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Scaling properties of language are a useful tool for
understanding generative processes in texts. We investigate
the scaling relations in citywise Twitter corpora coming from
the metropolitan and micropolitan statistical areas of the
United States. We observe a slightly superlinear urban scaling
with the city population for the total volume of the tweets
and words created in a city. We then find that a certain core
vocabulary follows the scaling relationship of that of the bulk
text, but most words are sensitive to city size, exhibiting a
super- or a sublinear urban scaling. For both regimes, we can
offer a plausible explanation based on the meaning of the
words. We also show that the parameters for Zipf’s Law and
Heaps’ Law differ on Twitter from that of other texts, and that
the exponent of Zipf’s Law changes with city size.

1. Introduction
The recent increase in digitally available language corpora made it
possible to extend the traditional linguistic tools to a vast amount of
often user-generated texts. Understanding how these corpora differ
from traditional texts is crucial in developing computational
methods for web search, information retrieval or machine
translation [1]. The amount of these texts enables the analysis of
language on a previously unprecedented scale [2–4], including
the dynamics, geography and time scale of language change
[5,6], social media cursing habits [7–9] or dialectal variations [10].

From online user activity and content, it is often possible to
infer different socio-economic variables on various aggregation
scales. Ranging from showing correlation between the main
language features on Twitter and several demographic variables
[11], through predicting heart-disease rates of an area based on
its language use [12] or relating unemployment to social media
content and activity [13–15] to forecasting stock market moves
from search semantics [16], many studies have attempted to
connect online media language and metadata to real-world
outcomes. Various studies have analysed spatial variation in
the text of online social network messages and its applicability
to several different questions, including user localization based
on the content of their posts [17,18], empirical analysis of the
geographical diffusion of novel words, phrases, trends and
topics of interest [19,20], measuring public mood [21].
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While many of the above-cited studies exploit the fact that language use or social media activity
varies in space, it is hard to capture the impact of the geographical environment on the used words
or concepts. There is a growing literature on how the sheer size of a settlement influences the number
of patents, GDP or the total road length driven by universal laws [22]. These observations led to the
establishment of the theory of urban scaling [23–31], where scaling laws with city size have been
observed in various measures such as economic productivity [32], human interactions [33], urban
economic diversification [34], election data [35], building heights [36], crime concentration [37,38] or
touristic attractiveness [39].

In our paper, we aim to capture the effect of city size on language use via individual urban scaling
laws of words. By examining the so-called scaling exponents, we are able to connect geographical size
effects to systematic variations in word use frequencies. We show that the sensitivity of words to
population size is also reflected in their meaning. We also investigate how social media language and
city size affects the parameters of Zipf’s Law [40], and how the exponent of Zipf’s Law is different
from that of the literature value [40,41]. We also show that the number of new words needed in
longer texts (Heaps’ Law [2]) exhibits a sublinear power-law form on Twitter, indicating a
decelerating growth of distinct tokens with city size.
pen
sci.6:190027
2. Methods
2.1. Twitter and census data
We use data from the online social network Twitter, which freely provides approximately 1% of all sent
messages via their streaming API. For mobile devices, users have an option to share their exact location
along with the Twitter message. Therefore, some messages contain geolocation information in the form
of GPS coordinates. In this study, we analyse 456 million of these geolocated tweets collected between
February 2012 and August 2014 from the area of the United States. We construct a geographically
indexed database of these tweets, permitting the efficient analysis of regional features [42]. Using the
hierarchical triangular mesh scheme for practical geographical indexing, we assigned a US county to
each tweet [43,44]. County borders are obtained from the GADM database [45]. Counties are then
aggregated into metropolitan and micropolitan areas using the county to metro area crosswalk file
from [46]. Population data for the metropolitan statistical area (MSA) areas are obtained from [47].

There are many ways a user can post on Twitter. Because a large amount of the posts come from
third-party apps such as Foursquare, we filter the messages according to their URL field. We only
leave messages that have either no source URL, or their URL after the ‘https://’ prefix matches
one of the following SQL patterns: ‘twit%’, ‘tl.gd%’ or ‘path.com%’. These are most likely text
messages intended for the original use of Twitter, and where automated texts such as the phrase ‘I’m
at’ or ‘check-in’ on Foursquare are left out.

