$\mathbb{S} \mathbb{U} / \mathbb{P} \mathbb{L} \quad \mathbb{E} \quad \mathbb{M} \mathbb{E} \mathbb{N} \quad \mathbb{T}$

o the third edition of the

 OR, A
D I C T I O

 or $A R T S, S G I E N G E S$,AND

MISCELLANEOUS LITERATURE.

IN TWO VOLUMES.

Illuftrated with Fifty Copperplates.

By GEORGE GLEIG, LL.D. F.R.S. Edin.

```
NON IGNORO, QUA BONA SINT, FIERI MELIORA POSSE DOCTRINA, ET QUA NON OPTIMA, ALIQUO MODO ACUI TAMEN, ET CORRIGI POSSE._CICERO.
VOL. II.
```

THE SECOND EDITION, WITH IMPROVEMENTS.

© Oinburgh :

PRINTED FOR THOMSON 'BONAR, PARLIAMENT-SQUARE;
BY gohn brown, anchor close, edinburgh.
1803.
[Entercy in statjoncta han.]

ADVERTISEMENT.

ITI would ill become me to difmifs thefe Volumes from my hands without acknow. ledging that, from many of the mof valuable difquifitions which they contain, I car claim no other merit than that of having ufhered them into the world.

Those who have read, and who underftand, the articles in the Encyclopædia Britannica, which were furnifhed by Profeffor Robifon of Edinburgh, can hardly need to be informed, that to the fame eminent philofopher I am indebted for the valuable articles Arch, Astronomy, Carpentry, Centre, Dynamics, Electricity, Impulsion, Involution and Evolution of Curves, Machinery, Magnetism, Mechanics, Percussion, Piano-Forte, Centre of Position, Temperament in Mufic, Thunder, Mufical Trumpet, Tschirnhaus, and Watchwork, in this Supplement. Of a friend and co-adjutor, whofe reputation is fo well eftablifhed as Dr Robifon's, 1 am proud to fay, that, while I looked up to him, during the progrefs of this Work, as to my mafter in mathematical and phyfical fcience, I found him ever ready to fupport, with all his abilities, thofe great principles of religion, morality, and focial order, which I felt it my own duty to maintain.

To Thomas Thomfon; M. D. of Edinburgh, a man of like principles, I am indebted for the beautiful articles Chemistry, Mineralogy, and Vegetable, Animal, and Dyeing Substances; of which it is needlefs for me to fay any thing, fince the Public feems to be fully fatisfied that they prove their author eminently qualified to teach the fcience of Chemiftry.

The account of the French Revolution, and of the wars which it has occafioned, has been continued in this Supplement by the fame Gentlemen by whom that account was begun in the Encyclopædia; and, owing to the caufe affigned in the article, probably with the fame merits and the fame defects.

My thanks are due to Dr William Wright for his continued kindnefs in communicating much curious botanical information: and to Mr Profeflor Playfair of the univerfity of Edinburgh, for lending his affiftance, occafionally, in the mathematical department; and for writing one beautiful article in that fcience, which is noticed as his in the order of the alphabet.

In compiling this Supplement, I have made very liberal ufe of the moft refpectable literary and fcientific journals, both foreign and domeftic; of all the late accounts of travels and voyages of difcovery, which have obtained, or feem indeed to deferve, the regard of the Public ; of different and oppofite works on the French revolution, and what are emphatically called Frencb principles; and even of the moft approved Dictionaries, fcientific and biographical. . From no Dictionary, however, have I taken, without acknowledgment, any articles, except fuch as are floating everywhere on the furface of fcience, and are the property, therefore, of no living author.

After all my labour and induftry, which, whatever be thought of my other merits, I am confcious have been great, no man can be more fenfible than myfelf, that the Fncyclopredia Britannica, even with the addition of this Supplement, is ftill imperfect. It would continue to be fo, were another Supplement added to this by the inoft learned and laborious man on earth; for perfection feems to be incompatible with the nature of works conftructed on fuch a plan, and embracing fuch a variety of fubjects.

No candid reader will fuppofe that, by exprefling myfelf thus, I mean to cenfure the plan of the Encyclopredia Britannica in particular ; for, to the general excellence of that plan 1 have elfewhere borne my teftimony, which I have yet feen no reafon to retract. Experience has indeed led me to think, that it is fufceptible of fuch improvements as would cnable the principal Editor to carry the work nearer to perfection, even with lefs rouble to himfelf; but the purchafers of the third edition and this Supplement need not regret the want of thofe improvements, for they are fuch as few would difcern, who have not paid the fame attention that I have done to dictionaries of arts, fiences, and literature.

Before I take leave of the reader, I mult account for the omiffion of one or two articles (chiefly biographical) which I had given him reafon to expect in thefe volumes. It was my intention at firf to introduce into the Supplement articles on every fubject which had been admitted into the Encyclopædia itfelf; and hence in the firft fupplementary volume will be found biographical iketches of men whofe characters, though in fome refpects remarkable, have very little connection with fcience, arts, or literature. From this part of the original plan I was foon obliged to deviate. So many applications were made to me to infert accounts of perfons who, whatever may have been their private virtues, were never heard of in the republic of letters, that I was under the neceffity of excluding from the fecond volume the lives of all fuch as had not cither been themfelves eminent in literature, or in fome liberal art or fcience, or been confpicuous as the patrons of fcience, arts, and literature, in others. Hence the omiffion of the life referred to from Aubigne in the firlt volume, and of one or two others to which references are made in the fame way. 'I'he life of Mr James Hay Beattie of Aberdeen, whofe originality of genius, ardent love of virtue, and early and extenfive attainments in fcience and literature, raife him almoft to the eminence of Barretier, of whom we have fo pathetic an account from the pen of Johnfon, I omitted with regret; but I thought not myfelf authorized to publifh what his father had then only diftributed among a few particular friends. For the omiffion of the life of Soame Jenyns I can make no apology: it was the confequence of forgetfulnels.

For the errors of there two volumes, whether typographical or of a nature more important, l have perhaps no occafion to folicit greater indulgence than will be voluntarily extended to me by a gencrous Public. Some errors I have corrected in this fecond impreffion, and fome deficiencies I have fupplied; but I was reftrained by thofe who are now Proprietors of the Work from making any addition to the firft volume, or any confiderable alteration in the firft part of the fecond. Hence the different conclufions which the reader will obferve in the articles Galvanism and Torpedo, refpecting the nature of the Galvanic power. Of thefe articles, the former was furnifhed by a friend, whole name l am not at liberty to publifh; but whofe reafonings appeared to me too worthy of attention to be either omitted or abridged, though they lead to a conclufion which facts more recently afcertained feem to fet afide. Thefe facts I felt it my duty to ftate to the public; and, under the title Torpedo, I have been enabled to fate them with the precition and regularity of arrangement which characterife the writings of Dr Thomfon.

Encyclopedia Britannica.

I $\mathrm{N} \quad \mathrm{D}$

 - I quantity. Newton, in his Treatife on Fluxions,INCREMENT, is the fmall increafe of a variable calls thefe by the name Moments; and obferves, that they are proportional to the velocity or rate of increafe of the flowing or variable quantities in an indefinitely fmall time. He denotes them by fubjoining a cypher o to the flowing quantity whofe moment or increment it is; thus, wo the moment of x. In the doctrine of Increments, by Dr Brooke Taylor and Mr Emerfon, they are denoted by points below the variable quantities ; as x. Some have alfo denoted them by accents underneath the letter, as x; but it is now mure ufual to exprefs them by accents over the fame letter, as x.

Method of INCREMENTS, a branch of Analy. tice, in which a calculus is founded on the properties of the fucceffive values of variable quantities, and their differences or increments.
The inventor of the miethod of increments was the learned Dr Taylor, who, in the year 1715 , publifhed z treatife upon it ; and afterwards gave fome farther account and explication of it in the Philef. Tranf. as applied to the finding of the fums of feries. And another ingenious and eafy treatife on the fame, was pubblifhed by Mr Emerfon, iu the year 1763 . The method is nearly allied to Newton's Doctrine of Fluxions, and arifes out of it. Alfo the Differential method of Mr Stirling, which he applies to the fummation and interpolation of feries, is of the fame nature as the me. thod of increments, hut not fo general and extenfive.
indeterminate problem. See Algebra, Part I. Chap. VI. Encycl.

Diophantus was the firft writer on indeterminate problems, which, after the publication of his work in 162r by Bachet, employed much of the time of the moft celebrated mathematicians in Europe. Afterwards fucla problems were neglected as ufelefs, till the public attention was again drawn to them by Euler and La Grange. The example of fuch men was followed by Mr John Leflie, a very eminent and felf-taught mathematician ; who, in the fecond volume of the Tranfacions of the Royal Society of Edinhurgh, has publifhed an ingenious paper on indeterninate problems, refolving them by a new and general principle. "The doctrine of indeterminate equations (fays Mr Leflie) has been feldum treated in a form equally fy fematic with
Suppl. Vol. II. Part I.

I N D
the other parts of algebra. The folutions commonly Indetermio given are devoid of uniformity, and often require a variety of affumptions. The object of this paper is to refolve the complicated expreflions which we ubtain in the folotion of indeterminate problems, into fimple equations, and to do fo, without framing a number of affumptions, by help of a fingle principle, which, though extremely fimple, admits of a very extenfive application.
"Let $\mathrm{A} \times \mathrm{B}$ be any compound quantity equal to another, $\mathrm{C} \times \mathrm{D}$, and let m be any rational number affumed at pleafure; it is matifeft that, taking equimultiples, $\mathrm{A} \times{ }_{m} \mathrm{~B}=\mathrm{C} \times m \mathrm{D}$. If, therefore, we fuppore that $\mathrm{A}=m \mathrm{D}$, it muit follow that $m \mathrm{~B}=\mathrm{C}$, or $\mathrm{B}=\frac{\mathrm{C}}{m}$. Thus two equations of a lower dimention are obtained. If thefe be capable of farther decompofition, we may affume the multiples n and p, and form four equations ftill more fimple. By the repeated application of this principle, an higher equation, admitting of divifors, will be refolved into thofe of the firt order, the number of which will be o:le greater than that of the multiples aflumed."

For example, refuming the problem at frif given, viz. to find two rational numbers, the difference of the fquares of which fhall be a given number. Let the given number be the product of a and b; then by hypothefis, $x^{2}-y^{2}=a b$; but thefe compound quantities admit of an eafy refolution, for $\overline{x+y} \times \overline{x-y}=$ $a \times b$. If, therefore, we fuppofe $x+y=m a$, we fhall obtain $x-y=\frac{b}{m}$; where m is arbitrary, and if rational, x and y muft alfo bé rational. Hence the refolution of thefe two equations gives the values of x and j, the numbers fought, in terms of m; viz.
$x=\frac{m^{2} a+b}{2}$, and $y=\frac{m^{2} a-b}{2} \frac{b}{m}$.
INDUCTION, in logic, is that procefs of the underftanding by which, from a nuinber of particular truths perceived by fimple appreheufion, and diligently compared together, we iufer another truth, which is always general and fometimes univerfal. It is perhaps needlefs to obferve, that in the procefs of induction the truths to be compared muft be of the fame kind, or relate to objects having a fimilar nature ; for the mereit
induction.

Inductirn. tyro in feience knows that phyfical truths caunot be compared with moral truths, nor the truths of pure mathematies with cither.

That the method of induction is a juft logic has been fufficiently evinced clfewhere (fee Logic, Part III. chap. V. and Philosophy, ${ }^{\circ} 73-78$, Encycl.), and is now indeed renerally admitted. It is even admitted by Britifh philofophers to be the only method of reafoning by which any progrefs can be inade in the phyfical feinces; for the laws of Nature can be difcovered only by accurate experiments, and by carefully noting the agrecments and the differences, however minute, which are thus found among the phenomena apparently fimilar. It is not, however, commonly faid that induction is the method of reafoning employed by the mathematicians ; and the writer of this article long thought, with others, that in pure geometry the reafoning is ftrifly fyllogifical. Matme reflection, however, has led - Appendix him to doubt, with Dr Reid *', the truth of the geneto Vul. II. rally received opiuion, to doubt even whether by cateof Sketibes gorical fyllogifms any thing whatever can be proved.
of the Hiffo- To the idulaters of Arinotle we are perfectly aware
To the idolaters of Arilotle we are perfectly aware
hat this will appear an extravagant paradox; but to the
votaries of truth, we do not defpair of making it very evident, that for fuch doubts there is fome formdation.

We are led into this difquifition to countcract, in fome degree, what we think the pernicious tendency of the philofophy of Kant, which attempts have been lately made to introduce into this country. Of this philofophy we fhall endeavour to give fomething like a diftinct view in the proper place. It is fufficient to obferve bere, that it refts upon the hypothefis, that "we are in poffeffion of certain notions à priori, which are abfolutely independent of all experience, although the objequs of experience correfpond with them; and which are dininguifhed by neceffity and Itrict univerfality." 'Thefe innate and univerfal notions, Kant confiders as a fet of categorics, from which is to be deduced all fuch knowledge as deferves the name of fcience; and he talks, of courfe, or at leaft his Englifh tranflators reprefent him talking, with great contempt, of inductive reafoning, and fubltituting fyllogilic demonfration in its ftead.

As his categories are not familiar to our readers, we fhall, in tbis place, examine fyllogifms connected with the categones of Ariftotle, which are at leaft more intelligible than thofe of I-ant, and which, being likewife general notions, muft, in argument, be managed in the fame way. Now the fundamental axiom upon which every categorical fyllogifm rells, is the well known propofition, which affirms, that "whatever may be predicated of a whole genus, may be predicated of every foccies and of every individual comprehended under that genus." This is indeed an undoubted truth ; but it cannot conflitute a foundation for reafoning from the genus to the fpecies or the individual; becaule we cannot poffihly know what can he predicated of the genus till we know what can be predicated of all the individuals ranged under it. Indeed it is only by afeertaining, through the medium of induction, what can be predicated, and what not, of a number of individuals, that we come to form fuch notions as thofe of genera and fpecies; and therefore, in a fyllogifm ftrictly categorical, the propofitions which conftitute the premiffes, and are taken for granted, are thofe alone which are capable of proof; whild the conclufion, which the logician pretends to
denonfrate, mutt be cvident to intuition or experience, fofuction. otherwife the premiffes could not be known to be true. The analy fis of a few fyllogifms will make this apparent to every reader.
Dr Wallis, who, to an intinate acquaintance with the Ariftotelian logic, added much nathematical and phyfical knowledge, gives the following fyllogifm as a perfec: example of this mode of reafoning in the firt figure, to which it is known that all the other figures may be reduced :-

> Omne animal ef fenfu preditum. Socrates ett animal. Ergo
> Socrates eit fenfiu preditus.

Here the propofition to be demonfrated is, that Socrates is endowed with fenfe ; and the propofitions af. fumed as felf evident truths, upon which the demonilration is to be built, are, that "every aninal is endowed with fenfe;" and that "Socrates is an animal." But how comes the demonttrator to know that "every animal. is cndowed with fenfe ?" To this queftion we are not aware of any anfwer which can be given, except this, that mankind have agreed to call every being, which they perceive to be endowed with fenfe, an animal. Let this then be fuppofed the true anfwer: The next queftion to be put to the demonftrator is, How he comes to know that Socrates is an animal? If we have anfwered the former quellion properly, or, in other words, if it he eflential to this genus of beings to be endowed with fenfe, it is obvious that he can know that Socrates is an animal only by perceiving lim to be endorved avith fenfe; and therefore, in this fyllogifm, the propofition to be proved is the very firf of the three of which the truth is perceived; and it is perceived intui. tively, and not inferred from others by a proceis of reafoning.

Though there are ten categories and five predicables, there are but twn kinds of categorical propofitions; viz. Thofe in which the property or accident is predieated of the fubftance to which it belongs, and thofe in which the genus is predicated of the fpecies or individual. Of the former kind is the propofition pretended to be proved by the fyllogirn which we have confidered ; of the latter, is that which is proved by the following :

> Quicquid fenfu præditum, eft animal. Socrates eft fenfu præditus. Ergo Socrates eft animal.

That this is a catcgorical fyllogifm, legitimate in mode and ligure, will be denied by no man who is not an abfolute flranger to the very firlt principles of the Arifotelian logic; but it requires little attention indeed to perceive that it proves nothing. The impofition of names is a thing fo perfectly arbitrary, that the being, or clafs of beings, which in Latin and Englifh is called animal, is with equal propriety in Greek called ζ cov, and in Hebrew בצ. To a native of Greece, therefore, and to an ancient Hebrew, the major propofition of this fyllogifm would have been wholly unintelligible; but had either of thofe perfons been told by a man of known veracity, and acquainted with the Latin tongue, that cvery thing endowed with fenfe was, by the Romans, called animal, he would then have underfood the propofition, admitted its truth without hefitation, and have
henceforth

Indution. henceforth known that Socrates and Mofes, and cvery thing elfe which he perceived to be endowed with feufe, would at Rome be called animal. This knowledge, lowever, would not have refted upon demonftrative rea. foning of any kind, but upon the credibility of his informer, and the intuitive evidence of his own fenfes.
It will perhaps be faid, that the two fyllogifms which we have examined are improper examples, becaufe the truth to he proved by the former is felfevident, whilt that which is meant to be eftahlifhed by the latter is mercly verbal, and therefore an bitrary. But the following is liable to neither of thefe objections:

All animals are nortal.
 AIIan is an animal; therefore
 Man is mort.al.

Here it would be proper to ank the demonftrator, Upon what grounds he fo confidently pronounces alf animals to be mortal? The propofition is fo far from exprefling a felf-crident truth, that, previsus to the entrance of fin and death into the world, the firft man had furely no conception of mortality. He acquired the notion, however, by experience, when he faw the animals die in fucceffion around him; and when he obferred that no animal with which lie was acquainted, not even his own fon, efcaped death, he would conclude that all aninals, without exception, are mortal. This conclufion, however, could not be built upon fyllogific reafoning, nor yct upon intuition, but partly upon expesience and partly on analogy. As far as his experience went, the proof, by induction, of the mortality of all animals was complete; but there are many animals in the ocean, and perhaps on the earth, which he never faw, and of whofe mortality therefore he could affirm nothing but from analogy, i. e. from concluding, as the conflitution of the human mind compels us to conclude, that Nature is uniform throughout the univerfe, and that fimilar caufes, whether known or unknown, will, in fimilar circumftances, produce, at all times, fimilar effects. It is to be obferved of this fyllogifm, as of the firt which we have confidered, that the propufition, which it pretends to demonitrate, is one of thofe truths known by experience, from which, by the procefs of induction, we infer the major of the preniffes to be true; and that therefore the reafoning, if reafoning it can be called, runs in a circle.

Yet by a concatenation of fyllogifms have logicians pretended that a long feries of important truths may be difcovered and demontrated; and even Wallis himfelf feems to think, that this is the inftrument by which the mathematicians have deduced, from a few pofulates, accurate definitions, and undeniable axioms, all the truths of their demonftrative fcience. Let us try the truth of this opinion, by analy fing fome of Euclid's demonftrations.

In the fhort article Principle (Encycl.), it has been flewn, that all our $\operatorname{fir} / \mathrm{l}$ truths are particular, and that it is by applying to them the rules of induction that we form general truths or axioms - even the axioms of pure geometry. As this fcience treats not of real external things, but merely of ideas or conceptions, the creatures of our minds, it is obvious, that its definitions may be perfectly accurate, the induction by which its axioms are formed complete, and therefore the axioms themfelves univerfal propofitions. The ufe of thefe axioms
is merely to fhorten the different proceffes of geometri. Poduaion. cal reafoning, and not, as has fometimes becn abfurdly fuppofed, to be made the parents or canfes of particular triths. No truth, whether gencral or particular, can, in any fenfe of the word, be the caufe of another truth. If it were not true that all individual figures, of whatever form, comprehuding a portion of fipace equal to a portion comprelended hy any other individual figure, whether of the fame form with fome of them, or of a form different from then all, are equal to one another, it would not be true that "things in general, which are equal to the fame thing, or that magnitudes which coincide, or exactly fill the fame fpace," are refpectively equal to one another ; and tierefore the firft and eight of Euclid's axioms would be falfe. So far are thefe axions, or gencral truths, from being the parents of particular truths, that, as conceived by us, they may, with greater propriety, be termed their effspring. 'They are indeed nothing more than general expreflions, comprehending all particular truths of the farse kind. When a mathematical propofition therefore is cnounced, if the terms, of whic' it is compofed, or the ligures, of which a certain relation is predicated, can be brought together and immediately compared, no.demontration is necef. fary to point out its truth or falfehood. It is indeed intuitively perceived to be either comprelhended under, or contrary to fome knowi axicm of the fienence; but it has the evidence of truth or falfel:ood in itfelf, and not in confequence of that axium. When the figures or fymbols cannot be immediately compared, toget er, it is then, and anly then, that recourfo is liad to deme thation; which proceeds, not in a teries of fyllugifnes, but by a procefs of idcal n-enfuration or induction. A figure or fymbol is conceived, which may be cennpared with each of the principal figures or fymbols, or, if that cannot be, with one of them, and then another, which may be compared with it, till through a feries of well known internediate relati i.s, a com parifon is nade between the terms of the criginal propolition, of which the truth or fallehood is then perceived.

Thus, in the 47 th propulition of the firft book of Euclid's Elements, the author propofes to demonftrate the equality between the fquare of the lhypothenufe of a right angted triangle, and the fum of the fquares deferibed on the uther two fides; but he docs not proceed in the way of categorical fyllogifms, by raifing his demonftration on fome univerfal truth relating to the genus of Squares. On the contrary, he proceeds to meafure the three fquares, of which lie has affirmed a certain relation ; but as they cannct be inmediately compared together, he dircets the largell of them to be divided into two parallelugrans, according to a rule which he had formerly afcertained to be jutt; and as thefe parall hograms can, as little as the fquare of which they are the conlituent parts, be compared with the fquarts of the other two fides of the triangle, he thinks of fome intermediate figure which may be applied as a common meafure to the fquares and the parallelograms. Accordingly having before found that a parallclogram, or fquare, is exactly donble of a triangle flandin, on the fame bafe and between the fame parallels with it, he coultructs triangles upon the fame bafe, and between the fame parallels with his parallelograms, and the fquares of the fides containing the right angle of the original triangle : and finding, by a procefs formerly fhewn to be juf, that

In'usin. n. the triangles on the bafes of the parallelograms are preeifely equal to the triangles on the bafes of the fquares, he percejes at unce that the two parallelograme, of which the largelt fquare is compofed, muit be equal to the lime of the two kiler fquares; and the truth of the propulition is demonitrated.

In the courfe of the demonftration, there is not fo much as one truth inferred from another by fyllogifm, but all are perccived in fuccetlion by a feries of fimple apprehenfions. Euclid, indeed, after finding the triargle conftrucied on the bafe of one of the parallelograms to be equal to the triangle conflrueted on the bafe of one of the fquares, introduces an axiom, and fays, " but the doubles of equals are equal to une anot ler ; therefore the parallelogram is equal to the fquare" But if from this mode of expreftion any man conceire the axiom or univerfal truth to be che caufe of the truth more particular, or fuppofe that the latter conld not te appreluended without a frevious knowledge of the former, he is a llanger to the nature of evidence, and to the procels of githeralization, by which axioms are formed.

If we examine the problems of this ancient geometri. cian, we thati find that the truth of them is proved by the very fance neans which he makes ufe of to point wht the truth of his theore:as. Thas, the firft problem of his imnortal worl: is, "to deferibe an equilateral triangle on a given finite Araight line ; and not only is this to be done, but the method by which it is done muft be fuch as can te fhewn to be incontrovertibly juft. The fides of a triangle, however, cannot be applied to each other fo as to be immediately compared; for they are conceived to be immoveable among themfelves. A common meafure, therefore, or fomething equivalent to a common meafure, muft be found, by which the triangle may be conftrneted, and the equality of its three fides afterwards evinced; and this equivalent Euclid finds in the circle.

By contemplating the properties of the cirele, it was eafy to perceive that all its radii mun be equal to one another. He therefore directs two cireles to be deferibed from the oppolite extremities of the given finite flraight line, fo as that it may be the radius of each of them; and from the, point in which the circles interfeet one another, he orders lines to be drawn to the extreme points of the given line, affirming that thefe three lines conftitute an equilateral triangle. To convince his read. er of the truth of this affirmation, he has only to put him in mind, that from the properties of the circle, the lines which he has drawn mull be each equal to the given line, and of courfe all the three equal to one another; and this mutual equality is perceived by fimple apprehenfion, and not inferred by fyllogiftic reafoning. Euclid, indced, by introducing into the demonftration his firft axiom, gives to it the form of a fyllogifm : but that fyllogifm proves nothing; for if the equality of the three fides of the triangle were not intuitively perceived in their pofition and the properties of the circle, the firft axiom would itfelf be a falfehood. So true it is that categorical fyllogifms have no place in geometrical reafoning; which is as ftrictly experimental and inductive as the reafoning employed in the various branches of phyfics.

But if this be fo, how come the truths of pure geo-
metry to be neceffary, fo that the contrary of any one Induafon. of them is elcarly perceived to be impofible; whilt phylieal truths are all contingent, fo that there is nut one of them of which the direet contrary may not eafiily be conccived?

That there is not one phyfical trutl, of which the contrary may not be cunceived, is not perhaps fo certain as has generally been inagined; but admitting the fact to be as it has commonly been llated, the apparent difference between this clafs of truths and thofe of pure geometry, may be eafily accounted for, withuit fuppofing that the former refts upon a kind of evidence totaily diferent from that which fupports the fabric of the latter.

The objects of pure geometry, as we have already ohferved, are the creatures of our own minds, which contain in them nothing concealed from our view. As the mathematician treats then merely as meafurable quan. tities, he knows, with the utmoll precifion, upon what particular properties the relation affirmed to fuhfilt between any two or more of them muft abfulately depend ; and he cannot poffibly entertain a duubt but it will be found to lave place among all quantities having the fanse properties, beeaufe it depends upon then, and upon them alone. His proeefs of induction, therefore, by a feries of ideal meafurements, is always complete, and exhaufts the fubject ; but in phyfical inquiries the cafe is widely different. The fubjects which empley the pliyfieal inquirer are not his own ideas, and their various relations, but the properties, powers, and relations of the bodies which compofe the univerfe; and of thofe bodies he knows neither the fuhtance, internal flruéture, nor all the qualities: fo that lie can very feldom dincover with certainty upon what paticular property or properties the phenomena of the corporeal world, or the relations which fubfit among different bodies, depend. He expects, indeed, with confidence, not inferior to that with which he admits a mathematical demonflation, that any corporeal phenomenon, which he has obferved in certair circumftances, will be always obferved in circumftances exactly fimilar ; but the miffortune is, that he can very leldom be afcertained of this fimilarity. He does nut knuw any one piece of matter as it is in itfilf; he cannot feparate its various properties; and of courfe caunot attribute to any one property the effects or apparent effects which proceed exclufively from it. Indeed, the properties of bodies are fo clofely interwoven, that by human means they cannot be completely feparated; and hence the moft cautions inveftigator is apt to attribute to fome one or two properties, an event which in reality refults perhaps from many. (See Philosophy and Physics, Ezajcl.) This the geometrician never does. He knows perfectly that the relation of equality which fubfifts bet ween the three angles of a plain triangle and two right angles, depends not upon the fize of the triangles, the matter of which they are conceived to be made, the particular place which they occupy in the miverfe, or upon any one circumflance, whatever befides their triangularity, and the angles of their corrolets being exactly right angles; and it is upon this power of diferimination which we have in the conceptions of pure geometry, and have not in the objects of phyfics, that the truths of the one fcience are perceived to be neceffary, while
thofe

INF [N] I N F

Irettia, thofe of the other appear to be contingent ; thougli Infanma the mode of demonitration is the fame in both, or at tion. leaft equally removed from categorical fyllogifms.

INERTIA. Sce Dynamics and Impulsion in this Supoliment.

INFLAMMATION has been fufficiently explained in the Ercyclopadia, and in the article Cuemistry in this Sufplement; but it cannot be improper, in this place, to give an account of fome remarbable

Sfontineous Infleingasion's, which, as different fubfances are liable to them, have been, and may again be, the caufe of many and great misfortunes.

The fpoutanenus inflamination of effential oils, and that of fome fat oils, when mixed with nitrous acid, are well known to philofophers; fo alfo is that of powdered charcoal with the fame acid (lately difcovered by M. Prouft), and thofe of phofphorus, of pyrophorus, and of fulminating gold. Tbefefutitances are generally to. be found only in the laboratories of chemifts, who are perfectly well acquainted with the precautions which it is neceffary to take to prevent the unhappy accidents which may be occafioned by them.
'The burning of a ftore-houfe of fails, which happened at Breft in the year 1757, was caufed by the fpoataneous inflammation of fome oiled cloths, which, after having been painted on one fide, and dried in the fun, were fowed away while yet warm; as was thewn by [ublequent experiments*.

Vegetables hoiled in oil or fat, and left to themfelves, after having been preffed, inflame in the open air. This inflammation always takes place when the vegetables retain a certain degree of humidity ; if they are firt thoroughly dried, they are reduced to afhes, without the appearance of flame. We owe the obfervation of thefe facts to MM. Saladin and Carettet.
Yournal
The heaps of linen rags which are thrown together in paper manufactories, the preparation of which is haftened by means of fermentation, often take fire, if not carefully attended to.

The fpontaneuus inflammation of hay has heen known for many centuries; by its means houles, barns, \&c. have been often reduced to afhes. When the hay is laid up damp, the inflammation often happens; for the fermentation is tben very great. This accident very feldom occurs to the firft hay (according to the otfervation of M. de Bomare), but is much more common to the fecond; and if, through inattention, a piece of iron fould be left in a falk of hay in fermentation, the inflammation of that ftalk is almoft a certain confequence. Corn heaped up has alfo fometimes produced inflammations of this nature. Vanieri, in his Pradium R:glicum, fays,

> Qua vero (gramina) nondum futis infolata recondens Imprudens, fubilis pariunt incendia fiammis.

Dung alfo, under certain circumftances, inflames fpontancoully.

In a paper, publifhed in the Repertory of Arts and Manufaciories, by the Rev. William Tooke, F. R. S. $\& c$. we have the following remarkable infances of fontaneous inflammation. "A perfon of the name of Riide, an apothecary at Bantzen, had prepared a pyrophorus from rye-bran and alum. Not long. after he had made the difcovery, there broke out, in the next vilage of Nauflitz, a great fire, which did much mif-
chief, and was faid to have been occafioned by the treat. Inflan ma. ing of a fick cow in the cow-houfe. Mr Riide knew, that the countrymen were ufed to lay an application of parched rye-bran to their cattle for curing the thick neck; he knew alfo that alum and rye-bran, by a proper procefs, yielded a pyrephorus; and now he wifhed to try whether parcled rye-bran alone would have the fame effect. Accordingly, he roafled a quantity of ryebran by the fire, till it had acquired the colour of roafted coffee. This roafted bran he wrapped up in a linen cloth; in the fpace of a few minutes there arofe a flrong \{moke through the cloth, accompanied by a fmell of burning. Not long afterwarts the rag grew as black as tinder, and the bran, now become hot, fell through it on the ground in little balls. Mr Rïde repeated the experiment at various times, and always with the fame refult. Who now will any longer doubt, that the frequency of fires in cow-houfes, which in thofe parts are moftly wooden buildings, may not be occafioned by this common practice, of binding roafted bran about the necks of the cattle? The fire, after confuming the cattle and the thed, communicates itfelf to the adjoining buildings; great damage enfues; and the ignorant look for the caufe in wilful and malicious firing, confequently in a capital crime."
The fame author informs us, that in the fpring of the year 1780 , a fire was difcovered on board a Ruffan frigate lying in the road of Cronftadt ; which, if it had not been timely extinguifhed, would have endangered the whole fleet. After the fevereft fcrutiny, no caufe of the fire was to be found ; and the matter was forced to remain without explanation, but with frong furmifes of fome wicked incendiaty being at the bottom of it. In the month of Auguft, in the fame year, a fire brolee out at the hemp-magazine at St Peterfburgh, by which feveral hundred thoufand pouds* of hemp and flax were * A pond confumed. The walls of the nagazine were of brick, cnnfits of the floors of ftone, and the rafters and covering of iron; 40 pounds it ftands alone on an ifland in the Neva, on which, as kufs, of 3^{6} well as on board the fhips lying in the Neva, no fire is Euglift. permitted. In St Peterfburgh, in the fame year, a fise was difcovered in the vaulted fhop of a furrier. In the fe fhops, which are all vaults, neither fire nor candle is allowed, and the doors of them are all of iron. At length the probable eaule was found to be, that the furrier, the evening before the fire, liad got a roll of new cere-cloth (much in ufe here for covering tables, counters, \&cc. being eafily wiped and kept clean), and had left it in his vault, where it was found almoit confumed.

In the night between the $20: h$ and 2 Ift of April 1781, a fire was feen on board the frigate Maria, which lay at anchor, with feveral other fhips, in the road oif the ifland of Cronstadt ; the tire was, however, foon es:tinguifhed; and, by the fevereft examination, little of nothing could be extorted concerning the manner in which it had arifen. The garrifon was threatened with a fcrutiny that fhould coft them dear; and while they were in this cruel fate of fufpence, an order canie tron the forereign, which quieted their minds, and gave rife to fome very fatisfactury experiments.

It having been found, upon juriaical examination, as well as private inquiry, that in the thip's cabin, when the fmoke appeared, there lay a bundle of matting, containing Rufian lamp-black prepared from for-foot, moiltened with hemp oil varnifh, which was perceived

I N F $\left[\begin{array}{lll}\mathrm{F}\end{array}\right] \quad \mathrm{I} \mathrm{N}$ F

Jrilamma- to have fparks of ire in it at the time of the extinction, tion. perimufian admiralty gave orders to make various experiments, in order to fee whether a inixture of hempoil varnith and the forementioned Ruffian black, fulded up in a mat and bound together, would kindle of itfelf.

They fhook 4 pounds of fir wood foot into a tub, and poured about 35 pounds of hemp oil varuifn upon it; this they let ltand for an hour, after which they poured off the oil. The remaining mixture they now wrapped up in a mat, and the bundle was laid clufe to the cabin, where the midfhipmen had their birth. To avoid all fufpieion of treachery, two officers fealed both the mat and the door with their own feals, and fationed a watch of four fea.officers, to take notice of all that paffed the whole night through ; and as.foon as any fmoke fhould appear, immediately to give information to the commandant of the port.

The experiment was made the 26 th of April, about II o'elock A. M. in prefence of all the officers named in the commiffion. Early on the following day, about fix o'elock A. M. a finoke appeared, of which the chief commandant was immediately informed by an offieer : be came with all poffible fpeed, and through a finall bole in the door faw the mat fmoking. Without opening the door, he difpatched a meffenger to the members of the commiffion; but as the fmoke became ftronger, and fire began to appear, the chief commandant found it neceffary, without waiting for the members of the commiflion, to break the feals and open the door. No fooner was the air thus adnitted, than the mat began to burn with greater force, and prefentiy it burf into. a flame.

The Ruffian admiralty, being nowv fully convinced of the felf-enkiadling property of this compofition, tranfinitted their experiment to the Imperial Academy of Scienees : who appointed Mr Georgi, a very learned and able adjunct of the aeademy, to make farther experiments on the fubject. Previous to the relation of thefe experiments, it is neceflary to obferve, that the Ruffian fir-black is three or four times more heavy, thick, and unctuous, than that kind of painters blaek which the Germans call lief:-ralom. The former is gathered at Ochta, near St Peterßurgh, at Mofeo, at Archangel, and other places, in little wooden huts, from refinous fir-wood, and the unctuous bark of birch, by means of an apparatus uncominonly fimple, confifting of pots without bottons fet one upon the other: and is fold very cheap. The famous fine German kien-ralom is called in Ruffia Holland's black. In what follows, when raw oil is fpoken of, it is to be underftood of linfeedoil or hemp oil; but moft commonly the latter. The varnifh is nade of five pounds of hemp-oil boiled with two ounces and a half of minium. For wrapping up the compofition, Mr Georgi made ufe of coarfe hemplinen, and always fingle, never double. The impresna.' tions and commixtures were made in a large wooden bowl, in which they food open till they were wrapped up in linen.

Three pounds of Ruffian fir-black were nowly impregnated with five pounds of hemp-oil varnifh; and when the mixture had Itood open five hours, it was bound up in linen. By this procels it beeame clotted; but fome of the black remained dry. When the bundle had lain fixteen hours in a eheft, it was obferved to emit a very naufeous, and rather putrid, fmell, not quite
unlike that of boiling oil. Some parts of it became inflamn:a. warm, and fteamed much; this fteam was watery, and by no means inflammable. Eightcen hours after the mixture was wrapped up, one place becane brown, emitted fmoke, and directly afterwards glowing fire appeared. 'The fame thing lappened in a fecond and a third place, though other places were fcarcely warm. The fire crept flowly around, and gave a thick, gres. ftinking fmoke. Mr Georgi took the bundle out of the ehen, and laid it on a Itone pavement ; when, on being expofed to the free air, there arofe a flow burning flania, a fpan high, with a ftrong budy of finoke. Not long afterwards there appeared, here and there, feveral chaps or clefts, as from a little volcano, the vapour uffuing from which burft into flame. On his breaking the lump, it burt into a very riolent Alame, full three feet high, which foon grew lefs, and then went out. The fmoking and glowing fire lated for the fpace of fix hours ; and afterwards the remainder continned to glow without fmoke for two hours longer. The grey earthy afhes, when cold, weighed five ounces and a half.

In another experiment, perfectly fimilar to the foregoing, as far as relates to the compofition and quanti. ties, the enkindling did not enfue till 41 hours after the impregnation : the heat kept increafing for three hours, and then the accenfion followed. It is worthy of remark, that thefe experiments fucceeded better on bright days than on fuch as were rainy; and the aecenfion came on more rapidly.

In another experiment, three pounds of Ruffian firblack were flowly impregnated with three pounds of raw hemp.oil ; and the accenfion enfued after nine hours.

Three quarters of a pound of German ralm were flowly impregnated with a pound and a half of hemp. oil varnifh. The mixture remained 78 hours before it became hot and reeking: it then gradually became $h:-$ ter, and emitted a ftrong exhalation; the effuvia were moift, and not inflammable. The reaction lafted 35 hours: during which the heat was one while ftronger, and then weaker, and at length quite ceafed.

Stove or ehimney foot, moftly formed from birchwood fmoke, was mingled with the above-mentioned fubttances, and tiedup; the compound remained cold and quiet.

Ruffian fr-black, mixed with equal parts of oil of turpentine, and bound up, exhibited not the lealt reaction or warmth.

Birch oil, mixed with equal parts of Ruffian firblack, and hound up, began to grow warm and to emit a volatile finell; but the warmth foon wert off again.

The infances of fontaneous inflammation hitherto mentioned have been only of vegetable fubitances; but we have examples of the fame thing in the animal kingdom. Pieces of woullen cloth, which had not been feoured, took fire in a warehoufe. The fame thing happened to fome heaps of woollen yarn ; and fome pieces of cloth took fire in the road, as they were going to the fuller. There inflammations always take place where the matters heaped up preferve a certain degree of humidity, which is neceffary to excite a fermentation ; the heat refulting from whieh, by drying the oil, leads them infenfibly to a ftate of ignition; and the quality of the oil, being more or lefs deficcative, very much contributes thereto.

I N F

mnamma- The woollen ftuff prepared at Serennes, which bears twan. the name of Emperor's Ituff, has kindled of itfelf, and burnt to a coal. It is not unufual for this to happen to woollen ftuffs, when in hot fummers they are laid in a heap in a room but little aired.

In June 178 x , the fame thing happened at a woolcomber's in a manufacturing town in Germany, where a heap of wool combings, piled up in a clofe warehoufe feldom aired, took fire of itfelf. This wool had been by little and little brought into the warehoufe; and, for want of room, piled up very high, and trodden down, that more might be added to it. That this combed wool, to which, as is well known, rape-oil mised with butter is uferl in the combing, burnt of itfelf, was fworn by feveral witneffes. One of them affirmed that, ten years before, a fimilar fire happened among the flocks of wool at a clothier's, who had put them into a call, where they were rammed hard, for their ealier conveyance. This wool burnt from within outwards, and became quite a coal; it was very certain that neither fire nor light had been uled at the jacking, confequently the above fires arofe from fimilar caufes. In like manner, very credible cloth-workers have certified, that, after they liave brought wool that was be. come wet, and packed it clofe in their warehoufe, this wool has burut of itfelf; and very ferious confequences might have-followed, if it had not been difcovered in time.

Nay, there are inftances, though they be but rare, of human bodies being confumed by fpontaneous in. flammation. In the Philofophical Tranfactions, and in the Memoirs of the Academies of Paris and Copenhagen, it is related that an Italian lady (the Cuunters Cornelia Bandi) was entirely reduced to afhes, except her legs; that an Englifh woman, called Grace Pitt, was alinoft entirely confurned by a fpontaneous inflammation of her vifcera; and, laftly, that a priefl of Ber. gamo was confumed in the fame manner. Thefe fpon-- taneous inflammations have been attributed to the abufe of fpirituous liquors; but though the victions of intemperance are indeed very numerous, the fe certainly do not belong to that number.

The mineral kingdom alfo often affords inftances of fpontaneous inflammation. Pyrites heaped up, if wetted and expofed to the air, take fire. Pitcoal alfo, laid in heaps, under certain circumflances, inflames fponta. neoufly. M. Duhamel has deferibed two inflammations of this nature, which happened in the magazines of Bett, in the years ry4i and 1757. Cuttings of iron, which had, been left in water, and were afterwards expofed to the open air, gave fparks, and fet fire to the neighbouring bodies. For this obfervation we are obliged to M. de Charpentier.

The caufes of thefe phenomena the chemift will affign; but they are here recorded as a warning to tradefmen and others. It is evident, from the facts which have been related, that fpontaneous inflammations being very frequent, and their caufes very various, too much attention and vigilance cannot be ufed to prevent their dreadful effects. And confequently it is impofible to be too careful in watching over public magazines and ftorehoufes, particularly thofe belonging to the ordnance, or thofe in which are kept hemp, cordage, lampblack, pitch, tar, oiled cloths, \&cc. which fubftances ought never to be left heaped up, particularly if they have auy moiture in them. In order to prevent any ac.
cident from them, it would be proper to examine them Inflamma. often, to take notice if any heat is to be oblerved in them, and, in that cafe, to apply a remedy immediately. Thefe examinations fhonld be made by day, it not being advifable to carry a light into the magazines; for when the fermentation is fufficiently advanced, the vapours which are difengaged by it are in an inflammable ftate, and the approach of a light mjght, by their means, fet fire to the fubfances whence they proceed. Ignorance of the fore-mentioned circumftances, and a culpable negligence of thofe precautions which ought to be taken, have often caufed more misfortumes and lofs than the mott contriving malice : it is therefore of great importance that thefe facts thould be univerfally known, that public untility may reap from them every poffible advantage.

INFORMED Stars, or Informes Stelle, are fuch flars as have not been reduced into any conftella tion; otherwife called Sporadcs. - There was a great number of this kind left by the ancient attronomers; but Hevelius, and fome others of the moderns, have provided for the greater part of them, by making new conitellations.

Spmpathetic INK is an old invention. Among the methods by which Ovid teaches young women to deceive their guardians, when they write to their lovers, he mentions that of writing with new milk, and of ma. king the writing legible by coal-dult or foot.

> Tuta quoque ef, falli!que oculos, e late recenti Litera: carbonis pulvere tange, leges.

It is obvious, that any other colourlefs and glutinous juice, which will hold fatt the black nowder threwed over it, will anfwer the purpofe as well as milk; and therefore Pliny rccommends the milky juice of certain plants to be ufed.

There are feveral metallic folntions perfectly colourlefs, or, at leaft, without any frong tint, which being wrote with, the letters will not appear until the paper be wafhed over with another colourlefs folution, or expofed to the vapour of it; but among all thefe there is none which excites more aftonifhment, or from which naturalifts can draw more conclufions, than that which confifts of a folution of lead in veretable acid, and which by the vapour of arfenical liver of fulphur becomes black, even at a confiderable diftance. This ink, which may be ufed by conjurors, proves the fubtlety of vapour, and the porolity of budies; as the change or colouring takes place even when the writing is placed on. the other fide of a thin wall.

We knew before, that a Colution of lead, treated in this manner, would anfwer the purpofe of a fympathetic ink (fee that article Encycl.) ; but we did not know, nor do we yet believe, that the fulphuric vapours will act upon the writing through a wall. Such, however, is the affirmation of Profeflor Beckmann, who gives an account of a ttill more wonderful ink from Peter Borel. This author, in a book called Hifloriarum et obfervationum medico-pbyfic. centuric quatuor, printed at Paris, firft in 1653 , and afterwards in 1657 , gives a receipt for making this ink, which he calls magnetic waters which aft at a difance, The receipt is as follows:
"Let quick lime be quenched in common water, and, while quenching, let fome orpiment be added to it (this, however, ought to be done by placing warm afhes under it for a whole day), and let the liquor be filtered,

I N K [8
1.1 . and prefersed in a glafs bottle well corked. Then boil litharge of gold, well pounded, for lalf an hour with wiregar, in a brafs vefiel, and filter the whole through paper, and preferve it alfo in a bottle clofely corked. If you write any thing with this laft water, with a clcan pen, the writing will be invifible when dry; but if it be wafled over with the firft water it will become inflantly black. In this, however, there is nothing aftowifhing; but this is wonderful, that though fheets of paper without number, and even a board, be placed between the invifihle writing and the fecond liquid, it will have the fame effect, and turn the writing black, penetrating the wood and paper without leaving any traces of its action, which is certainly furpriling ; but a fetid fmell, uccafinned by the mutual action of the liquids, deters many from making the experiment. I am, however, of opinion, that I could improve this fecret by a inore refined chemical preparation, fo as that it flould verform its effect through a wall. This fecret (Fays Borel) I received, in exclange for others, from J. Broffon, a learned and ingenious apothecary of Muntpclier."

For making a fympathetic ink of the fifth clafs mentioned in the Encyrlopedia, the following procefs by N. Meyer may be worthy of the reader's notice. It was entered upon in confequence of a receipt for rofecoloured fympathetic ink thewn to him by a traveller. In that receipt cobalt was the principal ingredient, and therefore the tirt object was to procure cobalt ; but M. Meyer, being unwilling to facrifice pure pieces of cobalt of any confiderable fize, made clooice of one, which was vifibly mixed with bifmuth, iron, and quartz. He endeavomed to feparate the bifmuth as mich as poffible, and alio the arfenic, if it fhould contain any, by bringing it flowly to a red beat; and he fucceeded pretty well, as the bifmuth fluwed from it in abundance; and the arfenic, the quantity of which was fmall, was volatilifed: many globules of bifmuth Hill adhered to it. By bringing it repentedly to a red heat, and then quenching it in water, it was reduced to fuch a thate as to be tafily pulverifed. Having poured nitrous acid upon the powder, he obtained by digeftion a beautiful rofe red folution ; the filiceous earth was feparated in the form of a white nime, and by diluting it with water there was depofited a white powder, which was oxyd of bifmuth. The folution being filtered, he added to it a folution of potafl, and obtzined a precipitate inclining more to a yellow than to a red colour. He again poured over it a little of the nitrous acid, by which a part of the oxyd was re-diffulved of a red colour: the remaining part, which had a dark brown colour, was oxyd of iron. From the folution, by the addition of potah, a precipitate was formed, which was now reddifh. Having by this procefs obtained it pure, that he might now prepare from it the wifhed-for red ink, he diffolved the wathen pure oxyd of cobalt in different acids. That diffolved in the nitrous acid with a mixture of nitre, gave a green ink like the common : that diffolved in the iulphurous acid, withoet the addition of falts. gave a reddifn ink, which remained after it was expofed to heat, and would not again difappear. even when a folution of nitre was applied ; and that diffolved in the muriatic acid, gave a green ink, darker and more beautiful than the common. By diffolving it, however, in the acetnus acid, and adding a little nitre, he obtained what he had in view : for it gave, on the application of heat;
an ink of a red colour, like that of the raja centifolio, Inordmate, which again difappeared when the paper became cold. If fects
INORDINATE Proportion, is where the order of the terms compared is difturbed or irregular. As, for example, in two ranks of numbers, three in each rank, riz. in one rauk, - - $2,3,9$, and in the other rank, - - $8,24,3 \mathrm{~K}_{0}$ which are proportional, the former to the latter, but in a diffcrent order, viz.

2:3::24:36, and - $\quad 3: 9:: 8: 24$. then, cafting out the mean terms in each rank, it is con, cluded that
$2: 9:: 8: 36$ that is, the firtt is to the 3 d in the firf rank, as the firft is to the 3 d in the 2 d rank.
INSECT'S (See Encycl.). A number of non-defeript little animals was difcovered by Lả Martiniere the naturalilt when accompanying Peroufe on his celebrated voyage of difcovery. Thefe animals he called infects, and to many of them he gave particular names. Of thefe we fhall give his defcription in this place, ieaving our readers, as he has left his, to arrange thenr properly according to the Linnæan claffification.
"The infect, which is figured N° I. inhabits a fmall plate prifmatic triangular cell, pointed àt the two extremities, XXX of the confiftence and coluur of clear brittle ice; the body of the infect is of a green colour, fpotted with rmall bluifh points, among which are forne of a golden tinge ; it is fixed by a ligament to the lower part of its fmall habitation : its neck is terminated by a fmall blackifh head compofed of three converging fcales, in the form of a hat, and enclofed between three fins, two of them large and channelled in the upper part (A) and one finall femicircular (B). When it is dillurbed, it immediately withdraws its fins and its head into its cell, and gradually links into the water by its own \oint_{p} ecific gravity. Fig. 2. reprefents the under fide of the prifm, flewing in what manner it is channelied, in order to allow free paffage to the animal when it wifhes to flut itfelf up in it. Fig. 3 reprefents the profile of the fame. The moyement carried on by the twn larger fins, which are of a foftifh cartileginous fubflance, may be compared to that which would be produced by the two liands joined toget her in the ftate of pronation, and forming, alternately, two inelined planes and one horizontal plane: it is by means of this motion that it fupports itfelf on the tup of the water, where it probably feeds on fat and oily fubfances on the furface of the fea." Our author found it near Nootka, on the north.weft coaft of America, during a calm.
Fig. 4. reprefents a collection of infects, as our author calls them, confiting only of oval bodies, limilar to a foap-bubble, arranged in parties of three, five, fix, and mine: among them are alfo fome folitary ones. Thefe collections of globules, being put into a glafs filled with fea-water, deferibed a rapid circle round the glafs by a common moventent, to which each individual contribu: tad by fimple cornpreflion of the fides of its body, probably the effect of the re-action of the air with which they were filled. It is not, however, eafy to conceive how thefe dittinct animals (for they may be readily feparated without deranging their economy) are capable of concurring in a common motion. "Thefe confiderations (fays our author), together with the form of the animal, recalled to my mind, with much fatisfaction, the ingenious fyftem of M. de Buffon; and I endeavoured to perfuade myfelf, that I was about to be wit-

I N S

Infens, nefo to one of the moft wonderful phenomena of NaInflitute. ture, fuppofing that thefe nolecules, which were now employed in increafing or diminifling their number, or performing their revolutions in the glafs, would foon aflume the form of a new animal of which they were the living materials. My impatience led me to detach two from the moll numerous group, imagining that this number might perlaps be nore favourable to the expected metamorphofis. I was, however, mittaken. Thefe 1 examined wish more attention than the rett and the fullowing account is of their proceedings alone. Like two Atrong and active wretlers, they imnediately rufhed together, and attacked each other un.cvery fide: fometimes one would dive, leaving its adverlay y at the furface of the water; one would deferibe a circular movement, while the other remained at rell in the cenitre; their motions at length became fo mapid as no longer to allow me so ditinerath one from the other. Having quitted them for a flort time, on noy return I found them reunited as hefore, and amicably moving romad the edge of the glafs by their common exertiuns."

