©hilofoph: Trangact: Sumb:

1ofoph: Trangact: Sumb: 76 .

Fig. 27.

 Fig. 27

Fig. 32.

Fig. 30.

Fig. 34.

NUll Fig.23.

A Letter from the Reverend Dr Wallis, Profeffor of Geometry in the Univerfity of Oxford, and Fellow of the Royal Society, London, to Mr. Richard Norris, Concerning the Collection of Secants; and the true Divifion of the Meridians in the Sea-Cbart.

AN old enquiry, (about the fum or Aggregate of Secants,) having been of late moved a-new; I have thought fit to trace it from its Original: with fuch folution as feems proper to it: Beginning firft with the general Preparation; and then applying it to the Particular Cale.

General Preparation.

r. Becaufe Curve lines are not fo eafily managed as Streight lines: the Ancients, when they were to confider of Figures terminated (at left on one fide) by a Curve line (Convex or Concave,) as $A F K E$, Fig. i. 2. did oft make ufe of fome fuch expedient as this following, (but diverlly varied as occafion required.) Namely,
2. By Parallel Streight lines, as $A F, B G, C H, \& c$, (at equal or unequal diftances as there was occafion,) they parted it into fo many fegments as they thought fit; (or fuppoled it to be fo parted.)
3. Thefe fegments were fó manymanting one, as was the number of thofe Parallels.
4. To each of thefe Parallels, wanting one; they fitted Parallelograms, of fuch breadths as were the Intervalls (equal or unequal) between each of them (refpectively) and the next following. Which formed an Adfcribed Figure made up of thofe Parallelograms.

$$
\text { Ii i } 2 \quad \text { S. And }
$$

[r194]

5. And, if they began with the Greateft (and therefore neglefied the left, fuch Figure was Circumfribed (as Fig. -r.) and therefore Bigger than the Curvilinear propoled.
6. If with the Left (neglecting the greateft;) the Egure was Infcribed (as Fig. 2.) and therefore Lefs than that propofed.
7. But, as the number of Segments was increafed, (and thereby their breadths diminifhed;) the difference of the Circumfcribed from the Infribed (and therefore ofeither from that propofed) did continually decreafe, fo as at laft to be lefs than any affigned.
8. On which they grounded their Method of exhauftions.
9. In cafes wherein the Breadth of the Parallelograms, or-Intervalls of the Parallels, is not to be confidered, but their length only; (or, which is much the fame, where the Intervalls are all the fame, and each repated $=1$:) Archimedes (inftead of Infcribed and Circumfcribed Figures) ufed to fay, All except the Greateft, and All cxicopt the Lefl. As Prop. in. Lin. Spiral.

Particular Cafe.

10. Though it be well known, that, in the TerreArial Globe, all the Meridians meet at the Pole, (as $E P, E P$, Fig. 3.) whereby the Parallels to the Equator, as they be nearer to the Pole, do continually decreafe:
11. And hereby a degree of Longitude in fuch Pawallels, is lefs than a degree of Longitude in the Equawor, or a degree of Latitude:
12. And that, in fuch proportion, as is the Co-Sine of Latitude (which is the femidiameter of fuch Parallel) to the Radius of the Globe, or of the Equator:
13. Yer hath it been thought fir (for fome realons) to reprefent thefe Meridians, in the Sea Chart, by Parahblareght lines; as $E p, E p$.
14. Where-

[.1195]

14. Whereby, each Parallel to the Equator (as $L A$) was reprefented in the Sea-Chart, (as $l a$,) as equal to the Equator $E E$: and a degree of Longitude therein, as large as in the Equator.
15. By this means, each degree of Longitude in fuch Parallels, was increaled, beyond its juft proportion, at fuch rate as the Equator (or its Radius) is greater than fuch Parallel, (or the Radius thereof.) Longitude
16. But, in the Old Sea-Charts, the degrees of Latitude were yet reprefented (as they are in themfelves) equal to each other; and, to thofe of the Equator.
17. Hereby, amongft many other Inconveniences, (as Mr. Edmard Wright obferves, in his Correction of Errors in Narigation, firf publifhed in the year 1599,) the reprefentation of places remote from the Equator, was fo diftorted in thofe Charts, as that (for inftance) an I/land in the Latitude of 60 degrees, (where the Radius of the Parallel is but half io great as that of the Equator:) would have its Length (from Eaft to Weft) in comparifon of its Breadth (from North to South) reprefented in a doub.e proportion of what indeed it is.
18. For rectifying this in fome meafure (and of fome other incorveniences,) Mr. Wright advifeth; that (the Meridians remaining Parallel, as before) the degrees of Latitude, remote from the Equator, hould at each Parallel, be protracted in like proportion with thofe of Longitude.
19. That is; As the Co-Sine of Latitude (which is the Semidiameter of the Parallel) to the Radius of the Globe, (which is that of the Equator:) fo fhould be a degree of Latitude (which is every where equal to a degree of Longitude in the Equator,) to fuch degree of Latitude fo protracted (at fach diftance from the Equator;) and fo to be feprefented in the Chart.
20. 'That is; every where, in fuch proportion as is

