with the axes, arc bj
Analytical Geometry of three dimensions proportional to

dF (IF , dF .. 1 TT r -ru .

-^ , -T- , and -T- respectively. Hence tor equilibrium we

must have
X _ Y _Z_^

'dP^lP" dF'
dx dy dz

If these relations are satisfied, the resultant force is directed

along the normal ; hence, if we suppose the particle incapable

of leaving the surface, the above conditions will be sufficient

to ensure its equilibrium; but if the particle be merely placed

on a surface, it will be further necessary that A, F, Z sliould

act so that their resultant may press the particle against the

surface. For example, if the particle be placed on the outside

of a sphere, the resultant of X^ F, and Z must act towards the

centre of the sphere.

34. Suppose it required to determine the action which the

curve or the surface exerts on the particle in the preceding

cases. Denote it by i?, and let o, A 7 be the angles its direc-

tion makes with the axes. Since R and the forces A'', F, Z
maintain the particle in equilibrium, we have by Art. 27,

JKcosa + A'=0, i2cos/9+ F=0, i2co37 + Zf=0 (1).
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A]-<'
•

iK-ii tiic {Hutide retti on a cturo muhet whoM MiAlios
i' ^ y%y. <)70, OMO, oot/9, Aiideot7 am knows ia l«Mt
of the ci>-ordiniit(r« of tho particle, linoa Umjt ara prn iwHinMl

as ' dV ' S rwpcciiveljr. Hence the eqnationa (I) aod

that to tho sorfaoe will dctennine », y, i, and J!; if JT, )' Z
be given.

If the |>articlo rest on a curve line, then, atnce the
of li h r Vir to tliat of the tanmt to the mnt^ w«
have t! equation from Amij^ml Geosetij of
three diiiun

coaaj+cot^j^ + ooiYj-O (1).

Smce 2 , £> ^^ >: c*^ ^ expieaaed, theeietieaU/ at

least, in terma of x^ y, and a, the equation (i) givea a rdatm
between coa a, coa ^9, and coa7, and x, jr, and a. Thna (1) and
(2) togetlkcr with the two oqoationa to the corve and th^

equation

coa'a + cos*/9+ ooaP7 - I

,

are sufficient to determine thc^ m^wn niinn titles /?. x. w, s^

ooaa, cos/9, and 0087.

Wc may obeenre that from (I)

.'i5. Duclinvla^s proof of the Parallelogram ot* Force* whicn

wc liavc giveii in Art 17, rests on the pcinctple of the hrmm
mL-^sff'tUty o/foree; see Art. 11. We shall give another pioof

which docs not involve this principle; this nroof ia Poiaaoa'a

with a slight in lu Wc assume tuat if two equal

forces act on a [.uin >. . the direction of the reaultant bisects

the anisic between the dircctiuiiH of the oonpoiienta. Alao, if

Pr '

of each of two equal foroea, te the

B the nacnitnde of thoan^ otions, and
resultant, tlicQ Ji must be aome function of i^and x; anppoae

in this ctjuation, 11 wc ciiange OUT unit of fixoei tho
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yalncs of P and R will change; but as tlie above conation

must be trm*, whatever unit of force we adopt, it follows tliat the

function /(/^ ar) must be of the form P^ (x). Hence we have

B^P4»(x).

Let M represent the position of the particle

;

the directions of the equal forces

acting on it; ^fD the direction of the

resultant. Draw the four straight lines

MC, MG, MIfy ME, making the an-

gles CMA, GMA, HMB, EMB all

equal, and let z denote the magnitude

of each angle. Suppose the force P
acting along MA to be resolved into

two equal forces acting along MC
and MG respectively ; denote each

of these components b/ Q; then

P=Q<\>{z).

Resolve P acting along MB in like manner into two
forces each equal to Q, acting along ME and Mil respec-

tively. Thus the two forces P are replaced by the four

lorccs Q\ and conseciuentiy tlie resultant of these four forces

must coincide in magnitude and direction with the resultant It

of the two forces P.

Let Q denote the resultant of the two forces Q, acting along

MG and MH\ since .GMD —UMD = a; — «, we have

Q'=Q4>(x-z),

and MD is the direction of Q\

Similarly, the resultant Q" of the other forces Q will act

along MD ; and since CMD = EMD = a; + z, we have

Since Q and Q' both act along the straight line MD, their

resultant, which is also the resultant of the four forces Q, must
be equal to their sum ; hence

But we have R^P<f) {x) = Q4> {z)
<f>

(a?).

Uei.ce . 4>(x) <l>{z) = <f>{x -^ z) -\- ip^X" z) (1).
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TliU eaiution admiu of more than one tolotion ; lur

pK if ^ (jr) - 2 cot ca^ or if f{x) -^ + f"^, whm% c i« utf
r, the c<iuAtion ii MU«fiod; we thali how«ir«r Atm

< only ftoluiion admiitibic in the pfeeeat qeeetioa it

t ic following,

^(or) - 9 ooe« («).

We nuj obeerre that we need not eonader enjr ynlm of •

greater than ^ , for the diredimii of two ibreet acting el a

point will always include an angle leaa than w| we majr th«i

assume it as obvious that ^(x) most be a positive qnanlitf.

We shall firtt shew that if ^{x) t ootdD when m Ims anj

valneo, then^(x)mast«»2oos« whenxhaathevnlMi* In

(1) put X and a each eqnal to |, to that ^(«4«}

equal to 2 cos a ; thus

But the resultant of two equal forccn a» ;m- ni tn.- •atne

Hiraij^ht line is equal to twice either ot the cumpoucut fwrcc«;

thus ^(0) • 2 ; therefore by (3)

g)#g)-2(l + co6a).4co.'|.

Hence (2)-±aco«^; butbysuppoeiUon jUlcaslhan

w , . /a
, and ^r^j must be a^wfiViw quantity ; thoa

Similarly if ^(x) -2 cos« when »-|, then ^{«) -2coa«

whcnx--; andsoon. Thus we conclude that if ^(»)-*«•*
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a
when x = a, then <^ (x) = 2 cos a wlicn x = —;

, where n is any

positive integer.

\Vc shall next shew that if <^(x) = 2 cos a; when a? = /9, and
when x = 7, and when x = /3 — 7, then ^(x) = 2co8a; when
x»l5 + y. From (1)

« 4 cos ^ cos 7 - 2 cos (y9 — 7)

= 2cos(j9 + 7).

Thus if (2) holds when a; = )9, it will hold when x = 2^; this

we obtain by supi)0sing 7 = ^. Then if (2) holds when x = fi

and when x = 2/9, it also holds when a? = 3y9 ; and so on ; that

is, if (2) holds when a: = /3 it will hold when x = mp. Tims
we conclude that if (2) liolds wlicn a; = a it will hold when

a? = - .- , where m and n are any integers.

But since the numbers m and n may be as great as we
wiot

please, we can take them such that the expression — may

differ as little as we please from any assigned value of x.

We may therefore consider (2) as completely demonstrated

if it holds for any value of x different from zero. But by
Art. 16, it does hold when a;= Jtt, for then <^ (x) = 1 = 2cos Jtf;
hence it holds always. Hence

i? = 2Pcosa;.

If then the forces P be represented by straight lines drawn
from their point of application, the resultant /?will be repre-

sented by that diagonal of the parallelogram descriljcd on
these straight lines which passes through the point of appli-

cation.

Next, let two unequal forces P and Q act on the particle M
along the straight linesMA and 3/Z?; n _. m .9

represent their intensities by the / >y^T\
straight lines MG and Mil taken I

^^^^ / \ /
on tiieir directions, and complete 9^^- ^^
the parallelogram MQKIL x^>v /^ ^y^\

First suppose AMB a right an- ^J/^
^

gle. Draw the two diagonals MK . k.



PARALLSLOQIAII OP

and nil. which meet at L\ throogh O and U dmw GStttA
11 to ML, meecing at ^ and tU pmllcl to iUI
til a »» II nii li -h )f. Then

OLmLUmLM.
Ilenco NL anilntr-nit parallelogrami. an^l fhrr^.

fori', l»y what li 1, the ?•

rc;;iir»U'tl n-* th«- i. ......... • . i . .....i J/L, at)«i mi- i-.m- .m/i

as the resultant <>t' .I/O aii<l .1/A. Uenoe W6 majr fiibititata

for cti/A, J/0,MidtlietwolBf«MlCLt
J/ m equal and opposite, dettiof eaeh
other, utul wo hav« nmaining the two forces ML, which
together give a force repreHcntoJ in niaLMiitttdc nti I .lirrrf'ftn

by j/a:

Secondly, sappoao^the angle A
not a ri^ht an«j''

draw GE and
diagonn' "''

thi-^Atr

at

(ii .

the I'orcc J/(r i

and J/A\ and tl.*

Tliriiiif»h O and --

*alar to the

I //OparalM T .

hirdfaw.V.V
Tlien we have
already ahcwn.

iced br MS
\:.I by A/0 and

MF, Since MX and MO arc cciual and

opposite, they will destroy each other. ;

i/r and J/A remain; since MF^ 1

we have MK as the resultant in mag-
nitude and direction of MO and Ml!,

Hence the ParalUlogram of Force* is completely prorcd.

36. A proof of the Parallelogram of ForoM hat

given by Laplace [Miamiq^ C^Mt, Lir. 1. Chap. 1). In thii

proof the component force* are at fiiit anppoaed to bo at rjglit

angles; the magnitude of their resultant is then determined

and afterwards its direction. The first part of the proof ia to

simi.ie, that it may be conveniently iutrodiioed bere; it b
siibsiantially as follows. Let :0 and jf denote two femt which

arc inclined at a right angle, and let i denote their imltaat;

we propose to tind the Talue of #. It is obriotts that if the

components instead of being x and jr were %k and $y rrnpac-
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tlvely, tlie resultant would be 2z and would have tlic same
direction as before; so if the components were 3jj and 3y
respectively, the resultant would be 82 and would have tho

same direction as before; and so on. We may therefore

assume conversely, that if the inclination of the resultant to

each component remains unchanged, the ratio of each com-
ponent to the resultant will also remain unchanged. Now
consider the force x as the resultant of two forces x and a;", of

which X is in the direction of r, and x" is at right angles to

that direction. Then by the principle just assumed, we have

X X , x" y— = - , and — = -

;

X z X z

so that X — —
y and ic" = — .

z z

Similarly y may be resolved into '-^ along the direction of z
z

and — at right angles to that direction. Thus tlic forces

X and y are equivalent to four forces, two in the direction of z

and the other two at right angles to that direction ; the latter

two are equal in magnitude and opposite in direction, so that

they counteract each other ; hence the resultant of the former

two must be equal to z. Thus

— + '^ = z : therefore «*= x' + v*.
z z ^

^

Wc shall now give some simple propositions which will

serve to exemplify and illustrate the principles of the present

Chapter.

I. ADC is a triangle;

Dt Ey F are the middle pomts
of the sides BC, CA, AD
respectively: shew that forces

represented by the straight

lines^A BE, CFvfiW be in

equilibrium.
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It is known that th« ttraif^ht linei AD, BE^ OFw^bH ai m
point: nee Appendix io KmcluL Ixt G dmHi Ckb pobt*
The three forces may be tuppoaed to act at 0.

Since /) is the middle point of BC, the naraltelognuo d»>
scribed on AB and ^C at adjacent sides wifl have a diagottal

in the direction AD\ hence twice AD wiU reprri«tit the
resultant of two forces repreaented br AB and AC. And
c t ^rce represented bj ^/; may be raolvwl into
tw Hented by half AB and half ^C Siadlftrir
tli< ybe resolTed into half //C and half /?.-!; and
the : ...ay be resolred into half C^ and half CB.

But the force half AB is eqoal and oppoaile to tba
Iinlf BA ; and so on. Thus, finally, the fomt AD. BE. CF
M ;>> ''juilibriom*

ii. In the figure of the preocum^ nrniw.
prL\sented by the straight liiiea OA. OB^ '

cquilibnum.

The re.'^ultAnt of the forces OB and OC n .#i..

If then there is not equilibrium the three for '. OB,
fr'C have a resultant

' ' m
D towards -1, that i .»e

same way it nmv be hIh-wh that it t , GB, OO
are not in equili\)rium their resultant :.. . : :*ie straight

lino BE, and also in the straight line CF, But it is ironoeA-

1.1. tliat tho rrMiltant can act in three differrnt strsiffht lioea.

TiiLrctuic tlio : rccs GA, GB, CrCmust be in equilibrioD.

As tho student is probably aware, it may be shewn \ff

Of ;

* *'iat AG \^ equal to twice 0D\ and thns the pfi»-

sen: > msy he established directly; but we hare wed
tlic Hit tor the purpose of illustnuiiif OM-
chniucal

; ,

mav obscTYe that we have thiM bj
the aid of mechanic . in (act, democM

AG^2GD\ for t^ . GBu^GC\m
by twice OD.

Since -4/)-8(;y> I CJf-S(7/; the

AD, BE, CFhfkYc ih. prcforiHm as the Ibraea

GD, OE, OF; so that the first piopoaitioo may be dedaced

immediately from tho second. .
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III. Forces act at the middle points of a triangle, in the

plane of the trianj^le, at right angles to the sides and respec-

tively proportional to the sides: shew that if they all act

inwards or all act outwards they will be in equilibrium.

The directions of the forces meet at a point, namely, the

centre of the circle which circumscribes the triangle. And
the angle between the directions of two forces is the supple-

ment of the angle between the corresponding sides. Thus
each force is as tlie sine of the angle between the other two.

Hence by Art. 19 the forces are in equilibrium.

IV. Forces act at the angular points of a triangle along
the perpendiculars drawn from the angular points on the

respectively opposite sides; and the forces are respectively

projx)rtional to the sides: shew that the forces will be in

equilibrium.

It is known that the perpendiculars meet at a point: see

Appendix to Euclid. llence by the preceding proposition

the forces are in equilibrium.

V. ABC is a triangle; //, /, K are points in the sides

BCf CA, -4i? respectively such that

BH CIAK
'nWlA''KB'

Shew that if forces represented by All, BI, CK ad at a point

they will be in equilibrium.

Let />, E, i^ be the middle points of the sides; and suppose

AD, BE, and CFto be drawn.
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Thr fi^TCf* AH may be reflolTod into tha lorwn Al^ '*"

tie- toicr /;/ into tho foroea UK, KI\ and tbe Ibft8 '

the forces O; FK. 8c€ Art 'in

The forces AD^ BE, CF are in c<|mUbriiim bj liic utai

proposition.

And we have from the bjpothosts m to //, /, A',

DH Bl FK
M''7JA''aB'

SO • U to the wacs of

th. , cquilibriam by
Art. 21 ti llicy ttci at a puiut«

y '-' the forces ^//, BI, CK act at a poiut they are in

1 ! > ti litrht lines AH^ BI, CKhy their intrrsectiofis fbra
< therefore bj Art 19 the aides of tikis triaii^
1 to the forces. Hence we arriTe by roecbanical

{•I t the following geometrical rcmilt: the Hides of tbe

iri.i...... ; imed by the intersections of ^ fr T*T (*K tun

proportional to AH^ BI, CiT respectively.

YI. Ay B, C are three points on the ctj i ninfawaes of a

circle; forces act along AB and BC inTerseIr pioportioiial to

these straight lines in magnitude: shew tbal tao resoltant

acts along the tangent at B.

Denote the forces by -^ and -gL respeetiTely. B«sq1t«

them at right angles to the tantront at 77: thus we obtain by
Euclid, HI. 32,

^sfai ACB^ ^sin CAB;

and this b sero, since

CB naOAB
AB^unACJt'

Hence the resultant most set aloog the tangent at B,
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VII. If one of two forces be given in ma.2^iutu(le and
position, and also the direction of tlieir resultant, the locus

of the extrenjity of the straight line representing the other

force will be a straight line.

Let a and r denote the magnitudes of two forces; suj^pose

the former to make an angle a with the direction of the

resultant) and the latter an angle 0,

Then, resolving along the straight line which is at right

angles to the direction of the resultant, we have

a sin a — r sin ^ = 0.

Now a and o being given, while r and are variable, this

equation represents a straight line which is ]iarallel to the

direction of the resultant, and at a distance a sin a from it.

See Conic Sections, Chap. ii.

VIII. From any point within a regular polygon perpen-

diculars are drawn on all the sides of the polygon: shew that

the direction of the resultant of all the forces represented

by these perpendiculars passes through the centre of the

circle circumscribing the polygon, and find the magnitude of

the resultant.

Let o denote the perpendicular from the centre on a side,

c the distance of the pomt at which the forces act from the

centre, a the angle which this distance makes with a fixed

straight line which coincides with the perpendicular from the

centre on a side, n the number of sides in the polygon; and let

^= n'

Then the magnitude of the m"* force may be denoted by
j9~cco8 (w/9 — a), and the direction of this force will make
an angle mfi with the fixed straight line.

Hence the resolved parts of the forces parallel to the fixed

straight line, and at right angles to it, will be respectively,

2 (p - c cos {mff — a)} cosm^ and 2 [/? — c cos {mfi— a)] sin my3,

where 2 denotes a summation to be taken with respect to m
from m = 1 to m = n.
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Alio oo6(M^-a)ootM/9-i>(o(»(tm/9-a)-|-OMc),

cos (iN/9* a) Ain M/9- - (tin (Hi3- a) -I- tin t|.

Then effecting the tiiinTnation, (aee TVt^tm&msiry, HiAt). xxirl
we obtain for the resolved parts,

— - cos a and — rr stn «•

Hence, with tlio notation of Art. 72,

tan a tan 0, '^ " u *

The former equation shews that the direction of the resoll-

snt cnincidcs with the straight line which joins IIm OMlliS lo\ joma
the |>oliit at which the forces act; ami the latter oqsaliiNi

detenu iiies the magnitode of the resultant

TX. Suppow three forces P, Q, /? to act at a point 0.
to be in equilibrium; let a circle be described wttli O m
centre, and any radius, cutting the direettOQS of tlia hnm
at rite A, B, C respt^ctirelj: then shall P, Q, B \m
n - \' proportional to the areas of the triangles

one, OCA, OAB.

This follows at nncc irom Art. 19, since the area of a

triangle is expressed by half the product of two sides into the

sine of the included angle.

X. Suppose four forces P, Q, Jl^ 8 to act at a point 0,

and to bo in equilibrium; let a sphere be described with as

centre, and any radius, cutting tne directiooi of tbe fofces at

the points A, B, C, D respectiTely : then ahaU P, Q, A S
be respectively proportional to the volumes of the pyramids

OBCD, OCDA, ODAB, OABC.
Take as the origin of a set of rectangnlar axes, let jl. jf,. s.

\k the coordinates of A ; r^, y^ s, the co-ordinstes of a; ana
so on. TlitMi, by Art, 27,
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llcncc, eliminating Q and i?, we shall obtain

Hence, by the aid of the expression for the volume of a

pyramid given in works on Analytical Geometry of three

dimensions, we have

Pj_ volume of pyramid OBCD
5"" volume of pyramid OADC

Similarly we obtain the value of -^ and of -^

,

EXAMPLES.

1. Two forces P and Q have a resultant B which makes
an angle a with P; if Pbc increased by R while Q remains

unchanged, shew that the new resultant makes an angle

^ with P.
2

2. Two forces in the ratio of 2 to \/3 — 1, are inclined to

each other at an angle of 60'; what must be the direction and
magnitude of a third force which produces equilibrium?

Besult. The required force must be to the first of the given
forces as \^6 to 2; and its direction produced makes an angle

of 15' with that force.

3. The resultant of two forces P and Q is equal to <2 V3»
and makes an angle of 30° with P; find P in terms of Q,

Besult. Either P= Q or P^2Q\ in the former case the

angle between P and C is 60^, in the ktter 120^

4. If i>, J^, -F be the middle points of the sides of tlie

triangle ABC and any other pomt, shew that the system
of forces represented by 0/>, OK OF is equivalent to that

• • -
1, oA "

"
represented by OA, OB, OC.
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o. I III-
** * foroet ii 10lU«., one of ihrtn i^

equal to 81 tioD of tin- t»thrr U ii». liiir<i t.»

Itant at au au^io %*l ;M»*. Find Uio angle U twix-n tho

6. Tho resultant of two forces P, Q, acting at an angle $,

is equal to (2irt -f I) V(P'4- (f) \ when they act at an sagle

lir - e, it is equal to (2ai - 1) V(i* + fl^ ; shew that

tan^-^J.m + 1

7. Two forces /* and F' acting in the disgonab of s
pat il! lojCTam keen it at rest in such a position that one of its

cU^cJi lA uonxotitai, shew that

fsec a' - /•' sec a - TTcosec (« + a*),

where W is tho weight of the parallelogram, a end a' the

angles between its diagonals and the horizontal side.

8. If a particle be placed on a sphere, and be acted on
by three forces represented in magnitude and dimrtion bjr

three chords roatunlly at right angles drawn through tlie

particle, it will remain at rest.

9. Three forces P, Q^ R acting on a point snd keeping
it at rest are represented bj straij^lit lines drawn horn that

pomt If P be given in magnitude and direction, and Q in

magnitude only, find the locus of the cxtrcn»i»v '^ ^^'^ -"'^

which represents tho third force R^

Result, A sphere.

10. A circle whose plane is yerticsl hss a centre of con-

stant repulsive force at one evtr..i«ity of the l««^r>».»t.tnt <i;«.

meter; find the position of < im of a ; in

the circle, the repulsive force uciu^ equal to uiq iicij^ai of
tlie jmrliclc.

Result. The straight line joining the particle with tho

centre of the circle makes an angle ofSO* with the
'
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11. A ])artlcle is placed on a smooth square table whose
side is a nt distances c,, r,, r,, c^ from the corners, and to it are

attached strings passing over smooth puUies at the corners

and supporting weights P,, P,, I\, P^; shew that if there is

equilibrium,

Vc, c, c, cj or \c, cj \c, cj

Sliew also that

12. Two small rinjjs slide on the arc of a amootli vertical

circle; a string passes through both rings, and lias three equal

weights attached to it, one at eacli end and one between the

rings; find the position of the rings when they are in equi-

librium. The rmgs are supposed without weight.

Besult, Each of the rings must be 30" distant from the

highest point of the circle.

13. Tlie extremities of a string without weight are fastened

to two equal heavy rings wliich slide on smooth fixed rods in

the same vertical plane and equally inclined to the vertical

;

and to the middle point of the string a weight is fastened

equal to twice the weight of each ring; find the position of

equilibrium and the tension of the string.

If the point to which the weight is fastened be not the

middle point of the string, shew that in the position of equi-

librium the tensions of its two portions will be equal

14. A light cord with one end attached to a fixed point

passes over a pully in the same horizontal line with the fixed

point and supports a weight hanging freely at its other end.

A heavy ring being fastened to the cord in different places

between the fixed point and the pully, it is required to find

the locus of its positions of equilibrium. If the weight of the

ring be small compared with the other weight, the locus will

be approximately a parabola.



15. If two forces acting Along dMfda of a eiido art b-
versel^ proportional to tho lengths of the rl>r»r.ta it.^tr mmj*
tant will |)asa through one or other of the p< ciion

of straight lines drawn through the extremities qi toe csgidiu

1G. A particle rests on an ellipse acted on hy tbms Xs/",

/iy', i^amllol to the axes of x and f respeotivelr; find its

l>osition of equilibrium. Explain the case in whicn a « I.

17. A particle is plaoed on the outer snrfiMO of a
(}xM sphere and is acted on hy a fixed centre of force I/tag
vrrtu ally above the centre of the sphere, at adistanee^ fron it

i\\\>[ attracting directly as the distance. Shew that the partielo

will rest on anr part of the sphere if the weight of the
particle equaU the attraction on it hy the fixed ontia of Ibica

when at a distance e from it.

18. A particle is placed on the snrfaoe of an ellipsoid ta

the centre of which is resident an attnicti\'e force: detanaiae

the direction in which the particle will begin to move.

«* «* s"
10. Find the point on the surface p "^ n 4- ^ « It wlMre

n particle attracted hy a force to the origin will rest in equi-

librium.

20. ABCD is a quadrilateral inscribed in a circle, and
forces inversely proportional to AB, BC, AD, /)Cact along

tlio sides in the directions indicated by " -rs: shew that

their resultant acts along the straight iiig the intcr-

Hcction of the diagonab with the intersection of the tan-

gents to Uie circle at B, D,

T.s.
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CHAPTER III.

BE8ULTANT OF TWO TAKALLKL FORCES. COUPLES.

37. To find the magnitude and direction of the resultant

of tico parallelforces acting on a rigid body.

Let P and Q be the forces; A and B their points of ap-

plication: let P and Q act in the same direction, making
angles a with AD, The effect of the forces will not be

altered if we apply two forces equal in magnitude and acting

in opposite directions along the straight line AD. Let S de-

note each of these forces, and suppose one to act at A and the

other at D,

Then P and S acting at A are equivalent to some force F
acting in some direction AP' inclined to AP (Art. 17); and

Q and S acting at D are equivalent to some force Q acting in

some direction DQ inclined to DQ.

Produce PA, QD to cut each other at C, and draw Cl>

parallel to AP, meeting AD at D\ suppose C rigidly con-

nected with AD,

Transfer P and Q to C (Art. 11), and resolve them alonp;

CD and a straight line parallel to AD; the latter parts will

each be equal to S but act in opposite directions, and the sum
of the former isP-H Q. Hence i?, the resultant of P and Q,

=P+ Q and acts parallel to P and Q in the straight line CD.
We shall now determine the point where this straight line

cuts AD.



TWO TABJILLIL iOi

The .M.l. s ..!' th<- tri:n)::lo ACD «« jMttttllel to tbe diracttoM
of the lurcLH J\ S, i' ; therefore br Art. 19

P CD
. , ,

S DB

tlu^rrroro 7-- n.1
—^^

, if AB^a and AD^x)
Q J)A m '

therefore — — ItJt} »

this determines the point D through which the direction of
the rcsulunt patiet. It will be obMrved that AB \m diridad

at D into leffmenta which are iiiTwaeljr aa the Itmat at A and
B respectiTcIj.

If the force P act in a direction ovtHxsite to thai of Q

a similar process will lead us to

R^Q'-P, and--
m_ Q
a IflT*

which may be derived from the formoba of the

case by changing Pinto — i*.

It will be obserred that Ah pm<iucr<i u dtvidrd »t i> into

segments which are inTersel/ aa tha Caroas at A and B re*

siKCtivcly.

5-J
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38. The point D possesses this remarkable property: tliat

however Pand Q arc turned about their points of application

A and Z?, their directions remaining parallel, D determined as

above remains fixed. This point is in consequence called

the centre of the parallel forces P and Q,

39. If P= Q in the second case of Art. 37, then 7? =
and x = oo , a result perfectly nugatory. It shews us that the

method fails by which we have attempted to compound two
equal and opposite parallel forces. In fact the addition of the

two forces A still gives, in this case, two equal forces parallel

and opposite in their directions.

Such a system of forces is called a Couple,

We shall investigate the laws of the composition and
resolution of couples, since to these we shall reduce the com-
position and resolution of forces of every description acting

on a rigid body.

40. From Art. 39 we might conjecture that two equal

forces acting in parallel and opposite directions do not admit of
a single resultant^ which may be shewn as follows.

Suppose, if possible, that the single force R will maintain
equilibrium with two forces, each denoted by P, acting in

parallel and opposite directions.

Draw a straight line meeting at A and B the directions of

the forces P, and that of R at K Make AD — RE, and apply

at D two forces T and S each = R and parallel to R but

in opposite directions; this will not disturb the equilibrium.

Henc* the five forces R, P, I\ Sy 7^ arc in equilibrium. I5ut

since P, P and R form a system m equilibrium, so by sym-
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mctrv do P, Pand T. IIenc« if we i«aia?« IIm kil tkiM
wc iihall not disturb the e(|uilibnuni, md we eceordiiigljr hmwn
li and S left maintaining cc)uilibrium. Rut thin U oSirioMlj

duecooo. UeaeetiMimpOMible, since they act in the

two parallel forces r cannot be belaaced bj % tiagle

and therefore do not admit of a single leeoltant.

41. A O0«f|>f0 consists of two eqoal foteet Mttiig in {wrallel

and opposite airectit

The arm of a couple if the perpendicular disianoe between
the directions of its forces.

The momemi of a ooaple is the product of either of its feme
into the perpendieskr aistanee between then*

The €tx%9 of a couple is a strai;;ht line perpeedicular to tbe
jilane of the couple and proportional in lengu to Uie MO—IL

Two couples in the same plsae maj di£Eer with raspeel to

direction. For suppose the middle point of the arm of a
couple to be fixed, and the arm to move in the directioa ia

whicli the two forces of the couple tend to urge it ; there aie

two different directions in whicli the arm maj rutate. Sop*
pose a pcq>endicuUr drawn to the plane of the couple throo^
the middle )>oiiit of its arm, so that when an observer u
placed along this straight line with his feet against the pUnc,

the rotation which tlie forces give to the arm appears to take

place from lefi to right; the perpcndicuhur so drawn Wf ihall

take for the axi9 of the couple.

We shall now give tliree propositions shewing that tW
effect of a couple is not altered when certain changes are made
witli respect to the couple. It is to be supposed in all these

propositions that a rigid bodjr is in eqaiUbriiim under the

action of certain forces, including an assigned oonple; and it it

shewn that then the equilibrium will nol be disUirbed hf tiM

Hi)iclfu>d changes with respect to the couple.

42. Th€ effect of a coupU u wH aittrtd tf itt wrm U U

tlirough any anglt about one «Jtl»wmiijf W cAf plmM ^ A$
coupb.
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Let the plane of the paper be the plane of the couple, AD
the arm, andAB its new position ; the forces P, , P, are equiil

and act on the arm AB. At B and A let the equal and
opposite forces P,Pa, P,P«. each equal to P, or P, be applied,

acting at right angles to AB' ] this will not affect the action

ofP, andP,.

Let PP,, B'P^ meet at C; join AC] -4 (7 manifestly bisects

the angle BAB',

Now P, and P^ are equivalent to some force in the direction

CA^ and Pj and P^ are equivalent to an eqiuil force in the direc-

tion AC. Therefore P,, P,, P,, P^ are in equilibrium with

each other; therefore the remaining forces Pj, P« acting at

By A respectively produce the same effect as P, , Pj acting at

P, A respectively. Hence the proposition is true.

We may now turn the arm of the couple through any angle

about B'\ and by proceeding in this way we may transfer the

couple to any position in its own plane,

43. The effect of a couple is not altered if we transfer the

couple to any plane parallel to its oum, the arm remaininff

parallel to itself.

Let AB be the arm, A'B its new position parallel to AB.

f^ i

D'

P.

T
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.loin Alf, A'B bMeedng eMh other at u. At .1 . Ji adU/
two equal and opposite foteet mktIi - P^ or /' aii<l tiarmUel lo

ibem; and let thoM fomt be P., P., P., I\\ tbia will ttocate
the effect of the ooaple.

But P, and P^ are equiralent to 9P^ actiBg at (7 i«

the direction da parallel to the ' of /^, and P and
P, are rciuivul. i.f f<t *?/* acting ;u ', ... the oppoaite diree>

lion ill'.

Hence P,, P,, P^, P^ are in equitihrinni with each other;

therefore the remaining forces P and P. acting at A' and B
rcBpcctively produce the same ellect aa /, and 1\ acting at A
ana B reapectiTelj. Uenoe the pfopoaitiao it troe.

44. Tim «ibef iff a eompk tt not akm^i ^ «t wfpUm U if
miolAer emrnU cf wAteA lA« mmmemt is iks mms; lA# pUm
rfmatntng tkB mtm€ amd tke arms being im Urn satm sUmgId
line and having a esmmon exirsmUg.

Let AB be the arm ; let P, t^.Q4.%
P be the forces, and suppose

P^Q-k-E;\ttAB^a, and let

the new arm AC^b; at C
apply two opposite forces each

« Q and parallel to P; this

r

will not alter the effect of tlie p*A«»
couple.

Now i? at ^ and Q at C will baknoe Q-i-EtXB,

i(AB : BC v: Q i B, (Ait. 87),

ot'iiAB : AC :: Q : + -B.

that ia, if Q.bm^P.a;

we have then remaining the couple Q, Q acting on the

AC. Hence the couple P, P actmg on AB may be rrpUccd

by the couple Q, Qactingon^C, if Q.bmP.a, thst is, if

tlicir moments are the

45. From the last three Aitioles it eppem that, wiihovt

altering the effect of a couple, we aej ohMfft it ialo another
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of equal moment, and transfer it to any position, either in

its own plane or in a plane ])arallcl to its own. 'J'lic couple

must remain unchanged so far as concerns the direction of

the rotation which its forces would tend to give the arm, sup-

posing its middle point fixed as in Art. 41. In other words,

the straight line which we have called the axis, measured as

indicated in that Article, must always remain on the same
Side of the plane of the couple.

46. We may infer from Art. 44 that couples may be mea-
sured by their moments. Let there be two couples, one in

which each force = P, and one in which each force = Q^ the

arms of the couples being equal; these couples will be in the

ratio of P to Q. For suppose, for example, that P is to (^ as

3 to 5 ; then each of the forces P may be divided into 3 equal

forces and each of the forces Q into 5 such equal forces. Then
the couple of which each force is P may be considered as the

sum of 3 equal couples of the same kind, and the couple of

which each force is Q as the sum of 5 such equal couijles.

The effects of the couples will therefore be as 3 to 5. Next,
suppose the arms of the couples unequal^ and denote them by

p and q respectively. The couple which has each of its

forces = Q and its arm = j is equivalent to a couple having

each of its forces = -^ and its arm =p, by Art. 44. The

couples are therefore by the first case in the ratio of P to -^
,

that is of Pp to Qq.

47. With respect to the effect of a couple, we may observe

that it is shewn m works on rigid dynamics that if a couple

act on a free rigid body it will set the body in rotation about

an axis passing through a certain point in the body called

its centre of gravity, out not necessarily perpendicular to the

plane of Oie couple,

48. To jind the resultant of any number of couples acting

on a hody^ the planes of the couples being parallel to each

other.

First, suppose all the couples transferred to the same plane

(Art. 43; ; next, let them be all transferred so as to have
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their aril ; 'ho ttmo ttnight lini*, and
inon (At ij,

; and Uitl)*, let tlinii U rciilAcn! hy othm
cuuple« having the tame aim (Art. 44).

Thuiif P, ftJ?, be the forces, and

a, h, c, be tlicir anna,

we shall have them repUced bj the following fbitei (vofiporfiig

a the common arm),

/*.-, Q»-9 -R.-, acting on the arm •«.
a a a ^

lienoe their resultant will be a ooo{Je of which each km
c<(uaU

P.?+<?.? + J?.?+
« a a

and the arm * a,

or of which the moment equals

I U'un' the moment of tlic resultant couple is equal to tbo fOM
ot tlic moments ot' tlic original conplea.

If one of the couples, as Q, Q, act in a dirocfioo ompomk to

the couple F, P, then the force at each extremitj of the am
of the resultant couple will be

o a a

niwl flic moment of the resultant couple will be

P.a^Q.h-^ n "^

or the algebraical sum of the momrntjiof the original ooeples;

the monienti of those couples whidi tsMl in die diredioa

op|)0:}ite to the couple P, P being
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49. To find the resultant of two couples not acting tn the

same plane.

Let the planes of the eouplcs intersect in the straight line

4

a
AB, which is perpendicular to the plane of the paper, and let

the couples be referred to the common arm AB, and let their

furces tlius altered be Pand Q.

In the plane of the paper draw Aaj Ab at right angles to

the planes of the couples P, Pand $, Q; and equal in length

to their axes.

Let R be the resultant of the forces P and Q stt A, acting

in the direction AE; and of P and Q at B, acting in the

direction BE,

Since APf AQ are parallel to PP, BQ respectively, there-

fore AEia parallel to BE,

Hence the two couples are equivalent to the single couple

E, E acting on the arm AB,
Draw Ac perpendicular to the plane of P, E, and in the

same proportion to -4a, Ab that the moment of the couple

Ey E is to those of P, P and Q, Q respectively. Then Ac
is the axis of P, E. Now the three straight lines Aa^ Acy Ab
make the same angles with each other that ylP, AEy AQ
make with each other; also they are in the same propor-

tion in which AB,Fy AB,Ej AB. Q are; that is in wliich

P, P, Q are.

But E is the resultant of P and Q-, therefore Ac is the

diagonal of the parallelogram on Aa^ Ab (see Art. 17).

Hence if two straight lines, having a common extremity,

represent the axes of two couples, that diagonal of the paral-

lelogram described on these straight lines as adjacent sides

which passes through their common extremity represents the

axis of the resultant couple.
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50. ToindOemmgrntmUamd^
i§ ike rmuuant of iAtm eoupim
angUt to Mo4 olAer.

Let AB, AC, AD be the axes of the ^rai covpfei (««
^s. to Art 24). Complete the |«r*H..l,..rr««, Q£^ |y|j ilmur

AE the diAgonaL Then AE u : iie eottpU whidi
is the resultant of the two coa|ur.<( ni wmch the axea art

^li9, AC. Comnlcto the parallclopun J)E, and draw AF
the diagonal Iben AF m the axU of tlM eoopla whieb ta

the resultant of the ooaplea of which the axea are A£, AD,
or of thoee of whidi the axes are AB, AC, Alk

Now AF'^AE^'^-AIJ^^AB^'h'AC^'^^AIf.

Let G be the monent of the resultant coople ; £, IT, A*

thoaa of the giTen couples

;

therefore (p^u^^^^^^^

and if X, /i, r be the angles the

with those of the componenta,

axis of the reraltant

oosX
AB L M

cosF-:g.

51. Henoe conyersely any couple may be replaced by
three couples acting in planes at nght angles to tteh other;

their moments being O oob\ O cosu, G cosr; where O m
the moment of the given oouple, and X, m, r the anglca Ha

axia makes with the axes of the three couples.

Thus etmples follow, as to their compoaitioo and reaoluttoo,

laws similar to those which apply to /fteee, the «rw of the

oouple corresponding to the tftrselioii of the force aad tte

moment of the couple to the tnltnailry of the forte. HeM
for example, by Art. 29, the resolved part of a ^^Xuta^

couple in any direction is equal to the sum of the resolved

parts of the component couples in the aame direction.



( 44 )

CHAPTER IV.

RESULTANT OP FORCES IK ONE PLANE. CONDITIONS OP
EQUILIBRIUM. MOMENTS.

52. To find the resultant of any number ofparallel forces
acting on a rigid body in one plane.

Let P^, P„ P3 denote the forces. Take anj point in

#^^

the plane of the forces as origin and draw rectan^lar axos

Oj:, Oy, the latter parallel to the forces. Let A^ be the point

where Ox meets the direction of P,, and let OA^^x^,

Apply at two forces each equal and parallel to Pj, in

opposite directions. Thus the force P, is replaced by P^
at along Oy^ and a couple of which the moment is P^ . OA^,
that is Pj.Xj. Transform the other forces in a similar manner,



RQUILIBttlUM or PAKALUn. fOftTBl 4B

UBinp a similar notation, and Ui« wfi^'** -»-•—" -••» '- —^i..--i

to a force /* + P, + P,+ or 1

'

Pjj-, 4- /V^.-f /*,-r, -f or ^Px in i!i. ymnc ui ihc lorcoi

and tcnilitig to turn tbo body from the axis of 9 to tba ask
ofy.

53. To Jin 1 thr r,,n.uti>nM of fquHthrtmm tf m mftktm ^
paralUlforciis acUHi^ oh a n^id hodtf im otmpimm,

A aywtfm of parallel forces can bo reduced to a vinsle

foroo and a conplc. If neither of theiie vanish eqailtbriam

ia impoMible, becanao a Hin^o force cannot neutraliar a coapU
(Art. 40). If the ain^lo force alone vaninh eouilibriitni 10

impoasible, baoaoae there renin in^ an nnbdanetd eovDie, If

the coaple akme Taniib equilibrium it impoeaible, Waia
there remains an unbalanced force. Hence, for eqailibnum
it \A necessary that both the force and the ooapte aboakl

vanish; that ia

iPmO and SPx-0.

54. The product of a force into the pemndieakr dmmi
u()on its d inaction from any point, ia callea tlie mmmttd of

the force with respect to that point. Hence the cooditioiie of

e/]uilibrium which have joat been obtained may be tiMM

enunciated:

A tyn'em of pamPel Jhreeit aeitng om a rufij hottjf tm m^
plame iotU be tn equildmum if ths turn of tU fortm v^miaim^

and the 9um of tho moment* of iMeJorcm romtUt am eeipk m
the plane also vam'shes.

Conversely, if the forces are in eqnilibrtnm thrlr

vanish, and also the sum of their monicnia n>uiul any origin

in the plane.

The word turn must be nnderstood oFoe^mkiaila. Forees

whii h act in one direction beinff eooeideied pooihm^ thoee

wljuh act in the opposite direction mut be oontidered Mf**
live. Also moments h' ' ^^ poMve when the eo^

respondins: couples fr- .0 body in owe diiectw,

ihcy nuHt bo con- "^ when tbe^ eorreip

couples tend to turn ; the ommde dlreetioa.
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IP rp

65. When tlie sum of the forces vanishes in Art. 62,

the forces reduce to a couple.

When 2P is not zero, the

forces can be reduced to

a single resultant. For if

2/ic = 0, then 2P acting

at is the single resultant.

If iPx be not*=0, let the

couple be transformed to one
in which each of the forces

is equal to 2P, and conse-

quently, by Art. 44, the arm

is -^ p . Let XP acting at A
and SP acting along Or/' form this couple.

is destroyed by the force SP along Oy.

resultant is SP acting at A, that is, at a point the distance

XPx
of which from is -^-r^ .

IP

The latter force

Hence the single

56. Tofind the resultant ofany number offorces which act

on a rigid body in one plane.

Let the system be referred to any rectangular axes Ox, Oy
in the plane of the forces,

y

Let Pij P^y P3, denote the forces; a,, a,, Og,

the angles which their directions make with the axis of x',
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let r^
, y , be the oo-offdiDatet of the point of applioatioii of P,

;

let 2r,, y, be thoee of the point of appUentioo ofP„ md to oo«

Let A^ be the point of upplication of P,. At O wmpoen
two forces applied in oppotitc directione eneh eqwl Mid
parallel to P.. Draw Op^ perpendicular to P^A^.

Hence P, actine at ^, ia enniralent to P, acting at

and a oonole of which Oo^ it the arm and ench Ibcce ia P,,
which tcnOii to torn the bod/ firom the axis of « to tiMl of

0/,,-x,tin«,-y,coia,.

Hence the moment of the conple ia

P,(ac,wna,-y,coea,).

The other forces maj be simiUrljr repUoed. HaMS dU
sjstem is equivalent to the forces

-P,./\.P,. acting at 0,

in directions parallel to those of the original tuirca; wi<i the

couples of which the moments are

P,(x,sino,-y,oosaJ,

P,(a^»in«,-y,cos(iJ,

P,(x,8in«,-y,cosaJ,

acting in the plane of the forces. It will be (bond thai anjr

one of the above expressions for the moments of the oovplea

is positive or negative, according as that couple lends to tun
the body from the axis of so towards that of jr, or in the

contrary direction.

Let R be the resultant of the forces acting at O, let a be

the angle which B makes with the axis of x^ and G the

moment of the resultant couple ; then (by Art. Si)

72ooeaa>]£Pcosa; i?aino>-SPsinc;

and ^by Art 48)

tr - SP(xaina-y coi«).
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If P, COS a, = X^ and P, sin a, = 1' , and a similar notation

be useil for the other forces, the above equations may be

written

i?=(2X)«+(2rr; tana =g;
and Gf = 2(la?-Ay).

57. To find the condittans for the equilibrium of a system

iffforces acting on a rigid body in one plane.

Any system of forces acting in one plane may be reduced

to a single force J?, and a couple whose moment is O. If

neither It nor G vanish equilibrium is impossible, since a

single force cannot balance a couple. It' Ji alone vanish equi-

librium is impossible, because there remains an unbalanced

couple G; if G alone vanish equilibrium is impossible, be-

cause there remains an unbalanced force. Hence, for equi-

librium we must have i2 = and G = 0, Also ^ = requires

that 5:A=0 and Sr=0.

Since G is equal to the sum of the moments of the forces

with respect to 0, we may enunciate the result thus: A sys-

tem of forces acting in one jjlane on a rigid body will be in

equilibrium if the sums of the resolved jmrts of the forces pa-
rallel to two rectangular axes in the plane vanish, and the sum

ofthe moments round an origin in the plane also vanishes.

Conversely, if the forces are in equilibrium the sum of

the resolved parts of the forces parallel to any direction will

vanish, and also the sum of the moments of the forces round

any origin.

68. Tf three forces acting in one plane maintain a rigid

body in equilibrium their directions either all meet at a jyoint or

are all parallel.

For suppose two of the directions to meet at a point, and

take this j>oint for the origin; then the moment of each of

these two forces vanishes, and the equation G = () requires

that the moment of the third force should vanish, that is, the

third force must also pass through the origin. Hence, if any
two of the forces meet, the third must pass through their point

of intersection, which proves the proposition. This pro-
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iDAj aiflo be ottablished withoot rdemag lo Ait $1.
vo of the forces meet tt a point, tber naj be

:i

'ullaiit ;n-tiii;: ;it t!

]>oint and majr be repUoea bj thetr i»-
Mme point ; tliU reeoltant end the Udid

force muiit keep the bod/ on which thtrjr act in e<|ailibfnm,
au(\ must therefore be equal and o|ipoeite ; thai k. the thai
t ric muBt pass through the point of inteitecttOD of tbo
liwt two.

59. If i? - in Art 66, the foroea reduce to a eoople; if

^ bo not • 0, the foroea can be rodnoed to a aiiigle ramltaat

I or if the couple 6^«0, the reealtant force ia B
at t ' ..rigin. It the couple O be not »0, let it be
t ' into one having each of its forces * /' '^'^'^ *tn

sr< lueutly = ^ (Art 44). Let thi^i couple be turned in iu own

jluic, until one of its forcea acta at tlie origin exactly
t > the force R, which by hjpothcais acts at the origin.

t!irM> forces (lestrov each other and we haTo left Jl aeltag

at the extremity of the arm OA^ in a direction indlncd lo

the axis of x at an angle a, found by tha eq«atioii taatf »^
(Art. 5G). If this direction meet the axis of a; at /?, we hare

T.S.
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and the equation to the line of action of the single resultant is

or, a:'2r-y2Z = 2(ra;-Xy),

x\ y* being the variable co-ordinates.

60. The result of the last Article may also be obtained

thus. Suppose that the given forces have a single resultant

acting at the point [x\ y), and equivalent to the components
X' and Y' parallel to the co-ordinate axes. It follows that the

given forces will, with —X', — Y' acting at the point [x\ y'),

form a system in equilibrium. Hence, by Art. 57,

2x- X' = 0, 2 F~ y = 0, G- Tx' -f- xy = 0.

Of these three equations the first determines X', the second

y , and the third assigns a relation between x and y\ which
is in fact the equation to the line in which the single re-

sultant acts and at any point of which it may be supposed

to act. If 2X and 2 Y both vanish, it is impossible to Hnd
values of x and y' that satisfy the last equation of the three,

so long as G does not vanish ; this shews that if the forces

reduce to a couple, it is impossible to find a single force equi-

valent to them.

61. In Art. 56, we have for the moment of the force Pj

about the origin the expression

P,(a;,8ina,-7/, cosa,),

and this we may express by

Since X, and r; are the rectangular components of P, , we
see by comparing the two expressions that the moment of
a force about any origin is equal to the algebraical sum of
the moments of its rectangular components about the same
origin. (See Art. 54.) There are many such theorems con-
nected with moments, and the demonstration of some of them
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ifl facilitated by observing tliat aooofdiiig to Um
tion of a moment, it may bo ijoometricallT wptiwitrf hf
twice tlio area of Uio triangle bavinff for ita li«ae the Hwidbt
line which represents the force ana for its Tortex thopSnl
alu>ut which moments are taken. For esample, w% wmj
prove tlio theorem which we have already dftdnttdj

G2. The algebraical §um cf Ae wwrnemU of two mmjgmmi
faree$ unik rtmet io amjf pomi im ih$ plam0 cottiamu^ Sk two
f1,r.u'A 1% equal lo tke mametU cfUm rttmUBod of ike tmoffrtm.

\n,AC represent two oompooeoi fettes; wmpleta tlw
1 -rrom and draw the

> representing the

(1) Let 0, the point about
which the moments are to be
taken, fall witkoui the angle
//. I ( ' and that which is ver-

tically opposite to it. Join
OA, OB, 00, OD.

The triangle OAC having for its base AC and for ica

lieight the perpendicular from on AO ve eQulTalait to a
triangle having AC for its base and for its heignt the peipeiH
<liciilar from B on A (7, together with a triangle having BD
for its base and for its hei^t the perpcndicolar from OonBD.
This is obvious since BD is equal and parallel to A C, and the

|K'r]MMuli(u1.ir (rom on AC is equal to the perpendieukr
ii'om () y>n />7> together with the perpendicokr homBoaAOm
Hence wo have

AAOC^^BOD-^AACD.

Hence, adding the trianglo A OB, we have

^AOC+AAOB^^BOD + ^ABD-^AAOBm^iAODi

that is, the moment of JC-hthe moiiMnt of AB^tht
nicnt of AD,

4—3
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(2) Let fall wtfhin the anoxic BAC or its vertically

opposite angle.

= i^AOn-¥^AOD.

Therefore

H^AOD^^AOC-^AOB)

that is, the moment of ^J9 = the moment of AC—iha
moment of AB, As the moments oi AG and AB about

are now of opposite characters, the moment of the resultant

is still equal to the algebraical sum of the moments of the

components.

The proposition may also be readily shewn in the case

where the two component forces &re parallel; see Art. 37.

In this example, however, nothing is gained in brevity or

simplicity by the aid of Geometry; for the recjuired result is

an immediate consequence of the mechanical pnnciple that the

resolved part of the resultant along a straight line through A
at right angles to -4 is equal to the algebraical sum of the

resolved parts of the components in the same direction.

G3. Forces are represented in magnitude and position hy
the sides of a ^;/awe polygon taken in order ; required tlie re-

sultant.

Let the sides of the figure ABCDEF represent the forces

in magnitude and position ; the first force being supposed to
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act in tho straiglit line AB from A towiidi B, tht
tho stmight lino 2/6* from Ji towards C^ and to on.

As in Art. 5C, tlie forces may be replaced br a roMdlaal
foroe at an arbitraiy origin and a ooople. The fmmm it

composed of all the foroea AB, BC, moved each paimUal
to itself np to ; the resultant oonseqnentljr Tanisliea bj
Art 21.

Tlio moment of the resultant coople is tha aan of tba
inoiiK iit.t of the component coojples, and is therefore rapt^-

sciit<a by twice the triansle ^O^-f twice the tnanjrie BOO
4 ...; that i«, hf twice Ms ttrea of Urn pofjoom. Hanoe the

to a resultant ooople measured bj twice the

W that the algebraical som of the
th*' H which form a couple is the

.... it bo taken; it is in ttct equal to the

'/ (

(fi. If the sum of the momenti of the fovoes P, P„ P.,..«

be required about a point whose co-ordinalea are A, Ir instead

of alxmt the origin, we must in the eipreaiion for (7, in

Art. JO, put «,-A, aj,-A,... forar,, «„ ... respeetmlj, aad

.y,
- ^*. y. - ^'i ••• for y„ y., ... respectiTel/. Honoa, daotiif

the rciiult by O,, we hare

(7.-2{r(x-A)-A'(y-il)l

'-kix-kir-hO.

Ilriuv the v:ilu.' nf /7^ dcpcndji in grncral on the f»;iuaiioo

of tht: point abuut wlu^li \vc lake momontA. If, however,

iU£jr-ASr-acoDStaat»

that is, if the point (A, k) more along any atiaight liM

parallol to the direction of the resdtant force JS; Umo O.

remains unchanged.
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If thrc« different points exist with respect to which the sum
of the moments vanishes, we have three equations

Hence we deduce

Unless the point (A,, A;,), the point (h^, Jc^), and the point

(A3, A'a) lie in a straight line, it is impossible that

we must therefore have

2x=o, 2r=o, 6^=0.

Hence if the sum of the moments of a system offorces in one

plane vanish with respect to three points in the plane not in a
straight line^ that system is in equilibrium.

When a system of forces in one plane can be reduced to a

single resultant, we have found in Art. 59 that the equation

to the direction of the resultant is

ic'2r-y2X= 2 (Fa; - Xy).

This may be written

2{r{x'-a.)-X(y'-y)} = 0.

The e(juation to the direction of the resultant thus in fact

determmcs the locus of the points for which the algebraical

sum of the moments of the forces is zero.

65. Hitherto we have supposed our axes rectangular. If

they are oblique and inclinea at an angle o), we may shew,

as m Art. 56, that a system of forces in one plane may be

reduced to 2X along the axis of a;, 2 F along the axis of y,

and a couple the moment of which is sin a)2 ( la; — Xy). The
latter part will be easily obtained, since the moment of the
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force P, U eqaiTilent to the algehnucel mub oi Um
of its components A", and Y^ ; and the perpendimlir 9m the
former from the origin is y^ sin •, and on the btter rn^iinm.

The conditions for cqailibriom are, as befixe,

2A'-o. sr-0. 2(rx-jry)-o.

Tito following Examples maj be solved br means of the
principles given in the preceding Articles. When dillereot

rii^id bodies occur in a question^ the equatioos of Art. 57
inuAt hold with respect to eoci, m order that there maj be
cquiliiirium. In cases where onlj ikrm Ibreee aet en a bedj,
it 14 ui'ten convenient to nae the propoeitUNi of Art M. Snee
by Art. 57 the mooienti of the ioieoi with vamel to
on \'aniih»weyy,if wepley, tatodtte<rteAhii
an oonespondmg eqoatioii for each* See Aft*

In some of the Examples we anticipate the resnlls of titm

subsequent Chanters so tar as to assnae that the vai^ of
any body acts tnrough a definite and known point, wnMh is

the centre of gravity of the body. When two bodiies are in

contact it is assumed that whatever force one exerts on the

other the latter exerts an equal and opposite foroe on the

former; if the bodies are smootn this force acts in the direction

of the common normal to the sorfiiees at the point of oootaeL

We restrict ourselves to the supposition oi smooth bodies

until Chapter X.

In attempting to solve the {Mfoblemt the stodent will find

it advisable when the system involves mofe than one bodr
to confine his attention to one at a time of those bodies whieil

are capable of motion, and to be careful to take into

sideration a// the forces which act on that body. W
bodies are in contact some letter sliould be used to dai

the mutual force between them, and the manitada of thia

force must be found firom the equationa of eqinlibriOTi of the

body or bodies which are eapable of motion. And when
two of the bodies are connected by a string a letter shonid

be used to denote the tension of the string, and the nuipitnda

of the tension must be found from the conditions

maaitnoa
IS « eqai*
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libriam of tbe body or bodies wbich are capable of motion.

Beginners often fall into error by asauminfj incon*ect ^.

for the tensions of strings and the mutual forces bet\

bodies in contact, instead of determining the correct values

from the equations of equilibrium.

We will give here two propositions, respecting forces acting

in a plane, which involve important results.

I. Forces act at the middle points of the sides of a rigid

polygon in the plane of the polygon; the forces act at right

angles to the sides, and are respectively proportional to the

sides in magnitude: shew that the forces will be in equili-

brium if they all act inwards or all act outwards.

The result here enunciated has been already shewn to be
true in the case of a triangle; see the Proposition iv. at the

end of Chapter ii.; the general proposition is obtained by
an inductive method.

Suppose for example that the proposition were known to be
true for a four-sided figure also;

then we can shew that it must be
true for a five-sided figure. Let
ABODE be a five-sided figure; and
let forces act at the middle points of

the sides in the plane of the figure,

at right angles to the sides and re-
*"

spectively proportional to the sides

in magnitude: suppose for the sake of distinctness that the

forces all act outwards.

Join AD, By hypothesis a certain system of forces acting

outwards on the four-sided figure ABGD would be in cqiiili-

briimi; and from this it follows that the assigned forces acting

on AB, BC, CD must be equivalent to a single force acting

at the middle point of ADy towards the inside of the four-

sided figure ABGD, proportional to AD in magnitude.

Also the assigned forces acting on DE, EA must in like

manner be efjuivalent to a single force acting at the middle

point of AD, towards the inside of the triangle AED^ pro-

portional to AD in magnitude.



Foscn jLcrixa ix ruuiB.

Ilenco tho two single foroM balaiioe eaeb other; aad Um
Bystcm in iu e<|uilibnani.

In thiA numner, knowing that the retolt b tnie for a tii«

M shew in mooeteioii that it is true for * IfBM
six,... tidea.

II. Uigid rods without weijicht are joined togetlier bj
>«:a(H>th hmffet at their cxtremitioa, to a* to form a plane
|K)Iygon« Foroea act at the ur ' " inta of the aidea of the

JK)lygon in the plane of the
)

the foroea act at right

angles to tlic siaea, and are rci^|xH:livclv proportional to the

aide« in magnitude; ahew that, if the loroea all act inwarda

or all act outwards, where there ia equilibrinm, a circle can
be described round the pol/gom

Ixt ^/?C/>i:F represent the poljgoo. Gonsidtr one of the
rodaaa^iii Thia rod ia adsd
on bj a force at the

point // at right aaglea lo AB^
and bJ actiona from the hinges

at A and B. The fenner nros
is proportionsl to .^iJS; and m^
be denoted bj fi.AR The
three foroea most meet at a
point, snppoae K; then bjr re-

solvinff parallel to AB^ we find

that the actiona at ^ and ^
must be equal ; we will denote

them bj B, Besolye the ibroes at right anglea to ABi this

fiABm^BmABK.
The action at B on tho rod BC ia eaoal and oppoaite lo

that on the rod BA; hence we obtain in t&e same manner

fiBO^^BainCBL.

„,, . BinAnK AB unACB
^'^^^^^

siiTcfflt-ro'arzEDJ-

Tlils sh. ws that KBL tonchea at B the ctrole desoihed

round ABC,
Similarly AK tonchei at ^ the eirde

DAF,
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But AK and BK are equally inclined to AB, Hence the

two circles must coincide; that is, the points Fy -4, B^ C lie

on the circumference of a circle.

In this way we shew that any four consecutive angular

points of the polygon lie on the circumference of a circle;

and hence it follows that all the angular ])oinls must lie on

the circumference of the same circle.

It will be seen from the preceding results tliat the action

at every hinge is the same, and is denoted by the product of

fi into the radius of the circle described round the polygon.

EXAMPLES.

1. ABCD is a quadrilateral and is acted on by forces

which are represented in magnitude and direction by AB,
AD, CB, CD; shew that the resultant coincides in direction

with the straight line which joins the middle points of the

diagonals A (7, BD, and is represented in magnitude by four

times this straight line.

