i
e

ad

AFCRL-66~180

"AD6326G69

L e

THE BBN-LISP SYSTEM

Daniel G. Bobrow
D. Licllle Darley
Danier L. Murphy
Cynthla Solomon
Warren Teltelman

" Bolt Beranek and Newman Inc.

50 Moulton Street

Cambridge, Massachusetts 2138

Contract No. AF19{623)-5065

FEDEPAT- “71R
PECHNITY

¥ 18

g;;§°5§y= lic.oflche\

15,

TNCHOUSE
CLEAR GNTIFIC AND

_-—-‘J

uArnni

2]

Project No. 8568
Scientific Report No. 1.

February, 1966

L@\R@%X‘.\JE UJW

(The work reported was supported by the Advanced Research
Projects Agency, P.R. No. CRL-56175, ARPA Order No. 627,
dated 9 March 1965.)

Prepared for:

AIR FORCE CAMBRIDGE RESEA..CH LABORATORIES
OFFICE OF AERCSPACE ®ESTZARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

AFCRL-66-180

THE BEN-LISP SYSTEM)

Daniel G. Bobrow
D. Lucille Darley

Daniel L. Murphy . E

Cynthia Solomon
Warren Teitelman

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

Contract No. AF19(628)-5065
Project No. 8668
Scientific Report No. 1

February, 1966

(The work‘reported was supported by the Advanced Reseafch
Projects Agency, P.R, No. CRI-56176, ARPA Order No. 627,
dated 9 March 1965.)

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITEL STATES AIR FORCE
BEDFORD, MASSACHUSETTS

Distributlion of this document is unlimited.

B R e kT e i

SR

IS

bt

s iy B N M PEE ey T

e G

e B S e N o B e

TABLE OrF CONTENTS

Page

I. mmochIoN..‘O......t....Il.ll..'........ I-l

II. THE INTERNAL STRUCTURE OF THE BBN-LiSP
SYSTEM..-....oooonoo..o-ooo-oooctoocooooo- II“l

III. DESCRIPTION OF FUNCTIONS IN BBN-LISP..... III-1

IV, LISTINGS OF S~-EXPRESSIONS OF EXPR'S
ANDFEXPR'S..I.......‘.........‘I......... W-l

APPENDIX A - OPERATING THE BBN-LISP SYSTEM

A-l
A-2

A-3

LISP LOADER.Q..l.l....'.“'.l..'l‘. Aol“l

USING LISP FROM THE COMPUTER ROOM
TELENPE......................C..'. A.E"‘l

USING LISP FROM A REMOTE PATASET... A.3-1

APPmDIx B - mDEx TO F‘UNCTIONSO.)......Q.I..Q.' B‘l—l

FOREWORD

The work reported here was performed at Bolt Beranek and
Newman Inc in Cambridge, Massachusetts for the Advanced
Research Projects Agency under Contract No. AF 19(628) -506F).

e s e R——

L]

[S
+

s Ppus e PEe P

THE BBN-LISP SYSTEM

ABSTRACT

This report describes in detail the BBN-LISP system. This
LISP gystem has a number of unique features; most notably,

it has a small ccre memory, ard utlilizes a drum for storage
of 1list structure. The paging techniques described here
allow utilization of this large, but slow, drum memory with
a surprisingly small time penalty. These techniques are
applicable to the design of efficient 1list processing systems
embedded in time-sharing systems using paging for memory
allocation, '

SECTION I.
INTRODUCTION

LISP is a highly scphisticated list-processing language which
is being used extensively in the artificial intelligence re-
search program at Bolt Beranek and Newman. This report
describes our LISP system, which has a number of unique
features., Ideally, a LISP system would have a very large,
fast, random-access memory. However, magnetic core memory
(the only large scale random-access memory availatle) is
very expensive relative to serial memory devices such as
magnetic drums or discs. Since average access time to a
word on a drum or disc is approximately 1000 times slower
than access to a word in a core memory, using a drum as a
simple extension of core memory would reduce the operating
speed of a system by a factor of 1000,

We have develcped a special paging technijue which allows
utilization of a drum for storage with a much smaller time
penalty. This technique allows us to make effective use of
a LISP system on our PDP-1 which has only 8392 18-bit words
of 5 microsecond core memory and 92,312 words on a drum
with an average access time of 1&,5 milliseconds. In addi-
tion, the techniques reported here would improve the speed
of operation of LISP systems embedded in time-sharing
systems using paging for memory allocation. In these time-
sharing systems the user is allocated only a small portion
of core memory at any time, although his program can address
a large virtual memory. The poriion of his data structure
and,/or program not in core is kept in a slower secondary

I-1

stcrage medium such as a dyum or disc. Thus, to the user it
is very similar to the situation on our PDP-1, except that a
hardware mechanism makes the program transparent to the
medium of storage of any page of his program,

Section II of this report describes the internal structure
of the BBN-LISP system, and the mechanisms used to facili-
tate fast use of drum storage. Section III describes the
LISP functions which are built into the basic system. Sec-
tion IV contains listings of those functions which are
defined in LISP.

Although we have tried to be as clear and complete as poss-

ible, this document is not designed to be an introduction to
LISP. Therefore some parts4may be clear only to people who

have had some experience with other LISP systems.

SECTION II.

THE INTERNAL STRUCTURE OF
THE BBN-LISP SYSTEM

The BBN-LISP System uses cnly a small core memory, but achieves
a large memory capacity by utilizing a drum, This drum is

used in three ways. PFirst, the working program is divided into
three overlays, the read and print (inmput-output) program, the
garbage collector, and the interpreter of S-expressions. Only
one of these overlays 1s in core at any time, although a number
of sub-programs common to all three remain in core at all times,

Secondly, the drum contains a large push~down list for use in
running recursive programs., This push-down list is double-
buffered; that is, the section of the push-down list used most
recently is in core and the section used limediately preceding
this section is also there, so that traveling between buffers
dse3 not necessitate a drum reference.

The third way of utilizing this large secondary store, the drunm,
is flor storage of 1list structure., If the entire remaining drum
storage was used simply as an extension of core memory, &n
access to the drum would be needed each time a new 1list element
was refervcnced; and LISP would be reduced to operating at drum
rotation speed. Instead, the drum storage of list structure is
divided into pages. [Eacih page is currently 258 words (decimal);
and each page contains ite own free storage list. The cons
algorithm, for constructing 8 new list element, nrks as follows.

II-1

PmE GEmE SUE P P T e e Em BN DA SUm ey Wy M) B0 (250 B

To construct z = cons [x;y]:

1) If y is not an atom, and there is room on the page
with y, then place z on this page

2) Otherwise, if x is not an atum, and there 1s room
on the page with x, put z on that page

3) Otherwise, place z on the page in core with maximum
free storage.

This algorithm tends tc minimize cross linkages between pages
and to limit any single structure to a very few pages. Thus
when vorking with this structure, it is unlikely that one will
make refercnces to more than a few pages for a relatively long
period of time. 8ince these pages can reside in core, no drum
references are needed. Fcr example, in entering the definition
of a function, the entire definition tenis to appear on a single
pag>. Thus, during the interpretation of a function, multiple
drum references are usually unnecessary.

Although we have not yet run this LISP system on a large problem
where we can make a reasonable timing comparison, we can give
the following anecdotal evidence for the increase 1n speed due
;0 this naging system. The run light on the PDP-.1 goes off when
8 drun swap is taking place. In an slder version of PDPP-1 LISP
the drum was treated as an extension of core memory. When any
problem was run, the run _igiht seemed to go or'f completely, in-
dicating thet the machine was spending almost all of its time
going drum transfers, In this system, however, tihe run light
seems to burn as brightly as the rest, indlicating that raiatively
frw drun transfer operationt occur except when going betwueen the
three overlay packages, trat is, when going from input and oute-
put bacls to the interpreter or goling into a garbage collection.

iI-2

On the research computer, because of the drum storage, ve
currently have in use an effective free storage list of approx-
imately 25,000 LISP words, i.e., double word paire (pointers).
Each LISP word is, of course, two 1& bit PDP-1 werds., In the
extended version of LISP that will be used on tihie hospital
system we will have 256,000 LISP words for free storage.

'There are & number of differences between this system and 7094
LISP aslide from the storage conventions, For example, the value
of a variable is stored in a scecial value cell for that variable,
that is, as car of the atom name. An atom is distlinguvished by
ite address, which 1s located in a fixed region of virtual
memory space., Thus one need not reference a structure, but only
look at its address. in order tc tell whether or not it is an
atom., If x 1s an atom, then cdr{x] is the property 1list of the
atom, as in 7094 LISP. Hcwever, the print name of the atom is
not to be found on this property list. The user can cnly get

at the print name with the instrmictions pack and unpack. Sia-
ilarly, the definition of an atom as a function is hidden away
from the user in a special cell assoclated with the atom name,
T™wo functions, getd{x] &nd putd{x;def] are used to get the def-
inition of a function, and place the definition in the function
cell of ar atom, respectively. The value of getd{x] on an atom
deflned a8 a machine lanzuage s.broutine i: a numerical constant
which bears some relationship to the instructlon that must be
executed to ohtain access to the subroutine,

¥hen & new function is entered, the old values of its variadies |
are pushed down on the push-down lizt, and the currenl values
are stored in the value cells, Since the current value of any

II-3

fucd TeEg QNN PN WEg SEy Gy S P O EDT e NG

Plosider o A
T

Wity
&

S et SR PG Pead

variable is always to be found in its value cell, free variables
are no problem. Fowever, there 1s the usual anomalous case of
conflicting free variables in functlonal arguments. This can

be circumvented by using sufficiently unique variable names.

Because of the way variable values are stored, the main inter-
preter, eval, obviously does not use an A-list, and 1is therefore
a function of only one argument. The function evala defined

in the BBN-LISP System will simulate the effect of the usual
eval[x;a], a being an A-list.

Different LISP systems employ different methods to achieve the
following two effects in functions labelled FEXPR'S in 7094 LISP.
These two effects are (1) giving a function the ability to have
an indefinite number of arguments, and (2) giving a function the
ability to receive its arguments unevaluated.

