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ABSTRACT 

 Accurate navigation is crucial to successfully deploying autonomous vehicles but 

is often limited by GPS reliance. The purpose of this thesis was to develop an 

image-based navigation solution that does not require GPS. This work builds on an 

ongoing research project, which is to develop a mobile robot that can navigate anywhere 

on the Naval Postgraduate School campus, inside and outside of buildings. This work 

focused on indoor navigation using image classification, and images were classified using 

a convolutional neural network (CNN). Transfer learning was used to reduce CNN 

training time and increase learning efficiency. The trained CNN was integrated into a 

waypoint loop algorithm that ran autonomously on the robot, stopping when it had 

correctly identified its desired location. Tests of the CNN classification showed a high 

success rate, but that it was also susceptible to variations in light and similar types of 

images. Increasing the data set will improve the classification results and allow for use in 

a variety of applications. This system will also benefit from improved indoor localization 

techniques. 
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I. INTRODUCTION 

A. BACKGROUND 

The improvement of artificial intelligence (AI) and machine learning has resulted 

in their use across a variety of applications. Using neural networks and decision trees, 

programmers can feed these AI systems data and use the resulting trained network for 

probabilistic predictions and classifications. These systems are being used to improve 

commute times, determine consumer trends for more effective marketing, and auto-fill 

email responses to help us work more efficiently [1]. AI is also being used to improve 

autonomous decision-making, to include autonomous navigation.  

There is a significant focus on autonomous navigation in both military and civilian 

applications. A critical part of the Navy “Design for Maritime Superiority” involves “high 

velocity outcomes” that include awarding contracts for autonomous surface vessels and 

unmanned aircraft [2]. Increased joint service operations will also require more 

autonomous ground vessels. These assets must be able to deploy in a variety of 

environments around the world, which can complicate the navigation and localization 

solutions required. Many of the current solutions rely on GPS data for localization and 

navigation. While GPS is extremely useful, it is limited by requiring a line of sight between 

the satellites and navigation system. This requirement excludes navigation systems that are 

required to operate indoors, underground, or in other areas of limited GPS connectivity.  

B. PURPOSE AND GOAL OF THIS THESIS 

The purpose of this thesis is to develop an autonomous navigation solution based 

on image data and classification. This will alleviate the dependence on GPS for navigation 

and provide a solution for indoor and limited-connectivity environments. Indoor 

environments provide a unique challenge because there is little variance in the visual 

features. Most buildings consist of rooms, doors, and hallways, which limits the ability of 

the AI to distinguish unique characteristics. Training a robust system to identify indoor 

locations will ensure the program can expand to other environments with more 

characteristics.  
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Another use for this research is improving GPS-based navigation systems. GPS-

based localization has an error radius of approximately three to ten meters, depending on 

the quality of the GPS receiver [3]. If a robot is required to drive autonomously in a space 

that has a smaller radius than the GPS error tolerance, it can potentially get stuck or 

confused with inaccurate localization. Adding an image classification component that 

updates the navigation solution will allow increased localization certainty and decrease the 

error radius. Also, if the environment has ambiguities in the map, an image component 

could allow ambiguity resolution. Consequently, navigation solutions will become more 

efficient and useful.   

The first goal of this research is to develop a method for image classification that 

allows a robot to navigate based on imagery in a variety of environments. The method must 

be platform-agnostic, so it can ultimately be applied to other projects and applications. The 

primary approach to image classification currently used is training neural networks to 

identify different objects. This research leverages that approach using a pre-trained neural 

network and a method known as transfer learning to limit the processing and data required 

to create a useful tool.  

The second goal is to program a robot to successfully navigate autonomously to a 

goal location and identify the location on imagery alone. This approach combines the 

image classification method from the first goal with object avoidance and an autonomous 

search method. The navigation solution allows a robot to autonomously search an area, 

stopping when it identifies its predetermined goal location based on vision. 

C. PREVIOUS WORK 

This thesis research is part of an ongoing research project in the Control Systems 

and Robotics Lab in the Department of Electrical and Computer Engineering at the Naval 

Postgraduate School (NPS). The goal of this program is to develop a robot that can drive 

autonomously both outdoors and indoors across the NPS campus. This program started by 

investigating solutions for dynamic object avoidance. In [4], Calvin Hargadine used an 

artificial potential field approach in his object avoidance algorithm that is used in this 

research. Essentially, the robot is artificially repelled from objects it encounters, and drawn 



3 

towards its goal in the form of waypoints [4]. Calvin Hargadine’s thesis work also 

integrated the hardware and software for the robotic platform used in this research. 

Matthew Audette followed this work by creating a route-planning algorithm that accounts 

for known objects and relies on satellite imagery [5]. One of the primary limitations of the 

route-planning algorithm was the ability to identify traversable terrain. In [6], Caliph 

Lebrun developed an algorithm that used vision and machine learning to distinguish 

navigable terrain from non-traversable. Also, Alexander Miyakawa used multiple LIDAR 

scanners to build a three-dimensional map that classifies low-level obstacles by terrain 

gradient [7]. The image classification approach used in this research is designed to be 

integrated into the route-mapping planner that was created by Audette. Adding a terrain 

avoidance component to this image classification research could create a robust 

autonomous navigation solution, providing there is sufficient available computing power. 

Integrating the previous work with this research as well as research to follow will allow an 

autonomous ground vehicle (AGV) to successfully navigate the NPS campus.  

A widely used solution in AI is the convolutional neural network (CNN). Using a 

pre-trained CNN for image and object classification has been used in an array of 

applications. Many research projects at NPS have used CNNs for still images, such as 

satellite imagery or logos to test the ability of pre-trained networks to decrease processing 

time and data set size [8], [9]. This research leverages the lessons learned to use a pre-

trained neural network on live images and assess the results.  

D. THESIS ORGANIZATION 

In Chapter II, we present the background and methods used in creating the image 

classification algorithm for this research. The methods investigated and utilized to generate 

autonomous movement for the robot are discussed in Chapter III. In Chapter IV, we 

provide a discussion of the results of experiments carried out in support of this research. 

Finally, a summary of research and a brief discussion of possible future work are presented 

in Chapter V. 
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II. IMAGE CLASSIFICATION PROCESS 

A primary goal of this research is to develop a method for image classification that 

allows a robot to navigate based on imagery acquired from an installed video camera. In 

this chapter an overview of machine learning and its related concepts is presented, which 

is useful for understanding the research work described later in this thesis. 

A variety of approaches are used to classify images. The basics of image 

processing, computer vision, and machine learning are nicely outlined in “A Guide to 

Convolutional Neural Networks for Computer Vision” by Khan et al. in [10]. They briefly 

discuss older methods of traditional image processing in which the goal is to isolate basic 

image characteristics such as edges or color. Today this is considered a way of pre-

processing an image before it can be classified by more robust and sophisticated methods. 

Of greater interest to the authors is classifying objects in both static images and live video, 

which is considered a more complex form of image processing and is most commonly 

performed using machine learning. Machine learning allows an algorithm to learn from 

data without being programmed at each individual level. One of the machine learning 

approaches available is neural networks, of which there are different types. A discussion 

on neural networks, as well as the methodology for using these neural networks in the 

image classification problem will be provided in this chapter. 

A. NEURAL NETWORKS 

One of the simplest architectures for neural networks discussed by Khan et al. is 

the Multi-Layer Perception (MLP) network [10]. MLP networks are essentially a “black 

box” or something that receives inputs and then generates a series of outputs. The input 

layer receives inputs, then a series of hidden layers conduct the processing required. Lastly, 

the data is fed to an output layer that makes predictions. Each hidden layer has different 

weights, which prioritizes the process for the desired output. In Figure 1, an illustration of 

a small or “shallow” neural network [10] is shown. As indicated in the book, the difference 

between shallow neural networks and deep neural networks is the number of layers within 
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the network. Neural networks with more layers create structures that allow greater 

simplicity, scalability, and domain transfer or transferability of applications. 

 
Figure 1. Illustration of a Small Neural Network. Source: [10]. 

When a neural network undergoes the training process, it uses an input of training 

data and updates the layer weights through multiple iterations. As explained by Khan et 

al., the weights within each layer are adjusted during each iteration of the training process 

until a desired level of performance is achieved, which is determined by minimizing a loss 

function [10]. The neural network is then tested or validated by submitting new data that 

was not included in the training data. Lastly, the output is the prediction based on the 

weights developed during the training process. One important consideration the authors 

stress is the step size used in the training process, especially for deep neural networks. The 

step size is the increment used to adjust the weights during each iteration of the training 

process. Consequently, it affects how long the training process takes to converge as well 

as how effectively the weights are updated. If the step size is too small, the training process 

will take an extremely long time, and there will not be significant gain in training 

effectiveness. However, if the step size is too big, the training process will not be able to 

effectively update all the weights in the layers, and the output will not be as successful. 
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B. CONVOLUTIONAL NEURAL NETWORKS 

The basic components of neural networks discussed in the previous section also 

apply to convolutional neural networks. Unlike neural networks, convolutional neural 

networks (CNN) have a convolutional filter that combines inputs with learned weights 

within each layer to generate an output layer [10]. A convolutional neural network was 

used for this research because it is capable of processing complex images and videos. Basic 

neural networks cannot process images and videos with as much success. Khan et al. 

discuss each of the CNN layers which typically consist of four components: convolutional 

filters or “kernels,” nonlinear activation functions, pooling layers, and fully-connected 

layers [10]. There is also a fifth component only used in the training process, the loss 

function. 

