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Ebola virus disease (EVD) is a severe infection with an
extremely high fatality rate spread through direct contact with
body fluids. A promising Ebola vaccine (rVSV-ZEBOV) may
soon become universally available. We constructed a game-
theoretic model of Ebola incorporating individual decisions
to vaccinate. We found that if a population adopts selfishly
optimal vaccination strategies, then the population vaccination
coverage falls negligibly short of the herd immunity level. We
concluded that eradication of Ebola is feasible if voluntary
vaccination programmes are coupled with focused public
education efforts. We conducted uncertainty and sensitivity
analysis to demonstrate that our findings do not depend on the
choice of the epidemiological model parameters.

1. Introduction
Ebola virus disease (EVD), formerly known as Ebola haemo-
rrhagic fever, is an acute and often fatal viral infection caused
by viruses of the genera Ebolavirus from the family Filoviridae [1].
It is transmitted through direct contact with body fluids (blood,
urine, saliva, sweat, faeces, vomit, breast milk and semen) from
infected or recently deceased infectious individuals, contaminated
objects (needles and syringes) and wild animals (fruit bats and
primates) [1,2]. Those who contract the disease experience flu-like
symptoms for the first 1–3 days of the infection, such as fever,
headache, muscle aches and fatigue [3]; which are later followed
by additional afflictions, like vomiting, diarrhoea, abdominal
pains, loss of appetite and haemorrhages [1,3,4]. The disease
has a high case-fatality ratio and significant potential to develop
into an epidemic [5]. The World Health Organization estimates
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the fatality rate of those infected to be approximately 50% [1], with rates for past outbreaks ranging from
25% to 90% [5,6].

After initial exposure, there is a 2–21-day latency period before symptoms develop [4,7]. It is estimated
that this incubation period lasts 8–10 days, on average [4]. As soon as symptoms emerge, individuals are
capable of transmitting the disease [2].

The 2014–2016 outbreak in West Africa was the largest Ebola outbreak ever recorded [1,3,5,8,9]. It
is believed that the first case occurred in Guinea during December of 2013 [10]. The disease infected
over 28 000 people and caused at least 11 300 deaths [11], exceeding the number of cases and mortalities
from all other Ebola outbreaks combined [1,5]. In addition to the personal losses dealt to families
and communities, the disease ravaged the overall health and economic systems of the three most
affected countries (Guinea, Liberia and Sierra Leone) [3]. The epidemic received widespread press and
engendered heavy international support for victims of the disease.

One noteworthy aspect of Ebola outbreaks is that burial rituals, which involve direct contact with
the deceased, tend to serve as a common medium of transmission [1,8,12]. For instance, in the 1995
epidemic in the Democratic Republic of Congo, exposure to infected corpses caused two-thirds of new
infections [13]. During the West Africa epidemic, 60% of EVD cases in Guinea were linked to traditional
funeral rites [14,15]. In Sierra Leone, local health authorities traced as many as 365 deaths to participation
in the funeral of one traditional healer [15].

One principal reason the West Africa epidemic was so large is that rigid cultural norms and traditional
belief systems, which tend to make individuals less likely to adopt safe practices, allowed for rapid
proliferation of the disease. Many people in West Africa simply deny the existence of Ebola, believing it
to be government propaganda made to collect foreign aid dollars or manipulate the population [16,17].
To some, Ebola is seen more as a ‘curse’ rather than a virus; as a result, family members are reluctant
to help or encourage loved ones to receive treatment [16], increasing their risk of exposure to the
disease. Others refuse to be quarantined out of fear that the government might deliberately infect them
during quarantine [17]. This mistrust for government, rooted in a history of corruption and political
instability [18], even prompted some citizens to stone and kill aid workers [19], further impeding
measures to contain EVD. Additionally, the inclination to give deceased family members traditional
burials has prompted many to host burials in secret [16,17] and abstain from contacting special burial
teams trained to properly and safely dispose of contaminated bodies [16]. Evidently, strong traditional
belief systems and customs generally increase transmission rates and accelerate spread of the disease in
Ebola epidemics.

The West Africa outbreak impelled clinical development of an Ebola vaccination [20]. As of now,
the recombinant Vesicular Stomatitis Virus Zaire Ebolavirus vaccine (rVSV-ZEBOV) is the only vaccine
that passes safety and immunogenicity tests [21]. In a recent ring vaccination clinical trial, rVSV-ZEBOV
had an estimated efficacy rate between 74.7% and 100% [22]. Although it is still unknown how long
the vaccine protects susceptible individuals and how effective the vaccine will be when distributed on
a large scale, no cases of EVD have occurred 10 or more days following vaccination of individuals in
clinical trials.

A significant number of mathematical models have been developed to describe the transmission
dynamics of EVD [3,13,17,23–25]. Ebola models are typically based on SEIR epidemiological models,
in which susceptible, exposed (but not infectious), infected (and infectious) and recovered (SEIR)
individuals are divided into homogeneous compartments. EVD transmission owing to contact with
infectious corpses has been accounted for in different ways. Some models incorporate a separate
compartment for infectious corpses [3,13,17,24,25], while others boost the transmission rate owing to
infectious living individuals or increase the duration of infection [23,26,27].

To the best of our knowledge, no existing epidemiological models of Ebola incorporate vaccination,
mainly owing to the lack of an approved vaccine. Here, we constructed such a model by adopting a
version of the model in [3] and adding a compartment for vaccinated individuals. Such epidemiological
models can be used to determine mandatory vaccination programmes. However, for many infectious
diseases, preventive actions rely on voluntary individual participation rather than mandatory policies.
Individual vaccination decisions are often informed on what the rest of the population does; such
strategic decisions can be framed within game-theoretic models.

