
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2006-06

ELINT signal processing on reconfigurable

computers for detection and classification of

LPI Emitters

Brown, Dane A.

Monterey California. Naval Postgraduate School

http://hdl.handle.net/10945/2785

Downloaded from NPS Archive: Calhoun

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ELINT SIGNAL PROCESSING ON RECONFIGURABLE
COMPUTERS FOR DETECTION AND CLASSIFICATION OF

LPI EMITTERS

by

Dane A. Brown

June 2006

 Thesis Advisor: Douglas J. Fouts
 Second Reader: Herschel H. Loomis, Jr.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: ELINT Signal Processing on Reconfigurable
Computers for Detection and Classification of LPI Emitters
6. AUTHOR(S) Dane A. Brown

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Joint Services Electronic Warfare
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Security Agency
Fort Meade, MD

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis describes the implementation of an ELINT algorithm for the detection and classification of Low
Probability of Intercept (LPI) signals. The algorithm was coded in the C programming language and executed on a Field
Programmable Gate Array based reconfigurable computer; the SRC-6 manufactured by SRC Computers, Inc. Specifically, this
thesis focuses on the preprocessing stage of an LPI signal processing algorithm. This stage receives a detected signal that has
been run through a Quadrature Mirror Filter Bank and outputs the preprocessed signal for classification by a neural network. A
major value of this study comes from comparing the performance of the reconfigurable computer to that of supercomputers and
embedded systems that are currently used to solve the signal processing needs of the United States Navy.

15. NUMBER OF
PAGES

105

14. SUBJECT TERMS C Programming, Field Programmable Gate Array (FPGA),
Hardware Description Language (HDL), Programmable Logic Device (PLD), Radar, Reconfigurable
Computing, Signal Processing, Verilog HDL (VHDL)
 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ELINT SIGNAL PROCESSING ON RECONFIGURABLE COMPUTERS FOR

DETECTION AND CLASSIFICATION OF LPI EMITTERS

Dane A. Brown
Ensign, United States Navy

B.S., United States Naval Academy, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: Dane A. Brown

Approved by: Douglas J. Fouts

Thesis Advisor

Herschel H. Loomis, Jr.
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis describes the implementation of an ELINT algorithm for the detection

and classification of Low Probability of Intercept (LPI) signals. The algorithm was

coded in the C programming language and executed on a Field Programmable Gate Array

based reconfigurable computer; the SRC-6 manufactured by SRC Computers, Inc.

Specifically, this thesis focuses on the preprocessing stage of an LPI signal processing

algorithm. This stage receives a detected signal that has been run through a Quadrature

Mirror Filter Bank and outputs the preprocessed signal for classification by a neural

network. A major value of this study comes from comparing the performance of the

reconfigurable computer to that of supercomputers and embedded systems that are

currently used to solve the signal processing needs of the United States Navy.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVE ..2
C. RELATED WORK ..3
D. THESIS ORGANIZATION..3

II. SRC-6 OVERVIEW...5
A. INTRODUCTION..5
B. HARDWARE ...5

1. Microprocessor...5
2. MAP Board...5

a. MAP Organization ..5
b. Control Logic...6
c. Memory..7
d. FPGA...9

C. SOFTWARE...11
1. Software Environment...11

a. Linux Operating System ...11
b. Languages ...12
c. File Types ..12
d. Editing Programs ..13

2. Compilation ..14
D. SUMMARY ..15

III. PROJECT STAGES ..17
A. INTRODUCTION..17
B. DETECTION..18

1. Detection Techniques...18
a. Time-Frequency ..19
b. Bifrequency ...19

2. ELINT Algorithms...19
a. Wigner-Ville Distribution ...20
b. Quadrature Mirror Filter Bank Tree20
c. Cyclostationary Signal Processing ...21

C. PREPROCESSING ...22
D. NEURAL NETWORK CLASSIFICATION...22

1. Autonomous Classification Methods..22
2. Recognized Modulations ...23

a. FMCW Modulations ...23
b. BPSK Modulations..23
c. Polyphase Modulations...23
d. Polytime Modulations ...24

 viii

3. Modulation Results ..24
E. SUMMARY ..25

IV. PREPROCESSING ...27
A. INTRODUCTION..27
B. CROPPING ..28

1. Standard Cropping ..28
2. Black-Cropping..28

C. THRESHOLDING...28
D. BINARIZATION ...29
E. RESIZING..29
F. SUMMARY ..30

V. ALGORITHM PORTING ..31
A. INTRODUCTION..31

1. Purpose..31
2. Procedure..31

B. MATLAB CODE ...32
C. STANDARD C CODE...35
D. SRC C CODE ...38

1. Main Program ..38
2. Subroutine ..39
3. Make File ..41

E. SUMMARY ..41

VI. PERFORMANCE ANALYSIS...43
A. INTRODUCTION..43
B. EXECUTION TIMES ...43

1. MATLAB..43
2. Standard C..46
3. SRC-6 ..49

C. COMPARISON..53
D. SUMMARY ..55

VII. CONCLUSIONS ..57
A. SUMMARY ..57
B. PROBLEMS ENCOUNTERED...58
C. RECOMMENDATIONS FOR FUTURE WORK......................................58

APPENDIX A. MATLAB CODE..61
A. MATLAB CODE ...61
B. OUTPUT...62
C. HISTOGRAM ..67

APPENDIX B. STANDARD C CODE..69
A. STANDARD C CODE...69
B. OUTPUT...71

APPENDIX C. SRC-6 SPECIFIC C CODE ..75

 ix

A. SRC-6 SPECIFIC C CODE ..75
1. main.c ..75
2. preproc.mc..76
3. Make File ..78

B. OUTPUT...79

LIST OF REFERENCES..83

INITIAL DISTRIBUTION LIST ...85

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Interface Architecture of the MAP (From Ref. 4.) ..6
Figure 2. On-Board Memory Interface (From Ref. 4.) ...9
Figure 3. User Logic Interface to MAP (From Ref. 4.)...10
Figure 4. User Logic Internal Interface (From Ref. 4.) ...11
Figure 5. SRC-6 Compilation Process (From Ref. 5.) ..15
Figure 6. Project Flow Chart (After Ref. 6.) ...18
Figure 7. The Quadrature Mirror Filter Bank Tree (From Ref. 6.)21
Figure 8. Preprocessing Flow Chart (After Ref. 8.) ..27
Figure 9. MATLAB Execution Times ..46
Figure 10. Standard C Execution Times ...49
Figure 11. SRC-6 Clock Cycles Executed ..51
Figure 12. SRC-6 Execution Times ..52
Figure 13. Preprocessing Procedure Execution Times..54
Figure 14. MATLAB Histogram...67

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. MAP Registers (From Ref. 4.)...7
Table 2. QMFB Classification Results. ...25
Table 3. MATLAB Execution Timing Data ..45
Table 4. Standard C Execution Timing Data ...48
Table 5. SRC-6 Execution in Clock Cycles...51
Table 6. SRC-6 Execution Time Data ...52
Table 7. Comparison of Average Times ..53

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank David Caliga of SRC Computers, Inc. for his invaluable

contributions to my research process. His hands on training course and book of SRC

documentation made programming on the SRC-6 much simpler than it would have been

otherwise.

Many thanks to Professor Jon Butler of NPS for his Advanced Computer

Architecture course which gave me a first glance at the SRC-6 hardware and software

interfaces.

I am grateful to Professor Phillip Pace of NPS who provided much of the research

pertaining to LPI signal processing and answered many of my questions regarding that

part of the project. His understudy, ENS Eric Zilberman, was also instrumental to my

work as his research ran somewhat parallel to mine except that it dealt mainly in

MATLAB.

Professor Douglas Fouts of NPS was my thesis advisor who organized and

directed my research. He was also responsible for pointing me to sources of further help

when I came to an impasse; I would like to thank him for his contributions.

Finally, this research was supported in part by the National Security Agency and

the Office of Naval Research Code 313, Arlington, Virginia.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

This thesis describes the implementation of an ELINT algorithm for the detection

and classification of Low Probability of Intercept (LPI) signals. The algorithm was

coded in the C programming language and executed on a Field Programmable Gate Array

based reconfigurable computer; the SRC-6 manufactured by SRC Computers, Inc.

This thesis is part of a larger project in which all three stages of the detection to

classification sequence for Low Probability of Intercept Signals are being ported to the

SRC-6 and having their combined performance compared to general processing solutions

that are in place presently. One student will be completing the porting of the detection

algorithm into the C language for the SRC-6. The output from this code will then be fed

into the section being completed in this thesis for preprocessing. The output from the

code presented here will then be sent to the final stage of the detection to classification

sequence which is classification of the modulations present in the signal by a trained

Neural Classifying Network. A third student will be focusing his or her efforts on the

creation and training of this Neural Network. The work from all three of these stages will

be focused on the Quadrature Mirror Filtering Bank detection techniques, which is one of

the common time-frequency techniques for detecting Low Probability of Intecept signals.

Specifically, this thesis focuses on the preprocessing stage of an LPI signal

processing algorithm. This stage receives a detected signal that has been run through a

Quadrature Mirror Filter Bank and outputs the preprocessed signal for classification by a

neural network. Once these other two stages have been ported to the SRC-6 by the other

students, all three stages may then be run on the SRC-6 hardware in parallel. These three

pieces are optimized so that when they are run in parallel, the overall program should be

much faster and provide a significant processing gain over general purpose processing

solutions that are currently available. A major value of this study comes from comparing

the performance of the reconfigurable computer to that of supercomputers and embedded

systems that are currently used to solve the signal processing needs of the United States

Navy.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
In the field of battle, it is important to gain every possible advantage over an

opponent. LPI radar and communication systems are one tool that helps to give this

edge. LPI stands for Low Probability of intercept and these systems have characteristics

that make them very difficult to detect with modern intercept receivers. Clearly, the edge

could be taken back if one were able to come up with a reliable method to consistently

detect and classify these signals in real time or near real time.

One approach seeks to determine if a reconfigurable computer can accomplish the

required real-time processing of LPI radar and communications signals. ELINT

(Electronic Intelligence) algorithms for automatically detecting and classifying LPI

emitters have already been developed and tested. The specific ELINT algorithms

applicable to Low Probability of Intercept emitters utilize the pseudo Wigner-Ville

distribution algorithm, the Quadrature Mirror Filter Bank algorithm, and the

Cyclostationary signal processing algorithm.

A reconfigurable computer is a computer with the capability to reprogram the

hardware logic circuits and optimize them for the algorithms specific to the user [1].

These systems are usually based heavily on FPGAs (Field Programmable Gate Array)

and PLDs (Programmable Logic Devices) embedded in their design. The advantage of

reconfigurable computing is, as its name implies, that devices may be programmed and

reprogrammed at any time to suit the needs of the user. This cuts down on the cost and

development time of manufacturing an entirely new device simply to make minor

changes to the hardware. Reconfigurable computers are also able to realize increased

speed in their functions over general purpose supercomputers because the hardware is

specialized and they are able to devote all of their processing power on the task they have

been programmed to perform.

The SRC-6, by SRC Computers, Inc., is an example of such a reconfigurable

computer. It contains two Pentium 4 processors and a Multi-Adaptive Processing (MAP)

board with four Xilinx Virtex-II series XC2V6000 FPGAs. Through the provided Linux

2

interface, the SRC-6 can be programmed directly in a hardware description language that

correlates specifically to the logic design inside the chip. More recently, SRC Computers

has added the ability to port programs written in the C language over to the SRC-6. This

greatly broadens the scope of what can be accomplished on the system.

Once running, the Virtex-II FPGAs operate at 100 MHz. This is clearly much

slower than the speeds at which modern supercomputers operate, but the SRC-6 attempts

to make up for its lack of speed in other areas such as its programmable hardware and its

inherent parallelism.

B. OBJECTIVE
There are two major objectives of this thesis work. It is necessary to determine

whether ELINT algorithms for the detection and classification of Low Probability of

Intercept signals can be coded for execution on a reconfigurable computer. If it is indeed

possible, the second goal will become to ascertain what level of performance can be

achieved when compared to commodity computing solutions.

This research will help to answer questions regarding the practicality of

reconfigurable computing, such as whether reconfigurable computers can process vast

amounts of data in real time. Radar detection and classification can be a very time-

sensitive matter in which information will be needed almost as soon as it is intercepted.

This means that the real-time processing capabilities of the SRC-6 will be crucial in this

study.

Once a suitable solution has been created and tested, its performance must be

compared to the solutions that are already in place. Benchmarking will be necessary to

compare the performance of the solution programmed onto the reconfigurable SRC-6

versus that of existing supercomputers and embedded signal processing systems. This

benchmarking will compare these systems not only by quality of performance, but also

by cost and speed. It is well known that supercomputers are very fast and that embedded

systems are very specialized. It is anticipated that the SRC-6 reconfigurable computer

will be able to obtain a desirable combination of these advantages at a much lower cost.

If the SRC-6 is able to outperform the competition as expected, it could become an

invaluable tool for the Navy to use in detecting and classifying LPI signals.

3

This thesis concentrates on the creation and examination of the preprocessing

stage of the ELINT algorithms being coded onto the SRC-6. These algorithms are being

coded in three distinct stages which are necessary to classify an LPI signal once it has

been detected. The first of the stages is the detection itself which runs the intercepted

signal through a filter created for LPI signals. This filtered signal is then passed on to a

preprocessor which is covered in depth in this thesis. The preprocessor finally passes a

resized image on to a neural network which performs the actual classification of the

signal.

C. RELATED WORK
This thesis is part of a larger project which seeks to autonomously detect and

classify LPI signals. The sequence of detecting and classifying these signals described

above has been broken up into its major stages. The first and third stages which involve

detection and classification, respectively, have each been assigned to another researcher

for porting to the SRC-6. Thus, this thesis does not cover these areas in depth, rather it

completely explains and creates code for the second stage, preprocessing, and details the

porting of this code to the reconfigurable computer.

Some research in this field has previously been done by Professor Phillip Pace of

the Naval Postgraduate School on using these algorithms on a general purpose computer.

His work successfully simulated the detection to classification sequence using the

software simulation package MATLAB. The MATLAB code he has developed is the

basis for the MATLAB code which will be developed for the specific application of this

thesis. This MATLAB code will be used as a model and a benchmark for similar code

which will be created here for execution on the SRC-6.

D. THESIS ORGANIZATION
The remainder of this thesis is organized as follows:

• Chapter II provides an overview of the SRC-6 system. This begins with
the system hardware, then moves on to a discussion of the software
interface that has been provided.

• Chapter III is a discourse of the overall project, detailing each one of its
major stages. These include the detection and filtering stage, the
preprocessing stage, and the neural network classification stage.

4

• Chapter IV narrows in on the preprocessing stage and goes much deeper.
This chapter describes the specific procedures of signal preprocessing
which include cropping, thresholding, binarization, and matrix resizing.

• Chapter V describes the porting of the ELINT algorithms used from the
original MATLAB code to the standard C code, and finally to the SRC-6
C code to be run on the reconfigurable computer.