1. Convolution Filter 

As explained in [10], the convolution filter is a grid of discrete numbers that 

represent the weights learned during the network training process. This grid is multiplied 

by a section of the input and summed to generate a single output number. This filter slides 

and repeats the process until all the input has been processed, and an output grid is 

generated. This concept is demonstrated in Figure 2.  
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Figure 2. Convolution Process for 2x2 Filter. Source: [10]. 

Continuing the authors’ discussion, the convolution process is essential because it 

reduces dimensions, called “sub-sampling,” and increases invariance for changes in scale 

and pose of objects in the images [10]. The convolution filter tends to be significantly 

smaller than the input. This reduces the number of learnable parameters and ensures unique 

patterns stay related to their local area. There can be multiple convolution filters in each 

layer. 

2. Nonlinear Activation Function 

The activation function or “detection layer,” as Goodfellow describes in [11], 

follows the weighted convolution layers and decreases the input to a small range of 

numbers. Khan et al. explains the function for this layer must be nonlinear because it allows 

the neural network to separate and learn from nonlinear data, as well as allow for more 

complex data analysis [10]. In a comparison to a biological neural network, the activation 

function is equivalently a “switch” for the neuron to fire or not. 
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3. Pooling and Fully Connected Layers 

Following the nonlinear activation function is the pooling layer. This layer 

calculates the average or maximum value of the input, depending on its settings, which 

further down-samples the input [10]. This process creates further invariance to small 

translations in the data such as rotation or aspect ratio [11]. The pattern of convolution 

filters, activation function, and pooling layer repeats throughout the CNN architecture. In 

simple layer terminology, shown on the right in Figure 3, the convolution layer is described 

as a single layer followed by the detector layer. Complex layer terminology considers the 

combination of the pooling stage, detector stage, and convolution stage the convolution 

layer, as shown on the left in Figure 3. This research uses the simple layer terminology 

when describing CNNs.  

 
Figure 3. Typical Convolutional Neural Network Layer Components. 

Source: [11]. 
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4. Loss Function 

A variety of loss functions are used depending on the purpose of the CNN. The loss 

function layer is used only during the training process and estimates how well the CNN is 

making predictions based on the classification output [10]. The authors explain that the 

loss function determines the difference between the model prediction and the true output. 

The function used for multi-class classification is the soft-max loss function, often simply 

referred to as soft-max. Because the focus of this research is image classification, the CNNs 

discussed will have a soft-max loss function. 

C. DETERMINING WHICH CONVOLUTIONAL NEURAL NETWORK TO 
USE 

Programmers and computer vision experts began increasing the widespread use of 

CNNs after the success of AlexNet in 2012 [12]. Consequently, a variety of open-source 

CNN architectures are available for research and experimentation. For this research, 

possible candidates were restricted by availability and ease of integration. AlexNet and 

GoogLeNet were chosen for testing, partially due to their easy integration into tools in 

MATLAB. Both are convolutional neural networks but have different architectures. In this 

section the differences between the networks and why they are optimal testing candidates 

for this thesis work are discussed. 

1. AlexNet Background 

AlexNet was created to perform in the ImageNet Large-Scale Visual Recognition 

Challenge (ILSVRC) 2012, as detailed in [13]. Significantly, it was the first time a CNN 

performed better than traditional neural networks in image classification [12]. For the 

competition, AlexNet classified 1.2 million images into 1000 classes during training, 

validated against 50,000 images, and tested on 150,000 images [13]. The top-5 error rate, 

which is the percentage of classifications that do not have the correct label in the top-5 

predictions, was 15.3% for the competition. The architecture has five convolutional layers 

and three fully-connected layers as its basis [13]. The unique features in its architecture are 

its nonlinearity function and overlapping pooling. The nonlinearity function used was the 
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Rectified Linear or ReLU function, which is favored by CNN creators due to its quick 

computation that increases training efficiency and is shown in Figure 4.  

 
Figure 4. Graphical Representation of ReLU Nonlinear Function. 

Source: [10]. 

AlexNet’s use of ReLU allows for faster training times due to decreased 

computation [13]. The max pooling layers are overlapped because doing so reduces error 

and makes it slightly more difficult to overfit the data. The full architecture is shown in 

Figure 5. Of note, the image is cropped in the original academic paper, and a full image is 

unavailable. 

 
Figure 5. AlexNet Architecture. Source: [13]. 
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2. GoogLeNet Background 

GoogLeNet was created for ILSVRC 2014, focusing on a high-accuracy, low-

computation solution that could be used in the real world, rather than be restricted to 

research and academia [14]. The contest parameters were like those in the 2012 challenge, 

changing only the number of test images to 100,000. GoogLeNet significantly 

outperformed the competition and previous winners with a top-5 error rate of 6.67%. A 

comparison of GoogLeNet to the previous top-performers is shown in Figure 6. Of note, 

AlexNet’s performance is the second SuperVision entry shown in Figure 6. 

 
Figure 6. Classification Comparison, 2012–2014. Source: [14]. 

GoogLeNet architecture is significantly different from most CNNs because of its 

inclusion of the “Inception Module” [14]. Instead of guessing what size and type of 

convolutions best fit the training, the inception module iterates through all options and 

determines the optimal configuration. Two versions of this module are shown in Figure 7. 

The top module is the simple version, and the bottom module contains dimensionality 

reduction. 
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Figure 7. GoogLeNet Inception Module Illustration. Adapted 

from [14]. 

The inception module combines with the traditional CNN layers of convolution, 

max pooling, average pooling, and fully connected. GoogLeNet also used ReLU for the 

nonlinearity function, and a soft-max layer is used during the training process [14]. The 

resulting CNN uses 12 times fewer parameters than AlexNet but significantly increases 

accuracy [15].  

3. Transfer Learning 

One of the benefits to both AlexNet and GoogLeNet is the ability to use transfer 

learning. Transfer learning is a machine learning approach where a pre-trained neural 

network is trained with new data for specific categories but maintains its general 
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classification abilities. The benefit of this approach is that it eliminates the requirement to 

train a network from scratch to classify for one specific problem. The resulting neural 

networks are more robust and useful for a variety of tasks. Furthermore, if the parameters 

of the problem or the data changes, the network can be easily retrained to assimilate the 

updated data and generate classifications accordingly.  

To conduct the transfer learning, MATLAB has built-in commands that enable the 

user to load the net and rewrite the desired layers for the transfer process. This process 

involves loading the training data using imageDatastore, which stores the images and 

labels them based on their subfolder names. The labels are also used later in the 

classification process. The loaded pre-trained neural net is then converted to a layerGraph, 

allowing the individual net layers to be viewed and manipulated. Using the command 

findLayersToReplace, the MATLAB tool analyzes the net layers and determines which 

ones can be retrained. The training layers then have the weights replaced so they can learn 

from the new data. After the new layers have been updated, the weights are frozen to avoid 

overfitting the data. Once the layers are ready, the MATLAB tool trainNetwork is 

implemented to train the adjusted layers with the new data set. After the network is trained, 

a selection of validation images is used to check the accuracy of the classification training. 

Because MATLAB has these tools available for both AlexNet and GoogLeNet, they are 

both excellent candidates for testing. 

D. TESTING CONSTRAINTS 

AlexNet and GoogLeNet were chosen for initial testing because they were open-

source and easily integrated into MATLAB tools. This allowed for quick, small-scale 

proof-of-concept testing because there was not a large programming barrier for use. They 

also had proved to be highly adapted to the image classification problem. However, 

multiple research constraints needed to be addressed prior to their full implementation.  

First, the scope of the research needed to be assessed compared to CNN capability. 

Both AlexNet and GoogLeNet are capable of classifying thousands of images; however, 

this research only required a few different classification categories. While a simpler CNN 

could have been used, one of the goals for this research was to produce a solution that can 
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be integrated into other projects. For this reason, maintaining the ability to classify many 

images and categories was desirable.  

The CNN also needed to be capable of running on live images. Most CNNs are 

trained and tested on a database of static images. This research had to determine if AlexNet 

and GoogLeNet were computationally fast enough to classify images from a live video 

stream and output the result. Because the platform is a moving robot, the results needed to 

be available and processed at a speed that could be used to inform real-time navigation.  