Fig. 5 . reprefents a hingolar animal, which has a confideruble refemblance to a little lizard ; irs body is of a firm, gelatinous confillence; its head is furnified on each fide with two fmall gelatinous horns, of which the two himbermoft are fituate the futhelt inward: its body is provided with four open fan-like paws, and fome appendages near the infertion of the tail, and terminates like that of a lizard; the ridge of the back is divided the whole way down by a band of a deep blue; the reft of the body, as well as the infide of its paws, is of a bright filvery, white. It appears to be very fluggifh in its motions; and when difturbed by the finger, encrely turncd itfelf belly upwards, foon afterwards refuming its former pofition. Fig. 6. reprefents it reverfed. Martiniere caught it during a calm at the landing place on the Bafhee Iflands.

INSTITUTE is a name which has lately been fub. dituted for fohool or academy. Formerly infliiution, in the propriety of the-Englifl language, was fometimes ufed as a word of the fanie import with inflruaion; and now inflitute is employed, efpecially by the admirers of French innovations, to denote what had hitherto been called an academy. When royalty was abolifled in France, it would have been abfurd to continue the tilles Roral Academy of Sciences, Royal Academy of Inferiptions, \&c.; but inftead of merely abolifhing the word royal, and fubftituting national in its flead, it occurred to the fertile brain of Condorcet, to abolifl the feven academies thenofelves, or rather to melt them all down into one great acadeny; to which was given the appellation of the

National Institute, or New Academy of Arts and Sciences. This acadeny, founded on a decree of the new conflitution, was opened on the 7 th of December 1795, when Benezech, the then minifter for the home department, attended, and the decree of foundation was read; which was to the following purport:
" " The Academy of Arts and Sciences belongs to the whole republic, and Paris is its place of refidence. Its employment is to aim at bringing all arts and fciences to the utmoft perfection of which they are capable. It is to notice cvery new attempt, and all new difcoveries, and to keep up a correfpondence with all foreign literary focieties. And by the particular orders of the Suppl. Vol, II. Part I.

Executive Directory, its firf fludies are to be directed in fiture. to thufe fubjects which more immediately tend to the reputation and advantage of the French republic."
The acadeny is to confit of 2.98 members, hal? of whom are to relide in l'aris, the other halt in the departments; and to them is to be added a ceernin number of foreigners, as howorary members, confined at prefent 10 twenty four.

The acadeny is divided into threc clafts, each clafs into fections, each fection to contain tweive members.

I/l clafs. Mathematics and natural philufophy. This clats is diviocd into ten fectiuns 1. Mathematics. 2. Mechanical arts. 3. Aftronomy, 4. Experimental philufoply. 5. Chemiltry. 6. Natural hifory. 7. 13utany. 8. Anatony and animal hiftury. 9. Medicine and furgery. 10. Ahmal oconomy, and the veterimary fcience.

2d clafs. Murality and politics. This clafs confuts of fix fections. s. Analy fis of fenfations and ideas. 2. Morals. 3. Legiflature. 4. Political economy. 5. Hiftory. 6. Geography.

3l clafs. Literature and the fine arts. This clafs confits of eight feetivis. 1. Univerfal grammar. 2. Ancient languages. 3. Poetry. 4. Antiquities. 5 . Painting. 6. Sculpture. 7. Architecturc. \&. Mulic.

For each clafs a particular room in the Louvre is appropriated. No one can be a member of two clafles at the fame lime, but a member of oue clafs may be prefent at the meetings of any other. Each clafs is to print, yearly, an account of its tranfactions.

Four times a-jear there are to be public meetings. On thefe occafinas, the three claffes meet together. Ait the end of each year, they are to give a circumftantial account to the legillative body of the progreis made in that year in the arts and fciences. The prizes given yearly by each clafs are to be publicly notified at ccrtain times. The fums requifite for the fuppurt of the inftitution are to be decreed yearly by the legin tive body, upon a requifition made by the Executive Directory.

The firft forty-eight members were chofen by the. Executive Directory, to whom the choice of the remaining members was contided. To the members, refidentiary in Paris, is referved the choice both of the department and the fureign members. On a vacancy in any clafs, three candidates are named by the clats for the choice of the body at large.

Each clafs is to have, as its place of meeting, a collection of the products, hoth of nature and art, and a library, according to its particular wants.

The regulations of the inftitution, with refpect to the times of neeting, and its employments, are to be drawn up by the body at large, and laid before the legillativeaffembly.

The hall in which the body at large holds its meetings, forms part of the weft wing of the Old Louvre, at prefent called the Mufeum. It formerly, went by the appellation of the Hall of Antiques (Salle des Antiques); and as long as the kings inhabited this part of the palace was occupied by their guards, from which circun!flance it obtained the name of the Hall de Cient Suifes. It was likewife appropriated to banquets and entercainments, given by the court on gala days; and it was to this place that Henry IV. was conveyed, on his ufffination by Ravaillac, in the Rue de la Ferronnerie.

It was built at the fame time with the reft of this

1 S S [
Indinve. part of the Luuvre, about the yar 1528, after the defarns of Pierre Lefcot, abbot of Clagny. It is 147 feet in longth, and 40 in breadth, and holds from 1000 to 1260 perfons. Jn order to adapt it tu its new deftination the foor has been funk, which gives a rreater air of lightnees to the rook. In the centie flands a duuble table, in the form of a ho:fe-thoe, fupported by fphiaxes, at which the members of the inftitute take thecir feats. This table is turrounded by two tiers of benches, which are raifed fur the accommodation of fpeetaiors, who have likewife feats provided for them in the vait embrafures of the windows, and at each extremi:y of the lall.

Whether fcience will be advanced by the feven royal academies laving been melted into one, time muft determine; but candour compels us to acknowledge, that the proceedings of the national inftitute have hitherto been abundantly interefling. Intimately connecied with the national inftitute is the French fytem of

National Instruction, which is likewife novel, and therefore fufficiently curious to deferve norice in a Work of this kind. When the Chrittian religion was abulithed in France, it was impoffible to continue the univerfitits and other feminaries which were founded by Chrillians, and obliged by their conftitution to teach, whether pure or not, the doetrines of Chriftianity. They were accordingly all fwept away, and a new fyftem of cducation planned, which was to be carried on in what they call

The primary Schools.
Tise Central Schouls.
The School of Health.
The School of Oriental Languages.
The Polytechnic School.
The National Inftitute.
The Jury of Public Inftruction.
The Commiffion of Public Inftruction.
The Legiflative Committee of Inftruction. And vasious other national eftablifhmente for the improvement of particular fciences.

The firft degree of puhlic inftruction is to be met with in the Ecoles Primarées, eftablifhed by a decrec of the convention of the fecond Pluvoife, in the fecood year of the republic (A). Every diftrict is furnifhed with one of thefe fchools; the profeffors or mafters in which are paid from the national treafury; and to which every head of a family, without exception, is compelled by law to fend its children for inftruction. The fubjects taught in thefe primary or elementary fchools are divided into nine clafles:
$1 / f$, Inftructions connected with the plyfical and moral fituation of children, prior to their entering into thefe fchools. $2 d$, Similar inftructions as a guide to teachers in the national fchools. 3^{d}, The arts of reading and writing. $4^{t h}$, The elements of French grammar. $5^{\text {th }}$, Elements of arithmetic and geometry, with the thcory of the new menfuration. 6th, The elements of geography. $7^{\text {th }}$, Explanations of the principal phe-

1011 N S
nomena and productiuns of nature. 81%, Elements of funtitute. agriculture. gith, Elements of repulican morals.

Next to the primary fchools in rauk and confequence are the Ecolis Centrales, which were eftablifhed by a decree of the Convention of the feventh V entofe in the third year. They are lituated in the capital of every department, bearing the proportion of one central feliool to 300,000 inlrabitants. In thefe fchools the republican youths are taught the fciences, and their application in real life. In each of themare profeffors lur the following branches:

1. For mathematics. 2. Experimental philofophy and chemiftry. 3. Natural hittory. 4. Agriculture and commerce. 5. Lugic and metaphyfics. 6. Pulitical economy and legiflation. 7. The Philofophical hillory of natiuns. 8. The art of healing. 9. Arts and mamufactures. 10. Univerfal grammar. 11. The belles lettres. 12. The ancient languages. 13. The modern languages. 14. The fine arts.

Each central fchool is furnifhed with an extenlive public library-a botanic garden-a cabinet of natural hiftory-an apparatus for experimental philofophy and a collection of machines and models connected with the arts and manufactures.

The profeffors of each fchool hold, every month, a public fitting, in which conferences are held relative to fubjects connected with the improvement of letters, the feiences, and the arts, which are the moit beneficial to fuciety.

The object in the eftablifhment of the primary and central fchools was, the general inftruction of all claftes of the citizens; and it being incompatible with the perfect completion of that impcrtant purpofe, to expect from them the propagation of particular branches of fcience, it became neceffary to eftablith other literary and fcientific academies.

Accordingly, the French government have founded, $1 / f$, Schouls of health (les ecoles de fante), in Paris, Strafburgh, and Montpelier, where medicine and furgery are ftudied; which fchools are affirmed, hy thofe who find nothing wrong in France, to be the molt perfect of their kind, as well as new and unparalleled models for fuch inftitutions.
$2 d$, Two fchools for Oriental languages, in the national library, and in the college of France.
3^{d}, The Polytechnic fehool in Paris, or central fchool. for the direction of public works. This eftabliflament is very generally admired and confidered as a model for imitation. It contains more than 400 young perfons, previoufly educated in the mathematics, and the majority of them intended for engineers in various lines; and they labour under the immediate direction of their tutors nine hours every day. It occupies the principal part of the Palais de Bourlon in Paris, and is furnifhed with a large collection of inftruments and models. The journal of the Polytechnic fchool, which is publifhed by the bookfellers Regent and Bertrand at Paris, is a perfecily original work, and admirably calculated to convey ufeful information.

O\&

(A) We would tranflate this chronological jargon into the language of Chriftian Europe, were we not perfuaded that the French kalendar, the French cunllitution, and the French inftitutes, will have the fame duration: we truft in God not a long duration. For Pluvoife, and the other fantaltical names of months introduced into this article, fee Revolution, Encych. $n^{\circ} 184$.

1 N S

[II
Of che national inflitute, a fufficient acco:rat has been given in the preceding articte. We proceed therefore to the jury of public inltruction (Le 'Yury Central d' Infirution), of which the principal bufinefs is to fuperintend the primary and central fchools. It appoints the profeflors in thefe fchouls, and examires into their conduct. Like the legillative body, it is renewed by a third every half year. When they have chofen a profeffor for a central fchool, they fubmit their choice to the department ; and, in cafe of difapprobation, they make another appointment. To this jury of public inftruction, the profeffors in the central fchools are amenable for all mificonduct connected with their offices; it may expel them, but all its decifions mult be fubmitted for confirmation to the tribunal of the departnent.

There is alfo eftablifhed at Paris a fupreme council, calied the Cummifion of Public Initruction, to which is entrutted the whole extcutive department. The prefervation of the national monuments, of public libraries, mufeuns, cabinets, and valuable collections; the fuperintendence of all the fctiouls and the modes of inflruction; all new inventions and fcientific difcoveries; the regulation of weights and mearures; national ftatifics and political economy, are all placed under the authority of this fupreme commiffion. For the commodious and regular execution of fo many complicated branches of bufinefs, there is a large office, called Le Secretariat, which is divided into three departunents.

1. For the regulation of the different kinds of inftruction ; of the modes of education in the fchools ; and for the choice of elementary books. 2. For weights and meafures ; inventions and difcoveries; libraries and bibliography; nufcums, works of art, and literary rewards and encouragements. 3. For theatres, national featts, republican inftitutions, and the erection of monuments.

As all public eftablifhments require the fuperintendance and occafional correction of the legillature, in addition to that of their own immediate executive authority, it las been deemed neceffary to appoint a permanent conmittee of inltruction in the legifative body, to provide fuch fums as may be neceflary for the prefervation and inprovement of this fyftem of inftruction. This legiflative committee are invefted with due authority for thefe purpofes. Their objects are precifely the same as thofe of the commiffion of public inftruction above defrribed, only with this difference, that the latter fuperintends the execution of exifting laws, whillt the former recives and improves them, or' propofes new ones. This committee is divided into three departments, as is the commiffion, with exactly the fame arrangement of their refpective labours. The committee being charged with the enaction of all new laws, its members, with a view to obtain accurately all the requifite information relative to the numerous branches of the arts, have procured from the legiflative body the appointment of a commiffon temporaire des arts to be annexed to them, and to meet in the fame houfe with chem; which tem. porary conmififion is divided into fixteen claffes : viz. 3. For Zoology ; 2. Botany ; 3. Mineralogy ; 4. Phyfics ; 5. Chemiftry ; 6. Anatomy ; 7. Machinery ; 8. Geography; 9. Artillery and Fortification; 10. Medals and Antiquities; 11. Bibliography ; 12. Painting; 13. Architecture ; 14. Sculpture; 15. Bridges and Caufeways; and, 16. Mufical Inftruments.

11 I N S
The improvements of the national literary and fcien imfiture. tific eftablifhments are numerous and important.

If , By a decree of the convention of the 1 th Prairial, in the fecond year, it was enacted that means flould be adopted by which every poffible advantage might be derived from the botanic gardens of the republic, in Turkey and other foreigu countries. This pulitic decree clearly tended to render France, in the language of the reporter, L'abregé do tous les climats, at l'ruirefoiot de l' Earope. "The epitome of cvery climate, and the magazine of Europe." Thofe plants which thrive between the tropics may be cultivated in the fouth of France: and thofe which are the produce of northera climates, may be cultivated in the northern departments; by which means France will be in poffefion of all foreign plants and drugs, without the exportation of tipecie.

2d, The National Bibliograplyy was decreed in the fitting of $22 d$ Germinal, in the fecond year. It confits of a conplete catalogue of tooke cfall defuigtions, the property of the uation; it was then afcerteined that the repullic poffefied more than ten millions of books. The titles of them werc to be adjufted by astual comparifons; the manufcripts to be regitered feparately; anonymons productions were to be arranged according to their fubjects; and thofe of known anthors in the alphabetical order of the natnes. The feveral editions to be claffed according to their dates; and what way be deemed more important, this French National Bibliography will contain a dictionary of anonymous books, as well as thofe publifhed under fictitious names, a defideratum in the republic of letters.

3c', 'the annihilation of all patcis, or dialects, dccreed in the fitting of the 16 th Prairial, in the fecond year. Notwithftanding the univerfality of the French language, and that it was exclufively fooken in the majority of the inland departmentz, yet there exilted thirty various dialects in France. It is more aftunifhing that Rozier had remarked, that between one neighbouring village and another, there was fo confiderable a difference in the dialect, that the inhabitants could not undertand each other ; and the vineftork had thirty different names. The naturalif Villars has itated, that in the nomenclature of vegetables, in the departments, he had only met with an hundred which had a common appellation.

4th, The eftablimment of the Confervatoire des Arts et Métiers, was decreed in the fitting of the 8th of Vendemiaire, in the third year. This confitts of a fpacions hall, in the form of an amphicheatre, and contains the inftruments and the models of machinery connected with the arts, and a defcription of their ufes, with every book relating to them. Annesed to this eftablifhment are three expofitors and a draughtfman, who explain to the ftudents the ufe of each inltrument, and who regifer every new difcovery, which is prefented to the Bureau de Confultation, to the lyceum of arts, the cidevant acadeny of fciences, or to the board of commerce.
$5^{t h}$, The efteblifiment of the board of longitude was decrced in the fitting of the 7 th of $M e / f$ fidor, third year. It was certainly a difgrace under the monarchy, that aw aftronomical and nautical eftablifhment, which had already proved fo beneficial to Great Britain, fhould not have been adopted in France. In comfequence of this decree, the French board is now as complete as the

Englifa.

I S $\quad\left[\begin{array}{ll}\mathrm{I} 2\end{array}\right] \quad \mathrm{I} \mathrm{N}$ S

Infituec. En-lifh. It confifts of ten members, and has under its jurifliction the uational obfervatory at Paris, and allothe altronomical inflruments belonging to the repatlic. It correfponds, with fureign allronomers; delivers public lectures on aftronomy and navigation; and its proceedians are ammally recited in a public lituing.
wh, The general ichewl of the Oifental languages was ctlablibed by a decree of the toth of Gominal, in the fouth year. 'This fehool adjuins to the national library, and all the books and manufcripts relative to Uiental literatme are deporited in it.

7 als, 'The national mufeum of antiquities was decrced in the fitting of 22 th of Prairial, fuurth year. A fchool of this defcription was fuccefsfully eftablined at Vienna, by Eckel; at Gottingen, by Heyne; at Leipfiek, by Erneft ; and even at Strafurgh, by the celebrated Obeilin; Paris was, however, whont one. This national archeology, or fcience of antiquity, is divided into nive different claffes: 'infcriptions, characters, ftatues, lus reliefs, fculptures, paintings, mofaics, mechals, civil, religious, and military inftruments. This extenfive eftablifment is under the direction of two principal profeflors; le Confervateur Profefeur, et le Confervateux Bibliohscaire. The province of the former is to deliver public lectures on the fereral branches of antiquities, to teach the theory of medals and engravings, the hiftory of the arts amons the ancients, \&e. The duties of the latter are morcly of a bibliographical wature.
$8 t \%$, The new modelling of the Grand National Lib. rary, was decreed in the fitting of 25 th Vendemiare, in the fourth year. By virtue of this decree, the place of librarian in chief was fuppreffed, and the whole eftablifhment placed under a confervatoire of eight members; of whom two were appointed for the fuperintendence of printed books; two for manufcripts; two for antiquities; and two for engravings. From thefe a temporary director is annually chofen, who fuperintends the whole aets occalionally as prefident of this af. fembly, and maintains a regular correfpondence with the conitituted authorities relative to the concerns of the library.
$9^{\text {th }}$, The augmentation of the Mufeum of Natural Hiftory, formerly called Le Jardin Royal des Plantes, This cthablifhnent was decreed the 15 th Brumaire, third year, upon a report of Thibadeau, in the name of the committee of I'ublic Inftruction. Befides the addition of large rooms, and various ofher buildings, there are new collections of natural curiofities and productions; and the library is much increafed. It is open to the public three times a week. At ftated periods all the naturalifts in Paris deliver courfes of lectures in the varinus branches of natural hillory. The mufeum is faid to have received greater improvements from this angmentation than from all the labours of Buffon, or from its foundation, fince the time of Tournefort.

10th, The Ecole des MImes was ettablihed in the Hotel des Monnaies, and has for its dircetion the naturalilt Le sage. This inflitution is unrivalled in Europe; and the collection of mineralogical curiofities furpaffes whatever can be conceived.
isth, The focicty of natural hiftory in Paris, defervedly claffes among thofe which have rendered the greatell fervices to the caufe of fcience fince the revolution. A lecture of public inftruction is held every ten
days, which is generally given by one of the members, fatinnte. and which is open to all the love:s of natural hittory. Premiums are propofed for difertations ; one of which, by the late C. Herman, junior (whofe carly deceale was a grat lofs to the republic of letters), on the aperous clafs of infects, may be faid to conllitute an epocha in the annals of natural hiftory. The fociety has publinted a volume of memoirs, in folio, eutitled, "Tranfactions of ibe Socicty of Natural Hipory." It has likewile erected a fatue to the great Limmens, in the mational garden of plants; and, at the pericd when every public inftruction was fufpended, gave lectures on the different branches of feience belongring to its department. Several intelligent and Reilful pavigators, amung others thofe fent in fearch of the unfurtunate La leroufe, as well as thofe which accompanicd Buonaparte on his romantic expedition to Egypt, were members of this fociety.

This flatement of facts relative to the prefent fate of public inftuction, the ferences, the arts, ard the progrefs of national literature in France, has been taken from a mifcellany, of which the principal writers are well acquainted with what is doing in that dittracted country. They call it a fublime fyitem; and feem to confider the increafe of the national library, the improvement of the botanic gardens, and the difcoveries that have been made by the different fchools or inflitutes, as furnifhing a demonftration that the republican government is more favourable to the advancement of fcience, than the monarchical, whether abfolute or limited. But it fhould not be forgotten, that this fyltem is yet in its infancy; and that in profecuting new fchemes, all men, and more efpecially Frenchinen, are actuated hy an enthufiafm which gradually cools as their purfuits become familiar. We fhall therefore renture to predict, that the different fchouls will not difplay fuch ardour feven years hence as they do at prefent; and that if the republican gosermment continue a dozen of years in France, the progrefs of feience in that country will not be more rapid than it was under the monarchy. We muft remember, too, that the French libraries, mufeums, and picture galleries, have been improved by means which the morals of other governments do not empluy -by rapine and rubbery.

That fomething may be learned from this fyftem to improve the modes of education in other countries, w: admit ; and it is for that reafon that we have inferted an account of it. But if it contains fomething worthy of imitation, it contains likewife much to be flumned. We do not think it confiftent with the rights of man to compel parents to fend their children to be educated in particular fchools; efpecially in fchools where not only religious inftruction is omitted, but where, there is reafon to believe, that the profeffors are at pains to raze all religious inpreflions from the youthfis mind. In a nation denying the truth of Chriftianity, it is not to be fuppofed that the Chriftian religion will be publiely taught ; but in a nation of philolophers, as the French call themfelves, it might have been expected that the laws of religious toleration would have been fo far regarded, that Chrifian parents would not have been compelled to fend their children to antichrifian fchools! But it is not Chriftianity alone that is neglected in this fublime fyftem of education. Though the legiflative body has fome time ago decreed that there is a God,
there
efirance. there is not in any one of thofe fchools the fmallen care taken to inftruct the republican youth in the principles even of natural religion! We might indeed have luoked for it under the title Melaphyfics, had not the conftitution of the National Inflitute taught uss, that French netaphylies attend to nothing but the analy yis of fenfations and ideas. Yet the leginators might liave likened on this fubject to a republican as found as themfelves, and who was likewife no friend to fuperftition. "Nam (t Majorum inflituta tueri facris, ceremonifque retinendis fapientis eft. Non folum ad religionem pertinet, fed etiam ad civiratis itatum, ut line iis, qui facris publice prafunt, ecligioni privatæ fatisfaccere non poffint." Cicers de Nat. Deorum.

INSURANCE, in law and conmerce, though an excellent inftitution, is not of ligh antiquity. The ofdell laws and regulations concerning infarance, with which the indefatigable Beckmann is acquainted, are the following:

On the 2Sth of January 1523 , five perfons appointed for that purpofe drew up at Florence fome articles which are ftill emplojed on the exchange at Leghorn. Thefe important regulations, together with the prefrribed form uf policies, which may be confidered as the oldef, have been inferted, in Italian and German, by Magens, in his Treatife on Infurance, average, and bottomry, publifhed at Hamburgh in 1753.

There is fill preferved a froct regulation of the 2 th May 1537, by the Emueror Charles V. refpecting bills of exclange and infurance, in which the frictly fulfilling only of an agreement of infurance is commanded.

In the year 1556 , Philip II. king of Spain gave to the Spanifh merchants certain regulations refpecting infurance, which are inferted by Magens, with a German tranflation, in his work before mentioned. Tliey contain fome furms of policies on fhips going to the Indies.

In the year 159^{8}, the Kumer vorl affuraitic, chamber of infurance, was eltablifhed at Amferdan!. An account of the firft regulations of this infurance office may be feen in Pontanus's Hiftory of the city of Aniterdam, and in other works.

In the year 1600 , regulations refpecting infurance .were formed by the city of Middleburg in Zealand.

It appears that the firf regulations refpecting infurances in England, which may be feen in Anderfon's Ifillory of Commerce, were made in the year 160 o. We find by them, that infurers had before that perind conducted themfelves in fuch a manner, that the utmoft confidence was repofed in tncir honelly, and that on this account few or no difputes had arifen.

Of the varivus policies for infurance in England, a pretty accurate account will be found in the Encyclopedia; but there is one of them of which our account muft be acknowledged to te now defectivc. This is,

Insurance on Lives; which is a policy that has greatly increafed, in confequence of its utility being more generally underftood. Of the two offices for life affirances, noticed in that article, the former, entitled the Amicable Society, has extended the number of its Hhares to 4000 ; but, as we have already obferved, the mature of the inflitution is too limited to become of general importance. The latter, entitled, the Society for equitable Afurances on Lives and Survivorpsip, is un-
doubtedly one of the moft important inflitutions of Infurance. the kind, as will appear by the following account, with which we have been favnured by an obliging conrefpondent, and upon the accuracy of which our readers may depend.

The memhers of thic Equitable Society, finding, in June 1797, that their affairs were in a flourifhing fithation, refolved to reduce their ammal promiums onetenth; and in $178 \mathbf{8}$ adopted nc:v tables, agreeable to the probabilities of life at Northampton, in lieu of thofe they had hitherto ufed, formed from the London bills of mortality. But though it was evident that the new tables were much better adapted for affuring promifcuoully perfons refiding in the country, or in large towns, it was thought proper, for greater fecurity, to make an aldition of 15 per cent. to the real value of the altirances, as computed from the table of mortality at Northampton ; and with the view of making an adequate compenfation to the affiured for their former payments, which had been fu much higher than would be required by the new rates, an addition was made to their clains of L. I, Iəs. per cent. for every premium they had paid. The confequence of thefe meafures proved highly favourable to the Society; for its bulinefs increafed fo fart, that in 1785 it was nearly doubled; the fums affured amounting to upwarls of L. 720,000 . At this period, the favourahie refult of a minute and very laiorious inveltigation of the ftate of the Socicty, induced them to take off the 15 per cent. charged pyon the premiums in $1-82$, and make a further addition to the clains of L. I per-cent. for every payment made prior to the if January ${ }^{17} 86$. A ftill greater increafe of fuccefsful butinefs determined them, in 1791 , to make another addition of L.I per cent. to the claims; and in the folluwing year, a further addition of L. 2 per cent.; by which the claims upon affurances of the year 1790 were more than doubled; and thofe of an earlier date increafed in a flilt higher proportion. By thefe advantages to its members, and the honourable and truly equitable manner in which the concerns of the Scciety are tranfacted, the augmentation of their bufinefs has been fo great, that on the 3 ff December 1792 , the furs affured (withont including the additions made to them) amounted to upwards of L. $3,000,000$; and on the 3 ift December 1795 , to about L. $4,000,000$.

The rates of affurance, as reduced to their real values in 1786, and according to which the Society now tranfo act bufinefs, are as follows:

Sum AJured £. 100.

Age.	One Year.		Seven Ycar:.	Whole Life	
15	£.O 17	11	£.I 211	6.118	7
20	17	3	195	23	7
25	110	7	12 I	2 8	
$3{ }^{\circ}$	113	3	11411	213	4
35	116	4	11810	219	10
40	20	8	241	371	11
45	26	8	21010	317	11
50	215	1	$3 \bigcirc 8$	410	10
55	35	\bigcirc	3120	56.	4
60	318 .	1	471	67	4
65	415	2	51010	716	9

Inf. rance It Inture?.

The other offices in London fur the affirance of lives are, the Royal Eixchange Afurance, the V_{f} fminffer Sosity, ind the Pelican Life (iffice.
The corporation of the Rogal Exchange Affurance was enrpowered to affure lives by its fecond charter, dated 29th April 1721; but the original object of the company being fea affurances, and the true principles of afturing on lives being at that time little undertnod, this branch of their bufinefs was at firf comparatively - fmalll : they generally required a premiun of five or fix guineas per cent. without any regard to the age; and The affurance, which was ufizally for a frnall fum, was fellom for a greater term than one year. In this man. ner they continued to affure upon lives till the end of the year 1783 , when the increafing importance of this part of their bufinefs, which they had fone years felt, induced them to adopt a regular table of rates of aifurance, according to the Northampton regifters of mortality, but with a greater addition to the real values than had been made by the "Society for Equitalle Affurances on Lives and Survivorhip." This was thought Froper, from the confideration that the affurers with the Royal Exchange Company are not in any cafe liable to a call upon them beyond the premium they engage to pay, and have the fecurity of the capital and funds of the company arifing from the other branches of their bufinefs; however, the company, finding themfelves fucceffful in their life affurances, determined, in 1790 , to reduce their premiunss; and in 1797 made a ttill greater reduction, by which they are hrought very near to thofe above flated. This company have agents in all the principal towns of Great Britain, and are impowered to affure lives in all parts of the world.

The Wefminfler Society was ellablifhed in 1792, for afluring lives, and granting anmities. Their terms are nearly the fame as thofe of the Royal Exchange Affurance; but not being a corporate body, every perfon afluring figns a declaration, thic he accepts the joint ftock of the fociety as his fecurity.

The Petican Life Office was infituted in 1797, by fome of the principal proprictors of the Phoenix Fire Office. The rates which they have publifhed vary confiderably from thofe of the other offices: but whether they are founded on more juft principles, time and experience muft determine. This fociety alfo makes a new fpecies of affurance, by way of endowment for daughters, or for children generally, when they fhall attain the age of twenty-one years.

INTEGRAL calculus, in the new analyfis, is the reverfe of the differential calcolus, and is the finding of the integral from a given differential; being fimilar to the inverfe method of fluxions, or the finding the fluent to a given fluxion. See Fluzions, Eincycl.

INTEREST, is the allowance given for the ufe of money by the borrower to the lender, and is either fimple or compound. The method of computing both interefts is explained in the article Algebka (Encycl.), page $427, \& c$.; and the fubject of fimple intereft is again refumed in Arithmetic (Encycl.), $\mathrm{n}^{\mathrm{o}} 20$. The application of the canons for the computation of compound intereft, to the value of annuities, the only cafe in which that intereft is allowed by the laws of this country, may be feen in the articles Anvuity and

Supvivorship (Encycl.); where various tables are given to facilitate the different computations. Some of our readers, however, have expreffed a wifh to have the rule for computing compound intertil fo itated, as to be underfood by thofe who are unacquainted with algebraic fymbols. Their wifh may be ealily gratified.
The general formula $S=p R^{2}$ anfwers for the amount of any fum, whether the intcreft be payabte yearly, halfyearly, quarterly, or daily. Let R denote the amount. of one pound for the firit payment, and t the number of payments, the unit being from the commencement till the finft payment is due; alfo, let l denote the logarithm of any quantity before which it is wrote; then, from the known property of logarithms, the theorem may be expreffed thus, $l . \mathrm{S}=l . p+l . \mathrm{R} \times l$.

Required the amount of L. 250 at 5 per cent. com. pound intereft, for 12 years, reckoning the intereft payable yearly, half-yearly, quarterly, and daily?
Yearly, $p=250, \mathrm{R}=1.05, t=12$.
$0.0211893=1 . \mathrm{R}$
12
$\cdot 2542716=1 . R \times t$
$\cdot 2542716=1 . R \times t$
$2.3979+00=1 . p$
$2.3979+00=1 . p$
l. $S=2.6522116$-L. $44^{8}: 19: 3 \frac{1}{4}=$ Amount,
l. $S=2.6522116$-L. $44^{8}: 19: 3 \frac{1}{4}=$ Amount,
250
250
198: 19: $3^{\frac{7}{4}}=$ Comp. Int.
198: 19: $3^{\frac{7}{4}}=$ Comp. Int.
Half-yently, $p=250, \mathrm{R}=1.025, t=24$.
Half-yently, $p=250, \mathrm{R}=1.025, t=24$.
0 00107239 = l. R
0 00107239 = l. R
${ }^{24}$
${ }^{24}$
428956
428956
214478
214478
$\cdot 257373^{6}=1 . \mathrm{R} \times t$
$\cdot 257373^{6}=1 . \mathrm{R} \times t$
$2.3979400=l . p$
$2.3979400=l . p$

1. $\mathrm{S}=2.6553 \cdot 3^{6}-\mathrm{L} .452: 3: 7 \frac{1}{4}=$ Amount.
2. $\mathrm{S}=2.6553 \cdot 3^{6}-\mathrm{L} .452: 3: 7 \frac{1}{4}=$ Amount.
250
250
202: 3:7䇢 $=$ Interef.
202: 3:7䇢 $=$ Interef.
Quarterly, $p=250, \mathrm{R}=1.0125, t=4^{8}$.
Quarterly, $p=250, \mathrm{R}=1.0125, t=4^{8}$.
$0.0053950=1 . \mathrm{R}$
$0.0053950=1 . \mathrm{R}$
48
48
431600
431600
215800
215800
$\cdot 2589600=1 . \mathrm{R} \times t$
$\cdot 2589600=1 . \mathrm{R} \times t$
$2.3979400=l . p$
$2.3979400=l . p$
l. $\mathrm{S}=2 \cdot 6569000-\mathrm{L} \cdot 453: 16: 8 \frac{1}{4}=$ Amounz.
l. $\mathrm{S}=2 \cdot 6569000-\mathrm{L} \cdot 453: 16: 8 \frac{1}{4}=$ Amounz.
250
250
$203: 16: 8 \frac{3}{4}=$ Interef.
$203: 16: 8 \frac{3}{4}=$ Interef.

205: 11: $3^{\frac{j}{x}}=$ Intereft.

INTERPOLATION, in the modern algebra, is, ufed for finding an intermediate term of a feries, its place in the feries being given. See Algebra and Series, Encyal.

The method of interpolation was firf invented by Mr Briggs, and applied by him to the calculation of logarithms, \&c. in his Arithmetica Logarithmica, and his Trigonometria Britannica; where he explains, and fully applits, the method of interpolation by differences. His principles were followed by Reyinal and Monton in France, and by Cotes and others in England. Wallis made ufe of the method of interpolation in various parts of his works : as his arithmetic of infinites, and his algebra, for quadratures, \&c. The fame was alfo happily applied by Newton in various ways: by it he inveftigated his binomial theorem, and quadratures of the circle, ellipfe, and hyperbola. See Wallis's Algebra, chap. 85 . \&c. Newton alfo, in lemma 5. lib. 3. Priuscip. gave a moft elegant folution of the problen for drawing a curve line through the extremities of any number of given ordinates; and in the fubfequent propofition, applied the folution of this problem to that of finding, from certain obferved places of a comet, its. place at any given intermediate time. And Dr Waring, who adds, that a folution fill more elegant, on fome accounts, has been fince difcovered by Meff. Nichol and Stirling, has alfo refolved the fame problem, and rendered it more general, without having recourfe to finding the fucceffive differences. Pbilof. Tranf. vol. 69. part i. art. $7 \cdot$

INTERSCENDENT, in algebra, is applied to quantities, when the exponents of their powers are radical quantities. Thus $x^{\sqrt{2}}, x^{\sqrt{ } a}, \& c$. are interfcendent quantities.

INTERSTELLER, a word ufed by fome authors to exprefs thofe parts of the univerfe that are without and beyond the limits of our folar fyftem.

IN I'RADOS, the interior and lower fide, or curve, of the arch of a bridge, \&c. In contradiflinction from the extrados, or exterior curve, or line on the upper fide of the arch. See Arch in this Suppl.

INVOLUTION and Evolution, are terms introduced into geometry by the celebrated Mr Huygbens, to exprefs a particular manner of deferibing curvilineal fpaces which occurted to him when occupied in the im-
provement of his noble invention of pendulum clocks. Involution, Although he was even aftonihed at the accuracy of their motion, and they foon fuperfeded all balance clocks, he knew that the wide viltrations were fomewhat flower than the narrow ones, and that a circle was not fufficiently incurvated at the fides to render all the vibrations ifochronous. The proper curve for this purpofe became an interefting object. By a moft accurate inveftigation of the motions of heavy bodies in curved paths, he difcovered that the cycloid was the line required. Lord Brouncker had difcovered the fame thing, as alfo Dr Wallis. But we do not imagine that Kuyghens knew of this; at any rate, he has the full claim to the difcovery of the way of making a pendulum ofcillate in a cycloidal arch. It cafily occurred to him, that if the thread by which the pendulun hangs be furpended between two curved cheeks, it would alternately lap on each of them in its vibrations, and would thus be raifed out of the circle which it defcribes when f. \{pended from a point. But the difficulty was to find the proper form of thefe cheeks. Mr Huyghens was a moft excellent geometer, and was poffeffed of methods unknown to others, by which he got over almoft every difficulty. In the prefent cafe there was forturately no diffaculty, the means of Polution offering themfelves al.. moft without thought. He almoft immediately difoovered that the curve in queftion was the fame cycloid. That is, he found, that while a tbread unwinds from an arch of a cycloid, beginning at the vertex, its extremity defcribes the complementary arch of an equal cycloid.

Thus he added to this curve, already fo remarkable for its geometrical properties, another no lefs curious, and infinitely exceeding all the others in importance.

The Iteps ly which this property was difcovered are fuch direct emanatious from general principles, that they immediately excited the mind of Mr Huyghens, which delighted in geometry, to profecute this method of defcribing or transforming curve tines by evolution. It is furprifing that it bad not ere this time nccurred to the ancient geometers of the laft century; and particularly to Dr Barrow, who feems to have racked his fancy for almoft every kind of motion by which curve lines cas be generated. Evolution of a thread from a curve is a much more obvious and conceivable genefis than that of the sycloid invented by Merfennus, or that of the conchoid by Nicodenues, or thofe of the conic fections by Vieta. But except. fome vague expreffions by Ptoleny and Gaffendus, about defcribing fipirals by a thread unlapped from: a cylinder, we do not recollect any thing of the kind among the writings of the mathematicians; and it is to Huyghens alone that we are indebted for this very beautifal and important branch of geometry. It well deferves both of thefe epithets. The theorems which conititute the doctrines of evolution are remarkable for their perppicuity and neatnefs. Nothing has fo much contributed to give us clear notions of a very delicate fubject of mathematical difcuffion, namely curvature, and the meafure and variations of curvature. It had become the fubject of very keen debate ; and the notions entertained of it were by no means diftinct. But nothing can give fuch a precife conception of the difference of curvature, in the different parts of a cycloid or other curve, as the beholding its defcription by a radius continually varying in length. This doctrime is peculiarly valuable to the ipe-

Invelution. culator in the nigher mechanics. The intenfity of a de.

- r

 flecting foree is eftimated by the curvature which it induces on any rectilincal motion ; and the variations of this intenfity, which is the characteriltic of the force, or what we call its nature, is inforred from the variations of this curvature. The evolution and involation of curve lines have therefore great claim to our attention. But a WTurk like ours can only propofe to exhiLit an outhine of the fuhject; and we muft refer our readers to thofe eminent authors who have treated it in detail. Varignon, in the Memoirs of the French Academy for 1706, has been at immenfe pains to prefent it in cvery form; James Bernoulli has alfo treated the fubject in a very general and fyltematic manner. Some account is given of it in every treatife of fluxions. We recommend the original work of Mr Huyghens in particular ; and do not helitate to fay, that it is the finett fpecimen (of its extent) of phyfico-mathematical difcuffion that has ever appeared. Huyghens was the moft elegant of all modern geometers; and both in the geometrical and phytical part of this work, De Horologio Ofcillatorio, he has preferved the utmoth rigour of demonflration, without taking one ftep in which Euclid or A pollonius would not have followed him.
juvat integros accedere fontes
 Atque baurive.

Such authors form the iafte of the young mathematician, and help to preferve him from the almoft mechanical procedure of the expert fymbolical analy lt, who arrives at his conclufion without knowing how he gets thither, or having any notions at all of the magnitudes of which he is treating.

There are two principal froblens in his doctrine.
I. To afcertain the nature of the figure generated by the evolution of a given curve.
II. To determine the nature of the curve by whofe evolution a given carve may be generated. - We fall contider each of thefe in order, and then take the opportunity which this fubject gives of explaining a little the abotrufe nature of curvature, and its meatures and variations, and take notice of the opinions of mathematicians about the precife nature of the angle of contact.

The curve line ABCDEF (fig. I.) may he contider-
ther vefemble the momentery radii- of tlec evolutria. IAvilution. We may name them the evolved ramit. The begimning A of evolution may be contidered as the vertex of the curves, and the ends F and f may be called the TERMS.

There is another way in which this defeription of curse lines may be conceived. Intead of a thread Ff graduatiy lapped up on the mould, we may coinccive If f to be a ltraigint edged ruler applied to the nowid, and graduall: rolled along it withort llising, fo as to touch it in faccefion in all its points. It is evident, that $b y$ this procefs the point f will defcribe the curve $f d$ A, while the point F decribes the other curve $\mathrm{F} d^{\prime} a$. This way of conceiving it gives a great extention tu the doetrine, and homologates it with that genefis of chave lines by which cycloids of all kinds are defcerbed, and which we maj diftinguifh by the name of Provoluroon. For it is plain that the relative motions of the points A and b are the fanc, whether the ruler $b \mathrm{~B} b$ roll on the mould $A B F$, or the mould roll on the ruler: but there will be a great difference in the form of the line traced by the defcribing point, if we fuppofe the plane on which it is traced to be attached to the rolling figure. Thus, when a circle rolls on a ftraight line, a point in its circumference traces a cycloid on the plane attached to the flraight line, while the point of the traight line which quitted the circle defcribes on the plane attached to the circle another line; namely, the involute of the circle. This mode of deferiptional. lows us to employ a curved ruler in place of the Araight oae $b \mathrm{~B} b^{\prime}$; and thus gives a vaft extenfion to the theory. But at prefent we flall confine ourfelves to the employment of the fraight line $b^{\prime} \mathrm{B}^{\prime}$, only keeping in mind, that there is an intimate cumection between the lines of evolution and of provolution.

By the defcription now given of this procefs of evolution and involution, it is plain,

1. That the evolution is always made from the conves fide of the evolute.
2. That the evolved radii $\mathrm{B} b, \mathrm{C} c, \mathrm{D} d$, \& c . are refpecinctly equal to the arches $\mathrm{BA}, \mathrm{CA}, \mathrm{DA}$, Eec. of the evolute which they have quitted; and that $b \mathrm{~B} b^{\prime}, c \mathrm{C} c$. $d \mathrm{D} d$, \& $i c$ are always equal to the whole arch ADF .
3. That any point B of the lapped up thread deferibes during its evolution a curve line Br 万ot parallel to b c d e f; becaufe thefe curves are always equidiftant from each other.
4. That if the thread extend beyond the mould as a tangent to it, the extremity α will deferibe a parallel or equidillant curve $\alpha \beta \gamma \delta \& \beta$, lying without $A b c d \in f$: From this it appears that $\mathrm{B} \gamma \delta \in p^{\circ}$ is the complete evo. lumix of FEDCD, while $b d$ ce f is the evolutrix of that' arch, and the added tan!ent B b. In like inanner, the lapped up thread ADF, with the added part $\mathrm{F} p$, deferibes the evolutrix $q^{\prime} \delta^{\prime} \delta^{\prime} \gamma^{\prime} \sigma^{\prime} A^{\prime}$.
5. If from any point C of the evolute there bedrawn. lines $\mathrm{C} b, \mathrm{C} c, \mathrm{C} d, \mathrm{C} e$, \& c. to the evolutrix, thofes which are more remote from the vertex are greater than thofe which are nearcr. Draw $\mathrm{B} b, c \mathrm{C}, d \mathrm{D}, e \mathbf{E}$, touching the revolute. $\mathrm{C} b$ is lefs than $\mathrm{CB}+\mathrm{B} b$; that is (2), than C c. Again, $\mathrm{DC}+\mathrm{C} c$ is equal to: $\mathrm{D} d$, which is lefs than $\mathrm{DC}+\mathrm{C} d$. Thercfore $\mathrm{C} c$ is lefs than $\mathrm{C} d$. Now let $\mathrm{C} e$ cut $\mathrm{D} d$ in r. Then e r, $+r \mathrm{DE}$ is greater than e. But $e \mathrm{E}$ is equal to $d r$ $+r \mathrm{DE}$. Therefore $e r$ is greater than $d r$; and $e r+$

Involution. $r \mathrm{C}$ is greater thay $d r+r \mathrm{C}$, whiel is greater than $\underbrace{}_{c} \mathrm{C}$. Therefore C is greater than $c \mathrm{C}$.
6. Hence it follows, that a circle deferibed round any point of the evolute, with a radius reaching to any point of the evolutrix, will cut the evolutrix in that point, and be wholly within it on the fide remote from the vertex, and withunt it on the fide next the vertex.
7. The evolved radius cuts every arch of the evolutrix perpendicularly, or a right line drawn through the interfection at right angles touches the evolutrix in that point. Through any puiat d draw the line $m d t$ at right angles to $d \mathrm{D}$). The part of it $m d$ next to the vertex is wholly without the curve, becaufe it is with. out the circle defribed round the centre D ; and this circle is without the evolutrix on that fide of d which is next the vertex (6). Any point t on the other fide of a is alfu without the curve. For let te E be another evolved radius, cutting $\mathrm{D} d$ in n : then $n d$ is lefs than * i, becaufe $n d t$ is a right angle by conltruction; and therefore $n t d$ is acute. But becaufe $\mathrm{E} n+n \mathrm{D}$ are greater than $\mathrm{ED}, \mathrm{E} n+n d$ arc greater than $\mathrm{ED}+$ $10 d$, that is, than $E e$, and $n d$ is greater than $n e$. Therefore, fince it is lefs than $n t$, it follows that $n e$ is much lefs than $n t$, and t lies without the curve. Therefore the whole line $m d t$ is without the curve, except in the point d. It therefore touches the curve in d, and the radius $\mathrm{D} d$ cuts it at right angles in that point. By the fame reafoning, it is demonitrated that all the curves A $b d f, \alpha \beta \delta \rho_{0}, A^{\prime} b^{\prime} d f^{\prime}, a^{\prime} b^{\prime} \delta^{\prime} \xi^{\prime}$, are cut perpendicularly by the tangents to the evolute. Alfo all thefe curves interfect the evolute at right angles in their vertexes.

It follows from this propofition, that from every point, fuch as s, or i, or $o, 8 c \mathrm{c}$. in the face AOF comprehended by the evolute and its extreme tangents $A O$, FO, two perpendiculars may be drawn to the evolutrix $A d f$; and that from any point in the fpace within the angle A of only one perpendicular can be drawn; and that no perpendicular can be drawn from any point on the other finde of ADF. Apollonius had obferved thefe circumflances in the conic fections, but had not thought of marking the boundary formed by the evolute ADF. Had he noticed this, he would certainly have difcovered the whole theory of evolution, and its importance in fpeculative geometry.

It alfo follows from this propofition, that if a curve A $b c d e f$ is cut by the tangents of ABCDEF at right angles in every point, it will be defcribed by the evolution of that curve: For if the evolutrix, whofe vertex is A, he really defcribed, it will coincide with A bcd in A, and have the fame tangent ; it therefore does not deviate from it, otherwife their tangents. would feparate, and would nut both be at right angles with the lines touching the evolute. They mult therefore coincide throughout.
8. The arehes $b c d$ and $\beta \gamma \delta$, intercepted by fome radii $\mathrm{B} b$ and $\mathrm{G} d$, may be called concentric; and the angles contained between the tangents drawn through their extremities are equal. Thus the angle $\lambda \pi \circ$ is equal to $1 p o$: but although equidiflant, parallel, and containing the fame angle between their tangents and between their radii, they are not fimilar. Thus; the arch $\alpha \beta$ has a curvature at α that is the fame with that of any circle whofe radius is equal to $A \alpha$; but the curvature at \mathbf{A} is incomparable with it, and unmeafurable. The fame may be faid of the curvatures at β and at B. Suppl. Vol. II. Part I.
9. If a circle u it x be deferibed round the centre D involution. with the radius $\mathrm{D} d$, it both touches and cuts the evolutrix in the point d, and no circle can be defcribed touching the curve in that point, and paffing between it and the circle $y d z$: For fince it tuliches the curve in d, its centre mult be fomewhere in the line $d \mathrm{D}$ perpendicular to $m d t$. It cannut he in any point n more remote from d than D is; for it wuld pafs without the arch $d u$, and be more emote than $d u$ from the arch $d c$ of the evolutrix. On the uther fide, it would indeed pafs without the arch $d z$, which lies within the arch de of the evolutrix : but it would alfo pifs without the curve. Fur it has been already denuinfarated (7) that $n d$ is greater than $n e$; and the curve would lie between it and the circle $d z$.

Thus it appears, that a circle defcribed with the evolved radius approaches nearer to the curve, or touches it mure clofely, than any other circle; all other circles either interfect it in meafurable angles, or are within or without the curve on both fides of the point of cuntact. This circle $u d z$ has therefore the fame curvature with the curve in the point of contact and coalefcence. It is the equicurve circle, the circle of equal curvature, the osculatina circle (a name givell it by Leibnitz). The evolved radius of the evolute is the radius of curvature of the evolutrix, and the point of the evolute is the centre of curvature at the point of con. tact with the evolutrix. The evolure is the get.metrical locus of all the centres of curvature of the evolutrix.