For the tokenization of the Twitter messages, we use the toolkit published on https://github.com/
eltevo/twtoolkit. We leave out words that are less than three characters long, contain numbers or
have the same consecutive character more than twice. We also filter hashtags, characters with high
unicode values, usernames and web addresses [42].

2.2. Urban scaling
Most urban socio-economic indicators follow the certain relation for a certain urban system

Y(N) ¼ Y0 �Nb, (2:1)

where Y denotes a quantity (economic output, number of patents, crime rate, etc.) related to the city, Y0 is
a multiplication factor, N is the size of the city in terms of its population and β denotes a scaling exponent,
that captures the dynamics of the change of the quantity Ywith city population N. β = 1 describes a linear
relationship, where the quantity Y is linearly proportional to the population, which is usually associated
with individual human needs such as jobs, housing or water consumption. The case β > 1 is called
superlinear scaling, and it means that larger cities exhibit disproportionately more of the quantity Y
than smaller cities. This type of scaling is usually related to larger cities being disproportionately the
centres of innovation and wealth. The opposite case is when β < 1, that is called sublinear scaling,
and is usually related to infrastructural quantities such as road network length, where urban
agglomeration effects create more efficiency [27].

https://github.com/eltevo/twtoolkit
https://github.com/eltevo/twtoolkit
https://github.com/eltevo/twtoolkit
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Here, we investigate scaling relations between urban area populations and various measures of

Twitter activity and the language on Twitter. When fitting scaling relations on aggregate metrics or on
the number of times a certain word appears in a metropolitan area, we always assume that the total
number of tweets, or the total number of a certain word Ytot must be conserved in the law. That
means that we have only one parameter in our fit, the value of β, while the multiplication factor Y0

determined by β and Ytot is as follows:

XK

i¼1

Y0 �Nb
i ¼ Ytot,

where the index i denotes different cities, the total number of cities is K, the exponent β is the exponent of
the scaling for the investigated metrics and Ni is the population of the city with index i.

We use the ‘Person Model’ of Leitão et al. [48], where this conservation is ensured by the
normalization factor, and where the assumption is that out of the total number of Ytot units of output
that exists in the whole urban system, the probability p( j ) for one person j to obtain one unit of
output depends only on the population Nj of the city where person j lives as

p(j) ¼
Nb�1

j

Z(b)
,

where Z(β) is the normalization constant, i.e. Z(b) ¼ PM
j¼1 N

b�1
j , if there are altogether M people in all of

the cities. Formally, this model corresponds to a scaling relationship from (2.1), where Y0 =Ytot/Z(β). But
it can also be interpreted as urban scaling being the consequence of the scaling of word choice
probabilities for a single person, which has a power-law exponent of β− 1.

To assess the validity of the scaling fits of the aggregate metrics, such as for example the scaling
exponent for the total number of words βwords, we confirm nonlinear scaling, if the difference between
the likelihoods of a model with an exponent βwords = 1 and βwords given by the fit is big enough. It
means that the difference between the Bayesian information criterion (BIC) values of the two models
DBIC ¼ BICbwords¼1 � BICbwords=1 is sufficiently large [48]: ΔBIC > 6. Otherwise, if ΔBIC < 0, the linear
model fits the scaling better, and between the two values, the fit is inconclusive.

In the following, we are going to denote by βw the scaling exponent of a given word w. In the case of
the words, we compare the two models, where βw is set to the scaling exponent of the total number of
words βw = βwords, and where βw is calculated from the fits. If DBIC ¼ BICbw¼bwords

� BICbw=bwords
. 6,

then we conclude that the fit is nonlinear compared to the bulk text, and if ΔBIC < 0, the βwords model
fits the scaling better, and between the two values, the fit is inconclusive.

2.3. Zipf’s Law
We use the following form for Zipf’s Law that is proposed in [49], and that fits the probability
distribution of the word frequencies apart from the very rare words

p(f) ¼ C � f�a, if f . fmin,

where α is the exponent of the Zipf’s Law, f is word frequency, fmin is the minimum word frequency above
which the power-law assumption holds, C is a multiplicative constant and p( f ) is the probability density
function of the word frequencies.