• Chapter VI is a performance analysis of the final code running on the
reconfigurable computer and a comparison of that implementation to other
methods of detecting and classifying LPI radar signals.

• This thesis concludes with Chapter VII which gives a brief recap of the
findings and makes some recommendations for future work in this area.

5

II. SRC-6 OVERVIEW

A. INTRODUCTION
The SRC-6 is a powerful reconfigurable computer made by SRC Computers, Inc.

This chapter describes the reconfigurable computer and how it may help speed up signal

processing applications. It begins with a discussion of the architecture of the SRC and

the hardware interface that a user is provided. It then moves on to describe the software

interface a user sees for programming the reconfigurable computer.

B. HARDWARE
As previously stated, the SRC-6 contains two Pentium 4 processors and a Multi-

Adaptive Processing (MAP) board with four Xilinx Virtex-II series XC2V6000 FPGAs.

1. Microprocessor
The Intel microprocessor is separate from the MAP board and this is where the

general purpose computing takes place, just as in an ordinary computer. It also has a

memory bus and access to the system Common Memory which can be accessed by both

the microprocessor and the MAP. The SRC provides a SNAPTM card to interface between

the microprocessor and the MAP via Direct Memory Access procedures [2].

2. MAP Board

a. MAP Organization
The MAP processor consists of some general control logic, memory, and

two Xilinx Virtex II series XC2V6000 FPGAs. There are two MAP processors on the

MAP board. Figure 1 below gives a block diagram of the MAP. It contains input and

output to System Common Memory (SCM) to receive commands. It also has the MAP

Control Processor which contains the system flags and the data registers. The MAP

provides hardware for User Logic to be configured by the end user. In addition, there is

an On-Board Memory bank that interfaces with the User Logic and the Control Logic via

62-bit data ports. The MAP board has General Purpose Input Output (GPIO) ports which

allow direct connections for other MAPs or data input. It also contains Direct Memory

Access (DMA) engines which support: distributed SRAM, Block SRAM, On-Board

SRAM, and microprocessor memory [3].

6

Figure 1. Interface Architecture of the MAP (From Ref. 4.)

b. Control Logic
MAP operation is coordinated through use of Control Logic in the MAP

Control Processor. This processor receives instruction sequences from a Command List,

or ComList, which is provided by the System Common Memory via a DMA engine.

This Control Logic executes instructions sequentially and controls such tasks as: User

Logic functions, operand input, and result output [4].

The Control Processor is where the MAPs 32 flags and 512 data registers

are found. Table 1 provides an appropriate description of these resources.

7

Table 1. MAP Registers (From Ref. 4.)

Registers Description
Data Registers Data Registers (DRs) are mainly used to hold addresses, (both SCM and OBM addresses),

but can hold any needed data. By using Data Registers, scalar (single item) data can be
sent to or received from User Logic. Only simple arithmetic and logical operations are
supported on these registers. Register contents can be tested for zero/non-zero and thus
support command branches and loops. A given ComList command must use DRs from
within the same group.

 There are sixteen groups of thirty-two 64-bit registers, known as Groups 0 through 15 of
DR0 through DR31.

DR0 is always zero. DR1 is always an integer 1. This applies to all groups. Neither register
can be written, and errors will not be reported if a write to DR0 or DR1 is attempted.

Flag Registers Flag Registers (FRs) are used for direction of movement, requests, and complete functions.
Commands can test and wait on the state of Flag Registers before execution (e.g. hold
execution of this ComList command until Flag 3 goes set). Commands can change the
state of Flag Registers, forcing them to set and clear. In addition there are logical
instructions that allow combining Flag states (AND, OR, XOR). Other commands allow
testing and branching on the contents of Flag Registers.

 There are thirty-two single-bit Flag Registers, FR0 through FR31

 FR0 is always clear, 0, and FR1 is always set, 1. Neither register can be written, and errors
will not be reported if a write to FR0 or FR1 is attempted.

 FR31 is reserved for future use.
Temp Register A register in the Control Processor used for temporary storage during the
 TMP2DR and DR2TMP commands.

The explicitly controlled logic circuitry also features what is known as

Direct Execution Logic (DEL). Direct Execution Logic is comprised of at least one User

Logic device. These circuits allow for explicit computational units, memory pre-fetch

units, and data access units [3]. These features cause the SRC-6 to have more efficient

use of logic gates, power, and bandwidth, thus increasing processing power by several

orders of magnitude, as compared to existing solutions.

c. Memory
The SRC-6 MAP has access to its own memory known as On-Board

Memory (OBM). There are six banks with each having four megabytes of memory, for a

total of 24 megabytes. These banks are essentially arrays where each data element is

exactly 64-bits long; each array can hold up to 523,776 elements, for a total of 3,142,656

8

64-bit data words across On-Board Memory. Technically, each bank could hold as many

as 524,288 data elements but 512 of these data words are reserved for scalar values and

working space.

The Direct Memory Access (DMA) engines are what allow this On-Board

Memory system to be so effective. Data is transferred between the OBM banks and the

general purpose microprocessor via DMA transfers. When transferring data to or from

On-Board Memory banks one must specify: the direction of the transfer, where the OBM

banks begin, how often to stripe, or input, the data, the Central Processing Unit (CPU)

address, the CPU stride, the total length of the transfer in byte, and finally the server

number which must wait for the DMA transfer to complete [5]. The instruction format is

as follows:

DMA_CPU (<Transfer Direction>, <OBM address>, <OBM

striping>, <Computer Memory Address>, <Computer Memory Stride>,
<Length>, <Server>);

wait_DMA (<Server>);

The following, Figure 2, shows a clear illustration of how each On-Board

Memory bank interfaces with the User Logic. Data is sent back and forth in the standard

64-bit word format that OBM banks accept. Since there are 512k words in the memory

banks, User Logic uses a 19-bit address bus to decode which element is being accessed.

Finally, to control the bidirectional data, there is an FPGA output enable bit, a write

enable bit, and a read enable bit.

9

Figure 2. On-Board Memory Interface (From Ref. 4.)

Having these six banks truly enhances the parallelism of the system, which

is one of its greatest strengths, because each one can be accessed simultaneously.

d. FPGA
The User Logic recently discussed is comprised of two Xilinx Virtex II

Field Programmable Gate Arrays (FPGAs). These FPGAs are what make the SRC-6 a

reconfigurable computer; the end users program them to their own specifications and thus

define what is contained in User Logic. The User Logic FPGAs can interact with the

control circuitry and can also read and write to On-Board Memory through various ports.

This diagram delineates the interfacing of the FPGAs to the rest of the

MAP. It shows the six 64-bit bidirectional ports to On-Board Memory, as well as the

ports to the MAP Control Processor through the flag bit and the data register bits. It also

illustrates the input and output chain ports that could connect the local User Logic to

external User Logic on another MAP, thus forming a chain of MAPs.

10

Figure 3. User Logic Interface to MAP (From Ref. 4.)

Since MAPs can be chained together by User Logic, they can

communicate with one another, send partial results to other MAPs, and receive partial

results from other MAPs. In this way, another dimension of parallelism is added to the

SRC-6, which can reap great benefits in performance.

Not only can the FPGAs communicate with the rest of the MAP and other

MAPs, they can also communicate between each other. The two FPGAs in User Logic

are able to send data to one another using a 64-bit data bus that is separate from the

memory board and does not use up any memory bandwidth. This bus, when combined

with three bits of user defined input and three bits of user defined output, constructs a

Bridge Data Port. There are three Bridge Data Ports [4].

Figure 4 which follows shows how the FPGAs communicate.

11

Figure 4. User Logic Internal Interface (From Ref. 4.)

C. SOFTWARE

1. Software Environment
In order for the end users to utilize the functionality of the reconfigurable

computer, they must program the SRC-6 using a specialized software development

environment on a Linux computer.

a. Linux Operating System
Currently, the SRC-6 is compatible with the Red Hat version of the Linux

operating system (OS). Linux is a Unix-based operating system which is not as familiar

to most people or as user-friendly as Microsoft Windows, however it has many tools

available for experienced users that really ease the processes of writing code, testing it,

and debugging it.

Another advantage to using Linux is the shell interface. Unlike in

Windows, one can easily set up a remote shell to a computer to which access is granted

and execute any command as if one were at the host computer. This eliminates the need

for a programmer to be physically located at the SRC-6 in order to program it. This

12

ability is especially convenient at facilities where there is only one SRC-6 because

multiple users can log onto it remotely and test their code rather than having to wait at the

one machine for each person to complete their work.

b. Languages
As with any computer program, the creator must write and compile the

code that accomplishes the desired function. For most reconfigurable computers, the

language in which this code is written is VHDL, or VHSIC Hardware Description

Language, which uses practical mnemonics to describe the specific hardware functions.

While useful, VHDL still has a steep learning curve. It is still a relatively low-level

language with which many programmers are unfamiliar.

SRC Computers, Inc. has attempted to eliminate the need for writing

VHDL code, thus relieving the burden on the code developer. When programming the

SRC-6, the coder has a choice between programming in FORTRAN or C. Both of these

are very high level languages that do not possess the same control over the hardware that

VHDL does, but each one is more intuitive to experienced programmers. Though

FORTRAN is more straightforward than VHDL, the language itself is antiquated and

obsolete. However, it is still an option to a programmer who is comfortable with it [5].

The overwhelming choice for modern programmers is C. While it does

not include the object oriented abilities of its successor C++, it is equipped to handle

most tasks applicable to reconfigurable computing and it is used exclusively in this thesis.

c. File Types
There are two file types made available to the programmer who codes in

C, they are .c files and .mc files. These extensions tell the SRC-6 where to run the code.

The .c files are set to be executed on the microprocessor, whereas the .mc files are set for

execution on the MAP. Both files generally include libmap.h, a. header file that defines

the prototypes and constants specific to working with the SRC-6. This allows the use of

SRC-6 specific data types such as uint64_t and functions such as DMA transfers.

To optimize programs on the SRC-6, a user must decide ahead of time

what should be run on the microprocessor and what should be run on the MAP. The

FPGAs can be configured to run certain repeated calculations much faster and more

13

efficiently than the general purpose microprocessor. Once the programmer has planned

the optimal method, the code that is desired to run on the MAP is written into the .mc file

while the code that must be executed on the general purpose microprocessor is written

into the .c file. Usually, the .mc file is used to run optimized functions and the .c file will

be used to pass in the necessary parameters to be manipulated and then receive the

desired data.

As previously noted, the C programs do not give the coder much specific

control over hardware functions. If a user does need more hardware control, macros can

be written directly in VHDL. There are two types of useful user-defined macros, external

macros and user defined macros. External macros interact with the outside SRC-6

system and are controlled by start and done signals received from the system. Purely

functional macros receive inputs and compute outputs every clock cycle. They are not

stateful and can only process current data that they are given. However, they are able to

pipeline data and execute them in parallel.

Macros that are created have three parts. The first is the VHDL code that

describes the functioning of the hardware; this can be explicitly written by the

programmer or extracted from a graphic schematic editing tool. The second part is a

black box file, this file depicts the input and output interfaces of the macro. Finally a

macro needs an info file. Info files work by linking the hardware signals to their

respective variable and functions that they will be called with from the C programs [5].

d. Editing Programs
Editing C programs in Linux is a bit different than working with them

using Microsoft Windows. The standard editors are not as user friendly and do not walk

the programmer through the entire process of editing, formatting, compiling, and testing.

Vi is a basic text editor found in all distributions of Unix and Linux. It is difficult to learn

how to use, but if a programmer understands it, it can be used to program on any Unix-

based machine. Another standard tool that is generally found is gedit. This is a graphical

text editor that may be slightly more familiar to the average user, but still not very helpful

to someone specifically trying to write programs. A rather helpful editor that is found on

14

some Linux platforms is emacs. This is another graphical tool that is a powerful program

editor. It recognizes languages like C and automatically formats and color-codes text to

make it simpler for a coder to read.

2. Compilation
Just as in any other programming language, written code must be compiled in

order to be tested and debugged. In general, when programming in C on a Linux

platform the GNU C compiler, gcc, is used. This program compiles the source code into

object code then links and assembles it and turns it into an executable program. This is

the general process for turning a high-level program into a running executable. However,

it is not acceptable for SRC-6 programming. The C code must be translated into VHDL

so that the FPGAs can understand how to operate the hardware.

This calls for a different compilation method which involves a Make file. The

Make file is the last required file in a project directory. It goes alongside the .c, the .mc,

and the macro files and is always titled Make file. There are three ways in which a user

may Make a project. The first is a make debug mode. Debug compilation is fast because

the code is just interpreted; if the syntax in the files is correct, debug mode will quickly

simulate the results of the executed code. If the programmer wants to see a simulation

that more closely emulates what will happen on the MAP, a make simulate mode is

available. A simulated program takes longer to Make, but not as long as a full

compilation. The final debug mode available to the coder is the make hardware mode.

This actually Makes the code in the SRC-6 hardware ready for execution. This mode,

however, takes much longer than the others to complete and is not practical for testing

and debugging code. It is best used after completion of the debugging stage for

performance analysis.

Figure 5 below is an accurate visual aid in understanding the stages of the

compilation process that take place on the SRC-6.

15

Figure 5. SRC-6 Compilation Process (From Ref. 5.)

The previous make options compile the project in a certain way and leave many

files in the project directory specific to their respective modes of execution. In order to

recompile the program, a user must restore the directory to the basic source files. This is

accomplished with the make clobber command. Another option is the make clean

command, this will perform a similar function to make clobber with the exception that it

will also leave the executable files themselves in the project directory [5].

D. SUMMARY
This chapter provided a brief overview of the hardware and software interfaces

provided in the SRC-6. It began with a description of the major hardware components, to

include the microprocessor, the Multi-Adaptive Processing Board, and their interfaces. It

then went on to discuss the software environment presented when working with the SRC-

6, as well as how the compilation process works.

This information is necessary to the research because in order to program the

reconfigurable computer, one must have a solid understanding of its interfaces and how

to use them to accomplish the necessary tasks. The upcoming chapters move into a

discussion of the process of detecting and classifying Low Probability of Intercept radar.

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

III. PROJECT STAGES

A. INTRODUCTION
Low Probability of Intercept signals are difficult to detect because of their

inherent properties. For example, LPI radar has very low power, a wide bandwidth, and

tends to vary the transmission frequencies. Additionally, LPI signals have the advantage

of being veiled by modern environmental effects to include high noise interference and

multiple signals destructively interfering with one another [6]. Clearly, an edge could be

taken if one were able to come up with a reliable method to consistently detect and

classify these signals in real time.

Non-cooperative intercept receivers achieve a significant increase in processing

gain when using time-frequency and bifrequency techniques to detect LPI radar

modulations. It is possible to use parallel pattern classification with these detection

techniques to autonomously determine the modulation present in a signal. This

intelligent autonomous handling of the intercepted signal will greatly mitigate if not

eliminate the need for human intervention which can ultimately lead to real-time handling

of the data [6].

There are three stages involved with intercepting an LPI signal and determining

what it is. These are detection, preprocessing, and classification. If these three stages

can be programmed into a pipeline and run in parallel on an SRC-6, near real-time

processing of the LPI signals can be achieved.

