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NOTATIONS

a fundamental length of the beam

B widths of the beam and the foundation

b B/2

c vertical crack length

d depth of the beam

df depth of the elastic foundation

dj the Williams' stress function coefficients

Efo modulus of elasticity of the beam

Ef modulus of elasticity of the foundation

Ii moment of inertia of the beam

K- opening mode stress-intensity factor

Kj_' normalized stress-intensity factor

1 effective length of the beam in the boundary collocation procedure

m number of boundary stations

n one-half the number of the Williams' stress function coefficients

P total applied load

p applied uniform load per unit length or applied sinusoidal load

on the beam

P amplitude of the applied sinusoidal load

Q reaction of the foundation

q reactive sinusoidal load per unit width on the foundation

1 x



q amplitude of q

r radial distance from the tip of the vertical crack

u horizontal displacement

v vertical displacement

w surface deflection of the beam

x,y rectangular coordinates

a a dimensionless parameter

1/ft a fundamental length of the beam in the conventional

theory of beams on elastic foundations

€ one-half of the applied uniform loaded length

strain components

a wave length of the sinusoidal loads

stress components

maximum tensile stress in the beam

maximum tensile stress in the beam due to a concentrated load

maximum tensile stress in the beam due to a uniform load

Poisson's ratio of the foundation

Airy's stress function

Williams' stress function

a dimensionless parameter

an angle in radians measured counter-clockwise from the

vertical axis

*x,«y

1/A

a . a
x» y

xy

amax

Pmax

famax

i/f

<t>

X

<A

e
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PART I. PLAN OF RESEARCH

I. INTRODUCTION

The rational design of pavements must lead to the prediction of their

performance during their service life. The overall pavement performance

as measured by its serviceability and maintainability under induced environ-

mental and loading conditions, in turn, depends upon the structural integrity

of the component layers. The engineering properties of paving materials and

geometrical variables such as thickness and relative position of various com-

ponent layers greatly contribute to the structural integrity of pavement systems,

The pavement material and its structural arrangement need to be selected to

provide optimum serviceability under induced load and environmental factors.

Recognizing that pavement failures can be placed into three broad categories

of durability, stability, and fatigue and fracture, bituminous concrete needs

to be selected and designed so as to resist detrimental forces of load and en-

vironment and provide satisfactory performance.

This study is concerned with the evaluation of fatigue and fracture re-

sistance of bituminous concrete. It is aimed at an investigation of the char-

acteristics and behavior, and improvements of these mixtures as related to

resistance to cracking. As it has been shown in the literature review, two

approaches to such a problem study are possible; namely, one leading to a

phenomenological characterization and evaluation of asphaltic concrete mate-

rial; and the other based on the mechanistic approach developed at Ohio State

University. The mechanistic approach utilizes the fracture mechanics concept

1



to study the damage processes and to evaluate the fatigue and fracture resist-

ance of asphaltic mixtures.

The phenomenological characterization of fatigue in bituminous mixtures

has been extensively studied within the past few decades. In a recent report,

Saraf (49) has presented a detailed review of various testing and analytical pro-

cedures used for the phenomenological characterization of fatigue life of bitum-

inous mixtures. This review of literature indicates that various methods and

analytical procedures have been employed in the past to study the fatigue

response of asphaltic mixes in the laboratory. The phenomenological approach

to fatigue is credited to Monismith (29-36) s
Pell (41-43) and others (5,7,18) in which

the fatigue life of a flexible pavement, Nf, is related to the maximum tensile

stress, o", or tensile strain, e , developed in the under-side of the bituminous

layer by semi-empirical relations of the form:

N
f

= oi(-)

m9
1

*

C2( 7 )

for controlled stress tests (1.1)

Nf = for controlled strain tests (1.2)and

where c c
2 , m

1
, m2 , are constants to be determined experimentally on

simply-supported or cantilever beams using prescribed testing procedures.

According to these equations, for a repetitive loading of a controlled-

stress nature, specimens with high initial moduli or stiffness tend to perform

*Underlined numbers in parentheses refer to the list of references.



most satisfactory. The reverse is true for controlled- strain fatigue experi-

mentation. Therefore, the interpretation of the test results and the selection

of mix characteristics required for pavement design are dependent upon the

mode of loading. It has been argued (47) that since the constants c and m vary

with the type of test and boundary conditions, they cannot be considered as true

material constants.

Despite such inherent limitations, the phenomenological approach pro-

vides a reasonably simple procedure which has been universally adopted by

various research organizations. In addition to the variations in the testing

procedures such as recommended by Monismith et.al. , phenomenological

evaluation of bituminous concrete has also been carried out using different

geometrical setups.

Bazin (2), Savin (50 ) and Coffman (5) have used trapezoidal-shaped

cantilever beam samples in their laboratory investigations. Jiminez and

Gallaway (18) used an apparatus designated as a "deflectometer" and a rotating

bending fatigue machine has been used by Pell (41-43) in this study of asphaltic

concrete fatigue.

Similarly, researchers have argued that for a better simulation of

fatigue response of pavements in service, the mode of loading needs to be

selected either as controlled stress or controlled strain depending upon the

pavement thickness and other geometrical considerations (1). In controlled



stress or controlled load testing as represented by equation 1.1, the nominal

stress or load is maintained constant throughout the duration of the test. If

the nominal stress level is maintained constant, the testing is under the con-

trolled strain or controlled deflection mode (see equation 1.2).

The available experimental results have indicated that the fatigue life

of a given sample in controlled strain tests is usually higher than in controlled

stress tests (28, 29,_30) when compared with the same initial nominal stress.

Most of the previous phenomenological investigations of fatigue response

of asphaltic mixes have been carried out using simple loading histories, in which

the maximum and minimum amplitudes of load or strain were constant for each

cycle. Although this criterion has provided basic information regarding the

mechanism of fatigue failure in a given sample, it is far from the true loads

sustained by pavements in service. Compound loadings have also been attempted

by Deacon and Monismith ( 7 ) to study their effects on fatigue response.

Frequency of load application in fatigue tests has also been considered

as an important testing variable. Monismith, et.al. (27) reported that the

frequency of load application in the range of 3.0 to 30.0 cycles per minute

had no effect on the specimen's fatigue behavior. The subsequent work of

Deacon and Monismith ( 7
)
has shown that the increase in the rate of loading

significantly decreased the fracture life for the type of test employed at rates

between 30 and 100 applications per minute.



Raithby and Sterling (42,43) have similarly shown that the rest periods

between successive loading cycles have a beneficial effect on fatigue performance,

both by increasing the resistance to cracking and by reducing the rate of loss of

dynamic stiffness due to repeated loading. Rest periods on the order of one

second increased the number of cycles to failure by a factor of upto 5, when

compared with the life under continuous sinusoidal cyclic loading. The improve-

ment in life was less at high temperatures; it also appeared to be influenced by

the magnitude of the applied cyclic stress, although this effect was not clearly

established. A comparison of fatigue performance under square, sinusoidal,

and triangular wave forms indicated some significant differences, but these

were small compared to the effects of rest periods. It should be noted that the

effect of rest periods on the crack growth process has been recently investigated

by Majidzadeh and Kauffmann (26) by testing beams on elastic founcations with

rest periods of 0.0, 0.4 and 0.8 seconds. They reported that for such test

conditions, there were no significant effects of rest periods on the crack

growth process.

In summary, it should be pointed out that although the phenomenological

approach has gained universal acceptance, it bears the limitation that it cannot

take into account the crack initiation and propagation. Nor can it fulfill the

mechanistic model representation of fatigue and fracture of bituminous or

other paving materials.



To take into account the role played by crack propagation and the

consequent redistribution of stresses within a layered pavement system, a

mechanistic model was developed at Ohio State University (23), (27), (47) in

the late 1960 's. It was considered essential that the design strategy should

incorporate the formation and development of failure mechanisms and describe

such processes involved in terms of invariant material properties, loading,

geometry and boundary conditions.

The mechanistic scheme is a rational strategy which utilizes the

principles of fracture mechanics to explain the mechanism of damage, the

progression of crack growth, and the prediction of the fatigue life of pavements.

Such a design scheme, as shown in Figure 1, is based on the postulate that the

fatigue life, Nf, can be described by the process of crack initiation, growth

and ultimate fracture. The material parameters required for a detailed

fatigue and fracture characterization are parameters associated with and

identified by these three damage processes:

Nf = F [c , A, n, K, KIC
]

(1.3)

The parameter Kj£ is the fracture toughness describing the final stages of crack

propagation. The crack growth process, however, has been shown to be ex-

pressed in terms of A, n and K by either a simplified power law equation:

dc/dN = A Kn (1.4)
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or in a generalized form of

ill ^2 n3
dc/dN = A

1
K + A2 K + A3 K (1.5)

where Aj , nj = material constants and K = stress-intensity factor. The

critical value of the stress-intensity factor, Kjp>, is a material constant which

describes the failure criterion for both fatigue and fracture.

The analysis of fatigue and fracture of pavement systems, using the

mechanistic method, as shown in Figure 1, is a two-step process; that is,

(i) the material characterization to obtain parameters describing the crack

resistance of paving mixtures and (ii) solution of boundary- value problems

to obtain an estimation of the stress-strain distribution within the layered

system. The previous research at the Ohio State University (26) and the

theoretical development of fracture mechanics at other institutions have pro-

vided various methods of solution for crack problems. The computer program

and analysis procedures presented in research reports
(26) ( 27) are typical of

such analysis procedures available for the design of pavement systems.

With respect to material characterization task, the proposed mech-

anistic analysis procedure requires the determination of material constants

affecting fatigue and fracture. It also requires the sensitivity analysis of

these material constants as affected by pertinent testing variables.

As an example, the previous studies have indicated that the prediction

of the fatigue life of pavements from laboratory tests is independent of the



mode of loading or specimen geometry. Failure by cracking is defined in terms

of the stress-intensity factor and catastrophic failure by the critical stress-

intensity factor. The results of these studies carried out at the Ohio State

University have also indicated that the crack propagation law, in a more

formalized form, is applicable to asphaltic mixtures tested in various geo-

metries, boundary conditions, temperatures and modes of loading. The effect

of random block loading and the levels of variable amplitude on the crack pro-

pagation has also been formulated (26). The mathematical models incorporating

the effect of plastic yielding at crack tip locations have also been investigated.

The results of these researches have led to the following general conclusions:

(i) The crack propagation model dc/dN = A Kn satisfactorily explains

the fatigue performance of bituminous material, the stress-intensity factor

being the dominant parameter controlling the crack growth.

(ii) Theoretical solutions have been developed that accurately predict

the stress distribution in cracked bodies and the stress-intensity factor for

beams on elastic foundations, slabs on elastic foundation, etc. The agree-

ment of theoretical stress-intensity factors and the experimental values have

been found to be excellent.

(iii) The fatigue crack propagation process in bituminous materials

is considered as a stress interaction type phenomenon.

(iv) For the range of variables investigated, it was found that the rest

period has little or no effect on the fatigue life of pavements.



(y) The sequence of load application has a significant effect on the

fatigue life of asphaltic materials, causing a delay in the rate of crack pro-

pagation.

(vi) The fatigue life of pavement slabs subjected to loads of variable

amplitude can be predicted from tests on beams resting on an elastic solid.

(vii) The constant n in the power law dc/dN = A K varies depending

upon the material characteristics such as asphalt content, gradation, etc.

(viii) The mechanistic approach to predict cracking of flexible pave-

ments is applicable in the range of temperatures from 41° to 90°F.

(ix) The critical stress-intensity factor, K
TC , is the failure criterion

for low temperatures.

(x) The concepts of linear fracture mechanics can be used to predict

the fatigue life of pavements by means of the analysis encompassed by the

mechanistic approach. The application of this method to a typical flexible

pavement has been demonstrated in previous studies (27_,28)

.

To utilize this mechanistic model for pavement design purposes, it

is required that the material characteristics responsible for the fracture

and fatigue resistance of asphaltic mixtures to be determined in the labora-

tory under field simulated conditions. In this respect, therefore, this study

has been aimed at the application of mechanistic concepts to optimization of mix

10



variables and improve the fatigue and fracture life of expectancy of the bituminous

mixtures. To achieve such objectives, it should be demonstrated that fracture

and fatigue principles are applicable to a variety of bituminous mixtures and can

provide an estimate of the crack resistance characteristics of these materials.

In addition, the analytical and experimental fracture mechanics to be used for

mixture optimization must be simple enough to lend itself to routine material

characterization and mix design purposes. It must also recognize the effects

of variability in the material characteristics, such as aggregate size distribution,

asphalt content, and other mixture variables. The scope of this study includes

the following.

II. SCOPE

A. Selection of Testing and Analytical Procedures for Fracture Resistance

This phase of the study involves a detailed review of literature and pre-

paration of a state of the art report of the applicability of fracture mechanics

concepts to the evaluation of fatigue and fracture resistance characteristics

of bituminous concrete materials.

It is also aimed at selecting the most promising existing laboratory test-

ing procedures, modified as necessary, and to verify these procedures through

laboratory testing of bituminous concrete mixtures. Consideration shall be

given to the following items during verification: specimen type, size, geo-

metry, and method of support; mixture type and maximum size of aggregate;

and test temperature.

11



With respect to the testing temperature, the study will investigate the

agreement between elastic and viscoelastic analysis at 77 °F, to measure the

effect of time dependent material response on fatigue crack propagation.

To evaluate the results and test procedures best suited for crack

resistance studies, analytical techniques such as finite element, boundary

collocation or other new and innovative techniques will be used to determine

which test procedure best defines crack resistance.

B. Sensitivity of Various Mix Parameters and Evaluation of Formulations

for Improvement of Fracture Resistance

This phase of the study involves the evaluation of the effect of asphalt

source, consistency and amount, aggregate grading, type and maximum size;

air-void content and type, and the amount of conventional fillers on the fracture-

resistant qualities of the mixtures.

This phase -will also include an evaluation of the effects of polymeric

additives to the asphalt and the effects of admixtures such as asbestos, rubber,

sulfur and synthetic constituents on fracture resistance.

C. Recommendations for Routine Mixture Design and Testing and Suggested

Formulations for Fracture-Resistant Mixtures

It is the aim of the study to recommend a mixture design procedure

that will enable optimization of fracture-resistant qualities of typical mixtures

which can be used on a routine basis. Mixtures formulations required for

12



optimizing the fracture-resistant characteristics of typical mixtures will also

be recommended using the results of the sensitivity analysis of mixtures vari-

ables as developed in Phase n.

13
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PART n. A STATE-OF-THE-ART REVIEW

I. FRACTURE MECHANICS

A. A General Review

One of the important aspects of modern structural analysis is the

selection of a criterion of failure which could provide an accurate estimate

of factors affecting failure. The traditional design criterion often does not

account for the existence of flaws and inherent defects causing premature

structural distress. The classical approach, which is based on the selection

of a limiting applied stress as compared with the material yield stress, <r

might not always guarantee a fail-safe design strategy.

It has been shown that the theoretical strength of materials which de-

pends on the forces of molecular cohesion are many-fold larger than actual

observed values of strength. It is obvious that material defects, imperfec-

tions within the crystalline structures, and other forms of flaws resulting

from manufacturing and handling are responsible for such a discrepancy. The

existence of such flaws as joints, cracks, etc. , cause a redistribution of

stresses and stress concentration in the vicinity of structural discontinuities.

The high elevation of stresses at such localized regions of the body can often

result in catastrophic failure of the structure, even at normal stress levels

much less than the yield strength of the material.

21



To account for such discrepancies between the observed and theoretical

failure limits, a classical theory of fracture mechanics has been set forth to

provide a rational and refined analysis of the degradation of the strength due

to inherent flaws. In brief, in the fracture mechanics approach, the existence

of flaws are assumed to be responsible for the elevation of stresses at crack

tip locations. When the applied load is increased, the stresses around the

flaws reach a limiting value and fracture becomes possible.

The basis of linear fracture mechanics is the paper by Griffith (13) which

was unrecognized for thirty years. In 1920, Griffith proposed that brittle bodies

fail because of the presence of numerous internal cracks or flaws which pro-

duce local stress concentrations. He also stated that the elastic body under

stress must transfer from an unbroken to a broken state by, a process during

which a decrease in potential (elastic) energy takes place. He postulated that

fracture instability is reached when the increase in free surface energy (surface

tension), caused by the extension of the crack, is balanced by the release of

elastic-strain energy in the volume surrounding the crack. The Griffith equa-

tion for propagation of an internal crack of length 2c in an infinite thin plate

under a uniform stress, <r , normal to the plane of the crack, is:

*2 >- *&-

where y = the specific surface energy

E = the modulus of elasticity

c = crack length.
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In many engineering materials such as ceramics and glass, fracture

occurs with hardly any deformation. However, in metals and other engineer-

ing materials, plastic deformation always takes place, and Griffith's classical

surface tension concept is not suitable. Both Orowan (52,53) and Irwin (17, 18, 19)

independently came to the conclusion that the slight plastic flow which occurs

in the brittle-fracture case, absorbs a large amount of additional energy re-

quired to create new surfaces.

Mathematically, Griffith's criteria for crack propagation is:

SU > 5UST (2.2)

where 5U is the decrease in potential energy due to increased

crack surface,

5UgT is the increase in surface energy due to increased

crack surface.

Irwin's criteria for crack propagation can be represented as:

5U > 5U
gT

+ 5UpL (2.3)

where SUpi, i s the plastic energy dissipated due to increased

crack surface.

Irwin recognized that the plastic energy dissipated is much larger

than the surface energy dissipated and therefore, proposed to ignore the

latter.
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The terms above involving increase in energy quantities are evaluated

with respect to the increased crack surface 5 A and hence, the change in

energies could be referred to as rates of energy input or dissipation.

The theory by Griffith on energy balance and its subsequent modification

by Irwin and Orowan are necessary conditions for the onset of fracture. As

such, this theory cannot conveniently characterize all types of fracture ob-

served in fracture tests. Irwin thus proposed that the local stress field sur-

rounding the crack tip be used in place of the total input-output energy rate

for such characterizations.

The relationship between 5U , the input energy rate, and the local

stress field can be obtained by considering the situation where a short segment

,

8x, of a two-dimensional crack is closed by imposing a force, <r (- 8x,0),

on the crack surface as shown in Figure 2.1 (21) (32). The total strain-energy

absorption rate in this reverse-loading problem is equal to 8 U^. , which in

turn is equal to the strain-energy release rate, G, for a crack extension of

8 x, or

5x

81V = G • Sx = J Uy(0,0) • <r*
y
(- 5x,0) dx (2.4)

where uy(0, 0) is the crack closing displacement when the crack closes from the

origin of the x-y coordinate for a length of 8 x.
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<r
y
;(-s*,o)

Figure 2.1. Closing of a Crack Tip

It can be assumed further that the plastically yielded region ahead

of the crack tip does not change the state of stress significantly. As a re-

sult, ^(0,0) and <r * (- 5x,0) can be obtained by the elastic stresses and

elastic displacements obtained through the known elastic state in the vicinity

of the crack tip. In particular, 1^.(0,0) is the crack-closing displacement

with the crack tip located at the origin of the coordinates (0,0) and <r £v (- 5x,0)

is the associated closing stress which is equal to the normal stress ahead of

the crack tip located at (- §x,0). Therefore, all problems in linear fracture

mechanics can now be converted to problems in linear elasticity for which

solutions are possible.

It is also shown that all linear elastic solutions to problems involving

cracks in homogeneous, isotropic material show an inverse square root de-

pendency of the crack tip singularity.
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Considering the "Mode I" crack tip deformation problem, as shown in Fig-

ure (2.1), Westergaard's stress function, frequently used to solve two-dimensional

problems in cracked structures in the vicinity of the crack tip, is:

z i - Vp {2 ' 5)

where p = re^ (in polar coordinates.

As p > 0, however, the complex analytical function, f (p), approaches

a real constant, —j= , where Kj is the opening mode of stress-intensity factor

and is defined as:

Kj = lim <ryy(r, 6 = 0\ • V2 7Tr (2.6)

r—O
The local stresses in terms of local coordinates for Mode I fracture are:

XX
. e . se

1 - sm ~2~ sin ~2~

K
I J , . d . W

yy >

=
~~ZZZ— cos ~2~

)
sin

2
sin ~?~

V2 ?rr

°"xy sin -jr- cos -^~

Similarly, the local displacement components in the x and y directions,

ux and Uy, can be expressed in terms of Kj as;

u
y

cos-|- (X- 1 - 2 sin2 -|-

i
1 +v

) Kj r2 (2.8)

V2~7T E sin A (X+ 1 - 2 cos2 -^-)
2 2

where X = 3 - 4p for plane strain

= (3 - V)/(l +V) for plane stress

V = Poisson's ratio

E = the modulus of elasticity.
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The substitution of $ - 7T in Eq. (2.8) gives ux = and

1

Uy(0,0) f
(1-0 r2

• Kj(A-+l) (2.9)

or 4 (1 - V 2
)

i

uy (0,0) = \/G^T F
r2 K

I
f°r plane strain (2.10a)

and

u (0,0) = 4 r 2 Kj for plane stress (2.10b)

V2lF E

*

The imposing stress cr (- 5x,0) is obtained by shifting the origin in

Figure (2.1) from (0,0) to (- 8x,0) and evaluating cr in Eq. (2.7b) for r = 8x- r,

9 = 0. This gives, * kt

o- (- 8x,0) = — (2.11)
yy V2 IT ( 8 x - r)

The strain-energy release rate due to a crack extension of 8 x in a state

of plane strain is then given by

2 (1 - P
)

2
s „ 8x

8U
-

= G
*
6x = ~7T '

K
i / ^T dr
o 8x /

J (
(2.12)

which upon substitution r = 8 x sin and evaluation of the integral gives

r *
(1 - V

2
) „2 .