On the 7094 anFEXPR is defined by putting the function definition
cn the property list after the flag, FEXPR, anc treating it as

a speclal case in the interpreter. In BBN-LISP we call functions
which have abilities (1) and (2) FEXPR's, but we define them

- differently. The way @niEXPR is defined in BBN-LISP is as

foliows: 1instead of the usual lambdi followed by a list of
variables, the defining form is preceded by nlamda followed by

a list containing a single variable. When a function with an
nlamda is entered, everything following the function name in the
form to Le evaluated is placed on a single list and becomes the
value coi' the single argument of this FEXPR. This is passed to
the functicn unevaluated. In order to evaluate any portion of

17 s

this list, an explicit call to eval must be made, See "defineq"

in the listings for an example of the use of this Aevice. &

II-1

e e . -

third reason FEXPR's and FSUBR's are used on 7094 LISP is to
make the A-list avallable to a program. However, since
there is no A-list in BBN-LISP this will not concern us here.

Another major difference between BBN-LISP and 7094 LISP is
due to the fact that the 7094 has floating point hardware,
and the PDP-1 does not. Any floating point machinery would
have to be interpreted on the research computer. This would
be expensive in both time and space, and, therefore, in this
version of LISP there is only integer arithmetic. A compiler

is being planned for the PDP-1 and will be described in a
later document.

II-5

..Au,/'

]

-

-—

i

o S er—~ B

e BN G PG PG e S)

Bt v i

E

:»W'Q

PENE e P g e

cons[x;y]
SUBR

car[x]
SUBR

cdar{x]
SUBR

caar[x] =
SUBR

cadr[x] =
SUBR

SECTION III,

DESCRIPTION OF FUNCTIONS IN BBN-LISP

carlcar{x]]

car[edr[x]]

cons constructs a dotted pair of
xard y. If y is a list, x becones
the first element of that 1list.

car glves the first element of a
1list x, or the left element of a
dotted pair x. Nominally undefined
for atoms, it gives the binding
(value) of an atom x.

cdr gives the tail of a list (all
but the first element). This is
also the right member of a dotted
pair. If x is an atom, cdr[x]
gives the property list of x.

A1l 30 combinations of nested cars
and cdrs up to U4 deep are included
in the system.

cddddr{x] = cdr{ecdr{cdr{car{x)i]]

SUBR

ealx;y]
SUBR

The value of eq is T if x and y are
identical atoms, including numbers;
otherwise the value is NIL, ({(Will

give T for lists 1f their internal

representations are identical, NIL

otherwise.) ‘

ITI-1

null[x]
SUBR

atom[x]
SUBR

oblist(]
SUBR

not [x]
EXPR

quote[x]
FSUBR

cond[x]
FSUBR

L e

eq[x;NIL)

Its value i1s T if x 1is an atom;
NIL otherwise.

Gives a list of all atams in the
system.

Its value is true if its argument
is false, and false otherwise.

This is a function that prevents
its argument from being evalu-
ated. Its value 1s x itself.

The argument for cond 1is a 1list.
Each element of the list is itself
a list containing n > 1 items:

the first is an expression whose
value may be false or true (that
is, NIL, or anything which is not
NIL); the rest may be any expres-
sions. This 1s the conditional
expression in the LISP system.

The meaning of it is: 1if the
firet element of the first list

is true (not NIL), then the fcl-
lowing expressions are evaluated.
The value of the conditional 1is
the value of the last expression
in this sublist. If there is oniy
one expression, then the value of

III-2

:ﬁl"‘

,“w

i
L

st Sl SEEY AR ONG SE) ONg ey

Tl 05 U PN e p

prog(1]
FSUBR

go[x]
FSUBR

list{x1;...;xn]
FSUBR

the conditional is the value of
this expression. This value co-
incides with the value in 7090
LISP for pairs of items, but
allows additional flexibility.

If the first element of the first
list is false (= NIL), then the
second sublist 1is considered, etc.
Thus, the arguments are searched
until a first element of a list
is found which is not NIL. If
none are found, the value of the
conditional expression is NIL.

This feature allows the user to
write an ALGOL-like program con-
talning LISP statements to be
executed. The argument is a list,
the first element of which is a
list of prcgram variables. The
rest of the list is a sequence of
statements, and atomic symbols

used as labels for transfer points.

g0 1s the function used to cause a
transfer in prog. (GO A) will
cause the program to continue at
the label A.

The value of list is a list of
the values of 1its arguments.

III-3

o - —gorear e e

return{x]
SUBR

print(x]
SUBR

prini[x]
STUBR

terpri[]
SUBR

punchon(x]
SUBR

| =

typeout [x]
SUBR

read[]
SUBR

punch [x]
EXPR

return is the normal end of a
prog. Its argument is evaluated
and is the value of the prog in
which it appears.

Prints x, followed by carriage
return, on specified devices
(see punchon, typeout). Value
is x.

Prints one etom, X, with no space
or carriage return following.
Value is X.

Prints a carriage return. Value
is NIL.

Turns punch on for print if x = T;
turns punch off if x = NIL.

Value is former setting of punchon.

If x = T, turns typewriter on for
printing. If x = NIL, turns type-
writer off. Value 1is former
setting of typeout.

Reads on S-expression from
specified device (see typein).

This function sets punchon to ¢,
sets typecut to nll, punches X,
and then restores punchon

and typeout to their original
values,

III-4

N |

G S 0 e e - e can N NS SN G ey e e =0 O

‘. ?,1

P o
L3

Gl S0 W ¢ s - e GaS I PEE U SN WY ey ey S5O D

typein[x]
SUBR

ratom(]
SUBR

setsepr(x]
FSUBR

setbrk[x]
FSUBR

If x = T read-in device is set to
typewriter, If x = NIL read-in
cevice is set to reader, Value 1s
former setting of typein.

Reads in one atom irom read-in de-
vice. Separation of atoms 1s as
defined by the functions setsenr
and setbrk.

These aire both FSUBRS and may have
up to 18 arguments each. Arguments
should be octal numbers, e.g., 774
for carriage return. Characters
defined by setbrk will delimit atoms
and te returned as separate atoms
themselves. Characters defined by
setsepr will not be returned and
will serve only to separate atoms.
For example, to make ratom read in
ordinary format, space (0Oq), comma
(33q), and carriage return (77q)
are separation characters, and left
paren (57q), right paren (55q), and-
period (73q) are break charscters,
Thus setsepr{Oq 33q 77q]
retbrk(57q 55 73q]
would set up these characteristics.
The value of setsepr and of setbrk
1s NIL.

IiI-5

clearbuf(]
SUBR

readin[x]
SUBR

feed[n]
SUBR

This SUBR clears the input and output
buffers of the sequence break pack-
age, including the sequence break
reader, ratom, read, ard typein line
buffers, and sets the case to lower
cagse., This means that if you have
Just done a read and the S-expression
did not complete a line, whatever
else 1is on that line will be lost.
However, 1t is very useful if you
wvant to initlallze the system, or an
error has been made, and you want to
clear out what has been read in on

a line,

If x = T, readlin sets the teletype
input to the paper tape reader.
Specifically, it eliminates the line-
feed echo after a carriage return,
and the delete characters, rubout

and colon, are not recognized. Set-
ting x to NIL restoreg the status to
normal. This function returns its
previous value.

The value of n must be a number,

This function‘outputs on the teletype
n carriage return-line feeds or n
carrlage returns dependlng on the
setting of readin,.

I(I-5

W~

. M n S e B DRG0 e v

o

ORI T b

" R TR NP R e
= £9 63 a5

3

s SEG ONE NN SN Oy e

GEh UER S EB P

character[n]
SUBR

progilx;y]
SUBR

prog2(x;y]
SUBR

progn(x;y;...;z]
FSUBR

set{x;y]
SUBR

setqlx;y]
FSLUBR

This function outputs on the tele-
type a single character with octal
representation (code) n. n must
be & number.

This function ev.luates *»oth its
arguments 1in order, that is, x
first and then y, and then returns
the value of x.

The purpose of this function 1is to
allow the evaluation of x, before
returning y.

progn 1s an FSUBR which evaluates
each of its arguments in sequence,
and returns the value of 1ts last
argument as its value, It is an
extension of prog2,

This function sets the atom which
18 the value of x, to the value of
¥, end returns the value of y,

This FSUBR 1s identical to set,
except that the first argument 1is
quoted.

Example: If the value of x is ¢,
and the value of y is b, then set
[x;y] would result in ¢ having
value b, and b returned., setq(x;y]
would result 1n x having value b,
and b returned, The value of y ia
unaffected,

ITI-7

setn(x;y]
SUBR

setn requires and checks for an atom
as the value of the first argument,
and a number as the second. If the
first argument 1s not already de-
fined as a number, the value of the
second will be moved to a new cell
in FWS (Full Word Space), the loca-
tion of which will be stored in the
value cell of the first argument,
Otherwise, setn replaces the FWS cell
containing the previous numeric
value of the first argument by the
numeric value of the second., If the
second argument was the most recent
number added to FWS, the cell con-
talning its value is returned to the
free list.

Example:
(SETN (QUOTE P) (PLUS P 1))
creates a new cell in FWS conteining
the o0ld value of P plus 1. This
value gets moved to the FWS cell con-
taining the old value,

The following will lose:

(PRUG .. (SET (QUOTE A) B)

(SETN (QUOTE A) (PLUS A 1)) ...)
because the cell containing the value
of A is the same as that for B, To
avoid tne problem, the first SET
should have been a SETN so that a
unique numeric value cell would have
been assigned for A.

I171-8

+-» PR MR SR Pee e T s EN) @GN W W Sy P ™D DO s SR

'Mo.,:e»uuqmrm.“ [T

setqq{x;]

setng(x;y]
FEXP

R

putd[x;y]
SUBR

putdqlx;y]
FEXPR

getd[x]
SUBR

fntyp(x]
SUBR

eval({x]
SUHBR

Identical to setq except that nelther

argument is evaluated.

