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Using the general notion of cross section fluctuations in hadron-nucleus scattering at high energies, we
derive an expression for the cross section of incoherent J/ψ photoproduction on heavy nuclei dσγA→J/ψY /dt ,
which includes both elastic dσγp→J/ψp/dt and proton-dissociation dσγp→J/ψY /dt photoproduction on target
nucleons. We find that, with good accuracy, dσγA→J/ψY /dt can be expressed as a product of the sum of the
dσγp→J/ψp/dt and dσγp→J/ψY /dt cross sections, which have been measured at HERA, and the common nuclear
shadowing factor, which is calculated using the leading twist nuclear shadowing model. Our prediction for the
cross section of incoherent J/ψ photoproduction in Pb-Pb ultraperipheral collisions at

√
sNN = 2.76 TeV and

y = 0, dσAA→J/ψAY (y = 0)/dy = 0.59−1.24 mb agrees within significant theoretical uncertainties with the
data of the ALICE Collaboration.

DOI: 10.1103/PhysRevC.99.015201

I. INTRODUCTION

It is now widely accepted that ultraperipheral collisions
(UPCs) of relativistic ions, which are characterized by scat-
tering at large impact parameters such that the interaction pro-
ceeds via emission of quasireal photons, offers unique possi-
bilities to explore photon-photon and photon-hadron (proton,
nucleus) interactions at previously unattainable high energies
[1]. Focusing on UPC studies of nuclear structure in QCD at
the Large Hadron Collider (LHC) for a recent summary, see,
e.g., Ref. [2], new constraints on the small-x gluon density
in heavy nuclei have been obtained using coherent J/ψ
photoproduction in Pb-Pb UPCs at

√
sNN = 2.76 TeV [3–5].

The analysis [6,7] of these data showed that they give first di-
rect and essentially model-independent evidence of large nu-
clear gluon shadowing Rg = gA(x, μ2)/[AgN (x, μ2)] ≈ 0.6
at x = 10−3 and μ2 = 3 GeV2 (gA and gN are gluon densities
in Pb and the proton, respectively). This is consistent with
predictions of the leading twist nuclear shadowing model [8],
which have small theoretical uncertainties is this kinematics
and agrees with the EPS09 [9], EPPS16 [10], and nCTEQ15
[11] nuclear parton distribution functions, which, however,
have significant uncertainties in this kinematic region.

At the same time, predictions of the leading twist nuclear
shadowing model significantly underestimate [12] the cross
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section of incoherent J/ψ photoproduction in Pb-Pb UPCs
at

√
sNN = 2.76 TeV and y = 0 [3]. It was hypothesized

in Ref. [12] that the process of J/ψ photoproduction with
nucleon dissociation γN → J/ψY , which was not included
in that analysis, may contribute to incoherent J/ψ photopro-
duction on nuclei and improve the agreement between theory
and experiment. In this article, we demonstrate that this is
indeed the case. Extending the formalism of Ref. [12] to
include the γN → J/ψY contribution to the nuclear inco-
herent cross section and using the HERA data on the elastic
and proton-dissociative J/ψ photoproduction cross sections
[13], we show that the predictions of the leading twist nuclear
shadowing model for incoherent J/ψ photoproduction in
Pb-Pb UPCs at

√
sNN = 2.76 TeV and y = 0 agree with the

available measurement of the ALICE Collaboration.
The rest of the paper is organized as follows. In Sec. II,

we introduce nucleon cross section fluctuations and their
connection to the elastic and proton-dissociation J/ψ pho-
toproduction cross sections. The derivation of the incoherent
cross section of J/ψ photoproduction on nuclear targets using
the leading twist nuclear shadowing model and generic rep-
resentations of hadronic fluctuations of the projectile photon
and target nucleons is given in Sec. III. The application of this
result to Pb-Pb UPCs in the LHC kinematics and comparison
to the data of the ALICE Collaboration are presented in
Sec. IV. We draw our conclusions in Sec. V.