Game theory has long been used to model various biological phenomena [28–30]. In particular, a
game-theoretic framework has been applied to vaccination decisions [31]. It accounts for the probability
of infection of a focal individual given the vaccination decisions of the rest of the population, as well
as for the (perceived) cost of vaccination versus the cost of the infection. This approach has been used
to study individual vaccination decisions for smallpox [32], influenza [33], measles [34], rubella [35]
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Figure 1. Compartmentalmodel of Ebolawith vaccination. The population is divided into five compartments: susceptible (S), vaccinated
(V), exposed (E), infected (I) and recovered (R) individuals. Corpses of recently deceased but still infectious individuals correspond to the
D compartment. Susceptible individuals vaccinate at the rate ϕ and acquire temporary immunity from the disease; immunity wanes at
the rateω.

and toxoplasmosis [36]. This modelling framework can also be adapted to address other types of
interventions such as insecticide-treated cattle to eliminate African sleeping sickness [37], mosquito
repellent to combat dengue fever [38] and insecticide-treated bed nets to fight malaria [39]. See also [40]
for a review of recent applications of statistical physics methods to vaccination decisions.

In this paper, we construct a game-theoretic model of individual decisions to vaccinate for Ebola.
We first construct an epidemiological compartment model of Ebola with a compartment for vaccinated
individuals. We use this model to compute the disease-free equilibrium, the endemic equilibrium, the
basic reproduction number and the herd immunity threshold vaccination rate. We then let individuals
choose whether to vaccinate or not vaccinate. Individuals weigh the probability of getting infected,
which depends on the vaccination decisions of the rest of the population, and the cost of vaccination
versus the cost of infection. We compute the Nash equilibrium vaccination rate of the population by
comparing the pay-offs of the two strategies (to vaccinate or to not vaccinate). The fundamental question
we are interested in is this: if the population adopts the optimal (Nash equilibrium) vaccination rate,
would it be possible to eradicate the disease? We find that the optimal vaccination rate falls short of the
herd immunity vaccination rate, which is a typical outcome for similar models of many other diseases.
However, what makes our Ebola model unique is the high fatality rate of the disease (i.e. an extremely
high cost of infection). This forces the optimal vaccination rate to be very close to the herd immunity
vaccination rate, and we infer that adding additional measures, such as public education initiatives, may
be sufficient to push the voluntary vaccination rate to the herd immunity level.

2. Material and methods
We adopted a slightly simplified version of the epidemiological model of Ebola from Agusto [3]
and included a compartment for vaccinated individuals; see figure 1 for the model diagram. The
entire population (N) is divided into five homogeneous compartments—susceptible (S), vaccinated (V),
exposed (E), infected (I) and recovered (R) individuals. We also account for corpses of recently deceased
but still infectious individuals in the D compartment.

Individuals enter the population at a constant rate Π , by birth or immigration, and leave the
population at a constant rate μ representing death owing to natural causes. Individuals in the susceptible
class enter the vaccinated class at a rate ϕ. Preliminary studies have shown the rVSV-ZEBOV vaccine to
be highly effective [41], and no individuals in clinical trials have contracted the disease 10 days or more
after the vaccination. Therefore, we assumed that the vaccine is 100% effective: an individual residing in
the V compartment cannot contract Ebola. To compensate for this possibly over-optimistic assumption,
we considered the worst case scenario for the duration of the immunity granted by the vaccine. The
effect of the vaccine wears off at a rate ω, and our baseline value of this parameter is chosen so that the
immunity wanes on average in one year.

Susceptible individuals contract Ebola at a rate λ. Following [3,17], we have

λ = βξ (I + τD)
N

, (2.1)

where β is the base effective contact rate, τ is a modification parameter accounting for differences in
infectiousness between infected and deceased individuals, and ξ is a modification parameter which
accounts for the strength of cultural norms in the population.
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Table 1. Summary of the parameters of the model.

symbol description

Π recruitment rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ natural death rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ vaccination rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω vaccine wear-off rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α incubation rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ recovery or death rate of symptomatic individuals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ burial rate of Ebola-deceased individuals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β effective contact rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ modification parameter for infectiousness of contaminated corpses
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ strength of traditional belief systems and customs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Parameter values and ranges.

symbol value range source

Π 400 day−1 (360, 440) day−1 [17]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ (365 · 60)−1 day−1 ((66 · 365)−1, (54 · 365)−1) day−1 assumed
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω 365−1 day−1 ((10 · 365)−1, (0.5 · 365)−1) day−1 assumed
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α 0.1 day−1 (1/11, 1/8) day−1 [4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ 0.2683 day−1 (0.2415, 0.2951) day−1 [17]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ 0.5 day−1 (1/3, 1) day−1 [17]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β 0.3045 day−1 (0.2741, 0.3350) day−1 [17]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ 0.21 (0.1, 0.5) [17,25]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ξ varies (2, 5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ varies (0, 0.002)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

After contracting the disease, exposed individuals experience a latency period as the virus incubates.
During this time, individuals are not infectious. Exposed individuals move to the infected class at a
rate α. As individuals are approximately equally likely to die from Ebola as they are to recover [1,3],
both the disease-induced death rate and the recovery rate are represented by the same parameter γ .
Deceased individuals are no longer infectious once they are buried, which happens at a rate δ. Recovered
individuals are known to develop antibodies lasting at least a decade [15]. While reinfection with Ebola
virus is rare, it may persist in body fluids resulting in potential reactivation of the illness [42]. In
our model, we assume that recovered individuals cannot be reinfected with Ebola. Table 1 contains a
summary of the notation for the model parameters, and table 2 contains baseline values of the parameters
used in our computations. We assume an average individual lifespan of 60 years.