This FEXPR is identical to setn
except that the first argument 1s
quoted,

putd places the value of y into the
function cell of the atom which 1s
the value of x. This 1s the basic
way of defining functions, putd 1s
mnemonic for put definition on x.
Value of putd is the definition
(value of y).

This functlon 1s similar to putd,
but both argumenis are considered
quoted, and its value 1is x.

This function gets the definition

of the function whose name 1s the

value of x. If x 1s not a defined
function, the value of getd[x] is

NIL; if x 1s a SUBR or FSUBR, the

value is a number,

This function gives EXPR, FEXPR,
SUBR, FSUBR or NIL depending on
whether x 1s an EXPR, FEXPR, SUBR,
FSUBR or not defined, respectively.

eval evaluates the expression x and
returne thls value,

111-9

errorset{ fom;arg)
SUBR

ersetq(x;
FEXTR

nlsetq(x)
FEXPR

error{x]
SUBR

quit(]
SUBR

eQual{x;y]
SUBR

This function calls eval with the
value of form, and returns with a
1list of this value if no error 1s
encountered. If an error is
encountered on the call to eval,
errorset returns with the value

NIL. If arg is T, the message from
error 1s printed; the message is not
printed if arg = NIL.

This FEXFR is defined as

(ERRORSET (CAR X) T);

that is, it is the same as errorset
with the argument quoted and the
error flag set to T.

This F:ZXPR is identical to ersetq
except that the error flag 1s set
to NIL and the error comment from
error will not be printed out.

error induces an error with mes-
sage X,

quit induces a "strong" error, 1i.e.,
will unwind 2 program through
errors2ts to the top level.

The value of this function 48 T if

X and y are equal, that is, 1denti-

¢cal S-expressions, and NIL otherwise.
It 1s as fast as eq for a'.oms.

111-10

Sipu O

and

[x]

FCUBR

or{x]
FSUBR

rdflx{x]
EXPR

app
E

end[x;y]
XPR

™is function is an FSUBR and can
take an indefinite number of argu-
ments. Its value is T if none of 1ts
arguments has value NIL, and 1s NIL
otherwise,

or is also an FSUBR and may have an
indefinite number of arguments {in-
cluding O). or has value NIL if all
of its arguments have value NIL,
ctherwise, it has value T.

If x is NIL this functlon will try

to read one S-expression from the
typewriter with read[]; if no error
occurred in reading, it will return
with 1list of the S-expression that,
was read. If an error occurs in
reading, 1t returns with NIL. If x
is not NIL, 1t will attempt to read
an S~expression and keep attempting
to read it until 1t gets one without
en error; each time it trles to read
an S-expression and gets an error,

1t will print out x. In thls cace

it returns with the =-erpression
itself (not list of the S-expression).

This function copies 1ist x and
appends 1ist y to this copy. The
value 1s the combined list.

III-11

nconc[x;y]
SUBR

nnconc[x;y]
SUBR

attachlx;
EXPR[Y]

teconc([x;p]
EXPR

This function is similar to
append, in effect, but it actual-
ly causes this effect by modify-
ing the list structure x, and
making the last element in the
list x point to the 1list y. The
value of nconc is a pointer to
the first 1ist x, but since this
first list has now been modified
it is a pointepr to the concate-
nated list.

This function is the same as
nconc. nnconc is used by the
trace programs so vhat nconc it-
self can be traced.

This function attaches x to the
front of the list y by doing an

rplaca and an rplacd.

This function provides an effi-
cient way for placing an item x
at the end of a 1ist p. This
list is the first item on p, that
is, car{p]; cdr[p] is a pointer
to the last element in this list;
X 1s placed on the end of the
list by modifying this structure,
and x is placed on the list as an
item. The effect of this function
is equivalent to nconc[car(p];
1ist{x]], with cdr[p] updated to
point to the las! element of the
modified 1list.

I1I-12

r~

TS e G2 R e R G ey v T D SO SN

FIIEPp——Y

TER R B e o=

leonc[x;p)
EXPR

last{x]
EXPR

length{x]
EXPR

.
o

srettyprint[x]
EXPR

prettydef[x]
EXPR

This functlion 1is similar to tconc,
except that in this case x 1s a 1list.
An entire 1ist will be tacked on the
end of car{pl,and cdrlp] will be
adjusted to be a pointer to the last
element of this new comblned 11ist,
Both tconc and lconc work correctly
glven null arguments,

This function has as 1ts value a
pointer to the last cell in the 1list
X, and returns NIL if x is an atom.

This function has as a value the
length of the list x. If x 1s an
atom, it returns O,

The argument of prettyprint is a
list of names of functions; it
prints and/or punches (depending on
the settings) the definitions of
the named functions in a pretty
format., It utllizes the functions
printdef, endline, and superprint.
This latter functlon does &all the
work.,

This function of one argument (a
liat of function names) prints and/
or punches "(DEFINEQ", followed by
the prettyprint listing of each of

I1I-12

define(x]
EXPR

these functicns, followed by a right
paren. tape punched by prettydef
can be loaded by the function load
if a STOP 1s punched on the end of

the tape. The value of prettydef
is x.

—

The argument of define is a 1ist.
Each element of the list is 1itself
a list containing either two or
three items, In a two-item list
the first item of each element of -
the 1list is the name of a function
to be defined, and the second item
is the defining lambda or nlamda
expression, In a three-item list
the first item is again the name of
the function to be defined. The
second is the lambda. list of vari-
ables and the third is the form for
the expression. As an example
consider the following two equiva-
lent expressicns for defining the
function null,

1) (NULL (LAMBDA (X) (EQ X NIL)))
2) (NuLL (X) (EQ X NIL))
III-14

e O & o

TS NS WS BN ap W ey ey ey

Sosmamasnn

P e Sl G e

defineqlx;...;z]
FEXPR

load[x]
EXPR

This FEXPR 1is closely related to
define, However, 1t can take an
indefinite number of arguments, and
it will treat them literally, as if
they were quoted. ZEach of the argu-
ments must be & list of the form
described as an element of the list
which 1s the argument for defilne.
Using defineq instead of define
allows one to eliminate two pairs
of parentheses in writing functions
to be defined for loading with the
function load.

load is a functlon which reads suc-
cessive S-expressions from the paper
tape reader, and evaluates each as
it 1s read. If x = T, then load
prints the value; otherwise it does
not. oad contlnues reading S-ex-
pressions and evaluating them, until
it reads the single atom STOP fol-
lowed by a carriage return, at which
point it returns the value NIL,
Using load 1s the standard way of
getting functions in from the paper
tape reader; it saves having to
write sequences of

E(EVAL (READ)),

II1-15

unpack{x]
SUBR

pack[x]
3 .UBR

remob[x]
SUBR

member{x;y)
SUBR

The argun>nt of unpack should be an

atom. The value of unpack is a list
which contains, in order, the char-

acters which make up the print name

of thit atom,

The argument x of pack must be a
1list of atoms. The value of pack 1s
a single atom whose print name 1s a
packed version of the print names of
all the atoms glven in the list.
Thus |

pack([(a be def g)] = abedefy,

The argument of remob must be an

atom, The effect of applying remodb

to this atom is to remove all traece-
of this atom from the system. THis
1s a good way of reclaiming spuce

from atoms which are no lomger . reeded

but 1t is very dangerous, and remob
should be used with cafe. A future
mention of the same atom name will
have no connection with the old one
that was formetly there. In addi-
tion, any lists which point to this
old atomr will now be incorrect.

This SUBR checks to see if

X 158 a member of the list y, If so,
it returns the value T; if not, it
returns the value NIL,

I111-16

rplacd(x;y] This very dangerous SUBR places in
, (3 SUBR the decrement of the cell pointed
‘ to by x the pointer y, Thus it

| changes the internal 1list structure

f. physically, as opposed to cong which
creates & new list element., This
is the only way to get a circular
list inslde of LISP; that is by
placing a pointer to the beginning
of a 1ist in a spot at the end of
the 1ist. Using this function care-
lessly 18 cne of the few ways to
really clobber the systen,

et

rplacal x;y] This SUBR is similar to rplacd, but
SUER it replaces the address pointer of
X with y. The same caveats which

appl!led to using rplacd apply

g S G G

to rplaca.
gegg%g[] This function of no argument gener-

ates a unique symbol of the form
Annnn, in which each of the n's is
replaced by a digit., Thus the first
one generated is A 0001, etc. This
is a way of generating new atoms for
various uses within the system.

W el

. —

displx syl This function displays one point on
SUBR the cathode ray tube at the point
whose coordinates are (x;y) and re-
turns T If the light pen saw the
displayed point, and NIL otherwise,

III-17

Pt pean gums pua— g

ittt . VN o S —— A e ———

displis(-1]
SUBR

iogand{x;...;z]
FSUBR

logor(x;...,2]
FSUBR

elx]
FEXPR

The argument of this function is a
1ist of successive x and y coordi-
nates to be displayed.

For example:

displis{(1 2 1 3 1 4)]

will successively display the
points at coordinates

(1,2), (1,3) and (1,4).

This 1is faster than displeying each ™

of these three points 1lndividually
by using disp.

This FSUBR will take the logical
AND of all of its argument as
octal numbers and return this value,

This function, an FSUBR, will take
the logical OR, bit-wise, of all of
its arguments, and return this
number

This FEXPR is defined as eval; how-
ever, 1t 1s shorter and it removes
the necessity for the extra pair of
parentheses .or the list of argu-
ments for eval. Thus, when typing
into evalquote one can simply type
e followed by whatever one would

type into eval and have it evaluated.

III-18

T3 S > em

[IS

"--- M w P P

trtsd .’ WORE

G’

get(x;y]
EXPR

trace{x]
EXPR

tracp(x;y]
EXPR

untrace(x]
EXPR

This functlon gets from the 1llst x
the item after the atom y on list x.
If y 18 not on the 1ist x, thile
function returns NIL, For example,
get{(a b ¢ d);p] = c.

This function has as an argument a
1ist of names of functions., It
changes the definition of these
functions so that when each function
is entered, the values of the argu-
ments of this function are printed;
when the value of this function ls
computed this value is printed. Thus,
trace[(plus ratom)]

would cause plus and ratom to be
redefined so that this tracing takes
place. The value of trace 1is the
value of 1ts argument x. The work
of trace 1s done by the function
tract.