This is the moll impurtant circumftance of the whole doctrire of the involution and evolution of curve lines. It is alfunsed as a felf. wident truth by the precipitant writers of :lements. It is indeed very like truth : For the extremity of the thread is a momentary radius during the procefs of evolution; and any minute arch of the evolute nearer the vertex mult be conceived as more incurvated than the arch at the point of contact, becaufe deferibed with fhorter radii : for the fame reafon, ail beyond the contact muft be lefs incurvated, by reafon of the greater radii. The curvature at the contact muft be neither greater nor lefs than that of the circle. But we thought it better to follow the example of Huyghens, and to eftablin this leading propofition on the trictelt geometrical reafoning, acknowledging the fingular obligation which mathematicians are under to him for giving them fo palpable a method of fixing their notions on this fubject. When the evolute of a curve is given, we have nut only a clear view of the genefis of the curve, with a neat and accurate mechanical method of defcribing it, but alfo a dittinct comprelienfion of the whule curvature, and a connected view of its gradual variations.

We fpeak of curvature that is greater and leffer; and every perfon has a general knowledge or conception of the difference, and will fay that an ellipfis is more curve at the extremities of the tranferfe axis than any where elfe. But before we can inflitute a comparifon between them with a precifion that leads to any thing, we muft agree about a meafuce of curvature, and fay what it is we mean by a double or a triple curvature. Now there are two ways in which we may confider curvature, or a want of rectitude: We may call that a double curvature which, in a given fpace, carries us twice as far from the ftraight line ; or we may call that a double curvature by which we deviate twice as much

Inv lution from the fame dircetion. Both of theif meafures have been adopted; and if we would rigidly athere to them, there would be no room for complaint : lut mathematichans have not been fleady in this refpect, and by mixing and confounding thefe meafures, have frequently puzzled their rea lers. All agree, however, in their firft and finple meafures of curvature, and fay that the eurvature of all arch of a circle is as the arch directly, and as the radius inverfely. This is plainly meafuring entvature by the defection from the firf direction. In an arch of an inch long, there is twice as much deflection from the firt direction when the radius of the eirele is of half the length. If the ralius is about $57^{\frac{1}{2} t h}$ inches, an arch of one inch in length produces a find direction one degree lifferent from the firt. If the radius is $114^{\frac{1}{5}}$ inches, the deviation is but half of a degree. The linear deffection from the ftraight path is allo one half. In the cafe of circles, thercfore, both meafures agree: but in by far the greatef number of cafes they may differ exceedingly, and the changes of direction may be greatef when the linear deviation is iwat. Flexure, or (hange of direction, is, in general, the moft fenfible and the mof important character of curvature, and is 11 m derflood to be its criterion in all cafes. But our procoffes for difoovering its quantity are generally hy firt difcovering the linear deviation; and, in many cafes, particulaly in our philofophical inquiries, this linear deviatio: is our principal object. Hence it has happened, that the mathematician has frequently ftopped fhort at this refult, and has adapted his theorems chiefly to this determination. Thefe differences of object have caufed great confuition in the methods of contidering curvature, and led to many difputes about its nature, and about the augle of contact; to which difputes there will be no end, till rathematicians have agreed in their manser of expreffing the meafures of curvature. At prefent we abide by the meafure al. ready given, and we mean to exprefs by curvature or flexure the change of diection.

This heing premifed, we obferve, that the curvature of all thefe curves of evolution where they feparate from their evointes, is incomparable with the curvature in any other ftace. In this point the radius has no magnitude; and therefore the curvature is faid to be iufinitely great. On the wher hand, if the evolved curve has an afymptute, the curvature of the evolutrix of the adjacent branch is faid to be infinitely faill. Thefe expreftions becoming familiar, have occafioned fome very intricate queftions and erroncous notions. There can be little doubt of their impropriety: For when we fay, that the curvature at A is infinitely greatcr than at α, we do not recoilect that the flexure of the whole arch $\mathrm{A} b$ is equal to that of the whole arch $\alpha \beta$, and the fexure at A mut either make a part of the whole fexure, or it mult be fomething difparate.

The evolutrix A cdef (fig. 2.) of the commonequilateral hyperbula exhibits every poflible magnitude of curvature in a very fmall fpace. At the vertex A of the hyperbola it is perpendicular to the curve; and therefore has the tranfverfe axis $A=A^{\prime \prime}$ for its tangent. The curvature of the evolutrix at A is called infinitely great. As the thread unlaps from the branch ABC , its extremity defcribes Abc. It is plaia that the evolutrix muft cut the aflymptote $\oplus \mathrm{H}$ at right angles in fome point G, where the curvature will be what is called in-
finitely finall; becaufe the centre of cur*ature has re- Involitiono moved to an infinite diftance along the branch AF of the hyperbola. This evolutrix may be continued to the vertex of the hyperbola on the other fide of the affymptote, by caulimg the thread to lap upon it, in the fanie way that Mr luyghens eompleted his cycloidal ofcillation. Or we may form another evolutix $\alpha \beta \gamma \delta$. $v^{\prime} s^{\prime} \beta^{\prime} A^{\prime}$, by lengthening the thread from G in \neq, the centre of the hyperbola, and fuppoling that, is foon as the curve A $\delta \otimes$ is completed, by unlapping the thread from the branch $A B C$, another thread laps upon the hyperbola $\mathrm{A}^{\prime \prime} \mathrm{F}^{\prime \prime}$. This laft is confidered as a more geonetrical revolution than the other: For the mathematicians, extending the doctrine of evolution beyond Mr Huyghens's reftriction to curves which had their convexity turned one way, have agreed to confider as one continued evolution whatever will complete the curve exprefled by ore equation. Now the fame equation expreffes thoth the curves AF and $\mathrm{A}^{\prime \prime} \mathrm{F}^{\prime \prime}$, which occupy the fame axis AA^{\prime} '. 'The cycloid employed by Huyghens is, in like manner, but one continuous curve, deferibed by the continued provolution of the circle along the Atraight line, although it appears as two branches of a repeated curve. We fhall meet with many infances of this feemingly compounded evolution when treating of the fecond queftion.

Since the arch $\mathrm{A} \ell d \mathrm{G}$ contains every magnitude of curvature, it appears that every kind of curvature may be produced by crolution. We can have no conception of a flexure that is greater than what we fee at A, or lefs than what we fee at G; yet there are cafes which feem to thew the contrary, and are familiarly faid, by the greatelt mathematicians, to exhibit curvatures infinitely fmaller ftill. Thus, let ABC (fig. 3) be a conical parabola, whole paraneter is AP. Let AEF be a cubical parabola, whofe paraneter is $A Q$. If we make $A Q$ to $A D$ as the cube of $A P$ to the cube of $A Q$, the two parabulas will interfect each other in the ordinate DB. For, making $\mathrm{AP}=p$, and $\mathrm{AQ}=q$, and calling the ordinate of the conic parabolay, that of the cubic parabold \approx, and the indeterminate abffifla AD x, we have

$$
p^{3}: q^{3}=q: x,=q^{3}: z^{3}, \text { and } p: q=q: z
$$

but $q: p=q: p$; therefore, by compofition,
$p^{2}: q^{2}=q^{2}: p x=q^{2}: y^{2}$, and $p: q=q: y ;$
therefore $z=y$, and the parabolas interifect in $\dot{\mathrm{B}}$.
Now, becaufe in all parabolas the ordinates drawn at the extremity of the parameters are equal to the parameters, the interfections q and p will be in a line A $q p$, which makes half a right angle with the axis AP. Therefore, when AQ is greater than AP, the point q is without the conical parabola, and the whole arch of the cubical parabola cut off by the ordinate DB is alfo without it; but when AQ is lefs than AP, q is within the conical parabola, as is alfo the arch $q 13$. Therefore the remaining arch BEA is without it, and is therefore lefs incurvated at A. An endlefs number of conical parabolas of fmaller curvature may be drawn by enlarging AP; yet there will fill be an arch AEB of the cubical parabola which is without it, and therefore lefs incurvated. Therefore the curvature of a cubical parabola of lefs than that of ady conical parabola: It is faid to be infinitely lefs, becaufe an infuity of cubical parabolas of fmaller curvature than AEB may be drawn by enlarging $A Q$.

It may be demonftrated in the fame mantier, that a paraboloid, whofe ordinates are in the fubliquadrate ratio of the abfciffo, has an infinitely fmaller curvature at the vertex than the cubical parabola. And the curvature of the paraboloid of the next degree is infinitcly lefs than this; and fo on continually. Nay, Sir Ifac Newton, who firf took notice of this remarkable circumftance, demonftrates the fame thing of an endlefs fucceffion of paraboloids interpofed belween any two degrees of this ferics. Neque nozit (fays he) nutura limiz tem.

If this be the cale, all curves cannot be deferibed by evolution ; for we have no conception of a radius of curvatue that is greater than a line without limit. The theory of curvilineal motions delivered in the article Drinamics muft be imperfect, or there mut be curve lines which bodies cannot deferihe hy any powers of nature. The theory there delivered profeffes to teach how a body can be made to defcribe the cubical parabula, and many other curves which have thefe infinitefinal curvatures ; and yet its demonftrations employ the radius of curvature, and cannot proceed without it. We profefs ourfelves obliged to an attentive reader (who has not favoured us with his name) for making this oblervation. It merits attention.

There muft be fome paralogifm or mifconception in all this language of the mathematicians. It does not neceffarily follow from the arch AEB lying without the arch $A I B$, that it is lefs incurvated at A; it may be more incurvated between A and B . Accordingly we fee, that the tangent $B T$ of the conical parabola is lefs inclined to the common tangent $A V$ than the tangent B t of the cubical parabola is; and therefore the flexure of the whole arch AEB is greater than that of the whole arch AIB; and we fhall fee afterwards, that there is a part of $A E B$ that is more incurvated than any part of AlB. . There is nothing correfponding to this umneaning and inconceivable fucceffion of feriefes of magnitndes of one kind, each of which contains an endlefs variety of individuals, and the greateft of one feries infuitely lefs than the fmalleft of the next, \&c.; there is nothing like this demonftrated by all our arguments. In none of thefe do we ever treat of the ourvature at A, but of a curvature which is not at A. At A we have none of the lines which are indifpenfably neceffary for the demonftration. Befides, in the very fame manner that we can deferibe a cubical parabola, and prove that it has an arch lying without the conical parabola, we can deferibe a circle, and demondrate that it has alfo an arch lying without the parabola. 'Thefe infinitefimal curvatures, therefore, are not warranted by our arguments, nor does it yet appear that there are curves which cannot be deferibed by evolution. We are always puzzled when we fpeak of infinites and infinitefi. mals as of fomething precife and determinate; whereas the very denomination precludes all determination. We take the diffinguifhing circumftance of thofe different orders for a thing elearly underftood; for we build much on the diflinction. We conceive the curvature of the cubical parabola as verging on that of the common parabola, and the one feries of curvatures as beginning where the other ends. But Newton has fhewn, that between thefe two feriefes an endlefs number of fimilis fericfes may be interpofed. The veiy names given to the curvature at the extremities of the hyperbo.
lic evolutrix lave no conceptions annexed to them. At linviluticn. the vertex of the hyperbola there is no line, and at the interfection with the affymptote there is no curvaturc. Thefe unguarded expreffions, therefore, hould not make us doubt whether all curves may be defcribed by evolution. If a line be incurvated, it is not ftraight. If fo, two perpendiculars to it muft diverge on one fide, and mult converge and meet on the other in fome point. This point will lie between two other points, in which the two perpendiculars touch that curve by the evolution, of which the given arch of the curve may be defcribed. Finally (which thould decide the queftion), we fhall fee by and bye, that the cubic, and all higher orders of paraboluids, may be fo deferibed by evolution from curves having alfyptotic branches of determinable forms.

Such are the gencral affections of lines generated by cvolution. They are not, propiily Speaking, peculiar properties; for the evolutrixes may be any curve lines whatever. They only ferve to nark the mutnal relations of the evolutes with their evolutrixes, and enable us to conf,uct the one, and to difcover its properties by means of our knowledge of the otlser. We proceed to fhew how the properties of the evolutrix may be determined by our knowledge of the evolute.

This problem will not long occupy attcution, being much limited by the conditions. One of the firft is, that the length of the thread evolved muft be known in every polition: Therefore the length of the evolved arch mult, in like manner, be known; and this, not only in iato, but every portion of it. Now this is not univerfally, or even gencrally the cafe. The length of a circular, parabolic, hy perbolic, arch has not yet been determined by any finite equation, or geometnical conftruction. Therefore their ivolutrixes cannot be determined otherwife than by approximation, or lyy comparifon with other magnitudes equally undetemined. Yet it fometimes happens, that a curve is difcovered to evolve into another of known properties, although we have not previoufly difcovered the length of the evolved areh. Such a difcovery evidently brings along with it the rectification of the crolute. Of this we have an inftance in the very evolution which gave occation to the whole of this doctrine; namely, that of the cycloid; which we fhall therefore take as our firit example.

Let ABC (fig. 5.) be a cycloid, of which AD is the axis, and AHD the generating circle, and $A G$ a tangent to the cycloid at A, and equal to DC. Let B I E touch the cycloid in B, and cot AG in K. It is required to find the filuation of that point of the line BE which had unfolded from A?

Draw BH parallel to the bafe DC of the cycloid, cutting the generating circle in H, and join HA. Defribe a circle KEM equal to the generating circle AHD, touching $A G$ in K, and cutting $B K$ in fome point E. It is known, by the properties of the cycloid, that BK is equal and parallel to HA , and that BII is equal to the arch AbI. Becaufe the circles AHD and KEM are equal, and the angles HAK and AKF. are equal, the chords AH and KE cut off equal arches, and are themfelves equal. Becaufe BHAK is a paral. lelogram, AK is equal to HB; that is, to the arch A $b \mathrm{H}$, that is; to the arch $\mathrm{K} m \mathrm{E}$. But if the circle KEM had been placed on A, and liad rolled from A to K , the arcle difengaged would have been equal to

I N \quad [20$]$ I N V

Involurion. AK, and the point which was in contact with A would now be in E, in the circumference of a cycloid AFF, equal to CBA, having the line $A G$, equal and parallel to DC, for its bafe, and GF, equal and parallel to D.t, for its axis. And if the dianseter KM be drawn, and EM be joined, EM touches the cycloid AEI.

Cor. The arch 134 of the eycloid is equal to twice the parallel chord HA of the generating circle: For this arch is equal to the evolved line BFE; and it has heen fhewn that EK is equal to KB, and BE is therefore equal to twice BK , or to twice HA. This property had indetd been demonttrated before hy Sir Chriftopher Wren, quite independent of the doctrine of evolution; but it is given here as a legitimate refult of this doctrine, and an example of the ufe which may be made of it. Whenever a curvecan be evolved into another which is fufceptible of accurate determination, the arch of the evolved curve is determined in lengtl; ; for it always makes a part of the thread whofe extremi. ty defcribes the evolutrix, and its length is found by taking from the whole length of the thread that part which only touches the curve at its veriex.

This genefis of the cycloid AEF, by evolution of the cycloid $A B C$, alfo gives the mott palpable and fatisfactory determination of the area of the cycloid. For fince $B E$ is always parallel to $A H, A H$ will fweep over the whole furface of the femicircle AHD, while BE fweeps over the whole fpace CBAEF; and fince $B E$ is always double of the fimultaneons $A H$, the Space CBADF is quadruple of the femicircle AIID. But the fpace defcribed in any moment by BK is alfo one-fourth part of that defcribed by BE. Therefore the area GAEF is three times the femicircle AHD; and the fpace DHABC is double of it ; and the fpace CBAG is equal to it.

Sir Iface Newton has extended this remarkable property of evolving into another curve of the fame kind to the whole clafs of epicycloids, that is, cycloids formed by a point in the circumference of a circle, while the circle rolls on the circumference of another circle, either on the convex or concave fide; and he has demonttrated, that they alfo may all be rectified, and a space affigned which is equal to their area (See Prineipia, B. 1. prop. 4^{8}. \&cc.) He demonftrates, that the whole arch is to four times the diameter of the generating circle as the radius of the bafe is to the fum or difference of thofe of the bafe and the generating.circle. We recommend thefe propofitions to the attention of the young reader who wilhes to form a good tafte in mathematieal refearches; he will there fee the geome. trical primeiples of evolution elegantly exemplified.

We may juft obferve, before quitting this clafs of curves, that many writers, even of fome eminence, in their compilations of elements, give a very faulty procf of the pofition of the tangent of a curve defcribed by solling. They fay, for example, that the tangent of the cycloid at E is perpendicular to KE ; becaufe the line KE is, at the moment of defcription, turning round K as a momentary centre. This, to be fure, greatly mortens inveftigation; and the inference is a truth, not only when the rolling figure is a circle rolling on a ftraight line, but even when any one figure rolls on another. Every point of the rolling figure really begins to move perpendicularly to the line joining it with the point of contact. But this genefis of the
arch E_{e}, by the evolution of the arch $B 6$, thews that Involution: K is by no means the centre of motion, nor HK the radius of curvature. Nor is it, in the cafe of epicycluids, trochoids, and many curves of this kiud, a very eafy matter to find the momentary centre. The circle KEM is both advancing and turning round its centre; and thefe two motions are equal, becaufe the circle does not fide but roll, the detached arch being always equal to the portion of the bafe which it quits. Therefore, drawing the tangents $\mathbf{E} g, M g$, and completing the parallelogram Ef Mg, Ef will reprefent the progreffive motion of the centre, and E_{g} the motion of rutation. EM, the motion compounded of thefe, muft be perpendicular to the chord EK.

The iavelligation that we have given of the evolutrix of the cycloid has been fomewhat peculiar, being that which offered itfclf to Mr Huyghens at the time when he and many other eminent mathematicians were much occupied with the fingular properties of this curve. It does not ferve, however, fo well for exemplifying the general procefs. For this purpofe, it is proper to avail ourfelves of all that we know of the cycluid, and particularly the equality of its arch BA to the double of the parallel chord HA. This being known, nothing can be more fimple than the determination of the evolutrix, either by availing ourfelves of every property of the cycloid, or by adhering to the general procefs of referring every point to an abfciffa by means of perpendicular ordinates. In the firft method, knowing that $B E$ is double of BK , and therefore KE equal to HA , and $\mathrm{KA}=\mathrm{BH},=11 \mathrm{hA},=\mathrm{K} m \mathrm{E}$, we find E to be the deferibing point of the circle, which has rolled from A to K . In the other method, we muft draw EN perpendicular to $A G$; then, becaufe the point E moves, during evolution, at right angles to li, , EK is the normal to the curve defcribed, and NK the fubnornal, and is equal to the correfponding ordinate $\mathrm{H}^{\prime} \mathrm{I}^{\prime}$ of the generating circle of the cycluid $A B C$. 'This being a characteriftic property of a cycloid, E is a point in the circumference of a cycloid equal to the cycloid ABC.

Or, laftly, in accommodation to cafes where we are fuppofed to know few of the properties of the evolute, or, at leaft, not to attend to them, we may make ufe of the fluxionary equation of the evolute to obtain the fluxionary equation of the evolutrix. For this purpofe, take a point e very near to E , and draw the evolving radius be, cutting E f (drawn parallel to the bafe DC) in o; draw en parallel to the axis of the evolute, cutting E_{0} in v; alfo draw $b \mathrm{~b} i$ parallel to the bafe, and $\mathrm{B} d$ perpendicular to it. If both curses be now referred to the fame axis CGF, it is plain that $\mathrm{B} b, \mathrm{~B} d$, and $d b$ are ultimately as the fluxions of the arch, abfcifs, and ordinate of the evolute, and that E e, ev, and. v E, are ultimately as the fluxions of the arch, abficiffa, and ordinate of the evolutrix. Alfo the two fluxionary triangles are fimilar, the fides of the one being perpendictilar, refpectively to thofe of the other. If both are referred to one axis, or to parallel axes, the fluxion of the abfciffa of the evolute is to that of its ordinate, as. the fluxion of the ordinate of the evolutrix is to that of its abfciffa. Thus, from the fluxionary equation of the one, that of the other may be obtained. In the prefent cafe, they may be referred to $A D$ and $F G$, making CG equal to the cycloidal arch CBA. Call the $a ;$ $A 1, x ; I B, y$; and $A B$, or $E E, z$. In like manner, let

Involutan. $\mathrm{F} t$ be $=u, t \mathrm{E}=v$, and $\mathrm{FE}=v$; then, hecaufe $\mathrm{DH}^{2}=\mathrm{DA}^{2}-\mathrm{AH}^{2}$, and DA and AH are the halves of CF and BE , we have $\mathrm{DH}^{2}=\frac{a^{2}-z^{2}}{4}$. Alfo $\mathrm{DI}=\frac{\mathrm{DH}^{2}}{\mathrm{DA}}=\frac{a^{2}-z^{2}}{4 \times \frac{1}{2} a}=\frac{a^{2}-z^{2}}{2 a}$. But DI $=$ Ft. Therefore F_{t}, or $u,=\frac{a^{2}-z^{2}}{2 a}$. Alfo $\dot{v}=$ $\frac{\ddot{z} \dot{z}}{\dot{y}}$, by what was faio above, that is, $\dot{w}=\frac{a \dot{u}}{\sqrt{u^{2}-z^{2}}}$, y
$=\frac{a^{u}}{\sqrt{2 a u}}$. Therefore we have su : $\dot{u}(=a: \sqrt{2 a u})$ $=\sqrt{\frac{T}{2} a}: \sqrt{u}=\sqrt{\mathrm{GF}}: \sqrt{\mathrm{F} t}$, which ${ }^{\frac{1}{2}}$ it the analogy cumpetent to a cycloid whofe axis is GF = DA.

It is not neceffary to infitt longer on this in this place; becaufe all thefe things will come more naturally before us when we are employed in deducing the evo. lute from its evolutrix.

When the ordinates of a curve converge to a centre, in which cafe it is called a radiated curve, it is moll convenient to confider its evolutrix in the fane way, conceiving the ordinates of both as infifing on the circumference of a circle defcribed round the fame centre. Spirals evolve into other firals, and exhibit feveral properties which afford agreeable oceupation to the curious geometer. The equiangular, logarithmic, or loxodromic fpiral, is a very remarkable example. Like the cycluid, it evolves into another equal and fimilar equiangular fpiral, and is itfelf the evolutrix of a third. This is evident on the flighteft infpection. I, It $\mathrm{C} r q p$ (fig. 6.) be an equiangular fpiral, of which S is the eentre; if a radius SC be drawn to any point C, and another radius $S P$ be drawn at right angles to it, the intercepted tangent $C P$ is known to be equal to the whole length of the interior revolutions of the fpiral, though infinite in number. If the thread $\mathrm{CP} 1:$ now unlapped from the areh $\mathrm{Cr} q$, it is plain that the firf motion of the point P is in a direction $P \Gamma$, which is perpendicular to PC, and therefore cuts the radius PS in an angle SPT, equal to the angle SCP; and fince this is the cafe in every pofirion of the point, it is manifeft that its path muft be a fpiral $P Q R$, cutting the radii in the fame angle as the fpiral Crqp. James Bernoulli firlt difcovered this remarkable property. He alfo remarked, that if a line PH be drawn from every point of the fpiral, making an angle with the tangent equal to that made by the radius (like an angle of reflection correiponding with the incident ray SP), thofe reflected rays wonld all be tangents to another fimifar and equal fpiral $\mathrm{I} v \mathrm{H}$; fo that $\mathrm{PH}=\mathrm{PS}$. S and H are conjugate foci of an infinitely gender pencil; and therefore the fpiral I vH is the cauftic by reflection of RQP for rays flowing from S. If another equal and fimilar fpiral $x v y$ roll on I $v \mathrm{H}$, its centre z will deforibe the fame fpiral in another pofition $w u z$. All thefe things flow from the principles of evolution alone : and Mr Bernoulli traces, with great ingenuity, the connection and dependence of cauttics, both by reflection and refraction, of cycloidal, and all curves of provolution, and their origin in evolution or involution. A variety of fuch repetitions of this curve (and many other fingular properties), made him call it the spira mirabilis. He defired that it fhould be engraved on his tumbtone, with
the infeription eadem mutataresurgo, as expreffive Involution. of the refurrection of the dead. Sce his wo excellent difertations in Aa Erudit. 1692, March and May.

Another remarkable property of this fpiral is, that if, infted of the thread evolving from the fpiral, the fpiral evolve from the ftraight line ${ }^{\circ} \mathrm{C}$, the centre S will deforibe the Araight line PS. Of this we have an example in the apparatus exhibited in courles of experimental philofophy, in which a double cone defcends, by rolling along two rulers inclined in an angle to each other (fee Grarefande's Nat. Phil. I. \$. 2 In). It is pretty remarkable, that a rolling motion, feemingly round C , as a momentary centre, hould produce a motion in the flaight line SP; and it fhews the incor.clufivenefs of the reafoning, by which many compilers of elements of geometry profefs to demonftrate, that the motion of the defcribing point S is perpendicular to the momentary radius. For here, although this feeming momentary radius may be ihurter than any line that can be named, the real radius of eurvature is longer than any line that can be named.

But it is not merely an object of fpeculative geometric curiofity to mark the intimate relation between the genelis of curves by evolution and provolution; it may be applied to important purpufes both in fcience and in art. Mr MbLaurin lias given a very inviting example of this in his account of the Newtonian philofophy; where lue exlibits the moon's path in abfolute fpace, and from this propufes to inveftigate the deflecting forees, and vice verya. We have examples of it in the arts, in the formation of the pallets of pendulums, the teeth of wheels, and a remarkable one in Meffrs Watt and Boulton's ingenious contrivance for producing the rectilineal motion of a pillon rod by the combination of circular motions. M. de la Hire, of the Acadenty of Sciences at Paris, has been at great paius to hew how all motions of evolution may be converted into motions of provolution, in a memoir in $\mathbf{1} 706$. Sut he would have done a real fervice, if, inftead of this ingenious whim, he had fhewn how all motions of provolution may be traced up to the evolution which is equivalent to them. For there is no organic genefis of a curvilineal motion fofimple as the evolution of a thread from a curve. It is the primitive genefis of a circle; and it is in evolution alone that any curvilineal motion is comparable with circular mation. A given curve line is an individual, and therefore its primitive organical genefis muft alfo be individual. This is ftrictly true of evolution. A parabola has but one evolute. But there are infinite mo. tions of provolution which will deferibe a parabola, or any curve line whatever; tharefore thefe are not primitive organical modes of defcription. That this, however, is the cafe, may be very eafily thewn. Thus let ABCD (fig. 7.) be a parabola, or any curve; and let $a b c d$ be any other eurve whatever. A figure $\mathrm{E}_{\mathrm{m}} / \mathrm{k} \mathrm{b}_{i}$ may be found fuch, that while it rolls along the curve $a b c d$, a point in it thall defcribe the parabola. The procefs is as follows: Let $\mathrm{B} b, \mathrm{C} c, \mathrm{D} d,\{x$. be a number of perpendiculars to the parabola, cutting the curve $a b c d$ in fo many points. The perpendiculars may be fo difpofed that the points $a, b, c, \& x$. Thall be equidiftant. Now we can conftruct a triangle Eeb fo, that the three fides $\mathrm{E} e, e h$, and $b E$, fhall be refpectively equal to the three lines $\mathrm{E} e$, ef, $\mathrm{F} f$. In like manner may the whole figure be conftructed, having the little bafes of:

$\mathrm{I} N \mathrm{~V} \quad\left[\begin{array}{ll}22\end{array}\right] \quad \mathrm{N}$ V

Invoiufinn. the triangles reipectively equal to the fuceeffive portions of the bafe $A b c d$, and the radii cqual to the perpendiculars B $b, \mathrm{C} c, \mathrm{D} d$, acc. Let this ligure roll on this bafec. While the little ficle co moves from its prefent pofition, and applies itfolf to ef, the point E deferibes an arch E f of a circle round the centre e, and, falling within the parabola, is fomewhere between E and F. Then continuing the provolution, while the next fide bi turns round f till i applies to g, the point E deferibes another arch \& Fo round f, firft rifing up and reaching the parabola in F , when the line b , E coincides with $f \mathrm{~F}$, and then falling within the parabola till the point b begin to rife again from f by the turning of the rolling figure round the point g. Reverfing the motion, the fides $i b, b e, e k$, \& c. apply themfelves in fucecffion to the portions $\mathrm{g} f, f e, e d, S c$. of the bafe, and the point E deferibes an undulating line, confifting of arches of circles round the fucceffive centres $g, f, e, \& c c$. Thefe eircular arches all touch the parabola in the points G, F, E, \&e. and feparate from it a little internally. By diminifhing the portions of the bafe, and increaling the number of the triargular elements of the rolling figure without end, it is evident that the figure becomes ultimately curvilineal inftead of polygonal, and the point I: continues in the parabola, and accurately deferibes it. It is now a curvilineal figure, having its elementary arches equal to the portions of the bafe to which they apply in fucceffion, and the radii converging to E equal to the perpendiculars intercepted between the curve ABCD and the bafe. It may therefore be accurately conflructed.

It is clear that practical mechanics may derive great advantage from a careful fudy of this fubject. We now fee motions executed by machinery which initate almoft exery animal motion. But thefe have been the refult of many random trials of wipers, frail-pieces, \&c. of various kinds, repeatedly corrected, till the defired motion is at laft accomplifhed. But it is, as we fee, a fcientific problem, to cositruct a figure which fhall certainly produce the propofed motion ; nor is the procels by any means difficult. But how fimple, is comparifon, is the production of this motion by evolution. We have only to find the curve line which is touched by all the perpendiculars $\mathrm{B} b, \mathrm{C} c, \mathrm{D} d, \& c$. This naturally leads us to the fecond problem in this doctrine, namely, to determine the evolute by our knowledge of the involute : a problem of greater difficulty and of greater importance, as it implies, and indeed teaches, the carvature of lines, its meafure, and the law of its variation in all particular cafes. The evolute of a curve is the geometrical expreffion, and exhibition to the eye, of both thefe affections of curve lines.

Since the evolved thread is always at rifht angles to the evolutrix and its tangent, and is itfelf always a tangent of the evolute, it follows, that all lines drawn perpendicular to the arch of any curve, touch the curve line which will generate the given curve by evolution. Were this evolved curve previoully known to us, we could tell the precife point where every perpendicular would touch it; but this being unknown, we muft determine the points of contact by fome other method, and by this determination we afcertain fo many points of the evolute. The method purfued is this: When two perpendiculars to the propofed curve are not parallel (which we know from the bnown pontion of the
tangents of nur curve), they muft interfect each other favaiution. fornewhere on that fide of the tangents where they contain an ang!e lefs than 180°. But when they thus in. terfect, one of them has already touched the evolute. and the other has not yet reached it. Thus let bs, es (fig. 1.) be the two perpendiculars: being tangents to the evolute, the points s of their interfection muft be on its convex-fide, and the unknown points of contact B and E muft be on different fides of s. Thefe are clementary truths.

Let e E approach toward $b \mathrm{~B}$, and now cut it in x. 7 he contact has fhifted from E to D, and x is thill between the contacts. When the fhirting perpendicular comes to the pofition c C, the interfection is at i, between the contacts B and C. And thus we fee, that as the perpendiculars to the involute.gradually approach, their contacts with the evolute alfo apprach, and their interfection is always between them. Hence it legitimately follows, that the ultimate pofition of the iuterfection (which alone is fufceptible of determination by the properties of the involute) is the polition of the point of contact, and therefore determines a point of the evolute. The problem is therefore reduced to the inveftigation of this ultimate interfection of two perpendiculars to the propofed curve, when they coalefce after gradually approaching. This will be belt illuftrated by an example : Therefore let ABC (fig. 8.) be a parabola, of which A is the vertex, $A H$ the axis, and $A V$ onelalf of the parameter; let BE and CK be two perpendiculars to the curve, cutting the axis in E and K , and interfecting each other in r; draw the ordinates BD , CV, and the tangent BT, and draw BF parallel to the axis, cutting CH in F , and CN in O .

Becaufe the perpendiculars interfect in r, we have $r E: E B=E J: B F$. If therefore we can difcover the ratio of EK to BF , we determine the interfection r. But the ratio of EK to BF is compounded of the ratio of EK to BO , and the ratio of BO to BF . The firft of the e is the ratio of equality ; for DE and VK are, each of them, equal to AV , or half the parameter. Take away the common part VE, and the remainders EK and DV are equal, and DV is equal to BO ; therefore $\mathrm{EK}: \mathrm{BF}=\mathrm{BO}: \mathrm{BF}$; therefore $r \mathrm{E}: r \mathrm{~B}=$ $\mathrm{BO}: \mathrm{BF}$, (and by divifion) $\mathrm{EE}: \mathrm{Er}=\mathrm{FO}: \mathrm{OB}$. Now let the point C continually approach to B, and at laft unite with it. The interfection r will unite with a point of contact N on the evolute. The ultimate ratio of FO to $O B$, or of $f \circ: \circ \mathrm{B}$, is evidently that of ED to DT, or ED to 2 DA ; therefore $\mathrm{BE}: \mathrm{EN}=\mathrm{ED}$: 2 DA , or as half the parameter to twice the abfeifta. Thus have we determined a point of the evolute; and we may, in like manner, determine as many as we pleafe.

But we wifh to give a general character of this evolute, by referring it to an axis by perpendicular ordinates. It is plain that V is one point of it, becaule the foint E is alivays ditant from its ordinate DB by a line equal to $A V$; and therefore, when B is in A, E will be in V, and r will coincide with it. Now draw VP and NQ perpendicular to $A H$, and NM perpendicular to VP; let EB cut PV in t : then, becaufe AV and $D E$ are equal, $A D$ is equal to $V E$, and $V E$ is equal to one-half of DT. Moreover, becaufe BD and NQ are parallel, $\mathrm{DE}: E Q=B E: E N=D E: D T$; thenfore $D T=E Q$, and $V E=\frac{8}{2} E Q$, and therefore

I N V

nvolu ion.
-
$=\frac{1}{3} \mathrm{VQ}$; therefore $\mathrm{V} t$ is $\frac{2}{3}$ of Mt , and $\frac{\frac{\pi}{3}}{\mathrm{MV}}$. This is a characterific property of the evolute. The fubtangent is $\frac{3}{2}$ of the abfcifia; in like manner, as in the common parabola, it is double of the abfeifla. We know therefore that the evclute is a paraboloid, whofe equation is $a x^{2}=y^{7}$; that is, the cube of any ordiuate MN is equal to the parallelopiped whofe bafe is the fquare of the abfiffa VM, and altitude a certain line VP, called the parameter. To find VP, let CR be the perpendicular to the parabola in the point where it is cut by the ordinate at V ; draw the ordinate RS of the parabuloid, and RG perpendicular to AH. Then it is evident, from what has been already demontrated, that $V K$ is $\frac{3}{2}$ of $K G$, and $\frac{+}{4}$ of VG: therefore KG^{2} $=4 \mathrm{VK}^{2}$, and (in the parabola) $\mathrm{VC}^{2}=2 \mathrm{VK}^{2}$. Alfo, becaufe $\mathrm{KV}: \mathrm{VC}=\mathrm{KG}: \mathrm{GR}$, we have $\mathrm{GR}^{2}=2 \mathrm{KG}^{2}$ $=\delta \mathrm{VK}^{2}$; therefore $\mathrm{VP} \times \mathrm{RG}^{2}=8 \mathrm{VP} \times \mathrm{VK}^{2}$. But $\mathrm{VG}^{3}=27 \mathrm{VK}^{3},={ }_{27} \mathrm{VK} \times \mathrm{VK}^{2}$; therefore, becaufe in the paraboloid, $\mathrm{VP} \times \mathrm{VS}^{2}=\mathrm{SR}^{3}$, or $\mathrm{VP} \times \mathrm{RG}^{2}$ $=\mathrm{VG}^{3}$, we have $8 \mathrm{VP} \times \mathrm{VK}^{2}=27 \mathrm{VK} \times \mathrm{VK}^{2}$, and $8 \mathrm{VP}=27 \mathrm{VK}$; or VK:VP; that is, $\mathrm{AV} \vdots \mathrm{VP}=$ $8: 27$; or $\mathrm{VP}=\frac{2,}{8} \mathrm{AV}$, or $\frac{1}{7} \frac{7}{6}$ of the parameter of the parabola $A B C$. The evolute of the conical parabola is the curve called the femicubical parabola, and its parameter is $\frac{2}{10}$ of the conical parabola.

This inveftigation is nearly the fame with that given by Huyghens, which we prefer at prefent to the method generally employed, becaufe it keeps the principle of inference more clofely in view.

Mr Huyghens lias deduced a beautiful curollary from it. Since the parabola $A B C$ is defcribed by the evolution of the paraboloid VNR, the line RC is equal to the whole evolved arch RNV, together with the redundant tangent line AV. If therefore we take from CR a part $\mathrm{C} \times$ equal to the redundant $A V$, the remainder $x \mathrm{~K}$ is equal to the arch RNV of the paraboloid. We may do this for every pofition of the evolved radius, and thus obtain a feries of points V, β, x, δ, t, of the evolutrix of the paraboluid. We have even an eafier method for obtaining the length of any part of the arch of the parabaluid, without the previous defcription of the parabola $A B C$. Suppofe l' y the arch of the paraboloid, and $y z$ the tangent; make $\mathrm{P} z={ }^{8} \%$ of the paranieter, and defcribe the arch $\mathrm{P} u u$ of a circle; then draw from every tangent $y z a$ parallel line $x v$, eutting the cirele in u. The length of the arch $y P$ is equal to $y z+u v$. The celebrated author congratulates himfelf, with great jurtice, on this neat exhibition of a right line equal to the arch of a curve, without the employ--ment of any line higher than the circle. It is the fecond curve that bas been fo rectified, the cyctoid alone having been rectified by plain geometry a very few years before by Sir Chriftupher Wren. It is very true, ari. he candidly admits it, that this very curve had been rectified before by Mr William Neill, a young gentleman of Oxford, and favourite pupil of Dr Wallis ; as alfo by Mr Van Heuraet, a Dutch gentleman of rank, and an eminent mathematician. But both of thefe gentlemen had done it by means of the quadrature of a curve conitructed from the paraboloid after the manner of Dr Barrow, Leg. Geom. XI. Nur was this a folitary difcovery in the hands of Mr Huyghens, as the rectification of the cycluid had been in thofe of Sir Chriltopher Wren ; for the method of inveftigation fursifked Mr Huyghens with a general rule, by which he

23 I N V

could evolve every fpecies of paraboloid and hyperbo- involuman. loid, two claffes of curves which come in the way in almoft every difcuffion in the higher gcometry. He ubServes, that the ratio of $B f$ to $E e$, heing always compounded of the ratios of $\mathrm{B} f$ to $\mathrm{B} o$, and of $\mathrm{B} o$, or $\mathrm{D} \dot{d}$, to $\mathrm{E} e$; and the ultimate ratio of $\mathrm{B} f$ to $\mathrm{B} o$ being that of TE to TD, which is given by the nature of the paraboloid, we can always find the ratio of BE to BN , if we know that of $D d$ to $\mathrm{E} e$. In all curves, the ratio of $\mathrm{D} d$ to E_{e} (taken indefinitely near), is that of the fubtangent to the fum of the fubtangent and ordinate of a cursc contructed on the fame abfcifla, having its ordinates equal to the fubnormals DE, $d e, \mathrm{VK}$, \&c. In the conic fections the ratio is conftant, becaufe the line fo conftructed is a ftraight line; and, in the parabola, it is parallel to the axis. See farther properties of it in Barrow's Leff. Geom. XI.

From this invefigation, Mr Huyghens has deduced the following beautiful theorem :

Let a be the parameter of the paraboloid, x its abfciffa, and y its ordinate; and let the equation be $a^{m} x^{n}=y^{m}+n$; let the radius of the evolute meet the tangent through the vertex A in Z. We fhali aiways have $\mathrm{BN}=\frac{n}{m} \mathrm{BE}+\frac{m+n}{m} \mathrm{BZ}$. Thus,

This is an extremely frimple and perficuous method of determining the radius of the evolute, or radius of curvature; and it, at the fame time, gives us the rectification of many curves. It is plain that every geometrical curve may be thus examined, becaufe the fubnormais DE, VK are determined; and therefore their differences are determined. Thefe differences are the fame with the differences of $\mathrm{D} d$ and $\mathrm{E} e$; and therefore the ratio of $\mathrm{D} d$ to $\mathrm{E} e$ is determined; that is, the fubidiary curve now inentioned can always be conftructed.

There is a fingular refult from this rule, which would hardly have been noticed, if the common method for determing BN had alone been employed. The equation of the paraboloid is fo fimple, that the increafe of the ordinates and diminution of curvature feem to keep pace tugcther; yet we have feen that, in the vertex of the eubical parabola, the curvature is lefs than any circular curvature that can be named. In the legs, the curvature certainly diminifhes as they extend tarther ; there mult therefore be fome internediate point where the curvature is the greatef pollible. This is diftinetly pointed out by Mr Huyghens's theorem. The evclute of this paraboluid (having $a^{2} x=y^{2}$) is a curve ONRNQ (fig. 9.) confiling of two branches RO, and RO, which have a common tangent in R ; the branch RQ has the axis AE for its afiymptote. The thread unfolding from OR, its extremity, defrribes the arch BC , and then, unfolding from RQ. it cefcribes the furll arch $\mathrm{CB}^{\prime} \mathrm{A}$. When B^{\prime} is extremcly near A , the thread bas a pofition $\mathrm{B}^{\prime} \mathrm{N}^{\prime} \mathrm{E}$, in which $\mathrm{N}^{\prime} \mathrm{N}$ is very nearly $\frac{7}{2}$ BE. At C, if CE be bifected in G, GR is $\frac{3}{2}$ of CZ'. Here CR the radius of curvature is the flortef poffible. 'The evolutes of all paraboloids confift of two fuch Uranehes, if $m+n$ exceeds 2 .

1 N V [$2+$] N V

Involution. Such is the thery of evolution and involution as delivered by Mr Huyghens about the year 1672. It was cultivated by the geometers with fuccefs. Newton prized it highly, and gave a beautiful fpecimen of its application to the defeription, rectification, and quadiature of epicycluids, trochoids, and epicycles of all kiads. But it was eclipfed by the fluxionary geometry of Newton, which included this whole theory in one propofition, virtually the fame with Mr Huyghens's, but more comprehenfive in its expreffion, and much more fimple in its application. Adopting the unqueftionable principle of Mr . Huyghens, that the evolved thread is the radius of a circle which has the fane flexures with the curve, the point of the evolute will be obtained by finding the length of the radius of the equicurve circle. The formula for this purpofe is given in the article Fluxions of the Encyclopiedia Britannica; but is incorrectly fated $=\frac{\left.\overline{a+4}\right|^{\frac{3}{2}}}{2 \sqrt{a}}$, inftead of $\frac{\left.\overline{a+4 x}\right|^{\frac{3}{2}}}{2 \sqrt{a}}$. The theorem allo from which it is deduced $\left(r=\frac{\dot{z}^{2}}{-x y}\right)$ is incorrectly printed, and is given without any demonftration, thereby becoming of very little fervice to the reader. For which reafon, it is neecflary to fupply the defeet in this place.

Therefore let AbcdEf(fig. IO.) be a circle, of which C is the centre, and ACE a diameter; let the points b, c, d, of the circumference be referred to this diameter by the equidifant perpendicular ordinates $b i$, $c g, d k$; draw the chords $b c, c d$, producing $d c$ till it meet the ordinate $b i$ in a, produce $c g$ to the circle in f, and join $b f, d f$; draw $b h, c m$, perpendicular to the ordinates ; then $b h, c m, b c, m d, b c, c d$, are ultimately proportional to the firt fluxions of the abfcifia $A E$, the ordinate $c g$, and the arch $A c$; alfo $a b$, the difference betacen $d m$ and $c b$ is ultimately as the fecond fluxion of the ordinate. The triangle $a b c$ is fimilar to $b d f$; for the angle $a b c$ is equal to the alternate angle $b c f$, which is equal to $b d f$, flanding on the fame fegment. The angle $a c b$ is equal to $b f d$, tanding on the fegment $b c d$; therefore the remaining angles $b a c$ and $d b f$ are equal; therefore $a b: b c=b d: d f=\frac{1}{2} b d: \frac{1}{2}$ $d f$. Now let the ordinates $b i$ and $a^{\prime} k$ continnally approach the ordinate $c g$, and at lat unite with it ; we thall then have $b c$ ultinately equal to $i b d$, and $c g$ ultimately equal to $\dot{x} d f$. Therefore, ultimatel $\gamma, a \dot{b}: b c$ $=b c: c \xi$, and $c g=\frac{b c^{2}}{a b}$.

Let u, v, w, reprefent the variable abfciffa, ordinate, and arch. We have, for the fluxionary expreffion of the ordinate of the equicurve circle, $v=\frac{\pi}{-\ddot{v}}$ (\ddot{v} mult have the negative fign, becaufe, as the arch increafes, \dot{v} diminifhes). In the next place, it is evident that, ultimately, $b b: b c=c g: c \mathrm{C}$, and $c \mathrm{C}=\frac{c g \times b c}{b b}$. If r be the radius of the equicurve circle, we have $\dot{u}: \dot{v}$ $=v: r$, and $r=\frac{v \dot{w}}{\dot{u}}$. But we had $v=\frac{\dot{v}^{2}}{-\ddot{v}}$. Subftitute this in the prefent equation, and we obtain r $=\frac{\dot{\dot{v}}}{-\dot{v} \ddot{v}}$, Laftly, obferve that $\dot{v^{2}}=\dot{u^{2}}+\dot{v} \dot{v}^{2}$, and \dot{v}
$=\sqrt{\overline{u^{2}+\dot{v}^{2}}}=\left.\overline{u^{2}+\dot{v}^{2}}\right|^{\frac{1}{2}}$. Thercfore $\dot{w}^{3}=\left.\overline{u^{2}+v^{2}}\right|^{\frac{1}{2}}$ Invalution
and we have $r=\frac{\left.\overline{u^{2}+\dot{v}^{2}}\right|^{\frac{3}{2}}}{-\frac{\dot{u}}{\dot{v}}}$, as the moft general fluxio. nary expreffion of the radius of a circle, in terms of the fine, cotine, and areh.

When a curve and a circle have the fame curvature, it is not enough that the firft fluxions of their abfiffie, ordinates, and arches, are the fame. This would only indicate the pofition of their common tangent. They mult have the fame deflection from that tangent. This is always equal to half of the fecond fluxion of the ordinate. Therefore the circle and curve mutt have the fame fecond fluxion of their ordinates. Therefore let $\mathrm{D} b c d \mathrm{~F}$ be any curve coinciding with, or ofculated by, the circle A bcd. Let its axis be DG, parallel to the diameter AE ; and let $c n$ be its ordinate. Let $\mathrm{D} n$ be $=x, c n=y$, and $b c=z$. We have \dot{x}, \dot{y}, \dot{z}, refpectively equal to $\dot{u}, \dot{v}, \dot{w}$. Therefore the radius of the ofculating circle is $r=\frac{z^{3}}{-x y}$ or $r=\left.\frac{\dot{x}^{2}+y^{2}}{-\dot{x}}\right|^{\frac{3}{2}}$ for all curves whatever. (We recommend the careful perufal of the celebrated 2 d corollary of the 10 th propolition - of the 2 d book of Newton's Principia, where the firit principles of this doctrine are laid down with great a. cutenefs.)

Inftead of fuppofing the ordinates equidiftant, and confequently x invariable, we might have fuppofed the ordinates to increafe by equal fleps. In this cafe y would have had no fecond fluxion. The radius would. th:n be $=\frac{\dot{x}^{3}}{\dot{y} \ddot{x}}$. Or, laftly, we might fuppofe (and this is very ufual) the arch \approx to increafe uniformly. In this cafer $=\frac{\dot{x} \dot{y}}{x}$: For becaufe $\dot{x}+\dot{y}^{2}=\dot{x}^{2}$, by taking the fluxion of it, $2 \dot{x} \ddot{x}+2 \dot{y} \ddot{y}=0$, and $\ddot{y}=$ $\frac{\dot{x} \ddot{x}}{\dot{y}}:$ and therefore $r=\frac{\dot{z}^{3}}{\dot{y} \ddot{x}-\dot{x} \ddot{y}},=\frac{\dot{z}^{3}}{\dot{y} \ddot{x}+\frac{\dot{x}^{2} \ddot{x}}{\dot{y}}}$
$=\frac{\dot{y} \dot{z}^{3}}{}=\underline{y} \quad$ $=\frac{y z^{3}}{y^{2}+\dot{x}^{2} \times \ddot{x}}=\frac{\dot{y} \dot{z}}{\ddot{x}}$.

Having thus ohtained the radius of curvature, and confequently a point of the evolute, we determine its form by reference to an abfeifs, without much farther trouble: It only requires the drawing $\mathrm{C} p$ perpendicular to the axis of the propofed curve, and giving the values of $\mathrm{C} p$ and $\mathrm{I} p$. If we fuppofe \dot{x} conftant, then, $c \mathrm{C}$ being $=\frac{\dot{z^{i}}}{-\dot{x} \ddot{y}}$, we have $\mathrm{D}_{p}(=\mathrm{D} n+\delta c,=$ $\left.\mathrm{D} n+\frac{\dot{y}}{z} \times c \mathrm{C}\right)=x+\frac{\dot{y} \dot{z}^{2}}{-\dot{x} \ddot{y}}$; and $p \mathrm{C}(=c g$ $-c n,=\frac{\dot{x}}{\dot{z}} \times(\mathrm{C}-c n)=\frac{\dot{z}^{2}}{-\ddot{y}}-y . \quad$ But if we fuppofe \dot{y} conftant ; then, $c \mathrm{C}$ being $=\frac{\dot{z}^{3}}{\dot{y} \ddot{x}}$, we have $\mathrm{D} p=x+\frac{\dot{z^{2}}}{\ddot{x}}$, and $p \mathrm{C}=\frac{\dot{x} \dot{z}^{2}}{\dot{y} \ddot{x}}-y$. And if \dot{x} he conftant,
$=x+\frac{\dot{y}^{2}}{\ddot{x}}$, and $p \mathrm{C}=\frac{\dot{x} \dot{y}}{\because x}-y$.
Thefe formulx are fo many general expreflions for determining both the curvature of the propofed curve and the form of its evolute. They alfo give us the rectification of the evolute; becaufe $c \mathrm{C}$ is equal to the evolved areh, or to that arch, together with a conftant nart, which was a tangent to the evolute at its vertex, in thofe cafes where the involute has a finite curvature at its vertex; as in the common parabola.

