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Insect-mediated pollination increases yields of many crop
species and some evidence suggests that it also influences
crop quality. However, the mechanistic linkages between
insect-mediated pollination and crop quality are poorly
known. In this study, we explored how different pollination
treatments affected fruit set, dry matter content (DMC),
mineral content and storability of apples. Apple flowers
supplementary pollinated with compatible pollen resulted in
higher initial fruit set rates, higher fruit DMC and a tendency
for lower fruit potassium (K) : calcium (Ca) ratio than flowers
that received natural or no pollination. These variables are
related to desirable quality aspects, because higher DMC is
connected to higher consumer preference and lower K : Ca
ratio is related to lower incidence of postharvest disorders
during storage. Using structural equation modelling, we
showed an indirect effect of pollination treatment on
storability, however mediated by complex interactions
between fruit set, fruit weight and K : Ca ratio. The
concentrations of several elements in apples (K, zinc,
magnesium) were affected by the interaction between
pollination treatment and apple weight, indicating that
pollination affects element allocation into fruits. In
conclusion, our study shows that pollination and the
availability of compatible pollen needs to be considered in
the management of orchard systems, not only to increase
fruit set, but also to increase the quality and potentially the
storability of apples.
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1. Introduction

Pollination services increase fruit and seed set of many crops, in particular that of vegetables, fruits,
berries and nuts [1]. For this reason, it is well recognized that animal-mediated pollination is
important for global food production in general and human nutrition in particular [1–3]. However,
accumulating evidence shows that the positive effect of pollination services goes beyond increasing
fruit and seed set, and may also increase quality (rapeseed, strawberries; [4,5]), affect nutritional
composition (almonds, apples; [6,7]), decrease malformations (Fuji apples, strawberries; [8,9]) and
increase shelf lifetime (strawberries; [4,9]) of crops. However, the linkages between pollination services
and fruit quality have only just started to be recognized and there is a need for research that
simultaneously evaluate several quality aspects and their interrelated effects.

Apple is a fruit crop with a strong dependence on animal-mediated pollination, in which all cultivars
are self-incompatible to some extent and therefore require pollen transfer from another pollinizer
cultivar to set commercially acceptable fruit levels [10]. It is the most geographically widespread
temperate fruit [11] and the most common pollinator-dependent crop in Europe, where economic
gains from pollination-induced increases in fruit set are higher than those of any other crop [12].
However, for commercially produced fruits, not only the quantity of fruit matters, because marketable
fresh fruits also need to be of adequate quality for good storability and to attract consumers. Even
though higher insect pollinator levels are known to increase pollinator activity and cross-pollination
between cultivars and thus improve fruit yields of apples [13,14], the influence of insect pollination on
quality aspects are more equivocal [7].

Several quality aspects have large economic impact on apple production. Important quality attributes
for consumers include flavour and flesh firmness. Firmer fruits are considered by consumers to
have higher quality [15,16]. Flavour is a complex attribute that is related to the dry matter content
(DMC) in fruits, where higher DMC generally increases consumer preference [16,17]. The DMC also
influences the firmness of apples at harvest and softening rates during storage, and is a good estimate
of total soluble solids after storage [16,18,19]. Another important quality aspect for producers and
wholesalers is storability. Apples can be stored for protracted periods of time, which allows for longer
market availability. However, even though the storage facilities have developed substantially, which
has prolonged storability, much fruit is still discarded when taken out from storage. For example, in
Sweden, 20% of organic apples were disregarded in an experimental study in 2010 and, depending on
cultivar, 9–27% of conventionally produced apples from seven orchards were disregarded after storage
during 2010–2015 (I. Tahir 2017, personal communication). Many aspects influence the storability of
apples, where harvest time and mineral concentrations are important modifiers. For example, low
calcium (Ca) content, and the high ratio between magnesium (Mg) or potassium (K) and Ca, is
connected to postharvest disorders including bitterpit, lenticel breakdown and Jonathan spot [20–24].
Ca and its ratio with other elements (e.g. K : Ca and nitrogen (N) : Ca) is also connected to the
softening of apples and resistance to diseases [25–27]. Consequently, Ca application both before and
after harvest to increase fruit Ca-content is a common management action in modern orchards [22,26].