This function tells whether the
function named x with definition y
has been traced. Its value 1s T

if the function is being traced, and
NIL otherwise,

This function undoes what trace does,
and restores the original definition
of the function,

IIT-19

mape{x;fn]
EXPR

mapcar{x;fnj
EXPR

mapeonc[x;fn)

mapcon(x;fn]

A word of warning: do not trace
the following functions or you
will get in an infinite loop be-
cause these functions are used
within tracl itself:

print; cons; set; fntyp; eval;
return; evalprint; car; cdr;
null; go.

This function applies the function
fn to each of the elements of the
list x. It returns the value NIL.

This function applies the function
fn to each of the elements of the
list x. It creates a new list
which is a msep of the o0l1ld list in
the sense that each element of
the new list is the value of
applying fn to the corresponding
element of the old 1list.

Identical to mapcar except that
it does an nconc instead of a

cons.

Identical to maplist except that
it does an nconc instead of a

cons.

IIT-20

e B == e B

?w-w

ey 1 Tad B O3 W

— ——— k] —

map[x;fn]

maplist(x;fn]
EXPR

assoc[x;a]
EXPR

sassoc{x;y:ul
EXPR

B

This function applies the function
fn to successlve talls of the list x.
That is, first it computes fn[x], and
then fnledr[x]], etc. until x is
NIL. This function returns NIL,

This functlon computes successively
the same values that map computes;
1t forms a new list consisting of
successive values of applications of
this function.

If 8 1s a 1ist of dotted palrs, then
assoc will produce the first pair
whose first item is x, If such an
item is not found, assoc¢ wiil return
NIL.

The functlon sagsoc searches y, which
is a 1ist of dotted pairs, for a
pair whose first element is x. If
such a peair is found, the value of
sassoc 1s this pair., Otherwise, the
function u of no arguments 1is taken
as the value of sassoc.

This function makes a copy of the
llet x. The value of copy 1s the
location of the cople 1ist,

ITI-21

intersection(x;y] This function returns with a list
EXPR whose elements were mambers of both
lists x and y.

union{x;y] This fuuction 1s entered with two
EXPR lists. It returns with a list con-
sisting of all elements included on
either of the two original lists.
If the same item is a member of both
original lists, it 1s included only
once on the new list.

prop(x;y;u]l The function prop searches the list
EXPR X for an item that is equal to y.
If such an element is found, the
value of prop is the rest of the list
beginning immediately after that
element., Otherwise, the value 1s
u(], where u ie= function of no

arguments,

reverse(1] This is a function to reverse the
EXPR top level of a 1ist. &hus, using
reverse on
(AB(cD)) = ((c D) BA)

This function gives the result of
substituting the S-expression x for
all occurrences of the atomic aymbol
Y in the S-expression z.

subst(x;y;z]
EXPR

III-22

=™ tem

™ T

S

poes cwmoup DUR puy R PR oy

oA

sublis[x;y]
EXPR

evala[x;a]
SUBR

apply[frni;arge;a]
SUBR

remove|x;1]
EXPR

remprop{X;y]
EXPR

put[x;y;2z]
EXPR

T i —— 1 e -« <Y T 47— -

Here x is a list of pairs:
((ug.vy) (upevy) oo (ug.vp))

The value of sublis{x;y] is the
results of substituting each v
for the corresponding u in y.

This is the regular eval in the
7004 LISP. Itz first argument is
a form which is evaluated by using
the values obtained from a, a 1list
of dotted pairs. That is, any
variables appearing in x that also
appear on a will be given the
value indicated on a.

apply applies the function fn to
the arguments args with the values
obtained from a, i.e. the argu-
ments of fn on args are not evalu-
ated but given to fn direcvly.

2 is used to evaluate free vari-
ables in fn as described above.

The function remove removes all
occurrences of x from list 1.

This function removes all occur-
rences of the property with label
y from the property list of x.

This functicn puts on the property

list of x, the label y followed by

the property z. The current value

of 2z replaces any previous value

of z with label y on this property
t.

III-23

add{x;y;z]
EXPR

getp[x;¥y]
EXPR

deflist[x;ind]
EXPR

select[x;y1;y2 ..

FSUBR

-;yn;ZJ

i~

T om I am

This function adds the value z to
the 1list appearing under the prop-
erty y on the atom x. If x does
not have a property p, the effect
1s the same as put[x;y;list[z]].

This function gets the property
with latel y from the property
list of x.

NOTE: Both prop and get may also be
used on property lists. However,
since getp searches a list two at
a time. the latter allows one to
have the jeme object as both a
property +.ad a value. e.g., if
the property list of x 1is
(PROPL A PROP2 B A C)

then get[x;A] = PROP2,

but getp[x;A] = C.

This function is used to put any
indicator on a prcperty list. The
first argument is a list of pairs
(where the first of the pair is a
name and the second party of the
pair is the property to be stored
with the indicator on the property
list of the name) and the second
argument 1s ne indicator that is
to be used.

An example of arguments for this
function is:

la; (a4 eq); (ap ep)s -..(a, e,); e]

III-24

s NGy WS S S RNy ey e

=

? rrg.

?.—‘ -

GEEE e Gewd PN G

s sl

L

TENY DR epep ey ey vy

s gy

selectq(x;y;2z]
FSUBR

time[x n]
EXPR

gegagx]
SUBR

The qi's are evaluated in sequence
until one is found such that qy =
q, and the value of select is the
value of the corresponding ey. If
no such qy is found the value of
select is that of e.

selectq 1is identical to select ex-
cept that the qi's are not evalu-
ated--only q.

This function performs computation
§_§!times and indicates average time
in tenths of seconds.

If x=T garbage collector will
print message when entered. If
x=NIL, no message is printed.

This function initiates a garbage
collection and returns with the
number of available LISP words in
free storage.

This function calls field n from
the drum. (See description of
system program linking.)

Thies EXPR has as inputs a list x
and a positive integer n. Its
value 1is a list whose first element
1s the nth element of list x Thus
if n = 1, it returns the list x it-
self. If n = 2, it returns cdr(x].
If n = 3, it returns cddr{x], etc.

ITI-25

editf[x]
EXPR

editv(x]
EXPR

editp[x]
EXPR

edite[x]
EXPR

This EXPR gets the expression
which is the definition of the
furction named x and gives it to
edite.

This EXPR gets the Xglue of the
atom x and gives it to edite for
editing.

This EXPR gets the property list of
the atom x, etc.

This function is the executive for
an editing facility for LISP ex-
pressions. The argument of edite
must be a list to be edited. When
edite has been called, it prints
out EDIT, and then waits for input
from the on-line teletype (or the
reader if typein is set to NIL).

The input that may be typed in may
be a positive integer, a negative
intepger, or zero, or one of these
as the first element of a two-
element 1list, or NIL, or one of
several speclal 1lists described
below. Tyring in NIL terminates
editing.

This editing program allows you to
edit any subexpression within the
current level expression, that is,
you can replace or delete any sub-
expression of this expression, or
insert anything before any subex-
pression of this expression. An

III-26

b

e ey

-

fome et RN AN SWRy IS Gy »=

rasrm =]

TR N R N P

input (n exp) “here n is a positive
integer will replace the nth expres-
sion in the current level expression
by exp; if n is a negative integer
it will put exp Jjust before the nth
subexpression in the current level
expression. (n) where n is a posi-
tive integer (with no expression
following this integer) will delete
the nth expression.

Warning: Typing "{1)", where current
expresslion is a singleton, will not
have desired effect.

Ar. input of O will take you up to
the next higher level expression.
If the input to edit is a positive
integer, the nth-subexpression of
the current expression will become
the expression that can be edited.

An important thing to note is that
all editing is final in the sense
that any changes that are requested
are put in with rplacas and rplacds.
It 1s the original expression which
has been modified to give the edited
version; to return to the original
expression you must re-edit. How-
ever, bty using the COPY and RESTORE
feature, the user can protect him-
self against errors in editing. The
function edite calls editif, edit2f,
editaaf, and edit3f'to do all the work.

III-27

I

Other special commands are:

COPY copies and saves entire
expression being edited
as it currently exists.

RESTORE Restores expression as
of last copy: the
current level expression
will be the current level
expression at last copy
RESTORING without copying
will have no effect.

p Seme as (p# o).

(p n) Prints the nth subexpres-
sion of the current ex-
pression to a level of 2,
using LEVELN described be-
low. If n 1s zero, prints
current expression to
level 2.

(p nm) Prints nth subexpression
to a level m.

All printing may be interupted.

(Ney ey ..0)

which will tack the expressions
ey €5 . to the end of the current
expression.

(E exp) will print the value of

eval [exp]. (I n exp) will compute

v = eval{exp] and then act as if
edit were given (n v). This allows
you to insert the value of a compu-
tation in the current expression, at
subexpression n. (n must be a num-

ber).

I11-28

-3

um SN W GRp PN GEG ey

(LI n) will insert a left parenthesis
immediately before subexpression n

in the current expression and a match-
ing right paren at the end of this
current expression. For example, if
e= (ABC)

(LI 2) yields (A (B C)).

(LO n) will remove a left paren from
the nth subexpression, and take a
corresponding right paren from the
end of the current expression, e.g.,
for e = (A (B C) D)

(LC 2) yields (A B C)

(RC n) will remove a right paren
from the r.th subexpression of the
current expression, and insert one
in at the end of the current top
level expression, e.g.,

for e = (A (B C) DE)

(RO 2) yields (A (B C DE))

(RI m n) will insert a right paren
in the nth subexpression of the mth
subexpression of the current expres-
sion, removing one from the end of
the nth subexpression, e g.,

for e = (AB (CDE)F)

(RI 3 1) yields

(AB (C) DEF)

leveln{x n] Abbreviates j1ict x at level pn, using
the symbol ampersand, "%," to indi-
cate greater depth. For example,
leveln [(A (B C) (D (E F) G)) 2] 1s
(A (BC) (D& @G)).