II. CROSS SECTION FLUCTUATIONS AND
PROTON-DISSOCIATION J/ψ PHOTOPRODUCTION

At high energies, diffractive dissociation can be understood
in the Good-Walker picture in terms of coherent hadronic
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fluctuations, which diagonalize the scattering operator [14].
Applying these ideas to elastic and proton-dissociation J/ψ
photoproduction, one obtains for the respective cross sections
at the momentum transfer t = 0,

dσγp→J/ψp(Wγp, t = 0)

dt

= �2

16π

(∑
i

|ci |2σi

)2

≡ �2

16π
〈σ 〉2,

dσγp→J/ψY (Wγp, t = 0)

dt

= �2

16π

⎡
⎣∑

i

|ci |2σ 2
i −

(∑
i

|ci |2σi

)2
⎤
⎦

= �2

16π
[〈σ 2〉 − 〈σ 〉2] = �2

16π
ωσ 〈σ 〉2, (1)

where � is proportional to the γ − J/ψ transition ampli-
tude; |ci |2 and σi are the probability and the corresponding
eigenvalue (cross section) for a given fluctuation to contribute
to the scattering cross section. Note that index i can also
be continuous and multidimensional. The second of Eq. (1)
demonstrates that diffractive dissociation is possible only if
various fluctuations interact with different σi’s, i.e., the dis-
tribution over the fluctuations has a nonvanishing dispersion
ωσ = 〈σ 2〉/〈σ 〉2 − 1 [15].

Equation (1) is general and admits different interpretations
in terms of microscopic models of the nucleon structure. In
particular, it was interpreted in terms of fluctuations of the
gluon density in the proton in Ref. [16] and fluctuations of
the proton shape in Refs. [17–20]. Note also that the latter
in the context of the chiral magnetic effects were considered
in Ref. [21]; the influence of proton size fluctuations on the
number of wounded nucleons was studied in Refs. [22,23].

Extension of Eq. (1) to t �= 0 requires the assumption that
the fluctuations do not mix and a specific model for the
distribution of fluctuations in the transverse (impact parameter
	b) plane, see, e.g., Ref. [15]. Indeed, the formalism of cross
section fluctuations, which leads to Eq. (1), is applicable only
for very small |t | 
 1/R2

T (RT is the target size); for larger t ,
the coherence among the eigenstates i implied in Eq. (1) is lost
[24], and the dynamics of diffraction dissociation changes. In
particular, in the limit of large |t | > 2 GeV2, the γp → J/ψY
process may proceed via the perturbative mechanism of the
two-gluon exchange [25]. In the following, we assume that
the scattering amplitudes corresponding to the elastic and
proton-dissociation final states have the following forms in
impact parameter space, respectively:

�N (	b) = 〈σ 〉
4πBel

e−	b2/(2Bel ),

�Y (	b) =
√

ωσ 〈σ 〉
8π2

∫
d2q ′

t e
−i 	q ′

t
	bfpd(t ′), (2)

where Bel is the slope of the elastic cross section; fpd(t )
parametrizes the t dependence of the proton-dissociation cross
section [see Eq. (3) below]. Using Eq. (2), Eq. (1) can be

generalized to the t �= 0 case as follows:

dσγp→J/ψp(Wγp, t )

dt
= �2

4π

∣∣∣∣
∫

d2b ei 	qt
	b�N (	b)

∣∣∣∣
2

= �2

16π
〈σ 〉2e−q2

t Bel ,

dσγp→J/ψY (Wγp, t )

dt
= �2

4π

∣∣∣∣
∫

d2b ei 	qt
	b�Y (	b)

∣∣∣∣
2

= �2

16π
ωσ 〈σ 〉2[fpd(t )]2, (3)

where t = −q2
t . Based on our discussion above, Eq. (3) can be

viewed as an interpolation between the t = 0 and the large |t |
regimes, whose parameters are determined by available data.

In our analysis, we do not employ a particular dynamical
realization for the probabilities |ci |2 in Eqs. (1)–(3) and use
instead the H1 data on elastic and proton-dissociation J/ψ
photoproduction [13]. Using these data, we find that ωσ =
0.29 ± 0.04 for mp < MY < 10 and 40 < Wγp < 110 GeV
(these values of Wγp overlap with those probed in Pb-Pb
UPCs at

√
sNN = 2.76 at central rapidities). Furthermore,

for the measured ratio of the t integrated cross sections, we
find r = σγp→J/ψY (Wγp )/σγp→J/ψp(Wγp ) = 0.83 ± 0.15 for
〈Wγp〉 = 93.3 GeV; note also that r is a slow function of Wγp

on the studied interval of Wγp. The large value of r is a conse-
quence of the fact that the t dependence of dσγp→J/ψY /dt is
much slower than that of dσγp→J/ψp/dt . As we show in our
numerical analysis in Sec. IV, it is the large cross section of
proton-dissociation J/ψ photoproduction on the nucleon (the
large value of r), which increases our theoretical predictions
for the cross section of incoherent J/ψ photoproduction on
nuclei by almost a factor of two and brings it in agreement
with the data of the ALICE Collaboration.