Gj 8x = Kj • 8x

or (1 - V 2
) o

Gj = g Kj (plane strain) (2.13)

For a plane stress condition, a similar relation can be obtained by simply substitute

Eq. (2.10b) instead of Eq. (2.10a) in Eq. (2.4). This gives Gj = Kj/E for plane stress,

The subscript I denotes the opening mode fracture.

At the onset of fracture, the elastic energy release rate, following the

Griffith-Irwin theory, can be replaced by an equivalent material constant desig-

nated by the critical strain-energy-release rate or G
T
p. Since the stress in-

tensity factor is directly related to Gj , the Griffith-Irwin theory can also
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be restated in terms of the stress-intensity factor, K
y

, which becomes a

material constant Kjq at the onset of rapid fracture. This critical stress-

intensity factor, K
Tr,,

is referred to as the fracture toughness of the material

and has the dimensions of (stress • vTength )

With regard to a general state of fracture in which in-plane sliding

(Mode II) and tearing (Mode III) are present (Figure 2.2), the stress distri-

bution at the end of cracks can be written as:

_i
cr,, = r

2 K
i

f
ij(0)

+ Kn f"(^) + K
ni

f
ij

n
(0

+ other nonsingular terms.

(2.14)

where r, are polar coordinates introduced at the crack tip

(Figure 2.3)

Kj, Kjj, Kjjj and corresponding symbols I, II, and III reflect

three modes of fracture.

As was pointed out, the terminal state of fracture can be represented

by the critical value of stress-intensity as designated by Kjq. The interrela-

tion of Irwin's stress intensity factor K_ and Griffith's energy release rate Gj

are represented in Equation (2. 13). Although similar relations between Gjj

and Ktt , and K
TT

and Grjjcan also be written, the physical meanings of Kjjq

and Kjjjc have not been well-defined. Therefore, the Mode I fractures have

remained a significant method of analysis. The Mode I critical stress-intensity

factor, Kj£, as designated by fracture toughness, has also been considered as

an important engineering tool which provides the designer with an additional

material parameter for crack resistance evaluation.
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The difference between Kj and Ky^ terms is quite significant and should

be clearly understood. The term Kj, or a stress-intensity factor, is determined

analytically and is a function of load, geometry and crack size. Hence, the

analytical form and the magnitude of K
T
varies from one system to another,

depending on load and geometrical variables. On the other hand, the fracture

toughness, Kj£, is a material constant, independent of crack geometry, loading

conditions and other physical variables and is analogous to strength.

It should be noted that the K~, concept is primarily restricted to labora-

tory and material characterizations where the Mode I fracture is applicable.

That is, the Griffith-Irwin theory is, in fact, a scalar theory, in that only

the critical values of a scalar Gjq and/or KjC are known ( 73 ). The direc-

tion of crack propagation is assumed to be normal to the load and the crack

front must be straight (Figure 2.4).

In reality, however, in most structural components the flaws and cracks

are seldom aligned perpendicular to the direction of load. Such a deviation in-

validates the classical Kc theory of fracture, in which cracks must always

be normal to applied tensile stress. As a departure from this classical theory,

Sih (73) has presented a theory of fracture based on the field strength of the

local strain-energy-density. This theory has the inherent advantage of being

capable of treating all mixed mode fracture. The mixed mode fracture analy-

sis is of particular interest in the study of bituminous materials. It has been

shown that for mixtures with large size aggregate, when tested as a beam on

elastic foundation or in real pavement systems, the crack surface follows a
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zig-zag pattern and as a result, the stress component cr responsible for

the crack growth would no longer remain perpendicular to the crack surface.

Under such conditions, the stress state ahead of the crack will be

governed by at least two stress-intensity factors (K and K ) instead of a simple

parameter, IC. The elastic stress distribution at the crack tip can be written

as:

xx

xy

Ki ft . ft
3 #

cos -H. (1 - sin-^- sin~2~ ) ~
/2r

Kl

2r

K

/2r

ft d 3(9
sin -¥- (2 + cos -yr cos ~2~

cos
6 6 3d Kc
j- (1 + sin— sin——) +

6 3d
,— sinir cos ~z~ cos ~~~~
/5F 2 2 2

T xy
K l 6-d 3d—— cos -^- sin— cos —- +

2 9 2V2r

K2 /n . . 3d .

;
cos -r- (1 - sin— sin ——

)

^2F 2 2 2

where

(2.15)

K, KjA/SF

K
2

= K^

Under such a state of stress, the failure condition can be evaluated

using the energy concept. Considering that strain energy of the system in the

crack vicinity, <p , can be expressed in terms of stresses, for an element

r A d , Ar ahead of the crack tip, the strain energy function is (Figure 2. 3).

dA
1 + v

2E

2
6" XX

2
°"yy

2 2

Y~ ( <TXX+ <Tyy) + 2 T xy

(2.16)
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Then, by inserting the stress components from the previous equation (2.15),

d<f> = 1

dA r
A K 2

+ A K 2
+ 2A

11 1 22 2 12 1 2
(2.17)

where the term in the bracket is defined as strain-energy-density factor S,

S = AnKx
+ A

22K 2 + 2A
12
K

1
K
2 (2.18)

A..
1

, A 1?
and A22 are constants related to the elastic parameters and element

direction as given by:

11

A
12

l22

1 + V

8E

1 + V

4E

1-+ v

(3-4 v - cos $ )(1 + cos $ )

sin $ cos Q - (1 - 2 v
) (2.19)

IE
4(1 - v )(i - cos $ ) + (1 + cos 0)(3 cos0 - 1)

For the condition that all three modes of fracture are present, S is written as:

S = AUK
X

2
+ A

22
K
2

+ A
33
K
3

2
+ 2A19K 1

K9l

12^i^2

where L

33
1 +v
2E

If the loading condition and crack propagation is such that Mode I

analysis applies, then:
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or
(1 + y) (1 - 2v)

2
S =

2 77E
KI

(2.21)

When unstable crack extension or failure occurs, the parameter S

approaches its critical value, given by S
c :

(1 + v )(1 - 2v) 2

2 n E
K
IC (2.22)

where in this case, S is a material constant.

Under an in-plane shear condition, where only the Mode II fracture is

possible, the local stress field contains K^ (K£ = ^ii/\/1t~ ) alone, and the

strain-energy-density is written as:

S =
1 +v
8TTE

4(1 - v )(1 - cos 6 ) + (1 + cos 6 )(3 cos 0-1) K.
II

where K
II

t y/Wc
(2.23)

in which r is applied shear stress and c is the crack length. At the point

of crack instability, Sih has shown that

6E

6 IT E

2 (1 -„)- -
2

]
^e

2 (1 -v) - v
2

\
• Kj

2

IC

(2.24)

(2.25)
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Since Sc is a material constant, it can be argued that Equation (2.24^ and

Equation (2.25) must be equal; and thus setting these equations equal to each

2
other and solving for Kjr,-, ,

K
2 3 (1 - 2 v) 2

* KIC (2.26)IIC
2 (1 - v) - v 2

A similar relation can be developed between Kjq and Kjjtq , when considering

the Mode III fracture process.

The preceding relations are derived from Sih's multi-model frac-

tum concept which is based upon the postulation that crack spread occurs

in the direction of maximum potential energy density of the system. Con-

sidering the potential energy is equal to the negative of the strain energy S,

therefore the necessary and sufficient condition for crack growth is the min-

imum of the strain density, S. The angle = 8
Q

,
which makes S a minimum,

determines the angle at which the crack propagates. That is, the crack ini-

tiation occurs in a direction determined by the stationary value of:

a S
when = dQ (2.27)

The strain energy density factor, S, can be resolved into two components,

one responsible for the change of shape as S^ and/or the change in volume

S , that is:

S = S, + S (2.29)
a v
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The crack initiation occurs under conditions of Sm jn for which Sih (73) has

shown that fracture occurs along the plane where Sv > S^. On the other

hand, the direction 6q = cos" (1 -2v) along which Smax occurs (Mode I only),

corresponds to maximum yielding on the large dimension of the plastic zone.

For the analysis of fracture problems involving large plastic deforma-

tions, the deformation theory of plasticity has been used by Rice (66),(67) to

arrive at a parameter needed for characterization of crack tip area. The

path independent J integral is a parameter, the value of which depends on the

near tip stress-strain field. The path independency of J integral has been

shown to be valid for linear, non-linear elastic, and plastic materials under

monotonic loading condition. The basis of this formulation is that the path-

independent nature of the integral allows integration to be carried out along

the path away from the crack tip instead of along a region close to the tip.

The J integral is defined as:

/
W dy - T (|^- ) d s (2 . 30)

r

where T is any contour surrounding a crack tip, W is strain energy density

(Fig. 2.5):

/
emn

°i] d e
ij

W = [2.31

u, displacement vector, T, traction vector, defined by the outward normal

to the contour. Rice (66) has pointed out that the crack tip deformation and
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Figure 2.5. Crack Tip Coordinate System and

Arbitrary Line Integral Contour
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energy conditions are reflected by the J integral. The J integral might be inter-

preted as the potential energy difference between two identically loaded bodies

having neighboring crack size c and c + Ac. That is,

J = - dU
dc (2.32)

where U is the potential energy, and c is the crack length. In analogy with the

linear crack fracture mechanics, the area between two monotonic load-deflection

curves (Fig. 2.6) for cracks of c and c + Ac is defined as Area = OABO. That is,

J can be determined from experimental load-deflection curves of varying initial

crack length. It should be noted that since the deformation theory of plasticity

does not permit unloading conditions, the J integral is only applicable to crack

initiation rather than crack propagation.

For a linear elastic case, J is identical to G, the energy release rate,

and may be expressed as

P2 dL K2

J " G " 2B ' be
=

E' (2 * 33)

where P = applied load

B = width of the material

L = material compliance

c = crack length

E' = E for plane stress and E/(l - f 2
) for plane strain.

For a rigid-plastic material, the deformation or displacement A is un-

limited at the limit load, P = PL , whereas for P < P-r , A = 0. In this case J

is given by

A *PL
J = b "5T

-
<
2 - 34)

where the derivative dPL/dc can be evaluated experimentally. The J
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integral, therefore, can be used as a parameter required for characterization

of crack tip problems in both linear and non-linear systems.

B. Crack Tip Stress Analysis For Pavements

From the viewpoint of design and analysis of pavement layered sys-

tems, the Mode I as well as mixed mode fractures have been found to be of

great utilization. The Mode I fracture, or K-Theory, is primarily applicable

to fatigue and fracture analysis of laboratory specimens as well as design of

flexible layered systems. The Multi-Modal fracture, on the other hand, can

be used to study the crack propagation in composite pavements, continuously

reinforced concrete and development of overlay design strategies.

The opening mode (Mode I ) or bending mode fracture has been used

extensively to study the fatigue and fracture characterization of asphaltic

mixtures. The research works at The Ohio State University, on the

mechanistic modeling of fatigue process of flexible pavements, have been

primarily concerned with the laboratory analysis of Mode I fracture involving

the use of asphaltic beams or slabs resting on elastic foundation.

The basic step in such a method of analysis is the development of an

interrelation between Irwin's local stress-intensity factor, K, and the crack

size, c. A normalized (K/P - c/d) relation can then be used to investigate

the crack propagation process of laboratory specimens subjected to bending

mode fatigue loading.
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Experimentally, the K-c relation can be determined for different types

of loading and for any geometrical and crack patterns by a simple compliance

measurement technique. According to this procedure, the compliance L,

crack length c, and the rate of change of compliance with crack length (d L/ ^ c

versus c) can be determined experimentally using prenotched specimens. Then

the relation of the stress-intensity factor with the <3L/dc compliance can be

represented by:

/
E dL

K/P =V 2 0- ~ pl
)

' d c (2.35)

where P = applied load

E = Young's modulus

v - Poisson's ratio

L = compliance or inverse slope up the load/deflection diagram

c = crack length

K = opening mode stress-intensity factor.

Such a procedure has been employed by Majidzadeh, et al.
, (33) (34) (35),

for both beam on elastic foundation and slab supported on elastic foundation.

In Figures (2.7) and (2.8), the normalized compliance L/L relations for

asphaltic beams on elastic foundation and compliance L for pavement slabs

resting on elastic support are presented. The comparisons of the K/P - c rela-

tions developed using experimental compliance procedures and numerical tech-

niques, boundary collocation and finite elements for beam on elastic foundation,

are presented in Figure (2.9).
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As was indicated, the K/P - c relation can be obtained using such ana-

lytical procedures as finite element, boundary collocation, etc. The details

of such programs have been presented in References (34) and (35). These

analytical procedures include a method of analysis for slabs resting on elas-

tic foundations, beams on elastic foundations, and a prismatic finite element

program suitable for an overlay structural analysis. A typical K/P-c

relation developed for slabs resting on elastic foundation is shown in Figure

(2. 10). hi Part HI of this report, further applications of such procedures

are discussed.

A number of investigators (74, 77) have utilized the K/P - c relations

developed for simply supported beams. The most well-recognized form of

such a relation is from the Winne and Wundt equation as:

K
I

=
°n (

1 -" 2
)
h f

(
cM (2.36)

where <*

n = nominal bending stress at the root of the notch, psi

6M ,=
-tttj vtr- , where
b(d - c)^ '

M = bending moment inpsi. = Pl/4

P = applied concentrated load at midspan
, pounds

1 = span, inches

v = Poisson's ratio

b = width of the beam, inches

c = crack depth , inches

d = depth of the beam, inches

h = d - c

f (c/d) = function of the geometry given in Figure 2. 11.
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o
The f(c/d) can also be written as f(c/d) = nc

(1 - c/d) . For deeply

notched beams f(c/d) has a limiting value of 0.52 (see Fig. 2.11). An analytical

formulation of K - c relation by Srawley
(74) leads to a normalized relation be-

tween Y and c/d as shown in Figure (2.12) from which the opening-mode stress-

intensity factor for three-point bending beams can be evaluated.

Similarly, Gross et.al. (14), utilizing boundary collocation and Green's

function methods, have developed a numerical function for stress-intensity factor

for simply-supported, three-point bending beams with centrally located crack as:

K = <r %/c~ F(c/d^ (2.37)

where cr = -^r , M = Pl/4 .

B d^

For 1/d equal to 4(see Figure 2.13),

F(c/d) = 1.090 - 1.735 (c/d) + 8.20 (c/d)
2

(2.38)

and for 1/d equal to 8 see Figure 2.13,

F(c/d) = 1.107 - 2.120 (c/d) + 7.71 (c/d)
2

- 13.55 (c/d)
3

(2.39)

+ 14.25 (c/d) 4

A fracture toughness K calibration curve has also been recommended

by ASTM using Brown and Srawley' s analysis ( 5 )
, as given:

6M c2
Kt = Y1

Bd2

where, for a three-point bending,

Y = 1.96 - 2.75 (c/d) + 13.66 (c/d) 2 - 23.98 (c/d)
3 + 25.22 (c/d)

4

(2 . 40)
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Also c, d, B are crack length, beam depth and beam width respectively. M is

the bending moment, either in 3-point or 4-point bending.

The K calibration in terms of c/d ratio and for 3-point bending, may

also be written as:

V
K

I Bd3/2
2.9(c/d)

1/2
-4.6(c/d)

3/2
+ 21.8(c/dh

5/2

- 37.6(c/d)
7 ^2

+ 38.7(c/*
9 ' 2

(2.41)

where P„ is the applied load determined according to the procedure given on

page 52, and 1 is the span of the 3-point bend specimen.

Among other important developments of the analytical and mechanistic

aspects of the rational pavement design are the analysis of crack plate on

elastic foundation (64> , and the prismatic finite element with multi-modal

fracture analysis (3S) . In either case, the multi-modal fracture analysis is

carried out using finite element method and the strain energy density S and

factors Kj - c and Krj; - c relationships are calculated, relating the crack

growth rate dc/dN to the stress-intensity factors.
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II. FRACTURE TOUGHNESS

A. General Review

It was shown previously, as a result of flaws and imperfections in

materials, that there exist local stress concentrations. The elevation of

stress and its redistribution at crack tip positions are reflected by the stress

intensity, K, and strain energy release rate, G. Physically, the parameters

Kr, Kjj, and K™., related to the general state of local stress field, are inten-

sities of load transmittal through the crack tip; similarly, the G
T

, G , and

G are strain energy release rates for three modes of fracture.

The interrelation between the stress intensity factor, K, and strain

energy release rate, G, are written as:

For plane stress: K2 = EG (2.42)

For plane strain: K2 = E G (2 . 43)

In engineering analysis of fracture problems, it is preferred to work

with the stress-intensity factor rather than the strain energy release rate.

The reason is that the stress intensity K, due to the superimposed effects of

various stress fields, are linear additions of corresponding K values, as

given by:
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K
x

= Kj(l) + Kj(2) + Kj(3) + . . . + Kj(n)

K
II = Kll^ + K

n(
2

)
+ K

H<
3

) + • • • + Kn(n) (2.44)

Km = Km(l) + Km(2) + Km(3) + . . . + Km(n)

On the other hand, in strain energy terms, the superimposed field is given by:

2
Gj = [GjCIP + Gj(2)2 + . . . + G

i(
n)2 J

G
n

=
[
Gn (1) * + Gn(2) * +

• • •
+ G

n<
n) ^ ]

2

<
2 - 45 >

Gm =
[
Gm{l)h + Gm<2 >* +

• • •
+ Gm(n)*

]

2

Secondly, in the analysis of fracture mechanics problems, considera-

tion should be given to the definition of plane stress and plane strain conditions.

In the field of mechanics, the plane stress condition is defined as:

a = .
T yz - rxz =

z '

and the plane strain is defined as:

• a
z

= " ( °x + ay)»
T xz = Tyz = ,

e
z =

In constrast to general field of mechanics, the fracture mechanics defi-

nition of plane strain and stress conditions are more restrictive and are only

applicable to crack tip locations. In such areas, the plastic zone ahead of the

crack tip is constrained from elastic deformation by the presence of elastic

material along the crack front. If the plastic zone is small as compared to

the dimension and the length of the crack front, a plane strain condition

prevails. The size of the plastic zone can be estimated for a plane strain
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condition as:

2 n a

(1-21/)

2 Pk t cosz e
2"

) 2

(1 - 2 »/
)

2
+ 3 sin

2
9

2J
+ K

T
Kn sin 9 3 cos 6 -

+ K
II

3 + sin2 e ((I - 2 V )

2
- 9 cos2 €

2/J

+ 3K

In the crack plane, where 0= and for a two-dimensional case:

r = 1

y
2rra

2"
K

T

2
(l-2i;)

2
+ 3^K

II

2 +4^
)

For Mode I fracture, this equation reduces to:

,2 / v, \ 2
= (1-21/V

y
2;r (f)

for plane strain.

nil

(2.46)

(2.47)

(2.48)

As the material body, with pre-existing flaws, are stressed to failure,

the stress intensity factor K and strain energy release rate G are increased

approaching their limiting values. These performance limiting parameters,

for the plane strain condition are designated as Kj^ and Gjq which have been

shown that they can be taken as material constants, independent of geometry,

crack size, and other boundary and loading conditions. The failure conditions

for Mode I and II can be written as:

and

F . a>/c~ > K
IC

F • ( r + fa) \AT > IC
IC

(2.49)

(2.50)

where a = applied tensile stress

t = shear stress
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f = friction coefficient for the crack surface

F = a geometrical constant

As indicated previously, for multi-modal fracture, the Sih's

strain energy density factor, Sq , can be related to fracture toughness as:

S
c

= S (K
IC , Knc , Kmc ) (2.51)

The Sp is analogous to the K^; where it measures the resistance of material

to fracture under multi-modal conditions. Under normal tensile stress

conditions where Kq = Kjjj =
,

Sc = (1 - 2 y ) (l + V ) . K 2
(2.52)

2 77 E

As it was shown previously, similar equations can be also developed for

other fracture modes.
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B. Fracture Toughness Measurement

As indicated previously the plane strain fracture toughness

Kj£ is a material constant which is a measure of the material's resistance

to fracture. This material constant has been shown to be independent of

geometry boundary and the mode of load application. The experimental

procedures for fracture toughness measurement and evaluation are as

follows:

1. Compliance Calibration

The presense of flaws and cracks within a body affect the load-deflection

characteristics and can be evaluated using the material's modulus or its

inverse, known as compliance. Irwin (L9) has shown that the change in the

spring constant, modulus or the compliance (inverse of modulus) can be used

as a measure of crack extension and the release of excess elastic energy.

For materials tested under a load control mode, i.e. , "soft systems," the

energy release rate is written as

G = J_ -P2 • 3L (2.53)

2B dc

For, stroke control testing, i.e., stiff machines , the energy release rate,

however, is given by:

where P, A, L, B are load, displacement, compliance and specimen width,

respectively. The compliance procedures have been almost exclusively
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applied to Mode I problems . The advantage of this method is that it only

requires one size of prototype specimen. Furthermore, the material to be

tested and the protype need not be the same. However, it is required that

material to be homogenous, isotropic, having a well defined modulus of

elasticity, as well as having dimensions proportional to the real specimens.

For analysis purposes, the compliance measurement is carried out on

a specimen with an initial notch c , and then the notch is extended by a

small increment Ac and the compliance is measured again. This procedure

is continued until a compliance-crack length relation is resulted. The rate of

change of compliance with crack length is then calculated from the shape of

compliance-crack length as given by 5L . The strain energy release rate G
dc

and the strain intensity factor K (K2 = EG) is then calculated using the equa-

tions given previously. The comparison of the Kj£ results obtained by

experimental compliance method and analytical procedures have been shown

to be in excellent agreement.