III-29

|
[

The following 9 functions form a Break Package which 2allows the
user to make a break conditional upon the result of some computa-
tion and thus arrest the operation of a function. He may interro-
gate the broken function as to the current values of its arguments
or other variables, or perform arbitrary LISP computations; then
he may return with a specified value for it without actually
entering it. Alternatively, the user may just "crack" a function,
1.e., print out the result of some computation before executing
the function and print out the final value of this function.

break[fn;when;what] break is a function of three argu-
EXPR ments: the function to be broken,

under what condition to break, and
what to print out when a hreak occurs
If when = T, the function always
breaks. If when = (NIL) a crack is
made in fn. If what = NIL, nc
information is printed out. break
redefines fn using breakl so that af
the time the function would have
been entered, breaki is entered
instead with the definition of the
function and information regarding
the conditions for bLreaking.

unbreak(fn] unbreak redefines fn as it was before
=XPR the break and returns the value fn.

If fn i1s not broken uhen unbreak is
called, the vaiuae of unbreak 1s
(FN NOT BROKEN).

=31

S GNE SN SNy GEG Gmy Ay

o

2o

Gl U eI e pes

breaklist{1]
FEXPR

unbreaklist[1]
FEXPR

breakat[fn;where;when;what)
EXPR

unbreakat(fn:where]
EXPR

breakprog{fn;1]
EXPR

breaklist 18 a function of one argu-
ment, a list of function names. It
performs (BREAK FN T NIL) for each
function name and returns the list

of values of break. Note that

(BREAK FN T NIL) will cause fn always
to break, and will not print out

any special message.

This function performs {UNBREAK FN)
for each function on the 1list 1.

This function 1s similar to break
except that instead of inserting a
break at the beginning of fn, it
allows the user to insert a break
at any top-level place in fn, The
argument vhere indicates the label
or statement at which the break is
to occur. The other arguments are
used as 1n break.

Thils function removes a break in-
serted by breakat.

breakprog 1s entered with the name
of a functlon and a 1ist of places .
in that lunction whele a break 1is
desired. breakprog performs
(BREAKAT FN WHERE T NIL) for each
place on the 1list 1.

unbreakprogl fn]
EXPR

breaki[form;when;fn;what])
FEXPR

This function performs
(UNBREAKAT FN WHERE)

tfor each place where a break
exists in fn.

Although this function 1s not
entered directly by the user, it is
the heart of all the break functions
and is entered when a break occurs.
After the specified information is
printed out, breaki listens to the
typewriter or teletype for inputs.
If STOP is input, a normal,

exit is achieved. If RETURN FOO

is input breaki returns (EVAL F00).
If QUIT is input, it performs
(ERROR FN). If EVAL is input, it
evaluates fn. If a normal exit 1is
subsequently achieved via the STQP
command, breakil does not reevaluate
fn, but uses the value obtalined by
the EVAL command. The EVAL
feature is useful for evaluating a
troken function without "letting go'
n{ the break, e.g., to examine thke
effect of executlinz a broken funce
tion. If OK is input, a nomal
return 1s made without printing the
value of the function. Any other
input to breaki is evaluated, and
its value printed. This function
uses rpl to do part of its work.

t

ITI-32

D &, am

T e eam am swm ey ey ey

?4 Fremery

Gl B MmN MR e

“A e ' “

Arithmetic Functions

greaterp[x;y]
SUBR

lessplx;y]
EXPR

zerop[x]
EXPR

minusp{x]
EXPR

numberp(x]
SUBR

add1i(x]
EXPR

sub1[x]
EXPR

plus(x;y]
o

FS

minua{x]
SUBR

times{x;y]
FSUBR

-

(all arguments must be numbers)

Tif x> y;
NIL otherwise

Tif x < y;
NIL othLerwise

T if x is ze>o;
NIL otherwise

T 1if x 18 negative;
NIL otherwise

T if x is & number;
NIL otherwise

X+ 1

x +y (This FSUBR may have any
number of arguments,)

;roduct of x and y {This FSUBR
may have any number of
arguments.)

I1-33

quotient|x;y)
SUBR

difference(x;y]
EXPR
remainder{x;y]

divide([x;y]
SUBR

greatest integer in quotient x/y

This function has for its value the
algebraic difference between 1its
arguments.

This function computes the number
thcoretic remainder for fixed-point
numbers.

This function yields a dotted pair
whose first member is quotient({x;y]
and whose second member is remainder
[x;¥]. Remainder is defined in terms
of divide.

I1I-34

——y—

“““-—-—w

Following is a 1list of all atome with APVAL's {per-
manent .values) in the basic system and their values.

blank
space
tadb
comna
egsign
xeqs

g

nil
period
plus
lpar

gmark
xdol
XsSJu
xdr
Xibr
xrbr
xarr
uparr
colon
xgreater
xlesser
xnum
xper
xamp
xat.

space
space
tab

]

nil
nil

‘%*ﬁ?ﬂ(‘f\\v'~\+

\ _.tt.._or—w

R N I A

@

ITi-35

SECTION IV,

LISTINGS OF S~EXPRESSIONS OF EXPR'S AND FEXPR'S

(prog nil

(cond
inall (fnt (quote putdq))) (putd (print (quote putdq))
(quote (nlamda ¥p
putd (car xg %cadr x))
car x
(return (putdq load {lambda (x) (prog (xx yy zz)
clearbufz
setq 2z (typein nil))
11 (cond
(equal (setq xx (read)) (quote stop)) (return (prog2
?clearbuf
typein zz)gg))
{setq xx (eval xx
cond
rint xx)))

(go 11; M)

N ——
e

R |

..

res G G SN BN SN SER emy s

(putdq define
(lambda (x) (cond
(null x) nil)
t (cons ((lambda (y) (pros2
(putd (car y) (cond
(null (cddr y)) (cadr y))
t cons (quote lambda) (cdr y)))))

(car x); (define (edr x)))))))

td
(pu(ngagggi?:? (define x)))

(add
(lambda (x ¥y 2z) (prog nil
loop (cond
((nu1l (cdr x)) (rplacd x (1list

y
(List

((equaf)%l;dr x) y) (rplaca (cddr x) (append
(caddr x) (1ist

((setq x (eddr %)) 710 loop)))
(return ¥))))

(add1
(lambda (x) (pius

X
1)))

(append
(lambda () {cond
(null x{
t (cons (car x) (append (cdr x) ¥))))))

(assoc
(lambda (xsas ysas) (cond
null ysas; nil)
equal (caar ysas) xsas; (car ysas))
t (assoc xsas (cdr ysas)))))

(attach
) §1ambda (x ¥) (rplaca (rplazd y (cons (car y) (cdr y)))
x

(copy
(lambda (x) (cond
null xg nil)

atom x) x)
t (cons (copy (car x)) (copy (edr x)))))))
(deflist
(lambda (1 ind) (prog nil
loop (cond
((null 1) (return nil))}
put (caar 1) ind (cadar 1))
setq 1 (edr 1))
go loop))))
(d1fference

(lambda (x y) (plus
X
(minus y))))
(e

(nlamda (xeeee) (eval xeeee)))

(ersetq
(nlamda (ersetx) (errorset (car ersetx) t)))

(get
(lambda (x y) (cond
null xy nil)
equal {car x; y; (cadr x))
t (get (cdr x) ¥)))))

Iv-3

R y S ——
e —

(getp
(lambda (x y) (prog (z)
setq z (edr x))
loop (cond

§nu11 z) (return nil))
eq (car z) y) (return (cadr z))))
2setq z icddr z)¥
go loop))))
(intersection
(lambda (x y) (cond
null xx nil)
member (car x) y) (cons (car x) (intersection
(cdr x yz))
t (intersection (cdr x) y)))))
(1ast
(lambda (x) (prog (xx)
1l cond
((atom x) (return xx)))
setq xx Xx))
0 1) M
(lconc

(lambda (x p) (prog (xx)
(return {cond
null x) p)
cdr (setq xx {last x))) (error (list
(quote lconc
x)))
null p) (cons x xx))
null %car p)) (rplaca (rplacd p xx) x))
t (prog2 (
rplacd (cdr X
(rplacd p XX)gg));))

(length
(lambda (x) (prog §n)
setqg n 0
1 cond
((atom x) (return n)))
setq x (cdr x)
gsetq n {add1 n))
go 1)))

(lessp
(lambda (x y) Scond
equal X y) nil)
greaterp x y) nil)
t t))))
v

(map
(lambda (mapx mapf) (cond
((null mapx) nil)
(t (prog2
mapf mapx)
map (cdr mapx) mapf))))))

(mapc
(lambda (mapex mapcf; (cond
(null mapex) nil
t (prog2
mapef (car mapex))
mape (cdr mapcx) mapcf))))))

(mapcar
(lambda (mpcrx mpcrfg (cond
(null mperx) nil
t (cons (mperf (car mperx)) (mapcar (cdr mperx) mperf

)IN))

(mapcon
(lambda (mpenx mpcnf; (cond
(null mpenx) nil
t (nconc (nmpenf mpenx) (mapcon (cdr mpenx) mpenf

1NN

(mapeone
(lambda (mpcnex mpenef) (cond
(null mpenex) nil)
t (nconc (mpcnef (car mpenex)) (mapcone (cdr mpenex) mpenef

INN)

(maplist
(lambda (mplstx mplstf) (cond
(null mplstx) nil) ‘
1)) t (cons {mplstf mplstx) (maplist (cdr mplstx) mplst{

(minusp
(lambda (x) (greaterp 0 x)))

(n111
(nlamda (xnil) nil))

(nlsetq
(nlamda (nlsetx) (errorset (car nlsetx) nil)))

IV-5

v
| A

SRS

TTD M en

e ol SEG S WEn S

pme PES Guan Gum g

(not
(lambda (x) (cond
(null x) t)
t nil))))

rop

(lambda (x u) (cond
inutilxycar x) y) (ecdr x))
t (prop (cdr x) ¥ u)))))

punch
(1ambda (x) (prog (v 2z)

setq y ipunc on t))
setq 2 (typeout nil))
print x)
punchon ¥
typeout 2z
return Xx)

ut
(lambda (x y z) (prog nil
loop (cond
((n1l (cdr x)) (rplacd X (1ist

y

ﬁ%eq&gi (cadr x) {) (rplaca (cddr x) 2))
setq x (cddr x)) (go loop))
(return y))))