III. THE CROSS SECTION OF INCOHERENT J/ψ

PHOTOPRODUCTION ON NUCLEI

To include the γN → J/ψY contribution to the nuclear
incoherent cross section, we extend our analysis in Ref. [12]
by taking into account the effect of cross section fluctuations
discussed in Sec. II. At high energies, the incoherent γA →
J/ψY cross section can be written in the following form (the
nuclear final-state Y contains products of nucleus dissociation
A′ caused by the elastic γN → J/ψN and inelastic γN →
J/ψY processes on target nucleons):

dσγA→J/ψY (Wγp )

dt

= �2

4π

∑
A′

∣∣∣∣
∫

d2b ei 	qt
	b〈A′|�A(b)|0〉

∣∣∣∣
2

− dσγA→J/ψA

dt

= �2

4π

∫
d2b

∫
d2b′ei 	qt (	b−	b′ )[〈0|�†

A(b′)�A(b)|0〉

− 〈0|�†
A(b′)|0〉〈0|�A(b)|0〉], (4)

where 〈0| · · · |0〉 denotes averaging over the nuclear
ground-state wave function; �A is the nuclear amplitude;
dσγA→J/ψA/dt is the coherent nuclear cross section. In the
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FIG. 1. Schematic representation of incoherent J/ψ photoproduction on nuclei: (a) contribution of elastic production on nucleons, (b) the
proton-dissociation contribution, (c) an example of terms neglected in the last line of Eq. (6). The dashed lines denote the momentum transfer
q to the interacting nucleon; the open circles on nucleon lines stand for the interaction with that nucleon leading to attenuation of the resulting
cross section; the vertical ovals labeled A denote the nuclear states.

last line of Eq. (4), we used the completeness of nuclear
final-states A′. In the literature [26], this cross section is also
called the summed cross section.

The standard representation for �A in terms of the nucleon
scattering amplitudes �N and �Y is, see, e.g., Ref. [26],

�A(	b) = 1 −
A∏

k=1

[1 − �N (	b − 	sk ) − �Y (	b − 	sk )] , (5)

where 	sk denotes the transverse coordinate of the kth nucleon
in the nucleus. The nuclear amplitude �A(	b) is an operator,

whose first and second powers [see Eq. (4)] are sandwiched
between nuclear ground states. Therefore, only even powers
of �Y contribute to the resulting cross section. Moreover,
since powers of �∗

Y ( 	b′ − 	sk )�Y (	b − 	sk ) in Eq. (4) involve the
same kth nucleon [proton dissociation in �

†
A( 	b′)�A(	b) takes

place on the same nucleon], one does not need to take into
account the effects of nucleon ordering and a nonzero longi-
tudinal momentum transfer associated with the final-state Y in
Eq. (5). Substituting Eqs. (2) and (5) in Eq. (4) and assuming
independent nucleon distributions, one obtains

〈0|�†
A(b′)�A(b)|0〉 − 〈0|�†

A(b′)|0〉〈0|�A(b)|0〉

=
[(

1 − 〈σ 〉
2

TA(b) − 〈σ 〉
2

TA(b′) + 〈σ 〉2

16πBel
TA(b)e−(	b′−	b)2/(4Bel ) + ωσ 〈σ 〉2

16π2
TA(b)

∫
d2q ′

t e
i 	q ′

t (	b′−	b)[fpd(t ′)]2

)]A

−
[(

1 − 〈σ 〉
2

TA(b)

)]A[(
1 − 〈σ 〉

2
TA(b′)

)]A

≈
( 〈σ 〉2

16πBel
e−(	b′−	b)2/(4Bel ) + ωσ 〈σ 〉2

16π2

∫
d2q ′

t e
i 	q ′

t (	b′−	b)[fpd(t ′)]2

)
ATA(b)e−〈σ 〉ATA(b), (6)

where TA(b) = ∫
dz ρA(b, z) is the nuclear optical density

with ρA(b, z) being the nuclear distribution. In the derivation
of Eq. (6), we used that both Bel and the effective slope of
fpd(t ) are much smaller than the slope of the nuclear form
factor (the effective nucleus radius) and, hence, the nuclear
density can be evaluated at the impact parameter 	b. In the last
line, we exponentiated the powers of A, expanded the result in
powers of the elastic and proton-dissociation cross sections,
and kept the first leading term. The terms neglected in the last
line of Eq. (6) contribute to the t-integrated σγA→J/ψY (Wγp )
cross section at the level of a few percent, which is well below
the theoretical uncertainty associated with the calculation of
the leading contribution to σγA→J/ψY (Wγp ) (see our numeri-
cal results in Sec. IV).