2. Forces whose intensities are proportional to the sides

of an isosceles triangle act along tne sides of the triangle,

those acting along the equal sides tending from the vertex;

find the magnitude and position of their resultant.

jResuIl, The required resultant is represented by a straight

line which passes through the middle point of the base of the

triangle, is parallel to one of the sides, and double that side

in length.

3. The upper end of a uniform heavy rod rests against

a smooth vertical wall; one end of a string is fastened to the

lower end of the rod and the other end of the string is fastened

to the wall; the position of the rod being given, find the point

of the wall to which the string must be fastened, in order that

the rod may be in equilibrium.

4. A uniform heavy rod is placed across a smooth hori-

zontal rail, and rests with one end against a smooth vertical
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wall, tho diBtanoe of which from the nul U r- th of the leagth

of the rod; find tho ponition of cqailibrttiiii

RuulL The rod meket an angle of 60* witii uie nomon.
5. ABC is a triangular lamina; AD^ BS, CF an Um

por] irs on the tidea, and foroea lepteaented by tbe
«tni1, : . .* BD, CD, OB, AE, AF, BF am aMUed to %ht
Inmina; shew that their retnltant will paaa tArongh tiM
centre of the circle described about the triaogli.

r>. ADy AC wet two e^nal beams connected bj a bince
at A, and bj a string joining the extremitiea B and C: aB
18 fixed vertically, and a spbere of giren weight and mdiaa
is sapported between the two beams: find the ymasiue of tbt
sphere on each beam, and the tenakm of the ainng.

7. An elliptic lamina b acted on at the eztremttiea of paba
of conjugate (liamcters bj forces in its own plane tcMi^

'S and normal to its edge: shew that there wQl be
urn if the force at the end of erwy diameter be

prujiurlional to tho conjugate diameter.

8. A heavy sphere hanj^ from a |>cg ii^- a mnng wnoer
length is equal to the radius, and it rests againat another

peg verticaUy below the former, tlic distance betweeo the

two beinff equal to the diameter. Find the tenaioQ of the

string and the pressure on the lower peg.

Besulis. The tension is equal to the wcteht of the apheie

and the pressure to half the weight of the apnere.

9. Two equal rods without weight are connected at their

middle points by a pin which allows firee motion in a vertical

plane; they stand upon a horizonUl plane, and their npner

nes are connected by a thread which carries a weight
^ Kit the weight will rest half way between the pin and

the horizontal line joining the upper enda of the rods.

10. Two equal circular discs with smooth edgea, placed on

their flat sides in the comer between two smooth

planes inclined at a given a; ch each other in the

straight line bisecting the anci . i .~d the radina of the leaat

disc which may be preaaed betweeo thea withovt

them to separate.
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11. A flat semicircular board with ita plane vertical and
curved edge upwards rests on a smooth horizontal plane, and
is pressed at two given points of its circumference by two
beams which slide in smooth vertical tubes; find the ratio

of the weights of the beams that the board may be in equi-

librium.

12. Two smooth cylinders of equal radii just fit in between
two parallel vertical walls, and rest on a smooth horizontal

plane without pressing against the walls; if a third cylinder

DC placed on the top of them, find the resulting pressure

against either wall.

13. A smooth circular ring rests on two pegs not in the

same horizontal plane; find the pressure on each peg.

14. Two spheres arc supported by strings attached to a
given point, and rest against one another; find the tensions

of the strings.

15. Two equal smooth spheres, connected by a string, are

laid upon the surface of a cylinder, the string being so short

as not to touch the cylinder; determine the position of rest

and the tension of the string.

16. A heavy regular polygon is attached to a smooth
vertical wall by a string which is fastened to the middle
point of one of its sides; the plane of the polygon is vertical

and perpendicular to the wall, and one of the extremities of

the side to which the string is attached rests against the wall;

shew that whatever be the length of the string when the

polygon is in equilibrium, the tension of the string and the

pressure on the wall are constant.

17. A straight rod without weight is placed between two

SBgs, and forces P and Q act at its extremities in parallel

irections inclined to the rod; required the conditions under
which the rod will be at rest and the pressures on the pegs.

18. Forces P, §, R, S act along the sides of a rectangle;

find the direction of the resultant force.

19. Two weights P, P are attached to the ends of two
strings which pass over the same smooth peg and have their

other extremities attached to the ends of a beam ABy the
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wci^'hL of which 11 W; thew that the incUiuitioo of Uic Uan
to the horUon-tJin'M^. tanah o, b being the Htetaacee

of the centre of gntvitj of the beam from its toda, and

20.

ro §

that it will bo in cciuilibrium

of its edges to the hortaon > | em~* -—3— , la being IIm

. A square i^ pUoed with ita plme Tertioal buhriiM
two small iKgs which are in the same horisontal line; sbev

it will be in cciuilibrium when the inelinatioa oC eoe

l«igth of a side of the squnr** mm} e the dirtanrft beti

the pegs. Shew that the ci\\ ^ will not be aifiected bj
tlio application of any force wmcu bisects the straight line

joining the pegs and passes through the lowest point of the

square.

21. One cml of a Mring b fixed to tnr r:iir^niiiT 01 •
smooth uniform rod, and the other to a ring withosl weighl
wliioh passes over the rod, and the string is hog over n
smootli pei?. Determine the least length of the strin|^ lor

which e«|inlibnum is possible, and shew tlut the inclination of

the rod to the vertical cannot be less than i&\

22. A string 9 feet long has one end attached to the

extremity of a smooth uniform heavy rod two feet in lensth,

and at the other end carries a ring witliout weight which slides

on the rod. The rod is suspended bj means of the string

from a smooth peg; shew that if ^ be the angle which tho
rod makes with the horizon, then

tan^-8-*-8-«.

23. A sqiinro restit with its plane perpcndicnlar to a
smooth wall, i)iie comer being attached to a point in the wall

by a strinp: whose length is equal to a side of the sqoare;

shew tliat the distances of three of its angular points from the

wall arc as 1, 3, and 4.

24. One end of a beam, whose weight is IF, is placed

on a smooth horisontal plane ; the other end, to which a string

is fastened, rests against another smooth plane inclined at an
angle a to the horixon ; the stzi^g pHmg orer n pnlly el
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the top of the inclined plane hangs vertically, supporting
a weigfit P. Shew that the beam will rest in all positions if

a certain relation hold between P, IF, and a.

25. If a weight be suspended from one extremity of a rod
moveable about the other extremity Aj which remains fixed,

and a string of given length be attached to any point B in

the rod, and also to a fixed point C above A^ and in tlie same
vertical line with it, then the tension of the string varies

inversely as the distance AB.

26. One end of a uniform beam is placed on the ground
against a fixed obstacle, and to the other end is attached a
string wliich runs in a horizontal direction to a fixed point in

the same vertical line as the obstacle, and passing freely over

it, is kept in tension by a weight IF suspended at its extremity,

the beam being thus held at rest at an inclination of 45° to

the horizon. Shew that if the string were attached to the

centre instead of to the end of the beam, and passed over the

same fixed point, a weight = \/2W would keep the beam in

the same position.

27. Two equal beams AB, A G connected by a hincje at

A are placed in a vertical plane with their extremities J5, C
resting on a horizontal plane ; they are kept from falling by
strings connecting B and C with the middle points of the

opposite sides ; shew that the ratio of the tension of each
string to the weight of each beam

= jV(8cot'^4-cosec'^),

6 being the inclination of each beam to the horizon.

28. One end of a string is attached to a beam at the point

Bf and the other end is fastened to the highest point ^ of a
fixed sphere of radius r. If the points of contact of the beam
and string trisect the quadrant AC, shew that the distance

between B and the centre of gravity of the beam must be

2r(2-V3).

29. A heavy rod can turn freely about a fixed hinge at

one extremity, and it carries a heavy ring which is attached

to a fixed point in the same horizontal plane with the hinge

by means of a string of length equal to the distance between

the point and the hinge. Find the position in which the

rod will rest
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80. Two equal heafj boamt of fffflhwmt loQgtli, Md
coimectod bjr a liin^, are rapportod bj two flBOoCb pwi b
tho tame horixon* a uphcro ii placed betweeBtlMm
detennine the podii.. . -. cquibbnom.

M. Forces P, Q, R act along the iidea BC, CA, AB of
n triaii ^'lo, aiid their rcfttltant oaaeee thioiigfa the ocntrMof the
iiij)cnLM!il and ciroamaoribod cirelea; shew that

Pi Q : Ji :: omB^cmO I coaC-ooail :ooail-ooaJi

82. Find the position of eaailibrtam of a nnUbna beaa
resting in a rertical plane with one Mid pressing against a
vertical wall, and the other end supported bj the convex arc
of a vertical |>aralx)la whose Ycrtex u at the lioot of the wall
and axis horiaontaL

88. A uniform beam P(f of given weight and len^ rests

in contact with a fixed Tcrtical circle whose vertical oiaoielcr

i ^ . !
/'. in such a manner that string AP, BQ attached lo tlM

lo I and circle are tanscnts to the circle at the points A and B,
1 in I the tensions of the strings, and shew that the eoDditioM
ut the problem require that the inclination of the beam to Iha

vertical must be less than sin"' -^—

.

34. Shew that no uniform rod can rest partlr within and
iwrtljr without a fixed smooth hemispherical bowl at an incli-

nation to the horizon greater than sin"*-^.

85. The sides of a rigid nlaae polygon are acted oo bjr

forces at right angles to the sides ana prooortional to them ta

magnitude, all the forces acting in the plane of the poljgoa.

And being inwards ; also the sides taken in the same oraor

arc sevcrall/ divided bv the points of applicatioo in the con-

stant ratio of p to q; shew tnat the sj«tam of hnm m equi-

valent to a couple whose moment is

where /la represents the force applied to anj adc • of the

polygon.
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CHAPTER V.

FORCES IN DIFFERENT PLANES.

GG, Tofind the magnitml^i and direction of the resultant of
any number of parallel forces acting on a rigid hody^ and to

determine the centre ofparallelforces.

Let the points of application of the forces be referred to a

system of rectangular co-ordinate axes. Let m^ , w,,. . . be the

A
^

f<:^ s
»

O

4

i^
ac

points of application; let ajj, y^, «j, be the co-ordinates of

the first point, a:,, y^* 2, those of the second, and so on ; let

Pj, P,,...be the forces acting at these points, those being

reckoned positive which act in the direction of Pj, and those

negative which act in the opposite direction.

Join m^w, ; and take the point m on m^m, such that

P,
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then the retultnnt or /', and P^ b P. 4- P., and it act! tluoart
m parallel to I\, (Art. 37.)

Draw wi^a, mA, i/i/ pL*rpendicular to the plaiM of (a, y),
meeting that phine at a, 6, e ; draw m^de panukl to 060 moetp
ing fii5 at U and fii,c at 0. Then, bj tiouUr triaagleti

p
therefore m& - a, - »-tSj f^. - '-^ I

therefore

Tlii^ ^iTca the ordinate parallel to the axia of a of the point
01'

:»| I'll, ation of the reamtant of P, and P,.

Then suppoain^ P, and P to be repUoed bj P, -f P, aettng
at in, the resultant of /* + /*, and P, ia P, + P^-^ P^t and ths
ordinate of ita point of application

,(P,4P,)a>a-hPA^P^-i-P^,4-/>,
p,^p,^p/ p,^p;^p. '

and this proccas may be extended to anj number of parallel

tofi-rd. Let R denote the resultant force and a the onimato of
it.s point of application ; then

SiiipJnly. if X, y be tiie Other co-ordinatca of the point of
npp!ii\.;i..n y<i the resultant,

*" tp ' ^" 1/'
*

The values of x, y, i are independent of the angica which
the directions of the forces make with the ax^- H-nce if

these directions be turned about the points of >n of

the forces, * their paralleliam being preaenred, tuo point of

T.8. 6
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application of the resaltant will not move. For this reason

thia point is called the centre of Uie parallelforces,

67. The moment of a force with respect to a plane is the

product of the force into the perpendicular distance of its point

of application from the ])lanc.

In consequence of this definition, the equations for deter-

mining the position of the centre of parallel forces shew that

the sum of the moments of any nunwer of parallel forces with

reaped to any plane is equal to the moment of their resultant.

68. If the parallel forces all act in the same direction the

expression SP cannot vanish ; hence the values of the co-

orainates of the centre ofparallelforces found in Art. 66 cannot

become infinite or indeterminate, and we are certain that the

centre exists. But if some of the forces are positive and some
negative, SP may vanish, and the results of Art. 66 become
nugatory. In this case, since the sum of the positive forces is

equal to the sum of the negativp forces, the resultant of the

former will be equal to the resultant of the latter. Hence the

resultant of the whole system of forces is a couple^ unless the

resultant of the positive forces should happen to lie in the

same straight line as the resultant of the negative forces.

We shall give another method of reducing a system of

parallel forces*

69. To find the resultant of a system of j^CLrallel forces

acting vpon a rigid body.

Let P,, P^,... denote the forces. Take the axis of z

parallel to the forces. Let the plane of (a;, y) meet the

direction of F^ at i/",, and suppose a:,, y^ the co-ordinates of

this point.

Draw M^N^ perpendicular to the axis of x meeting it at iV,

.

At the origin 0, and also at iV,, apply two forces each equal

and parallel to P, and in opposite directions. Hence the force

P, at if, is equivalent to the following system,

(1) P.atO;

(2) a couple formed of P, at M^ and P, at iV,

;

(3) a couple formed of P, at N^ and P^ at 0:
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Th^ moment of the first ooople ii Pjf,, tad tlik eovpk,
with lit .1 ! rug its effect, nuij be translvred to tiM pine of
(y, B), which is psnillel to iu orignuU plane. The leetent
of the second couple is P^x^ , end the eovple is in the plane
of (X, m).

If we effect similar trmnsfiiniiatioo of all the loieei, we
have, as the leeultant of the aTilem the foUowing sjfUeui,

(1) a force SP acting at 0;

(2) a couple XFy in the plane of (y, s}

;

(3) a couple SPx in the plane of («, s).

The first couple tends to turn the bodj from the axis of « lo

that of c, and the second from the axiM of x to that of s. We
may therefore take Ox as the axis of the first couple according

to thr ^ 11 in Art« 41. For the second couple, however,

wc nil. i take Oy' as the axis, or consider it as a 9im^
turning firom s to x, of which the moment is — £i)r and &M
axis (^. Adopting the Utter method^ we majr replaee the

two couples bj a smgle couple of which the moment is (7,

where

and the axis is inclined to the axis of x at an aqgle • given

hj the equations

ooia»-^; una*—gp .
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70. To find the conditions of equilibrium of a system of
parallelforces acting on a rigid body

A system of parallel forces can always be reduced to a

single force and a couple. Since these cannot balance, and
neither of them singly can maintain equilibrium, they must
both vanish. That is,

2P=0, and 6^ = 0;

the latter requires that

2Pa; = 0, and 2Py = 0.

Hence a system ofparallelforces acting on a rigid body will

be in equilibrium if the sum of the forces vanishes^ and also the

sum of the moments vanishes with respect to two planes at right

angles to each other and parallel to the forces.

Conversely, if the forces are in equilibrium the sum of

the forces will vanish, and also the sum of the moments with

respect to any two planes at right angles to each other and
parallel to the forces.

71. When ^P=0, the forces reduce to a couple of which
the moment is O, When 2P is not = 0, the forces can always

be reduced to a single force; this has already . appeared in

Art. 66, and may also be shewn thus. The forces will reduce

to a resultant li acting at the point (x, y), parallel to the

original forces, provided a force — R acting at this point will

with the given forces maintain equilibrium. The necessary

and suflScient conditions for this are, by Art. 70,

2P-JK = 0, 2Pb-^' = 0, Si>-%' = 0.

Hence 7? = SP, a:' = |^, y =^ -

These results agree with those of Art. 66.

72. To find the resultants of any number offorces acting

on a rigid body in any directions.

Let the forces be referred to three rectan^lar axes Ox^ Oy,

Oz; and suppose P,, P,, P„... the forces; let iCj, v,, z^ be the

co-ordinates of the point of application of P, ; let x^, y^^ z,

be the co-ordinates of the point of application of P, ; and

so on.
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It .1 , l)c tlio point of tpi

'

: .]• ii'iitji A',, 1 , Z , parui' iir ttxac Let

may be -

tuni thf

the direction of Z, meet the pUne of («, jf) at IT,, and drav
^^ V ' lar to Ox, Applj at ^, and abo at O tvo

I ind parallel to z,, and in oppotite dircctioiia.

1 or A/^ !• equivalent to Z^ at O, and two
r liavinj^ ita moment -^,. -V,J^,. •nd wt»!« J»

ct in the plane of (y, t), and the
/ /

. V _..A ncting in the plane oC v-.
-r.

.

- - „,.-:» at poaitire wbieh tend to

imd the axis of x from jf to a, alio thote

v/^ - ^ * Ma i.> turn the body roond the axis of v from a to x,

which tend to turn the body round the axit of a

from x to y.

Hence Z^ is replaced bv Z^ at 0, a couple Zj, in the plane

of (y, «), and a couple - Z^^ m the plane of ft. «). SiroiUrly

A' may be replaced by A ^ at O, a couple A',!, in the pUne
ot ( z, a:), and a couple - Ajf, in the pbne of (x, jjr). And K,

may be replaced by }', at 0, a couple y,af, in the pbM
of [t, f/^, and a couple - I'.r, in the pUne of (jf, a). Thefttos

thi» iiVco P, may be replaced by A',, F,, Z, acting at 0, and

the couples of which the moments are, by Art 48,

Z^, - r,r, in the plane of (jf, t),

i^,*.--3rjf. («,jf).
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By a similar resolation of all the forces we shall have tliem

replaced bj the forces

2x, sr, SZ,

acting at along the axes, and the couples

% [Zy — Yz) = L suppose, in the plane of (y, «),

1{Xz-Zx) =M
,

{z,x),

^[Yx^Xy)^N (x,y).

Let B be the resultant of the forces which act at (9 ; a, i, c

the angles its direction makes with the axes ; then, by Art. 24,

SX . lY IZ
cos a = —jT- , cos = ~jy , cos c = —p-

.

Let G^ be the moment of the couple which is the resultant

of the three couples L, if, i\^; \, fi, v the angles its axis

makes with the co-ordinate axes ; then, by Art. 50,

^ L M N
cos X= y5 , cos /A = ^ , COS 1/ = -^ .

The convention adopted in the present Article for distin-

guishing the signs of couples agrees with that in Art. 41 when
the axes of x, y, and z are drawn as in tlie present figure, but
the conventions will not necessarily coincide if the figure be
modified; for example, if the axes of y and z be retained as in

the figure, but the positive part of the axis of x directed to the

left instead of the right, they will not coincide. The conven-
tion of the present Article is that which we shall hereafter

always retain.

73. To find the conditions of equUibrtum of any number of
forces acting on a rigid body in any directions.

A system of forces acting on a rigid body can always

be reduced to a single force and a couple. Since these can-
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I >C6 aaoh other and cannot tepftratel^ ouuntiio eqtai-

1 liiejr miuit both vanUL Hence i^• 0, aod (/« ;

therefore (HXy 4- (S 17 + (IZ)' - 0,

and Z' + JT + ^-O.
Tkciiti lead to the six condttioni

SA'-O, Sr-O, 2Z-0.
^>/y-rr)-0, S(Ji:j-2:r)-0, 2(r*-.»j;-0.

74. A Tcrbftl eaaDciation maj be giren of the bet thtm
equations by means of a new definition. For the aalw o^
convenience, we repeat two definitions alreadj given ta

Arts. 54 and 67.

Moment of a force with respect to a poimL The moimnt
of n force with rmpect to a pomt is the product of the htm
into the i>crpciidicular from the point on the directioii oC tiM
force.

Mnmcntofa force with respect i me. The mmnaif
of a r.Mcc with respect to a plane \- li

;
nxinct of the !«•

into the distance of its point of application finom the pInM.

Moment of a force witli respect to a ttraigki 1ms. Rasolvv
the force into two com|)oncnts respectirelj parallel and per-

]
"^- "' ir to the straight line; the product of tlie componeat

iilar to the line into tlie shortest distance betweea
thi -ii.. and the direction of this component is called

the t/h'iii' force witli re8|)ect to the straight line.

li« lu c the moment of a force with respect to a ttraight line

U ( 'iiial to the moment of the component of the force perpen-

(ii( uhii to the straight line with respect to the jwimi at which
a pl.iii." <lrawn through
.-trai^h: line meets
in< incut of the force

uiuincnts of any two forces into which the iterticndicuUr

[x>nent may be rcsohxd.

If the force \b parallel to the ^n *

about the straight line !» y.cm. It

to the given strai

is the product of i . : ._

and the given straight line.

;iit hne witn respect to tne jwtmi at wiucn
)ugh this component perpendkalnr to the

the straight line. Henoe, by Art Ct, tbo

» may be foond by uking the aaai of tho
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75. Suppose we require the moment of the force P, ahout

the axis of « ; we resolve P^ into the forces Z parallel to the

axis of z and ^i perpendicular to the axis ot z, wliere (?, is

itself the resultant of X, and Y^, The moment of Q^ with

res|)ect to the axis of z is equal to the algebraical sum of the

moments of its components A', and F,; that is, to }',a;, — A'',y,.

Hence N in Art. 72 denotes the sum of the moments of the

forces round the axis of r, and similar meanings arise for L
and M.

Hence, the forces acting on a rigid body will be in cfjuili-

brium if the sitms of the resolved parts of the forces parallel to

three straight lines at right angles to each other vanishy and
the sums of the moments of the forces with respect to these

straight lines also vanish.

Conversely, if the forces are in equilibrium, tlic sum of

the resolved parts of the forces in any direction will vanish,

and also the sum of the moments of the forces with respect to

any straight line.

76. In order to interpret the meaning of G we observe

that if we keep to the same origin, the moment of this coujde

and the direction of its axis must be independent of the

directions of the co-ordinate axes. For i?, being the resultant

of all the given forces, supposing them applied at a point, is of

course independent of the directions of the axes. If by a new
choice of axes we obtain G' as the resultant couple, then R
and G must be equivalent to R and G\ and therefore

7?, Gf —Rj— G' must form a system in equilibrium. But
this is impossible unless G ^ G' and the axes of G and G' are

coincident or parallel.

Since the direction of the co-ordinate axes is arbitrary, sup-
pose the axis of x to coincide with the axis of G ; then J/= 0,

^=0, and L and G are identical.

Hence G is equal to the sum of the moments of the given

farces witli respect to the straight line which is the axis of G.

77. Suppose a force P acting at the point {x, y, z), and let

X, y, ^ be its components parallel to the axes. Then, by
Art. 72, P at the point (x, y, z) is equivalent to P at the

origin, together with the couples Zg — Yz, Xz — Zr, Yx— Xg



MEAHisfo or a. n
r nnd the axes of x, y, t rctp* > dM TwnltiBt
I'Upie, r the dUtance of the i ., ^, ., ,.om the origia,
miil a the angle between r ana P; then

//»- (Zy- >#)•+ (j& -Zr)*+ ( r»- A»«

-(a:'+y+0(-Y'+r+jr)-(*-t+^r+tJBr)'

-r»i* (I -coe'a),

therefore //-rPaina.

ThiH. nd we might have anticf|Mited, JI i:* uk: iuo«««I of iIm
ct>uplr tvirmed hr /'at the point («, jr, a), aad m kttib at tJbt

origin r.iiial to P and acting in a pmllel and oppoaili ^im^
tioii. li. tuc (f i» the coople formed hr eompowMlmf tW
cou|'It H .Himilar to // ariaiog hom all the moea of tha ajrHaa.

78. As an example of Art. 73 we maj take the eaaa ui

which all the forces are paralUL Let a, A 7 he the aagWi
which the direction of the forces P., P,, makea with the

axcd. Then the equations of equiUhrium radnee lo

2P-0,

SP(yooa7-aooa/9)»0,

XP{m ooa a -> « coa7) « 0,

SP(xcos/9- ^ coaa)- 0.

The last throe equations maj be written thus

:

IPg ^IP^ IPk
cosa ooa/d oosy'

1I«'nce we en; * litions that a system of MraW
toicesmayii. ii equilibrium, Aoisfwr l*#|faMf

be turned olpout their minis ofappHcotiom* For the preoedfaig

equations must tl»on hold wlintever a. 6, y mar be. Thoa we
must have

2P.0, :i/v-o, S/>-0. SA-O.
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79. In Art 72 we have reduced the forces acting on a body
to a force li and a couple G, KG vanish there remains a
single force ; and if It vanish, a single couple. If neither M
nor G vanish the forces may reduce to a single force ; we pro-

ceed to shew when this is possible.

To find the condition among the forces that they may Jiave a
single resultant.

Any system of forces can be reduced to a single force R and
a couple G; if then the forces can be reduced to a single

resultant 5, it follows that G^ i?, and — S are in equilibrium.

If li and — S do not form a couple, they can be reduced to a
couple G' and a force R' ; therefore R' must balance the couple

compounded of G and G\ This is impossible by Art. 40.

Hence R and — S must form a couple, and this couple must
have its plane coincident with that of (r, or parallel to that

of Gf in order that it may balance G, Therefore that the

forces may have a single resultant, the direction of R must be
parallel to the plane of G^ or coincident with it ; that is, must
be at rfqht angles to the axis of (r. Hence, using the notation

of Art 72,

cos a cos X + cos 5 cos /A + cos c cos V = 0,

therefore X2X+ 3/2 Y+ NtZ= 0.

80. Conversely, if LlX 4- ^TS r+N^Z= 0, and 2X, 2 Y,

2Z do not all vanish, the forces can be reduced to a single force.

For the plane of the couple G may be made to contain the

force Ry and the couple may be supposed to have each of its

forces = R and its arm consequently = -^ ; the couple may

then be turned round in its own plane until the force at one

end of its arm balances the resultant force R, and there re-

mains R at the other end of the arm.

81. mien the forces are reducible to a single resultant^ to

find the equations to the straight line in which it acts*

Let Lj Mf N denote the moments of the forces round the

co-ordinate axes ; L', M\ N' the moments of the forces round
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axes parallel to the oo-ordinmte axoi drmim throogh luc noun
(x\ y , t). Then L' U found by writing y, . y ibr f,, y,-/
^^r v.. «,-«'for«,, j.-jfor «., ia Um iinfMriM
:t:(^j,-}>). Thcwforo

•

Similarly

J/'-2(A'(i«0-^(x-*))

-If-a'SA'+xSZ.

-y-sircx-xi-jrcy-yo)

If «', y, «' can be ao taken aa to make L\ JT, and iT
vanish, the foroea reduce to a aingW
the jwint (x, y, m). The three

x-yiz + .-sr-o.. ;i),

Jf-a'2A'+«'2Z-o.. t),

i^-a'Sr+y'SJ-o.. ;s),

nrc equivalent to two independent equations ; for if we elimi-

nate M from (1) and (2), we have

z2A+irsr+2Z(x'2r-y^A') -0.

But LIX + J/S r+ A^2'- 0, bj Art. 79.

therefore JV- zt T+ySA'- 0.

Thus (S) is a necessary consequence of (1) and (2). Heaeo
(1) And (2) will determine a straight line at every point of
which the resultant couple vanishes ; that U. tlu* atniL'ht IIiki

in which the single resultant force act<.

82. By the following method we may determine at ooee

the condition for the existenoe of • mgle reanitaot and tlM

equations to its direction.

Suppose that tlie forces can be reduced to a stqgle Ibret

acting at the point (x
, y, m). Let the aingle fi)roe be resolved
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into coTn]K)ncnt8 X\ y, Z* parallel to the co-ordinate axes

;

then if we add to the given system — A", — F', and — iT,

acting at the point (a;', y', z) parallel to the axes respect 1 v. Iv

there will be ecjuilibrium. Hence, by Art. 73,

2x-x=:o, 2r-r = o, 2:z-z'=o (i),

2f-X'z' + Z'x' =

N-Tx +xy = oj

Equations (1) determine X\ Y\ Z\ It miglit at first appear

that equations (2) would determine a?', y\ z ; but if we pro-

ceed to solve them, we find that they cannot be simultaneously

true unless

LtX+MXY+NlZ=^0;
and if this condition be satisfied, and 2X, S F, 2Z do not all

vanish, then any one of the equations may be derived from

the other two, so that there are only two independent equations.

Hence that tlie forces may have a single resultant tlie above
condition must be satisfied, and then any two of equations (2)

will determine the locus of points at which this single result-

ant may be supposed to act. From the form of equations (2)

it is obvious that this locus is a straight line, and that its

direction cosines are proportional to X\ F', Z', as might
have been anticipated.

In order that the force which replaces the system may pass

through the origin, we must have

Z = 0, M=0, N=0.

83. Although a system of forces cannot always be reduced

to a single resultant, it can always be reduced to two forces.

For we have shewn that the system may be replaced by a

force li at the origin, and a couple G lying in a plane through

the origin ; one of tlie forces of G may be supposed to act at

the origin, and may be compounded with Ji so that this

resultant and the other force of G are equivalent to the whole

system. Since the origin is arbitrary, we see that when a

system of forces is not reducible to a single force it can be re-

duced to two forces, one of which can be made to pass through

any assigned point.



84. When iMrm /wrem Mainlani a Wy m tqmilihrimm^
ihejf must lie tM lA« m»m§plam€*

Draw any straight line intemeciiBfl: tht diraetioiM of tw%
of till' forces and not parallel to the third foroe, aiiil take tlua
.^t rati:! it line for the axis of jr. Then tho first two totem luivo

ii«> iiKMicnt round the axi« of x\ thrrcfoTQ the oquatioo L«0
rrr]iiirr.4 that the third force nhould have no mooMot ipmmI
tii<- axit of J*; that is, the dim*tion of the third fiwca mwt
^9LM throufrh tho axis of «. Hinoo then tmff ttniaglu liat,

which mcotA tlie directions of two of tho ibroei, mm b nel
parallel to the direction of the third, meets that directioii, tiM
three forces murft lie in one plane.

Combining this pro|>osition with tliat in Art, 56, we aee
that if three forcee Keep a body in equilibriam, thej neat ell

lie in till* ^;Llllt> iilifciie and mii»t intvt at a iKJint ur \» iierelleL

axes of <»ordinatea be obUouei eappose /, a^ •
t> «' sinee of the anglee between tte eiee of jr and a,

: and jr, x and y, reM|icctivelj; then we may shew, ea in

Art. 72, tliat any system of forces can be redooed t'»
^' ^' ^ K,

^Z^ acting at the origin along the axes of jr, y, i r y,
ail I tiirt*e couples in the three co-ordinate planes, havui^ m^
in :u. :.td cqoai to ILy mM, ffuV respcctiYely, where, ea Delbie»

2;-2(Zy-ri), jr-2(Xr-Zr), A'-v(rx-A».

Abo for equilibrium, we most have, as before,

2A'-0, Sr-O, ^-0;
X-0, Jf-0. i^-a

That the forces may & Imlt of a Fingle reniltant we most baTe,

as before,

iiA + ji^ii +iyrsz-o,

and :Li, ::; 1 , I^iT not all Tanisbing.

The following: propositions arc connected with the Mbjeei

of the present Chapter.
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I. Forces act at the angular points of a tetrahedron in
directions respectively perpendicular to the opposite faces and
proportional to the areas of tlic faces in magnitude : shew that
the forces will be in equilibrium.

Let ABCD represent the tetrahe-

dron.

(1) Resolve the forces parallel

to AB. Let p denote the perpen-
dicular from A on the face BCD;
then the resolved part of the force

at A is -^^ X area of BCD^ that is,

3 volume of tetrahedron

AB

We obtain the same expression for the resolved part of the

force at B, The forces at C and D liave no resolved part

parallel to AB. Thus the forces resolved parallel to AB
vanish.

(2^ Take moments round AB. Let q denote the perpen-

dicular from Con the straight line AB\ 6 the angle between
the planes BAD and BAC. Tlien the moment of the force

at C is ^ cos 6. area of ABD^ that is,

gABcosd. area ofABD 2coa6 , area ofABC. area ofABD^
AB

»'
AS •

We obtain the same expression for the moment of the

force at D. Thus the moments round AB vanish.

Since these results hold for an^ edge of the tetrahedron

the forces must be in equilibrium.

II. Four forces act on a tetrahedron at right angles to

the faces and proportional to their areas, tlie points of
application of the forces being the centres of the circles cir-

cumscribinff the faces: shew that if the forces all act in-

wards or all act outwards they will be in equilibrium.

In this case the forces all pass through a point, namely
the centre of the sphere described round the tetrahedron.



fOBCBii la Dirnaaan njjntB.

'•0 fiiit part of tbo iBVMlifMiMi fai

to MUbiish iluU Um hnm ara in
ct|uililiriuiu.

Or we may ruolve tba forces at right anglae to a iwe
instead of parallel to an edge, and thm obtain tlM rvmtf
For reaolYe the foroea at riffht anglea to the Cmo /.

we have one force repreaentea bjr the aiea BCD, ami tnc
resolved parts of the other forces are iwawPtiMl bjr the mo-
jections of the leapeetiTe aroaa BAO^ OAD, DAB on DrD.
And the sum of these prqjeetioiia it ttjnal to BCD. Thai
the forces resolTed at right angles to BCD Tanish.

Similarly the fSaroes resolred at right angles lo aajr olhsr
face vanish.

III. By a process similar to that uitod in rjtUMuliiu^' the

Prop4>t(itioii I. at the end of ('liaptcr iv. wc can cx(rn<l tlir

preceding Proposition to the ca.ic of any |M)Iyhr<iron U>un<ir<i

b^ triangular &ces. Thus wo obtain' the lullowitig rvAult

:

l-orccs act on a polyhedroo bounded by triangular fi^es at
right angles to the faces and proportional lo tMtr aieos, tlw
points of application of the forces being the osntras of tbs
circles circumscribing the faces; shew that if the (broesallact

inwurdn or all act outwards they will be in equilibrium.

IV. If four forces acting on a rigid boily arc in equi-

librium, and a tetrahedron be constructed by drawing pUncs
at right angles to the directions of the loroes, tM k
will l^ respectively proportional to the areas of the fiMsa,

This is the converse of ii. and may be readily

strated: for by resolving the forces in any direction, and
])rojecting the areas on a plane at right angles to that direo-

tini), wc find that the four forcea arc conasslsd by the ssas
linear relation as the four

Wo infer from tliis result that the areaa in the pfesent

theorem must be respectively proportional lo the v^naes
I the Proposition X. at the end of. Chapter u:

I i octly arrive at a geometiioal truth.
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EXA]\irLES.

1. Four parallel forces act at the angles of a plane quad-
rilateral and arc inversely proportional to the segments of its

diagonals nearest to them ; shew that the point of application

of their resultant lies at the intersection of the diagonals.

2. Parallel forces act at the angles -4, 7?, (7 of a triangle

and are respectively proportional to a^ by c; shew that their

resultant acts at the centre of the inscribed circle.

3. A cone whose vertical angle is 30", and whose weight
is W, is placed with its vertex on a smooth horizontal plane

;

shew that it may be kept with its slant side in a vertical

position by a couple whose arm is equal to the length of the

slant side of the cone, and each foi-ce -—-

,

lo

4. Six equal forces act along the edges of a cube which
do not meet a given diagonal, taken in order; find their re-

sultant.

Result, A couple, the moment of which is 2ra»JZ, where
F denotes each force and a the edge of the cube.

5. A cube is acted on by four forces ; one force is in a
diagonal, and the others in edges no two of which are in the

same plane and which do not meet the diagonal; find the

condition that the forces may have a single resultant.

ResuU. (Xr+ YZa- ZX) V3 +P (X4- F+ >^') = ; where
X, y, Z denote the forces along the edges, and P the force

along the diagonal

6. If a triangle is suspended from a fixed point by strings

attached to the angles, tue tension of each string is propor-

tional to its length.

7. A uniform heavy triangle is supported in a horizontal

position by three parallel strings attacned to the three sides

respectively ; shew that there is an infinite number of ways



in which the strings mny be reUtivoIjr ditpotwi so thnt ttxcir

temioiis may be eqiul/but that the «tailioo of 000 bttog
giTon, that of ooch of the other two is

*

8. A sphere of gtTen weight rests on three planes whose
equations are

0COS a -f ^COS/94* seos7 « 0,

«oosa^+jfcos/9,-f seos7,»0,

«ooefl^-f3fOoe/9,-»-aQOs<)i^«>0,

the axis of s being Tertical; find the pressure 00mA plane.

9. A heaTj triangle ABC is sospended from a point bj
three strinfTS, mutually at right angles, attached to the angular
|M)ti)ts of the triangle ; if ^ be the inclination of the triangle

to the horison in its position of cqailibrinm, then

~*''"s'(l+«Ci4 tee !»•«<?)••

10. An equilateral triangle without weight has three un-

equal particles placed at its angular points; the syslecn is

suspended from a fixed point by three equal strings at richt

angles to each other fastened to tlie comers of the triangle

;

find the inclination of the plane of the triangle to the horaoo*

nr • iir ^ or
Jiesult. The cosine of the angle is ^U/^*^ ^^^ fp^ hi »

where TT,, W^, W^ represent the weighu of the particles.

1 1. Four Amooth eqiud spheres are placed in a hemispbo-

ntres of three of them are in the 1rical bowl. The centres

horieontal plane, and that of the other is above it If the

radius of each sphere be one-third that of the bowl, shew
that the mutual pressures of the spheres are all equal; and

iin<l the pressure of each of the k>wer spheres on the bowL

lusulis. Let W be the weight of each of the spheres

;

then each of the mutual pressures between the spheres ii

— ; and -jg is the pressure of each of the lower spheres on

the bowl.

T. 8. 6
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12. Throe equal spheres hanp^ in contact from a fixed

point by three equal string; find the heaviest splicre of given

radius that may be placed upon them without causing them
to separate.

Result, Let W be the weight of each of the equal spheres,

6 the angle which each string makes with the vertical,
<f>

the

angle wliich the line joining the centre of one of the three

equal spheres with the centre of the upper sphere makes with

the vertical ; then the weight of the upper sphere must not

exceed;;—z

—

i
—

zj*tan ^ — tan d

13. ABCD is a tetrahedron in wliich the edges AB^ AC,
AD are at right an<jles to each other ; forces arc represented

in magnitude and direction by AB, AC, AD, BC, CD, DB:
determine their resultant.

14. Three equal hollow spheres rest symmetrically inside

a smooth paraboloid of revolution, whose axis is vertical; a
solid sphere of equal radius is placed upon them : shew that

the equilibrium will be destroyed if the radius of the spheres

is less than r—,- , where I is the latus rectum ; the weight of

the hollow spheres being neglected in comparison with that

of the solid one.
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CnAPTEU VI.

86.
^
Toimd lk$ amdit /utltbnmm ^fircm

on a rigid body yekem cm /> . _ . jctd.

Let the fixed point be tAken as the origin of oo-ordinatm.
'I' M the bodr will prodnoe a pratm?

<\ r, Z^ be the itMlTed uuts of
t parallel to the axes. Then the fixed point will

i • -Y'.- r.-if'. against the bod/; and if we
take thene forces in connexion with the giren loroet, we msj
suppose the body to be free, and the equattont of eqiilibniiai

are

sx-jT'-o. 2F-r'-o. s;2r-z'-o.

£-0, if-0, A*-0.

The first three eooations giro the retolred parts of the
prcsHiin* on the fixea point; and the last three are tbe on!/
conditions to be satisfied by the given forces. Thus the Ibices

will be in equilibrium if the smms of iAe wummUa of Hmfortm
with Tt$poei to iAree shraighi Um$$ ai right amgl$$ io mck oiAsr,

andpoBtimg tkromgk tAeJix&d ^imi, wmUiL

Conversely, if the forces are in eqnilibrium the snm of the

moments ot the forces with respect t'^ fi?iy straight Itiie

tilrough the fixed point will yanish.

From the equations A' ' = S A", 1"' - 2 1', Z' • ^ Hows
that the pressure on the fixed point is equal to iliant

of nil the given forces of the system moved parallel to them-

selves up to the fixed point

If all the forces arc narellel, we maj take the axis of s

passing through the fixeci ]>oint parallel to the foitei. ThoA
nil the forces included in ^A' vanish, and so do all the foreee

included in 1Y; thus AT vanishes, M reduces to — SZr, and
L reduces to 'HX^. licnco A" and Y* vanish and tlie eqaa-

tioua of equilibrium reduce to

SZ-Z'-O, 22V-0, SZr-O;
6-«
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the first determines the pressure on the fixed point, and the

other two are conditions which must be satisfied by the given

forces.

If all the forces act in one plane passing througli the fixed

point, and wc take this plane for that of (ar, y), all the forces

included in SZ vanish; also the ordinate parallel to the axis

of z of the point of application of each force is zero. Thus
L and M vanish ; also ^ vanishes, and the equations of equi-

librium reduce to

sz-JT-o, 2r-r=o, 2(rx-Xy) = o;

the first two determine the pressure on the fixed point, and the

third is the only condition which the forces must satisfy.

Thus the forces will be in equilibrium if the sum of the mo-
inents of the forces with respect to the straight lineperpendicular

to their plane, and passing through the fixed point vanishes;

and conversely, if the forces are in equilibrium the sum of the

moments of the forces with respect to this straight line will

vanish.

87. To find the condition of equilibrium of a hodg which

Jias two points in it fixed.

Let the axis of z pass through the two fixed points; and
let the distances of the {X)int3 from the origin be z and z".

Also let X', Y\ Z' be the resolved parts of the pressures

on one point, and Jl", Y", Z" those on the other point.

Then, as in Art. 86, the equations of equilibrium will be

sx-x'-x"=o, sr-r-r"=o, 2z-z'-if"=o,
x+rv+rv'=o, if-xv-xv'=o, Ar=o.

The first, second, fourth, and fifth of these equations will

determine X', X"y Y'j Y"; the third equation gives Z' •\- Z'\

shewing that the pressures on the fixed points in the direction

of the line joining them are indeterminate, being connected

by one equation only. The last is the only condition of

equilibrium, namely i\r= 0. Thus the forces will be in equi-

librium if the sum of the moments of the forces with respect to

the straight line passing through thefixed points vanishes; and
conversely, if the forces are in equilibrium the sum of the

moments of the forces with respect to this straight line will

vanish.
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88. TK« inda<inninatwiaw whieh oeevt af to the ralurfl

of Z' aixl //' might hmve been emeted; ibr if two forcm,

-Z' and -Z", act on a rigid body %n lM$ mim Btraijht

line, their effect will be the tame at whatever point in their

line of action wc sap|)ote them applied, and oonaequnitly
they may be auppoaed hot' at the aamo point, or one
of them to be mcreated

{
tiie other be eqnally di-

rotniehed. If it be objeOed that in any experimental caae
there really would be tome dgfmiu preaenre at each fixed

|>oint, wo muiit reply, that no body on which we ean ex-
I>erin) •'**' •' ondition of pirfui riguUtjf^ on which
our c i. See Baumm^ Art i70 ; and PbinmX,
Arta. I2ii— 132.

The eaae which we hare been conaidering ia that of a body
which is capable of turning; round ajlaatf om; for an axis
will be fixed if two of its points are fixed.

89. If the body, inatead of baring two fixed p n

turn round an axis and oZio Mi$ o^oiy ^ then in ail )

the condition A^»0, we must hare SjSr»0, snppomnff the axia
of a directed tX^mf the straight line on which thenody ean
turn and slide. For the axis will not be able, as in the last

case, to furnish any forces —Z and — JT* to counteract ^, and
therefore ^Z must « •

90. To find the etmdiiumt of equdlbrimm of a rigid hoig
resting on a smooth plans.

Let this plane be the plane of (x, y); and let 9, y be tha
co-ordinates of one of the pointa of contact, R' the pitjaaiuu

which the body exerts against the plane at that point Then
the force — B , and similar forces fmr the other points of
contAct, taken in connexion with the giren foroea, ought to

satisfy the cquationa of equilibrium; hence

If only one point be in contact with the pUne, then the

third e<|uation gives the presmre. and we hare fire equations

of condition,

2J-0, sr-o, z-ys-?-o, jf+A'Sz-o, a^-o.
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If two points be in contact, then the equations

give R^ - ,—, ^, , TT =- ,-77 rV;^ yx "xy yx -xy
and the equations of condition arc

SX=0, 2F=0, tZ^^^Kz^l±M^C=^-0, and N^O.
yx -xy

If three points are in contact, then tlie pressures are

determined from the equations

J2' + iiJ" + i2"' = 2Z,

Ry^RY^H^Y'^L,
Rx'-^R"x'^-R"x"'^-M,

and the conditions of equilibrium are

^x=o, 2;r=o, N=o.

If more than three points are in contact, then the'pressures

are indeterminate, since they are connected by only three

equations; but the conditions of equilibrium are still

2x=o, 2r=o, JV=o.

91 . The equations at the commencement of the ])receding

Article shew that if a body rests in equilibrium against a

plane, the forces which press it against the plane must reduce

to a single force acting in a direction perpendicular to the

plane, for the condition

LlX^MtY-\-NtZ--0
is satisfied, since XX, 2 Y, and N vanish. Hence the forces

reduce to a single force; and since 2Z and 2 F vanish, this

force must be perpendicular to the fixed plane.

Also, this single force must counterbalance the forces

— R'y —E"..., which are all parallel and all act in the same
direction. Hence, from considering the construction given

in Art. 66 for determining the centre of a system of

parallel forces, it follows that the point where this resultant

cuts the plane must be within a polygon, formed by so joining

the points of contact as to iucludc them all and to have

no re-entering angle.
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MISCLU^USEOUS EXAMPLES.

1. The lid ABCD of a cabioftl box, novcable aUmI
hingc« At A and B, ui held at a given angle to tlM horiion
hj a horizontal string oonneotiitf C with a point vertieaUy
over A : find the preisure on each hinge.

2. TVo equal forces act on a cube whose eeotie is fixed,

along diagonals which do not meet of two adjacent fines:

find the couple which will keep the cube at leet.

BsaulL Let P denote each fiwoe, a the edsn of the enbe

;

the moment of the required conpk is either — - or nc-

oording to the directions of the two gi?ea fofoet.

d. Three equal heavj rods in the poaitioo of the three

edffcs of an inverted triangnlar pjramid are in eqailibmrn
mider the following circnmstanoes: their upper ealrenutiea

are connected by strings of equal lengths, and their lower
extremities are attach^ to a hinge about which the rods
may move freely in all directions. Find the tension oC the

strings.

4. A given number of uniform heavy rods, all of the

same weignt, have their extremities jointed together at a
common liinge, about which they can turn freely; and being

introduced Uirough a circular hole in a honiontal plane

with their hinge end downwards, are spread out symmetri-

cally along the circumference of the nole like tiie ribs of

a conical basket If a heavy sphere be now placed in the

f the system of rods, so as to be snpported by them,

ic the position of rest

T). A cylinder with its base reeting sflsinit n snMoch

vertical plane is held up by a string fiMlenea to it at a point

of its curved surface whose distance iroai the vertical ulane

is A. Shew that k must be greater than &-8atan^and k^
thnn h, where 2& is the altiMe of the cylinder, « the radius

of the base, and ^ the angle which the string makes with the

vertical.
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6. A cylinder rests witli its base on a smootli inclined

plane; a string attached to its highest point, passing over

a pully at the top of the inclined plane, hangs vertically

ana supports a weight ; tiie portion of the string between the

cylinder and the pully is iiorizontal. Determine the con-

ditions of equilibrium.

Resxdts, Let \V be the weight of the cylinder, W the

weight attached to the string, a the inclination of the plane

to the horizon; then W'=\VisLna, and tana must not ex-

coed the ratio of the diameter of the base of the cylinder to

the height of the cylinder.

7. A cone of given weight W is placed with its base

on an inclined plane, and supported by a weight W whicli

hangs by a string fastened to the vertex of the cone and
passnig over a pully in the inclined plane at the same
height as the vertex. Determine the conditions of equilibrium.

Besxdts. Let a be the inclination of the plane to the

horizon, 6 the semi-vertical angle of the cone; then

3W = IFtan a, and tan 6 must not be less than - sin 2a.
o

8. A smooth hemispherical shell whose base is closed

includes two equal spheres whose radii are one third of that

of the shell. The shell is fixed with its base vertical; find

the mutual pressures at all the points of contact.

Results. Let R^ be the pressure between the upper sphere

and the shell, i?, that between the two spheres, li^ that be-

tween the lower sphere and the base of the shell, i?^ that

between the lower sphere and the curved part of the shell;

then

W 2W ZW AW

9. A rectangular table is supported in a horizontal posi-

tion by four legs at its four angles: a given weight TF being

placea upon a given point of it, shew that the pressure on
each leg is indeterminate, and find the greatest and least value

it can have for a given position of the weight.
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CHAPTER VI

L

OENBBAL TRBOBBMi OH A BTVTCX OP POBCOL

^y~. Tn Art 72 it is prored that the foroM Acting on m
V mar be reduced to a force R and n eosple O^ and

t! L' + AP+y^, mhtrt A Jf, JST aie tlie moowats ol
t! ronnd three rectangolar axea arbitfnrilj choeen.
]^ Moither L, J^Dor ^Tetabegranlvtliui (7;

li nriLrin, the rmmtiami wH>mmt O itgrmHr
tl forct§ ahaui amtf otkfr oxtf. for this

rva>< 11 •
' i> Laticii tiic yrtndpal wtomtmt of the fofoet.

ri

From the eqaations in Art. 79, which determine the dtve^
tion of the axis of O^ it follows that (/ cos ^ is the momfmti
of tlie forces about an axis which passes through the gmft
origin, and makes an angle ^ with the axis of priM^pal
moment,

93. The Talne of R in Art 73 is independent of the

position of the origin of co-ordinates; i? is in htX the re-

sultant of tho ^yen forces, supposing each of Ihem moved
{)arallcl to itself until ther are aU brought to act at the same
point. The value of O^ howcTer, depends on the on^^ we
ossinnc. If we take a point whose co-ordinates are « , y, #'•

and (ii note by L\ Jf , iV the momenta of the Ibftes nrnad

straight lines through this point parsllcl to the oo-^Mndinale

axes, and by G the principal momeni of the forces with mpect
to this point, we have, by Art 81,

i'-2;-ysz+s'sr,
Ar-jr-s'sx+aS^,

... (I)
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Wc proceed to apply these equations to find the least

Talue or Cr,

To find the locus of the origins which give the least principnl

moments, the magnitude of those moments, and tfie position of
Uicir axes.

Multiply the first of equations (1) by 2A', the second by
21', and the third by 2Z, and add; thus

z'2A'+ iirs r+ iv^2z=i2x+ ji/2r+ j^z... (2).

Also

JB^G'*= {{txy + (X F)» + (2Z)') [L^ + Jr + N'*]

= (isrsr- M'^zy + [Ltz- N'txy
+ {M'tX- L't YY + (Z'2A+ M'tr+ irtZf ... (3).

Of these four terms the last is constant for all values of

x\ ?/', z by (2) ; hence we obtain the least value of O' by
making the three preceding terms vanish, which gives

2Z~2r""2Z ^
''

that is,

L-'7j'lZ+ z'tY_ M-z'tX-\-x'tZ_ N-x'l Y-hy'lX

tX
"

XY
"

XZ •••^^^•

Hence the required locus is a straight line.

From (4) it appears that L\ M\ N' are proportional to

2A', 2 Yy 2Z respectively, which shews that the axis of the

principal moment at any point on the straight line (5) is

parallel to the direction of tne resultant R. By (3) the value

of the least principal moment is

LlX'\-MlY^NtZ
R •

Each of the fractions in (5) is, by a known theorem,

equal to

LtX-vMtY+NtZ
(2A)«+(2r)'+(2Z)«'

. ,. , LtX-^AaY^NlZ
that IS, to TK •
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Tiie cquatioDs (5) nutj bj raiuble tnuufoniuuioiii be
reduced to tho ordinary ffymmelrioil erjaatioat to a ilnngllt

lino. We have

—TT B» '

therefore

therefore

(«'iP - i/2A' + Z2 F) 2 r- (s'B'- Z2Z+ X1X)SZ;

therefore

tY\^
—

T?
— J^m' V—J-

Heneo we conclude that tbe eqiuUioiit (5) maj be written

m*—3P

—

j-w—V—)

'm'—2F— j=

from which we aee that the straieht line determined b^ {5) it

parallel to the direction of B. Uenoe thb straight hoe baa

the following properties r at every poini cf ii the vahfte ef tke

prtnctpal mofmmU i$ tMe mtme^ and u leu than %i u for amy
point not m tke Ime ; ohofor ever^f poimi im iMe Hmt tie poeitwm
ofthe axis ofprtnc^ mammU ie the «cmm, hemg the Km Heti^.

This line is odled tne central axie.

We have supposed in the inTosti^tion that Ji is not zero.

If £ be lero we have for everj origin

x'-z, JT-ir. -v-jv;

94. The equation (2) of Art. 93 maj be written

j.lX.,,lY ^IZ ,1X^..1Y^^1Z
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This shews that if we resolve X', JT, N* along a straight

line parallel to the direction of -R, and add the resolved parts,

we obtain the same result whatever origin be chosen. Thus
the resolvedpart of any principal moment in the direction of It

18 constant. By the resolved part of the principal moment in

the direction of E we mean that part of the moment which has

its axis in the direction of E,

95. From enuations (1) of Art. 93 it appears that L' = L,
3f = 3/, and N =Nj provided

x' _ y _ z'

that is, if the point {x\ y\ z) be on a straight line through
the origin parallel to the direction of E, Since the origin is

arbitrary, we may therefore assert that the principal moment
remains unchangedy when the point to which it relates moves

along any straight line parallel to the direction of E.

96. The equation to tlic plane through the origin perpendi-

cular to the direction of E is

x'lX+y'iY+z'tZ=0 (1).

If we combine this equation with equations (5) of Art. 93,

we obtain the co-ordinates of the point of intersection of this

])lane with the central axis.

We thus find for these co-ordinates

NtY-MlZ LlZ-NlX MIX- LI Y
E'

' if ' E'

which we will denote by A, A:, I respectively.

If x\ y, z' satisfy (1), then N'XY-M'SZ

or (iV-xX Y+y'XX) 2 F- (M- zXX+ x'tZ) XZ
= JV2 Y- JinZ- x'E" = E^(h-x'),

Similarly L'lZ- N'1X=^E^ (^' -y'),

M'lX-L'lY=E^{l-z).
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Therefore from equation (8) of Art 98

+
( B ) W-

Hence O' remainB consUnt for all poinU in the plaaa (1)
for which (A - «*)• -f (it - yy + (/ - m)* \m contUnt ; that i«,

for all points in (1) which are at a constant distance from the
central orij. Flroin this and Art. 98 it foUows, that if a riebt

cylinder be described round the emirtd arit, the frmeSpal
moment ka$ tMe $am§ patnefor amypouUm liU mmfam tf tkU
cylinder,

07. Of the two expressions which compose (T in equation

(3) of Art 96, the latter, hj Art 94, is the resolred part of
O* parallel to the direction of R ; hence the former part is the
resolred part of €F perpendicular to the dtrecttoo of H (^1
the former part Q, and ^ the angle which the direction of the

axis of O' makes with that of R; then atn^«-^ , and this

is constant so Ions as (7* is, that is, for every pomi on tie

awffaM of the cylinder in the preceding Article*

98. The propositions already given in this Chapter admit
of other modes of demonstration, which we proceed to in-

dicate.

To ehew thai any evelem cffortee eaae oXwam he reimoed
tn n forre and a eomple^ the aoeie of the latter 'leiny pandM
to the direction of theformer.
The forces can be always reduced to a force R and a coople

O, and the anele ^ between the former and the axis of the

latter is given by the equation

^* jrrr
—

Besolvc the couple O into two othen; one having lu axis

paraUel to the direction of R and its moment equal to (7 cos 4.

the other ha>nng its axis perpendienlar to the direction of R
and its moment equal to Omn^ The forces of the latter

couple arc therefore in a pUne parallel to R; and by pto-
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])crly placing this couple in its own plane; and making eacli

of its forces equal to 7^ one of its forces may be made to

balance the force B, We shall then have remaininrr the

couple G cos
<l>

and a force i?, the direction of which is

parallel to the axis of the couple, and which is moved to

a distance
'^^^^ from its original position. The system is

thus reduced to a force E and a couple ^ ,

the axis of tlie latter being parallel to i?, and therefore its

plane perpendicular to R.

Since the resultant couple must be independent of the direc-

tion of the axes of co-ordinates we conclude that

R
must be constant whatever be the direction of the axes ; and

as i? is constant it follows that LSX-\- MXY-\-N^Z must be

constant whatever be the direction of the axes. The expres-

sion also remains the same whatever origin be chosen, as ap-

pears from equation (2) of Art. 93.

99. When a system of forces is reduced to a force and a

couple in a plane perpendicular to the force^ the position and
magnitude oj the force are always the same.

The magnitude of the force is always the same, for it is tlie

resultant of the given forces supposing each of them moved
parallel to itself until they are all brought to act at the same
point. We shall now shew that there is a definite straight

fine along which the resultant force must act.

Let x\ y\ z be the co-ordinates of an origin such that the

axis of the resultant couple coincides with the direction of

the resultant force. Then, with the notation of Kxi, 93,

we have

for the direction cosines of the axis of the couple are propor-

tional to L\ if, and -^^, and those of the direction of the
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force Arc proportional to IX, S }^ 1/C, Ilenee tlie loeat of
the ori;,Mtis U the stniight Uoe detensined by MOfttioiif (5)
of Art. U3.

100. It appears from the last Article that ihmt it oiiljr

om position of the resultant foroe in which it is perpaodioUar
to the plane of the resultant couple. If we wish to translhr

the resultant force to any other pointy we can do it bj
introducing two forces, B and — B, at that point ; the Utter

with the original force R will form a couple; and if this

couple be oompomided with **
''<inal eoaple we hare

A now couple, tno moment of . m ^{K^-i-JPj/), where
A' denotes the original momenl and f the dittence to which
Ji has been moTed. This moment is greater thui K; and
henoe the straight line in which B acts when Pff|mvlirBlftr to

the plane of the resultant couple is the axi§ ej ImtA frmoipaX
It is therefore the cmtnl aaeU.

A IS Bhcwn in Art. 9s to be » jt .

101. The principal moment will be the same for ereij
point of the central axis, since when we have reduecd the
forces to a single force and a couple in a plane perpendicular

to the force, the force may be supposed to act at anjr point

in itii line of application, and the plane of the couple maj be
moved parallel to itself into anj new position. See also Art 95.