Let us take the example of the common parahola, that we may compare the two methods. The equation of this is $a x=y^{2}$, or $a^{\frac{1}{2}} x^{\frac{3}{2}}=y$. This gives \dot{y} $=\frac{\frac{1}{x}}{} a^{\frac{1}{2}} \dot{x} x^{-\frac{1}{2}},=\frac{a^{\frac{1}{2}} x}{2 x^{\frac{1}{2}}}$, and (making \dot{x} conftant) $\ddot{y}=-\frac{1}{2} \times \frac{1}{2} a^{\frac{2}{2}} \cdot x^{2} x^{-\frac{1}{2}}=\frac{-a^{\frac{1}{2}} x^{2}}{4 x^{\frac{3}{2}}} . \quad$ Wherefore $\dot{z}\left(=\sqrt{x^{2}+y^{2}}\right)=\frac{\dot{x}}{2} \sqrt{\frac{4 x^{x^{\frac{3}{2}}}}{x}}$, and the radius of curvature $\left(=\frac{\dot{z}^{3}}{-\dot{x} \ddot{y}}\right)=\frac{\left.\overline{a+4 x}\right|^{\frac{3}{2}}}{2} \frac{\sqrt{a}}{\sqrt{a}}$. At the vertex, where $x=0$, the formula becomes $=\frac{1}{2} a$. Again, $\mathrm{D}_{p}\left(=x+\frac{\dot{y} \dot{z}^{2}}{-\dot{x} \ddot{y}}\right)$ becomes $\frac{\mathrm{r}}{\mathrm{z}} a+3 x$; and therefore $V_{p}=3 x$, = the abfciffa of our evolute. Likewife $\subset p$, its ordinate, $\left(=\frac{\dot{z}^{2}}{-\ddot{y}}-y\right)$ $=\frac{4 x^{\frac{1}{2}}}{\sqrt{ } a} ;$ and $C p^{2}=\frac{16 x^{3}}{a}$; and $C p^{2} \times a=16 x^{3}$. But Vp $=3 x$, and $V p^{3}=27 x^{3}$. Therefore $\mathrm{C} p^{2} \times$ ' ${ }^{1}$ th $a=x^{3},=\frac{1}{2} 7$ th $V p^{3}$, and $\frac{2}{1} \frac{7}{6}$ ths $a \times C p^{2}=V p^{3}$. Therefore the evolute VC is a femicubical parabola, whofe parameter is $\frac{2}{8} \frac{7}{6}$ ths a, as was fiewn by Mr Huy ghens. The arch VC is $=\frac{\overline{a+\left.4 x\right|^{\frac{3}{2}}}}{2 \sqrt{a}}-\frac{1}{2} a$.

We thall give one other example, which comprehends the whofe clafs of paraboloids. Their general equation is $y=a x^{n}$. This gives us $y=n a x^{n-1} \dot{x}$, and $\ddot{y}=n \times \overline{n-1} \times a x^{\pi-2} x^{2}$; therefore $z(=$ $\left.\sqrt{\dot{x}^{2}+\dot{y z}}\right)=x \sqrt{1+n^{2} a^{2} x^{2} n^{2}} ; \mathrm{C} c\left(=\frac{\dot{z}^{3}}{-\dot{x} \dot{y}}\right)$

$=x-\frac{x+n^{2} a^{2} x^{2 n}-1}{n-1} ; C$ p $\left(=\frac{\dot{x}^{2}}{\ddot{y}}-y\right)=$
$\frac{1+\overline{2 n-1} \times n a^{2} x^{2} n-2}{-\overline{n-1} \times n a x^{n}-2}$; and $\mathrm{DV}=-\frac{n^{2} a^{2} o^{2 n-1}}{n-1}$
This laft formula expreffes the radius of curvature at the vertex D , or the redundant part of the thread, by which it exceeds the arch VC of the cvolute. If $n=\frac{s}{2}$, Suppl. Vol. II. Part I.

VC will be $=0$; and it if it be lefs, VC will be infinite. Hence it appears, that the radius of curvature at the vertex of a curve is a finite quantity only in the cafes where the firft or nafcent ordinates are in the fubduplicate ratio of their abfciffe. In all other cates, the curvature is incomparalle with that of any circle, being either what is called infinite (when n is greater than $\frac{1}{2}$) or nothing (when it is lefs).

We fcruple not to fay, that the method of Mr Huyghens is more luminous, more pleafing to the imagination of a geometer, than this; and in all the cafes which occurred to us in our employment of it, it fuggelted more ready conftructions, with the additional fittisfaction of exhibiting, in a continuous train, what the jombolical method, proceeding by the fuxionary calculus, only indicates by points. We muft alro oblerve, that the fubfidiary curve employed by Hisyghens, having its ordinates equal to the fubnormals of the involute under examination, is the geometrical expreffion of that function of the involute which gives the lecond fuxions \ddot{y} and \ddot{x} of the ordinate and abfciffa. The young mathematician will find no difficulty in conftructing this curve in evcry cafe; whereas we imagine that he will not find it a light matter to conftruct the final equations of the fymbolic method almoft in any cafe. At the fame time, the all-compreheading extent of the latter method, and the numberlefs general theorems which it fuggefts to the expert analyft, give it a mott deferved preference, and make it almoft an indifpenfable inftrument for all who would extend our phyfico-mathematical fciences.

In the employment of the geometry of curve lines, efpecially in the doctrine of centripetal forces, it is ufual to confider the ordinates, not as infifting on a rectilineal abfciffa, but as diverging from a centre. This is alfo the ufual way of conceiving all fpirals and evolutrixes of curves which include fpace ; in fhort, all radial curves. The procefs for finding their evolute, or their radius of curvature, is fomewhat different from that hitherto exhibited; hut it is more fimple. Thus, let GPM (fig. 10.) be the elliptical path of a planet, of which S is the focus. We require PC , the rading of curvature in the point P. Let $P p$ be a very fmall arch. Draw the radii $\mathrm{SP}, \mathrm{S} p$, the tangents PT, $p t$; and draw ST perpendicular to $\mathrm{P} \mathrm{I}^{\prime}$, cutting $p t$ in t; and P^{\prime} o perpendicular to $\mathrm{S} p$. Let the arch GP be $=z$, the radius $S P=y$, and the perpendicular $S T$ $=p$. Then, it is plain, that $\mathrm{P}_{p}, o p, \mathrm{~T} t$, are ultimately proportional to $\dot{z}, \dot{y}, \dot{p}$. The triangles PC p, and Tpt or TP t are alfo ultimately fimilar; as alfo the triangles PST and poP. Therefore, ultimately,
$\mathrm{T} t: \mathrm{P} p=\mathrm{PT}: \mathrm{PC}$
alfo $\quad \mathrm{P}_{\rho}: p o=\mathrm{PS}: \mathrm{PT}$
therefore $\mathrm{T} t: p o=\mathrm{PS}: \mathrm{PC}$, or, $\dot{p}: \dot{y}=y: r$, and $r=\frac{y \dot{y}}{\dot{p}}$; an exprefion of the radius of curvature, extremely fimple, and of eafy application.

The logarithmic or equiangular $f_{\text {piral }} \mathrm{PQR}$ (fig. 6.) affords an eafy example of the ufe of this formula. 'The angle SPT, which the ordinate makes with the curve, D

Involution is everywhere the fame. Therefore let a be our tabular radius, and b the fine of the angle SPT. We have $\mathrm{ST}=\frac{l_{y}}{a}$; and therefore PC $\left(=\frac{y y}{\dot{p}}\right)=\frac{a y \dot{y}}{b \dot{y}}=\frac{a y}{b}$. This is to SP or y in the conflant ratio of a to b, or of SP to ST ; that is, $\mathrm{ST}: S P=S P: P C$, the triangles SPT and PCS are fimilar, the angles at P and C equal, and C is a point of an equiangular fpiral $p y r$ round the centre S .

It is not meant that the conflruction pointed out by this theory of involution, expreffed in its moft general and fimple form, is always the beft for finding the centre of the equicurve circle. Our knowledge of, or attention to, many other properties of the curve under confideration, befides thofe which finnly mark its relation to an abfcefs and ordinate, muft frequently give us better conftructions. But evolution is the natural genefis of a line of varying curvature. Moreover, in the moft important employment of mathematical knowledge, namely, mechanical philofophy, it is well known, that the moft certain and comprehenfive method of folving all intricate problems is by reference of all forces and motions to three coordinates perpendicular to each other. Thus, without any intentional fearch, we have already in our hands the very fuxionary quantities employed in this doctrine; and the expreflion which it gives of the radius of curvature requires only a change of terms to make it a mechanical theorem.

Thus have we confidered the two chief queftions of evolution and involution. We have done it with as clofe attention to geometry as poffible, that the reader's mind may become familiar with the ipfacorpora while acquiring the elementary knowledge, which is to be employed more expeditioufly afterwards by the help of the fymbolical analyfis. Without fuch ideas in the mind, the occupation is oftentimes as much divefted of thought as that of an expert accountant engaged in complex calculations; the attention is whully turned to the rules of his art.

It now remains to confider a little the nature of this curvature of which fo much has been faid, and about which fo many obfcure opinions have been entertained. We mentioned, in an early part of this article, the unwarranted ufe of the terms of infinite and infinitefimal magnitude as applicable to curvature, and fhewed its impropriety by the inconfiftences into which it leads mathematicians. Nuthing threw fo much light on this fubject as Mr Huyghens's Geometry of Evolution; and we fould have expected that all difputes would have been ended by it. But this has not been the cafe; and even the moft eminent geometers and metapbyficians, fuch as the Bernoullis and Leibuitz, lave given explanations of orders of curvature that can bave no exiftence, and explanations of that coalefcence which obtains between a curve line and its equicurve circle, which are not warranted by juft principles.

Thefe errors (for fuch we prefume to think them) arofe from the method employed by the geometers of laft century for obtaining a knowledge of the magnitude and variation of curvature. The fcrupulons geometers of antiquity defpaired of ever being ahle to com. pare a curve with a right line. The moderns, alchough taught by Des Cartes to define the nature of a curve
by its equation, allowed that this only enabled them to Involution, exhibit a feries of points through which it paffed, and to draw the polygon which connects thefe points, but gave no information concerning the continuous incurvated arches, of which the fides of the polygon are the chords. They could not generally draw a tangent to any point, or from any point ; but they could draw a chord through any two points. Des Cartes was the firft who could draw a tangent. He contrived it fo, that the equation which expreffes the interfections of the curve with a circle deferibed round a given centre fhould have two equal roots. This indicates the coalefence of two interfections of the common chord of the circle and the curve. Therefore a perpendicular to the radius fo determined mult touch the curve in the point of their union. This was undoubtedly a great difcorer;, and worthy of his genius. It naturally led the way to a much greater difcovery. A circle may cut a curve in more points than two: It may cut a conic fection in four points; all expreffed by one equation, having four roots or folutions. What if three of thefe roots fiould be equal? This not only indicates a clofer union than a mere contact, but alfo gives indication of the flexure of the intervening arch. For, before the union, the interfections were in the arch both of the curve and of the circle ; and therefore the diftinction between the union of two and of three interfections mut be of the fame kind with that hetween a Atraight line and an arch of this circle. The flexure of a circle being the fame in every part, it becomes a pro. per index ; and therefore the circle, which is determined by the coalefcence of three interfections, was taken as the meafure of the curvature in that point of the curve, and was called the circle of curvature, the equicurve circle. There is a certain progrefs to this coalefcence which mult be noticed. Let ABD (fig. 4.) be a common parabola, EBF a line touching it in B, and BO a line perpendicular to EBF. Taking fome point O in the other fide of the axis for a centre, a circle may be defcribed which cuts the curve in four points a, b, c, and d. By enlarging the radius, it is plain that the points a and b muft feparate, as alfo the points c and d. Thus, the points b and c approach each other, and at laft coalefee in a point of contact B, with the parabola, and with its tangent. In the mean time, a and d have retired to A and D . If we now bring the centre O nearer to B , the new circle will fall wholly within the lait circle ABD ; and therefore both A and D will again approach to each other, and to B, which ftill continues a point of contact. It is plain that A will approach fafter to D than D will do. At length, the centre being in o, the point A coalefces with B, and we obtain a circle $\& B$, touching the curve in B, and cutting it in $\delta:$ Confequently the arch B s δ is wholly within, and $\mathrm{B} \otimes \delta$ is wholly without the parabola; and the circle both touches and cuts the parabola in B. Here is certainly a clofer union, at leaft on the fide of a. But perhaps a farther diminution of the circle may bring it clofer on the fide of D. Join B 8 . Let a fmaller circle be defcribed, touching the parabola in D , and cutting it in φ. Draw $\& \subset$ parallel to $\$ \mathrm{~B}$. It may be demonitrated that the new circle cuts the parabola in c. Now the arch between c and ϕ being without the parabola, the arch BC muft be within it; and therefore this circle is within the parabola on both fides

Involution. of B, and is more incurvated than the parahola, We have feen, that a cirele greater than $B \delta$ is without the parabola on buth fides of B ; and therefore is lefs incurvated than the parabola. Therefore the individual circle: $B \&$ is neither more nor lefs curve than the parabola in the point B . Therefore the circle indicated by the coalefence of three interfections is properly named the equicurve circle; and, fince we meafure all curvatures by that of a circle, it is properly the circle of currature, and its radius is the radius of curvature.
Had \mathbf{B} been the vertex of the axis, every interfection on one fide of B would have been fimilar to an interfection on the other, and there would always have been two pairs of roots that are equal; and therefore when tlirce interfections coalefec, a fourth alfo coalefces, and the contact is faid to be ftill clofer.

What has now beea hewn with refpect to a conic fection is truc of every curve. When two interfections coalefice, there is a common tangent ; when three coalefee, there is an equal curvature, and no other ciccle can pars between this circle and the curve. There cannot be a coalefence of four interfections, except when the diameter is perpendicular to the ordinates, and thofe are bifected by the diameter.

Mr Leibnitz, who valued himfelf for metaphyfical refinement, and never fails to claim fuperiority in this particular, notices the important dittinction between a fimple contact and this clofer union, in a very well writters differtation, publifhed in the A\&a Eruditorum, July 1686. He calls the contact of equal curvatures an osculation, and the circle of equal curvature the osculating circle, and delivers feveral very judicious remarks with the tone of a mafter and inftructor. He alfo ipeaks of differcnt degrees or orders of ofculation, each of which is infinitely clofer than the other, as a thing not remarked by geometers. But Sir Ifaac Newton had done all this before. The firft twelve propofitions of the Principia had been read to the Royal Society feveral years before, and were in the Regifers. The Princifia had received the imprimatur of the Society in July 1636; but was almolt printed before that. time. In the Scholium to the 11 th Lemma, is contained the whole doctrive of contact and oferlation; and in the lemma and its corollaries, is crowded a body of doctrine, which has afforded themes for volumes. The author glances with an eagle's eye over the whole profpect, and points out the prominent parts with the moft compreffed brevily; but with fufficient precifion for marking out the more important objects, and particularly the diferent orders of curvature. This lemma and its corollaries are continually employed in the twelve propofitions already mentioned. In 1671 he had written the firt draught of his method of fluxions, where this doctrine is fyternatically treated; and Mr Collins had a eopy of it ever fince ${ }^{2676}$. It is well known that Leibnitz, when in London, had the free perufal of the Society's records, and information at all tines by his correfpondence with the fecretary Oldenburgh and Mr Collins. His conduct refpecting the theorems concerning the elliptical motion of the planets, and the refiftance of huids, leave little room to doubt of his having availed himfelf in like manner of his opportunity of information on this fubject. He gives a much better account of the Newtonian doctrine on this fubject than in thofe other inflances, it being more fuited to his refiuing and paradoxical difpofition.

In this and another differtation, he conliders more par- Involution. ticularly the nature of evolution, and of that ofculation which obtains between the evolutrix and the circle defcribed by the evolved radius. He fays, that it is equivalent to two fimple contacts, each of which is equivalent to two interfections. An ofeulation produced in the evolution of a curve is therefore equivalent to four interfections. And he advifes, with an air of authority, the mathematicians to attend to thefe remarks, as leadiag them iuto the receffes of fcience. He is miftaken, however; and the liftening to him would prevent us from forming a jult notion of ofculation, and from conceiving with dillinctnefs the fingular fact of a circle both touching and cutting a curve in the fame point. James Bernoulli lof his friendhip, becaufe he prefumed to fay that the prefence of four interfections in an ofculation is not warranted by the equation exprefling thofe interfectionis.

Mr Leibuitz was mided by the way in which he had confidered the ofculation in the evolution of curves. It merits attention. From any point within the fpace ADFOA (lig. 1.), two perpendiculars may be drawn to the evolutrix $A b d f$; and therefore two circles inay be defcribed round that point, each touching the curve. Each contact is the union of two interfections. Therefore, as the centre approaches the cvolute, the contacts approach each other, and they unite when the centre reaches the evolute. Therefore the of culation of evo: lution is equivalent to four interfections.

But when two fuch circles are defcribed round a point s, fo as that both may touch the evolutrix $A_{\text {a }} f$, the point s is in the interfection of one evolved radius with the prolongation of another. The contact at the extremity b of the prolonged radius $b \mathrm{~B}$ is an exterior contact, and the arch of the circle croffes the evolutrix, from without inwards, in fome point more remote from A. The contact at the extremity e of the radius ${ }^{\prime}$ E is an interior contact ; and if es be greater than the ftraight line EA, the areh of this circle cruffes the curve, from within outwards, in fome point nearer to A. Thus each contact is accompanied by an interfection on the fide next the other contact, fometimes beyond it, and fometimes between the cuntacts. As the contacts approach, the interfections alfo approach, Itill retaining their characters as interfections, as the contacts fill continue contacts. Alio the circle next to A croffes from without inwards, and that next to f croffes from within outwards. They retain this character to the lafl; and when the contacts coalefec, the two cireles coaleice over their whole circumference, Athl, however, croffing the curve in the fame direction as before; that is, without the curve on the fide of A, and within it on the fide of f. The contacts unite as contacts, and the interfections as interfections. Thus it is that the of onlating circle both touches and interfects the curve in the fame point.

At f the ofeulation is indeed clofer than anywhere elfe. The variation of curvature is lefs there than anywhere elfe, becaufe the radius changes more flowly. It is this circumilance that determines the clofenefs of contact. If a circle ofeulates a curve, it bas the fame curvature. If this curvature does not change in the vicinity of the contact, the curve and circle muft cuincide; and the deviation of the circle (the curvature of which is everywhere the fame) from the curve mult proceed entirely from the variation of its curvature. D 2

This,
wowno. Tlis therefne, is the important circumfance, and is julult the charateriftic of the figure as a curve line; and its ofer proforties, by which the pofition of its diferent parts are cicturnued, may he afcertained by means of the surtation of its nnyature, as well as by its relation to co-ordinates. Of this ue have a remarkable inflance at this very time. The orbit of the newly diffovered planet has been afeertained with tolerable precifion by meatis of offervations made on its motions for dirce years. hin this time it had not deferibed the 2cth pars of its orbit; yet the figure of this orbit, the polition of its tranfverfe axis, the place and time of its perihelion, were all determined within roodth part of the truth by the olferved variation of its curvature. It therefore merits our attention in the clofe of this article. We know of no author who has treated the fubject in fo inftructive a manner as Mr M‘Laurin has doue, by exlibiting the thcorem which conftitutes Newron's 1 ith lemma in a form which points this out even to the eye (fee IM'Laurin's Fiuxions, Chap. xi. $\$ 3^{6} 3$, scc.). We earnefly recominend this work to the young geometer, as containing a fund of infruction and agreeathe exercife to the mathematical genius, and as greatly fuperior in perfpicuity and in ideas which can be treafured up and recollected, when required, to the greateft part of the elaborate performances of the emirent anaiylls of later times. By exprefling every thing geometrically, the author furnifhes us with a fort of picture, which the imagination readily reviews, and which exhibits in a train what mere fymbols only give us a momentary glimple of.
"As, of all right lines which can be drawn through a given point in the arch of a curve, that alone is the tangent which touches the arch fo clofely that no right line can pafs between then! ; fo, of all circles which touch a curve in a given point, that circle alone has the fame curvature which touches it fo clofely that no circle can pafs hetween them. It canuot cuincide with the arch of the curve; and therefure the above condition is fufficient for making it cquicurve. As the curve feraratcs from the tangent by its flexure or curvature, it feparates from the equicurve circle by its change of curvature ; and as its curvature is grcater or lefs according as it feparaies more or leis from its tangent, fo the variation of its curvature is greater or lefs according as it feparates more or lefs from its equicurve circle. There can be but one equicurve circle at one point of a curve, otherwife any other circle deferibed between them through that point will pals between the curve and the equicurve circle.
" When two curves touch cach other in fuch a manner that no circle can pais between them, they muft have the fame curvature; hecaufe the arch which touches one of then fo clofely that no circle can pafs between then, mult touch the other in like manner. But circles may touch the curve in this manner, and yet there may be indefinite degrees of more or jefs intimate contact between the curve and its equicurve circle." 'This is hewn by the ingenious author in a feries of propofitions, of which a very fhort abridgment muft fuffice in this place.

Let any curve EMH (fig. It.), and a circle ERB, touch a right line ET on the fame fide at E. Let any right line TK, parallel to the chord EB of the circle,
meet the tangent in T, the curve in M , and a curve Involution: BKI (which palfes through B) in K. Then, if MT \times TK be cecrywhere equal to TE ${ }^{2}$, the curvature of EMH in the point E is the fame as that of the circle ER13 ; and the contact of EM and ER is fo much the clofer the finaller the angle is which is contained at B between the curve BKF and the equichrve circle BQE .
Let Tli mect the circle in R and Q. Then, becaufe $\mathrm{RT} \times \mathrm{TQ}=\mathrm{TE} 2$, it mult be $\mathrm{KT} \times \mathrm{TQ}=$ M' \times TK ; and $\mathrm{BT}: \mathrm{MT}=\mathrm{TK}: \mathrm{TQ}$. The line BKF inay have any form. It may crots the circle $B Q R$ in B, as in the figure. It may tonch it, or touch. EB, , 2 c . Let us firft confider what fituations of the point M correfpond with the pofition of K, in that part of the curve BKF which lies without the circle BRE. Let TK move toward EB, always keeping parallel to it, till it coincide with it, or even pafs it. Then, while the point K defribes KB , it is evident that fince TK is greater than TC, TM mult be lefs than TR, and the point M mult always be found between T and R. The arch ME of the curve muft be nearer to the tangent than the arch RE of the circle. If any circle be now defcribed touching TE in E , and cutting off from EB a fmaller chord than EB, it is clear that the whole of this fegment mult be within the fegment BRE; therefore this fmaller circle does not pafs between ERP. and the curve EMH. But fince we fee that the curve lies without the circle, in the vicinity of E, perhaps a greater circle than ERB may pafs between it and the curve. A greater circle, touching at E, mult cut off a chord greater than EB. Let $\mathrm{E} \cdot \boldsymbol{6}$ be fuch a circle, cutting EB in b, and TQ in q. T q is neceffarily greater than TQ. For fince b is beyond B, and the arch $B K F$ lies in the angle $Q B b$, the circle $E q$ mull crofs the curve FKB in fome point ; fuppofe F. Then while K is found in the arch FB, the point q muft be beyond K , or $\mathrm{T} q$ muft be greater than TK. Now $\mathrm{T} r \times \mathrm{T} q=!\mathrm{TE}^{2},=\mathrm{TM} \times \mathrm{T} C$. Therefore $\mathrm{TM}: \mathrm{T} r$ $=\mathrm{T} q: T \mathrm{C}$. Therefore $\mathrm{T} q$ being greater than TQ , Tr mult be lefs than TM, and the point r muft lie without the curve, and the arch E r does not pafs between EMH and the circle ERB. In like manner, on the other lide of EB, it will appear, that when the curve EK'F falls within the circle which touches EMH. $_{\text {E }}$. in E, and cuts off the chord EB, the arch of the curve correfponding to the arch $\mathrm{BK}^{\prime} \mathrm{F}^{\prime}$, lying within the circle, alfo lies within the circle. For $\mathrm{T}^{\mathrm{y}} \mathrm{J}^{\prime}$ ' being lef3 than TQ', 'TM' is greater than TR', and the curve is within the circle. And, by lunilar reafoning, it is evident that a circle cutting off a greater chord falls without both the circle ER'B and the curve, and that a circle lefs than EK'B muft neceffarily leave fome part of the curve $\mathrm{BK}^{\prime} \mathrm{F}^{\prime}$ without it; and therefore TK^{\prime} will be greater than $\mathrm{T} q^{\prime}$, and the correfponding point r^{\prime} muit be without the curye. All circles therefore touching TE in E fall without both ER and EM, or within them both, according as they cut off from EB a chord greater or lefs than EB, and no circle can pafs between them when the reftangle MT \times TK is always equal to ET^{2}, and the focus of the point K paffes through B ; that is, ERB is the equicurve circle at E .

This corroborates the feveral remarks that we have made on the circumftance of a circle touching and cutting a curve in the fame point. No other circle can be
intolution. made to pafs between it and the curve, and it therefore has the fame curvature. This may therefore be taken as a fufficient indication of the equicurve circle; the character peculiarly affured to it by the nature of evolution. It mult be noted, however, that the curve is suppofed to have its concavity in the vicinity of the contact turned all the fame way. For if the contact be in a point of contrary fluxure, even a \&traight line will both touch and cut it in that point.

The reader cannot but remark, that MK is always the chord of a circle touching $T E$ in E, and paffing through m

Let E m be another curve, touching TE in E, fuch that the conjugate curve $k \mathrm{~B}$, which always gives $\mathrm{T} m$ $\times \Gamma k=T E^{2}$, alfo paffes through B. Then, by what has now been dernonftrated, the two curves EM and E m have the fame equieurve circle ERB , and confequently the fame curvature in E . Then, becaufe the rectangles $\mathrm{RT} \times \mathrm{TQ}, \mathrm{MT} \times \mathrm{TK}$, and $n \mathrm{~T} \times \mathrm{T} k$, are equal, we have $\Gamma m: T M=T K: T k$. ' Therefore if the arch $B k$ pafs between $B K$ and $B C$, the curve $E m$ mult pafs between the curve EM and the circle ER. E $n m$ muft therefore have a clofer contact with ER than $E M$ has with it; and the fmaller the angle QBK is which is contained between the curve and its equicurve circle, the clofer is the contact of the curve EM and its equicurve circle ER. Thus the length of the chord EB determines the magnitude or degree of curvature at E, when compared with another ; and the angle contained between the equicurve circle and the conjugate curve BKF determines the clofencfs of the contact of the curve with its equicurve circle (the angle TEB being fuppofed the fame in both.)

It appears, from the procefs of demonftration, that the curve EMH falls without or within the equicurve circle according as its conjugrate curve BKF does. Alfo when BKF cuts BQR, HME allo cuts it. But if FQB is on the fame fide of QB on both fides of the interfection B, the curve HME is alfo on the fame fide of it on both fides of the contact E . It is alfo very clear, that the contact or approach to coalefcence be. tween the curve and its circle of curvature, is fo much the clofer as the conjugate curve BKF comes nearer to the adjoining arch of this circle. It muit be the clofert of all when K13 touches QB, and it muft be the leaft fo when $K B$ touches EB, or has EB for an affymptote. The face QBK is a fort of magnified pic. ture of the fpace MER; and we have a fenfible proportion of TQ to TK as the reprefentation of the proportion of TM to TR , quantities which are frequently evanefcent and infenfible. When QBK is a finite angle, that is, when the tangents of $B Q$ and $B K$ do not coincide, the angle QBK can be meafured. But no rectilineal angle can be contained as an unit in the curvili. neal angle MER. They are incommenfurahle, or incomparable. Let the curve KB touch the circle QB without cutting it. This angle is equally incomparable with the former QBK ; yet it has a counterpart in MER. This muit be incomparable with the former in the fame manner; fur there is the fame proportion between the individuals of both pairs. Thus it appears plainly, that there are curvilineal angles incomparable with each other. Yet are they magnitudes of one kind ; becaufe the fmalleft rectilineal angle muft certainly contain them both; and one of them contains the other.

But, further, there may be indefinite degrees of this co. Involution. alefcence or clofenels of contact hetween a curve and a circle. 'I'he firft degree is when the fame right line touches both. 'Ihis is a fimple contait, and may obtain between any curve and any circle. The next is when EMH and ERB have the fame curvature, and when the conjugate curve FKB interfects the circle QB in any affignable angle. 'I'his is an ofculation. The thirel degree of contact, and fecond of ofculation, is when the curve KB touches the circle $Q B$, but not $f o$ as to of. culate. The fourth degree of contact, and third of ofculation, is when $K B$ and $Q B$ have the fame curvature or ofculate in the firlt degree of ofculation. This gradation of more and more intimate contact, or (more properly fpeaking) of approxination to coalefcence, may be continued without end, "neque novit natura limitem," the contact of EM and ER heing always two degrees clofer than that of BK and BQ. Moreover, in each of thofe claffes of contact there may be indefinite de. grees. Thus, when EM and ER have the fame curvature, the angle QBK admits of indefinite varietics, each of which afeertains a different clofenefs of contact at E. Alfo, though the angle QBK fhould be the fame, the contact at E will be fo much the clofer the greater the chord EB is.

$$
\text { For } \mathrm{TR}: T \mathrm{TM}=\mathrm{TK}: \mathrm{TQ}
$$

Therefore RM : ' 1 R $=\mathrm{KQ}$: KT
Or RM: KQ $=T R: T K ;=T R \times T Q:$ $T K \times T Q,=T E^{2}: T K \times T Q$.

Therefore, when TE is given, RM (which is then the meafure of the angle of contact) is proportional to KO . directly, and to the rectangle TK \times TQ inverfely; and when KQ is given, RM is lefs in proportion as $K \Gamma \times$ $T Q$ is greater. In the very neighbourhood of E and B, it is plain that $K^{\prime} \Gamma \times T^{\prime} Q$ is very nearly equal to $E B^{2}$, and therefore ultimately $\mathrm{RM}: K Q=\mathrm{ET}^{2}: \mathrm{EB}^{2}$.

It will greatly affift our conception of this delicate fubject, if we view the origin of thefe degrees of contact as they are grenerated by the evolution of lines. A thread evolving from a polygon EDCBA (fig. 13.) deferibes with its extremity a a line $e d b c a$, confifing of fucceffive arches of circles united in fimple contaEts. If it evolve from any continuous curve CBA; after having evolved from the lines ED, BC, the arch.$a b$ will be united with the circular arch $d c$ by ofculation of the firf degree. If any other curve FC touch this evolute in a fiuple contact, and if the two curves FCBA and DCBA are both evolved, they will touch each other in a fimple ofculation in that point where they have the fane radius. If FC touches DC in a fimple ofeula. tion, the evolved curves will touch in an offulation of the fecond degree; and, in general, the oficulation of the two generated curves is a degree clofer than that of thei: evolutes; and in each tate of one of the ofculations, there is an indefinite variety of the other, according to the length of its radius of curvature. All this is very clear ; and fhews, that thefe degrees of contact do not indicate degrees of curvature, one of which infinitely execeds another; for they are all finite.

The reader will do well to remark, that the magnitude, which is the fubject of the above proportions, which is really of the fame kind in them all, and contidered as fufceptible of various degrees and orders of infinitefimals, is not curvature, but lineal extenfion. It is $R \mathrm{M}$, the fubtenfe of the angle of contact MER. It

I $\mathrm{N} \quad \mathrm{V}$

Suvoluthon. is the linear feparation from the tangent, or from the equicurve circle. It is, however, ufually confidered as the meafure of curvature, or the proportions of this line are given as the proportions of the curvature. This is inaccurate ; for curvature is unqueftionably a change of direction only. As this line has generally been the in terefting ohject in the refured fludy of curve lines, efpecially in the employment of it in the difcufions of me. chanical philofophy, it has attracted the whole attention, and the language is now appropriated to this confilderation. What is called, by the moft eminent mathematicians, variation of curvature, is, in fact, variation of the fubtenfe of the angle of contact. But it is neceffary always to dillinguifh them carefully.

Variation of curvature is the remaising object of our attention.

Curvature is uniform in the circle alone. When the curvature of the arch EMH (fig. It.) decreafes as we recede from E, the arch, being lefs deflected from its primitive direction ET than the arch ER, muft feparate lefs from the line ET, or mult fall without the arch ER. The more rapidly its curvature decreafes, the deferibing point muft be left more without the circle. It mull be the contrary, if its curvature had increafed from E toward M . It may change its curve equably or unequably. If equably, there muft be a certain uniform rate, which would have produced the fame final change of direction in a line of the fame length, bending it into the uniformly incurvated arch of a circle. It is not fo ubvious how to eftimate a rate of variation of curvature ; and authors of eminence have differed in this eftimation. Sir Ifac Newton, who was much interefted in this difcuffion, in his Audies on uaiverfal gravitation, feems to have adopted a meafure which beit fuited his own views; and has been followed by the greater number. He gives a very clear conception of what he means, by fating what he thinks a cafe of an invariable rate of variation. This is the equiangular fpiral, all the arches of which, comprehended in equal angles from the centre, are perfectly fimilar. although continually varying in curvature. He calls this a curve equably varlable, and makes its rate of variation (ellimated in that fenfe in which it is uniform) the meafure of the rate of variation in all other curves. Let us fee in what refpect its variation of curvature is conflant. It may be defcribed by the evolution of the fame fpiral in another pofition (fee fig. 6 .), and the ratio between the radius of the evolute and that of the evolutrix is always the fame; or (which amounts to the fame thing) the arch of the evolutrix bears to the evolved arch of the evolute a couftant ratio. The curvature of the fpiral changes more rapidly in the fame pro. portion as the ratio of the evolved arch to the arch of the evolutrix generated by it is greater, or as it cuts the radii in a more acute angle. Thefe arches may be infinitefimal ; therefore the fraction $\frac{\text { fluxion of cvolute }}{\text { fluxion of evolutrix }}$ expreffes the rate of the variation of curvature in this fpiral. Now let abcd (fig. 13.) be any other curve, and ABCD its evolute; let p be the centre of curvature at the point B of the evolute, and $B o$ the evolved arch; draw the radii $p \mathrm{~B}, p o, \mathrm{~B} m, o n$; join $p m$, and draw $\mathrm{B} q$ perpendicuar to $p m$. It is evident that $m n$ and $\mathrm{B} o$ have the fame ratio with $\mathrm{B} m$ and $\mathrm{B} p$; and that thefe two fmall arches may be conceived as being portions of the fame
equiangular fpiral (perhaps in another pofition), of which inv iution. q is the centre; and that p is in the curve of another of the fame. For $q p: q \mathrm{~B}=q \mathrm{~B}: q \mathrm{M},=p \mathrm{~B}: \mathrm{B} m$; therefore the ratio of thefe intinitelimal arches $n n$ and Bo will exprets the rate of variation in any curre. This is evidently equivalent to laying, that the variation of curvature is proportional to the fluxion of the radius of curvature directly, and the iluxion of the curve inverfeIy. For $m n$ aid $B o$ are ultimately as thofe fluxions, and $\frac{\mathrm{Bo}_{0}}{m n}$ is equivalent to $\frac{-r}{\dot{z}}$, where z is the arch of the fpiral, and r the evolved radius of the other. Accordingly, this is the enunciation of the index of rariation given by Newton: (See Newton's Fluxions, Prob. VI. § 3.) Therefore, what Newton calls a uniform variation of curvature, is not an increafe or diminution by equal arithmetical differences, but by equal proportions of the curvature in every point. 'The variation of curvature in finilar points of timilar arches is fuppofed to be the fame.

It is evident that this ratio is the fame with that of radius to the tangent of the angle $p m \mathrm{~B}$, or of I to it tabular tangent. The tangent therefore of this angle correfponding to any point of a curve is the meafure of the rariation of curvature in that point. Now it may be fhewn (and it will appear by and bye), that the fluxion of TK in fig. 11. or the ultimate value of KQ, is always $\frac{2}{3}$ ds of the fluxion of the radius of curvature. Therefore the tangent of the angle QBK is always $\frac{2}{3} \mathrm{ds}$ of that of $p m \mathrm{~B}$; and therefore the angle QBK , which we have feen to be an index of the clofenefs of contact, is alfo the index of the variation of curvature. (See $M \cdot$ Laurin, § $^{386 .)}$
Sir Ifac Newton has giren fpecimens of the ufe of this meafure in a variety of geometrical curves, by means of a general expreffion of $\frac{r}{-}$. Thus in the cuive $A B C$ (fig. 8.), let AB be $=z, \mathrm{AD}=x, \mathrm{DB}=y, \mathrm{BN}$ $=r$, and $\mathrm{BE}=p$; we have $\frac{\mathrm{N} n}{\mathrm{~B} b}=\frac{\dot{r}}{\dot{z}}$. Now DB : $\mathrm{BE}=y: p,=\mathrm{D} d: \mathrm{B} b,=x: z$. Therefure $\dot{z}=$ $\frac{p \dot{x}}{y}$, and $\frac{r}{z}=\frac{y \dot{r}}{p \dot{x}}$. Now, in every curve which we can exprefs by an equation, we can obtain all thefe quantities p, y, \dot{r}, and \dot{z}, and can therefore obtain the meafure of the variation of curvature. It alfo deferves particular notice, that this inveftigation of $\frac{r}{\dot{\sim}}$ is equivalent with finding the centre and radius of curvature of the evolute, by which the curve under confideration is generated; or with finding the centre q (lig. I.3.) of an equiangular fpiral, which will touch our curve in m, its evolute in B , and the evelute of the evolute in p, if put into different pofitions when neceffary. This leads to very curious fpeculations, for which, however, we have no room. It has been faid, for inftance, that the curvature at the interfection of a cycloid with its bafe is infinitely greater than that of any circle. If the evolution of the cycloid begin from this point, the curvature of its evolutrix will be infinitely greater flill upon the fame principles; and we fhall have one infinitely greater

I N V

avolution. than this by evolving it. Yet all thefe infinites, multiplied to infinity, are containcel in the central puint of cvery equiangular fuiral! In like manner, there are evolutrixes which coincide with a fraight line, and others of infinitely greater rectitude, and Aill they are curves. Can this have any meaning? And can it be reconciled with the legitimate reafoning from the fame principles, that all thefe curvatures and angles of contact are producible by evolution; and that they may he, and certainly are every day deferibed, by bodies moving in free fpace, and acted on by accelerating forces dirteted to different bodies?

The parabola (conical) is the moft fimple of all the lines of unequably varying curvature, and becones a very good itandard of comparifon. In the parabola ABC (fig. S.) let the parameter be $2 c$. The equation is then $2 a x=y^{2} ; \mathrm{DE}=a ; p$, or $13 \mathrm{E}=\sqrt{a^{2}+y^{2}}$ $\mathrm{DQ}=a+2 x$ (by what was formerly demonftrated). Moreover, $\mathrm{DB}: \mathrm{BE}=\mathrm{DQ}: \mathrm{BN}$; and $\mathrm{BN}=\frac{p a+2 p x}{a}$, $=r$. Thefe equations give $2 a x=2 y y$, $=2 p p$; and $\frac{a \dot{p}+2 x \dot{p}+2 p x}{a}=\dot{r} \quad$ Now making $\dot{x}=1$, and reducing the equations, we obtain $\dot{y}=\frac{a}{y} ; \dot{p}=\frac{y \dot{y}}{p}$, $=\frac{a}{p}$; and $\dot{r}=\frac{a \dot{p}+2 x \dot{p}+2 p}{a}$.

With thefe values of $\dot{y}, \dot{p}, \dot{r}$, we obtain a numerical value of $\frac{y \dot{r}}{p}$ moft readily. Thus in order to obtain the index of variation of curvature in the point where the ordinate at the focus cuts the parabola, make $a=\mathbf{t}$. Then $2 x=y^{2} ; x=\frac{x}{2}, y(=\sqrt{ } 2 x)=1 ; y\left(=\frac{a}{y}\right)$ $=1 ; p\left(=\sqrt{a^{2}+y^{2}}\right)=\sqrt{ } 2 ; \dot{p}\left(=\frac{a}{p}\right)=\sqrt{\frac{r}{2}}$, and $\dot{r}\left(=\frac{a \dot{p}+2 x \dot{p}+2 p}{a}\right)=\sqrt{ } 2 \times 3$. Therefore $y_{p}^{\dot{r}}=3$, = the index of variation in the point B when D is the focus of the parabola; that is to fay, the flusion of the radius of curvature is three times the fluxion of the curve.

The index of variation, where the ordinate is equal to the parameter, is had by making $x=2$. This gives $y=2 ; \dot{y}=\frac{1}{2} ; p=\sqrt{ } 5 ; \dot{p}=\sqrt{\frac{1}{5}}$, and $\dot{r}=3 \sqrt{ } 5$. Wherefore $\frac{y r}{p}=6$, which is the index of variation. Moreover, fince p and \dot{r} are in a conftant ratio, it appears that the index of variation of curvature in the parabola is proportional to the ordinate y. It is always $=6 \frac{\text { ordinate }}{\text { parameter }}$; and thus, with very little trouble, we can defcribe the evolute of its evolute, i. e. of the femicubical parabola.

In like manner, it may be fhewn that in all the conic fections $\frac{\dot{r}}{\dot{z}}$ is always proportional to the rectangle of the ordinate DB and the fubnormal DE , or to $\mathrm{DB} \times$

DE. In the parabola, whofe equation is $2 a x=y^{2}$, Involution, we have $\frac{\dot{r}}{\dot{z}}=\frac{3 y}{a}$. In an ellipfe, whofe equation is $2 a x-l x^{2}=y^{2}$, we have $\frac{\dot{r}}{\dot{z}}=\frac{3-3 b}{a} \times \mathrm{DB} \times \mathrm{DE}$, and in the hyperbola, whofe equation is $2 a x+b x^{2}$, $\frac{\dot{r}}{\dot{z}}$ is $=\frac{2+3^{b}}{a} \times \mathrm{DB} \times \mathrm{DE}$. This ratio, in all the three fuctions, is always as the tangent of the angle contained between the diameter and the normal at the point of contact. By this we may compare them with a parabola. In the cycloid at the point E (fig. 5.)
$\stackrel{r}{r}$ is $=\tan . \angle \mathrm{EKM}$, \&ic. \&c.
All thefe things may be traced in the obfervations made on fig. II, and 12 . When the angle BET is a right angle, the angle $K B Q$ indicates it directly, its tangent being always $=\frac{2 \dot{r}}{3 \dot{z}}$. It is eafy alfo to fee, that when the curve $E M H$ is a parabola, the line BKF is a traight line parallel to ET. It is alfo plain, that by the fame fteps that we proved that no circle can pafs between this parabola and its equicurve circle ERB, fo no other parabola can pafs between them. Indeed the fame reafoning will prove that no curve of the fame kind can pafs between any curve and its ofculating circle. In many cafes, it is more eafy to reafon from the cinvature of a curve, by comparing it with an equi. curve parahola than with an equicurve circle; particu. larly in treating of the curvilineal motions of bodies in free fpace, actuated by deficeting forces.

If EMH be an ellipfe or hyperbola, BKF is another ellipfe or hyperbola (M.Laurin, §373).

We have thus endeavoured to introduce our readers into this curious branch of fpeculative geometry. An introduction is all that can be expeeted from a work of this kind. We have enlarged on particular points, in proportion as we thought that the notions entertained on the fubject were inadequate, or cven vague and indiftinct ; and we hope that fonse may be incited to acquire clearer conceptions by going to the fountain head. We conclude, by recommending to the young geometer the perufal of the Fluxions of Sir Ifac Newton, after he has read M'Laurin's Chapter with care. He will probably be furprifed and delighted with feemg. the whole compreffed by a mafter's hand into fuch narrow compafs with fuch beausiful perfipicuity.

JOAN d'Arc, the maid of Orleans, has been varioully charackerifed; but all now agree, that the was worthy of a better fate than the horrid death the was doomed to dic. (See Joan d'Arc, Encycl.) But did fhe actually die that death? An ingenious writer in the Monthly Magazine has proved, we think, that the did not.

The bifhop of Beauvais (fays he) is aceufed by all parties of treachery and trick in the conduct of the trial : it was his known propenfity to gain his ends by ftratagem, craft, manœuvre, fraud, dexterity. He feeks out, and brings forward, fuch teftimony only as relates to ecclefiaftical offences, and then hands over the deci-
$\int_{\mathrm{jul}}^{\mathrm{O}} \mathrm{N} \quad[$
Jnan, finn to the fecular judres, whofe clemency he invokes.

1 Pofypicer Hi/forre d"Orlians, I.v.vi. Joan fays to him publicly, "You* promifed to rettore me to the church, and you deliver me to my enemies." The intention of the bifhop, then, muft have been, that the fecular judges, for want of evidence, thould fee no offence agrainft the ftate; as the clerical judges, notwithftanding the cvidence, hach declined to fee any againt the church. A fatal fenconce, was, however, pronouncerl ; and the fullilment of it entrutted to the eccletiaftical authorities. Immediately after the auto da fé, one of the executioners ran to two friars, and faid, "that he had never been fo mocked at any execution, and that the Englith had built up \dagger a fcaffolding of plafter (un echorfaud de platre) fo lufty, that he conld not approach the culprit, which muft have caufed her fufferings to be long and horrid." She was therefore, by fome unufual contrivance, kept out of the reach and obfervation even of the executioners.

Some time after, when public commiferation had fucceeded to a vindictive bigotry, a woman appeared \ddagger Hipmive de at Metr \ddagger, who declared herfelf to be Joan of Arc. bs Pucelle parl'Abse Lenglet. see alto $M e$ langes Cu . siesx Monfrelet: and the manuscripe autharitics cited by the co tinuat or of Velly. She was everywhere welcomed with zeal. At Orleans, efpecially, where Joan was well known, the was rectived with the honnurs due to the liberatrefs of the towit. She was acknowledged by both her brothers, Jean and lierre d'Arc. On their teftimony the was married by a gentleman of the houfe of Amboife in 1435. At their folicitation her fenterice was annulled in 1456 . The Parifians, indeed, long remained incredulous : they mult elfe have punithed thofe ecclefiaftics, whofe humanity, perhaps, confpired with the bifhop of Beauvais to withdraw her from real execution down a central chimney of brick and mortar; or, as the executioner called it, a fcaffoldiug of plafter. The king, for the woman feems to have fhumed no confrontation, is ftated to have received her with thefe words: "Pucelle, m'amie, foyez la ires bien revenue, au nom de Dieu." She is then faid to have communicated to him, kneeling, the artifice practifed. Can this woman be an impoltor? Our author thinks not, and appeals to Voltaire, who, in his profe works, feems willing to allow that the was not, as is too commonly imagined, one of thofe half infane enthufiaits, employed as tools to work upon the vulgar ; whom the one party endeavoured to cry up as a prophetefs, and the other to ary down as a witch; but that the was a real heroine, fuperior to vulgar prejudice, and no lefs remarkable by force of mind than for a courage and trength unufual in her fex. This opinion is certainly countenanced by her behaviour in adverfity, and duriag her trial, which was firm without infolence, and exalted without affectation.

JONES (Sir William), who was Ityled by Johnfon the moft enlightened of men, was the fon of William Jones, Efq. one of the laft of thofe genuine mathemaicians, admirers, and contemporaries of Newton, who cultivated and improved the fciences in the prefent century. Onr author was born on the 28 th of September 1746 , and received his education at Harrow fchool, under the care of Dr Robert Sumner, whom he has celebrated in an eulogium which will outlatt brafs or marble. We are told that he was a clafs-fellow with Dr Parr, and at a very early age difplayed talents which orave his tutor the moft promiling expectations, and

32 J J O N
which have fince been amply jtiftitied. From Harrow he was fent to Univerfiry college, Oxford, where the rapidity and elegrance of his literary acquifitions excited general achmiration; while a temper, ardently generons, and morals perfedly irreproachable, procured him teftimonies of the moft valuable efteen. The grateful affection which he always cherithed for that venerable feat of learning, did as much honour to his fenfibility, as Oxford herfelf has received by enrolling him among the uumber of her fons.

In the twenty-third year of his age he travelled through France, and refided fome time at Nice, where he employed himflf very differently from moft other young men who make what is called the tour of Eu. rope. Man, and the influence of various forms of go. vernment, were the principal ohjects of his inveltigation; and in applying the refult of his inquiries to the flate of his own country, he mingled the folicitudes of the Patriot with the honeft partialities of an Englihman.

Mr Jones's lirt literary work was a tranllation in. to French of a Perfian manufeript, entitled "Hifoire de Nadir Sbab, connu fous le nom de Thabmas Kuli K'ban, Empereur de Perfe," in two vols 4 to ; the hiftory of which performance we thall give in his own words: "A great northern monarch, who vifited this country a few years ago, under the name of the Prince of Travendal, brought with him an eattern manufcript, containing the life of Nadir Shah, the late fovereign of Perfia, which he was defiruus of having tranflated in England. The ferretary of Atate, with whom the Danifl minifter had converfed upon the fubject, fent the volume to me, requetting me to givea literal tranflation of it in the French language; but I wholly declined the tafk, alleging for my excufe the length of the book, the drynefs of the fubject, the difficulty of the fyle, and chiefly my want both of leifure and ability to enter upon an undertaking fo fruitlefs and fo laborious. I mentioned, however, a gentleman, with whom I had not then the pleafure of being acquainted, but who had diftinguifhed himfelf by a tranllation of a Perfian hiftory, and was far abler than myfelf to fatisfy the king of Denmark's expectations. The learned writer, who had other works upon his hands, excufed himfelf on the account of his many engagements; and the application to me was renewed. It was hinted, that my compliance would be of no fmall advantage to ine at my entrance into life; that it would procure me fome mark of diftinction which might be pleafing to me; and, above all, that it would be a rifection upon this country, if the king thould be obliged to carry the manufcript into France. Incited by thefe motives, and principally by the laft of them, unwilling to be thought churlifh or mornfe, and eager for the bubble Reputation, I undertook the work, and fent a fpecimen of it to his Danith Majefty; who returned his approbation of the ftyle and method, but defired that the whole tranflation might be perfectly literal, and the oriental images accurately preferved. The tafk would have been far eafier to me, had I been directed to finith it in Latin; for the acquifition of a French ftyle was infinitely more tedious; and it was neceffary to have every chapter corrected by a native of France, before it could be offered to the difcerning eye of the public, fince in every language there are certain peculiarities o.
idiom,

Jonet idiom, and nice Mades of meaning, which a foreigner can never learn to perfection. But the work, how arduons and unpleafing foever, was completed in a year, not without repeated hints from the fecretary's office that it was expected with great impatience by the Court of Denmark." The tranllation of the Hiftory of Nadir Shah was publifled in the ummer of the year 1770 , at the expence of the tranflator: and forty copies upon large paper were fent to Copenhagen ; one of them bound with uncommon elegance for the king Prefue to himitilf, and the others as prefents to his courtiers *,

What marks of diltinction our author recesived, or what fruits he reaped for his labnur, he has nut thought proper to difclofe; but if any dependence is to be placed on common fame, the reward beforred upon him for this labnrious talk confitted only in the thanks of his Danifh Majefty, and the: homour of being enrolled in the Royal Society of Copenhagen. That diftinction was indeed accompanied with a letter, recom nending the learbed tranilator to the patronage of his own fovereign; but, in the interim, his friend Lord Dartmouth, who was to have delivered it, had refigned his uffice of fecretary of flate, and the letter, we are told, was never prefented.