A few studies have suggested that apples which successfully have been cross-pollinated differ in their
mineral content from less pollinated ones, suggesting that the mechanisms influencing mineral allocation
into fruits are related to pollination services. Porcel et al. [28] found a positive relationship between
seed number and Ca, K and Mg content in Aroma apples, Bramlage et al. [29] found a positive
relationship between seed number and Ca concentrations in Richared Delicious apples and Volz et al.
[30] found that supplementary pollination positively affected Ca concentrations of Braeburn apples.
Other data suggest that the effect of pollination and fertilization on Ca concentrations may be
cultivar-specific. Buccheri & Di Vaio [31] found a positive relationship between higher seed set and
Ca concentration in fruits from some cultivars (Red and Golden Delicious) but not from
other (Annurca Rossa del Sud and Annurca Tradizionale), and Garratt et al. [7] found that
supplementary hand-pollination even decreased Ca concentrations in Gala apples. Because the
mineral content may be related to other quality aspects including firmness, postharvest disorders and
storability, pollination service may have a more far-reaching role in the economy of apple production
than has earlier been estimated.

The aim of this study was to simultaneously evaluate the direct effects from different pollination
treatments on the mineral concentration in apples, the marketable fruit quality of apples and the
indirect effects on the storable fruit quality. The pollination treatments—supplementary hand-
pollination, natural pollination and pollinator exclusions—were related to a decreasing probability of
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successful cross-pollination, where the supplementary hand-pollinated flowers had the highest and the

pollinator-excluded flowers the lowest probability of successful cross-pollination. As an estimate of
marketable fruit quality, we used DMC as an endpoint variable (cf. [16]), and as estimates of storable
fruit quality, we used both the probability of developing various storage disorders and the time that
the fruits could be stored and still maintain good quality. Our working hypothesis was that
pollination treatment affects element concentrations, DMC and storability of fruits, where fruits from
the supplementary hand-pollinated followed by the natural pollination treatment will have higher
values than the pollinator-excluded fruits. We used a structural equation model (SEM) to disentangle
the direct and indirect effects of pollination treatment on storability, and particularly the K : Ca ratio
which has previously been implicated as a measure of storable fruit quality.
rnal/rsos
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2. Methods
2.1. Sites
Two orchards were selected in the apple growing area of Kivik, southern Sweden, which is the main
apple growing region in Sweden. The orchards were separated by 8 km and were both organically
certified (by Swedish KRAV), thus not using synthetic fertilizers or pesticides. The orchards were
irrigated and honeybee hives (one colony ha−1) and commercial bumblebees (0.5 colony ha−1) were
present during apple bloom. A mix of apple cultivars were planted in the orchards, both compatible
cultivars for production and specific pollinizer varieties. The apple harvests from the orchards are
sold in the market or are used for production of apple juice and cider.

2.2. Pollination treatment
Within both orchards, rows with the apple cultivar Amorosa, a red subcultivar of Aroma, were
identified. Aroma/Amorosa are among the most popular apple cultivars in Swedish orchards
and were the most commonly planted cultivars in new plantations in 2012 [32,33]. Distributed
over two rows, 40 and 30 trees were marked in the two orchards, respectively. On each tree,
three branches at similar height were marked and randomly assigned to one of the following
treatments: pollinator exclusion, supplementary hand-pollination and natural pollination. When
the flower buds were approaching balloon stage, the pollinator exclusion branches were
bagged with 255 × 610 mm perforated Crispac-bags, plastic bags permeable to air through small
holes (Ø = 0.5 mm), to exclude pollinators. All flowers on the branch were inside the bag. In the
few cases when the bag did not cover all flower clusters, clusters outside the bag were removed.
Bags were removed when all flowers had withered. At peak flowering in late May 2016, 5–10
flowers on the supplementary hand-pollination branch, in addition to natural pollination from the
present pollinator community, received supplemented hand-pollination using a cotton swab with
fresh pollen collected from at least three different trees of a compatible cultivar (Holsteiner–Cox).
Flowers that had received supplementary pollen were marked. The flowers on the natural
pollination branches received only visits from the present pollinator community. The number of
flowers on the branches assigned to the different treatments as well as the total number of flowers
on the whole tree were noted.