The following system of differential equations describes our epidemiological model:

dS
dt

= Π + ωV − (ϕ + μ)S − λS,

dV
dt

= ϕS − (ω + μ)V,

dE
dt

= λS − (α + μ)E,

dI
dt

= αE − (2γ + μ)I,

dR
dt

= γ I − μR

and
dD
dt

= γ I − δD.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)
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The disease free equilibrium (DFE) is then given by

(S0, V0, E0, I0, R0, D0) =
(

Π (ω + μ)
μ(ϕ + ω + μ)

,
Πϕ

μ(ϕ + ω + μ)
, 0, 0, 0, 0

)
. (2.3)

The basic reproduction number R0 represents the expected number of secondary cases that an infected
individual will cause in a purely susceptible population. Using the next-generation matrix method [43] to
compute the basic reproduction number for our model of Ebola, we consider the dynamics of the classes
E, I and D, which contribute to new infections. Let F be the sensitivity matrix of the appearance rate of
new infections, and V be the sensitivity matrix of the transition rate of existing infections. Then

F =

⎡
⎢⎢⎣

0
βξ (ω + μ)
ϕ + ω + μ

βξτ (ω + μ)
ϕ + ω + μ

0 0 0
0 0 0

⎤
⎥⎥⎦ and V =

⎡
⎢⎣α + μ 0 0

−α 2γ + μ 0
0 −γ δ

⎤
⎥⎦ . (2.4)

The basic reproduction number R0 is equal to the spectral radius of the matrix FV−1:

R0 = αβξ (ω + μ)(δ + γ τ )
δ(ϕ + ω + μ)(α + μ)(2γ + μ)

. (2.5)

As long as R0 > 1, the system converges to the endemic equilibrium given by

S∗ = Π (ω + μ)[α(γ + μ) + μ(2γ + μ)]
μ(ϕ + ω + μ)[R0(α + μ)(2γ + μ) − αγ ]

,

V∗ = ϕ

ω + μ
S∗,

E∗ = 2γ + μ

α
I∗,

I∗ = Πα(R0 − 1)
α(R0 − 1) + R0μ(2γ + μ)

,

R∗ = γ

μ
I∗,

D∗ = γ

δ
I∗

and N∗ = S∗ + V∗ + E∗ + I∗ + R∗ = βξα(δ + γ τ )
δ(α + μ)(2γ + μ)

S∗.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

Note that if R0 = 1, then the endemic equilibrium values are equal to the disease-free values in (2.3).
Also, the endemic equilibrium expressions make biological sense only if R0 > 1.

By setting R0 = 1 in (2.5), we can determine the threshold vaccination rate necessary to reach herd
immunity:

ϕHI = (ω + μ)[αβξ (δ + γ τ ) − δ(α + μ)(2γ + μ)]
δ(α + μ)(2γ + μ)

. (2.7)

The graphs of R0 as a function of the vaccination rate ϕ for two different values of ξ are shown in
figure 2. If ϕ > ϕHI, then R0 < 1 and the disease is eradicated. If ϕ < ϕHI, then R0 > 1 and the disease
remains endemic.

3. Results
3.1. Optimal vaccination strategies
In this section, we set up and solve a game-theoretic model of optimal individual vaccination strategies
based on the epidemiological model of Ebola presented in figure 1. An individual has two strategies to
chose from: to vaccinate or to not vaccinate. To each of the two strategies we assign an expected pay-off
following the general framework of [31]:

Ev = −Cv − πvCi

and Env = −πnvCi,

}
(3.1)

where Ev and Env are the pay-offs of individuals who chose to vaccinate or not vaccinate, respectively;
πv and πnv are the probabilities of getting infected for a vaccinated and non-vaccinated individual,
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Figure 2. The basic reproduction number as a function of the vaccination rate ϕ. The threshold value of the vaccination rate necessary
to reach herd immunity is denoted by ϕHI. (a) ξ = 2, which represents a community with partial adherence to traditions and customs
during an epidemic; (b) ξ = 4, which represents a community with stricter adherence to traditions and customs.

respectively; Ci is the cost of infection, and Cv is the cost of vaccination. The cost parameters include
direct costs, such as the cost of the vaccine or the cost of medical treatment in case of infection; indirect
costs, such as potential side effects of the vaccine or morbidity risks of the infection; and perceived costs,
such as vaccine scares or underestimating the dangers of the disease.

As scaling the pay-off functions by a constant does not affect the outcome of the game, we divide both
equations in (3.1) by Ci to obtain

Ev = −C − πv

and Env = −πnv,

}
(3.2)

where C = Cv/Ci is the cost of vaccination relative to the cost of infection.
To determine the probabilities of getting infected for vaccinated and non-vaccinated individuals, we

use the diagram in figure 1. A non-vaccinated individual resides in the S compartment. It can leave the
susceptible class by contracting Ebola (at a rate λ) or by dying from natural causes (at a rate μ). Hence
the probability a non-vaccinating individual moves from the S compartment to the E compartment is
λ/(λ + μ). Similarly, an individual residing in the E compartment moves to the I compartment with
probability α/(α + μ). It follows that

πnv = λ

λ + μ

α

α + μ
. (3.3)

A vaccinated individual may still contract Ebola if the vaccine wears off, leaving the individual
susceptible. The probability of this event is ω/(ω + μ), and hence the probability of a singularly
vaccinated individual becoming infected is

πv = ω

ω + μ

λ

λ + μ

α

α + μ
. (3.4)

We note that these probabilities are short-term calculations corresponding to a singular individual
vaccination decision in our strategic game rather than the lifetime probabilities of infection.

We have set up the pay-off functions for the two strategies. We are now looking for conditions when
an individual should vaccinate and for the optimal (Nash equilibrium) population vaccination strategy.
Let ϕpop be the population vaccination rate. If ϕpop > ϕHI, then R0 < 1, and the population reaches
the disease-free equilibrium. In this case, λ = 0 and the probability of getting infected is zero for any
individual. It follows that a focal individual should not vaccinate, as vaccinating incurs some cost but
provides no benefit: Ev = −C < 0 = Env.