There is reafon to think, that this early and fevere difappointment made a deep impreffion ou his mind, and induced him to renounce the mufes for a time, and to apply himfelf with affiduity to the fludy of jurifprudence. This we think apparent, from the ftyle in which he writes of his return from the continent, and of the death of his beloved preceptor Dr Sumner.
" When I left Nice, (fays he) where I liad refided near feven months, and after traverfing almoft all France, returned to England, I moil ardently defired to pafs feveral years inore in the ftudy of polite literature; as then, I thought, I might enter into public life, to which my ambition had always prompted me, more mature and prepared : but with this fruit of my leifure, either fortune, or rather Providence, the difpofer of all human events, would not indulge my floth; for on a fudden, I was obliged to quit that very literature to which, from my childhood, I had applied myfelf; and he who liad been the encourager and affiftant of my ftudies, who had inftructed, taught, formed me fuch as I was, or if I am any thing at all, Robert Sumyer, within a year after my return, was fnatched away by an untimely death."

In ${ }^{1771}$ Mr Jones publifhed Differtation fur la Literature Orientate, 8 vo , and this was followed by Lettre à Morficur $A^{* *}$ Du $P^{* * *}$, dans laquelle ofl compris 1' Esamen de fa Traduaion des Livres autribues à Zoro. aflre, Svo. The differtation offered a favourable fpecimen of the author's abilities as a linguift and as a critic; and the letter contained a fpirited viadication of the univerfity of Oxford, from the very fcurrilous reproaches, in which its incompetency in Oriental literature was afferted by the illiberal tranflator of the fuppofed works of the Perfian philofopher.

In the fame jear he gave to the public, "A Grammar of the Perfian "language," to, and at the fame time propofed to republifh Meninki's Dictionary, with improvements from De Labroffe's Gazophylacium Lingue Perfarum, and to add in their proper place an Ap. pendix fubjoined to Gehanaguire's Perfic Dictionary. The Grammar has been found extrengely ufeful, and Suppl. Vol. II. Part I.
has been repuinted feveral times; hut the defign of the Dictionary, though an object of even national importance. for want of due cucouragement was obliged to be laid atide.

In 1772 he publifhed "Poems; confifting chiefly of Tranflations from the Afiatic Languages. To which are added two Eflays; 1. On the Pectry of the Eaftern Nations. 2. Oal the Arts commonly called Imitative," 8 vo, which in 1777 he republifhed with the addition of fome Latin foens, every way worth of their author. On the $\mathbf{1 8 t h}$ Junc 1773 , he took the degree of Mafter of Arts, and the fame year publifhed "The Hiftory of the Life of Nadir Shah, King of Perfa. Extracted from an Eaftern Manufeript, which was tranflated into French by order of his Majefty the Fing of Denmark. Wi han Intreduction, consaining, 1. A Defcription (f Afia acording to the Oriental Geographers. 2. A thont Hifhory of leerfia from the earlieft Times to the peefent Century: And an Appendix, confifting of an Effay on Aliatic Poetry, and the Hittory of the Perfian Language, To which are added Pieces relative to the French Tranflation," 8vo. Our author having at this period deternmined to fudy the law as a profeffion, and to relinguifh every other purfuit, our readers will not be difpleafed with the following extract, relating to this refolution, which concludes the preface to the hitory now under confideration :
"To conclude ; if any effential miftakes be detected in this whole performance, the reader will excufe them, when the reflects upon the great variety of dark and intricate points which are difcuffed in it ; and if the obfcurity of the fubject be not a fufficient plea for the errors which may be difcovered in the work, let it be confidered, to ufe the words of Pope in the preface to his juvenile poems, that there are very few things in this collection which were not written under the age of five-and-twenty: moft of them indeed were compofed in the intervals of my leifure in the Sonth of France, before I had applied myfelf to a ftudy of a very different nature, which it is now my refolution to make the fole object of my life. Whatever then be the fate of this production, I fhall never be tempted to vindicate any part of it which may be thought exceptionable; but fhall gladly refign my oun opinions, for the fake of embracing others, which inay feem more probable: being perfuaded, that nothing is more laudable than the love of truth, nothing more odiuns than the obftinacy of perfifting in error. Nor fhall I eafily be induced, when I have difburdened nyfelf of two other pieces which are now in the prefs, to begin any other work of the literary kind; but flall contine myfelf wholly to that branch of knowledge in which it is my chief ambition to excel. It is a painful confideration, that the profeflion of literature, by far the mot labo. rious of any, leads to no real benefit or true glory whatfoever. Poetry, fcience, letters, when they are not made the fole bufinefs of life, nay become its ornaments in profperity, and its moft pleafing confolation in a change of fortune; but if a man addicts himifelf entirely to learning, and hopes by that, either to raife a family, or to acquire, what fo many wifh for, and fo few ever attain, an honourable retirement in his declining age, he will find, when it is too late, that he has miftaken his path ; that other labours, other Itudies, are neceffary; and that unlefs he can affert his own indeE
pendence

Jone: pendence in active life, it will aval him litele to be fat voured by the learnct, etembed by the eminent, or recommended even by kiigs. It is true, on the other hand, thit no external adrantages can make amends for the lofs of virtue and integrity, which alone give a perfect comfort to him who poffeffes them. Let a man, therefore, who withes to enjow, what no fortune or honour can bettow, the bleffing of felt-apprubation, afpire to the glory given to Pericles by a celebrated hiturian, of being acquainted with all ufeful know ledge, of expreffing what he knows with copiouinefs and freedom, of loving lhis friends and country, and of difraining the mean purfuits of luce and intereft : this is the only career on which an honeit man ought to enter, or from which he can iope to gain any folid happinefs."

The next year he publimed Poffos . Sfatica Commentariorum Jilri Sex, cum Appendice; fuljicitur Limon, feu Mifcellaneorum Lilicr, 8vo; and purfuing his purpofe of applying to the fludy of the law, we hear no more of him from the prefs (except the new edition of his Poems), until the year 1779. In this interval he was called to the bar, and attended Wettmintter-hall and the Oxford circuit, where he obtained but little bufinefs. He was however appointed a commiffoner of bankrupts by Lord Bathurt, who is fuppofed to have intended to exert his interelt to procure his nomination to the bench in the Eaft Indies.

He publifhed in this year, "T"ue fpeeches of Ifeus, in caufes concerning the law of fuccefion to property at Athens; with a preparatory difourfe, notes critical and hiftorical, and a Commentary, 4 to.". In this valu. able work, the talents of the felolar, the critic, and the lawyer, combine to elucidate a very important part of jurifprudence; for, "though deep refearches into the legal antiquities of Greece ard Rome (as he obferves in his Commentary) are of greater ufe to fcholars and contemplative perfons, than to lawjers and men of bulinefs; though Bracton and Lyttleton, Coke and Rolle, are the proper ohjects of our fudy; yet the ableft adxocates, and wifeft juoges, have frequently embellithed their arguments with learned allufions to antient cafes; and fuch alluions, it muft be allowed, are often ufeful, always nmamental; and, whea they are introduced without pedantry, never fail to pleafe." "The work was dedicated in a dyle of refpectful gratitude to his patron Lord Bathurt.

In the year 1782 , we find our author a canoidate to reprefent in parlianment the univerfity of Osford . He had for fome time refded but little in the univerity, and therefore laboured under fome difadvantages; but he did not meanly court the fuppurt of any man. in 3 paper, which was circulated on that occafion, his friends, who were numerous, declare, that they have "neither openly folicited, nor intend openly to folicit, vutes for Mr Jones within the Univerfity itfelf, becaufe he will never lecome the inftrument of difturbing the calm feat of the Mufes, by confeuting to any fuch folicitation for himfelf or for any man whatever. His own applications have been, are, and will be, confined to thofe only who have profeffed a regard for him, and who bave no votes themfelves: the Mafters of Arts in a great univerfity, whofe prerogative is cool reafon and impartial judgment, muft never be placed on a level
with the voters of a burongh, or the frecholders of a county. Liven in proceeding thus far, he does not fet the example, but follows it; and his friends would never have primted any paper, if they had not thourght themlelves juttified hy the conduct of others.
"For the firt and the laft time, they beg leave to. fuggell, that no exertions muft be farad by thofe who either perfonally or by reputation, approve the character of Mr_{1} Jones; into which, hoth literary and political, as well as moral, his friemls defire and demand the Arictelt ferutiny. Fur his univerfity he began early to provoke, and poifibly to incur, the difpleafure of great and powerful men: For his univerfity he entered the lifts with a foul-mouthed and arrogant Frenchman, who had attacked Oxford in three large volumes of mifreprefentation and fcurrility: For his univerfity he religned, for a whole year, his favourite ftusiies and purfuits, to fave Oxford the diferedit of not having one of her fons ready to tranllate a tedious l'erfian manufoript. To Oxford, in thort, he is known to be attached by the frongelt pollihle ties; and only regrets the neceffity of abfenting himfelf from the place in which of all others he mont delights, until the event of the prefent competition thall either convince him that he has toiled in vain as a man of letters, or fhall confer on him the greateft reward to which he cals afpire. The unavoidable difadvantage of being fo late propofed, and the refpectable fapport with which he is now honoured, will fecure him in all events from the leaft difgrace." The application was unfuccefsful, chiefly becaufe his own college had fixed upon another cahdidate, from a Ferfualion that the immediate appointment of Mr Jones to a feat, then vacant on the bench of judges in India, was morally certain.

The riots of that year gave occafon to another publication of our author, entitled, "An Inquiry into the legal Mode of fupprefing Riots; with a conftitutional Plan of future Defence," 8 vo ; and in 178 I he publithed "An Effay on the Law of Bailments," 8 vn , a very mafterly treatife, which did great honour to his. legal abilities. In this laft work he inculcates the ne. ceflity of deeply exploring the grounds of the common law ; and fpeaking of Blackftone, (he fays) " his commentaries are the molt correct and beautiful outline that ever was exhibited of any human fcience; but they alone will no more form a lawyer, than a general map of the world, how accurately and elegantly focver it. may be delineated, will make a geographer."

In this year he likewife recalled his mufe in an Ode on the maptials of Lord Vifcount Althorpe, who had been. his pupil, to Mifs Lavinia Bingham. This beautiful little puem is preferved in the European Magazine fur January 1785 , and we think in other periodical publications.

From many circumftances which might be collected together, it would appear that our author at this juncture did not coincide in opinion with thofe who had the direction of government, nor did he approve the meafures at that period adopted.--With thefe fentiments he feems to have been felected as a proper perfon to bc introduced as a member of the Conflitutional Society. Could he have forefeen the degeneracy of fuch affociations, there is reafon to believe that he would have declined what he condefcended to accept as an honour ;

Jones. for though an ardent friend to liberty, he was an encmy to theoretical innovation, and declares, in a letzer to the fecretary, that by the term conllitution, he underftands, "the great fyltem of public, in contradiction to private and criminal law, which comprifes all thofe articles which Blackftone arranges, in his firit volume, under the rights of perfons, and of which he gives a perfpicuous analyfis. Whatever then relates to the rights of perfons, either abfolute rights, as the enjoyment of liberty, fecurity, and property, or relative, that is, in the public relations of magillrates and people, makes a part of that majeltic whole, which we properly call the conftitntion. This confitutional or public law is partly unwritten, and grounded upon immemorial ufage, and partly written or enacted by the legifsative power ; but the mwriten, or common law, colltains the true fpirit of our conflitution: the written has often moft unjuftifalily altered the form of it; the common law is the collected wifdom of many centuries, having been ufed and approved by fucceffive generations; but the fatutes frequently contain the whims of a few leading men, and fometimes of the mere iadividuals employed to draw them."

In 17×2 he publifhed "The Mahomedan Law of Succeffion to the Property of Inteflates, in Arabic, with a verbal Tranflation and explanatory Nutes." 4 to.

At length the poft of one of the judges in the Eaft Indies, which had been kept vacant tive years, was determined upon being filled up; and our author, on the $4^{\text {th }}$ March 1783 , was appointed to that Itation, and on the 20 h received the honour of knighthood. On the 8th of A pril he married Mifs Shipley, eldeft daughter of the Bihhop of St Afaph, and almolt immediately embarked for the Indies. He had previoully publifhcd "The Moallakat ; or, Seven Arabian Poems, which were fufpended on the Temple at Mecca, with a tranflation and Arguments," 4to. To this it was intended to add a preliminary difcourfe and notes. - The former to comprife obfervations on the antiquity of the A rabian language and letters; on the dialects and characters of Himyar and Koraifh, with accounts of fome Himyarick poets; on the manners of the Arabs in the age immediately preceding that of Mahomed; on the temple at Mecca, and the Moallakat, or pieces of poetry fufpended on its walls or gate; laftly, on the lives of the Seven Poets, with a critical hitory of their works, and the various copies or editions of them preferred in Europe, Alia, and Africa. The latter to contain authorities and reafons for the tranfation of controverted paffages; to elucidate atl the obfcure couplets, and exhibit or propofe amendments of the text; to direct the reader's attention to particular beauties, or point out remarkable defeets; and to throw light on the images, figures, and allufions of the Arabian poets, by citations either from writers of their own country, or from fuch of our European travellers as beft illuftrate the ideas and cuftums of Eaftern nations. This difcourfe and the notes have not yot ap. peared. At his departure for the ealtern world, he left, in manufcript, with his brother-in-law the Dean of St Afaph, a little tract, entitled "The Principles of Government, in a Dialogue between a Scholar and a Peafant." This celebrated dialogue being afterwards publifhed by the Dean; and widely circulated by the fociety for conftitutional information, the Dean was
profecuted for publifing a libel, and, if our memory deceives us not, was found guilty.

Sir William Jones now dropt for ever all concern in party politics, and applied himfelf to pufuits more worthy of his talents. During his voyage to ludia, he conceived the idea of the Afiatic Suciet 5 , of which an account has been given under the title Societies (lincycl.), and of whofe refcarches live volmmes, replete with much curious information, are now before the puhlic. But ardently as his mind was attached to general literature and fcience, he was by no means inattentive to the profeffional duties of his high fation. He had indeed, to ufe his own expreffion, an "undifembled fondnefs for the fundy of jurifprudence *;" and in the character of a jurge, dif- "I aru of played the profound knuwledge and irreproachable inte- B.ailmentso grity, which, before his promotion, pervaded his reafonings as a lawyer, and governed his conduct as a man. Unfortunately the intenfe ardour of application, which produced his frequent contributions to the tuck of human knowledge, added to the unfavourable infucnce of the clinate, greatly impaired his health. On this account, after a refidence of about fifteen years in India, he made preparations for returing to England; but death interpofed; and this illuthriousornament of ficience and virtue was taken from the world on the 27 th of April 1794, in the $48 \mathrm{th}_{2}$ year of his age. "lt is to the foame of fcepticifm (as one of his biographers well obferves), to the encouragensent of hope, and to the honour of genins, that this great man was a fineere belicver in the doctrines of Chrillianity, and that he was found in his clofet in the attitude of addrefling his prayer to God.". We fhall give his character as it was drawn by Sir John Shore, Baronet, (now Lord Teignmouth) in a difcourfe delivered at a neeting of the Afiatic Society, held on the 2.2 d of May 179 f.
"His capacity for the acquifition of languages has never been excelled. In Greek and Roman literature, his early proficiency was the fubject of admiration and applaufe ; and knowledge of whatever nature, once oftained by him, was ever afterwards progreffive. The more elegant dialects of modern Europe, the French, the Spanifh, and Italian, he fpoke and wrote with the greateft fluency and precifion; and the German and Portugucfe were familiar to lrim. At an early period of life his application to Oriental literature commenced; he thudied the Hebrew with eale and fuccefs; and many of the molt learned A fiatics have the candour to avow, that his knowledge of Arabic and Perfian was as accurate and cxtenfive as their own ; he was alfo converfant in the Tutkinh idion, and the: Chinete had even attracted his notice fo far as to induce him to learn the radical charactors of that language, with a view perhaps to farther improvements. It was to be expected, after his arrival in India, that he would eagerly embrace the oppoitunity of making himfelf matter of the Sanferit ; and the molt enlightioned profeffors of the doetrines of Brahma confefs with pride, delight, and furprife, that his knowledge of their facred dialet was moft critically correct and profound. The Pandits, who were in the habit of attending him, could not, after his death, fupprefs their tears for his lofs, nor find terms to exprefs their admiration at the wonderful progrels he had made in their fciences.
"Before the expiration of his twenty-fecond ycar, lee had completed his Commentaries ont the Poetry of

J O N

Jones. the Afratics, although a confiderable time afterwards elapfed before their publication; and this work, if no other monument of his labours exifted, would at once furnifh proofs of his confummate fk ill in the Oriental dialects, of his proficiency in thofe of Rome and Greece, of talle and erudition far beyond his years, and of talents and application without example.
" But the judrment of Sir William Jones was too difeeming to confider language in any other light than as the key of feience, and he would have defpifed the reputation of a mere linguit. Knowledge and truth were the objects of all his ftudies, and his ambition was to be ufeful to mankind; with thefe views he extended his refearches to all languages, nations, and times.
"Such were the motives that induced hin to propofe to the government of India, what he juftly denominated a work of national utility and importance, the compilation of a copious Digett of Hindu and Mahomedan Law, from Sanfcrit and Arabic Originals, with an offer of his fervices to fuperintend the compilation, and with a promife to tranfate it. He had forefeen, previous to his departure from Europe, that without the aid of fuch a work, the wife and benevolent intentions of the legillature of Great Britain, in leaving to a ceraiin extent the natives of thefe provinces in poffeffion of their own laws, could not be cumpletely fulfilled; and his experience, after a thort refidence in India, confirmed what his fagacity had anticipated, that without principles to refer to, in a language familiar to the judges of the courts, adjudications amongtt the natives muit too often be fubject to an uncertain and erroneous expofition, or wilful mifinterpretation of their laws.
"To the fuperintendance of this work, which was immediately undertaken at his fuggeftion, he affiduoufIy devoted thofe hours which he could fpare from his profeftional duties. After tracing the plan of the Digeft, he prefcribed its arrangement and mode of execution, and felected from the mofl learned Hindus and Mahomedans fit perfors for the tafk of compiling it : flattered by his attention, and encouraged by his applaufe, the Pandits profecuted their labours with chearful zeal to a fatisfactory conclufion. The Molavees have alfo nearly finithed their portion of the work; but we muft ever regret, that the promifed tranflation, as well as the meditated preliminary differtation, have been fruftrated by that decree, which fo often intercepts the performance of human purpofes.
"During the courfe of this compilation, and as auxiliary to it, he was led to ftudy the works of Menu, reputed by the Hindus to be the oldeft and holient of legiflators; and finding them to comprife a fyttem of religious and civil duties, and of law in all its branches, fo comprehenlive and minutely exact, that it might be confidered as the Inftitutes of Hindu Law, he prefentef a tranflation of them to the government of Bengal. During the fame period, deeming no labour exceffive or fupertluous that tended in any refpect to promote the welfare or happinefs of mankind, he gave the publie an Englifh verfion of the Arabic Text of the Sirajiyalı or Mahomedan Law of Inheritance, with a Commentary. He liad already (as has been obferved) publifhed in England a tranflation of a tract on the fame fubject by another Mahomedan lawyer, containing, as his own words exprefs, ' a lively and elegant Epitome of the Law of Inheritance of Zaid.'
"To thefe learned and important works, fo far out of the road of amufement, nothing could have engaged his application but that defire which he ever profeffed, of rendering his knowledge ufeful to his nation, and be. neficial to the inhabitants of thefe provinces.
"I fhould fearcely (continues Lord Teignmouth) think it of importance to mention, that he did not difdain the office of editor of a Sanferit and Perfian work, if it did not afford me an opportunity of adding, that the latter was publifhed at his own expence, and was fold for the benefit of infolvent debtors. A limilar application was made of the produce of Sirajiyah."

But nothing exhibits the large grafp of Sir William Jones's mind in fo ftriking a point of view as a paper in his own hand writing, which came into Lord Teigumouth's poffeffion after his death. It was intitled Desiderata, and propufed for inveftigation the following fubjects relating to the ealtern world.
India.-I. The antient geography of India, \&c. from the Puranas. 2. A botanical defcription of Indian plants, from the Cohnas, \&c. 3. A grammar of the Sanferit language, from Panini, \&c. 4. A dictionary of the Sanferit language, from the 32 original vocabularies and Niructi. 5. On the ancient mufic of the Indians. 6. On the medical fubftances of India, and the Indian art of medicine. 7. On the philofuphy of the ancient Indians. 8. A tranflation of the Veda. 9. On ancient Indian geometry, aftronomy, and algebra. 10. A tranflation of the Puranas. 11. A tranflation of the Mahabbara and Ramayan. 12. On the Indian theatre, 2c. \&c. 13. On the Indian conftellations, with their mythology, from the Puranas. 14. The hiftory of India before the Mahomedan conqueft, from the Sanforit Cafhmir Hiftories.

Arabia.-15. The hiftory of Arabia before Mahow med. 16. A tranflation of the Hamafa. 17. A trauflation of Hariri. 18. A tranflation of the Facahatul Khulafa. Of the Cafiah.

Perfia.-19. The hillory of Perfia, from authorities in Sanfcrit, Arabic, Greek, Turkifh, Perfian ancient and modern, Firdaufi's Khrofrau nama. 20. The five poems of Nizami, tranflated in profe. 21. A dictionary of pure Perfian Je changire.

China.-22. A tranflation of Schi-cing. 23. The text of Can-fu-tfu, verbally tranflated.

Tartary.-24. A hiftory of the Tartar nations, chiefly of the Moguls and Othmans, from the Turkifh and Perfian.
"We are not authorifed (fays his Lordfhip) to conclude, that he had himfelf formed a determination to complete the works which his genius and knowledge had thus fiketched; the talk feems to require a period beyond the probable duration of any human life; but we, who had the happinefs to know Sir William Jones; who were witneffes of his indefatigable perfeverance in the purfuit of knowledge, and of his ardour to accomplifh whatever he deemed important ; who faw the extent of his intellectual powers, his wonderful attainments in literature and fcience, and the facility with which all his compofitions were made-cannot doubt, if it had pleafed Pruvidence to protract the date of his exiftence, that he would have ably executed much of what he had fo extenfively planned."

We have already enumerated attainments and works which, from their diverfity and extent, feem far beyond

Jones. the capacity of the moft enlarged minds; but the cataloguc may yet be augmented. To a proficiency in the languages of Greece, Rome, and Afia, he added the knowledge of the philofophy of thofe countries, and of every thing curious and valuable that had been taught in them. The doctrines of the Acadeny, the Lyeeum, or the portico, were not more familiar to him than the tencts of the Vedas, the myfticifm of the Sufis, or the religion of the ancient Perfians; and whilit, with a kindred genius, lie perufed with rapture the heroie, lyric, or moral compofitions of the moft renowned poets of Greece, Rome, and Afia, he could turn with equal delight and knowledge to the fublime fectulations or mathematical calculations of Barrow and Newton. With them alfo he profeffed his couviction of the truth of the Chrintian religion; and he jufth. deemed it no inconliderable advantage, that lis refearches had corroborated the multiplied evidence of Revelation, by confirming the Mofaic account of the primitive world.

In his eighth anniverfary difcourfe to the Afatic Society, he thus expreffes himfelf: "Theological inquiries are no part of my prefent fubject; but I cannot refrain from adding, that the collection of tracts which we call, from their excellence, the Scriptures, contain, independently of a divine origin, more true fublimity, more exquifite beauty, purer morality, more important hiftory, and finer ftrains both of poetry and eloquence, than could be collected within the fame compars from all other books that were ever compofed in any age, or any idiom. The two parts, of which the Scriptures confift, are connected by a chain of compofitions, which bear no refemblance in form or ftyle to any that can be produced from the fores of Grecian, Indian, Perian, or even Arabian learning; the antiquity of thefe compofitions no man doubrs, and the unitraincd application of them to cvents long fuhfequent to their publication, is a folid ground of belief that they were genuine prediations; and confequently infpired.

There were, in truth, few fciences in which he had not acquired confiderable proficiency; in moft, his knowledge was profound. The theory of mufic was fanniliar to him ; nor had he neglected to make himfelf acquainted with the interefting difcoveries lately made in chemiftry; "and I have heard him (fays Lord Teignmouth) affert, that his admiration of the flructure of the human frame had induced him to attend for a feafon to a courfe of anatemical lectures, delivered by his friend the celebrated Hunter."

His laft and favourite purfuit was the fludy of botany, which he originally began under the confinement of a fevere and lingering diforder, which with mon minds would have proved a difqualification from any application. It conflituted the principal amurement of his leifure hours. In the arrangements of Linnzus, he difcovered fyitem, truth, and feience, which never failed to captivate and engage his attention; and from the proofs which he has exhibited of his progrefs in botany, we may conclude that he would have extended the difcoveries in that fcience.

It cannot be deemed ufelefs or fuperfluous to inquire by what arts or method he was enabled to attain to a degree of knowledge almoft univerfal, and apparently beyond the powers of man, during a life little exceeding 47 years.

The faculties of his mind, by nature vigorous, were
improved by conltant exercife; and his memory, by whateve un upon it. To an unextinginfhed ardour for univerfal knowledge, he joined a perfeverance in the purfuit of it which fubdued all obftacles; his ftudies began with the dawn, and, during the intermiffions of profeffional dutics, were continued throughout the day; reflection and meditation ftrengthened and confirmed what induftry and inveftigation had accumulated, It was a fixed principle with him, from which he never voluntarily deviated, not to be deterred by any difficulties that were furmountable from profecuting to a fuccefsful termination what he had once deliberately undertaken.

But what appeated more particularly to have enabled him to employ lis talents fo much to his own and the public advantage, was the regular allotment of his time, and a fcrupulous adherence to the diftribution which he had fixed; hence all his fludies were purfued without interruption or confulion. He collected information, too, from every quarter; juftly concluding, that foncthing might be learned from the illiterate, to whom he litened with the utmof candenr and complacency.

Lord Teignmouth, addreffing himfeif to the Afiatic Society, fays, "Of the private and focial virtues of our lainented Prefident, our hearts are the beft records. To you who knew him, it cannot be neceflary for me to expatiate on the independence of his integrity, his humanity, probity, or benevolence, which every living creature participated; on the affability of his converfation and manners, or his modeit, unafuming deportment : nor need I remark, that he was totally free from pedantry, as well as from arrogance and fell-fufficiency, which fometimes accompany and difgrace the greatef abilities. His prefence was the delight of every fociety, which his converfation exhilarated and improved; and the public have not only to lament the lofs of his talents and abilities, but that of his example.
" To him, as the founder of our inflitution, and whilt he lived its firmefl fupport, our reverence is more particularly due. Inftrueted, animated, and encouraged by him, genius was called forth into exertion, and modeft merit was excited to diftinguifh itfelf. Anxious for the reputation of the fociety, he was indefatigable in his own endeavours to promote it, whilh he cheerfully affited thofe of others. In lofing him, we have not only been deprived of our brighteft ornament, but of the guide and patron, on whoie inftructions, judgement, and candour, we could implicitly rely." Though thefe are the fentiments, not only of Lord Teignmouth, but, we believe, of every man of letters, we truft there is flill left in Bengal a fufficient love of letters and of fcience to carry on the plan which was formed by the genius of Sir William Jones.

JONESIA, is a very handfome middling.fized ramons tree, found in gardens about Calcutta. In the Sanferit it is called $A s^{\prime}$ oca, and in the Bengalefe $R u f$. fuck; but the name Joncifa was given to it by the Afiatic Society, who confecrated it to the memory of their firt prefident Sir Willam Jones. It is thus defcribed by Dr Roxburgh, a member of that fociety:
"Calyx, two-leaved, corol, one-petalled, pittil-bearing, bafe of the tube impervious; ftamens long, afcending, inferted into the margin of a glandulous nectaral ring, which crowns the mouth of the tube, the uppermolt

I R E

J.nnfia, two of which more diftant; ftyle declining. Leganee
J. urnali. turgid. Trunk erect, though not very ftraight. Burk dak brown, pretty fmooth. Dranches numerous, fpreading in every dirccion, fo as to form a moft elegant thady head. Leaves alternate, abruptly feathered, feffile, grenerally more than a fout long; when young, pendulous and coloured. Iecaficts oppofite, from four to fix pair, the lowernof boad lanced, the upper lanced; imooth, fhining, firm, a little waved, from four to eight inelies ling. Petiole common, round, and fmoeth. Sit. pule asillary, folitary; in fact a procefs from the bate of the common petiole, as in many of the graffes and monandrifts, \&c. Umbels terminal and axillary ; betwocn the ftipule and branchlet, globular, crowded, fubifflik, erect. Brais, a fmall hearted one under each divifion of the umbil. Pedunele and pedicles fmooth, coloured. Flozers very mumerous, pretty large; when they firt expans they are of a beantiful orange colour, gradually changing to red, forming a variety of lovely 17ades; fragrant during the night. Calys perianth, below two-leaved, leaflets fmall, nearly oppofite, colourerl, hearted, bractelike, marking the termination of the pedicle, or beginning of the tube of the corol. Co-
 firm, and Aefhy, tapering towards the bafe (club funne)Thafed) and there impervious; border four parted; divifion Spreadiag, fuborbicular; margins moft flightly woolly: one third the length of the tube. Neitary, a ftimeniferous and piftiliferous ring crowns the mouth of the tube. Stamens, filaments generally feven ; and feven muft, I think, be the natural number; viz. three on each fice, and one below, above a vacancy, as if the place of an eighth filansent, and is occupied on its infide by the pillil; they are equal, diftinct, afcending from three to four times longer than the border of the corol. Anthers uniform, fmall, incumbent. Pifil, germ oblong, pediceled; pedicle inferted into the infide of the nectary, immediately below the vacant face already mentioned; ftyle nearly as long as the famens, declining; fligma fimple. Pericarp, legume fcimeter formed, turgid, outfide reticulated, otherwife pretty fmooth; from fix to tea inches long, and about two hroad. Seeds generally from four to eight, fmooth ; grey, fize of a large chefnut."

The Jonefia flowers at the beginning of the hot feafon, and its feeds ripen during the rains. The plants and feeds were originally brought to Calcutta from the interior parts of the country, where it is indigenous. N. B. Many of the flowers have only the rudiment of a pifil. In llate XXX. A is a branchlet of the natural fize. B, A fingle flower a little magnified; a a the calyx. C, A fection of the fame, exhibiting four of the fanmens, 1 I 1 the pintil 2, and how far the tube is perforated. D, A fimilar fection of one of the abortise flowers; 3 is the abortive fiftil. E, The ripe legume opening near the bafe, natural fize. Note, The face het ween the b and c marks the original tube of the coral. F, One of the feeds, natural fize. G, The bafe of the common petiole, with its 值保; $a a$, the petioles of the lower pair of leaflets.

JOURNALS, the tithe of periodical publications. See Encyclopadta. The principal Britifh Journals are: The Hiffory of the IVorks of the Learned, begun at London in 1699 . Cenfura Temparum, in 1708. About the fame time there appeared two new ones; the one
ander the title of Nemoirs of Litcratare, containing little more than an Englifh tramfation of fome articles in the foreign Joumals, by M. de la Koche; the other, a collection of loofe tracts, entitled, Bibliotheca Curiofa, or a Nifcellany. Thefe, however, with fome others, are now no more, but are fucccelled by the Anaual Regifer, which began in 1758 ; the Nerv Annual Regigler, begun in 1780 ; the Monthly Revieru, which began in the year 1749, and gives a character of all Eng. lifh literary publications, with the moft confiderable of the foreign ones: the Critical Requicu, which legan in 1756, and is nearly on the fame plan : as alfo the Londen Review, by Dr Kenrick, from 1775 to 1782 ; Maty's Ruview, from Feb. 1782 to Aug. 1786; the Engijb Revilow, begun in Jan. 1783 ; and the Aralytical Roview, begun in May 1788, dropt in 1798 , and revived in 1799, under the title of the New Analytical Revicu; but again dropt after two or three months trial : the Eritifb Critic, begun in 1792, and flill carried on with much fpirit and ability : the Anti- Facobin Reviere and Magaxine, commenced in 1798 , for the meritorious purpoie of counteracting the pernicions tendency of French principles in politics and religion: the New London Review, January 1799: Al' Journal of Natural Pbilofoply, Cbemiflry, and the Arts, which was begun in 1797 by Mr Nicholfon, and has been conduct. ed in fuch a manner, that it is one of the mott valuable works of the kind to be found in any language: the Philofophical Magazine, begun in 1798 by Mr 'Tilloch, and carried on upen much the fame plan, and with mach the fame fpirit, as Nicholion's Journal.

Befides thefe, we have feveral monthly pampletete, called Magazines, which, together with a chronological feries of occurrences, contain letters from correfpondents, communicating extraordinary difcoveries in na. ture and art, with controverfial pieces on all fubjects. Of thefe, the principal are thofe called the Gentiman's Alagazine, which began with the year 1731; the London Magazine, which began a few months after, and has lately been difcontiuned; the Univerjal Magazine, which is nearly of as old a date ; the Scorcb Magazine, which began in 1739 , and is fill continued; the Eirropean Magazint ; and the Monthly Magazine, a mifcellany of much information, but not of good principles.

JOYST or JEYST, the fecond month of the Bengal year.

IRELAND has been fo fully defcribed, and its hiftory fo amply detailed, in the Encyclopxdia, that it is introduced here only to notice its legillative union with Great Britain. Such a meafure had been often wifhed for by the more intelligent Irifh, who could not but hope, from a union, advantages to their country fimilar to thofe which Scotland had reaped from her union with England; but it was at all times dreaded by the city of Dublin, and by thofe individuals who preterred the empty and unmeaning found of national independence to futare profperity. The rebellion, however, which raged in lreland during the year 1798, and the danger which was then apprehended of its ninal feparation from Britain, and union with France, made the wifer thatefmen in both iffands think feriounly of a legitla. tive union. 'The meafure, after much oppodition from the pretended patriots of both countries, who made it a rule to oppofe whatever originated with adminittra. tion, was finally accomplified, and the royal affent gi-

$1 \mathrm{R} O$

Freland, ven to the act of union on the 2 d of July 1800 . By Hon. that act, the Irifh are admitted to a flare of all the trade
of Great Britain, except fuch as is confined to chartered companies, and is of courfe not free to the inhabitants of Britain at large. The lrifh commons are reprefented by a luundred members in the houfe of commons at Weflminfter; the Irifl peerage, fpiritual and temporal, hy four bifhops and twenty-eight lay-lords, chofen by the bifhops and peers of Ireland, to hold their feats for life: and the fovereign is now fyled King of the United Kingdoon of Great Britain and Ireland; having, with proper dignity, Jropt the empty title of King of France. Ireland fill retains her own laws and courts of jultice, not excepting even the court of chancery; and his majefty is reprefented in Dublin by a lord lieutenant, as when the two iflands were two kingdoms. Ireland is likewife exempted from all concern with the debt of Great Britain contracted before the union; in which refpect the terms granted to her are preferable to thofe which had been granted by England to Scotland; and her contribution to the imperial expences is as r^{\prime} to $7 \frac{1}{2}$. This article, however, from the probahle increafe of her trade, might in time prove extravagantly favourable; it is therefore fubject to revifal by the imperial parliament in the courfe of twenty years. There is one fingular claufe in this act of union, of which the propriety has been quettioned by men of the firlt-rate abilities who were friendly to the meafure : Such Irifh peers as are not elected into the houfe of lords may be chofen as reprefentatives of Britifh towns and counties in the houfe of commons, provided that, while they are members of that houfe, they relinquinh all the privileges of the peerage.

IRON is by much the moft ufeful of all the metals, as has been fufficiently proved under the article Iron, Encycl. and under Chemistry in this Supplement. The word is again introduced here, becaufe it afords us an epportunity of laying before our readers fome valuable obfervations by Chaptal on the ufe of the oxides of iron in dyeing cotton.
" The oxide of iron has fuch an affinity for cotton thread, that if the latter be plunged in a faturated folution of iron in any acid whatever, it inmediately affumes a ehamoy yellow colour, more or lefs dark, according to the firength of the liquors. It is both a curious and eafy experiment, that when cotton is made to pafs through a felution of the fulphat of iron, rendered turbid by the oxide which remains fufpended in the liquor, it will be fuffeient to dip the cotton in the bath to eatch the laft particle of the oxide, and to reflore to the liquor the tranfparency it has loft. The folution then, which before had a yellowih appearance, becomes more or lefs green, according as it is more or lefs charged.
"The colour given to cotton by the oxide of iron becomes darker merely by expofure to the air; and this colour, fuft and agreeable when taken from the bath, becomes harfh and ochry by the progreflive oxidation of the metal. The colour of the oxide of iron is very faft : it refitls not only the air and water, but alfo alkaline leys, and foap gives it fplendour without fenfibly diminifhing its interfity. It is on account of thefe properties that the oxide of iron has been introduced into the art of dyeing, and been made a colouring principle of the utmoft value.
"In order that the oxide of iron may be conveniently

39] I R O

applied to the cotton thread, it is neceflary to begin by effecting its folution; and, in this cafe, acids are employed as the molt ufeful folvents. Dyers almoft everywhere make a myftery of the acid which they employ; but it is always the acetous, the fulphuric, the nitric, or the mariatic. Some of them afcribe great differences to the folution of inom by the one or the other acid; but, in general, they grive the preference to the acctons. This predilection appears to be founded much Icfs on the difierence of the colours that may be communicated by the onc or the other falt, than on the different degrees of corrofive power which each exercifes on the fluff. That of the fulphat and muriat is fo great, that if the fluff be not wafhed when it cumes from the bath, it will certainly be burnt; whereas \{olutions by the acetous, or any other vegetable acid, are not at. tended with the like inconvenience.
" Iron appears to be at the fame degree of oxydation in the different acids, fince it produces the fame fhade of colour when precipitated; and any acid folvent may be employed indifcriminately, provided the nature of the falt, and the degree of the faturation of the acid, be fufficiently known; for the fubfequent operations may be then directed aecording to this knowledge, and the inconveniences which attend the ufe of fome of thefe falts may be prevented. This, without doubt, is a great advantage which the man of fcience enjuys over the mere workman, who is incapable of varying his. procefs according to the nature and ftate of the falts. which he employs.
" r . If the fulphat of iron, or any other martial falt, be diffolved in water, and cotton be dipped in the 1 i guid, the cotton will affume a chamoy culour, mure or lefs dark according as the folution is more or lefs charged. The affinity of the cotton to the iron is fo great, that it attracts the metal, and takes it in a great nica. fure from the acid by which it was difluved.
" 2 . If the iron of a pretty ftrong folution be precipitated by an alkaline liquor that fiews five or fix degrees (by the areoneter of Baumé), the refult will be a greenifl blue magma. The cotton maecrated in this precipitate aflumes at firft an unequal tint of dinty green ; but mere expofure to the air makes it in a litile. time turn yellow, and the fhade is very dark.
"It is by fuch, or almuft finilary procefles, that dyerscommunicate what is called among workinen an orbre or ruft colour. But thefe colours are attended with feveral inconveniences to the artitt: 1. Strong fhades burn or injure the cloth: 2. This coluar is harfh, difagreeable to the eye, ind cannot be eafily united with. the mild colours furnifhed by vegetables."
To avoid thefe inconvenierces, our author made feveral attempts, winich led him to the following practice: He treads the cotton cold in a folution of the fulphat of iron, marking three degrees; he wrings it earefully, and inmediately plunges it in a ley of putaih at two de. grees, upon which he has previonfly poured to faturation a folution of the fulphat of alumine: the colour is then brightened, and becomes infiuitlly more delicate, foft, and agreeable. The fulphat no lunger attacks the tiflue of the fulf; and after the cutton has been left in the bath for four or five hours, it is taken out to be wrung, wafhen, and dried. In this manner we may obtain every fhagle that can be wifhed, by graduating the ftrength of the folutions. This fimple pro..

I R O [40] R O

 ecfs, the theory of which prefente itedf to the mind of every chemift, has the advantage of furnining a colour very agreeable, exccedingly fixed, and, above all, extremely economical. He employs it with great advantage in dyeirg nankeens, as it has the property of refifting leys. It becomes brown, however, by the action of aftringents.M. Chaptal made feveral attempts to combine this yellow with the blue of indigo, in order to obtain a durable green; but as they were all unfuecefsful, he infers that there is not a fufficient affinity between the blue of indigo and the oxides of iron. He found that thefe uxides, on the otlier hand, combine very eafily with the red of madder, and produce a bright violet or plum colour, the ufe of which is as extenfive as beneficial in the cotton manufactory. But if we fould confine ourfelves to apply thefe two colours to cotion, without having employed a mordant capable of fixing the latter, the colour would not only remain dull and difagreeable by the impoffibility of brightening it, but it would fitl be attended with the great inconvenience of not refifting le;s. We muft begin, then, by preparing the cotton as if to difpofe it for receiving the Adrianople red; and when it has been bronght to the operation of galling, it is to be paffed through a folution of iron, more or lefs clarged, according to the nature of the violet required: it is then to be earefully wafhed, twice maddered, and brightened in a bath of foap.

When a real velvety rich violet is required, it is not to be paffed through the folution of iron till it has been previounty galled; the iron is then precipitated in a bluith oxide, which, combined with the red of madder, gives a moft brilliant purple, more or lefs cark according to the frength of the galling and of the ferruginous folution. It is very difficult to obtain an equal colour by this procefs; and in manufactories, an equal violet is confidered as a mafter-piece of art. It is generally believed, that it is only by well-directed manipulations that it is polible to refolve this problem, of fo much importance in dyeing. But I am eonvineed (fays our anthor), that the great eaufe of the inequality in this dye is, that the iron depofited on the cotton reeeives an oxidation merely by expofure to the air, which varies in different parts of it. The threads which are on the outfide of the hank are ftrongly oxidated, while thofe in the infide, removed from the action of the air, experience no change. It thence follows, that the infide of the hank prefents a weak flade, while the exterior part exhbits a violet almoft black. The means to remedy this inconvenience is, to wath the cotion when it is taken from the folution of iron, and to expofe it to the madder invif. The colvur will become more equal and velvet y. The folvents of ion are almoft the fame for this colour as for the yellow colour already mentionerl.

The following obfervation may ferve to guide the artift in brightening the violet on his cotton. The red of madder and the oxide of iron depofited on the fuff determine the violet colour. This colour becomes red or blue, according as either of the principles predominates. The dyer knows by experience how difficult it is to obtain a combination which produces the tone of colour defired, efpecially when it is required to be very full, lively, and durable. This object, however, may be obtained, not only by varying the proportions of the
two colouring principles, but alfo by varyint the pro. cefs of brightening. The only point is to be acquainted with the two following facss: that the foda destroys the iron, while the foap, by flrong cbullition, feizes in preference the red of the malder. Hence it is, that the colour may be inclined to red or blue, according as you brighten with one or the other of thefe mordants. Thes, cotton taken from the madder dye, when wafhed and boiled in the brightening liquor with r'ths of foap, will give a fuperb violet; whereas you will ubtain only a plum colour in treating it with foda.

The oxide of iron precipitated on any \{uff unites alfo very advantageoufly with the fawn colour fumifhed by aftringents; and by varying the ftrength of mordants, an infinity of fhades may be produced. In this cafe, it is lefs a combination or folution of principles than the fimple misture or justa-pofition of the colouring bodies on the ttuff, By means of a boiling heat, we may combine, in a more intimate manner, the oxide of iron with the altriagent principle; and then it is brought to the ftate of black oxide, as lias been obferved by Berthollet. It is poffible alfo to embrown thefe colours, and to give them a varicty of timts, from the bright grey" to the deep black, by merely paffing the cottons impregnated with the aftringent pririciple thro' a folution of iron. The oxide is then precipitated itfelf by the principle which is fixed on the lluff.

An otfervation, which may become of the utmoit value for the art of dyeing, iss that the moft ufual aAtringent vegctables all furnifly a ycllow colour, which has unt much brilliancy, but which lias fufficient fixity to be employed with advantage. This yellow colour is brightened in the feries of vegetables, it proportion as the altringent principle is diminifhed, and the vivacity of the colour is augmented in the fame proportion. It is difncult, then, to obtain yellow colours which are at the fame time durable and brilliant. Thefe two valuable qualitics are to each other in an inverfe ratio: lut it is poffible to unite the colouring principles in fuch a manner as to combine fplendour with fixity. Green oak bark unites perfectly with yellow weed, and fumach with green citron. It is by this mixture that we may be able to combine with the oxide of iron vegetable colours, the fplendour of which is equal to their durability.

Our author concludes his obfervations with cautioning the flyer againft fubftituting fumach and the bark of the alder tree or oak for gall when dyeing cotton red. "I can fafely affert (fays he), that it is impoffible to employ thefe as fubititutes, in whatever dofes they may be ufed. The colour is always much paler, poorer, and lefs fixed. I know that the cafe is not the fame in regard to dyeing wool and filk, in which it may be employed with fuccefs; and in giving an aecount of this difference, I think the caufe of it may be found in the nature of the gall-nuts. 1. The acid which they exelufively contain, as Berthollet has proved, facilitates the decompofition of the foap with which the cottons have been impregnated, and the oil then remains fixed in their tiffue, and in a greater quantity, as well as ill a more intimate combination. 2. The gall-nuts, which owe their development to animal bodies, retain a character of animalifation, which they tranfmit to the vegetable ftuff, and by thefe means augment its affinities with the colouring principle of the madder; for it
rational is well known of what utility aninal fubfances are to
Il facilitate this combination. This animalifation becomes ufelefs in operating upon woullen or filk."

IRRATIONAL Nembers or Quntities, are the fame as furds, for which fee Algeera, Encyel.

IRREDUCIBLE CASE, in algebra, is ufed for that cafe of cubic equations where the root, according to Cardan's rule, appears under an impofible or insaginary form, and yet is real.

It is remarkable that this cafe always happens, viz. one root, by Cardan's rule, in an imposible form, whenever the equation has three real routs, and no impoffible oncs, but at no time elfe.

If we werc poffeffed of a general rule for accurately extracting the cube root of a binomial radical quantity, it is evident we might refolve the irreducible cafe generally, which confills of two of fuch cubic binomial roots. But the latoours of the algebraills, from Cardan down to the prefent time, have not been able to remove this difficulty. Dr Wallis thought that he had difcovered fuch a rule; but, like moot others, it is mercly tentative, and can only fucceed in certain particular circumftances.
JUAN de Fuca, a celebrated ftrait on the northwelt coalt of America, was furveyed by Captain Van. couve in the Difcovery floop of war, with a view to afcertain whether it leads to any communication between the North Pacific and the North Atlantic O. ceans. As they advanced within the opening of the ftrait, their progrefs was greatly retarded hy the number of inlets into which the entrance branched in every direction ; and molt of thefe were examined by the boats, which were frequently abfent from the flips on this fervice for feveral days together. In the mididt of their labours, they were furprifed by the fight of two Spanifh veffels of war, employed, like themfelves, in furceying this inlet, the examination of which had been begun by them in the preceding year. Meafures of mutual affiftance were concerted between the captains of the two nations for the profecution of the furvey, in which each agreed to communicate to the other their difcoveries. Not one of the many arms of the inlet, nor of the channels which they explored in this broken part of the coaft, was found to extend more than 100 miles to the eaftward of the entrance into the fiait. After having furveyed the fouthern coaft, on which fide a termination was difcovered to every opening, by follow. ing the continued line of the fhore, they were led to the northward, and afterward towards the north-weft, till they came into the open fea through a different chamel from the ftrait of Juan de Fuca, by which they had commenced this inland navigation.

Thus it appeared, that the land forming the north fide of that Atrait is part of an illand, or of an archipelago, exiending nearly 100 leagues in length from S . E. ta N. W.; and on the fide of this land moft diftant from the continent is fituated Nootka Sound. The moft peculiar circumftance of this navigation is the ex. treme depth of water, when contralted with the narrownefs of the channels. The veffels were fometimes drifted about by the currents during the whole of a night, clofe to the rocks, without knowing how to help them: felves, on account of the darknefs, and the depth being miveh too great to afford them anchorage.
Suppl. Vol. II. Part I.

413 J A

In the courfe of this furvey, the voyagers had frequent communications with the natives, whom they met fornetimes in canoes and fometimes at their villages. In their tranfactions with Europeans, they are defcrihel as " well verled in the principles of trade, whick th:y carried on in a very fair and honourable manner." In other refpects they were lefs honeft. At one wil: ye 200 fea otter flins were purchafed of them liy thecrews of the veffels in the courfe of a day; and ti.y had many more to fell in the fame phee, as allo !kins of bears, deer, and other animals. One party of 1 ndians whom they met had the fkin of a young lionets; and thefe fooke a language difierent from that ufed in Nootka Sound Venifon was fumetimes brought fur fale; and a piece of copper, wot more than a foot iquare, purchafed one whole deer and part of another. Among other articles of tralfic, two children, fix or feven years of age, were offered for fale. The commoditics molt prized by the natives were fire-arms, copper, and great conats. Beads and trinkets they would only receive as prefents, and not as articles of exchange. Nany of them were poffefled of tire arms. In one part it is related, that after a chief had received fome prefents, "he, with moft of his companions, returned to the thore; and, on landing, fired feveral mufkets, to fhew, in all probability, with what dexterity they could ufe thefe weapons, to which they feemed as familiarized as if they had been accuftumed to fire-arms from their earliett infancy,"

The drefles of thefe people, befides fikins, are a kilad of woollen garments; the materids compoling which are explained in the following extract :
" 'The dogs belonging to this tribe of Iudians were numerous, and much refembled thofe of I'omeranid, though, in general, fomewhat larger. They were all thorn as clofe to the fkin is fheep are in Eugland; and fo compait were their fleeces, that large portions could be lifted up by a corner without caufing any feparation. They were compofed of a mixture of a coarie kind of wool, with very fine long hair, capable of being fun into yarn. This gave Captain Vancouver reafon to believe, that their woollen clothing might in part be compofed of this material mixed with a finer kind of wool from fome other animal, as their garments were all too tine to be manufactured from the cuarfe coating of the dog alene."