(rdfix
(1ambda (x) (prog %xx vy)

setq yy (typein t))

% (g0 7))
X (gorl

setq xx (ersetq (read)))

go r2)

ri cond

((setq xx (nlsetq (read))) (setq xx (car xx

({(print x) (go r1)))
re typein yy
return xx))))

)

Iv-6

(remainder
(lambda {x y) (cdr (divide x y))))

(remove
(iambda (a x) (cond
; nulllx; ?ti% x)) (remove a (cdr x
te?ggns (car x) (remove a (cdr x));;g))

(»emprop
(lambda (x y) (prog nil
loop (cond
snull (cdr x)) (return y))
equal (cadr x) rplacd x (cdddr x)))
t (setq x (ecdr xx)
(g0 loop)

(reverse
(lambda (x) (prog (u)
loop (cond
((nuil x) (return u)n
setq u {cons (car x) u

setq x (cdr x))
go loop)?§
(sassoc

(1ambda (xsas ysas usas) (cond
inull ysas{ (usas
equal (caar ysas) xsas) (car sas;)
£ ?sassoc xsas (cdr ysas) usas))))
(setnq ’
)))snlamda (xsetnq) (setn (car xsetnq) (eval (cadr xsetnq)

(80808 (x) (set (car x) (cadr x))))

(soundexin
(nlamda (x) (mapcar x s?y§te (1ambda (ysdx) (put (soundex

ysdx) (quote name) ysdx)

(so??gzﬁg:t(x) (getp x (quote name))))

(sub1
(lamhda (x) (plus

X
-1)))

| g S8 e P e

Stcnn. § Sy b

(sub2
(lambda (a z) (cond
null a) z)
ual (caar a z (cdar a))
?sub2 (cdr a))))

(sublis
(lambda (a y) (cond
(atom yy (sub2 a y))
t (cons (sublis a (car y)) (sublis a (cdr y)))))))

(subst
(lambda (x y z) (cond
equal y z) x)
atom z) z
t (cons (subst x y (car z)) (subst x y (cdr z)))))))

(teer .
(«2in0da (x p) (prog (xx)
(return (cond
ginull p) (cons ésetq xx (cons x nil)) xx))
null (car p)) (prog2
rplaca p (cons x nil))
»placd p (car p
(t (rplacd p (ecdr rglacd (cdr p)
(rplacd (cons x (cdr p)) nil))))))

(time
(lambda (x n) {(prog (y m c c1)
setq m n%
setq ¢ (clock))
t1 cond
2(zerop m) (setq ci1 (clock)))
t (progn
setq y $eval x)}
setg m {subl m

g t1))))
(setq m (divide (plus

(minus c)) n))

prinl (car mg)

prini period

prinl (quotient (times
(edr m
10) n)

Iv-g

N gAY M AT -

prinl blank)
print (quote seconds))
return y))))
(union
(Lambda (x y) (cond
null x{

(meaber 52:;" 1) Y), funsen (ear x) 1),

(zerop
(lambda (x) (equal x 0)))

IV -9

| T it B il AR fieand bt i Sh

e D .

MNg pEE OWME WK ey T Y

—- -

-

R, -
v

Gup PEd P SWE peo

e L

(breai
{Lambda (fn wher. what) (prog (xx yy 2z2z)
cond
({(null (setq xx (getd fn))) (return (proge
(putd fn (list

quote nlamda)

quote (1))

list
(quote breaki)
nil
when
(setq xx (1list

fguete (undefined))))
what)))

xx)))
((eq (setq yy (fntyp fn)) (quote fsubr)} (return
(cons fn (quote (is an fsubr)))))
((null (eq yy (quote subr))) (go v2)))
(setq yy (rdfix (print (cons fn (quote (18 a subr

need arsS))))))
putd (setq zz (gensym)) xx)
lsetq xx (putd fn (list
(quote lambda)

{cons 2z ¥))))
b2 (cond
((eq (caaddr xx) (quote breaxl)) (setq xx (

list

cadr xx)

cadr (caddr xx))))))
(putd fn (list
gcar xx)

gcar xx)

cadr xx)
list
"e breakl)
caddr xx)
when
(List
fn
what; ;
(return fn

Iv-1C

(unbreak
(lambda (fn) (prog (xx yy)
(return %cond
((null (setq xx (getd fn))) (cons fn (quote
(not a function))))
((a?d
or
(eq (setq yy (fntyp fn)) (quote expr)

(eq yy (quote fexpr))) :
éeq (caaddr xx) (quote breaki))) (prog2
putd fn (list
car xx)
cadr xx)
.))cadr (caddr xx))))
n
(t (cons fn (quote (not broken)))))))))

(breaklist
(nlamda (x) (maplist x (qQuote (lambda (x) (break (car x

) t nil))))))

(unbreaklist
(nlamda (x) (maplist x (quote (lambda (x) (unbreak (car

x)))))))

(oreakprog
(lambda (bpx bp } (maplist bpy (quote (lambda (z) (breakat
bpx (car z) t nil{ 1))

unbreakpro
((lambda %x) (prog 2xx)
setq xx (bpl x))
ul cond
((eq (caadr xx) (quote breaki)) (rplacd xx
(cddr xx)))

&(setq xx (cdr xx)) (go ul))

t (return nil)))
(go u1))))

Iv-11

s LW -
. T - 2 -
. gt ; .
ST N VRS, - e o
: o L L O o T P romaniud . 3 o
e ey g Y e o -
* L H . Cy o !

o T

s A e g e e

(breakat
(lambda (fn where when what) (prog (a)
setq a (brl fn))
bl cond
((equal (car a) where) (return (prog2
?rplacd a (cons (list
(quote breaki)
nil
when
(118t
fn
(quote at)
where)
what) {(edr a)))
‘where))s
((setq a (cdr a)) (go b1)))
(return (cons where (quote (not found)))))))

(unbreakat
(lamt4a (fn where) (prog (a)
setq a (bpl fn))
ui cond
(.equal §car a) where) (return (cond
(caadr a) (quote breaki)) (prog2
e?rplacd a (cddr a))
where))

(t (cors fn (append (quote (not broken at

)) (1188 where))))

)
(rerae? c§n§°3§e§8 SBo w)) e eound)))))))

Iv-12

(breaki
(nlamda (?rkig) (prog {brkixx brkiyy brkizz)
con
o((null (setq brkixx (eval {cads brkix)))) (-

- return (eval (car brkix))))

((null (equal brkixx (quote (nil)))) (go b0

)))
(print .(append (quote (crack in)) (caddr brkix

))) (cond
")) ((cadddr brkix) (print (eval (cadddr brkix)
b0 s:tg3%rk1yy (print (append (quote (break in))
(caddr brkn?)))g
con

) ({cadddr vrkix) (print (eval (cadddr brkix)
b1 (cond
((eq (setq brkixx (rdflx brkiyy)) (quote quit
)) (error (caddr brkix)))
((eq brkixx (quote stop)) (go b3))
eq brkixx (quote return)) (go b2))
eq brkixx (quote eval)) nil
eq brkixx (quote ok)) (go b3))
and
ersetq isetq brkixx (eval brkixx)))
nlsetq (print brkixx;)) (go bv1))
((épr:nt brkiyy) (go bi))
cen
((null (setq brkizz (ersetq (eval (car brkix
1)) (print vrkiyy)) _
((print (append (caddr brkix) (quote (evaluated
}))) (set (caaddr brkix) (car brkizz))))
g0 bi)
b2 cond
((and
setq brkizz irdflx nil))
gsetq brkizz (ersetq (eval (car brkizz))

o b4
M e 2 ((print briciyy) (go bvi)))
b3 (cond
((or
brkizz
(setq brkizz (ersetq (eval (car brkix)))

\
}) nil) ((print bdrkiyy) (go bi)))
b (cond
M) ((eq brkixx (quote ok)) (print (caddr briix
((p?ggfnt (append (quote (value of)) (caddr
" brkix)))

(null (nlsetq (print (car brkizz))))) (print

(quote ok)) leturn (car triizz)))))

Iv-13

B ;"’"

S el R AR e

SRt | (bpa
| ’§ (lambda (x) (prog (xx)
Gl (return (cond
((and
(or

B Ry o o

(eq (caaddr (setq xx (getd x))) (quote prog

(¢t (error (cons x (quote (not a program))))

))) (caddr xx))
I

o 1y el e T Smean R—
CIRAN P W N s T Y
SR e o
Ppvs M
"’_1 z Ta— Py
. . a9 Vg -

’ .