The final constraint was processing power limitations. This research was conducted 

on a SlimPRO SP675P Mini PC. The computer ran an Ubuntu 14.04 Long Term Support 

operating system. From the vendor’s website, the computer is small (14.6 x 25.4 x 4.2 cm), 

so it is widely used in robotic applications [16]. The specifications also include a processor 

that is a 3rd generation Intel Core Central Processing Unit (CPU). Given the age of the 

processor, testing needed to determine if the SlimPRO could handle the CNN processing 

as well as other navigation algorithms and sensor load.  

E. SUMMARY 

In this chapter we presented a brief overview of CNNs, which are a popular type of 

machine learning method. AlexNet and GoogLeNet—two well-known variations of CNNs 

for image classification—were introduced in this chapter. These two neural networks were 

selected for this research because of their good performance and are easily integrated into 

MATLAB. This research work also uses a machine learning method known as transfer 

learning. It allows for the customization of a general neural network, such as AlexNet or 

GoogLeNet for example, into a specialized neural network application with a minimum 

amount of training required. This allows for ease of testing, which makes it the most 

efficient approach to the image classification problem.  
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III. ROBOT AUTONOMOUS NAVIGATION 

A variety of methods are available for autonomous navigation. The greatest 

considerations for choosing a method are platform, ease of use, and desired goal. Many of 

the available methods require a specific start and end point, calculating a path between the 

two. For the purpose of this research, only methods that could be used in a search capacity 

were explored.  

A. ROBOTIC PLATFORM 

The robot used was an Omron Adept MobileRobots Pioneer 3-DX (P3-DX) 

platform, which is different than the Pioneer 3-AT (P3-AT) used in previous thesis work. 

This platform varies from those used in previous thesis work because it is suited only for 

indoor terrain. The primary difference in platforms is the wheels. The P3-DX has two side 

wheels and a third caster wheel in the front whereas the all-terrain P3-AT has four wheels 

total, and a more rugged tire tread. The P3-DX is driven by a differential steering system 

with one encoder per wheel, resulting in 92 counts/degree accuracy [17]. The P3-DX has 

an extensive sensor suite and programming capabilities. The robot bumpers and sonar 

arrays were used in this research, as well as an additional LIDAR sensor and web camera 

that were connected and mounted separately. The primary limitation of this platform is that 

it is no longer manufactured, so software support is limited. In Figure 8 the base version of 

the P3-DX is shown, and in Figure 9 the P3-DX used for this research is shown.  This 

extensively modified robot has an onboard computer with Linux Ubuntu 18.04 in addition 

to the LIDAR and webcam mentioned previously. 
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Figure 8. Base Pioneer 3-DX. Source: [18]. 

 
Figure 9. Pioneer 3-DX Used in Research 
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B. ARTIFICIAL POTENTIAL FIELDS 

Artificial Potential Fields (APF) are used in a variety of autonomous navigation 

applications because of their obstacle avoidance capabilities. Prior thesis work done by 

Hargadine used this method for dynamic obstacle avoidance in an unknown environment 

[4]. The simplest way to model APF is by picturing a neutral plane. A goal is added to the 

plane as a negative charge. Obstacles are represented by positive charges. Lastly, the robot 

is represented by a positive charge. The negative charge of the goal creates an attractive 

force on the robot whereas the positive charges of the obstacles create a repulsive force. 

The vector sum of the attractive and repulsive forces gives the robot trajectory. An example 

of this effect is shown in Figure 10. Jean-Claude Latombe describes the implementation of 

this method in Robot Motion Planning [19]. 

Figure 10. Attractive and Repulsive Potential Field. Source: [20]. 
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APF are used in two applications for this research. The first is in object avoidance, 

using the same algorithm developed by Hargadine in [4]. The second is a wandering 

algorithm. The wandering algorithm creates an autonomous navigation solution that is 

applicable for searching for a target location. Using the methods described by Latombe in 

[19], the MATLAB algorithm calculates a repulsive force based on feedback from the P3-

DX sonar returns. A forward force is also generated to move the robot forward. The 

repulsive force combines with the forward force for a total force. This total force is filtered 

to smooth the results, and the smoothed force combines with a translational gain for 

forward velocity and rotational gain for rotational velocity. These methods are both easily 

programmed and tested, making them ideal candidates for this research. 

C. ROBOT OPERATING SYSTEM (ROS) 

ROS is a Linux-based open-source software that enables programmers and 

engineers to create code for controlling robots. Its flexible framework includes many 

libraries, tutorials, and programs for use across a variety of robotic platforms. It is 

considered the primary method of programming robots within the robotics discipline.  

1. Navigation

Within the ROS navigation resources are two primary packages of interest: 

move_base and frontier_exploration. Move_base allows a user to enter  a goal position, 

and the robot determines a path to reach that goal [21]. It can create costmaps as well to 

avoid both static and dynamic obstacles. Costmaps are grids that indicate to the robot what 

is free space, and what is occupied by an obstacle. In order to do this, the package must be 

used with a LIDAR sensor. While the move_base package alone is a point-to-point 

navigation solution, when paired with the frontier_exploration package, the robot can 

search an area. Frontier_exploration allows a user to enter an exploration goal as a polygon 

within an area [22]. It can be used with or without a pre-defined map. Upon receiving the 

goal, it sends movement commands back to move_base in order to move the robot. A 

snapshot from a demonstration of frontier_exploration is shown in Figure 11. The virtual 

environment shown is through the ROS Visualization (RVIZ) utility, which can create 

model simulations, as well as display real-time robot sensor data. In this image, the robot 
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was not given a pre-determined map, so it is creating a map based on its sensors. The 

outermost teal polygon is the given exploration area. As the robot explores, it creates a 

costmap from obstacles, shown in red, blue, purple, and teal. Open area is grey, and the 

small red dots are smaller obstacles. Through the course of its exploration, it will fill in all 

the map space within the polygon, unless it determines it is trapped within a room and can 

explore no further.  

 
Figure 11. Snapshot of frontier_exploration Demonstration. Adapted 

from [22]. 

2. Constraints 

While the ROS packages are robust and suited for the goals of this research, they 

are constrained by the hardware available. Most ROS software is written for a handful of 

robotic platforms. However, because the P3-DX is no longer supported, ROS integration 

is not readily available. While the P3-DX does run a ROSAria node, developed from 

previous thesis work, further navigation implementation is beyond the time and experience 

scope for this research. 
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D. SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) 

SLAM is a process used in robotics to both determine the robot location and map 

the surrounding area based on sensor data. As explained by Riisgaard and Blas in their 

tutorial “SLAM for Dummies,” the process is driven by the Extended Kalman Filter (EKF), 

which updates where the robot thinks it is based on surrounding features [23]. This process 

is shown in Figure 12. Essentially, the robot reports its current odometry data and feeds it 

as an input into the EKF. Simultaneously, the robot uses a LIDAR sensor to scan the area. 

The LIDAR data is also fed as an input into the EKF. The EKF re-observation block 

evaluates the data from known landmarks or objects and uses changes in their position to 

update the robot position. The EKF new observation block inputs new landmarks not 

previously seen to be used for later re-observation. This allows the EKF to reconcile the 

differences between the odometry and LIDAR data and create a new prediction for current 

location and update the error associated with that prediction.  

 
Figure 12. Overview of the SLAM Process. Source: [23]. 
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1. Uses for SLAM 

SLAM is useful for this research because it relies on localization from LIDAR data 

instead of GPS connectivity. It also has many applications. While SLAM is often used to 

improve path planning algorithms, its primary use is creating maps of unknown areas. The 

maps are generated from overlaying odometry and LIDAR data over time. The robot pose 

data can then be extracted from the generated map and used for waypoints in 

preprogramming search paths. 

2. MATLAB SLAM Tool 

Included in the MATLAB Robotics Toolbox, the MATLAB SLAM Map Builder 

tool generates a SLAM map from loaded LIDAR data. From the Mathworks website, the 

SLAM tool uses an algorithm to build the map, accounting for inputs such as max LIDAR 

range and desired map resolution [24]. This algorithm includes an essential component 

called loop closure. Loop closure recognizes previously visited areas while mapping and 

corrects pose data to account for drift. Two critical parameters impacting loop closure is 

loop closure threshold and loop closure search radius. Loop closure threshold helps filter 

false positives from the system. In an area with similar or repeated features, loop closure 

threshold should be set to a high number to reject the increased number of false positives 

[24]. Also described on the Mathworks website, loop closure search radius determines the 

range of the map search for loop closures. This tool not only generates a map but also 

outputs optimized poses. These poses are corrected for odometry drift, making them ideal 

to use in generating waypoints. An example SLAM map from this tool is shown in 

Figure 13, where the pink lines are obstacles and the blue lines are the optimized pose data. 
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Figure 13. MATLAB-Generated SLAM Map 

E. WAYPOINT SEARCH PATHS 

Path planning and waypoints are generally used in point-to-point navigation. Much 

of the existing research is focused outdoors and uses GPS for localization and waypoint 

following. Audette used this method for path planning in [5]. However, paths are also used 

in searching. If the area required to search can be defined by a simple path, path planning 

algorithms are useful in implementing a successful search. Because this research occurred 

indoors, there are limited methods for determining waypoints. The first is to manually 

measure waypoints. While this is the simplest method, it does not account for odometry 

error that can result in drift from the original calculations. A second method is using the 

MATLAB SLAM tool discussed above. Because the tool generates optimized poses that 

are corrected for odometry drift, the pose data is more accurate and suitable for use as 

waypoints.  
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Once the search path is determined, an algorithm is developed to generate the 

waypoint-following behavior. In this research, the MATLAB tool pure pursuit was used. 