2.3. Fruit set
Approximately one month after peak flowering, the developing apples on the marked branches were
counted as a measure of the initial fruit set. Some days before commercial harvest, 3.5 months after
peak flowering, fruits were again counted on the marked branches. All developed fruits attached to
the branches were counted, except for fully rotten fruit. The finest apples, without any major visible
damage, were harvested from the branches. On the supplementary hand-pollinated branch, only
marked fruits were harvested. To compensate for the lack of fruits on some branches, up to four
apples were taken from branches of the same treatment with more fruits. In one orchard, fruit set was
extremely low (presumably affected by the high infestation of the rosy apple aphid, Dysaphis
plantaginea), and extra control apples were picked from unmarked trees, hereafter called ‘extras’. In
total, 244 apples were picked, 62 pollinator excluded, 55 supplementary hand-pollinated, 101 control
and 26 extra apples.
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2.4. Quality measurements

All collected apples were taken to the laboratory for measurements. All apples were weighed and their
length, maximum and minimum diameter were measured using digital callipers. Ground colour was
estimated using a chartreuse colour chart where ‘1’ was darkish green and ‘8’ was yellow coloration
of the skin, per cent cover colour with red pigmentation was noted and if there were any pest
damages or visible diseases on the apples. If these measurements were not taken on the same day
as the harvesting date, the fruits were put in the refrigerator for a maximum of 3 days before
measurements.

Following these initial measurements, apples were divided into two groups, where one (n = 84) was
selected for additional destructive measurements and the other (n = 160) was used for measuring the
storability and the quality of stored apples. The apples that were first stored were subjected to
the same destructive measurements either when they were experiencing postharvest disorders or after
161–162 days when the experiment ended. The stored fruits were checked every second week and the
fruits that could no longer be regarded as first-class fruit, because of postharvest disorders, were
taken out from storage and measured. The fruit that started to shrivel was kept in storage if no other
disorders were seen. During storage, the fruit was wrapped individually with paper, placed in
perforated plastic backs commonly used for fruit packing and placed in a 6°C refrigerator.

The destructive measures taken on all apples included firmness using a penetrometer (Model FT-327;
Effegi, Italy; plunger diameter 8 mm), per cent sucrose (°Brix/soluble solids content) using an eclipse
handheld refractometer (Bellingham + Stanley Ltd) and counts of developed seeds. Following these
measurements, fruits were frozen in a −20°C freezer for later analyses of acidity, DMC and mineral
content. The mineral content analyses were carried out with an inductively coupled plasma-optical
emission spectrometry (ICP-OES), Optima 8300, Perkin Elmer. Seven elements were analysed: K,
phosphorus (P), Mg, Ca, Boron (B), Iron (Fe) and Zinc (Zn). Both dry and fresh weight concentrations
were measured, but only fresh weight concentrations (µg g−1 fresh weight) were used for statistical
analyses. The concentration of the elements was adjusted according to the weight loss of each apple in
storage. Two apples lacked a final weight measurement after storage, for those an estimated weight
loss was calculated based on the mean weight loss per day for the other apples. Titratable acidity
(TA) in the apples was measured by extracting 5 ml of apple juice, diluting the juice with 15 ml
ddH2O and titrating as malic acid with 0.05 N NaOH until a pH of 8.1 was reached. For the apples in
which extraction of flowing juice was not possible, 5.0 g apple sauce was used instead and the acidity
was corrected accordingly (5 ml juice = 5.25 g). Two fruits had started to rot and were disregarded
before dry matter and mineral content analyses, and an additional three fruits were too small to
analyse for both minerals and TA. Thus, 244 fruits were measured for initial measurements, 242 fruits
for DMC and mineral content and 239 for TA.

2.5. Statistical analyses
Before any statistical analyses, all apples were checked to see if they meet the European Union marketing
standards for apple (https://ec.europa.eu/agriculture/fruit-and-vegetables/marketing-standards_en,
downloaded 9 January 2018). Twenty-six fruits were disregarded because they were too small (lighter
than 70 g) or because their Brix value was too low (if lighter than 90 g, the Brix should be above 10.5).