Iv-14

P g g el g g s

(prettydef
(1ambda (x) (prog (a)

(setq a (punchon t;)
prini (quote ®(")
print (quote definea))
prettyprint xz .
printyfqpote ¥*3)
punchon &
return x))))

(prettyprint
(lambda (1) (map 1 (quote (lambca (J) (prog (t1)
terpri)
prini lpar)
print {car J))
printdef (cond
(getd (car §)))
t (quote undefined})))

(erin 3550y
(printdef

(1ambda (e) (prog (i iunit iunitl)
setng 1 1)
setq iunit (quote * 7))
setq iunitl 3)
prini iunit)
superprint e;
kreturn nil))))

(superprint
%lambda (e) (cond
({atom e) (cond
((member e (quote (""" " *" w(w w)

nw onmonn za:g%g SRg%nl (pack (list
e
 fm
(t (prog (ep m
setq ep @)
prinl lpar)

Iv-15

ek

Lone IR o B R |

e S 2ug
L3 v

Jomy——
1

&

)))

a

pa

pl
pm

pJ
pp

pY

(cond
((member (car ep) (quote (and
or
select
selectq
1list
plus
times
cond
proge
progn))) (eo pl))
eq (car ep) (quote prog)) (go pp))
atom (car ep)) nil)
or
geq gcaar epg éQuote lambda;g
eq (caar ep) (quote nlamda))) (go pl

superprint (car ep))
setq ep (cdr ep))
cond
gnull ep) {return (prini rpar)))
t atom ep) (go pd)))
prinl blank
go a)
setng 1 (subl 1))
prinl blank)
prinil period)
prini blank)
prini ep)
return (prini r
setnq 1 (add1 1
superprint (car ep))
setq ep (cdr ep))
cond
sgnull ep) (go pjgg
atom eps g0 pk)))
(endline)
superyrint (car ep))
g0 pm
setnq 1 (subl 1))
return (prini rpar))
prini (car ep))
setq ep &cdr ep;g
setnq 1 (addi1 1
cond , 4
R
atom epf go pk)))
prini blank
superprint (car ep))
setq gp (cdr ep))
cond

Iv-15

s 3 8

cond
((atom (car ep)) (go pz)))

frini iunlt

rrinl iunit
px setnq 1 (plus
i

2))
(superprint (car ep))
(setng 1 (plus

1
g0 pYy
Pz 3pr1n1 (car ep))
tng m (plus
iunitl
iunitl
(mirus (length (unpack (car ep))))))
aa setnq m (subl m))
prinl blank)
cond
((null (or
zZerop
gminusp m);; (g0 aa)))
setq ep (cdr ep
icond
null ep; $go pj;;
atom ep
atom (car ep) (go pz)))
(go px))))))

(endline
(lambda nil (prog (g)
setng j 1
terpris

a (cond
zerop J) (return nilg)

i%minusp i) (error 1))
prini iunit
%setnq g (subl J))

go a))

Iv-17

R RN R e e e L e e - R S gt . B ?«3“,31:1-‘,'»,&,@&' i » ;

(trace
(lambda (x) (prog (a b ¢ g)
setq a Xx)
loop (cond
{(null x) (retumm a)))
setq b (getd (setq ¢ (car x))))
setq x (cdr x))
cond
((null b) (progn
print (cons ¢ (quote (undefined))))
go loop)))
((tracp c b) (progn
print (cons ¢ (quote (was traced))))
go loop))))
puta (setq g (gensym)) b)
putd ¢ (1list
%quote nlamd?}

EMB' : PR

quote (q1qq
1list
équote traci)
list
(§uote quote)

(1ist
(quote quote)

22
oo 25555)

(untrace
(lambda (x) prog (abecgj
set (quote a) x?
loop (cond
((hull x) (return a)))
set (quote g) (car x
{set iquote x; icdr b 4
cond
((tracp g (set (qQuote b) (getd g))) (progn
set % uote b) (cdaddr b))
putd ?cadar b) (getd .set (quote c¢) (cadadr
b))))
remob c)))
(t (print (cons g (quote (not traced))})))
(g0 lo2p))))

Iv-18

IS Pme g R pee - e e GG G PG SN gy ey

(tracp
(lambda (x y) (and
eq ﬁfntyp x) (quote fexpr);
eq (caaddr y) (quote traci)))))

(traci ,
(lambda (ctrac gtrac xtrac) (prog (atrac) ‘
print (cors ctrac (quote (entered with))))

set (quote xtrac) (cond
((eq (fntyp gtrac) (quote fsubr)) (print xtrac

((eq (fntyp gtrac) (quote fexpr)) (print xtrac

(t (evalprint xtrac))))
set (quote atrac) (eval (cons gtrac xtrac)))
print (cons ctrac (quote (has value))))

return (print atrac)))))

(evalprint
(lambda (xvalp) (prog (avalp)

leop (cond
((null xvalp) (return avalp)))

(se% (quote avaip) (nnconc avalp (list
1ist
iquote uote)
print ?eval icar xvalpgg)))))

sset (quote xvalp) (cdr xvalp
go loop))))

i s e - . . . ; -

P o |

rew gy) ey Py PWy gy

o — go— e

-~ hpnsy

e

i & § [

'

- -y p— -y v $ -

T

TSN Rp——— -

(ed1ite
(1ambda (x) (prog2
yu X (edite (getd x)))
x

x)
(edite
(Lambda (x) (prog (1 y c)
type n t)
1 ()ist

{print (quote edit))

a cond

‘null (ersetq (setq c read)))g (go a))

null ¢) (return (car) ?o

numberp ¢) (editif c))

eq ¢ {quote copy)) (setq y (cow 1)))
c qQuote reatore)) (setq 1 (cond

Tty

eq (quote p)) (edit £ (quote (p 0))))
at c) print
numberp‘ c (ed1t2r c))

(editif

(1ambda (a) (cond
cond
(nul cdr 1)) int qmark))
t {setq 1 (cdr I?r

 ereaterp ‘fmm(1)}) (print qmark
(raaterp € cngtn (car 1)) (prant amand)

(t &print qmark)}))))

(edit2r
(1ambda (c¢) (cond
((greaterp (car c) o
((greaterp (car c length {car 1))) (print gmark

N (t (rplaca 1 (edit2af (sudbi (car c¢)) (car 1) (cdr
c) ni}%))))

eq (car c) }
null (cdr c)
greaterp (mirus (car c)) (length (car 1)))) (print

qmark))
(cdr é) tr?%?g? 1 (edit2ar (subi (minus (car ¢))) (car 1)

(edit2af
(lambda (n x r d) (proge
(cond
((null (eq n 0)) {rplacd (nth x n) {(nconc r (cond
cdr (nth x n
{cddr (nth x n)))))))
d attach (car r) x
r (rplaca x (car r ’
))(rplaca x {cadr x)
X A Y

(edit3f
(lambda (x) (con
((e? a;;r x) (quote 1)) (edit2r (1ist

((OQQY:ir(g?d%:ugle))}) (ersetq (print (eval (cadr x

{(eq {car x; iquote n;} rconc {car 1) (edr x)))
z eq (car x quote P bpnt (cdr x
r (car x) (quote (ri ro 1l lo
x (quote ((car 1)))) ¢
(% (print qmark),})})

(rplacd x {cadr x))))

M)

v-a

{srrovset (nconc

Boshi QUG em NG Py ey Y T

ﬁ. v

(bpnt
(ambda (x) (prog (y n)
cond
zerop (car x)) (setq y (car 1))
) greaterp (car x) (length (car 1))) (go b1

minusp (car x o bl
fé (hoth s Toor Inth (ea2'1) (car x))))))
n

nuil (cdr x)) (setq n 2))

null (numberp (cadr x))

minusp (cadr x)) (go bi))

t (setq n (cadr x))%)

(return (cond

(nlsetq (print (leveln y n))) nil)

t (print (quote edit)){)
bl (return (print qmark)))))

(co

(go b1))

(leveln
(Lambda (x n) (cond
atom x) x)
zerop n) (quote A))
t (mapcar x (quote (iamtda (x) (leveln x (subi n)))

NN

(nth
(Lambda (x n) (cond
atom x) nil)
greaterp n 1) (nth (cdr x) (subi n)))
t x))))

(Lastr

(lambda (x) {cond
2nu11 x) (error (quote (null list))))
null (edr x)) x
t (lastr (cdr x))))))

Iv-22

ri
((lambda (m n x) (prog (a b
setq a {(nth x m)
setq b (nth (car a) n))
cond
({or
null a
inull b}) (return (print qmark))))
rplacd a (ncon¢ (edr b) (cdr a)))
rplacd b nil))))

ro
((lambda (n x) (prog (a)
setq a (nth x n))
cond
((or
null a)
atom {car a))) (return (print qmark))))
rplacd (lastr (car a)) (cdr a
rplacd & nil))))

(11
(lambda (n x) (prog (2)
setq & (nth x n))
zcond
({null a) (return (print qmark))))
2rolaca a (cons car a? cdr a)
rplacd a nil))))

(1
O(lambda (n x) (prog (a)
ksetg a (nth x n))
co?(or
2null a)
1acda§°mcé§graa§)) (return (print gmark))))
{gglaca a écaar a)))))

Iv-23

-y

P Gen g G QU SNy uny gy

¢

S g e A pon

) tadked WREE

Csiid

¥

ke o — e maan | L

———

APPENDIX A

OPERATING THE BBN-LISP SYSTEM

b

APPENDIX A.1
LISP LOADER

The LISP loader allows one to load several drum fields from
either paper tape or magnetic tape. In addition, there is
provision for transferring a system from drum to mag tape. -
A complete system is treated as a file on tape {each core load

is one block of the file) and all tape commands are in terms

of files rather than blocks. Teletype should be connected

to channel 0 of the 630 scanner.

Instructions for Loading System Prog.ams onto the'Drum

The LISP loader can be used for setting up the drum fields of
the system programs, including itself. To do this:

1. Read into core 1 the system program to be placed
on a drum field.

2, Read into core 1 the program at location O for
that drum f'ield.

3. Read into core O the LISP 1lnader.
4, Type: nd
where n is the octal number cf the drum field onto

which to dump core 1.

Instructions for Loading LISP with the loader

1. Load mag tape of system on tape drive and set it
to automatic on unit 1,

A.1l-1

o oy

2. Read into core 0 the paper tape of the LISP loader.
The mag tape will be rewound and the LISP loader will be
walting for typein. (The LISP loader starts at 300.)’

&....;,.;.J

3. Type: nr

where n is the octal number of the file to be read in.
26 drum fields will be read off cf the mag tape onto
the drum and the typewrlter will type out n < m where n
is the first block number read (starting with 0) and m
is the last +1 block number read.

i S

L, Type: 1
" This will take the user to LISP,

Ingtructions for Writing LISP onto Mag_Tape”with the Loader

1. From LISP call the drum field with the LISP loader,
FIEID (25Q), or read into core O the paper tape of the
LISP loader.