Pure pursuit takes an input of waypoints and current pose. It then computes linear and 

angular velocities to reach the next waypoint. This tool is ideal for path-following that does 

not require the robot to stop at each waypoint. From the Mathworks website, the most 

important parameter in pure pursuit is the look ahead distance [25]. The look ahead 

distance is considered the local goal and tells the robot how far to look ahead on its path. 

This parameter is important because a small look ahead distance will cause the robot to 

oscillate on the path, and a large look ahead distance may miss the waypoint entirely. This 

concept is illustrated in Figure 14. 

 

 
Figure 14. Look Ahead Distance. Adapted from [25]. 
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Using the pure pursuit tool, the robot can follow a pre-programmed path 

autonomously while simultaneously conducting a search of the area. Due to the ease of 

implementation, this tool is ideal for this research. 

F. SUMMARY 

This was an introduction to the robotic platform used as well as various methods 

for autonomous navigation. While the ROS navigation packages initially seemed ideal, 

their lack of support for the P3-DX platform proves them too time costly. APF provides a 

simple method for object avoidance and wandering behavior. This research work also uses 

multiple MATLAB tools. The ease of integration using the MATLAB SLAM map building 

and pure pursuit tools create a feasible approach for generating and implementing a search 

path.  
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IV. RESULTS 

The general approach to achieving the goals of this research consisted of three parts: 

create a system for image classification, determine and implement an autonomous 

navigation solution, and integrate the software and hardware components into the P3-DX 

mobile robot platform.  

A. TRANSFER LEARNING AND CLASSIFICATION 

In developing an indoor navigation solution, the priority was the image 

classification problem. Both AlexNet and GoogLeNet were tested for their success rates. 

MathWorks had examples available for the transfer learning of both nets. The basic 

strategy was to load the pretrained neural net and replace the last three layers that dealt 

with specific features. By keeping most of the neural network intact, the ability to classify 

images based on shape, color, and other general fundamental image features was 

maintained. However, by replacing the latter, more specific features layers, the neural 

network lost the classification capability for 1,000 pre-trained general categories and 

learned how to classify only the new training data. This is a result of the transfer learning 

process and is a compromise one must consider in exchange for reduced computational 

time required to train a neural network.  

1. Preliminary Neural Network with Static Images 

A preliminary neural network was developed to become familiar with the tools 

available within the MATLAB Neural Network toolbox and the transfer learning process. 

Random images from in and around the lab were collected to ensure the training data was 

different from other images the neural network was previously trained to identify. This 

determined if the neural network was versatile enough for place-based navigation 

applications. The new training data was input as a folder of photographs, separated into 

categories in subfolders within the main folder. This data was further separated into 

training and validation data. The loaded training images were fed into an augmented image 

datastore, which resized them to the network-required size of 227×227×3 and randomly 

flipped and translated them to avoid overfitting. There were several training options 
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available, however, the primary ones of note were the max epochs and mini batch size. The 

max epochs dictated the number of full passes of the training algorithm over the entire 

training set. The mini batch size was a subset of the training set that evaluated the gradient 

of the loss function and updated weights accordingly. To increase accuracy and training 

success, these parameters were changed and evaluated until satisfactory results were 

achieved. The training process also displayed a graph that documented the success rate of 

the training data. In the graph the accuracy of the validation process over each epoch of the 

training process was shown on the top, and the data loss over each epoch was shown on 

the bottom. This graph was also useful because total training time and final validation 

accuracy were displayed when the process was complete. As a rule, more classification 

categories and training epochs caused training time to increase. An example from early 

trials using AlexNet with three classification categories is shown in Figure 15.
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Figure 15. AlexNet Training Progress
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Once the training completed, the network assessed the validation images and 

produced a label and probability score based on its classification.  

The initial proof of concept trained the network with two categories: the control 

torsion plant and the pioneer robot. The training data included nine photos of the torsion 

plant and ten photos of the pioneer robot, taken from varying angles and distances. Because 

there were only two categories included in the training data, the network had no ability to 

identify items that were not in the two categories. When this trained network had to classify 

something new, it was limited to the torsion plant and robot categories. This demonstrated 

that in order to use this classification approach in navigation, the network required another 

category that served as a catch-all. The next test added a third category called 

“distractions,” and the loaded images were random photos of animals, food, and landmarks. 

This test showed the CNN classified unique images with a high degree of accuracy and 

was suitable for further testing. An example of the classified images from the trained 

network is shown in Figure 16. 

 
Figure 16. Classification Output for Trained AlexNet 
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2. Neural Network for Live Classification 

After the initial testing with still images was completed, a new network was trained 

for live classification. An orange traffic cone and an orange bucket were used in the first 

iteration. The reason for choosing two similar objects was to determine how much weight 

the network placed on color. A third “Not Goal” category was also added for any item that 

was not the bucket or cone. Once the net was trained, it was implemented in a live stream 

from a webcam. It easily identified items that were “Not Goal” but struggled to correctly 

discriminate the cone from the bucket, as in Figure 17, which shows the orange cone being 

incorrectly identified as the orange bucket. This demonstrated that the training placed 

significant weight on color for classification and less weight on characteristics such as 

shape.  

 
Figure 17. Classification Output for Cone Confused with Bucket 
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For the next step of testing, the cone pictures were removed from the training set. 

To simplify the training, two categories were created: “Goal” and “Not Goal,” in which the 

bucket photos were in the Goal folder and random lab photos in the Not Goal folder. The 

trained neural network was integrated into an existing MATLAB script that ran a 

wandering algorithm on the robot, as described in Chapter III. Inside of the main control 

loop, the neural network generated classification labels and associated probabilities for 

each image snapshot. Once the goal was identified with a mean probability of 0.8 or greater, 

taken over three loop iterations, a Boolean flag was set to break the loop and end the 

wandering program. The mean was included in the algorithm to limit the possibility of false 

positives breaking the loop. The image classification worked successfully live and ended 

the program upon identifying the bucket, as shown in Figure 18. 

 
Figure 18. Robot Classifying Bucket 

3. Neural Network for Place-Based Navigation 

After determining the bucket testing was a success, the next step was to train a new 

neural network with the desired goal location. For the purpose of this research, the elevator 

doors located at the north end of the fifth floor in Spanagel Hall were selected for the goal 

location. This goal location was chosen because while the elevator doors did have 

distinguishing characteristics, they also had similarities to other doors and locations on the 
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lab floor. The elevator doors also served as an example of a typical goal for a larger 

navigation problem under development. Using this goal location tests the robustness of the 

neural network in distinguishing between similar features. The classification was heavily 

color-dependent, which was one of the few differences between the elevators and other 

doors. To gather data, the robot was manually driven while taking photos and saving them 

to a file. This ensured the training photos had the same image source as the testing phase, 

and the photos were from the perspective of the robot. The output of the training process 

for the elevator data is shown in Figure 19. The validation portion of the training process 

showed the neural network was successfully able to distinguish between the elevator doors 

and other areas including lab doors.  

 
Figure 19. Classification Output for Trained GoogLeNet on Elevators 
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The trained network used still images when validating the training. However, when 

the new network was implemented live, the resulting “Goal” probabilities were low, 

ranging from 0.001 to 1%, when the robot was positioned directly in front of the elevator. 

The network training was examined to determine possible causes. One possible cause is 

that AlexNet is not as robust as GoogLeNet due to its differences in architecture, as 

discussed in Chapter III. Furthermore, the first iteration of training photos consisted of 30% 

elevator photos (“Goal”) and 70% lab photos (“Not Goal”). This ratio created an imbalance 

in the training, consequently affecting the classification ability of the network. To correct 

this issue, more photos were taken of the elevator until the ratio was approximately 50/50. 