Differences between pollination treatments for both initial and final fruit set were analysed by fitting
generalized least-squares (GLS) models, using the nlme-package [34] in R [35]. Per cent initial and final
fruit set were calculated by dividing the number of fruitlets and ripe fruits, respectively, with the number
of initial flowers on each branch and multiplying it by 100. Per cent initial and final fruit set were
included as response variables, and treatment and site as fixed factors. Final fruit set was square root
transformed to meet the assumption of normally distributed model residuals. Models allowing for
unequal variance between pollination treatments were used (VarIdent option) because they had better
fit (initial fruit set Δ Akaike information criteria (AIC) = 116, final fruit set ΔAIC = 49). If a significant
treatment effect was found using a likelihood-ratio test, we performed post hoc tests using the glht-
function from the ‘multcom package’ in R [36], with Holm-adjusted p-values, with the predefined
contrasts natural pollination—supplementary hand-pollination treatment and natural pollination—
pollinator exclusion treatment. To make the glht-function to work with a GLS model, an extra function
from http://rstudio-pubs-static.s3.amazonaws.com/13472_0daab9a778f24d3dbf38d808952455ce.html,
downloaded 9 January 2018, was used. Because we had two measurements of fruit set from the
supplementary hand-pollination treatment, we repeated the analyses to separately analyse the fruit set

https://ec.europa.eu/agriculture/fruit-and-vegetables/marketing-standards_en
https://ec.europa.eu/agriculture/fruit-and-vegetables/marketing-standards_en
http://rstudio-pubs-static.s3.amazonaws.com/13472_0daab9a778f24d3dbf38d808952455ce.html
http://rstudio-pubs-static.s3.amazonaws.com/13472_0daab9a778f24d3dbf38d808952455ce.html
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from the subset of flowers that had received supplementary hand-pollination and the fruit set for the entire

branch. The results from the entire branch are presented in the electronic supplementarymaterial, figure S1.
Pollination treatment effects on seed set were analysed by fitting a generalized linear mixed-effects

model, in the lme4 package [37], with the binomial response variable seed set (maximum
10 developed seeds per fruit), treatment as fixed factor and apple tree identity (ID) as random effect.
An observation-level random effect was added to account for overdispersion [38]. If there was a
significant treatment effect, we performed post hoc tests as above. Extra apples were not included in
the analysis and one sample lacked seed count (n = 191).

The effects of the pollination treatment on the element concentrations and on the ratio between K and
Ca (K : Ca) were analysed with separate linear mixed-effect (LME) models, from the nlme-package [34],
for each element. Fixed factors were pollination treatment, initial weight and their interaction. Total buds
per tree, final fruit set per branch, colour cover and site were included as covariates and treeID as a
random effect. The continuous predictors were centred, using the scale-function. Response variables
were transformed if needed to meet the assumption of normally distributed model residuals and the
interaction term was deleted if non-significant. Models were evaluated using likelihood-ratio tests
between full models and models with one term dropped. Extra apples and apples with missing
values in the fixed factors or covariates were not included in analyses (resulting in n = 190). Two
outliers were removed from the Ca analyses, owing to extremely high Ca values.

To analyse DMC of fruits in relation to treatment and storage time, the data were divided into two
datasets. One dataset, healthy apples (n = 153), included fruits that were measured initially, directly
after harvest, and fruits that persisted in the storage until the end of the experiment. The second
dataset (n = 37) included apples that suffered from postharvest disorders during the storage time.
LME models were fitted for both datasets, with per cent dry matter as the response variable,
pollination treatment and storage category (initial and final) or days in storage, and their interactions,
as the explanatory variables, and final fruit set per branch, initial fruit weight and total number of
buds per tree as covariates. The factor site was included to account for differences between sites, and
treeID as a random effect. The interaction term was deleted if non-significant and the models were
further simplified with the drop1 function until the AIC no longer decreased. If a treatment effect was
found, we performed post hoc tests using the glht-function with the same predefined contrast as
above. The categorical variable ‘storage category’ was changed to the continuous variable ‘days in
storage’ for the post hoc test. Continuous predictors were centred, using the scale-function and p-
values were obtained using likelihood-ratio tests. The other quality variables, sugar content, firmness,
titrated acidity and weight loss during storage, which are all highly inter-correlated, were analysed
with similar models as the DMC, and included treatment, storage category/storage time and their
interaction, fruit weight and site as predictor variables. The results for sugar content, firmness, acidity
and weight loss are presented in the electronic supplementary material, table S2 and figure S3.