[1196]

the refpective Secant (for fuch Latitude) to the Radius For, As the Co-Sine, to the Radius; fo is the Radius, to the Secant (of the fame Arch or Angle;) as Fig. 4. г. R : R R. f.
21. So that (by this means) the pofition of each Parallel in the Chart, fhould be at fuch diftance from the Equator, compared with to many Equinoctial Degrees or Minutes, (as are thofe of Latitude,) as are all the Secants (taken at equal diftances in the Arch) to fo many times the Radins.
22. Which is equivaient (as Mr, Wright there notes) to a Projection of the Spherical furface (fuppofing the Ey at the Center) on the concave furface of a Cylinder erected at right Angles to the Plain of the Equator.
23. And the divifion ofMeridians, reprefented by the furface of a Cylinder erected (on the Arch of Latitude) at right Angles to the Plain of the Meridian (or a portion thereof.) The Altitude of fuch Projection (or portion of fuch Cylindrick furface) being, (at each point of fuch Circular bafe) equal to the lecant (of Latitude) anfwering to fuch point. As Fig. 5 .
24. This Projection (or portion of the Cylindrick furface) if expanded into a Plain, will be the fame with a Plain Figure, who's bafe is equal to a Cuadrantal Arch extended (or a portion thereof) on which (as ordinates) are erected Perpendiculars equal to the Secants, anfwering to the refpective points of the Arch lo extended: The left of which (anfwering to the Equinoctial) is equal to the Radius; and the reft continually increafing, till (at the Pole) it be Infinite. As at Fig. 6.
25. So that, as $E R / L$. (a Figure of Secants erected at right Angles on $E L$, the Arch of Latitude extended,) to $E R R L$, (a rectangle on the fame bafe, who's altitude $E R$ is equal to the Radius;) fo is $E L$ (an Arch of the Equator equal to that of Latitude,) to the di-

[1197]

diftance of fuch Parallel, (in the Chart) from the Equator.
26. For finding this diftance, anfwering to each degree and Minute of Latitude; Mr. Wright (as the moft obvious way) Adds all the Secants (as they are found calculated in the Trigonometrical Canon) from the beginning, to the degree or Minute of Latitude propoled.
27. The fum of all which except the Greatef, (anfwering to the Figure Infcribed) is too Little: The fum of all except the Left, (anfwering to the Circum(cribed,) is too Great, (which is that he follows:) And it wonld be nearer to the truth than either, if (omitting all thefe) we take the intermediates; for Min. $\frac{1}{2}, 1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{3}, \& \mathrm{c}$. or (the doubles of thele) Min. $1,3,5,7$, \&c. Which yet (becaufe on the Convex fide of the Curve) would be fomewhat too Little.
28. But any of thefe ways are exact enough for the ute inteaded, as creating no fenfible difference in the Chart.
29. If we would be more exact; Mr. Oughtred directs (and fo had Mr. Wright done before him) to divide the Arch into parts yet Imaller than Minutes, and calculate Secants futing thereunto.
30. Since the Arithmetick of Infinites introduced, and (in purfuance thereof) the doctrine of Infinite feries (for fuch cafes as would not, without them, come to a determinate proportion;) Methods have been found for fquaring fome fuch Figures; and (particularly) the Exterior Hyperbola (in a way of continual approach) by the help of an Infinite feries. As, in the Philofophical Tranfactions, Numb. 39, (for the Month of Auguj 1668 ,) And my Book Demotu, Cap 5. prop. 3 :

3x. In Imitation whereof, it hath been defired (I find) by fome, that a like Quadrature for this Figure of Secants (by an Infinite feries fitted thereunto) might be found.