We fit the probability distribution of the frequencies p( f ) using the power law package of Python
[50], that uses a maximum-likelihood method based on the results of [51–53]. fmin is the frequency for
which the power-law fit is the most probable with respect to the Kolmogorov–Smirnov distance [50].

A perhaps more common form of the law connects the rank of a word and its frequency

f(r) ¼ C � r�g,

where r is the rank of a word, C is a multiplicative constant, γ is the power-law exponent and f (r) is the
frequency of the word at rank r. We use the previous form because the fitting method of [50] can only
reliably tell the exponent for the tail of a distribution. In the rank-frequency case, the interesting
part of the fit would be at the first few ranks, while the most common words are in the tail of the
p( f ) distribution.

The two formulations can be easily transformed into each other (see [49]), which gives us

a ¼ 1
g
þ 1:

This enables us to compare our result to several others in the literature.
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Figure 1. Scaling of the number of distinct users who sent a geolocated message with city population. Each point represents an
MSA, the fitted line is the best maximum likelihood estimation (MLE) fit for the Person Model of [48].
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Figure 2. Scaling of the total number of words with city population. Each point represents an MSA, the fitted line is the best MLE
fit for the Person Model of [48].
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3. Results and discussion
3.1. Scaling of aggregate metrics
First, we checked how some aggregate metrics: the total number of users, the total number of individual
words and the total number of tweets change with city size. Figures 1–3 show the scaling relationship
data on a log–log scale, and the result of the fitted model, with exponents βusers, βwords and βtweets,
respectively. In all cases, ΔBIC was greater than 6, which confirmed nonlinear scaling. The total count
of tweets and words both have slightly superlinear exponents βtweets and βwords around 1.02. The
deviation from the linear exponent may seem small, but in reality it means that for a tenfold increase
in city size, the abundance of the quantity Y measured increases by 5%, which is already a significant
change. The number of users scales sublinearly (βusers = 0.95 ± 0.01) with the city population, though.
See table 1 for a summary of the fits on the aggregate metrics, together with the vocabulary size
exponent from §3.4.

We have to note here, that the ΔBIC values show that the nonlinear model fits the power-law scaling
of the total number of words and total number of tweets significantly better than βwords = 1 or βusers = 1
would. However, the Δβwords and the Δβusers errors calculated from bootstrapping the original data 100
times [48] are about 0.03, that cannot exclude the linear exponent, because both βwords and βusers are
around 1.02. The bootstrapping of the data results in a relative oversampling of the lower end of the
population distribution, where deviations are higher in the data due to the large fluctuations, which
might lead to an overestimated error in the scaling exponent measurements. Therefore, we conclude
that βwords and βtweets indicate slight superlinear scaling.



 btweets = 1.02 ± 0.03

104 107106

N
105

103

104

106

107

to
ta

l n
um

be
r 

of
 tw

ee
ts

105

Figure 3. Scaling of the total number of geolocated messages with city population. Each point represents an MSA, the fitted line is
the best MLE fit for the Person Model of [48].

Table 1. Values and bootstrapped errors of the exponent fits of the aggregated measures.