The flow of these three stages can be seen in Figure 6 to follow. This image is a

good general description of the project and will be a constant visual reference for this

thesis.

18

Figure 6. Project Flow Chart (After Ref. 6.)

B. DETECTION

The detection can be performed by any one of three algorithms. The first is a

pseudo Wigner-Ville distribution. The second is by a Quadrature Mirror Filter Bank

(QMFB). The third method of detection is through Cyclostationary signal processing.

The pseudo Wigner-Ville distribution and the Quadrature Mirror Filter Bank are both

time-frequency techniques. Cyclostationary signal processing is a bifrequency detection

technique. For simplicity, the entire process may be viewed as it stems from just one

detection technique. A reasonable choice is to focus on the Quadrature Mirror Filter

Bank.

1. Detection Techniques
Time-frequency and bifrequency techniques are advanced signal processing

methods that are used to detect Low Probability of Intercept signal because the wide

bands of their frequency and phase modulations require significant processing gain on the

part of the receiver. These two techniques produce images that can be later classified by

a trained human or an autonomous device.

19

a. Time-Frequency
Time-frequency distributions are generally used in examining non-

stationary signals. These distributions represent the frequency spectrum of signals as a

function of time, which make it relatively simple to determine what kind of modulations

are present in a given signal. An ordinary time-domain signal lacks details about the

frequencies of a signal making it impossible to determine the frequency modulations.

Taking a Fourier transform of a time signal provides its frequency spectrum, however this

spectrum does not specify anything about the times at which the signal energies are

present.

Time-frequency distribution is a more sophisticated technique which takes

advantage of the fact that time information is encoded into the phase of a Fourier

transform. Taking this time information from the frequency spectrum is rather difficult

as it involves complex calculations like phase unwrapping. Time-frequency information

is usually a direct representation of the frequency content of a signal while keeping the

time parameter intact [6]. These time-frequency techniques apply themselves well to

detection techniques such as the Wigner-Ville Distribution and the Quadrature Mirror

Filter Bank Tree.

b. Bifrequency
Bifrequency spectral analysis is a method of taking a periodic part of a

signal and examining its spectral frequency versus its cycle frequency. A bifrequency

map describes a Linear Time Varying (LTV) system. For a non-stationary vector random

process its autocorrelation function is a function of two indices. These processes have a

bispectrum matrix which is a two-dimensional Fourier transform. This matrix fully

describes the second order statistics of the process [7].

2. ELINT Algorithms

ELINT algorithms are Electronic Intelligence algorithms. The specific ELINT

algorithms applicable to Low Probability of Intercept signal processing utilize the pseudo

Wigner-Ville distribution algorithm, the Quadrature Mirror Filter Bank algorithm, and

the Cyclostationary signal processing algorithm.

20

a. Wigner-Ville Distribution
The first type of time-frequency algorithm used in detecting LPI signals is

the Pseudo Wigner-Ville distribution (PWVD). This is one of the most useful and

popular methods of time-frequency analysis in signal processing. The output of this

distribution is always real and produces cross-terms between each pair of signal

components which can complicate the recognition of signal modulations. These cross-

terms can, however, help the classification process with the added information they

provide [6].

b. Quadrature Mirror Filter Bank Tree
Another ELINT algorithm which makes use of time-frequency analysis is

the Quadrature Mirror Filter Bank (QMFB) Tree. For the purpose of simplicity, this

project follows the detection, preprocessing, and classification procedures using only one

of the detection techniques in the above flow chart; the chosen technique here was the

Quadrature Mirror Filter Bank Tree.

A QMFB tree consists of a number of layers of fully connected pairs of

orthogonal wavelet filters (or basis functions) that linearly decompose the received

waveform into tiles on the time-frequency plane. A modified sinc filter is used and every

filter output is connected to a filter pair in the next layer, as shown in Figure 7 below.

The tiles are used to refer to the rectangular regions of the time-frequency plane

containing the basis function's energy. Each filter pair divides the digital input waveform

into its high-frequency and low-frequency components, with a transition centered at π .

Within the series of time-frequency layers, each subsequent layer provides a trade-off in

time and frequency resolution. By examining the energy within the tiles, parameters such

as bandwidth, center frequency, phase modulation, signal duration and location in the

time-frequency plane can be determined [6].

21

Figure 7. The Quadrature Mirror Filter Bank Tree (From Ref. 6.)

The received signal is first padded with zeros to contain 2L
pN = samples

where L is the number of layers within the tree. A normalized input of one sample per

second is assumed, with a signal bandwidth of [0,π]. Since each filter’s output signal

has half the bandwidth, only half the samples are required to meet the Nyquist criteria;

therefore, these sequences are down sampled by two and the same number of output

samples is returned. Each of the two resulting sequences is then fed into QMFB pairs,

forming the next layer, where the process is repeated, and so on down the tree. The l=L/2

layer provides a good compromise in time and frequency resolution. The QMFB output

strongly resembles the signal’s periodic ambiguity function [6].

c. Cyclostationary Signal Processing
The detection technique which takes advantage of the bifrequency spectral

analysis method is Cyclostationary processing. This model assumes that the input signal

is periodically stationary and thus can measure the signal’s periodic properties like

modulation, sampling, and keying. These properties can be found through the results of

the cyclic autocorrelation function and the spectral correlation density function. At

certain frequency separations, known as the cycle frequency, a spectrally correlated

signal is correlated with frequency-shifted versions of that signal. Finally, the spectral

22

correlation density (SCD) can be approximated by a method know as direct frequency

smoothing whereby the spectral components of the signal are calculated and then the

frequency components directly undergo a spectral correlation operation [6].

C. PREPROCESSING
The next stage is preprocessing the image passed in from the detection algorithm

to create a feature vector to pass on to be classified by the neural network. The main

goals of preprocessing are to extract the features of modulation within the image, to

reduce the dimensionality, and to keep the feature vector output as unique and small as

possible [6]. Generally, the preprocessing stage begins with cropping, but this is not

necessary when the Quadrature Mirror Filter Bank is used. With QMFB, preprocessing

is accomplished by thresholding, binarization, and finally reshaping the input matrix into

a unique feature vector.

The preprocessing stage is discussed in depth in the following chapter.

D. NEURAL NETWORK CLASSIFICATION
The final stage is classification. Simply put, classification involves non-linear

processing of the feature vector to put the data into a form in which the best decision can

be made about what type of modulation was used to create the signal. This is

accomplished by processing the feature vector received from the preprocessing stage

through a three-layer perceptron neural network. These neural networks are well-suited

to the classification stage because of their non-linear aptitude for learning and

recognizing complex patterns.

1. Autonomous Classification Methods
Currently, expertly trained human operators are able to identify the signal

parameters and determine the modulations received from the outputs of the time-

frequency and bifrequency algorithms. In general, relying on a human to perform a task

such as this adds considerable delay to the process. Classification would be significantly

sped up if the classification stage were automated and performed by a fast computer.

This way, signals could be classified in real time and the results would be useful in time-

sensitive applications.

Currently, there are three major techniques used in the autonomous classification

of signals. These techniques are energy detection, decision theory, and pattern

23

recognition. This study seeks out a new classification method based on the use of prior

knowledge to continually train a hierarchical neural network to group similar signals into

classes. A human programs a set of rules into the neural network that allow it to quickly

group signals into classes. This greatly expedites the learning process and the accuracy

of the classification results [6].

2. Recognized Modulations

a. FMCW Modulations
This neural network is trained to recognize several different modulations. One of

the important modulations that can be recognized is Frequency Modulation Continuous

Wave (FMCW), which is often used in the measuring of the range and range rate of a

target. There are two linear frequency modulation parts of the waveform which have

positive and negative slopes. FMCW is effective as a modulation for Low Probability of

intercept signals because it spreads the transmitted energy over a large bandwidth which

allows good range resolution. Also, its rectangular power spectrum makes non-

cooperative signal interception complicated. FMCW is additionally a deterministic

waveform which makes the return signal form predictable and resistant to undesired

interference [6].

b. BPSK Modulations
Another type of modulation that is commonly used is the Barker-code Binary

Phase Shift Keying (BPSK). This code consists of discrete time complex sequences of

finite length with a constant magnitude. It results in a periodic ambiguity function with

low side lobes relative to the main lobe. The code itself is not Low Probability of

Intercept; rather it is simply a sequence used to perform the phase modulation. However,

it is a solid benchmark to compare the classification techniques against [6].

c. Polyphase Modulations

Polyphase is a type of modulation with more than two phases that includes the

Frank code and the P1 through P4 phase codes. The Frank code is similar to linear

frequency modulation and Barker codes, but it has been successfully integrated into Low

Probability of Intercept radars. It is derived from a step approximation to a linear

frequency modulation waveform with M frequency steps and M samples per frequency.

Much like Frank codes, the P1, P2, P3, and P4 codes are also derived from linear

24

frequency modulated waveforms. They are also made up of discrete phases of the linear

chirp waveform, but they achieve lower side lobe levels. For all Polyphase codes, the

time spent at any phase state is constant within the code period [6].

d. Polytime Modulations
The final modulation group is Polytime. This consists of the T1, T2, T3, and T4

codes which also aid in the estimation of stepped frequency modulations. Unlike

Polyphase codes, these Polytime codes vary the time spent at each phase state throughout

the code period. Polytime approximations improve in quality when the total number of

phase states is higher. Unfortunately, this tends to complicate waveform generation by

reducing the time spent at any particular phase state. The phase state durations change

with time and the shortest duration sets the bandwidth [6].

3. Modulation Results
Dr. Phillip Pace of the Naval Postgraduate School tested these modulations

against each other using set inputs. Table 2 shows an (non-optimized) example of using

Quadrature Mirror Filter Bank detection-classification signal processing. The maximum

neural network output is used for each classification vector, presented as a Confusion

Matrix (CM). The first and second blocks show the results of testing the network with

the training signals. The third block shows the results of testing the network with the

training signals but with various signal-to-noise ratios. The fourth block shows the results

when testing the network with the training signals with variations in the modulation

parameters. The columns of this Confusion Matrix indicate the input modulation type, the

rows show what was assigned by the neural network, and the diagonals give the percent

chance that the proper modulation was chosen.

25

Table 2. QMFB Classification Results.

E. SUMMARY
Chapter III described the general flow of the project stages. The reader should

now be familiar with the stages of Low Probability of Intercept signal processing which

include detection, preprocessing, and neural network classification. This chapter delved

into detail about the detection and classification stages. The detection section discussed

the general techniques used in LPI signal processing as well as the ELINT algorithms

which can be used to detect the required modulations. The neural network classification

section discussed the methods that can be used for classification, the particular

modulation types supported by this process, and gave some experimental modulation

results to offer a feel for how well each modulation type works.

26

The detection and classification stages were not covered by this research, but it is

necessary to know how they function because they are directly linked to the

preprocessing stage which is the main focus of this thesis. The detection stage provides

the input to the preprocessor while the neural network classifier utilizes the output of the

preprocessor to discern what modulations have been used.

Chapter IV will now fill in the details of the preprocessing stage which were

omitted from this chapter.

27

IV. PREPROCESSING

A. INTRODUCTION
The main purpose of the preprocessing stage is to make a composite feature

vector, from the input time-frequency image, to pass on to the neural network for

classification. This process maintains the important properties of the modulation while

reducing the dimensionality. The stages of preprocessing are explained below, they are:

cropping, thresholding, binarization, and resizing the image. The preprocessing stage of

the detection and classification of LPI signals through a Quadrature Mirror Filter Bank is

implemented by the code developed for this thesis. This flow chart, Figure 8, provides an

accurate visual aid for the general stages of preprocessing.

Figure 8. Preprocessing Flow Chart (After Ref. 8.)

Binarization

28

Preprocessing of the Quadrature Mirror Filter Bank is very similar to that of the

Wigner-Ville Distribution, except that image cropping is not necessary. The QMFB

produces several time-frequency layers each with a different time and frequency

resolution. For each progressing layer, the number of frequency bins is halved while the

number of time bins is doubled. The number of pixels in the image, however, remains

constant. The method used here differs even from conventional preprocessing techniques

in that it uses an adaptive threshold computed by a cumulative distribution function on

the normalized matrix.

B. CROPPING

1. Standard Cropping
Cropping of the input matrix, I(t,w), is accomplished by extraction of a subset of

the original matrix that contains the signal energy. The region that will be cropped is

determined by features such as maximum signal duration, center frequency, and

bandwidth. These parameters are all determined ahead of time. Though cropping is an

essential process in the Wigner-Ville Distribution, the QMFB tree method differs in that

cropping is not necessary [8].

2. Black-Cropping
After the time-frequency image has been input and cropped, there is frequently a

section to the right of the image that contains “no signal”. This section is completely

black and provides no additional useful information to the neural network. Black-

cropping is the process of removing this part of the signal from the image in order to

simplify classification.

C. THRESHOLDING
In order to prepare the image to be formatted with all ones and zeros, an

appropriate threshold needs to be calculated to determine which bits will take on which

values. To facilitate this, the cropped image, which is the original image in the QMFB

case, needs to be normalized to the largest value in the matrix. The intensity levels, h(n),

of the normalized image must then be put into a histogram using a number of bins that

will provide reasonable resolution. In this case, 32 bins were used. The histogram may

then be used in the computation of the cumulative distribution function (CDF) as follows

[8]:

29

 ()
()

()
1

1

n

i
N

n

h i
cdf n

h n

=

=

=
∑

∑
 (4.1)

These data are then compared to the CDF threshold to determine the system

threshold. The CDF threshold is predetermined for the specific application; for the

Quadrature Mirror Filter Bank tree, the CDF threshold C=0.9. This means that only the

brightest 10% of pixels will be retained after thresholding; it differs from the typical CDF

threshold of the Wigner-Ville Distribution process, which has C=0.8. The system

threshold, T, is finally calculated by determining the bin value, n from the above

equation, where ()cdf n C≥ [8].

D. BINARIZATION
After a proper threshold has been computed, it is then used to convert the

intensity image to all black or white pixels. These pixels are denoted by zeros (white)

and ones (black) so the process is known as binarization. This process is effective at

removing much of the noise and weak interference initially present in the intensity image

[6].

For this project, the input values will range from 0 to 255. The threshold will be

somewhere between these two boundaries. Each value in the matrix below the threshold

will be changed to a zero, while the values above the threshold will be set to ones. This

equation describes the computation made on each element of the normalized intensity

matrix, I’(t,w), to transform it into a binary image, I’’(t,w) [8].

 () ()
()

1 ' ,
'' ,

0 ' ,
I t T

I t
I t T

ω
ω

ω
≥⎧⎪= ⎨ <⎪⎩

 (4.2)

E. RESIZING

The final stage in preprocessing is the resizing of the matrix to form a feature

vector. This is the vector which will be passed on to the neural classification network for

a determination of the signal modulation. Generally, the image is reshaped using low

pass filtering. It is then resampled and bilinearly interpolated to mitigate the undesired

30

effects of aliasing. The matrix is finally transformed into a feature vector of a length

which is equivalent to the product of the numbers of rows and columns of the normalized

intensity matrix [8].