IlcDce if we draw an^ plane perpenoicnlar to the oentral axis,

and describe a circle in the plane with radius ^, and baring iti

centre at the intersection of the oentral axis, then, bjr the
\vi»\ Article, the principal moment for any point in this circle

\\'\\\ be V(Ar* + i^f*), and the angle ^ at which the directkm
of its axis is inclined to the direction of i? is giren bj tho

equation tan ^»^ •

102. When a wystem ot'jbrceM ttcting on a n'jiti body m
reduced to twoforcBi, and Mass ^rs r^^nmmltd by two sirmMi
lm0§ wMick do not meet and art noi garalUlt lAs 9oimm ^fMS
l0traMron of which lAs two HrmfiU Unm wr$ tjifinrti wfr^
IS constofif.
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Let the straipjht lines AB and A'B' represent the two forces,

AA' being a straight line at right
^

angles to both. Suppose two j)aral*

lei lines Ax, Ax drawn, each at ..-''

right angles to AA\ and Ay, Ay\ ^''

respectively at right angles \o Ax^
"

A'x\ and also at right angles to

AA\ Let BAx = <^, BAx « f

,

and let T and T denote the inten- ,^;>'

sities of the forces in AB and AB
respectively. Then T may be resolved into Tcos <^ and
Tsin 4> acting at A along Ax and Ay respectively, and T
into T'co8<f>y T' BirKf)' acting at A along Ax and A'l/'

respectively. Let a be the inclination of AB and AB, so

that ^' = ^ + a. Now determine (j) by the equation

Tcos^-f r cosf = (1),

that is Tcoa «/> + T' cos ((^ + a) = 0.

Then by (1) the forces Tcos ^ and T cos <^' will form a couple

in the plane xAAx \ and Tsinc^ and 2" sin d>' will have a
single resultant perpendicular to the plane of this couple,

for they cannot form a couple since then the whole system of

forces would reduce to a single couple which is contrary to

supposition. Let P denote the intensity of this single force

so that

P=T8in^+T'8in<^' (2).

The moment of the couple is AA x Tcos
<f>.

Hence, by
the latter part of Art. 98, AA x Px Tcos ^ is constant

whatever be the position and magnitude of the forces T and
T\ 80 long as they are equivalent to a given system of forces.

Now the volume of the tetrahedron of which AB and AB
are opposite edges is }^AB,AB\AA su\a» For the base

may oe considered to be the triangle AAB\ the area of

which is ^AA.AB' ; and the height will then be ^i?sina.

But from (1) and (2) we have T' sin a =P cos d>. Hence the

volume of the tetrahedron becomes \AA . jT. Pcos^, which
we have just seen to be constant.

This result is due to Chasles; see Mobius, Lehrhuch der

Statiky I. 122.
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103. When a system of j^rtdld finvM Mting on a rigid

bo<ly has a single reBultaiit, that resQltant always passes

thnnii^h a fixed point in tha body whatever may be the
position of the body. When amf system of foroea acta on
a rigid body we might inveadgate the eonaaqnenoea of tam-
iug the body from one poaition into another while the iMnaa
retain their original directions, or of turning the Ibroea in

such a manner as to leave tlioir relative directions anchanged
while the body remains fixed. We shall here give some
exaninles of the general theotema that have been demon-
stratea on this subject. The forces are soppoaad to act at

fixed points in the body.

104. Let PA and QA be the directiona of two ibreea

lying in one plane, acting at the

points P and Q respectively ; TA
the directinn of tneir resultant.

B" »roea m PA, QA to

bt 1 the points Pand Q
respe« h the same an-

gle a ; . ...V same direction;

since PA and QA will include the

SAt .
* '

'

01

p:i

a.s ^ >>;cd unchanged, the

roai^nitude of the resultant and tii which it makea
with the components remain unchaii^i^i. iience if 2* be the

intiTscction of the resultant and the circle originally, it will

always be so, since the arcs PT and Q2* are proportional to

the angles PA T and QA T; the resultant will therefore have
turned through the angle a round the point T,

The same conclusion holds if instead of snppoeing the body
to be fixed and the forces to revolve, we snppoae each ibroe

to remain parallel to itself and the body to be turned throogh

any angle round a perpendicular to the plane of the fbroea.

The point T through which the resultant alwaya paaaea

may be called the centre of the forces which act at P and Q.
It IS evident, in like manner, that if a third force paaa

through a fixed point 8 and meet the straight line TA^ we

T.8. 7
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may find the centre of the forces at T'and >S», tliat is, the ccutre

of the forces at P, (?, and S; and generally we may infer

that evert/ system of forces in one plane which is reducible to

a single resultant has a centre ; or, in other words, if there

be a system of forces acting in a plane and having a single

resultant, and we know the magnitude of each force, the

angles the directions of the forces make with each other,

and one point in the direction of each, then we can deter-

mine the magnitude of the resultant, the angle its direction

makes with those of the component forces, and one point in

its direction. '

105. If a system of forces maintain a body in equilibrium,

and equilibrium also subsist after the body has been turned

through any given angle which is not a multiple of two right

angles, about any axis, then equilibrium will still subsist

when the body is turned about the same axis through any
angle whatever, the forces being supposed to act with the

same intensity and in parallel directions throughout.

Take the axis of z to coincide with the straip^ht line about

which the body is turned. Since there is equilibrium in its

first position, we have

2X=0, 2r=0, 1Z=0 (1),

2(^-r^) = o, X{Xz-Zx)=o, S(rx-A»=o...(2).

If equilibrium subsist when the body is turned through an
angle ^, the equations (1) and (2) must hold when we put

X cos 6 —y sinu for x, and a; sin ^ -f ^ cos 6 for y. Hence (2)

become
i^mei{Zx)+co8et{Zy)-t{Yz)^0 (3),

t{Xz)'-coaeX{Zx)-\-sme^{Zy) = (4),

co8et{Yx-Xy)-Bine%{Xx-^Yy)=0 (5).

By means of (2), equations (3) and (4) become

BinetiXz)

-

(1 -cos^) t{Yz) = 0,

{l-cose)t{Xz)+BmdX{Yz) = 0,

As these equations hold for some value of sin 6 difTcront from

zero we must have

2(Az) = 0, and t(Yz) = (C).
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Tlicn, by (2), wc infer

i{Zr)mO, andS(Zj^)-0 (I).

And from (2) and (5),

2(F«-Ay)-0, and 2(-Li;+ J»-0 (8).

A . (6), (7), and (8) arc true, (8), (I), and (5) are

1 vlC8 of <?.

It appears from the preceding investiiration that when
f«)rcc.<4 act til oMd plcme on a rigid bod.

liliriiuii, the ncceaaaiy and soflkient ah

order thnt cqnilibriura maj anbeiBt after tl<

turned mundf an axis perpendicular to the ;

ibroea remain parallel to their original diroctiona, ii

2(X»+3»-0.

It'. A system of forces acta on a rl^ body: determine
thr . : It: .!iH ullih must hold i

*
' ' whcu the system

is i.^.In.,! |..ii.J:;. 1 to any 8tra; .se resolved parti

jiiny bo in equilibrium.

Take a straight line whose direction cosin. « arc /, m, w.

In order that the resolved parts ot' the lores |>amllel to

this Rtraiglit line may be in equilibrium we must have, by
Art. 78,

I

"
m

n

And as these are to be true for all ratios of /, m, n we
must have

2X-0, sr-o, 2Z-0.

SA'y = o, :£A'5-0, Slaj-O, STs-O. SZr-O, iZy-O,

These are the necessary and sufficient copditioDi.

7—

a
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100 EQUILIBRIUM OF A KIGID BODY

107. We have remarked in Art. 9 that the poperty
of the divisibility of matter leads us to tlie supposition that

every body consists of an assemblage of material particles or

molecules which are held together by their mutual attraction.

Now we are totally unacquainted with the nature of these

molecular forces ; if, however, we assume the two hypotheses

that the action of any two molecules on each otlier is the

same, and also that its direction is the straight line joining

them, then we shall be able to deduce the conditions of equi-

librium of a rigid body from those of a single particle.

To deduce the conditions of equilibrium of a rigid bodyfrom
those of a single particle.

Let the body be referred to three rectangular axes; and
let ajp y, , 2j be the co-ordinates of one of its constituent par-

ticles; X^t i^i> -^1 the resolved parts, parallel to the axes, of

the forces which act on this particle exclusive of the mole-

cular forces; P^, P,, P,, the molecular forces acting on
this particle; OL^^P^y'y^'i a^, y9,,7j,; the angles their re-

spective directions make with the three axes of co-ordinates.

Ihen, since this particle is held in equilibrium by the above
forces, we have, by Art. 27,

X, + P, cos a^ + P, cos a,+ =0 (l),

rj-f.P,cos/9, + P,co8/3,+ = (2),

Zj-f-PjCos7j + P,co87,+ = (3).

We shall Have a similar system of equations for each particle

in the body; if there be n particles there will be 3;i equations.

These 3n equations will be connected one with another, since

any molecular force which enters into one system of equations

must enter into a second system; this is in consequence of

the mutual action of the particles.

There are two conditions which will enable us to de-

duce from these Zn equations six equations of condition,

independent of the molecular forces. These will be the.

equations which the other forces must satisfy, in order that

equilibrium may be maintained.
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The first condition is thif, that the

mutual; and that, conteqaently, if P, oo«a, repreaeat tlM
resolved |Mirt parallel to the axia of ao of anjr one of !b«
molecular forces involred in the 3fi equationf, we sIiaU lilM>
wise meet with the term — P, cos a, in another of
tious 'uive reference to the axis of x, "
if wi* i those equations together which bare
tu the same axis, we bATe the three following equations of
condition mdeptmdeni of the molaemkurforcet,

2A'-0, Xr-O. 2Z-0.

The seoond consideration is this: that the stnught lines

joining the different particles are the directions in which the

molecular forces act

Thus, let P, be the molecular action between the perticles

whose co-ordiuAtes are («„ y, , s,) and (a^, y„ «J,

P^COSO,, PgCOS^p P|C0S7|,

-P.coso,, -P,cos/8„ -P,cos7„

the corresponding resolred perts oi P^ for the two pArtidcs.

Then

cosa,-5i=3, oos/9,-«i^. cos7,-i^.

where r-V((a:,-.arJ- + (y,-y.)«+(f,-sJl,

These enable ub to obtain three more equations free tnm
molecular forces; for if we multiple (1) and (2) bjr y. and x,

respectively, and then subtract, we nATe

!>,- -X^, + ... + P, {a?, cos /9. -y. cos Oj) + ... - ... (4),

r the same process we obtain from the tjwttm of eqoAtic

iich refer to the particle (•r,,y,,0,

y>,-A^,+ ...-P,(a^cos/3,-y,cos«,) + ...-0...(5).

w,» ^r oASj^ and cos/9| given aboi

(jr,-«jcos^^-(y,-y,)oos»,-0.

But the v-i-v-» ^f oASfl^ and cos/9| given above lead to the

condition
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Wherefore the equation

i>i-A>, + + 1>.-A>.+ =

will not involve P, , the molecular action between the particles

whose co-ordinates are a?,, y,, z^ and a?,, y,, «, respectively.

It follows readily from what we have shewn, that if we form

all the equations similar to (4) and (5), and add them together,

we shall have a final equation

%{Yx-Xy) = 0,

mdependent of the molecularforces.

In like manner we should obtain

2(^i^-r;r) = 0, t[Xz-Zx)=(^.

Moreover we can shew that these six equations are the onhf

equations free from the molecular forces, supposing the body
to be rigid, and consequently tlie molecules to retain their

mutual distances invariable. For if a body consist of three

molecules, there must evidently be three independent mole-

cular forces to keep them invariable ; if to these three mole-

cules a fourth be added, we must introduce three new forces

to hold it to the others ; if we add a fifth molecule we must
introduce three forces to hold this invariably to any three of

those which are already rigidly connected ; and so on ; from

which we sec that there must be at least 3 + 3 (n — 3) or Sti — 6

forces. Hence the 3n eauations resembling (1), (2), and (3)

contain at least 3n— 6 independent quantities to be eliminated;

and therefore there cannot be more than six equations of con-

dition connecting the external forces and the co-ordinates of

their points of application.

MISCELLANEOUS EXAMPLES.

1. Determine the central axis when there are two forces

P and Q whose lines of action are defined hy z = Cj y=^x tan a,

and 2 = — c,y = — ictana respectively.
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2. If P and Q are two ibroet whose directumt am at ligiit

uiiglcA, shew that the iliiitanc«f of tho oentnd axia fiom their

lines of action are an /' to ^.

8. Parallel foroaa act on a ripd body and maintaiii it

i" 11 in on«-

1' / in cqui

lil*ritiin : thoy may bo turned about their points ol

"I'l'l''
'

4. .\ f forcci* a. nil- .in a rigid body ia cquira-

lent to A (!C : shew that it will alao bo eqairalont to

a ^ tnroogh any
tt

,
I'oroes remain-

ing tho wmo, if

an.l :^(X;S(Zr)+2(r)2(Z^)-2(i)2(JLr+ iy;.

rccs act at tho angular points of a tetrahedron in

> rcapcctirely perpendicular to the opposite facet,

nii<l proportional to the areaa of tho fiioes in magnitude:
sluw* that tho forces have the property considered in Art. 106.

G. Shew that within a quadrilateral, no two sides of

which arc parallel, there is but one point, at which forces

actin;^ towards tho corners and proportional to tho distaaoesof

the {)oint from them, can bo in equilibrium.

7. Two forces acting at a point are represented in magni-
tmie and direction by 8trai;7ht lines drawn firom that pi'
their sum is constant and tlicir resultant is constant botii i..

nia*^Mutudo and direction. Find the locus of tho eKtremitic:s

of tho straight lines which represent tho forces.

8. If forces P, Q, R acting at the centre of a circular

lamina nlon^ the radii OA^ OB^ OC be equivalent to forces

/ i\^ along tho sides BC^ CA, AB of the inscribed

ii . . that

Tic"^ CA '^IF ^'
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9. A uniform ri^id rod, of length 2a, can turn in a hori-

zontal plane about ita middle point. At one end a string is

tied which passes over a fixed pully, vertically above that

end, and at a distance h from it, and is then fastened to a

given weight Tlie rod is then turned through an an^le 6y

and kept at rest in that position by a horizontal force P per-

pendicular to the rod through its other end. Prove that P
will be a maximum if

tan
,e^ P
2 b*+4a*'

10. Prove that a system of forces can be reduced in an
infinite number of ways to a pair of equal forces, whose direc-

tions make any assigned angle with one another; and find

the distance between these forces when the angle is given.
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CHAPTEE VIII.

CENTRE OF QRAYITT.

108. AVRIGHT is mcMtired like other aoAntitiefl hy
of an arbitrary unit If a certain upward force be neoeatanr

to prevent a body from falling, tlicn another body whico
reqoirea an equal force to au^tain it is taid to hare a weight
equal to that of the (int. When two weighta have heen
reoognited to be equal, a body which requirea to anttain it

a force equal to the aum of the two equal foroea which would
sustain tlic two eaual weights, is said to have a weight doM$
tliat of cither of tne two equal weights ; and so on.

It appears from experiment that the weight of a given body
is invariable so long as tlie body remains at the same place on
the earth's surface, but changes when the body is taken to a
difTerent place. We shall suppose therefore when we speak of

the weight of a body that the Dody remains at one place.

When a body is such that the ¥reight of any portion of it is

pro]>ortional to the volume of that portion it is said to be of
unijorm denathi ; the density of such a body is meaaured 1>y

the ratio whicn the weight of any volume of it bears to the

wei;^ht of an equal vdlumc of some arbitrarily chosen body of
uniform density.

The product of the density of a body into its volume is

called its mass.

When a body is not of uniform density its density at any
point is measured tlius: find the ratio of the weight of a
volume of the body taken so as to include that point to the

weight of an equal volume of the standard bod^; the limti of

this ratio, when the volume is indefinitely diminished, is the

density of the body at the assumed pomt
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109. It was shewn in Art. 06 that there is a point in every
body such that, if the particles of the b<j(ly bo acted on by
parallel forces and this point be fixed, the body will rest in

whatever position it be placed.

Now the weight of a body may be considered as the resultant

of the weights of the different elementary portions of the body,
acting in parallel and vertical lines. In this case the point

above described as the centre of parallel forces is calleu the

centre of gravity of the body. We may define the centre of

gravity of any system of heavy particles as a point such that

if it be supported and the particles rigidly connected with it,

the system will rest in any position.

In the present Chapter we shall determine the position of

the centre of gravity m bodies of various forms. We shall

first give a few elementary examples.

(1) Given the centres ofgravity oftico parts which compose

a body
J
tojind the centre ofgravity of the iclwle body.

Let O^ denote the centre of gravity of one part, and G^ the

centre of gravity of the other part ; let »«j denote the mass of

the first part and m^ the mass of the second part. Join G^ G^

and divide it in G so that -777=^ = * , then G is the centre
G Cr, 77lj

of gravity of the whole body (Art. 37).

(2) Given the centre ofgravity of a body and also the centre

ofgravity of a part of the body, tojind the centre (fgravity of
the remainder.

Let G denote the centre of gravity of the body, and G^ the

centre of gravity of a part of the body; let m denote the mass
of the body, and m^ the mass of the part. Join G^G and pro-

duce it through Gio G^.m that -jr=-^ = ^—
, then G^ is the

centre of gravity of the remainder.

(3) To find the centre of gravity of a triangidar figure of
uniform thickness and density.
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Lot AliC bo ono nirfaM of the tnAngular figure; bticct ItC
at IC) join AK\ draw ceb narallel to

CAV; cuitini: AE at e. Then, by
similar triongl

ee :
' Ae : AE^

and he I BE v. Ae \ A£,
therefore et : CE n be : BE;
but CK^BE, therefore ce-Ae. ^ S i
Henc«> .t /; i'isects every straight line parallel to BO, Therr-
fore each of the 8trtp« similar to ceo, into which we may
toppose the triangle to be divided, will balance on AE, and
thert!fore the centre of gravity muat be in the straight line AK.

Bisect ^ a at F and join BF\ let this cnt AE at G.

Then, as before, the centre of gravity most be in BF\ but
it must be in J^"; and therefore O is the centre of gravi^.

Join KF. Then, because C^-Z^i? and CF^mAF, there-

fore FF ia {Murallel to AB and AB^2FE; and by simiUr
trian^'l •',

FW : EF :: AO : AB, therefore EG^^AO.
I Fence to find the centre of gravity of a triangle, bisect any
b'uIc, join the point of l)i.<octinn with the opposite angle, and the

centre of gravity lies a third of the way up this straight line.

The centre of gravity of any plane polygon may be found
bv "'

* '*!^
it into triangles, detcmil I

'

centre of grav-
o: iingle, and then by Art. < Ing the ccntr-

gravity of the whole figure.

Wo may observe that the centre of gravity of a triansle

coincides with the centre of mvity of three equal partimt
pUocd at the angular points of the triangle. For to find the

centre of gravity of three equal particles placed at A, B, C
rcsp<^ctivily, we join CB and bisect it at E; then E is the
centre ot' i^ravity of the particles at C and B; suppose these
partirliM collected at E; tlien join ^^ and divide vlJ^at G so
tliat FG may bo to ^ 6^ as the mass of the one particle at^ is

to tlmt of the two at E, that is, as 1 is to S ; then G is the centre

of gravity of the three equal particles. From the construction

G is obviously also the centre of gravity of the triangle

ABC.
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Let the co-ordinates ofA referred to any axes be sc^^ y^^ z^\

those of B, a;,, y,, r,; and those of (7, a:,, y,, «,; tlien, by
Art. 66, tlie co-ordinates a;, y, z of the centre of gravity of

three equal particles placed Sii A, D^ C respectively, are

«"J(«t+«i+^t); y=4(yi+yt+yJ; «=J(«i+««+«,).

By what we have just proved, these are also the co-ordinates

01 the centre of gravity of the triangle ABC,
It may be remarked that in Art. 66 the co-ordinates may

be rectangular or oblique,

(4) To find the centre of gravity of a pyramid on a trt"

angular base.

Let ABC be the base, D the vertex; bisect AC at E; join

BE, DE; take EF=\EB, then F is the centre of gravity

of ABO. Join FD) draw ah, be, ca parallel to AB, BC, CA

respectively, and let DF meet the plane ahc at /; join hf
and produce it to meet DE at e. Then, by similar triangles,

ae = ec) also

BF" DF^EF'
but EF=\BF, therefore ef^\bf\

therefore / is the centre of gravity of the triangle abc\ and
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if wc suppose the pyramid to be made up of an indefinitely

^roat number of indetinitcly thin trianguUr ilioet parallel

to the base, each of these slices has its centre of grarity in

Ut\ Henoe the oentre of gravity of the pyramid is in DF.

Apain. take JOT- IED\ join FID cutting DF%i Q, Then,

as Wfore, the oentre of gravity of the pyramid muxt be in

BU\ but it is in DF\ henco U, the point of intersection of

these straight lines, is the centre of gravity.

Join FH\ then FH is parallel to DB, Alao becaose

EF'^ \ EB, therefore FH^ \ DB, and

^"m'' ^"^ Fn^\J>B, therefore FG»\DG^\DF.

Hence the centre of gravity is one-fourth of the way np the

8trai;;lit line joinmg tne oentre of gravity of the base wita the

vertex.

In the same way aa the corresponding results were demon-
strated for the triangle, we may establish the following

:

The centre of gravity of a pyramid coincides with the oen-

tre of gravity of particles of equal mass placed at the angular
points of the pyramid.

Let ar,, y,, «, be the co-ordinates of one angiil •;

X,, y,, r^ the co-ordinates of another; and so on; let

.

c

the co-ordinates of the centre of gravity of the pyramid: then

y-i(yi+y.+y.+yj.

(5) Tofind ih/B centre of gravity of any pyramid kavimg a
piane baee.

Divide the base into triangles; if any nart of the base is

con-iliiioar then suppose the curve to ws aividcd into an in-

•^
' ' great number of in' ' * 'v short straight lines.

J vertex of the pyramid o centres of gravity of

all lite triangles, and also with all their angles. Draw a
piano parallel to the base at a distance firom the base equal to

one-fourth of the distance of the vertex from the base; then
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this plane cuts every straight line drawn from the vertex to

the base in parts having the same ratio of 3 to 1 ; and there-

fore tlie triangular pyramids have tlieir centres of gravity in

til is plane, and therefore the whole pyramid has its centre

of gravity in this plane.

Again, join the vertex with the centre of gravity of the

base; then every section parallel to the base will be similar

to the base, and if we suppose the pyramid divided into an
indefinitely large number of indefinitely thin slices by ])lanes

parallel to the base, the centre of gravity of each slice will lie

on the straight line joining the vertex with the centre of

gravity of the base. Hence the whole pyramid has its centre

of gravity in this straight line.

Therefore the centre of gravity is one-fourth of the way up
the straight line joining the centre of gravity of the base

with the vertex.

(6) To find the centre of gravity of thefrustum of a pyra-
midformed hy paralleljplanes.

Let ABCdbc be the frustum;

Gj g the centres of gravity of

the pyramids DADC^ Dale ; it

is clear that the centre of gravity

of the frustum must be in^(r pro-

duced; suppose it at G',

Let Ff^c, AB=a, ah=h

Since the whole pyramid DABC
is made up of the frustum and
the small pyramid, therefore,

G G' weight of small pyramid

Ijg weight of frustum

vol. of small pjrr. h*

vol of large pyr. - vol. of small pyr. a'-i'

'
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•siiu-c ftimilar boUUm aro as tho cubes of their homologDiis
eiiLT' .s

:

lUkKk

3c h*
therefore OG'm-^,^ —^,

4 a'-br

> (;/'- IDF^li.DF'^Df) ^^ bj similar figures,

4 a-b

therefore FO' ^ FQ ^ O'Q^W^^^f^^^

1liis is true of a frusttim of a pyramid on anj base, a snd &
boing; homologous sides of tlie two ends.

(7) We may by the aid of the theory of the centre ofgrarity

demonatrate aome geometrical pro)x>sitions. For example

:

//
' ht lines trhxch join the miildh points of the opposite

< 1 tetraJiedron meet at a point which bisects eack

straight line.

For suppose equal particles placed at the comers of a

tetrahedron ; then to find the centre of gravity of the system
wo may proceed thus: The centre of gravity of any pair

<
>' *

^•'f^ is at the middle point of the edge which joins

tl. l the centre of gravity of th<» othrr pair 1* at the

mitldlo |)oint of the opposite edge:

of the system is at the middle point

joins the middle )K)ints of tlie t- .Vnd the

same point will of course be ol
• •-?• of

p:mvuy of the system, whatever {> ted.

IIcuco the required result is obtained.

I
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(8) Particles are placed at the comers of a tetrahedron, the

mass of each particle hetnff proportional to the area of the

opposite face : shew thai the centre of gravity of the system

coincides with the centre of the sphere inscribed in the tetra-

hedron.

Let A, B, Ct D be the angular points of the tetrahedron.

Let p be the perjxjndicular from JJ on the face ABC,
Then the distance of the centre of gravity of the system from

the ])lanc ABC
__

px area of face ABC
~~ sum of the areas of the faces

3 X volume of tetrahedron

sum of the areas of the faces
*

And this expression is equal to the radius of the sphere

inscribed in the tetrahedron.

Hence the required result is obtained.

(9) A polyhedron is circumscribed about a sphere; at the

points of contact masses are placed which are proportional to the

areas of the corresponding faces of the polyhedron : shew that

the centre of gravity of these masses coincides with the centre

of the sphere.

Take the centre of the sphere for origin, and any plane

through the origin for the plane of (a;, y).

Let -4„ -4-, ^,, denote the areas of the faces of the

polyhedron; let 2^,2,, 2,,... denote the ordinates of the points

of contact ; z the ordinate of the centre of gravity. Tlien, by
Art. 66,

-^_ A^z^-\-A^z,+A^,+ ,..

Now the projection of the area -4, on the plane of (a:, y)
A z

is —*-*, where r^ is the radius of the sphere; and similarly

for the other projections. And the sum of such projections

is zero. Thus z =0; and since the plane of {x^ y) is any
plane through the centre of the sphere, the centre of gravity

must coincide with the centre of tne sphere.



OP aRATITT. 119

(10) From amw pahi wMm an mianamUtr pfAygom ptt*
pemlieulmrM art Jfrmm m^ all the nam 0/ lk§ po^om^ md
art wodmotd m a mmtUmi raiio; tU As wiiFtmihM if llbt

ttrm^Mi Imm tkut drawm mud pariidm am pimc&i: dt$9t»

tm

Let e be the distanoe of the point from which the perpen-
(lictilnrs are drawn from a fixed origin, and a the angle which
thtrt ili<tanoe makes with a fixed straight line which ooincides

with one of the perpendiculars. Let ft be the number of

sides in the polygon, and fS^— . Let^« denote the per-

pendicular firom the origin on the m^ side of the polygon

;

then the corresponding perpendicular from the assumed point

is ;»« ~ c cos (fN^ — a). Let r denote the constant ratio.

Then if x^ and jf« are the co-ordinates of the m* particle we
have

ar,-r{;>,-ccos (si^ — a)) cos m/S+e cos a,

jf, — r (/>• — c cos (m^ — a)) sin m0+ e sin a.

Hence proceeding as in Proposition viii. at the end of
Chapter IL we obtain for the co-ordinates of the centre of

gravity

i-f-- cosa + ocos o,

re . . .

y = 17 - sm a + c sm a,

where i^[^p^ cos m^, 17 = ^ Ip^ sin fw/9.

Hence if r « 2 we have

so iii.ii in iiiuH case the position of the centre of gravity is

inde|>cndcnt of the position of the assumed point

We proceed now to the analytical calculations.

110. In all the cases in which the Integral Calculus is

employed to ascertain the centre of grarity of a body the

T.8. 8
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f)rinci|)lo is the same; the body is divided into an indefinitely

arge number of indefinitely small elements ; the volume of

an element is estimated, and this being multiplied by the

density gives the mass of the element. The mass is multi-

plied by the abscissa of the element, and we find the sum
of the values of this product for all the elements ; the result

corresponds to the SPx of Art. 66. Also we find the sum
of the masses of all the elements and thus obtain a result

corresponding to the SP of the same Article. Divide the

former result by the latter and we have the value of x;
similarly j/ and z can be found. In the following examples
the stuaent must not allow the details of the Integral Cal-

culus to obscure his recognition of the fundamental formula

of Art. 66 ; he must consider in every case what corresponds

to the P, Xf 1/, z of that Article, that is, he must carefully as-

certain into what elements the body is decomposed.

Plane Area.

111. Ixt CBEH be an area bounded by the ordinates

BC and EII, the curve

BE, and the portion CH
of the axis of a; ; it is re-

quired to find the centre

of gravity of the area. Or
instead of the area we
may ask for the centre of

gravity of a solid bounded
by two planes parallel to

the plane of the paper and equidistant from it, and by a straiglit

line which moves round the boundary CBEH remaining al-

ways perpendicular to the plane of the paper. Divide CU into

n portions, and suppose ordinates drawn at the points of divi-

sion. Let LP and MQ represent two consecutive ordinates,

and draw PN parallel to LM.

Let OZ=ra?, XP=y, Z3f=Aa;, OC = c, OH^h,

The area of the rectangle PM is yAa?; suppose u to denote

the area of PQN, and let x' be the abscissa of the centre of
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gravity of tlio area PQML, Then if k denote tlie tbickne«

of tlic solid and p \U denHitv. kp (yAo? -f ti^ is the roaM of the

element PQML, Ilencc, if x be the absciaaa of the centre of

gravity of the whole figure CBEII, by Art 66,

aappoaing the thickness and density uniform. The summa-
tion in to include all the figures like PQMLt which are com-
prised in CBEIL

Now suppose fi to increase without limit, and each of the

portions Lm to diminish without limit; then the term Sm in

the denominator of x vanishes; for it cxprwses the turn of

all the fiffom like PQS^ and is therefore less than a rectangle

having tor its breadth Ax and for its height the greatest

ordinate comprised between CB nnd IIE, Also the term Sx'm
in the numerator «

'

it is less than the product
k^u, and as we }.

, this ultimately ranishet.

Hence the expression for x becomes, when the number of

divisions is indefinitely increased aod each term indefinitely

diminished,

Moreover, o;' must lie between x and x + Ax: suppose it

eanal to x + v, where v is less than Ax; then the numerator

ot X may be written

SaryAx+ Sv^Ax;

and as tlie latter term cannot be so great as AxSyAx, it

ultimately vanishes. Hence we have

, SxyAx
.""^^^

tiuii 1.^. im- .
'-1 will give the correct value of jr

when tee tnc nher of divinons tnd^ntUly and
diminish each Una nuhjuiMtt, and 4Xitnd CAd BummaHon ever
ike space CBEIL Tins will be expi^eaaed aocording to the
ordinar}' notation of the Integral Calculus thus,

*-^ '>•

8—2
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In tlio same manner we may shew that

V W^'
where y' is the limiting value of the ordinate of the centre

of CTavity of the element PQML when its breadth is indefi-

nitely diminished; y is therefore = iy; hence

"-
s:2fdx

^'^-

We have now only to substitute in (1) and (2) for y its

value in terms of x, and then to eflfect the integration by the

ordinary methods.

112. It will not be necessary for the student in solving

an example to repeat the whole of tlie preceding process.

When he understands how the necessary exactness may be

riven, if required, he may proceed shortly thus. The figure

rQML = yLx ultimately, and the co-ordinates of its centre

of gravity are x and \y ultimately. Hence

"^
iyd^

^""^^
iydx

'

the integrations being taken between proper limits.

Unless the contrary be specified, we shall hereafter sup-

pose the bodies we consider to be of uniform densityy and
shall therefore not introduce any factor to represent the

density, because, as in the precedmg Article, the factor will

disappear.

113. Ex. 1. Let the curve be a parabola whose equation is

y = 2^{ax).

i(A*-c«)'
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•- 0. > :;.. wlii.'h detennines the abadiHi of the
nt <;nivity ot n {n.rtion of A parabolic area beginning

at the Tertex« Also

Whenc-0, y-}V(aA}.

Ex. S. Let the conre be an ellipse whose eqoation ia

Now /«V(«*-«^d:r--J(a*-«^)«;

therefore />V(a*-a:^d^- J (a'-^'- J («"-**)*.

And Ma'-x-j^-^^^f^+Jsin-?;

therefore

2 2 \ a a/

Hence i ia known.

"A>/(a'-A')-cV(a'-«^ .a'/TT^ TTcT'
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If we require the centre of gravity of the quadrant of the

ellipse, we must put c = and A = a. Hence

_ 4a - 45

Ex. 3. Let the curve be a cjcloid whose equation is

OB

y = »J{^ax -x*)-\-a vers"* -

;

and suppose we require the centre of gravity of half the area

of the curve; then

-jryxdx -ur/dx

Now jy^dx =^-jj^dx

Also, when a; = 0, y = 0, and when a; = 2a, y^ira;

therefore j^yxdx^\['jra {2ay\-\S^x^[2ax-x*)dx\

and as j^xtji^ax^x^ dx will be found = J 7ra', we have

J^yxdx = 27ra'— J ira* = J ira*.

Again, I ydx = yx— j x-p dx

=yx — f »J{2ax — a^) dx;

therefore /o*'y<^-»
= 27ra*- /,*• V(2aaj -a^dx

= 27ra*— ^Tra' = }7ra*;

therefore a = \—j = Ja.
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Also

- /j? - 2/(2(i»-a^Jx- 2aj^{'2ax - «^ rcrt"* - dsB

-yx - 2rta:* + " - 2a I V(2<uj - «^ vers"* - dx;
o J a

thmfore /.•"/«& - 2ir»a«-^ - 2a f

**

V(2ax - o^ vers"* ?<£r.
«> y« a

Bj aasomiog vers'* - • ^, we may shew that

/ V(2a«- «*) veil"* - d!r- —^ .

Hence /.V^-K«'-J«';

therefore y.WKufi .^(^..j).

114. If a carve have a branch below the axis of x sym-
metrical with one above the axis, and we require the centre

of gravitv of the area bounded by the two branches and or-

dinates drawn at the distances e and h from the origin, wo
have

2/;y«fe ^/A

and y » 0.

115. Wo have hitherto supposed the axes redanguJar;
if thev arc oblique and inclined at an angle o», then the figure

PQmL (see fig. to Art. 11!) will - sin oiyAx ultimatelv.

Hence the formulas (I) and (2) of Art. Ill remain true, for

sin a> occurs as a factor in the numerator and denominator,

and may therefore bo cancelled.
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IIG. It is sometimes convenient to use polar formulae.

Let DE be the arc of a curve; and suppose we require

the centre of gravity of the area comprised octwecn the arc

DE and the radii 0Z>, OE drawn from the pole 0,

Divide the angle DOE into a number of angles, of which

POQ represents one ; let OP= r, POx = e,P0Q = A6, The
area POQ^^r'AO ultimately {Diff. Calc, Art. 313). Also

the centre of gravity of the figure POQ will be ultimately,

like that of a triangle, on a straight line drawn from bi-

secting the chord PQ, and at a distance of two-thirds of this

straight line from 0. Hence the abscissa and ordinate of the

centre of gravity of POQ will be ultimately

Jrcos^, and Jr sin ^ respectively.

_ _ /Jrcos^Jr'd^ ^fr' cos ede
Hence * =—/JP^— =-^f?dT- '

-_ fir Bin e^r'de yr' sin Ode

jr'dd

In these formula we must put for r its value in terms of B
given by the equation to the curve; wc must tlicn integrate

from 6 = a to 6 — p, supposing a and /3 the angles which OD
and OE respectively make with the fixed straight line Ox,
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117. Kx. i^ t O Ih t1i< focoi of a parabolt, tnd tha
fixed Htraight line (h-

)
i^^ tl loiigh the Tertcx; then

whcro 4a is the laUu nctwm of the
]

iicM *

—

fr^—'

- /(I - Un'i^ (1 + tan* i^ •ee' iAI9

-/(l-tan«|^8ec*itf</^-S(tmni^-ltmn*i^;

therefore
f^^f^ <^^ " ^ (**» 1/9-tan Ja) - J (tan*1/9-tan*Ja)-

AUo J^.^-/(l+tan*i^8ec»l^<W = 2tanl^+|tan*l^;

therefore f^^g - S (tan J/S- tan Ja)+ } (tan*i/9 -tan*4«)

;

therefore x - l« **" *^ " **" ** " *
(*^'^* *^ - ^"'^

therefore -^ - i« •^ j^ _ t^,, ^^ + j
^^,. ^^ ^^. j^j

•

. . f »i'n ^ j/i « f »»" i^ jfl 1

therefow |'^^«W-8ec'iy9-W!c«i«;

therefore y = Ja

.

t^^^_J^*f^(^.^.^^^4,) •

I
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Plane Area, Double Integration,

118. There is another method of dividing a plane area

into elements, to which we now proceed.

Let a series of straight lines be drawn parallel to the axis of

7, and another series of straight lines parallel to the axis of x.

Let 8t represent one of the rectangles formed by these straight

lines; and suppose x and y to be the co-ordinates of s, and

X + Lx and y •{ ^y the co-ordinates of t. Then the area of

the rectangle st is AxAy, and the co-ordinates of its centre

of gravity are ultimately x and y. Hence, to find the abscissa

of the centre of gravity of any plane area, we can take the

sum of the values of a*Ax A?/ for the numerator, and the sum
of the values of AxAy for the denominator, Ax and Ay being

indefinitely diminished This is expressed thus.

Similarly,

jfxdxdy

^"IJdxdy

jfydxdy
^^ jjdxdy

'
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110. Sappose, for exam pie, that the am it boaoded W
tho two ordiimtes BbC^ EeH, and tho two carves liPQE,
bpqe, lA*t V " ^ (x) bo the equation to the upper curve, and
y»^{x) the equation to the lower curve; let OC^c^
OH" h. The sum of tlic product xAx Ay for all the rect-

angles similar to #/, which are contained in the strip PQqpy is

3ual to acAx multiplied Inr the sum of the values of Ay, for

Ld has the same value for each of these rectangles, since

tho sum of the values of Ay is I)) or ^ (x) — -^ (2:), we haTO
dsAx . (^ {y rc8ult obtiiined by oonsidering «U
the rcctang 'V^V' Wc haTe then to tom up
the values of xik3B{^ (x) — V^ (x) | for all the strips similar to

PQqp comprised between Jbb and /J^ ; that is, wc must deter-

the value of /*x (6 (xj — -^ (x) ) dx. Considerations of a
kind spplj to the denominator of x, and we obtain

In the numerator of y we observe that yAy Ax represents

that portion of it which arises from the element st ; hence we
shall find the result obtained from all the elements in the
•trip /V^/^i if ''^e determine the sum of all the values of yAy,
and multiply the result hy Ax. Now the sum of the values ofnimiipi

yAy is
j

ydy, or 1[(^ (x))*- {^ (a?))*]. K wc multiply by

Ax, and nnd the sum of the values of the product for all the
stri{)s between Eb and Ee^ we obtain the numerator ofy. Hence

^ 7Jl*(«)-f(»)R» •

The Talue ofy roaj be written thtu

(be

The meaning of tho factors in the nnmerator is now ap-
parent ; for [6 (x) - -^ (x) ) Ax ultimately represents the area

of the strip PQqp, and \ |A (x) + V^ (x) j, which is the ordinate

of the middle point of Pp, ^^^ ultimately bo the ordinate
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Hence the above equationof the centre of gravity of PQqp*
agrees with that given in Art. 66,

The process and the figure in the preceding two Articles

would liave been unnecessary if our only object had been to

establish the formulae for x and y, since these formulae can be

obtained more simply as we have just shewn. But we shall

require hereafter other formulae involving double integration,

and have therefore directed the reader's attention to these

in order to accustom him to the subject.

120. Ex. Let OPE be a parabola liaving for its equation

y* = 4aa:, and OE a straight line having for its equation 7/ = Jcx;

find the centre of gravity of the area OFE between the curve

and the straight line.

'n.ere<f>{x) = 2»J{ax)j '^{x)=kx, c= 0; h is to be found
from the equation 2 »J[ah) = Jch ;

therefore

Thn«»
-_/o*aj{2V(aaO-^2;)^

yah^'-\k1i* ya^^kslh }-l

2h _ Sa
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! . Soinctimea it will be more convciuciit to integrate

mula* in Art. 118, ^r^r with respect to x and then with

t to y. For exAinple, if the given area is compriaed be-

...^..; the straight lines y^c% and jf^^A', and toe cirnrea

X - ^ (y), and « -^ ty), we obtain

a,. *//p»(»)r-l»(y)n<»

If we applj these to the example given in Art. 130, we lutve

^(y)»^, ^(y) >|, «'>>0, uid A' is to be foand from the

cqnstion T- - J-
; therefore * "x •

The results will of course be the same as be tore.

For fuller explanations and illustrations of double intem-
tions the student is referred to treatises on the Integral Calcu-

lus. (See especUlly Inktgral CcJcuiut, Art 14 1 and Art 152.)

Henoe
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122. ^Vc will now give polar formulas involving double

integration.

Let a series of straight lines be drawn from a pole (9, also a

series of circles be described from as a centre. Let st be one

of the elements formed by this mode of dividing a plane area;

let r and be the polar co-ordinates of s, r + Ar and 6 -\- A6 the

co-ordinates of t; then the area of the element st will be ulti-

a='

mately rAOAr, and the abscissa and ordinate of its centre of

gravity will be rcos^ and rsin^ respectively. Hence we
obtain

_ffr cos OrdOdr _ ffi^ cos ddOdr

'jjrdddr
~'

Sjrdddr '

Similarly y=^X_^___.

Suppose the area bounded by the curves BPQE, hpqe, and
the raaii OhB, OeE. Let r = ^ (^) be the equation to the

first curve, r — '^(6) that to the second ; and let a and y9 be

the angles which OB and OE make respectively with Ox,

The sum of the values of r' cos 6 Ar A6 for all the elements

comprised in the strip PQgp^ will be found by multiplying

the sum of the values of r^Ar by cos 6A0; the former sum
is ultimately

'*'"r'dr or il<^{e)]'- If iff)]']-
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Hence the nnmerator of the imlae of 3 is

and the denominator, in like manner, ia

i/![(«(«)r-itwn'»;

therefore

157

de
«-"'• -'-''fM^m

ISd. Ex. 1. Find the centre of graritj of the area com-
prised between two somiclrclca Ofh and OVB,

LetO&«e, OB^h\
<l>

{ff) »

h

cob $, 'f (^->coo8^; a«0,
/3«iir; thoB

? l(^''^/>*"co>*^
* (A«-c*)/>co^AW

(Sec Inteff. Cak., Art 85).

Also

"(V-Oiir'' 8(il + c)ir •
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Ex. 2. The sector of a circle.

Let BOE be the sector, sub-

tending an angle ^, OB = a.

In this example we may
with equal facility integrate

first with respect to and then

with respect to r, or first with

respect to r and then with re-

spect to 6,

J Ĵfr^ COS edrdd _ sin fffydr
Jlffrdrdd

•"
fij-rdr

»=— 2a sin

- _ lojf^ sine dr dd _ (l~cos ff) f/j^r __ 2a(l-C03/3)

y = So^^rdrdd Pj^rdr 3y3

It will be instructive for the student also to notice the

solution of this example when rectangular formula are used.

The equation to the straight line OE is y = x tan yS; and the

equation to the circle EB is x^ + y^= a*.

If we integrate with respect to x first we must integrate

from x-ycoi^ to x = \/(a* — V); since when we integrate

with respect to x we have to collect all the elements in a strip

which is parallel to the axis of x, and is bounded by OE at

one end and by EB at the other. These strips extend from
the axis of x up to E^ and the ordinate oi E is a sin y9. Hence
we integrate with respect to i/ from y = to y = a sin ^,
Therefore

/ xdydx ydydx
X—

J J
dy

Jo J ^IM)

dx dy dx

where V^(y)=ycot^, ^{y)=»J [d^-f), A' = asinjS.

The integrations may be easily effected.

If we wish to integrate with respect to y first, we shall

have to divide the figure into two parts by a straight line

drawn from E perpendicular to OB. For the part to the
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led of tho dividing line the limits ofy are and tan ^, and
thoee of JD are and a cos p. For the oart to the right of the

dividing line the limits of y are ana V(o*— a^» and thoie

oi X are a cot/9 and a. Ilcnoe

Similarly y may be expressed.

We have treated this example as an illustration of integra-

tion ratlicr than for the i)ur|>oi)c of obtaining the result in the

tampleiit form. We micnt proceed thus ; the centre of gravitr

most lie on the straight line which bisects the angle £06.
Hence taking thb straight line for the initial line and using

polar co-oidinates, we have y * 0, and

n^f^cosBdrde ^ . .^
^ - -is 4£8ini^

1:1.
rdrdO

4#

car>c

axis of X,

we require
^

8oUd qflUvoiuium.

124. Let a solid be generated bj the revolution of the

BPQE round the

and 8up])0se

the centre of

gavity of a portion of it

terceptcd between planes

perpendicular to the axis

of revolution.

Let the co-ordinates of

a point P in the curve be

m and y, and x+ Ax the abscissa of an adjacent point Q,
As the curve revolves round the axis of x, the area PQML
will generate a volume which is ultimatelv equal to iry*Ax.

Also the abscissa of its centre of gravi^ will be x ultimately.

Hence
- jinfxdx ft^Jrdx

ZTT

T.8.
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The centre of gravity of the solid is obviously in the straight

line Ox, so that we only require the value of i in order to

determine its position.

125. Ex. 1. Let it be required to find the centre of

CTavity of a portion of a paraboloid. Suppose y* = 4ax
tne equation to the generating parabola, and that the solid

is bounded by planes distant c and h respectively from the

vertex; then

- _ fJ'Aaa^dx _ 2 h*^c*

If we put c = we find for the centre of gravity of a seg-

ment of a paraboloid commencing at the vertex

- 2h

Ex. 2. Required the centre of gravity of a portion of a
sphere intercepted between two parallel planes.

Let y = a* — ic* be the equation to the generating circle

;

^^
f:{a''-a^)dx a«(A-c)-J(V-.c*)

'

If we put c = and A = a, we find for the centre of gravity

of a hemisphere ^

Ex. 3. Find the centre of gravity of tbe solid generated
OR

by the revolution of the cycloid y = tj{2ax --x*) +a vers"^ -

round the axis of x.

Here 5==^^.
X f x\*

Now y* = 2ax - a;* + 2a >J{2ax — a^ vers"* - + a*l vers"* -
j

.

Thus the numerator of x consists of three integrals of

which we will give the values ; these values may be obtained

X
without difficulty by transforming the integrals where vers"^ -
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occaraby the aaenmption ven'^--^,8o that x«a(l*oot^,

aod then integrating bj parts. We shall find

/.

'
4--{--g'I.-(?-.).-.

HflDoe the nmnwator of 5 is r-r— y)^**

Also the AmomftMitnt of x consists of three integrals which
luiTe tbo fi>Uowiag Talnes,

J, a 4

a"
f
*'(vcr8-» ^y<ic - (»• - 4) a*.

(Sir* 8\

Therefore
- \,4 9/* (68ir*- 64) g

(^_^]^»
" 6(9w»-16)

'

V 2 3/*)"•

126. If a solid of revolution be formed by revolving a

curve round the axis of y, wo find for the position of the

oentre of gravity

For example, let the cycloid y « V(2<|^ ^s^-ho vers"* -

,

levolvc roilml the axis of y, and suppose that we require the

9—8
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centre of gravity of the volume generated by tbat half of the

curve for which y is positive. Here

^ ir^dy

Now Jx^ydy =Ja^y~^~dx; thus in the present case,

Similarly I x*dy=j ^^^dx.

dx

The numerator of y consists of two integrals which havi

the following values,

/

1 J _4

X {2ax — X*) dx = -— ,

r ,/^ «N -1 a; 7 /4a'
.

TT^a'X
a I a;v(2ax — a;^ vers '- cfe = a (--- +-— 1

.

The value of the denominator of y is — a\

Therefore y =J—J_—L = (^1 +^^

.

2"

127. We may also find it convenient in some cases to use

formula? involving double integration.

Suppose the figure in Art. 118 to revolve round the axis

of x\ let a;, y be the co-ordinates of s ; and x + Aa;, y + Ay
those of t. The area st generates by revolution an elementary

ring, the volume of which is ir {y-h AyYAx — Try^Ax; this

may be put ultimately equal to 2iryAyAx, The centre of

gravity of this ring is on the axis of a;, and its abscissa is
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r. Heooe bjr proceeding at beforo we bIiaU hMwt

here y »^ (2) is the equation to the lower bonndinff cnnre

A y^(x) to the upper, and r and h are the abeciass of
' planes whidi boana the solid of revolution perpendica-

rly to its axi".

Similarly, if xiic »oua is lonncd bj revolving the area in-

\^»h\ between two corves round the axis of y, we shall

1^ « ttitt * it.-'v; |)olar formulae. Suppose the figure in Art,
• revolve round the axis of x; let r, ^ be the polar co-

aes of « ; and r+ Ar, ^ + A^ those of L The volume
ring generated by the revolution of the area si is ulti-

. 3irr sin ^ rArAd ; and the abscissa of the centre of
V of t1u\ ring is ultimately r cos 0. Hence

- fff^»in0 cos Odddr*
//f'sin^eWc/r *

Similarly, if the figure revolve round the axis of y

Wc have hitherto assumed the solid of rcvuiuiiou to ue

o(un{/orm density; if this be not the case the formulas must
be modified. For example, take the first formula in the

present Article : suppose that p denotes the density at the
|v 1 the mass of the ring considerea will be
uU J , ,.

f.^
^,/ Ax. Hence
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/ / pyxdxdy
J eJ Mx)x^L;L*i')

I
I

pydxdy

And p being supposed a known function of x and y, the

integrations present no theoretical difficulty.

Similarly the polar fonnulaj may be modified. For example,

instead of the formula given above for x we now obtain

- - ffpr* sin cos edBdr
^~

Jfpr'smedddr '

In this case p must be expressible as a function of r and

6y in order that the integrations may be practicable. The
most common cases are two ; in one the density depends only

on the distance from a fixed point in the axis of revolution,

so that by taking this point as origin o is a function of r ; in

the other case the density depends only on the distance from
the axis of revolution, so that /s is a function of r sin 6,

/ m
>K

(,

i \

L M

i

i/ JjL^it^

128. To find the centre of gravity of a solid we divide it

into elements as follows: draw a series of planes perpen-
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ili • r rr, then two consecutiTo plancK will

ii H ii1ic4^ Koch M LplmqM in tlic figure
;

di {)erpendiculiir to the axi'^ «>f y,

til • itripa such aa i)>9C^ in thtr

fignro ; laatly, draw planes perpendicular to the axis of g,

then each strip is divided into parallelepipeds snch as #( in

the figure. Let x, y, s be the co-ordinates of j and x + Ax,

y + Ay, s + As those of < ; then AxAyA« is the volume of Jr^

and as the co-ordinates of its centre of gravity are ultimately

m, y, and a, we haye

^JffxJxdydM jr h [ffz^xdydz
* Jfjdxdydz* y

..
• ""

JJJdxdytU
'

1S9. In applying the abore formuln to examples, great

oare is necessary in assigning proper limits to tne integra-

tions ; this we aoall illottrate by Examples.

Ex. 1. Find the centre of graritr of the eighth part of

an ellipsoid cut off by three principal planes.

Let the equation to the surface be

:3 + ?i + :f-i

Then the equation to the curve in which the surfiuM meets
the plane of (x, y) is

^ + «"-l

Integrate first with respect to s, and take for the limits s«

and s-c^fl i~*S) J ^® ^^ include all the elements

like $t which form the strip I)^Q, Next integrate with re-

spect to y, and take for the limits y - and y - ^a/( ^—•) I

we thus include all the Btrips like I)9qQ which form the slice

LplmqM, Lastly integrate with re4>ect to x, and take for

I
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the limits x=0 and x = a; we thus include all the slices

LplmqM which form the solid we are considering. Hence

S,V'!:^dxdydz
'

where we put «, for c . /(I—^»~ w) >

and.yJoThj^J(l-^.

Now //c?. = .. = cy/(l-g-|');

therefore a!= -^ =js- -3^ =- .

Similarly y = -g-> ^=8'-

therefore ^ =

We may in this example effect the integrations with equal

simplicity in any order we please ; if we integrate first for cc,

then for y, and lastly for z, we shall have

nj xdzdydx
^ .. (\ J n .

I dzdydx
X —



AUT SOLID. 137

hero a?, stands for a a/( ^ ^ J^ffj*

1^1 y, stands for ^ a/(i — jm) •

^ bo easily seen by drawing a figure so as to make
, ji bounding the slice parallel to that of («, y), and

the edges of the $tnp parallel to the axis of x.

Ex. 2. Let it bo required to find the centre of gravity of

the solid bounded by the planes e^fix, a " tx, and the cylin-

der y^-Sox-o^. We shall have

f I
f mdxd^dM

where y, U pot for t/{3ax-a^.

Now r&-(7-i8)x,

I a?dxdy
increiore x - '^'*^ .

I
' xdxdy

Also
I

'

</y » 2 »J{2ax-of) ;

ra^^/{2ax-a^dx ^
tliercfore x » -^j — -j .

I
X'^{2aX'-a^dx

(See Integral Calculus, Ex. 5 to Chap. 111.)

Similarly we may find

y = 0, « =—i^^—^.
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130. It is often convenient to divide a solid into polar

elements.

Let ft series of planes be drawn through the axis of z ; the

solid is thus divided into wcdgc-sliaped slices such as COML.
Let a series of right cones be described round the axis of z

having their vertices at 0; thus each slice is divided into

pyramidal solids like OPQS, Lastly, let a series of concentric

spheres be described round as centre ; thus each pyramid is

divided into elements similar to pqst

Let xOL =
(l>,

COP=e, Op = ry

L0M= A</>, FOQ = Ad, pt = Ar.

Then pa is the arc of a circle of which the radius is r and
the angle A^; therefore ^2- = ?-A^.

Also ps is the arc of a circle of which the radius is r sin 6
and the angle A^ ; therefore ps = r sin ^A</).

Hence, since the element pg^st is ultimately a parallelepiped,

its volume is r* sin OAOAtfyAr,

Also the co-ordinates of its centre of gravity are ultimately

r cos
<f)

sin 0y r sin </> sin 0, and r cos 6, Hence supposing its

density to be p^ we have
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' tin*^ cofl ^ (l<f> (10 Jr

- Iffpr^ tiin* 6 Bin ^JiltdBdr

- Jffp^nn$eM$d^dBJr
^ flfp^nnSdi^dedr '

181. Ex. 1. Apply the preceding fonnnls to find the

centre of gravitjr of « hemisphere whoee densitj yaries as the

nl^ power of the diatanoe from the centre.

Take the axis of s perpendicular to the pUno base of tl>r

hemisphere. Let a be the radios of the nemisphere, and

p iB fitr, where /* is a constant. First integrate with respect to

r from to a ; we thns include all the elements Wkt pqti com-
prised in the pyramid 0PQ8. Next integrate with respect to

u from to ^, we thus include all the pyramids in the slice

COML, Finallr, intcmtc from ^«0 to ^•2w; we thus
include all the slices. Thus

- frh*'f:f^m$co9$di,dedr
' " ^.-/.•'//r^ sin edi^dedr

'

5 + 3 f^^J/' Bin cos 0d4>de n + 3 a^

"n + 4 • j^Si'Bmed4tde "ii+ii'
i and y each » 0.

Ex. 2. A right cone has its Tertex on the 8urfru» of a

sphere and its axis coincident with a diameter of the sphere,

find the centre of gravity of the solid included between the

cone and sphere. Take the axis of s coincident with that

of the cone ; suppose a the radius of the sphere, /9 the semi-

vertical angle ot the cone. The polar equation to the sphere

ia r«>Sacos^, and to the cone ^«/9. Hence we have

I I I
f^ COB 09m$di^d0dr

j j j f^nnSdi^dedr

X and y each = 0.



HO CENTRE OP GRAVITY.

Curve,

132. Suppose a circle of variable radius to move so that

its centre aescribes a given curve and its plane is alwavs
perpendicular to the tangent line of the curve, we may require

the centre of gravity of the solid generated. The simplest

case is that in which the radius is constant and the solid of

uniform density ; the result depends soleli/ on the nature of

the curve described by the centre of the circle, and for short-

ness the process is called finding the centre of gravity of a
curve.

Let BPQE be a plane curve ; BP the length measured
from some fixed point By
BP=-8, PQ^^8\ x,y the

co-ordinates of P. Let k de-

note the area of a transverse

section ; then the volume of

the element PQ is ^As, and
the co-ordinates of its centre

of gravitv are ultimately x
and y. Hence

"^ "
ikd^ '^~"' (^^ '^ ^ ^"^ constant,

Since -j- = a/H + (-i^)
\

, we may also write

"VFM^' ''VFW"
From the equation to the curve y and ^ are known

• (3).

m
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tcmiB of 9; their Tftloes must bo tnbttitutcd in tbi^ ?mcediiig
• xprcMions and tlio integrations then ciTccted.

If wo mo polar co-ordinates wo haro »«>roof^, y-^r sin $,

Hence

'
vf^©]*

""
/v/K(^)'}*

W;
for r and ^ wo must subelitntc their Tallies in terms of B

giren bj the equation to the curve.

133. Ex. 1. A straight rod of uniform thickness and
densitj.

Taking the origin on the line we have y » /Sb, where fi is

constant; hence, bj equations (8) of Art 182, supposing the
origin to be at one end of the rod and h the abscissa of the

other end,

That ifl, the centre of gravity is the middle point of the rod.

Ex. 2. Suppose the transverse section of the rod to vary
as the fi^ power of the distance from one end. Take the
origin at tliis end, and suopose the axis of x to coincide

with the axis of the rod ; then y = 0, and in equation (1) of
Art, 132 we put fix* for it, where /a is constant. Ucuce, if k
be the length of the rod,

^^i:^'ds j:ar^dx n-^l
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Ex. 8. An arc of a circle.

Take the origin at
^.

the centre of the circle,

and the axis of x bi-

secting the arc. Then
y = ; and supposing

2a to be the angle sub-

tended at by the given

arc, and a the radius of

the circle, we have, b;

Art 132, equation (4I

- a*/*, cos Odd a sin a

Ex. 4. The arc of a semicycloid.

Take the origin at the vertex, and the axis of y a tangent

there; then l^\ =
; hence

e 2y V^ - 2/V(2a-a;) (ZJc= 2y V«+ J (2a -a;)*

;

therefore / -f-f^a;= 27ra(2a)*- j(2a)';

, , - 27ra(2a)*-4(2a)* , ..

therefore ^ =
2(2a)^

= (^" J) «•
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1 -?
Ex.6. Tbeciinrey-)€(^ + « *}.

" ' ' ftote tlie length of an arc of the corre meatured from
whoie oo^rainatea are 0, c, to the point (2^, y*), we

!or the oo-ordinatea of ita oentre of gravity

Now
^-S^*'-'-).

-fc— •)-f{«-+«-);

tlieiefoie
J
«^«ie- yC*'-* •)-^(«' + «'') + e'

I
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=
|J(«-+2

+ «-)dx = |(e'-e-) + f;

therefore

.VV
,
«r'

- 2 "^ 2 '

and * 2^2«'

134. If the curve be of double curvature, the formula?

(1) and (2) of Art. 132 still hold ; in order to effect the inte-

grations we may use the formula

i'-JHihii)]'
dx

and from the two equations to the curve we must find -y-

and ~- in terms of z, (See Integral CalcultiSf Art. 120.) For
dz

example, in the helix

a?= a cos nZj y = a Bin nz
;

, . da ,,
therefore ^ = V (1 + nV),

a;=
/\/(t -^v^a^xdz _ /a cos nz dz

/V(l + nV) dz jdz

K we take for the limits « = and a = A, we have

. a sin nh
'

""
nh

«. ., , - a(l-cosn^) _ ,,
Similarly y =—^^ v > z = \h
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8ar/a < ./ !:.