2. Analytical Method

In this method, the strain analysis procedures are used to derive

mathematical formulations between the strain-intensity or strain-energy

release rate and the crack length and specimen geometry. One such proce-

dure is the equation given by Winne and Wundt, as shown by

°IC = (1
-

p2
) h an f(c/d)

E
(2.55)
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As it was shown previously, for small crack f(c/d) = —-:— (1 - c/d) ,

whereas for deeply-notched beams, f(c/d) = 0.52.

Other analytical equations used for stress-intensity factor calculations

were given by equations (2.37), (2.40^ and (2.41) in Chapter I, Part II. In

addition, numerous approximate analysis procedures have also been recom-

mended by various researchers (2) (Figure 2.14).

Similarly, the use of the polynomial form of the Ktq equation has also been

reported in studies of asphaltic concrete (16) and Portland cement concrete (20).

One such equation (2 8 55) used for Portland cement concrete is written as:

_ 6M f -2c ,.,. /J4 "I 1/2

[ TF h (c/d)

J
IC Bd2 |_

n
J

<
2 - 56

>

where h(c/d) = 10. 08(c/d)
2

- 1.225 (c/d) + 0.1917

The detailed discussions of Ktq measurements for pertinent civil engineering

materials will be discussed in a separate section. In all such analyses, the

maximum load Pq shall be calculated in accordance with the following speci-

fied procedures:

(i) Draw an initial tangent to the load-displacement curve

(line OA) as shown in Figure (2. 15).

(ii) Draw the second line O P
5
through the origin with slope

less than the slope of initial tangent OA. P
5

is the load

at intersection of O P
5
with the load-displacement
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curve. To determine Pq, if the load at every point on the

curve which precedes P
5

is lower than P5 , then Pq = P
5

(Type I). If, however, there is a maximum load preceding

P5, which exceeds it, then this maximum load is equal to

Pq. To check the validity of Pq, select a point on the load-

displacement such that P = 0. 8 P^. Measure the distance X

along the horizontal line from tangent OA to the curve. Simi-

larly, measure the horizontal distance Y from OA to P5. If

the ratio of X to Y is greater than 0. 25, then the Kjc is not a

valid test and strain- intensity calculated is considered as a

candid value of strain- intensity rather than as a true measure-

ment of this material constant.

3. J-Integral Criterion

In the previous sections, the failure criterion for linear elastic mechan-

ics with small scale yielding were presented. It was pointed out that the

strength of crack tip singularity can be represented by the stress intensity fac-

tor, K, and its lower limiting critical value, Kj^.

For large scale yielding, Rice (68, 32) has proposed the path-independent

J- Integral as a criterion for failure. For linear elastic material, Jj£ is identical

with Gjc parameter and can therefore be related to the fracture toughness, Kj^.

For a general case, however, the J- Integral is interpreted as potential energy

difference between two identically loaded and neighboring cracks; i.e.

,
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J = - -?— / unit thickness (2.57)

where U = potential energy

c = crack length.

To evaluate the fracture criterion, the load-displacement is plotted for various

crack sizes as used for compliance procedures. At a given total deflection, the

area under the curve is measured using the planimeter. The energy represented

by the area under the curves are plotted versus the crack length as shown in

Figure 2.16. The slopes of the lines are given by Equation (2.57). It should

be noted that load-displacement procedures used should measure the total energy

input accurately. The use of crack opening displacement method for J-integral

analysis is not satisfactory. Furthermore, the deflection at failure needs to be

measured. In Figure (2.16), variations of U vs. c per unit thickness are shown.

The slope of this diagram, i.e. dU/dc versus deflection is shown in Figure (2.17)

The experimental observations would also provide an estimate of deflection at

failure. As an example, considering that Af, the deflection at failure, is 0.025

inch (Figure 2.18), then J at failure can easily be estimated.

C. Experimental Results

The critical toughness, K„, is affected by the specimen's geometry as

well as the boundary and loading conditions. In order to obtain a reproducible

value for the lower limiting critical toughness K
T
„, which can be considered
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as a material constant, the state of stresses should closely approximate a plane

strain condition. This requirement and restriction on the stress state implies

that the size of plastic zone must be small as in comparison with the dimensions

of the specimen. The radius of the plastic zone is given by an approximate

relation:

r = 0.05 I—-=^1 (2.58)

where IC.- is fracture toughness and <r is the material yield strength in tension.

To meet the plane strain condition, ASTM has established a minimum require-

ment for the plate thickness B and crack length c as given by:

/ KIC\
B > 2.5 I 1 (2.59a)

and /k- \ 2

and specimen depth d >2B. (2.59b)

»

m
The deviations from such a size requirement will result in higher values of

Kjc or plane stress representation of fracture toughness, as shown in Figure

(2.19). It should be noted that as the specimen's thickness increases, the

stresses acting on the crack front also increase, leading to more triaxial state

of stresses at the crack front. Such a condition corresponds to a plane strain

state. In Figure (2.20), a schematic view of the effect of specimen size on

fracture toughness and the test results on metals is shown.

Another important variable is the mode of load application and the so-

called soft-hard characteristics of the testing machine. The load-controlled
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testing systems are generally considered as soft machines. A typical load-

deformation characteristic of specimens tested under a soft machine is shown

in Figure (2.21). It should be noted on the machine-specimen instability path

as shown in Figure (2.21), a plane stress failure condition might occur. On

the other hand, stroke-controlled testing systems are ideally stiff machines in

which fracture occurs in plane strain condition (Figure 2.22).

The fracture toughness Kjc has also been shown to be affected by tem-

perature as well as rate of load application. In Figure (2.2 3), the variation

of Kjq with temperature is shown. It is also noted that yield strength <r y

is also influenced by temperature. Generally, at high temperatures, cr

decreases, whereas Ktq exhibits an increase with temperature.

The experimental data on metals also show that there is an inter-

relation between tensile strength and fracture toughness, Kjq. It is gene-

rally observed that Kjq and c-y are inversely interrelated. Although there

is no basic reason why one should expect a simple relation between Kjq and <r

however, such a relation can be a useful approximation for Kjq calculation.

Experimental data on metals have shown such a relation can often be approxi-

-3
mated by Ktq = <r . Similarly, an empirical formula relating Kjq and

o-y has been presented as follows (Figure 2. 24):

'IC 3

where °"

y
= yield strength

KTn = | t • <r

y
• n

2
- *

f
l

2

(2.60)

n = strain hardening exponent a- = C £

a constant
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E = modulus of elasticity

£ f
= true strain at fracture.

It should be noted that all material would not necessarily satisfy such an

interrelation between a and Kjq.

In Tables 2. 1 and 2. 2, the available Kjq and Gjq data on numerous engi-

neering materials are shown. The fracture toughness data on concrete, asphalt

and other paving materials are also available on a limited basis.

The fracture analysis on concrete was carried out in the early sixties

by M. F. Kaplan
(37 ) who performed tests on concrete beams with crack simu-

lating notches. The critical strain-energy-release rate, Gp, associated with

the rapid extension of the crack, was determined by two methods: the analytic

method and the direct experimental method. Similar beams with different

depths of notch gave Gc values which are in close agreement. However, Gq,

values of beams of larger dimensions were higher than those of smaller dimen-

sions. Some differences in Gq values were reported; the discrepancy is possibly

due to the method of G^ determination. Kaplan's conclusion was that the critical

strain-energy-release rate may be ascertained by suitable analytical and experi-

mental methods, and the fracture strength of concrete containing cracks can

thereby be predicted.

Moavenzadeh and Kuguel
(
45 ) also used notched-beam specimens of

cement paste, mortar and concrete to study their fracture properties. They

found out that the fracture work of the paste increases by the introduction of

solid particles. This is due to the multiplicity of the crack growth during the
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TABLE 2.1 FRACTURE- TOUGHNESS VALUES*

Material Ultimate Strength

u ksi

Critical Stress-

Intensity Factor

Kq- ksi Vin

A517F Steel (AM) 120 170

AISI 4130 Steel (AM)

AISI 4340 Steel (VAR)

AISI 4340 Steel (VAR)

AISI 4340 Steel (VAR)

AISI 4340 Steel (VAR)

AISI 4340 Steel (VAR)

170

300

280

260

240

220

100

40

40

45

60

75

300M Steel (VAR)

300M Steel (VAR)

300M Steel (VAR)

300M Steel (VAR)

300M Steel (VAR)

300

280

260

240

220

40

40

45

60

75

D6AC Steel (VAR) 240 40-90

H-ll Steel (VAR)

H-ll Steel (VAR)

H-ll Steel (VAR)

320

300

280

30

40

45

12Ni-5Cr-3Mo Steel (VAR) 190 220

18Ni (300) Maraging Steel (VAR)

18Ni (250) Maraging Steel (VAR)

18Ni (200) Maraging Steel (VAR)

18Ni (180) Maraging Steel (VAR)

290

260

210

195

50

85

120

160

9Ni-4Co-0. 3C Steel (VAR) 260 60

Al 2014-

Al 2024-

Al 2219-

Al 2618-

Al 7001-

Al 7075-

Al 7079-

Al 7178-

T651

T851

T851

T651

T75

T651

T651

T651

70

65

66

64

90

83

78

83

23

23

33

32

25

26

29

24

* These values are taken from References (73)(74) and (75) and are to be considered

as nominal values only.
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TABLE 2.2 CRITICAL STRAIN ENERGY RELEASE RATE VALUES *

Material Critical Energy

Release Rate

GIC -lb/in

Dural 1.60 x 10
3

Key Steel 5.71 x 102

Brass 3.43 x 10
2

Teak Wood 6.85 x 10

Cast Iron 4.57 x 10

Cellulose 2.28x10

Polystyrene 1. 14 x 10

Polymethylmethacrylate 5.71

Epoxide Resin 3.77

Polyester Resin 2.51

Graphite

Alumina

Magnesia

Glass

5.71 x 10" 1
- • 1.14

4.57 x 10" 1

1.14 x 10" 1

4.57 x 10" 2

* Most of these data were obtained from a notched bar under three-point

bending (73)
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fracture process in the specimens. The extent of the internal cracking was

measured using a quantitative microscopy technique. The result of such crack

measurements indicated that the true fracture work of concrete (determined

by accounting for multiplicity of cracks in the specimen) is lower than that

of cement paste. This is attributed to the preference of cracks to propagate

through the interface of paste and aggregate, which in general is of lower bond

strength than the paste matrix.

Naus and Lott
(50) defined an effective fracture toughness for concrete,

assuming that it is a homogeneous material. The conclusions of his studies

were as follows: The effective fracture toughness of concrete increases with

age of concrete, increase of maximum size of coarse aggregate and increase

of gravel-cement ratio. There is no apparent effect of varying the water-

cement ratio on the effective fracture toughness of the concrete. However, a

decrease of effective fracture toughness was observed with increase of air

content in the concrete.

K. P. George (10) has also studied the applicability of the Griffith

theory of brittle fracture to the fracture of soil-cement material. He has

investigated the possibility of using the concept of a critical strain-energy-

release rate Gc, or the fracture toughness Kc , determined from Gc , in

predicting the crack propagation rate in soil-cement base. Critical strain-

energy-release rate, Gq, and the fracture toughness, K^, of five different
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soil-cement mixtures were experimentally determined on notched beams and

their variations with respect to several parameters were investigated. Some

relevant conclusions were drawn:

1. The value of the critical strain-energy-release rate, G^, is more

or less independent of the notch depth.

2. Gq increases as the clay content of the soil becomes greater.

3. Gq increases slightly as temperature is lowered to the freezing

point of water and thereafter increases rapidly as temperature

drops below the freezing point.

4. Gq increases slightly with the rate of loading.

The variations of Gq according to soil texture and the rate of loading

as well as its independence of notch geometry indicate that Gq is truly a

measure of physical properties of the materials. He also examined the crack

propagation in model base slabs constructed to simulate field conditions. It

has been shown that the critical stress intensity factor, Kq, computed from

Gq, tends to be related to the crack propagation rate.

The application of fracture mechanics principles to analysis and eva-

luation of asphaltic systems has been carried out by Moavenzadeh (44)

,

Herrin(l6), Majidzadeh et al. (33-41 ), Monismith (46), and Blight (3).

Moavenzadeh investigated the application of Griffith theory to fracture analysis

of asphalt cements tested at low temparatures. Utilizing the Winne and Wundt
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equation presented previously, the critical strain- energy-release rate Gjq was

calculated for three asphalt cements. E was concluded that at sufficiently low

temperatures, the asphalt cement behaved as a brittle, amorphous material

satisfying the requirements of Griffith theory. It was pointed out, as shown in

Figures (2.25) and (2„26) that Gtq for asphalt cement is a rate and temperature

dependent parameter. The degree of aging and the asphalt type also influence

the critical strain-energy-release rate (Figure 2.27).

Majidzadeh, Kauffmann and Ramsamooj (35) (36) (37), have also investi-

gated the fracture characteristics of asphaltic materials at various tempera-

tures and rates of loading. Kauffmann (38) studied the variations of fracture

toughness Kj£ with rate of loading and temperature (Figure 2. 28). For sand-

asphalt mixtures tested at 14, 73 and 32°F, it was reported that the critical

stress intensity factor increased with the rate of load application. Similarly,

the fracture toughness, Kjq, increased with the test temperatures. A series

of 1" x 1" x 12" beam specimens were prenotched with notch sizes varying from

3/32" to 12/32" in depth before testing. The experimental results indicated

that for such geometrical conditions, the K™-. is independent of c/d ratio and

remains as a material constant.

Monism ith and Salam (46), in their investigation of asphalt mixture

behavior, conducted two types of fracture tests:

(i) Single-edge-notched bend specimens of 1.5" x 2.0"

x 15" tested in four-point bending,
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(ii) Single-edge-notched tension tests on specimens of 1.5 x 1.5 x

4.5".

To maintain a constant loading condition, all specimens were tested at a load-

ing time of about 0.5 seconds. The experimental results presented by

Monismith and Salam(46) indicate that at low temperatures (less than 10°F)

K
TC

increases with asphalt content up to 8% level. At higher temperatures,

the measured K
TC

indicated a decrease with asphalt content. It has been

postulated that an increase in the plastic flow and crack tip blunting might

have been responsible for the reduction in Kw-, parameter.

The effect of aggregate gradation, asphalt hardness (Figs. 2.29-2.32),

and void content has been reported to be of lesser importance when specimens

are tested at temperatures of 40°F or higher.

The aggregate type, on the other hand, were reported to have a signi-

ficant influence on the fracture toughness.

Blight ( 3 ) has also investigated the fracture properties of paving

materials. Utilizing the modified Griffith equation, the effective fracture

surface-energy y is given by

<r = constant [E 7\
2

(2.61)W
where y is the effective fracture surface-energy or the sum of the true

surface-energy y, and the plastic work , yp . The experimental results
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presented indicate that the effective fracture surface-energy y of asphaltic

material is related to strain at failure and its value differs for various mate-

rials. However, it is noted that fracture surface-energy is independent of

the method of testing employed.
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HI. MECHANISTIC MODELS FOR FATIGUE

A. Review

The "fatigue" is considered as a process of progressive damage or

deterioration under repeated or cyclic loading which eventually leads to

failure of the structural system. As a phenomenon of a highly complex

nature, it involves a localized progressive structural change within the

material, which can be subdivided into three stages: crack initiation, crack

growth and terminal state of fracture. The occurrance of these processes

in a material system result in a gradual weakening of the structural compo-

nent. During the stage of crack initiation, microcracks are originated at

centers of inpurities, flaws, and microstructural defects. These centers of

strain-incompatibility, when subjected to reversed cyclic strain, are believed

to be responsible for crack initiation process. The second stage of fatigue

process is the crack propagation which at first is preceded by a zone during

which micro-macro crack transitions occur.

The process of crack propagation and the terminal state of fracture

have been treated by numerous theories. The introduction of fracture mech-

anics principle into analysis of fatigue of material systems has provided an

analytical method of classifying the crack severity. It has also presented a

rational scheme for the life expectancy calculations of structural systems.

In such a mechanistic approach it is postulated that the crack growth
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is a consequence of the changing of the crack tip profile. During a cyclic

deformation, a crack will undergo a phenomenon of blunting and resharpening.

In tensile loading cycles, the crack tip tends to open first and then becomes

blunted as the plastic zone forms and spreads ahead of the crack tip. During

the unloading cycle, the elastic contraction of the material surrounding the

crack imposes a residual compressive stress on the plastically-deformed

material at the crack tip. This reduces ductility and resharpens the crack

which aids the growth of the crack in the next loading cycle. This process

leads to slow crack growth until the crack reaches a critical size, where

unstable fracture occurs. The factors affecting the rate of crack growth are

stress or strain amplitude and the defect size which determine the stress

intensity at the crack tip.

The mechanism of the fatigue crack growth can be explained in classi-

cal terms of the energy balance at the crack tip. The work of the external

force at the crack tip is divided into stored elastic energy, surface energy

required to form cracks, and deformation energy required for some irrever-

sible structural distortions. The rate at which a crack may propagate and

the path it follows depends entirely on this energy balance at the crack tip.

When there is a large amount of plastic deformation, the crack may become

blunted and does not propagate or propagates very slowly. On the other hand,

when the elastic energy released exceeds the energy demanded for creating

new surfaces, the crack will propagate along the path which requires the
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minimum amount of energy to create new surfaces.

The mechanistic formulation of the fatigue process is credited to Paris,

Gomez and Anderson (59) who first introduced the application of the stress-

intensity factor to fatigue crack propagation rates. In 1963, Paris and Erdogan

dc
found from experimental data that the crack propagation rate, — , was propor-

tional to the fourth power of ^ K for a number of materials. This law of

crack growth is expressed as — = A Kn , where A and n are material con-

stant (n = 4.0).

The fourth power relation has been justified by consideration of the

energy absorption within the entire plastic zone ahead of the crack tip ( 6 )

.

However, experimental data available on many engineering materials indicate

dc
that n might be smaller than four. In Figures (2. 34 - 2. 36), typical — vs.K

relations for metals are provided.As it is noted, the power constant n varies

over a wide range depending on material characteristics and testing condi-

tions.

The data available for asphaltic mixtures also indicate that constant

n varies depending on asphaltic mixture characteristics. For fine grained

asphaltic mixtures, as sand asphalt and surface course asphaltic concrete

with small size aggregate, a more rapid crack propagation has been reported

(33) , (34), (35 ) . The n = 4 condition has been also reported by Majidzadeh, et. al.

,

(40), (36), (37), as valid for sand-asphalt mixtures tested under monotonic load-

ing conditions. The random or block loading condition also has been found to

be affecting the crack propagation process.
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To incorporate the effect of other test variables, such as frequency,

mean load and load range, a number of empirical equations have also been

proposed in the literature. As an example, Mukherejee (49 ) has presented

the following equation:

dN ~ ' <
Kmax) (*» K ) (2.63)

where f is frequency, Kmax and £K are maximum stress intensity factor and

Kmax - Km in respectively. This equation indicates that frequency of loading

influences the crack growth rate. The effect of rest period has also been in-

vestigated by a number of researchers. It has been argued that the mechanism

of crack propagation under dynamic loading and static conditions are similar

except for the rest period effect.

The experimental results by Kauffmann (28 ) indicate that the fatigue

crack growth process in asphaltic mixtures is considered as a stress-independent,

stress- interaction type phenomena. It has been observed that for the range of

variables investigated, the rest period does not significantly affect the fatigue

life. The available data also indicate that load sequence has a significant effect

on the fatigue life. The delay in the rate of crack propagation due to loads of

variable amplitude in the loading sequence is attributed to the beneficial effects

of residual stresses at the crack tip. Although the mathematical formulation

of the delay phenomena has not yet been fully developed, the reduction in the

crack growth rate can be evaluated experimentally (Figures 2. 37 and 2.38 ).

The crack growth model has been, in recent years, subject to numerous
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modifications. One such analysis is the work of Cherepanov (6) who utilized the

plastic work at the crack tip to develop a relationship between total plastic

work and the stress-intensity factor. This development is presented by an

equation given by:
2

/'
k2M - K2

m in> In/
KC -

K2max V\
= /* —tt I r jt : K2 j J <

2 - 64 >

min /
dN r

\ K(f \ Kc" - Kt

where & is a material constant given by:

P = a
4

£_£c
(2#65)

2 (T
z

y

In this equation, a. is a dimensionless parameter related to <r„/E and 1/

where ©„ is the yield stress of the material.

The crack growth models are in general incorporated into three load-

ing variables: mean stress-intensity factor Kmax , cyclic stress-intensity

factor AK = Kmax - Kmin , and stress ratio given by R = K^^/K^^.

The effect of mean load and load range has also been incorporated in

Pearson (62) and Porter (63) models of crack propagation. The Pearson (62)

model is expressed in terms of R, load ratio and critical stress intensity

factor. This model can be written as:

dc
= A(AK) n

dN
(1 - R) Kc- A K

(2 * 65)

K
where R = min

, and K^is the critical stress intensity factor. Pearson
Kmax

(62 ) has indicated that for materials with relatively high critical stress inten-

sity factor, the load ratio R does not significantly affect the crack growth
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rate. However, for conditions where Kmax approaches KjC , the crack growth

data should be modified as follows:

dc _ A Kc( j K )

n

dN ~ a-H)Kc -/lK
m (2 ' 66)

where m and n are constants.

In a more recent study, Majidzadeh et al. (41) have used the results of

linear elastic fracture mechanics to study the fatigue of field asphaltic speci-

mens. The analysis of fatigue and fracture of field specimens has indicated that

the power n may not always be 4 and might vary with material characteristics and

test conditions. There are indications that the conditions of the testing and the

properties of the asphaltic mixtures may influence this power law. As an example,

in this study, a power law of the second degree in K has proved to be of the high-

est correlation.