The relationship between storage duration, i.e. the number of days the fruit were in storage before
suffering from postharvest disorders, and element concentrations in fruits, was analysed with the Cox
proportional hazards regression models, with the coxph-function from the survival-package in R [39].
The Cox proportional hazards regression models are used for evaluating how specific variables
(element concentrations) influence the rate of a particular event happening (post-storage disorders) at a
particular point in time (referred to as the hazard rate). A ratio of the hazard rates (referred to as
hazard ratio) greater than 1 indicates that a variable has a negative influence on storage duration.
Survival status at the end of the experiment was included in the model, i.e. if the apples were still
healthy or not. The weight of the apples in g and the interaction between weight and element
concentrations were included as covariates in the initial model, but dropped if they did not improve the
model fit. Site was included either as a covariable, a stratification variable or dropped depending on if
it fulfilled the assumption that the hazard ratio was constant over time. Element concentrations were
log-transformed when it improved model fit. The model assumption of proportional hazards was tested
with the cox.zph function (survival-package) and by plotting the Schoenfeld residuals versus time, and
the assumption of linear covariates was verified by plotting Martingale residuals against each covariate.
p-values for elements and weight were obtained with Wald tests, where z gives the Wald statistic.

To assess direct and indirect effects of the pollination treatment on the storability of apples, we
developed a SEM. Before developing the model, we decided to include only the K : Ca ratio, and not
the other elements, in the SEM, because it is well established that K : Ca ratios affect postharvest
disorders and thus apple storability [24,25,40], and because our previous analyses indicated that the K :
Ca ratio was related to both pollination treatment and increased risk for postharvest disorders (tables 1
and 2). We used individual LME to be included in an initial piecewise SEM, where all models had
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Figure 1. The effect of the treatments ‘pollinator exclusion’, ‘natural pollination’ and ‘supplementary hand-pollination’ on (a) the
initial fruit set (number of initial fruits divided by number of flowers per branch) and (b) the final fruit set (number of ripe fruits
divided by number of flowers per branch), using predicted values from the GLS models. Bars represent model-estimated standard
errors. Estimated means per treatment and the standard errors in (b) are back-transformed from squared rooted values.
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treeID as a random effect. Each model was first individually evaluated by plotting standardized residual
against fitted values and against each predictor variable [41]. When necessary, we used the variance
function varPower to model heteroscedasticity and log-transformation to achieve normality of residuals.
To assess the model fit of the SEM, we used directional separation test (D-separation test) which yields
Fisher’s C-statistic that is χ2 distributed. If a missing path was detected with the D-separation test, the
path was added. To simplify the model, insignificant paths were deleted from the model until the
SEM’s AIC no longer declined or no other paths could be deleted. The relative importance of
continuous predictor variables was compared using standardized path coefficients.
3. Results
3.1. Fruit and seed set
The pollination treatment had an effect on both initial (L.ratio = 48.2, Δd.f. = 2, p < 0.001) and final fruit set
(L.ratio = 39.4, Δd.f. = 2, p < 0.001) (figure 1). The naturally pollinated branches had 374% higher initial
( p < 0.001) and 200% higher final ( p < 0.001) fruit set than the branches in the pollinator exclusion
treatment, which confirms that Amorosa apples are highly dependent on animal-mediated pollination.
The supplementary hand-pollinated flowers had 60% higher initial ( p = 0.04) fruit set compared to the
naturally pollinated branches, indicating lower fertilization success in the natural compared to
the supplementary hand-pollinated treatment. However, this difference was no longer found in the
final fruit set when only considering the subset of flowers that were supplementary hand-pollinated
( p > 0.5), but was still present when considering the fruit set of the entire branch ( p = 0.04, electronic
supplementary material, figure S1). The pollination treatment also affected the seed set in apples
(χ2 = 67.3, Δd.f. = 2, p < 0.001), with higher seed set in naturally pollinated fruits (mean = 2.3) compared
to fruits in the pollinator exclusion treatment (mean = 0.4, p < 0.001), while no difference was found
between naturally (mean = 2.3) and supplementary hand-pollinated fruits (mean = 2.4, p > 0.5).
3.2. Mineral content in fruits
The concentrations of the elements K, Zn and Mg in fresh weight apples were affected by the interaction
between pollination treatment and initial apple weight (table 1), indicating that the effect of pollination
treatment on mineral content depended on the weight of the apples (table 1; electronic supplementary
material, figure S2). For K and Mg, the interaction effect arose because the supplementary hand-
pollinated apples increased in K and Mg concentrations with increased apple weight, whereas the
naturally pollinated (K: t =−2.6, p = 0.009, Mg: t =−4.5, p < 0.001) and pollinator-excluded fruits (K: t =−
2.2, p = 0.03, Mg: t =−3.8, p = 0.001) decreased in element concentrations with increased apple weight
(table 1; electronic supplementary material, figure S2). The variation in Zn concentration arose because
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control (t =−2.9, p = 0.005) and supplementary hand-pollinated fruits (t =−2.1, p = 0.039) had a steeper
decline in Zn concentration with increased weight compared to pollinator excluded fruits. We found a
marginally non-significant trend that pollinator treatment affected the K : Ca ratio in fruits (L.ratio = 5.7,
p = 0.057), with supplementary hand-pollinated fruits tending to have lower K : Ca ratio compared to the
other treatments (table 1). For the remaining elements (Ca, P, Fe and B), the concentrations did not vary
between pollination treatments or as a consequence of an interaction between pollination treatment and
apple weight (table 1). However, the Ca concentration was negatively related to the weight of the apples
(table 1). The average concentrations for the measured elements in fresh weight and dry matter apple are
presented in the electronic supplementary material, table S1.