In the graphic form, Eq. (6) is schematically shown in
Fig. 1 where graph a denotes the contribution proportional to
the elastic J/ψ photoproproduction on the proton (nucleon),
graph b corresponds to the proton-dissociation contribution
(the horizontal ovals denote nucleon dissociation), and graph
c is an example of terms proportional to higher powers of
the proton dissociation and elastic cross sections, which are
neglected in the last line of Eq. (6). Note that these terms
have a slower t dependence because as shown in the figure,
they involve a fractional momentum transfer. The dashed lines
denote the momentum transfer q to the interacting nucleon;
the open circles on nucleon lines stand for the interaction
with that nucleon, which leads to attenuation of the resulting
incoherent cross section (all graphs with 0, 1, 2, . . . , A − 1

015201-3



V. GUZEY, M. STRIKMAN, AND M. ZHALOV PHYSICAL REVIEW C 99, 015201 (2019)

open circles contribute); the vertical ovals labeled A denote
the nuclear states.

Substituting Eq. (6) in Eq. (4), we obtain

dσγA→J/ψY (Wγp )

dt

= �2

16π

{〈σ 〉2e−q2
t Bel + ωσ 〈σ 〉2[fpd(t )]2

}
×

∫
d2b ATA(b)e−〈σ 〉ATA(b)

=
(

dσγp→J/ψp(Wγp, t )

dt
+ dσγp→J/ψY (Wγp, t )

dt

)

×
∫

d2b ATA(b)e−〈σ 〉ATA(b) , (7)

where in the last line we used Eq. (3). Equation (7) has been
derived using standard assumptions of the Gribov-Glauber
model of nuclear shadowing and a generic representation of
hadronic fluctuations of target nucleons. To include also the
effect of hadronic fluctuations in the projective photon, we
follow the procedure used in Ref. [12] and express the eikonal
factor in Eq. (7) in terms of the cross section σ2, which is
determined by the ratio of the diffractive and usual gluon
densities in the proton, and σ3 ≡ σsoft, which is modeled,
see details in Ref. [8]. It allows us to rewrite Eq. (7) in the
following final form:

dσγA→J/ψY (Wγp )

dt

=
(

dσγp→J/ψp(Wγp, t )

dt
+ dσγp→J/ψY (Wγp, t )

dt

)

×
∫

d2b ATA(b)

(
1 − σ2

σ3
+ σ2

σ3
e−(σ3/2)ATA(b)

)2

. (8)

Equation (8) generalizes Eq. (15) of Ref. [12] by including
nucleon dissociation and has a clear physical interpretation
(see Fig. 1): Photoproduction of J/ψ takes place on all A
target nucleons either elastically or with nucleon dissociation;
the interaction of photon hadronic fluctuations with remaining
nucleons may lead inelastic production; the probability not
to have inelastic processes is given by the last term in the
brackets in Eq. (8), which describes the effect of nuclear
shadowing.

Figure 2 shows separately the t dependence of the two
contributions to the dσγA→J/ψY (Wγp )/dt cross section in
Eq. (8): The first term proportional to dσγp→J/ψp/dt is given
by the red solid lines, and the second term proportional
to dσγp→J/ψY /dt is given by the blue dot-dashed curves.
The corresponding error bands reflect the uncertainty in the
calculation of the nuclear shadowing effect, see the discussion
in Sec. IV; the value of the invariant photon-nucleon energy
Wγp = 94 GeV corresponds to the considered case of Pb-Pb
UPCs at

√
sNN = 2.76 TeV and y = 0. This figure clearly

demonstrates that, although the elastic contribution dominates
at t ≈ 0, the nucleon-dissociation term wins over for |t | >
0.5 GeV2. After integration over t , the net contribution of the
two terms is numerically close.
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FIG. 2. The elastic and nucleon-dissociation contributions to the
dσγA→J/ψY (Wγp )/dt cross section as a function of |t | corresponding
to the first and second terms in Eq. (8), respectively. The shaded
error bands quantify the uncertainty in the calculation of nuclear
shadowing; Wγp = 94 GeV corresponds to Pb-Pb UPCs at