Py Gy oy ey Guy T

L T
i

2. Type: nw
where n is the octal number of the file that you wish
! to write.

-

A.l-2

Pt b g s oo

List of Commands Available in the LISP Loader (n is an octal number)

nr
nw
nd

nc

np

nu

nb

nf

ns

calls LISP

calls the editor on fileld 26
reads onto the drum from mag tape fille n g
writes current drum system cn mag tape file n
dumps core 1 onto relative drum field n

reads reiative drum fleld n into core 1
preserves core O on relative drum field n

gets registers CO-177 on relative drum
fleld n and transfers to O

selects the mag tape unit to be used.
Starting the program at 300 automatically
selects unit 1.

sets the base field on the drum to n, i.e.,
drum loading will begin on fleld n from eilther
core or mag tape. The base is initlally set
to 1. The first relative fleld n is 1, not O,
Relative field n is absolute field

“n - 1 4 base".

sets the number of flelds in a file. This
value 1s initially set to 26 octal.

rewind (origin)

space tape n files forward (or backward if n
is negative), If n is zero the tape will be
moved to the beglinning of the current file.
Spacing backwards has been known to cause
trouble,

A.1-3

VN

Y S em

S

FET s MWD G Gy N Smy s

G OGN aE PP pus

Error Printouts

nof

fle

una

pme n

nch
ept
wef n
drf n
hem

dwe

tried to reference fille O or drum field O
(either absolute or relative)

file error -- whlle searching for a designated

file, a file longer than 64 blocks was en-
countered. '

tape unit not available. If this is the
first thing that happens i1t is because the
program has attempted to rewind unit 1 and
cannot for some reason,

bad parity or missed character on reading or
checking tape block n

saw no characters for 6 inches

saw tape end point

write check failure mag tape block n
drum read fail, absolute field n

no end mark has been entered

drum write error

o BB —_—

APPENDIX A,2

USING LISP FROM THE COMPUTER ROOM TELETYPE .#

To use LISP from the computer room teletype: Connect the

teletype to channel O of the scanner and then load the LISP E
system as described in Appendix A.1l, LISP LOADER, The teletype ;
will carriage-return and be waiting for input into evalquote. :

Manual restart should never be used as there are no known ways
to cause the system to halt or crash (if either does occur,
record all particulars and deliver to D. Murphy). The following,
however, do exist:

start 202 reinitializes all sequence treak
routines and restarts

stairt 203 reinlitializes entire system, 1.e.,

kills everything and redefines only
initial SUBR's and FSUBR's,

A.2-1

2-wiad NG

APPENDIX A.3
USING LISP FROM A REMOTE DATASET

To use LISP from a remote dataset: The LISP system should be
loaded and running as described in Appendix A.l, LISP LOADER.
Then:

Set the channel O dataset phone to "auto" (the chunnel 0
phone is t“.e one cn which the number 491-5120 arnpears).

From the remote dataset, push the "tel" button, and when
the dlal tone is heard in the attached receiver, dial
49i-5120, The phone in the computer room will be answered
automatically, and &8 tone will be transmitted. Wwhen this
tone 1s heard, the "ORIG" button should be pressed,
establishing the connection.

Special Codes for Control (see standard chart of teletype codes
for complete set)

Octal Code Character Function
rubout deletes the line being typed in

types out and deletes the last
character typed in

break key causes an interrupt followed by an

untrace. A second depression of
tLis key halts the untrace.

4,.3-1

Octal Code

204

207

211

221

223

Character

control D

coritrol G

control 1

control Q"‘

control S

Function

HANGUP, when transmitted by elther
computer or user, c&uses immediate
hangup on both ends

Bell

Horizontal tab, on output only,
causes carriage to be moved to .
next predefined tab stop

reader on: starts paper tape
reader if tape is: loaded

reader off: when &ppearing on
paper tape only, causes reader to
stop after reading next character

A.3-2

X
4 .

i - i

T ey

¥ T T3

pos ey Py Suy PN

-

’ 4

D G o e e o

name of
function
add

addl

and
append
apply
assoc
atom
attach
break
break 1
breakat
breaklist
breadprog
car,cdr, (etc)
character
cleartuf
cond

cons
copy
define
defiraq
deflist
differsnce
disp
displis
divide

e

editn

APPENDIX B

INDEX TO FUNCTIONS

description
sectIon IEIJ page

1istin

section

2 page

ol
33
11
11
23
21

2
12
30
32
31
£
31

D OV~ -

2l
14

15

17

18

18

B‘l '1

10
13
12
11
11

Ww W D N wW

20

name of
function
editf
editp
editv

eq

equal
error
errorset
ersetq
eval
evala
feed
field
fntyp
gCERE
gensym
get

getd
getp

g0
greaterp
intersection
last
icone
length
lessp
leveln
list
load
logand
logor
map

description
section EII, page

26
26
26

1
10
10
10
10

9
23

6
25

9
a5
17
19

9
24

3
33
22

13

3

Fs

13
i3
29

3
15
16
16
2

B.1-2

listing
gsectiin , _page

20
20
20

& FF FF

22

z T
o %
- TEER RPN

Comsiity

St fumg ol e e

name of
function
mapc
mapcar
mapeon
mageone
maplist
member
minus
minusp
ncone
nnconc
nlsetq
not

nth
null
numberp
oblist
or

pack
plus
prettydef
preiutyprint
prini
print
prog
Pr'og
prog?2
progn
prop
punch
punchon
put

description

section 111, page

listing
gection 1V, page

20
20
20
20
21
16
33

33
12

12
10
2
25
2

33
2

e

23

B.1-3

Vi o W U Ul

U

22

15
15

i

listin
sectiun

name of description
functlon section
putd 9
putdq 9
qult 10
quote 2
quotient 34
ratom 5
rdflx 11
read 4
readin 6
reclaim 25
remainder 34
remob 16
ramove 23
remprop 23
return 4
reverse 22
rplaca 17
rplacd 17
sassoc 21
select 24
selectq 25
gset 7
setbrk 5
setn 8
setnq 9
setq 7
setqq S
setsepr 5
sub.l 33
sublis 23
substi 22
B8.1-4

o ~

Gl ey Mmg Sy Gy ey

|

prosemng S
!] 2. Ay

PIRAR

e

Pau e e g e

name of
function
tcone
terpri

time

times

trace

tracp
typein
typecut
unbreak
unbreakat
unbreaklist
unbreakprog
union
unpack
untrace
zerop

description 1..tin
sectinn , page secticn , page
12 8
N
25 8
33
19 18
19 19
5
4
30 11
31 12
31 11
32 11
22 9
16
19 18
33 9
B.1-%

Security Classification

DOCUMENT CONTROL DATA - R&D

(Sucurity classification of title, body of abstract and indexing snnotation must be entered when the overal! report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 28 REPOMRT SECURITY C LASSIFICATION

Bolt Beranek and Newman Inc. Unclassified

2b GROUP

Cambrlidge, Massachusetts

3 REPORT TITLE

The BBN~-LISP System

4. DESCRIPTIVE NOYES (Type of report and inclusive detes)

Scientiflc Report No, 1

8. AUTHOR(S) (Last name. first name, initial)

Daniel G. Boorow, D. Lucllle Darley, Danlel L, Murphy,
Cynthla Sclomon, Warren Teltelman

ntl’o RT DATE 78. TOTAL N OF PAGES 7b. NO. OF REFS
February 1966 82 0
8a. CONTRACT OR GRANT NO. 98 ORIGINATOR'S REPORT NUMBER(S)
AF 19(628) -5065 - ARPA Order
b PROJECT NO. No. 627
8 BBN Remort No. 1346
c. 668 95 OTHER pron'r NO(S) (Any other numbers that may be assigned
thia report
@ AFCRI-66-180

10 AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
ARPA Order No. 627, dated Hq. AFCRL, OAR (CRB)
9 March 1965. United States Air Force
L.G, Hanscom Fleld, Redford, Mass

13 ASSTRACT

This report describes in detail the BBN-LISP system. This LISP
system has a number of unlque features; most nctably, it has a
small core memory, and utilizes a drum for storage of list
structure, The paglng techniques described here allow utili-
zatlon of thls large, but slow, drum memory with a surprisingly
small time penalty. These technlques are applicable to the
design of eflficient 1ist processing systems embedded in time-
sharing systems using paging for memory allocation,

DD .F«*. 1473 Unnrlassified

Security Classification

¥ . _ -

[t

D L0 i A LR

Security Classification

14.
KEY WORDS

LINK A LINR B LINK C

ROLE wT ROLE wTY ROLE wr

LISP

List Processing Language

Paging Systems

Drum Systems for List Structure
List Structures

Symbol Manipulation Language

1. ORIGINATING ACTIVITY: Enter the name and addreas
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report,

2a. REPORT SECURITY CLASSIFICATION: Enter the over
ali security classification of the report. Indicate whether
‘““Restricted Data’ is included Marking is to be in accord
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Tities in all cases should be unclassified.
If @ meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title,

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a gpecific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middie initial.
¥ military, show rank and branch of service. The name of
the principal aythor is an ahsolute minimum requirement,

6. REPORT DATE: Enter the date of the report as day,
month, yeer;, or month, year. If more than one date appears
or: the report, use date of publication,

7a. TOTAL NUMBER OF PAGES: The total page count
should follow norma! pagination procedures, i.e., enter the
number of pages containing information.

76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report wes written

8b, 6c, & 8d. PROJECT NUMBER: Enter the appropriate
military depertment identification, such as project number,
subproject number, system numbers, task number, etc.

9as. ORIGINATOR'S REFPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been

assigned any other report numbers (either by the originator

or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further diasemination of the report, other than those

INSTRUCTIONS

imposed by security classification, using standard statements
such as:

(1) *‘Quelified requesters may obtain copies of this
report from DDC.”’

(2) ‘Foreign announcement and dissemination of this
report by DDC is not authorized. ’’

(3) *U. 8. Government agencies may obtain copies of
this report directly from DDC, Other qualified DDC
users shall request through

”
]

(4) ‘'‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

(5) “‘All distribution of this report is controlied Qual-
ified DDC users shall request through

”
.

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Ente. the name of
the departmental project office or laboratory sponsoring (pay-
ing fur) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may alsoc appear elsewhere in the body of the technical re-
port. lf additional space is required, a continuation sheet shall
oe attached.

It is highly desirable tha* the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
&n indication of the military security classification of the in-
formation in the paragraph, represented as (7S), (5), (C). or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rales, and weights is optional.

Security Classification

Pt AT SRR ity TR L A T]

e SCHESIRNL NN