[119.8]

32. In order to which; Put we, for the Radius of a Circle, R; the right Sine of an Arch or Angle, S; the Verfed Sine, V; the Co-Sine (or Sine of the Complement) $\Sigma=\mathrm{R}-\mathrm{V}=\mathrm{V}: \mathrm{Rq}-\mathrm{Sq}:$ the Secant, \int; the Tangent, T. Fig. 4.
33. Then is, Σ. R:: R.f. That is, $\Sigma) R^{2}\left(S=\frac{r_{2}}{2}\right.$; the Secant.
34. And E.S::R.T. That is, $\Sigma) S R(T=s R$; the Tangent.
35. Now, if we fuppofe the Radius C P, Fig. 7. divided into equal parts, (and each of them $=\infty \mathrm{R}$; and, on thefe, to be erected the Co-Sines of Latirude LA:
36. Then are the Sines of Latitude in Aritbmetick Progrefion.
37. And the Secants anfwering thereunto, $\mathrm{L} \int=$
38. But thefe Secants, (anfwering to right Sines in Arithmetical progreffion,') are not thofe that fand at equal diftances on the Quadrantal Arch extended,Fig. 6 .
39.-Bat, fanding at unequal diftances (on the fame extended Arch;) Namely, on thofe points thereof, who's right Sines (whilt it was a Curve) are in Arithmetical Progreffion. As Fig. 8.
39. To find therefore the magnitude of $R E L \int$, Fig. 6. Which is the fame with that of Fig. 8. (fuppofing $E L$ of the fame length in both; however the number of Secants therein may be unequal:) we are to confider the Secants, though at unequal diftances, Fig. 8. to be the fame with thofe at equal diftances in Fig. 7. anfwering to Sines in Arithmetical Progreffion.

4 I . Now thefe Intervalls (or portions of the bafe) in Fig. 8. are the fame with the intercepted Arches (or portions of the Arch) in Fig. 7. For this Bafe is but that Arch extended.
42. And thefe Arches (in parts infinitely fmall) are to be feputed equivalent to the portions of their refpective Tangents intercepted between the fame ordinates. As in Fig. 7.9.
43. That

[1899]

43. That is, Equivalent to the portions of the Tangents of Latitude.
44. And thefe portions of Tangents are, to the Equal intervalls in the bafe, as the Tangent(ofLatitude) to its Sine.
45. To find therefore the true Magnitude of the Parallelograms (or fegments of the Figure;) we mult either protract the equal fegments of the bale Fig. 7. (in fuch proportion as is the refpective Tangent to the Sine) to make them equal to thofe of Fig. 8.
46. Or elfe (which is equivalent) retaining the equal intervalls of Fig. 7. protract the Secants in the fame proportion. (For, either way, the Intercepted Rectangles or Parallelograms will be equally increafed) As $L M$. Fig. 9 .
47. Namely; As the Sine (of Latitude) to its Tangent; fo is the Secant, to a Fourth; which is to ftand (on the Radius equally divided) inftead of that Secant.

$$
\text { S. } \frac{S R}{\Sigma}(\because \Sigma, \mathrm{R}) \therefore \frac{\mathrm{R}_{2}}{\Sigma} \cdot \frac{\mathrm{R}_{3}}{\Sigma_{2}=\mathrm{R}_{2}-\mathrm{S}_{2}}=\mathrm{L} M, \text { Fig. } 9 .
$$

48. Which therefore are as the Ordinates in (what I call Arith. Infin. Prop. 104.) Reciproca Secundanorum: fuppoing Σ^{2} to be fquares in the order of Secundanes.

49. This(becaufe of

$\Sigma^{2}=R^{2}-S^{2} ;$ and the Sines $S, \quad{ }_{+}^{t_{2} R} R 2-\frac{s_{4}}{R}$ in Arithmetical Progreffion) is reduced (by divifion) into this Infinite Series

$$
\left.R^{2}-S^{2}\right) \cdot \underset{\substack{R_{3}-s_{2} R \\+S_{2} R}}{R_{2}}\left(R_{2}+\frac{S_{2}}{R_{2}},+\frac{S_{4}}{R_{3}}, 4\right.
$$

$$
\mathrm{R}+\frac{s_{2}}{\mathrm{R}}+\frac{s_{4}}{\mathrm{R}_{3}}+\frac{56}{\mathrm{R}_{5}}, \& \mathrm{c} .
$$