√
sNN =

2.76 TeV and y = 0.

Several comments are in order here. First, the Good-Walker
picture of hadronic fluctuations (1) is valid strictly only at
small t ≈ 0. In our analysis, to apply completeness of final
nuclear states A′, we implied that |t | is not small. However,
there is no contradiction here: The momentum transfer t is
indeed small in all vertices except for the one leading to nu-
cleon dissociation (see Fig. 1). For that vertex, we extrapolate
to any t using Eq. (3), which allows us to write a simple
expression for dσγA→J/ψY /dt valid for t �= 0. Second, as
follows from the second and third lines of Eq. (6), the nuclear
incoherent dσγA→J/ψY /dt cross section in the impulse ap-
proximation should vanish in the t = 0 limit due to a negative
(coherent) contribution, which is concentrated at very small
t ; the shadowing correction makes the cross section finite.
Since our final expression in Eq. (8) is applied at |t | �= 0, this
coherent correction is very small and can be safely neglected.
Third, since the slopes of the t dependence of dσγp→J/ψp/dt
and dσγp→J/ψY /dt are very different, the nucleon elastic and
dissociation contributions can be separated by studying the t
dependence of dσγA→J/ψY (Wγp )/dt .

For the t integrated cross section, one readily obtains from
Eq. (8),

σγA→J/ψY (Wγp )

= [σγp→J/ψp(Wγp ) + σγp→J/ψY (Wγp )]

×
∫

d2b ATA(b)

(
1 − σ2

σ3
+ σ2

σ3
e−(σ3/2)ATA(b)

)2

. (9)

One can see from Eq. (9) that the nucleon elastic and dissocia-
tion contributions enter with equal nuclear shadowing factors.
This can be seen by comparing graphs a and b in Fig. 1.
This result is derived neglecting graph c and other similar
graphs, whose net numerical contribution to the t-integrated
σγA→J/ψY (Wγp ) cross section is a few percent correction.
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IV. INCOHERENT J/ψ PHOTOPRODUCTION IN PB-PB
UPCS AND COMPARISON TO DATA OF THE ALICE

COLLABORATION

The cross section of incoherent J/ψ photoproduction in
symmetric nucleus-nucleus UPCs reads [1]

dσAA→J/ψAY (y)

dy
= Nγ/A(y)σγA→J/ψY (y)

+Nγ/A(−y)σγA→J/ψY (−y), (10)

where Nγ/A is the photon flux; y is the rapidity of the
produced vector meson V ; σγA→J/ψY (y) is the nuclear inco-
herent cross section integrated over t . The presence of two
terms with opposite rapidities in Eq. (10) reflects the fact
that each colliding ion can serve as a source of photons and
as a target. Interference between these two contributions is
important only for very small values of |t | and, hence, has
been neglected. The photon flux Nγ/A(y) produced by an
ultrarelativistic ion in nucleus-nucleus UPCs is calculated
using the standard expressions taking into account the effects
of the strong interaction suppression and the nuclear form
factor, see, e.g., Ref. [6]. In our analysis, the nuclear density
and form factor are calculated using the Hartree-Fock-Skyrme
model [27].

Substituting Eq. (9) in Eq. (10), we obtain our prediction
for the incoherent cross section dσAA→J/ψAY (y = 0)/dy of
Pb-Pb UPCs at

√
sNN = 2.76 TeV at the central rapidity

y = 0. It is shown by the first three lines of Table I, which
correspond to the proton elastic contribution, the proton-
dissociation one, and their sum. Each of the values in the
first two lines bear 10% uncertainties due to experimental
errors of the respective proton cross sections; the values in
the third line come with the combined 15% experimental
uncertainty. Within significant theoretical uncertainties, which
we will discuss below, our prediction for dσAA→J/ψAY (y =
0)/dy (third line) agrees with the experimental value of the
ALICE Collaboration [3] given in the last line of Table I.

In our numerical analysis, we used the H1 data [13] on the
σγp→J/ψp and σγp→J/ψY cross sections, see the end of Sec. II.
One should note that r = σγp→J/ψY (Wγp )/σγp→J/ψp(Wγp )
depends on the maximal interval of rapidity, which is allowed
for the final inelastic state Y . Therefore, the cuts used in in-
coherent J/ψ photoproduction in UPCs should be consistent
with those in γp → J/ψY .

The large range of resulting predictions for
dσAA→J/ψAY (y = 0)/dy corresponds to the theoretical
uncertainty of the leading twist nuclear shadowing model
[8], whose largest part is associated with the uncertainty
in the effective cross section σ3. It reflects uncertainties in

TABLE I. Incoherent cross section dσAA→J/ψAY (y = 0)/dy of
Pb-Pb UPCs at

√
sNN = 2.76 TeV and y = 0.

dσAA→J/ψAY (y = 0)/dy: elastic 0.32–0.68 mb
dσAA→J/ψAY (y = 0)/dy: dissociation 0.27–0.56 mb
dσAA→J/ψAY (y = 0)/dy: total 0.59–1.24 mb