F. SUMMARY
This chapter should provide the reader with all of the necessary details to

comprehend how Low Probability of Intercept signals are preprocessed. It gives a

description of all the steps involved in preprocessing which are: cropping, thresholding,

binarization, and resizing. The figure in the introduction to this chapter shows the

complete flow of this stage, which is a great supplement to the explanation of each step.

The chapters to follow will show and explain the different codes used which

perform the preprocessing function of autonomous LPI detection and classification.

31

V. ALGORITHM PORTING

A. INTRODUCTION

1. Purpose
The main purpose of this research was to find out if Low Probability of Intercept

signals could be autonomously detected and classified through the use of Electronic

Intelligence algorithms on a reconfigurable computer. Some research had previously

been done by Professor Phillip Pace of the Naval Postgraduate School on using these

algorithms on a general purpose computer. His work successfully simulated the detection

to classification sequence using the software simulation package MATLAB.

The work in this thesis concentrated on transferring work similar to that done by

Dr. Pace in MATLAB to a reconfigurable platform. This involved modifying the

MATLAB code he used to the specifications of this project. Then the code needed to be

ported over to the SRC-6 C language so that it could be tested on the reconfigurable

computer. In order to smooth this transition and to provide an intermediate benchmark,

this code was also produced in the regular C language.

2. Procedure

For this implementation of the preprocessing stage, it was necessary to simulate

data that might have been input from the Quadrature Mirror Filter Bank. This was done

in all three versions of the code by generating a matrix filled with random numbers. For

the scope of this project, it was assumed that layer five of the QMFB tree was used, thus

the input image matrix always had the dimensions of 25 by 25, or 32 by 32. The expected

input into the matrix was eight-bit integer values, which would range from 0 to 255.

Each case used 32 bins to make a histogram of this input data. It was also assumed that

the Cumulative Distribution Function (CDF) threshold was 0.9, which is standard for the

Quadrature Mirror Filter Bank and means that only 10% of the brightest pixels with

values above the CDF threshold are retained. After all of the necessary preprocessing

was done in the code, an output feature vector containing the properly thresholded values

was formed and ready to be sent to the Neural Classification Network.

32

B. MATLAB CODE

A complete listing of the MATLAB function used is located in Appendix A,

along with the output generated by running it.

The code begins with a standard MATLAB function definition.

function preproc(layer, cthresh)

The name of this function file is preproc.m and the name of the function itself is

also preproc, which is meant to affirm that this code deals with the preprocessing stage of

the detection to classification sequence. There are two input parameters to this function,

they are layer and cthresh. These allow the user to specify which QFMB layer and what

Cumulative Distribution Function threshold to use, respectively. Since it is known that

layer five is being used and that the CDF threshold is 0.9, a user can run this program by

typing the following at the MATLAB prompt:

preproc (5,0.9)

This will produce the output shown in section 2 of Appendix A.

Within the body of the code, the first task was to define variables that would be

used several times throughout the code in order to make the program more readable.

max_in=256;
num_bins=32;
len=2^layer;

The max_in variable represents one more than the maximum value that could be

input into the matrix. It needed to be defined in this manner because the random

function, shown below, generates a number which is at most one less than the variable by

which it is multiplied. The number of bins to be used in the histogram is stored in

num_bins and the dimensions of the input matrix are stored in len by raising two to the

power stored in the user defined variable layer. Since layer five is being used, it is

already known that the row and column dimensions defined by len are 32.

33

Using these variables, MATLAB can create a random input image matrix as

follows:

img = floor(max_in*rand(len, len));

The random function, rand() in MATLAB, creates a matrix of size len by len,

filled with random numbers between 0 and 1. In order to get these numbers into the

desired range, they must each be multiplied by 256 which is max_in. The numbers

produced here still have decimal precision which must be either truncated or rounded to

leave just integer input values. This is done by utilizing the MATLAB function floor()

which leaves a matrix of integers between 0 and 255 to be stored into the image variable

img.

Once the input image matrix is formed, preprocessing of the data can begin. In

order to find the threshold, the values in the image matrix must be stored into a histogram

which then has its elements processed by a Cumulative Distribution Function. This is

done easily in MATLAB as it provides high level built in functions which accomplish

these tasks, a luxury not found in the C language.

The MATLAB function hist() makes a histogram of a vector when given a

specified number of bins in which to store the data. The image matrix must be flattened

into a vector using the MATLAB function (:) as shown below.

[bins, cent] = hist(img(:),num_bins);

Here, bins is a 32 element wide array representing the histogram bins. Each bin

contains the number of elements from the input matrix whose value falls into the range of

that bin. The vector cent is 32 bits wide as well and contains the value representing the

center of each bin. This will be useful in finding the system threshold because once the

bin is found that exceeds the CDF threshold, the system threshold is simply taken from

the center value in cent corresponding to that bin in bins.

After determining the bins vector, the cumulative sums of its elements must be

taken in order to compare them to the cumulative sum threshold, cthresh. The

MATLAB function cumsum() creates a vector containing the cumulative sum of the

34

elements of the input array. Here, it will create an array of length 32 with each element

containing the sum of array bins up to the index of the current component. For example,

element number four of the cumulative sum vector will contain the sum of elements one

through four of the bins vector. Since ctresh is a decimal value less than one,

representing the percentage of the sum of elements the cumulative sum must reach, the

elements of this new array must each be divided by the total number of elements in the

input array with the result getting stored in a new vector named cbins. This sum can be

taken through the MATLAB function sum() operating on the bins matrix flattened into a

vector. To illustrate the power of programming in MATLAB, all of this is accomplished

in the one line of code below.

cbins = cumsum(bins)/sum(bins(:));

Next, it is necessary to determine which decimal value in cbins exceeds the CDF

threshold contained in cthresh. The MATLAB find() function, shown below, will

compare each point of the cbins vector to the CDF threshold and report the indices of the

vector where this threshold was reached. After this, the system threshold is computed by

taking the minimum index where the CDF threshold was reached and taking the value of

the bin center array, cent, which is found at this index. These two lines of code

determine the threshold of the system.

ind = find(cbins >= cthresh);
thresh = cent(min(ind));

Once the system threshold has been found, the input image must be binarized.

This is accomplished through the use of a MATLAB routine named im2bw(). This

routine takes an input array and maps each component to a zero or a one based on

whether or not it exceeds the threshold input, which must be between zero and one. To

facilitate this, the threshold can be set to one and each component of the input image can

be divided by the system threshold to normalize it about the binarization threshold of one.

feat = im2bw(img/thresh, 1);

35

The binarized image is then stored as the feature matrix, feat. This leaves only

the final preprocessing step of matrix resizing to be accomplished. MATLAB simplifies

the process of turning a matrix into a vector with its built-in function (:). This vector can

finally be transposed from a column vector to an easier to read row vector for output

through utilization of the MATLAB operator ‘.

feat = feat(:)';

The final product is a binary feature vector ready to be sent to a Neural Network

for classification.

C. STANDARD C CODE

With a working MATLAB implementation of the preprocessing algorithm, it

becomes necessary to transfer that algorithm to the C language to determine if it is

possible to program onto the SRC-6. Though C is still a high level language, it does not

contain the myriad of engineering toolboxes that are included in MATLAB. Thus, many

of the functions that were simple to implement in MATLAB by using these tools may

present a greater challenge in C as these procedures need to be programmed using basic

operations.

The C program, preproc.c, begins with the standard declarations of libraries and

initial declarations of variables to be used throughout the program. A complete listing of

the code, including these declarations, is found in Appendix B.

The variable layer is declared equal to 5 because this process uses the fifth layer

of the QMFB tree. This allows use of the C function pow() to calculate the dimensions of

the input matrix by raising two to the fifth power, yielding rows and columns of length

32.

len=pow(2,layer);

After the size of the input matrix has been determined, the programmer must

assign random integers from 0 to 255 to the 32 by 32 input array. This will simulate

potential input from the Quadrature Mirror Filter Bank Tree. Each element must be

assigned its own random one at a time through the use of a nested for loop.

36

 for(j=0; j < len; j++)
 {
 for(k=0; k < len; k++)
 {
 image[j][k] = (int) (256.0*rand()/(RAND_MAX+1.0));
 i = image[j][k] >> 3;
 bins[i] += 1;
 }
 }

While each element is being stored, it can immediately be placed in the proper bin

during the same iteration of the nested for-loop. Since 32 bins has been chosen as the

appropriate amount to store the data for the histogram, each bin has a range of 256
32

 or 8

numbers. This means that numbers 0 through 7 will go into bin 0, numbers 8 through 15

into bin 1, and so forth ending with numbers 248 through 255 going into bin 31. The

simplest way to determine in which bin a specific element will belong is to divide the

value of that element by eight, the resulting integer value will also be the appropriate bin

number. It is important to minimize execution time wherever possible in this code and

division by eight will take many clock cycles to execute. Fortunately, eight is a power of

two, thus it is possible to right shift the value by three places which will execute much

faster than a division by eight. Once the proper bin number is calculated, the program

simply needs to increment the count of elements in that bin.

For visual reference, a histogram display has been added to the code to compare

with the one generated by MATLAB. This is not, however, a critical part of the

preprocessing procedure so it is not included for the timing analysis.

In order to binarize the input image, the system threshold must first be found.

This must be accomplished, though, without use of the convenient engineering functions

found in MATLAB. There is no sum() function in the C language, but the sum of

elements can be found by taking the product of the input array dimensions. Similarly, no

cumsum() function exists, but each element in the bins array can be progressively

summed in a while loop and then compared to a CDF cutoff variable equal to the sum of

input elements multiplied by the CDF threshold percentage. A while loop is better than a

37

for-loop in this case because it allows an early break of execution when the threshold

thresh, which is initially zero, is found and becomes non-zero. The code for this while-

loop is provided here.

 i=0;
 sum = len*len;
 cutoff = sum*Cthresh;
 while(!(thresh))
 {
 csum += bins[i];
 if(csum >= cutoff)
 thresh = 8*i + 4;
 i++;
 }

When the Cumulative Distribution Function threshold is reached, the system

threshold becomes the center of the current bin, which is stored in the temporary variable

i. It is calculated by multiplying the bin number by eight and then adding four. Once the

system threshold is determined, the input image may be binarized by comparing each

element within to the computed threshold value. This may be done through the use of a

nested for-loop in which each element will be compared to the threshold yielding a binary

result. If that element is less than the threshold, the result will be zero, otherwise it will

be one. To help compact the output data, each set of 32 binary results is placed in one

32-bit wide integer value. Each bit is stored into this integer by shifting the binary

comparison result an appropriate number of bits to the left and adding it to the integer. In

total, 32 of these 32-bit integers are created which represent the binarization of all 1024

initial image values. These 32 integers are then placed into one 32 element array named

feature in order to represent the feature vector which will be passed on to the Neural

Classification Network for determination of the signal modulation.

 for(j=0; j < len; j++)
 {
 for(k=0; k < len; k++)
 {
 feature[j] += (image[j][k]>=thresh) << 31-k;
 }
 }

38

D. SRC C CODE

1. Main Program

The main program named main.c, which facilitates execution of code on the SRC-

6, is an ordinary C program which calls a subroutine that runs on the reconfigurable

computer. Prior to the body of the C code, a function prototype for this subroutine must

be defined. This subroutine will take two arrays of 64-bit integers, a pointer to a regular

integer (32 bits), a pointer to a 64-bit integer, and one regular integer. It is a void

function and will not return any values, except those passed by reference, to the main

program.

void subr (uint64_t* , uint64_t*, int*, uint64_t*, int);

Following this prototype definition, the main body function is defined along with

all of the variables required for execution of the program. The program main.c is listed in

its entirety along with these definitions in Appendix C. One variable, however, needs to

be declared in a special way. In order to be passed properly to the subroutine, the input

image array needs to be declared in a format that is compatible with two-dimensional

arrays on the SRC-6. This is accomplished by declaring a new variable type, called

arr32, which is a 32 element wide array containing 64-bit integers. Creating a pointer to

a variable of this type allows an array of these vectors to be declared in a way that the

SRC-6 accepts.

typedef uint64_t arr32 [32];
arr32 *image;

In order to pass this image array and the feature vector to and from the subroutine,

space must be allocated for them on the MAP. This is accomplished through the use of

an SRC-6 allocation function name Cache_Aligned_Allocate as can be seen below. The

Cache_Aligned_Allocate function must be passed the total size in bytes that must be

allocated. For a 32 by 32 matrix of 64-bit integers, this is 32*32*8 = 8 kilobytes.

image = (arr32*) Cache_Aligned_Allocate(32*32*8);
feature = (uint64_t*) Cache_Aligned_Allocate(32*8);

39

Random numbers are again assigned to the input array to simulate an image being

passed in from the Quadrature Mirror Filter Bank tree. This is done the same way as in

the standard C program above. After defining the matrix values, it must be prepared to

be sent across to the MAP for preprocessing. This command assigns a MAP processor

and binds it to the subroutine that is about to be executed.

map_allocate (1);

Now the input image can be passed to the subroutine. The pointer to the feature

vector must also be passed so that it can be retrieved when the function ends. The

threshold variable thold is passed as well so that the user can verify that the correct

threshold was computed when it is displayed in the program output, which is also found

in Appendix C. The variable tm is passed to the subroutine so that the execution time of

the program may be tracked and compared to other platforms. Finally, the mapnum

variable must specify which MAP is being used for this subroutine.

subr(image, feature, &thold, &tm, mapnum);

Once the program returns from the subroutine, it prints the threshold value, the

values of the feature vector, and the number of clock cycles used for execution of the

subroutine to the user. Lastly, it frees the MAP processor with the following command

and exits.

map_free (1);

2. Subroutine

The subroutine body contains local variable definitions just as the main program

does. It also begins with a function header that must match the function prototype which

preceded the main program body. One important constant to define for this routine is len

with a value of 32. This is the size of the matrix dimensions and it is used often enough

in loops and expressions that defining it as a constant makes the code much easier to

read.

40

#define len 32

void subr (uint64_t Ain[], uint64_t Din[], int *threshold,

uint64_t *time, int mapnum)

This subroutine uses On Board Memory banks to store the values of the input

image and also the output vector. OBM bank A must be declared as 2D in order to

receive the two-dimensional array of the input image. OBM bank D is a one-dimensional

array that will be used to store the output feature vector.

OBM_BANK_A_2D (A, uint64_t, len, len)
OBM_BANK_D (D, uint64_t, len)

After the OBM banks are declared, the data to be manipulated can be streamed

into and out of them. The input image matrix is streamed into OBM bank A as follows.