3.3. The effect of storage time on fruit dry matter and mineral content
DMC in fruits was affected by pollination treatment in both healthy fruits (L.ratio = 27.8, Δd.f. = 2, p <
0.001 (initial and finally measured fruits)) and fruits that suffered from postharvest disorders during
storage (L.ratio = 9.2, Δd.f. = 2, p = 0.010). Fruits from both health categories had higher DMC in the
supplementary hand-pollinated treatment than in the natural pollination treatment (pairwise
comparison natural pollination: z = 4.0, p < 0.001 (initial and finally measured fruits); z = 2.56, p = 0.021
(apples that suffered from postharvest disorders)), and naturally pollinated fruits had higher DMC
compared to the pollinator-excluded fruits (pairwise comparison with pollinator-excluded fruits: z =−2.9,
p = 0.004 (initial and finally measured fruits); z =−2.2, p = 0.027 (apples that suffered from postharvest
disorders)) (raw data shown in figure 2). DMC decreased with days in storage in fruits that suffered
from postharvest disorders (L.ratio = 20.9, Δd.f. = 1, p < 0.001). DMC also had a tendency to be higher
in apples that were measured directly after harvest compared to apples that had remained in the
storage for the entire storage period (greater than 160 days) (L.ratio = 3.6 Δd.f. = 1, p = 0.059). We
found no interaction effect between pollination treatment and storage time in these analyses, showing
that fruits from the supplementary hand-pollination treatment had consistently higher DMC
throughout the storage time.