Experiment [3] 0.98+0.19
−0.17 (sta + sys) mb

modeling of the interplay between hard and soft components
of diffraction in deep inelastic scattering (DIS). At the same
time, the parameter σ2 is constrained much better; a small
uncertainty in σ2 is related to experimental errors of QCD
analyses of hard diffraction at HERA, see the details in
Ref. [8]. Although these uncertainties lead to approximately
10% ambiguity in the predicted gluon nuclear shadowing
in heavy nuclei at x ≈ 10−3, they are much larger for
hard inelastic diffraction in DIS [8]. As one can see from
Table I, incoherent photoproduction of J/ψ on nuclei is
also very sensitive to the value of σ3. Thus, further studies
of the discussed process would improve predictions for
inclusive diffraction in DIS on nuclei, which is one of key
measurements at a future Electron-Ion Collider [28].

To appreciate the magnitude of the leading twist nuclear
shadowing suppression, one can cast our results in form of the
following ratio:

R = σγA→J/ψY (Wγp )

A[σγp→J/ψp(Wγp ) + σγp→J/ψY (Wγp )]

=
∫

d2b TA(b)

(
1 − σ2

σ3
+ σ2

σ3
e−(σ3/2)ATA(b)

)2

. (11)

In the considered kinematics (
√

sNN = 2.76 TeV and y = 0),
we obtain

R = 0.13–0.29, (12)

which should be compared to unity in the limit of absence
of nuclear shadowing. One can see from Eq. (12) that the
effect of nuclear suppression due to the leading twist nuclear
shadowing is even stronger than that in the case of coherent
J/ψ photoproduction in Pb-Pb UPCs [6,7].

It was discussed in the literature that, at large |t | > 2 GeV2,
the cross section of proton-dissociation J/ψ photoproduction
is proportional to the target gluon density gA(x̃, |t |), where
x̃ = −t/(−t + M2

Y − m2
N ) [25]. Hence, in a wide range of

M2
Y corresponding to x̃ � 10−2 where the effect of nuclear

shadowing is weak, one would observe a nearly linear depen-
dence of the cross section on A, which is much stronger than
that given by Eq. (8) for small |t |. At the same time, when x̃
is small, e.g., x̃ ∼ 10−3, the gluon nuclear shadowing slows
down the A dependence of the nuclear cross section. In our
approach, gA(x, μ2) can be readily evaluated in terms of σ2

and σ3 [12],

gA(x, μ2) = AgN (x, μ2)

[
1 − σ2

σ3
+ 2σ2

Aσ 2
3

×
∫

d2b(1 − e−ATA(b)(σ3/2))

]
, (13)

where gN (x, μ2) is the gluon density in the nucleon. Despite
the leading twist nuclear shadowing effect, the A dependence
of gA(x, μ2) encoded in Eq. (13) is still much faster than that
given by Eq. (8). Indeed, transition to the dominance of the
perturbative mechanism should result in a substantial increase
of R(t ) ≡ dσγA→J/ψY (Wγp )/dt/[dσγp→J/ψp(Wγp, t )/dt +
dσγp→J/ψY (Wγp, t )/dt] with an increase in |t |: a factor of �2
in the discussed kinematics since gA(x̃, |t |)/[AgN (x̃, |t |)] �
0.6 due to the leading twist nuclear shadowing. Therefore,
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by studying the A dependence of the dσγA→J/ψY (Wγp )/dt
cross section, one should, in principle, distinguish between
the small and large |t | regimes described by Eqs. (8) and (13),
respectively.

V. CONCLUSIONS

Using the general notion of cross section fluctuations in
hadron-nucleus scattering at high energies, we derive an ex-
pression for the cross section of incoherent J/ψ photopro-
duction on heavy nuclei dσγA→J/ψY /dt , which includes both
elastic and proton-dissociation processes on target nucleons.
The final expression for dσγA→J/ψY /dt is given in terms
of the sum of the dσγp→J/ψp/dt and dσγp→J/ψY /dt cross
sections times the common nuclear shadowing (suppression)
factor. Using the HERA data for σγp→J/ψp and σγp→J/ψY

and the results of the leading twist nuclear shadowing model
for the suppression factor, we made predictions for the cross
section of incoherent J/ψ photoproduction in Pb-Pb UPCs

at
√

sNN = 2.76 TeV and y = 0, dσAA→J/ψAY (y = 0)/dy =
0.59–1.24 mb. Within large theoretical uncertainties of the
leading twist nuclear shadowing model for this cross sec-
tion, our result agrees with the data point of the ALICE
Collaboration. The agreement is made possible by the large
contribution to the nuclear incoherent cross section of the
proton-dissociation process γp → J/ψY . Thus, predictions
of the leading twist nuclear shadowing model provide a good
description of both coherent and incoherent J/ψ photopro-
duction in Pb-Pb UPCs at the LHC.
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[11] K. Kovařík, A. Kusina, T. Ježo, D. B. Clark, C. Keppel, F.