β Δβ

total number of users (βusers) 0.95 0.01

total tweet count (βtweets) 1.02 0.03

total tweet count (βwords) 1.02 0.03

Vocabulary size (βvocab) 0.68 0.01

royalsocietypublishing.org/journal/rsos
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It has been shown in [33] that total communication activity in human interaction networks grows
superlinearly with city size. This is in line with our findings that the total number of tweets and the
total word count scales superlinearly. However, the exponents are not as big as that of the number of
calls or call volumes in the previously mentioned article (βcall,call volume∈ [1.08, 1.14]), which suggests
that scaling exponents obtained from a mobile communication network cannot automatically be
translated to a social network such as Twitter.
3.2. Individual scaling of words
For the 11 732 words that had at least 10 000 occurrences in the dataset, we fitted scaling relationships
using the Person Model with exponents βw, where w denotes an arbitrary word from the dataset. We
used the exponent βwords = 1.0207 as an alternative model for deciding nonlinearity, because a word
that has a scaling law with the same exponent as the total number of words has the same relative
frequency in all urban areas. According to the ΔBIC values, the fits could either be inconclusive, linear
or nonlinear, with the nonlinear category being split into two by βw < 1 sublinear, and βw > 1
superlinear fits. The percentage of words falling into these four categories is shown in figure 4a. Most
words in our Twitter corpus scale either sublinearly (45%), or superlinearly (34%) with city size. The
distribution of the nonlinear exponents is visible in figure 4b. Words with a smaller exponent than
βwords, that are ‘sublinear’ do not follow the text growth, thus, their relative frequency decreases as
city size increases. Words with a greater exponent than βwords, that are ‘superlinear’ will relatively be
more prevalent in texts in bigger cities. Three example fits from the three scaling regimes are shown
in figure 5. The distribution of figure 4b also shows that even in the significantly nonlinear cases, most
of the exponents are around that of the bulk text βwords, which means that making predictions on the
expected word choice frequency of such words in individual cities based on the scaling laws might be
prone to errors, and that comparing the behaviour of such words based on their exponents is not
reliable near βwords, only in the far ends of the exponents regimes.

We sorted the words falling into the ‘linear’ scaling category according to their BIC values showing
the goodness of fit for the fixed β model. The first 50 words in table 2 according to this ranking are some
of the most common words of the English language, apart from some swear-words and abbreviations



0.6 1.4

0

15.0

12.5

10.0

7.5

5.0

2.5

1.2

0
–4

2
40

0
inconclusive

pe
rc

en
ta

ge
 o

f 
w

or
ds

 (
%

)

linear sublinear

sublinear

superlinear

superlinear

p
(b

w
) 

fo
r 

no
nl

in
ea

r 
ca

se
s

10

20

30

0

–2

0.2 0.4

lo
g

(p
(d

b)
)

1.0
bw

Db

0.8

(a) (b)

Figure 4. Distribution of word exponents. (a) Percentage of words falling into the inconclusive, linear, sublinear and superlinear
scaling categories according to the ΔBIC values of fits. (b) Distribution of βw exponents for sublinear and superlinear words. The tail
behaviour is in the inset, where δβw = |βwords − βw|.
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Figure 5. Three scaling relationships from the sublinear (a), linear (b) and superlinear (c) scaling regimes with the MLE fits
explained in the Methods section.

Table 2. The top 50 words as ranked according to the BIC values for a β = 1.0207 fixed exponent Person Model. These are
the words that correspond most to the scaling of the overall word volume, thus, they are the words that appear most
homogeneously in the texts of all urban areas.

the you and that for this just lol like with have but get not your was all

love what are when out know good now got can about one time day how they

too shit want back need why she people right some see going today fuck

will really her
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(e.g. lol) that are typical for Twitter language [11]. These are the words that are most homogeneously
present in the text of all urban areas.

From the first 5000 words according to word rank by occurrence, the most sublinearly and
superlinearly scaling words can be seen in table 3. Their exponent differs significantly from βwords, and
their meaning can usually be linked to the exponent range qualitatively. The sublinearly scaling words
mostly correspond to weather services reporting (flood 0.54, thunderstorm 0.61, wind 0.85), some
certain slang and swear-word forms (shxt 0.81, dang 0.88, damnit 0.93), outdoor-related activities
(fishing 0.82, deer 0.81, truck 0.90, hunting 0.87) and certain companies (walmart 0.83). There is a
longer tail with a distinctive peak in the range of superlinearly scaling words than in the sublinear
regime in figure 4b. This tail corresponds to Spanish words (gracias 1.41, por 1.40, para 1.39, etc.), that
could not be separated from the English text, since the shortness of tweets make automated language
detection very noisy. Apart from the Spanish words, again some special slang or swear-words (deadass
1.52, thx 1.16, lmfao 1.17, omfg 1.16), flight-reporting (flight 1.25, delayed 1.24, etc.) and lifestyle-related
words (fitness 1.15, fashion 1.15, restaurant 1.14, traffic 1.22) dominate this end of the distribution.