The concentration of the elements K, Zn and the K : Ca ratio affected the risk for apples to suffer from
postharvest disorders during storage (analysed with the Cox proportional hazards regression models,
table 2). Apples with higher K and Zn concentrations had higher risk of suffering from postharvest
disorders during storage (table 2). An interaction between the K : Ca ratio and fruit weight also
affected the risk of postharvest disorders, which means that the weight of the apples modified the risk
with having higher K : Ca ratios. The risk of suffering from postharvest disorders with higher K : Ca
ratio decreased with increasing fruit weight (table 2). The fruit weight variable was also significant in
the models for K and Zn, indicating that higher fruit weight increased the risk of postharvest
disorders (table 2). No other element concentrations were related to storage duration.
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3.4. Structural equation model
When running the initial SEM (figure 3a) to explore the causal relationships between pollination
treatment, fruit weight, final fruit set, K : Ca ratio and storage duration, the D-separation test revealed
two missing links; one between fruit weight and storage duration and one between site and fruit
weight. These paths were added to the model and non-significant paths were deleted (figure 3b),
resulting in a model with better fit than the initial model (Fisher’s C = 8.9, d.f. = 10, AIC = 66.9, p = 0.54
compared to initial: Fisher’s C = 18.2, d.f. = 10, AIC = 78.2, p = 0.051). In the final SEM, we found that
pollination treatment had an indirect effect on storage time of fruits, mediated through final fruit set,
fruit weight, an interaction with fruit weight and the K : Ca ratio (figure 3b, see also χ2 likelihood-ratio
test statistics; electronic supplementary material, table S4). Fruit weight had both a direct negative
effect on storage time and an indirect interaction effect with pollination treatment that affected the
K : Ca ratio, which in turn with increased ratio had a negative effect on storage time (figure 3b). The
interaction effect between pollination treatment and weight arose because pollinator-excluded fruits
increased in K : Ca ratio with increased fruit weight, which was not seen for the other treatments.
Site had a strong direct effect on storage time as well as on the fruit weight and K : Ca ratio which in
turn also affected storage time (figure 3b).
4. Discussion
The fruit quality aspects important for apple growers are those connected to marketability and storability.
We found that the pollination treatment could affect both these aspects. The supplementary hand-
pollination treatment, where compatible pollen had been added to the stigmas to increase the
probability of cross-pollination, resulted not only in the highest initial fruit set, but also in higher
DMC levels and a tendency for lower K : Ca ratio, compared with naturally pollinated apples. These
quality aspects are desirable because previous studies suggest that higher DMC levels are connected
to consumer preferred flavour, sucrose, acidity and fruit texture levels while lower K : Ca ratios are
related to a reduced incidence of postharvest disorders [23,24]. Moreover, K and two other elements
(Zn, Mg) were affected by an interaction between pollination treatment and fruit weight, indicating
that the level of cross-pollination is affecting the accumulation of those elements into apple fruits. Our
studies show that also a higher concentration of Zn, and not only K and higher K : Ca ratio, may
influence the risk of postharvest disorders during storage.

The connections between pollination treatment and storability seem to be complex and indirect, going
through several covariables. The SEM suggested that the pollination treatment had a direct effect on the
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weight of apples, where fruits from the supplementary hand-pollinated treatment were the lightest and

fruits from pollinator exclusions were the heaviest, which indirectly affected storability because lighter
fruits had better storability. On the other hand, supplementary hand-pollination also increased final
fruit set (on the entire branch level) which had a positive effect on the K : Ca ratio which in turn had
a negative effect on storability. To complicate the matter further, the K : Ca ratio was affected by an
interaction between pollination treatment and apple weight, where heavier apples from the pollinator-
excluded treatment had higher K : Ca ratios compared to apples from the other pollination treatments.
Hence, the weight of the apple modified the effect of pollination treatment on the K : Ca ratio, and
therefore, it is not possible to evaluate which pollination treatment leads to longest storability without
considering apple weight. However, because the supplementary hand-pollinated apples generally were
lighter (figure 3), and tended to have a lower K : Ca ratio compared to other treatments (table 1), which
are positive attributes for storability, this indicates that apples with ensured cross-pollination could have
a generally better storability.