Lyonnet, J. G. Morfín, F. I. Olness, J. F. Owens, I. Schienbein,
and J. Y. Yu, Phys. Rev. D 93, 085037 (2016).

[12] V. Guzey, M. Strikman, and M. Zhalov, Eur. Phys. J. C 74, 2942
(2014).

[13] C. Alexa et al. (H1 Collaboration), Eur. Phys. J. C 73, 2466
(2013).

[14] M. L. Good and W. D. Walker, Phys. Rev. 120, 1857 (1960).
[15] H. I. Miettinen and J. Pumplin, Phys. Rev. D 18, 1696

(1978).
[16] L. Frankfurt, M. Strikman, D. Treleani, and C. Weiss, Phys.

Rev. Lett. 101, 202003 (2008).
[17] H. Mäntysaari and B. Schenke, Phys. Rev. Lett. 117, 052301

(2016).
[18] H. Mäntysaari and B. Schenke, Phys. Rev. D 94, 034042 (2016).
[19] J. Cepila, J. G. Contreras and J. D. Tapia Takaki, Phys. Lett. B

766, 186 (2017).
[20] M. C. Traini and J.-P. Blaizot, arXiv:1804.06110.
[21] D. Kharzeev, Z. Tu, A. Zhang, and W. Li, Phys. Rev. C 97,

024905 (2018).
[22] M. Alvioli and M. Strikman, Phys. Lett. B 722, 347 (2013).
[23] M. Alvioli, L. Frankfurt, V. Guzey, and M. Strikman, Phys. Rev.

C 90, 034914 (2014).
[24] L. L. Frankfurt, G. A. Miller, and M. Strikman, Annu. Rev.

Nucl. Part. Sci. 44, 501 (1994).
[25] L. Frankfurt, M. Strikman, and M. Zhalov, Phys. Rev. Lett. 102,

232001 (2009).
[26] T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin, Rev.

Mod. Phys. 50, 261 (1978); 51, 407(E) (1979).
[27] M. Beiner, H. Flocard, N. van Giai, and P. Quentin, Nucl. Phys.

A238, 29 (1975).
[28] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016).