DMA_CPU (CM2OBM, A, MAP_OBM_stripe(1,"A"), Ain, 1,

len*len*sizeof(uint64_t), 0);
wait_DMA (0);

The SRC-6 includes a loop-flattening technique shown below which reduces the

dependencies on the nested loop variables j and k. This allows the MAP processor to

execute the loop in less clock cycles, which will likely result in significant timing gain

over other platforms running the same algorithm. Inside the loop, elements are separated

into their respective bins in the same manner as in the standard C code.

for(xs=0; xs < len*len; xs++)
{
 cg_count_ceil_32(1, 0, xs==0, len-1, &k);
 cg_count_ceil_32(k==0, 0, xs==0, SZ, &j);
 i = A[j][k] >> 3;
 bins[i] += 1;
}

The next step involves comparing the CDF threshold cutoff to the ongoing

cumulative sum until the system threshold is found. This is accomplished no differently

than in the standard C code above. Once this threshold is found, the loop-flattening

process can again be used to speed up the process of storing each binarized bit into the

proper place in an integer element of the output feature vector.

41

for(xs=0; xs < len*len; xs++)
{
 cg_count_ceil_32(1, 0, xs==0, len-1, &k);
 cg_count_ceil_32(k==0, 0, xs==0, SZ, &j);
D[j] += (A[j][k]>=thresh) << 31-k;
}

Finally, the output feature vector, which is contained in OBM bank D, can be

streamed out into variable Din to be passed on to the Neural Classification Network, or as

in this case, back to the main program. The subroutine now passes all of the necessary

parameters back to the main program and relinquishes control.

DMA_CPU (OBM2CM, D, MAP_OBM_stripe(1,"D"), Din, 1,

len*sizeof(uint64_t), 0);
wait_DMA (0);

3. Make File

The files described above are not compiled with the general C compiler; rather

they are compiled by using a Make File as described in Chapter II. The entire Make File

is listed after the other SRC-6 files in Appendix C. However, there is very little of it that

pertains specifically to these programs. In fact, the only changes that must be made to the

generic Make File template are specifications of the input file names and the desired

name of the output executable program. Those changes which were made to the file are

shown below.

--
User defines FILES, MAPFILES, and BIN here
--
FILES = main.c

MAPFILES = preproc.mc

BIN = preproc

E. SUMMARY
In this chapter, the three different variations of code found in the appendices were

completely explained. These programs all perform the preprocessing stage of the

detection to classification sequence and they are useful tools to assist in the autonomous

detection and classification of Low Probability of Intercept signals. The first section

covered a MATLAB program adapted from the code of Professor Phillip Pace which

42

successfully performs this function. The next section explained the translation of this

code into the standard C language where it can be compiled and executed on any personal

computer or Unix-based system with the appropriate compiler. The last section described

the C code which is specific to MAP execution on an SRC-6 machine; it detailed the two

programs needed to run code on the general purpose microprocessor as well as the MAP

processor and it also briefly described the Make File which allows compilation of this

code.

The reader should now have a firm understanding of how the preprocessing stage

works as well as how it can be programmed for execution on a variety of computing

platforms. Specifically, one should comprehend how to create a preprocessing program

which will run quickly and efficiently on the SRC-6. The following chapter will analyze

the actual timing of the three programs which were described above. It will seek to

determine which platform executes this code in the fastest and most efficient manner.

43

VI. PERFORMANCE ANALYSIS

A. INTRODUCTION
It has now been illustrated that the presented ELINT algorithms can be

successfully programmed onto standard computer systems, as well as reconfigurable

computer systems, for the purpose of detecting and classifying Low Probability of

Intercept signals. This chapter compares the three solutions described above to determine

which computing platform has the best performance. Timing data has been taken of the

run times for the MATLAB program on a Windows PC, the standard C program in a

Linux environment, and the SRC C programs on the MAP.

Only the parts of these programs dealing specifically with the preprocessing of

data were timed. The changes made to the code to acquire these data are also briefly

detailed in this chapter.

B. EXECUTION TIMES

1. MATLAB
The first set of timing data was extracted from several executions of the

MATLAB preprocessing program, preproc.m. These executions were run on a Microsoft

Windows XP machine with an Intel Pentium 4 processor running at 3 GHz with 512 MB

of RAM. In order to obtain the timing data, it was necessary to make several minor

modifications to the code.

First of all, MATLAB timing commands were used at the beginning and end of

the preprocessing section and the difference was taken to determine execution time. The

MATLAB function cputime returns the current system clock time in seconds, thus the

time difference was taken by subtracting a time already recorded from the current

cputime.

y=cputime;
--Preprocessing Loop omitted--
time=cputime-y;

The problem with the timing data given by MATLAB is that the resolution is not

small enough. By experimentation, it was determined that the shortest period of time

44

which could be detected by the MATLAB timing function was approximately fifteen

milliseconds. The next lower and higher results that would be output by MATLAB were

zero seconds and approximately thirty milliseconds respectively. Also, MATLAB only

shows these results to three decimal places, thus the user is given no granularity below

the millisecond.

This presented a major problem because an efficient implementation of the

preprocessing procedure takes relatively few clock cycles to execute. With a small

number of layers, total execution time is often much less than one millisecond. This

obstacle was circumvented by repeating execution of the preprocessing stage until

enough time was taken up for MATLAB to produce timing data with reasonable

resolution.

The next modifications to the code were the additions of a loop variable and a for-

loop. The for-loop was placed around the section of code which handles the

preprocessing of the input data. The loop variable was used to dictate how many times

the for-loop would be run. The implementation of these changes is shown below.

for p=1: # ,
--Preprocessing Procedure omitted--
end

In order to more completely demonstrate the timing of the preprocessing

procedure, the program was run on data representing output from several different layers

of the Quadrature Mirror Filter Bank tree. Thus, the final change to the code was in the

function call itself. The program was written as a MATLAB function which allows

certain parameters to be declared by the user when calling it. The two parameters that

preproc.m allows to be specified at runtime are the desired QMFB layer and the CDF

threshold as can be seen below.

function preproc(layer, cthresh)

With this functionality in place, it was possible to run the code on every QFMB

layer between layer three and layer ten. On each layer, a number of execution loops was

experimentally determined which increased the total execution time to several tenths of a

45

second, thus quelling any concerns of a lack of resolution. Once the proper number of

loops was found the program was executed ten times, and the timing data were tracked

for every run. After the ten runs were complete, the average execution time of those runs

was taken. Finally, the adjusted average was found which consisted of dividing the

average by the number of loops that were executed. This gave the actual time, with

adequate resolution, that it took for one execution of the preprocessing procedure to

complete.

Table 3. MATLAB Execution Timing Data

Run 1 2 3 4 5 6 7 8 9 10 Avg Adj.

Layer Loop Time (s) Avg (µ s)
10 1 0.3130 0.3280 0.3280 0.3130 0.3280 0.3120 0.3120 0.3120 0.3120 0.3120 0.3170 317000
9 5 0.4060 0.4060 0.3910 0.4060 0.4060 0.4060 0.4060 0.4060 0.3910 0.3900 0.4014 80280
8 20 0.4220 0.4220 0.4220 0.4220 0.4220 0.4220 0.4220 0.4060 0.4220 0.4060 0.4188 20940
7 80 0.4530 0.4540 0.4370 0.4370 0.4380 0.4370 0.4220 0.4220 0.4370 0.4380 0.4375 5468.75
6 320 0.5780 0.5940 0.5620 0.5620 0.5630 0.5620 0.5630 0.5620 0.5630 0.5470 0.5656 1767.5
5 500 0.4210 0.4540 0.4370 0.4380 0.4370 0.4380 0.4380 0.4370 0.4220 0.4370 0.4359 871.8
4 1000 0.6880 0.6560 0.6250 0.6410 0.6090 0.6250 0.6100 0.6100 0.6250 0.6250 0.6314 631.4
3 1000 0.5940 0.5780 0.5630 0.5930 0.5780 0.5790 0.5780 0.5620 0.5630 0.5620 0.5750 575

Table 3 above shows these timing data for every layer. The two leftmost columns

tell what QMFB layer is being operated on and how many loops are being executed,

respectively. The top row tells to which of the ten runs of the program the timing data in

its column corresponds. The final two columns give the average and the adjusted average

run time for each layer.

As can be seen in the table, layer ten has so many elements (10 10 202 *2 2=) that it

already takes several hundred milliseconds to execute only once, thus it need not be

looped more than one time. However, each layer below ten executes progressively faster

and loops become increasingly necessary. The general pattern shown by the chart is that

each successively lower layer takes approximately four times as many loops to obtain a

reasonable total execution time on the order of tenths of a second. This is intuitive as

each lower layer has one fourth the number of elements as the preceding layer to operate

on. This same effect trickles down to the adjusted average times as each lower layer

realizes a speedup of approximately four times when compared to the layer before it.

This effect can be better understood visually from the following graph, Figure 9.

46

MATLAB Execution Times

100

1000

10000

100000

1000000

2 3 4 5 6 7 8 9 10 11

QMFB Layer

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

MATLAB Times

Figure 9. MATLAB Execution Times

Oddly, this speedup approaches somewhat of a plateau near layer five which, at

871.8 microseconds, is twice as fast as layer six, but neither layer four nor layer three

realize much of an improvement over the layer five results. This could be caused by

several possible factors. One possibility is that there is not enough data present at these

low layers to take advantage of the cache, so the compulsory cache misses dominate the

overall data processing. Another explanation may stem from the fact that MATLAB is

an interpreted language rather than a compiled one. As such, the amount of overhead

involved in interpreting each command at run-time could account for the majority of the

execution time.

2. Standard C

Next, similar timing data was extracted from the program being run in the

standard C language. This was run on a Linux machine with two Intel Xeon processors

running at 2.8 GHz with 2 GB of RAM. Just as the MATLAB code needed to be

modified, there were a number of changes that needed to be made to the C code in order

for it to display accurate timing data. Within the code, new variables were declared to

keep track of the time that had elapsed.

time_t begin, end;
double elapsed;

47

The begin and end variables are of type time_t which is a specific time data type

defined in the time.h library. These were used to store the times at the beginning and end

of the preprocessing procedure. The double precision floating point number elapsed

was used to take the difference between these two times to alert the user of the total run

time. These new variables were implemented as shown below.

begin = clock();
--Preprocessing Loop omitted--
end = clock();
elapsed = (double) (end-begin)/CLOCKS_PER_SEC;
printf(“%.3f\t”,elapsed);

The function clock() defined by time.h returns the number of clock cycles that

have occurred since a predetermined moment. The last element used from the time.h

library was the constant CLOCKS_PER_SEC which stores the number of processor clock

cycles which occur in one second. When the difference between the beginning and end

time is divided by this constant and the result is converted to the double precision data

type, the total preprocessing time elapsed is given in seconds. This is how the variable

elapsed was determined.

The final line details how the time information was displayed to the user. For two

reasons, all other program outputs were eliminated. First, this single numerical output

followed by a tab facilitated the use of a Linux shell script to run the program multiple

times and send the timing data directly to a file which could then be fed into a

spreadsheet. Additionally, sending data to standard output (the terminal screen) takes up

extra time and the program runs faster without these extraneous procedures, which are

now unnecessary since that data has already been collected and displayed in Appendix B.

The elimination of superfluous outputs was common across all three programs for the

collection of timing data.

It was again determined by trial that the C program produced times of

unacceptably large resolutions much like the MATLAB code. It was found that the

shortest amount of time that could be measured by the C timing functions was ten

milliseconds. Once again, it was necessary to loop the preprocessing section of the code

48

several times to find adjustable execution times of appropriate granularity. Thus, the next

major change to the C code was the addition of the looping variables loops and p.

long int loops= # , p;

Specified prior to compilation by the programmer, loops contained the number of

times to execute the preprocessing procedure in order to obtain a run time of hundreds of

milliseconds. In the for-loop surrounding this procedure, p was used as the counter

which was incremented until loops was reached.

for (p; p < loops; p++)
{
--Preprocessing Procedure omitted--
}

The final addition to the code was a constant arlen which was declared before

the main function to define the dimensions of the input and output arrays. This was

necessary for the programmer to change according to the current QMFB layer being

operated on.

Once all of these changes were made, it was possible to extract the timing data

from layer ten down through layer three. These are displayed in Table 4.

Table 4. Standard C Execution Timing Data

Run 1 2 3 4 5 6 7 8 9 10 Avg Adjusted

Layer Loops Time (s) Avg (µ s)
10 50 0.55 0.56 0.56 0.56 0.56 0.55 0.57 0.57 0.57 0.57 0.562 11240
9 200 0.56 0.56 0.57 0.57 0.56 0.56 0.56 0.55 0.56 0.56 0.561 2805
8 800 0.56 0.56 0.57 0.56 0.56 0.59 0.56 0.56 0.57 0.57 0.566 707.5
7 3200 0.57 0.57 0.58 0.56 0.57 0.56 0.56 0.55 0.56 0.57 0.565 176.5625
6 12800 0.57 0.56 0.58 0.59 0.57 0.58 0.58 0.58 0.59 0.58 0.578 45.15625
5 51200 0.58 0.57 0.55 0.55 0.54 0.57 0.55 0.56 0.54 0.55 0.556 10.85938
4 204800 0.55 0.6 0.66 0.56 0.59 0.6 0.56 0.59 0.58 0.61 0.59 2.880859
3 819200 0.64 0.63 0.66 0.68 0.58 0.54 0.56 0.67 0.65 0.56 0.617 0.753174

This is laid out in a very similar manner as the MATLAB timing data. The top

row notifies the viewer as to which of ten executions is being described. The left

columns again denote which layer was being dealt with and how many loops were used

49

to achieve a run time in the desired range. It is clear that the adjusted average times,

given here in microseconds, are consistently sped up by a factor of approximately four in

each lower layer. As evidenced by the following chart, this pattern does not seem to

break down at lower layers, suggesting that the C language handles this code in a more

efficient manner. Additionally, the C code is compiled which means that it will not have

to deal with issues such as interpretation overhead at low layers.

Standard C Execution Times

0.1

1

10

100

1000

10000

100000

2 3 4 5 6 7 8 9 10 11

QMFB Layer

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

Standard C Times

Figure 10. Standard C Execution Times

3. SRC-6
The final timing results came from execution of the preprocessing code on the

SRC-6. It did not take as many changes to the original code to acquire these data as it did

on the other platforms; there was already code included which determines the number of

clock cycles taken to execute a section of the program and then displays that number to

the user. In the original program, an integer variable tm was declared to store the number

of clock cycles for display. This variable was passed to the subroutine where the

read_timer() function was used before and after execution of the preprocessing

procedure. The difference between these readings was stored into a time variable to be

passed back into tm as follows.

50

read_timer (&t0);

--Preprocessing Procedure omitted--

read_timer (&t1);

*time = t1 - t0;

Another convenient factor in extracting timing data from the SRC-6 was that

resolution concerns were eliminated. Since the MAP returns timing data in the number

of clock cycles executed, there was no need to manipulate the time collection algorithm

to attain times with microsecond resolution. Thus, it was not necessary to iterate the

preprocessing stage multiple times in a for-loop; each layer executed the procedure one

time and output the number of clock cycles as shown in Table 5 below.