This observed" difference in the exponent of the power law suggests that it

might be desirable to review the models and recent advancements in the theory

underlying the crack propagation process. This was done in the hope that the

variables such as the power and material constants could be related to the funda-

mental properties of asphaltic concrete and the testing procedure.

It is well known that asphaltic concrete displays a delayed response due

to loading. This rheological response depends on the environment and the

rate of loading. It could be linear or non-linear, depending upon those condi-

tions and the intensity of the load. Because of the complexity of this problem,

linearity of the material will be assumed. It is realized that this assumption
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may not hold under actual conditions, but with the present state of knowledge

it is necessary.

This literature review will not be concerned with the micro-n±,:"hanics

aspect of fracture or the fatigue problem. It will concentrate on the conti-

nuum mechanics perspective. Asphaltic concrete is assumed to be linearly

viscoelastic, so that concepts from linear elastic fracture mechanics can be

used.

It is not possible to discuss in detail the vast volume of research that has

accumulated in recent years concerning the crack propagation problem.

The work of some researchers will be reviewed briefly in preparation for

certain applications.

B. Viscoelastic Fatigue Damage Modeling

The review of literature indicates that theoretical approach to analysis

of generalized crack propagation problems involve consideration to three

stages. The first stage is to obtain a solution for the boundary value problem,

using the material constitutive equation which is, in this case, considered as

a linearly viscoelastic material. The second stage is the use of a failure cri-

terion and , lastly, a crack model assumption is needed.

1. Viscoelastic Boundary-Value Problem

Usually the solutions to viscoelastic boundary- value problems can be

obtained by applying the classical correspondence principle. This is con-

venient as the solutions to elastic boundary value problems are readily
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available and can be transformed to obtain the solution to the viscoelastic

ease. However, it should be noted that this simple correspondence principle

cannot be applied to fracture problems since these problems involve moving

boundaries (cracks). Graham
(
11 ) established a useful extension for crack

problems. This extended correspondence principle applies with certain

restrictions, as: the crack size should increase monotonically with time;

the stresses are independent of elastic constants and finally these elastic

constants appear in a separate factor in the displacement expression. The

crack closure case does not satisfy the first restriction. All three

restrictions are satisfied for all quasi-static problems if tractions are spe-

cified on the boundaries, tractions on crack surfaces are self- equilibrating

and there are no body forces.

To obtain the solution to the viscoelastic BVP, the Laplace transform

of the elastic solution for the same BVP is taken. Next, the elastic constants

are replaced by the transformed viscoelastic expressions. Finally, the

expressions are inverted back to the time domain. In the case of a crack with

the above restrictions, the stresses will be the same for the elastic and the

viscoelastic cases. The displacement, however, will be rather complicated

for the viscoelastic case and will involve convolution integrals. The com-

plexity of the displacement expression is the reason for the lengthy mathe-

matics and some of the simplifying assumptions involved.

2. Fracture Criteria

The fracture criteria used by most investigators are modifications of

the Griffith energy balance formulation. Consider the energy balance equation:
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U = V + T + D (2.67)

where U = the work done by the external loads

V = the elastic stored energy

T = the kinetic energy

D = irreversible energy such as surface energy, plastic work,

and viscous dissipation.

The dot indicates differentiation with respect to time. Theoretically, these

energies can be evaluated for the particular boundary value problem. They

can be used in conjunction with the equation of motion to obtain a solution for

the rate of crack extension (Erdogan, 8_ ). In practice, this is very difficult

to apply. Simplifications in analysis lead to the assumption of a plane

symmetric problem with no body forces, and neglecting kinetic energy. The

energy balance will then become:

J7V, ds =fffanW* + 47T6 (2.68)

*f being the specific fracture energy.

To simplify this quasi-static problem considerably, a local energy

balance can be used in a region surrounding the crack tip. The assumption

implied here is that the size of the plastic zone is small compared to the

region where the energy balance is applied. Consider the following two

figures (Knauss, 29 ):

,A

R
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For Figure 1, the energy balance is:

U = V + D + 2 S (2.69)

D = rate of change of dissipated energy; S = rate of change of surface energy.

For Figure 2, there is no S since there is no crack:

4U = |V + y*T
n , U

y
dx + ID (2.70)

Comparing the two, it is evident that:

^ U
y

dx = S = T
f

a (2.71)

This is for a traction-free crack. This local energy principle applies to many

BVP's as was used by various investigators (29, 31,47 , 69,7_9) . It can be stated

simply as with crack advancement the work of the released tractions goes into

creating new surfaces.

3. Crack Model Assumption

The crack models presented in the literature are primarily those of

Griffith, Barenblatt, Dugdale, etc. The Griffith model is the oldest and

simplest. It considers the crack to be in a perfectly brittle material. There

is no yielding at the crack tip although the stresses can be very high. The

resulting equation is:

i
o- a 2 = K (2.72)
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where o- is the stress applied at the boundaries of the infinite plate, a is

half the crack length and K is the stress intensity factor.

The Dugdale model assumes a thin plastic zone at the tip of the crack.

This special configuration yields an estimate of the plastic zone size as:

<L = 2 sin
2

Jl_ _£_
*- 2 o-

2

4 Y 8Y 2
(for °" <<1) (2.73)

where at is the size of the plastic zone, Y is the yield stress, <r and a as

above.

The Barenblatt model (4) proposes the addition of cohesive forces

along the faces of the crack that resist the opening of the crack. This model

is advantageous in getting rid of the singular solution at the tip of the crack

inherent in the above models:

N
Q

= V~q" ^m 1! (2.74)
7T

where N = _I_ , L is some integral depending upon the assumed stress dis-

tribution, <r is the maximum stress in the cohesive zone. The Barenblatt

model includes the Dugdale model as a special case.

It is possible now to combine the results of the boundary- value problem

solution, the crack model, and the failure criterion to obtain a solution for the

crack problem in viscoelastic media. This can be quite involved due to the

presence of convolution integrals in the expressions written for the displace-

ment. To get rid of the complexities of this problem, Williams (76) studied
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the simple geometry of a spherical cavity in a body under all-around tension.

Since variations in the crack shape result only in the change of a constant

in the criticality condition, the study of a simple geometry will still reflect

the viscoelastic character of fracture. In this manner Williams did not have

to assume a crack model, he used a simple cavity for which the BVP solution

is simple. In this manner the calculations become simpler. He applied a

global energy balance, and for the case of a step load, he obtained:

^oc = 4 / T/a

1 - (ao) 3 3 > 2 J(t )
- J

ff

b
S

V-
(2.75)

where a
Q

= cavity radius

b = the radius of body

T = the fracture energy

J = the creep compliance

Jg = the glassy compliance

The Griffith solution can be retrieved from the above formula for

the glassy case by putting J (t
Q) = J

Other investigators assumed actual crack models rather than a simple

cavity. The work of these investigators will be grouped according to the

models they assumed and are presented in the following sections of this

chapter.
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4. Analysis Procedure

a. Griffith Geometry

Knauss (30) studied the Griffith geometry for the case of a linear

viscoelastic material. Using a local energy balance equation and assuming

the stress distribution at the top of the crack to be given by the linearly

viscoelastic solution, he obtained:

V
/

1 L̂
(2.76)

oc a
J (T)

a

where a (t) = half of crack length

a = the size of the crack failure zone.

It is noted that this equation is more complicated than Williams' result because

of the more complex geometry. Since the crack length depends on time and its

first derivative is in the argument of the creep function, the resulting equation

is a nonlinear first order differential equation. Its solution depends on some

approximations and whatever creep function is assumed.

Mueller (47) studied the problem of a large crack in an infinitely long

strip under a prescribed strain in the lateral direction. Superposition of

two simple problems was used to obtain a nondimensional stress intensity

factor and the size of the crack opening. The solution was obtained assuming

a stationary crack with a sudden application of the prescribed strain. This

same problem was extended to study crack propagation by applying a local

energy balance (48). It was found that the crack tip velocity depends on geo-
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metry, applied load and its history, and material properties as follows;

i*o
E
r = J* T/b (2-77)

G(f)
a

where ( = the prescribed step strain

E r = the long time relaxation modulus

b = half width of the strip

G = some function of the creep compliance

If f E r is thought of as the stress, the similarity of this result to the previous

ones is immediately obvious.

For crack propagation under variable load histories, Knauss and

Dietmann (31) used the local energy balance approach, assuming the dis-

tribution of the stresses ahead of the crack to be of a singular form and of

a certain variation. The displacement corresponding to this stress distri-

bution is obtained "by using the extended correspondence principle. The power

equation is applied and a differential equation for the crack tip velocity as a

function of the time history of the stress intensity factor is obtained. The

equation is a complicated nonlinear differential equation and for specific

stress histories, might be simplified. If the stress intensity factor does not

change rapidly, then the result is the same as in Reference (48). The case for

a cyclic strain input was also examined and some graphic results were given.

It is pointed out that the complexity of the differential equation makes it of little

practical interest in its present form.
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It is noted that in all of the above work, no special consideration of

the character of the material at the crack tip was made. This zone is usually

very highly stressed; it is probably in a plastic state or might even be in a

disintegrated state though not yet cracked. Although the behavior of the

material in this zone is not well understood, one might be able to make

some assumptions that will simplify the calculations. The material around

the crack tip is probably highly nonlinear and therefore making such assump-

tions will not necessarily lead to less exact results than the linearity assump-

tion that is implied in the previously discussed literature.

It has been shown by some investigators that the material at the tip of

the crack is crazed and of a lower density than the rest of the material. The

material behavior here is very similar to metal yield and is in a wedge-like

shape. Wnuk and Knauss (81) used these observations to assume the visco-

plastic model of Crochet for the tip of the crack while the bulk material is

linearly viscoelastic. A solution by Graham (11) for a crack opened by a

normal pressure acting on its surface was used along with the assumed yield

model. With some assumptions, the final nonlinear differential equation will

be:

y
2 - y'y = y

2
/ P (t) y + Q (t)\ (2.78)

where y(t) = Y(t) - A, Y(t) is the time dependent yield and A is a material con-

stant from Crochet model.

\/~o x c
P(t) = - i//(t) where X = 1/2 (1 - v

) (1 + v), C is a material
g

constant from the Crochet model, E„ is glassy modulus, and (t) is the slope
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of nondimensional creep compliance J(t)/J(o) and finally Q(t) = 2^ ^-^— (A+B) kjj

\ 2 Eg

where B is also a material constant in the Crochet model. This differential

equation is also very difficult to solve in general. A simple case of a Maxwell

model is solved in (81). Another possibility is to assume a time independent

yield and the result will be simpler (81 )

.

b. Dugdale Crack Model

This model was used by many workers in the field of fracture because

of its simplicity. Wnuk (78), (79), (80) used it to simplify his mathematical

derivations. Wnuk proposed a nonlinear differential equation to describe the

quasi- static subcritical growth of a crack. He derived this equation in a

simple way by applying a local energy balance:

(a) Amount of energy supplied during a 6 L advance of the crack is:

(2.79)

The first term is for creation of new surfaces and the second is for strain

redistribution.

(b) Amount of energy demand is : <pc 8L

6 U \ + 6U
)

dp =0 /2 .80)
.'. 6L 6a / dL ,

c

O L

This equation can be put in a simpler form:

G + M = Gc (2.81)

where G = the energy release rate

M '= the slow growth operator

Gq = the critical energy for onset of rapid fracture.
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For the case of an elastic solid with a plastic region surrounding the

crack tip the G and M operators are (78)

:

6 /*a

G = 2 Y u
fcl

+ 2 Y ^j- / u (x) dx and

do- 6M = 2 Y df 67 /' •

then

M = 2 Y clo 6
(
A u v

dl ^o^
V

3 W
Utip = ~§f and A = g^- G

(2.82)

where Y = the constant yield stress in the plastic zone

or = the applied stress

1 = half the crack ie.igth

a = half the crack length plus the yield zone length

u(x) = the displacement normal to the crack plane.

For the viscoelastic case with a plastic yield zone the differential

equation can be extended as simply (78):

(G + M) vj/ t j-
J

= G (2.83^

where xjf = the normalized creep compliance function, and

A - the inherent opening distances.

This differential equation can be simplified by (78)

:

(a) Assume linear range w«l and, therefore, — << 1,

L

G = 2 Y V
(2.84)
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and so M becomes:

M =
7TEG

12 n Y5

dG
d o-

do-

dl
where H =

l-i/-

plane stress

plane strain

(2.85)

and the differential equation becomes:

1 +
7T
2
1(T do-

6Y' dl

G \J/

A

1

= GC (2.86)

(b) Assume a Dugdale model for the crack tip shape. Using a solution

for the displacement normal to the crack, Wnuk finally puts the differential equa-

tion for the elastic case in the form:

d_£ _ 3 2-C&
2 CW

for plane crack

dX _ 3 2-CX
2

dC ' 2 £
2
A
3

where Q _ * o \
' °

2y ' y
•

For the viscoelastic case, the differential equation is:

.2

for penny-shaped crack
(2.87)

(!<*
d£ 2-tf

'Vx + c\dx 2-Cx
2

plane crack

penny-shaped crack
(2.88)

where C = ¥
t= I

Though these differential equations have no closed form solutions, it will

be seen later how they can be of help in determining the form of the crack propa-

gation law with some approximations.
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c. Barenblatt Crack Model

In the above Dugdale model and the previous modified Griffith model,

assumptions were made regarding the failure zone behavior. In the Barenblatt

equilibrium model, the behavior of the failure zone is arbitrary. This is much

more general and covers the others as special cases.

Schapery (69) utilized the Barenblatt equilibrium model, a local energy

criterion, and the elastic solutions of Williams and Barenblatt. By superposing

the elastic solution of Williams for a crack in a plane strain due to external load-

ing and the solution of Barenblatt for a crack with a stress of cr in the failure
f

zone with no external loading, one obtains an expression for the stress intensity

factor and the displacement (69):

N = V*l «TM l
± (2.89)

where L = / f(qr) ) dr)

1 = q and

°"f
f = —— is the distribution of <r f in terms of maximum stress.

*m

N is the stress intensity factor of Barenblatt and is:

K
I

N
Q

= "^ZT (2.90)
V27T

The expression for N can be thought of as a relation for the size and nature of the

failure zone. The displacement expression is:
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2Ce ^m ^'^

J^T —qT I
2 £ H(f) , where (2.91>

—=—

^

^
, plane strain

Ce =
J

ft -

4/E , plane stress

i f
1

_1I dn
2

o*^
dr

i Vn~

and H = Heaviside function.

Now that the elastic stress and displacement expressions are available, the

extended correspondence principle can be utilized to get the viscoelastic counter-

parts. Here, an assumption of a constant Poisson's ratio will simplify matters

and only the uniaxial creep will enter the equations.

When the displacement expression is transformed to the viscoelastic case,

a convolution integral arises. The assumption of small curvature on a log-log plot

of the creep compliance is used to reduce the convolution integral for displacement

to a simple product form by using a power law representation for the creep com-

pliance. The final step is applying the local energy balance and Schapery obtains:

C v fa ) =
7r N 2 where (2.92)

o

~ ~ J-/n a
C (ta ) is the creep compliance with the argument, t„ = A ——

t
and is

some function of n which arises in using the power creep curve; a is the failure

zone size and can be found from:

a- *?No
2 2

°"m I
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r is the fracture energy, N
Q

is the stress intensity factor of Barenblatt, and for

KI
the opening mode is equal to ~/= r̂~ >

°" is the maximum of the failure zone

stress distribution and L is some integral which depends on the assumed stress dis-

tribution, r, (T and L are considered fracture properties and experiments should

help in their determination.

Knauss (29 ) also used the Barenblatt equilibrium model because of its

generality and the finiteness of stresses at the crack tip. He points out that the

Dugdale Model is a special case of the Barenblatt model. He uses two criteria

for crack propagation: the energy criterion and the maximum strain criterion.

His final results have a convolution integral in the expressions written for the

crack propagation rate. It is pointed out that this work is very similar to the

above work by Schapery, except that no approximation was used by Knauss to

eliminate the convolution integral.

5. Theoretical Models For Fatigue Process

The next logical step is to extend the above concepts and methods of solution

to problems involving repeated loads. This is not as straightforward as it might

appear and further mathematical simplification and assumptions will be needed.

Only the procedures which result in an explicit relation for the crack propagation

law will be considered here. The others which can be solved by other techniques

but for which an explicit form is not readily available will not be considered further.

Wnuk (80) uses his resulting differential equation to study the case for re-

peated loads. Fatigue is viewed as a sequence of extensions. Consider the case

for the plane crack:
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,
2 Tft A C , dP 2-^P

2

( i * P +
"P > dT

=

j^
(2-93)

Assuming crack length constant in a cycle, it can be shown that:

_d£_ = J_ ,2 / 4 4 \ c ^
3 3

dn 12 \
Pmax P

J 6<P> (P P
>

(2.94)

If (3 is assumed to be above the minimum cycle stress and < ($> = 2f ,

where f is the frequency, the final result will be after changing to dimensional

quantities:

t-M^y^
The first term being the familiar Paris law, the second term is due to the

rate dependency of the material. Another similar result was obtained by Wnuk

but with slightly different assumptions, such as the possibility of extension during

unloading: / a
7

\ A „2U K \ JA K \*
1dl/dn=-^- 4a

^TJ+9Cf(irJ| (2.96)

where a = j£* ^=kV*{£}

Schapery's (69) analytical approach can be solved to get an explicit relation

for the tip velocity:

4 r

or

c
v <*« )

= ~^W (
2 - 97 >

v o

c « x
1/n

4L, = *H
2v n a tt n2

Putting in the power creep law, C (t) = C^ t :
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Ci/n ~7* =
^Ng
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2 2 \
n

"o J
77-Np* Nn \ ttNo

c
i A n I ^Tf/' 4r "

a

x m 1 '

/ 2n+l X
1/11 2+ 2/n

so da _ / C-, An «"
)

N
dt - (—-— ; -*v- (2.99)

m 1

For crack growth in one cycle, it is assumed that crack growth per cycle

is small and it is furthermore assumed a wave shape of stress intensity factor,

Now = .77— . N is the maximum value of the stress intensity factor. Then,
Norn Om

da „ 2(l4)

d¥
= BN0m <

2 - 100 >

where / 2n+l \ 1/n t+L,

V'n~ 2 T2
dt

m 1

Schapery argues that if bitumen completely surrounds the tip and for tempera-

tures not close to the glass transition temperature, the slope may be taken as 1 and

the Paris power law is retrieved. Usually though, 4 n 4.5 for viscoelastic

materials, implying the power is 6.
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C. Generalized Fatigue Models: Dimensional Analysis

The above review of fracture and fatigue in viscoelastic media indicates that

there is much similarity in the fatigue process for elastic and viscoelastic media.

The next few pages will deal with fatigue laws obtained from dimensional analysis,

applying in general to any material.

Kang and Liu (26), assuming a plane strain condition and small scale yield-

ing, applied dimensional analysis to the problem of crack growth. For these assump-

tions, he argued, the crack tip region can be scaled by the size of the plastic zone.

This means that the stresses and strains at the geometrically similar points are the

same for various levels of stress intensity factors. Therefore, stresses and strains

must be the same within crack increments da. if d a is proportional to the size of

the plastic zone. If the material is homogeneous, then da/dN is proportional to r •

da/dN = f
x
(R) r

p
, (2.101)

2
where r is the size of the plastic region and is proportional to (AK) . Therefore,

da/dN = f
2
(R) ( K)

2
(2.102)

Li analyzing actual data, Kang and Liu found that the power of the above model

varied depending on the level of Ak. The following figure illustrates this variation.
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The figure shows that for low A K, the power (the slope) is 4 or more.

Also, for high AK, the slope is also 4 or more. For the intermediate region,

the slope is close to 2. Kang and Liu also point out that these regions might be

better fitted by curves rather than straight lines. This has been the recent ex-

perience at Ohio State University as well (41).

To illustrate this point further, the dimensional analysis of Cherepanov

and Halmanov will be reviewed. Assuming continuous crack growth and a con-

stant dissipation energy, they obtain:

9 2 2 2— = - Bf
Kmax " Kmin + in

KC ~ Kmax (2 10 3\

*C KC ~ K
min,

where |$ is a material constant that depends on yield stress, <r , modulus of

elasticity, E, Poisson's ratio v
,
prehistory of loading <r , and the fracture

toughness K^ . In general,

P = a^,-^, * )
lA

<
2 - 104>

2 <r
z

2 2
being a non-dimensional constant.

/Kc - KTTiax l

To simplify the above rate of propagation model, the second term ln|-^ j,

\K"C - Kmm/

can be expanded in a Taylor series around (0, 0) . Substituting back in the above

model yields:

da
dN

ft I ^ax " Kmin Kmax " Kmin \

(2.105)
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This is not quite similar to Liu's result but it confirms the presence of high

order powers. If K^ = , then one obtains:

6 \da _ a I Km oY Kmax ,

nmax+
dN V Kc Kc

+ . . . J (2.106)

It is obvious here that for different ranges of Kmax , one obtains different

powers if only one term is used to describe the process. This was the case in the

work done by Majidzadeh et al. (41) where the generality of the power law was in-

vestigated.

If Kmax/K£ is high (low cycle fatigue), then higher order terms should be

retained and the last part of Figure 2. 39 is obtained. Here the points may not lie

on a straight line as was observed. If Kmax/K^is low (high cycle fatigue), then

higher order terms can be neglected as compared to the leading term and the Paris

power law is obtained.