If ϕpop < ϕHI, then R0 > 1 and the population reaches the endemic equilibrium. In this case

λ = βξ (I∗ + τD∗)
N∗ , (3.5)

where I∗, D∗ and N∗ depend on the population vaccination rate ϕpop; they are given by equations in
(2.6). To determine the best strategy for a focal individual when the disease is endemic, we consider the
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difference in pay-offs of the two strategies:

E = Ev − Env = −C + μ

ω + μ

λ

λ + μ

α

α + μ
. (3.6)

An individual should vaccinate if E > 0 and not vaccinate if E < 0. In other words, the best strategy of
the focal individual depends on the prevalence of the disease (which, in turn, depends on the population
vaccination rate ϕpop) and the cost of vaccination relative to the cost of infection. If

C <
μ

ω + μ

λ

λ + μ

α

α + μ
, (3.7)

then the risk of infection is higher than the relative cost of vaccination, and the individual should
vaccinate. If, on the other hand

C >
μ

ω + μ

λ

λ + μ

α

α + μ
, (3.8)

then the relative cost of vaccination outweighs the risk of infection, and the individual should not
vaccinate.

The Nash equilibrium strategy is the population vaccination rate ϕNE such that no individual can
improve its pay-off by deviating from this strategy. If the population is in the disease-free equilibrium,
then clearly ϕNE = 0. If the disease is endemic, then the Nash equilibrium vaccination rate is the solution
to the equation Ev = Env, that is

C = μ

ω + μ

λ

λ + μ

α

α + μ
, (3.9)

where λ is a function of the population vaccination rate; it is given by equation (3.5). Substituting the
expressions for I∗, D∗ and N∗ from (2.6) into (3.5) and solving the equation (3.9) for ϕ, we obtain

ϕNE = x
[

αβξ (δ + γ τ )y − Cδx(α + μ)z
δ(α + μ)(2γ + μ)y

− 1
]

, (3.10)

where

x = ω + μ, (3.11)

y = αμ − Cx(α + μ) (3.12)

and z = α(γ + μ) + μ(2γ + μ). (3.13)

The graphs of the optimal vaccination rate ϕNE as a function of the relative cost of vaccination C
for four different values of the parameter ξ are shown in figure 3a. Note that the optimal vaccination
rate ϕNE never exceeds the herd immunity threshold vaccination rate ϕHI, and they are the same only
when the cost of vaccination is zero. However, at low relative vaccination costs, the strategically optimal
vaccination rate ϕNE remains close to the threshold for herd immunity. Furthermore, there is a threshold
relative cost of vaccination Cmax after which no individual will vaccinate.

The graphs of the basic reproduction number R0 as a function of the relative cost of vaccination C,
assuming the population adopts the optimal vaccination strategy, are shown in figure 3b. As the Nash
equilibrium vaccination rate remains close to the herd immunity threshold vaccination rate for small
relative vaccination costs, the basic reproduction number R0 remains very close to 1 as long as the relative
vaccination cost is sufficiently small.

3.2. Uncertainty and sensitivity analysis
We performed the uncertainty and sensitivity analysis [44,45] of both epidemiological and game-
theoretic models. Table 2 presents the ranges and baseline values of the model parameters. We considered
three response functions for the uncertainty and sensitivity analysis: (i) the basic reproduction number
R0 from the epidemiological model; (ii) the optimal vaccination rate ϕNE from the game-theoretic model
and (iii) the relative difference between the herd immunity vaccination rate and the Nash equilibrium
vaccination rate (ϕHI − ϕNE)/ϕHI.

We sampled 1000 values of each model parameter from the intervals listed in table 2 and used
the Latin hypercube sampling (LHS) method to generate data presented in figure 4. The LHS is a
statistical method for generating efficient near-random samples of a multidimensional parameter space.
The interval range for each parameter is divided into pieces—1000 in our case—of equal probability, and
then exactly one value of the parameter is chosen from each piece. These sampled values for different
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Figure 3. (a) Optimal vaccination rateϕNE as a function of the relative cost of vaccination C for four different values ofξ . In the parameter
area below each graph, an individual should vaccinate, and in the parameter area above each graph, an individual should not vaccinate.
The optimal vaccination rate reaches the herd immunity threshold level ϕHI only when C = 0: ϕNE(0)= ϕHI (shown for the ξ = 4
graph) and ϕNE(C)< ϕHI if C > 0. Nobody should vaccinate when the cost of vaccination relative to the cost of the infection is greater
than a threshold value Cmax regardless of the disease prevalence (shown for the ξ = 4 graph). (b) Basic reproduction numberR0 as
a function of the relative vaccination cost C, assuming that the population adopts the optimal vaccination rate ϕNE. The value ofR0

becomes constant once the relative cost of vaccination reaches Cmax (shown for the ξ = 4 graph) because the optimal vaccination rate
drops to 0 in this case.

parameters are randomly matched to generate 1000 samples in the entire parameter space. Figure 4a,c,e
show the spread of the values of the corresponding response functions owing to uncertainty in the values
of the model parameters. Figure 4b,d,f show the partial rank correlation coefficients (PRCCs) for the
model parameters, which demonstrate how sensitive the corresponding response function is to changes
in different parameter values.

The optimal vaccination rate ϕNE (and hence the relative difference between the herd immunity
vaccination rate and the Nash equilibrium vaccination rate given by (ϕHI − ϕNE)/ϕHI) depends on the
relative cost of vaccination C. As an infected individual has about 50% chance of dying from the disease,
the cost of infection Ci is extremely high. It follows that the cost of vaccination relative to the cost
of infection C = Cv/Ci is very small. We therefore used a small value C = 10−4 of the relative cost of
vaccination for these two response functions.

Not surprisingly, the vaccination rate ϕ, the strength of cultural norms parameter ξ and the rate of
vaccine wear-off ω have the greatest effect on the basic reproduction number R0 (figure 4b). The negative
value of the PRCC for the vaccination rate ϕ means that increasing the value of ϕ results in decreasing
the value of the response function (the basic reproduction number R0). Conversely, increasing the values
of ξ and ω results in increasing the value of R0.