Thus, when compared to the slightly nonlinear scaling of total amount of words, not all words follow
the growth homogeneously with this same exponent. Though a significant amount remains in the linear



Table 3. The most sublinearly or superlinearly scaling words out of the 5000 most frequent words with small bootstrapped error
Δβw < 0.1.

word βw Δβw word βw Δβw

advisory 0.50 0.07 hoy 1.41 0.10

flood 0.54 0.07 gracias 1.41 0.09

severe 0.58 0.05 por 1.40 0.09

thunderstorm 0.61 0.06 para 1.39 0.10

warning 0.62 0.05 feliz 1.39 0.09

arkansas 0.65 0.10 con 1.39 0.08

statement 0.72 0.04 cuando 1.39 0.09

April 0.75 0.04 que 1.38 0.09

tractor 0.75 0.05 siempre 1.38 0.08

February 0.78 0.05 amor 1.37 0.08

chapel 0.78 0.09 ver 1.36 0.09

bama 0.80 0.09 mejor 1.36 0.08

ole 0.80 0.07 bien 1.35 0.09

unc 0.80 0.07 jajaja 1.35 0.10

beside 0.81 0.06 mas 1.35 0.10

deer 0.81 0.04 del 1.35 0.08

shelby 0.81 0.08 todo 1.35 0.09

kentucky 0.81 0.07 tengo 1.35 0.09

ian 0.82 0.07 porque 1.34 0.08

fishing 0.82 0.05 eres 1.34 0.08

dorm 0.82 0.04 linda 1.33 0.08

freeze 0.82 0.03 muy 1.33 0.09

carolina 0.83 0.08 quiero 1.33 0.08

walmart 0.83 0.05 hola 1.33 0.06

December 0.83 0.04 las 1.33 0.10

January 0.83 0.03 mucho 1.33 0.08

tornado 0.84 0.07 nada 1.33 0.08

accounting 0.84 0.06 mañana 1.32 0.09

mountains 0.85 0.06 amo 1.32 0.09

wind 0.85 0.10 soy 1.32 0.08

campus 0.85 0.04 les 1.31 0.07

exams 0.85 0.06 hay 1.30 0.09

advisor 0.85 0.04 mis 1.29 0.07

mart 0.85 0.05 bueno 1.28 0.07

roommates 0.86 0.05 gusta 1.28 0.07

barrel 0.86 0.05 brunch 1.28 0.06

roads 0.86 0.05 mal 1.27 0.08

lmbo 0.86 0.08 museum 1.27 0.07

duke 0.86 0.06 uno 1.27 0.08

logan 0.87 0.08 flight 1.25 0.07

roommate 0.87 0.03 dos 1.24 0.07

(Continued.)
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Table 3. (Continued.)

word βw Δβw word βw Δβw

baptist 0.87 0.06 landed 1.24 0.08

exam 0.87 0.05 dice 1.24 0.07

brooke 0.87 0.05 casa 1.24 0.07

bahaha 0.87 0.04 grande 1.23 0.06

ski 0.87 0.07 fin 1.22 0.06

slowly 0.87 0.09 traffic 1.22 0.08

further 0.87 0.07 com 1.22 0.05

hunting 0.87 0.02 lounge 1.21 0.07

ymca 0.87 0.04 heights 1.20 0.06

royalsocietypublishing.org/journal/rsos
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or inconclusive range according to the statistical model test, most words are sensitive to city size and
exhibit a super- or sublinear scaling. Those that fit the linear model the best, correspond to a kind of
‘core-Twitter’ vocabulary, which has a lot in common with the most common words of the English
language, but also shows some Twitter-specific elements. A visible group of words that are among the
most super- or sublinearly scaling words are related to the abundance or lack of the elements of
urban lifestyle (e.g. deer, fitness). Thus, the imprint of the physical environment appears in a
quantifiable way in the growths of word occurrences as a function of urban populations. Swear-words
and slang, that are quite prevalent in this type of corpus [7,8], appear at both ends of the regime that
suggests that some specific forms of swearing disappear with urbanization, but the share of overall
swearing on Twitter grows with city size. The peak consisting of Spanish words at the superlinear
end of the exponent distribution marks the stronger presence of the biggest non-English speaking
ethnicity in bigger urban areas. This is confirmed by fitting the scaling relationship to the Hispanic or
Latino population of the MSA areas (the exponent fitted on the data from [54] with the methods of
the paper βHisp. population = 1.31 ± 0.14), which despite the large error, is very superlinear.