50. That is, (putting $R=\mathrm{I}$.)

$$
\begin{aligned}
& +\frac{S_{4}}{R_{n}} \\
& +\frac{S_{4}}{R}=\frac{S_{6}}{R_{3}}
\end{aligned}
$$

$$
1+S^{2}+S^{4}+S^{6}, \& c
$$

5 1. Then (according to the Arithmetack of Infinites) K k k

[1200]

we are to interpret S, fucceffively, by $\mathbf{x}, \mathbf{2} S, 3 S, \& c_{0}$ till we come to S, the greateft. Which therefore reprefents the number of All.
52. And becaufe the firl member doth reprefent a Series of Equals; the fecond, of Secundans; the third, of Quartans, \&c. Therefore the firt member is to be multiplied, by S; the fecond, by ${ }_{3}^{1} S$; the third, by ${ }_{5}^{1} S$; the fourth, by $\frac{1}{7} S$; \&c.
53. Which makes the Aggregate,
$S+\frac{1}{3} S^{3}+\frac{1}{5} S^{3}+\frac{1}{7} S^{7}+\frac{1}{9} S^{9}, 8: c .=E C L M$, Fig. 9.
54. This (becanfe S is allways lefs than $R=1$) may be fo far continued, tili fome power of S become fo fmall as that it (and all which follow it) may be fately neglected.
55. Now (to fit this to the Sea-Chart, according to Mr. Wrights defign:) Having the propofed Parallel (of Latitude) given; we are to find (by the Trigonometrical Canon) the Sine of fuch Latitude; and take, equal to it, $\mathrm{CL}=\mathrm{S}$. And, by this, find the magnitude of ECLM, Fig. 9; that is, of REL \int, Fig. 8. that is, of REL /, Fig. 6. And then, As RRLE (or fo many times the Radius,) to REL/(the Aggregate of all the Secants ;) fo muft be a like Arch of the Equator (equal to the Latitude propofed, to the diftance of fuch Parallel, (reprefenting the Latitude in the Chart) from the Equator. Which is the thing required.
56. The lame may be obtained, in like manner, by taking the Verfed Sines in Arithmetical progreffion. For if the right Sines (as here) beginning at the Equator, be in Arithmetigal progreffion, as $1,2,3, \& e$. Then will the Verfed Sines, beginning at the Pole, (as being their complements to the Radius) be fo allo.

The Collection of Tangents.
57. The fame may be applyed in like manner, (though that be not the prefent bufinefs,) to the Aggregate of Tangents, (anfwering to the Arch divided mito eanal parts.)
88. Eor,

[1201]

58. For, thofe anfwering to the Radius fo divided, are $\frac{\mathrm{SR}}{\mathrm{s}}$; (taking S in Arithmetical progreffion.)
59. And then, inlarging the Bale (as in Fig. 8.) or the Tangent (as in Fig. q.) in the proportion of the Tangent to the Sine.

$$
\mathrm{S} \cdot \frac{\mathrm{SR}}{\Sigma}(: \because \Sigma \mathrm{R}):: \frac{\mathrm{SR}}{\Sigma} \cdot \frac{\mathrm{SR} \mathrm{R}_{2}}{\mathrm{\Sigma}_{2}}=\frac{\mathrm{SR} 2}{\mathrm{R}_{2}-\mathrm{S}_{2}} .
$$

60. We have (by divifion) this Series,
$\mathrm{S}+\frac{\mathrm{S}_{3}}{\mathrm{R}_{2}}+\frac{\mathrm{S}_{5}}{\mathrm{R}_{4}}+\frac{\mathrm{S}_{7}}{\mathrm{R}_{6}}+\frac{\mathrm{S}_{9}}{\mathrm{R}_{8}} \& \mathrm{c}$.
6I. That is (putting $R=r$)

$$
S+S^{3}+S^{s}+S^{7}+S^{9}, \& c
$$

62. Which (multiplying the relpedtive members by ${ }^{\frac{1}{2}} S, \frac{1}{4} S$, ${ }_{1}^{1} S,{ }_{8}^{\frac{1}{8}} S$, ${ }^{\frac{1}{10}} S, \& c$) becomes

$$
\frac{1}{2} S^{2}+\frac{1}{4} S^{4}+\frac{1}{6} S^{6}+\frac{1}{8} S^{8}+\frac{1}{10} S^{10}, \& c_{0} \quad+\frac{s 7}{R_{4}}
$$

Which is the Aggregate of Tangents to the Arch who's right Sine is S.
63. And this method may be a pattern for the like procefs in other cales of like nature.

An Explanation of the Figures of Several Antiquities, communicated by a Member of the Royal Society.

FIG. 10, 11, 12, 13, 14, 15. Res Turpichla, or Pri$a p i$, worn by Roman Children againft Fafcination. 16. An Ægyyptian brafs Serapis, or Teraphim.
17. A brafs Stilus Scriptorius.
KkK_{2} 18, 19 . Old