51

Table 5. SRC-6 Execution in Clock Cycles

Run 1 2 3 4 5 6 7 8 9 10 Average
Layer Clock Cycles

10 16778645 16778645 16778645 16778645 16778645 16778645 16778645 16778645 16778645 16778645 16778645
9 4195221 4195221 4195221 4195221 4195221 4195221 4195221 4195221 4195221 4195221 4195221
8 1049237 1049237 1049237 1049237 1049237 1049237 1049237 1049237 1049237 1049237 1049237
7 262677 262677 262677 262677 262677 262677 262677 262677 262677 262677 262677
6 66005 66005 66005 66005 66005 66005 66005 66005 66005 66005 66005
5 16821 16821 16832 16832 16832 16821 16821 16821 16821 16832 16825.4
4 4539 4539 4539 4539 4506 4506 4506 4517 4517 4517 4522.5
3 1448 1448 1448 1415 1415 1415 1437 1437 1437 1426 1432.6

It is interesting to note that the SRC-6 continues the trend of speeding up by about

four times with each lower layer of the Quadrature Mirror Filter Bank. Also, the number

of clock cycles appears to become much more stable at higher layers. This is curious and

may be due to a phenomenon such as inaccuracies in time measurement. At lower layers,

there is less data to be measured, so these inaccuracies are conspicuous. However, there

is so much data to be processed at higher layers that the imprecision of each timing

measurement becomes veiled. The number of clock cycles executed with respect to

QMFB layer can be more clearly seen in Figure 11.

SRC Clock Cycles

1000

10000

100000

1000000

10000000

100000000

2 3 4 5 6 7 8 9 10 11

QMFB Layer

N
um

be
r o

f C
yc

le
s

SRC Clocks

Figure 11. SRC-6 Clock Cycles Executed

52

To attain the actual timing data in standard time units, it was necessary to divide

the number of clock cycles by the number of clock cycles that occur in one second, or the

processor speed. It is known that the MAP executes at approximately 100 MHZ or 100

million cycles per second. Thus, the number of seconds taken for each execution was

found by dividing the number of clock cycles by 100 million. This provided resolution

down to ten nanoseconds, which was more than adequate for the program being executed.

These times are also provided here in Table 6 and then shown in the graph, Figure 12, to

follow.

Table 6. SRC-6 Execution Time Data

Run 1 2 3 4 5 6 7 8 9 10 Average
Layer Time (s) (µs)

10 1.68E-01 1.68E-01 1.68E-01 1.68E-01 1.68E-01 1.68E-01 1.68E-01 1.68E-01 1.68E-01 1.68E-01 167786.5
9 4.20E-02 4.20E-02 4.20E-02 4.20E-02 4.20E-02 4.20E-02 4.20E-02 4.20E-02 4.20E-02 4.20E-02 41952.21
8 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 1.05E-02 10492.37
7 2.63E-03 2.63E-03 2.63E-03 2.63E-03 2.63E-03 2.63E-03 2.63E-03 2.63E-03 2.63E-03 2.63E-03 2626.77
6 6.60E-04 6.60E-04 6.60E-04 6.60E-04 6.60E-04 6.60E-04 6.60E-04 6.60E-04 6.60E-04 6.60E-04 660.05
5 1.68E-04 1.68E-04 1.68E-04 1.68E-04 1.68E-04 1.68E-04 1.68E-04 1.68E-04 1.68E-04 1.68E-04 168.254
4 4.54E-05 4.54E-05 4.54E-05 4.54E-05 4.51E-05 4.51E-05 4.51E-05 4.52E-05 4.52E-05 4.52E-05 45.225
3 1.45E-05 1.45E-05 1.45E-05 1.42E-05 1.42E-05 1.42E-05 1.44E-05 1.44E-05 1.44E-05 1.43E-05 14.326

SRC Execution Times

10

100

1000

10000

100000

1000000

2 3 4 5 6 7 8 9 10 11

QMFB Layer

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

SRC Times

Figure 12. SRC-6 Execution Times

53

C. COMPARISON

Having accumulated timing data from multiple sources on the preprocessing stage

of the detection to classification sequence, it was necessary to compare those data to

determine which of these platforms offers the best environment for the autonomous

classification of Low Probability of Intercept signals. The next chart summarizes the

timing data obtained from all three methods.

Table 7. Comparison of Average Times

MATLAB C SRC

Layer Avg (µ s) Avg (µ s) Avg (µ s)
10 317000 11240 167786.5
9 80280 2805 41952.21
8 20940 707.5 10492.37
7 5468.75 176.5625 2626.77
6 1767.5 45.15625 660.05
5 871.8 10.85938 168.254
4 631.4 2.880859 45.225
3 575 0.753174 14.326

Table 7 makes it very clear that the generic C language provided the fastest

implementation by far. The SRC-6 times are average, while the MATLAB times are

exceedingly slow, especially when approaching the lower layers. For Quadrature Mirror

Filter Bank layer five, which was the major focus of this research, the C language

implementation was able to execute the preprocessing procedure in only 10.9

microseconds. The SRC-6 took 168.2 microseconds, while MATLAB took an average of

871.8 microseconds to execute the code. This illustrates that at the most significant layer,

the standard C code is 15.4 times faster than MAP execution, and 80 times faster than the

MATLAB implementation. The following chart provides a good visual delineation of the

relationship of the execution times across platforms.

54

Comparison of Execution Times

0.1
1

10
100

1000
10000

100000
1000000

2 3 4 5 6 7 8 9 10 11

QMFB Layer

Ti
m

e
(µ

s) MATLAB
SRC-6
Standard C

Figure 13. Preprocessing Procedure Execution Times

Figure 13 shows the execution times for all three solutions on a logarithmic scale.

It can be seen here that at higher layers, all three implementations were achieving

comparable significant speed ups. However, at lower layers the MATLAB code shows

clearly that it reaches the peak of its performance potential and begins to lag even further

behind the other two solutions. The graph also suggests that at higher layers, the SRC-6

provides performance relatively closer to that of MATLAB, and though it lags the C

implementation at the same rate for all layers, the SRC-6 appears relatively closer to the

performance of the standard C language as MATLAB approaches its maximum

performance.

The relative lack in performance of the SRC-6 implementation when compared

against a standard C program was a disappointment. The initial reason that running this

algorithm on the SRC-6 was desired was because of the efficient use it makes of

processing hardware relative to a personal computer. Though it has a slower clock cycle,

it can usually make up the speed through efficiency when working with large data sets.

One reason for the performance lag may have been that the fifth layer, with only 1024

elements was not a large enough set of data to realize the advantage of reconfigurable

computing. However, the standard C implementation continued to outperform the SRC-6

55

at a consistent pace all the way up through layer ten, which has 202 or 1048576 elements.

Another sobering possibility is that the SRC-6 may have just been overwhelmed by the

sheer processing power of the Linux machine on which the C program was run. The Intel

Xeon processors in the Linux system operate at 2.8 GHz, which is 28 times faster than

the 100 MHz clock of the SRC-6. Furthermore, if the two processors are working

together constructively, they may be realizing an even more impressive speedup.

D. SUMMARY

This chapter analyzed the efficiency and performance in time of the three

preprocessing solutions described in the previous chapter. These were: a MATLAB

program, a standard C language program, and an SRC-6 based C program. First, this

chapter described the changes that needed to be made to the code for each one of these

implementations in order to obtain the timing information. Then, it showed what timing

data was extracted from several iterations of each program on Quadrature Mirror Filter

Bank layers three through ten. Finally, it compared all three timing sets to one another to

determine which handles the preprocessing procedure the fastest. For the data sets

generated in this work, it was undeniable that the standard C program provides the best

solution if time is the most important factor.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

VII. CONCLUSIONS

A. SUMMARY
The goals of this thesis were twofold. It was necessary to determine whether

ELINT algorithms for the detection and classification of Low Probability of Intercept

signals could be coded for execution on a reconfigurable computer. If it was indeed

possible, the second goal would become to ascertain what level of performance could be

achieved when compared to commodity computing solutions.

This thesis began by introducing the major concepts pertaining to the research. It

was necessary to provide an overview of the SRC-6. Understanding the hardware and

software available on this system allowed the reader to follow the developed

implementation much more easily. Next, the details of the specific project stages were

explained. This detailed the overall detection to classification sequence for LPI emitters

and included detection through established ELINT algorithms, preprocessing of the input

Quadrature Mirror Filter Bank time-frequency image, and finally classification of the

system by a neural network. After this, the preprocessing stage was narrowed in on

because that stage of the sequence was the focal one for this research. All of the aspects

of preprocessing were covered, which were: cropping, thresholding, binarization, and

then resizing into a feature vector.

Once the reader had obtained a working knowledge of the system and the

procedure to be performed, it would become possible to explain the implementations of

the algorithms described above that were created for this thesis. This explanation began

with a modification of a preprocessing procedure developed in MATLAB by Professor

Phillip Pace of the Naval Postgraduate School. Then it illustrated how this code was

translated for use in the conventional C language. Finally, the code was ported over to

the SRC-6 using its C language interface. After all of the code had been written and

debugged, the results from each implementation could be compared against one another

to determine how well the SRC-6 could perform against the more common solutions.

It was found that, indeed, ELINT algorithms for the process of autonomous

detection and classification of LPI signals can be coded onto a reconfigurable computer.

58

This is proven by the provided SRC-6 code which successfully performs the

preprocessing stage of this procedure. As for the performance achieved, the SRC-6

clearly provides a significant advantage over using the MATLAB solution. However, for

the data tested in this work, the SRC-6 still lags far behind the speed of the standard C

language implementation.

B. PROBLEMS ENCOUNTERED

One major problem that had to be dealt with was the timing resolution on the

MATLAB and standard C systems. There are apparently solutions available to both of

these problems on the internet. There are said to be system files that can be compiled and

placed in the MATLAB directory to improve timing granularity to the microsecond level.

Also, there is speculation about a Linux kernel patch which provides microsecond timing

resolution for C programs [9]. Neither of these solutions came to fruition as the kernel

patch would require root access to the lab Linux system to install and the MATLAB

program would not compile properly. Thus it was necessary to estimate high-resolution

timing through the use of loops and averaging.

Another somewhat disappointing problem was the relative lack in performance of

the SRC-6 implementation when compared against a standard C program. This may have

been due to using a data set that was too small to notice a significant adavantage, but this

is unlikely as the code was tested on a range of data set sizes. More than likely, the SRC-

6 simply does not yet possess the resources to compete with a system that has the

processing power of the Linux machine used in this research.

C. RECOMMENDATIONS FOR FUTURE WORK
Clearly, if these two problems could be solved, it would present an opportunity

for more precise data and possibly even more desirable timing results for the SRC-6. For

a more precise timing analysis, it may be helpful to find and install the aforementioned

system patches which obtain microsecond timing.

It may also be possible to improve the relative performance of the preprocessing

algorithm running on the SRC-6. The size of the data set used here was an expected

drawback to using the reconfigurable computer, perhaps an optimal image size could be

found at which point the SRC-6 implementation performs better than the generic C

59

language program. Furthermore, this solution did not seek to optimize the SRC-6

hardware. There are tools available such as programming macros in VHDL, this could

potentially build a more efficient solution than the one presented here.

Finally, this solution by itself does not take into account the inherent parallelism

of the reconfigurable computer. This thesis is part of a larger project that seeks to run all

three stages of the detection to classification sequence in parallel. This means that while

the preprocessing stage implemented here is working on one set of data, the detection

stage will be processing a new input, and the Neural Network classifier will be

processing the last output of the preprocessing stage, all simultaneously.

All programs and their outputs are given in the appendices to follow.

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

APPENDIX A. MATLAB CODE

A. MATLAB CODE

function preproc(layer, cthresh)

max_in=256; %Define the maximum input value
num_bins=32; %Define number of bins to use for the histogram
disp(strcat('QMFB layer: ',num2str(layer)));
disp(strcat('CDF Threshold: ',num2str(cthresh)));
len=2^layer; %Define row and column sizes of input matrix

disp(' ');
disp('Random input image:');
%Create a random input image to above specifications
img = floor(max_in*rand(len,len));
disp(img);

%Perform preprocessing procedure

%Create a histogram of the values in the input matrix
[bins,cent] = hist(img(:),num_bins);
%Show the histogram bar plot

% figure(1)
% hist(img(:),num_bins)
% title('Data Distribution')
% xlabel('Bin Ranges'); ylabel('Number of Elements in Range');

%Take the cumulative sum of the elements throughout the bins
cbins = cumsum(bins)/sum(bins(:));
%Find the point where this sum exceeds the CDF threshold
ind = find(cbins >= cthresh);
%The first point where the CDF threshold is exceeded
% becomes the system threshold
thresh = cent(min(ind));
disp(' ');
disp(strcat('Image Threshold: ',num2str(thresh)));
%Use the threshold to decide which elements of the input image
% become ones and which elements become zeros.
feat = im2bw(img/thresh,1);
disp(' ');
disp('Binarized Feature Matrix:');
disp(feat);

%End of preprocessing procedure

% Turn the result matrix into a feature vector by concatenating
% all of the columns to make it one-dimensional.
feat = feat(:)';
disp(' ');
disp('Feature Vector:');
disp(feat);

62

B. OUTPUT

>>preproc(5,0.9)

QMFB layer:5
CDF Threshold:0.9

Random input image:
Columns 1 through 23

243 113 209 72 112 155 12 188 216 180 187 84 156 121
248 153 168 197 124 185 168 187 247

59 238 169 120 127 4 20 175 94 124 108 122 18 231
91 242 54 80 254 102 221 105 210

155 119 87 16 54 4 164 88 158 29 246 152 80 115
12 73 154 163 95 91 145 102 81

124 107 74 253 164 48 48 42 187 170 18 41 155 205
193 227 154 252 136 73 251 129 150

228 216 87 149 81 150 216 39 49 93 141 212 44 212
229 26 168 128 46 222 202 43 33

195 134 136 108 245 14 44 48 231 35 74 244 158 42
73 16 46 242 128 160 39 134 65

116 51 186 131 186 94 43 108 145 145 219 152 62 100
64 59 162 211 108 61 213 164 205

 4 172 79 85 105 161 254 219 161 210 85 7 150 133
238 238 43 234 169 250 49 4 170

210 214 214 110 190 183 112 125 60 172 174 207 129 183
33 16 138 28 172 163 163 214 3

113 5 145 57 68 177 87 208 140 255 13 156 118 145
240 67 159 207 245 58 171 205 143

157 174 94 148 112 21 80 117 238 246 91 179 138 117
179 255 175 232 49 174 197 178 116

202 97 179 194 238 116 93 117 85 15 127 23 241 113
217 54 173 40 28 170 97 118 231

235 212 139 135 174 113 100 115 167 92 111 108 87 22
 53 127 224 31 144 34 113 21 72

188 128 113 163 54 90 151 105 100 140 143 96 102 113
116 74 3 195 248 5 123 210 16

45 181 177 53 214 39 30 230 160 67 157 42 78 93
20 172 79 184 6 67 155 49 122

63

103 109 159 97 160 172 9 1 178 152 29 213 105 77
217 245 199 166 222 29 45 114 251

239 77 203 200 34 178 117 76 101 12 229 214 73 218
143 196 78 193 6 17 0 3 236

234 48 244 174 53 186 222 12 105 146 193 115 100 194
81 170 237 169 132 218 202 79 143