It is conceivable to think of a region between the above two extremes where

a second power law might replace the above model. In this region, the above law

will still describe the process better. But for the sake of simplicity, if one wants

to choose only one power, then the power would be two. In a previous work by the

authors, this was found to be precisely the case. Asphaltic concrete specimens were

fatigued at different temperatures but approximately in the same range of crack

growth rate (41). It was found that the best fit would be obtained if one uses three

or more terms and the next best would be a two term fit. The one term fit led in-

variably to a power of 2. This one term fit was considered good because of the

simple power law that results.
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PART HI. A MATHEMATICAL INVESTIGATION OF GEOMETRICAL
MODELING AND FRACTURE AND FATIGUE ANALYSIS OF
ASPHALTIC BEAMS ON ELASTIC FOUNDATION

I. INTRODUCTION

Previous research studies at The Ohio State University (12, L3, L|,

15), have led to the formulation of a fracture mechanics method of pavement

fatigue design subsystem. This design principle, which provides a unique

methodology for fatigue life prediction of pavement structures, also includes

recommendations for material testing and evaluation procedures. The pro-

posed laboratory testing method for fatigue and fracture analysis involves

experimentation on beams on elastic foundations. In such a fatigue experi-

ment, a two-dimensional elastic system of asphaltic beams on elastic foun-

dation is subjected to repeated loading, and it is generally assumed that

the fatigue crack propagation rate follows a power law relating the crack

growth rate to the stress - intensity factor, K (dc/dN = AK ). The

material constants associated with the crack growth rate, A and n, are

affected by such parameters as load frequency, external boundary condi-

tions, temperature, and statistical distribution of flaws in the materials,

as well as the dimensions of the models used.

In such an analysis, a pavement system is treated as a two-dimen-

sional elasticity problem, and the laboratory investigation of beams on an
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elastic foundation subjected to repeated loading is carried out to simulate the

dynamic behavior of the pavement system under actual traffic loads. How-

ever, before this simulation can be accurately carried out, the effect of the

model dimension on the material constants needs to be determined. This

report, therefore, is concerned with the development of proper criteria for

the design of such models and will include procedures to establish proper

criteria for selection of suitable beam geometries, determination of allow-

able loads for fatigue testing experiments, and graphical determination of

stress- intensity calculations for beams on elastic geometry as needed for

fatigue and fracture analysis.
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II. A REVIEW OF THEORETICAL CONCEPTS:

BEAM ON ELASTIC FOUNDATION

A. An Infinitely Long Beam Resting on an Elastic Foundation of Finite Depth

To investigate the behavior of an asphaltic beam tested on an elastic

foundation, first consider the effect of a sinusoidal load of value q per unit

length acting directly on top of an infinitely long elastic foundation of unit

width and a finite depth, df, resting on a rigid base as shown in Figure 1.

q =
qo

cos Ax

I«

Elastic Foundation

Ef, "f
'///A//////*///////

Rigid Base

Figure 3.

1

Under this condition, the value of the load is:

q(x) = qQ cos \ x (3.1)

This problem is a two-dimensional elasticity problem, the governing differen-

tial equation of which, in terms of the Airy's stress function and neglecting

the body force, is given by:

v
4
* o , (3.2)
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where <p is the Airy's stress function related to the stress components

by:

a
X

d
2

<P

dy 2

°y
z

2
- a <p

(3.3)

T,
a 2

xy ax ay

and

*7
4 a 4

2 s
4

a 4

Ox ox Oy dy

Besides the well-known assumptions of linear elasticity, it will be

assumed that there is no shearing stress acting at the interface of the founda-

tion and the rigid base. With this additional assumption, the boundary con-

ditions of the problem are:

T = \
XY I

> aty = (3.5)

o - -q • cos Ax ;

y
H

Txy
=

°
aty = d

f (3.6)

v -

where v is the vertical displacement along the y-axis. It can be shown

that the stress function given by:
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r 2
0(x,y) = cosXx jc-^coshA.y + C£X sinhXy + CgA(2sinhXy

t—

+ XycoshXy) + c
4
X(2coshXy + XysinhXy) (3.7)

satisfies the biharmonic equation ( 3. 2). Consequently, the corresponding

stress components are:

[2 2
c-^ X coshXy + c 2 X sinhXy + csX(2 sinhXy

+ XycoshXy) + C4X(2coshXy + XysinhXy)

X cosXx

c^y sinhXy

c-,coshXy + C2SinhXy + Coy coshXy

(3.8)

(3.9)

= XsinXx c-^AsinhXy + C2XcoshXy + Co(coshXy +

XysinhXy) + C4(sinhXy + XycoshXy) . (3.10)

Applying the boundary conditions ( 3„ 5) to ( 3. 9) and ( 3. 10) yields;

c 3 = -c2 X

c
l

= %/ k

(3.11)

Also, from Equations ( 3. 6. a) and ( 3.10), we get:

v

(q
Q
/X )sinhXdf - c

2 X df sinhXdf

sinhXdf + XdfcoshXdf
(3.12)

Now, for the plane stress problem, the vertical strain, € v , is related to

the stress components by the relation:

dv
E,

( aY - v
f
oX ) , (3.13)
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where

E
f

= modulus of elasticity of the foundation

Ur = Poisson's ratio of the foundation.

Upon substitution of Equations ( 3.8) and ( 3.9) in ( 3.13), and integrating

with respect to y , one gets:

cos Ax r
V (x,y) - " — c l(!

+ vi)
Xsinh Ay + c 2 (l + i/f)A coshAy

Ef L

+ c 3 (l + ^f)Ay sinhAy - c 3 (l - i/f)cosh Ay

+ 04(1 + Vf)AycoshAy - c4 (l - i/f)sinhAy + h(x),

(3.14)

where

h(x) is the function of x alone.

Similarly,

*x =
du 1

E
f

(
°

\ X v
i V (3.15)

where
u = the deformation in the x-direction

€ x = axial strain in the x-direction.

Substituting Equations ( 3.8) and ( 3.9) in ( 3.15) and integrating with respect

to x yields:

sinAx r
u(x,y) =

—

~ c
1
AcoshAy + c 2AsinhAy

+ c 3 (2 sinh Ay + Ay cosh Ay) +C4(2coshAy

+ Ay sinhAy)] + g(y) ,

J
(3.16)
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where g(y) is the function of y alone.

From Equations ( 3.14) and ( 3.16), together with the stress-strain

relation:

Qu
+ av =

TxY _ 2(1 +V f)

dy dx G Ef
yxy = "f^ +— ^^-Txy , (3.17)

we get:

dh(x) _ _ d g(y )

dx dy
C5 < 3 ' 18 >

Equation ( 3. 18) leads to:

h(x) = C5
x + C

6 , (3.19)

g(y) = C
5y

+ C
?

. (3.20)

In this particular problem, there is no rigid body displacement. This

implies that one must have:

C
5

= C
6

= C
?

- 0. (3.21)

Substituting Equations ( 3.11), ( 3.12), and ( 3. 21) into ( 3. 14), and using

the boundary condition ( 3.6.b) yields:

qn sinh2 A dfc
2

- -_ u
- 1 . (3.22)

X (Xdf + sinh Adf cosh Xdf )

With Equation ( 3.22), one obtains from Equations ( 3. 11) and ( 3. 12):

o

qn sinh A df
c„ = —y 1 (3.23)

** A(Ad
f

+ sinhAdj coshAdf)
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and

qQ sinh Adf

X(sinhAdf + Adf cosh Adf)
c

o (3.24)

qQ
d
f
sin h°Adf

(sinh Adf + Ad
f
coshAdf)(Ad

f
+ sinhAdf coshAdf)

Substituting Equations ( 3.11.b), ( 3.22), ( 3.23) and ( 3.24) into Equation

( 3. 14) leads to the following expression for the vertical deflection:

w(x) = v(x, 0)

or,

w(x) = 2q cos Ax

or, in view of Equation ( 3.1):

o
sinh Adf

E
f
A (Adf + sinhAd

f coshAdf)
(3.25)

q(x) = %A (Ad
f
+ sinhAdf coshAdf)

. w(x) (g 2g)

2 sinh2 Ad
f

If one denotes,

Q(x) = 2bq(x) (3.27)

to be the load acting across the width 2b of the foundation, then one has

from Equation ( 3.26):

Q(x) = k'w(x), (3.28)
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where

b A Ef (A df + sin h Ad f cos h Adf)

sinh2 A dj

(3.29)

The load Q, acting on top of the foundation, can then be expressed in terms

of the surface deflection.

Consider next an infinitely long beam of width 2b, resting on top of the

elastic foundation subjected to the sinusoidal load, p(x), per unit length,

acting on top of the beam over the width 2b, with the foundation reaction Q(x)

defined in Equation ( 3. 28) as shown in Figure 2.

Elastic beam

1

d

i

df
1

f^-w^i

Rigid Base

Figure 3#2

The load p(x) is expressed as:

p(x) = PqCosAx

Also note that:

Elastic
Foundation

(3.30)

Q(x) = QqCosAx = 2bq
Q
cosAx . (3.31)

According to the beam theory, the vertical deflection of the beam, w , is

given by the differential equation:
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¥b# = P - Q- , (3.32)

where

E^ = modulus of elasticity of the beam

Ib = moment of inertia of the beam section.

Substituting Equations ( 3.28) and ( 3.30) in ( 3.32) yields:

d
4
w

Eb!b —T + k 'w =
Pncos ^x . (3.33)

dx^ v

To find the particular solution of ( 3.33), let:

w(x) = WqCosAx . (3.34)

Substituting ( 3.34) into ( 3.33), one gets:

w = -5 Q
. (3.35)

A EbIb + k<

Hence, upon substitution of Equations ( 3.35) and ( 3.29) into ( 3.34),

we get:

2
p(x) sinh A.df

w(x) = — ,

A EbIb sinh Adf + bAEr(Ad
f

+ sinh Adr coshAdr)

(3.36)

where p(x) is given in Equation ( 3.30).

The bending moment due to the load p can be evaluated from the

relation:

d
2
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With Equations ( 3.36) and ( 3.37), it follows that:

M(x) = ^^ ,
( 3.38)

3 E.pb

A + £r ^(Adf )

Eul

where

b%

\df + sin h Adf cosh Adf
<A(Ad ) = g

• (
3 - 39 )

sin h A df

By means of Equation ( 3.38), it is possible to calculate the bending

moment due to any loading condition using the superposition principle and

the Fourier integral. Recall that any arbitrary load p(x) symmetrical about

the y-axis can be represented in the form of a Fourier integral:

/

00

1
p(x) = „• J A(A)cosAxdA

, (3.40)

where

r oo

A(A) =
J p(v)cos\v dv . (3.41)

- 00

Consequently, the bending moment due to any arbitrary load p(x), expressed

in terms of the Fourier integral, is given by:

/• oo

1

1
[A( A)cos Ax ] AdA

TT v3 Efb ,

EbTb
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B. An Infinite Beam Subjected to a Uniform Strip Load

Suppose that the beam is subjected to a uniform strip load of intensity

p and width 2 € as shown in Figure 3.

Elastic Beam

x

Elastic Foundation

Rigid Base

In this case, one has:

Figure 3.3

p(x) =
p ,

-

€<X<€

elsewhere
(3.43)

Hence:

A(A) /
- e

p cos Av dv

or,

A(A) = 2p €
sin A€
A€ (3.44)

Substituting ( 3. 44) in ( 3. 42), and letting

1/3

r Eb!bi
a

[Ffb J
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and

a = aX ,
(3.46)

where a = a fundamental length

a = a dimensionless parameter,

leads to:

00/oo

sin(a<

a
3
+

2pa / sin(a£/a)cos(ax/a)
M(x) — / $ ;

;
;
——L da . (3.47)

Q
J a

d
+ (/r(ad

f
/a)

Similarly, it can be shown that the corresponding expressions for the deflec-

tion w(x), the shearing force V(x) in the beam, and the contact pressure Q(x)

(load per unit length) at the interface of the beam and the foundation are:

r
/ sin (a €/,

w(x) = f^ J
sin(a € /a)cos(ax/a)

77 J

00

V(x) -^ J
Bin(a€/a)sln(ax/a)

.

dfl (3>49)
J

a 6
+ ijj (odf/a)

/oo
^(ad

f
/a)sin(a t/a)cos(qx/a)

, dfl

a fa
3 + «£ (adf/a)l

00

Q(x)

C. An Infinite Beam Subjected to a Concentrated Load

The elastic solution to the problem of an infinite beam subjected

to a concentrated load, P, acting along the y-axis can be obtained as a

limiting case of the uniform strip load problem. As the loaded region
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-0, one has:

2p£ ,

lim sin(a€/a)

€ a € /a

Consequently, the expressions for w(x), M(x), V(x), and Q(x) due to the

load P take the forms:

3
"°°

cos (ax/a)—y—T—J

—

• da (3.51)
a fa + <A (adf/a)

|

/oo
a cos (ax/a)

a 3 + ^(adf
/a)

da
<3 - 52 >

/OO g

a sin (ax/a)
. da

„ 3
+i// f«rWfl\a ° + <£ (adf/a)

(3.53)

Q,x') = -£- /" »(«0/a)°0B<ax/.)
. ,„

0*
7 a +i/a (adf

/a)

D. An Infinite Beam On A Semi-Infinite Foundation

This is a limiting case of an infinite beam resting on a finite depth

foundation solutions. Rewrite Equation ( 3.39) in terms of the new para-

meter a :

<Madf
/a) = ~g df/L+

1^ (
° df/a) C°Sh (gdf/a)

•
( 3 -39a )

sin h (adf/a)
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It is seen that as cL* » oo , \\j (adf/a) > 1 as a limit. Hence,

for the case of a semi -infinite foundation, Equations ( 3.47) through ( 3.54)

are still valid upon substitution of ip (adf/a) = 1.0.

It is noted that the expressions thus obtained for the deflections,

bending moments, shearing forces, and the contact pressures are very

similar in character to those obtained by Biot(l), Vesic (8), Drapkin (2),

and Selvadurai (5). The solutions for the case of plane stress problem

of an infinite beam on a semi-infinite foundation are exactly the same as

those obtained by Biot.

For a plane strain problem, one simply replaces Ef with Ef/(1 - ut
)

in the expression for the fundamental length 'a' as defined in Equation ( 3. 45).

That is, for a plane strain problem, one has:

2, „ T -|l/3

a =
(1 - v

f
") EbIb (3.55)

Efb

With 'a' defined in Equation ( 3.55), the expressions for the deflections,

bending moments, etc. for the plane stress problem can then be used for

the plane strain problem.

E. Numerical Evaluation of Related Integrals

A numerical technique that can be used to evaluate the finite integrals

appearing in the preceding section is shown here in detail for the case of the

beam subjected to a concentrated line load. The same technique also applies

to the other cases.

Consider, for example, the expression for the bending moment of the
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beam due to a concentrated line load given by Equation ( 3.52). Transform

the equation to the form:

M(x) = _1_
Pa it

/oo

e
a a cos (ax/a)

a 3 + if/ (adf/a)
da (3. 56. a)

or

00

T*a = -jj- } e
a

f (a, x/a, df/a) da (3.56.b)

In this form, the integral can be evaluated by a Gauss-Laguerre quadrature

formula

.

A computer program was written to evaluate Equation ( 3. 56) for

various values of x/a and df/a, using the 32-point Gauss-Laguerre quadra-

ture formula. As a check for accuracy, one might use Equation ( 3. 52) to

evaluate the maximum moment (at x = 0) when d
f

» oo , which results

in:

00

Pa /

IT J^r ; -sir da <3 - 57)

a L

This integral can be integrated exactly to get:

Mmax = °- 385 Pa (3.58)

as compared to the computer output:

Mmax = 0-382 Pa . (3.59)
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Hence, the error is in the order of 1% or less.

Figure 4 shows a series of normalized bending moment curves ob-

tained from numerical evaluations of Equation ( 3. 56).

From Equation ( 3. 56), the maximum moments for different values

of df/a are given by:

W 00

Mmax 1
/

a dct (3.60)

a + ip (adf/a)

If the numerical results of Equation ( 3. 60) are plotted on logarith-

mic paper, it is found that for 0.1 l_ df/a l 1.5, Equation ( 3. 60) can be

represented, with an approximation on the order of 0. 5%, as:

0.2438M /dfmax I
= 0.2904 1 1 , 0.1 4 df/a < 1.5

Pa \ a

or

d
f

0.2438

Mmax =
°-

2904 Ui Pa (3 ' 61 ^

Now, from the fundamental theory based on Winkler's assumption,

it is given that:

/
i

\l/4

Mmax = 0.353554 P (-^) (3. 62. a)
k /

where k = modulus of subgrade reaction .

Hence, in order to obtain the same maximum bending moment by the

approximate theory as by the exact one, one might have to use a modified
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value of k found by equating Equations ( 3. 61) and ( 3. 62. a), i.e

1/4

0.353554 P ^)
v
0.2438 . . 1/3

d
f \ /e*~

[ 1T P \E,
Vb\
S
f
b y

or

Ef
= 2.197

df

a

-0.9752

0.1 4 df/a 4 1.5

(3.63)

where a is given by Equation ( 3.45).

It should be noted that Equation ( 3. 62. a) is derived from the general expres-

sion for the bending moment:

M(x) = -qrg- e (cos fix - sin fix) (3.64)

from which

Mmax 40
(3.62b)

where

4 EvJbxb

1/4

So, in view of Equations ( 3.61) and ( 3.62.b), one gets:

fia = 0.8609
df.

a

-0.2438

where 0.1 4 d
f
/a < 1.5

(3.65)

(3.66)

Hence, knowing fi, one can also compute k from Equation ( 3.65), which

gives

:
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k = 4
4
EbXb (3.67)

Equations ( 3. 66) and { 3. 67) are suitable forms for evaluating
fi and k

respectively. Equation ( 3. 66) has been evaluated numerically and is

plotted in Figure 5.

Knowing the stresses and the contact pressure in the uncracked

beam, it is then possible to use these stresses as known boundary condi-

tions to the approximation of the stresses in the beam having a centrally

located vertical crack

.
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IE. AN ANALYSIS OF STRESSES AND THE OPENING -MODE

STRESS INTENSITY FACTOR FOR A CRACKED BEAM

A method of analysis consists of finding a stress function, X , that

4
satisfies the biharmonic equation V X = 0, and also the boundary con-

ditions along the boundary of the cracked beam. The biharmonic equation

and the boundary condition along the crack are satisfied by the Williams

stress function (9), which in the case of symmetry of loading, is given by:

00 /

X(r,6) = X \
M)11" 1

d
2n-l

r
(n+l/2)

[ -cos(n-3/2)

n=l,2,... (

2n-3 ,„ t+
"2nTT C0S (n + l/2)(9]

.(n+1)
+ (-l)

n
d
2

r [ } [-cos(n-l)^ + cos(n+l)(9] (3.68)

P/2 6D

Crack

T77TTT7TTTTT7^JT7T7T7T71TT7T7

Rigid Base

Elastic Beam

Elastic Solid

Foundation

Figure 3. 6 Cracked Beam on Elastic Foundation
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According to the coordinate system shown, the stresses in terms of X are:

d
2
X d

2
X 2. d

2
X sin0 cos $

°v " ^ 2
_

„ 2 cos ^ " 2
y 9x" ar 30dr r

gy sin2 e , o ax sine cos g+ — + Z —

—

9

ar r dd *

+ g y sin
2
^

a« 2
r
2

o- = Jg^. a -ggx_
sin

2g+2 _a^ sine cos

^

AKcos2^
a v

* a r* aear

^2 2„
9 a X sin e cos e . o X cos

- & r -— T +- —r

—

tj- rr
rdo r^" ae 2

a 2X . n a d 2 X cos 20 d 2X
xy ax ay 5r z r O0dr

+ g X
1 sing cose + d X sin flcose

ae 2
r
2 a r r

+ dx
ae

cos 2e

r
2

where

ex
00

V J,.„

(3.69)

ar X ]
(-l)

n_1
(n+1/2) d2n_i r(

n-l/2
) [-cos(n-3/2)e

n=l,2, . . . !

2n-3
+ ^nTf C0S

(
n+V2)e] + (-l)

n (n+l)d2n r
n

[- cos(n-l)e + cos(n+l)e]
\

(3.70. a)
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a 2v °° I

~d~^
= £ |(-l)

n-1
(n
2-l/4)d2n_ 1

r(
n- 3/2

) [-cos(n-3/2)0
n=l,2, .. .1

+
lv+f

cos(n+l/2)(9] + (-l)
n

(n+l)d2n r
11
- 1

(3.70.b)

[- cos(n-l)0 + cos(n+l)#]

dX
e$ ^2 I ("if"

1 d2n-l r(n+1^2 ) [(n-3/2) sin(n-3/2)0

n=l,2 }
... (

- (n-3/2) sin (n+l/2) fl] + (-l)
n
d2n r

n+1
(3.70.C)

[(n-1) sin (n-l)0 - (n+1) sin (n+l)fl] >

,2. oo

-^4" = E {("I)
11" 1

d2n-l r
(n+l/2)

[n-3/2)2 Cos(n-3/2)0

£0 i£f,2,... (

- (n-3/2) (n+l/2) cos (n+l/2)0] (3.70.d)

+ (-l)
n
d2n r

n+1
[(n-l)

2cos(n-l)0 - (n+l)
2
cos(n+l)(9]

00

d 2x
eee = J2 \

(- 1
)

11" 1
d
2n-l <

n+1
>
r^" 1/2

) [(n-3/2) sin (n-3/2 )0
n=l,2, ... (

- (n-3/2) sin (n+l/2)fl] + (-l)
n

(n+1) d2n r11 (3.70.e)

[(n-1) sin(n-l)0 - (n+1) sin (n+l)0]>

If it is assumed that the presence of the crack does not have any signi-
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ficant effect on the stresses beyond the boundary BC, as well as along the

interface of the beam and the foundation, the stresses along those boun-

daries can then be closely approximated from the conditions of the uncracked

beam. Taking symmetry into consideration and considering the portion of

the beam cut along BC as a free body, one has the following additional

boundary conditions:

Figure 3.7

P/2eB

Crack

Along AB:

T -
xy

X 7T6B

00

/-i/r(adf/a) sin(flt£/a) cos(ay/a)

a[a 3 + ,/,(ad
f
/a)]

da

Along BC:

xy

°y

= rxy

/oo
a sin(q e/a) sin(a //a) $
a'6 + il/(adf/a)(//(adf/a)

= <7'
-/x \ (pa ) / sin(q e/a) cos(q //a) da

155

(3.71)

(3.72)



where

f (x) = ~T3
-

cd + xd - 2xc - c2 - x2

i r d
g(x) =

"lb~L
X

" 2
+ c]

Along CD:

T
xy

=

a
X

=

Along DE:

Txy =

°x = - P/2 € B

(3.73)

(3.74)

The problem will be explicitly solved if we can find the coefficients of the

Williams stress function, dj , i = 0,1,2, ... , such that Equation ( 3.69)

satisfies the boundary conditions given by Equations ( 3. 71) through ( 3. 74).