Let BPQK be a carve which by reTolTing roond
axis of X genermtea a surface Suppose a aiiell of

135.

the

which this suriaoo ia the

cxU'rior b <u!nlary, and of

which the interior boundary
is another surface of revolu-
' " -and tlie axis of x in-

ly near to the former,

d the oeotreofgravity

/tioQ of this shell cut

utV by planet perpeadiodar to

the axis of JB.

I^et P^ Q^ be adjacent pomts in the exterior generating

eorvc ; suppoae B a fixed point in the curve, let Br^ 9, ana
PQ" Atf ; let '. Jf be the co-ordinates o( P; k the thickness of

the shell at P. The volume of the element contained between
two planet perpendicnlar to the axis of » tlurongh P and Q
respectively is ultimately Qvyk^^ and the abKitta of the

centre of gravity of this clement is ultimately x ; hence

•^^Ifirylcxd* ^Syxdt

if I; be constant.

^ Wh®li-"WFW
where e and A arc the distAuccs from the oriirin of llic bomul-
ing planes.

Since the centre of gravity 1 j .;r 1 i^ 1 i'; a\. ;

need only the value 01 J- In ui 1 . : . L : lu.:. * il

T.8. 10
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Similarly, if the curve BPQE generates a surface by re-

volving round the axis of y, we have

x =

dx

where c and /* denote as before the abscissae of the extremlticfi

of the curve.

If we use polar co-ordinates, we have a; = r cos ^, y = r sin ^,

and

thus if the curve revolves round the axis of a;, we have

and if the curve revolves round the axis of y, we have

The limits of the integrations are the values of 6 wliicli

correspond to the extremities of the curve.

Ex. 1, A cylindrical surface.

Take the axis of the cylinder as the axis of x ; then y = the

radios of the cylinder, and is constant ; hence

-. _ SJxdx _ -^ (A^-c*) _ A -f c

"""fidx" h--c ~ 2 •

Ex. 2. A spherical surface.
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Here y-V(a^-aOi

A a a

tliei«foio s.£^.i+*.

Ilcnce in both these exAinples the centre of graritj is equi-

distant from the two bounding planes,

Ex. 8. The surface of a cone.

Here jf « tan a, where a is the semirertical angle,

* jj»tanaseca<i» "sCV-cP)" 8(A+c)

Ex. 4. Suppose the cycloid

y— V(2a» - «*) + a vcis'*

-

lo revolve round the axis of x.

Now J^ir-2^-|/xl|dW

10-8

thus
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therefore £'yx»<fe= ?^^^'- j£**V(2a-rr)&:!

and Sx^{2a-x)dx=- ^' ^^° ~ "^^
+ 1;(2« - x)* dx

therefore jx »J(2a - a;) (2a; « — (2a)*

;

thus f^l,iax ='-^^-^^MK

Also r^x'^dx= 27ra (2a)* -
^

(2a)*, (see page 142),

therefore a? =——————
27ra(2a)*-^(2a)*

47r 32 2a / 8 N

"^

o 8 4 •

Ex. 5. Suppose the cycloid

X
y = \/(^ax — x^ + a vcra"^ -

to revolve round the axis of y, and that wo require the centre

of gravity of the surface generated by that half of the curve

for which y is positive.

Here y = -4

The value of the numerator was found in the preceding

example; and

^^x^dx^\{1a)y
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oreforo y*

Ex. 6. Find the centra of grtritjr of the snrfaco formed

WraTolTi4gtfaeaunrer«a(l-(-eof^ roiuid the initial line.

Si

Thus
. r
"-'•t: 9

I run02acos-d^

SaJ'eo.'?(2co«'|-l).inJ<^0

I co»*jBm-dtf

Now /co.«|(2cos«|-l)«nf<W— foo.'f + fco.'f;

Iheraforo J'coe'l^acos'l- l) «nJ<W-j-J.

SimiUrlj j cos*- sin;<ftf ~7.

therafora S-!!|d)-^.
a 63

5

13G. Let there be a shell having anj giren surfiuse for

cue of its bouDdaries, and suppose its thickness indefinite]/
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small. Let a?, y, z be the co-ordinates of any point of the

given surface, k the thickness at that point, Ao the area of

an element of the surface there, then k£^8 is ultimately the

volume of this element, and ar, y, z the co-ordinates of its

centre of gra\'ity; hence

^^ JkdS*
and similar expressions hold for y and z.

It may be shewn (see Integral Calculus, Art. 170) that if

we take AS such that its projection on the plane of (x, y) is

the rectangle Aa; Ay,

^iVl'^(i)"-(l)]"'«--'-

Hence x
dxdy

hJFwm^^
Ex. The surface of the eighth part of a sphere.

Here a:' + y' + 2' = a',

V r
*•
[H] "^y J '^^{a'-x^-f)

'

ff x dx dy

First integrate with respect to y from y = to y = \/{a^— a?)
;

we thus include all the elements that form the strip of sur-

face of which LlmMia the projection on the plane of {x, y);
see fig. to Art. 128.

Now
j^

--,_|,_^ = i^;

^x r - ih^^xdx fxdx
therefore x = •'-75—7— = -'-..-.

ji^dx Jdx

The limits of the integration for x are and a
;

therefore x = Ja.

Similarly y = i«» « = i«»
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^"'
T :tc prooeding Articlcf WO have eivcn the uitul

tiling the centra of gmvitjr of oodiee, bat par-
- occur which mav M moat ooovenicatljr

.. .. J ^ . /uiethods. We add aome e»ampl<a,

ri^ A rirclis revolves roand a tangent line tlirouch an

J'

angle of 180*; find the centre of gra\ c solid generated.

Let Oy be the tanffent lino about \ luo circle revolves,

and let the plane of the paper bisect the solid ; the centre of
gravity will therefore lie in the axis of x. Let OMw,x,
jyrp. y « ^/{^oje - a^, ITiV- Ax. The figure PQgp will by
its n- :i semi-cylindrical shell, whose volume
is ult:

^ ^ -A , the centre of gravity of this shell will

2x
be in the axis of x at a distance — from (see Art. 133,

Ex. 3);

therefore

It will be found that « sr

I 2fprxdx
I

yxdx

5a

I
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(2) The density of a right cone varies as the ?»"* power of

the distance from the axis; find the centre of gravity of the

cone.

Let OABhc the right-angled triangle which hy nvoiving

round Ox generates the cone. Let PS and QR be drawn
parallel to the axis of x at distances y and 1/ + Ay respec-

tively. Let
OA = h, angle BOA = a.

Then OM=y cot a, F8=h — i/ cot a*

The volume of the cylindrical shell generated by the revolu-

tion of PQRS round Ox is ultimately

2iTy ^y (A—y coto).

Its density is /xy", where /i is constant; therefore, its mass is

27r/i.y"'^* ^y{h — y cot a).

The distance of its centre of gravity from is ultimately (see

Art. 135, Ex. 1)

\ {03f+ OA), that is i{h + y cot a)

;

I 27rfiy**^ (^ "* y cot a)i{h+y cot a) dy

/AUna
^iriif''' {h-y cot a) dy

1 TAUna
ij^ y«*'(A'-3,'cofa)</y

?AUna '

j
y""^' (h-y cot a) dy

and the integrations can be easily performed.

therefore x =
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(3) A hIicII has for its oatcr and inner boondAnet two
similar niui similarly situated ellipjM>id« ; reanirad tlie centre

of gravity of tbt eighth part of it incladea between three

principal planes. Let a, &, be the semi-axes of the exterior

clli{)Hoid, ra^ rh, re those of the inner cUipeoid, r being a
quantity less than unity.

If a, &, be the semi-axes of an ellipsoid ; the volume of

the eighth part is ^wabc^ and the co^rdmates of its centre of

gravity are |a, j^, and J« (see Art 129). Ilenco

|a . (wofto fra . Im^abe + » {Ivabe - ^vr^abc)

;

Ifjrc suppose the shell indefinitely thin, we must ^t r » I,

and then x • )a. Similar results may be found for y and s.

JI) An ellipeoid is composed of an infinite number of in-

initely thin sliclls; each shell has for itM outer and inner

boundaries two similar and sinr^ lipsoids;the
density of each shell is constat 1 >' raries from
•hell to Bhell according to a given law ; determme the centre

of gravity of the eighth part of the ellipsoid included between
throe principal planes.

Let sr, jf, s represent the tlirec semi-axes of an ellipsoid;

Uien the volume of the ellipsoid is «*ay'* Suppose that

p^mx and a su^ where m and n are constants, then the

Tolume becomes —^— a^, and if there be a nmtlar ellipsoid

baring X'^Ax for the semi-axis corresponding to tlie semi-

axis X of the first ellipsoid, the volume of the second ellipsoid

will be — - - (a?+ Aa?)*. Hence the volume of a shell bounded

by two similar and similarly situated ellipsoids may be de-

noted by —— {{»+ A«)*— oj*], and therefore by Awwmaffix

when the thickness is indefinitely diminished. Let ^(x) de«
note the density of the shell, then its mass is 4w«iii^ (x) tc'Ax,
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Thus the mass of the eighth part of the shell is —-— <^ {x)x*Ax.

And the abscissa of the centre of gravity of the shell measured

along the semi-axis a; is - , by the preceding example. Thus

for the abscissa x of the centre of gravity we have

['Trmn,. .

1 r*- x'<j>{x)dx

= •;
,

/ x'^cf) {x) dx
Jo

where a is the semi-axis of the external surface corresponding

to the semi-axis x. When (j> [x) is given the integrations

may be completed ; and when x is known, the otlicr co-ordi-

nates of the centre of gravity may be inferred from symmetry.

(5) A chord of an elh'pse cuts off a segment of constant

area; determine the locus of the centre of gravity of the

segment
If a chord cuts off a segment of constant area from a circhy

it is evident from the symmetry of the figure that the locus of

the centre of gravity of the segment is a concentric circle.

Now if the circle be projected orthogonally upon a plane in-

clined to the plane of the circle the circle projects into an
ellipse ; and the segments of the circle of constant area project

into segments of the ellipse of constant area; also the co/)-

centrtc circle projects into a second ellipse similar to the first

ellipse and similarly situated.

Thus the required locus is an ellipse similar to the given

ellipse and similarly situated.

This problem might have been solved without making use

of projections, in the manner shewn in the next example.

(6) A plane cuts off from an ellipsoid a segment of con-

stant volume ; determine the locus of the centre of gravity of

the segment.



; plane have any |.'...iii..n ; a:.! i.f.r the

^ i^^te SCmi-diaiM« iri.-^ as axi-.-*; 1. I ih. |iUll«

»f {y, <) be parallel to the position of tlie cutting plane, and
^uppoae the equation to tlic eUip«oid to be

Now snppoie the segment cut off by the plane to be divided
*y large number of indefinitely thin slices by

the plane of (y, «). By the properties of
lid thoto slices will be bounded* by ellipees which
i'fntres on the axis of x ; and thus we see that the

. ity of the accent cut oflf will be on the axis of
ut-r one of the slices bounded by planes which have
ibseissa) x and x + Ax respectively ; then it will be

i tiiat the volume of the slice is tdtimately

wh'e(l ^j sin « sin oAx,

here » is the angle between the axes of y and s, and a is

' *>
ab-

!iglc which the axis of x makes with the plane of (y, m),

>se r to denote the constant volume, and Xa' the ab
of the phine cutting off the segment; then

r— w6V sin « sin a / ( 1—;-\dx

« irah'c sin « sin a [1 - X - (1 - X^},

Now by the properties of the ellipsoid

irab'o sin o» sin a « w«i5e^

here o, 6, c are the semi-axes of the ellipsoid ; thus

F- ,ni^ {1 - X - i
(1 - X*)) (I).

' d, if X be the ahKissa of the centre of gravity of the
ont cut off,

i
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• irh'c* sin 6) Bin a / xyi — \\dx
^ An'X =

ira*l)c 9\ntd sin a fl

irahc
{;(1-V)-^(1-X0)a' (2).

Now (1) gives a constant value for X, and then (2) alicws

that X hears a constant ratio to a.

Thus the locus of the centre of gravity of segments of an

ellipsoid of constant volume is an ellipsoid similar to the

original ellipsoid and similarly situated.

(7) Find the centre of gravity of a portion of an ellipsoid

comprised between two cones whose common vertex is at the

centre of the ellipsoid and whose bases are parallel.

The volume between the two cones may be divided into an

indefinitely large number of shells which have the centre of

the ellipsoid as their common vertex, and their bases in planes

parallel to the bases of the two cones. We shall first shew
that if the planes which contain the bases of the shells are

equidistant the shells are all equal. Take conjugate semi-

diameters as axes, and let the plane of (y, z) be parallel to

the bases of the two cone's. The volume of the cone which
has the centre of the ellipsoid as vertex, and for its base the

plane curve formed by the intersection of the ellipsoid with

the plane which has x for its abscissa, is

JttZ^'c' sin ct) sin a
(

1

r,) a;,

where the notation is the same as in the preceding example.

The volume of the cone which has the centre of the ellipsoid

as vertex, and for its base the plane curve formed by the

intersection of the ellipsoid with the plane which has x+ Ax
for its abscissa, is

^Trh'c sin 6) sin a U — rr-^ r (^ + ^^)*
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The voluiDO of the slice between the plunei whose a'

ATO X and x -f Ajb respectively in ultimately

vVc Mill fti Bin a jl — tA ^.

Ileooe we obteia for the Tolumc of one of the shells tilti-

mately the product of vVc ^\i\ a. a'lu to \ty

this product is ultimately

>wyc* sin o> sin eAj?

The centre of mvity of each shell is on the axis of a; at a
distance from tiic vertex of the cone, which is equal to three

fourths of the aUciAsa of the piano in which the base of the

cone is situated (see Ex. (5) of Art. 109). Ixt x denote the

abecissa of the centre of gravity of the proposed solid ; then U
k and A; be the abacissw of the plane bases of the two cones,

>f.

2ir5V8intt>Bina ,MS
^" /*2^tV8ino>sln«^ '»lfc^ "5 <^-^^^'

We shall conclnde this Chapter with a few general pro-
positions involving projierties ot the centre of gravity.

1^5^. 1/ Ike moM of mtek ef a jysISM (f particles be rnm!-

t 'o the Mqu€tre of iVs dUlance from a given pointy the

> prodiicis te least wken (As given point is ike centre

I ofthe

Let tlie centre of gravity of the system be made the

origin ; let ot, /9, 7, be the co-ordinates of the given point

;

rp 3f,, f,« the co-ordinates of the first particle; x,, y,, e^
Jiose of the second ; and so on ; m., wk^ ... the masses of the

i>artic]cs; p,, f>,f • the distances ox the particles from their
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centre of gravity ; . ,, ..^, ... the distances of the particles from
the fixed point ; then

Multiply these equations by m^, m,, fn3,...respeetively, and
add; then

2mr* = (a» + iS* + 7*) 2m - 2 {atmx + ^2my+ y^mz) + "Zmp*,

But, since the origin is the centre of gravity of the system,

^mx = 0, tmi/ = 0, 'Sttnz = 0,

therefore Xmr' = (a* + /9* + 7*) Xm + Smp*.

Now S?np* is independent of the position of tlie given

point; hence the least value of Xmr' is that which it has

when a' + yS' + 7' vanishes, that is, when the given point is

at the centre of gravity of the system.

139. Let Qfj, /9., 7j, be the angles which p^ makes with the

axes; cr,,y9g, 7^, the angles which p, makes with the axes;

and so on ; then we have, supposing the origin the centre of

gravity of the system,

Ivip cos a = 0, %np cos )9 = 0, %mp cos 7 = 0.

Square each of these equations and add the results ; then if

7n, m represent any two masses, and (d, p) the angle between

the straight lines which join them witn the centre of gravity,

Sm^p* + 2Xmmpp cos (/>, p') = 0.

But 2pp cos (p, p) =p* + p* - w*,

where u denotes the distance of m and m'. Hence

tmy + tmm (p* + p* - tt«) = 0.

If we select the coefficient of p*j we find it to be

m* + m^ (m, + Wj + ...)» or m^Sm,

and the other coefficients are similar. Hence the above

equation may be written
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140. If a particle he atiedon hy a number ef farces eoA
passiiuf throutjh a fixed point and pronortianal to tAe distance

fr '^ ' ' '' - ^' ' '- will vase through a fixed

I
' ineefrom that point,

Tftko any p<Mition of the particle aa the origin; let

X., y,. *,, be t' fa fixed point; r, the diBtancc

01 thia point : M,'*, the force which acta on

the parti- this Hxed point. Similarly let x,, y,, t^

be tnc cu ;ca of a second fixed point; r, its distance

from the origin, and /y, the corresponding force on the

jKi ' *
* Let X, Yf Z denote the whole force

a. along the axes of x, y, a; then, by
Art.

-^-Mi'-iJ^^+M/.x^^+ZV. x^' +
M ^t ^%

-M»», +MA + /V'.+

Similarly r-MJf, + ;sy, + /«jr,+ ,

and Z->i,*, +/«^,+Ai/,+

Let X, y, a be the co-ordinates of the centre of gravity

of a system of particles, whoae masaes are proportional to

Mi» M|f /S> ••• placed at the reapectiTe fixed points ; then

^/Ax - Suy ^ Hum

^'w '>°S' ""^'
therefore X«xS/i, F— y!S/*, Z=«2/i.

Tlicae equations shew that the resultant force is equal to

rlfi^ where r is the distance of the centre of gravity from

the origin, and that its direction passes through the centre of

gravity. Hence when the particle is situated at the centre of

gravity the resultant force vanishes and the particle is in

equilibrium.

141. A body is placed on a haruumial plane, to find when
ii will be supported.

The only force acting on it besidea the resistance of the

plane is ita own weight, and thia acta in a vertical direction

through the centre of gravity of the body, llcncc, by
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Art. 91, the body will not be in equilibrium unless the

vertical through the centre of gravity of tlic body falls

within a polygon formed by so joining the points of contact

of the body and the plane as to include thcni all niul liavc

no rc-cntcnng angle.

M'Vicn a hody %s suspended from a point round which it can

move freely i it will not rest unless its centre of gravity he in

(ki vertical line passing tlirough the point ofsuspension.

For the body is acted on b;jr two forces, its own weight
which acts vertically through its centre of gravity and the

force arising from the fixed point ; for equilibrium these forces

must act in the same straight line and in opposite directions

;

tlius the centre of gravity must be in the vertical line passing

through the point of suspension.

Hence if a body be suspended successively from two points

the vertical lines drawn through the points of suspension will

both pass through the centre of gravity ; therefore the point

in which they intersect is the centre of gravity.

If a hody he capahle of revolving round an axis which ts

not vertical it will not rest unless the centre of gravity he in

the vertical plane passing through the axis. For the body is

acted on by its own weight and the forces arising from the

fixed points ; by Art. 87, the moment of the weight round the

fixed axis must vanish, this requires the centre of gravity to

be in the vertical plane through the fixed axis.

The student will readily perceive as an experimental fact

that there is an important difference between the position of

equilibrium in which the centre of gravity is vertically ahove

the fixed point or fixed axis, and that in which it is vertically

helow it. In the former case, if the body be slightly disturbed

from its equilibrium position and then left to itself, it will

begin to recede from its original position. In the latter case,

if tne body be slightly disturbed from its equilibrium position

and then left to itself, it will begin to return to its original

position. The former position of equilibrium is called unstahle,

r.nd the latter stahle. We shall return to this point in

Chap. XIV.
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- 143. The Tolame ( F) of a portion of a cylinder inter-

eepted between two pUnee, one of which is perpendteoUr to

the axi« of the cylinder, is given by the equation

r-//«ferfy,

where tlie pUne of (jb, y) is suppoeed perpendicular to the

axis, and s is the ordinate of a point in the other plane.

The limits of the integrations depend on the cur>'e in which
the plane of («, ^) cats the torfaoe. This follows from the

Integral Calculus.

Let ^ denote the angle between the two planes; the
a of an element of the other section of which Ax Ay is

• projection on the plane of («, v) is AxAy sec ^. Let A
note the area of the section of tne cylinder by the plane of

\,jPt9)* Mid consequently^ sec ^ the area of the other section

;

let s denote the ordinate of the centre of gravity of the plane

aiee fonned by the intersection of the cylinder with the

•eeond plane; then

A sec ^.i »JJm sec ^ dxdy,

or Ai^ffgdxdyf

therefore F—

^

The Tolame is therefore equal to the area of the base multi-

plied by the perpendicular upon it from the centre of gravity

tt the other section*

The centres of ^vity of the two plane sections are on^ same straight Ime parallel to the ^crating lines. For
the co-ordinates of the centre of gravity of the section by
Ae plane of (x, y) are

/jxcfc^^j^^ffyfirr/y^

and those of the upper section are

Jfx sec

^

dxJ^ , HtfmA^dxdjf

~:ksec>' •"** ^tec^ •

:iich agree with the former valoeti

T.8. 11
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Thus the centres of gravity of all plann sections of a

cyliniler are situated on a straight line parallel to the gene-

rating lines of the cylinder.

If a portion of a cylinder be cut off by two planes,

neither of which is perpendicular to the axis, we may sup-

pose it to be the difference of two portions which have for

their common base a section perpendicular to the axis. The
difference of the straight lines drawn from the centres of

gravity of the oblique sections perpendicular to the ortho-

gonal section will be the straight line joining those centres

of gravity. Hence the volume of a portion of a cylinder

contained between any two planes is equal to the product

of the area of an orthogonal section by the straight line

joining the centres of gravity of the oblique sections.

143. TJirovgh the centre of gravity of each face of a
tetrahedron a force acts at right angles to the face^ and pro-

portional to the area of the face: if the forces all act inwards

or all act outwards they will he in equilibrium.

Let A, B^ Cy D denote the angular points of the tetrahe-

dron. The force acting on the face ABC, at its centre of

gravity, may be replaced by three equal forces acting at right

angles to the face at the points A^ B, C respectively. Simi-

lar substitutions may be made for the other forces. Thus we
have, acting at the point A^ three forces respectively at right

angles to the three faces which meet at A and proportional to

the areas of those faces; and, by what has been shewn in the

Propositions at the end of Chapter v. these three forces arc

equivalent to a single force acting at A in the direction jirr-

pendicular to the face BCD, and proportional to the area of

that face. Hence, by Proposition I. at the end of Chapter v,

the proposed system of forces will be in equilibrium.

The preceding result may now be extended to the following

proposition: Through the centre of gravity of each face of a
polyhedron a force acts at right angles to the face^ and pro-

portional to the area of the face: if the forces all act inwards

or all act outwards they will be in equilibrium.

For each face of the polyhedron may be divided into<

triangles; and the force, acting at the centre of gravity o^
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ilie face may be, replaced hj forces actinff reapectiTelj at

t!ie oentrea of p^vity of the tfiangleay and proportional to

the areas of the trianglcji. Then the polyhedron may be

Buppoaed to be made np of tetrahedrona which have a eom-
roon vertex, and two eqnal and opposite forces mar be
Bupposed applied at erery common face, acting througn the

cenirf i.r nravity of the face at right angles to the face and
prt i to the area of the face. Hence the required

result toiinwa from the former part of this Article in the

manner already exemplified in Proposiiioa I. at the end of

Chapter iv.

The preceding general result was first brought under the

notice or the preaeat writer by the late Bishop Mackenxie

;

it was given in an examination paoer in GonviUe and Cains
College in IB49, proiMibly by himself. The method by which
he demonstrated it will bo found interesting and instnic-

tive by the student who is acquainted with Hydrostatics.

Imagine a fluid in equilibrium acted on by no forces; then

the pressure will be constant throughout the mass. Sap-
pose a portion of the fluid in the form of a polyhedron to

aoone solid; then the erjuilibrium will not be disturbed.

The forces acting on the faces of the polvhedron will be
respectively at right angles to the faces anu proportional to

the areas of the faces, and will act tlirough the centres of

gravity of the faces. Hence the required result follows.

Tlie proposition may have been enunciated previously;

liowcver A very eminent matliemntician stated at the meeting
' the British Association at Cheltenham in 1866, tliat he

1 been tmable to find it in print*

By means of Art 51 we can deduce the following proposi-

tion ~ ting couples: A fystem of eomplet rtprmmied in
f magnitude hy the foce* of a pofykmrom wiU U
'tm^ $vpponng tMe axet of fAs eompkf aU to h$

Htf ^ards or all ouiwartls. 1 his is given by Mdbins

;

Ukrbuck der Siatik, Vol. I. page 87.

11—2
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Ouldtnus's Properties.

144. If any plane figure revolve about an axis lying in its

planef the content of the solid generated by this figure in re-

volving through any angle is equal to a prisniy of which the

hose is the revolving figure and height the length of the path
described by tlie centre of gravity of the area of tlie j)lane

figure.

The axis of revolution in this and the following proposition

is supposed not to cut the generating curve.

Let the axis of revolution be the axis of a?, and tlie

plane of the revolving figure in its initial position the plane
of {Xf y); let /8 be the angle through which the hgure
revolves.

The elementary area AxAyo( the plane figure in revolving

through an angle A^ generates the elementary solid whose
volume is yAdAxAy ; therefore the whole solid

= 5SSo^ydxdyde=^jjydxdy.

The limits of x and y depend on the nature of the curve.

But if^be the ordinate to tne centre of gravity of the plane

figure, then, by Art. 118,

^ IJdady
'

the limits being the same as before.

Therefore the whole solid = ^ffy dx dy = y^Jfdx Ji/=\]\q

arc described by the centre of gravity multiplied by the area

of the figure. i

If any figure revolve about an axis lying in its own j'J"

the surface of the solid generated is eqv^l in area to the /

angle
f of tchich the sides are the length of the perimeter of ilo

generating figure and the length of the path of the centre cj

gravity of the perimeter.

The surface generated by the arc A* of the figure revolving

through an angle Ad is yAd As ; therefore the whole surface

^Jlfydsde^fijyds.
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The liiiiiu depend on the nature of the com* Bui if jf ho

I c onlinatc to tne centre of grmvitjr of the perimeter,

.Jyds
^ Jds

'

* limits heing the lame ei before.

Therefore the whole sorfeoe « v/S/iif " the are described

> the centre of gravity, multiplica by the length of the

rimeter.

^'" 1. Tifind the $oitd contrnt and the trurja< .
''... / / ;

hy lAs revoiuiion ofa circle round a ttraij:^

h ii doeM noi imeeL

^iice of the centre of the circle from the axis of
( : let 6 be the radios of tlie circle ; then the

litre of grarity of the area of the
>f the figure is«^;

I iierefore the content of the solid « Sir'aft*.

le length of the path of the centre of gravity of the

. »*..v ler is 2ira, and the length of the perimeter is 2ir6

;

therefore the surface of the solid « in^ab.

Hx. 2. To/nd thseetUre ofgravity of the arw4mdril§o of
arc ofa temieircle*

A semicircle by reyolving about its diameter generates

phcre ; the content of the sphere is - iro*, and the sur&ce

<!*, the radius being a; the area of the semicircle is - iro",

1 the perimeter m ; therefore, the distance of the centre

\ Ity of the area from the diameter

content of sphere 4a
^"

Sir . area of semicircle" Sir
*

distance of the centre of graTity of the arc from the diameter

rorfiice of sphere Sa

2fr • arc of semicircle w
*
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Ex. 3. Tojind the sttrfacs and the solid content of the soh'd

formed by the revolution of a cycloid round the tam/ent at its

vertex.

2a
In Art. 133 we have found - for the distance of the centre

o

of gravity of tlic arc of a cycloid from its vertex ; and tlio

whole length of the arc is 8rt. Therefore the surface of the

solid generated is

2a 32
27r X --- X 8a ; that is ' Tra*.

o o

And in Art. 113 we have found that the distance of the centre

of gravity of the area included between the cycloid and its

7
base from the vertex is ^ a ; and the area so included is

6

37ra*. Hence the area of the portion which in the present

case revolves round the tangent is Aira* — Stto^j that is 7ra'.

And the centre of gravity of this area may be shewn to be at a

distance
^^
from the vertex. (See Ex. (2) of Art. 109.) There-

fore the solid content of the figure generated is 27r - 7ra*, that

is 7r*a'.

EXAMPLES.

1. Find the centre of gravity of five equal heavy par-

ticles placed at five of the angular points of a regular

heicagon.

2. Five pieces of a uniform chain are hung at equidistant

points along a rigid rod without weight, and their lower ends

are in a straight line passing through one end of the rod;

find the centre of gravity of the system.

3. A plane quadrilateral ABCD is bisected by the dia-

gonal ACJ and the other diagonal divides AG into two parts

in the ratio of o to q ; shew that the centre of gravity of the

quadrilateral lies in ^ C and divides it into two parts in the

ratio of 2^ + ^ to j9 + 2q,
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in the fnct t' Hyitem of heavy particle* ha«

o( i;ravity a one, deduce the property that

iit UuvA juiiiiiif; till* inichlK* )M>ii)tii of the oppoaile

. .v^ .,. ^uy i^uadriUteral tigurc bUcct each other.

5. A pyramid stands on a square base: given the oo-or-

i nates of the vertex, and the co-ordinatea of two opposite

r the baae, determiue the oo-ordinatei of the centre

of the pyramid.

A PC is a triangle ; D, E, F are the middle points of

V that the centre of prftvity of the »iJes of ABC
.„_.,-_ .'.,.A the centre of the circle inscribed in I)EF.

7. A piece of wire is formed into a triangle ; find the

oe of the centre of gravity from each oi the side«, and
.. that if X, jf, a be the throe diatancea, and r the radiua

t' the inscribed cirelc, then

If the centre of gravity of a four-sided figure coincide

>'••' of ita angular pointa, shew that the distances of
' and the opposite angular point from the straight

uc joining the other two anguUr pointa are aa 1 to 2.

*y Shew that the common centre of gravity of a right-

l isosceles triangle, and the squares described on the

Nvo equal sides, is at a distance » ~r ^ ^^ ^^ point in

vhich those sides meet, a being the length of one of them.

10. Prove the following construction for the centre of

ty of any quadrilateral. Lot E be the intersection of

agonals, and F the middle point of the straight line

I joins their middle points ; uraw the straight line EF
roduce it to O, making FO^^EF; then G shall be

cntrc of gravity requireo.

11. A triangle ABC im succes^^ivly •^n^^prn-lfl i :n • u-.

inplcs A and P, and the two po^itioiKi ul any -i ic arc ;it

gilt angles to each other; shew that

6c'-a« + *'.

.IV I
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12. A right-angled triangular lamina ABC is Ruspenclcd

from a point D in its hypothenusc AB; prove that in the

poeition of equilibrium AB will be horizontal if

AD :I)B::AB'-^AC*: AB' -f BC\

13. A given isosceles triangle is inscribed in a circle; find

the centre of gravity of the remaining area of the circle.

14. If three uniform rods be rigidly united so as to form

half of a regular hexagon, prove that if suspended from one

of the angles, one of the rods will be horizontal.

15. If ABC be an isosceles triangle having a right angle

at 0, and 7), E be the middle points oi AC, AB respectively,

prove that a perpendicular from E upon BD will pass through

the centre of giavity of the triangle BDC,

16. ABCD is any plane quadrilateral figure, and a, &, c, d
are respectively the centres of gravity of tlie triangles BCD,
CDAy DAB, ABC) shew that the quadrilateral ahcd is

similar to ABCD.

17. A, B, Cy D, E, FsLre six equal particles at the angles

of anT/ plane hexagon, and a, b, c, d, e,/ are the centres of

gravity respectively of ABC, BCD, CDE, DEF, EFA, and
FAB, Shew that the opposite sides and angles of the

hexagon abcdef 2iXQ equal, and that the straight lines joining

opposite angles pass through one point, which is the centre of

gravity of the particles A, B, C, x>, E, F.

18. A straight line ED cuts off - th part of the right-

angled triangle ^J5C of which A is the right angle. AB = a,

AC = h, Shew that the centre of gravity of CEDB describes

the curve whose equation is

" ={3(n-l)y-?ji} [3(n-l)a;-na].

19. The distance of the centre of gravity of any number

of sides AB, BC, CD KL of a regular polygon from the

centre of the inscribed circle

AL X radius

^ABTBCTCD-\- + A'L*
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turn Is cut from a right oone bj a plane bbccU
aud parallel to the Mse; shew that it will rect

Its slant tide on a horizontal table if the height of tlie

lie bear to the diameter of ita base a greater ratio than

. 7 to V17.

21. If partklet of unequal weights be placed at the an-

gular points of a triangular pyramid, and O^ be their conn

oentre of gravity; t?,, ^., . . . their common centres of sru

.

fcr ereij possible arrangement of the particles; shew tnat the

oentre of gravitj of equal particles plsyoed at (?,, 6^,, ... is the

MOtre of gravitj of the pyramid.

' tS. If a cone have its base united concentrically to the

base of a hembphere of equal radius, find the height of the

cone that the solid maj rest on a horizontal table on any
point of ita spherical iurtace. Result, rV3.

23. If anjr polygon circumscribe a circle, the centre of
Mrity of the arm of tlie polygon, the centre of gravity of
ue perimeUr of the polygon, and the centre of the circle, are

in the same straight line ; also the distance of the first point

from the third is two-thirds of the distance of the second
point from the third.

24. If any ])olyhedron circumscribe a sphere, the centre

€f ipravity of tlio voUtme of the polyhedron, the centre of
navity of the furfaee of the polyhedron, and the centre of
the sphere, are in the same straight line; also Uie distance
of the first ]x>int from the tliird is mree-fourths of the distance
of the second point from the third.

25. From a right cone the diameter of wh(»8c kisc is equal

to its altitude is cut a right cylinder the diameter of whusc
base is e<iual to iu altitude, their axes being in the same
•traight line and the base of the cylinder lying in the base of
tlie cone; firom the remaining cone a similar cylinder is cut,

and so on, indefinitely; shew that the distance of the centre of
navity of all the cylinders from the base of the cone is ^ of
die height of the cone, and that the distanoe of the oentre of
kmrity of the remaining portion fiom tbo base of the oono
» K of the altitude of the
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26. A square Is cut from an equilateral triangle, a side

of the square coinciding with a side of tlie triangle; from

the equilateral triangle which remains anotljcr square is cut,

and so on, ad xnfimtum: liud the centre of gravity of the sum
of the squares.

27. Find the centre of gravity of the area contained be-

tween the curves if=ax and y^^^ax—oi?, which is above

the axis of x. -n ia
- 1.^—44 - a

ResulU. ^ = a.j^-_-^^; y = 3^_,.

28. Find the centre of gravity of the area enclosed by
the curve r = a (1 + cos ^). ResulL x = Ja.

29. Find the centre of gravity of the area included by a

loop of the curve r = a cos 20. „ , _ _ ]^^^^^
~~

lObir

30. Find the centre of gravity of the area included by a

loop of the curve r = a cos 3^. ^ , - 81 \/3a

SOtt

31. The locus of the centre of gravity of all equal seg-

ments cut off from a parabola is an equal parabola.

32. Find the centre of gravity of a segment of a circle.

33. Find the centre of gravity of the area included by
the curves ^ = ax and or = hy,

ResulL X = ^V*^^ y = -zV'^^-

34. Find the centre of gravity of a portion of an equi-

lateral hyperbola bounded by the curve, the transverse axi.s,

and a radius vector drawn from the centre.

Results. X = .77

—

. > ,

'

77

—

—i ;

3 log [x -f y ) — 3 log a

2(y^~«)
,

^'"3log(x' + y')-3log<t'

where x\ y are the co-ordinates of the point of intersection of

the curve and the bounding ra^lius vector.
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35. Two equtl circle* of raditui a are drawn,
thn)U^h the centre of the other, and a third eirele toocliea

)x)th, having one of their pointu of intersection for ita centre;

tlu- difttance of the centre of gravity of the umaller area in-

clii*led between the oater and inner circles from the common
nuituji of the first two ia

ia-3hrV3

M. The denaitr of a triangle varicii aa the n^ power of
t'

" Moe from tne baae; determine n when the centre of

K >f the triangle divides the straight line joining the

rertex with the middle point of the baae m the ratio of 8 to 1.

JUtuli. fi « - }.

37. Find the centre of gravity of the volume formed bj
the revelation round the axis of x of the area of the curve

38. Find the centre of gravity of the volume generated by
the revolution of the area in Ex. 37 round the axis of y.

89. Find the centre of gravity of a hemisphere when the
density variea as the square of the distance from the centre.

40. Find the centre of gravity of the solid generated by
a semiparabola bounded by the Utns rectum rerolving round
the latus rectum.

BemlL Distance from ibciii ^ffOf latus rectum.

^
41. The solid included between the surfaces of a con-

tinuous hyperboloid and its conical asymptote is cut by two
planes perpendicular to their common axis; find the position

of the centre of gravity of that portion which lies between
the planes.

EtfulL Midway between the planes.
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42. A solid sector of a sphere hangs from a point in its

circular rim with its axis horizontal, find its vertical angle.

Bcsult. The cosine of the semi-vertical angle is f.

43. Find the centre of gravity of the solid generated by
the revolution of a semicircle about a straight line perpen-

dicular to the diameter, and which does not meet the semi-

circle.

liesulL Distance from the plane generated by the diameter

"
Stt

*

44. A is a. point in the generating line of a right cylinder

on a circular base, and i?, U are two others in the generating

line diametrically opposite. The cylinder is bisected by a

plane ABG^ and one of the semicylinders is cut by two planes

at right angles to ABC, passing through AB and A C, Shew
that if the solid ABC he, placed with its convex side on a

horizontal plane, the plane ABC will be inclined to the hori-

zon at an angle tan"* (^"Tr), when there is equilibrium.

45. A solid cone is cut by two planes perpendicular to

the same principal section, one through its axis, and the

other parallel to a slant side; find the limiting value of the

vertical angle of the cone, that the piece cut out may rest on
its curved surface on a horizontal plane.

Result. The cosine of the vertical angle must not be
greater than §.

46. A ouadrant of a circle revolves round one of its

extreme raaii through an angle of 30*^; find the centre of

gravity of the solid traced out, the density being supposed
to vary as the distance from the centre.

BesulU. x = ~; y = ^(2-V3); 2 = v. The axis of .r

o o o

is supposed to coincide with the initial position of the revolv-

ing radius.
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47. A solid » ibniied br Um retolstioB oC tU tma oC Ite
rtirve y*^«>«i*^ fouid IM ask o# «; A&m tWu tU 4b»
' o of the Qoiitre of gmntj M wkj m^immAM fkk mU
!; m tho rertex been to the neigfat of the mmmH the nib
uf 1 to ii« Tho te^pient is mppoeed cot c€\y e pleM per*

pendicuUr to the

48. Find tlie eentie of greTitj of the mafam of the eolid

«*+/- iox, cut off bj the pleae «•&

49. Applj Oaldinna't thconai to lad tb voIvm «r lU
fnutVB or • right oone in lenM of iti ahitiida mi tU mlU

50. Find the eorfMe end the fokuM of the mnuk taroM
bj theietolitioooCeqreloidioaBditebeee.

51. A eegment of e ctide vBTohree food iti ebofd. which
•ubteods an engle of 9(f at the centie; find the eBim md
Tolume of the eolid genenled.

52. An ellipee whoee ezeentridtj b ^ ivfolfw ebe«

anj tencent line. Prore that the rolone fanenled bj one

portion into which the ellipee ie divided fir iti m -

yaries inrenelj ae the Tofanne ganentail by the ether

53. A plane area moTte m inch a winnar ee lo be alvap
nonnal to &e eone alo«f whidi its centM of nvter aevee;

proTe that the Totame gwuiteil is eml Is 1m mi ens
multipUcd bjr the length of the path ofthe mtUn of grnvily.

Henos find the Tolnme of a cgtkiM tnbe

section ii of constant
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64. Extend Guldinus's tlieorem for finding the volume of

a ring to the case in which the ring is formed by the revo-

lution of a plane area about a straight line parallel to its

plane.

A ring is formed by the revolution of the lemniscatc

(whose equation is r* = a*cos 20) alx)ut a straight line parallel

to its plane situated in a plane drawn through its double

point and perpendicular to its axis ; shew that the volume of

.. . . -n'a'
this ring IS j^g.
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CIIAPTEE IJL

145. A Maciiiiik it «i initmaiait, or a •jntm of aolU
bodiei, for the puqwte of traimiittiiig fiMoe mm mm ptat to
another of Uie tyttem.

It would be cndlcM to uctcribo all tlio BMCUUia lau luiTi

been invented; we ftball oQMjmMOtl/ codfaM mmtiifm l»
thoae of simple conetnMtioB. At MOtI iisple wiriiiiM era
denominated the Mechanical Powwi. Thaee we ahall ex-
plain, and also a few combination« of them.

146. A Lfver it an indexible rod moveable onljr abeat a
fixed axiit, which is called the /mlcrmmt. The pOltieM of the

leTer into which the fulcrum divide* it are called the mw^ of
the lever : when the arms are in the eeme Unidbl Um^ it it

called a 9tru%gkt itver, and in other ceeee a hmilmm.

Two fofcce act on the lever abo«t the (Uenir

the power and tlie wet^ki : the power b the force a}

the hand, or other meant, to tttttatn or onteiwe t

force, or the weight. There are three apeeiei of levrr

«

first the fulcrum in betwcrn the powcf and the weight ; ir.

eecond the weight acta between the fnknua and ih^' *-

and in the thira the power acu between the fblcnr.

weight,

147. To find iAe eomiKliom§ rf opiflthnmm of iwo foftoo

ttdutg la (Ae «mm pimm om m Isefr.
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Let the plane of the* paper be the plane in which the

forces act, and also be
i^

perpendicular to the axis,

of which C is the pro-

jection, and about which
the lever can move ; A, B / /r x ^
the points of application ^ L
of the forces P, W; a, y9 ^«.... Zlnr^^-^-Vr^^ *

the angles which the direc- "^^'i^^T^^ ^jQj
tions of the forces make
with any straight line a Cb
drawn through C on the

paper. Let E be the pres-
^^

sure on the fulciiim, and 6 the angle which it makes
with the straight line aCb; then if we apply a force M
in the direction CR^ we may suppose the fulcrum re-

moved, and the body to be held in equilibrium by the

forces P, IF, P.

We shall resolve these forces in directions parallel and
perpendicular to a Cb; and also take their moments about C;
then by Art. 57 we have the following equations

:

Pcosa- TFcos;S-Pcos^ = (1),

P8ina+ TFsinyS-Psin^rrO (2),

and P. CD- W. CE=0 (3),

CD and CE being drawn perpendicular to the directions of

Pand W.

These three equations determine the ratio of P to W when
there is equilibrium ; and the magnitude and direction of the

pressure on the fulcrum.

For equation (3) gives

P _ CE _ perpendicular on direction of TF" . .

W CD ~~
perpendicular on direction ofP ' ^

*

Also by transposing the last terms of (1) and (2), we have

P cos ^ = Pcos a — TFcos ^,

P Bin ^ = Psin a + TFsin /9.

Ill
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Add their tqnaret ; tbeieforo

;?-p-+ iP-5rprKoot(«+/j),

whicli giret the magnitade of M*

From (I) and (3) bj tnuifpotition and diritum

^ ^ Piina-I- Wmnfi

which gires the direction of the

If we tuppoaa J7 to be the falcmm and take tlie

aK>ut D inatead of C, we have inateid of oqaation (4) the
loll- wing:

M perpendwwf on otyectioB of B ..^

S perpeodmilar oo dtrectioQ oTP' ^
'•

Tliii in not a n<>w ennation of oooditioii ; b«t la a oom»»
qiu ncc of the t a, (I), (J). /3), To aUw tliia»

iiuai:ine AD tttit #»/. |iimiu<.^« lo BMot Ca: tlirjr will MOft
thirt i<tmi^ht line at the MOiie point ataoo tbo diatancica hj iJmm
two conjitnictiooa are C/>coaae(^-«) and Cffooaee(^-f /S);

and thcM are made equal, hy eqttatmnt (1), (S), (S), if w
eliminate Ptknd M\ Snppoee. tl U iMboint at wbidi
theM straight linca meet. Bj i..^...^ .vtng (I), (9),

tivcly by ain fi and ooaA and adding, we hava

7f-.:J.-.4)-i'Aain(e+4
I

uUrondirectiooof^
" pcrpcndiciilaroo duoctiott ofP

therefore this eonation ia a coaasqwwt of iho

(I), (i). (3), aa might hare
* --^--^^

It followa, then, that cAa eomilitiom

qf any apeeMt u tMai <Ae tma/tftm mtmi Aa fluerai^ at lla

ftrpekdtemlan drawn m Umr difwtiwm»frmn fk$Jml(rmm mmd
tk§/orem mmM ad 9o a» t9 %md lo tmrm Ua Umt in mmmiHtk§/on)i$

dirietionBrtmndds/tiienun.

14S. T K^rtjT of the Ictot raMkn it a oaetai ta*

•Iniment i: i/ing the effioacj of a iMMi Fora^jrtvo

T.8. W
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forces, however unequal in map^iitudc, may be made to balance

each other simply bv fixing the fulcrum so that tlic ratio of its

distances from the airections of the forces shall be equal to the

inverse ratio of the forces. If the fulcrum be moved from this

position, then that force will preponderate from which the ful-

crum is moved and the equilibrium will be destroyed. We are

thus led to understand how mechanical advantage is gained

by using a crow-bar to move heavy bodies, as large blocks of

Btonc : a poker to raise tlie coals in a grate : scissors, shears,

nippers, and pincers ; these last consisting of two levers of

the first kind. The brake of a pump is a lever of the first

kind. In the Stanhope printing-press we have a remarkable

illustration of the mechanical advantage that can be gained

by levers. The frame-work in which the paper to be printed

is fixed, is acted on by the shorter arm of a lever, the other

arm being connected with a second lever, the longer arm nf

whicl\ is worked by the pressman. These levers are so ad-

justed that at the instant the paper comes in contact with the

types, the perpendiculars from the fulcra on the directions

of the forces acting at the shorter arms are exceedingly short,

and consequently the levers multiply the force exerted by the

pressman to an enormous extent.

As examples of levers of the second kind, we may mcini -n

a wheelbarrow, an oar, a chipping-knife, a pair of nutcraek is.

It must be observed, however, that as the lever moves
about the fulcrum the space through which the weight '

moved is, in the first and second species of lever, snialL

than the space passed through by the power: and therefore

what is gained in power is lost in despatch. For exanijile

in the case of the crow-bar : to raise a block of stone through

a given space by applying the hand at the further extremity

of the lever, we must move the hand through a greater space

than that which the weight describes.
j

But in the third species of lever the reverse is the f i-^

The power is nearer the fulcrum than the weight, and is <
.n

sequently greater; but the motion of the weight is gr( t<

than that of the power. In this kind of lever despateh i

gained at the expense of power. An excellent example
the treddle of a turning lathe. But the most striking

, 1

1
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nnv
'

of the third kind it ftNmd in iIm aiiiaMd

in ' >n of which it Meat to be • prerailii^ pfi»^
vcr to fetdioeti end qoicfcneit tf aetiea.
iU are generallj lerert of tliit ilffiriptiwL

ot the bone retU in itt tocket m tbe ftUerva; a
r.t .1. ...i.^'Ic attached to the bone near the eoodrle ia tbe
|)owcr, and tlie weight of tbe limb toMber wita ai^ r^
•iatance oppoeed to lU moCkm b tba irdj|bt A tlkbt
traction or the mwde gtftt a eoondetable motion to ua Umh,

149. T!ie lerer ia applied to determine the wetgbt of
anbatancea. Under tUia cbaracter it ia called a liabnee, Tba
Common Babuioe baa ita two antu eoual, witb a teala

foJcnuBponded from each extremity; the folcnuB being

centra of gravity of tba beam and tberefoia above tbe eeatra
of gravitr of the ajttam formed bj tbe beao^ tbe tealei» and
the wei^nta in tbe aealea. Tbe anbatanee to be waigbcd it

placed m one acale, and weif*hu pUced in tba oCbar till tba

beam remninB in ec|ailibnum in a perfect!/ boiiaoatal peai-

tbn ; in wliirh cum* t)ic wci;;ht of the aobataaot k imfaatod

hj the V t it ia balancrd. If tbe wmfA^ dUfiv

ertr i^<> liiontality of tbe beam wtU be dia>

Imrbcd, and atter oaciilating for toaM time, in noamnifaei of

dM fulcrum being pbioed oftoee tbe oentm oi pwriij of tba

igfBtero, it will, on attainbg a state of mt,
*tV V irixon, the extent of which ia a i

f the baknee.
^ .* tbeweigbtiB tbeotbartoalaata

c aobttance we aie weigbiag, wa ai

IcTcr aro of eqoal lengtb and tbat tbe beam
:i\ equilibrium if tbe aealea were emptjr. We

. thcKC conditiona are aatiafied b/ obaerring

lattbntttwbeotbe
iitbeweigbt

.\ir u ight to that which tbe mbatoiiei

' In the conatmction of a balaaea tba IbUowtaf i»>

should be attended ta

n loaded witb equal wtigblt dw bemn tboida ba ^
rixontal.

i) When the wcighta differ, cfen b/ a alij^t

r
sensibility ahould U tocb aa to detael tbit

"

It-t
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(3) When tlic balance is disturbed it should readily rctun

to \X6 state of rest, or it should have stability.

We shall now consider how these requisites may be satisfied

Tofind how the requisites ofa good balance may be satisfied

Let P and Q be the weights in the scales ; let AB = 2a

Let (7 be the fulcrum, h its distance from the straight lin(

which joins A and B, Let W be the weight of the beam
h the distance of the centre of gravity of the beam from C
this centre of gravity being supposed to lie on the pcrnc

dicular from C on the straight line which joins A and
Let S be the weight of each scale ; so that P and H .';

vertically through A^ and Q and 8 vertically through /

Let 6 be the angle which the beam makes with the horiz

when there is equilibrium.

The sum of the moments of the weights round C will \h

zero when there is equilibrium, by Art. 57. Now the !

of the perpendicular from C on the line of action ofP .

is acos^ — Asin^; the length of the perpendicular from (

on the line of action of Q and /S is a cos ^ -f A sin 6) ai"l ^^"

length of the perpendicular from C on the line of action

is k^inO, Therefore

> (C+^)(aco3^+^sin^)-(P+/S)(acos^-Asin^) + TFA;sin^ = (

(P-(2)a
therefore tan^ = TT*

(P-t- (^ + 2>i)) h + Wk
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Tills determines the nd«ition of t^ilibrhm. TIm int
rrf)uiMtc—the 1 n p and Q an ^lul—i«
•iitij»ricd by mAktiig wiu mtua i:<|uaI«

For the seeorul we obteire fliAf fur a frivm diflereiiM of P
and Q the ^ b j:rc«t r tan ^ U ; and far

given vAlti<: ui iiittf the acti^iiinur i« grcatef tbe •milltT

the diflcrencc ofP and (^ U : hence p^-r: ii « OOOQCl OMMVi
of the aenaibilitT: and therefore the aeoood iwoiiito it lbl»

filled bj making {P-^Q-^tS)^^ W^ •• tauai poiAh.

The atability it greater the greater the momefit of tki
fSn^A whirh tend to reatore the oqailibrinm whca it ia d*-
atroyed. Now thta mooient ia

((P-l- Q 4- aS) A 4- iri; tin tf - (P-^ « eoa ^,

or sappoalng Pand Q equal it ia

[{P-k'Q'^^S)k^Wk\wi$.

Hence to aatial^ the third re^uiaite, thta nmal bo mmU m
rge at poaaible. Thb ia, in |«rt, at wkoea witk tW
Koond reqaiaite. Tli<*v iiiit%«, howcrer, both bo Mtiiiiid by
w^jng: (P-f <?+ S^ large, and • krgo olio: tbot io»

increaaing the du^uiiRrii of the Mawm fnm tbo
md from thp centre of grarity of ibo beam, oad by

the arma.

It moat be remarked that th<» a«nctbilitjr of o bokaoo ia of
)re importance tlian the ft *ince tbo ojo eoa jodgo

E'ty
accurately whether the mur* uf the beom VMikoa oqoal

ilatioiia on each aide of the Ttrtioal lino; tbol a% trbelbor

of reat would bo boriaonul: if tbia bo not tbo

k ;e weights mast bo oUoiod till tbo oacillotioaa Ofo

arlj cquaL

151. Another kind of baUnee ia that ia wbieb tbo oroM

unequal, and the aame weight ia Mod lo wetgb diflbrmi

ftanoea
by varying iu point of aopport, and obionriog iio

nee irom the futcmm b^ omom of o
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152. To shew how to graduate the common steelyard.

Let AB be the beam of tlie steelyard. A the fixed point

^dj w a^. Tts

I

from which tlie substance to be wei<^hed is suspended, Q
being its weight ; C the fulcrum ; W the weight ot the beam
together witli the hook or scale-pan suspended from A ; G
the centre of gravity of these.

Suppose that P susj>ended at N balances Q suspended from
A) then, taking the moments of P, Q, and IF about C\ we
have

Q.AC-W.CG-P.CN^O',

therefore

WCN+ - . CG
<?
= ^, P.AC

W
Take the point D, so that CD=-pCG; therefore

^~ AC ^ AC^'

Now let the arm DB be graduated bj taking Da, Da„,

^ equal respectively to AC, 2AG, SAC ; let tla;

les 1, 2, 3, 4, be placed over the points of gradua-

tion, and let subdivisions be made between these. Then by
observing the graduation at N we know the ratio of Q to P

;

and P being a mven weight we know the Tveight of Q. lii

this way any substance may be weighed.

153. The second of the Mechanical Powers is the Wheel
and Axle. This machine consLsts of two cylinders fixed
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torrthcr widi Hktkt tie* in the Mme ttraight IIim: the hmar
lur in called the wheel, aud the rauuler the axle. The

..; by wliloh the weight is saspeoded is fastened to the
xle, and then coiled round it, while tlie power which sup-

I

'\u the weiffht acts by a cord coiled round the circumference
< I : ic wheel, Dj spokes acted on by the hand, as in the cap-
toH^ or by the hand acting on a handle, as in the wmdlas$.

15 (. To JUd 00 ratio of iMe power and we^ki im tMe

Wkml and AxU wh$n in equilibrium,

T ^ f /> be the wheel and CC'B the axle; P the power
1 d by a weight suspended
fruui tlic circumference of the wheel
at A ; W the weight hanging from
the axle at R
Then since the axis of the machine

is fixed, the condition of equilibrium

it that the sum of the moments of

the forces about this oxia vani^lics,

(Art, 87) ; therefore

Px rad. of wheel « Wx rad. of axle;

W rsd. of wheel

P rad ot axle
therefore -rr

It will be seen that this machine is only a modification of

the lever. In short it is an assemblage of levers all having
the same axis: and as soon as one lever has been in action the

next comes into play ; and in this way an endless leverage is

obtained. In tliis res|>oct, then, the wheel and axle surpasses

the common lever in mechanical advantage. It is much used

in docks and in shipping.

155. The third Mechanical Power is the Toothed Wheel.
It is extensively applied in all machinery ; in cranes, steam-

ini;incfl, and particularly in clock aud watch work. If two
ciii ular hoops of metal or wood having their outer circum-

ferences indented, or cut into equal teeth all the way round,

be so placed that their ci\Qts touch, one tooth of one circum-
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ference Ijing between two of the other (as represented in the

figure) ; then if one of them be turned round by any menus,

the other will be turned round also. This is the simple coii-

fitruction of a pair of toothed wheels.

156. To find the relation of the power and weight in

Toothed Wheels,

Let A and B be the fixed centres of the toothed wheels

on the circumferences of which the teeth arc arranp;ed; C the

point of contact of two teeth
;
QCQ a normal to tlic surfaces

m contact at G. Suppose an axle is fixed on the wheel i?,

and the weight W suspended from it at J^ by a cord ; also

suppose the power P acts by an arm AD ; draw Aay Bh per-

pendicular to QCQ. Let the mutual pressure at C be Q.

Then, siuce the wheel A is in equilibrium about the fixed

axis -k, the sum of the moments about A equals zero ; there-

fore

P.AD-Q.Aa = 0,

Also since the wheel B is in equilibrium about i?, the sum of

the moments about\B equals zero ; therefore

Q.Bh-W.BE^O.
Then by eliminating Q from these two equations,

\V Q'W^AB' Bb'

moment o( P ^Aa
^

momaut ot iV Bi
'
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when llifi tt^etli arc finudl thU ratio rtty nearly

rad. of wheel A
rad. of wheel JJ

*

157. Wheels are in some cases turned by means of strapt

passinii: over their circumferences. In such cases the minute
1 '

'
' the stiriaoes prevent the sliding of the straps,

ion takes place stich as to render the calcu-

latt T>) that in the Proposition.

1 : the best forms for the teeth, the

r*'.'uler is referred to a Paper of Mr Airy*s, in the Camb, PkiL
Trans. Vol II. p. 277.

158. The fourth Mechanical Power is the Pully. There
are several species of puUies : we shall mention tlicm in order.

The simple puUj is a small wheel moveable al>out its axis

:

a string passes over part of its circumference. If the axis is

fixed the efiect of the pully is only to change the direction of

the string nassing over it : if however the axis be moveable,

then, as wul be presently seen, a mechanical advantage may
bo gained.

It is sometimes aasnmed as axiomatic that if a perfectly

flcxlMo string passes over a smooth surfistce the tension of the

.^triiiL: will be tne same throughout; we shall see, however, in

th(> (Minpter on Flexible Stnngs that this result admits of

demonstration. In the present Chapter we shall only require

a part of the general proposition. We shall suppose the pul-

lies to be drcuUr, and assume that the tensions of the two
portions of any string which are separated by a portion in

contact with a pully are equal. And this may be shewn to

be necessarily true if we merely admit that the string is

a tangent to the circle at the point where it ceases to be in

contact with the pully. For since tlie pully is smooth the

directions of all the forces which it exerts on the string must
])nss through tlie centre cf Ike puU^; hence if we take the

moments with respect to tnis pomt of the forces which act on
the string we see that the string cannot be in equilibrium

unless the tensions of the two portions are eciiuiL
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159. To find the ratio of the power and weight in the

single moveable Pulig.

I. Suppose the parts of the string divided by the pull/

are paralleL

w

Let the string ABF have one extremity fixed at A^ and
after passing under the pully at B suppose it held by the

hand exerting a force P, or it may be passed over a fixed

pully. The weight W is suspended by a string from the

centre C of the pully.

Now the tension of the string ABP is the same throughout.

Hence the pully is acted on by three parallel forces, P, P,

and W; hence
W

2P- W= ; therefore "p = 2.