105 49 133 118 155 122 239 177 167 179 202 244 128 243
95 33 173 226 49 46 131 224 166

228 174 225 145 161 142 67 166 214 246 208 37 184 142
222 24 19 69 183 8 54 213 197

14 77 44 203 94 30 41 251 95 192 171 222 78 3
95 3 18 107 64 187 26 85 27

90 138 250 15 147 115 223 141 108 189 51 196 28 152
18 73 3 54 239 137 40 225 0

208 38 69 154 115 183 60 102 152 110 69 113 113 208
51 209 58 9 35 70 104 122 138

2 178 64 12 11 228 165 50 144 162 160 158 119 250
12 252 132 20 133 94 104 143 1

35 96 224 106 6 69 247 160 183 205 137 243 3 56
145 4 117 217 229 3 13 157 115

51 220 188 78 80 65 170 187 130 21 15 163 169 180
31 209 180 87 241 227 241 169 50

50 218 34 223 3 221 222 96 198 242 22 63 185 133
133 159 149 119 85 221 38 157 201

154 151 3 3 98 59 2 2 125 234 69 90 72 238
29 143 130 233 111 65 98 175 158

69 127 228 196 174 206 35 107 47 154 104 48 67 182
197 62 19 58 120 145 79 130 3

50 230 50 248 23 232 209 192 179 64 121 125 181 58
96 210 49 220 38 40 43 182 228

3 210 76 253 9 59 110 203 251 223 232 104 200 115
210 67 97 168 34 152 229 131 194

191 165 169 201 156 61 227 235 206 131 152 118 252 44
11 192 70 228 136 84 82 155 232

64

Columns 24 through 32

 194 57 50 242 148 41 67 248 168
 97 232 172 208 225 80 47 124 190
 84 1 237 238 191 7 234 209 88
 129 150 88 79 97 91 31 164 226
 144 138 152 68 185 6 3 78 88
 196 167 157 137 41 203 94 169 15
 199 80 0 41 244 255 178 91 183
 123 59 251 54 50 28 227 240 245
 205 106 230 55 198 159 152 124 40
 120 76 177 166 157 33 40 23 106
 51 172 112 13 41 79 81 172 24
 148 240 179 58 7 34 59 131 115
 170 87 156 170 73 57 2 56 222
 173 144 76 79 248 101 101 185 100
 241 30 219 78 243 34 166 17 64
 197 43 28 184 58 61 21 246 90
 188 71 74 244 245 237 196 53 190
 221 142 24 33 174 100 248 41 166
 253 124 101 17 14 130 182 163 240
 129 243 85 32 153 23 200 0 213
 161 59 241 42 100 5 60 85 120
 202 122 214 233 55 40 50 70 161
 114 134 66 34 46 216 67 11 14
 134 202 10 157 19 225 182 24 138
 43 49 1 68 1 47 250 104 116
 33 232 147 56 201 253 163 209 220
 56 236 190 182 4 182 139 222 218
 27 3 206 140 224 223 217 5 120
 36 196 163 240 90 122 205 186 201
 116 242 64 84 184 126 171 217 167
 201 208 36 180 247 73 171 186 0
 71 236 166 241 39 15 210 244 33

Image Threshold:227.1094

65

Binarized Feature Matrix:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0

66

Feature Vector:

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

67

C. HISTOGRAM

The following figure presents a sample of the MATLAB histogram that is created

from the number of elements put into each bin range.

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50
Data Distribution

Bin Ranges

N
um

be
r o

f E
le

m
en

ts
 in

 R
an

ge

Figure 14. MATLAB Histogram

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

APPENDIX B. STANDARD C CODE

A. STANDARD C CODE

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

int main()
{
int i,j,k; //j and k are loop variables, i is a temporary
float sum; //Sum of elements in input matrix
float Cthresh=0.9; //The CDF threshold
float csum=0.0; //A cumulative sum of matrix elements
//Total number of elements required by cumulative sum
float cutoff;
unsigned int thresh=0; //Will be the threshold for binarization step
double layer=5; //Define QMFB layer to be used
int len; //length of input array dimensions

//Seed the Random Number Generator
srand((unsigned int) time ((time_t *) NULL));

/*Define input 32 by 32 image matrix of 8 bit values */
unsigned char image[32][32];
/*Define and initialize output feature vector of 32 32-bit values */
unsigned int feature[32]=
{0,0};
/*Define and initialize vector of 32 bins to histogram matrix values */
unsigned int bins[32]=
{0,0};

 len=pow(2,layer); //Calculate dimensions lengths

 printf("\nQMFB layer: %.0f\n",layer);
 printf("CDF Threshold: %.2f\n",Cthresh);

 printf("\nRandom number input matrix:\n\n");
 /*Assign random integers from 0 to 255 to the 32 by 32 input array
 *This will simulate potential input from the Quadrature Mirror
 Filter Bank Tree/
 for(j=0; j < len; j++)
 {
 for(k=0; k < len; k++)
 {
 image[j][k] = (int) (256.0*rand()/(RAND_MAX+1.0));
 //Divide each element by 8 to decide in which bin it belongs
 i = image[j][k] >> 3;
 //Increment count of elements in that bin
 bins[i] += 1;
 printf("%4d",image[j][k]); //Display array of input numbers
 }

70

 printf("\n");
 }

 printf("\nHistogram:\n\n");
 printf("Bin\tElements\tGraph\n");
 for(i=0; i<len; i++)
 {
 printf("%3d\t%4d\t\t",i,bins[i]);
 for(k=0; k < bins[i]; k++)
 printf("*");
 printf("\n");
 }

 i=0; //i will increment and track which bin is being added
 sum = len*len; //Sum of elements is product of array dimensions
 cutoff = sum*Cthresh;
 printf("\nThe cumulative sum cutoff is: %f\n", cutoff);
 /*Find threshold value by progressively dividing the cumulative sum
 of bins by total number of elements(1024)/
 /*Until cutoff value is reached, add number of elements in each
 *successive bin to the cumulative sum */
 while(!(thresh))
 {
 //Add number of elements in this bin to cumulative sum
 csum += bins[i];
 if(csum >= cutoff) // 0.8*1024(sum)=819
 //Calculate threshold based on where the cutoff point was reached
 thresh = 8*i + 4;
 i++;
 }
 printf("\nCutoff occurs at bin: %d\n ",i-1);
 printf("\nThe threshold is: %d\n",thresh);

 /*Print result of each element greater than threshold test as integer
 * 1 or 0
 *Next to each row of 32, print hexadecimal series of those 32 bits
 *Store each 32-bit row as one 32-bit integer value of vector feature
 *feature contains the variables to pass on to Neural Classification
 Network/
 printf("\nBinary Matrix\t\t\t\t\t\t\t Hexadecimal Representation\n");
 for(j=0; j < len; j++)
 {
 for(k=0; k < len; k++)
 {
 printf("%2i",image[j][k]>=thresh);
 //Store result of operation as appropriate bit in vector
 feature[j] += (image[j][k]>=thresh) << 31-k;
 }
 printf("\t%010x\n",feature[j]);
 }

 return 0;
}

71

B. OUTPUT

QMFB layer: 5
CDF Threshold: 0.90

Random number input matrix (32x32 output by row):

215 100 200 204 233 50 85 196 71 141 122 160 93 131 243 234 162 183
36 155 4 62 35 205 40 102 33 27 255 55 131 214

156 75 163 134 126 249 74 197 134 197 102 228 72 90 206 235 17 243
134 22 49 169 227 89 16 5 117 16 60 248 230 217

68 138 96 194 131 170 136 10 112 238 238 184 72 189 163 90 176 42
112 225 212 84 58 228 89 175 244 150 168 219 112 236

101 208 175 233 123 55 243 235 37 225 164 110 158 71 201 78 114 57
48 70 142 106 43 232 26 32 126 194 252 239 175 98

191 94 75 59 149 62 39 187 32 203 42 190 19 243 13 133 45 61
204 187 168 247 163 194 23 34 133 20 17 52 118 209

146 193 13 40 255 52 227 32 255 13 222 18 1 236 152 46 41 100
233 209 91 141 148 115 175 25 135 193 77 254 147 224

191 161 9 191 213 236 223 212 250 190 231 251 170 127 41 212 227 19
166 63 161 58 179 81 84 59 18 162 57 166 130 248

71 139 184 28 120 151 241 115 86 217 111 0 88 153 213 59 172 123
123 78 182 46 159 10 105 178 172 163 88 47 155 160

187 84 189 51 235 175 167 65 136 22 66 224 175 23 28 92 147 151
170 73 198 73 84 48 251 0 211 84 48 111 245 235

195 178 31 175 98 198 241 234 220 52 203 140 76 231 232 223 127 147
41 70 221 126 118 217 126 74 46 175 186 35 154 126

214 185 45 56 127 31 35 92 83 238 232 159 214 209 126 85 100 168
155 66 38 18 27 165 93 73 84 23 109 239 149 67

168 195 124 40 226 160 132 53 142 109 212 100 62 83 186 163 252 86
229 34 105 1 200 198 75 29 221 184 12 114 252 181

53 121 221 24 25 98 77 168 207 33 13 13 117 199 177 113 30 150
148 135 152 92 77 227 122 43 156 134 158 152 59 212

17 25 236 43 123 57 211 74 91 224 88 208 168 9 65 199 160 214
78 56 50 156 28 172 200 184 51 102 80 111 59 98

136 39 142 3 97 97 78 188 66 166 141 235 175 207 178 79 165 1
136 216 158 164 132 102 92 184 205 173 39 8 16 175

72

48 158 179 145 0 1 78 66 167 219 46 87 170 225 167 80 226 47
40 128 212 172 231 48 100 180 222 140 189 238 59 237

141 238 126 141 240 204 208 152 168 254 239 83 223 150 163 194 198 203
67 154 120 42 203 221 223 170 105 156 152 165 137 37

148 8 179 132 213 131 28 125 130 12 208 98 163 115 36 105 63 104
4 183 146 208 149 114 122 254 15 19 164 152 56 56

161 236 188 118 112 217 243 242 230 196 85 137 56 122 243 119 226 247
47 117 199 196 231 65 194 246 84 103 143 141 159 48

122 92 167 234 53 155 221 28 95 50 165 151 173 152 15 143 144 62
4 88 2 236 153 197 227 238 44 114 124 203 163 247

39 74 225 93 230 191 121 69 242 31 221 159 183 236 47 72 42 51
160 45 32 58 242 3 41 30 118 166 234 25 157 18

100 127 111 75 62 233 144 48 8 110 208 192 91 255 9 134 51 169
179 83 227 165 87 12 196 205 178 174 231 80 192 76

207 48 151 13 25 40 62 34 150 14 227 242 14 236 120 65 150 43
149 121 208 237 134 149 186 57 67 162 137 4 238 88

52 133 102 78 174 165 113 68 180 85 54 194 66 174 4 216 218 153
82 170 134 217 64 65 18 131 227 156 135 210 245 188

88 92 11 6 1 124 74 181 209 129 119 20 48 123 236 11 21 62
182 156 23 246 222 42 121 193 199 1 148 188 190 236

24 201 242 25 70 61 207 24 191 70 44 240 194 24 251 216 87 177
116 111 167 82 153 33 20 96 35 168 29 225 149 53

171 135 79 241 196 31 9 131 102 54 115 41 78 111 1 166 32 118
21 199 201 175 233 222 16 12 134 45 237 28 99 152

163 179 138 104 210 147 235 56 202 95 97 24 206 99 191 239 217 212
182 162 132 159 128 148 171 7 193 153 35 36 50 199

216 188 47 170 80 27 227 26 122 69 51 73 168 242 56 129 199 239
36 75 143 164 223 59 172 161 213 208 197 7 151 158

195 198 72 19 225 44 45 92 113 96 165 25 83 222 155 26 206 191
102 93 100 69 153 17 230 110 225 172 117 120 74 57

62 147 77 32 191 122 124 49 219 34 75 47 0 230 73 207 166 176
44 11 245 198 28 220 53 254 137 170 119 212 228 182

103 49 214 39 172 82 88 136 117 163 183 117 138 1 68 49 177 113
60 167 56 89 131 109 87 12 24 207 225 252 133 72

73

Histogram:

Bin Elements Graph
 0 24 ************************
 1 27 ***************************
 2 28 ****************************
 3 34 **********************************
 4 30 ******************************
 5 38 **************************************
 6 35 ***********************************
 7 37 *************************************
 8 27 ***************************
 9 37 *************************************
 10 30 ******************************
 11 29 *****************************
 12 30 ******************************
 13 19 *******************
 14 31 *******************************
 15 36 ************************************
 16 33 *********************************
 17 27 ***************************
 18 31 *******************************
 19 38 **************************************
 20 46 **
 21 44 **
 22 26 **************************
 23 31 *******************************
 24 38 **************************************
 25 27 ***************************
 26 34 **********************************
 27 32 ********************************
 28 37 *************************************
 29 43 ***
 30 26 **************************
 31 19 *******************

The cumulative sum cutoff is: 921.599976

Cutoff occurs at bin: 28

The threshold is: 228

74

Binary Matrix Hexadecimal Representation
00001000000000110000000000001000 0008030008
00000100000100010100000000000110 0004114006
00000000011000000000000100100001 0000600121
00010011000000000000000100001100 001300010c
00000000000001000000010000000000 0000040400
00001000100001000010000000000100 0008842004
00000100101100000000000000000001 0004b00001
00000010000000000000000000000000 0002000000
00001000000000000000000010000011 0008000083
00000011000001100000000000000000 0003060000
00000000011000000000000000000100 0000600004
00000000000000001010000000000010 000000a002
00000000000000000000000000000000 0000000000
00100000000000000000000000000000 0020000000
00000000000100000000000000000000 0000100000
00000000000000000000001000000101 0000000205
01001000011000000000000000000000 0048600000
00000000000000000000000001000000 0000000040
01000011100000100100001001000000 0043824240
00010000000000000000010001000001 0010000441
00001000100001000000001000001000 0008840208
00000100000001000000000000001000 0004040008
00000000000101000000010000000010 0000140402
00000000000000000000000000000010 0000000002
00000000000000100000010000000001 0000020401
00100000000100100000000000000000 0020120000
00010000000000000000001000001000 0010000208
00000010000000010000000000000000 0002010000
00000000000001000100000000000000 0000044000
00000000000000000000000010000000 0000000080
00000000000001000000100001000010 0000040842
00000000000000000000000000000100 0000000004

75

APPENDIX C. SRC-6 SPECIFIC C CODE

A. SRC-6 SPECIFIC C CODE

1. main.c
static char const cvsid[] = "$Id: main.c,v 2.1 2005/06/14 22:16:46 jls
Exp $";