As for the opening-mode stress intensity factor, K^, we have, accor-

ding to Irwin (3), in the immediate vicinity of the crack tip (as r approaches

zero):

K

V27T:
cos -|- (1 + sin -@- sin -g- ) (3.75)

while in terms of the Williams stress function,

cos JL (1 + sin
-f-

sin ^~
V^~

(3.76)

hence,

Kt = - V2~7T
1
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Therefore, only the value of the first coefficient, d^
f

is needed to determine

the value of the stress-intensity factor, Kj .

A. An Approximation of the Stress-Intensity Factor by the

Boundary Collocation Procedure

Gross and Srawley (6, 7 ) used a boundary collocation procedure in con-

junction with the Williams stress function in the approximation of stress-intensity

factors for single-edge-notch beams in bending and combined bending and ten-

sion. Later, Majidzadeh and Ramsamooj (4) adopted the same method to

approximate the stress-intensity factor, Ki , for beams having a centrally

located crack, supported on a three-dimensional semi-infinite elastic solid,

and subjected to a centrally located, vertically concentrated load.

The same technique is employed here for solving the two-dimensional

problem of an infinitely long beam having a centrally-located vertical crack

at the bottom, supported on an elastic solid of any thickness, and subjected to

a uniform strip load (a concentrated line load is merely a limiting case).

The boundary -collocation procedure consists of solving 2m simul-

taneous algebraic equations corresponding to the known values of stresses

and displacements at a finite number of stations, m , along the boundary

A B C D E (Figure 7) of the free body of a cracked beam. The solution yields

the values of the first 2m coefficients of the Williams stress function. For

the present purpose, only the first coefficient, d-, , is needed in the determina-

tion of the stress-intensity factor, Kj .
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For given values of geometrical dimensions and loading conditions,

the value of d-, varies somewhat with the number of terms, 2n , of the stress

function, the number of boundary stations, m, and the length / . It has been

found that for a given 2n, the solution for d-^ converged rapidly with l/d = 1.0

and with the stations spacing within the range d/8 to d/16. To further opti-

mize the solution, it has been recommended (4) to use the linear least-squares

optimization scheme in solving the problem; using more equations than un-

knowns. Using this particular technique, it was noted that the optimal num-

ber of dj terms, 2n, varies somewhat with each particular beam's dimensions

as well as with the crack length over beam depth ratio; however, their effects

on the values of K j is practically small.

A value of Kj obtained by this method corresponds to a particular set

of values of P, d, / , c, m, and n. For application, the results are better

expressed more generally in terms of the dimensionless quantity,

K
l'

= V^maxVd") (3.78)

where 0"
max is the maximum tensile stress at the bottom of the uncracked

beam on elastic solid. With l/d > 1.0, it was found that K^' is practically

dependent on the c/d ratio for a set of m and n.

For computation convenience, a beam section and loading conditions

shown below was selected for the approximation of Kj ' for various c/d

ratios:
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of

p =10 psi r

€ = 0.5

"symmetry

/ = 2<

EE

Spacing between each station =

1/8"

d = 2'

Figure 3. 8

It was found that the optimum number of d^ terms, 2n , for various c/d

ratios, lies between 60 and 80. Hence, for each particular c/d ratio, the

value of Kt ' was obtained by taking the average of three values computed

for 2n equal to 60, 70, and 80.

The results of the computations are plotted in Figure 9. To verify

the validity of this normalized relation, different beam sizes were selected

to compute Kj ' for a particular c/d ratio. The results agreed very well.

The computer program used in the boundary collocation method is presented

in Appendix A

.

B. Applications to Analysis of Fracture Propagation

For a particular c/d ratio, the value of crmax under a set of geometri-

cal and loading conditions must be known in order to compute the absolute

value of Kj from the normalized Kj'. For a rectangular cross section, one
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has:

6Mmax
'max = "US- <3.79)

where M is the maximum bending moment in the beam. M^, ov can eithermax & max

be computed from Equation ( 3.47) for a uniform strip load, or from Equation

( 3.52) for a concentrated load. However, this direct method for evaluating

M requires a numerical integration which is only feasible with the aid of

a computer. A practical approach in the evaluation of arnav is proposed in
XXXdLa

the following.

It has been shown that the bending moment in a beam resting on an

elastic solid of a finite depth and subjected to a concentrated load may be com-

puted from the conventional beam-on-elastic-foundation formula; i.e. :

M(y) - —- e
0y

(cos 0y - sin 0y) (3.64)

if fi is taken as:

-0.2438

a = 0.8609 df
, 0.1< df/a 4 1.5 . (3.66)

Consequently, one gets:

Mmax " T7 <3 - 62 ' b
>

Substituting Equations ( 3. 66) and ( 3.62.b) into Equation ( 3.79) yields:

r
d
fi

(

1.7424 1— , 0.1 4 df/a < 1.5 . (3.80)

a Bd2 rd,1°- 2438
p max
Pa
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It is noted that Equation ( 3.80) is applicable for 0. 1 < df/a < 1. 5, which is

considered to be within the practical range of df/a in an experimental set-up.

For a special case of semi-infinite foundation, it can be shown that:

a Bd2

p max
= 2.3094 (3.81)Pa

The plot of Equation ( 3. 80) is presented in Figure 10.

Thus far, one has been able to approximate the maximum tensile stress

0"p max m the beam due to a concentrated load, P. To extend the application

to a uniform loading conditions, a set of numerical integrations of M „ from° ° max

Equation ( 3. 37) were carried out for 4 e/a 4 2.0. The results were ex-

pressed in terms of (7S max / 0"
p max » wnere O'

s max is the maximum ten-

sile stress due to a uniform load and O max is the maximum tensile stress

due to a concentrated load. Figure 11 shows the plot of a s max/cr max

against e/a ratios." For a particular e/a ratio, the corresponding ratio of

<7 G v>tq V/ (7„ ™o^ can then be read from Figure 9. Knowing this ratio and
o IIlcLA p IllctX

a n „„._ from Equation ( 3. 80) or Equation ( 3. 81), or from Figure 10, one

can then compute as max .

Having obtained the maximum tensile stress for the uncracked beam,

the absolute value of the stress-intensity factor, Kj, may then be computed

from Figure 9. However, instead of directly reading the value of Kj ' for a

c/d ratio off of Figure 9, the following empirical equation was found to be a

compact expression of the present results for 0.14 c/d < 0. 6,

Kj' = 6.898(c/d) - 17.425(c/d)2 + 22.438(c/d) 3 (3.82)
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Equation ( 3. 82) is plotted in Figure 3.12. K may then be approximated

from Equation ( 3.82).
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KT 2

^^^^^^

X Collocation results

KT
= *L

1 o d"max V*
1/2 = 6.898 c/d-17.425[c/d] +22.438[c/dJ

.2 .3 4

Relative crack length, c/d

•5

Figure 3. 12 Approximation of the Normalized Stress-Intensity Factor

as a Function of the Relative Crack Length
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IV. GEOMETRICAL DESIGN OF BEAM SAMPLES
AND EVALUATION OF Kj

A. A Criterion For the Length of a Beam Sample

It is known from the approximate theory based on Winkler's

assumption that if

I > 5 , (3.83. a)

where / = the length of the beam,

then the end conditioning forces at either end of the beam of finite length /

will have an insignificant influence at the other end and, therefore, all the

formulas derived from the infinitely long beam can be applied to this case.

In this case, knowing the value of fi from Equation ( 3.66), the minimum

length of the beam sample then should not be less than:

/ = 5/fi (3.83.b)

B. Criteria For the Cross Section of the Beam

According to the ASTM Specification C31-69, it is recommended

that for flexure tests, a beam should have the minimum dimension of three

times the maximum nominal size of the coarse aggregate in the mix. Further-

more, the depth of the beam should not exceed four times its width. Hence,

the beam cross section should be such that:

B = 2b > 3 (max. size of aggregate) (3.84)
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and

B < d < 4B (3.85)

where B = the width of the beam

d = the depth of the beam. .

C. A Criterion. For the Determination of the Load Magnitude

In order to prevent excessive rutting of the beam top surface under

the load, as well as to assure that the maximum tensile stress at the bottom

of the beam surface is below the yield stress, it is recommended that the

applied load should be of such a magnitude as to cause:

Vx £ °' 5 °y <3 " 86 >

where cr - yield stress in tension.

Knowing the beam and the foundation dimensions, together with the

related material properties, one can then select the required magnitude of

the applied load from Figures 11 and 10 respectively.

D. Procedure For the Design of a Beam Sample

a) Selection of the beam dimension:

1. Evaluate the values of

E^ = modulus of elasticity of the beam

Ef = modulus of elasticity of the foundation from the experiments
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2. Select a minimum width of the beam from

B = 3 (maximum nominal size of aggregate)

3. Select a series of beam depths, d, such that

B 4 d 4 4B

1 O
4. Find the section property Ib = YI Bd° and from which

calculate:

a = (
-ETb-y •

where b = B/2

5. Select a foundation depth d^ and then compute df/a. Read

off the curve in Figure 5 the corresponding value of a.

Then compute .

6. The required length of the beam is computed from:

/ = 5/0

7. For optimum solution for each particular E^ and Ep try

different beam depths as well as different foundation depths,

Example

;

Given the following properties

Beam size: 3" x 3" Ib = A (3)
4

= 6. 75 in.
4

Eb = 65,000 lb. /in.
2

, E
f

= 250 lb. /in. 2

/EkIkW3 / 65, OOOx 6.75 \ !/3

a =Knr -( 250 x 1.5 =
10 - 54in -
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For df/a = 1.5"

d
f
/a = 1.5/10.54 = 0. 142

From curve, one gets with df/a = 0. 142,

a = 1.375

8 = 1.375/10.54 = 0.1305 in.
-1

/ = 5/0 = 5/0.1305 = 38 in.

Similarly, for d
f

= 2", one gets /
= 41"

df = 3", one gets / = 45"

d = 4", one gets / = 48.5"

8 5CH
o

'"
45 -

f 40
CD

a 35 -

30

i/
E
b

= 65,000 lb/ in:

E
f

=

/

250 lb./ in

Beam size : 3"x 3"

2 5
~r
6

-»^ d
f

in.12 3 4

Figure 13. Relation between the required beam length and foundation depth

b) Selection of the magnitude of the applied load

1. Select the length, 2 e , of the cushion used to transfer

the load from the loading piston onto the beam surface

(the width of which should equal the width of the beam)

as shown in Figure 14.
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Cushion

b,b

^
Section A-A

Cushion

Beam
Sample

T7C
Foundation

Rigid Base

FIGURE 14

Compute e/a and use this value to read off the curve in Figure

11 the magnitude of a
g max in terms of a

p max , denote this by:

ap max a
s max a

l
a
p max'

when a^is the value read off from the curve.

3. Select a desired value of a
p max such that,

a
p max a

2 a
x

a
2
< 1

where <7y = yield stress in tension

a desired load factor

Compute the value of a' „,„,,» i- e -

L) III d-A.

p max
a
l°2 °\

5. Compute the value of d
f
/a and read off from Figure 10

the corresponding value of a tviqv Bd /Pa, say

a
p max Bd

= a
Pa 3
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6. Substitute the value of a'p max f°r ap max in tne above expression.

The required magnitude of the applied load, P, can then be com-

puted from:

Example

;

i^' ";\
"""""a^ao a Bd

a
3

a

7. Check for the contact pressure between the cushion and the

beam surface from:

p = P/2CB,

where B is the width of the cushion. The pressure p should be

considerably less than cr in order to prevent excessive rut-

ting; it is recommended that

p < 0.5 CT
y

8. If the contact pressure p is considerably large, one can either

select a new dimension of the cushion and repeat the entire cal-

culation, or simply select a new load factor, a
2 > and repeat the

computation from step 6.

Beam size: B = 3" , d = 3"

E
b

= 65, 000 lb/in? , E
f

= 250 lb/in.
2

2 € = 2 in.

df = 1. 5 in.

a = 150 lb/in.
2
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One has from the preceding example:

a = 10. 54 in.

d
f
/a = 0. 142

e/a = 0.095

With e/a = 0. 095, we get from Figure 11:

tf'p max a
s max "

95 a
p max

Select a max = 0. 5 a
, i.e. a

2
= 0.5,

one gets:

a'p MX = 0.95 x 0.5 x 150 = 71. 5 lb/in

With d
f
/a = 0. 142 one obtains from Figure 10:

°p max -° — = a
3

= 1.09

:~ 2

Pa

Hence, substitution of a' ^,ov for a in the above
' " p max p max

equation leads to:

71.5 x 33

P = 1LJ1 = 168 lb.

1.09 x 10.54

Next, check the contact pressure, assuming that the cushion

has the same width, B = 3" ,

26B 2x3!§%- = 28 lb. /in.
2

« <7
y

o.k.
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c) Determination of Kt value for a particular crack length:

1. Compute for each particular crack length c

the ratio c/d.

2. For each c/d ratio, read off from Figure 12 the

corresponding Kj' value.

3. Let (T ni!,Y = o~' a-, a 0%, as obtainedmax « p max 1 2 y

from the preceeding example.

4. Compute for each crack length the corresponding

value of Kt from the following equation:

Ki = a-max ' Vd~ K
[

Example: Using the same data as given in the preceeding example, sup-

posing that the value of Kj for a crack length c = 1. 05 inches is required.

1. c/d = 1.05/3.0 = 0.35.

2. With c/d = 0.35, from Figure 12 the corresponding

Kj' = 1.25

3. From the preceeding example,

°*max
=

«T
! = 71. 5 lb/in2max «
p max

4. With d = 3. in.

,

K
I

= %ax V ^~ Kjt

= 71.5 VY (1.25)

-3/2
= 154. 8 lb-in.
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APPENDIX A

Description and Use of the Collocation Computer

Program for the Calculation of the Stress-Intensity

Factor, K-, , for Two Dimensional Problems of a

Beam With a Centrally- Located Finite Crack, Res-

ting on an Elastic Solid.
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IA. GENERAL DESCRIPTION

This program uses the Williams stress function, X , in conjunction

with the boundary stresses from the elastic theory of beams on elastic founda-

tion to compute an opening-mode stress-intensity factor, K^, and then nor-

malizes it to K-l'. The method chosen to solve the problem is the "boundary

collocation of stresses" , which consists of solving a set of 2m simultaneous

algebraic equations corresponding to the known values of stresses at a finite

number of boundary stations m of the cracked beam.

Since it is impossible to deal with the exact form of the Williams

stress function given by Equation ( 46) in the text (involving an infinite sum

of series), only the first 2n terms of it were included in the analysis, i.e.
,

the Williams stress function was approximated by.

NOOFM
( fn+i/9* T

* = Z (-D d2n-l r( 7 } -cos(n-3/2)0

^ n=l (
L

2n-3 , 1
+
~2nTf cos(n +

1/2)6)J
(A-l)

+ (-l)
n
d2n r

(n+1
) |-cos(n-l)0 + cos(n+l)0| >

The corresponding stress components are given by:

a = 3
2*

sin2 e _ 2
&2* sin e cos

+ d* cos

x a r2 dOdr r dr r

2dX sing cos , dV cos 2 d

a = -^ cos 2 d _ 2
^h_ sing cos 8 + 6X__ sin

2^ (A
y dvl dddr r dr r

2dX sine cosfl j. d
2
X~ sin

2

d$ r2 d& 2 r 2
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T = - JUL- sin e cose - -At cos 20 + A_ sing cos
xy drl 66dr r ae r

+ gx sin cos + ex cos 2

dr r a «
r2

where

- NOOFM f

n-1,2, .. .

2- NOOFM

a r2 2-,

n=l,2...

-cos(n- 3/2)0 +
2n+1 cos (n + 1/2)0

+ (-l)
n

d2n r
11

|- cos (n- 1)* + cos(n+l)e~|
|

(A -3. a)

J

(-l)^ 1
) (n

2
- 1/4) d2n_ 1

r(
n-3/2

) [- cos (n-3/2) 9

2n-3

2n+l
cos(n+l/2)0| + (-l)

n (n+l)nd2n r
(n ^ (A - 3.b)

-cos(n-l)0 + cos(n+l)$

_ NOOFM
dX
69

n=l,2,
£ |

(-l)
(n_1)

d2n_ 1
r(
n+1/2 )

J

(n-3/2) sin (n-3/2 )*

- (n - 3/2) sin(n+l/2)0
|

+ (-l)n d2n r
(n+1)

(A - 3.c)

(n-l)sin(n-l)0 - (n+l)sin(n+l)0
|

>

_ NOOFM /

^f = E (-l)
(n_1)

d2n_! r(n+l/2 ) r
(
n-3/2)2 cos(n-3/2)0

n=l,2,...l L

- (n-3/2)(n + 1/2) cos (n + 1/2)9 1+ (-i)
n d2n r

(n+1)
(A - 3.d)

(n-l)2Cos(n-l)0 - (n+1)2 cos (n+l)«l \
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2_ NOOFM
a x =
aaar

NOOFM /

£ |(" 1
)

(n~
1)d

2n-l (
n+l/2

)

r(n_l/2) |(n-3/2)sin(n-3/2)«

n=l,.2,...( L

- (n-3/2) sin (n+l/2)J + (-l)
n

(n+l) d
2n

r
n

(A - 3.e)

|(n-l) sin (n-l)# - (n+l) sin (n+l)*

To solve the problem, it was assumed that the stresses along the

boundary of the free body of the beam can be closely approximated from the

conditions of the uncracked beam. According to this assumption, we have

the following boundary conditions:

Along AB:

Txy

a
X »V.

-

Along BC:

T =
xy r'xy

/op
iA( adf/a) sin (ae/a) cos (ay/a)

* eB ^ a
[
a * + ^(adf/a)]

/
w

f/ \
Pa / a sin(ae/a)sin(a//a)

1(x
> ' neB J z—

o

:
• da

[a 6 +«A(ad
f
/a)]

/oo
sin(a</a)cos(a//a) da
a3 + ^(«df/a)

where

6
2 „2

f (x) = d3 [cd + xd - 2xc - c
z - xz ]

12 r d
S<x >

= ~& [
X

" T + c
]
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Along CD:

Txy =

ax =

Along DE:

xy
=

x
= - P/2 6B

In the above expressions, one has:

11/3
Eblb

a =

_E
f
b

(1 - Vf) EbIh
E
f
b

1/3

for plane stress

for plane strain

,/f(adf/a) = gdf/a + sinh(qd
f/a) cosh (adf/a)

sin h (adf/a)

B = width of the beam

b = B/2

c = crack length

d = depth of the beam

dr = depth of the foundation

E, = modulus of elasticity of the beam

Ef = modulus of elasticity of the foundation

L = moment of inertia of the beam
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/
= effective length of the beam

P = total applied load

2 e = length of the loaded area

of symmetry

"« T M,»" II '« I

P/2€B
» § u « » > »

IUf
P/2eB

Crack

Figure A-l. Collocation Grid and the System
of Loading

Having mathematically described the boundary conditions, the

system of simultaneous algebraic equations for the collocation procedure

is set up in the matrix form as follows:
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Boundary

r "-P/26B D - E

a x C - D

ax "'x A - B

°y =
°y B - C

Txy D - E

rxy C - D

Txy x xy B - C

Txy A - B

Expressing the above system of equations in terms of the Williams

stress function coefficient, dj
,

yields:

1,1

'2,1

CNOOFXY, 1

'1,2

'2,2

Cl,2 (NOOFM)

'2,2 (NOOFM)

CNOOFXY, 2 (NOOFM)

d-

1

2 (NOOFM)

*2

(NOOFXY)

(A -4)

where C^ a represent the coefficients of d^, a^ represent the numerical values

of the boundary conditions to a particular ith boundary station, 2 (NOOFM) is
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the number of di terms, and NOOFXY is the total number of equations used

in the program.

The program will solve for the d- , i = 1,2, . . . . 2(NOOFM).

Because solution convergence could be a problem, the least-squares optimiza-

tion technique was employed in solving the system of equations. This technique

and its computer listing is described in the IBM computer manual "The Scien-

tific Subroutine Package" — Subroutines LLSQ and DLLSQ, pp. 160 - 164.

This method of solution has an advantage in that the number of equations can

exceed the number of unknowns: i.e.,

2(NOOFM) < NOOFSY ( A - 5)

In the program, NOOFXY is calculated from:

NOOFXY = 2 [ NOOFXL + NOOFXU + NOOFXS + NOOFXB j - 4

(A-6)

where NOOFXL, NOOFXU, NOOFXS, and NOOFXB are the number of colloca-

tion stations under the load on the top boundary, outside the load on the top

boundary, on the side boundary, and on the bottom boundary respectively In

view of Equation (A-6), Equation ( A - 5) becomes:

NOOFM + 2 < NOOFXL + NOOFXU + NOOFXS + NOOFXB ( A - 7
)

This equation gives the criterion for the allowable size of the system of

equations ( A - 4 ).