AlexNet was retrained, and the probabilities did not improve. Consequently, testing was 

switched to GoogLeNet. The GoogLeNet network was trained, and probabilities increased 

to approximately 20%. The algorithm, which integrated the image classification and 

navigation programming, was evaluated for possible time lapses or inconsistencies that 

could account for the error. After streamlining the algorithm by eliminating a pause 

command, success probabilities improved to approximately 50% at first detection. The 

detection probabilities gradually increased to 100% as the robot neared the elevator. The 

probability scores from GoogLeNet were a marked improvement over the scores of less 

than 1% that were being provided by AlexNet. 

B. INTEGRATION WITH ADVANCED NAVIGATION METHODS 

Finding a navigation solution presented a unique problem because most 

autonomous navigation movement plans require the desired end point pre-programmed in 

the path planning. To meet the goals of this research, the robot needed to search an area 

efficiently, but only stop when it had identified its desired goal by vision.  

1. Wandering Algorithm 

The first phase of testing used a simple wandering algorithm. This algorithm was 

chosen as a starting point for testing because it was simple to write and implement. As 

described in Chapter III, The MATLAB algorithm calculated a repulsive force based on 

feedback from the robot sonar returns and combined with the forward force for a total force. 

This algorithm resulted in robot navigation that was random but had no memory of where 
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it had previously been, which caused it to often drive in a circular path resulting in 

inefficient search patterns. The pose output from one of the wandering testing runs is shown 

in Figure 20, demonstrating the inefficient movement of the robot.  

 
Figure 20. Wandering Algorithm Pose Graph 

While this approach allowed for successful testing of the image classification 

program, a more efficient form of navigation was desirable. 

2. ROS-Integrated Navigation 

The next navigation approach investigated was the frontier_exploration package 

available in ROS. This package is an add-on to the move_base package used for 

autonomous navigation and allowed for the creation of an exploration area instead of 

requiring waypoints for the robot to navigate between. While this package had been 

successfully integrated and used with the TurtleBots mobile robot platform, use with the 
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P3-DX robot proved to be more complex than anticipated. Most of the TurtleBot files were 

pre-written and open source. Because the P3-DX is a discontinued platform, the support 

did not exist to implement the frontier_exploration package and writing ten layers of 

programming or more in Python was not feasible considering time constraints and skill 

required. For these reasons, the frontier_exploration approach for robot navigation was not 

viable. 

3. Waypoint Following 

The final navigation solution involved creating a pre-programmed search path. This 

method had multiple advantages. First, it allowed the robot to navigate efficiently while 

searching for its target location. Second, the pre-programmed search path involved 

waypoint navigation, but did not tell the robot where the goal endpoint was. This allowed 

the implementation of a simple algorithm for waypoint navigation that created more 

availability in computing power for the image processing and classification.  

a. Programming Manual Waypoints 

The first approach to creating the search path was to manually measure and program 

waypoints. Because the P3 commands and outputs are metric, the waypoint distances were 

measured in meters. Waypoints were measured to create a loop around the lab, and then 

programmed into MATLAB as a vector. To drive the robot, the MATLAB pure pursuit 

object was used. Pure pursuit uses an input of waypoints and the robot current pose and 

outputs linear and angular velocity commands to drive the robot towards the next waypoint. 

Initial testing quickly demonstrated that generating manual waypoints were not only 

inefficient, but also generated significant error due to localization inaccuracy and encoder 

drift. The desired waypoints and the actual path the robot took are shown in Figure 21. 
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Figure 21. Manual Waypoints with Robot Path 

Because the manual waypoints approach was not performing well, other 

approaches were investigated to create the waypoints. 

b. Auto-Generated Waypoints from SLAM Algorithm 

The second approach attempted was to create a search path from MATLAB-

generated waypoints using a SLAM algorithm. To create the search path, the LIDAR data 

first had to be collected. The robot was manually driven by keyboard while collecting and 

saving LIDAR data. The path started in the lab, followed the hallway past the elevators, 

looped around the elevator bay, and returned to the lab. Once the data was collected, it was 

imported into MATLAB’s Simultaneous Localization and Mapping (SLAM) algorithm, as 

described in Chapter III. This algorithm had two components: 1) it built a map based on 

LIDAR scans and 2) also returned the optimized poses for the robot’s path based on the 

LIDAR data. This approach was simple and quickly implemented but was susceptible to 

error due to the lack of real-time pose data from the robot. The resulting occupancy grid 
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with robot poses is shown in Figure 22. In the occupancy grid, the map of the lab space in 

Spanagel Hall room 521 and the adjacent corridor including the elevator bay at the north 

end of the building is shown. Of note, the robot started and ended in the same location, so 

the figure also indicates a position error of approximately 2.5 meters.  

 
Figure 22. Occupancy Grid with Optimized Robot Poses 
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The next step was to drive the robot based on the optimized waypoints that resulted 

from the map that was developed of the lab space. The SLAM algorithm returned 2906 

waypoints for the loop, which exceeded the requirement for an efficient solution. The 

waypoints were filtered for every 20th waypoint, resulting in 145 waypoints. As in the 

previous tests, the MATLAB pure pursuit object was used to drive the robot. Initial testing 

attempted to solely use this algorithm to give the robot drive commands, however, object 

avoidance was deemed a necessary addition in further testing. Using code snippets from 

previous thesis work, the robot used LIDAR to create a repellant force. The resulting linear 

and angular velocities from the repellant force were multiplied by respective gains and 

added to the pure pursuit velocity commands. This approach created a smooth path-

following motion that also successfully navigated around obstacles. Due to the error 

introduced in the SLAM process, as well as encoder error and wheel slippage in the robot, 

localization suffered the longer the robot traveled, and planning a reliable path became 

more difficult. Consequently, the path was shortened to a single loop from the lab, to the 

elevator, and back into the lab through the doors near the elevator. The updated loop is 

shown in Figure 23. The waypoint metrics are in meters, however, the error introduced into 

the system skews the map of the path as time increases. For example, the origin and end 

point appear to be approximately eight meters away from each other but were only one to 

two meters apart.  
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Figure 23. Robot Waypoint Loop 

c. Integration of SLAM Waypoints and Image Classification 

After the robot ran the full loop successfully, the image classification code was 

added to the algorithm. Initially, the robot was programmed to stop at the first identification 

of the elevators above a 20% threshold. The robot stopped with a 46.8% probability as soon 

as the elevators entered the camera field of view, at approximately 12 feet from the 

elevator. The output image with probability is shown in Figure 24, and the real-time 

navigation overlaid with the given waypoints is shown in Figure 25. While the waypoints 

were a vector of goal destinations input into the pure pursuit tool, the error discussed earlier 

skewed the real-time navigation path. When the robot traveled along the hallway, the skew 

made the waypoints appear inside the wall. The LIDAR obstacle detection system allowed 

the robot to avoid the walls and other obstacles, which accounts for the diagonal path away 
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from the given waypoints. The pure pursuit object allowed the robot to stray from the 

waypoints because it was programmed with a two-meter look ahead distance. The real-

time navigation also stops before reaching the final waypoint because the place-based 

image classification identified the elevator prior to the loop end.  

  
Figure 24. Classification Image for Elevator 
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Figure 25. Waypoints and Real-Time Robot Path 

d. Evaluation of Probability Scores 

Next, the goal probabilities were evaluated for the entire waypoint set to determine 

when the maximum classification level was reached. This experiment was conducted in 

two variations. During the first iteration, the elevators were blocked with a large piece of 

cardboard. This was to ensure the classification worked properly and prove it was solely 

dependent on image, not location in the loop. As expected, the image classification loop 

did not identify the elevator with the cardboard in place. The second iteration removed the 

cardboard from in front of the elevators. The portion of the algorithm that stopped the robot 

upon location identification was temporarily taken out in order to assess probabilities 

through the entire robot loop. As shown in Figure 26, the classification process first begins 

to identify the elevator around 240 loop cycles. As the robot approaches the elevator, the 

probabilities increase until it reaches a threshold, and the robot is too close to the elevator 

for reliable classification. As the robot approached the elevator, the resulting camera 
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snapshots were too close to the elevator to identify more than color and some lines. The 

robot then turned and moved away from the elevator, accounting for the decrease back to 

zero probability.  

 
Figure 26. Goal Probabilities over Time 

Of note, in both testing rounds there is a cluster of low-probability false positives 

around 125-140 loop cycles. The reason for this was a set of double doors the robot drove 

past. This demonstrates that the image classification was susceptible to being fooled by 

similar objects, however, it was robust enough to keep the false positive probabilities low.  

C. SUMMARY 

This research tested image classification using a convolutional neural network and 

integrated it into an autonomous navigation solution. To use the CNN on a specific data 

set, it went through the transfer learning process. Multiple objects were used to test 
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classification in order to test the robustness of the CNN, and it was ultimately trained to 

successfully identify elevator bay doors.  