II. Suppose the portions of the string are not parallel.
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Let a and a' be the angles w^i< ^

the rertlcal.

fa and I^ make with

Now the pullj U held in er}iiilibnuni by IF in CW^ P in

Oil, and r m bJ\ Heuoe, revolving the forces homontally
and vertically,

Pain a - P«in a »

Pcoia+ Pcosa - Wm o {2j ;

the equation of moments round C is an identical equation.

By (1), 8iQfl(-i8uia' anda"*a';

W
therefore, by (2), -p^iooBo^

which is the relation required.

160. To find the ratio tftke power and weight in a tyeUm
of puilie§f in which each jnuly hange from a fixedpoint hg a
ecparate etrimg^ one end beingfiietened in thepuUv (wooe it and
Uie other end on afixed beam, and all the etrmge beingparaUeL

Let 11 be the number of moveable pullies.

I. Let us neglect the weight of the

pullies themselves. Then

tension of i^IT- IT;

tension of afifi^ i W^;

tension of aJ)J)^ « ^^,
IF;

tension of ajt/i = , W;

and so on; and the tension of the string

passbg under the n^ puUy

this is equal to P; therefore

W

. W, and

-r.
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II. Let us suppose the weights of the pullics to be con-
sidered; and let a)^, ck),, ft),,...ft). be these weights.

' Then if 7?,, ;>,, ^3,.../?, be the weights which they would
Bttstain at P, and i\ the weight which W would sustain at

P, we have

« -**"
•^--7'

therefore

P.=
IF

or P=l|lF+«j+2ft>, + 2*tt)3+ +2"-'a>,l

If a>j = a), = o)3= = 0),

i'= }• (^+ (2" - 1) ^J. that is P- 0,. = y ( IF- cj.

161. 2b ^n<f ^7iC ratio of the power and weight when the

system is the same as in the last Proposition^ hut the strvujs

are not parallel.

We shall neglect the weights of the blocks. The pullies

w^ill evidently so adjust themselves that the string at the

centre of any pully will bisect the angle between the strings

touching its circumference.

Let 2a,, 2a,, 27,, ...2a, be the angles included between

1: ar«* at

pO

Ow
the strings touching the first, second, third,

respectively.

,n^ pullies
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Then, by Art 150,

tvnaloix oi It ft h wm —
'I.

tcnBion of fl/3, -=
;

icnaion of aAc — -3
;

tension of the Uflt string rj ttz
*^ 3" CO0 0^006 0, cos a,...v<^o;^

and tbb is equal to P; therefore

— «2*cosa|Coso:,cos9,...co6a..

162. To fnd the relaiwn of the power and weight tm a
$jf$tem ofpulUes when the eame string paeeee rotmd all the

puUiee.

This system consists of two blocks, eacb containinir a

number of the pullies with their axes coincident. The wi

id BU3])endcd from the lower block, which is moveable,

the power acts at the loose extremity of the string, w '.

pa^se^ 'the respective pullies of the upper and lower

ulock ly.

S lice the same string passes round all the pullies, its

tension will be everywhere the same, and equal to tlie power

P. Let n bo the number of portions of string at the lower

block ; then n . P will be the sum of their tensions ; therefore

ir-n.p.

If we take into account the weight of the lower block, and
call it B, then

Tr+i?-ii.p.

If the strings at the lower block are not yertical, we must
take the sum of the parts resolved vertically, and equate it to

ir. Hut in general this deviation from the vertical is ao

slight that it is neglected.
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163. As the weight is rising or falling, it will be olsenxd
that in general the pullies move with different angular mo-
tions. The degree of angular motion of each pully depends

upon the magnitude of its radius. Mr James White took

advantage of this, to choose the radii of the pullies in such a
manner as to give those in the same block tne same angular

motion, and so to prevent the wear and resistance caused by
the friction of the pullies against each other. This being the

case, the pullies in each block might be fastened together, or,

instead of this, cut out of one mass.

It will be seen without much difficulty, that if the weight
TV be raised through a space «, each of the portions of string

between the two blocks will be shortened by the length a
;

and therefore, that the portions of string which move over

the pullies in the two blocks, taken alternately, will have
their lengths equal to a, 2a, 3a, 4a... Supjx>se the end of

the string fastened to the lower block ; then if the radii of

the pullies of the upper block be proportional to the odd
numbers 1, 3, 5, these pullies will move with the same
angular velocity, and might be made all in one piece, as

mentioned above. And if the radii of the lower pullies be
proportional to the even integers 2, 4, 6,... these also will

move with a common angular velocity, and might therefore

be cut out of one piece.

164. Tofind the ratio of the power to the xceight when all

the strings are attached to the weight.

If we neglect the weights of the pullies,

the tension of the string b^a^ = P; the ten-

sion of a,/>, = 2P; and so on : if there be

n pullies, then the sum of the tensions of

the strings attached to the weiglit

» P+ 2P+ 2»P+ ... +2"-»P= (2"- 1) P;

W
therefore -p = 2" — 1.

If we suppose the weights of the pullies are

G) , €D , o),, ... reckonin;j from the lowest, and

o), G) ,
0)'",... the portions of TF which they

respectively support, since they evidently

assist P, and IF' the portion of W sup-

ported by P; then

A^
T

B.

hs

h£

r^hi

6"
I

*Jfii

6>
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fr'-(2--i)P,

«'-(r-«-i)fti,.

tlirrt-fon. IT- TT' + »' + - {V - 1) P4 (2^' - 1) «,

if ft)j aa»,M«|^«

ir- (2* - 1) P+ |i-' + 2- + + 2 - (» - 1)} <»,,

-(2'-l)P+(2--ii-l)oi,.

165. The fif\h ^Icchantcal Power U the Inclined Plane.

Hy an inclined plane we mean a plane inclined to the
•\ A weight W majr be supported on an inclined

>y a power P less than IF.

1G6. 7b ^nJ the ratio of the noieer and tMtjht tn ths

inclined plane,

JjBt ABhe the ! o; 4^

a the angle which it i t iio

liorizon. Let the power F act on R
the weight in the direction C-P,

making an angle e with the plane. ^ .

Now the weight at C is held at

rest by P in UP, W in the vertical

Cir, and n pressure R in Cli, at

right angles to the plane. / \t
Hence, hj Art 27, if we resolve

these forces perpendicular and pai^ y^^
allcl to the plane, wc have

i?+Psine-TFcoso-0
Pcos«— irsina»0 \;2),

The second equation gives the required relation -p.*^^ ;

anl \}\(* first cqnntl(»ii irivcs the magnitude of the pressure E,
ll" i'act hunzohiali^', € — a, ana P» IPtaiid.
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If Pact parallel to the plane, 6 = 0, and P= TFsin a.

IfP act vertically, e « Jtt - a, and P« W,

167. The sixth Mechanical Power is the Wedge. This

is ft triangular prism, and is used to separate obstacles by
introducing its edge between them and then tlirusting the

wedge forward. This is effected by tlie blow of a hammer or

other such means, which produces a violent pressure for a

sliort time, sufficient to overcome the greatest forces.

168. An isosceles wedge ts kept in equilibrium hy pressures

<m its three faces; to find the relation between them.

The above three figures represent the wedge and obstacles

together and separately.

Let 2P denote the force acting perpendicularly to the thick

end of the wedge ; R and B! the forces which act on the other

faces of the wedge : these forces are perpendicular to the faces

since the wedge is supposed smooth.

Let 2a be the vertical angle of the wedge.

Resolve the forces which act on the wedge in directions

per]K*ndicular and parallel to the thick endj then for the

equilibrium of the wedge we have

2P= (i? + R) sin a,

J? cos a = 72' cos a

;

therefore li = R\

P=Ri\x\a.
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W«' <! > Hot writr* (Uxn\ the equations of equilibrium of the
(.}.".t;i. I. }.. lu^o wr do not know the forces exerted on it at

ts of its base by the frround on which it rests.

I to resolve the force li which acts on the wedffe

iito two components; one along the straight linem
* ^ *

• obstacle in contact with the wedge,
• wedge were pushed further into Uie

r at rip^ht angles to this direction. I>et

-i. ::an, makinp: an angle t with the direction

of Ji ; then the resolved part of Jt in this direction is Jt cos i,

which we will call S

;

therefore -^— -..

8 cost

A.s howeviT ;

the result is

Known about the value of the angle t»

tical value.

^'

169. The last Mechanical Power is the Screw. This
' in its simple construction

•f ft cyliTuler AB with a
thread abed,.,

I •', and making
a nmstant angle with straight lines

i)aralle! to tlio axis of the cylinder.

This (vlin.lor fits into a block D
! with an equal cylindrical ^

on the inner surface of
uiii.il i> (lit a groove the exact
("untcrjjait of the projecting thread
a^K'd

It is easily seen from this de-
""

c

scription, that when the cylinder is introduced into the block,

the onlv manner in which it can move is backwards or for-

wards by revolving about its axis, the thread sliding in the

proove. Suppose W to be the weight acting on the cylinder,

including the weight of the cylinder itself, and P to be the

power acting at the end of an arm AG ui right angles to the

axis of the cylinder ; the block D is suppMed to be firmly

fixed, and the axis of the cylinder to b6 vertical

1 70. Tojmd tMe ratio of the poK€r and weight in (As Scrtm
when they are in equiliMwm.

T.8. IS
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Let tlic distance of C from the axis of the cylinder = a
;

and the radius of the cylinder = h.

Now the forces which hold the cylinder in equilibrium are

W^ P, and the reactions of the pressures of the various por-

tions of the thread on the corresponding portions of the lower

surface of the groove in which the thread rests; these re-

actions are indeterminate in their number but they all act in

directions at right angles to the surface of the groove, and
therefore their directions make a constant angle with the axis

of the cylinder. Let - — a be the angle which the thread of

the screw makes with the axis of the cylinder, then a is the

angle which the direction of each reaction makes with the

axis of the cylinder. If, then, E be one of these reactions,

72 cos a, II sin a are the resolved parts vertically and horizon-

tally ; the horizontal portions of the reactions act each at

right angles to a radius of the cylinder. Hence, resolving

the forces vertically, and also taking the moments of the

forces in horizontal planes, we have

W-%.Bco3a = (1),

Pa-2.i?6sina = (2):

we might write down the other four equations of equilibrium,

but they introduce unknown quantities with which we arc

unconcerned in our question.

Hence -rr = r—=

—

x<—n i because h and a are constant,

a cos a 27ra

b sin a "^iTrb tan a

circumference of circle of which the radius is a

vertical dist. between two successive winds of the thread

'

The Screw is used to gain mechanical power in many ways.
In excavating the Thames Tunnel, the heavy iron frame-work
which supported the workmen was gradually advanced by
means of large screws.
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MISCELL.VNKOUS EXAMPLES.

1. If one aim of a eororoon baUnoe be loDser than the

oUier, ehew thai the real weight of anj bodjr ia Um geometri-
cal mean between ita apparent weighta aa weighed fint ia one
ttcale and then in the other.

2. The arroa o£ a falae balance are tmeqnal, and one of

the aoalca ia loaded ; a bodj whoae true weight ia PIbs. ap-

(leara to weigh IKlbt. when placed in one scale, and W Iba.

when placed in the other scale; find the ratio of the arma
and tbe weight with which the acale ia loaded.

IF'-P IFTF'-P*
BesuUs. j>_|y ; p_ jy

.

3. A triangular lamina ABC, whoae weight ia TT, is sus-

pended bj a string fastened at C; find the weight which
mnat be attached at B that the Terticai through maj biaeet

the angle ^6^.

3 a

4. Two equal weights are suspended by a string passing

freely over thrae tacks, which form an isosceles triangle whose
baae is horiaontal ; find the vertical anffle when the presanre

on each tack is equal to one of the weights. BsmmmL I2(f,

5. A uniform heavy rod, at a given point of which a
^ven weight is attached, is sustained at one end ; determine
Its length when the force which applied at the other end will

keep it horizontal is least.

6. ABOC, DBF are two horizonUl lovers without weight

;

B, F tlii-ir fiilcrums: the end D of one lever rests on the

end C c»t' tiie otlicr; UK is a rod without weight suspended bj
two equal parallel strines from the points E, O. Prove that

a weight P at A will balanoe a weight W placed anywhere
on the rod //A", provided

BF BG , P ^
DF" BC W^AB

13—2
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7. If the axis about which a wheel and axle turns coin-

cide with that of the axle, but not with the axis of tlic wheel,

lind the greatest and least ratios of the power and weight

necessary for equilibrium, neglecting the weight of tlic ma-
chine.

8. In the system of pullies where each string is attached

to the weight, let one of the strings be nailed to the block

through which it passes, then shew that the power may be

increased up to a certain limit without producing motion.

If there be three pullies, and the action of the middle one

be checked in the manner described, find the tension of each

string for given values of P and W»

9. A weight to is supported on an inclined plane by two

forces, each equal to — , one of which acts parallel to the

/^^ base. Shew that equilibrium may be possible when the in-

jA/^clination of the plane is not greater than 2 tah"^ (- j , n being

a positive integer.

10. A weight is suspended from the two ends of a straight

lever without weight whose length is 5 feet, by strings whose
lengths are 3 and 4 feet. Find the position of the fulcrum

that tlie lever may rest in a horizontal position.

Result. At a distance SJ feet from that end of the lever to

which the longer string is fastened.

11. A uniform steelyard AB^ having a constant weight P,

and a scale-pan of weight hP^ suspended at B and A respec-

tively, is used as a balance by moving the rod backwards and
forwards upon the fulcrum C, on which the whole rests.

Shew that the beam must be graduated by the formula

AC=—^±4^.^i?,
n + A; + ^ +1 '

the weight of the rod being ifc'P, and n being each of the

natural numbers 1, 2, ^, ... taken in succession.
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12. AB U a rod with * * :ht capable of tin

about itA rxtromity A, - fixwl ; ^7> in :.

• •
; ' :

1 1 ' • '
'

.
• i . . : 1 ? - ! : 1 1

•
! . X-

::;. -" a-' to lilt 11 !i.' .^ lit;

''in the direction 6'-4, lind the force

\wi.i..t Uk., '. .. »i>jilicU at D in order to prodace equilibrium.

13. A lever withont wci^^ht in the form of the arc of a
rial', havin;^ two weights P and Q iiupended from ita ex-
trill) it 1(8, n*.4ta with ita convexity downwards on a horixon-

tal pl.nic; determine the (K>8ition of equilibrium.

l:,.snU, Let a bo the an;rl ' ' ' the arc Bubtcnds at the

tvntn- of the circle, ^ the ii m to the vertical of the

radius at the extremity of which V is suspended ; then

/t Osina

14. The sides of a rliombus ABCD arc hinged together
.'it tlu angles; at A and C are two pullinc: forces (P^ P)
.h-uuj: in the diagonal AC; and at B and D there are two
other pulling forces (Q, Q) acting in BD; shew that

cosBAD^^pr^'

lli, AB, BC are two equal and uniform beams connected

by a hinge at B; there is a fixed hinge at ^ ; a string fast-

ened at C passes over a pully at D and is attached to a
weight P; AD is horizontal and equal to twice the length of

cither beam ; shew that if P be such as to keep BC horizontal

PaTT.VSi ^^^ tan^-3tan^B W2, where ^ and ^ arc

the angles which AB, CD mnko with the horizon, and 2 IF

the weight of each beam.

16. A string u4PC/)J?P i^ ;iitar;.. l t . tho <vntn- ^ of a
pully whose radius is r; it tiitn |.a-s. s n\, r :i lixci point B
and under the pully which it touches at tlu |'«iiit- ( ' and />:

it afterwards passes over a fixed point E aiul Iiaa a weight P
Httnt lied to ita extremity ; BE is horizontal and « Jr, and
DK is vertical ; shew that if the system be in equilibrium the

weight of the pully is }P, and find the distance AR
Result, -4J9-r—r;.

3 yi
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17. Three uniform rods rigidly connected in tlic form of a
triangle rest on a Bmootli sphere of radius r ; .shew that the

tangent of the inclination of the plane of the triangle to the

horizon is -77-i— tv t where a is the distance of the centres of

the circles inscribed in the triangle it«elf and in tho triangle

formed by joining the middle points of the rods, and p is the

radius of the circle inscribed in the triangle.

18. If a steelyard be constructed with a given rod whose
weight is inconsiderable compared with that of the sliding

weight, the sensibility varies inversely as the sum of the

sliding weight and the greatest weight which can be weighed.

19. A heavy equilateral triangle hung up on a smooth
peg by a string, the ends of which are attached to two of its

angular points, rests with one of its sides vertical ; shew that

the length of the string is double the height of the triangle.

20. Three equal heavy spheres lying in contact on a hori-

zontal plane are held together by a string which passes round
them. A cube, whose weight is W, is placed with one of its

diagonals vertical so that its lower faces touch the spheres

;

shew that the tension of the string is not less than ^"^^ •

3 V »'

21. A roof of given span is to be constructed of two beams,

which are to be connected at the vertex by a single pin, and
the weight of the roof would increase in proportion to the

length of the Ixiams ; what will be the angle of inclination to

the horizon, when the whole pressure on the wall is the least

possible ?

Shew that the direction of the line of pre.^suro will tlien

make the same angle with the vertical line which the beam
makes with the horizontal line.

22. An endless string supports a system of equal heavy
pnllies, the highest of which is fixed, the string passing round

every pully and crossing itself between each. If a, y9, 7, &c.

be the inclinations to the vertical of the successive portions of

string, prove that cos a, cos)9, cos 7, &c. are in arithmetical

progresnon.
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2X Tlirf« eqoal heaTT ojlindart, fArh of wnicii tovchet
tlic other two, are bound tog^ker by a utrin^ and laid on %
)i r / !\tal table fto that their aicea are horiaonul; the tewmm
nt tiir ittrtng bemg giTeo^ find the preaeores between the

cylinders.

ir
ResuU*, The horizontal praMiure "r-^^-r-, the other

W * ^^
7*+ n.; where 7* ia the tension of the string, and JTthe

weight of each cylinder.

24. A string: of equal spherical beads is placed upon a
smooth cone havinir its axis vertical, the beads being just in

contact with cac' %o that there is no mutual preasore

l>otwetMi them. 1 tonnion of the string ; and deauee the
limiting value when the number of beads is indefinitely great

2.5. A smooth cylinder is supported on an inclined plane

with its axis horizontal, by means of a string which, passing

over the upper surface of the cylinder, has one end attached

to a fixed point and the other to a weight W which hanga
freely ; if a be the inclination of the plane to the horizon,

and 6 the inclination to the vertical of that part of the string

which is fiMtened to the fixed point, the weight of the

cylinder ia

^^
>ni^coa(a + ^^

auia

26. An incxtenstble string binds tiphtly topjether two
smooth cylinders whose radii are given; find the ratio of the

pressure between the cylinders to the tension by which it ia

produced.

liesulL ' ^
; where r, and r, are the given radii.

27. A ring whose wci;;ht is P is moveable along a smooth
rod inclined to the horizon at an angle a; another rin^ of

weii^ht F is moveable alone a rod in the same vertical plane
M tlie former and inclined at an angle a' to the horizon ; a
Atrin^ which connects these rings paasea through a third ring

of weight 2 IV; ahew that the system oannot be m equilibrium

unless

Ptan a - P'Un a + Tr(tan a - tan a) -0.
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28. A ball of given weight and radius is hung by a string

of given length from a fixed point, to which is also attached
another given weight by a string so long that the weight
hangs below the ball ; find the angle which the string to

which the ball is attached makes with the vertical.

Result. Let Q be the weight of the ball, P the weight
which hangs below the ball, a the radius of the ball, I the

length of the string ; then the inclination of the string to the

vertical is sin-(p^.^).

29. A right cone whose axis is a and vertical angle is

2 si^* A/f^) i^ placed with its base in contact with a smooth

vertical wall, and its curved surface on a smooth horizontal

rod narallcl to the wall; shew that it will remain at rest if

the distance of the rod from the wall be not greater than a

nor less than -

.

7

30. A paraboloid is placed with its vertex downwards and
axis vertical between two planes each inclined to the horizon

at an angle of 45" ; find the greatest ratio which the height of

the paraboloid may have to its latus rectum, so that, if it be

diviaed by a plane through its axis and the line of intersec-

tion of the inclined planes, the two parts may remain in

equilibrium : also find the least ratio.

Result. Let h be the height and 4a the latus rectum ; then

the greatest and least ratios are determined respectively by

3L Three bars of given length are maintained in a hori-

zontal position, and tied together at their extremities so as

to form a horizontal triangle ; and a smooth sphere of given

weight and size rests upon them. Find the pressure of the

sphere on each bar.
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82. < h\o end of a string is fantened to i .th

vertical wall, the uther to a point in the i tlio

base of a cylinder; the cylinder ii in equilibriuiu, having a
point of itj« upper end in contact with tlio wall ; find the

distance of this |x)int below the point in the wall to which
the string is fastened.

ReauU. Sappoee » the required distance, I tlie length of

the strin;^, h the height of tlic cylinder, h the diameter of its

base; then

.'13. The ends of a string are fastened to two fixed points,

:iii(l from knots at given points in the string given weights
arc hung; shew that tlie horizontal component of the tension

is the same for all the portions into which the string is

divided by the knots. Shew also that if the weights are ^1
r{ual the tangents of the angles which the successive portions

ot the string make with the horizon are in Arithmetical Pro-
^'reasion. (Such a system is called a Funicular Polygon.)

34. Two uniform beams loosely jointed at one extremity

are placed upon the smooth arc of a parabola, whose axis is

vertical and vertex upwards. If / be the semi-latos rectum
of the parabola, and a, b, the lengths of the beams, shew that

they will rest in equilibrium at right angles to each other, if

and find the position of equilibrium.

35. A quadrilateral is formed by four rigid rods jointed at

the ends ; shew that two of its sides must iS parallel in order

that it may preserve its form when the middle points of eitlier

pair of opposite sides are joined together by a string in a state

of tension.

36. Four rods, jointed at their extremities, form a quadri-

lutrral, which may be inscribed in a circle; if they be kept

in ciiuilibrium by two strings joining the opposite anguliur

points, shew that tlie tension of each string is inversely pro-

portional to its length.

37. Four equal and uniform heavy rods being jobted by
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hinges so as to form a snnare, two opposite angles are con-

nected by a string; this frame-work stands on a fixed point,

the string being horizontal ; find the tension of the string.

JUsult. Twice the weight of a rod.

88. Four equal and uniform heavy rods are connected by
hinges ; the system is suspended by a string attached to one
hinge, and the lowest hinge is in contact with a horizontal

plane ; find the tension of the string and the pressure on the

plane.

Jiesult, Each is twice the weight of a rod.

39. A regular hexagon, composed of six equal heavy rods

moveable about their angular points, is suspended from one

angle which is coimected by threads with each of the opposite

angles. Shew that the tensions of the threads arc as \/3 : 2.

Find also the strain along each rod.

40. A regular hexagon is composed of six equal lieavy

rods moveable about their angular points ; one rod is fixed in

a horizontal position, and the ends of this rod are connected

by vertical strings with the ends of the lowest rod ; find the

tension of each string.

Result, I W\ where W is the weight of a rod.

41. Suppose that in the preceding Example each end of

the fixed rod is connected with the more remote end of the

lowest rod, so that the strings instead of being parallel are in-

clined at an angle of 60° ; find the tension of each string.

ReauU. W^Z.

42. A regular hexagon is composed of six equal heavy
rods moveable about their angular points, and two opposite

angles are connected by a horizontal string ; one rod is placed

on a horizontal plane, and a weight is placed at the middle

point of the highest rod ; find the tension of the string.

Result Let IT be the weight of each rod, and W the

weight placed on the highest rod ; then the tension is
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CHAPTER X.

TRICnOH.

171. In the inTettigations of the preceding^ Chapter, we
have mippoflcd that the turfaccn of the bodies m contact are

porfeetly tmooth. Dy a gmcoik surface is meant a snrfaoe

wiiicli oppoaes no reatAtanoe whatever to the motion of a bodj
u|M)n it. A surface which does oppose a resistance to the

motion of a body upon it is said to be rmtgk In practice it is

found that all bodies are more or less rough.

The friction of a body on a surface is measured by the

h:\!^i force which will put the body in motion along the

172. ('->ul'»inl) mad.' a s.'rl«-» <.f rxj)*riiivMit'< iH>on the fric-

tion of Innlii'.-* ftguiiKst v'Ac\i ntlnr ami ilr«lu«M<l the following

laws. MSmoirm de§ Savans Etrangert^ Tom . x

.

(1) The frieUon vartei a$ the normal preMnure whm tke

materials ofthe narfaeee in contact remain the $ame* When
the ]>res8mes are veiy mat indeed, it is found that the fnc>

tion is somewhat less than this law would give.

(2) ThefricUon is ind^tendeni ofthe extent of the eurfaem
tn eoniaei eo long ae the normal preeenre remains the sojus.

When the surfaces in contact are ejctremely small, as for in-

stance a cylinder resting on a surface, tuis law gives the

friction much too great

Thttie two laws are true when the body is on the point of
movitv? and also when it is actually in motion ; but in the

( aM4> of motion the magnitude of the friction is not always the

same as when the body is in a state bordering on motion

:

when there is a difference the friction is greater in the state

bordering on motion than in actual motion.

^3) Thefrietum is independeni rftke velocity when the body
is III motion.
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It follows from these laws that if P be the normal pressure

between two surfaces, then the friction is ftP, where /x is a

constant quantity for the same materials and is called the co-

effijcient of friction.

The following results, selected from a table given by Pro-

fessor llankine, will afford an idea of the amount of friction as

determined by experiment ; these results apply to the friction

of motion.

For iron on stone fi varies between '3 and '7.

For timber on timber '2 and '5.

For timber on metals '2 and '6.

For metals on metals 15 and '25.

For full particulars on this subject we refer the reader to

Coulomb's papers, and to the Memoirs published in the Mt-
motres de. VListitut^ by M. Morin ; see also Rankine's Manual

of Applied Mechanics, and Moseley's Mechanical Prinriphs

of Engineering and Architecture,

173. Angle of Friction, Suppose a body acted on only by
its weight to be placed on a horizontal plane and the plane

to be turned round a horizontal line until the body begins to

slide. Let W be the weight of the body and a the angle the

plane makes with the horizon. The pressure of the body on

the plane will be equal to the resolved part of its weight

perpendicular to the plane, that is to ITcos a. The friction

18 equal to the resolved part of the weight parallel to tlic

plane, that is to IF sin a. If /* be the coeflScient of friction,

we have
IT sin 0L = fiWcosa-y

therefore tan a = /x.

This experiment will enable us to determine the value of the

ooefiicient of friction for different substances. The inclination

of the plane when the body is just about to slide is called

the angle offriction.

174. In Art. 32 we have found the condition of equilibrium

of a particle constrained to rest on a smooth curve ; we proceed
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to the caM ofa particio on a rough eurre. Soppote the enrm
a piano curve ; let X, F be the forces which act on the par-

ticle {Mirallcl to the axca of i and y exclusive of the action

of the curve. The sum of the resolred parts of X and Y
along tlie tangent to the cur\'e is

ydx yd;/

^^ds^^ ds'

The sum of the resolved parts along the normal is

dy ^dx>

^G^g-'-S-
If fi be the coefficient of friction the greatest frirt irtn capable

of being called into action is

"(^S-'-S)-
Hence, the condition of equilibrium will be that the

value of -Y ^ "^ ^
rf»

™^* ^ ^^^ ^^'^ ^® numencal value

o( ^(Xg- ""^5") » ^>t'»oat regard to sign in cither case.

This may be conveniently expressed thus,

(jr-J + rJ)'mu,tbei.«th«M-(^g-rJ)'.

We may exhibit this condition in a different form, as will be
seen in the- following Article.

1 75. Next let the cur\*c be of double curvature. Let /*

denote the resultant force acting on the particle exclusive

of tlie action of the curve ; Jf, x , if the components of P
parallel to tlie axes ; /, m, fi tlie direction cosines of the tan-

gent to the curve at the point where the particle is placed ; 6
Uie angle between this taneent and the airection ot P. The
xesolvM nart of P along the tangent is P cos i?, and that at

right angles to the tangent is P sin 0, Hence, if /i be the oo-

cmcicnt of friction, we must have for equilibrium

Pco96<fiPam$;
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thereforo cos* ^ < /ti* ( 1 — coa' 0) ;

therefore cos* 6 < , 7 ^ :

therefore ( ^^ j <;^..

It is easy to shew that this result includes that of the former

Article by putting n = 0, i/i = ^"^ , Z= .- ,

176. A particle is constrained to remain on a rough sur-

Juce: determine the condition of equilibrium.

Let P be the resultant force on the particle exclusive of

the action of the surface ; (j) the angle between the direction of

P and the normal to the surface at the point where the particle

is placed ; u = the equation to the surface ; x, y, z the co-

ordinates of the particle. The resolved part of P along the

normal is Pcos ^^ and that at right angles to the normal is

Psin
(f).

Hence, for equilibrium we must have

P8in</></APcos</>;

therefore sin* <f><fi^ cos*
;

therefore

therefore
ax ay az /

177. In the following Articles of this Chapter we shall

investigate certain equations which hold when the equilibrium

of different machines is on the point of being disturbed. The
equations in such cases will involve the forces acting on the

machine and /a the coefficient of friction. When we have
found one of these limiting equations^ we can draw the follow-

ing inferences

:

(1) If in order to satisfy the equation for a given set of

forces it is necessary to ascribe to /i a value greater than iis
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extrane valae for the tabttanoet in qoestion, whicL id Inowti

by experiment, equilibrium i» impossible.

(3) If the limiting oquAtion can be satisfied by atcnbing
to /* valuca leas than its extreme value, equilibrium wtay to

(possible. We tmj may be possible, because the limiting enna-

tion may nr' * *ho. only equation of equilibrium, ana of

course for t tm it is necessary that all the spprupriato

i'<pi ifj.iis be saiuticd.

W'i- may illustrate the sabject of friction by the solution of

the foUowm^ problem

:

A weight H is placed oo a rough horiiontal plane ; a string

is attached to H^and passes over a fixed smooth pullv, and
to the other end of the string a weight P is attachea. l>eter-

mine the limiting inclinations to tlie vertical of the string

which passes from IK to the fixed pully, when there is equi-

librium.

\jfiX $ be the inclination of this string to the vertical. The
tension of the string is equal to P, The body on the rough
horizontal plane is acted on by its own weight, by tJic resist-

ance of the plane, which is at right angles to the plane, and
by the friction along the plane : denote the resistance by R^
and the friction by fiR,

Then resolving the forces horizontally and vertically wo
have

/ii? = P8in^,

;? + Pcostf-Tr.

licncc, eliminating /?, we have

M(ir-Pcos^-Psin^;

. - Psing
tlicrcforc ^" y-Pcusrf

sin^

"ife-ooarf'

W
where k is put for -p •

We may, without any real loss of ^cralitv, suppose that

^ is a positive an^lo not exceeding a nght angle.
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It may be shewn tliat the difiercntial cocilicicnt of r tj
iC *"" cos V

with respect to B is -n tyt* ; this result will be useful as
*

(^ - cos By
we proceed.

I. Suppose W less than P, so that k is less than unity.

Now /* may have any value from zero up to a certain limit,

known by experiment, which we shall denote by tan €. Thus
at the limit

sin B
tan € = -,

7j

,

k — cos 6/

therefore cot e + cot ^ = -r^

,

sm 6

therefore sin (^ 4- e) = k sin e.

Let a be the least angle which has k sin e for its sine, so

that

sin (^ + e) = sin a.

And as a is less than € the only solution admissible here is

^ + € = 7r — a.

The expression j ^ is not positive unless 6 is greater
tc ~~ cos V

than the value which makes cos B = k; and for greater values

of B the expression decreases as B increases, and has its least

value with which we are concerned when ^ = r ; its value

1 P
then being y , that is, ,«..

Hence we have the following results

:

"IK
P

If the coefficient of friction is less than tjv there is no posi-

tion of equilibrium.
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p
If the ooeffieiant of (notion i« greater than «» eqaiUbriam

will sabffist for all raluM of between tt - o - e an^ - .

II. Suppoae W greater than r, so that k is greater man
unity.

In thia caie a ia greater than f, and the equation

sin (^ + «) — sin a

]ia.s tun M.liitioiKs which may be admiaaible, namely,

^+€ — 0, and ^ + €-ir— o.

The cxpreasion t -a ia always poaitive, and aa 6 in-

rrt aAea from to - the expression bereasea np to a maximnm

value and then decreases. The maximnm valne is when

cos^-l. and ia
;^(jtl)» ^* »•» ^(W'^Py

Hence we ahall obtain the following results

:

p
If the coefficient of friction is not less than ii-ari^ pWi »

equilibrium will subsist for all values of d between and - .

p
If the coefficient of fnciiou is leas than -^^ equilibrium

will subsist for all values of between and a— e.

p p
If the coefficient of friction lies between •«» and -jr^s^—bk i

equilibrium will subsist for all valoea of $ between and

a - «, and between w — a — € and — •

III. Suppose ir-iP. In thia ease there ia equilibrium

when ^«0, no friction being then exerted; and besides this

we have results which may be deduced from those in the

first case. Here a"*c; if the ooe£kient of friction is less

T.8. 14
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than unity there is no other position of equilibrium ; if the

coefficient of friction is greater than unity equilibrium will

IT

also subsist for all values of B between 7r — 26 and -

.

Or the results for the third ease may be deduced from those

given in the second case, observing that a = €.

Equilibrium of Machines toith Friction,

178. Inclined Plane,

Let a be the inclination of the plane to the horizon,

pose a force P^ acting at an in-

clination 6 to the plane and the

body on the point of moving down

the plane. Let R be the normal

action of the plane, ^iB the friction

which acts up the plane, W the

weight of the body. Resolve the

forces along and perpendicular to

the plane; then, for equilibrium

we have
Pj cos ^ + /iJ^ -W sin a =

i2 + Pj8in^-Trco3a =

Substitute in (1) the value of R from (2) ; thus

Sup-

(1),

(2).

-P.=
TTsina — /xTTcosa

cos 6 — fismd

Next, suppose P, a force acting at an inclination 6 to the

plane, sucn that the body is on the point of moving up the

plane. Friction now acts down the plane, and we shall find

p _ TTsing-f /LtTTcosa
* ""

cos ^ + /x sin ^

This result may be deduced from the former by changing the

sign of /i.

There will be equilibrium if the body be acted on by a

force P, the magnitude of which lies between P^ and P,.
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Suppose « to be tlie angh offiidum, so that

., „ IT tin a — Un f If cos a YT tin (a - 1

)

men l\ " A :

—

^ » rx ;— «.

• OM^-Un f sin $ co« (^ + f

)

Suppose we roqoire to know the least force which will

rtutfice to prevent the bod^ from rooring down the phine.

The exf^retsion for P^ will be leiuit when coe (^ + #) is

greatest, that is when ^4-^ = 0, that in wlitn 0m,^t: and
then P,-irsin(a-f).

Again, suppose we Tequire to know the lea^t force wiiich

will suffice to more the body up the plane. The expression

for /\ will be least when cos (^~ c) is greatest, that is when
^-€; and then P,- IT sin (« + «)*

The following problem will illustrate the subject of the

Inclined plane witn friction. A weight W is placed on a
rough inclined plane, and is attached by a string to a point

above the plane : determine the limiting positions of equi-

librium.

Let a be the inclination of the plane to the horizon, the

inclination of the string to the plane, 2^ the tension of the
' " **

i -stance of the plane. Since the body is con-

1 at a constant distance from the fixed point,

it mu^l be hituated on the circumference of a certain circle

described on the plane ; suppose the angular distance of the

position of the body from the lowest point of the circum-

ference. The forces which act on the Dody at right angles
to the plane are FT cos a, Tsinff, and li. Thus

iJ+rsin/J-fTcosa-O.. 1).

The forces w- ' '
^ on the body in the plane arc IK sin a,

rcos/9, and ion fJL RcAolre these forces along the
nulius and tangent at the point of the circumference at which
the body rests. Thus

rcos/9-TFsinaco6^«0.. 2),

fiuB-TTsinasin^-O.. (S).

14—

a
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From (1) and (3) we obtain

fiTsin p = /xTFcos a - IFsin a sin ^;

hence by (2)

yLitan;9 =
/i cos g — sin a sin

sin a cos 6

rr,, - sin a sin
Therefore ii = ; —5

b
006 a — sm a tanp cos ^

__ cot ^ sin ^
""

cot a cot /3 — cos ^

'

This result may then be developed in the manner already

exemplified in Art. 177,

179. Lever with Friction,

Suppose a solid body pierced with a cylindrical hole through

SML

which passes a solid fixed cylindrical axis. Let the outer

circle in the figure represent a section of the cylindrical hole

made by a plane perpendicular to its axis, and the inner circle

the corresponding section of the solid axis. In the plane of

this section, we suppose two forces P and Q to act on the

Bolid body at the points A and B. Also at the point of con-

tact C there is a normal force B and a tangential force F.

These four forces keep the body in equilibrium.

Since B and i^have a resultant passing through (7, it fol-

lows, by Art. 58, that the resultant of P and ^ must also pass
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through C. Let 7 be the Miria between tlie diiectioiifl of

Pend 9, and iSf the reeultant of P and Q ; then

jSf*-P'+^+ 9PQoot7.

IM the direction of ^T be repreeented by the dotted line

makiit:: an angle 6 with R. Then since i', B, and i9 are in

equilibrium,

i?-5coe^ (1%

F'^SbIuB

I'or the limiting poaition of equilibrium Fm^^ii ; mcrciorc

tan^-M (8).

We may now find the relation between Pand Q, by taking

inomcnUi round the centre of the exterior circle ; let r be the

radius of this circle ; a and b Uie distancea of A and B from

iu centre ; a and the anglea which the directiooa of Pand Q
make with theae distanoea ; then

ibaina+/>-i^8in/9;

or by (2) and (3),

Pa sin a + —I^(P«+^+2PCco87)*-0*8in/9...f4\

If wo .^appose the friction to act in the opposite uirccuon to

that in tho figore, we shall obtain

F^iuilihrium will not snbsist unless P, Q, o, ft, a, /9, 7 are so

adjusted that (4) or (5) can be satisfied witliout giving to /i

a value greater than its limit known by experiment

The following form may be given to the limiting equation.

Let a be the leneth of the perpendicular from the centre of the

outer circle on the dotted line. Since F, B, and ^9 are in eqoi-

librium, we have by taking moments

therefore —» » «.
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180. Wedge unth Friction. (See Art 168.)

Suppose the wedge to be on the point of moving in the

direction in which 2P urges it, ana
assume for simplicity that each face

is similarly acted on by the obstacle.

The forces which maintain the wedge
in equilibrium are 2P perpendicular

to the thick end, R j)erpendicular to

each face, and fiR along each face

towards the thick end. Hence, re-

solving the forces parallel to the direc-

tion of 2P,

F= R 8ina + /xi^cos a (1).

Forces equal and opposite to R and fiR act on the obstacle

at each point of contact. If iJ* be the resultant of R and fiRf

we have
ii' = i2V(l+/i') (2).

Let S be the resolved part of R' along a direction making
an angle t with that of R and {' with that of R" (see Art. 168)

;

then
S^R' cost'

= /if cos i+ fiR sin t (3).

(1), (2), and (3) will give the ratio of P to iiT and of P to S.

181. Screw tcith Friction. (See Arts. 169, 170.)

If the surfaces of the screw are rough it is kept in equi-

librium by Wy P, a system of forces pei-pendicular to the

surface of the groove, and a system of forces arising from

friction. Let R^ denote one of the forces perpendicular to the

surface of the groove, fiR^ the corresponding friction ; then R^

makes an angle a with the axis of the cylinder on which the

screw is raised, and fjuR^ an angle ^ — a with the axis of the

cylinder. Suppose ]V about to prevail over P; then resolving

the forces parallel to the axis of the cylinder, and taking

moments round it, we have

W-^R (cos a + fA sin a) = 0,

Fa — 2i? (sin a — ft cos a) i = 0.
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Thcriforc
P h (ain tt - /i cot tt)

ir"'a(oota-|-/*Biiia}

h Un a — M
o 1 +M t*!^^

--Un(a-€),

if ^«Un€.

If we rappote P about to prevail over W, we shall find

aimilarly

EXAMPLES.

1. A rectangular priflm, whoee breadth vi 3.83 feet and
thii kncAs leas than 3 inches, is laid with its axis horisontal,

;in<I with its smaller face on an inclined plane where the

o»t tin 1. rit .»f frirtiMii is
-fj.

Shew that if tne inclination of

tin- |>laiu> in graJuiillj increased, the prism will roll before it

will slide.

2. If the roughness of a ])lanc which is inclined to the

horizon at a known angle be such that a bod^ will just

re^t supported on it, find the least force requisite to dLraw

the body up.

Uejtulu, Let a be the inclination of the plane, W the weight
nf tix l>ody ; then the least force is W tin 2a, and it acts at an
iucliiiation a to the plane.

8. Two rough bodies rest on an indiiK I ]>1ane, and are

connected by a string which is narallcl to tho I'lunc; if the

ooeffieient ot friction be not tne same for both, find the

greatest incliuatiou of tin* plane which im eotmistiuit with equi*

librium.
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4. A rectanffular table stands on a rough inclined plane,

and has two siao^ horizontal ; if the coefticient of friction of

the lowest feet be /a and that of the others be /x', find the

inclination of the plane when the table is on the point of

sliding.

5. Two unequal weights on a rough inclined plane are

connected by a string which passes through a fixed pully in

the plane ; find the greatest inclination of the plane consistent

with the equilibrium of the weights.

BesuU. Un« =aiM).
6. A heavy uniform rod whose length is 2a is supported

by resting on a rough peg, a string of length I being attached

to one end of the rod and fastened to a given point in the

same horizontal plane with the peg. If when the rod is on the

point of sliding the string is perpendicular to it the coefficient

of friction is -

.

a

7. Two weights P, Q of similar material rest on a rough

double inclined plane, and are connected by a fine string

passing over the common vertex ; (^ is on the point of motion

down the plane, shew that the weight which may be added to

P without producing motion is

P8in2<^sin(a + )9)

sin ifi — <f>)
sin (a — </>)

'

a, fi being the angles of inclination of the planes and tan
(f)

the coefficient of friction.

8. A weight P is attached to a point in the circumference

of a rough circular ring whose weight is W: shew that the

ring will hang on a horizontal rod in a plane perpendicular to

it with any point of the ring in contact with the rod, if the

coefficient of friction be not less than

1 ,
TV

where n
V(n« + 2n)'

"""'" P-

9. Two equal heavy rings are moveable on a horizontal

rough rod; a string of given length which passes through
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them haa both enclB attached to a given weight: finJ the

greateat poaaible distance between the ringa.

10. Three eciual hemiapherea, baring their baaea down-
warda, are pUcea in contact with each other upon a horisontal

table ; if a smooth spliere of the same anbatanoe and e^nal

radius be placed opon them, ahew that there will be equilibrium

or not, according aa the coe£kient of friction between the

hemispherea and the table is greater or leaa than 1*J2.

11. A uniform rod reata wholly within a rough hemi-
spherical bowl in a vertical plane through its centre, prove
tnat the limiting position of equilibrium will be given bjr the

equation

**°^"aooaOft+t)coaOJ-t)'

(^ 1 ii; the inclination of the rod to the horison, 3^3 the
Hii-lr it subtends at the centre, and tanc the cocflBcient of

friction,

12. A thin rod resta in a horisontal position between two
rou^h plsnea equally inclined to the horiaon, and whoae
inclination to each other is 2a ; if /i be the coefficient of

friction, then the greatest possible inclination of the line of

intersection of the planea to the horizon ia tan'* -A- •
'^ am a

13. A surface is formed hy the revolution of an equi-

lateral hyperbola about one of its asymptotes which is ver-

tical; shew that a particle will rest upon it, supposing it

rough, anywhere beyond the intersection of the surface with

a certain circular cylmder.

14. A heavy particle under the action of gravity will rest

on a rough paraboloid —+ ^«3s, if it be placed on the

surface at any point above the curve of intersection of the

surface with the cylinder -i+ £""/**> ^^ *^ of the para-

boloid being vertical, its vertex upwards, and fi the coefficient

of friction.
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15. A rough elliptic pull^ of weight W can turn freely

about one extremity of its major axis, and two weip^hts, P, Q,
are suspended by a string which passes over the ])ully ; when
in equilibrium its plane is vertical, and its axis inclined at

60" to the horizon, prove that the exccntricity of the ellipse

is equal to

Vl(3Q-f Tr-P)((3-TF-3P)1
((?-P)V3

16. A heavy hemisphere rests with its convex surface on
a rough inclined plane. Find the greatest possible inclina-

tion of the plane.

17. One end -4 of a heavy rod ABC rests against a rough
vertical plane ; and a point B of the rod is connected with a

point in the plane by a string, the length of which is equal

to AB; determine the position of equilibrium of the rod, and
shew how the direction in which the friction acts depends
upon the position of B,

18. Three equal balls, placed in contact on a horizontal

plane, support a fourth ball. Determine the least values of

the coefficients of friction of the balls with each other and
with the plane, that the equilibrium may be possible.

BesuUs. Let W be the weight of each of the three lower

balls, W the weight of the upper, <^ the angle which the

straight line joining the centre of the upper ball with the

centre of one of the lower balls makes with the vertical ; then

the coefficient of the friction between the balls is tan ^ , and
tit

the coefficient of the friction between the balls and the plane

[fIB. Tir' .oiir ^'^ o • ^ ^^^ ^^^ ^^^^^ ^^® equal wc have

sin ^ =-— , so that tan ^ = ^3 - V2.

19. Determine the curve on the rough surface of an

ellipsoid, at every point of which a particle acted on by three

eoual forces whose directions are parallel to the axes of the

ellipsoid, will rest in a limiting position of equilibrium.
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20. BCDti U a sqiuuno board ; a string ia fized to a notnt

A ill a rough wall ana to the corner B of the board, oheir

that th«* board will rest with its piano perpendicalar to tbe

wall, a IK I \\A Hide CD resting against it, if J[C7 be not greater

than fj^UC,

21. A roctanffolar parallelepiped of pvcn dimenHions is

placed with one £oe in contact with a rough inclined plane ;

determine the limits of its position in order tliat ec^uilibrium

may exist.

22. A board, moveable aboat a hnriz :

its own plane, is supported bj rcstir .: u ;i i- lul

/x)ntal table ; find the greatest incUuatiou
oan rest

li'SuU. Let ^ be the inclination of the board to the hori-

son ; tlien tan -> /i^ where /i is the coefficient of the friction

between the board and the sphere.

23. A string PCB passes over a smooth pully C, and
has a given weight P attached to one extremity, while the

other extremity B ia attached to one end of a heavy uniform
brain AB at B. The • 1 A of the beam rests upon
a r.m^'li h.-ri/. .nt4il plane ; linc the position of the beam
when in equilibrium.

24. A hemisphere is sup|)ortc<i by fric; n. •: :' :v\ ]

surface in contact with a horizontal and n :; >
^i |.i:iii, ; uwi

the limiting position of equilibrium.

Ilesult, If ^ be the inclination of the plane base to the

horizon, sm^-y^j^^^.,

25. When a person tries to pull out a two-handled drawer
by pulling one of its handles in a direction perpendicular
to it^ front, find the condition under which the drawer will

stick fiist

20. Determine the con<im«>n imri
'

'i;t

may be supported on a rough vcri .. .: i...
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ftction of any force ; for example, if the coefficient of friction

be 4, find the least number of turns which may be given to

a thread on a cylinder 2 feet long and 6 inches in circum-

ference. BesulU Eight.

27. Two uniform beams of the same length and material

placed in a vertical plane, are in a state of rest bordering

on motion under the following circumstances: their upper

ends are connected by a smooth hinge, about which they

can move freely ; their other ends rest on a rough horizontal

plane, and the beams are perpendicular to each other : find

the coefficient of friction between the beams and the hori-

zontal plane. lleault, /i = J.

28. A straight uniform beam is placed upon two rough

planes whose inclinations to the horizon are a and a', and

the coefficients of friction tan \ and tan X' ; shew that it B be

the limiting value of the angle of inclination of the beam to

the horizon at which it will rest, W its weight, and i?, E the

pressures upon the planes

2 tan ^ = cot (a + V) - cot (a - X),

R R ^ W
cos X sin (a + X') cos X' sin (a — X) sin (a — X + a' + X')

'

29. A heavy right cylinder is placed with its base on a

rough horizontal plane, and is capable of motion round its

axis ; find the least couple in a horizontal plane which will

move it.

30. Two weights of diflferent material are laid on an in-

clined plane connected by a string extended to its full length,

inclined at an angle 6 to the line of intersection of the inclined

plane with the horizon ; if the lower weight be on the point

of motion find the magnitude and direction of the force of

friction on the upper weight.

31. A carriage stands upon four equal wheels
;
given the

coefficient of friction between the axles and the wheels find

the greatest slope on which it can remain at rest neglecting

the weight of the wheels.
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CHAPTER XI,

FLEXIBLE INEXTEM81BLB 8TEI1IQE.

182. A 8TBIN0 IB said to be perfioilff JUxpih when anj
force, however small, which is applied otherwise than along
the direction of the string will change its form. For short-

new, we nae the word JUxibU as equiralent to ferfitUfi
fkoMt. Sometimes the word chain is used as synonTmoos
with Mtring.

string be kept in equilibriom bj two foroet,

'. we aasnme as self-erident that those forces

must I act in opposite directions, so that the

string iio^»..Mo ;..o form of a straight line in the direction of
tlie forces. In this case the tengicn of the string is measiired

hy the force applied at one end.

Let ABO represent a string kept in equilibrium hj a
force T at one end A and an equal force T . ,

at the other end C acting in opposite direc-
^ b ^

tions along the line A C. Since anjr portion AB of the string

is in equilibrium it follows that a torce T must act on AM
at B from B towards C in order to balance the force acting
at A ; and similarly, a force T must act on BC from B to-

wards A in order that BC mtLV be in equilibrium. This result

is expressed hy saying that Ms tennam of the $tnng ts the same
thnmghouL

Unless the contrary be expressed, a string is supposed
tneademaHfU and the lloundarj of a trsnsverse section of it is

supposed to be a cunre, erery chord of which is indefinitely

smalL

183. When a flexible string is acted on by other forces

b<\>ii(lifl one at each end it may in equilibrium assume a
curviUnear form. If at any point of the cunre we suppose
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a section made by a plane perpendicular to tlie tangent, the

mutual action of tlie portions on opposite sides of this ])lane

must be in the direction of the tangent, or else equilibrium

would not hold, since the string is perfectly flexible.

184. A heavy string of uniform density and thickness is

suspended from two given points ; required to find the equa-

tion to the curve in which the string hangs when it is in equi-

librxum.

Let Ay B, be the fixed points to which the ends are

attached ; the string will rest in a

vertical plane passing through A
and B, because there is no reason

why it should deviate to one side

rather than the other of this ver-

tical plane. Let ACB be the form

it assumes, G being the lowest

point; take this as the origin of

co-ordinates ; let P be any point in

the curve; CM^ which is vertical,

= y ; MPJ
which is horizontal, = x

;

CP = s.

The equilibrium of any portion CP will not be disturbed

if we suppose it to become rigid. Let c and t be the lengths

of portions of the strinp: of which the weights equal the

tensions at C and P. Then CP is a rigid body acted on
by three forces which arc proportional to c, s, and t, and act

respectively, horizontally, vertically, and along the tangent

at P. Draw PT the tangent at P meeting the axis of v
in T; then the forces holding CP in equilibrium have their

directions parallel to the sides of the triangle PMT, and
therefore bear the same proportion one to another that these

sides do (see Art. 19) ; therefore

therefore

therefore

PM __ tension at lowest point

MT" weight of the portion GP'

dy 8 , c2v 8

dx c

dx c
or -j- = -

dy 8

and ^ =
ds V(c* + 0'

y+c=v(c'+o (i:
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the consUnt added boing inch that jf *• when « » ; there*

fore
!!••» i/»4-5i/r . .(2).

thcrefow — ^logy-^'-^y-^'y^ '. (3).

the constant being choeen ao that x and y yanish together.

The laat equation gives

Transpoee and square ; tliua

•

therefore y + c«- Jc^e' + e ;.. (4).

Al«o #-V((y + c)«-c»j by (2)

- ic (^ -r-) (5).

^Vny one of these five equations may be taken as the equation
to the curve. If in •

- (4) we write y' for y + r, which
amounts to moving ; in to a point vertically below the

lowest point of the curve at a distance c from it, we have

When the ntring is uniform in density and thickness, as in

the present instance, the curve is called the ammum catenary.

185. ToJmdthetefmomcftkewinmgaiattyjHnia.

Let the tension at P be e^ual to the weight of a length t of
the string; then, as shewn in the last article,

tension at P PI ,» _ dt
therefore - — -r-.

weight of CP TM' '^-•-•-
, j^
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But ^ = y* + 2yc by equation (2) of Art. 184, therefore

This shews that the tension at any point is the weight of

a portion of string whose length is the ordinate at that poiri\,

the origin being at a distance c below the lowest point.

Hence, if a uniform string hanc freely over any two points,

the extremities of the string will lie in the same liorizontal

line when the string is in equilibrium.

186. To determine the constant c, the points of suspension

and the length of the string being given.

Let A and B be the fixed

extremities,C the lowest point

of the curve.

OC = c, OM=a,

ON=a\ MA = by

NB = h\ CA = l, CB=-r.

Also let a + a' = A
j

h-b' = k\ (1);

? + ;' = X I

then A, kf X are known quantities, since the length of the string

and the positions of its ends are given. From Art. 184

a m -\

(2).

r = ic(c"-e"'')J

Equations (1) and (2) are theoretically sufficient to enable

ns to eliminate a, a, h, h\ Z, and V and to determine c. We
may deduce from them

^ = }c(e' H-e'^-e'-e'');
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theroforo X -f I: - c (e* — «
"
*),

^ m

therefore X«-F-c»(«* +«' • -2)

therefore V(X'-AO -c («^-0 ^'5\

This 18 the equation from which c is to be lound, but on
accoant of its transcendenUl form it can only be solved

by approximation. If the exponents of « are small, we may
rximiu! by the exponential theorem and thns obtain the ap-

ite yalue of e. In order that the exponents may oe

small, e miut be large compared with h ; since J^
» / >

by Art. 184 it follows that when o is large, compared with

the length of the string, ^ is small, and therefore the curve

does not deviate much from a straight line. Ilcncc, when
the two points of support are nearly m a horizontal line and
the distance between them nearly equal to the given length

of the string, we may conclude that - will be small. In this

case, we have from (3)

therefore V(^*-^ - * + jT3 approximately.

187. To find the equatumM of djuHibrntm wAeii a fiexMe
string u aetii on hy amyfircet*

Let X, y, s be the co-ordinates of a point P of the string

;

let 8 denote the length of the carve BP measured from some
fixed point i? up to P, and fif the length of the arc PQ
between P and an adjacent point Q. Let « be the area of a

T.8. 15
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section of the string at P, and p the density at P; let T be the

tension of the string at P; then T . ^^J > *^^ ^T" ^^^

the resolved parts of T parallel to the co-ordinate axes ; and
the resolved ])arts of tlie tension at Q parallel to the axes will

be, by Taylor's Theorem,

T^ + ^ ( r^] 85 + terms in [h8)\ &c.,

^'Mi^t)^*

^•14, ('I)"-

Let XpK^s, YpKBsy ZpK^s be the external forces which act

on the clement PQ parallel to the axes. The equilibrium

of the element will not be disturbed by supposing it to

become rigid; hence, by Art. 27, the sum of the forces

parallel to the axis of x must vanish ; thus

or S ( ^ s) "^ ^^'^ "" ^ ultimately.

Similarly ^(rj)+r,. = 0,

and K^i)-^"-"-
The product /cp may be conveniently replaced by tw, so

that if m be constant ml represents the mass of a length I

of the string, and therefore m the mass of a unit of length

of the string. If m be not constant, conceive a string having
its length equal to the unit of length and its section and
density throughout the same as those of the given string at

1
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the point {x, y, t), and then m will bo the maas of inch sap>
poaed string.

The clement fit of the string, the equilibriam of which
we have considered^ becomet more nearly a particle the more
we diminish £f ; hence it is sufficient to consider the three

cqaations of Art. 27 instead of the six equations of Art 73.

The three equations which we have found are thcoreticallj

sufficient for determining 7", v, and s as functions of x, remem-

beringthat^-^jl + (^)V(£y}; and when we know

the values of y and s in terms of x, we know the equations
to the curve which the string forms.

188. The equations for the equilibrium of a flexible string

maj be written thus

;

^d*x dT d» ^

Multiply these equations by t- , ^, and ^ respectively and

add ; then, since

wcb.vo ^+«(x|+yJ + z*)-o (a);

therefore r+L(A'$+ F^+ Z^)dli-C0Mt«i»t...(3).
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If the forces are such that m {Xdx + Ydy + Zdz) is the im-

mediate differcutial of some function of a, y, «, as /(a;, y, «),

then
T +/(«, yi «) *= constant.

If the forces are such that their resultant at every point

of the curve is perpendicular to the tangent at that point,

we have

therefore, by (3), T is constant.

In the equations (1) transpose the terms mX^ m Y, mZ to

the right-hand side, then square and add ; thus

Hence if p be the radius of absolute curvature of the curve

formed by the string, and Fmhs the resultant external force

on the element Is, so that F"" = X^+ Y'^Z\

(f)'Hf)"--^' ">

tJT 1

If T be constant -7- = ; hence in this case mF varies as -

.

as p

From the equations of equilibrium in Art. 187, we deduce by
integration,

T^l~ = -fmZds.

Square and add ; then

!r«= [jmXd8y-^[jmYd8Y-{-[jmZcUY (5).

The constants that enter when we integrate the differential

equations of equilibrium must be determined from the special
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circumsUnoeA of each particaUr problem. Thoi the oo-

ordinatee of fixed poinU to which the ends of the Rtring

«ro attached may be given, and the length of the iitnng:.

Or, bestdca the &roea represented bjr mXla, m Yhtf and mj^
nctiiig on each element, given forces F^ and /*, mar act at

tiie extremitiea of the string ; in this case if 2\ and T^ denote

the values of T at the two extremities of the string, we most
have T^ eqoal in magnitude to F, and opposite to it In

direction, and similarly for T, and F^.

189. From equations (1) of Art 188, eliminate Tand . ;

then we have

X fd*g ds <r« </y\ y [d*t dx d^x dz\

[iff 3$" dil' ds) '^ ^ \<W ds d^ ds)

tliis shews that the resultant external force which acts on an

clement B§ of the string lies in the osculating plane at the

jwint (x, y, s).

190. The general equations of equilibrium become, when
liU the forces are in one plane, namely, that of (x, y),

s(^£)^-^-0' ii^i)--^-' (»)•

Suppose X-0, so that the external force is parallel to the

axis of y ; the first equation gives

T r • a constant, C say,

therefore T-^ («).