Of other animals alive, deer only were feen ia any abundance by our people.

The number of inhabitants computed to be in the largelt of the villages or towns that were difcovered, did not exceed 600 . Captain Vancouver conjedured the fmall-pox to be a difeafe common and very fatal among them. Many were much marked; and moft of thefe had loft their right eve. Their method of difpofing of their dead is very lingular.
"Bafkets were found fufpended on high trees, each containing the f.celeton of a young child; in fome of which were alfo fmall fquare boxes filled with a kind of white pafte, refembling (fays our author) fuch as I had feen the natives eat, fuppofed to be made of the faranne root; fome of thefe boxes were quite full, others were nearly empty, eaten probably by the mice, fquirrels, or birds. On the next low point fouth of our encampment, where the gunners were airing the powder, they met with feveral holes in which human bodies were interred, flightly covered over, and in different flates of decay,

J U G [42 J J U G

Juan, Jugglers.
fome appraring to have been very recontly depofited. About half a mile to the northward of our tents, where the land is ncarly level with high watcr mark, a few paces within the firting of the wood, a canne was found fufpended betwentwo trees, in which were three human fielctons.
"On each point of the harbenr, which," in honour of a particn!ar friend, I called Penn's C'ove, was a deferted village; in ole of which were found feveral fepulchres, formed exactly like a centry box. Sone of them were open, and contamed the Reletons of many young children tied up in bafkets: the fmaller bones of adults were likewife noticed, but not one of the limb bones could here be found; which gave rife to an opinion, that the fe, by the living inhabitants of the neighbourhood, were appropriated to ufeful pupoles; fuch as pointing their arrows, fpears, or other weapons."

However honourable thefe people have been reprefented in their conduct as traders, it appeared on feve. ral occalions that it was unfafe to depend on their gondwill alone: and fome inftances occurred, of their making every preparation for an attack, from which they defilted only on being doubtful of the event ; yet iminediate!y on relinquifhirg their purpofe, they would come with the greateft confidence to trade, appearing perfectly regardlefs of what had befure been in agitation. The boats, as already noticed, were frequently at a great diftance from the hips; and on fuch occafions, when large parties of Indians have firf feen them, they generally held long conferences among themfelves before they approached the boats; probably for the purpofe of determining the mode of conduct which they judged it moft prudent to obferve. Captain Vancouver places the entrance of the ftrait of Juan de Fuca in $4^{8^{\circ}} 20^{\circ} \mathrm{N}$. Lat. and $124^{\circ} \mathrm{W}$. Long.

JUGGLERS are a kind of people whofe profeffion has not been often deemed either refpeciable or ufeful. Profeffor Beckmann, however, has undertaken their defence; and in a long and learned chapter in the third volume of his Hillory of Inventions, pleads the caufe of the practifers of legerdemain; rope-dancers; perfons who place their bodies in poftions apparently dangerous; and of thofe who cxhibit feats of uncommnn 1krength. All thefe men he places under the general denomination of Fugglers; and taking it for granted (furely upon no good grounds) that every ufeful empluyment is full, he contends, that there would not be room on the earth for all its prefent inhabitants did not fome of them practife the arts of fuggling.
"Theie arts (fays he) are indeed not unprofitable, for they affurd a comfortable fubfitence to thofe who practife them: but their gain is acquired by too little labour to be hoarded up; and, in general, thefe roving people fpend on the fput the fruits of their ingenuity; which is an additional reaton why their tay in a place foould be encouraged. But farther, it often happens, that what ignurant peefons tirft employ, merely as a how, for annufement or deception, is afterwards ennobled by being applied to a more important purpofe. The machine with which a Savoyard, by means of fhadows, amufed children and the populace, was by Liberkiihn converted into a fular microfcope; and, to give one ex. ample more, the art of making ice in fummer, or in a heated oven, enables guets, much to the credit of their
hoftcfs, to cool the molt expenfive difhes. The Indion " jugelerf. difcovers precious flenes, and the European, by polifh. ing, gives them a lullre.
"But, if the arts of juggling ferved no other and than to amufe the noft ignorant of our citizens, it is proper that they hould be encouraged for the fake of thote who cannot enjoy the more expenfive deceptions of an upera. 'They anfwer other purpoles, however, than that of merely amufing ; they convey infruction in the moft acceptable manner, and ferve as an agreeable antidute to fuperftition, and to that popular belief in miracles, exorcifm, conjuration, forcery, and witcheraft, from which our anceftors fuffered fo feverels:"

Surely this reafoning, as well as the cause in which it is bronght forward, is unworthy of the learning of Beckmann It is indeed true, that jugglers fpend their money freely, and that their arts afford them the means of fubfiftence; but it is very felfom, as our author mult know, that they fubfit either comfortably or innocently. Is it innocent to entice the ignorant and labouring poor, by ufelefs deceptions, to part with their hard-earned pittance to idle vagabonds? or is the life of thofe vagabonds comfortable, when it is paffed amidit fcenes of the moft grovelling dilipation? Jugglers fpend indeed their money, for the moft part on the fpot where it is gained; but they fpend it in drunkennefs, and other feducing vices, which corrupt their own morals and the morals of all with whom they affociate; and therefore their fay in a place fhould certainly not be encouraged. Conld it be proved that the folar microfcope would never have been invented, had not a Savoyard juggler enntrived a fimilar machine to amufe children and the rabble, fome. ftrefs might be laid on the fervice which fuch wretches have rendered to fcience: but where is the man that will fuppore the philofophy of Bacon and Newton to reft upon the arts of juggling? or who confiders the refinements of fcience as of equal value with the morals of the people? There is, at the moment in which this article is drawing up, a fellow exhibiting, before the windows of the writer's chamber, the moft indecent fcenes by means of puppets, and keeping the moh in a conftant roar. Is he innocently empluyed? or will any good man fay that there is not room for him in the armies which un the Continent are fighting in the caufe of God and humanity !

Our author endeavours to frengthen his reafoning by proving, which he does very completely, the antiquity of juggling. "The deception (fays he) of breathing out flames, which at prefent excites, in a particular manner, the altonithment of the ignorant, is very ancient. When the flaves in Sicily, about a century and a half before our æra, made a formidable infurrection, and avanged tlemfelves in a cruel manner for the -feverities which they had fuftered, there was amongit them a Syrian named Eunus, a man of great craft and. courage, who, laving paffed through many fcenes of life, had become acquainted with a variety of arts. He pretended to have immediate communication with the gods; was the oracle and leader of his fellow ीaves; and, as is ufual on fuch occafions, confirmed his divine miffor by miracles. When, heated by enthiafiafm, hè was defirous of infpiring his followers with courage, he breathed flames or fparks among them from his mouth. while he was addrefling them. We are told by hifto-
$J \mathbb{U}$ U \mathbb{U}
rians, that for this purpole he piercca a nut-hell at both put it into his montls and breathed through it.
"This deception at prefent is performed much better. The juggter rolls together fome flax or hemp, fo as to form a ball about the fize of a walnut ; fets it on fire; and fuffers it to burn till it is nearly confumed; he then rolls round it, while buraing, fome more fax ; and by thefe means the fire may be retained in it for a long time. When he withes to exhibit, he flips the ball unperceived into his month, and breathes through it; which again revives the fire, fo that a number of weak iparks proceed from it; and the performer fultains no hurt, provided he infaire the air nut throngh the month but the noftrils.

- For deceptions with fire the ancients employed alfo naphtha, a liquid mineral oil, which kindles when it only approaches a fame (fee Nafrina, Encycl.) Galen informs us, that a perfon exceted great aflonifhment by extinguifhing a eandle and again lighting it, without any uther ploco fs than holing it immediately againgt a wall or a finne. 'The whole fecret of this confifted in having previoully rubbed over the wall or fone with fulphur. But as the author, a few lines before, fpeaks of a mixture of lulphur and naphtha, we have reafon to thisk that he alludes to the fame here. Plutarch relates how Alexander the Great was aftorifhed and delighted with the fecret effects of naphtha, which were exhibited to him at Ecbatana. The fame author, as well as Pliny, Galen, and others, has already remarked, that the fubllance with which Medea deftroyed Creufa, the daughter of Creon, was nothing elfe than this fine oil. She fent to the unfortunate princers a drefs befmeared with it, which burft into flantes as foon as fhe approached the fire of the altar. The blood of Neflus, in which the drefs of Hercules, which took fire likewife, had been dipped, was undonheedly naphtha alfo; and this oil mutt have been always empluyed when offerings caught fire in an imperecptible manner.
"In modern, times, perfons who could walk over burning coals or red-hot iron, or who could hold redhot iron in their hands, have often excited wonder. But laying afide the deception fometimes practifed on the fpectators, the whole of this.feeret confifts in ren. dering the flin of the foles of the feet and hands fo callous and infenfible, that the nerves under then are fecured from all hurt, in the fane manner as by foes

43

and gloves. Such callolity will be produced if the fkin Jueglers. is continually compreffed, inged, pricked, or injured in any other manner. Thus do the fingers of the induftrious fempetrefs become horny by being frequently pricked; and the cafe it the fane with the hands of fire-workers, and the leet of thofe who walk bare-fouted over icorching fand.
"In the month of September i 765 , when I vifited (fays our author) the copper-works at Aweltad, onc of the workmen, for a little dink money, took fome of the melted copper in his hand, and after thewing it to us, threw it againfl a wall. He then fqueered the fingers of his horny hand clofe to each other ; put it a few minutes under his arm-pit, to make it fweat, as he faid; and, taking it again ous, drew it over a ladle tilled with melted eopper, fome of which be fkimmed off, and nouvod his hand backwards and forwards, very quickly, by way of oftentation. While I was viewing this performance, I remarked a fmell like that of finged horn o: leather, though his hand was not burnt. It is highly pro. bable that people who hold in their hands red hot iron, or who walk upon it, as 1 faw done at Amfterdam, but at a diftanee, make their fkin callous before, in the like manner. This may be aecomplilhed by frcquently moitening it with fpirit of vitriol : according to forme, the juice of certain plants will produce the fame effect; and we are affured by others, that the 隹in inult be very frequently rubbed, for a lung time, with oil, by which means, indeed, leather alfo will become horny *."

* Haller.

Our author then proves, in a very learned manner, Elementa that all thefe tricks were of high antiquity; that the Pbyfolog. Hirpi, who lived near Rome, jumped through burning coals : that women were accultuncd to walk over burning eoals at Caftabala in Cappradocia, tear the temple dedicated to Diana; that the exbibition of balls and cups (fee Leegerdemain, Encycl.) is often mentioned in the works of the ancients : that in the third century, one Firmus or Firmius, who endeavoured to make himfelf emperor in Egypt, fuffered a fmith to forge iron on an anvil placed on his breaf : that rope dancers with balancing poles are mentioned by Petronius and others; and that the variuus feats of horfemanfhip exhibited in our circufes paffed, in the isth century, from Egs) pt to the Byzanture court, and thence over all Europe.

JUNGLE, in Bengal, wate laud, or land curesed with wood and brambles.

K.

K A A

Taarta. TAARTA, a kingdom in Africa, through which Mr Park paffed in his route from the Gambia to the Niger. He defcribes the country as confifting either of fandy plains or rocky bills; but, from this account, the level part feems to be the moft extenfive. The natives are negroes, of whom many, though converted to the Mahomedan faith, or rather to the cere$0 \cdot 1$ d

IK A A

monial part of the Mahomedan religion, retain all their Kaarta. ancient fuperftitions, and even drink ftrong liquors. $\underbrace{\text { (ulat }}$ They are called Johers or Jowers, and in Kaarta form a very numerous and powerful tribe. One of thefe men undertook to conduct our author to Kemmoo, the capital of the kingdom, and alarmed him not a little by his fupertitious ceremonies.

F2
"We

K A B [44] K A B

"We had no founer (fays Mr Park) got into a dark and lunely part of the firt wood, than he made a fign fur us to thop, and taking hoin of a hollow piece of bamboo, that hing as an amalet round his neek, whiftled very lond three times. I confefs I was fomewhat shartled, thinking it was a fignal for fome of his compannions to cone and attach us; but he affured me that it was done merely with a view to afcertain what fuccefs we were likely to n eet with on our prefent joumey. He then difmounted, laid his fpear acrofs the road, and having faid a number of fhort prayers, conchuded with three loud whifles; after which he lillened for fome time, as if in expectation of an anfwer, and receiving none, told us we might proceed without fear, for there was no danger."

White men were frangers in the Liagdoin of Kaasta; and the appearanee of our author had on fome of the natives the effect which jgnorant people, in this country, attribute to ghoits. "I had wandered (fays he) a litule from my people, and being uneertain whether they wese hefore or behind me, I hatkened to a rifing ground to look about me. As I was proceedinor towards this eminence, two negro horfemen, armed ivith inufkets, canse galloping from among the bufhes: on fecing them I made a full ftop; the horfemen did the fame, aud all thee of us feemed equally furprifed and confounded at this interview. As I approached them their feas increafed, and one of them, after cafting upon me a look of horror, rode off at full fpeed; the other, in a panic of fear, put his hand over his eyes, and continued muttering prayers until his horfe. feem. ingly without the rider's knowledge, conveyed him flowly after his companion. About a mile to the weltward, they fell in with iny attendants, to whom they related a frightful fory: it feems their fears had dreffed me in the flowing robes of a tremendous fpirit; and one of them alfirmed, that when I made iny appearance, a cold blatk of wind came pouring down upon him from the fky like fo much cold water."

At Kemmoo our traveller was gracioufly received by the king; who honeftly told him, however, that he could not protect him, being then engaged in war with the king of Bambarra (fee Segó in this Supplement); but he gave him a guard to Jarra, the trontier town of the neighbouring kingdom of Ludamar. 'Ihe origin and iffue of this war between Kaarta and Bambara, of which Mr Park gives a full account, fhews the fully of attempting to liberate the negroes from flavery till civilization and Chriftianity be introbluced into Africa. Major Rennel places Kemmon, the capital of Kaarta, in $14^{\circ} 15^{\prime}$ N. Lat. and $7^{\circ} 20^{\prime} \mathrm{W}$. Long.

KABOBIQUAS, a nation in South Africa, who had never feen a white man till 1785 , that they were vifited by M. Vaillant. Intimation had been given of his approach by fome of the tribes through whofe country he had previoufly paffed; and every thing that had been faid of his colour, his fufecs, and his equipage, bore the character of the molt enthuffaftic exaggeration. The curiolity of the people was wound up to the higheft pitch; and as foon as they faw his company at a diftance, the whole horde quitted the kraal, and ran with eagernefs to meet him. Not being able to believe their eyes in regard to what they faw, they endeavoured to ohtain more fatisfaction by touching him. They felt his hair, lhands, and almoft every part of his body. His
beard, above all, aftonifhed them to an incorcciwable degree. Mure than thinty perfons came in fucceflion, and half mouttoned his clothes. They all imagined him to be a hairy animal: and fuppofed, without doubt, that his body was covered with hair as long as that on his chin; but finding this not to be the cafe, they were athonifled, and confeffed, with the opennefs of favages, that they had never leen the like in any man of their country. The little children, terified at his appearance, hid themfelves behind their mothers. When he attempted to lay hold of any of them, is order to carefs them, they fent forth loud cries, as a child would do in Eurupe who fhould fee a negro for the firtt time.

The grown up people, however, were fonn reconciled to his appearance, and even the elildren were bribed by finall bits of fugar candy. The chief of the horde thewed lim every mark of attachment. He was a man advanced in life, and of a majeftic figure. He wore a long mantle, which hung from his floulders to the ground, and which, formed of four jaekal dkins joined together, was bordtred at the fides with that of a hyæna. His left hand wanted two joints of the little flager, whieh, he faid, were amputated in his infancy to curc him of a fevere ithefs.

This cufom of favages, who, to relieve a man from pain, add new fufferings to his evils, affords a valt fietd for reflection. Mr Paterfon, another African traveller, tells us, that he obferved inflances of the fame prac. tice among a horde at the mouth of Orange-river; which is not improbable. However abfurd a cuftom may be, favage tribes, when they are neighbours, may borrow it from each other; but that it hould be common among the inunders of the South Sea, who, fince their country was firfl inhabited, had never feen ftrangers before Cook and Bougainville, is truly aftonifhing. Our author was very defirous of interrogating minutely the peofle wi the hurde on this fubject. He wihed alfo to propofe fome queftions to them refpecting other cultoms which appeared fingular; but difficultics increafed the more he advanced into the country. The Kabobiquas fpoke a particular language ; and this dialect, though accompanied with the clapping noife of the Hottentots, was underftood only by the Koraquas, who, on account of their vicinity, kept up fome intercourfe with then. I he cafe was the fame with the language of the Koraquas, in regard to their neighbours the Nimiquas; and nothing reached our author's car till it had paficd through four dificrent mouths. The confequence was, that when he afked any thing, the anfiver had frequently no relation to the queftion ; and for this inconveniency no remedy could be found.

The fame delire for trinkets to ornament their drefs. prevailed among the Kabobiquas as among the other hordes which Vaillant had vifited; and in one day hepurchafed 25 oxen for things of that kind of no value. The chief, however, had fet his affections on a razor : and juit when our authur and he were treating about it, a fhot was fired near them, which was inftantly followed by the moft frightful cries. "Rufhing inftantly from my tent (fays M. Vaillant) to inquire what was the caufe of this noile, I faw a Kabobiqua flying as faft as he could from one of my hunters, while, at the diftance of a hundred paces farther, three men were making the moft lamentable clamour, and near them was a young girl

K A I3

Y.abob:- lying on the ground.' I made a fignal to iny hunter to 4ias. approach me; but the report of the flot, and the houl ing of the three men, had already fpread alarm throughout the horite. Some cried out treachery; others ran to their arms; and I now imagined that I was about ru) he maltacred, with my whole company, and that I flould be obliged to arm them in my defence. My fituation was the more critical, as neither I, nor any perfon in the kraal, knew what was the caufe of this confufion; and if I had known, how could I have ex. plained it?
" Uncler this embarrafment, I took the chief hy the hand, and advanced with him towards the horde. Fear was painted in his countenance; tears began to drop from his eyes; and he fpoke to me with great vivacity. He inagined, no duabt, that he was betrayed He complained to me, and accufed my people of perfidy; yet he readily followed me.
"As I was without arms, and prefented myfelf with the chief, I was received with confidence, and my appearance feemed, in fome meafure, to calm their perturbation. My people, who had feen me direet my courfe tuwards the kraal, haftened thither after me, to protect me; and their number overawed the multitude. At length the whole myftery was cleared up, and we learn. ed what had occafioned the tumult.
"A Kabobiqua having met one of my hunters, who was returning with his fufee, withed to examine it, and begged him to thew it to him. In handling it, however, he accidentally touchod the trigger; it inftantly went off; and the favage, frightened by the unexpected explution, threw down the fufee, and ran away as faft as he could.
"At that time, three men of the horde and a young zirl liappenced unluckily to be ftanding, at the diftance of a hundrel paces, in the direction of the piece. The latter received a fingle grain of thot in the cheek; and the others a few grains in the legs and thighs. The author of the misfortune confirmed this explanation ; tranquillity was foon reftored; the favages depofited their arnss; and I was furrounded only by friends as before.
"Nothing remained but to enquiire into the ftate of the wounded, and to give them every afliftance in my power. Without lofs of time, therefore, I repaired, ftill accompanied by the chief, to the place where they were. By the way we met the young girl, who was returning from the kraal, bathed in tears. The caufe of lier uneafnees was a grain of lead, which had, however, penetrated fo little, that I forced it out by only prefling the part with my fingers. With regard to the three men, they lay rolling on the ground, howling in a molt frightful manner, and exhibiting every fyinptom of defpair.
" I was aftonifhed at their confternation, and could not conceive how men inured to fufferings fhould be to much affected by a few fmall punctures, the pain of which could have fcarcely drawn tears from an infant. They at length told me the caufe of their wailings. Thefe favages, accuftomed to poifon their arrows, imagined that I had in like manner poifoned the lead with which they were wounded. They had, therefore, given themfelves up as lott, and expected in a few moments to expire."

It" was with great difficulty that our author could

45 K A B

convince them that they had nothing to fear. He flecir- Kabohi. ed them in the nefh of his own leg a dozen of thots of quas. lead ; hut they were not fatisfied till one of the moft intelligent of his Hottentots, taking from his Chot-bag a few grains of lead, and thewing them to the three men, immediately fwallowed then. 'This conchative argument produced the defired ffect. The cries of the wounded men inftantly ceafed; ferenity again appeared in theil faces; and their wound were no more mentioned.
The Kabobiquas have neither the flat nofe nor plump cheeks of the Hottentots. Their fkin alfo has not that baftard colour, which, being neither black nor white, renders them odious to both races; nor do they befmear their bodies with thofe difgufting fat fubflances, on account of which one cannot approach them without being bedaubed with their filth, or acquiring an offenfive fmell. In Itature they are as tall as the Caffres, and their colour is equally black. Their hair, which is exceedingly hort, and much curled, is ornamented with fnall copper buttous, arranged with great art and fymmetry. Inftead of that apron made of a jackal's fkin, employed by the Hottentot to cover what modefty bids him cunceal, the Kabobiquas ufe a round piece uf leather, the edge of which is ornamented with a fmall indented circle of copper, and which is divided into different compartments by rows of glafs beads of various colours, all procceding from the centre, and diverging towards the circumference, like the rays in our innages of the fun.

This kind of veil is made faft to the groin by means of a girdle; but as it is only four inches in diameter, as it is deranged by the fmallelt movement, and as they give themfelves little uneafiness refpecting fuch accidents, it is very ill fuited to the purpofe for which it is applied. During the great heats, this fmall and almoft ufelefs apron is the only covering on their bodies. Its being fo readily difplaced, enabled our author to afcertain that they do not pratice circuncifion; but it feensed to thew alfo, that, in regard to modeft y, their ideas are very different from ours.

Though they go thus almof entirely raked, their manners, inftead of being licentious, are remarkably chate. No females can be more prudent or more referved than their women ; and whecher from refinement of coquetry, or the effect of prudence, they do not tattou their faces like their hufonds and fathers. They do not even follow their example in ornamenting their hair with copper buttons; and they always oro barelegred, thongh molt of them wear fandals.

Their drefs confills of an apron that reaches only half down the thigh; a crofs which, paftug under the arm-pits, is tied on the breaft; and a long mantle like that of the men. The inantle is made of flins not deprived of the hair ; and the crols of tanned leather, prepared like that ufed for gloves in Europe.

With regard to glais beads, they wear them as hrace. lets. They form them alfo into nechlaces, which defoend in different rows to the pit of the flomach; and they fufpend from their girdles feveral ftrings of them, which fall down their thighs below the apron.

Thefe ornaments being very durable, the habit of feeing them renders the women almoft indifferent to the pleafure of polfelling them. Thofe they procured frons our author afforded at firft great fatisfaction, on account of their novelty. But when le hewed them feiffars

K A B [46] K A B

Kabobl. and needles, they gave the yreference to thefe articles; qu.as and this chnice does honour to the good fenfe of the

Kabobiqua ladies. Like their chief, they iet a higher value on utility than oman cht.

Before our author's arlival anong them, the Kabobiquas were acruained with the ufe of tobaceus through the means of fome of the tribes more contiguous to the Cape. It was, however, a luxury which they could felfum enjoy; and fo indifierent were they aburt it, that if it were not brourft to them, they would not go a tep to procure it. 'This indifference, about an article which is eagerly fought for by all the tribes of Huttentots, feemed to fhew that there are traits in the character of the Kabubiquas which dillinguifh them from their fouthern neighbours. The cafe was the fame as to Alrong liquors, on which they fet no great value; and though there were among then fome few individuals difpofed to relifl them, the greater number abfolutely refufed them.
" If the contents of my flafks (fays Vaillant) gave them little fatisfaction, they were, however, much cap. tivated with the flafls themfelves. Thefe thanfparent bottles excited their admiration in the higheft degree. They called them folid water; for, not withitanding the heat of the climate, thefe favages had feen ice on the fummits of the mountains by which they are furrounded; and they entertained no doubt that the glafs of my flanss was water, which I had rendered folid by nagic, and which I prevented their fires from melting. As it was impofifble for me to explain this matter, I did not attempt to undeceive them : and befides, with what advantage would it have been attended? I fuffered them, therefore, to continue in their error, and contented my. felf with conferring on them an obligation, by giving them all the empty bottles for which I had no ufe.
"On their part, they vied with each other in flewing their generofity towards me; and I muft indeed allow, that I never faw a nation fo dilinterefted. Every night they brought to my camp, a confiderable quantity of milk; and they never came to fpend the evening with my people, without bringing forne theep to regale them. I have feen many of them give away gratuitoully, and without receiving any thing in return, part of their herds and their flocks; and, when I depaited, there were many perfons in my caravan who poffeffed both neep and oxen, which they had received as a pure gift."

With this benevolent difpofition, the Kabobinuas have alfo a martial character. Their weapous are poifoned arrows, and a lance with a long iron point, but different from the affugay of the Hottentots. In battle, their defenfive armour conlifts of two bucklers; the one of a fize fufficient to cover the whole body of the combatant; the other much fimaller. They are both made of fkins exceedingly thick, and proof againft arrows.

The courage which the Kabobiquas difplay in combat is particularly exercifed in their hunting excurlions, and, above all, againft carnivorous animals. Intrepid, however, as it may be to attack the elephant and the rhinoceros, thefe fpecies of animals are not objects of their vengeance ; becaufe, living upon grafs and herbs, they have nothing to apprehend from them, either for themfelves or their cattle. But the tiger, lion, hyæna, and panther, being enemies of a different kind, they de-
clare againft them inplacable war, ainc purfue them Kabohio without remiflion.

Of the fpoils of thefe deftndive animals they form their bucklers, grirdes, landals, crolles, n aules, \&e. They confider it as a mank of honour to wean them; and they fet a much higher value upon them than upou the finn of the rhinoceres or of the slephant. If they fometimes hunt the fatter, it is only as objects of food; and they cmploy to catch them thofe cuncealed pits, which are the ufual fnares of the Hottentuts: but this method, which requires buth paticnece and labour, is very little fuited to a people fo brave and enterprifing as the Kabubiquas.

As they puffefs fo bold and refolute a character, one might be incuced to believe that they are fero. cious and intractable. Among all the African nations, however, which our anthor vifited, he never knew one that fo much practifed obedience and fubordination.

The chief here is not, as in other tribes, a principal among his equals; he is a fovereign in the midft of his fubjects, a mafter furrounded by his flaves. A word, a gefture, or a look, is fufficient to procure him obedience. Whatever be his orders, they are never contradicted; and the cafe is the fame in every particular family. What the chief is to the horde, the father is to his children. His commands are abfolute ; and he exercifes regal power at home, while he obeys elfewhere.

Though the tribe was very numerons, the wifdom with which it was ruled, and the good order that prevailed, announced, in the man by whom it was governed, an intelligence fuperior to that of all the favages our author had before feen; for he had not then vilited the Houzonanas. The habitation of this chief was fuited to his fupreme dignity. It was, indeed, a hut only, like thofe of his fubjects, and, like them, covered with the nins of aninals; but it was much larger, as well as more elevated; and around it were fix others, occupied by his family, and leftined for them alone.

The natural drynefs of the countiy inhabited by the Kabobiouas obliges them to dig wells, for their own wfe as well as for their cattle; but as the fame caufe often dries up thefe wells, they are then forced to remove, and to feek elfewhere a foll more abundant in fpring's for Fintriver, though confilerable in the rainy feafm, is often, during the great heats, entirely defo titute of water.

The long juurneys which thefe too frequent emigrations compel them to undertake, and the intercourfe which they thence have with other nations, mult neceifarily infpire them with ideas unknown to the fetted tribes; and it would not be umatural to fuppofe, that to this extenfion of ideas are they indebted for that fuperiority of intelligence which elevates them above their neig! buars.

Of the religion of the Kahobiquas, our author talks very inconfiftently, and like a true philofopher of the French fchool. "Of all the African nations (fays he), they are the only people among whom I found any idea, however confufed a one, of the exiftence of a Deity: I do not know whether it be from their own reflection, or the communications of other tribes, that they have acquired this fublime knowledge, which would alone bring,
them

K A J

K jayaz. them near to a level with pulifhed nations; but they believe, as far as I have been able to learn from my people, that beyond the fars there exits a Supreme Being, who made and who governs all things. I inutt, however, obferve, that on this fubject their ideas are vague, barren, and unproductive. They lave no coneeption of the future exillence of the foul, or of rewards and punifluments in another life; in flort, they have neither worthip, facrifices, ceremonies, nor priefts, and are total ttrangers to what we call religion."

This is impoffible. A people believing in a Supreme Being, who made and who goveras all things, may indeed be wilhout facrifices, ceremonies, and pricfs ; but fuch a prople cannut avoid ruifhingr, that the Being who governs all things may protect them. Such a wifh is a jrayer; and furcly he who prays is no ftranger to reliyion. M. Vaillant places the country of the habobi. quas between $23^{\prime \prime}$ and $25^{\circ} \mathrm{S}$. Lat. and $16^{\circ} 25^{\prime}$ and 19° 25^{\prime} Long. eaft fron Paris.

KAJAAGA, an African kinglom, called by the French Gallam, is bounded on the fouth eaft and fouth by Bambouk; on the weft, by Bondon and Fonta Torra; and on the north, by the river Senegal. The air and climate (fays Mr Park) are more pure and Talubrious than at any of the fettlements towards the coalt; the face of the country is everywhere interfferfed with a pleafing variety of hills and valleys; and the windings of the Senegal river, which defcends from the rocky hills of the interior, make the feenery on its banks very picture fque and beautiful.

The inhabitants are called Serawoollies, or (as the Frerich write it) Seracolets. Their complexion is a jet bluck: they are not to be diftinguifled in this reipect from the Jaloffs.

The government is monarchical; and the regal authority, from what I experienced of it, feems to be fufficiently formidable. The people themfelves, however, complain of no oppreffinn; and feemed all very anxious to fupport the king in a conteft he was going to enter into with the fovereign of Kaffon. The Serawoollies are habitually a trading people; the; formerly carried on_a great commerce with the French in gold and flaves, and fill maintain fome trafic in flaves with the Britifh fac. tories on the Gambia. They are reckoned tolerably fair and juft in their dealings, but are indefatigable in their exertions to acquire wealth, and they dicrive con. fiderable proits by the fale of falt and cutton cloth in diftant countries. When a Serawoolli merchant returns home from a trading expedition, the neighbours immediately affemble to congratulate him upon his arivival. On thefe occafions the traveller difplays his wealth and liberality, by making a few prefents to his friends; but if he has been unfuccefsful, his levee is foon over; and every ore locks upon him as a man of no undertanding, who could perform a long jouthey, and (as they exprefs it) bring back nothing but bhe bsitir upon bis bead.

Their language abounds much in guturals, and is not fo harmonious as that fpoken by the Foulahs: it is, however, well worth acquiring by thofe who travel through this part of 'the A'frican continent; it being very generally underfood in the kingdoms of Kajfon, Kaarta, Ludamar, and the northern parts of Bambara. In all thefe countries the Serawoollies are the chief traders.
Joag, the frontier town of this kingdom as you enter

47] K A I

it from Pifania, may be fuppofed, on a grofs computation, to contain two thuufand inhabitants. It is furrounded by a high wall, in which are a number of port holes, for mufquetry to fire through in cafe of an attack. Every man's poffeffion is likewife furrounded by a wall ; the whole forming fo many difinct citadels; and anongf a people unacquainted with the ufe of artillery, thefe walls anfwer all the purpofes of Aronger fortitications. To the weftward of the town is a finall liver, on the banks of which the natives raife great plenty of tobacco and onions. Mr Park was in this town plunderd of half lis effects by order of the king, becaufe forfooth he hall neglected to pay thic accuflomed duties before he entered the kingdom; and it required a good deal of addrefs to prevent himfelf and his attendants from heing nade flaves; a flate to which the law, it was faid, condemned them for the commif. fion of this unintended crime. He was at laft refcued from Joag by a nephew of the king of Kaflon. Joag is placed by Major Rennel in $14^{\circ} 25^{\prime}$ N. Lat. and 9° 46 W . Long.
IMINSI, is the name given by the Hotentots to a particular fpecies of antelupe, of which, according to Vaillant, no author las yet given a perfect defeription. It is callid by the Dutch klip Jpringer, on account of the eafe with which it leaps from rock to rock; and indeed of al! the antelopes there is no one equal to it in agility. It is about the fize of a kid of a year old, and of a yellowifl grey colour; but its hair has this peculiarity, that, inftead of being round, pliable, and firm, like that of mof other quadrupeds, it is flat, harfh, and fo little adherent to the fin, that the fightef friction makes it fall off. Nuthing is more eafy, therefure, than to deprive this animat of its hair: dead or alive it is the fame; to rub, or even to touch the animal, is fuffieient. Another peculiarity of this fingular hair is its being extremely fragile; fo that if yon take a tuft of it between your fingers, and twif it with the other hand, it will break like the barbs of a feather. This property, how: ever, belongs not exclunively to the hair of the kainf; for our author fays he has obferved it in the hair of other quadrupeds, which in the fame manner live among the' rocks.
This antelope differs from the other fpecics alfo in the fhape of the foot, which, infead of Eeing pointed like theirs, is rounded at the end ; and as it is alvays acculomed, both in leaping and walking, to tread with the point of the hoof, without refting at all on the heel, it leaves a print dittinguifhable from that of any other antelope in Africa. Its flefh is exquifitcly flavoured, and much fought after, particularly by the hunters.
The chace of the kainfi is very amufing. It is true, it is fearcely poffible to hunt it down with dogs, as it foon efcapes thien by means of its inconecivable agility, and gets out of their reach on the point of fome detached rock, where it will remain whole hours fafe from all purfuit, and fufpended, as it were, above the abyfs. But in this fituation it is excellently placed for the aryow or the ball of the huatiman; who is commonly certain of fhooting it at pleafure, though be is not always able to come at it when killed. We fhall give our author's account of a chace of the kainfi in his own words.
"I was hunting (fays he) one of thefe animals, when, from the nature of the place, it found itfelf fo

K A M［ ． 48 ］K A M

preffed by my dogs，as to be on the poiut of being run down and taken．There were apparevitly no means of efcape；finee before it was a waft perpendicular rock， by which its courfe was neceffarily ftopped．In this wall，however，which apperared to me perfectly finooth， was a little ridge，projecting at molt not above two incloes，which the kainti quickly perceived，and，leaping upon it，to my great aftonifhnent kept itfelf firm（A）． 1 inagined that，at any rate，it muft foon tumble down； and my dogs，too，fo fully expected it，that they ran to the botton of the rock，to be ready to eateh it when it fell．To haften its fall，I endeavoured to harafs it，and make it lofe its equilibrium；and for this purpofe I pelted it with flomes．All at once，as if guefling my detign，it coilected its whole frength，bounded over my head，and，falling a few paces from me，darted away with the utmoft fpeed．Notwithftanding the rapidity of its flight，it would have been eafy for me to have fhot it ；but its leap lad fo furprifed and amufed me，that I gave it its life．＂This was generous，if the fory be true．

KAMTSCHATKA is inhabited hy a people，who are reprefented in the Encyclopadia as poffeffing almoft every quality that cau difgrace human nature．We think it incumbent upon us to acknowledge，in this place，that a much more favourable picture of them is drawn by La Peroufe who vifited Kamtichatka in Sep． tember 1787 ．The Ruffian governor made the com－ modore and his officers remark the promifing appear－ ance of feveral fmall fields of potatoes，of which the feed lad been brought from Irkoutlk a few years be－ fore；and purpnfed to adopt mild，though iufallible means，of making farmers of the Ruffians，Coffacks，and Kamtfchadales．The finall－pox in 1769 fwept away three－fourths of the individuals of the latter nation， which is now reduced to lefs than four thoufand per－ fons，fcattered over the whole of the peninfula；and which will Speedily difappear altogether，by means of the continual mixture of the Rufians and Kamtfcha－ dales，who frequently intermarry．A mongrel race， more laborious than the Ruffians，who are only fit for foldiers，and much ftronger，and of a form lefs difgrace－ ful to the hand of nature，than the Kamtfchadales，will fpring from thefe marriages，and fucceed the ancient in－ habitants．The natives have already abandoned the yourts，in which they ufed to burrow like badgers du－ ring the whole of the winter，and where they breathed an air fo foul as to occafion a number of diforders．The moft opulent among them now build i fass，or wooden houfes，in the manner of the Ruffians．They are pre－ cifely of the fame form as the cottages of our peafants； are divided into three little rooms；and are warmed by a brick flove，that kecps up a degree of heat（в）infup－ portable to perfons unaccuftomed to it．The reft pafs the winter，as well as the funmer，in balagans，which are a kind of wooden pigeon－houles，covered with thatch， and placed upon the top of pofts twelve or thirteen feet high，to which the wormen as well as the men climb by means of ladders that afford a footing very infecure． But thefe latter buildings will foon dilappear ；for the Kamtfchadales are of an imitative genius，and adopt al－
moft all the cuftoms of their conquerors．Already the women wear their hair，and are almoll entirely defficd in the mamner of the Rulfians，whofe language prevails in all the ofroogs ；a fortunate circumftance，tince each Kamtichadalian village fpoke a different jargon，the in． habitants of one hamlet not underflanding that of the next．It may be faid in praife of the Ruffians，that though they have effablifhed a defputic goverrment in this rude climate，it is tempered by a milduefs and cquity that render its inconveniences unfelt．They have no reproaches of atrocity to make themfelves，like the Spaniards in Mexico and Peru．The taxes they levy on the Famtichadales are fo light，that they carr only be confidered as a mark of gratitude towards the fovereign，the produce of half a day＇s hunting acquit－ ting the impotts of a year．It is furprifing to fee in cottages，to all appearance more miferable than thofe of the moit wretched liamlets in our mountainous pro vinces，a quantity of fpecies in circulation，which ap－ pears the more confiderable，becaufe it exifts anong fo fmall a number of inhahitants．They confume fo few conmodities of Rulfia and Chima，that the balance of trade is entirely in their favour，and that it is abfolutely neceflary to pay therin the difference in rubles．Furs at Kamtfehatka are at a much higher price than at Can－ ton；which proves，that as yet the market of Ki．telia has not felt the advantageous effect of the new channel opened in China．

Our author compares Kamtfchatka，with refpeet to climate and foil，to the coaft of Labrador in the vicinity of the Straits of Belle Itle；but the men，like the ani－ mals，are there very different．The Kamtichadales ap－ peared to him the fame people as thofe of the bay of Caftries，upon the coaft of Tartary．Their mildnefs and their probity are the fame，and their perfons are very little different．They ought then no more to be com－ pared to the Efquimaux．Indians，than the fables of Kamtfehatka to the martins of Canada．

The Greek religion has been eltablifhed among the Kamtfehadales without perfecution or violence，and with extraordinary facility．The vicar of Paratounka is the fon of a Kamtfchadale and of a Ruffian woman．＇He delivers his prayers and catechifm with a tone of feeling very much to the tatle of the aborigines，who reward his cares with offerings and alms，but pay no tythes． The canons of the Greek clurch permitting prietls to marry，we may conelude that the morals of the country clergymen are fo much tḥe better．＂I believe then， however（fays Peroufe），to be very ignorant；and do not fuppofe that for a long time to come they wiil ftand in need of greater knowledge．The danghter， the wife，and the diter of the vicar，were the belt dan－ cers of all the women，and appeared to enjoy the belt ftate of health，The worthy prieft knew that we were good Catholics，which procured us an ample afperfion of holy water ；and he alfo made us kifs the crois that was carried by his clerk；thefe ceremonies were per－ formed in the midit of the village．His parfonage houfe was a tent，and his altar in the open air ；but his ufuat abode is Paratounka，and he only came to St Peter and St Paul＇s to pay us a vifit：＂

K． 14.
fchathis．

This we think incredible
（B）Not lefs than thirty degrees of Reaumur＇s thermometer．

K A N [49] K A N

Karit- The people of Kamtfchatka have inured themfelves rhatka, to the extremes of heat and cold. It is well known, Kanem. that their cufom in Europe, as well as in Afia, is to go into vapour baths, come out covered with perfpiracion, and immediately roll themfelves in the fnow. The oflrog of St Peter had two of thefe public baths, into which our author went before the fires were lighted. They confift of a very low soom, in the middle of which is an oven conftrueted of flones, without cement, and heated like thofe intended to bake bread. Its arched roofs is furrounded by feats one abuve another like an amphitheatre, for thofe who wifh to bathe, fo that the heat is greater or lefs accordirig as the perfon is placed upon a ligher or lower beuch. Water thrown upon the top of the roof, when heated red hot by the fire underneath, is converted inflantly into vapour, and excites the moft profufe perfiriration. The Kamtfchatdales have borrowed this cultom, as well as many others, from their conquerors; and ere long the primitive charaEter that diftinguilhed them fo Rrongly from the Ruf. fians will be entirely effaced.

Our author defcribes the bay of Avaticha as the fineft, the moft convenient, and the fafeft, that is to be met with in any part of the world. The entrance is narrow, and flips would be foreed to pafs under the guns of the forts that might be eafily erected. The bottom is mud, and excellent holding ground. Two vaft harbours, one on the eaftern fide, the other on the weftern, are capable of containi.g all the fhips of the French and Euglifh navy. The rivers of Avaticha and Paratounka fall into this bay, but they are choaked up. with fand-banks, and can only be entered at the time of high water. The village of St Peter and St Paul is fituated upon a tengue of land, which, like a jetty mare hy human art, forms behind the village a little port, thut in like an amphitheatre, in which three or four veffels might lie up for the winter. The entrance of this fort of bafon is more than twenty-five toiles wide ; and nature can afford nothing more fafe or commodious. On its fhore the Governor propofed to lay down the plan of a city, which fome time or other will be the capital of Kamt [chatka, and perhaps the centre of an extenfive trade with China, Japan, the Phillippines, and America. A vaft pond of frefh water is fituated northward of the fite of this projected city ; and at only three hundred toifes diftance run a number of flreamlets, the eafy union of which would give the ground all the advantages neceffary to a great eftablifhment. Of thefe advantages Mr Kafloff underftood tbe value; " but firft (faid he a thoufand times over) we muft have bread and hands, and our flock of both of them is very fmall." He had, however, given orders, which announced a fpeedy union of the other oflrogs to that of St Peter and St Paul, where it was his intention immediately to build a church. By obfervation, St Peter and St Paul was found to be in $53^{\circ} 1^{\prime} \mathrm{N}$. Lat. and $156^{\circ} 30^{\circ}$ E. Long. from Paris.

KANEM, is the name given by Adrifi to the kingdom of Bornou in Africa, of which the reader will fird fome account in the Encyclopredia Britannica. In fome particulars, however, that account is incorrect. The kingdom of Bornou or Kanem muft extend farther eaft and farther north than it is there faid to do ; for according to the lateft and beft accounts, its capital flands in Lat. $24^{\circ} 32^{\prime}$, Long. $22^{\circ} 57^{\prime}$. The ęmpire is faid to

Suppl. Vol. II. Part I.
be very extenfive; and if it be true, as we learn from the proceedings of the African Affuciation, that its fovereign is more powerful than the Emperor of Morocco, the people cannot be fuch abfolute brutes, as we have reprefented them in the article referred to; for the fovereign of brutes would have no power. The truth, however is, that very little is yet known in Europe of Bornon or its inhabitants.

KANT (Immanuel), Rojal Profeffor of Morals and Metaphyfics in the Univerfity of Konigtherg, publifhed fume years ago a new fyftem of Metaphyfics, to which he gave the name of Crifical Philosophy, which fee in this Supslement.

KANTUFFA, a fpecies of thorn peculiar to Abyro finia, is thus deferibed by Mr Bruce: The branches ftand two and two upon the ftalk ; the leaves are difpofed two and two likewife, without any fingle one at the point, whereas the branches bearing the leaves part from the ftalk: at the inmediate joining of them are two thick thorns placed perpendicular and parallel alternatcly; but there are alfo fingle ones diftributed in all the intertices throughout the branch.

The male plant has a one-leaved perianthium, divided into five regments, and this falls off with the fower. The flower is compoled of five petals, in the middle of which rife ten ftamina or filaments, the outer row fhorter than thofe of the middle, with long figmata, having yellow farina upon them. The flowers grow in a braneh, generally tetween three and four inches long, in a conical difpofition, that is, broader at the bafe than the point. The infide of the leaves are a vivid green, in the outlide much lighter. It grows in form of a bufh, with a multitude of fmall branches rifing immediately from the ground, and is generally feven or eight feet high. Our author faw it when in flower only, never when bearing fruit. It has a very Atrong finell, refembling that of the fmall fcented flower called mignionet, fown in vafes and boxes in windows, or rooms, where flowers are kept.

Our author reprefents the kantuffa as fo very troublefome, that it renders travelling through fome places of Abyffinia almoft impoffible. The foldier fereens himfelf from it by a goat's, a leopard's, or a lion's fkin thrown over his fhoulders, of which it has no hold. As his head is bare, he always cuts his hair thort before he goes to battle, left his enemy fhould take advantage of it; but the women, wearing their hair long, and the great men, whether in the army or travelling in peace, being always clothed, it never fails to incommode them, whatever fpecies of raiment they wear. If their cloak is fine muflin, the leaft motion againft it puts it all in rags ; but if it is a thick, foft eloth, as thofe are with which men of rank generally travel, it buries its thorns, great and fmall, fo deep in it, that the wearer munt either difmount and appear naked, which to priacipal people is a great difgrace, or elfe much time will be fpent before he can difengage himfelf from its thorns. In the time when one is thus employed, it rarely fails to lay hold of you by the hair, and that again brings on another operation, full as laborious, but much more painful, than the other. A proclamation is therefore iffued, every year immediately before the king commences any march, in thefe words: "Cut down the kantuffa in the four quarters of the world; for I do not know where I am going." The wild animals, both

Kınr, Kantufla

K A S [50

Kanmon. birds and beafts, cfpecially the Guinea fowl, know how well it is qualified to protect them. In this fhelter, the hunter in vain could endeavour to molet them, were it not for a hard-haired dug, or terricr of the fnalleft fize, who being defended froun the thorns by the roughnets of his coast. gues into the cover, and brings them and the partridges alive one by one to his mafter.

KASSON, a populous kingdom in North Africa, of which the capital Kooniakary is placed by Major Rennel in $14^{\circ} 33^{\prime} \mathrm{N}$. Lat. and $8^{\circ} 43^{\prime} \mathrm{W}$. Lon. The king who reigned when Mr Park was in the country was extremely kind to our traveller, though his fon plundered him unmercifully, like other rapacious chiefs of tha favage country. From the top of a high hill, at fome diftance from the capital, "I had (fays Mr Park) a moft enchanting profpect of the country. The number of towns and villages, and the extenfive cultivation around them, furpaffed every thing I had yet feen in Africa. A grofs calculation may be formed of the number of inhabitants in this delightfol plain, by confdering that the king of Kaflon can raife four thoufand fighting men by the found of his war drum."

At Teefee, a large unwalled town, where our author refided for fome days, he had an opportunity of obferving the cultoms of the inhahitants, who counited partly of Pagans and partly of Bufireens, i. e. of negroes converted to Mahomedanifn. Though thefe people poife'fs both catte and corn in abundauce, rats, moles, fquircls, fnakes, locults, isc. are eaten without feruple by the highell and lowell. Another cuftom fill more extraordiuary, is, that mo woman is allowed to eat an egs. This prohibition, whether arifing from ancient fupertition, or from the craftinefs of fome old Bufhreen who loved eggs himelf, is rigidly adhered to ; and nothing will more affront a woman of Teefee than to offer her an egg. The cuftom is the more fingular, as the men eat egess without fcruple in the prefence of their wives, and Mr Park never obferved the fame prohibition in any other of the Mandingo countries.

Our author was prefent at a palaver held by the governor of Teefee on a very extraordinary occafion; of which we fanll give his account at full length, becaufe i: Thows how free men are reduced to flavery in Nurth Africa. The cafe was this: "A young man, a Kafir of confiderable afluence, who had recently married a young and handfome wife, applied to a very devout Bufhreen, or Muffulman prieft, of his acquaintance, to procure him faphies for his protection during the approaching war. The Bufhreen complied with the requeft ; and in order, as he pretended, to render the faphies more efficacions, enjoined the young man to avoid any nuptial intercourfe with his wife for the fpace of fix weeks. Severe as the injunction was, the Kafir fricly obeyed; and without telling his wife the real caufe, abfented himfelf from her company. In the mean time it began to be whifpered at Teefee, that the Bufhreen, who always performed his evening devotion's at the door of the Katir's hut, was more intimate with the young wife than he ought to be. At firlt, the good hufband wass nnwilling to fufpect the honour of his fanctified friend, and one whole month elapfed befure any jealoufy rofe in his mind; but hearing the charge repeated, he at laft interrogated his wife on the fubject, who frankly confeffed that the Bufhreen had feduced her. Hereupon the Kafir put her into confinement, and cal-
led a palaver upon the Bufheen's conduet. The fact Karion, was clearly proved againtt him; and he was fentenced to be fold into flavery, or to find two flaves for his redemption, according to the pleafure of the complainant. The injured hufband, however, was unwilling to proceed againft his friend to fuch extremity, and defircd rather to have him publicly flogged before the governor's gate. This was agreed $t 0$, and the fentence was immediately executed. The culprit was tied by the hands to a flrong ftake; and a lang black rod being brought forth, the executioner, after flourithing it round his head for fome time, applied it with fuch force and dexterity to the Bufhreen's hack, as to make him roar until the woods refounder with his fcreams. The furrounding multitude, by their houting and laughing, manifelled how much they enjoyed the punifment of this old gallant ; and it is worthy of remark, that the number of flripes was precifely the fame as are enjoined by the Mofaic law, forty, fave one."