For the game-theoretic model response functions, the most influential parameters are the strength
of cultural norms parameter ξ and the rate of vaccine wear-off ω (the vaccination rate ϕ is no longer
a parameter but rather an outcome of the game-theoretic model). While ω has a positive PRCC for
both game-theoretic response functions, the cultural norms parameter ξ has a positive PRCC value
for the optimal vaccination rate ϕNE, and a negative PRCC value for the relative difference between
the herd immunity vaccination rate and the Nash equilibrium vaccination rate (ϕHI − ϕNE)/ϕHI. This
can be explained as follows. As increasing ξ results in higher values of R0 (cf. (2.5) and figure 4b),
rational individuals have more incentive to vaccinate given the higher prevalence of the disease. Hence,
increasing ξ results in higher values of the Nash equilibrium vaccination rate ϕNE. For the very same
reason, the resulting optimal vaccination rate is going to be closer to the herd immunity vaccination rate.

The most important implication of the uncertainty and sensitivity analysis we performed is based on
figure 4e. For sufficiently small values of the relative vaccination cost C (we used C = 10−4), the relative
difference between the herd immunity vaccination rate and the optimal vaccination rate is almost always
less than 1%, and in most cases is less than 0.5% regardless of the values of the epidemiological model
parameters. As we mentioned earlier, the relative cost of vaccination is actually very small owing to the
extremely high cost of infection Ci. This is a distinct feature of our game-theoretic model of Ebola, which
is notably absent from similar models for other infectious diseases. The conclusion is that the optimal
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Figure 4. Results of the uncertainty (a,c,e) and sensitivity (b,d,f ) analysis. Three response functions were considered: (i) the basic
reproduction numberR0 (a) and (b); (ii) the optimal vaccination rate ϕNE (c) and (d) and (iii) the relative difference between the herd
immunity vaccination rate and the optimal vaccination rate (ϕHI − ϕNE)/ϕHI (e) and (f ). The value C = 10−4 was used for the response
functions (ii) and (iii).

vaccination rate is always extremely close to the herd immunity vaccination rate, and this outcome of
our game-theoretic model is not affected by the uncertainty in the values of the epidemiological model
parameters.

4. Discussion
Using the framework of [31], we adopted an epidemiological model of Ebola [3] by incorporating a
compartment for vaccinated individuals, and constructed a game-theoretic model of individual-level
vaccination decisions. Such a game-theoretic model can be thought of as voluntary participation of
individuals in immunization measures. Voluntary vaccination protocols present the following challenge:
if a certain proportion of the population is already vaccinated, then the cost (and perceived risk) of
vaccination can outweigh the risk of infection. Consequently, achieving herd immunity vaccination levels
becomes very difficult with voluntary compliance.

It is not surprising that our findings align with this general theme. We discovered that if the
population adopts selfishly optimal vaccination strategies (i.e. the Nash equilibrium vaccination rate
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ϕNE in our game-theoretic model), then the population vaccination coverage falls short of the herd
immunity levels unless the cost of vaccination is negligible (i.e. zero mathematically). However, what
sets the Ebola model apart from other diseases for which this general framework had been applied to
is the high fatality rate. The individuals have about 50% chance of dying if contracting Ebola [1,3]. This
makes the cost of infection Ci in the game-theoretic model extremely large, and consequently, the cost
of vaccination relative to the cost of infection C = Cv/Ci infinitesimally small. This results in the optimal
vaccination rate being almost equal to the herd immunity threshold vaccination rate (figure 3a). For
example, if C = 10−4, then the optimal vaccination rate is within 1% of the herd immunity vaccination rate
(figure 4e).

One possible implication of this finding is that a voluntary vaccination programme for Ebola can be
extremely effective, and may even result in complete eradication of Ebola if coupled with additional
measures such as public education initiatives and monetary incentives or subsidies. Public education
initiatives can inform people on the existence, symptoms and spread of Ebola, which would decrease
transmissions. Mass media campaigns could potentially encourage individuals who might otherwise
not vaccinate to do so [46]. Additionally, collaboration with health officials, spiritual leaders and
anthropologists can help replace dangerous ceremonies with safer alternatives [18]. Such programmes
would effectively decrease the transmission rate, which studies have shown would be highly effective in
reducing the spread of Ebola [17]. Vaccination subsidies or incentives would help drive the (direct) cost
of vaccination down, effectively reducing the relative cost of vaccination C even further.

The game-theoretic analysis we employed in this paper assumes that individuals are rational and
possess perfect knowledge of the population vaccination level and the direct and indirect costs of
vaccination and infection. However, this is not the case in reality. This is why it is crucial to use public
education measures in order to nudge irrational or misinformed individuals to make rational decisions
based on objective information regarding vaccination.

We performed uncertainty and sensitivity analysis of our model using the LHS method (figure 4). The
most influential parameters in the epidemiological model were: (i) the vaccination rate ϕ; (ii) the rate of
vaccine wear-off ω; and (iii) the cultural norms parameter ξ . The vaccination rate is not a parameter
(but an outcome) of a game-theoretic model, so the rate of vaccine wear-off and the cultural norms
parameter had the highest influence on the optimal vaccination rate. The uncertainty analysis of the
relative difference between the optimal vaccination rate and the herd immunity vaccination rate as
a response function shows that, provided the cost of vaccination relative to the cost of infection is
sufficiently small, this relative difference is almost always less than 1%, despite the uncertainty in the
epidemiological parameter values.