Once the values of d^ have been solved, the stress-intensity factor

is then calculated from:

K
x

= - V^tt di (A - 8)
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and the corresponding normalized value K'^
,

K-,

where

K
'l

=
amax Vd~

cr
max

6Pa
2

1

7T€Bd2 J

/• 00

' sin(ae/a)

a +tA(ad
f
/a)

da

(A - 9)

(A- 10)

Note should be taken of the fact that the optimum number of the Williams

stress function coefficients, dj, depends somewhat on the geometrical and

loading conditions of the beam. Therefore, a sensitivity analysis similar

to the one shown in Figure A-2 should be done to determine, at the least, the

range of d
i
terms ( = 2(NOOFM) ) within which lies the maximum value of

the stress-intensity factor. Although it was noted that the optimum value of

dj terms varies slightly with the crack length, only one set of sensitivity

analysis is practically sufficient with regard to the economical viewpoint;

the average values of the stress-intensity factors for other crack lengths of

the system computed from three or more values of d^ terms within the opti-

mum range should give sufficiently accurate results for practical purposes.
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Example of Sensitivity Analysis

Input data?:

Beam: Effective length = 3 inches

Width B =1 inch

Depth d =3 inches

Young's modulus E^= 106 psi

Foundation:
= semi-infiniteDepth df

Young's modulus Ef = 10** psi

Others: Total applied load P = 10 lbs.

Loaded area's length = 1 inch

Station spacing = 1/8 inch

Crack length = 0.6 inch

125

100

Number of 6
t

terms

Figure A-2. Value of Normalized Stress-Intensity Factor

Against Number of Williams Stress Function

Coefficients, dj.
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IIA. USE OF THE PROGRAM

A. Input Data

The first step in the analysis is to select a suitable effective length, / ,

of the beam and a proper station spacing, s. It is recommended that the

effective length be greater than or equal to the beam depth, d, and the sta-

tion spacing be not greater than 1/8 of the beam depth. An equal spacing be-

tween each boundary station is assumed in the program. The next step is to

choose an initial value of NOOFM (one-half of the number of the Williams

stress function coefficients). After all the computations corresponding to

this value of NOOFM and a specified crack length are completed, the value

of NOOFM will automatically be increased by an increment of 5 and the com-

putations are repeated for that particular crack length and the new NOOFM.

This process will continue through the last NOOFM specified. The value of

NOOFM will then be automatically set to the initial value again, and the exe-

cution continues with a new crack length. The program will stop executing

when all the computations for the last specified crack length have been carried

out.

The following is a sequence of punched cards which numerically define

all the parameters needed by the program.

1. Method of Analysis for Boundary Conditions (I 1)

This is the first card in the data deck to give the

program a control, whether the plane stress or plane
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strain analysis is to be used in the establishment of the

boundary conditions. If the number in column 1 is

the plane stress analysis is to be used

1 the plane strain analysis is to be used.

2. Job Title (18A4)

This card will give the descriptive identification for

the job. It is the second card in the data deck.

3. Geometrical Properties, Material Properties, and Control

Information Cards

The third card through the seventh card will give

the following information:

Card Number Format Information Columns

3 3D24.16 Effective length, / , of the beam 1-24
Depth, d, of the beam 25-48
Width, B, of the beam 49 - 72

4 3D24.16 Young's modulus, Eb , of the beam 1-24
Young's modulus, Ef, of the 25-48

foundation

Depth of the foundation, df, 49 - 72

(0 for semi-infinite)

5 3D24.16 Poisson's ratio, v
f

, of the 1-24
foundation

One-half of the loaded area's 25-48
length, €

Total applied load, P 49-72

6 3D24.16 Initial crack length 1-24
Crack increment required 25 - 48

Final crack length required 49 - 72

188



(2110, L10,D24.16) Initial NOOFM 1-10
Final NOOFM required 11-20
Logical constant, PRISCK 21-30
(.TRUE., or . FALSE.)

Station spacing, s. 31-54

B. Output Information

The following information is developed and printed by the program:

1. Reprint of geometrical and material properties.

2. Stress-intensity factor, K-.

.

3. Normalized stress-intensity factor, K'^.

4. Maximum tensile stress in the uncracked beam,
based on the infinite beam on elastic solid, cr mr>v .

5. Fundamental length of the beam, a.

6. Relative crack length, c/d.
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C * *** THIS PROGRAM C ALCULATES THE 'Kl' STRES S-INTENSI T Y_FACTOR
C**** ~ OE FINED BY :

C**** Kl = -2.506628274631DO*SOL( 1)

C**** WFTFlTE~5UrnT TT""TRFnrTTT5n~TTJFFrn7JTT^^
"~

C#*** STRESS FUNCTION
C**** NCODE rsrO"'RJFT"PDlTfE"'5Tft'E'55v~r^FOR"~PLANE STRAIfsT"
C**** COND IS THE BEAM'S EFFECTIVE LENGTH
C**** CONH IS THE BEAM'S DEPTH
C**** CONW IS THE BEAM'S WIDTH
ZW*WZ UME IS I HE BbAM»5~Y"OUNG''S WOTJUDJT
C**** CONEF IS THE FOUNDATION'S YOUNG'S MODULUS
C**~** CONFD IS THE FOUNDATION'S DEPTH
C**** CONVF IS THE FOUNDATION'S POISSON'S RATIO
C***# CONA~ I~S~~ ONE-HALF OF THE LOA DE D A R E

A"»
"S~L E NGT

H"

~

C**** CONP IS THE TOTAL APPLIED LOAD
C*?*'* CI IS THE "CRACK LENGTH REQUIRED W THE 'COMPUTaT ION
C**** CINC IS THE INCREMENT OF THE CRACK LENGTH
O*** C1END IS THE FINAL CRACK LENGTH REQUIRED
C#*** MOOFM IS ONE-HALF OF THE NUMBER OF WILLIAMS STRESS FUNCTION
C**** COEFFICIENTS REQUIRED IN THE COMPUTATION
C**** LNOOFM IS THE MAXIMUM VALUE OF " NOOFM REQUIRED
C**** PRISTJK TS THE' LOGICAXCrjN$TANS"TANTr"nTRUEV» INDICATES THAT
C**** AN ACCURACY CHECK OF THE SOLUTION WILL BE MADE
C***# SPACE IS THE REQUIRED SPACING BETWEEN EACH BOUNDARY STATION
r* <Ju .»*. »u o*
[^ *.* 'o *r 'f

IMPLICIT REAL*"8 <A-H,0-Z)
REAL*8 LAGUER
REAL*4 NAM'ETIfiT
REAL*4 FXL, FXS, FXB
LOGICAL PRISCK,ZEROCK,SOLUGK,BASEK

COMMON /DOU6/ PRIS» B, D , CONE, COR, CORR, COMA, CONP, CONH,
*COND, C 1 , CONEF , CONW, CONFD, C 1 END, C I NC , CONVF , SPACE , AM'AX , S I GMAX ,

*CONI,C0NSTA,DELXL,DELXU,DELXS,DFLXB
COMMON /SING/ NOOFM, NOOFXU, NOOFXS, NOUFXB, NOOFXL » LNOOFM, IARG,

* JARG,KARG,LARG,NAMF,NOOFI , NCODE , NOOFTO, MOOFXT , NOOFT 1

,

* NOOFTS,MOOFT2,NOOFTX,NOOFXX, NOOFY1 , NOOFYY, NOOFB1 , NOOFC 1 , NOOFOl

,

* NOOFFl,NOOFGl,NOOFXY,NOOFS
COMMON /LOG/ PRISCK , BASEK
DIMENSION X (001 00 ) ,Y( OOIOO) ,R( OOIOO) , PHI ( OOIOO) ,Vv( 00200) , SOL (010
*0),COFF(0200,.100),C0EFCK(200,100),CALC(200),CADD(2O0) , COM (200)

,

*CONCHK< 0200) , I P I V ( 0100)
EXTERNAL FUNCTN
READ( 5, U6)NC0DE

116 FORMAT( I 1 )

3 CONTINUE
BASEK =. FALSE.
READ( 5,8 01,EN0=1001 ) ( NAME ( I ) , I = 1 , 1 8

)

801 FORMAT ( 18*4)
C

C READ I'N CONSTANTS
C

PPIS = 1. 00-14
RE AO ( 5 , 800 )COND, CONH , CONW, COME, CONEF, CONFD, CONVF , CUNA , CONP,C 1

,

*C INC, CI END
IF ( CONFD. GT.O. 1 ) BASEK = .TRUE.

800 FORMAT ( 3024. 16)
READ(5,802) NOOFM, LNOOFM, PRISCK, SPACE
NOOFI = NOOFM

*02 FORMAT ( 21 10, L10, 024. 16)
FXL = COMA/SPACE + 1,05 191



IMOO.FXL = IFIX(FXL)
EXB = COND/SPACE + 1.05
NOOFXB = IFTX(FXB)'
NOOFXU = MOOFXB - NOOFXL
FXS = CONH/SPACE + 1.05
NOOFXS = IFIX(FXS)
OELXL = COMA/(NOdFXL-r)
DFLXU = (COND - CONA)/NOOFXO
OFLXS = CONH/(NOOFXS -~TJ
OELXB = C0N0/(N_00^XB_-_1J_
MOOFTO = NOOFXL + 1

MOOFXT = MOOFXL + NOOFXO
MOOFTi; = NOOFXT +~T
MOOFTS = NOOFXT +J^00FXS_-_1
N00FT2 = MOOFTS + 1

NOOFTX = MOOFTS + MOOFXB - 1

M F X
X '"="

'"N"0 F XT ~+~NQTJFXB
-

MOOFY1 = MOOFXX + 1

NOOFYY = MOOFXX + NOOFXS""
MOOFfil = NOOFYY + 1

NOOFCl "•= MOOFYY + NOOFXT - 1

MOOF01 = NOOFCl + 1

MOOFF1 = MOOFCl + NOTJFXS -2
M00FG1 = MOOFF1 + 1

NDOFXY = MOOFYY + NOOFTX -2
MI TWIT = MOOFXL + NOOFXO+ NOOFXS + NOOFXB
IARG = MOO FT

X

LARG = MOOFXY
COMB = COMW/2. ODO
COM I = C0MW*C0MH**3/12.0_D0
CONSTA = (C0NE*C0Nl'7CdNEF7C0N~8)'**( 1.000/3.000)
IFTMCOOE. EO. 1 )COMSTA=( 1 . 0D0-C0NVF**2 )**'( 1 . 000/ 3.000 )_*CJJNSTA_

C

C***4 CHECK FOR SEM I- I NF I NI TE DEPTH FOUNDATION.
C

\ IF(BASFK) D = CONFD/CONSTA
D = 10000. ODO
B = CONA/CONSTA

: AMAX = LAGUERI _", B , 0. ODO , IT, FUNcTn")
"

SIGMAX = 6.0D0*AMAX/(C0NH-v*2*C0NW)
9000 CONTINUE

IF ( NOOFM. GT. LNOOFN) GO TO 9999
IF (NOOFM. EO.'NOOFl") GO"TO" 9997
GO TO 999B

9999 CI = CI ' + "C'INC

NOOFM = MOOFI
C1EMD = C1EMD+0.1D-3
IF(C1.GT. CI END) GO TO 3

9997 CALL COORD (X,Y,R,PHI)
999B CONTINUE

KARG = NOOFM*

2

JARG = 2*KARG
NOOFS = KARG
CALL STRESK ( X, Y, R, PH I , V9, SOL , COEF, COEFCK,CALC ,-CADO, CON,

* CONCHK, IP IV

)

NOOFM = NOOFM + 5

GO TO 9000
1001 STOP

END
SUBROUTINE COORD (X,Y,R,PHI)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*4 NAME( 18

)
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COMMON /DOUB/ PRISt B, , COMB, COR, CORK, COMA, CONP, CONH,
*COND, Cl,CONEF, CONW, CONFD, C 1END, C I NC , CONVF , SPACE, AM AX , SI GMAX

,

*C0NI,C0NSTA,DELXL,DELXU,DELXS,DELXB
COMMON) /SING/ NOOFM, NOOFXU, NOOFXS, NOOFXB, NOOFXL, LNOOFM, IARG,

* J ARG, KARG, L ARG, NAME, NOOF I , NCODE, NOOFTO, NOOFXT , NOOFTl

,

* NOOFTS , NOOFT2, NOOFTX, NOUFXX , MOOF Y 1 , NOOFYY, NOOFBl , NOOFC 1 , NOOFD 1

,

* MOOF F 1 , NOOFG 1 , MOOF X Y , NO( I F

S

DIMENSION X(IARG), YdARG), R(IARG), PH'KIARG)
C

C GENERATION OF X S V

C

Y( 1 ) = 0.
X( 1 ) = CONH - CI
DO 803 1=2, NOOFXL
Y( I ) = Y(I- 1) + DELXL

803 X( I ) = X ( 1-1 )

Y(NOOFX|_ ) = CONA
DO 863 I=NOOFTO,NOOFXT
Y( I ) = Y( I- 1) + DELXO

863 X( I ) = X( 1-1 )

X(NOOFXT ) = CONH - CI
Y(NOOFXT) = COND
DO 804 I=N00FT1,N00FTS
Y(

I

) = Y( 1-1)
804 X( I ) = X( I- 1 )

- DELXS
Y(NOOFTS) = COND
X(NOOFTS) = - CI
DO 805 I=M00FT2, NOOFTX
Yd) = Yd- 1) - DELXB

805 X(

I

) = X( 1-1
)

Y( NOOFTX) = 0.
C

C CALCULATION OF POLOR COORDINATES
C,

DO "5 1 = 1, NOOFTX
R( I )=DSORT( X( I )**2 + Y( I )**2)

5 PHId )=DATAN2(Y( I ),X( I ) )

C

RETURN
C

END'
~-"

C

SUBROUTINE STRESK ( X , Y , R , PH I , V9 , SOL ,COEF , COEFCK , C ALC ,C ADD, CON

,

* CONCHK, IPIV)
TMPCIC I T "REAl^B ( A-H , 0-T J

REAL*8 LAGUER
" "READ- 4" STAKT3G ) , NTTWETTHl

" ~—
LOGICAL PRISCK,ZEROCK,SOLUCK,BASEK
"COMMON /DOUB/ PR! ST "B; "D t^COME, COR, CORR", CONA", CONP, CONH,
*COND, C 1 , CONEF , CONW, CONFD, C 1 END, C I NC , CONVF , SPACE, AMAX , S I GMAX ,

". *CON I , C ON S1XTDE L XT~,T)E L X"U , D'ElTsTDE L X B
COMMON /SING/ NOOFM, NOOFXU, NOOFXS, NOOFXB, NOOFXL, LNOOFM, IARG,

""~~*-jmG7Km&; i a r g', n ame , n ou ft ^codttwoftct, noo f xttnottfit;
* NOOFTS,NOOFT2,NOOFTX,NOOFXX,NOOFY1,NOOFYY,NOOFB1,NOOFC1,NOO FD U
* N00FF1,N00FG1,N00FXY,N00FS
COMMON /LOG/ PRISCK , BASEK
DIMENSION X(IARG), Y(IARG), R(IARG), PHIdARG), V9UARG), SOL(KARG

2 ) , CO E F ( L ARG, KARG ) , COEFCK ( LARG, KARG ) , CALX ( LAR GJ.»C_A_D D_Lk ARG) ,

TT"ON ( L ARG )
', CONCHK ( L ARG ) , I PI V ( KARG ) , F0UNDT4 )

DAT A STAR/30* '****'/, FOUND

(

1)/ 'SEMI »/,F0UN D (2)/ '- INF ' /, FOUND ( 3 )

/

* • INIT'/,F0UND(4)/ »E'/
EXTERNAL FUNCTN 193



ZEROCK = .TRUE.
SOLUCK = .TRUE.
IF(Cl.EO.O.O) ZEROCK = .FALSE.
IF(Cl.EO.O.O) PRISCK = .FALSE.
IF( (N00FM + 2) .GE. ( NOOFXL+NOOFXU+NOOF.XS+NOOFXB ) )

IF( ( NOOFM+2 ).GE. ( NOOFXL+MOOFXU+NOOFXS+NOOFX8 )

)

IF( ( NOOFM+2 ).GE. ( NOOFXL+NOOFXU+NOOFXS+NOOFXB )

)

IF(Cl.EO.O.O) GO TO 8000

ZEROING BLANK COEFFICIENTS

PRISCK=. FALSE.
SOLUCK*. FALSE.
GO TO 8000

C

C

c

DO 22 I = ltNOOFXY
CONCHM I ) = 0.

CON( I ) =0.
DO 22 J=1,N00FS
COEFCKI I, J) = 0.

22 COEF( I, J) = 0.

CALCULATION OF SIGMA XX COEFFICIENTS

DO 15
N = I

IF( I.

IF( I.

IF( I.

= 1. D
DO 15
IF( J-
C0R = 1

GO TO
COR =-

CORR =

ESIN =

ECOS =

IF(DA
IF (DA
CALL
COEF(
**ECOS
CALL
COEF(

**EC'OS
15 0=0+1

I=1,NOOFXX

\
N = I + NOUFX'S - 2

CON(I) = -CONP/( 2.0D0*C0NA*C0NW)
CON( I ) =-LAGUER( 3, B , Y ( N ) /CONST A , D , FUMCTM ) /CONW

80

81
201

GT.MOOFXT)
LE.NOOFXL )

GT.MOOFXT)

J=1,NQ0FM
( J/ 2* 2")

) 80T80»8l
.DO
201
l.DO
-COR

DSIN( PHUN) )

DCOS('PHI(N') )

BS(ESIN).LT.PRIS) ESI N=0. ,

BS(ECOSr.Lf.PRIS) ECOS=0.
STR E S 1_ ( 0,PH I ( N UO 1,D2 L 3

?
D4 ,_D5_, R (N ) )

I,2*j-1) = D1*ESIN*E
;

SIN +D2*EC0S*EC0S/R (

/R(N) +D5*ECOS*ECQS/R(N)**2 - D4*2.D0*EC
STRES2 '

("Q, PH I ( N ) T Dl , D2, D3, D4, D5~,~R( "N ) )

I,2*J) = D1*ESIN*ESIN +D2*EC0S*EC0S/R

(

N)

0S :

+ D3*2
ESIM/R(

.[)0*ESIN
N)**2

/R(N)
.DO

N)
+ D 5 * ECOS*ECOS/R( IM ) * * 2 - " 04* 2 . D0* ECOS *

+ 03*2.D0*ESIN
ESIN/R(N)**2

C
C

C

CALCULATION OF SIGMA YY COEFFICIENTS

C = _Y(N F X T ) /CONST A_
CONM = LAGUER( 1 , 8, C, D, FUNCTN

j

_D0 17 I=N00FY1,N00FYY
~N = I - NOOFXB - 1

CON(

I

)=-CONM#(X(N)-CONH/2.D0+Cl )/CONI

84

85
203

0=1.DO"
DO 17. J =1 ,N00FM
I F ( J - ( J 77*271 84,8 4, 8 5"

C0R=1.D0
GO" TO 203
>C0R =-1.D0
CORR = -C'OR

"""

ESIN= DSIN(PHKN))
~ECOS = DCO~S( PHI(N) )

IF(DABS( ESIN).LT.PRIS) ESIN=0. %
T9T



TF ( DA B S T ECO5T.TT.WrST EXUS^OT
CALL STRES1 ( Q, PH I ( N ) , Dl , D2, 03, D4, D5 , R ( N j )

C0EF( I f 2*J-lT = " 01*EC"0S*EC0S +D2*ES IN*ES I'N/RTN )" -2.D0*D3*ESTn*
*EC0S/R(N) + 2.D0*D4*EC0S*ESIN/R('N)**2 + D5*ES IN*ES IN/R ( N ) **2
CALX "STRTS2~TD\~F^rriTr,XTT0T,Tn-7D^DTrRTNTl ~ "

C0EF(I,2*J) = D1*E_C0S*EC0S +D2*ES IN*ES IN/R ( N) "2. D0*D3»ESlN*
* EC OS / R ( N )

"
" + 2 . DO* 04* ECOS* ES I N ?R ( N ) **2 +

" ~"D5* E S I N*E S IN/ R ( N
)

"** 2

17 0=0+1.00
C

C CALCULATION OF SIGMA XY COEFFICIENTS
C

—
-

-

CONG = -LAGUER( 2, B, C, D, FUNCTN ) /CONW
DO 16 I=NOOFB1,NOOF~XY
N = I - NOOFYY +1
IF(M.LE.NOOFXT"VORT N.GE.NOOFTS) GO TO 550
C0N( I ) = 6*0DO*C0NQ/CONH**3*(Cl*C0NH+X(N)*C0NH-2.0D0*X(N)*Cl-Cl**2

* -X(N)**2)
550 = 1.00

DO 16 J=1,N00FM
IF( J-( J/2*2) ) 82,82,83

82 C0R=1.D0
GO TO 202

83 C0R=-1.D0
202 CORR=-COR

FC'OS = DCD ST2 . D'0* P Hi ( W) )

ESIN = DSIN(PHKN) )

ECOS = DCOS(PHKN))
IF ( DABS ( ESIN).LT. PRIS) ESIN=0.
IF(DABS!FCOS).LT.PRISJ "" FC0S=0.
IF(DARS(ECOS).LT.PRIS) ECOS=0.
CALL STRES1 ( , PH I( N ) , 01 , 02 , 03, 04 r D5 , R ( N )

)

C0EF( I,2*J-1) = -D1*EC0S*ESIN -D3*FC0S/R ( N ) +p5*EC0S*ESIN/R ( N)
***2 +D2*EC0S*ESIN/R( N) +D4*FC0S/R( N )**2
CALL STRES2 ( 0, PH I ( N ) , 01 , D2 , 03 , 04, 05 , R ( N )