#include <libmap.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

#define SZ 65536

/*Define function prototype for preprocessing subroutine */
void subr (uint64_t* , uint64_t*, int*, uint64_t*, int);

int main ()
{
 //j and k are loop variables, mapnum specifies which MAP to use
 int j,k, mapnum=0;
 //Define new type; 32 element array of 64-bit integers
 typedef uint64_t arr32 [32];
 //Define a pointer to allow an array of type arr32
 arr32 *image;
 uint64_t *feature; //Pointer to output feature vector
 uint64_t tm; //Variable to track execution time
 int thold; //Variable to display calculated threshold value

 //Seed the Random Number Generator
 srand((unsigned int) time ((time_t *) NULL));

 /*Allocate space in memory for a 32 by 32 matrix of 8 byte elements
 for the input image/
 image = (arr32*) Cache_Aligned_Allocate(32*32*8);
 //Allocate memory for a 32 element output feature vector
 feature = (uint64_t*) Cache_Aligned_Allocate(32*8);

 printf("\nInput Matrix:\n");
 /*Assign random integers from 0 to 255 to the 32 by 32 input array*/
 for(j=0; j < 32; j++)
 {
 for(k=0; k < 32; k++)
 {
 image[j][k] = (uint64_t) (256.0*rand()/(RAND_MAX+1.0));
 printf("%4d",image[j][k]); //Display array of input numbers
 }
 printf("\n");
 }

 map_allocate (1); //Assign a MAP processor to execute the subroutine

 /*Send input image, output vector, time tracker, and MAP specifier to

76

 the subroutine/
 subr(image, feature, &thold, &tm, mapnum);

 printf("\nThreshold is: %d\n",thold);

 /*Verify proper passing of feature vector from subroutine by printing
 to screen/
 printf("\nFeature Vector:\n");
 for(j=0; j < 32; j++)
 printf("%016llx \n",feature[j]);

 //Print subroutine execution time for timing analysis
 printf ("\n%lld clocks\n", tm);

 map_free (1); //Free the MAP processor

 return 0;

}

2. preproc.mc
/* $Id: ex01.mc,v 2.1 2005/06/14 22:16:46 jls Exp $ */

#include <libmap.h>

#define SZ 65536
/*Define the lengths of the rows and columns of the input matrix */
#define len 32

void subr (uint64_t Ain[], uint64_t Din[], int *threshold, uint64_t
*time, int mapnum) {
/*Define OBM Bank A to store values of the input image matrix*/
OBM_BANK_A_2D (A, uint64_t, len,len)
/*Define OBM Bank D to store values of the output feature vector*/
OBM_BANK_D (D, uint64_t, len)
uint64_t t0, t1; //variables to store timing data
int i,j,k,xs; //j and k are loop variables, i is a temporary
uint8_t thresh=0; //Will be the threshold for binarization step
float csum=0.0; //A cumulative sum of matrix elements
//Total number of elements required by cumulative sum
float cutoff;
float sum; //Sum of elements in input matrix
float Cthresh=0.9; //The CDF threshold
/*Define vector of 32 bins to histogram matrix values */
uint16_t bins[len];

 /*Stream input matrix values into OBM Bank A */
 DMA_CPU (CM2OBM, A, MAP_OBM_stripe(1,"A"), Ain, 1,
len*len*sizeof(uint64_t), 0);
 wait_DMA (0);

read_timer (&t0); /*Take first time reading for timing analysis*/

 /*Clear the bin array and Bank D so they can receive data */
 for(j=0; j < len; j++)

77

 {
 bins[j]=0;
 D[j]=0;
 }

 for(xs=0; xs < len*len; xs++)
 {
 //Perform loop flattening to reduce execution time
 cg_count_ceil_32(1, 0, xs==0, len-1, &k);
 cg_count_ceil_32(k==0, 0, xs==0, SZ, &j);
/*Divide each element in input matrix by 8 to decide in which bin it
 belongs/
 i = A[j][k] >> 3;
 //Increment count of elements in that bin
 bins[i] += 1;
 }

/*Find threshold value by progressively dividing the cumulative sum of
 bins by total number of elements(1024)/
//i will increment and track which bin is being added to cumulative sum
i=0;
//Sum of elements is product of array dimensions
sum = len*len;
cutoff = sum*Cthresh;
/*Find threshold value by progressively dividing the cumulative sum of
 bins by total number of elements(1024)/
/*Until cutoff value is reached, add number of elements in each
 *successive bin to the cumulative sum */
 while(!(thresh))
 {
//Add number of elements in this bin to cumulative sum
 csum += bins[i];
//Calculate threshold based on where the cutoff point was reached
 if(csum >= cutoff)
 thresh = 8*i + 4;
 i++;
 }

 /* Calculate result of each element greater than threshold test as
 *integer 1 or 0 */
 /* Store each 32-bit row as one sign extended 64-bit integer value of
 *Bank D */
 /* OBM Bank D contains the variables to pass on to the Neural
 Classification Network/
 for(xs=0; xs < len*len; xs++)
 {
 //Perform loop flattening to reduce execution time
 cg_count_ceil_32(1, 0, xs==0, len-1, &k);
 cg_count_ceil_32(k==0, 0, xs==0, SZ, &j);

 //Store result of comparison as appropriate bit in vector
 D[j] += (A[j][k]>=thresh) << 31-k;
 }

/*Take second time reading for timing analysis*/
 read_timer (&t1);

78

/*Subtract times to determine execution duration*/
 *time = t1 - t0;

/*Store the treshold value to be passed back for display*/
 *threshold = thresh;

/* Stream values from OBM Bank D to variable to be passed back to main
 *program */
 DMA_CPU (OBM2CM, D, MAP_OBM_stripe(1,"D"), Din, 1,
len*sizeof(uint64_t), 0);
 wait_DMA (0);
 }

3. Make File

User defines FILES, MAPFILES, and BIN here

FILES = main.c

MAPFILES = preproc.mc

BIN = preproc

Multi chip info provided here
(Leave commented out if not used)

#PRIMARY = <primary file 1> <primary file 2>

#SECONDARY = <secondary file 1> <secondary file 2>

#CHIP2 = <file to compile to user chip 2>

#-----------------------------------
User defined directory of code routines
that are to be inlined
#------------------------------------

#INLINEDIR =

User defined macros info supplied here

(Leave commented out if not used)

#MACROS = <directory-name/macro-file>

#MY_BLKBOX = <directory-name/blackbox-file>
#MY_NGO_DIR = <directory-name>
#MY_INFO = <directory-name/info-file>

Floating point macros selection

#FPMODE = SRC_IEEE_V1 # Default SRC version IEEE

79

#FPMODE = SRC_IEEE_V2 # Size reduced SRC IEEE with
 # special rounding mode

User supplied MCC and MFTN flags

MY_MCCFLAGS = -log
MY_MFTNFLAGS = -log

User supplied flags for C & Fortran compilers

CC = icc # icc for Intel cc for Gnu
FC = ifort # ifort for Intel f77 for Gnu
#LD = ifort # for Fortran or C/Fortran mixed
LD = icc # for C codes

MY_CFLAGS =
MY_FFLAGS =
MY_LDFLAGS = # Flags to include libs if needed

VCS simulation settings
(Set as needed, otherwise just leave commented out)

#USEVCS = yes # YES or yes to use vcs instead of vcsi
#VCSDUMP = yes # YES or yes to generate vcd+ trace dump

No modifications are required below

MAKIN ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make
include $(MAKIN)

B. OUTPUT

Input Matrix:
215 100 200 204 233 50 85 196 71 141 122 160 93 131 243 234 162 183
36 155 4 62 35 205 40 102 33 27 255 55 131 214

156 75 163 134 126 249 74 197 134 197 102 228 72 90 206 235 17 243
134 22 49 169 227 89 16 5 117 16 60 248 230 217

68 138 96 194 131 170 136 10 112 238 238 184 72 189 163 90 176 42
112 225 212 84 58 228 89 175 244 150 168 219 112 236

101 208 175 233 123 55 243 235 37 225 164 110 158 71 201 78 114 57
48 70 142 106 43 232 26 32 126 194 252 239 175 98

191 94 75 59 149 62 39 187 32 203 42 190 19 243 13 133 45 61
204 187 168 247 163 194 23 34 133 20 17 52 118 209

146 193 13 40 255 52 227 32 255 13 222 18 1 236 152 46 41 100
233 209 91 141 148 115 175 25 135 193 77 254 147 224

80

191 161 9 191 213 236 223 212 250 190 231 251 170 127 41 212 227 19
166 63 161 58 179 81 84 59 18 162 57 166 130 248

71 139 184 28 120 151 241 115 86 217 111 0 88 153 213 59 172 123
123 78 182 46 159 10 105 178 172 163 88 47 155 160

187 84 189 51 235 175 167 65 136 22 66 224 175 23 28 92 147 151
170 73 198 73 84 48 251 0 211 84 48 111 245 235

195 178 31 175 98 198 241 234 220 52 203 140 76 231 232 223 127 147
41 70 221 126 118 217 126 74 46 175 186 35 154 126

214 185 45 56 127 31 35 92 83 238 232 159 214 209 126 85 100 168
155 66 38 18 27 165 93 73 84 23 109 239 149 67

168 195 124 40 226 160 132 53 142 109 212 100 62 83 186 163 252 86
229 34 105 1 200 198 75 29 221 184 12 114 252 181

53 121 221 24 25 98 77 168 207 33 13 13 117 199 177 113 30 150
148 135 152 92 77 227 122 43 156 134 158 152 59 212

17 25 236 43 123 57 211 74 91 224 88 208 168 9 65 199 160 214
78 56 50 156 28 172 200 184 51 102 80 111 59 98

136 39 142 3 97 97 78 188 66 166 141 235 175 207 178 79 165 1
136 216 158 164 132 102 92 184 205 173 39 8 16 175

48 158 179 145 0 1 78 66 167 219 46 87 170 225 167 80 226 47
40 128 212 172 231 48 100 180 222 140 189 238 59 237

141 238 126 141 240 204 208 152 168 254 239 83 223 150 163 194 198 203
67 154 120 42 203 221 223 170 105 156 152 165 137 37

148 8 179 132 213 131 28 125 130 12 208 98 163 115 36 105 63 104
4 183 146 208 149 114 122 254 15 19 164 152 56 56

161 236 188 118 112 217 243 242 230 196 85 137 56 122 243 119 226 247
47 117 199 196 231 65 194 246 84 103 143 141 159 48

122 92 167 234 53 155 221 28 95 50 165 151 173 152 15 143 144 62
4 88 2 236 153 197 227 238 44 114 124 203 163 247

39 74 225 93 230 191 121 69 242 31 221 159 183 236 47 72 42 51
160 45 32 58 242 3 41 30 118 166 234 25 157 18

100 127 111 75 62 233 144 48 8 110 208 192 91 255 9 134 51 169
179 83 227 165 87 12 196 205 178 174 231 80 192 76

207 48 151 13 25 40 62 34 150 14 227 242 14 236 120 65 150 43
149 121 208 237 134 149 186 57 67 162 137 4 238 88

52 133 102 78 174 165 113 68 180 85 54 194 66 174 4 216 218 153
82 170 134 217 64 65 18 131 227 156 135 210 245 188

88 92 11 6 1 124 74 181 209 129 119 20 48 123 236 11 21 62
182 156 23 246 222 42 121 193 199 1 148 188 190 236

81

24 201 242 25 70 61 207 24 191 70 44 240 194 24 251 216 87 177
116 111 167 82 153 33 20 96 35 168 29 225 149 53

171 135 79 241 196 31 9 131 102 54 115 41 78 111 1 166 32 118
21 199 201 175 233 222 16 12 134 45 237 28 99 152

163 179 138 104 210 147 235 56 202 95 97 24 206 99 191 239 217 212
182 162 132 159 128 148 171 7 193 153 35 36 50 199

216 188 47 170 80 27 227 26 122 69 51 73 168 242 56 129 199 239
36 75 143 164 223 59 172 161 213 208 197 7 151 158

195 198 72 19 225 44 45 92 113 96 165 25 83 222 155 26 206 191
102 93 100 69 153 17 230 110 225 172 117 120 74 57

62 147 77 32 191 122 124 49 219 34 75 47 0 230 73 207 166 176
44 11 245 198 28 220 53 254 137 170 119 212 228 182

103 49 214 39 172 82 88 136 117 163 183 117 138 1 68 49 177 113
60 167 56 89 131 109 87 12 24 207 225 252 133 72

Threshold is: 228

Feature Vector (in Hexadecimal):
0000000008030008
0000000004114006
0000000000600121
000000001300010c
0000000000040400
0000000008842004
0000000004b00001
0000000002000000
0000000008000083
0000000003060000
0000000000600004
000000000000a002
0000000000000000
0000000020000000
0000000000100000
0000000000000205
0000000048600000
0000000000000040
0000000043824240
0000000010000441
0000000008840208
0000000004040008
0000000000140402
0000000000000002
0000000000020401
0000000020120000
0000000010000208
0000000002010000
0000000000044000
0000000000000080
0000000000040842
0000000000000004

82

Time:
16821 clocks

83

LIST OF REFERENCES

[1] David Caliga and David Peter Barker, “Delivering Acceleration: The Potential for
Increased HPC Application Performance Using Reconfigurable Logic,” ACM 1-
58113-293-X/01/0011, November 2001.

[2] Information, Signal, Images et ViSion. “Time-Frequncy Toolbox – Tutorial.” 26
October 2005, http://gdr-isis.org/tftb/tutorial/node7.html. Last Accessed: 18 May
2005.

[3] SRC Computers, Inc., “SRC Carte Training Course,” presented by David Caliga
at a private training session, Colorado Springs, Colorado, November 2005.

[4] “SRC-6 MAP© Hardware Guide,” SRC-005-05, SRC Computers, Inc., Colorado
Springs, Colorado, May 26, 2004.

[5] “SRC-6 C Programming Environment V2.1 Guide,” SRC-007-16, SRC
Computers Inc., Colorado Springs, Colorado, August 31, 2005.

[6] P. E. Pace, Detecting and Classifying Low Probability Of Intercept Radar, Artech
House Inc., Boston, Massachusetts, 2004.

[7] Sony Akkarakaran and P. P. Vaidyanathan, “Bifrequency and bispectrum maps: a
new look at multirate systems with stochastic inputs,” IEEE Transactions On
Signal Processing, Vol. 48, No. 3, pp. 723-736, March 2000.

[8] E. Zilberman and P. E. Pace, “Autonomous Cropping and Feature Extraction
Using Time-Frequency Marginal Distributions for LPI Radar Classification,”
Eighth IASTED International Conference on Signal and Image Processing,
Honolulu, Hawaii, August 14 - 16, 2006.

[9] D. Moloney. The Code Project. “C++/Mex wrapper adds microsecond resolution
timer to Matlab under WinXP.” 25 August, 2005.
http://www.codeproject.com/cpp/Matlab_Microsecond_Timer.asp. Last
Accessed: 19 June 2006.

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Alan Hunsberger
National Security Agency
Ft. Meade, Maryland

5. Douglas J. Fouts

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Herschel H. Loomis
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

7. Phillip E. Pace
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

8. David Caliga
SRC Computers, Inc.
Colorado Springs, Colorado

9. Jon Huppenthal
SRC Computers, Inc.
Colorado Springs, Colorado