The method of converting the negro nations to the religion of the Arabian Impuitor is a very fingular one; and Mr Park faw the whole people of Teefee converted in an inftant. During his refidence in that town an ensbanly of ten people belorging to Almami Abdulkader, king of Fout a Torra, a cuuntry to the weft of Bondon, arrived at Terfee; and defiring Tiggity Sego the governor to call an affembly of the inhabitants, announced publicly their king's determination, to this eftect: "T That unlefs all the people of Kaffon would embrace the Mahomedan religion, and evince their converfion by faying eleven public prayers, he (the king of Foota Torra) could not poffibly fand neuter in the prefent conteft, but would certainly join his arms to thofe of Kajaaga." A meffage of this nature, from fo powerful a prince, could not fail to create alarm; and the inhabitants of Teefee, after a long confultation, agreed to conform to his good pleafure, humiliating as it was to them. Accordingly, one and all publicly offered up eleven prayers, which were confidered a fufficient teflimony of their having renounced Paganifm, and embraced the doctrines of the Prophet.

Our author relates a ftory, which we cannot refufe ourfelves the pleafure of inferting, becaufe it exhibits a very pleafing picture of the affection and gratitude of the Pagan negroes. In his train was a blackfmith, who had lived fome years on the Gambia, and who now return. ed to his own country Ḱaflow. "Soon after we came in fight of Jumbo, his native town (fays Mr Park), his brother, who had by fome means been apprifed of his coming, came out to meet him, accompanied by a finging man : he brought a horfe for the blackfmith, that he might enter his native town in a dignified manner ; and he defred each of us to put a good charge of powder into our guns. The finging man now led the way, followed by the two brothers; and we were prefently joined by a number of people from the town, all of whom demontrated great joy at feeing their old acquaintance the blackfmith, by the molt extravagant jumping and linging. On entering the town, the finging man began an extempore fong in praife of the blackfinith, extolling his courage in having overcome fo many difficulties; and concluding with a ftrict injunction to his friends to drefs him plenty of victuals.
"When we arrived at the blackfmith's place of refidence, we difmounted and fired our mufkets. The meeting

K E A

Kufon, meeting between him and his friends_ was very tender; Keate. for thefe rude children of nature, free from rell raint, dif-
play their emations in the flrongelt and moft imprefiive manner. Amidft thefe tranfports the blackfmith's aged mother was led forth, leaning upon a faff. Every one made way for lier ; and flie itretched out her hand to bid-her fon welcome. Being totally blind, fhe froked his hands, arms, and face, with great care, and feemed highly delighted that ber latter days were bleffed by his return, and that her ea:s once more heard the mulic of his vuice. From this interview 1 was fully convinced, that whatever difference there is between the Negro and European in the conformation of the nofe and the colour of the fkin, there is none in the genuine fympathies and characterittic feclings of our common nature.
"During the tumult of thefe corgratulations, I had feated myfelf apart, by the lide of one of the huts, being unwilling to interrupt the flow of filial and parental terdernefs : and the attention of the company was fo entirely taken up with the blackfmith, that I believe none of his friends had obferved me. When all the people prefent had feated themfelves, the blackfinith was defired by his father to give them fome account of his adventures; and filence being commanded, he began ; and after repeatedly thanking God for the fuccefs that had attended him, related every material occurrence that had happened to him from his leaving Kaffon to his arrival at the Gambia; his employment and fuccefs in thofe parts; and the dangers he had efcaped in returning to his native country. In the latter part of his narration he had frequently occafion to mention me ; and after many itrong expreflions concerning my kiudnefs to him, he pointed to the place where I fat, and exclaimed, afille ibi foring, "fee him fitting there." In a moment all eyes were turned upon me; I appeared like a being dropped from the clouds; every one was furprifed that they had not ohferved me before; and a few women and children expreffed great uneafinefs at being fo near a man of fuch an uncommon appearance. By degrees, however, their apprehenfions fubfided; and when the blackfmith affured them that 1 was perfectly inoffenfive, and would hurt nobody, fome of them ventured fo far as to examine the texture of my clothes; but many of them were fill very fufpicious; and when by accident I happened to move my felf, or look at the young children, their mothers would fcamper off with them with the greateft precipitation.. In a few hours, however, they all became reconciled to me." With thefe worthy people our author fpent the greater part of two days in fealling and merriment ; the blackfmith accompanied him to the capital; and declared, that lie would not leave him while he refided there.

KEATE (George, Efq; F. R. S.), defcended of an ancient and honourable family, was born about the year 1729 or 1730, and received his education at Kingfton fchool, under the Rev. Mr Wo defon. From thence he went to Geneva, where he refided fume years; and during his fay there, becane acquainted with Voltaire, with whom he continued to correfpond many years after he returned to England. After finifhing the tour of Europe, he fettled as a luodent in the Inner Temple, was called to the bar, and fometimes attended Weftminfter Hall; though he did not neet with encouragement enough to induce his perfeverance in his profeffion, nor indeed does it feem probable that
he had fufficient application for it. His firft literary performance was "Ancient and Mocern Rome," a poem, written at Rome in the year 1755 , printed in the year 1760 , and received with confiderable applaufe. The next year he publifhed "A Short Account of the Ancient Hiltory, Prefent Government, and Laws, of the Republic of Geneva, 8vo." This work was compiled during the author's refidence at Geneva; is a very ufeful one; and is dedicated to Monfieur de Voltaire ; to whom he fays, "When I reflest, that it was in this Republic, whofe govermment I have attempted to defcribe, that I was firt introduced to your acquaintance ; when memory renews the hours of focial mirth and refined entertainment which your hofpitality and converfation afforded me-I cannot but rejoice in this occafion of expreffing my gratitude ; proud that, as your friendthip diftinguifhed the author of thefe pages in a foreign country, your name may at home adorn his labour." It was at one time the intention of Voltaire to tranfate this account into French, though he afterwards relin. quifhed the defign.

The next year, 1562 , he produced an "Epifle from Lady Jane Gray to Lord Guildford Dudley :" and in 1763, "The Alps," a poem ; the fubject of which comprehends all that chain of mountains known under the general name of the Alps, extending from Italy to Germany, and from France to Tyrol, by whatever denomination they are particularly diftinguifhed. Of all the poetical works of Mr Keate, this is intitled to the higheft praife for truth of defeription, elegance of verfification, and vigour of fancy.

Continuing to employ the prefs, in 1764 he publifh. ed " Netley Abbey," which he afterwards, in 1769 , enlarged and reprinted: and, in 7765 , produced "The Temple Student, an Epiftle to a Friend:" humouroufly rallying his own want of application to the fludy of the law, his preference of the belles lettres, and his confequent want of fuccefs in his profeffion. The death of Mrs Cibher in 1,66, of whofe merits as an actrefs he entertained the highth opition, gave occafion for a poem to her memory, which celelbrates her excellent perfurmances an the flage, and laneats the lofs the theatre would futain by her death.

In February 1769 , he married Mifs Iludfon ; and about the fane time publifhed "Forney; an cpitlle to M. de Voltaite." In this poem, after prailing with energy the valious heauties of his friend's poetical works, he introduces the following panegyric on Shakefpeare:

Yes! jealous wits may ftill for empire flrive, Still keep the flames of critic rage alive : Our Shakefpeare yet flall all his rights maintain, And crown the triumphs of Eliza's reign. Above controul, above each claflic rule, His tut'refs Nature, and the world his fchool,
On foaring pinions borne, to him was given 'Ih' ærial range of Fancy's brightelt heav'n ; 'Fo bid wrapt thought o'er nobleft heights afpire, And wake each paflion with a mufe of fure. Revere lis genins. To the dead be jufl, And fpare the laurels that o'erfhade the duft. Low fleeps the bard, in cold olflruction laid, Nor aiks the chaplet from a rival's head. O'er the drear vault, Ambition's utmof bound, Unbeard hall Fame her airy trumpet found!

K E A

Keate. Unleard alike; nor grief nor tranfport raife The blant of cenfure or the note of praife! As Raphael's own creation grac'd his hearfe, And fham'd the pomp of oftentatious verfe, Shall Shakefpeare's honours by himfelf he paid, And Nature perilh ere his pictures fade.

This eulogium on Shakefreare, in an epiftle to Voltaire, who had laboured fo long and fo itrenuouny to detract from the merit of our immortal bard, thews that Mr Keate lad not given up his judgment to the fage of Ferney. How the old and envious fophifter would relifh his friend's conduct, may be eafily conceived. His feelings were certainly very different from thofe of the mayor and burgeffes of Stratford, when, in confequence of this panegryic on their townfman, they complinented Mr Keate with a ftandifh, mounted with filver, made out of the famons Mulberry tree plauted by Shakefpeare.

In 1775, he publified "The Monument in Arca. dia," a dramatic poem, built on the picture of Pouffin, mentioned by Abbé du Bos in his "Critical Reflections on Poetry and Painting."

In 1779 , Mr Kcate produced one of his moll fuc. ce[sfu] works, entitled "Sketches from Nature; taken and coloured in a Journey to Margate ;" 2 vols 12 mo . This performance, allowing it to be, as it really is, an imitation of Sterne's " Sentimental Journcy;" yet contains fo many pleafing delineations of life, fo many ftrokes of humour, and fo much elegance of compofition, that few will hefitate to give it the preference to any other of Sterne's imitators.

In 178 r , he collected his poetical works in two vols, 12 mo, and added feveral new pieces not before printed. The principal of thefe was "The Helvetiad," a fragment, written at Geneva in the year 1756 . In the preface to this performance he gives the following account of it : "During a long ftay I many years fince made at Geneva, I vifited moft of the principal places in Switzerland. The many fublime feenes with which nature hath enriched this romantic country; the tranquillity and content with which every individual enjoys his property; and, above all, that independence of mind which is ever the refult of liberty-animated me with fuch vencration for the firit authors of that freedom, whofe figures are recorded to pofterity either by fculpture or painting in the public parts of the towns thro' thofe little ftates, that my enthuliafm betrayed me into a defign of writing a poem on this fingular revolution; the argument of which I had divided into ten cantos, beginning the work with the opprefions of the Houfe of Auftria, and clofing it with the battle of Mongarten; by which thofe injured people finally renounced its ufurpation, and formed among themfelves thofe various confederacies that ended in the great union and alliance of the prefent thirteen cantons. When I had fettled the whole plan of this work, I occafionally, as I funud a diffofition in my felf, took up any part of the poem which at the moment moft invited my thoughts: and enjoying at this time fuch an intercourfe with M. de Voltaire as afforded ne a cunftant accefs to him, I acquainted him with my intention, fhewing him the argument I had drawn out for the conduct of the whole defign. He kept it a fcw day's ; and, in returning it, told me, that he thought the great object of the piece, the epifodes connected with the hiltory, together with
the feenery of the country, prefented fubject matter whereon to found a fine poem; " but the time (added he) which fuch an undertaking will require, I would rather counfel you to employ on fubjects that might more engage the public attention; for fhould you devote yourfelf to the completion of your prefent defign, the Swifs would be much obliged to you, without being able to read you, and the reft of the world care little about the matter." Fecling the force and juftnefs of the remark, Mr Keate laid atide his plan, and probably never refumed it. In the fame year, 1781, he publifi. ed "An Epiftle to Angelica Kauffman."

A few ycars after, he became engaged in a long and rexatious law-fuit, in confequence of the neglect (to fay the leaft of it) of an architect who profeffed himfelf to be his friend; the particulars of which it is of no importance to detail. At the conclufion of the bufinefs, he Thewed that his good humour had not forfaken him: And in 1787 he gave to the public the principal circumflances of his cafe in a performance, entitled "The Diftreffed Poet, a ferio connic Poem, in three Cantos," 4 to, witl fome pleafantry, and without any acrimony.

His laft work did infinite honour to his head and his heart, as well as to the liberality of the bookfeller for whom on the title-page it was faid to be publinhed. In the year 1782 , the Antelope packet was hipwrecked on the Pelew iflands, where the commander, Captain Wilfon, and his crew lived fome time before they could get off. On his return to England, the Captain was, for fome reafon or other, refuled the command of another thip; and, as we have been informed, he was reduced to a ftate much the reverfe of affuence. Thefe circumftances being communicated to Mr Keate, who was ftruck with admiration of the manners of the inhabitants of the Pelew iflands (fee Pelew Islands, Encycl.), he offered to draw up, for the benefit of Captain Wilfon, a narrative of the occurrences which took place during that officer's refidence anong fo fingular a people. This he executed in "An Account of the Pelew Iflands, ficuated in the Weftern Part of the Pa . cific Ocean: compofed from the Journals and Communications of Captain Heary Wilfon and fome of his Officers, who in Augut 1783 were there Thipwrecked, in the Antelope, a Packet belonging to the Honourable the Eaft India Company," 4 to ; a work written with great elegance, compiled with much care, and which, if embellifhed (as it has been infinuated) with facts bet. ter calculated to have found a place in a novel than a genuine narrative, muft be afcribed to the mifinformation of thofe who were actors in the fcene, and muft firit have deceived before they obtained credit. We men. tion this report as it has come to us, withont any attempt either to eftablifl or refute it. We fhall only addl, that if the charge is well founded, Mr Keate (who undertook the tafk on the moft difinterefted principle, and derived no advantage whatever from the work) was too fturdy a moralift to have had any hand in the impofition.-The manufeript was offered to Mr Dodfley for 300 guineas; but he hefitated to give for it fo_{0} large a price, when another bookfeller undertook to publifh the work for the benefit of Mr Wilfon; and, we have reafon to belicve, paid to that gentleman, within the compafs of a year, triple the fum for which the manufcript had been offered to Dodfley. Such conduct reflects honour on the London trade.

Befides

Zennicott. Befides the pieces already mentioned, Mir Keate was the author of many Prologues and Epilogues, fooken at Mr Newcomb's fehool at Hackney. He adapted his friend Voltaire's "Seniramis" to the flage; but this was fuperfeded in 1777 at Drury Lane, by a worthlefs tranflation of as worthlefs an author, one Cap. tain Ayfoongh; but neither this nor the author are deferving of any further notice.

We flall conclude by obferving, that Mr Keate's life paffed without any viciffitudes of fortune; he inherited an ample eftate, which he did not attempt to increafe otlerwife than by thofe attentions which prudence dictated in the management of it. He was hofpitable and beneficent, and poffeffed the good-will of mankind in a very eminent degree. For the laft year or two, his health vilibly declinec; ; but on the day he died, it appeared to be fomewhat mended. His death was fudden, on the 27 th of June 1797. He left one daughter, married in 1796 to John Henderfon, Efq; of the Adelphi. At the time of his death, Mr Keate was a Bencher of the Temple, and a very old member of the Royal and Antiquary Societics, of both of which he had been frequently elected one of the council.

KENNICOTT (Dr Benjamin) was a man of fuch eminence in the learned world, that every thing relating to him mufl be generally interefting. In the biographical fketeh of lim publifhed in the Encycloperlia, we have acknowledged ourfelves unaequainted with the rank and character of his parents; but this information has been fince fupplied by a very candid and well-informed writer in the Monthly Magazine ; and as it is accompanied with circumflances peculiarly honourable to the Doctor, and ought therefure to be preferved, we thall infert it in this place.
"The parents of Dr Kennicott (fays this writer) were honeft characters: His fatber was the parifl-clerk of Totnefs, and once mafter of a charity fchool in that town. At an early age young Kennicott fucceeded to the fame employ in the fchool, being recommender to it by his remarkable fobriety and premature knowledge. It was in that fituation he wrote the verfes to the honourable Mrs Courtney, which recommended him to ber notice, and that of many neighbouring gentlemen. They, with laudable generofity, opened a fubfeription to fend him to Oxford.
"He foon there diftinguifhed himfelf, as is well known. As a tefimony of the truth of the above fatement, the following is a copy of an infeription written by Dr Kennicott, and engraved on the tomb of his father and mother. The writer of this article has tranferibed it from the original in the churcl-yard of Totnefs. The tomb is more elegant than perfons in their fituation are accuftomed to have erecied, and was thought, perhaps, by the envious to be fomewhat oftentatious. A perfonal knowledge of the Doctor induces the writer of this article to think, that it was rather the tribute of a grood and grateful mind, and of the pious reverence and love which he entertained for the authors of his being.

As Virtue fhould be of good report, facred

be this humble Monument
to the Memory of
Benjamin Kennicott, Farifh Clerk of Totnefs, and Elizabeth his Wife:

K H E

> The latter
> an Example of every Chrifian Duty ;
> The furmer,
> animated with the warmef Zeal, regulated by the heft good fenfe, and both conflautly exerted
> for the Salvation of himfelf and others.
> Reader!
> Soon fhalt thou die alfo; and as a Candidate for Immortality frike thy breaft and fay,
> Let me live the life of the Righteous, that my laft end may be like his. Trifling are the dates of 'Time where the fubject is Eternity. - Erected
> by their Son, B. Kennicott, D. D.
> Canon of Chrift-Church, Oxford.

" It is faid, that when Dr Kennicott had taken orders, he came to officiate in his clerical capacity in his native town. When his father as clerk proceeded to place the furplice on his fhoulders, a ftruggle enfued between the modefty of the fon and the honct pride of the parent, who infifted on paying that refpect to his fon which he had been accuftomed to fhew to other clergymen: to this filial obedience was obliged to fubmit. A circumftance is added, that his mother had often declared fhe fhould never be able to fupport the joy of hearing her fon preach; and that on her attendance at the church for the firft time, fhe was fo overcome as to be taken out in a flate of temporary infeufibility."

KERMES (fee Coccus Ilicis, Encycl.) has been proved by Profeffor Beckmann to have been ufed as a dye from very remote antiquity. "All the ancient Greek and Latin writers, he fays, agree, that kermes, called by the latter coccum, perlaps alfo coccus, and often granum, were found upon a low flrubby tree, with prickly leaves, which produced acorns, and belonged to the genus of the oak; and there is no reafon to doubt that they mean coccum ilicis, and that low ever-green oak, with the prickly leaves of the holly (aquifolium), which is called at prefent in botany quercus ilex. This affertion appears more entitled to credit, as the aneients affign for the native country of this tree places where it is fill indigenous, and produces kermes.
The ufe of kermes in dyeing feems to have been continued through every century. In the middle ages, as they are ealled, we meet with kermes under the name of vermiculus or vermiculum; and on that account cloth dyed with them was called vermiculata. Hence the French word vermeil, and its derivative vervilion, as is well known, had their extraction ; the latter of which originally fignified the red dye of kermes, but it is now ufed for any red paint, and alfo for fine pounded cinnabar.

KHAS, in Bengal, lands taken into the hands of government, oppofed to the management of Z emindars. or farmers. See Zemindar in this Supplement.

KHALSA, in Bengal, fometimes with the addition of Shereefab, the department of land and revenues; the. exchequer.

KHERAJE, in Bengal, fignifies frictly the tribute paid by a conquered country: it is alfo ufed for revenue in general.

KHIDMUT;

K I P [54] K O L

※hidmut KHIDMUT, office, attendance, employment, ferKipiq. vice.

KHIDMUTGAR, a waiting man.
hilSSMU', portion or divifion.
LHOMAR, or Comaz, a 'Zemindar's demefne land.
KING-POst, or Ling. Piece, is a piece of timber fet upwright in the middle, between two principal rafters, and having ftruts ur braces going from it to the middle of each rafter. See Roof, Encycl.; and Carpentry, Supsol.

KIPPIS (Andrew, D. D. F. R and A. S.), was borı at Nottingham, March 28 (O.S) 1725. His father, a refpectable tradeiman of that town, was defcetided from the Rev. Benjamin King of Oakham, Rutlandfhire, an ejeEted minifter; and his mother, Amm Ryther, was the grand-daughter of the Rev. John Ryther, who was ejected from the church of Fernby, in the county of York. In the year 1730, he loft his fother, and went to refide with his grandfather, Andirew hirpis of Seaford in Lincolnfhire. He received bis claffical education at the grammar fchool in that town ; but what contributed moit to his future eminence, was the friendfhip of the Rev. Nir Merrival, who was equalled by few of his contemporaries in various branches of learning, particularly in his acquaintance with the claffies, his knowledge of ancient and modern hiftory, and his refined tafte in the belles lettres. Dr Kippis frequently faid, that it was impoffible for him to exprefs his obligations to this friend of his jouth. In 174^{1} he removed to Northampton, and commenced his academical ftudies under Dr Doddridge. After a refidence of five years at the academy, he was invited by feveral congregations to become their minifler. Though he was preffed to fettle at Dorchefter, and had been chofen their minifter, he gave the preference to an invitation from Bofton in Lincolnfhire, where he went to refide in September 1746. Here he continued four years; and in November 1750, accepted the paftoral charge of a cougregation at Dorking in Surry. The congregation meeting in Princes-Street, Weftminfter, having been without a minifter about two years, he was chofen, in June 1753 , to fucceed the Rev. Dr Obadiah Hughes. On the 21 if of September following, l.e married, at Bofton, Mifs Elizabeth Bott, one of the daughters of Mr Ifanc Bott, a merchant of that place ; and in the month of October fixed his refidence in Weftminfter. In June 1767, he received the degree of D. D. from the univerlity of Edisburgh, on the unfolicited recommendation of the late learned Proffffor Robertfon. He was elected a member of the Society of Autiquaries on the 19th of March Iク78; and on the rith of June 1779, he was chofen a fellow of the Royal Society. In both Societies he had the honour of being in the council two years.

Dr Kippis was eminently diftinguifhed for the virtues and accomplihments which form the chief oroaments of private life. With a fuavity of manners and urbanity of behaviour peculiarly attractive, he united that knowledge of men and books which rendered his converfation uncommonly entertaining and inftructive to the circle of his acquaintance and friends. As a minifter, he was not lefs eminent for his profound acquaintance with every branch of theology than for the happy manner in which he applied it to the improvement of thofe who attended his miniftry. His fermons were re.
markable for perfpicnity, elegance, and energy ; and his elocution was unaftected and very impreffive, particularly at the clofe of his difconrfes. But the fuperior powers and vigour of mind which he derived from nature, and which he had cultivated with unremitting diligence and peculiar fuccefs, were not to be confined to the narrow limits of private life and the duties of the paltoral charge, however important ; they were defigned for more extenfive and important fervices to his coumry and to mankind. The interelts of literature, fcience, and religion, have received from the exertion of his talents as a writer the mot effential advantages. His f_{1} ft efforts in literature were made in the Gentleman's Magazine, a periodical publication called the Library, and the Monthly Review ; to each of which he contributed many important articles, efpecially in the hiftorical and philological departments of the laft. He was the author of three important tracts, viz. "A Villdication of the Proteftant Difenting Minifters, \&cc." "Obfervations on the late Contefts in the Royal Society;" and "Confiderations on the Treaty with America, \&c.". His improved edition of Dr Doddridge's Lectures is a work of great value ; and "The Hiftory of Knowledge, Learning, and '「afte, in Great Britain," prefixed to the New Annual Regifter, merits, and has received, the approhation of the public. He publifhed at different times feveral fingle fermons; anong which, that on the death of his friend the Rev. Mr Laugher, is intitled to very high praife. The greater part of thefe he republifhed, with other practical difcourfes, in the year 1794: but the work which, next to the fudies immerliately conneeted with his office as a Chriftian minifter, engaged his prineipal attention, and by which he has long been dittinguifhed, is, the improved edition of the "Biographia Britannica." In this rreat national publication, the comprehenfivenefs and powers of his mind, the correctnefs of his judgment, the vaft extent of his information, his indefatigable refearches and unremitting affiduity, his peculiar talent of appre. cinting the merits, and analyzing the labours of the mof eminent writers, and his unfhaken integrity, unhiaffed fidelity, and impartial decition on the characters of the phtefopher, ftatefman, poet, fcholar, and divine, are ftrongly difplayed, and univerfally acknowledged. His flyle, formed on the models of Sir William Temple and the claflical Addifon, is remarkable for its perfpicuity, elegance, and purity ; and gives a peculiar luttre to the rich fores of knowledge treafured in the volumes now publifhed. This work has given him a high rank ameng the literati of his country, and will carry down his name with diftinguifhed reputation to pofterity. He dicd on the 8th October 1795.

KLIPspringer. See Kininsi, Suppl.
KOL Quall, the Abyffinian name of a tree, which fome botanits have fuppofed to be the Euphorbia Officinarum of Linuæus. Mr Bruce, who gives the only defeription of the Kol-quall that we have feen, is of a different opinion : for which he affigns two reafons; the firtt is, that the flower, which he fays is rofacenus, is compofed of feveral petals, and is not companiform; and the fecond, that it prodnces no fort of gum, either fpontaneoully or upon incifion. We mult acknowledge, that we entertain fome doubts whether our author was at due pains to afcertain this fact; and thefé doubts are fuggefted by his own hiftory of the tree.

Kol, His defeription is not very perfpicuons, and therefore, Koona. left we thotld mifreprefent his meaning, we fhall give
it in his own words:
"The firt thing that prefented itfelf was the firft fhoot of this extraordinary tree. It was a fingle ftalk, about fix inches meafured acrofs, in eight divifions, regularly and beantifully feolloped and rounded at the top, joined in the centre at three feet and a half high. Upon the outfide of thefe fcollops were a fort of eyes or fmall knots, out of every one of which came five horns, four on the fides and one in the centre, fcarce half an inch long, fragil, and of no refiftance, but exceedingly tharp and pointed. Its next procefs is to put out a branch from the firtt or fecond fcollop near the top, others fucceed from all directions; and this falk, which is foft and fucculent, of the confiftence of the aloe, turns by degrees hard and ligneous, and after a few years, by multiplying its branches, affumes the form of a tree, the lower part of which is wood, the upper part, which is fucculent, has no leaves; thefe are fupplied by the fluted, fcolloped, ferrated, thorny fides of its branches. Upon the upper extremity of thefe branches grow its fiowers, which are of a golden colour, rofaceous, and formed of five round or almoft oval petala ; this is fuccecded by a triangular fruit, firft of a light green with a fight caft of red, then turning to a deep crimfon, with freaks of white both at top and bottom. In the infide it is divided into three cells, with a feed in cach of them ; the cells are of a greenifh white, the feed round, and with nu degree of humidity or moilure about it ; yet the green leaves contain a quantity of bluifh watery milk almoll incredible.
"Upon cutting two of the fineft branches of a tree in its full vigour, a quantity of this iffued out, which I cannot compute to be lefs than four Englifh gallons; and this was foexceedingly cauftic, that though I wafhed the fabre that cat it immediately, the ftain has not yet left it.
"When the tree grows old, the branches wither, and, in place of milk, the infide appears to be full of powder, which is fo ptingent, that the finall duft which I drew upon ftriking a withered branch, feemed to threaten to make me fneeze to death, and the touching of the milk with mr fingers excoriated them as if fcalded with boiling water; yet I everywhere obferved the wood-pecker piercing the rottea branches with its beak, and eating the infects, without any impreffion upon its olfactory nerves."

If what is milk in a young tree be a dry powder in one that is old, is it not probable that the milk might' by evaporation be reduced to the confiftence of gum, and that the kol-quall may be at moft but a variety of the euphorbin officinarum? From our author's obler. vation, the kol-quall appeared to thrive beft on poor, fandy, fony earth, at no great diftance from the fea. The Abyffinians employ the milky juice in tanning to take off the hair from the flins, and they make no o. ther ufe whatever of the tree.

KOONA, a fpecies of Echites (for which fee Encycl.), very common in the woods of North Africa. It is a thrub, of which the leaves, when boiled with a fmall quantity of water, yield a thick black juice, into which the negroes dip a cotton thread. .This thread they faften round the iron of their arrows, in fuch a
manner that it is almof impoffible to extract the arrow Koraquas. when it has funk beyond the barbs, without leaving the iron and the puifoned thread in the wound. The poifon of the koona is faid to be very deadly. - Park's Travels.

KORAQUAS, a tribe of Hottentots inhabiting a diftrict of South Africa, which MI. Vaillant places on the confines of the Nimiqua country (See Nimicuas, Suppl.). When our author vifited them, the whole tribe was affembled for the election of a chief: and not agreeing among themielves, fome blood had been floed, and much more would have been thed, had they not unanimoufly made choice of him. When he firft joined them, the whole horde paid attention to nothing but their quarrel. To fee their warmth, one might have fuppofed that their election was a matter of importance to the whole world, and that the fate of mankind was about to depend on their chief. All fpoke at the fame time ; each endeavoured to drown his neighbour's voice by his own ; their eyes farkled with fury; and amidf this confuftor, while they threatened each other in turns, the noife they made became truly dreadful.

Inarmed, and without any precaution, though furrounded by this enraged multitude, our author walked calmly along in the midft of them; and when he reached the kraal, he ordered his tent to be immediately formed, as if he had been furrounded by friends and relations. This appearance, raifed fuddenly, and as if by magic, before the eyes of the horde, with his fufees, horfes, and tent, objects which were all new to them, filied them with admiration. Men, wonen, and chil. dren, motionlefs, and with their months wide open, all ftood looking at them with profound filence. Anger, hatred, and every violent paffion, feemed by their comm. tenances to be extinguifhed, and to have given place tomore tranquil cmotions, to iguorant furprife, and fut pid aftonifhment. Infancy is naturally curious; it is truck with every thing it fees; and the favage, in this refpect, is only a grown-up child. As thefe favages feemed to wifn that he would permit them to examine more clofely whatever excited their admiration, he readily condefcended to gratify their defire. They approached, furveyed, and handled every thing. But the principal object of general curiofity was his perfon. They feemed as if they would never be fatisfied with looking at his drefs. They pulied off his hat, that they might the better examine his hair and his beard, which were long. They even half unbuttoned his clothes; and furprifed to fee his fkin white, each felt it, as if defirous to afcertain that what they faw was real.

This comedy continued till the evening; and at length, when the moment of feparation arrived, M. Vaillant caufed to be hinted to the whole company, that if, two hours after fun rife next morning, they thould not be agreed refpecting the choice of a chief, he would immediately leave them. He added, however, that if, on the other hand, they came and prefented to him a chief, elected by general confent, he would then load them all with prefents, and beftow on him a diftinction which would raife him above all his equals, and rencler the horde one of the molt ceiebrated in the whale country. "But what was my furprife (fays he) when I learned the fame evening, that on my head the burden of the crown was depofed!" He acquiefced, however; aluring them, that if they would promife to be obe-

$K 0 R\left[\begin{array}{l}\mathrm{R}\end{array} \mathrm{K}\right.$ R I

Koracung. dient, he would give them the only chief worthy ot ru. their rapacity, he was obliged either to watch over, or ling them, and of making them hares.

By his interpreters lee had learned, that the clooice of the majority leaned towards one Haripa, a man about 40 years of age; tall, well made, exceedingly ftrong, and confequently formed by nature for ruling the feeble multitude. He therefore named Haripa chief; and the people appearing to approve of his choice, he commanded filence, and caufing the new monarch to approach, placed on his liead, with great folemnity, a Dutel grenadier cap, of whiel the copperplate on the front was ornamented with the arms of Hulland. This fymbol viz. a hon rampart, having in one of his fore-paws feven arrows, and in the other a naked fabre, could not fail to pleafe the favages, as it exhibited a reprefentation of the weapons peculiar to them, and of the moft formidable animal of their country. They teftified their admiration in the moft expreffive manner ; and imagined that, fuperior to kings, the white man during the night had by magic made this crown, merely to adorn their ehief, and to afford them pleafure. Vaillant then affised to the Kkin, which formed Haripa's drefs, feveral rows of glafs beads; gave him a girdle made of a ftring of very large ones; ornamented his arms with tin bracelets, and fufpended from his neck a fmall padlock, fhaped like a butterfly, the key of which had been loft. Such padlocks, made in the form of animals of every kind, are very common at the Cape. They come from China; and are brought to Africa by the captains of the Company's fhips which trade in the Indian feas.
During the ceremony of inftallation, the whole horde, dumb and motionlefs through admiration, feemed loft in ecftacy. Haripa himfelf, though highly gratified, did not dare to make the lealt movement, and obferved a gravity altogether rifible. When the inauguration was finifhed, and he was completely dreffed, our author prefented him with a mirror, that he might enjoy the fatisfaction of furveying his own figure. He then thewed him to the people, who expreffed their joy by fhouts and applaufes without end.
"Ye humeft hearts (fays M. Vaillant), who perufe this account, behold what it coft me to reftore peace among a whole tribe, and to prevent them from deftroying each other !" From this moment concord was reeftablifhed; univerfal juy prevailed through tbe horde; and they inftantly began their dancings, which continued for three days and three nights without intermiffion. They killed for this feftival feveral fat Sheep, and even two oxen; an extraordinary and truly aftonifhing magnifieence among a people who, when they barter one of their daughters for a cow, think they have made an excellent bargain.

Our author, wifhing to purchafe fume oxen for his waggons, bought them at the price of a nail the ox; and thofe who had the good fortune to make fuch an exchange were highly fatistied with their bargain. Nails and fmall bits of iren were indeed of real value to them, to point the arrows and aflageys with which they fhot the antelopes that abound in their country, and conftitute much of their food. Like other favages, the Ko. raquas were ready to pilfer, and appropriate to their own ufe whatever they found pleafing, or fuited to their purpofes. They attempted to carry away fome of our author's effects, even before his face ; and to prevent
to depofit them in fome place of fafety.

The Koraquas are much taller than the Hottentots of the colonies, though they appeared evidently to be defecnded from the fame race, having the fame language and cuftoms with their neighbours the Nimiouas (fee that article), who are certainly of Huttentot extraction.

As the exceflive drynefs of the comntry renders fprings very rare, the lioraquas would be unable to inhabit it, had they not found the means of renedying this fcarcity of water. For this purpufe they dig in the earth a kind of eilterns or rather wells, to which they defcend gradually by fteps; and thefe people are the only A frican nation among whom our author ever found the fame mark of induttry.

As,their wells always contsin little water, and as none is to be loft, they take eare to fecure it even from the birds, by clufing up the mouth of the hole with ftones and the branches of trees; fo that, unlefs one knows the fpot, it is impoffible to find it. They go down intu it every day, to fetch up as much water as may be neceffery for the confumption of their people and cattle. They draw it in a kind of veffels made of hol. lowed wood, and pour it into the fkins of buffalues or giraffes, placed in a concave form on the ground to hold it ; but they diftribute it with the utmoft parfimony, and never draw more than they abfolutely have occalion for.

Notwithftanding this ftrict economy, the wells often become dry ; and in that cafe the horde is obliged to remove to fome other place. Among all the weftern tribes, therefore, there are none who lead fo wandering a life as the Koraquas : the confequence of which is, that, as they often change their abode, and acquire new neighbours, they muft, in fome meafure, adopt the cuftoms of the nations near which they dix their refidence. Some tribes of them greafe themfelves like the Hottentots; while others tattoo their face, breaft, and arms, after the manner of the Caffres. It is, however, to be remarked, that the fame colour is not enoployed by all the Koraquas; each has his own, according as eaprice may direct hin in bis choice, and it generally varies every day ; which renders, as one may fay, the inhabitants of the fome horde itrangers to each other, and gives them a motley appearance, as if they were dreffe! for a mafquerade.

KRISHNA or CRISNA, is an eaftern river of confiderable magnitude, whieh is very little known in Europe. We have the following aceount of it, and its tributary waters, and the countries through which it flows, in Mr Pemant's view of Hinduftan :
"From Gangapatam, on the nurthera mouth of the Pennar, the land runs due north as far as Mottapilli, when it furms a tlrong curve toward the eaft; the point of which is one fide of the great river Crifua, in about lat. $15^{\circ} 43^{\circ}$. Its Delta, which winds round as far as Mafulipatam, is not confiderable. This river annually overflows a vaft tract uf country, like the Indus on the weftern fide of this empire; and like all the other great rivers on this extenfive coatt. The Crifna rifes from the foot of the weftern Ghauts, and not more than 45 miles from Severndrug, on the weftern coatt. There is another branch to the eaft, that rifes ftill more northerly. On that fide is Sattara, a ftrong fortrefs, the capital of the Mahratta state in the time of the rajahs of

K R I

 to be the depofitory of immenfe treafire; at that time it belonged to the king of Vijapur: it was afterwards ufed by the Mahrattas as the lorlgment of their riches, and alfo as a retreat for the more defencelefs inhabitants of Puna, and other open towns, in time of potent invafions."The river continues defcending to the eaft. In latitude 17° is Meritch, a ftrong fortrefs, with a Jaghirdar territory, conqquered from its owner by Hyder. In lat. $16^{\circ} 45^{\prime}$, a fmall river difcharges itfelf into the Crifna from the north. It would not be worth mentioning, but that Pannela, a fortrefs of vatt ftrength, was made by Sumbuji, the profligate fon of Sivaji, his refidence juit before his furprifal in 1689 , betrayed by Cablis Khan, the vile inflrument of his pleafures, corrupted by Aurengzebe. His extravagant love of women brought on him ruin. Informed by Cablis that a Hindu of rank and great beauty was on the road to be delivered by her parents to her hufband, according to the cuftom of the Hindus, he inftantly put himfelf at the head of a fmall body of horfe to carry off the prize, and ordered Cablis to follow at a diftance for his protection, in cafe of accidents in that hoftile time. The traitor had given notice to Aurengzebe of this expedition, who, fending a body of cavalry, furprifed Sumbuji juft as he had difperfed the nuptial proceffion.
"Into the north fide of the Crifna, in lat. $16^{\circ} 20^{\prime}$, falls the great river Bima, after a courle of 350 miles. It rifes at the head of the weftern Ghauts, parallel to Chaul in the Concan, and not above 50 miles from the fea. It defcends rapidly towards the fonth ealt. In lat. $17^{\circ} 40^{\prime}$ it receives a fmall river from the weft, on the fouthern banks of which ftands Vijapur, the capital of the famous kingdom of the fame name, now poffeffed by the Mahrattas, but once governed by its own monarchs, till conquered by Aurengzebe in 1686 . It was of great extent, and reached to the weftern fea, where it poffef. fed the ports of Dabul, Vingorla, and Carapatan.
"The capital Vijapur is forne leagues in circuit, featcd in a fine but naked country, well watered. It makes a fingular appearance from an adjacent eminence, filled with numbers of fmall domes, and one of a majeftic lize. It was once a city of great fplendour, and filled with palarcs, mofques, maufoleums, and public and private buildings of great magnificence; mary of them are fallen to ruin, and give melancholy proofs of its former fplendour. I fhall not attempt to detail them. The palaces of the kings, and accommodations for their attendants, were within a vaft fort, furrounded with a ditch 100 yards wide; the depth appeared to be great, but is now filled with rubbifh : within the fort is the citadel. Tavernier fays, that the great ditch was filled with crocodiles, by way of garrifon, to prevent all accefs by water. Lieutenant Moor has his doubes about this, imagining that there never was any water in this fofs. That fuch garrifons have exifted I doubt not. I have read in Purchas, that in Pegu the foffes of fortified places were flocked with thoie tremendous animals, not only to kecp out enemics, but to prevent defertion. This practice has certainly been of great antiquity in fome parts of India: Pliny mertions it as ufed in a fair city of the Horatæ, a people I cannot trace.
"The Crifna, above and below its conflux with the Bima, is fordable; and a few miles below its channel is

[^0]600 yards wide, made horrid with the number and rudencfs of the variouny formed rocks, which are never covered but in the ramy feafon.
"The Tungbuddra is another valt branch of the Crifina. It falls into it in lat. $16^{\circ} 25^{\prime}$, and originates extremely fouth, from a doubtful fountain. Towards its lower part it divides into three or four fmall branches, which rife remote from each other; the moit fouthern is the Curga Nair's country; the moft northem from the liead of the Ghauts oppofite to Onor, and fcarcely 20 miles from the fea. What mult give this river great celebrity, is its laving had on its banks, in lat. $15^{\circ} 22^{\prime}$, the fplendid city of Vijanagar. Ferifita fays, that it was founded in 1344 by Behaldeo king of the Carnatic, which in thofe days included the whole peninfula. It was vifited by Crefar Frederick a Venetian travellar, in 1565 , and found deferted and ruinous, laving been facked by four confederated Mahomedan princes two years before, on which its monarch had retired to Penuconda. Frederick fays that its circumference was 24 miles. Mr Rennel has given us a view of its prefent fate from Lieutenant Emitt, who vifited it in 1792.
"The ruins of Vijanagar are in the little Sircar of Anagundi, which does not extend above 20 miles around this valt city. It is very fingular that that little Sircar is now poffeffed by a lineal defcendant of Rama Rajah, the laft great monarch of Vijanagar, and its attendant nations Canarine and Malabar, united ;o0 years before under the rule of Crifna Deva. T'ippu wihhed to referve this little tract to himfelf, for the fatisfaction of generounly reftoring to the defcendant the fimail religtie of the great empire of his anceftors. He is denied the title of Rajah; inftead of which he has the diminutive Rail beftoweri on him. This is fuitable to lis revenues, which do not exceed two lacs of rupees, or 25,000 fer annum, with the empty regality of a mint at A nagundi." In the remainder of its courfe the Crifna offers nothing remarkable.'

KUARA, is a beautiful tree, which grows in the fouth and fouth-wef parts of Abyflinia. With the cbony it is almoft the only wood of the province of liuara, of which it bears the name; but Mr Pruce affures us, that it is very frequent in all the countries where there is gold. "It is (fays he) what naturalifts call a Corallodendron, probably from the colour of its flowers or of its fruit, both equal in colour to coral. Its fruit is a red bean, with a black fput in the middle of it, which is inclofed in a round capfula or covering, of a woody nature, very tough and hard. This bean feems to have been in the earlieft ages ufed for a weight of gold among the Slangalla, and, where that metal is found, all over Africa; and by repeated experiments,] have found that, from the time of its being gathered, it varies very little in weight, and may perhaps have been the very beft choice that therefore could lave been made between the collectors and buyers of gold.
"I have faid this tree is called kuara, which fignifies the fun. The bean is called carat, from which is derived the manner of efteeming. gold as fo many carats fine. From the gold country in Africa it paffed to I_{11}. dia, and there came to be the weight of precious itones, efpecially diamonds; fo that to this day in India we hear it commonly fpoken of gold or diamonds, that they are of fo many carats fine or weight. I have feen

K U M

$K \quad \mathrm{U}$ R

Kumi. thefe beans likewife from the Weft-Indian iflands. They are juit the fame fize, but, as tar as I know, are not yet applied to any ufe there."

This is a very different accomut from the origin of the term Carat from what we have given in the Encyeloprdia; but the reader will judge for himfelf between the two.

KUMI, the name of an ifland between Japan and China, of which leroufe writes in the following terms: "On the sth of May, at one o'elock in the morning, we made an ifland, which bore north north-eatt of us; we paffed the relt of the night, ftanding off and ou, under an eafy fail, and at day-break 1 fhaped my courfe fo as to run along the welt coalt of this illand, at the diftance of half a league. We founded feveral times without finding bottom. We were foon fatisfied that this ifland was inhabited, for we faw fires in feveral places, and herds of exen grazing on the fea-hore. When we had donbled its welt point, which is the moit beautiful and beft inhabited fide, feveral canoes put off from the fhore in order to obferve us. They feemed to be extremely in fear of us; their curiolity caufed them to advance within mufket fhot, and their ditruft made them immediately flee away with fpeed. Our fhouts, geftures, figns of peace, and the fight of fome Ruffs, at length determined two of the canoes to come alongfide of us. I made each of them a prefent of a piece of nankeen and fome medals. It was evident that thefe illanders had not left the coall with any intention of trafficking with us, for they had nothing to offer in exchange for our prefents; they only faftened to a rope a bucket of frefh water, making figns to us, that they fill thought themfelves in our debt, but that they were going ahhore to fetch provilion, which they expreffed by putting their hand into their mouth. Before coming alongfide the frigate, they placed their hands upon their brealt, and raifed their arms towards the fky: thefe geftures were repeated by us, and then they refolved to come on board; but it was with a want of confidence, which was ftrongly exprefled in their countenance during the whole tirie. They neverthelefs invited us to approach the land, giving us to underttand; that we fhould there want for nothing. Thefe iflanders are neither Japanefe nor Chircfe, but, fituate between thefe two empires, they feem to partake of both people. Their covering was a fhirt and a pair of cotton drawers. Their hair, tucked up on the crown of the head, was rolled round a needle, which feemed to us to be gold : each of them had a dagger, the handle of which wes gold alfo. Their canoes were made out of hollowed srees, and they managed them very indifferently. I
could have wifhed to land upon this ifland ; but as we had brought the fhip to, in order to wait for thefe canoes, and as the current fet to the northward with extreme rapidity, we had drifted a great way to leeward, and our eflorts to reach it would perhaps have been in vain: befices, we had not a moment to lofe, and it was of the higheft importance to us to get out of the Jepan feas before the month of June; a period of Itornis and hurrieanes, which render thefe feas the mofl dangerous in the whole world.
" It is clear, that veffels which might be in want would readily provide themfelves with provifion, wood, and water, in this ifland, and perhaps even eary on a little trade; but as it is not more than three or four leagues in circumference, there is no great probability that its population exceeds four or five hundred perfons; and a few gold needles are not of themfelves a proof of wealth." Our author, by obfervation, found the latitude of Kumi to be $24^{\circ} 33^{\prime}$ north; its longitude 120° ${ }^{5} 6^{\prime}$ eaft from Paris.

KURILES, are a clufter of iflands, of which fome account has been given under the word Kurit, in the Encycloprdia. In addition to that article, the following particulars are worthy of notice: Of the 21 iflands belonging to Ruflia, which are diftinguifled from each other, not by names but by numbers, four only are inhabited, viz. thofe which are called the firft, the fecond, the thirteenth, and the fuurteenth. The laft two may indeed be conated only as one, becaufe the inhabitants all pafs the winter upon $\mathrm{N}^{0} 14$, and return to $\mathrm{N}^{\prime} 13$ to pals the furnmer months. The others are entirely uninhabited, the iflanders only landing there occafionally from their canoes for the fake of hunting foxes and otters. Several of thefe latt mentioned inands are no better than large rocks, and there is not a tree on any one of them. The currents are very violent between the iflands, particularly at the entrance of the channels, feveral of which are blocked up by rocks on a level with the fea. The population of the four inhabited iflands amounts at moft to 1400 fouls. The inhabitants are very hairy, wear long beards, and live entirely upon feals, fifh, and the produce of the chace. When vifited by M. Peroufe, they had jult been exempted for ten years from the tribute ufually paid to Ruffia, becaufe the number of otters on their illands is very much diminifhed. Thefe poor people are good, hofpitable, and docile, and have all embraced the Chritian religion. The more fouthern and indepeudant iflanders fometimes pafs in canoes the channels that feparate them from the Ruffian Kurites, in order to give fome of the commodities of Japan in exchange for peltries.
$\underbrace{\text { Labdaffeba. ABDASSEBA, a tribe of favage Arabs who in- }}$ habit the defart of Sahara in Africa. They are the moit powerful of all thofe tribes except the Ouadelims; and they refemble thefe fo much in every thing,
that we fhall give an account of the manners of both Labor2under the title Ouadelims, and of their country under tory. that of Sahara.

LABORATORY, is an apparatus fo neceffary to

L A B [59 L A B

Lahors. the chemift, that every contrivance to ronder it more convenient, or to leffen the expence of it, muft contri-
bute greatly to the ddvancement of feience. The abilities of Morvertu alias Guyton, and the fuccefs with which he has profecuted the Atudy of chenifry, are well known ; and therefore his different methods of faving time and expence in making chemical experiments mult be worthy of the notice of younger chemifls.

In the fecond volume of the memoirs of the A ncient Academy of Dijun, we have a defcription by hin of a box containing a kind of portable laboratory, compofed of a lamp with three wicks, difpofed in the figure of an rquilateral triangle, to form an internal current of air, with fur ports for the different veffels of digeftion, dintilation, craporation, s.e. He made a folution of tilver with common aqua furtis and the metal in an alloyed flate, which anfwered very w-Cll as a re-agent, withent having occation for any other utenfils but this bux and apethecary's phials, which are everywhere to be found.

This apparatus, however, was confined in its application, and he foon thought of iniproving it. He conftructed a lamp, on the principles of Argand, with three concentric circular wicks, each having an interior and exterior current of air. The effect furpafied his expectations with regard to the intenfity of the heat ; but it was difficult to provent the deftruction of the hard folder round the wicks; and the glafs retorts were frequently melted at the bottom, and distigured. It was attended with other inconveniences, and the quantity of oil confumed was great.