For the autonomous navigation solution, three main approaches were tested: a 

wandering algorithm, ROS-integrated navigation, and waypoint following. Of the three 

approaches, the waypoints generated from the MATLAB SLAM tool provided the most 

efficient navigation solution. The image classification was integrated into the waypoint 

navigation and successfully identified the elevators as designed. 
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V. SUMMARY AND CONCLUSIONS 

Applications involving AI have been the focus of academic research and 

commercial development to a great extent in recent years.  This thesis research explored 

AI as a potential solution for the navigation and control of an autonomous land-based 

mobile robot.  It was an integral part of a larger program to develop an autonomous mobile 

robot capable of navigating throughout the NPS campus both indoors and outdoors. Within 

this research, experimental work was conducted with the P3-DX mobile robot extensively 

utilizing ROS and MATLAB tools for both image classification and autonomous 

navigation. This work involved sensor integration with a webcam and LIDAR sensor as 

well. The combined hardware, software, and sensor suite enabled the P3-DX to navigate 

autonomously while using place-based image classification. 

A. ASSESSMENT OF GOALS 

The first goal of this research was to determine a method for image classification 

that was able to be used in place-based navigation and implement that method. A 

convolutional neural network was trained to classify images in both still and live 

environments. The classification worked on common locations without requiring 

additional information. Since the classification was reliant on image processing, it is 

susceptible to changes in lighting and environment. The neural network training could be 

improved with a larger training database to include various lighting configurations. 

The second goal was for a robot to successfully navigate to a desired location 

autonomously and positively identify the goal based solely on image classification. The 

robot autonomously navigated a pre-planned path using LIDAR for live object avoidance. 

When the goal location entered the camera field-of-view, the image classification correctly 

identified the goal location and stopped the robot.  
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B. AREAS OF FUTURE WORK 

1. Indoor Localization 

A significant issue with the autonomous navigation solution is that the encoder 

error and wheel slippage create localization error. In order to use this system in more GPS-

denied environments, the localization should be improved. This work may use localization 

beacons, secondary encoders, or other localization methods to improve the robot awareness 

of current location. 

2. Increase Training Data 

The neural network is capable of classifying thousands of images. The training data 

library should be expanded to include both indoor and outdoor landmarks from the NPS 

campus. This will allow the user to define a location based on a specific descriptor rather 

than “goal” and change the desired location with ease. This work will serve the end goal 

of the overall project of a robot autonomously navigating the entire NPS campus. 

3. Integration of Places into Navigation Plan 

The image classification algorithm could be integrated into a waypoint follower, 

such as the work done by Matthew Audette, to improve localization in areas on GPS 

vulnerability or difficult terrain [1]. When locations or obstacles are classified, they could 

be added into the map, generating a more accurate navigation picture. That updated map 

could then be used to update the overall navigation plan so the robot is able to move more 

efficiently through the desired space.  
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APPENDIX A.  CNN TRAINING SCRIPT 

A. ALEXNET 

% AlexNet Training Script 
% Ashleigh Magee 
  
% This script trains AlexNet to identify specific images in the 
data 
% folder. We can control training vs test images, how many 
testing 
% iterations, etc. This code also saves the trained net so it can 
be loaded 
% and used in testtrainedlive.m 
  
net=alexnet;  %open alexnet 
% analyzeNetwork(net)      look at net specifications 
inputSize=net.Layers(1).InputSize;  % image inputs required to be 
227x227x3 
layersTransfer=net.Layers(1:end-3); %extracts all layers except 
last 3 
  
imds=imageDatastore('C:\Users\sweet\OneDrive\Documents\MATLAB\
Thesis\TrainingPhotos',... 
    'IncludeSubfolders',true,'LabelSource','foldernames'); 
% labels are created from file folder names. To have multiple 
class 
% categories, you have to create individual subfolders within the 
main 
% folder with the names you want for your classes 
[imdsTrain,imdsValidation]=splitEachLabel(imds,0.6,'randomized');  
numClasses=numel(categories(imdsTrain.Labels)) 
% replace the last 3 layers in order to fine-tune for new 
classification 
layers = [ 
    layersTransfer 
    
fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLe
arnRateFactor',20) 
    softmaxLayer 
    classificationLayer]; 
pixelRange=[-30 30]; 
imageAugmenter = imageDataAugmenter( ...    %randomly flip and 
shift images 
    'RandXReflection',true, ...             % to avoid 
overfitting 
    'RandXTranslation',pixelRange, ... 
    'RandYTranslation',pixelRange); 
  



48 

augimdsTrain=augmentedImageDatastore(inputSize,imdsTrain, ... 
    'DataAugmentation',imageAugmenter); 
augimdsValidation=augmentedImageDatastore(inputSize,imdsValidatio
n,'OutputSizeMode','resize'); 
% investigate how it is resizing image 
options=trainingOptions('sgdm', ... 
    'MiniBatchSize',10, ... 
    'MaxEpochs',10, ... 
    'Shuffle','every-epoch', ... 
    'InitialLearnRate',1e-4, ... 
    'ValidationData',augimdsValidation, ... 
    'ValidationFrequency',3, ... 
    'Verbose',false, ... 
    'Plots','training-progress'); 
netTransfer=trainNetwork(augimdsTrain,layers,options); 
  
[YPred,probs]=classify(netTransfer,augimdsValidation); 
accuracy=mean(YPred==imdsValidation.Labels) 
idx=randperm(numel(imdsValidation.Files),4); 
figure 
% Test the training success with validation images 
for i=1:4 
    subplot(2,2,i) 
    I=readimage(imdsValidation,idx(i)); 
    imshow(I) 
    label=YPred(idx(i)); 
    title(string(label) + "," + 
num2str(100*max(probs(idx(i),:)),3) + "%"); 
end 
  
elev_net2=netTransfer; 
save elev_net2; 
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B. GOOGLENET 

% GoogLeNet Training Script 
% Ashleigh Magee 
  
% This script trains GoogleNet to identify specific images in the 
data 
% folder. We can control training vs test images, how many 
testing 
% iterations, etc. This code also saves the trained net so it can 
be loaded 
% and used in testtrainedlive.m 
  
imds=imageDatastore('C:\Users\sweet\OneDrive\Documents\MATLAB\
Thesis\TrainingPhotos',... 
    'IncludeSubfolders',true,'LabelSource','foldernames'); 
% labels are created from file folder names. To have multiple 
class 
% categories, you have to create individual subfolders within the 
main 
% folder with the names you want for your classes 
[imdsTrain,imdsValidation]=splitEachLabel(imds,0.7,'randomized'); 
net=googlenet;  %open googlenet 
% analyzeNetwork(net)      look at net specifications 
inputSize=net.Layers(1).InputSize;  % image inputs required to be 
227x227x3 
if isa(net,'SeriesNetwork')     %Makes a layer graph so we can 
extract/train 
  lgraph = layerGraph(net.Layers);  %necessary layers 
else 
  lgraph = layerGraph(net); 
end  
  
% Find layers that can be trained and replaced 
[learnableLayer,classLayer] = findLayersToReplace(lgraph); 
%[learnableLayer,classLayer]  
numClasses = numel(categories(imdsTrain.Labels));   
  
% Replace last layer with learnable weights. This if/else loops 
allows 
% different kinds of NN to be used. Most use a Fully Connected 
Layer for 
% the last layer, however, some use a Convolutional 2D Layer 
if isa(learnableLayer,'nnet.cnn.layer.FullyConnectedLayer') 
    newLearnableLayer = fullyConnectedLayer(numClasses, ... 
        'Name','new_fc', ... 
        'WeightLearnRateFactor',10, ... 
        'BiasLearnRateFactor',10); 
     
elseif isa(learnableLayer,'nnet.cnn.layer.Convolution2DLayer') 
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    newLearnableLayer = convolution2dLayer(1,numClasses, ... 
        'Name','new_conv', ... 
        'WeightLearnRateFactor',10, ... 
        'BiasLearnRateFactor',10); 
end 
% Replace the layer in the layer graph 
lgraph = 
replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer); 
  
newClassLayer = classificationLayer('Name','new_classoutput'); 
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer); 
  
% Show new layers are connected 
% figure('Units','normalized','Position',[0.3 0.3 0.4 0.4]); 
% plot(lgraph)       
% ylim([0,10]) 
  
% Freeze layers in order to speed up processing time and prevent 
% overfitting to new data set 
layers = lgraph.Layers; 
connections = lgraph.Connections; 
  
layers(1:10) = freezeWeights(layers(1:10)); 
lgraph = createLgraphUsingConnections(layers,connections); 
  
% Train net - use image augmenter to resize and flip/translate 
the images. 
% The data augmenter prevents overfitting of data to the training 
images 
pixelRange = [-30 30]; 
scaleRange = [0.9 1.1]; 
imageAugmenter = imageDataAugmenter( ... 
    'RandXReflection',true, ... 
    'RandXTranslation',pixelRange, ... 
    'RandYTranslation',pixelRange, ... 
    'RandXScale',scaleRange, ... 
    'RandYScale',scaleRange); 
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, 
... 
    'DataAugmentation',imageAugmenter); 
  