There are several directions in which our results could be extended. First, the general framework
of [31] is based on the static analysis that assumes the system has reached an equilibrium (either a disease-
free equilibrium or an endemic equilibrium) before individuals decide on their personal vaccination
strategies. However, convergence to the equilibrium state normally occurs on a timescale longer than
the one on which individuals make vaccination decisions. The probability of getting infected changes
dynamically depending on the disease prevalence. Individuals may have more incentive to vaccinate at
the beginning of the epidemic, when the force of infection is high. Modelling such phenomena requires
developing dynamic game-theoretic methods where individual vaccination decisions depend on the
current state of the system and affect its further evolution. Second, an epidemiological model based on
ordinary differential equations assumes a well-mixed population. It does not take into account possibly
different interaction (and hence disease transmission) rates between spatially and socially connected
groups of individuals. Therefore, it would be beneficial to construct a spatially explicit game-theoretic
model of Ebola vaccination decisions (e.g. as a game on a graph) to account for this factor. Moreover,
as Ebola cases usually occur as localized outbreaks, employing a dynamic or a spatially explicit model
or a combination of both should provide a more realistic view into the effect of individual vaccination
decisions on the control and potential eradication of Ebola.

Finally, we made some assumptions on the efficacy of the vaccine based on limited preliminary test
data. These assumptions may need to be revisited once the vaccine is released and more actual data are
accumulated.

Data accessibility. This article has no additional data.
Authors’ contributions. I.V.E. conceived of the project with input from AB, R.R.-G. and K.W., and supervised the study.
A.B., R.R.-G. and K.W. carried out all computations and prepared the figures; they contributed equally to the project,
and their order of authorship was determined alphabetically. All the authors participated in writing and editing the
paper. All the authors gave their final approval for publication.
Competing interests. We have no competing interests.



11

rsos.royalsocietypublishing.org
R.Soc.opensci.5:171591

................................................
Funding. This research was conducted as part of a Research Experiences for Undergraduates program at the University
of North Carolina at Greensboro in summer 2017, which was funded by NSF grant DMS-1659646. A.B., R.R.-G. and
K.W. were undergraduate student participants, and I.V.E. was a faculty mentor.
Acknowledgements. We thank M. Leshowitz and P. Waiker, who served as graduate assistants during the REU program
where this research was conducted, and F. Agusto for sharing her methodology for performing sensitivity analysis.

References
1. WHO. 2017 WHO Ebola virus disease, fact sheet

no. 103. See http://www.who.int/mediacentre/
factsheets/fs103/en/. (Accessed July 26, 2017).

2. Centres Disease Control (CDC) P Ebola (Ebola virus
disease). 2017 Transmission. See https://www.
cdc.gov/vhf/ebola/transmission/index.html.
(Accessed July 26, 2017).

3. Agusto F. 2017 Mathematical model of Ebola
transmission dynamics with relapse and
reinfection.Math. Biosci. 283, 48–59.
(doi:10.1016/j.mbs.2016.11.002)

4. Centres Disease Control (CDC) P Ebola (Ebola virus
disease). 2017 Signs and symptoms. See https://
www.cdc.gov/vhf/ebola/symptoms/index.html.
(Accessed July 26, 2017).

5. Coltart C, Lindsey B, Ghinai I, Johnson A, Heymann
D. 2017 The Ebola outbreak, 2013–2016: old lessons
for new epidemics. Phil. Trans. R. Soc. B 372,
20160297. (doi:10.1098/rstb.2016.0297)

6. Lefebvre A, Fiet C, Belpois-Duchamp C, Tiv M, Astruc
K, Aho Glélé L. 2014 Case fatality rates of Ebola virus
diseases: a meta-analysis of World Health
Organization data.Med. Mal. Infect. 44, 412–416.
(doi:10.1016/j.medmal.2014.08.005)

7. Leroy E, Epelboin A, Mondonge V, Pourrut X,
Gonzalez JP, Muyembe-Tamfum JJ, Formenty P.
2009 Human Ebola outbreak resulting from direct
exposure to fruit bats in Luebo, Democratic Republic
of Congo, 2007. Vector-Borne Zoonotic Dis. 9,
723–728. (doi:10.1089/vbz.2008.0167)

8. Alexander K et al. 2015 What factors might have led
to the emergence of Ebola in West Africa? PLoS Negl.
Trop. Dis. 9, e0003652. (doi:10.1371/journal.
pntd.0003652)

9. Weyer J, Grobbelaar A, Blumberg L. 2015 Ebola virus
disease: history, epidemiology and outbreaks. Curr.
Infect. Dis. Rep. 17, 480. (doi:10.1007/s11908-015-
0480-y)

10. Baize S et al. 2014 Emergence of Zaire Ebola virus
disease in Guinea. N Engl. J. Med. 371, 1418–1425.
(doi:10.1056/NEJMoa1404505)

11. WHO. 2017 WHO Latest Ebola outbreak over in
Liberia; West Africa is at zero, but new flare-ups are
likely to occur. See http://www.who.int/media
centre/news/releases/2016/ebola-zero-liberia/en/.
(Accessed July 26, 2017).

12. Richards P, Amara J, Ferme M, Kamara P, Mokuwa
E, Sheriff A, Suluku R, Voors M. 2015 Social pathways
for Ebola virus disease in rural Sierra Leone, and
some implications for containment. PLoS. Negl. Trop.
Dis. 9, e0003567. (doi:10.1371/journal.pntd.0003567)

13. Legrand J, Grais R, Boelle P, Valleron A, Flahault A.
2007 Understanding the dynamics of Ebola
epidemics. Epidemiol. Infect. 135, 610–621.
(doi:10.1017/S0950268806007217)

14. Chan M. 2014 Ebola virus disease in West
Africa—no early end to the outbreak. N Engl. J.
Med. 371, 1183–1185. (doi:10.1056/NEJMp140
9859)

15. WHO. 2017 WHO Sierra Leone: a traditional healer
and a funeral. See http://www.who.int/csr/disease/
ebola/ebola-6-months/sierra-leone/en/. (Accessed
July 26, 2017).

16. Omidian P, Tehoungue K, Monger J. 2014 Medical
anthropology study of the Ebola virus disease (EVD)
outbreak in Liberia/West Africa. WHO Field Report,
Monrovia Liberia.