3s

Hence the second equation

''SS—>-• <"
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For example; required the form of the curve when its

weight is the only foree aeting on it, and the area of the

section at any point is proportional to the tension at that

point. Here Y is constant and may be denoted by — //, the

axis of y being vertically upwards. And T varies as 7;i, flo

that jr= Xm where X is a constant. Thus from (2^ and (3)

we obtain

Putafor^th«saf(Sy = l.

therefore

g' d^

d^
'^''''

'J

therefore tan"' -^ = - + constant.
ax a

The constant vanishes if we suppose the origin at the lowest
point of the curve ; therefore

^^=tan?;
ax a'

therefore ^ = — loff cos - (4).
a ° a ^ '

Since in this case the area of the section at any point is pro-
portional to the tension at that point, the curve determinecl by
(4) is called the Catenary of equal strength.

Since T=^\m^mag, we have the following result: the

tension at any point is equal to the weight of a length a of

a uniform strmg of the same area and density as the string

actually has at the point considered.

191. The equations (1) of the preceding Article may be
written

rpd:'xdTdx^ Y ^ .,.

^S*fl-"--« «
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Muitipi/ \^i) hj V and (2) hj ^ and fubiraci; thui

from which, since >- -t^ +^^ 0, wc find

'-=l(^g-''f)
1?

(3).

Again^ multiply (1) bj ^l <^ W ^7 ^ ^^ ^^ ! ^^

i""(^£*4')-» <')•

From (3) and (4) by eliminating 7*, ire dedaoe

which is the general equation to the cnrye when given forces

act in one plane.

192. In Art 188 we have found the equations

(f)"-(f)'--- «
Let ^ be the angle which the resultant force w^Fh9 makes

with the tangent at the point (a;, jr, s) ; then
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therefore, by (1),

^- = -mi^co8^ (3),

and therefore, by (2),

{I-\ =m«i^ sin* </> (4).

If the force be such that its direction always passes through
a fixed point, the whole string will lie in a plane passing
through its ends and through the fixed point, for tliere is

no reason why it should lie on one side rather than the

other of this plane. Let r be the distance of the point

(a?, y, z) of the curve from tlic fixed point, p the perpendicular

from the fixed point on the tangent at {x, y, z) ; then (3) and
(4) may be written

f--"-s «

f=^^5 (6).

p r

Hence T da
"^

ppda pda '

therefore log T= constant — logj?,

or Tp=a
Abo, from (5), T= - JmFdr.

Therefore — = - JmFdr.

Put
(f>

(r) for -JmFdr ; then

and from this differential equation the relation between r and
6 must be found.

The equation Tp—C may also be obtained simply thus:

suppose a finite portion of the string to become rigid; this



CEimuL roBCK. S88

portion it acted on bj Uie tensions at its two ends and bj
oiherfonM which all pass through a JtjnJjfoiut; take roomente
round thin fixed point ; hence the product of the tension into

tlie i)eq)cn(UcuUr from the Hxed point on tlic tangent roost

have the same value at the two ends of the finite portion of

the string. Thos 2}> • constant

193. The resnltB of the last Article give ns the form of a

strinff when acted on by any central farce ; these results ma/
also be obtained directly in the following manner.

Let be the centre of force, P a point in the carve, Q an

adjacent point ; r, ^ the polar co-ordinates of P; let t be the

length of the curve measured from some fixed point up to P,

and PQ » &. Draw PL the Ungent at P; and PAT, QN nor-

mals at Pand Q respectively, then PN is ultimately the radius

of curvature at P. Let T denote the tension at P, T-^BT the

tension at Q, FmSa the force acting on the element PQ, which
will ultimately be in the direction OP produced*

Let PNQ^ift, and ^ be the angle between PL and OP
produced. Resolve the forces acting on the element along PL
and PN; then

(r+ 8r) cos if- + Pm^f cos^ - r- 0,

(r+ ST) sin
>f>
- Ai^ sini^ « 0.

Now sin '^ « — ultimately, and cos^• 1.
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Hence the equations become

BT+FmBs cos
<f>
= 0,

dT
or --J- + Fm cos ^ = 0,

T
and Fm sin ^ = 0,

and the solution may be continued as in the last Article.

We have supposed the force repulsive, that is, tending

from 0; if it act towards the figure will be convex towards
and we shall have the results

dT T
-T- — mFcos ^ = 0, TTii^sin <^ = 0.

194. A string is stretched over a smooth plane curve; to

find the tension at any point and the pressure on the curve.

First suppose the weight of the string neglected.

Let APQB be the string, A and B being the points where

it leaves the curve. Let P, Q be adjacent points in the string

;

let the normals to the curve at P and Q meet at ; let ^ be

the angle which PO makes with some fixed straight line, and
d-\-hd the angle which QO makes with the same line. The
element PQ is acted on by a tension at P along the tangent
at P, a tension at Q along the tangent at Q, and the resistance

of the smooth curve which will be ultimately along PO.
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liCt « bo the longth of tho carve meMored from Boroe fixed

point up to P, and PQ fi« ; let JiS§ denote tho restBtanoe of

tho curve on PQ, T the tension at P, 7+ ST* the tennon
at Q. Soppoae the element PQ to become rigid, and reaolve

the forces acting on it along the tangent and normal at P;
then

r-(r+5r)coeW-o. .(i),

jWf-(r+ar)8inW-o (2).

Now coiW-l-^ + ^*-...

hfloce (1) gives bj diviaion bjr id

^-(r+jr)j^-<g.'+....}-o;

therefore nltimatel/

therefore T^^ constant (3).

Also Bt = pBO ultimately, p being tho radios of curvature at P,

therefore, from (2), we have

T
^'l w-

Since T is constant, tho string will not be in eouilibrinm

unless tho forces pulling at its two ends are eaual ; this is

usually assumed as self-evident in the theory of the pullj.

Tho wkoU pressoro on tho carve will be jEdt ; therefore bj
(4), the whole pressure

/:
^ds'^fTje.

Since T is constant, JTd$ » T^ + constant

;

therefore the whole prepare "" ^(^j~^i)» supposing 0^ the
value of $ at A, and B^ the valoe otO MiB.
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Next suppose the weight of the string taken into account.

Take the axis of y horizontal and that of x vertically

downwards. The element PQ is acted on by a tension at P
along the tangent at P, a tension at Q along the tangent at

0, the weight of the element vertically downwards, and the

resistance of the smooth curve which will be ultimately along
the normal at P. Let 6 be the acute angle which the normal
PN makes with the axis of a;, 6 + 86 the angle which the

normal Q^ makes with the axis of x. Let s be the length

of the curve measured from some fixed point up to P, and
PQ = Bs; let The the tension at P, and T+BT the tension

at Q; let mfjBs be the weight of the element, and EBs the

resistance of the smooth curve on the element. Suppose the

element PQ to become rigid, and resolve the forces acting on
it along the tangent and normal at P; then

T- {T+ BT) cos Bd-mgBsBine^^O (5).

ItB8-(T+BT)BinBe-mffB8Coa0 = O (6).

From (5) we obtain ultimately

^^-mgBine (7),
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and from (G)

i^.^ + fN^root^ . (8),

wher« p ia Uie ndias of ciUTatare of the carve at P.

Since tlie conre ia aoppoMd to bo a known curve, t and p
may be suppoaed known functiona of $ ; thna (7) and (h) will

enable ua to find T and It in tenna of 0, Or we may expreaa
T and R in tcrma of the rcctang^ular co-ordinatea of the point
P; for if we denote these oo-ormnates by x and y, we have

thud (1) may be written

dT dx

therefore, ifm be constant,

where C ia some constant ; the value of this constant will be
known if the tension of the string be known at some given
point, for example at A or at B,

Also from (8)

and p and ^ will be known in terms of x and y since the

carve is known.

In the above ni\
-

^ . . .

,

of the curve on lli : .,

normal at P; and in I'unaiug the < uui
of the element of the string we 8api> act
strictly along the normal at P. It is easy to shew that no
error is thus introduced. For the resistance at P is along
the normal at P, and at Q it is along the normal at Q,

'
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the resistance on the clement PQ may be taken to be a force

which acts in some direction intermediate between the direc-

tions of these two normals ; suppose >|r the angle which its

direction makes with that of the normal at P, We should

then write llhs cos >/r instead of Rha in tlie equations (2) and

(6), where -^ is an angle less than hd\ hence in the limit

cos -^= 1 and equations (4) and (8) remain unchanged. Also
the term Rhs sin -^ must be introduced into equations (1) and

(5) ; thus eqimtion (1) becomes

T- (r+ hT) cos Ze - PSs sin >;r = ;

therefore |J-(r+8r)jf-MV...}+7?|sin>/. = 0;

and ultimately ^ = p and sin -^ = ; hence as before

dT ^

Similarly we may shew that equation (7) remains true after

the introduction of the term PBs sin >|r into equation (5).

195. A string is stretched over a rough plane curve; to find
the tension at any point and the pressure on the curve in the

limiting position ofequilibrium.

First suppose the weight of the string neglected. See the

first figure of Article 194.

The element PQ is acted on by a tension at P along the

tangent at P, a tension at Q along the tangent at Q, the re-

sistance of the curve which will be ultimately along the nor-

mal at P, and the friction which will be ultimately along the
tangent at P and in the direction opposite to tliat in which
the element is about to move. Let T denote the tension at

P, T-k-tT that at Q, Ms the resistance, fiRhs the friction;

suppose the string about to move from A towards P. Sup-
pose the element PQ to become rigid, and resolve the forces

acting on it along the tangent and normal at P ; then

r+/tP&-(r+ar) cos 5^ = 0),

Pihs - (r+ hT) sin he^Q (2).
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From (1) wo Hato ultimatcl/

dT ..

and from (9),

thcreforo
p dT \ dT

thcrefbra log7-/i^ + coiuUnt,

therefore r-cw-.

289

(3).

Let r, bo the force which acts on the string at the end A,
and therefore the raluo of T at this point ; and let T^ be the

force at D\ let $^ and 6^ be tho corresponding raloes of ^;

then r.-CV^, 7;-0^;

therefore ^•-^^••"•»>,

and r- 7;«K#-^ r^«-^.

alk)
I
Ait -J- c/« -Jrii^ = irjs^*-'.) </^.

w—1«^<*-*» + constant;

therefore the whole pressure on tho cunre

Next mppoBo the weight of the string taken into aooonnt
Proceeding as in the second case of Art 194, and supposing
the string about to move from ^ to J5^ we bam

r-(r+«r)coaW-myfitsin^ + /LB8f-0 (5).

J?«t-(r+Sr)sinW-«i^oos^-0 (6).
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From (5) we obtain ultimately

-^^fiR- mg sm d,

T
and from (6) i? = — + wiy cos 6

;

dT fiT

P

dl

therefore ^ =
-j;- + mg (ji cos 0-^ Bin 6)

,

therefore p -,— fiT= mg {ji cos 6 — sin 6) p,

jrp

that is -7^ — fiT=mg (ji COB — sin 6) p.

Thus we have a differential equation for findinp^ T, and wo
may proceed in the ordinary way to obtain the solution.

Multiply both sides of the last equation by e"*** ; thus

-g {Te'i^) = mge-f^ (ji cos - sm 0) p

;

therefore Te-*^ =jmge-'^ (jicoa0- sin 0) pd0.

Hence when p is known in terms of we shall only have
to integrate a known function of in order to obtain the value

of T in terms of 0,

196. To form the equations of equilibrium of a string

stretched over a smooth surface and acted on by any forces.

Let 8 be the-length of the string measured from some fixed

point B to the point P; a;, y, z the co-ordinates of P; hs the

length of the element of the string between Pand an adjacent

point Q; mhs the mass of the clement; lihs the resistance of

the surface on this element, the direction of which will be
ultimately the normal to the surface at P; let a, y9, 7 be the

angles which the normal at P makes with the axes ; Xmhs^
Ymhs, ZmBs the forces parallel to the axes acting on the

element, exclusive of the resistance BBs, Hence, in the equa-



BTEIHO ON SMOOTH SCtFAOBi 241

tions of Art. 187, for Xm we roast pot Xm -f i^eoto, and
make tiiuilnr subititutions for Ym ana Zm ; therefore

^(r^)4..Ym4.|Jcoe«-0.. (1),

^(rg)+r-+i2co.^.o.. ;2).

Multiply (I; bjr t, (2) bjr ^, and (8) hy t-, ana oud;

then, since

^oota + g^coa^ + gj 00.7-0,

becaase a tangent to the surface at anj point is perpendicular

to the nonnal at that point, we have, as in Art. 188,

S..(A-§.r*.^2).. <.,.

A^in, multiply (1) by cos a, (2) by cos ^, and (3) by cos 7,

and add ; then

r{^co.a + gcos^ + 2coa7}

+ m{Xcosa+ rcos)8 + Zcoi7) + ll-0...(5).

Let FmS§ be the rcsulUnt of XmBt, Fm^r, Zmit, and ^
the angle its direction makes with the normal to the sariace

at the point (x, y, s) ; then

.Ycoaa + roo8/9 + Zcoa7 • Fcos^.

I.
'

•' radius of absolute canratorc of the carve formed
t

.

J at the point (x, y, t) ; a\ ff, y the angles its

T.a. 16
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direction makes with the axes
; ^ the angle its direction makes

with the normal to the surface ; then

d^x^cosa' d^y cosff' d*z cos 7'

'd^''~J~* ^«" p * ds*'^ p '

Hence (0) becomes

T̂
cos

<f>
+ Fm cos ^fr -^ R =^ (6).

Let w = be the equation to the surface ; then

coaa cosi9 cos 7 ,^

dx dy dz

Hence (1) may be written

^d*x
^ ^ dT dx

^

j)j.jdu

and (2) and (3) may be similarly expressed.

dT
Eliminate -7- and i?JV, and we obtain

as

*('-S^''")(S£-SS)

If we put for T its value from (4), the resulting equation,

together with u = 0, will determine the curve formed by the

string.

It appears from Art. 189 that the resultant of FmSs and
RBs must lie in the osculating plane of the curve at the point
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(X, y, «). If t* tiofi of Fm^ bo always normal to tlic

•urtuce u^O, ace that of RBa ia aUo nonoal to the

surface, it foUowa that the normal to iAe twrfact lies in (Ms

osculating plane lo iks curve. This we know to be a property

of the lines of maximum or minimum length that can be

drawn on a nurfacc between two pivcn points. Hence, w! f-r

a Mtriiitr >« Mtretchcd over a smooth suHace and acted on <

1>\ h arc in the directions of normals to the surface

at i^ of application, it forms the line of maximum
or minimum length that can b« drawn on the auHaoe between

the extrenu* |>oints of its contact with the surface.

When Fmhs is always normal to the surface, it follows

from (4) that T is constant

197. We will now give some miscellaneoua theorema con-

nected with the subject of flexible strings.

I. Rc<iuircd the abacisaa of the centre of gravi^ of an
assigned |>ortion of any string at rest, suppoaing its ends fixc^,

and gravity the only force

This may bo obtained by the ordinary process of integra-

tion, or more simply in the following manner. Imagine any
iH*rti<>n of the string to become rigid: then it is kept in equi-

li))riiim by its weight and tlie tensions at the ends; these

triisions act in the directions of the tangents at the ends.

Ilencr the centre of gravity of any portion must be vertically

over the point of intersection ot the tangents at the extre-

mities of the )K>rtion.

II. Suppose in Art. 192 that the string is uniform, and
that the force is attractive, and varies as the n^ power of the

distance. Thus we may put F^m —^ ; therefore

— - ——7- + constant.
p n + l

In the particular case in which the constant here ii

is icro wc can caailv complete the solution of tlu

We have

1 r^
p' X '

where X is put for ^l!±il

.

IG—

1
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Put - for r: then
u

therefore UJ " ">V^^ '

therefore
de Xu'

Therefore, by integration,

(n + 2) ^ + const. = sin"' (Xtt***)

;

tlierefore -iTi = sin
(
(« + 2) ^ + constant}

.

If we fix the position of the initial line so that r may have

its least value where ^ = 0, we shall determine the constant,

and obtain

r"^ = X8ec(n + 2)^;

or denoting by a the value of r when ^ = 0,

r*** = oT^ sec (n + 2) 6.

III. Suppose a flexible string to be in equilibrium under

the action of a central force. Imagine any portion of the

string to become rigid : then it is kept in equilibrium by the

tensions at the ends and the resultant of the action of the

central force on the elements of the string ; this resultant will

be some single force acting through the centre of force. Thus
the portion of the string may be considered to be in equi-

librium under the action of three forces; and these forces

will therefore meet at a point. Hence we obtain the follow-

ing theorem : The resultant action of the central force on any

portion of the string ts directed along the straight line which

Joins the centre of force with the point of intersection of the

tangents at the ends of the portion.
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IV. Suppon that a 6cxible string it in cqailibrium under

tho action of a eentnd force which varies as the dirtanwi.

Let r be the diitanee of any point from the eeatre of (bioe

;

Xy y the co-ordinatea of the point referred to axes having the

centn* of force as origin. Let the force on an element of the

string' of which the length ia h$ and maaa mB§ aitoated at the

point {X, y) be ftrmht ; then this force can be reaoWed into

fixm^ and t^ymii parallel to the azea of x and y reapeedvelj.

Hence the components, parallel to the axes of x and ^, of

the action of the central force on any portion of tlie string

are fAfrmtis and fifywUb respectiTely, the integrations ex-

teadine over the portion conatdered. Now if x and y be the

co-ordinates of the centre of gravity of the portion, we have

. fsmdt - fsn^

Henee we obtain the following theorem : T%c ttraighl lime

wkkk joimt the centra of orarittf of amy pcrikim cf the etrtmg

to tAe eemire offorce coimeidee with the dnidum oftke resultant

remiredforce em the pariiom.

Hence combining this theorem with that obtained in IIL
we obtain the following property of the flexible string which

is in cqailibrium under the action of a central force varying

as the distance: The centre of gravity of any portion lies om

the straight line whichjoims the centre offoros with liUjpoMl

ofimiersection of the iamfents ai the extremttiee ofthepcrtum.

Thus by II. we see that the property here enunciated will

hold for a uniform string in the form of the curve

r* - a* ace 8^.

V. Two weights are connected by a string which passes

over a rough horizontal cylinder in a plane perpendicular to

the axis: it is required to determine the resultant of the

normal actions between the string and the cylinder in the

state bordering on motion.

The normal action on any element Zs of the string may be
denoted by Rta, and the fri( tion on the element by /i&f ; thos

the friction on the element Itars a constami ratio to the monmal

action, and the directions of the twoforces are at right amglee.
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Let P 1)6 the resultant normal action, and suppose its

direction to make an angle 6 with the vertical ; then the

resultant friction will be /xP, and its direction will make an
IT

angle -—0 with the vertical on the other side of it. Ilcncr,

supposing the string to become rigid, and resolving horizon-

tally,

P8in^-/iP8in(|-^) = 0.

Again, resolving vertically, and denoting by W the sum
of the weights of the system which hangs over the cylinder,

we have

Pcos ^ + /4PC0S (^^e\- W= 0.

Hence we obtain tan ^ = /*,

W

VI. Suppose a heavy string which is not of uniform

density and thickness to be suspended from two fixed points,

and to be in equilibrium. Let t be the tension at any point,

the angle which the tangent at that point makes with the

horizon ; then t cos will be constant. For imagine any por-

tion of the string to become rigid, then the only horizontal

forces which act on it are the resolved parts of the tensions at

each end ; and these must therefore be equal in magnitude

:

therefore

< cos ^ = constant = t suppose (1).

Let w be the weight of the portion of the string contained

between any fixed point and the variable point considered.

Then by resolving the forces vertically we obtain in a similar

manner
tsinO — w = constant

;

therefore w = t tan ^ 4- constant (2).

Again, proceeding as in Art. 193, that is resolving the

forces which act on an element along the normal, we find

--^mcos^ = (3),
P
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whcro tpnla it Uken ai the weight of the element l§, lleooe,

from (1) aiid (8),

P ^

EXAMPLES.

I the common catenary ahew that the weight of the

tween the lowest point and any other point is the

^ ical mean between the sum and difference of the

tenaiona at the two points.

2. If « and are the inclinationa to the horixon of the

tansr<"nU at the extremitica of a portion of a common catenary,

aiui / the length of tiic portion, shew that the height of one

extremity above the other it

the portion is supposed to bo all on the same side oC the

lowest point

3. A uniform heavy chain 110 feet long is suspended from

two points in the same horizontal plane 108 feet asunder;

shew tliat the tension at the lowest point is 1.477 times the

weight of the chain nearly.

4. A uniform chain of length 2/ is suspended from two

fixed points in the same horixontal plane; 3a is the distance

between the fixed points and e the length of chain whose
weight is equal to the tension at the lowest point ; shew that

when / is such that the tension at the points of suspension is the

oi
least possible that tension is equal to the weight of a length -

of the chain, and / and e are detennined by

/-le(s'-s'^ (Z'+ c^<?-aT,
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5. If a uniform chain be fixed at two points, and any
.'number of links A^ By (7, ... be at liberty to move along

smooth horizontal lines in the same vertical plane, prove that

the loops AB, BCy CD, ... will form themselves into curves

which will all be arcs of the same catenary.

6. Three links of a chain Ay' B, and C are moveable
freely along three rigid horizontal straight lines in the same
vertical plane. If when A and C are pulled as far apart as

possible, their horizontal distances from B are equal, shew
that this will always be the case when they are held in

any othei- position.

7. A chain hangs in equilibrium oyer two smooth points

which are in a horizontal straight line and at a given distance

apart ; find the least length of the chain that equilibrium may
be possible.

Result. The least length is hcj where h is the given dis-

tance.

8. Prove that the exertion necessary to hold a kite

diminishes as the kite rises higher, the force of the wind
being independent of the height, and the pressure of the

wind on the string being neglected.

9. A uniform heavy string rests on an arc of a smooth
curve whose plane is vertical, shew that the tension at any
point is proportional to its vertical height above the lowest

point of the string. If the string rests on a parabola whose
axis is vertical, determine the vertical distance of its ends
below the highest point so that the pressure at this point

may be equal to twice the weight of a unit of length of the

string.

Result. The vertical distance is equal to half the latus

rectum of the parabola.

10. One end of a uniform heavy chain hangs freely over

the edge of a smooth table, and the other end passing over a

fixed pully reaches to the same distance below the table as

the pully IS above it. Supposing half the chain to l)c on the

table in the position of equilibrium, compare its whole length

with the height of the pully.

Result, The length is to the height as 6 + 2 V3 is to 1.
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II A nniform hetkry chain in fiut«n«Ml at it« extremitiflf

t ^ of ^tud weighu >v nootb rods

mt. I ':^ in a vertical plane aii<l Ktme angle

a to the vertical ; find the condition that the tension at tka

lowest |>oijit maj be equal to half th" u- • -i* of the chain;

antl ill ili;it case ahcw that the vcrti. icc of the ring*

from tlie point of intersection of the roas n

i cot a log (1 + ^2).

where / is the Ingtk of the chain.

12. The denaitj at anj jpoint of a catenarj of TtfiaMa
denaity yaries as the radiua or<-<i>-v ntiire ; dctormbe the equa-

tion to the catenarj.

lifsulu The cunre in Art lUO.

13. A heavy cord with one rr ' ^-\ to a point in the

surface of a smooth horiaontal c; m paaaea below the

cylinder and carried round over the lop, the other *ng

allowed to hang freoljr. Shew that unless the pot: ch
hangs vertically be longer than the diameter of the cylinder,

the cord will slip off, so as to hang down firom the fixed point

without passing below the cylinder.

14. If a uniform string hang in the form of a parabola

by the action of normal forces only, the force at any point I*

varies as (fiP)"*, S being the focus.

15. If a string without weight touch a given cylinder in

^th part of its circumference and in a plane perpendicular to

its axis, what tension at one extremity will support a weight
of 100 Iba. suspended at the other, friction being supposed to

be ^\)th part of the pressure? To what will this tension be
reduced if the string is wound round Ijth circumferences?

IG. If /A«>i, and a string without weight passes twice

round a post, prove, by taking approximate values of e and w,
that any force will support another more than twenty timet

as great.

17. If two ioales, one containing a weight P and the

other a weight Q, be suspended by a string without weight
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over a rough sphere, and if Q be on the point of descendinp^,

then the weight -^p— put into the opposite scale will make

that scale be on the point of descending.

18. Two equal weights P, P' arc connected by a string

without weight which passes over a rough fixed horizontal

cylinder; compare the forces required to raise P according as

P is pushed up or P' pulled down.

19. Ay P, C are three rough pegs in a vertical plane:

P, (?, R are the greatest weights which can be severally

supported by a weight IF, when connected with it by strings

without weight passing over -4, P, C, over A^ P, and over

P, C respectively ; shew that the coefficient of friction at P
. 1 ,

Q.P
^^^^"Sp-nr-

20. A light thread, whose length is 7a, has its extremities

fastened to those of a uniform heavy rod whose length is

5a, and when the thread is passed over a thin round peg, it

is found that the rod will hang at rest, provided the point

of support be anywhere within a space a in the middle of

the thread ; determine the coefficient of friction between the

thread and the peg when the rod hangs in a position border-

ing on motion, and find its inclination to the horizon and
the tensions of the different parts of the string.

Results. The coefficient of friction is determined by the

equation e**" = J. The inclination of the rod to the horizon

.,24
18 COS - .

25

21. From a fixed point a heavy uniform cliain hangs
down so that part of the chain rests on a rough horizontal

plane ; find the least length of chain that may be in contact

with the plane.

22. A heavy chain of weight W rests entirely in contact

with the arc of a rough closed vertical curve in a state bor-

dering on motion. If tan a be the coefficient of friction,

shew that the resultant normal pressure on the circle is equal

to W cos a, and that its direction makes an angle a with the

vertical.
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23. A heaTjT okain of lenf^ / rests psitljr on s roagh
liorl/oiitnl tabic, aikI tlic rrtimiiider pSSiing over the Fmrjoth

vA'^v . t* t!i.' taV.I.-, 'which ij* rtuindoa off into the fonn of »
Hi'iii IS a) hangs freely down; shew that iff

bu I. .; .v..^... wU tho table consistent with equilibrium,

«(/*+l)-/-iira+a.

24. A hesTy uniform chain is hung round the circum-

fercncc of a rough vertical circle of given radius. How much
<ist one • * ' •' chain hang than the other when it

|)oint ot .^

BeMulL Let a be tho length of the longer piece which
hnngs down, h the length of the shorter piece, r the radius of

the circle, tan /9 tho coefficient of friction ; then

^^^a--rsin2^
"tTrsin2/sJ'

25. A uniform beam of weight W is moremble about a
hinge at one extremity, and has the other attached to a string

without weight which, passing over a very small rouffh ytf
placed vertically above the hmge, and at a distance from it

equal to the length of the beam, supports a weight P\ shew
that if ^ be the >n of the beam to the vertical when
it is juiit on the \ uilling, then

TTsinJ^-Pe ' .

Find also tlie strain on the hinge.

26. One end of a heayy chain is attached to a fixed point

A, and the other end to a weight which is placed on a rough
horizontal plane passing through A^ and the chain han
thn-kUi^h a slit in tho horizontal plane. Shew that if / ^

the length of the chain, a the grentest distance of the weight
tVom .1 at whieh equilibrium is possible, /* the coefficient of

tViotion, and n twice the ratio of the given weight to the

weight of tho chain.
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27. A uniform strinp^ acted on by a central force assumes
the form of an arc of a circle ; determine the law of the force,

the centre of force being on the circumference of tl»e circle.

Result. The force varies inversely as the cube of the
distance.

28. A smooth sphere rests upon a string without weight
fastened at its extremities to two fixed points ; shew that if

the arc of contact of the string and sphere be not less than
2 tan"*

J-J,
the sphere may be divided into two equal portions

by means of a vertical plane without disturbing the equi-

librium.

29. Shew that if a chain exactly surrounds a smooth ver-

tical circle, so as to be in contact at the lowest point without
pressing, the whole pressure on the circle is double the

weight of the chain, and the tension at the highest point is

three times that at the lowest.

30. Two strings without weiglit of the same length have
each of their ends fixed at each of two points in the same
horizontal plane. A smooth sphere of radius r and weight
W is supported upon them at the same distance from each of

the given points. If the plane in which each string lies

makes an angle a with the horizon, prove that the tension of

each is cosec a; a being the distance between the points,
or

31. A uniform heavy chain hangs over two smootli pegs at

a distance 2a apart in the same horizontal plane. When there

is equilibrium, 2« is the length of the chain between the pegs,

which hangs in the form of a catenary, c is the length of a

portion of tne chain whose weight is equal to the tension at

the lowest point, and h the length of the end that hangs

down vertically. If 8s and Bh be the small increments of

$ and k corresponding to a small uniform expansion of the

chain, shew that Bs : Bh = 8,c — h.a : Lc — s.a,

32. A uniform heavy chain is placed on a rough inclined

plane ; what length of chain must hang over the top of the

plane, in order that the chain may be on the point of slipping

up the piano ?
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3d. A nniform rod of Icn^h b haf its ends attached to
tl T (1« of a flexible string without weight of length a ; this

Miiii^' 14 passed over a very small cyliiKlrical pc^^ and when
the rod hangs in its limiting position of equilibrium, the

parts of the string on opposite sides of the peg are inclined

to each other at an angle a. Shew that the coefficient of
friction between the string and peg is

w —

«

^ a-.Vl4'-('*'-6')tan"4«)*

34. AJi^ AC ATO two equal and uniform rods moreable
about a fixed hinge at A, CB a uniform chain, equal in

length to AB ot AC and f- j of its weight, connects the

ends B and C\ shew that in the position of equilibrium, the

angle 6 which either rod makes with the horizon is giren
iiTiiiriiv itimtfl V 1.V t1i<« <^'iuation

11 being large compared with unitj.

35. A heavj uniform beam has its extremities attached to

a string which passes round the arc of a rough vertical circle

;

if in the limiting position of equilibrium the beam be inclined

at an angle of 60* to the vertical, and the portion of string in

contact with the circle cover an arc of 270*, shew that the

coefficient of friction is - log 8.

36. A uniform string just circumscribes a given smooth
circle, and is attracted by a force varying as the distance to

a point within the circle. Find the tension at any point, sup-

poBinff it to vanish at the point nearest to the centre of force,

and shew that the force at the greatest distance

whole pressore on circle

of the string
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37. A heavy atrlng whose length is - a rests on the cir-

cumference of a rough vertical circle of radius a ; if the string

be in a position of limiting equilibrium, and if /9 be the

angular distance of its highest extremity from the vertex of

the circle, shew that

and explain this result when (1 — /a*) e* — 2/i is negative.

Also if fi be such that /9 = 0, shew that the whole pressure

on the curve is to the weight of the string as 2 is to tt/a.
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CHAPTER XII.

FLEXIBLE KXTKNSini.K STi:iN«;S.

198. In the preceding Chapter we ooniidered the equi-

librium of flexible tnexUHgibU string* ; wc now proceed to

Boine propoeitions relative to flexible taMhtUtU strings. Such
strings are also called tlaatie strings.

When a uniform extensible string is stretched b^ a force,

it is found by experiment that the er» '••-• m vanes as the

product of the original length nnd tlic i^ force. Thus
if T represent tlie force, /' the original icugUi, / the stretched

IcM^'th,

VT

w lure X is some constant depending on the nature of the

string.

The fact expressed by this equation is called Hookers law,

from the name of its disooverer.

The quantity X is sometimes called the modulus afelasiieiiy,

VT
In the equation Z-T-— if we put T-X we obtain

/ <- 2/' ; thuA the modulus of elasticity for any uniform elastic

string is equal to the tension required to stretch that string

to double its natural length.

199. Am elastic string has a wetgU atlmckei to one end^ d
isjastetwi ai tke other and hangs verticallg ; determine the ex-

tension oftMe §iru^, taking its own wmgkt into ttoemmL
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therefore

or

therefore

r + hT-T-^Hw^O,
a

-, ,= ; ultimately..
ax a "^

1 = r + constant.

«'

Let A'B' represent the natural length of the string; AB
the stretched length. Let A'P' = x\ P'Q = hx.

Suppose A'P' stretched into AP^ and P' Q' into ^
PQ) let AP^x, PQ = Bx. Let A'B' = a\

to = the weight of the string, and W be the

attached weight.

Let r be the tension at P, and T+hT the

tension at Q, Then the element PQ is acted on

by the forces T and T4- SjT at its ends, and by
its own weight; its weight is the same as that

of P'Qy that is -4tr;

Bm

(1);

The value of the constant must be found by observing that

when x—dy T—W\ therefore

jy=—w + constant

;

therefore T= W+"(-S m-

Also the element PQ may be considered ultimately uniform
and stretched by a tension T; hence, by the experimental

law,

Sx^Sx'(l +
l) (3);

therefore

Integrate; thus

"(1 +
\ ')

i

wx

No constant is required because a:= when x = 0.



8TRIK0 flTBSrcnBD BT A WEIGHT. 257

Let a denote the ttretched length of the string ; then put-
ting x' » a\ we hare

Thus the extension is the tame m would be produced if an
elaatic string of length a\ the weight of which might be neg-
lected, were stretched bjr a weight )V-k-^w ntiiM end.

200. In the solution of the preceding problem we mi^ht
have arrived at equation (2) bv obsenring that the tension at

any point must be equal to the weight of the string below
that point together with IT; but the method we adopted is

more useful aa a guide to the solution of similar problems.
It is perhapa not superfluous to notice an error into which
studenta often fall; since the clement &r is acted on by a
tenaion T at one end, and 7*4-37* or ultimately T at the

other end, 2T is considered the stretching force, and instead

of (3)

^ = &,'(l+\^

i!f iu^'(i. i 1118 wiMiiii uo of no consequence if umjonmtf
adopted, for it would only amount to using ^X instead of X in

(3) ; but mistakes arise from not adhering to one system or

tlic other. It should be obeerved that if a string without

weight be acted on by a force T at each end, it is in the same
state of tension as if it wexefutened at one end and acted on
by a force T at the other.

201. The equations of Art 187, and Art 196 may be at>-

plied to an elastic string in equilibrium. They may also oe

modified as follows, if we wish to introduce the unatretched

length of the string instead of the stretched length.

Let s and Bt represent the natural lengths which become
9 and Sff by stretching ; let mB§ be the mass of an element
before stretching, and mBt the mass of the same element after

stretching; then

as.as'(l+g;

T.8. 17



258 GENERAL FORMULiE.

therefore m ('+?)=-'•

Hence the first equation of equilibrium of Art. 187 may be
written

and the other two equations may be written similarly.

Equation (2) of Art. 188, or equation (4) of Art. 196 becomes

provided vi be constant; that is, provided the string in its

unstretched state be uniform.

1 4- —1 = (;t7 ) J
the last equation may be used to

connect a and «', and thus find the extension of the string.

202. We may apply the preceding Article to the case in

whicii the weight of the string is the only force acting on it,

the string being supposed originally uniform, and fixed at

two ))oints.

In this case X=0, r= -jy, Z= 0, as in Art. 190 ; therefore

i(''S)-» ()•

• ('4)a(''i)->-« w-

dx
From (1) ^ 37 = a constant = m'cg suppose

;

therefore T = m'cg sec -^ (3),

where >/r is the angle which the tangent to the curve at the

point {Xf y) makes with the axis of x.



Henoe (S) giret

(-'?~+)''l"*-; »>•

thnB ««+ (»
+ -x^«^tj-^-c'

006^ cE"^ X das "c'

therefore, bj integration,

No constant is required in the integration if we suppose the

axis of y to pass through the lowest point of the curve, for

there V^«0.

From (4) we may deduce

.in^(l + !^«c^)^.-' (6);

therefore, bj integration,

No constant is required in the int^g;ration if we suppose the
origin of co-ordinates to be at the dista&oe e below tne lowest
point of the curve.

17—2
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From equation (7) we may find sec yfr in terms of y, and
then cos ^ and sin-^^ can also be found ; thus by substituting

in (5) wc could obtain the equation between x and t/: this

equation however would be very complex.

In a particular case we may easily obtain an approximate

value of y in terms of x. Let \ = m'gl ; then (5) may be

written

l + 8in_>/r__ J-JunV'

C08'^

. ^ COS ^Ir -^+!un*
therefore :; r^ = e * *

1+ sm y >

therefore by addition and reduction

2 ?-?Un^ -f-^ttan^

therefore tan' -^ = 1 (c«~
» "" "^— g" e*^ i

c . . i *
Now suppose y is a very small quantity, put u for J (e* — e~ ')

- --
and r for ^ (e« H-e"'*) ; then the last equation gives

tan>|r = M--^tan^ + -j-2ptan«^-r^^,tan»^+...;

from this we can find tan ^{r approximately, and then sec >^
will be known approximately, and by substituting in (7) we
shall obtain approximately y in terms of x.

Equation (2) may also be written

therefore ^,(m'cff^ = m'g;

therefore, hj integration,

^ = 1'.

dx c
'
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here •' denotes the natural length of that portion of the string

which U between the lowest point and the point {x, y),

Henoe for tan^ in (5) and (7) we maj put - , and make

corresponding substitutions for sin ^ and cos ^. Thus (7)

becomes

VCc^+O+^'^-y (^>-

As an example of these formnlm suppose that a heaTT oni-

fomi elastic stnne hangs in equilibrium orer two smooth pen
ill a horizontal puine, and let it be required to find the deptii

of the ciuIj of the string below the Tertex of the corred

l)ortion.

From (3) the tension at any point of the curve is

• W^VCc^+ O.
Let r be the natural length of the portion which hangs over
une of the pegs ; then the weight of this portion is m'gt. Let
a denote Uie unstretched length of the portion between the
vertex and one peg ; then bj equating the two exprestioDS for

the tension, we nave

therefore T-VCc^+O W;
thus from (8) and (9)

,+=i^.y (,o).

Suppose { to be the length to which a string of natural

lengtn V hanging vertically would be stretchra; then by
Art- 199,

^-^(^*^^ (")•

By (10) and (11)

\

1
^•'j''
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Thus the end of the string descends to the depth -^ be-

low the axis of x, and therefore to the depth c f I + q^ )

below the vertex of the curve.

EXAMPLES.

1. Two equal heavy beams, AB, CDy are connected dia-

gonally by similar and equal elastic strings ADy BC: shew
that if the natural length of each string equals AB, and the

elasticity be such that the weight of AB would stretch the

string to three times its natural length, then

J_-JL JL
AB~'BC'^AG'

2. An elastic string will just reach round two pegs in

a horizontal plane; a ring whose weight would double the

length of the string hanging from a point is slung on it

:

shew that if ^ be the inclination of two portions of the string

to the horizon,

Bin2^ = 2(V2-l).

3. An elastic string has its ends attached to those of a

uniform beam of the same length as the unstretched string,

the weight of the beam being such as would stretch the

string to twice its natural length ; shew that when the system

is hun^ up by means of the string on a smooth peg, the

inclination 6 of the string to the vertical will be given by
the equation

tan ^ + 2 sin ^-2=0.

4. Three equal circular discs are placed in contact in

a vertical plane with their centres in the same horizontal

line, and an endless elastic cord wound alternately above and
below them, so as to touch every point of their circumferences

without being stretched beyond its natural length. When
the support of the middle disc is removed, the centres of the
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three form a riffliiHmgled trianp^lc. Slicw that the modoluii

. IK Sir
of eUsticitj of the cord if r-.r , W being the weight

of the disc.

5. A fine eloAiic string is tied rounl two .

'
' r«

who.m^ mirfiUT^ are in contact and axt-.s |)ara; .5

not Im Ini: str.tt'hcd beyond its nattiriil ltii;:ih; one of the

cyliudtTi hi turned through two right anglcjt, so that the

axes are again parallel : find the tension of the string, sup-
posing a weight of 1 lb. would stretch it to twice its natnnd
k'ligth.

SmuU. 2Ll?ofalb.
w + a

(>. 1 wo equal and similar elastic strings AC, BC, fixed

at two pointa ^, 2? in tlie same horizontal line, support a
given weight at C. The extensibility and original lengtha
of the strings being given, find an equation for determining
the angle at which each string is inclined to the horizon,

and deduce an approximate value of the angle when the

extensibility is very small.

7. Six equal rods arc fastened togctlier by lunches at each

end, and one of the rods being supported in a liorizontnl i^^si-

tion tlic opposite one is fastened to it by an elastic strinp^ join-

ing their middle ]>oints. Supposing the modulus of elasticity

is equal to the weight of each rod, find the original length of
the string in order that the hexagon may be equiangular in

its position of equilibrium.

BmulL -^ , where a is the length of a rod.

8. An unstretched elastic string without weight has n equal

weighta attached to it at equal distances, and is then bus-

]>ona<Nl from one end. Prove that the increase of length is

half \vl tat it would be if tlie same string were stretched by a
weight equal to n + 1 of the former hanging at one end.

9. Three equal cylindrical rods are placed rically

round a fourth of the same radius, ana the < h then

surrounded by two equal elastic iNuids at equal distances
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from the two ends ; if each band when unstretched would
just pass round one rod, and a wciglit of 1 lb. would just

stretch it to twice its natural length, shew that it would
require a force of 9 lbs. to extract the middle rod, the co-

efficient of friction being equal to jTr.

10. Two elastic strings are just long enough to fit on a

sphere without stretching ; they are placed in two planes at

right angles to each other, and the splicre is suspended at

their jwint of intersection. If 20 be the angle subtended at

the centre by the arc which is unwrapped, slicw that

/M 37r W

being supposed small.

11. In the common catenary, if the string be slightly

extensible, shew that its whole extension will be proportional

to the product of its length and the height of its centre of

gravity above the directrix.

12. A uniform rough cylinder is supported with its axis

horizontal by an elastic string without weight ; the string lies

in the plane which is perpendicular to the axis of the cylinder,

and passes through its centre of gravity ; the ends of the

string are attached to points which are in the same horizontal

plane above the cylinder and at a distance equal to the dia-

meter of the cylinder. Find how much the string is stretched.

Result, Let 2TF be the weight of the cylinder, a the

radius of the cylinder, h' the natural length of each vertical

portion of the string ; then the extension is

2h'W 2a, X4-HV
+ — log

X '

II "" \+W
13. A heavy string very slightly elastic is suspended

from two points in the same horizontal plane ; shew that if

c, i be the lengths of unstretched string whose weights are

respectively equal to the tension at the lowest point and the

modulus of elasticity, the equation to the catenary will be

very approximately
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14. A wei^tPjust supports another weight Q hj metiit

of a fine elastio stnnff passinff over a rough cylinder whose
ax in is horizonUL If X be toe modulus of elasticity, /a the

coefficient of friction, end a the radius of the cylinder, shew
that the extension of^ that part of the string which is in con-

tact with the cylinder is

a, 9^X

15. A sphere placed on a horizontal niane is divided by a
vertical piano into two equal P|uta, which are just held toge-

t)t<T by an elastic string, which passes round the greatest

hrizontal section ; find tnc original length of the string.

^^ iexTsTT

16. Four equal heavy rods are fastened to one another by
hinges so as to form a square ABCD ; A and C are connected

by an elastic string whose natural length is equal to the dia-

gonal AC, and mt system is suspen£d firom the point A ;

find the position of eijuilibrium.

BetulL Let W be the weight of a rod, 6 the inclination

of each rod to the vertical ; then

'•U'*'-^
17. An elastie band, whose unstretched leneth is 3a, is

placed round four rough pegs A^ B, C, A which constitute

the angular points of a square whose side is a ; if it be taken
hold of at a point P, between A and J9, and pulled in the

direction AB, show^that it will begin to slip round A and B
at the same time if

-4P.

l^s^
18. An clastic string without weight of variable thickness

is extended by a given force ; find the whole extension.

19. An elastic string whose density varies as the distance

from one end, is suspended by that eqd and stretched by its
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own weight. If PT be the weight of the string, V its un-
stretched length, I its stretched length, shew that

20. A circular clastic string is placed on a smootli spliere

so that the whole string is in one horizontal plane ; the string

subtends when unstretched an angle 2a at the centre, and an
angle lQ when in a position of equilibrium ; shew that

8in ^ = sin a f 1 H- - sin a tan ^j

,

where a = radius of sphere, and c depends on the nature of
the string.

21. A heavy uniform elastic string rests horizontally on a
portion of a surface of revolution, of which the axis is vertical,

m every position : prove that the generating curve is a para-

bola a diameter of which is the axis of revolution.

22. A heavy elastic string surrounds a smooth liorizontal

cylinder, so that the surface of the cylinder is subject to no
pressure at the lowest point; find the pressure at any point

of the cylinder, and the tension of the string ; its modulus
of elasticity being equal to the weight of a portion of string

the natural length of which is | of the diameter of the cylinder.

23. A uniform heavy elastic string, whose natural length

is a, is stretched and ])laced in equilibrium on a rough in-

clined plane ; find the tension at any point, and shew that

the direction of the friction changes at a point of the string,

the natural distance of which from the upper end is

i('*^).
where a is the inclination of the plane to the horizon.

24. A heavy elastic cord is passed through a number
of fixed smooth rings. Shew that in the position of equi-



librium its cxtrtmities will lie in the Mine horixontAl pUoe.
The same will alto be the ctse if tlie cord rest u|x>n any
smooth sarface.

25. An elastic string is laid on a oycloidal are, the plane

of wliicli iii vertical and Tcrtex upwards, and when stretched

by its own weight •- * >ntact with the whole of the cycloid

;

the modulus of « is the wei;;ht of a portion of the

htriiig whose D'ttuii. i : ,t]i i>> tu icc the diameter of the gene-

rating circle; tilt I tiic natuial 1< ngth of the String.

RemtiL It is equal to the circumference of the generating

circle.
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CHAPTER XIII.

ATTRACTIONS.

203. It appears from considerations wliicli arc detailed in

works on Physical Astronomy, that two particles of matter
placed at any sensible distance apart attract each other with
a force directly proportional to the product of their masses,
and inversely proportional to the square of their distance.

Suppose then a particle to be attracted by all the particles

of a body ; if we resolve the attraction of each particle of the

body into components parallel to fixed rectangular axes, and
take the sum of the components which act in a given direc-

tion, we obtain the resolved attraction of the whole body on
the particle in that direction, and can thus ascertain the re-

sultant attraction of the body in magnitude and direction.

We shall give some particular examples, and then proceed to

general formula?.

204. To find tlie attraction of a uniform straight line on
an external point.

By a straight line we understand a cylinder such that the

section perpendicular to its axis is a curve, every chord of

which is indefinitely small.

Let ABhe, the line, P the attracted particle; take A for

the origin, and AB for

the direction of the axis

of X. Draw PL perpen-

dicular to Ax\ let AB—lf
AL = a, PL = b, Let
M and ^V be adjacent

points in the line, AM=x,
MN= Bx. If p be the

density of the line, and k the area of a section perpendicular
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to its len^h, the man of the element U pteBx. Let m be the

mass of P; then the attraction of tlie element MN on P ia

(Art 203)

where /a is some constant qnantitj. Hence, the resolred part

of the attraction of the element parallel to the axis of o^ is

fimpmhm ML fimptc{a^x)ix

n^pst ~
i6-+(„-,)'ii-

AUo the resolred part of tlic attraction of tlie element parallel

to the axis of jf, is

fUHpitix PL fimptch^

Let Xand Yho tho raaolTed mHs of the attraction of the

line, parallel to the axea of a; ana y respectivelj ; then

„ [' {a-x)dx

'^-^''^i. {6'-Ka-.)-|«
'

^
°"

i jy+ («_x)'jl |6«+(o-»)'J*

'

f «fa tt—

»

J {f+ (a -«n»
""

J* (6'+ (a- «)•]»

'

therefore

.'.(*'+ (a -«)•)» 5 L(6*+ (0* li'+(«-/)*l*J
^
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270 ATTRACTION OF A LINE.

Hence, putting/ for ft/)#c, we have

-^"-^{i":s} ^^)'

fm (AL BL]
^"'flXfa fb\

Let APL^a, BPL^p, APB=y; then

X= 'jjjr (cos y8 — COS a),

i^=^(8ina-sin/9);

therefore VC-X"'+ ^') = '^^ V{(cos 13 - cos a)' -f (sin a - sin /9)'}

= j7^V(2-2co37) = -^^smi7...(5).

This gives the magnitude of the resultant attraction. Also

X cos i9- cos a ^ a + )8 ,..
•Tr=-^ :—r» = tan —-

—

(6j.

This shews that the direction of the resultant attraction bisects

the angle APB.

If L fall between A and B, it will be seen from (I) and (2)

that the expression for X in (3) remains unchanged, but that

for Y in (4) is changed to

fin{AL BL)
pl\pa^pb]

This will not affect the result in (5), and the direction of the

resultant will still bisect the angle APB.

From the investigation it appears that X is the resolved

attraction parallel to the axis of x directed towards the axis of

y, and Fthe resolved attraction parallel to the axis ofy and
towards the axis of x.
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S05. In the aboTo ioTettigation wo have taken m to

denote tlic' matfl of the attractca ])article ; in future we ihall

nl\va\^ Mi{>{>o«o Uio maM of the attracted particle to be
•I( 11. I. I by unity. In order to form a precipe idea of the
<(iiaii: V ft^ we may anppose two particlea each having its

iiia^^ < iHM, tfirn fA will be the whole
t>i«< u t8 on the other when the di»-

tail r I ! ,. ! . !i) li) the unit of length. Aa, however, by
ptoiHil) , ;.. MMit of mass we may make /i » 1, wc
whall not in : r it neoewiiy to introduce /i.

206. To Ji9ui tMe aUradwn of
a nrcmkur are cm o parUeU ntmaUd
at ths cmUrt ofOm eM$,

Let AB ht anj circular arc;

through the centre of the circle

draw a line bisecting the angle

A Oil and take this line for the

axi.uix. Lei P(kB^$,QOFmB$,
AOBm^ia, OB»r. The attrac-

tion of the element PQ resolved

parallel to the axes of x and y
rcs|)ectivcly is, if p and ic have the

same meaning as in Art. 204,

-—-cobB and -^U— sin^;

therefore
r J-. r '

-?/:mn6d$ wmO.

By comparing these results with those in Art 2(V4, it ap-
pears that the attraction of a circular arc on a particle at toe
oontre is the same in magnitude and direction as that of any
-: tii^ht line A'B' which touches the aicAB and is terminated
1 the lines OA and OB produced, the are and line beins;

i; [>oeed to have the same density, and the areas of their

transverse sections equal
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If OP and OQ be produced to meet the line A'B' in points

F and Q respectively, it ma^ l>e shewn that the attraction

of the element P'Q on $l particle at is equal to that of PQ,
and in this manner wc might prove what wc have just shewn,
that the attractions of AB and A'B' on a particle at are

equal and coincident. This proposition is given in Eamshaw*8
Dynamics, p. 326.

It easily follows, that if a particle be attracted by the three

Bides of a triangle, it will be in equilibrium if it be placed at

the centre of the circle inscribed in the triangle.

207. To find the attraction of a uniform circular lamina
on a particle situated in a straight line drawn through the

centre of the lamina at right angles to its plane.

Suppose C the centre of the circle DAB, the plane of the

paper coinciding with one face of

the lamina, and the attracted par-

ticle being in a straight line drawn
through C perpendicular to tlie

lamina and at a distance c from

C, Describe from the centre C \ [[ ,-^ W \b

two adjacent concentric circles, one

with radius CP='r, and the other

with radius CQ = r-^Br, Let k

denote the thickness of the lamina,

which is supposed to be an in-

definitely small quantity, then the mass of tlic circular ring

contained between the adjacent circles is 2TrpKrhr, Every
particle in this circular ring is at a distance V(c* + r*) from
the attracted particle ; also the resultant attraction of the ring

is in the straight line through C at right angles to the lamina,

and ifl equal to

^irpfcrhr c

the factor ., - >> being the multiplier necessary in order to

resolve the attraction of any element of the ring along the

normal to the lamina through C.
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Ilencp, the resulUiit attraction of the whole lamiiw it

where & U the radius of the boundary of the lamina.

therefore the resultant attraction

If we tuppoee b to become infinite, we obtain for the at-

traction of an infinite Umina on an external particle, the

expression SvyMc, which is independent of the distance of the

attracted particle firom the lamina.

From the last result we can deduce the resultant attrac-

tion of a uniform plate of finite thickness, but of infinite

extent, on an external i)articlc. For, suppose the plate

divided into an indefinitely large number ot laminae, each
of the thickness k; then the attraction of each lamina acts

in a straight line through the attracted particle perpendicular
to the surfaces of the plate, and is equal to 2irpc. Hence,
the resultant attraction will be found py adding the attiao-

tions of the laminae, and will be S'lrpA, if A be Uie thickness

of the plate.

If a particle be placed on the exterior surface of an infinite

plate, tlie result just found will express the attraction of the

))lnte on the particle. If it be placed in the interior of the

5)latc at a distance h from one of the bounding planes and
I from the other, the resultjuit attraction will be 3irp(4'— A)
towiinb the latter plane.

208. By means of the preceding Article we can find

the resultant attraction of a uniform cylinder on a particle

T.8. 18



274 ATTRACTION. CYLINDER. CONK.

situated on its axis. Suppose the cylinder divided into an
indefinitely large number of laroinse by planes perpendicular

to its axis; let x be the distance of a lamina from the at-

tracted particle, hx the thickness of the lamina, h the radius

of the cylinder ; then the attraction of the lamina is

^'^''I'-vira^}^-

Suppose the attracted particle outside the cylinder at a

distance c from it ; let h be the height of the cylinder ; then

the resultant attraction of the cylinder

= 27rp [h - V((c + hy + 1/] + V(c' + h*)l

If we suppose c = so that the particle is on the surface of

the cylinder the resultant attraction is

209. To find the attraction of a uniform cone on a particle

at its vertex, we begin with the expression

2'^''{'-V(TO-^}^'

for the attraction of a lamina of the cone. Also, if a be the

semivertical angle of the cone, we have

X = cos a

;

hence, the resultant attraction

= 27r/3 (1 — cos a)
I
dx= 27rp (I — cos a) A

;

•'o

where h is the height of the cone.

It is easily seen that the same expression holds for the

attraction of the frustum of a cone on a particle situated at

the vertex of the complete cone, h representing in this case

the height of the frustum.
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If the cone be an Mique cone the bue of which ii any plane

df^an it is still tine that the attraction of a frustum on a par-

ticle at the vertex varies as the thickncas of tlie fnistuni.

>nsider two indefinitely thin parallel lamina at different

tiistances from the vertex of such a oone^ then the attractions

of these laniina; on the particle at the vertex will be the same.

For take any indefinitely small element of area on the snHace
of one of the lamime, and let a conical sariace be formed by
straight lines which pass through the perimeter of this area and
through the attracted particle ; this conical surface will inter-

cept clementa in the two lamina) which are bounded by similar

plane figures. Now, tnppoaing the laminso of the same thick-

ness, i& masses of ibe elements will vary as the squares of

tlieir distsiiess torn the attracted particle, and thus they will

exert s^HoZ oUrmeUomB on this particle. The same result holds

for every corresponding pair of elements in tlie two laminse,

and thujt the two lamina* exert on the particle at the vertex

attractions which are equal in amount and coincident in direc-

tion. Fr< ' it follows that the attraction of a frustum

varies as i: icss.

210. We have hitherto considered the attracting body
to be of uniform density, but considerable variety may m
introduced into tlic questions by various suppositions aa to

the law of density. Suppose, tor instance, that in the case

of the circular lamina in Art. 207 the density at any point

of the lamina is ^ (r), where r is the distance of that point

from the centre
; ^ (r) must then be put instead of p in Art.

207 and must be placed under the integral sign. Therefore

the attraction of the lamina will be

J. (c*+ 0»

If ^ (r) « - , where o- is a constant, the result is

2wcic<r| -" nt or
[^ dr

c(c» + &^*

211. To find the resultant attraction of an astewMagt of
particUs oomtitutiftg a komogmeom tpkmioal MU af venf
small tJkiehmi on apariioi$ aittid^ lAs sML

18—2
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Let C be the centre of the shell,M any particle of it, P the

attracted particle. Let CM = r, PM-=y, CP = c, ^ = the

angle PCM^
<f>
= the angle which the plane P6'3/ makes with

the plane of the paper, 3r = the thickness of the shell, and
let p denote the density of the shell.

The volume of the elementary solid at M is r* sin 6 Br B6 B(f)

(see Art. 130). The attraction of the whole shell acts along

PC; the attraction of the element at J/ resolved along PC is

pr^RinO Br B6 B<l> c — rcosd

? H
*

We shall eliminate 6 from this expression by means of the

equation

y'=:c* + r*-2rcco3 6;

therefore sm 6 . = —
,

c- r cos 6 =

dy cr

'2c

Therefore the attracticn of J/ on P along PC
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Hence the reiultant attraction of the whole ihell

^fi^ /« . « \ ^^pr'^ maat of the ihell--^(«r + 2r)-—p— ^
.

This reealt shews that the shell attnu!ts the particle at P in

the same manner as if the mass of the shell were condensed
nt its centre.

212. It follows from the preceding Art :<. sphere

which \n cither homo^neons or consists of • < ^t)heri-

(ul nMU of uniform density, attracts the particle at /'in the
»iui\c manner as if the whole mass were collected at its centre.

213. T0jimdtkeaitraeH(mqfah&mo^ensom»9pkenealMAell
qftmall tkiacM»$ on a particle placed wiiAtn d.

We mnst proceed as in Art 311 ; bat the limits ofy arc in

this case r^e and r-^e; hence the resultant attraction of the
shell

Then-fore a particle within the shell is equally attracted in

every direction.
,

Suppose a particle inside a homogeneous sphere at the dis-

tance r from its centre ; then by what has just been shewn all

that ])ortion of the sphere which is at a greater distance from
the centre than the particle produces no effect on the particle.

Also by Art. 211, the remainder of the sphere attracts the

particle in the same manner as if the mass of the remainder
were all collected at the centre of the sphere. Thus if p be
the density of the sphere the attraction on the particle is

J , that IS -^.

Phus tnnde a homogeneous sphere the attraoUom mriee a$ the

^ietanoe from the centre*

214. The propositions respecting the attraction of a uni«

»rm spherical shell on an external or internal particle were
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given hj Newton [Prineipta, Lib. T. Prop. 70, 71). The result

with respect to the internal particle was extended by Newton
to the case of a shell boundea by similar and similarly situated

spheroidal surfaces (Prtnctptay Lib. L Prop. 91, Cor. 3). The
proposition is also true when the shell is Doundcd by similar

and similarly situated ellipsoidal surfaces, which we proceed

to demonstrate in the method given by Newton for spheroidal

surfaces.

215. Ifa shell ofuniform density he hounded hy two elltp-

$oidal suHdcea which are concentric, similar, and similarly

situated^ the resultant aitraction on an internal particle vanishes.

Let the attracted particle P be the vertex of an infinite

series of right cones. Let NMPM'N' and nmPm'n' be two
generating lines of one of these

cones, and suppose the curves in

the figure to represent the inter-

section of the surfaces of the shell

by a plane containing these gene-
rating lines. The curves will be
similar and similarly situated el-

lipses, and by a property of such
ellipses,

MN=^M'N' and mn — m'n.