Using the census-based MSA definitions as delineations for city boundaries might have an effect on
the measured exponents as well. Defining city boundaries based on different population density and
commuting flow thresholds and aggregation might lead to inconsistent fits for the same urban
measure such as the number of patents [25]. However, the change in the exponent β in the cited paper
is continuous in the parameter space of the aggregation, which means that our results for the different
βw exponents would still hold when the exponents of different words are compared to each other.
Moreover, the spatial distribution of Twitter activity in cities or metropolitan areas is highly
concentrated on the most populous areas (see, for example, fig. 1 in [55]), which means that for this
specific dataset, results would not change very much by imposing stricter boundaries or more
sophisticated boundary detection algorithms, that still rely on population density [25,56].
3.3. Zipf’s Law on Twitter
Figure 6 shows the distribution of word counts in the overall corpus. The power-law fit gave a minimum
count fmin = 13, and an exponent α = 1.682 ± 0.001. To check whether this law depends on city size, we
fitted the same distribution for the individual cities, and according to figure 7, the exponent gradually
decreases with city size, that is, it decreases with the length of the text.

That the relative frequency of some words changes with city size means that the frequency of words
versus their rank, Zipf’s Law, can vary from metropolitan area to metropolitan area. We obtained that the
exponent of Zipf’s Law depends on city size, namely that the exponent decreases as text size increases. It
means that with the growth of a city, rarer words tend to appear in greater numbers. The values obtained
for the Zipf exponent are in line with the theoretical bounds 1.6–2.4 of [57]. In the communication
efficiency framework [57,58], decreasing α can be understood as decreased communication efficiency
due to the increased number of different tokens, that requires more effort in the process of
understanding from the reader. Using more specific words can also be a result of the 140 character
limit, that was the maximum length of a tweet at the time of the data collection, and it may be a
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similar effect to that of texting [59]. This suggests that the carrying medium has a huge impact on the
exact values of the parameters of linguistic laws.

The Zipf exponent measured in the overall corpus is also much lower than the α = 2 from the original
law [40]. We do not observe the second power-law regime either, as suggested by Montemurro [60] and
Ferrer i Cancho & Solé [49]. Because most observations so far hold only for books or corpora that contain
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longer texts than tweets, our results suggest that the nature of communication, in our case, Twitter itself
affects the parameters of linguistic laws.

3.4. Vocabulary size change
Figure 8 shows the vocabulary size as a function of the metropolitan area population, and the power-law
fit. It shows that, contrary to the previous aggregate metrics, the vocabulary size grows sublinearly
(βvocab = 0.68) with the city size. This relationship can also be translated to the dependency on the total
word count, which would give a βHeaps = βvocab/βwords = 0.68/1.02 = 0.67, another sublinear scaling.
Sampling texts of the same length (106 words) from cities with different populations yielded almost
constant vocabulary size. Thus, city size does not affect the vocabulary size considerably. Therefore,
the sublinear exponent βvocab = 0.68, and the derived Heaps’ exponent βHeaps = 0.67 is in line with
Heaps’ Law exponents found in the literature, although it might differ from the 0.49 to 0.54 range
found in other English corpora [61].
Soc.open
sci.6:190027
4. Conclusion
In this paper, we investigated the scaling relations in citywise Twitter corpora coming from the
metropolitan and micropolitan statistical areas of the United States. We could observe a slightly
superlinear scaling decreasing with the city population for the total volume of the tweets and words
created in a city. When observing the scaling of individual words, we found that a certain core
vocabulary follows the scaling relationship of that of the bulk text, but most words are sensitive to
city size, and their frequencies either increase at a higher or a lower rate with city size than that of the
total word volume. At both ends of the spectrum, the meaning of the most superlinearly or most
sublinearly scaling words is representative of their exponent. We also examined the increase in the
number of distinct words with city size, which has an exponent in the sublinear range in line with
Heaps’ Law from linguistics.

Data accessibility. Owing to Twitter’s policy, we cannot publicly share the original dataset used in this analysis. However,
aggregated results from which all calculations can be recreated are available in at http://bokae.web.elte.hu/papers/
2018/word_scaling and from the Dryad Digital Repository: https://doi.org/10.5061/dryad.824f24t [62].
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