%Automatically resize images without performing additional 
augmentation 
augimdsValidation = 
augmentedImageDatastore(inputSize(1:2),imdsValidation); 
  
% Training parameters 
miniBatchSize = 10; 
valFrequency = floor(augimdsTrain.NumObservations/miniBatchSize); 
options = trainingOptions('sgdm', ... 
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    'MiniBatchSize',miniBatchSize, ... 
    'MaxEpochs',10, ... 
    'InitialLearnRate',3e-4, ... 
    'Shuffle','every-epoch', ... 
    'ValidationData',augimdsValidation, ... 
    'ValidationFrequency',valFrequency, ... 
    'Verbose',false, ... 
    'Plots','training-progress'); 
  
net = trainNetwork(augimdsTrain,lgraph,options); 
  
%Classify test images 
[YPred,probs]=classify(net,augimdsValidation); 
accuracy=mean(YPred==imdsValidation.Labels) 
idx=randperm(numel(imdsValidation.Files),4); 
figure 
% Check training with validation images 
for i=1:4 
    subplot(2,2,i) 
    I=readimage(imdsValidation,idx(i)); 
    imshow(I) 
    label=YPred(idx(i)); 
    title(string(label) + "," + 
num2str(100*max(probs(idx(i),:)),3) + "%"); 
end 
  
goog_net2=net; 
save goog_net2; 
%net=goog_net; 
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APPENDIX B.  TEST TRAINED CNN 

% Live Test of Trained CNN 
% Ashleigh Magee 

% This script tests the trained neural net's ability to identify 
the items 
% it has been trained on. Change "net" value in order to change 
NN being 
% used. If you run in repeated successions, clear the variables 
or comment 
% out the net="net" and camera=webcam lines. You cannot 
initialize those 
% when a connection has already been made 

load('elev_net2.mat'); 
net=elev_net2; 
clear camera; 
camera=webcam('Microsoft® LifeCam HD-3000'); 
inputSize=net.Layers(1).InputSize(1:2); 
h = figure; 
TT=[]; 
while ishandle(h) 
    im = snapshot(camera); 
    image(im) 
    im=augmentedImageDatastore(inputSize(1:2),im); 
    [label,score] = classify(net,im); 
    title(string(label) + "," + num2str(100*max(score(1,2)),3) + 
"%") 
    drawnow 
end 
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APPENDIX C.  WANDERING PROGRAM 

% Edited version of example_Wander_ROS.m by Dr. James Calusdian 
% Edited by Ashleigh Magee to include code to utilize trained CNN 
for  
% image classification and flag the system when the target is 
identified 
  
% example_Wander_ROS.m 
% A script to make the robot wander around in the room.  Gently 
tap one of 
% the bumpers to make the robot stop the wander program.  
Computing a 
% repulsive force based on sonar measurements, then filtering for 
smoother 
% operation. 
%  
% This script uss the ROS interface and the Robotics Systems 
Toolbox 
% 
% To use this script: 
%    1. In a terminal window, run the launch file 
%            roslaunch  rosaria   p3atlaunch.launch 
%    2.  In the Matlab command window, type 
%            rosinit 
%    3.  Next, run this script.   
%  
% The robot should now wander around in the room using its sonar 
to avoid any  
% obstacles it encounters. 
%  
% Copyright Naval Postgraduate School, 2015 
  
format compact   % for command window formatting 
  
% ROS business 
global LocalOdom 
  
% Create ROS publishers, subscribers, and service client 
localOdomSub = rossubscriber('/RosAria_Node/
pose',@p3atLocalOdomCallback) 
cmdPub = rospublisher('/RosAria_Node/cmd_vel','geometry_msgs/
Twist') 
sonarSub = rossubscriber('/RosAria_Node/sonar') 
bumperSub = rossubscriber('RosAria_Node/bumper_state') 
batterySub = rossubscriber('RosAria_Node/battery_voltage') 
pause(3) 
cmdMsg = rosmessage(cmdPub)  % Create empty messages for 
publication 
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fwdMAXVEL = .200;        % max robot velocity 
loopCounter =0;         % used in while-loop to stop program 
MAX_LOOP_COUNT = 300; 
latencyValues = NaN*ones(1,MAX_LOOP_COUNT); 
A = 0.45;                % filter constant for low-pass filter 
A*new + (1-A)*old 
resultFiltered_prev = 0;  % for low-pass filter 
gainTransVel = 0.75;       % sensitivity for translational 
velocity 
gainRotVel = 0.05;         % sensitivity for rotational velocity, 
3.5 
Ffwd = [2.000;0];        % forward driving force 
Ftotal = [0;0];         % total force 
% create empty arrays for the X and Y sonar data 
sonarX = NaN(1,16); 
sonarY = NaN(1,16); 
  
% repulsive force parameters 
dC = 3.5;    % threshold distance. Compute F_rep for di<dC 
ETA = 1e6;    % scales the repulsive force 
  
% first connect to the robot 
%%p3_connector('/dev/ttyS0') 
pause(5) 
  
% define minimum clearance 
MIN_CLEARANCE = 0.375;   % 250 mm 
rangeClearance = true;  % for use in while-loop 
minRange = 3*MIN_CLEARANCE;  % initialize to something 
  
% define the sonar angles on the robot, see manual pp 13. 
%gamma = [90 50 30 10 -10 -30 -50 -90 -90 -130 -150 -170 170 150 
130 90]*pi/180; 
  
% check bumpers 
bumperMsg = receive(bumperSub); 
bumpersClear = isempty(find(or(bumperMsg.FrontBumpers, 
bumperMsg.RearBumpers))); 
if(~bumpersClear) 
    disp('Bumpers not clear!!') 
    disp('Exitng program') 
    return 
end 
  
% Add net & image classification loop 
% Initialize the system for image loop 
load('testnet_cone.mat'); 
net=testnet_cone; 
camera=webcam; 
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inputSize=net.Layers(1).InputSize(1:2); 
h = figure; 
tgtfound=false; 
tgt=imdsValidation.Labels(10);  %sets the target to the desired 
label name 
probavg=0; 
pvec=[]; 
i=0; 
counter=0; 
  
while(bumpersClear && rangeClearance && ~tgtfound) 
    loopCounter = loopCounter+1; 
     
    % get battery voltage from ROS 
    batteryVoltage = receive(batterySub); 
     
     
      % get sonar data and plot point cloud 
    sonarData = receive(sonarSub); 
    for ix = 1:16 
        sonarX(ix) = sonarData.Points(ix).X; 
        sonarY(ix) = sonarData.Points(ix).Y; 
    end 
    sonarRange = sqrt(sonarX.^2 + sonarY.^2); 
      
     % compute a repulsive force based on the sonar measurements 
     Frep_r = [0;0];   % robot coordinates 
     for ix = 1:16 
         di = sonarRange(ix); 
         if di< dC            
            ni = [sonarX(ix) ; sonarY(ix)]; 
            Frep_r = -ETA * (1/di - 1/dC)*(ni./di) + Frep_r; 
         end 
             
     end 
     
     %myString = sprintf('Repulsive force %12.1f 
%12.1f',Frep_r(1), Frep_r(2)); 
     %disp(myString); 
      
     % total force 
     Ftotal = Ffwd + Frep_r; 
      
     % next low-pass filter the result to smooth the result 
     resultFiltered = A * Ftotal + (1-A)*resultFiltered_prev; 
     resultFiltered_prev = resultFiltered; 
     %myString = sprintf('Filtered result %12.1f 
%12.1f',resultFiltered(1), resultFiltered(2)); 
     %disp(myString); 
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     % use the last result to coordinate robot motion 
     fwdVel = gainTransVel * resultFiltered(1); 
     if fwdVel<0, fwdVel=0.050; end 
     if fwdVel>fwdMAXVEL, fwdVel = fwdMAXVEL; end 
     rotVel = gainRotVel * atan2(resultFiltered(2), 
resultFiltered(1)); 
  
     %p3_setTransVel(fwdVel); 
     %p3_setRotVel(rotVel);   
    cmdMsg.Linear.X = fwdVel ;    % Drive fowrward/backwards 
    cmdMsg.Angular.Z = rotVel ;   % Turn (CCW = +) 
    send(cmdPub,cmdMsg);        % Send velocity command to p3 
     
    % Display formatted info on screen 
    clc 
    fprintf('\n\nForward and Rotational velocity, %6.2f m/s  
%6.2f deg/sec\n', fwdVel,rotVel) 
    fprintf('Loop counter %d\n', loopCounter) 
    fprintf('Battery voltage = %5.2f volts\
n\n',batteryVoltage.Data) 
    fprintf('Sonar ranges (meters)...\n') 
    fprintf('%5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f\n', 
sonarRange) 
    