By taking the angle of the cone small enough, each of the

two portions of the shell which it intercepts will be ultimately

a frustum ofa cone, and being of equal altitude and having a
common vertical angle, they will exercise equal attractions on
P. (See Art. 209.) Similar considerations hold with respect

to each of the infinite series of cones of which P is the vertex,

and consequently the resultant attraction of the shell vanishes.

This result being true, whatever be the thickness of the

shell, is true when the shell becomes indefinitely thin.

216. In a somewhat similar way we may establish the

following proposition which is due to Poisson ; the resultant

attraction of an indefinitely thin shell hounded hy two ellip-

soidal surfaces which are concentric, similar, and similarly

situated on an external particle is in the direction of the axis

of the envelopinfj cone which has its vertex at the given par-

ticle, {Crelles Journal^ Vol. xii. p. 141.) Denote the external
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partic'Ie by Q ; and suppoM P in the preceding figure to bo
t

'

' wliere the axii of the enreloping cone interMcts th«

1
(onUct of the cone and the ellipioidal ahcAL Draw

nny Htrai^ht lines NMM'N' and ftmin'ii aa in the preceding
figure. Let Ik denote the mass of the element ifn and /i'

the maas of the clement ifV.

The attraction of /* b equal to Jt,^ and it acta along QJf;

the attraction of /a' ia equal to Jtr,^ and it acta along QM\

nnd it ia known that QM and QM' make equal angUi with
QI* (.«)ce Comio 8$Mm§, Chap, xv., last example) ; therefore

PM J

(31f" vJ^
'

and ihcrcforo j^ "qM'*'
Thus the elements fi and /a' exert equal aUracUone on Q ; and
since the directions of ^heee attractions make equal angles

with QP, the resultant attraction of these two elements acta

along QP, A similar result holds for erery pair of elements

into which the ellipsoidal shell may be decomposed ; and thus

the proposition follows. It appears from the course of the

demonstration that an^ plane through P divides the ahell into

two parts which exercise equal attractiona on Q.

It follows from this result, by proceeding to the limit, that

the nsiiltant attraction of the indefinitely thin shell on a

particle in contact with the external snr&ce is in the direction

of the normal to the surface at the point of contact

We shall now give in the next two Articles some proposi-
*' 'M which will serve as exercises; the approximate results

!i wo shall obtain mav be subsequently verified by an
C2iixct investigation. (See Art SSS.)

?1 7. T,t find tMe aUraeiion ofa iamogemeoM cUtlaU MnAi»ro!d

trtctiy on a particle ai its pole.

li of the minor axis and I'a that ot the

1 iiorating ellipse. The spheroid may be
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Bupposed made up of a concentric sphere, the radius of which
is c, and an exterior shell ; we shall calculate the attractions

of these portions separately.

Let a section be made of the sphere and spheroid by a
plane perpendicular to the axis of revolution of the spheroid

at a distance x from the attracted particle. This plane cuts

the sphere and spheroid in concentric circles ; the area of the

former being Try* and of the latter —^ , where y* = 2cx — 7? ;
c

the difference of these areas is 7r( ,
— Ijy*. If a section be

made by a second plane, parallel to the former and at a

distance hx from it, the volume of the portion of the aliell

intercepted between the planes will be 7r f -j —
1
J ifhx. The

distance of every particle of the annulus thus formed from

the attracted particle is approximately V(2ca;), and, as the

resultant attraction of the annulus will act along the axis of

the spheroid, it will, approximately,

Therefore the resultant attraction of the shell

If we suppose c = a (1 — e), € being very small, we have

a* — c^ = 2c*€ approximately

;

therefore the resultant attraction of the shell

1 67rpec

Also the attraction of the sphere on the particle, by Art. 212,

= JTrpc;
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therefore the attraction of Uie spheroid on the particlo

218. Tojhd <iU aiiraeUam ofa homogmtom MaU tpiercid

cfsmall excentrieUy en a pariteU at %U §qwaior.

Let 2c be the length of the minor axin, and 2a that of the

major axis of the gc! '•^. The spheroid may be
supposed to be the u iwccn a concentric sphere

of radius a and a shell, and the attractions of the sphere and
u]...n .M.ty \^ separately calculated. Let a section be made of
1 1 e and spheroid by a plane peipendicnlar to the straight

liiic joining the attracted particle with the common centre of
the sphere and spheroid, and at n distance x from the at-

tracted particle ; this plane will cut the sphere in a circle the

area of which is wy", where if* * Sox— 2*, and it will cut the

spheroid in an ellipse of which the semi-axes are respectiTeljr

V aiul
^

, and tlie area of which is therefore — w*. The dif-
' ' a a '

fcrencc of the two areas i» wU—Jy*. If a section be

mnde by a second plane parallel to the former, and at a
distance &b fiom it, the volume of the portion of the shell

intercepted between the planes will be w Tl — -
j
y&r. The

di8tanco of evenr particle of the annulus thus formed from the

attracted particle is approximately ij{2ax); and as the restdt-

ant attraction ofthe annulus will act along the straight linejoin-

ing the attracted particle with the centre, it will approximately

Therefore the resnitant attraction of the shell

2*a« J. 15

Rirpo€

15
, if c« a (1 - f).
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Also the attraction of the sphere, bj Art 212,

therefore the attraction of the spheroid on the particle

In the same manner it miglit be shewn that the attractions

of a homogeneous prolate spheroid of small excentricity on
particles at the pole and equator are respectively

iirp (1 - i€) c and ^tt/s (1 - §e) e,

2c being the axis of revolution of the spheroid, and

a — c[\ — e),

219. One more example may be given. It is sometimes

useful to compare tlie attraction exerted by the Earth on a

particle at the top of a mountain with the attraction exerted

by the Earth on the same particle at the ordinary level of the

Earth's surface. The investigation is given by Poisson,

{Micaniquc, Tom. I. pp. 492—49G). Let r denote the Earth's

radius, x the height of the mountain, g the attraction of the

Earth on a particle of a unit of mass at the ordinary level of

the Earth's surface. If there were no mountain the attraction

of the Earth on the particle at a distance x from its surface

would be g-. r-,: we have then to add to this expression

the attraction exerted by the mountain itself. Suppose the

mountain to be of uniform density /?, and consider it to be

cylindrical in shape, and the particle to be at the centre of its

upper surface ; then by Art. 208 the resultant attraction is

2irp[x-^J{p?-\-h*) + h],

where h is the radius of the cylinder. If h is so large in com-
X

parison with x that the square of r can be neglected, this
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czpraMion rcdoeM to fwftas. Thus if g denote the attraction

at the top of the monntaiii

liCt <r denote the Mean density of the Earth, so that the

mass of the Earth ia^^; then

Now the mean densitj of the Earth is known to be about
five and a half times that of water, and from what may be
conjectnred of the density of matter at the £arth*a surface, we

may tnppoee ^ " ^ • ^^

__« (i « f) . , -^ approximately

;

„„,. ,..,(,.^^g).,(,.j).
How far the approximations made in thi- ' 'arc allow-

able might be aifficult to estimate; from .'07, it an-

{M'ars that in taking 2'rrpx to represent the attraction of tnc

mountain, we do in fact make the mountain to consist of a
uniform plate of finite thickness x, but of infinite extent.

For investigations reUting to the attractions of monntains

the student may consult Pratt*s treatise on AUraeiiim$..»Qnd

thejigurt of the Earth,

We haVe hitherto confined our><>!v. > t.» .miii].!.' rxmnplos

of the ordinary law of attraction ; w» now j»r.»tc«'il to <on.-*uUT

some other laws of attraction, and also some more comjJex
cases of the ordinary law.

220. If thepariielM cfahody atiraei wiik ajbrce rarytmg

OS th€ product of the wHue into the dukmee, tke reeulttmi a/-

traction ofthe hodjf u the atuns ae ifthe whole moss of the body

were collected at tte centre afyravi^*
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Take the centre of gravity of the attracting body as the

origin of co-ordinates, and let a, />, c be the co-ordinates of

the attracted particle. Divide the attracting body into inde-

finitely small elements ; let x, y, z be the co-ordinates of an
element, in its mass, and r its distance from the attracted

particle. Then the attraction of this element is mr^ and by
resolving it parallel to the co-ordinate axes, we obtain

rt — ac
•

5 —

V

c — z
mr . , mr . , mr

,

,

r r r

respectively. Hence, if X, F, Z denote the resolved parts of

the whole attraction, we have

X^tmifl-x), Y=tm(b-'y)y Z^^mic-z).

But, since the origin is the centre of gravity of the attracting

body, we have

Swiar = 0, Swiy = 0, Smz = ;

therefore X= aSm, Y=b^my Z=clm,

But these expressions are the resolved attractions of a mass

Xm placed at the origin, which establishes the proposition.

221. To find the attraction ofa homogeneous spherical shell

on a particle without it; the laio of attrax^tion being represented

hy <l>{j/)i where y is the distance.

If we proceed as in Art. 211, we find the resultant attrac-

tion of the shell on P along PC

Suppose j<f} iy) dy = <{>, (y),

antl jy<l)^ {y) dy=^^ {y).

Then, integrating by parts, we have

|(y+ c'_0*(y)<i'y=(y + c'-r')^,(y)-2|y.^,(y)(fy
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Tliis last form \% introdnoed merelj as an analTtical artifice to

aimplify the expreation.

222. ToJUidlkeaitracikmofiUJuU(manimi«r^

The calculation ia the same aa in the laat Article, except

that the limitB of y are r^e and r+ c Hence, the attimo-

tion of the shell

223. The formulas of the preceding two Articles will give

the attraction when the law of attraction is known.

Ex. 1. I.et^(r)-p,; therefore ^, (r) -- 1 + J,

.1 and B being constants.

Therefore the attraction on an external particle
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The attraction on an internal particle

= iwprBr ^ [-2 + 2Ar] = 0, (Art. 213).

Ex.2. Let 4>{r)=r;

therefore if), (r) = ^r' -^ A, f (r) = J/ + ^Ar* + B.

The attraction on an external particle

• -
27rprBr^ {Jc + rY - (c-rY ^ 4A {c-^rY-iA (c-rY)

= 27r/jr8r^ (cV + r* + 2.4r}

= 47rpr'c3r = mass x c.

The attraction therefore is the same as if the shell were

collected at its centre. This property we discovered for the

law of the inverse square. We shall now ascertain whether

there are any other laws which give the same property.

224. To find what laws of attraction allow us to suppose

a spherical shell condensed into its centre when attracting an
external particle.

Let ^ (r) be the law of force ; then, if c be the distance of

the centre of the shell from the attracted particle, r the ra-

dius of the shell, and i/r (r) = j{r
j<f>

(r) dr) dr^ the attraction of

the shell

But if the shell be condensed into its centre, the attraction

= 4 7rpr^Br(j} (c)

;

therefore
^j

f (e-Hr) -f (e-r)
|
^ ^^^ ^^^
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Expand ^ (e -f r) and ^t^o-r) in poweit of r ; than using

^'(c) for -^ -
I
Ac.» wo hare

whatever r maj be ; therefore

But >y{e)'efi>{e)de;

therefore ^"(c) -/^ (c) de-k-<4{e);

therefore f"' (c) - 2^ (c) + c^'(r).

Therefore, by the first of the above equations of oonditiou

forfW,
?^ + f (c) - a constanL

c

Put 3^ for this constant ; multiply both sides of the equa-

tion by c* and integrate ; thus

therefore ^(c) — ^c+j.

This value satisfies all the other equations of condition for
yjr (c) ; therefore the required laws of attraction are those of
the direct distance, the inverse square, and a law compounded
of these.

225. To fifui for what hncs the thtli aitracit an uUtmal
particle equally in every direction.
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When this ia the case,

d f^(r + c)-'^(r-c)l

dc\ 0;

therefore i|r' (r) + '; t'" (r) + . . . = u4,

whatever c is, A being a constant independent of c ; therefore

From the second condition, we have

^|r{r)=B-\Br + B"r\

where ^, B\ and -B" are constants.

Hence f (r) or r/<^ (r) <fr = J5' + 2i?" r

;

therefore /<^ (r) dr =^ + 2J5"

;

therefore ^ (r) = — -j, :

with this value of ^ (r) all the other equations of condition

are satisfied ; hence the only law which satisfies the condition

is that of the inverse square.

226. Tofind the attraction ofa homogeneous ohlate spheroid

on a particle within its mass, the law of attraction being that

of the inverse square of the distance.

Let a and c be the semi-axes, a being greater tlian c ; and

let the equation to the spheroid referred to its centre as origin

be

l*t / ^r, A be the co-ordinates of the attracted particle ; r

the distance from the attracted particle of any point of the

attracting mass ; 6 the angle which r makes with a straight

line parallel to the axis of 2 ; ^ the angle which the plane
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lining r and ft ttraiirht line throac^h the ooint (/ j[> A) pftndlel

the axi^ * the pUne or ((B| «)• The volume
an clciu ;ng miM

^ in Art 130. Let p be the deniity of the spheroid; then
'fraction of thia element on the ftttnu:ted particle is

^BSS^Br; and the rc«olred parts of this parulel to the
t*»,3f, s, are

p8in*^C08^5^5(^^, pBin*^8in^5^£^^,

and psin^oo8^^3^5r,

—tivelT. Hence the attractions of the whole spheroid will
iiid by integrating these expressions between proper
Wo proceed to find these limits.

in ^^oation (1) pnt

/+ r sin ^ cos ^ for ar,

^ + r ain ^ sin ^ for y,

A + r cos ^ for a

;

n the equation to the spheroid becomes

(/•frain^cos^)'+ (o + rsin^ttn^)' (A + rcos ff)*
,^ "+ ? -^'

. (sin*^ ^ 008*^) f/gin^cog^-f^sin^sin^ , ilcos^

•^i-^+-?-r^i^ ^—^+-c^}

^ "?~ ?'

P *
sinV . cos«^ «.

rut —i- + —3- -^^t

/sin^cos^-f <ysin^sin^ Acos^ ^

then JTV + aA'/r + i^-jy... ..(2).

T.8. 19

or
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Equation (2) will give two valaes for r, one positive and the

other negative
J
these values we may denote by r^ and — r,,

wliorc

-F+^/H F+s/H

Hence to find the whole attraction of the spheroid ])arallcl to

the axis of a:, we first integrate the expression

p sin* 6 cos
(f)
Bd 3<^ Sr

with respect to r between the limits r = and r=r^, and also

between the limits ?• = and ?' = 7',, and take the difTcrencr

;

we thus obtain

p sin* 6 cos </> (r,— r,) 8^ 8<^

;

this must be integrated between and 7r for <^, and and ir

for ^. If A denote the whole attraction parallel to the axis

of X, acting towards the origin, we have then

A=^2p I I -^ sin*^ cos <j) dd d<f>.

We may simplify this expression by omitting those terms

which vanish oy the principles of the Integral Calculus ; thus

^-^jpc
jj^ c*«in^^ + a*C03*^

"'^^MoC*Vin*(? + a«cos^^

- , r' (l~cos*^)sin^ g?^

"''•^^ j,V+(a» -c*) COS* l9

TT/pc* f r a^'sin^ . J ,^

a —c* J^ [c + (a* - c*) cos*^ j

a*-c* lcV(a*-c*) c
J

Let c* = a" (I — €*) ; then the result may be written
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i II the tamo manner, if B denote tlie whole attraetion panllel
> the axifl of jr,

Let C denote the whole attraetioii panllel to the axis of m,

en

'*'~Jj.o'«n'tf + «'co7rf

air»pa«/-»f. ^ e'aintf ) „
-«^U"''^" «^-K^-«^co^4

'^

: the spheroid be prolate a is leas than c It maj be shewn
en that

"* c'-a't cV(e*-a')"'« a J*

It mny be noticed that in botli cases

227. From the expressions in the preceding Article we ace

that the Attraction is independent of the magnitude of the

spheroid and depends solely upon the cxccntricity.

1^-2
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Hence the attraction of the spheroid similar to the given

one and passing through the attracted particle, is the same
as that of any other similar and similarly situated concentric

spheroid comprising the attracted jyartich in its mass. Hence
a spheroidal shell the surfaces of which are similar, similarly

situated, and concentric, attracts a particle within it equally

in all directions. This has been already established; see

Art. 215.

If we put the ellipticity of the spheroid = e, and suppose

€ very small so that we may neglect its square, we have for

the oblate spheroid, since c = a (1 — e),

€^=1 5 = 1 — (1 — €)*=2e approximately.

After expansion and reduction we shall obtain a})proximatcly

C=iirp(l + ie)h;

For the prolate spheroid, since a = c (1 — e),

e'=l-^* = l-(l-e)*=2€.

After expansion and reduction we shall obtain approximately

228. If instead of the spheroid we take an ellipsoid whose
semi-axes, are a, Z>, c, it may be shewn that

r-4 hnnh[^^
COS* 6 a\n Odd

- 47rA/KU>
j^ ^(^« cos* ^ + 0* sin" 6) >^{b* cos^ 6 -{ c' sin' 0)

'

and the values of A and B may be found by symmetrical
changes in the letters a, by c and/, ^, h.

If we change a, 5, c into a(l-fw), J(l4-w), c{l + n)

respectively, the expression for C remains unchamjcd ; and so

also the expressions for A and B remain unchanged. This
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!iew8 that a sliell of any thickness, the internal and external

laries of which are simiUr and similarly situated con-
ic ellipsoids, exerts no attraction on a |Mirticle wiUiin
ner boundary. This has been already ettabliah«d; aeo

.'15.

229. Sappose wi» r#»niiir<» t1ii> ntirnrtinn of a sphcroid on
.11 fjrfsma/ particl

^ V It. '226, we shall now have F^-^II
' two roots of that qoadratlc equa-

ini will have thi- ii. Hence we shall find

J -9pjj^^ sin*^coa^<2^(/^.

The limits of the integration with reapeet to will involve A,
for these limits will be found by putting //« 0, and this leaoa
to tlie following quadratic equation for determining tan $,

^

>^tan^ /co>» + ^sin»
^

1 f^_P±£\^Q
c* ' <t* c*\ a" /

Then the limits of ^ are to bo determined from the condition

that the values of tan furnished by this quadratic equation

must be emud; this leads after some reduction to the following

equation tor determining the limits of ^,

(/cos ^ + i7 sin #)•-/•+^- a\

It is however unnecesaary to proceed with these complicated
integrations, for we can obtain the result indirectly by means
of Ivor^'^s theorem, which furnishes a relation between the

attractions of fUip9oids on external and internal {Mirticles ; this

tV " he true for epkeroids as they are included among
1 flince the attraction of a spheroid on an vUemal

ilrcady found, the theorem will enable us to
«' iction of a spheroid on an external particle.

2.V\ il require a preliminary definition and pro*

jwsition before we give Ivory's theorem.
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Corresponding points on two ellipsoids are points whose
co-ordinates are proportional to the axes to which they are

respectively parallel.

In conjbcal ellipsoids the distance between two points^ one on

each ellipsoid^ is equal to the distance between their corre-

tponding points.

Let (a?, y, z) and (f, 77, f) denote two points P and Q on an
ellipsoid whose semi-axes are a, by c; then the corresponding

points P' and Q' on an ellipsoid whose semi-axes are a', 6', c',

will be denoted by

(f ¥• ?) "^ & '/. ?)
Thus

^«-(f-V-)"-('-¥)'-(f-?)"

Therefore P<?"-P'g' =

(^-r)(i-5)+(y-.')(i-',:) + (^'-r)(i-Q

because the ellipsoids are confocal.

a* ?/' «' . «' 2 ^ 'J

therefore PO'*-^'Q' = 0;

thus FQ' = P'Q.

Ivory*s Theorem. TJie attraction of an ellipsoid on a par-

itcle on the surface of a confocal ellipsoid resolved parallel to

an axis is to the attraction of the second ellipsoid on the

corresponding point on the surface of the first ellipsoid, so
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rtiolved^ a§ the product of tk€ oiMer two aatm of tka JuM
tU%iiBoid ia lo ike corretmomam^ prodwoi im ike mopmi M^pmid:
iMe two ellipmnde hemgmfwiogmmma and of ike eame dmmtif.

Let a^h^eht the semi-axes of the first ellipsoid ; a', h\ d
those of the second. Let (/, a^ k) denote a point on the snr-

face of the first ellipsoid ; (f yg\k'\ the oorresponding point

on the surface of the second ellipsoid.

The attraction of the first ellipsoid on a particle at {f\g\ A')

resolved parallel to the axis of x is

\\h
^{r)dxdgdMt

where ,^-(a,-/')«+(y-^y+(s-Ay.

and the law of attraction is represented br ^(r) ; ^ is a con-

stant : the intemtion is to extend throughout the Yolume of

the first elli()soid.

I^* /W<^''"^W« Integrate with respect to ar; and
let r. and r, denote tne values of r at the extremities of a
chora of the ellipsoid parallel to the axis of x, Tlius the

resolved attraction is

In the same way the resolved attraction of the second
elli{>8oid on the correspondine point on the surface of the

first ellipsoid may be expressed by

Now suppose that we always make

!-?"«»-«-?.•

then we have by the preliminary proposition

r,^r\ and r^^r^;

and we have also

difde he

dS^'"^'
Ilcnce the first resolved attractioii is to the second as &c it

to b'c ; and this establishes the theotem.
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It will be seen that the demonstration establishes some-
thing more than Ivorj-'s tlicorcm enunciates, namely tlie fol-

lowing: take any elementary prism of the first ellipsoid the
edges of which are chords parallel to an axis, and take the
corresponding elementary pnsm of the second ellipsoid ; then
the attractions of these prxtms resolved parallel to the axis on
the corresponding points are as the products of the other

axes : and Ivory s theorem follows from the fact that the

ellipsoids may be supposed to be formed of corresponding
elementary prisms.

We observe that one of these ellipsoids lies entirely within
the other. For if not the points at which they intersect would
lie on the curve of which the equations are

X* v' 2' ^ a? ?/* z*_+| + _ = l, and ^, + |(.,
+ ^-r, = l;

the co-ordinates of the points of intersection must therefore

satisfy the equation

Since the ellipsoids are conjbcal this becomes

and this equation can only be satisfied by supposing x, y,

and z to vanish ; and these values do not satisfy the equa-

tions to the ellipsoids. Thus the ellipsoids do not intersect

at any point.

Hence to find the attraction of an ellipsoid of which the

semi-axes are a, i, c on an external particle of which the co-

ordinates are f\ g\ h\ we must first calculate the attraction,

resolved parallel to the axes, of an ellipsoid of which the

semi-axes are a , h\ c on an internal particle of which the

co-ordinates SLvefyg^h; these six quantities being determined

by the equations
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/*• it** k**

.of V 1 «*'

-^-v- if'f' *-v'
and then the rotolyed parts of the required attraction will be
these tliree calculated results, multiplied respectiveljr by

he ca ab

P?' ?7' ?6"

It may be shewn that there is only one ellipsoid which can
have its semi-axes a\ b\ c satisfying the oonditions required

in Ivory's theorem.

Suppose that a, &, c are in descending order of msgnitude*

Put t tore'; let a'-c*-i). and A'-c'-j', so that /> and q
are positive quantitieB. We have then

«'»-;> + <, ft^-y+Z;

thim we obtain the following equation for determining t,

By examining the changes of sign of the expression which
forms the left-hand memoer of this equation, we see that

there is a root between —p and — ^, a root between —a and 0,

and a root between and oo . Corresponding to the lirst root

we should obtain an hyperboloid of two sheets ; correspond-

ing to the second root an hyperboloid of one sheet ; ana cor-

responding to the third root an ellipsoid.

231. To prove thai the reeuhani attraciioH of the partidoB

/ a body of amy figwre <m a particle of wkiek the dieUmoe
is very great in eomparieon w%ih the greaUel dtamtier qf the

ittracting body, ie very nearly the eame^ ae tf the parUeUe
'rare contieneed at their centre of gravity ana attracted ac-

cording to the eame law^ whatever that law be.

Let the origin of co-ordinates be taken at the centre of
gravity of the attracting body, the axis of x through tlie
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attracted particle ; let c be its abscissa, and a?, y, z tlic co-

ordinates of any particle of the body, p the density of that
particle.

Then the distance between these two particles, or r,

Let r</) (r') be the law of attraction ; then the whole attrac-
tion parallel to the axis of x

the limits bein^ obtained from the equation to the surface
of the body. This attraction therefore

=////> (c-a^) (<^ (c") - {2cx-x'-if-z^ f (c«) + ...] dxdydz

^Mc<f> (0 -fcV- {c^)jjjp
y^ ^y ^^'

dx dy dz + (.1),

M being the mass of the body, and jjjpxdxdydz = 0, since x
is measured from the centre of gravity of the body.

Now suppose Xy y, z to be exceedingly small in comparison
with c ; then all the terms of (^4) after the first are extremely
small in comparison with that term, it being observed that

c*^' (c*) is of the same order as c</) (c') in terms of c. Hence
the resultant attraction is very nearly Mc (j) {c^) ; that is, it is

very nearly the same as if the particles were condensed at

their centre of gravity and attracted according to the law
determined by the function r<t> (r*).

232. From Art. 224, it appears that when the law of
attraction is that of the inverse square of the distance, a
sphere composed of shells, each of which is homogeneous,
attracts an external particle with a resultant force, which is

the same as if the sphere were condensed at its centre. It

may be shewn also that two such spheres attract each other
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in the same manner as if each were oondenaed at iu centre*
1

' r ooosider any element of maas formiDg part of the firat

re; tlie attraction of thU on the aeoond aphrn- will bo
il and opposite* to the reaoltant attraction of tlie fecoiid

re on it, and will therefore be the same as if the

ud Hphorc were ooUected at its centra. -^ '/, the

•''Unix of any other clement of the first «iM »n the

1 will be the same as if the second were ooUcctod at

! t re. Vroceoding thus, wo find that the whole action of
; ; t sphere on the second is the same as if the second

< 1. t. I IT .!^ litre, and therefore the mutual attrac-

t .1 lii.- s^jhcrci w liic same as if each were collected at it*

centre.

If the law of attraction be thai of the direct distance, iucit

two bodies of anJ shspi* attract each other with a resultant

• ich is the tame aa if each were collected at ita centre

NVe proceed to general formula) for the attraction of bodies

of any form.

233. Let there be a body of any form ; let p represent the

density of an clement, the volume of which is dxdydz^ x, y, s

being the co-ordinates of the element. Suppose the attraction

between the particles of masses m and m respeetivelv, at a
• iiicc r, to be mm* Fir) \ then tlie components A, Y^ Z

I
: illel to the axes, and /inam the origin, of the attraction of

the body on a particle whose mass is unity, and co-ordinates

<i, 5, c are found by the eqtutions

p' ''F{r)dxdydM,

r being * {(a,_ a)'+ (y- J)«+ (. - e)l*.

The integntiona are to be taken to •• to iiidade all the e]«-

menta of the attracting body.
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Let
<f>

(r) be such a function of r that F{r) is its differential

coefficient with respect to r, and let

U^SM{r)dxdydz,

the integrations being extended so as to include all the ele-

ments of the attracting body ; then will

yr_ dU ^ dU y_ dU
^^""

da ' ^"'Ib' ^ "Sc"'

da dr da ^ ' da v / ^ »

therefore X= --jjjp^^ dxdydz

^"dajjjf^^^^^^'^^

^_dU_
da

Similarly, the equations ^ = ~" ji andZ=— ,
- may be

established.

It may be observed that if in any case, for example that

of an infinite solid, the integral U becomes infinite, but the

differential coefficients ^- , ->,- , —j— are finite, the preced-

ing values of X, Y", Z will still be correct.

For suppose we take a finite portion of tlie solid ; the com-
ponents of its attraction will have for values the differential

coefficients of U. Suppose now that wc extend without limit

the portion of the mass considered, the components of the

attraction will always be

_^dU _dU _dU
d>JL ' dh ' dc '

whether JJ increase without limit or not. Hence, if these

three expressions tend to limits, those limits will be the com-
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ponentA of the attraction of the infinite lolid. And if tJiejf

iDcreaiie indt-T ' wc may conclude that the attraetioa

increases will. t as the portion of the bodj oontidaed
inoreases ; this we expiMi bj sajing that the attnction oC
the solid is infinite.

234. If the law of attraction be that of the inverse square,

wc have

/•(r)-^.and^(r)--i.

Let K«- U, that is, let

r.jjJE^ 0);

thcn« as in the preceding Article, we have for the attractions

parallel to the axes of x, jf, a respectivelj, and/noai the origin,

Y dV ^ dV ^ dV
"^"^' -^^' ^'dc'

The equation which gives V b equivalent to the following

operation:

—

daoompom <As oUraetimg mau imto mdifimkHf
small eleimenis, amd divide the wuua of each tlemmi hg ike

ditiamee of that element firam the attracted particle ; theewmaf
ikem quotiente ie V, Hence, the value of V will be quite

independent of the axes, rectangular or polar, which we maj
find it convenient to employ. Suppose we use the ordinanr

polar formulae and take the position of the attracted particle

tor the origin ; then the element of volume is (Art. 180)

r^ 6in 6 Bt^BB Br; therefore

V'SIfpr^^^ Bdtftdedr.. ;2).

Sup]>oM<> the attracted particle forms part of the attracting

n^M-^s ; then, since r vanishes for those particles of the attract-

mas8 whieii are in contact with the attracted particle,

iroin ei[untion (1) it would bo doubtful if V ia Jlmite in tliis

oidc ; but from (2) wo soo that it really is finite.

235. 7b so^press h^ meane of V the aUraeiiam rteolved

ahnj any line*

Let $ be the length of the arc of anv curve measured from
a fixed point up to P the attracted particle ; /, m, fi the dirco-
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tion cosines of the tangent to this line at P; E the attraction

resolved along this tangent ; then

Ji=^lX+mY+nZ
jdV dV dV

Now, if we restrict ourselves to points lying on the line «,

Kwill become a function of s alone; for k is a function of

a, hy and c, and Ct-vch of these may be regarded as a function

of 8 ; thus we shall have by the differential calculus,

dV^dVda dVdb dVdc^
da da da db da dc da*

1 . da y db dc
and since -jz = h j- = ^i //«

~ ^» ^® ^

da
'

236. To examine the meaning of the Junction V.

This function is of so much importance that it will be well

to dwell a little on its meaning.
In the first place it may be observed that the equation (1)

contains a physical definition of F, which has nothing to do
with the system of co-ordinates, rectangular, polar, or any
other, which may be used to define algebraically the positions

of P and of the attracting particles. Thus V is to be con-

templated as a function of the position of P in space, if such

an expression may be allowed, rather than as a function of
the co-ordinates of P; although, in consequence of its de-

pending upon the position of P, Fwill be a function of the

co-ordinates of P, of whatever kind they may be.

Secondly, it may be remarked that although an attracted

particle has hitherto been conceived as situated at P, yet F
nas a definite meaning depending upon the position of the

point P, whether any attracted matter exist there or not,

Thos F is to be contemplated as having a definite value at

each point of space, irrespective of the attracted matter which
may exist at some places.

The function V is called the potential of the attracting

mass.
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of V in lAe COM ofa tvhrrtcnl

.<l\uii i>f tna JtMtitnrr from lAfi

< the centre of
i obriouily the

of the resultant attraction; let a be the diatanoe

II the centre; u the distance of any point in the

shell from the centre; 6 and ^ the other polar
'
**n the mass of the element at

and

-rsx r

c y, and u, are the internal and external radii of the

....i; hence,

K-aw/yelf!5i*ii?.

Now f'-ii'-Jaiiooi^ + a*;

:licrcforc 8in^-r — ,

or au

and K"— II pudu dr.

We most now distinguish three

I When P is hejfond the external surface, the limits of r

arc (I — tt and a + « ; therefore

Bat ifM denote the mass of the spherical shell,

MmAwTpu'dH;
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therefore V^s —

,

a

dV M
Hence, jr=-^=s—y, or the attraction is the same as

da a
if the mass of tlie shell were collected at its centre ; this was
proved in Art. 212.

11. When r is icithin the internal surface, the limits of r

are u — a and u-^a) therefore

V=— / I
pududr

= 47r I pudu (2).

Since this is independent of a, we have

da

This is equivalent to the result found in Art. 213.

III. By combining the results contained in equations (1)

and (2), we see that if F be between the bounding surfaces

of the shell,

47r /"** r**«F= ~ / pu*du + 47r I pu du.

From this we may deduce a result involved in Arts. 212 and
213, namely, that the resultant attraction is the same as if all

the matter which is nearer to the centre than P were collected at

the centre
J
and the rest of the matter neglected.

238. At any point (a, Z>, c) where there is no particle of the

attracting massj tJie function V satisfies the partial differential

equation

d'v d'v drv;_

~d^'^ db''^ dc'"^'
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For since r - {(« - a)* + (y - 6)' + (•- c)n*,

« —

c

d^Krri^— ?•

aPW ? P'

^ /1\ 8 (« - <?)• 1

lio-W
? ?'

Now r.///C^;

therefore ^-///a? (J) P'*»<'3"^'

and similar expressions hold for -^ and -^ ; therofofe

<rF d'V^iPV ^

This result holds so long as the attracted particle is not in

contAct with the attracting mass. If, however, the attracted

particle is in contact with the attracting mass, r can raniah,

and therefore - and its differential coefficients become trnJUuie:

the preceding demonstratioa does not hold in this case*

289. At an internal fouU (a, 5, c) ab<nd whkk tie deneiiy

%$ p, ikefiMction V taiis/ei the tquaiian

tPV d^V d'V
To determine the value of . g + -jn + -jt- in this case,

T.8. 20
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suppose a sphere (Icscribcd in the body so that it shall includr

the attracted particle, and let F= l\ -f F, wlicre I", refers to

the sphere and F, to the remainder of the attracting body

;

then

da'
*"

db*
"^ dc''"d^'^'W^ d(?

^ da*^ db*^ dc'

H^^ db* ^ do^'

by what has been already proved.

Now the centre of the sphere may be chosen as near the

attracted particle as we please, and the radius of the sjihere

may be tiiken so small that its density may be considered

ultimately uniform, and equal to that at the point (a, J, c).

Let a, )9, 7 be the co-ordinates of the centre of the spliere

;

then the attractions of the sphere on the particle parallel to

the axes are, by Art 212,

|,rp(a-«). i7(6-/3), '^{c-i);

therefore ^• = -l|£(a-a), ^-1^ = -^^,

db 3 ^* '^'' dV 3 •

do~ 3 ^ ^^' dc"
~ 3 '

., . d'V,d'V.d'V,
therefore _i + -^ +-^ = - 4^|,

;

. . d'Vd'Vd'V .

therefore _+^+_=_4^p.

240. Application to the Sphere, In Art. 237 we havf

calculated v by direct integration in the case of a body com
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' of liomogeneoai fpherical ihcUfl. We may abo dedoee
..iluti by meani of the equAttons in Art S38 and SS9,

This we hIiaII now do. If a sphere be oompoaed of homo-
geneous shells, V will be a function of tlio distance r of the
centre of tlie sphere from the attracted particle ; the resultant
attraction will act along the straif^ht line which joins theae two

dV
points, and will be denoted by ,- .

The equation

r»-o« + y + c«

J!-

will give

licncc

similarly

By adding these equations we liave, by Art 238, at a point

where there is no particle of the attracting

<rr 2dV ^

This may be written

0;

dr
35-

a dr » dr

dV• dVdt
"37 as

dVa
'S^r t

d*V
ay

\dV
"t df

a'dV

d'V
5P-

I'd'V^
'P d^-^

IdV
rl?-

h^dV
?dr'

«PK ed'v . IdV edv

dr\ dr]

dV C
tlicreforc S» "? •

where C is some constant

Suppose the sphere to be hollow, and that the attracted

particle is within the inner sur&ce, the radios of which we
20—2
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shall denote by r,. Since the attraction ought evidently

dV
to vanish when r = 0, we must have (7= 0; therefore -j- = 0.

Hence the attraction always vanishes, and the particle is in

equilibrium whatever be its position within tlie unoccupied

part of the sphere.

Suppose next that the particle forms part of the mass of

the sphere ; we have, by Art. 239,

d'V 2dV

p being a given function of r.

Multiply by r', and integrate from the value r. of r ; since

dV
-J-

= for all points in the interior, it is so at the limit r^

;

thus ^
V7"

= " ^^
/
p^dr.

But
I

ATTt'pdr is the mass comprised within that surface of
J ri

the sphere which passes through the attracted particle. If wc
call it M\ wc have

dV ^__J^
dr "

r*
*

The absolute value of the attraction will therefore be -^ ;

r

it is the same as if the mass M' acted alone and were collected

at its centre.

If the attracted particle is on the exterior surface having
its radius =r,, we have, if J/ be the whole mass of the hollow

sphere,

dr r^'

and the attraction exercised upon this particle will have for

its value

M
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Ijistly, ooiuider a p«rticl6 oatoide the iphere ; UiaC is, for

wliich r ii greater than r, ; we have, aa in tlie fint caie,

dV C

Hut in conaeanenoe of the diacontinuitj ariaing from the
iMirticlea of tne man, the coimUnt C is not restricted to

liiiTt' the same valae aa for the interior points. To deter-
mine it we pat r»r^\ then, ^m the pfeoeding case, we
ou^^ht to have

dV M

thereforp C^-M;
and we shall have for external points,

dV M

Tilt attraction will therefore have for its value

This agrees with Art 212.

Tlie preceding application to the sphere serves very well to

illuitrate the formaise, but it does not give an iPOBpendent
demonstration of the results which it involves ; becsote the
process in Art. 239 assumes that the attraction of a tohere on
an internal particle is known. But we mav easily obtain the

facts connected with the attraction of a spherical aheli with*

out using Art SS9.

Consider a spherical shell where the density is any function

of the radius ; then we have, as shewn at the comnienoenient
of the present Article, the result

dV O

whert; C is constant when we paM from point to point without
entering the attracting
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For any point within the inner surface of the sliell (7 = 0,

because the attraction must vanish when r = 0.

For any point witliout the outer surface of the slicll

C = — J/, because for points at an indefinitely great distance

the resultant attraction of the shell must be the same as if the

shell were condensed at its centre of gravity; see Art. 231.

Thus the required results are obtained.

241. Application to an indefinite cylinder. Consider next

a hollow indefinite cylinder composed of homogeneous sliells,

the density being a ftinction of the distance from the axis of

the cylinder which we take for the axis of z. Its action u])on

any particle will be directed towards the point where the axis

is cut by a perpendicular plane passing tlirough the attracted

particle. Take this point of the axis for origin ; let r be its

distance from the attracted particle ; the attraction will depend
only on r, and its value will be

dV
dr

'

But for the points which are not part of the mass of tlic

cylinder, we have, by Art. 238, observing that V is inde-

pendent of c,

da' ^ db'
"'

whence -rr H -j- = 0.
ar^ r dr

Multiplying by r, we have

d r dV\ ^
0;drV dr)

therefore , — ,

dV^O
dr r

C being some constant.

We observe, as in the case of a hollow sphere, that th<

points exterior to the cylindrical shell and those in the interior

being separated by those of the shell, for which the circum-
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BtanccA arc different, thero U a discontinoitj in jmtJnff h%
yalae« of r greater than the raditm of the external aiu&e, to

thoac of r leai than the radiua of the intenial surface*

For points of the interior of the shell C is invariable ; but it

IB obviouflly « when r • ; therefore for all points in the
iutcrior

ITrncc we conclude, that an tml^ntte hoQow c^UmUr composed
of homogeneous theUs ejrrrciM-s no athraetion on a point sttu-

'*intJ^mi0norafiUimUrnalturfiiee,

dV
Let us now find the value of --j- for points belonging to the

nia.^:) of the cylinder; for these poinU we have, by Art. 2S9,

i'V \dV

and we find hy iutcgraiiou, calling r^ the radius of thr micrual

Burtacc,

''If— *'/^'*^-

dV
No constant is necessary, because -r: — when r^r^^ since it

is so for all the points of the interior of the surfaoe of which
the radiua is r,. Put r — r,, then

For external points we ought to have

dV ^O
1r r

*

Make r » r„ then, by reason of the precedmg equation,

C »» - Air \prdr.
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The constant being thus determined, we have for all values of

r ereater than r.,
'

dV C
Tr"" r '

and the attraction of the cylinder will be

C

We shall now give some propositions extracted from an

article bj Professor Stokes, in the fourth volume of the Cam-
bridge and Dvhltn Mathematical Journal^ to which we have

been already indebted in Art. 236.

242. A surface of equilibrium is one on which a particle

would rest in equilibrmm if acted on by the forces of the

system, the surface being supposed fixed.

If F be the potential of an attracting body on a particle,

then V= constant, is the equation to a surface of equilibrium

with respect to the attraction of the body. For we have

dV
shewn in Art 235, that -j- is equal to the attraction resolved

along the tangent to a curve drawn through the attracted

particle, but if this curve be on the surface V= constant,

dV
then -y- = ; that is, there is no force acting on P in the

direction of any tangent to the surface F= constant. Hence,

if P be placed on the surface, it will remain in equilibrium.

(Art. 33.)

Lines of force are curves traced so that the tangent at

any point is the direction of the resultant force at that point.

Hence the lines of force arc perpendicular to the surfaces of
equilibrium,

243. If S be any closed surface to ichich all tlie attracting

mass is external^ dS an element of Sj and dn an element of the

normal drawn outwards at dS^ then

/•
dn

the integral being taken throughout the whole surface S.
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Let m be the idam of anj attneting pAiticb which is
*" ttod at the point F, F being bj hTpoUMiia external to &

tirh F draw any right line L cuttinirjSl <uid prodooe it

ri one direction from F, The line £ will in

in two points ; but if the suriaoe 8 be rt-emtramt
' which maj be cut bjr a tangent plane),

II — : .: . -r. six, or an^ even number ofj>ointa.

l>tMu>tc the points of section, taken in order, by /* , P,, /*,, Ac,
/' ' - •' t which lies neatest to F. With F lor vr •

<i t the. line X a conical surface containing n

t
' measured by the area a which tiio

in a sphere of radius unity, with the

^
; and denote by A., -^,, ... the

u ;;...^.. »..v cv....^„. .......ice cuts out from a about the

points P,, P„ Let 6.f $^ bo the angles which the nor-

mals drawn outwards at P|» P,» make with the line L,
taken in the direction from P, to P*; -AT,, -Y,, the attrac-

tions of m at P,, P,, resolved along the normals; r,,

r,, the distances of P,, P-, from F. It is evident

thiit the angles ^|, ^,, will be alternately acute and obtuse.

Then we have
_» '

iV;--;^coe^„ iV,-- — co8(w-^J, &c

We have also in the limit,

-4j-ar,*8ec^,, -4, = ar/8ec (w-^J, &c;

and therefore

N^A^'mamt ^^,^4, — — am', A^.il, • am', &c;

and therefore, since the number of points P^ P,,... ia even,

.V,y!, + JV;^ + JV;^, + JV;j....-am'-am'+ am'-am'...-0.

Now the whole solid angle contained within a conical

irfaoc described with F for vertex, to as to etraunacribe 8^

lay be divided into an infinite number of elementary solid

iigles, to each of which the meoeding reasoning will apply

;

and it is evident that the wnole suraice 8 will thus be ex-

hausted. We ha\'e, therefore,

limit of SJV:^-0;
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or, by the definition of an integral,

The same will be true of each attracting particle m ; and there-

fore, if JV refer to the attraction of the whole attracting mass,
dV

we shall still have fNdS= 0. But, by Art. 235, JSf=-r-, _
an

which proves the proposition.

244. If Vhe tJie potential of any mass Jf,, and ifM^ he the

portion ofM^ contained within a closed surface /S, then

ff«— 4,«;,

dti and dS having the same meaning as in Art. 243, and the

integration being extended to the whole surface S.

Let m be the mass of an attracting particle situated at the

point F' inside S. Through F draw a right line Z, and pro-

duce it indefinitely in one direction. This line will in general

cut S in one point; but if *S' be a re-entrant surface, it maybe
cut by L in three, five, or any odd number of points. About
L describe a conical surface containing an infinitely small solid

angle a, and having its vertex at P', and let the rest of the

notation be as in Art. 243. In this case, the angles 6^y ^,,....

will be alternately obtuse and acute, and we shall have

Ar, = ~^,cos (tt- ^J = ^ cos ^,,

-4, = ar^ sec (tt - ^J = — ar* sec ^,,

and therefore -'^i-^j = ~ °^^ •

Should there be more than one point of section, the terms

N^A^t N^A^, &c. will destroy each other two and two, as in

Art. 243. Now all angular space round F may be divided

into an infinite number of solid angles such as a, and it is

evident that the whole surface S will thus be exhausted.

We get, therefore,

limit of ^NA = — Sam = — m'Sj ;

or, since 2a= dir, JNdS= — 47rm'.
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The tame formula will apply to anj other intenuJ pifw

tide, and it haa been ahewn in Art. 243, that for an exicnud
particle ^AW^a>0. Henoe, adding together all the reaultt,

aiul takinff N now to refer to the attraction of all the par-

ticles, both internal and external, we get /*Vc/6* - — 4irJf..

Hut iV» -^ , which proTea the proposition.

245. For tho researches of M. Chaslcs on the attraction

of ellip.Hoids, wo refer to I^uliamers Cour* Je M/canu^uf, or to

tin- nriLrinal memoirs in the Jourtml de VErolt PoIyUcknifju^,

torn, xv., and the M^moirea,..d69 Savant Etramgtn^ torn. IX.

Ill the original memoirs will be found copioiu refapeacca to

I
: writers on the subject

...c general theory of attractions, the student mar eon-
Hult a memoir by Gauss, translated in Tajlor*a Setemif/ie

Mnnotrs, vol. III., and in LiouYille*8 Journalde MaMfnatiqum^
wm VII.; and also a memoir by M. ChaalM in the Cm-

Tempa pour fmuUe 1845.

* by Plana on some of Ncwton*s pronoeitioDa

1 ms will be found in the Memorit ddlaBmU
iU,,,di IbrinOf aecond series, vol. xi., 1851.

uirther references will be seen in the article by Pro-
fLS--*<'r St )kis already cited.

For Uj it ion to the theory of electricity, we refer to

a series ot ^ by Professor Thomson in difTerent volumea
of the Cambrida9 and Duhlm Mathematical JoumaL See
vol. I. p. 94, and toL hi. p. 140.

24(). The following propositions will illuDtrato the sub-

i'ct of the present Chapter.

1 . To find the attraction of a uniform lamina in the form
of a regular polygon on a particle aituated in a straight line

drawn throuiru the centre of the lamina at rii?ht aiiL'lcA to iti

L< 1 71 1>< the number of sidcii in the polygon, a the length of

the |H r|M ii.licular from the centre of the polygon on a side.

Let axes of x and y be drawn through the centre of the
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polygon, the axis of as being perpendicular to a side. Let c be

the distance of the particle trom the lamina. The resultant

attraction acts along the straight line which joins the particle

with the centre of the lamina ; and its value is

ff cdxdticdxdy

The integration must extend over the area of the polygon.

To effect the integration it is convenient to transform to

polar co-ordinates ; thus we obtain

[[rdrdO

Hi(7^-
We must integrate with respect to r from r = to r = a sec^,

and then with respect to 6 from ^ = to ^ = -
; and multiply

the result by 2w.

taking this between the limits we obtain

1 008^

c */<fco6*0-\-a*'

Hence the required result is

^Jo\c Vc^cos^^ + a")

that is

that is

r» cosOdd

. 7r
csm -

n
^^^-^"^^'""'

V(a' + c')
-
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II. To find tho attrtction of a iinifonn Uunina in thfl form

>f A rectangle on a particle situated in a itnuKht lin« drawn
t liruQgh the centre ot the lamina at right angUii to its plaae.

! and 2^ be the length and breadth of the rectangle,

ionoe of the particle from the lamina. Proceeding ••

ijctore we obtain the expreteion

We hare to divide the integral into two pnrta For one

integrate with respect to r from r — to r-ascc^,

I with respect to $ from ^ • to ^ - Un~' - . For

.1,1 ^M.i.r part we integrate with respect to r from r—

to r«&coeec^y and llun with respect to 6 from ^•taii**-

to 0^-, Wc muiiipiy the result by 4.

••••«• rdr 1 costf

/:

Integrate with respect to d\ thus we get

/.

6 1 . ^ csin^

^coMc* ^Yfr 1 sin^

Integrate with respect to 6 ; tlius we get

^ 1 . ^ ecostf

Hence the required result is

4MJf
-Bin-

^(^+ 4V(-*+<^
"""" VR+fi^V+ol •



318 PROPOSITIONS RESPECTING ATTRACTION.

III. Required the form of a homop:cncous solid of revolu-

tion of given volume, which shall exercise the greatest at-

traction in a given direction on a given particle, the attrac-

tion varying aa any inverse power of the distance.

Take the given particle as the origin, and the given diicc-

tion as the straight line from which to measure angular

distance; let r, ^ be the polar co-ordinates of any point in

a fixed plane passing through the given direction. Then if

the attraction vary inversely as the n^ power of the distance,

the attraction of an element whose co-ordinates are r and d

may be denoted by ^ ; and the resolved part of this attrac-

tion in the given direction will be —, cos 6. Hence the

equation

-^ cos ^ = constant

represents a curve such tliat a given element placed at any
point of it will exert the same attraction on the given particle

along the given direction. Hence this equation will represent

the curve which by revolving round the given direction will

generate the required solid of greatest attraction, the constant

being determined so as to give to the solid the prescribed

volume. It is obvious that such is the case, because the

surface we thus obtain separates space into two parts, and
any element outside the surface exercises a less attraction

along the given direction than it would if placed within

the surface.

Some references connected with this problem will be found

in the History of the... Calculus of Variations ...^ page 485.

IV. Every element of the arc of a polar curve attracts

with a force which varies inversely aa the 7i"* power of the

distance : determine the form of the curve when the resultant

attraction of anv arc on a particle at the pole bisects the angle

between the radii vectores of the extremities of the arc.

Take the pole as origin, and any straight line through it as

the initial Ime. Let r and 6 be the polar co-ordinates of
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nn elemont dlf of the MO. Bfleolvt the «ttr«ctUMi of the are

• II a {larticlc at the pole along the initial line, and at right

Ih to it; we ohtaiD for these two oompooenta

n* inc art: coiiaiaciv<^i cAlcndifroni ^"^0 tO ^^O. lioicr,

hypotheaia,

t

dB
Un'

.>^ '•

I'ut ^ {$) for -s ^ ; thua we hare

fV (^ sin ^ci^- tan ? [V {(f)vmedB.

ion IS to hold for all vaiut's ot o, and ther^
rentiatc both sides with respect to a. Thltt

by InUgrid dUculus, Chapter IX., we have

^(a)8ina--8cc*|j ^(^coe^<i^+ tan*^(a)coa«;

therefore

2<^(a) (sina-tan |coaa)coa'|- r^(^ooa^rf^,

tliat is ^(a)8ina-i / ^{ff)cM$d$.

DinVnmtiatfi a^ain with respect to a : thna

^ (a) coa a + sin a^ ^ v«/ *» (a) «>• «

I

therefore
-a, ^ (•) " ^'
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Thus ij> (a) is constant for all values of a, that is

~ -7>, = a constant = k say.
1' (iff

''

This result mi^ht have been anticipated : it expresses that

elements of the curve which subtend equal infinitesimal angles

at the pole exert equal actions on the particle there.

Therefore ^ +0" = ^'*^'

dr
this leads to either ->,. = 0, or else

do

\dr) k'r^-

The former supposition makes r constant, and so gives a

circle. Taking the latter, and putting - for r we have

de=
u'-''du

rVCA"--u"-

so that (n-l)5•+c= mn
k '

where C is a constant

Therefore
1
= A;sin {(«--1)0 + CI

If n = 2 we obtain

l=ATsin(^+ C),

which is the equation to a straight line : see Art. 204.

If n s 3 we obtain

l=A;r*sin (2^+C),

which is the equation to a rectangular hyperbola, the pole

being at the centre.
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EXAMl'LKS.

rj Uw of attraction ia

.......^ .^ oUted.

I by the revelation of a a«ctor of a
itB bounding radii ; find tlie attraction on a

JU$uh, wap sin' /9.

2. The rii:: .. hemiBpherical bowl consiata of matter
repelling with a force varying directly as the distance ; ahew
that a particle will rest when placed an^hen on the oooetTe
surface.

8. A tube in the form of a parabola is placed with its axis
vcrtiral and vertex downwards; a heavy particle is placed in
till' tube, and a repulsive force acts along the ordinate upon
the {larticle: find the law of force that it may sustain the par*

tide in any position.

4. A portion of a cvlinder of uniform density ia boonded
I leal surface, the radius of which is greater than that

o! ; < . . iuder, and the centre coincides with Uie middle point

of tiic l*;isc ; find the attraction on a particle at this point.

BesuU, 2irpa—^ ; where a is the radius of the cylinder

and b the radius of the sphere.

5. Find the resultant attraction of a spherical segment on
a particle at its vertex.

jwt «»v{>-J>/(?)}.
where a is the radius of the sphere and h the height of the

segment.

6. Find the resuiuni attraction of a sphcckal augment on
a particle at the oentre of its hmt»

T.8. 21
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7 Find the locus of a point such that its resultant attrac-

tion on a fixed straight line may always pass through a (*

point in the straight line. Result, A sj);

8. Find the attraction of a segment of a paraboloid of re-

volution, bounded by a plane perpendicular to its axis, on a

particle at the focus.

Result, Airpa log , where x is the distance of the

bounding plane from the vertex.

9. Round the circumference of a circle n equal centres of

force are ranged symmetrically; each force is repulsive and
varies inversely as the m*'' power of the distance. A particle

is placed in the plane of the circle very near its centre;

shew that approximately the resultant force on it tends to the

centre of the circle and varies as the distance of the particle

from the centre, except when 771 = 1.

10. Eight centres of force, resident in the comers of a

cube, attract, according to the same law and with the same
absolute intensity, a particle placed very near the centre of

the cube ; shew that their resultant attraction passes throu^j^h

the centre of the cube, unless the law of force be that of the

inverse square of the distance.

11. If the law of force in the preceding example be that

of the inverse square of the distance find the aj)proximate

value of the attraction on a particle placed very near the

centre.

Result. Take the centre of the cube as origin and the axes

parallel to the edges of the cube ; then if a;, y, z be the co-

ordinates of the particle the attraction parallel to the axis of x
is approximately

towards the origin ; 2a being the length of an edge.

12. The attraction of a uniform rod of indefinite length on
an external particle varies as (distance)** of the point from the
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rod. Prove this, uid tappoting the amnptotes of an IiTper-
bola to conaUt of aach material, -I'"'*' *^!it a particle will Im is
iMIuilibriuroatanjpointof the Ir i. and that tbepraam
<>! rve at any point ia proptjruonal to tho loigta of the
t.^ .;teroeptea bj the atjmptotei.

13. An elliptic lamina attracta an internal particle (x, y)
with a force rarTing inveraelj aa the distance ; ahew that if

A', 1' be the whole attractiona pandlel to the exea,

« y
14. If i4, ^, C be the attractiona of an ellipaoid in direo-

tiona parallel to its axes on an internal pertiele aituated at the
point (/ ff,

h), ahew that

^ + _ + ^.4wp.

i.>. iiic rc^ulLuit utlractiou of a particle which attract!

ac« idin^ to the inverse cube of the diatance on a plane
lamina la the aame aa on that part of the spherical ahell

ilcsrribed about the particle aa centre and touching the plane
of the lamina, which ia cut off by straight linea from the

centre to the edge of the lamina.

16. A particle attracted by two centres of force at A and
B is plaoea in a fixed groove. Shew that tlie particle re-

innlns at rest at whatever point it is placed, provided that

the form of the groove be such that

(iiP-e)(SP-c')-c .

where c, c' are constants dependent upon the absolute forces.

17. If a portion of a thin spherical ahell, whose projectioiia

rn the tnree co-ordinate planes through the oeotie are

, //, (7, attract a particle at the centre with a force vaiTuur
SA any function of the distance, shew that the particle wiu
bci^iii to move in the direction of the straight line whose equa-
tions are

SI—

f

i
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18. The particles of a thin hemispherical shell attract with

a force = /* (distance), and those of a right conical shell repel

with a force = /* (distance). The rims of their bases coincide,

and their vertices are turned in opposite directions, shew tliat

a particle will rest in the common axis produced at a distance

from the vertex of the sphere = length of the axis of the cone,

the vertical angle of the cone being 2 tan"* j.

19. Shew that if the attraction vary inversely as the dis-

tance an indefinitely thin plane ring exerts no force on a

particle in the plane of the ring within its inner circum-

ference.

[This and the following example depend on the integral

{a — c cos 6) dO

:̂ a^ -\-
c* — 2ac cos 6 *

for which see Integral Calculus, Chapter IV.]

20. Shew that if the attraction vary inversely as the dis-

tance an indefinitely thin plane ring attracts a particle in the

plane of the ring beyond its outer circumference in the

same manner as if the mass of the ring were collected at

its centre.

21. If a straight line be the attracting body, shew that

the lines offorce are hyperbolas and the surfaces of equi-

librtum spheroids. (Cambridge and Dublin Mathematical
Journal, Vol. III. p. 94.)

22. From the proposition established in Art. 244, deduce
that established in Art. 239. {Cambridge and Dublin Mathe-
matical Journal, Vol. v. p. 215.)
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CHAPTER XIV.

VIRTUAL VBLOCITIES.

2 i 7 \
. ))rooeed to establish a general theorem respect-

in, iM . s iiliriiim of a bodjr or system of bodies, callea the
PrincipU of Virtual VdoeUies,

V '
' li of particles is in . anl we

i^m placed in a poei: .-.Aw near
t pies, witoout diitturbiutf tikis con-
II system with each other, tne straight

line which joins the first iKwition of a particle with the second
is ca!' 1

'^
' ' •' ^ocktif of thai partidt^

'y\ nsed because we maj conceiTe all the
•V : II the some indefinitely small time,

a;.-. .. od are proportional to the velocities.

The word n'/ used to intimate that the displacements
ar ' but only snppo$ed. We retain the
r \\ bat it 18 evident from these ex^lana-
t; bcity might be conveniently
I'r^ ^ etMni,

'By tin rUhout dUturhtng the connexion tf the parts
.

;'
' ^ .1 ,

.... yi^^jun, that any rigid Dodr
\\ sed to remain of invariable

fuini, an 1 aich connect different

parts uft; ^ '^kcn. This, at least,

will serve for a prelin ;is8ist the reader,

and we shall recur u. ...v. .....j... ..^...u ; see Art 257.

Ilence« by reason of this limitation the virtual velocities of

t:
'' '*

!\'nt parts of a system are frequently so connected
t ;i those of a definite number of points are aMomedy
thiMic uf all the rest necessarily follow.