17. Agusto F, Teboh-EwungkemM, Gumel A. 2015
Mathematical assessment of the effect of
traditional beliefs and customs on the transmission
dynamics of the 2014 Ebola outbreaks. BMCMed. 13,
96. (doi:10.1186/s12916-015-0318-3)

18. Wilkinson A, LeachM. 2015 Briefing: Ebola—myths,
realities, and structural violence. Afr. Aff. (Lond.)
114, 136–148. (doi:10.1093/afraf/adu080)

19. Wilson J. 2017 8 killed in Guinea town over Ebola
fears. See http://www.cnn.com/2014/09/19/health/
ebola-guinea-killing/index.html. (Accessed July
26, 2017).

20. Cooper C, Bavari S. 2015 A race for an Ebola vaccine:
promises and obstacles. Trends Microbiol. 23, 65–66.
(doi:10.1016/j.tim.2014.12.005)

21. Medaglini D, Siegrist CA. 2017 Immunomonitoring
of human responses to the rVSV-ZEBOV Ebola
vaccine. Curr. Opin. Virol. 23, 88–94. (doi:10.1016/
j.coviro.2017.03.008)

22. Henao-Restrepo A et al. 2015 Efficacy and
effectiveness of an rVSV-vectored vaccine
expressing Ebola surface glycoprotein: interim
results from the Guinea ring vaccination
cluster-randomised trial. Lancet 386, 857–866.
(doi:10.1016/S0140-6736(15)61117-5)

23. Chowell G, Hengartner N, Castillo-Chavez C,
Fenimore P, Hyman J. 2004 The basic reproductive
number of Ebola and the effects of public health
measures: the cases of Congo and Uganda. J. Theor.
Biol. 229, 119–126. (doi:10.1016/j.jtbi.2004.
03.006)

24. Webb G, Browne C, Huo X, Seydi O, Seydi M, Magal
P. 2015 A model of the 2014 Ebola epidemic in West
Africa with contact tracing. PLoS Curr.: Outbreaks 7.
(doi:10.1371/currents.outbreaks.846b2a31ef37018b
7d1126a9c8adf22a)

25. Weitz J, Dushoff J. 2015 Modeling post-death
transmission of Ebola: challenges for inference and
opportunities for control. Sci. Rep. 5, 8751.
(doi:10.1038/srep08751)

26. Althaus C. 2014 Estimating the reproduction
number of Ebola virus (EBOV) during the 2014
outbreak in West Africa. PLoS Curr.: Outbreaks 6.
(doi:10.1371/currents.outbreaks.91afb5e0f279e7f29
e7056095255b288)

27. Meltzer M et al. 2014 Estimating the future number
of cases in the Ebola epidemic—Liberia and Sierra
Leone, 2014–2015.Morb. Mortal Wkly Rep. Surveill.
Summ. (Washington, D.C.: 2002) 63, 1–14.

28. Maynard Smith J. 1982 Evolution and the theory of
games. Cambridge, UK: Cambridge University Press.

29. Hofbauer J, Sigmund K. 1998 Evolutionary games
and population dynamics. Cambridge, UK:
Cambridge University Press.

30. BroomM, Rychtář J. 2013 Game-theoretical models
in biology. London, UK: Chapman and Hall/CRC.

31. Bauch C, Earn D. 2004 Vaccination and the theory of
games. Proc. Natl Acad. Sci. USA 101, 13 391–13 394.
(doi:10.1073/pnas.0403823101)

32. Bauch C, Galvani A, Earn D. 2003 Group interest
versus self-interest in smallpox vaccination policy.
Proc. Natl Acad. Sci. USA 100, 10 564–10 567.
(doi:10.1073/pnas.1731324100)

33. Galvani A, Reluga T, Chapman G. 2007
Long-standing influenza vaccination policy is in
accord with individual self-interest but not with the
utilitarian optimum. Proc. Natl Acad. Sci. USA 104,
5692–5697. (doi:10.1073/pnas.0606774104)

34. Shim E, Grefenstette J, Albert S, Cakouros B, Burke
D. 2012 A game dynamic model for vaccine skeptics
and vaccine believers: measles as an example. J.
Theor. Biol. 295, 194–203. (doi:10.1016/j.jtbi.2011.
11.005)

35. Shim E, Kochin B, Galvani A. 2009 Insights from
epidemiological game theory into gender-specific
vaccination against rubella.Math. Biosci. Eng. 6,
839–854. (doi:10.3934/mbe.2009.6.839)

36. Sykes D, Rychtář J. 2015 A game-theoretic approach
to valuating toxoplasmosis vaccination strategies.
Theor. Popul. Biol. 105, 33–38. (doi:10.1016/j.tpb.
2015.08.003)

37. Crawford K, Lancaster A, Oh H, Rychtář J. 2015 A
voluntary use of insecticide-treated cattle can
eliminate African sleeping sickness. Lett. Biomath.
2, 91–101. (doi:10.1080/23737867.2015.1111777)

38. Dorsett C, Oh H, Paulemond M, Rychtář J. 2016
Optimal repellent usage to combat dengue fever.
Bull. Math. Biol. 78, 916–922. (doi:10.1007/s11538-
016-0167-z)

39. BroomM, Rychtář J, Spears-Gill T. 2016 The
game-theoretical model of using insecticide treated
bed-nets to fight malaria. Appl. Math. (Irvine) 7,
852–860.