    % make sure we are not too close to an obstacle.  If we are, 
then set 
    % the "rangeClearance" to False so that we break out of the 
while loop 
    index = find(sonarRange < MIN_CLEARANCE); 
    if(~isempty(index)) 
        rangeClearance = false; 
        myString = 'Not enough clearance.  Disconnecting from 
robot.'; 
        myString2 =sprintf('Sonar number: %u ', index(1)-1); 
        disp(myString); 
        disp(myString2); 
    end 
     
    % check bumpers 
    bumperMsg = receive(bumperSub); 
    bumpersClear = isempty(find(or(bumperMsg.FrontBumpers, 
bumperMsg.RearBumpers))); 
    if(~bumpersClear) 
        disp('Bumpers not clear!!') 
        disp('Exiting program') 
        return 
    end 
% image processing loop 
    if counter < 3 
        pause(0.01); 
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        counter=counter+1; 
    else 
        im = snapshot(camera); 
        image(im) 
        im = imresize(im,inputSize); 
        [label,score] = classify(net,im); 
        title(string(label) + "," + 
num2str(100*max(score(1,2)),3) + "%") 
        drawnow 
        if label==tgt 
            prob=max(score(1,2)); 
            pvec=[pvec,prob];   %create probability vector 
            i=i+1; 
            if i>2 
                probavg=mean(pvec); 
                i=0; 
            elseif i>15 %clears probability vector so it doesn't 
get bogged  
                pvec=[];    %down with bad probability 
            end 
        end 
         
        if (label==tgt && probavg>=0.8) 
            tgtfound=true; 
            disp('Found Desired Target, Ending Program') 
        end 
        counter=0; 
    end 
end    
    % wait a little bit for robot to catch up with Matlab 
    pause(.1);  % MobileSim, was 1 sec    
end 
% stop and disconect from the robot 
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APPENDIX D.  SLAM MAP BUILDING 

% Convert LIDAR data to SLAM map 
% Ashleigh Magee 
  
% Load LIDAR data 
load('laserScanLab2.mat'); 
scans=laserScanMessageArray; 
  
% SLAM algorithm parameters 
maxLidarRange = 8; 
mapResolution = 20; 
slamAlg = robotics.LidarSLAM(mapResolution, maxLidarRange); 
slamAlg.LoopClosureThreshold = 210;   
slamAlg.LoopClosureSearchRadius = 8; 
  
% %% check 1st ten scans 
% for i=1:10 
%     [isScanAccepted, loopClosureInfo, optimizationInfo] = 
addScan(slamAlg, scans{i}); 
% %     if isScanAccepted 
% %         fprintf('Added scan %d \n', i); 
% %     end 
% end 
%  
% figure; 
% show(slamAlg); 
% title({'Map of the Environment','Pose Graph for Initial 10 
Scans'}); 
  
%% Loop closure and optimization  
firstTimeLCDetected = false; 
  
figure; 
for i=1:length(scans) 
    [isScanAccepted, loopClosureInfo, optimizationInfo] = 
addScan(slamAlg, scans{i}); 
    if ~isScanAccepted 
        continue; 
    end 
    % visualize the first detected loop closure, if you want to 
see the 
    % complete map building process, remove the if condition 
below 
    i 
end 
figure 
show(slamAlg); 
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title({'Final Built Map of the Environment', 'Trajectory of the 
Robot'}); 
  
%% Build Occupancy Grid Map 
[scans, optimizedPoses]  = scansAndPoses(slamAlg); 
map = buildMap(scans, optimizedPoses, mapResolution, 
maxLidarRange); 
  
figure;  
show(map); 
hold on 
show(slamAlg.PoseGraph, 'IDs', 'off'); 
hold off 
title('Occupancy Grid Map Built Using Lidar SLAM'); 
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APPENDIX E.  FINAL SEARCH PATH WITH IMAGE 
CLASSIFICATION 

% Search Path w/ Image Classification 
% Ashleigh Magee 
  
% This script uses a series of waypoints generated by SLAM 
optimized pose 
% data as a search path. The GoogLeNet classification loop runs 
% simultaneously. The loop includes a boolean flag which will end 
the 
% program upon identification of the goal location. 
  
%% Setup and parameter initialization 
  
% Create global variables for use in communicating with ROS 
system 
global Pose 
global Laser 
  
% Create ROS publishers and subscribers 
poseSub = rossubscriber('/RosAria_Node/pose',@p3atPoseCallback); 
cmdPub = rospublisher('/RosAria_Node/cmd_vel','geometry_msgs/
Twist'); 
bumperSub = rossubscriber('RosAria_Node/bumper_state'); 
laserSub = rossubscriber('/Laser_Scan0',@p3atLaserCallback); 
  
pause(2); % Wait to ensure publisher is registered 
% Create an empty Twist message for publication 
cmdMsg = rosmessage(cmdPub); 
  
% Variable declaration 
eta = 0.002;             % repulsive force gain 
rho0 = 2;            % offset from obstacle to ignore repulsive 
term 
k1=0.1;             % linear repulsive force gain 
k2=0.7; 
  
%% Check Bumpers 
% check bumpers 
bumperMsg = receive(bumperSub); 
bumpersClear = isempty(find(or(bumperMsg.FrontBumpers, 
bumperMsg.RearBumpers))); 
if(~bumpersClear) 
    disp('Bumpers not clear!!') 
    disp('Exitng program') 
    return 
end 
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% Add net & image classification loop 
% Initialize the system for image loop 
load('elev_net.mat'); 
net=elev_net; 
camera=webcam('Microsoft'); 
inputSize=net.Layers(1).InputSize(1:2); 
h = figure; 
tgtfound=false; 
tgt=imdsValidation.Labels(10);  %sets the target to the desired 
label name 
probavg=0; 
pvec=[]; 
i=0; 
counter=0; 
fprintf('Image System Initialization Complete\n'); 
  
%% Create waypoint follower 
load('waypoints_short2.mat');   % From optimized poses 
pp = robotics.PurePursuit('DesiredLinearVelocity', 
0.2,'LookaheadDistance',2); 
  
%Assign waypoints. 
pp.Waypoints = waypoints; 
vv=[]; 
ww=[]; 
pose_x=[]; 
pose_y=[]; 
while(bumpersClear && ~tgtfound) 
    % get the laser ranges 
    laser_range = Laser.Ranges; 
    % angular resolution vector 
    laser_angle = 
(Laser.AngleMin:Laser.AngleIncrement:Laser.AngleMax)'; 
     
    % get X, Y and Theta 
    pose = Pose.Pose.Pose; 
    quat = pose.Orientation; 
    angles = quat2eul([quat.W quat.X quat.Y quat.Z]); 
    yaw = angles(1); 
    x = pose.Position.X; 
    y = pose.Position.Y; 
    th = yaw; 
  
    pose_x=[pose_x x]; 
    pose_y=[pose_y y]; 
     
    %Compute control commands using the pp object with the 
initial pose [x y theta] given as the input. 
    [v,w] = pp([x y th]); 
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    vv=[vv v]; 
    ww=[ww w]; 
     
    % Lidar Portion of Force 
    [Flas] = LidarForce(laser_range, laser_angle, rho0, eta); 
    MinLaserRange = length(laser_range(laser_range < 0.5)); 
     
    % Calculate total force 
    LinVel=v+k1*Flas(1); 
    AngVel=w+k2*Flas(2); 
     
    cmdMsg.Linear.X = LinVel; 
    cmdMsg.Angular.Z = AngVel; 
    send(cmdPub,cmdMsg); 
     
     % check bumpers 
    bumperMsg = receive(bumperSub); 
    bumpersClear = isempty(find(or(bumperMsg.FrontBumpers, 
bumperMsg.RearBumpers))); 
    if(~bumpersClear) 
        disp('Bumpers not clear!!') 
        disp('Exiting program') 
        return 
    end 
     
    % Image classification loop 
    tic; 
    if counter < 3 
        %pause(0.01); 
        counter=counter+1; 
    else 
        im = snapshot(camera); 
        image(im) 
        im = imresize(im,inputSize); 
        [label,score] = classify(net,im); 
        title(string(label) + "," + 
num2str(100*max(score(1,2)),3) + "%") 
        drawnow 
        if label==tgt 
            prob=max(score(1,2)); 
            pvec=[pvec,prob];   %create probability vector 
            i=i+1; 
            if i>2 
                probavg=mean(pvec); 
                i=0; 
            elseif i>8 
                pvec=[]; 
                probavg=0; 
%              %clears probability vector so it doesn't get 
bogged  
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%                 pvec=[];    %down with bad probability 
            end 
        end 
         
        if (label==tgt && probavg>=0.2) 
            tgtfound=true; 
            disp('Found Desired Target, Ending Program') 
        end 
        counter=0; 
    end 
end 
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