)

C0EF!T,2*JJ = =D1*XCCTS*E"SIN -D3*FC0S/R ( N ) +D5*BC0S*ESIN7R'(N)
***2 +D2*EC0S*ES I N/R ( N ) +04=:= FCOS/R ( N ) **2

16 0=0+1.00
C

C**** SOLVING FOR SOLUTIONS
C

00 130 I = 1,N00FXY
COMCHK( I ) = CON( I

)

DO 130 J = 1,N00FS
130 COEFCK! I f J) = COEF( I, J)

CALL DLLSQ(COEFCK,CONCHK,NOOFXY,NOOESt 1, SOL

,

IPIV, 1 .E-72t IER,V9)
SFFK1 = -2.50662827463100*SOL( 1)
YY = SEFK1/(SIGMAX*DSQRT(C0NH)

)

CH = Cl/CONH
C

C OUTPUT
C
8000 WRITE(6 t 810) ( STAR ( I ) , I =1 , 30

)

810 FORMAT! IH1/1H1 // 30A4)
WRITE! 6, 873) ( NAME ( I ) , I = 1 , 1 8

)

873 FORMAT! //30X, 'STRESS INTENSITY FACTOR A N
* A L Y S I S»///25X, 'CASE : ',18A4)
IF<NCOOE .LE. 0)WRITE(6,114)
IF (iMCODE . EO. 1) WRITE! 6, 115)C0NVF

114 FORMAT! //30X, 'PLANE STRESS SOLUTION.')
115 FORMAT! //30X, 'PLANE STRAIN SOLI.JT I ON. • , 21X , • FOUNDAT I ON • ' S POISSON 1 '

*S RATIO =' ,F7.4)
C0N2A = 2.0D0*C0f\!A 195 o-



8 72

6719

671*

*76

IF( «AS
WRITE (

*co-vp,c
30 TO

31? WRITE (

*CPMPf.C
313 COMTIN
871 FORMAT

*F10. 1,
* 'CRACK
* : • / / 3

-"•OTHER
*/30X, »

FORMAT
* F 1 . 1

,

* 'CRACK
* : ' / / 3

* 'OTHER
*/30X, '

IFTSOL
WRITE (

FORMAT
EXECUT
IFIZER
W R IT E (

FORMAT
LENGTH
GO TO

879 IF( IE.R

WRITE(
90 FORMAT

* L Y ILL
8 78 WRITE(
299 FORMAT

' WRITE(
8 13' FORMAT

fe//30X,
3 F12.6
WRITE'(
IF( PRI
GO TO
W R I T E (

FORMAT
DO 3 2

C A L C ( I

DO 3 2

CALC( I

DO 526
CADD( I

WRITE(
NOOFBl

296 FORMAT
S///43X
* , 1 4 ,

'

* 'FOOAT
*LOCATI
* D A R Y •

,

#/30X,

•

* 'FOOAT
* 'FOOAT
WRITF(

297 FORMAT

OF BOUNDARY STATIONS

SPECIFIED CRACK

877

293
8107

32

5268

EK) GO TO 312
6.871 ) CONE, CONH,COND.C1,CONW, CONE F, (

F

OUND ( I ) , 1 = 1 ,4) ,

0N2A,NOOF~S, SPACE
313
6. 872 )00NE,CONH t COND,Cl,C0NW,CONEF,CONFD,
0M2A,N00FS, SPACE
OF
(7/56X, • PARAMETERS »//25X, 'BEAM : V/30X, ' YOUNG ^ «S MODULUS' ,

18X, 'BEAM ObPTH « , 5X, F10.2, /73X, 'BEAM LENGTH' ,4X , FLO. 2» /30X

,

LENGTH • , IX, Fib. 4-, 20X, • BEAM WIDTH » , 5X , F 1 0. 2//25X , ' FOUNDATION
OX., ' YOUNG • ' S MODULUS ' , F 1 0. 1,1 8X , ' DEPT H '",10X", 4A4"" ,7/25X ,

S : '//30X, 'LOAD', 9X.F10,. 1,20X, 'LOADED AREA' 'S LENGTH' ,F8;4,
NUMBER OF SOLU-T I ONS ' ,T4,"20X, • ST AT I ON SPAC" I NG ' ,4X , F8 .3

j

( //56X, 'PARAMETERS '//25X, 'BEAM : '//30X, 'YOUNG' k S MODULUS'

,

18X, 'REAM DEPTH' ,5X, F 10.2,/ 73X, 'BEAM LENGTH' , 4X , F 10. 2 ,/30X,
"

LENGTH', IX, F10.4,20X, 'BEAM W I DTH • , 5X , F 1 0. 2//25X
,
_' FOUND AT I 0N_

OX ,
• YOUNG '

• S MODULUS • , F10. 1 , 1 8X , 'DEPTH ' VlOX , F12 .5 , 7/2 5 X

,

S : '//30X, 'LOAD', 9X, F10. 1,20X, 'LOADED AREA''S LENGTH ', F8. 4,
NUMBER OF SOLU.Tl ONS ' , I 4, 20X, ' STAT ION SPAC ING • , 4X", F8 . 3 )

OCK) GO TO 6718
6,6719)
(//15X, •* * * * * NOOFM > NUMBER
ION WAS TERMINATED * * * * *')

OCK) GO TO 8 79
6,876)
(// 15X, •* * *, * * THEORY IS NOT VALID FOR— EXECUTION WAS TERMINATED * * * * *•)
87 7

. EO.OJGO TO 878
6,90)
(///01X»* * * * * SOLUTION PROCEDURE INDICATES MATRIX
-CONDITIONED OR RANK LESS THAN NUMBER OF COLUMNS * * *

6,299) SEFK1
( /// "30X, 'STRESS INTENSITY FACTER Kl =',024.10)
6,813) SIGMAX, YY, CH,CONSTA
( /, 30X, 'MAXIMUM STRESS IN UNCRACKED BEAM = «,F12.6,

• NORMAL I ZED K = ', F 1 2 . 6, //, 30X ,' CRACK/DEPTH RATIO =',

, //30X, 'FUNDAMENTAL LENGTH OF BEAM = «,F12.6)
6,811) ( STAR( I ) , 1 = 1,30)
SCK) GO TO 293
1001
6,8107 )

( 1H1//
1=1, NOOFXY

)=0.
J=l, MOOFS

)= CALC(I) + SOL( J)*COEF( I, J)
8 1=1, NOOFXY
) = COM( I )-CALC( I

)

6, 29 6) NOOFXL*NOOFTO,NOOFXT,NOOFT1, NOOFXX, N00FY1., NOOFYY,
, MOOFC 1 , N00FD1 , NOOFF 1 , N00FG1, NOOFXY
(///35X,'* * * * * OOTPOT CHECK ON SOLUTION FIT * * * * * •

, 'SUMMARY OF BOUNDARY REQUIREMENTS • //30X ,
' EQUAT I ONS 1 TO'

SIGMA XX ON TOP BOUNDARY — LOCATIONS UNDER L0ADV30X,
IONS ',14, ' TO', 14, ' SIGMA XX ON TOP BOUNDARY — REMAINING
ONS ', /30X, /EQUATIONS ',14,' TO', 14,' SIGMA XX ON BOTTOM BOON
/30X, 'EQUATIONS ',14,' TO', 14,' SIGMA YY ON SIDE BOUNDARY',
EQUATIONS ',14,' TO', 14,' SIGMA XY ON TOP BOUNDARY ',/30X

,

SEVERE
: * * •

)

( STAR( I ), 1=1,30)
30A4)

IONS ',14, • TO' , 14, 'SIGMA XY ON
TO' ,14, 'S IGMA XY ONIONS ', 14,

•

6,297)
( // 14X, 'EQUAT 10

SIDE BOUNDARY' ,/30X,
BOTTOM BOUNDARY'

)

NO. '
, 13X, 'THEORETICAL VALUE' , 12X, 'CALCUAT

1 96
'



*ED VALUE • , 15X, "DIFFERENCE » )

WRITE( 6,291 ) ( I,CON( I ),CALC( I ),CADD( I ) , I = 1 , NGQFXY )

291 FORMAT ( 17X, 13, 10X, 302 8. 16)
WRITE! 6, 8 11 ) ( STAR ( I ), 1=1,30)

811 FORMAT*/// 30A4)
1001 CONTINUE

RETURN
END

SU6R0U
IMPLIC
COMMON
*COND,C
*CONI,C
ECOS =

FCOS =

ESIM =

FSIM =

IF(OAB
IFIDAB
IF (DAB
IF (DAB
02PDR2
«RR«(
DPDR=D
D2PDRP
*(+1.00
DPDP=D
D2PDP2

*D0)*(

+

TIME S

IT REA
/DOUB

1,C0!ME
ONSTA,
DCOS(
OCOS(
DSIN(
DSIM(

S ( E S I N

S( ECOS
S( FCOS
S( FSIM
= ( -e
S-1.5D
2PDR2*
=( (S-l
)**(S-
2PDRP*
= ( ( S

l.DO)*

TR
L*
/

F,

DE
( S

(S

( S

(S

).

).

).

).

CO
0)
RR
.5
1.

RR
-1
*(

ESI
8 ( A

PRIS
CONW
LXL,
-1.5
+ 0.5
-1.5
+ 0.5
LT.P
LT.P
LT.P
LT.P
S +(

* ( +

1

/( S-
00)*
DO)*
/( S +

. 500
S-l.

(S,PH
-h,0-
, B,
,CONF
DELXU
DO)*P
DO)*P
00)*P
DO)*P
RIS)
RIS)
RIS)
RIS)
(2. DO
. DO ) *

.500)
ESIN
CORR
.5D0)
)**2*
DO)*C

EE,L)2PDR2,DPDR,D2PDRP,DPDP,D2PDP2,RR)
Z)

, CONE, COR, CORR, COMA, CONP, CONH,
D, CI END, C INC , CONVF, SPACE , AMAX, S I GMAX,
,DELXS,DELXB
HEE )

HEE)
HEF)
HFE)
ESIN=0.
ECOS=0.
FCOS=0.
FSIN=0.

*S-3.D0)/( 2.D0*S+1.D0) )*FCOS)
*( S-1.DO)*CORR

(S**2-.25D0)

-( S- 1 . 5D0 ) * FS I N ) * ( S+ . 5D0 ) *RR** ( S- . 5D0 )

*

ECOS
ORR

- ( S-l . 500 1* ( S+. 500 ) *FCOS

)

*RR** ( S+.

5

RETORM
END

SUBROU
IMPLIC
COMMON

=COND,C
=CONI,C
FSIN =

ECOS =

ESIM =

FCOS =

IF(DAB
IF(DAB
IF(DAB
IF(DAB
D2PDR2
DPDR=D
D2PDRP
**COR
DPDP~=D
D2PDP2

TIME STRES2 ( S, PHEE , 02PDR2 , OPDR , D2PDRP , DPDP , 02 POP 2 , RR

)

IT REAL*8 (A-H,0-Z)
/DOOB/ PRIS, B, D , CONE, COR, CORR, COMA, CONP, CONH,

1, CONEF, CONW, CONED, CI END, C INC, CONVF, SPACE, AMAX, SI GMAX,
ONSTA, DELXL, DELXU, DEL XS, DEL XB
DSIN"( (S+1.D0)*PHEE)
DCOS( ( S-1.D0)*PHEE)
DSIN( ( S-1.D0)*PHEE)
DCOS(

(

S+1.D0)*PHEE)
S(ESIN).LT.PRrS) ~ ESIN = 0.
S(ECOS).LT.PRIS) ECOS=0.
STF5TN1 . LT.PRTST "TS TN=0 .

S(FCOS).LT.PRIS) FCOS=0.
(-ECOS +FC0S)*(S*S+S)*RR**(S-1.00)*(+1.00)*

2PDR2*RR/S
( ( S-l . DOT* ES I N -( S + l . DO ) * FS I N ) * ( S + l . DO ) *RR*

*S*COR

*S*(+1.D0)**S

i2 pdr p^RRrrs+"iTDcn
= ( ( S-l . DO)** 2* ECOS

*T**S*COR
"

- ( S + l . DO )**2*FC0S )*RR** ( S+ 1 . DO ) * ( + 1 . DO

C

C

RETURN
END __ __

REAL FUNCTION FUNCTN*8 ( NFUNCT, B, C , D, X

)

IMPLIC IT RE~AL*8 ( A-H , O-Z )

197



S = D*X
IF ( S. GT. HO. ) GO TO 2

PS I = (S+OSINH(S)*DCOSH(S) )/(DSINH( S)
GO TO 3

2 ps I = l.noo
3 IF(MFUfMCT.EO. 1 ) FUNCTN=

IF ( NFUNCT. EO. 2) FUNCTKl =

IF(MFOMCT.EO. 3) FUNCTN=
*{'X*'(X#*3 +PSI ) )

0SINH( S)

)

( OFXP( X)*OSIN( B*X )*DCOS(C*X ) ) /( X**3+PSI

)

( X*DEXP( X)*DSIN( B*X')*DS IN( C*X ) )/( X**3+PSI )

( DEXP( XH=P-SI*DSIN( B*X)*DCOS(C*X) ) /

RETURN!
END

REAL FUNCTION LAGUER*8< NFUNCT, BB, C,DD, FUNCTN )

IMPLICIT REAL*8 (A-H,0-Z)
COMMON /DOOB/ PRIS, B, , COME, COR, CORR, COMA, CONP, CONH,
'COND'f C 1 . ,CONEF, CONW , CONFD,C TEND, C I NC, CONVF, SPACE , AM AX , S IGMAX ,

'CONI,CONSTAfDE;LXL,DELXU,DELXSrDELXB

C

C,

C

DIMENSION 1(32) j W(32)

PRESET Z AND W ARRAYS,

DATA PI

DATA 1/
1 ,.1072

34922
73581
12763
19855
28862
40145
54333
72687
98829

/3.14
.4448
44875
13273
26733
69798
86094
10181
71977
72133
62809
54286

159265
936583
381781
021994
186241
674272
033605
632347
153944
339690
&66271
828397

3589
3267
76D1
5 D 1

,

D 1 , .

5D2,
5D2,
5 02,
2D2,
702,
D2,.
D2t.

793D0
0180-
,.172
.4616
89829
.1493
.2263
.3234
.4450
.5989
80187
11175

1,. 2 345 26 109 5 196 18 54, .5 76 884629 30188643
2A08 7764446454D1, .252 8336706425794901,
4^6769749767401 , .5903958504174243901,
40 924212 59601, . 1078 30 186 32 53997 202,
113975552255702, .1729245433671531502,

"

088901319677402, . 2 562 86 3 60 22459248 D2,
662915396473702, .3610049480575197402,
920799 57 5493802,. 49 2243V4987 30863902,
2509 162 134018D2, . 65975377287935053D2 ,

'"

4469779 13 52 D2, .88 7 3 5340417 8924002,
13980979377003/

DAT
1 . 1

2 .3
3 ,.
4

5

6

7

8

9

I

J

K

L

, .

.6

.2

.3

. 1

.2

.5

. 1

.2

.4

A W/.109
95903335
176 09125
98080330
59345416
35060222
30589949
23780165
54213383
05442967
66129413
91337549
67151121
51053619

2183419523
97288104,

.

091750700-
66149551D-
128686329D
66258067D-
1 89 13 36 ID

-

77292665D-
339 38 234D-
37880454D-
03973594D-
44542243D-
9 24013700-
38989742D-

849
129
It.
3,.
-5,

8,.
10,
13,

167
20,
25,
30,
37,
47/

7,
98
11

21
.7

42
.9

.2104431079 3881323, .2 35 21322966984801,
378628607176, .705786238657174420-1,
918214834838557D-1, . 3738 81629461 1 5248D-2
48649 18801 364 19D-3,. 39 20341 967987947 2D-4
41 6404578667552D-6,. 7604567879 1207810-7,
8138297104092890-9,
799379 2 8 8 72 7094D- 12,
17 1 8234434207 19D-1 5, _
1 1979 2 2 9 01 6 3618 6 D - 1 8,2

1

1

13386169421062 5630-41,

.346982 5 866 37395 20-22,
41856054546303690-2 7,
192 248760098 2 2240-33,

SUM =0.0
DO 5 J -= 1,32

5 SOM = SUM+W( J )*FUNCTN(NFUNCT, BB,C,DD,Z( J )

)

AREA = 2.0D0*C0IMA
I F ( NFUNCT. EQ. 1 ) LAGUER"
I.F ( NFUNCT. EO. 2) LAGOER
IF(MF0NCT.E0.3) LAGOER

2.0D0*C0NP*C0NSTA**2*SUM/PI/AREA
-2.0D0*C0NP*C0NSTA*SUM/P I_/AREA___
2V0D0*C0NP*SUM/PT/AREA

'"

RETURN
END 198



SUBROUTINE DLLSO( A»B_, M, N, L, X, IP_IV,EPS, IER,AUX)
IMPLICIT "REAL* 8 ( A-H,0-Z )

"

REAL*4 EPS
D I M ENS TOWAT 1 J,B(1),X( 1 nTPTVT I F, AUX ( IT"

1 PIV=O.DO
IEND=0
DO 4 K=l t N

IPIV{K)=K
H=0.00
IST=IEND+T
IEMD=IEND+M
DO 2 I=IST r IEND

2 H = H + A( I )*A< I )

AUXfK )=H
IF(H-PIV)4,4,3

3 PIV=H
KPIV=K

4 CONTINUE
5 SIG=DSORT(PIV)
TOL=SIG*ABS( EPS)
LM=L*M
IST=-M
DO 21 K=1,N
!ST=IST+M+1
IEND=IST+M-K
I=KPIV-K
IF( I )8,H,

6

6 H=AUX(K)
AUX( K )=AUX< KPIV)
AUX(KPIV)=H
ID=I*M
DO 7 1 = 1 ST, I END
J=I+ID
H = A( I)

A(I }=A( J)
A( J)=H
IF(K-1 ) 1.1, 11,9
SIG=O.DO
DO 10 1 = 1 ST, I END
SIG=SIG+A( I )*A( I )

SIG=DSORT( SIG)
IF(SIG-TOL ) 3 2, 32, 11
H=A( 1ST)
IF(H) 12, 13,13
SIG=-SIG
IPIV(KPIV)=IPIV(K)
IPIV( K)=KPIV
BETA=H+SIG
A( IST)=BETA
BETA=l.DO/( SIG*BETA)
J=M+K
AIJX ( J )=-SIG
IF(K-M) 14, 19, 19

14 PIV-O.DO
10 =

JST=K+1
KPIV=JST
DO 18 J=JST,N
ID=ID+M
H=0.00
DO 15 I=IST,IEND 199

DLLS 630

7

8

9

10

11

12
13

DLLS 730
DLLS 740
DLLS 750
DLLS 760
DLLS 770
DLLS 780
DLLS 790
DLLS 800
DLLS 810
DLLS 820
DLLS 830
DLLS 840
DLLS 850
DLLS 860
DLLS 920
DLLS 930
DLLS 97
DLLS 980
DLLS 990
DLLS 1000
DLLS 1010
DLLS1020
DLLS1030
DLLS 1060
DLLS 1070
DLLS 1080
DLL SI 090
DLL SI 100
DLLS1110
DLLS 1120
DLLS1130
DLLS 1140
DLLS 117
DLLS 1180
DLLS1190
DLLS 12 00
DLLS 12 10
DLLS1240
DLLS1270
DLLS1280
DLLS 1290
DLLS 1320
DLLS 13 30
DLLS 1370
DLLS 138
DLLS 139
DLLS1400
DLLS 1410
DLLS 1420
DLLS 1450
DLLS 3.460

DLLS 147
DLLS 1480
DLLS1490
DLLS1500
DLLS 15 1.0

DLLS 1520



is

16

17

18
19

2G

21

22

2 3

24

25
26

27
28

I I = I + T

h = H + A( I )*A( I I )

H=BETA*H
00 16 1 = 1 ST, I END
II = 1 + 10
A( II )=A( II )-A( I )*H
II=IST+ID
H=AUX< J )-A( II )*A( I I )

AIIX( J )=H
IF(H-PIV) 18, 18, 17
PIV=H
KPIV=J
CONTINUE
HO 21 J=.K,LM,"M
M=O.DO
1 E'ND=J+M-K
1 1 = i S T

00 2 I=J,IEND
H=H+A( I I )*B( I

)

1 I = I 1 + 1

H=BFTA*H
11 = 1ST
no 21 I=J, I END
R( I )=B( I )-A( II )*H
11=11+1
IF^ =

I=N
LN=L*N
PIV = 1.00/AUX( 2*i\i)

00 2 2 K=N,LN,N
X(K ) = PIV*R( I )

1 = I+M
IF(N-1)26,26,23 a
JST=(N-1 )*M+N
00 2 5 J = 2,N
JST=JST-M-1
K=K! +M+1-J
PIV=1.00/AIJX( K )

KST=K-M
ID=IPIV(KST)-KST
IST=2-J
00 2 5 K = 1,L
H=B(KST)
IST=IST+N
IEN0=IST+J-2
I I=JST
00 24 1 = 1 ST, I END
1 1 = 1 I+M
H = H-A( I I )*X( I

)

I = I ST-1
I I = I + 10
X( I )=X( II )

X{ I I )=PIV*H
KST=KST+M
IST=N+1
IEMD=0
00 29 J=1,L
1 END = I END + M
H=0.00
IF( M-N)29,29, 2 7

DO 28 1 = 1 ST, I END
H=H+B( I )*B( I

)
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X

IST=IST+M
29 AUX( J)=H

RETURN'
32 IER=K-1

RETURN
END
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