DMC, which is suggested to be a reliable predictive tool for estimating marketable fruit quality [16–18],
was highest in apples that were supplementary hand-pollinated. Because higher DMC is related to better
flavour [17] and increased consumer preference [16], high DMC levels could be a desirable trait for
apple producers. In the fresh apple market, flesh firmness above a certain level together with high
total soluble solids and TA are preferred and considered the main quality traits of fruits [7,16].
However, because most apples for consumption are harvested before fully ripe and because fruits
consist of living tissues, the firmness, soluble solids and TA are not stable quality metrics but will
change during maturation owing to metabolic activity [16]. Because fruits are harvested before starch
solubilization is completed, the soluble solids at harvest do not represent the soluble solids after
storage well [16]. Measurements of DMC at harvest have instead been found to better predict the total
soluble solids in fruits after storage, probably because DMC also considers starch levels [16]. In our
experiment, DMC was lower for fruits that remained longer in storage, which may be related to
respiration during storage. Because we did not measure respiration, we cannot distinguish
respirational effects on DMC from the possibility that fruits with high DMC suffered more from early
postharvest disorders. On the other hand, the retained higher DMC throughout the storage time in
supplemented hand-pollinated fruits indicated a persistently higher quality of ensured cross-
pollinated fruits compared to the other treatments.

In contrast with earlier studies [23,24], we did not find that increased Ca content in apples by itself
lowered the risk of postharvest disorders. However, an interaction between the K : Ca ratio and apple
weight, and a higher Zn content affected the risk of postharvest disorders, where a high K : Ca ratio
increased the risk of postharvest disorders mainly for lighter apples and less so for heavier apples.
Corresponding to these results, the SEM showed an increased K : Ca ratio to have a negative impact
on storability. Previous studies suggest that the low Ca levels in the K : Ca ratio rather than the high
levels of K cause postharvest disorders [42] and that pollination affects the Ca concentration [29,30],
and thus indirectly postharvest disorders. The mechanism suggested by Bramlage et al. [29] is that
increased seed numbers induces higher auxin production which increase translocation of Ca into
fruits, a mechanisms not found for other elements (K and Mg). However, in our study, we did not
find Ca in fruits to be affected by pollination, but we found Mg and K levels to be affected by
pollination treatment in interaction with fruit weight, which was not tested in the previous studies,
and therefore possibly missed. While the seed number and auxin-related mechanism seems plausible,
additional mechanisms may be at play as we found tendencies for differences in the K : Ca ratio in
apples between control and supplementary hand-pollinated fruits but no differences in seed set.

Even though pollination treatment affected both quantity and several quality aspects of apples,
other site factors also had a strong impact, as shown by the significant site effect in several of the
analyses (e.g. figure 3; electronic supplementary material, table S3). Site effects may indicate
the importance of unmeasured management practices like thinning and fertilization regimes, and site
variation in the age of the apple trees, the availability of elements and nutrients in the soil, pests and
pathogens and other animal interactions in the orchard, and light levels reaching the apples (e.g.
[30,43,44]). These unmeasured factors may have concealed differences in final fruit set levels between
natural and supplementary hand-pollinated fruits, while the effect of the pollinator treatments
persisted for the quality variables. Hence, even considering site effects, increasing cross-pollination in
orchards evidently needs to be considered in the management because it affected several quality
aspects of apples. To increase successful cross-pollination from natural pollination, orchards need to
have ample compatible pollen sources in configurations that facilitate pollinator movements between
compatible cultivars [45]. In addition, high species richness and abundance of wild bees seem to be
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the key [46–48]. Higher species richness of pollinators have generally higher functional trait diversity and

can therefore complement each other both spatially and temporally, leading to increased pollination
services [46,48,49]. Moreover, the effectiveness of managed bees as crop pollinators is enhanced by the
presence of other interacting wild pollinators [50].

In order to increase sustainability of apple production and to understand the full economic effect of
pollination services, we need a better understanding of the relationships between pollination services,
cross-pollination and fertilization, fruit set, marketable fruit quality and storable fruit quality. In our
study, we found increased amount of delivered compatible pollen to apple stigmas to be beneficial not
only for fruit set but also for higher DMC in fruit. The link between pollination treatment and
storability was more complicated and needs to consider the modifying effect of fruit weight on the
effect of pollination treatment. However, lighter apples and lower K : Ca ratio in supplementary hand-
pollinated fruits indicate that these fruits have longer storability than fruits from flowers that had
received less compatible pollen. Further research is needed to evaluate how general our results are
and how they interact with other management decisions such as selection of cultivars, cultivar
configuration in orchards, thinning-regimes and pollinator management.
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