015201-6

https://doi.org/10.1016/j.physrep.2007.12.001
https://doi.org/10.1016/j.physrep.2007.12.001
https://doi.org/10.1016/j.physrep.2007.12.001
https://doi.org/10.1016/j.physrep.2007.12.001
https://doi.org/10.1016/j.nuclphysa.2017.05.098
https://doi.org/10.1016/j.nuclphysa.2017.05.098
https://doi.org/10.1016/j.nuclphysa.2017.05.098
https://doi.org/10.1016/j.nuclphysa.2017.05.098
https://doi.org/10.1140/epjc/s10052-013-2617-1
https://doi.org/10.1140/epjc/s10052-013-2617-1
https://doi.org/10.1140/epjc/s10052-013-2617-1
https://doi.org/10.1140/epjc/s10052-013-2617-1
https://doi.org/10.1016/j.physletb.2012.11.059
https://doi.org/10.1016/j.physletb.2012.11.059
https://doi.org/10.1016/j.physletb.2012.11.059
https://doi.org/10.1016/j.physletb.2012.11.059
https://doi.org/10.1016/j.physletb.2017.07.001
https://doi.org/10.1016/j.physletb.2017.07.001
https://doi.org/10.1016/j.physletb.2017.07.001
https://doi.org/10.1016/j.physletb.2017.07.001
https://doi.org/10.1016/j.physletb.2013.08.043
https://doi.org/10.1016/j.physletb.2013.08.043
https://doi.org/10.1016/j.physletb.2013.08.043
https://doi.org/10.1016/j.physletb.2013.08.043
https://doi.org/10.1007/JHEP10(2013)207
https://doi.org/10.1007/JHEP10(2013)207
https://doi.org/10.1007/JHEP10(2013)207
https://doi.org/10.1007/JHEP10(2013)207
https://doi.org/10.1016/j.physrep.2011.12.002
https://doi.org/10.1016/j.physrep.2011.12.002
https://doi.org/10.1016/j.physrep.2011.12.002
https://doi.org/10.1016/j.physrep.2011.12.002
https://doi.org/10.1088/1126-6708/2009/04/065
https://doi.org/10.1088/1126-6708/2009/04/065
https://doi.org/10.1088/1126-6708/2009/04/065
https://doi.org/10.1088/1126-6708/2009/04/065
https://doi.org/10.1140/epjc/s10052-017-4725-9
https://doi.org/10.1140/epjc/s10052-017-4725-9
https://doi.org/10.1140/epjc/s10052-017-4725-9
https://doi.org/10.1140/epjc/s10052-017-4725-9
https://doi.org/10.1103/PhysRevD.93.085037
https://doi.org/10.1103/PhysRevD.93.085037
https://doi.org/10.1103/PhysRevD.93.085037
https://doi.org/10.1103/PhysRevD.93.085037
https://doi.org/10.1140/epjc/s10052-014-2942-z
https://doi.org/10.1140/epjc/s10052-014-2942-z
https://doi.org/10.1140/epjc/s10052-014-2942-z
https://doi.org/10.1140/epjc/s10052-014-2942-z
https://doi.org/10.1140/epjc/s10052-013-2466-y
https://doi.org/10.1140/epjc/s10052-013-2466-y
https://doi.org/10.1140/epjc/s10052-013-2466-y
https://doi.org/10.1140/epjc/s10052-013-2466-y
https://doi.org/10.1103/PhysRev.120.1857
https://doi.org/10.1103/PhysRev.120.1857
https://doi.org/10.1103/PhysRev.120.1857
https://doi.org/10.1103/PhysRev.120.1857
https://doi.org/10.1103/PhysRevD.18.1696
https://doi.org/10.1103/PhysRevD.18.1696
https://doi.org/10.1103/PhysRevD.18.1696
https://doi.org/10.1103/PhysRevD.18.1696
https://doi.org/10.1103/PhysRevLett.101.202003
https://doi.org/10.1103/PhysRevLett.101.202003
https://doi.org/10.1103/PhysRevLett.101.202003
https://doi.org/10.1103/PhysRevLett.101.202003
https://doi.org/10.1103/PhysRevLett.117.052301
https://doi.org/10.1103/PhysRevLett.117.052301
https://doi.org/10.1103/PhysRevLett.117.052301
https://doi.org/10.1103/PhysRevLett.117.052301
https://doi.org/10.1103/PhysRevD.94.034042
https://doi.org/10.1103/PhysRevD.94.034042
https://doi.org/10.1103/PhysRevD.94.034042
https://doi.org/10.1103/PhysRevD.94.034042
https://doi.org/10.1016/j.physletb.2016.12.063
https://doi.org/10.1016/j.physletb.2016.12.063
https://doi.org/10.1016/j.physletb.2016.12.063
https://doi.org/10.1016/j.physletb.2016.12.063
http://arxiv.org/abs/arXiv:1804.06110
https://doi.org/10.1103/PhysRevC.97.024905
https://doi.org/10.1103/PhysRevC.97.024905
https://doi.org/10.1103/PhysRevC.97.024905
https://doi.org/10.1103/PhysRevC.97.024905
https://doi.org/10.1016/j.physletb.2013.04.042
https://doi.org/10.1016/j.physletb.2013.04.042
https://doi.org/10.1016/j.physletb.2013.04.042
https://doi.org/10.1016/j.physletb.2013.04.042
https://doi.org/10.1103/PhysRevC.90.034914
https://doi.org/10.1103/PhysRevC.90.034914
https://doi.org/10.1103/PhysRevC.90.034914
https://doi.org/10.1103/PhysRevC.90.034914
https://doi.org/10.1146/annurev.ns.44.120194.002441
https://doi.org/10.1146/annurev.ns.44.120194.002441
https://doi.org/10.1146/annurev.ns.44.120194.002441
https://doi.org/10.1146/annurev.ns.44.120194.002441
https://doi.org/10.1103/PhysRevLett.102.232001
https://doi.org/10.1103/PhysRevLett.102.232001
https://doi.org/10.1103/PhysRevLett.102.232001
https://doi.org/10.1103/PhysRevLett.102.232001
https://doi.org/10.1103/RevModPhys.50.261
https://doi.org/10.1103/RevModPhys.50.261
https://doi.org/10.1103/RevModPhys.50.261
https://doi.org/10.1103/RevModPhys.50.261
https://doi.org/10.1103/RevModPhys.51.407
https://doi.org/10.1103/RevModPhys.51.407
https://doi.org/10.1103/RevModPhys.51.407
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1140/epja/i2016-16268-9