243. The virtual velocity of a particle estimated in a
^ivcn direction is the projection of the virtiml velocity on
this direction; it is considered positive when the directioa
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of the motion of the particle, in passing from its first position

to its second, makes an acute angle with that along which
we are estimating the velocity. Thus the virtual velocity

of a particle estimated along any given straight line is found

both in magnitude and sign, by multiplying the absolute

virtual velocity by the cosine of the angle which its direction

makes with the given straight line.

The virtual moment of a force is the product of its mnn.sity

by the virtual velocity of its point of application estimated in

the direction of the force.

We can now enunciate the principle of virtual velocities.

If any system of particles is in equilibrium, and we con-

ceive a displacement of all the particles which is consistent

with the conditions to which they arc subject, the sum of the

virtual moments of all the forces ts zero^ whatever he the dis-

placement. And conversely^ if this relation hold for all the

virtual displacements^ the system is in equilibrium,

249. The student will derive from the demonstrations

which follow a better notion of the meaning of the principle

than from the mere enunciation of it ; it is, in fact, necessary

to obtain a general view of the whole subject before at-

tempting fully to comprehend the preliminary definitions and
statements. One remark may be made for the purpose of

anticipating a difficulty ; each virtual moment is by definition

an indefinitely small quantity, that is, ultimately vanishes,

so that the prmeiple seems to amount only to this, take each

force of the system a7id multiply it by a quantity which ulti-

mately vanishes, then the sum of these products vanishes. The
principle, however, implies more than this statement, as we
shall see.

The convenient term virtual moment is given by Duhamel

;

it may, however, be useful to enunciate the principle of virtual

velocities without introducing this term, and we therefore give

the following.

Suppose a material system held in equilibrium by any
forces, and suppose the points of application of the forc( s

moved through very small spaces in a manner consistent

with the connexion of the parts of the system with each
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Other, r^t parpoodionUuni be drawn from the

of ' on the diroctioii ' ' forces acting at ^
I>

ir }iotiti<ms of cs ^.n. The diitanoe be-

t\ t of any perpencticolar and the original |><)itit

o! .., of the oorroiponding force, b called the vir-

tonl \ '>f the |K>iut with respect to that force, and ia

estiiuai' •
' or negative, according as the ncrpcndicular

falls on t of the |>oint towards which tnc force acts

or on till <.|.}> ..nite side. Then the principle is this, Us
aijebruical sum of the prodmei of eaek force of (As tutiem

anti the I vtrtMol vJoeihf vaniahm. Ami oomr

vtr»ely, ij .muhet for €V€ryaifphBeem€fU tke ^fwitm
is in ctfniUhrimn.

' to a general demon^tnitiou, we will

cases, that of a particle, and that of

a rigid rod acted on by forces at its ends.

2r)0. Suppose that forces act on a single particle and
muiiitaiii it in equilibrium. Let P^ P^, ... denote the forces;

a^t a,, ... the angles which their directions respectively make
witli ant/ tlxed straight line arbitrarily chosen ; then, by Art 29,

SPcosa-O.
If every term of this eooation be multinlied by the arbi-

tr"*-- •" uitity r, we liaTe zPr cos a « 0. But r cos o^ is the

I

of tlie lengtli r, measured along the fixed line, on
t tlon of the force P^; a similar meaning may be
a !> r C09 a,, r cos a,, ...Also r majr be considered as

t > first position of the particle from a second

I y chosen, and therefore, when r is indefi-

nitely diminished, r cos a^, r cos a,, ... become the virtual ve-

locities of the particle with respect to /^ "
. Hence, the

principle \u>\iU \n this case.

Cuiivcrsily, if SiVcoaa«*0 for all dircv lace-

mcnt ; then/^P cos a > for all directions, ci le is

in o(iuilibrium under the action of the given forv

In this case, we observe that the ' ' ' '

of the particle may be of any mag:
the i^nm of the products of each foruc

tht' (li; 'aoeinent on ita direction is n*
'
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251. Since when a system of forces acting on a partic 1*

18 in equilibrium, each force is equal and opposite to the re-

sultant of all the other forces, and, as wc have just seen, the

sum of the products of each force into its virtual velocity is

zero, it follows, that the product of any force into its virtual

velocity is numerically equal to the sum of such products for

any system of forces which it balances, but is of the opposite

sign. Hence if a single force is the resultant of a system of

forces acting at a point the product of the single force into

its virtual velocity is equal to the sum of such products for the

system of forces.

252. Next, suppose a rigid rod acted on by a force at each

end. Let a;, y, 2 be the co-ordinates of one end, and a;', y', z

those of the other ; I the length of the rod ; then

ix-^f+{y-yy+{z-zj = l' (1).

Suppose the rod displaced ; let hx, By, 8z be the changes

made in the co-ordinates of one end ; Bx\ Bt/\ Bz those made
in the co-ordinates of the other end ; then

{x+Bx-x'-Bx'y+ (y+3y-y'-a^7+ {z+Bz-z-Bzy=l\..,(2).

From (1) and (2),

2 (a; - x) (Bx - 5a;') + 2 (y - y) (By - By) + 2 (z-z) (Bz - Bz')

-\-{Bx-Bxy'^(By--Byy + {Bz-Bzy=0 (3).

Let a, /S, 7 be the angles which the original direction of the

rod makes with the axes ; then

a;' — ar = Z cos a, y' — y = l cos ^^ z — z = l cosy .,. {4).

If then, in (3), we neglect the terms {Bx — Bx')*, (By — ByY,
(Bz — Bz'y in comparison with those we retain, we have

{x-x'){Bx^Bx')^{y-y'){By-By') + {z-z'){Bz-Bz')=^0,

or, by means of (4),

Bxcosoi-\-Bycosp-\-Bzcosy=Bx cosoi-^By cosp-\-Bz'cosy ..,{b).

Suppose P the resultant of the forces acting at one end of

the rod, and P' the resultant of those acting at the other end;
then, in order that there may be equilibrium, these forces
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must be e^oal in maffnitude and muBt act along the rod in

opposite directiona. This ia obvioua, or may be eaaily ahewn
bj Art 78. Since then F-^P, we hareV (5)

P(&rooea + 5|ycoa)9 + &icoa7)

+F (&r' coa a + Sy cos /9 + &»' coa 7) - (6).

Since P acta oiUmg the rod, the firet term ia the prodact of
J" 10 reaolved virtual >Int of anplication,

.second term ia u for F\ hence, the
principic of virtual velocitica holds in this case.

The converse of thia theorem is true in tliis case, but we
nhall not ^ve a acparate demonatration of it; tlie general

demonstration of Art. 258 will auffidently illustrate thia

point

If (5) were absolutely true, then in the case of a rod« aa in

that of % gingle particfe, the sum of theprodncta of each force

lisplacement oT ita point of applica-
t ac force would be aero, whether the
dispiaeemeni were Jiniie or tnjtnttesintai. But (5) instead of

being abaolutelj true is obtained from (3) by neglecting

sqmBTtB andproducts ofthe reeolved dutplaeemenUox^ Zoi^ ^i***

2o3. We proceed to establish the truth of the principle in

the case of a rigid body. We shall assume that any poeaible

displacement ofa rigid body may be produced, by first making
the body rotate about aome axia, and then moving all the

particlea of the body through equal apaoea in parallel direc-

tiona. See Spherical Tr^onometry, Chapter XI 1 1. Suppoae,
for simplicity, that the axis of s is made to coincide with the

axis about which the body ia turned; let 6 be the angle
through which the body is turned, then the co-ordins^ea of a
partide which were onginally x and v will become, if we
myUct the etputre and hiaher powere of 9, x — y$ and y-^xB
respectively; the co-ordinate a of the particle remains un-
changed.

Let the body be now further diaplaced, so that each particle

moves through a apace of which a, 6, e are the projectiooa on
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the co-ordinate axes ; then, if &», ^, Bz denote the whoir

changes made in the co-ordinates x,y,«of a particle, we have

Since tlic forces which act on the rigid body arc suppose 1

to keep it in equilibrium, we have by Art 73,

2x=o, 2r«o, 2^=0,

2(^-rz)=0, t(Xz'-Zx) = 0, t{Yx-Xi/)=^0.

Multi])ly the first of these equations by a, the second by i,

the third by c, and the sixth by 6, and add; we then find

2{X(a~y^)+ Y{b-^xe)+Zc]=0,

or X{XBx+YBy + ZBz)=^0,

Let Pj denote the force of which JTj, Y^, Z are the com-
ponents, and Pj, Pg, have similar meanings; and let

o/7j, 3/7^, be the resolved virtual velocities correspond-

ing to these forces; then, by Art. 250, the above equation

may be written

2PSp = 0.

This proves the principle in the case of a rigid body.

Conversely, if the sum of the products of the forces and the

resolved virtual velocities vanishes for every possible displace-

ment of a rigid body, the forces keep the body in equilibrium.

For suppose, in the first place, the body is so displaced

that every point of it moves parallel to the axis of x over a

space a ; then we have, by hypothesis,

2Xa = 0;

therefore XX = 0.

Similarly, by suitable displacements, we may prove that

2r=0, and 2^-0.

Next, suppose the body turned round the axis of z through
a small angle 6 ; then, by hypothesis,

t{XBx+YBy) = 0,
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and &r--y^, B^maB;

therefore «(A>-r»)-0;

thcrffon* S(r«-JV»-0.

Similarly, by soiublo dispUoements, we maj provo

2(2>-yr)-0, 2(2#-Zr)-0.

HeDce, the six eqnadona of eqnilibriom bold.

If there be a system of two or more rigid bodies, then, since

r * of virtual velocities holds for any poesible di»-

i

: any one of the bodies, it holds for any poenUe
di s of the

254. Ill Art. 252 we have simplified the proof of the first

part of the principle of rirtual velocities, by supposing the

axis of « to coincide with that aboat which the Ixxlv was
made to undergo an angular displacement The following

will bo the process, if we suppose the displacement made
about a straignt Uoe paMing tl ' the origin, and indined

to the axis at angles whose di >8tncs are /, m, n.

IxH r \w the distance of any point (a?, y, «) from the oripn;

(p the angle this distance makes with the ^ven straight line;

p the perpendicular from («, y, s) on the given straignt line

;

then

r»-«» + y+s«,

coa^-- +— +-,

therefore p* or r* sin*
<f>

=» a^ +y* + «- (i» + my + ««)•.

Suppose the body turned through a small angle $ round

the given line ; let x + &r, i/ + 5y, s -f &, be the co-ordinates

of that pomt of the body wluch was originally at («, y, s).

Since r and p are unchanged by the displacement, we have,

by neglecting (Bx)\ (5y)*, (fig)* in comparison with &r, 5y, &,

O-aj&t + yfiy+sfif,

0»^ + iii3y4-fi&;

I*
Jk Urn

therefore - ,^^ - -—-Tt-X wppoae (!)•
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And since {(Bx)* + (ht/Y + (Bz)*]^ = 2p sin ^6,

\Hi/n-zmy+ («?-am)*+ (arm-y?)*)i = 2p sin i^,

or \{a:' + y' + z*-(fe-f my+n2)»]* = 2psini^;

therefore X= (2),

neglecting $* and higher powers of 6.

Suppose the body to be further displaced, so that each

particle move^ over spaces a, by c parallel to the co-ordinate

axes ; if Bxy 3y, Bz denote now the whole displacement of the

particle whose original co-ordinates were a, y, z, wc have

Bx = {yn — zm) ^ + a,

By = {zl — xn) + hy

Bz = {xm — 1/1)6 + 0.

Multiply the six equations in Art. 73 by a, J, c, — W^ - mO^
- ndy respectively, and add, then

%{XBx+ YBi/-tZBz)=0,

255. We shall illustrate the principle of virtual velocities

in the solution of the following problem.

A beam in a vertical plane rests on a post B and against a

wall at A ; required the circumstances of equilibrium.

Let the distance of J5 from the wall = i ; let G^ be the centre

of gravity of the beam ; AG = a; and the inclination of the

beam to the wall = 6, The reaction (P) of the post at B is

perpendicular to the surfaces in contact, and therefore to the

beam ; the reaction (R) of the wall is perpendicular to the

wall for the same reason ; let TV be the weight of the beam.
Wc may consider the beam in equilibrium under the action

of P, E, Wf and suppose the post and wall removed.
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Now the object of the nrohlero misht be, toUHj to datar-

mine the poeitton of equilibriom, or also to detennine P and
not Rf or Ji aiid not P, or to determine both P and B and alio

the poeition of ec^uilibrium. We shall aolve the problem hj
the principle of virtual reloctties under these four tuppoettioiia,

in order to explain the method of proceeding lo aa to aroid

aa much trouble aa possible according to the nature of the

question.

(1) Suppose the position of equilibrium onlj required.

Wo roust tnen give the beam a small arbitrary geometric

motion such that the unknown pressures P and R shall not

t the equation of virtual velocities; the beam must
(> remain in contact with the wall and the post, as

in the figure.

Let hS be tlie increase of $ owing to the dispiaccmcm.

Then the height of O above the horixontal straight line

t}i rough Bf (or j), before displacement

a 6^^cos^«(a-&co8ec^co6^«acoe^-5cot^;

the height after displacement is found by changing $ into

$+h$ in this expression ; therefore, the vertical space Mtoribed
by G or Bz

^aoo8{6 + Be)-bcoi(e-¥^-(aco%$-bcoi0)

and, by the principle of virtual velocities, TF8s — 0; therefore

&-asin*^-iO, sin^-^-

,

and thb determines the potitum qfefmUbrti

(2) But suppose we wish to find the preisoxe P as well

as the position of equilibrium*

We must in this case move the beam off the post, in order
that the virtual velocity of B with respect to P may not
vanish, and consequently P not disappear as in the first

Let AA'« e, and let, as before, BO be the change of 6,
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We have to find the displacement of B estimated along

the line of action of P. Now conceive the beam brought
into its second position by two stej)S ; first let it be moved
parallel to itself till the lower end comes to A\ and next let

it revolve round A' through a small angle hO. By the first

step B moves through a space parallel and equal to AA'] by
the second step B describes a small arc of a circle the length

of which is AB.hd, that is Z>cosec^5^. Thus the displace-

ment of B estimated along the line of action of P is ultimately

c&inS — h cosec 6 B6.

Similarly by the first step G moves through a space equal

and parallel to AA\ and by the second step G describes a
small arc of a circle the length of which is aB0, Thus the

displacement of G resolved vertically downwards is ultimately

aBd sin 6 — c,

Therefore, by the principle of virtual velocities,

W (a sin eBO - c) + P(c sin ^ - 1 cosec 680) = 0;

therefore, 86
(
Wa sin 6-Pb cosec ^ - c (F- Psin ^) = ;

and, since c and B6 may be any independent small quantities,

WaBm6-Fb cosec ^ = 0, W- Psin ^= ;

therefore %m6^^-, and-^=y^^.

(3) Suppose we wish to know R and the position of

equilibrium, and not P.

Then we should displace the beam so as to give to yl a

virtual velocity with respect to R, but not one to B with
respect to P.

The beam must therefore still remain in contact with the

peg. Let AA=i c, and let a be the angle which AA' makes
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h tlio Tcrtli^. Now oonoeiTe the beam brought into iti

lul i><)-^Iti«>ii l)V two steps; first let it bo muvtil narallel

to itself till the lower end comes to A\ and next let it revolre

round A through an angle 3^ so ss to bring the b«un again
into r >TTtart*wiUi the pe^. The displacement of A estimated

• line ot r 7? is e sin flu The dispUusemeat of
itid vert.--.-^ ,Jimwards is o^^sin^-ccosflu

\\ \\^^r^ \% A reUtion between W, c, and a, arising

>le displacement of the beam is such

,
in contact witli tht; |k»l% From the

triangle AISA^ we hare

_i^\nlO A A'

Bin {6" a)" A'JJ'

. j^ c sin (^ — a) sin ^ . . ,

hence, 5^ « * ultimately.

Therefore by the principle of virtual velocities

ir|, sin*^8in(^—a)—ccosa[ + ^c8ina«0;

that is,

^asin'^

^~T l)cco««+ f-ff--T^«in*^co8^jcsina = 0;

and cooea and csina are independent; therefore

therefore .intf-y/J. ^ ^-'l^I^,
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(4) Lastly, suppose we wish to determine P and E and
the position of o(j[uiIibrium.

Then we must rive the beam the most general displace-

ment possible in urn plane of the forces; let AA' = Ot and

let a be the angle which AA' makes with the vertical. Now
conceive the beam brought into its second position by two

steps ; first let it be moved parallel to itself till the lower end

comes to J', and next let it revolve round A' through an

angle Bd, The displacement of A estimated along the line

of action of i2 is c sm a. The displacement of G estimated

vertically downwards is

oBd sin ^ — c cos a.

The displacement of B along the line of action of P is

c cos ( a + 5" — ^) — J cosec 6Bdy

that is, c sin {d—a)—h cosec 0B6,

Therefore by the principle of virtual velocities

W{aZB sin ^— c cos a) + Re sin a

+ P{c sin (^ - a) - 5 cosec OhO] = 0;

that is,

(
Wa sin O-Ph cosec 6) hO + (Psin ^ - IF) c cos a

+ (i2-P cos ^) c sin a = 0,

and hO, c cos a, and c sin a are independent ; therefore

Fa sin ^-Pi» cosec ^ = 0, Psin^-TF=0, ^-Pcos^ = 0.
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Tlieie duet •qiuliont arc the eqiutions which w« tboold
have obtained by ti.- ..•^••m-'I— "f Ar» '? • tliey givo by
elimination

Wc hnvo than illuntrated Uie method of application of thia

{' I we obeerre, in general, that when the object

I'l 1... ,. 111 doea not require certain unknown forces, we
muBt ffive the body the most arbitrary geometric motion
{KMsibie without giving the points of application of these

tbrces any motion in their directions.

256. In applying the principle of rirtual velocities to de-
duce the conditions of equilibrium of any system, it is of^en

convenient to give the body such a displacement as to make
the virtual mammit of mme cf the farctM 9epttrakiy vamtMh.

Thig has been exemplified in the preceding Article, and we
will now enumerate some esses in which the virtual moment
of a force vanishes,

(1) In the hypothetical displacement, if any particles of
the system have remained in tlicir original places, the virtoal

niomi'nt of forces acting at such points is ODviously zero. If

a ImhIv, for example, have one j)oint fix#»d, then the virtual

veliKity of this iK)int is £cro for any tical displacement

of the body, which doca not bn*ak • ti-m of tlils Tx»Int

being fixed.

(2)
^"

' -C a body ^ !n|'.:I. 1 t • ;..,..

in roil .1 a smoot'n iIa- -i iM.ui--. - • li..; .

a forcQ on the body at the point of contact it i

|KTiK'iidicular to th'* ».1mo. Let the body be di

to nave the tame
\

I in contact with tho

then tlie peq)endicuiar lirawn from the new p'
|M^int of cv^ntact on tho old direction of the aHioi

J.'
':at din-ction at t'

«•» 1.4, tlie virtual vi

relative to the force exerted by the plane is icro.

Similarly, if the body have more than one jxunt m » on-

tact with the plane, and be so displaced that the 9ame points

of tlic body remain in contact with the fixed plane, the

T.s. 22
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virtual moment of each force which the plane exerts on the

body vanishes.

(3) Let two smooth bodies l)e in contact; then cacli exerts

a force on the otiicr alon^ their common normal. Suppose
one of them so displaced, that the point in it which was
originally in contact with the other body still remains in con-

tact with it ; the case is similar to that of a body in contact

with a fixed plane; the virtual velocity of the point of contact

relative to the normal force is not zero, but is indefinitely

small compared with the absolute virtual velocity.

Let BAG he a section of one body made by a plane whicli

contains the common normal to the surfaces, and DAE the

section of the other made by the same plane ; A the point of

contact. Suppose the body BA C displaced into the position

B'A'C\ so that the point A is moved to A', Draw yl'3/ per-

pendicular to the common normal to the surfaces. Then AM
represents the virtual velocity of the point of contact with
respect to the normal force, while the straight line joining A
ana A' is the absolute virtual velocity. Since MAA is ulti-

mately a right angle, -43/ vanishes compared with AA'.

(4) Suppose two bodies in contact at a single point, and
let them be both displaced so that they still remain with the

same point of each body in contact. Let P denote the force

in the normal on one body, and therefore —P that on the

other ; then, if FZp denote the virtual moment of the normal

I
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force with rcjipect to the first body, — Pfy will be the virtiul

moment with respect to the Moond body. Ueaoe, by taldiup
the sum of the viitiud moments for the two bodies, the mutiiiS
action P disappears.

A fliroilar result holds if the bodies be in contact at more
l)oints than one.

(5) Suppose a body in contact with a smooth fixed pUne
at a sinf^le point, and let the body be displaced by roUw^ it

on tlie hxed pUne.

Let BA (7 be a section of the body made by a plane through

tlie point of contact A containing the common normal to the

surfaces, and suppose this section a circle. Let DAE be the
intersection of this plane with the fixed smooth plane. Sap-
|>ose li'A'C the position of the body after displacement, A'
iK'iU'^ the new point of contact, and let a be the point in the

iHMly which was originally in contact with the fixed smooth
])Iaiie. Draw an perpendicular to the normal AX; then, Ah
!• -i the resolved virtual velocity of the point of contact
\s -ct to the normal force. Now An is equal to the

I
( the chord A*a and the sine of the angle between

ti. .. i and A*A; and as tliis angle is ultimately indefi*

nitely small, An is indefinitely small compared with the chonl
A'a^ and therefore also compared with tlie arc A'a or A A'.

Hence if we neglect powers of A A' higher than the first, the

virtual moment of the force along the normal acting at the

point of contact is xero.

A similar result holds if BAC, DAE be amy curves instead

of a circle and straight line respectively.

If a displacement is made u^) of two, one like that in the

second case, and one like that m the ptesent case, the fixed

plane being smooth, the virtual moment of the force exerted

by the plane will vanish.

22—2
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(6) Let us suppose the bodies in contact to be roughs and
a displacement to be made bjr rolling one upon the other as in

tlic preceding case. The action of eacli body on the other will

not be directed along the normal AN, but may be resolved

into two, one along AN and the other at right angles to AN,
The virtual moment of the fonner force vanishes, as we have
shewn in the preceding case ; and since the direction of the

straight line joining A and a ultimately coincides with AN
and IS therefore perpendicular to the second force, tlie virtual

moment of the second force vanishes in the same manner as

in the third ease.

The result depends on the hypothesis that the bodies roll

on each other; if there is sliding the virtual moment of the

force at right angles to -4^ will not vanish.

(7) Suppose an inextensible string to have one end at-

tached to a fixed point, and the other end to a particle either

isolated or forming part of a rigid body ; one of the forces of

the system is then the tension of this string which acts along
its length. Let the particle be so displaced as to keep the

string stretched, then it may pass from its first to its second

IX)sition by moving over an arc of a circle, and in the same
manner as in the third case, we see that the virtual velocity

of the particle with respect to the tension which the string

exerts, is indefinitely small compared with the absolute virtual

velocity of the particle. Hence, the tension of tlic strlnc^ dis-

appears from the equation of virtual velocities.

(8) Suppose an inextensible string connecting two parti-

cles of the system, and let the particles be displaced alonj]^ the

direction of the string, the string being kept stretched. Then,
if one particle be displaced through a space Sj3, and P denote

the tension of the string, and therefore the force exerted by
the string on this particle, Php is the virtual moment of tlio

force which the string exerts on this particle ; also — P^p will

be the virtual moment of the force whicli the string exerts on

the second particle. Hence, by taking the sum of the virtual

moments for the two particles, the tension of the string dis-

appears from the equation of virtual velocities.

(9) If we suppose a further displacement of tlie system in

the preceding case, by keeping one partick fixed and makin.L'^
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the other describe an arc of a circle, then, br tb«

tlie tfnision of the string disappears from tne eqoatioii of Tti^

tual Velocities.

\\y a combination of the displacements considered in the

H<'vei)th and eighth cases, we can produce aiij displaoenient

that th." two particles can undercro. so lotii? an the Rtrinrr is

kc|« J. Hence, the tr vo

iMiriii M - •••'"'nrs from the c<|U4»iivii vi vniwit* »« ." ii*\^.

Wc h.i
,
|M>sed the string to pass in a straight linefton

one particle to the other, but the same result would hold if

the string were deflected by passing through one or more
smooth fixed rings, supposing it always kept stretched. The
demonstration would not hold for an exImmbU string.

257. We can now understand more distiiictly the

of the words, wiUunU ditturhmg tke eotmexum efiievarit of
the mfgtem wiih sae4 ikker^ which are introduced mto the eniin«

ciation of the theorem. The theorem is shewn in Art. 250 to

be true for a particle ; if tlicn we consider a rigid body to be

:i c •llc.'tlon ot i>articles held together by molecular forces, the

i!iv uiLia will hold for every displacement of the particles of

the rigid body, provided we include the molecular forces and
estimate their several virtual moments. But from the demon-
stration in Art. 253 it appears that we need w4 consider the

molecular forces, proWdcd we give to the different particlet

8uch displacements only as are consistent with tlie unbroken
ri>;idity of the body. So with respect to such forces as are

enunciated in the preceding Article, wc may, if we take them
into consideration, eive to the system any displacements we
please; but if we ao not take them into consideration, we
most give such displaeementa only m we can prove will not

introduce the virtual moments of these forces. Hence, the

words which wc arc explaining amount to a direction to be

'•&nf force of the sytlero, except such as
... . virtual moments ien> for the particular

dispiu ( incnt we are considering.

*J.'»^. The following example will shew how the principle

of N .M .1 vM. Watties may assist in the solution of problems.

^^l.\ are Cutened together by hinges at etch end.
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and one of the rods being 8uj)ported in a horizontal position

the opposite one is fastened to it by an elastic strins: joining

their middle points ; determine the tension of this string.

Let W denote the weight of each rod, T the tension of the

string. Suppose the system displaced slightly so that the

lowest rod descends vertically through a space x. Then it

will be easily seen that the centre of gravity of each of the

two rods which are adjacent to the highest rod descends
OB

through a space j ; and the centre of gravity of each of the

two rods which are adjacent to the lowest rod descends
3a?

through a space —- ; the point of application of the tension

on the lowest rod descends through a space x. Therefore by
the principle of virtual velocities

2Trf + 2TF^ + TFa;-7Ic = 0;

therefore T=SW.

The mutual actions at the hinges disappear from the equation

furnished by the principle of virtual velocities, and thus the

required result is readily obtained.

259. The following is the process by which we may de-

duce the equations of equilibrium of any system from the

principle of virtual velocities.

Let Pj, P,, P,, ... denote the forces which act on a system

;

P.Bp^f P,^,,... their respective virtual moments for any dis-

placement ; then, by the principle,

P,8;>. + P.8p. + P.8p. + ... = (1).

This equation we proceed to develope.

Let ttj, /9,, 7, be the angles which the direction of P^ makes
with the co-ordinate axes; a:,, y^ z^ the co-ordinates of tlie

point of application of P, ; then

^Pi — ^^3 ^i^**^! + ^^^ A^yi + ^^^ Vi^-^i (2)

;

this is rigorously true, and similar equations hold for Bj?^,
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Now, in cofiteqaenoe of the connexion of the i3riitem, for

example, the ri^dity of tome parts of it, or tba jonetioa of
parts by roda or Btringa, relations will hold betireen tlie eo-

ordinfttes x,, y^, «,, a* , y,, «,,... in virtue of which all of

thciu may be cxprcAscd in terms of a certain number of them;
or all of them may be cxpreseed in terms of certain other

independent co-ordmatcs and an^^les.

Suppose f,, f,, f,,...^,. ,, to denote these inde-

pendent co-ordinates and angles. Tken^ if we negled ike

squares and products ^ and higher powere of ^y ^y,* ••• ^|t
S(,, ... 5^p c^^t ..., we shall obtain equations ot the form

whrro .1,. A^, ... B , /?,,... a,, <y ...\, h^, ... arc functions of

the varliiblf:*, but do not contam the increments ^,, 3f^...

Lrt the values of &r,, Sy, ... be Bubstitutcd in the equstioni

of which (2) is the tyix;, and then let the values of 5p,, 5/>,,...

be substituted in (1) ; this equation will take the form

e.^f. + <?.^. + ... + gMt +7M + - - (3).

The conditions for the equilibrium of the system are

0,-0, Q.-O,... y,-0. g,-0 (4).

For since 5f,, Sf,, ... 8^,, S^,... ar« by suppoaition inde-

)>ondent, we might have given the body such a displioement

:iH to leave f,, f,,.... ,, ^,|.... unchanged; ana then (8)

would reduce to

0,^1-0; therefore Q,-0.

Similarly, we may shew that the other equations of (4) hold.

2G0. We will giv« a ftimple example in illustration of the

method of the pre<Sdi Ic. A string of given length has

one end fixed at a p'l - line of intenectioa of two ver-

tical planes at right angles to each other, and at the other end
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carries a heavy particle wliich is repelled from these planes by
forces of which one is constant and the other varies as tin-

distance from the plane; find the positions of equilibrium.

Take the vertical plane from which the particle is repelled

by a constant forc^ as the plane of (x, 2), and the other ver-

ticid plane as the plane of (y, z) ; take the point to which the

end of the string is fixed as the origin, and let the axis of z

be vertically downwards. Let Xj y, z denote the co-ordinates

of the particle in a position of equilibrium, and I the length

of the string. Let W be the weight of the particle, F the

constant repulsive force, /xx the force which varies as the dis-

tance of the particle from the plane of (?/, z). Conceive the

particle displaced into an adjacent position, the co-ordinates

of which are x-\-hx, y + 5y, z + Bz. Then by the principle

of virtual velocities

fixBx + FBi/ + WBz=^0 (1);

the tension of the string has no virtual moment by Art. 25 G.

Also x^-h7/ + z'=^r (2);

therefore xBx+ ySi/ + zBz ^ (3 )

.

By (3) we can express Bz in terms of Bx and Bt/; thus (1)

becomes

Therefore fix-— = 0, and F- -^^ = 0.
Z Z

From the first of these equations we obtain either s = — , or

else x = 0. If we take the former solution we obtain 7 = -
,

and then x is known from (2) ; thus one position of equili-

brium is determined. If we take the solution a; = 0, then y
and z must be fouud from the equations

Fz--W2/=^0, f+z*^P;

thus another position of equilibrium is determined.
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2ii\. The principle of virtual velooitiet ti oteftil in

ill tic tch pioUemA at that in Art. 255, wharo
t« »rc.^ o. vi> their Tirtiial momenta aero for certain

di>|hui ineiitx. < it an important general pro-
po:iiiiuu tu whici; :.. ^.ic leadfl«

A fifsiem of rijid hJies under the action of no foreee hut
their tceh/hdi, mutual preeonree, and prteeuree tqfon emooiA
iminovtabU ,«"'*'

^ iciV/ he m equUArium^ ifplared eo that

the centre of 'v m tke loweet or higkfst po0{tion %t oan
poesihly attain oj/ inoctng the 9jf$tem coneietentiy with the eon*
neaeion of tit parte with one amother.

I^ 'j' 't* •*: ^note the distances below a fixed horiaontal
plane or the different particles of the system; 10,, vr^, ... the
^\ lights of these particles. That the system may be m equi-
librium, we must nave

to,8s, + ir,&, + ifr,&, + ...-0 (I);

for by Art. 956 the rirtual moments of all the other forces

which act on the system vaiiisli. Let s denote the depth of
the centre of grayity of the system below the fixed horixontal

plane; then

therefore (10^^+ it,+ ip,+ ...) fii " wfis^ + wfix, -»- 10,&,+ ... (2).

Now when s has a maximum or minimum value,

«F-0 .(8),

(see Dif. Cole Arts. 232, 238).

Ifrnce, when the centre of gr«>ii. iximom or
nuiiiumm distance from the fixed It iie^ (1) is

satislied and the system is in equilibrium.

The equation (8) is a fiscsfsory but no*, u . ..^, t con-
dition for i having a maximum or minimum value ; hence,

we cannot assert conversely, that when the system is in

ciiuilibrium, the centre of gravity must be at a maximum or

minimum depth.

If the system of rigid bodies be such that the centre of
gravity is always in the same horisontal plane, every position
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is a position of^quilibrium. For in this case « is a constant,

and therefore hz always « 0.

If some of the bodies are rough the result will still hold if

the friction be such as to prevent any sliding ; see case (6)

of Art. 256.

262. Suppose a system in equilibrium, and tliat an in-

definitely small displacement is given to it; if it then tend

to return to its original position, that position is said to be
one of stable equilibrium; if tlie system tend to move further

from its original position, that position is said to be one of

unstable equilibrium.

To determine in any case whether the equilibrium of a

system is stable or unstable, is a question of dynamics on
which we do not enter. The reader may refer to Poisson,

Art. 570, or Duhamel, Tom. ii. Art. 69 ; the best investi-

gation of the question, however, will be found in the Cours
CompUmentaire d*Analyse et de Mecaniqu>e liationellCf par
J. Vieille, Farts, 1851.

The following general theorem is demonstrated. Suppose
the forces which act upon a system such that

S {Xdx + Ydi/ -\- Zdz)

is the immediate differential of some function of the co-ordi-

nates, </>; then, for every position of equilibrium, <}> is, in

general, a maximum or minimum; in the former case the

equilibrium is stable and in the latter unstable.

An important particular case is that of the system in

Art. 261, m which the equilibrium is stable when the centre

of gravity has its lowest position, and unstable when it has

its highest position.

263. We will now illustrate the principle contained in

the preceding Article by application to two examples.

L A uniform heavy beam is placed with its ends in con-

tact with a fixed smooth vertical curve in the form of an

ellipse with its directrices horizontal : determine tlie position

of stable equilibrium, the length of the beam being supposed

not less than the latus rectum.



STABLE AND UNHTADLK KQinUBBIUM. dl7

I .ci P and Q denote the extrcinitief of the beam ; let PM
vcrdirectr '

.9 the

. Then ; ^ht of

the centra ot' grmvitjr of the beam aboTO this dirocirix !•

- (PJf+ QN) ; for stable equilibrium this height should be a

ininimum. If « be the exoentricity of the ellipse we hare

PM-hQNmliSP-^SQ);

nnd therefore 8P-^ SQ roust be a minimum. But 8P-¥8Q
in always ffreater than PQ, except when ^T is in the straight

line PQ. Therefore the position of stable equilibrium is t&at

in which PQ passes through the focufl.

^ram is in equilibrium under the action of its own
> normal resistances of the curve, it follows that

the litrai.i: \ hich joins the point of intersection of nor-

mals at th f a focal chord of an ellipse with the middle
]>oint of the chord is parallel to the major axis : this result

niaj be verified geometrically.

II. The principle of Art 262 may be applied to a liquid

which may be regard^ as a collection of indefinitely small

smooth heavy particles.

Suppose a set of rectaneles, all of the same len^h, but with

any breadths. Let them oe connected along their lengths by
smoot' % so as to form a hollow prism without ends;
and

}
system vertically on a smooth horizontal plane.

liCt some liquid be poured into the vessel thus formed. In
the position of stable equilibrium the centre of ffravity of the

li(}uid ^-ill be At a minimum height above the horixontal

])lanc ; and therefore the area of a horisontal section of the

prism will then have a maximum value.

But by the princii>les of Hydrostatics the rectangles which
form the vertical sides of the vessel are acted on br pressures

from the fluid which form a system of ibioet like tliat in

Prop. II. at the end of Chap, iv.: and thetdbre when there it

equilibrium the horizontal section of the prism must form a
polygon which can be inscribed in a circle.
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Hence we obtain the following result : if an area is to be
bounded by given straiglit lines the area is greatest when the

straight lines are all chords of a circle. Sec also Differential

Calculus, Art. 240.

264. The following is a simple example of distinguishing

the nature of equilibrium.

A heavy body rests on a fixed hody, to determine the nature

of the equilibrium ; the surfaces being supposed rough.

Let BAG be a vertical section of the upper body made

by a plane through its centre of gravity (7, and DAE the

section of the lower body made by the same plane. We
suppose these sections both circular ; let r be the radius of

the upper section and R that of the lower. Let the upper
body be displaced into the position B'A' C, and suppose a
that point in the upper body which was originally at ji

;

at A the new point of contact draw the common normal
OA'N^ meeting at the radius ^ of the lower surface, and
at N the radius aN of the upper surface. Draw a vertical

line through A' meeting aN at M\ let g be the new position

of the centre of gravity of the upper body. If we suppose

the surfaces rough enough to prevent all sliding, the upper

body will tuni round A\ and the equilibrium will be unstable

a a falls further from a than J/, and stal^le if </ be between

izand a.
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Let AOA'mB, aNAm^
SiiKo wr suppose the up|)er body dUpIaced by roUing on the

lt)\vtr, Wf li;iVt»

Also
MN sin ^ sin B

tliercforo

and

yA- ««(«+)
^^^^^W'

1+-
r

^%-TB'
•

Hence, tbc equilibrium is stable or unstable according as

ng^ or AGf IB less or greater than
-j^

.

If the lower surface be concave instead of convex^ it may
be shewn in the same way that the equilibrium is stable or

unstable according as ^6^ is less or greater than jr^ •

The results of this Article will hold when the sect • '^ '
'

*

mid DAE arc not circles; r and Ji will then stnn .

radii of curvature of the up|)cr and lower sections at the

])oint A. If the lower surface is plane, E is infinite, and f >r

stable equilibrium A G must be less than r.

If -4(7- jf^ in the first case, or - ., — in the

se, the ennilibriura has been called neutral. In this

case, a further In »n will have to be made to deter-

mine whetlior the v.i.....i..ium is stable or unstable. Suppose,

for example, that a portion of a paraboloid rests in neutral

equilibrium with its Tertex in contact with a horiiontal plane,
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it is required to determine whether the equilibrium is stable

or unstable.

Since the equilibrium is neutral, the centre of gravity O
must coincide with the centre

of curvature of the generating

Sarabola at the vertex; now, if

ifferent points be taken in a

parabola, the further the assumed
point is from the vertex, the

farther is the point of intersec-

tion of the normal and the axis

from the vertex. Hence, the

normal AN in the figure meets

the axis of the parabola further from a than O is, and the

equilibrium is stable.

It is easy to shew generally, that if a portion of a solid

of revolution rest in neutral equilibrium with its vertex on
a horizontal plane, the equilibrium is really stable or unstable,

according as the radius of curvature of the generating curve

has a minimum or mxncimum value at the vertex.

266. The results of Art. 264, when the sections BAG and
BAE are circles, may also be obtained by using the theorem

which we have quoted in Art. 262.

Let z denote the height of the centre of gravity g above

the horizontal line through (9, and let^ = c ; then

«=(^+r)c08^-CC08(^ + <^)

= (i2+ r) cos ^-ccosfl + -A6.

Expand the cosines in powers of the angles ; thus
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SappoM the eoe£Scicnt of ^ not to be zero ; then when $
U indefinite!/ tmall s U ^renter or 1cm than H-^r — e^ le*

ling AS tho coefficient of 6^ is |)Ositive or negative ; in the
iior CMC B-^r^e b e mtmmum valoe of g, ami in the
r case it is a maximum raluc. Therefore the e<}uilibriiiiii

if c be greater than -j^— , and nnstable if c be leee

{Suppose howeTcr that c - ttt~ i then the coefficient of P
is zero; in this case the equilibrium is said to be neuiral.

We must now examine the coefiicieiit of ^ in the raloe of a;
this coefficient is

since this is a negative auantit/ it follows that Ji-^-r — e is a
uuiximum value of s and the equilibrium is really untiabU,

267. The following problem will furnish an instmetive

example. A frame formed of four uniform rods of the length

a connected by smooth hinges, is hung over two smooth pega

in the same horixontal line at a distance j- , the two pegt

lx>in;^ in contact with diffi^rcnt rods ; shew that the frame is

in i , a when each angle is 9<>*, and determine whether
the t^ um is stable or unstable.

Denote the pegs by A and B\ suppose the beam in con-
tact with A to make an angle $ with the horizon, and tho

h am in contact with B to msJce an angle ^ witli tiie horizon;

It't u (in I.. to t)h> ilopth of the ccntp of graritj of the ajrstcm

Ixluw Ali, Then it may be shewn that
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where c= -rr.

Thus u is a function of the two independent variables 6

and
<f},

and in order that u may have a maximum or minimum

value and ^ must be taken so as to satisfy ^ = and

— = 0. It will be found on trial that 0—-r and 6= -r are
aq> 4 '^4
suitable values. But it will be found that with these values

for and ^ we get

d*u ^ c d}u _ d*u __ c

so that ( , . ] — -jM 'JIm ^^ positive and u is neither a

maximum nor a minimum when ^ = 7- and 6 = -- . All the
4 4

foregoing is a simple example of the Differential Calculus;

wc proceed to apply it to the Mechanical Problem in question.

Let hu denote the change in u consequent upon changing

the value of 6 from t to 7 -f 3^, and tlie value of
<f>

from
4 4

— to 7 + 5<^; then it follows from the preceding investiga-
4 4

tions that

Sw = - 1 [{Wy+ 45(93<^ + W} + &c.,

where under the &c. are included terms in Z6 and h<j> of a

higher order than the second. Now although u is neither

a maximum nor a minimum when 6 and ^ are each —
,
yet

there is equilibrium then because Zu is then zero so far as

terms of the first order in hQ and 8<^. (See Art 261.) But
as u is neither a maximum nor a mmimum the equilibrium

cannot be stated to be either stable or unstable universally;

it is in fact atahh with respect to some displacements and

I
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unsiahle with ratpeet to oiMer dicplaoemaBts. If, for esamtile,

we consider only inch diiplMenieiiti m niAke i$^i^, tkii
^ ifl ccrtainlj negative when 1$ and 3^ are taken amall
enoQgh ; thus the centre of grmrity ia ratied hy the dijipkea*>

II - * \ so the cqutlibrium is UabU, If, again, we conaider
t displaoementa aa make- IB^—l^^ then Sm ta eer-

tuinly positict whon 16 and 3^ are taken small enough ; thus
the centre of gravity is dmt9—d by the dinplaoement and so
tlie cquilibriom is wMlahU.

268. Of all curvet of a aiven length drawn between two
Juoed painU m a horiiimtal line, tMe eommum eateneay %e thai

which hoe tie centre of gravity furthest from the etra^ht line

jointfig the points.

This proposition bolonp? to tin' t' '
'

an imperfect proof of it may be «• >

pnct'ding principles. Since the string ^^

niMii catenary is in equilibrium we ooul..- . :.. _ ... -i*

its centre of grarity from the horizontal line is a maximum
or minimum. ^See however Art. 261.) And wc may infer

that the depth is a wuuBtnutm and not a vtinunum from the
•

-
.

• • : ^. glightlv displaced it

^ iiim so that its equili-

1 stable, {6eG Art 26*i.) iiencc in any other position

t : .
in - than that of equilibrium the centre of grarity

will to the giren horizontal line. And as the string

whii in the common catenary is of nnifbrm denaity

and : ^ its centre of graTity cowcides with thai of tM
curve. Thus the proposition is establ ished.

209. Lamn^ haa given a dcmonstntioa of tbe nrindple

of virtual velocities, which docs not assome a kaowMgn of

the eciiditions of equilibrium of any system of forces; this

^ 11 is difficult and has not been oniversally ro-

phall place it hew» and refor the re-ider to

I :. and t<
" ^tnal Velooitiea' in

t ^(Edia, for i<»n.

Wc have first to shew how any system of forces msy be
r '

' by a string in a state m tenskm paasing nmnd a
^ ioQofpnlliea.

T.8. S8
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Let forces P, Q, R, acting at the points J, J9, (7,

maintain a syHtem in equilibrium ; let pullica Ix* fixed to the

system at the point.s Aj B, C,... and let the j)ullies a, 6, c, ...

be attached to fixed blocks, so that Aa may be the direction

of the force P, Bb that of (?, and so on. Let a string liavc a

weight W attached to one end, and be passed round tlic pully

^and then round the pullics a and A a sufficient number of

times to render the sum of the tensions equal to P. Let the

same stnng then pass on to the pully 6, and be passed round b

and B a sufficient number of times, until the sum of the ten-

sions is equal to Q. The string is then passed on to c, and

round cC, and so on; the end of the string is fastened to a

fixed point M. Thus the system of forces P, Q, It, ...may

be replaced by a single string, the tension of which is IT. We
here assume that the forces P, Q, P, . . . are commensurable.

We proceed now to the proof, in which we follow La-
grange's words very closely.

It is evident, in order that the system may remain in equi-

librium, that the weight W must be incapable of descending

when any indefinitely small displacement whatever is given to

the points of the system ; for since the weight always tends to

descend, if there were any displacement of the system which
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would allow it to descend, it woold nfccntriljr iliienwid And
|jrodiice tbia dispUoeraent in the tyitem.

L<* - ^ v.... denote the in !
** •r!y imaJl mocs, wbidi

any mcnt would cau- inti of tne tjralem lo
dcaci ic direction of th« '•'•peetiTelj ael
at tlr I let/), q, r...il^ >cr of ptrallel

•trings which art! attached to the puliies A, B, C, .,.li it

obvious that the spaces a, i9, 7, . . . are those bv which the
puUieii A, Bt (7, ... will approach a, 5, c, ... and tuat the string
loining these puUies will thus be di " ' ' d hvpitqfft ry, •••

riiuit, in consequence of the inext / of the string, the
weight W would descend through the ip^otoa-^qfi-^ry-^ ...

ilcnce, in order that the system of forces P, Q^B, ,.. may be* in

equilibrium, we rou^it have

jpa+j/3+nr+ — -0;

and therefore, since P^pW, Q ^qW^ ,..

A + ftS + ^7+ ...-0.

This equation is the analytical expression of the principle of
virtual velocities.

If the quantitjr Pa + C/9+/?7+..., instead of being sero,

were nc;;utive, it might appear that this condition would be
sufficient to ensure equilibrium, since it is impossible that the

weight could of itself oscemL But we must remember, that

whatever may be the connexion of the parts of the srslem^
the relations which consequently hold between the indenniH^
>iiKill qttaiitities a, 0, 7, ... can only be expressed by diffapsA-

tial iM{ nations, and which are tberefiire luMor as to then
• (ii.iittittt'H ; so that tluTt* will be necessarily one or more oC
tiuia which remain indeterminate and may be taken with a
(iusitive or negative sign ; tiius the values of these qoantities

will be always such that they can simnltaneooslj change their

ttign. Hence, it follows that if for a certain dispUoement
of the system, the quantity I\it -k- Qff -k- By

-f-
... is nentivO| il

would become positive by changing the signs of a, ^, % ••-

!

thus the opposite displscement is equally possible, and this

would make the weight descend and destroy the equilibrium.
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Conversely, if the equation

P«+0/9 + i?7+ -..=0

holds for every possible indefinitely small displacement of

the system, it will remain in cqnilibriuni. For, the weight

remaming unmoved during these displacements, the forces

which act on the system remain in the same condition, and

there is no reason why they should produce one, rather than

the other, of the two displacements, for which a, /3, 7, ... have

different signs. This is the case of a balance which remains

in equilibrium, because there is no reason why it should in-

cline to one side rather than the other.

The principle of virtual velocities being thns proved for

commensurable forces, will also hold when the forces are in-

commensurable ; for we know that any proposition which can

be proved for commensurable quantities may be extended by a

reductio ad absurdum to incommensurable quantities.



rXAMPIXS.

1
. A couc whose tern i-vertical angle U Uir' ^ U cnckieed

in the circumscribing spherical surface ; shew that it will reit

in any |X)aition.

2. A heavy uniform rod of length « morea in a rertical

plane about a hinge at one extremity. A itiiag fiMrtened

to the other, passes over a puliy in a vertical line above Ike
liinge, and is attached to a weight equal to half that of tha
rod, which re«t« on a cur\'c. The length of the string and
the htM;^ht of the puUy above the hia^ are each equal to the
len^h of the rod, and the system is in cquilibnam in all

|x>sitioiis. Shew that the equation to the curve is

r«iasin*i^,

the pally being the origin and the prime radios bebg vertical.

8. Two rods each of length 2a have their ends united at
an angle a, and are placed in a vertical plane on a sphere of
radius r. Prove that the equilibrium is stable or unslablo
aocordingas

. . 2r
sin a IS > or < — .

a

4. A prolate spheroid rests with its smaller end on a hori-

zontal table. Is tne equilibrium stable or unstable ?

5. A cylinder rests with the oentre of its bate i

with the highest point of a fixed sphere, and four times the
altitude of the cylinder is equal to a great eirde of the
sphere ; supposing the surfaces in contact to be rough enough
to prevent nliding, shew that the cylinder may be made to

rock through an angle of 90*, but not bmm^ without falling

offthefphersL

fL A verr small bar of Hiatter is moveable about one
extremity which is fixed halfway between two oenlrea of

force attracting inverselv aa the square of tlm distance; if

/ be the leng& of the bar, and %a the dislanoo between tiie
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centres of force, prove that there will be two positions of
equilibrium for the bar, or four, according as tlic ratio of the

absolute intensity of the more powerful force to that of the less

powerful, is, or is not, greater than ^•, and distinguish

between the stable and unstable positions.

7. Two particles connected by a string support each other

on the arc of a vertical circle ; shew that the centre of gravity

is in the vertical through the centre of the circle. \Vhat is

the nature of the equilibrium ?

8. A sphere of radius a, loaded so that the centre of

gravity may be at a given distance h from the centre of

figure, is placed on a rough plane inclined at an angle a to

the horizon. Siiew that there will be two positions of equi-

librium, one stable and the other unstable, in which the

distances of the point of contact from the centre of gravity

are respectively,

a cos a — V(J' — o' sin* a),

and rt cos a 4- V (^* — «' sin* a)

.

Hence, find the greatest inclination of the plane which will

allow the sphere to rest. Is the equilibrium stable or un-

Mable in this limiting case?

9. A sphere of radius r rests on a concave sphere of

radius E ; if the sphere be loaded so that the height of its

centre of gravity nom the point of contact be ^r, find E so

that the equilibrium may be neutral. Eesult. E = 3r.

10. A heavy cone rests with the centre of its base on

the vertex of a fixed paraboloid of revolution ; shew that the

equilibrium will be neutral if the height of the cone be equal

to twice the latus rectum of the generating parabola. Shew
that the equilibrium is really stable.

11. A heavy particle attached to one extremity of an elastic

string is placed upon a smooth curve, the string lying upon the
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curve ; find the curve when the particle resti in all poaitioat.

JUsmli. Acjeloia.

A uniform iquare board it capable of motion in a
vertical plane about a hinge at one of ita angular points;

a string Attached to one of the nearest angular points, and
passing over a pullr vertically above the hinge at a dtstanee

from it equal to the side of the square, supports a weight
whose ratio to the weight of the board is 1 to ^t. Find the

positions of equilibrium and determine whether thej are ra*

sp^Ttivfly stable or unstable.

iVo small smooth rings of equal weight slide on a
fixed elliptical wire of which the major axis is vertical, and
are connected by a string passing over a smooth |)eg at the

up{)er focus
;
prove that the rings will rest in whatever poii-

tion they may be plaoed.

14. A small heavy ring slides on a smooth w-
form of a curve whoae plane b vertical, and is cont

a string pacing over a fixed pully in the plane of the

with another weight which hangs freely ; find the form o; ;..,.

curve that the ring may be in equilibrium in any position.

JiesulL A conic section having its focus at the pully.

1.5. If an elliptic board bo placed, ao that its plane ia

vertical, on two |h;^a which are in the same horiiontal plaM,

there will be equilihrium if these pegs be at the extremiUea

of a pair of ronjir^Mtr .Itameters. What are the limits which

the distance IhIwimti tiio pegs must not exceed or fidl short

of, in order that this position of equilibrium may be possible?

Shew that the equilibrium is umstaUe.

1(). A s^r whoaeoentreof-r.i'.. V c . 1 1 4

with tlio ecu at the vertex, r. -u .n a r u^i.

horizontal pUnc Show that the equilibrium is stable or on*

stable according as the value of 8 f ijJ — -jp i
when » and f

vanish, is positive or negative, » and y being oo-Ofdinales oC
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the ;;cncrating curve, measured along the tangent and normal
at the vertex.

17. If a plane pass through one extremity A of the base
of a cylinder and be inclined at an angle of 45® to the axis,

the piece so cut off will rest in neutral equilibrium, if placed
with its circular end on the vertex of a paraboloid whose l.itu3

rr. lum is five-eighths of the diameter of the base, the point of

cv htact being also at this same distance from A,

18. A piece of string is fastened at its extremities to two
fixed points; determine from meclianical considerations the

form which must be assumed by the string in order that the

surface generated by its revolution about the straight line join-

ing the fixed points may be the greatest possible.

MISCELLANEOUS EXAMPLES.

1. A uniform wire is bent into the form of three sides

AB, BCy CD of an equilateral polygon ; and its centre of

gravity is at the intersection oi AG and BD. Shew that the

polygon must be a regular hexagon.

2. Three forces act along three straight lines which may
be considered aa generating lines in the same system of a
hyperboloid of one sheet; shew that if the forces admit
of a single resultant, it must act along another generating
line of the same system.

3. A gate moves freely about a vertical axis, along which
it also slides; while a point in the plane of the gate, and
rigidly connected with it, rests on a given rough inclined

plane ; find the limiting position of equilibrium,

4. Suppose straight lines to be drawn from one of the

centres of the four circles that touch the sides or the sides

produced of a given triangle to the other three centres, and
let these straight lines represent three forces in magnitude and
direction ; then the straight line joining the first centre with
the centre of the circle circumscribing the triangle will re-

present in magnitude and direction one-fourth of the resultant.
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5. A partielfl retU in eqailibriwn in a fine groon in tbt

form of A helix, tlic axIh of which iji inclined to the horiiOQ
at a given angle cl Find tho diiitanoe of the partkle iroai

a vertical piano passing through tho axi«i. Also find tho
greatest raluo of a for a given helix in order that there maj
be a position of equilibrium of the particle.

6. A qua I figure poiMnei the foUowing property

;

an^ point Ix ...„ ;..»cn and four trianglet ibnned iiy joining
this p>int with the angular |)ointa of the teiii<e» the oeotveeM
gravity of these triangles lie in the circiumemee of a etveU

;

prove that the diagonals of tho quadrilateral are at right

angles to each otlier.

7. A tqoare board is supported in a horiaontal poeitioa

by three vertical strings; it one of them be attached to a
comer, where must the others be attached in order that tho

weight which can be pluced on an/ part of the board withoat
overturning it may be the greatest possible?

8. A triangular plate hangs bj three parallel threads

attached at the comers, and supports a heavy particle. Prove
tliat if tlic tlireads are of equal strength, a heavier particle

may bo supported at tho oentre of gravity than at any other

point of the disc.

9. ABC is a triangle ; A £*, F src the middle points of

the sides opposite to A, B, C respectively; F is any point;

PI), PE, PFMn divided in a given ratio at A\ B, (y remo-
tively : shew by the theory ofthe centre of trravlty tliat J.-I*,

BB, and 00* meet at a point

10. A right cone is cut obliquely and then placed with iH
section on a horiaonUl plane ; prore that when the aagle of
the cone is less than sin'* |, there will be two aeetioiit fer

which the equilibrium is neutral, and for intermediate sectiona

the con«» **'•'' i^' r»v..r

11. A rii^iii cviiU'itT on an elliT * p - f

which are a and o\ rests with its ti v ^ • v

smooth inclined planes inclined at right angles to each other;
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determine the positions of equilibrium, (1) wlicn the inclina-

tion of one of tlic planes is greater than tan"' j , (2) when the

inclination of both planes is less than tan"' j-,

12. A pack of cards is laid on a table; each projects in

the direction of the length of the pack beyond the one below

it ; if each projects as far as possible, prove that the distances

between the extremities of tne successive cards will form an
harmonic progression.

13. Find the least exeentricity of an ellipse in order that

It may be capable of resting in equilibrium on a perfectly

rough inclined plane.

1 -f sma

14. Two mutually repelling particles are placed in a para-

bolic groove, and connected by a thread which passes through

a small ring at the focus ; shew that if the particles be at rest,

either their abscissaj are equal, or the two parts of the thread

form one straight line.

15. Each element of a parabolic are bounded by the vertex

and the latus rectum is acted on by a force in the normal

proportional to the distance of the element from the axis ot

the parabola. Shew that the equation to the straight line

in which the resultant acts is

15^+10a; = 2Ga.

16. Each element of the arc of an elliptic quadrant is

acted on by a force in the normal proportional to the ordinate

of that point. Shew that the equation to the straight line

in which the resultant acts is

ebi/ - Sttox + 4a'- Ab* = 0.

17. A smooth body in the form of a sphere is divided into

hemispheres and placed with the plane of division vertical

upon a smooth horizontal plane; a string loaded at its ex-

tremities with two equal weights hangs upon the sphere,

passing over its highest point and cutting the plane of division



-s; tind the leatt weight whieh will pmeiTt Hnd

I ^ The locoB of the centre of gr»rit/ of tefpnentf of
ec^UAl arvti A in an ellipse is a siroilar ooootntric elbpee whose
minor axis is

- '^ wn*"! , where -4 - ^ (^ - sin ^}.

19. The foci of a rouj^h prolate spheroid attract directljr

as the distance ; if a particle without weight be plaeed oo
the 8ph< < '

'*
1 wilhm what limitJi it must be placed so as

to be ill urn. Shew that if the oaeficieol of frietioo

be greater than .i ii , where is the exoentridtj, the

particle will rest anywhere on the surface.

20. A circular disc of mass m' and radius c lests in eoi^
tact with two equal uniform straight rods AB, AC, which are

joined at A by a Hmooth hinge, and which attract each other
and the disc with a force var}'ing as the distance ; also the

disc attracts the rods similarly. Shew that there is equili-

brium if

me (2c cos a — a sin a) » ma* sin'a cos a,

where m is the mass of each rod, a the length of each rod,

and 2a their inclination to each other.

21. A square picture hangs in a rertical plane by a strisg,

which passmg over a smooth nail has its ends fastened to two
points symmetrically situated in one aide of the frame. Delsr*

mine the positions of iHiuilibrium. and whether the¥ are stable

or unstable.

Rejtulu. Let / be tlic length ot the strmg, e the ctittsDce of

the two points to which the ends of the sding are ftaleoed.

h tlio length of a side of the square ; then if A be gMter
than rv^(? + A') there is only one position of equilibrium,

namely, the ordinaiy position, and the equilibrium is sAoMt/

if Ih be less than c ^{(^ + A*) there are two oblique positione

of $t<Me equilibrium, besides the ordinary position of eqni-

libriuro, which is Btabls with respeel to sooie displaoementi

and unstable with respect to other difplnoenentt.
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22. A flexible thread is placed in a tube of any form and
is acted on by any forces. The diameter of the tube is equal

to that of the thread and is infinitesimal Determine the

position of equilibrium.

23. Two equal particles are connected by two given

strings without weight, which are placed like a necklace on
a smootli cone with its axis vertical and vertex upwards ; find

the tensions of the strings.

24. A triangle of area A revolves through an angle <^ about

an axis in its own plane taken parallel to one side ; shew that

the least amount of surface generated is

"^•*-
2{b + c)a

•

where a is the greatest side.
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