40. Wang Z, Bauch C, Bhattacharyya S, d’Onofrio A,
Manfredi P, Perc M, Perra N, Salathé M, Zhao D.
2016 Statistical physics of vaccination. Phys. Rep.
664, 1–113. (doi:10.1016/j.physrep.2016.10.
006)

41. Henao-Restrepo A et al. 2017 Efficacy and
effectiveness of an rVSV-vectored vaccine in
preventing Ebola virus disease: final results from
the Guinea ring vaccination, open-label,
cluster-randomised trial. Lancet 389, 505–518.
(doi:10.1016/S0140-6736(16)32621-6)

42. MacIntyre C, Chughtai A. 2016 Recurrence and
reinfection—a new paradigm for the management
of Ebola virus disease. Int. J. Infect. Dis. 43, 58–61.
(doi:10.1016/j.ijid.2015.12.011)

43. van den Driessche P, Watmough J. 2002
Reproduction numbers and sub-threshold

http://www.who.int/mediacentre/factsheets/fs103/en/
http://www.who.int/mediacentre/factsheets/fs103/en/
https://www.cdc.gov/vhf/ebola/transmission/index.html
https://www.cdc.gov/vhf/ebola/transmission/index.html
http://dx.doi.org/doi:10.1016/j.mbs.2016.11.002
https://www.cdc.gov/vhf/ebola/symptoms/index.html
https://www.cdc.gov/vhf/ebola/symptoms/index.html
http://dx.doi.org/doi:10.1098/rstb.2016.0297
http://dx.doi.org/doi:10.1016/j.medmal.2014.08.005
http://dx.doi.org/doi:10.1089/vbz.2008.0167
http://dx.doi.org/doi:10.1371/journal.pntd.0003652
http://dx.doi.org/doi:10.1371/journal.pntd.0003652
http://dx.doi.org/doi:10.1007/s11908-015-0480-y
http://dx.doi.org/doi:10.1007/s11908-015-0480-y
http://dx.doi.org/doi:10.1056/NEJMoa1404505
http://www.who.int/mediacentre/news/releases/2016/ebola-zero-liberia/en/
http://www.who.int/mediacentre/news/releases/2016/ebola-zero-liberia/en/
http://dx.doi.org/doi:10.1371/journal.pntd.0003567
http://dx.doi.org/doi:10.1017/S0950268806007217
http://dx.doi.org/doi:10.1056/NEJMp1409859
http://dx.doi.org/doi:10.1056/NEJMp1409859
http://www.who.int/csr/disease/ebola/ebola-6-months/sierra-leone/en/
http://www.who.int/csr/disease/ebola/ebola-6-months/sierra-leone/en/
http://dx.doi.org/doi:10.1186/s12916-015-0318-3
http://dx.doi.org/doi:10.1093/afraf/adu080
http://www.cnn.com/2014/09/19/health/ebola-guinea-killing/index.html
http://www.cnn.com/2014/09/19/health/ebola-guinea-killing/index.html
http://dx.doi.org/doi:10.1016/j.tim.2014.12.005
http://dx.doi.org/doi:10.1016/j.coviro.2017.03.008
http://dx.doi.org/doi:10.1016/j.coviro.2017.03.008
http://dx.doi.org/doi:10.1016/S0140-6736(15)61117-5
http://dx.doi.org/doi:10.1016/j.jtbi.2004.03.006
http://dx.doi.org/doi:10.1016/j.jtbi.2004.03.006
http://dx.doi.org/doi:10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a
http://dx.doi.org/doi:10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a
http://dx.doi.org/doi:10.1038/srep08751
http://dx.doi.org/doi:10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
http://dx.doi.org/doi:10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
http://dx.doi.org/doi:10.1073/pnas.0403823101
http://dx.doi.org/doi:10.1073/pnas.1731324100
http://dx.doi.org/doi:10.1073/pnas.0606774104
http://dx.doi.org/doi:10.1016/j.jtbi.2011.11.005
http://dx.doi.org/doi:10.1016/j.jtbi.2011.11.005
http://dx.doi.org/doi:10.3934/mbe.2009.6.839
http://dx.doi.org/doi:10.1016/j.tpb.2015.08.003
http://dx.doi.org/doi:10.1016/j.tpb.2015.08.003
http://dx.doi.org/doi:10.1080/23737867.2015.1111777
http://dx.doi.org/doi:10.1007/s11538-016-0167-z
http://dx.doi.org/doi:10.1007/s11538-016-0167-z
http://dx.doi.org/doi:10.1016/j.physrep.2016.10.006
http://dx.doi.org/doi:10.1016/j.physrep.2016.10.006
http://dx.doi.org/doi:10.1016/S0140-6736(16)32621-6
http://dx.doi.org/doi:10.1016/j.ijid.2015.12.011


12

rsos.royalsocietypublishing.org
R.Soc.opensci.5:171591

................................................
endemic equilibria for compartmental models
of disease transmission.Math. Biosci. 180,
29–48. (doi:10.1016/S0025-5564(02)
00108-6)

44. Blower S, Dowlatabadi H. 1994 Sensitivity and
uncertainty analysis of complex models of disease

transmission: an HIV model, as an example.
Int. Stat. Rev. 62, 229–243. (doi:10.2307/
1403510)

45. Marino S, Hogue I, Ray C, Kirschner D. 2008 A
methodology for performing global uncertainty
and sensitivity analysis in systems biology. J. Theor.

Biol. 254, 178–196. (doi:10.1016/j.jtbi.2008.
04.011)

46. Wakefield M, Loken B, Hornik R. 2010 Use of mass
media campaigns to change health behaviour.
Lancet 376, 1261–1271. (doi:10.1016/S0140-6736
(10)60809-4)

http://dx.doi.org/doi:10.1016/S0025-5564(02)00108-6
http://dx.doi.org/doi:10.1016/S0025-5564(02)00108-6
http://dx.doi.org/doi:10.2307/1403510
http://dx.doi.org/doi:10.2307/1403510
http://dx.doi.org/doi:10.1016/j.jtbi.2008.04.011
http://dx.doi.org/doi:10.1016/j.jtbi.2008.04.011
http://dx.doi.org/doi:10.1016/S0140-6736(10)60809-4
http://dx.doi.org/doi:10.1016/S0140-6736(10)60809-4

	Introduction
	Material and methods
	Results
	Optimal vaccination strategies
	Uncertainty and sensitivity analysis

	Discussion
	References