A fhort time afterwards, it occurred to him to fub. fitute, inftead of the glafs chimney of Argand's lamp, a cyliuder of copper with an indented part or ledge a few millimetres (fee Revolution, Encyct. n ${ }^{\circ}$ 183.) above the flame, to perform the office of the indented chimney of glafs, and ly that means to render it practicable to raife the wick to a certain beight without fmoaking. This cylinder bas three branches like a chaf-fing-difh. By this apparatus two or three decilitres of water (about balf an Englifh wine pint) may be brought to boil in a copper or glafs veffel in about fix or feven minutes. It has ferved for a number of operations; but it was not till after he had obferved the degree of heat obtained from the lanp in its ordiuary ftate, and particularly funce he had fubltituted inftead of the metallic tube a chimney of glafs cut off at the length of three centinetres (rather more than one Engliff inch) above the contraction, that he perceived all the advantages it was capable of aftording; and that by means of a move. able fupport for the reception of the different veffels, which may be fixed at pleafure by a thumb-fcrew, this lamp furnace, at the fame time that it gives light, and confequently without any additional expence, may with facility be ufed for almoll every one of the operations of clemiftry ; fuch as digeftions, fulutions, crytallizations, concentrations; the rectification of acids; difillations on the fand-bath, or by the naked fire; incinerations of the mult refractory refidues; analyfes with the pneumatic apparatus, or of minerals by the faline fufion, \&c. "I have not (fays he) hitherto met with any exception but for complete vitrifications and cupellations; for even the diftillations to drynefs may be performed with fome precautions, fuch as that of transferring the matter into a fmall retort blown by the enameller's lamp, and placing its bottom on a little fand-bath in a thin metal.
lic difh." The fupport here mentioned is fimply a copper ring eight centimetres (3,15 inch.) in diameter, which is raifed or lowered by fiding on a ftent of the fame metal. Nothing more was required but to adapt it to the fquare iron item which palfes through the refervoir of the lamp. The comneclion is made by a picce of wood, in order that lefs of the heat night lee difperfed. As the lanp itfelf is capable of bemg moved on its feem, it is cafy to bring it nearer or remove it at pleafere from the veffels, which remain fixed; a circumflance which, independent of the elevation or deperthon of the wick, affords the incans of heating the retorts by degres, of moderating or fupprefling the fire inilantly, or of maintaining it for feveral bours at a contant or diterminate intentity, from the aimolt infenfible evaporation of cryflailizalile folutions to the ebullition of acids; properties never foffeffed by the athanor, of which chemitts have boafted fo much The adrantage of thefe will be properly valued by thufe operators whio know that the moft experienced and the moft attentive chemifts meet with frequent accidents, by which both their veffels and the products of their operations are left for want of power in the management of the fire."
For the analyfis of fones, fuch as the crytals of tin, the fhortened chimney of glafs is to be ufed; and the procefs is to be begun by placing the mixture in a capfule of platina or filver $2 \frac{3}{5}$ inches in diameter. This caprule is to be placed on the fupport, and the heat iegulated in fuch a manner, that ebullition fhall take place without throwing any portion of the matter out of the veffel. As foon as its contents arc peifectly dry, they are to be transferred into a very thin crucible of platina, of which the weight is about $252 \frac{1}{\frac{1}{2}}$ grains Englifh, and its diameter one inch and three-fourths. This crucible refts on a fmall fupport of iron-wire, which ferves to contract the ring; and the wick being at its greateft clevation, with the ring lowered to the diftance of $9 \frac{3}{3}$ inches from the upper rim of the chimney, Guyton produced, in lefs than twenty miultes, the faline fufion to a fuch a degree, that from the commencement of the operation the decompofition proceeded as far as to 0.70 of the mineral. The fame apparatus, that is to fay, with the fhortened chimney, ferves fur oxidations, ino cinerations, torrefactious, and dinillations to dy ynefs.
In fuch operations as require a lefs heat. he leaves the lanip with its large chinney abfolutcly in the fame flate as when it is ufed for illumination; and by railing and lowering either the ring which fupports the veffel, or the body of the lamp if the veffels be fixed in communication with others, he graduates the heat at pleafure. Vinegar diftils without interruption at $2 \frac{1}{4}$ inclees Englifh from the upper termination of the chimney, that is to fay, $7 \frac{1}{2}$ inches Englifh from the flame. Water is made to boil in eight minutes, at the fame height, in a glafs veffel cuntaining one wine pint Englifh, and is uniformly maintained at the dillance of $\delta_{\frac{2}{5}}^{\frac{2}{5}}$ inches from the flame.
"I muft not in this place (fays our author) omit to mention a flight obfervation which this procefs has afforded, becaufe it may lead to ufeful applications, and tends to point out one great advantage of this method of operating ; namely, that an infinity of circumillances may be perceived, which might not even be fufpected when the whole procefs is carried on within a furnace. I have remarked, as did likewife feveral of my colleagurs

Labra- who were then prefent, that a column of bubbles contory. fantly rofe froni a fixed point of the retort on one fide of the bottom. We were of opinion, that fome particle of matter was in that place incorporated with the g!afs, which had a different capacity for heat from that of the reft of the glafs. In order to verify this conjecturc, I endeavoured the following day to dittil the fame quantity of the fame water in the fame retort, after having introduced a button of cupelled fifver, weighing nine decigrammes ($29^{\frac{2}{2}}$ grains). At the commencement of the operation there was a fmall fream of bubbles from the fame point as before; but a thort time afterwards, and during the whole remaining time of operating, the largeft and moft inceffant ftream of bubbles rofe from the circumference of the button, which was often difplaced by the motion; and in proportion to the time the produn of the diftillation was fenfibly greater. Whence we may conclude, that metallic wires or rods, diftributed through a mafs of water, required to be kept in a State of ebullition, and placed a litte below its furface, would produce, without any greater expence of fuel, nearly the fame effect as thofe cylinders filled with ignited matter which are made to pafs through the boilers."

We have related this fat in Guyton's own words, or at leaf in a faithful tranflation of them; and we are far from calling it in queftion, for it is a fact which has heen often ohferved: but we think his inference from it too haftily drawn. It is not conceivable that heat can be more rapidly conveyed through a mals of liquid by the conducting power of metal, than by a free circuJation; but we agree with what feems to be Mr Nichol-

* Journal, fon's opinion *, that the thin ftratum of water beneath the button becomes more fuddenly and violently claftic than elfewhere, and therefore rifes regularly to the furface. The whole of this phenomenun the reader will find explained in our article Stean, Encych. no ${ }^{\text {a }}$ o. But this is a digreffion.

We return, therefore, to Gurton's laboratorr, of which the reader will form a dillinct notion from plate XXXIII. where fig. r. reprefents the whole apparatus yeady mounted for diftillation, with the tube of fafety and a pneumatic receiver. A is the body or refervoir of the ufual lamp of Argand, with its thade and glafs chimney. The lamp may be raifed or lowered at pleafure by means of the thun b ferew B, and the wick rifes and falls by the motion of the fmall toothed wheel placed over the walle cup. This cunftruction is moft convesient, becaufe it affords the facility of altering the poition of the flame with regard to the veffels, which remain fixed; and the troublefome management of bended wires above the flame for the fupport of the veffels is avoided, at the fame time that the flame it felf can be brought nearer to the matter on which it is intended to act. D, a fupport confifting of a round ftem of brafs, formed of two pieces which terew together at abput two thirds of its leeight. Upon this the circular ring E , the arm F , and the nut G flide, and are fixable each by its refpective thumb-fcrew. The arm alfo carries a moveable piece H, which ferves to fufpend the yeffels in a convenient fituation, or to fecure their pofition. The whole fupport is attached to the fquare iron them of the lamp by a piece of hard wood I, which may be fixed at any required fituation by its ferew. K reprefents a fland for the receivers. Its moveable tablet L is fixed at any
required clevation hy the wookn feres M. The piece which forms the foct of this thand is fixed on the hoard N ; but its iclative pofition with regard to the lamp may be chaiged by filing the foot of the latter bematic trough. It is raifed or lowered, and fixed to its place, by a ftrong wooden forew Q. R is a tube of fafety, or reverfed fyphon, which ferves, in a great meafure, to prevent the bad effects of having the veffels either perfectly clofed, or perfectly open. Suppofe the upper bell-fhaped veffel to be nearly of the fame magnitude as the bulb at the lower end of the tube, and that a quantity of water, or other fuitable fluid, fomewhat Iffs than the contents of that veffel, be poured into the apparatus: In this fituation, if the elaficity of the contents of the vefels be lefs than that of the external air, the fluid will defcend in the bulb, and atmofpheric air will follow and pafs through the fluid into the veffels: but, on the contrary, if the elafticity of the contents be greater, the fluid will be either fuftained in the tube, or driven into the bell-fhaped veffel; and if the force be ftrong enough, the gafeous matter will pafs through the fluid, and in part efcape.

Fig. 2. Shews the lamp furnace difpofed to produce the faline fufion; the chimney of glafs floortened ; the fupport D turned down; the capfule of platina or filver S placed on the ring very near the flame.

Fig. 3. The fame part of the apparatus, in which, inftead of the capfule, a very thin and fmall crucible of platina ' Γ is fubftituted, and refts upon a triangle of iron wire placed on the ring.

Fig. 4. Exhihits the plan of this laft difpofition.
LACERTA, in aftronomy. See Astronomy, no 406. Encycl.
L.ACMUS, a dye fuff prepared by the Dutch from the Lichen rocella, which fee in this Supplement.

LACSHA, the Indian name of the lac infect, which has been defcrihed in the Encyclopadia under the title Coceus, Sprecies 5. Since that article was publifhed, a defeription of that infect, which is more to be depended upon, has been given to the world in the fecond volume of the Afiatic Refearches. It is by Mr Ruxburgh, furgeon on the Madras eftablifhment, and was communicated to the Society by Dr James Anderfon phyfician at Fort St George, who obferves, that Mr Roxburgh's difcovery will bring the lactha as a genus into the clafs Hemiptera of Linnxus.
"Some pieces of very frefh-looking lac (fays Mr Roxburgh), adhering to fniall branches of mimola cinerea, were brouglit me from the mountains on the anth of November 1789 . I kept them carefully, and today, the $4^{\text {th }}$ of December, fourteen days from the time they came from the hills, myriads of exceedingly minute animals were obferved creeping about the lac, and branches it adhered to, and more flill iffuing from finall holes over the furface of the cells: other fmall and perforated excrefeences were obferved with a glafs anongft the perforations, from which the minute infects iffued, regularly two to each hole, and crowned with fome very fine white haits. When the hairs were rubbed off, two white fpots appeared. The animals, when fingle, ran about pretty brifkly, but, in general, they were fo numerous as 10 be crowded over one another. The body is obfong, tapering moft towards the tail, below plain, above convex, with a double or flat margin: la-

L A M

r.actina. terally on the back part of the thorax are two fmall tu. bercles, which may be the eyes : the body behind the thorax is croffed with twelve rings: legs fix; feelers (autenne) half the length of the body, jointed, hairy, each ending in two hairs as long as the antenna: rump, a white point hetween two terninal hairs, which are as long as the body of the animal. 'The mouth [could] not fee. On opening the cells, the fubftance that they were formed of cannet be better defcribed, with refpect to appearance, than by faying it is like the tanfparent amber that beads are made of: the external covering of the cells may be about half a line thick, is remarkably ftrong, and able to refit injuries : the partitions are much thinner: the cells are in gencral irregular fquares, pentagons and hexagons, about an eighth of an inch in diameter, and one quarter deep: they have no commu. nication with each other. All thofe I opened during the time the animals were iffuing, contained in one half, a fmall bag filled with a thick ren jelly. like liquor, replete with what I take to be eggs : the le bags, or utriculi, adhere to the bottom of the cells, and have each two necks, which pafs through perforations in the external coat of the cells, forming the fore mentioned excrefcerces, and ending in fome very fine hairs. The nther half of the cells have a diftinct opening, and contain a white fublance, like fome few filaments of cotton rolled tugether, and numbers of the infects themfelves ready to make their exit. Seyeral of the fame infects I obferved to have drawn up their legs, and to lie flat: they did not move on being toucherl, nor did they fhew any figns of life with the greateft irritation.
"December 5. The fame minute hexapedes continue iffuing from their cells in numbers: they are more live$1 y$, of a deepened red colour, and fewer of the motionleis fort. 'T'o day I faw the mouth : it is a flattened point about the middle of the brealt, which the little animal projects on being compreffed.
"Dicember 6. The male infects I have found to-day: a few of them are conftantly running among the females moft adively: as yet they are fcarce more, I imagine, than one to 5050 females, but twice their fize. The head is obtule; eyes black, very large; anteunx clavated, feathered, about $\frac{2}{3}$ ds the length of the body: below the middle an articulation, fuch as thofe in the legs: colour betwen the eyes a beautiful fhining green: neck very fhort; budy oval, brown: abdomen oblong, the length of body and head: legs fix: wings membranaceous, four, longer than the body, fixed to the fides of the thorax, narrow at their infertions, growing broader for $\frac{3}{3} \mathrm{~d}$ of their length, then rounded; the anterior puir is twice the fize of the polferior: a flrong fibre rans along their anterior nuargins: they lie flat, like the wings of a common fly when it walks or relts: no lairs from tle rump: it fprings molt asively to a conficierable dilance on being touched; mouth in the under part of the head : maxillæ tranfverfe. To-day the female infects continue ifuing in great numbers, and move about as on the 4 th.
" December 7. The fmall red infects fill more numerous, and move about as befure: winged infects, ttill very ferv, continue active. There have teen freth leaves and bits of the branches of both Mimofa Cinerea and Corinda put into the wide mouthed bottle with them: they wal'k over them indifferently, without fhewing any preference, or inclination to work or copulate. I open-
ed a cell whence I thought the winged fies had come, and found feveral, cight or ten, more in it, fruggling to Thake off their incumbrances; they were in one of thofe utriculi mentioned on the 4 th, which ends in two mouths, fhut up with fine white hairs, but one of them was open for the exit of the nies; the other would no doubt have opened in cue time : this utriculus I found now perfectly dry: and divided into cells by excceding thin partitions. I inagine, before any of the flies made their efeape, it might have contained about twenty. In there minute cells with the living flies, or whence they had made their efcape, were fnall dry dark-coloured compreffed grains, which may be the dried excrements of the flies."

LAMANON (Robert Paul), of the Academy at Turin, correfpondent of the Aeademy of Sciences at Paris, and member of the Mufeum in the fame city, was born at Salon in Provence, in $\mathbf{5 7 5 2}$, of an old and refpectable family. Being a younger fon, he was deftined for the church, and fent to Paris to completc his theological itudies; but getting acquainted with the philofophers (as they called themfelves), he foon loft all relifh for the Atudy of theology, and devoted himfelf to the phyfical fciences, efpecially thofe of chemiftry and mineralogy. Into the church, howerer, he got, and rofe to the dignity of canon; bust by the death of his father and elder brother, having acquired the right of directing his own future exertions, he haftened to quit a profef. fion, towards which he felt no partiality.

A prelate, then in high favour at court, hearing of Lamanon's intention of quiting his office of canon, of fered him a conliderable fum, to induce him to relign in favour of one of his dependents. The chapter of Arles, replied our young ecclefiatic, did not fell me my benefice; I fhall therefore reftore it in the fame manner. that I received it. This conduct was certainly meritorious; and his enlogilt Ponce mentions another trait of his character, which fets him in a very amiable point of view; he refufed to accept of lis paternal inheritance, otherwife than as an equal flarer with his brothers and. fifters.

Thus liberated from the trammels of his former prow feflion, Lamanon applied himfelf with uncomnon ardour to tudy. Eager to raife the awful veil that coneeals fiom our eyes the fecrets of Nature ; perfuaded, that even the greateft geuius only amofes it felf with falie fyltems in the filence of a cabinet; convinced of the necelfity of much and varions obfervation, and of furprifing Nature as it were in the very fact, in urder to penetrate into the fublinity of her operations; - nur young philofopher travelled through Provence and Dauphine', and fcaled the Alps and Pyrences. At the fight of thefe"vall natural laboratories the bent of his mind burft forth inflantaneoufy: he climbed to the furmit of rocks, and explored the aby fs of caverns, weighed the air, analyfed fpecimens, and, in his ardent fancy, hoving attained the fecrets of creation, he formed a new fytam of the world. On his return home, he applied with additional intereft to the ftudy of meteorolugy, mineral'sgy, natural philu\{ophy, and the other braaches of the hiftory of nature.

Whilkt he was meditating a vifit to Paris for the purpofe, as his enlogit expreffes timfelf, of converfing with the luminaries of fcience, the intiabitants of the commune of Salon, having loft a caufe againft their lord, unani.

1, manon, unanimounly elested Lamanon, with whofe integrity and abilities they were well acquainted, to go and Colicit of the council the repeat of an unjuft decree that had been obtained by partiality. The reply of the youns philofoplere on this oceation is an alditional pronf of his uncommon difintereftednefs. "As I intend (faid he) to go to Paris on bulizefs of my own, 1 camot think of accepting your offer of 24 livies daily pay: a twelfth of this fun will cover the extraordinary expences of the journeys that I fhall be obliged to make to Verfailles on your account." He had the fatisfaction of complete fuccefs in the bufinefs thus undertaken.

Haviug fatisfied his curiofity in Paris, he went over to England. During the paffage, though much incommoded liy fea-ficknefs, and in imminent hazard of being overwhelmed by the tumbling waves of a very flormy fea, he caufed himfelf to be tied to the main-mall, in order to contemplate at leifure fo grand and fearful a fpectacle. The burts of thunder, the howling of the wind, the brilliancy of the lightning, the giancing of the fpray which covered him every moment, thefe objects, fo terrible to an ordinary man, threw him into a kind of mental intoxication, and he has often declared that this day was the moft exquifite of his whole life.

Convinced that the friendflip of an eminent man elevates the foul, excites generous emulation, and becomes an additional flimulus to one whofe delight is fudy, and whofe molt preffing want is an object on which to place his affection, I amanon anxioufly endeavoured to merit the regard of Condorcet, fo well known by his tafents, his impieties, his rebellion, and his misfortunes. This academician, juftly confidering that an apoftate prist would be ready to join the confpiracy of the philofophifts againt the altar and the throne, received La. manon with diftinction, and at tength adenitted him to his molt intimate friend hip.

During the three fuccelfive years that Lamanon fpent at Pais, he followed with care the track of thofe learned focicties, of which he had been elected a nember. He became at this period, together with Count de Ge. buLil, and fome other philofophers and antifs, one of the founders of the Mufeum, the greater part of the members of which are now reunited in the open fociety of fciences, letters, and arts, at Paris. Anong the different papers of his that were read at varions meetings of thefe focicties, Ponce mentions with particular approbation what he calls a notice of Adam de Crapone, an eminent hydraulic engineer; a memuir on the Cretins; a memoir on the theory of the winds; a treatife on the alteration in the courfe of rivers, particularly the Rhone; and another on an enormons bone belonging to fome cetaceous finf, that was dug up at Paris, in laying the foundations of a houfe in the Rue Daupline. We have not feen thefe memoirs; but as their author was the friend of Condorcet, and fancied that he liad attained the fecrets of creation, we can eafily conceive their tendency.

Having refolved again to revifit Switzerland and Italy, Lamanon firf went to Turin, where he allied himfelf to the learned of that commtry. During his flay there, the brilliant novelty difcovered by Montgolier was occupying the attention of all the philofophers of Europe. Lamanon, dcfirous of making fome experiments of this kind himfelf, afcended in a balloon from the city of Turin; but not perceiving in this difonvery,
which had at fift highly interefted him, an object of Fublic utility; not forefeeing, that one day, on the plains of Fleurus, it would be the caule of rallying and eftablihing victor under the Itandards of liance, he returned to his favourite occupations. Jurfuiog his route from Piedmont, he vilited Italy, and returned by Switzerland, where he explored the Alps and afcended the fummit of Munt Blanc: thence returuing, loaden with the fpoits of the countries which he had traverfed, to Provence, he employed himfelf in the arrangement of the interefting fruits of his journey.

Of the frrupulons exactnefs of his obfervations, his eulogith gives the following inftance: "Being convinced that the plain of Crant, divided by the channel of the Durance, had formerly been a lake, he wifhed to be abfolutely allured of it. F'or this purpofe he collectert a fpecimen of each of the ftones that are to be found in this valt plain ; the number of thefe he found to amount to nincteen; then tracing the courfe of the river towards its head, near the frontiers of Savoy, he obferved, that above each junction of the tributary ftreams with the Durance, the variety of pebbles diminifhed. Afterwards afcending the current of each of thefe finaller ftreams, he difcovered on their banks the original rock of every pebble that overfpreads the plain of Crau; thus incontellably proving, that this plain was anciently a lake formed by the waters of the Durance, and the ftreams that fall into it. If all philofoplers (fays our author) would conduct their examinations with equal precifion, certain hypotheles, more brilliant than folid, would not find fo many admirers; the charn of imagination, and the graces of tyyle, would not fo often encroach upon the impreferiptable rights of nature and truth."

To citizen Punce this appears a demonftration of La manon's theory; but we cannot fay that it does fo to us. It may be a kind of proof, though not a demonAtration, that in forme convulion of nature flones had been rolled from the rock, and the plain of Ciau, for a time, overflowed by the 1)urance; but it furcly fur. nifhes no evidence of that plain's having ever been a permaneat lake. It may have been fo; but fuch inveltigations as this will not guard philofophers agraint the delutions of favourite bypothefes.

It was at the time when Lamanon was preparing for the prefs his great work on the Theory of the Earth, that the French government conceived the valt project of completing the difcoveries of Captain Cook: the academy of fciences was entrutted with the care of felceting men capable of retifying onr notions of the fouthcra hemifphere, of junp,roving hydrography, and advancing the progrels of natural hiflory. Condurcet, not knowing any one bettor qualified for this lalt department than Lananon, wote to him an invitation to flare the danger and glory of this great enterprize. He accepted with eager tranfport a propofal that fulfilled his highelt expectations, haftened to l'aris, refufed in a conference with the miailter the falary that was offered, took a hafty leave of his friends, and departed for Bref.

On the of of Augult 1785 , the armament fet fail under the orders of La Peroufe, an experienced commander, whofe patriotifm and fcientific zeal were equal to his courage and good fenfe, and who had already merited the public confidence. The philofophers of all

Europe

LA M [σ_{3}] LA M

amanon, Europe were in expectation of thole ufeful difcuveries, 1.amp. the probable fruit of the zeal and talents employed in the expedition. The beginning of the voyage was profperous. After various delays, and a multitude of clbfervations, the two veffels arrived at the ifland of Maouna, one of the fauthern Archipelago: The inpatient Lamanon, eager to allure himfilf of the truth of the publifhed accounts of that country, debarked with Langle, the fecond in command. At the moment of their return, the natives, in hopes of booty, which had been excited by the number of prefents that they had received, Seized upon the boats, and attacked the party. The French were obliged to have recourse to arms for felf.defence, and a defperate combat enfued. Lamanon, Lang'e, and ten of the two boats crews, fell a facrifice to the fury of the fe barlourians.

Thus perifhed Lamanon, a young man ardent in the purfuits of faience, to a high degree dilinterefted, and a zealot in what he thought the cause of liberty. He re. fufed the falary which was allotted to him when he was appointed to this unfortunate expedition; for "if 1 do not feel fatisfied (raid he) on board the veffel; if my inclination or curiofity lead me to quit the tip, - I thonld be unhappy if any power in the world had acquired the right of preventing me."

According to M. Ponce, Lamanon feemed born to bring about a revolution in faience: the depth of his ideas, the energy of his character, the fagacity of his mind, united to that lively curiofity that can draw in. Itruction out of any thing, and leaves nothing unexplored, would have led hin to the molt valuable difcoveries. In perfon he was tall ; and to great vivacity and expreflion of feature added prodigious ftrength and activity; in a word, Nature formed him with fuck care, as if the had intended him for one of thole few who are defined to great exploits. His style was nevyous, often poetical, without leafing fight of propriety, and the language of fentiment might frequently be discovered in the midi of flong and striking exprefions; and if he wanted the exquifitely dazzling polity of discton, he was eminently gifted with the precifion of logical reasoning, which commands attention and enforces perfualion.

LAMP (fee Encycl.) is an instrument comprifing three articles which demand our attention, viz. the oil, the wick, and the fupply of air. It is required that the oil thould be readily inflammable, without containing any fetid fubitance which may prove offensive, or muchlage, or other matter, to obstruct the channels of the wick. Mr Nicholfon fays", that he knows of no prucefs by which oils can be meliorated for this purpofe, except that of walking with water containing acid or alkali. Either of there is fad to render the mucilage of animal oils more foluble in water; but acid is to be preferred, because it is lefs difpofed to combine with the oil itfell. Perhaps oil might be deprived of all fetid mel in burning, by being made to pals through Collier's filtering apparatus, defribed under the word Filter in this $\$ u p p l$.
The office of the wick appears to be chiefly, if not folly, to convey the oil by capillary attraction to the place of combustion. As the oil is confumed and flies off, other oil fucceeds, and in this way a continued current of oil and maintenance of the flame are effected. But as the wicks of lamps are commonly formed of
conbuftible matter, it appears to be of forme ronfequence what the nature and firucture of this material may be. It is certain that the flame afforded by a wick of rut differs very considerably from that afforded by cotton ; though perhaps this difference may, in a great meafure, depend on the relative dimentions of each. And if we may judge from the different odour in blowing out a candle of each fort, there is forme reafon to fufpect that the decompotition of the oil is not effected precifely in the fame manner in each. We have alfo fore obscure accounts of prepared wicks for lamps, which are fated to poffefs the property of facilitating the combullion of very impure vile, fo that they fall burn for many hours without smoke or finell.

The economical wicks of M. Leger, concerning which a report was prefented to the Academy at Paris in 1782 by Condorcet, Lavoifier, and De Milly, were composed of cotton of different fazes and forms, namely, round and flat, according to the use they were intended to ferve. They were covered with a fat fubftance, of a fuel l not difagreeable, but feebly aromatic. From the trials of the fe commiffaries it was alcertained: i. That they afforded a clearer flame, with left undulation. 2. That they confumed somewhat lefs oil; and, 3. That they poffefied the remarkable property of affording neither fell nor fmoke, however common the oil made ute of. When ufing a lamp with a flat wick, we have ourselves found a piece of clean cotton Chocking answer the purpofe better than the cotton wicks which are fold in the flops.

The access's of air is of the lat importance in every process of combustion. When a lamp is fitted up with a very lender wick, the flame is finally, and of a brilliant white colour: if the wick be larger, the combultion is leis perfect, and the flame is brown : a till larger wick nut only exhibits a brown flame, but the lower internal part appears dark, and is occupied by a portion of vclatilifed matter, which does not become ignited until it has afcended towards the point. When the wick is either very large or very long, part of this matter efcapes combustion, and thews itself in the form of coal or finoke. The different intenfity of the ignition of flame, according to the greater or lefs Supply of air, is remarkably feen by placing a lamp with a mall wick beneath a fla de of glass not perfectly chafed below, and more or less covered above. While the current of air through the glass fade is perfectly free, the flame is white; but in proportion as the aperture above is diminihed, the flame becomes brown, long, wavering, and fmoky; it inftantly recovers its original whitenefs when the opening is again enlarged. The inconvenience of a thick wick has been long fince observed, and attempts made to remove it ; in forme inflances, by fubltituting a nom. Der of fall wicks inftear of a larger; and in others, by making the wick flat inftead of cylindrical. The mot fcientitic improvement of this kind, though perhaps lees fimple than the ordinary purpofes of life demand, is the well known lamp of Argand, defcribed in the Encyclopedia.

Much has been laid of this lamp, and great praife lavihed on the inventor. It cannot indeed be denied that it was a very pretty invention, nor have we the fighteft win to detract from the merit of M. Argand; but truth compels us to fay, that the fame thought had occurred to others as early as to him, and that lamps.

I Antp. had publifhed an account of his lamp to the world (A). Many ingenious men have endeavoured to datermine the moft economical method of lighting up large halls and workhoufes by means of different lamps and candles; and when the expence of tallow and oil is confidered, it vill be admitted that they could not employ their time in a manner more bencficial to the poor and the induf. quious. Among others, Count Rumford and M. Haffenfratz have turned their attention to this fubject; and the refults of their invelligations are worthy of notice. To the Count, a method occurred for ineafuring the rehative quantities of light emitted by lamps of different couflructions, which is at once fimple and accurate. It is as follows:

Let the two burning lamps, or other lights to be compared, be called A and \bar{B}; and let then be placed at equal heights upon two light tables, or moveable itands, in a darkened room; let a theet of clean white paper be equally fread out, and faftened upon the vainfeot, or fide of the room, at the fame height from the floor as the lights; and let the lights be placed overargaint this theet of paper, at the diftance of fix or eight feet from it, and fix or eight feet from each other, in Such a manner, that a line drawn from the centre of the paper, perpendicular to its furface, fhall bifect the angle formed by lines drawn from the lights to that centre; in which cafe, confidering the fheet of paper as a plane fecculum, the one light will be precifely in the line of reflection of the other.
This may be ealily performed, by actually laying a piece of a looking-glafs, fix or eight inches fquare, flat upon the paper, in the middle of it ; and ohferving, by means of it, the real lines of reflection of the lights from that plane, removing it afterwards, as foon as the lights are properly arranged. When this is done, a fmall cy'linder of wood, about one-fourth of an inch in diameter, and fix inches long, muft be held in a vertical pofition, about two or three inches before the centre of the freet of paper, and in fuch a manner, that the two thadows of the cylinder, correfponding to the two lights, may be diftinctly feen upon the paper.

If thefe fhadows fhould be found to be of unequal denfities, which will almoft always be the cafe, then that light whofe correfponding fhadow is the denfeft muft be removed farther off, or the other mult be brought nearer to the paper, till the denfities of the fhadows appear to be exactly equal ; or, in other words, till the denfities of the rays from the two lights are equal at the furfice of the paper; when, the diftances of the lights from the centre of the paper being meafured, the fquares of thofe diftances will be to each other as the real intenfities of the lights in queftion at their fources.

If, for example, the weaker light being placed at the diftance of four feet from the centre of the paper, it fhould be found neceffary, in order that the fhadows may be of the fame denfity, to remove the ftronger light to the diftance of eight feet from that centre, in that cafe, the real intenfity of the ftronger light will be to that of the weaker as 8^{2} to 4^{2}; or as 64 to 16 ; or 4 to I ; and fo for any other diftances.

It is well known, that when any quality proceeds
frem a centre in ftraight lines in all directions, like the light emitted by a luminous body, its intenfity at any given diftance from that centre will be as the fquare of that dillance inverfely : and hence it is cloar, that the intentities of the lights in queftion, at their fources, muft be to each other as the fquares of their diftances from that given point where their ray's uniting are found to be of equal denfity. For, putting $x=$ "the intenlity of B, if P reprefents the point where the rays from A and from B meeting are found to be of equal denfity or ftrength, and if the dillance of A from P he $=m$, and the diftance of $1 B$ from the fame point $l^{3}=n$; then, as the intenfity of the light of A at P is $=\frac{x}{m^{2}}$, and the intenfity of the light of B at the fame place $=\frac{y}{n^{2}}$, and as it is $\frac{x}{m^{2}}=\frac{y}{n^{2}}$ by the fuppofition, it will be $x: y:$: $m^{2}: n^{2}$.

That the Madows being of equal denfity at any given point, the intenfities of the illuminating rays muft of neceffity be equal at that point alfo, is hence evident that the total abfence of light being perfect blacknefs, and the shadow correfponding to one of the lights in queftion being deeper or fainter, according as it is more or lefs enlightened by the Gther, when the thadows are equal, the intenfities of the illuminating rays mut be equal likewife.

In removing the lights, in order to bring the fhadows to be of the fame denfity, care mult be taken to recede from, or advance towards, the centre of the paper in a ftraight line, fo that the one light may always be found exactly in the line of reflection of the other; otherwife the rays from the different lights falling upon the paper, and confequently upon the hadows, at different angles, will render the experiment fallacious.

When the intenfity of one ftrong light is compared with the intenfities of feveral fmaller lights taken together, the fmaller lights fhould be placed in a line perpendicular to a line drawn to the centre of the paper, and as near to each other as poffible; and it is likewife neceffary to place them at a greater diftance from the paper than when only fingle lights are cumpared.

In all cafes, it is abfulutely neceffary to take the greatclt care that the lights compared be properly trimmed, and that they burn clear and equally, otherwife the refults of the experiments will be extremely irregular and inconclufive. It is aftonifhing what a difference there is in the quantities of light emitted by the fame candle, when it burns with its greateft brilliancy, and when it has grown dim for want of fnuffing. But as this diminution of light is progreffive, and as the eye infenfibly conforms to the quantity of light actually prefent, it is not always taken notice of by the fpectators; it is neverthelefs very contiderable, in fact, as will be apparent to any one who will take the trouble to make the experinent; and fo great is the fluctuation in the quantity of light emitted by burning bodies, lamps, or candles, in all cafes, even under the moft favourable circumftances, that this is the fource of the greateft difficulties which our author met with in determing the relative
(A) One of thefe was employed in the college of Glafgow, by the lecturer on chemiftry, fo long ago as 1766.

LAM, $\left[\begin{array}{lll}\sigma_{j} &] & \text { L A M }\end{array}\right.$

1 amp. relative intanities of lights by the incthud here pro. pofed.
'To afcertain by this method the comparative denfities, or iatenfities, of the light of the woon and of that of a cardle, the moon's direct rajs munt be reccived up. on a plane white furface, at an angle of incidence of about 6,6 , and the candle placed in the lise of the repection of the muen's rays from this furface; when the firajuws of the ey liader, corrctponding to the mown's ligin and to that of the candle, being brought to be of equal denlity, by removing the candle farther off, or Linging it nearer to the centre of the white plane, as the occalion may require, the intenlity of the moon's light'will be equal to that of the candie at the given difinarice of the cinn the from the plane.

To afecrtain the intesitity of the light of the heavens, by day or by night, this light muf be let into a dakenad roum through a luag tube blackened on the infide, when its inteatity may be cempared with that of a condle or lamp by the method above decribed.

The Count, however, has contrived an apparatus for afertaining the intentity of ahe fun's li, ht, compared with the light emitted by al y artificial illuninator, with much greater accuracy than it can be done by this fimple method. That apparatus we flall deferibe under the title Phorometer in this Suphement; and in the mean time we p:ocecd to lay before our readers the refults of his experiments as they relate to cconviny in the production of artificial light.

The brilliancy of Argand's lamp is not only unrivalative quan-led, but the invertion is in the highent degree ingeniuus, ines of oil
nnfumed, nd of fikh: to judge of its real merits as an illuminator, it was neaitted, by ceffary to know whether it gives more light than another termined in the folluwing manuer:

Having placed an Argand's lamp, well trimmed, and burning with its greateft brillianey, befure his pholometer, auld over againft it a very excellent common lamp, with a riband wick about an inch wide, and which burnt with a clear bright flame, without the leaft ap- pearance of fmoke, he found the intenfities of the light cmitted by the two lamps to be in each other as 17956 to 9063 ; the denfities of the fhadows being equal when, the Argand's being placed at the dittance of $13+$ inches, the cummon lamp was placed at the ? dittance of 95,2 inches, from the field of the plotometer.

Both lamps having been very exactly weighed when they were lighted, they were now (without being removed from their places before the photometer) caufed to burn with the fame brilliancy juft 30 minutes; they were then extinguihed and veeghed again, and were found to lave confumed of oil, the Argand's lamp ${ }^{2} 5^{2} \frac{5}{8} \frac{3}{2}$, and the common lamp $\frac{163}{8182}$, of a Bavarian yound.

Now, as the quantity of light produced by the Argand's lamp, in this experiment, is to the quantity produced by the common lamp as 17956 to 9063 , or as 187 to :co, while the quantity of oil confumed by the former is to that confumed by the latter only in the ratio of 253 to 163 , or as 155 to 100 , it is evident that the quantity of light produced by the combultion of a given quantity of oil in an Argand's lamp is greater than that produced by burning the fame quantity in

Suppl. Vol. II. Part I.
a cumnon lamp, in the ratio of 187 to 155 , or as 100 tamp. to 85.

The faving, therefore, of oil which arifes from making ufe of an Argand's lamp inftead of a common lamp, in the production of light, is evident ; and ir appeats, from this experinicmt, that that faving camot aniount to lefs than fifteen per cerw. How far the advantage of this faring may, under certain ciremmfances, be counterbaiduced by inconveniemes that may attend the making ufe of this inproved lanip, our author does not pretcud to determine.

The Cuunt, made a confiderable number of experi-of the rement, to determine the relative quantities of light emit- lative quanted by an Irgand's lamp and a common wax-canole; titics of and the general refilt of then is, that a cummon Ar eed by ant gand's lainp, burning with its ufual brightnefs, gives Argand's about as much light ds tine good wax candiles ; but the tamp and fizes and qualitio of candles ate fo valous, and the by a conze light produced by the fame candle io fiuctuatins, that mon wax it is very difit to fatalle. it is very dififeult to afcertain, with any kind of precifion, what a common war. cantle is, or how wuch iight it ought to give. He once found that his Aygad's lamp, when it was burning with its greateit brihianc), gave twelve times as much light as a goud wax-candle $\frac{3}{4}$ ths of an incl in diameter, but uever more.

To determine to what the crdinary variations in the of the fluequantity of light emitted by a common wax-candle uations of migitit amount, he took fuch a candle, aud, lightines it, the light placed it before the photometer, and over againft it an cariered by Arrand's lamp, whell candlcso Argand's lamp, which was burning with a very fteady flame; and meafuring the intentity of the ligint emited by the candle from time to time, during an hour, the candle being occationally funffed when it appeared to ftand in need of it, its light was found to vary irom 100 to about 60. The light of a wax candle of an inferior quality was till more unequal ; but even this was but trifling, compared to the inequalities of the light oi a tallow candle.

An ordinary tallow.candle, of rather an inferior quality, having been juit fruffed, and burning with its greated brilliancy, its light was as 100 ; in eleven minutes it was but 59 ; after eight minutes more had elapfed, its light was reduced to 23 ; and in ten minutes more, or twent y-nine minutes afterit had been lafl fnuffed, its light was reduced tu 16 . Upon being again funfed, it recovered its original brilliarcy, 100 .

In order to afcertain the whative quantitics of bees of the rewax a:d of olive-vil confumed, in the production of lativequaulight, the Count proceeded in the followind inanner : tities of Having provided an end of a wax-candle bivhe beft bees-wax, quality, ,68 of an inch in diameter, and bint fourolive-oil, inches in length, and a lamp with live fmall wicks, which rape-oil, he had found upon trial to give the fame quantity of nd linlight as the candle, he weighed very exackly the candle confumed . and the lamp filled with oil, and then, piacing them at in the proequal diftances (furty inches) befure the field of the pho- duction or tometer, he lighted them both at the fame time; and, lighs. after having cauled them to burn with precifely the fame degree of brightnefs juft one complete bour, he extinguifhed then both, and, weighing them a fecond time, he found that ico parts of was and 129 parts of oil had been confumed.

Hence it appears, that the confumption of beeswas is to the confumption of olive-oil, in the produc-

Lamp. tion of the fame given quantity of light, as 100 is to
129.

In this experiment no circumilance was neglected that could tend to render the refult of it conclufive; care was taken to fruff the candle very often with a pair of fharp fciffars, in order to make it burn conftantly with the fame degree of brilliancy; and the light of the lamp was, during the whole tinic, kept in the molt exact equilibrium with the light of the candle, which was eafily done by occafionally drawing out, a little more or lefs, one or more of its five cqual wicks. Thefe wicks, which were placed in a right line, perpendicular to a line drawn from the middle wick to the midule of the field of the photometer, were about rith of an inch in ciameter each, and th of an inch from each other; and, when they were lighted, their flames united into one broad, thin, and very clear, white flame, without the leaft appearance of fmoke.

In order to afcertain the relativc confumption of oliveoil and rape-oil, in the production of light, two lamps, like that juft defrribed, were made ufe of; and, the experiment being made with all poffitle care, the confumptiun of clive-oil appeared to be to that of rape-oil, in the production of the fame quantity of light, as 129 is to 125 .
The experiment heing afterwards repeated with oliveoil and very pure linfeed oil, the confumption of olivewil appeared to be to that of linfect cil as 129 to 120 .

The experiment being twise made with olive-oil and with a tallow-candle; once when the candle, by being often fnuffed, was made to buru confiantly with the greateft pofible brilliancy, and once when it was fnuffed to burn the whole time with a very dim light, owing to the want of fuuffing; the refults of thefe experiments were very remarkable.

When the candle burnt with a clear bright flame, the cunfumption of the olive oil was to the coufumption of the taliow as 129 is to 101 ; hut when the candle burnt with a dim light, the coufumption of the olive-oil was to the confumption of the tallow as 129 is to 229 . So that it appeared, from this laft experiment, that the tallow, inftead of being nearly as productive of light in its combuftion as bees-wax, as it appeared to be when the candle was kept conftantly well fnuffeg, was now, when the cancle was fuffered to burn with a dim light, by far lefs fo than oil.

But this is not all; what is fill more extraordinary is, that the very fame candle, burning with a long wick, and a dim light, actually confumed more tallow than when, being properly finffed, it burnt with a clear bright flame, and gave near threee times as much light.
To be enabled to judge of the relative quantities of light actually produced by the candle in the two experiments, it will fuffice to know, that in order to counterbalance this light at the field of the plotometer, it required, in the former experiment, the corfumption of 141 parts, but in the latter only the confumption of $6+$ parts, of olive oil. But in the former experiment 110, and in the latter 114 , parts of tallow were actually found to be confumed. Thefe parts were 8192ths of a Bavarian pound.

From the refults of all the foregoing experiments, it appears that the relative expence of the undermentioned inflammable fubftances, in the production of light, is as follows:

Bees-wax. A good wax.candle, kept well fruffed, and burning with a clear bright flame,
Tallow. A good tallow candle, kept well
Tallow. A good tallow candle, kept well bright flame,

100
Fiqual Purrs I.amp. ${ }_{\text {in }}^{\text {In }}$ Weingh Purrs,$~ \underbrace{\text { Lamp, }}$

The farme tallow-candle, burning
very dim for want of fnuffing,
The fame tallow-candle, burning
very dim for want of fnuffing,
Olive.oil. Burnt in an Argand's lamp, .amp,
The fame burnt in a common lamp, with a clear bright flame, without fmoke,
Rape oil. Burnt in the fame manner, . . . 129
Linfeed-oil. Likewife burnt in the fame manner,
With the foregoing table, and the prices curremt of the therein mentioned articles, the relative prices of light produced by thofe different materials may very readily be computed.

In the year 1795, Mr J. H. Haflenfratz was employed by the French government to make a feries of experiments to determine the mof ecunomical method of procuring light from the different combutible fubAtances ufually employed for that purpofe. The materials of his experiments were, wax, fpermaceti, and tal-low-candles, fill-oil, oil of colefeed, and of poppy-feeds. In ufing thefe oils, both the Argand and common lamps were employed. The wicks of the latter were round, containing thirty fix cotton threads. The tallow and fpermaceti candles were mould, fix to the pound. The wax-candles five to the pound. Mr Haffenfratz ufed the fame method with Count Rumford for determining. the comparative intenfity of the lights.

Count Rumford, as we have feen, ufed the Argand lamp as a ftandard for comparifon; but as the intenfity of its light varies according to the height of the wick, Mr Haflenfratz preferred a wax-candle, making ufe of it foon after it was lighted. When two luminous bodies, of different intenfities, are put in comparifon with each other, the fhadows are of two colours. That from the weakef light is blue, and from tbe ftrongeft, red. When the lights of two different combuttible bodies are compared, they are either red or blue in a compound ratio of the colour and intenfity. Thus in comparing the fhadows from different luminous bodies, they will be red or blue refpectively, in the following order:

$$
\begin{aligned}
& \text { Light of the fun, } \\
& \text { of the moon, } \\
& \text { — of Argand lamps, } \\
& \text { - oflow-candles, } \\
& \text { Of wax ditto, } \\
& \text { of fpermaceti ditto, } \\
& \text { of common lamps. }
\end{aligned}
$$

That is to fay, when a body is illuminated by the fun and by any other luminous fubftance, the fhadow of the former is red, and of the latter, blue. In like manner, the fhadow from an Argand lamp is red, when placed by that of a tallow.candle, which is blue.

The following table will hew, according to Mr Haf. fenfratz, the proportional diftance that different luminous bodies fhould be placed at to produce an equally intenfe fhadow from the fame object. The fecond column

L A M
 [67] L A M

gives the proportional intenfity of cach light, which is known to be in proportion to the fquares of the dititanees of luminous bodies giving the fame depth of hadow. The third column thews the quantity of combutible matter confumed in the hour by each mode of giving light, which Mr Haffenfratz. calculates from the average of many repeated experiments.

		苞 号	$\left\|\begin{array}{l} 1 \\ 0 \\ 0 \\ 2 \\ 20 \\ 0 \\ 0 \end{array}\right\|$	
Argand ${ }^{\text {oil of poppyfeed }}$	10	10.002	23	${ }^{2} 3$
lamps $\}$ - of fithes	10	$10.00=$	23.77	23.77
with \int - of colcfeed	9.246	8.549	14.18	16.59
Common oil of colefeed	6.774	4.588	8.81	19.2
lamps $\}$ - of fifhes	$6.52+$	4.556	9.14	20.06
with - of poppyfeed	5.917	3.501	7.65	20.14
Spermaceti candle	5.917	$3 \cdot 501$	9.23	26.37
Old tallow candle	5.473	2.995	$\cdot 54$	25.17
New ditto	5.473	2.995	8.23	27.48
Wax candle	4.275	1.827	9.54	5.3

The relative quantity of combutible matter required to produce equal lights at equal diftances, may be obtained by a fimple rule of proportion from the above data. Thus, if a given intenfity of light, expreffed by 3.501 , las been produeed by a confumption of 9.23 of fipermaceti in the hour, the fame luminous body will produce a light of 10.000 , by confuning in the fame time a quantity of fpermaceti $=\frac{10.000 \times 9.23}{3.501}=26.37$. Therefore we may add to the table a fourth column, expreffing the quantity of combuftible which each budy mult confume to produce a light of 80.000 .

From what has been laid down, it will alfo appear that the number of lights required to produce a given light, will be as follows: To produce a light equal to 100 Argand lamps, burning poppyfeed oil, it will reçuire

> 100 Argand lamps with fifl.oil
> 117 Ditto do. with colefeed oil
> 218 Common lamps with colefeech oil
> 219 Ditto do. wwith filh oil
> 285 Ditto do. with poppyfeed oil
> 285 Spermaceti i candles
> 333 Tallow ditto
> 546 Wax ditto.

Mr Haffenfratz next takes notice of the comparative price of thefe articles; by which he finds, that in Paris the moft expenfive light is that produced from wax. candles; and the moft economical that from oil of coleleed burned in Argand lamps.

The chief difference between the Argand and common lamp is, that in the latter much of the oil is volatilized without combuftion, and hence the unpleafant finell which it produces; whereas in the former, the heat is fo great at the top of the wick, that all the oil is decompofed in paffing through, the difpolition of the wick allowing the free accefs of air to affit combuftion. It fhould therefore follow, that the Argand lamp con-
fumes lefs fuel to produce a given light than the cons. Lane fhire mon lamp, and this, as we have feen, is the opinion of Count Rumford. Yet (Mr Haffenfratz obferves) there are two circurnitances that prevent the full effect of the complete comburion in the Argand lamp. The one is, that the glafs cylinder abfurios a part of the rays of light as they pafs through ; the other, that the column of light proceeding from the inner furface of the \because ick, is, in pare, loft, by being oblliged to pafs shrough that from the outer furface. Count Rumford allows the firit caufe of diminution of light, and eftimates it at $\cdot 1854$, but not the latter. The author of this memuir, in repeating Count Rumford's experiments, afferts, that when two candles are placed fo that the light of the one is obliged to pals through that of the other, the fum of the light fo produced is not fo ftrong as when they are placed fide by fide; for in the firft cafe, a part of the hindmofl light is abforbed by the foremoft.

LANCASHIRE. In the account which we have given of that county in the Encyclopedia, an obliging correfpondent has pointed out to us tome miftakes. He affures us that the fea-coaft, wherc we underfood the atmofphere to be loaded with fuch exhalations as produce malignant and iutermitting fcvers, is remarkably healthy; and he fpeaks from experience, laviug lived on that coall for forty jears. He affures us likewife, that the Duke of Bridgewater's iuland navigation was begun foon after, if not before, the year 1736 , and that he (the writer), fo early as 1764, was one of a party who failed up the fough or edit a cenfiderable way to fee how the coals were worked. The fame correfpondent has pointed out a fow miftakes in our account of

LANCASTER, the capital of the county. "That town (he fays) carries on no trade whatever with Nurth Ameriea, but a very confiderable one with Jamaica and the other Weft India iflands, in veffels of from 100 c 500 tuns burthen. It exports to thefe iflands all fuch Britifl manufactures as they have occalion for, Irifh linens, and falted provifions of all kinds, fuch as Iriha beef, pork, butter, \&cc. It trades alfo to the Baltic, Portugal, Hamburgh, \&ec. to a large amount ; and fome of its thips with their cargoes have of late been worth from L. 60 to L. $80,0=0$ fterling. It has, however, no communieation by water with the rivers Merfey, Dee, \&c. as we have faid ; the canal reaching as yet no farther than to near Prefton in Lancsflire." The communication with thefe rivers is indeed intended to be completed; but whether the fcheme be practicable $i_{\text {o }}$, accurding to our correfpondent, very uncertain.

LANTERN. Sec Encyel.-Sir George Staunton informs us, that of the Chincie lanterns, fome were fuch as we-have defribed, viz. compofed of thin filk gauze, painted or wrought in needlework with figures of birds, infects, flowers, or fruit, and flrctehed on neat frames of wood. Others, however, were very different, being entirely made of horn. Thefe were fo thin and trantparent, that they were taken at firft for glafs; a material to which, for this purpofe, the horn is preferred hy the Chinefe, as cheaper, lighter, lefs liable to accident, and, in cafe of accident, more eafily repaired; many of them were about two feet in the diameter, and in the form of a cylinder, with the ends rounded off, and the edges meeting in the point to which the fufpending cords were tied. Each lantern confifterl of an uniferm piece of horn, the joints, or feams, bcing rendered in-

I. A N

Lantern. vifible by an art found out by the Chinefe; annong whom, thẹ vall nuabler of fuch lanterus ufed in then dwelling hourts and temples, as welt as un the oceations of their tellivals and pruciffius, have led to many trials for inproving their cuntruction. 'The hurns generally employed are thofe of thecp and goats. The ufual method of manaring thera, aceording to the information obtained upon the fpot, is to bend them by im. merfion in boiling water, after which they are cut open and flattened; they then eafly feale, or are feparated into two or three thin lanimix or plates. In order that thefe plates flould be made to juin, they are expofed to the penetrating cfict of fleam, by which they are rendered almoull perfectly foft. In this flate the edges of the pieces to be joined are carcfully feraped and flated off, fo as that the firces overlapping each other fhall not together exceed the thicknets of the plate in any other part. By applying the edges, thus prepared, immediatcly to each uther, and preffing then with pincers, they intinately adhere, and, incurporating, form oise fubflance, fimilar in every refpect to the other parts; and thus uniform pieces of horn may be picpared to almoit any extent. It is a contrivance little known elfewhere, huwever fimple the procefs appears to be; and perhaps fume minute precautions are umitted in the gencral deferiptiva, which may be effential to its complete fuccefs.

Such lanterns as thefe woull be very proper for military fore-houres; and Rochon of the National Inflitule was employed, fiace the commencement of the prefent war, to make them, if he could, for the marine forehoufes of France. While he was thus engaged, however, it occurred to him that he might fupply the preffing wants of the navy without horn, merely by filling up the interftices of wirceluth with fiue tranfparent glue. In carrying this thought into execution, he at firlt tinned the iron wires of the fieve-cloth he mate nfe of; but afterwards found it more convenient, in every refpect, to give it a flight coating of oil paint to preferve it from rutt. The glue he made ufe of was afforded by boiling the clippings of parchment with the air-bladders and membranes of fea-filh; matelials which he ufed, nut from any notion that they were preferable to ifinglafs, but becaufe they were the chcapeft he could procure. He added the juice of garlic and ceder to his compofition, in fuch proportions as be found to communicate great tenacity, and fomewhat more of tranfparence than it would have poffeffed without them. Into this traifparent and very pure glue or fize he plungred his wire-cloth, which came out with its intertices filled with the compound. It is requifite that the fize fhould poffers a deterninate heat and confiftence, concerning which experience alone mult guide the operator.

When this prepared wirectoth is fixtd in the lantern, it mult be defended from moiture by a coating of pare drying linfeed oil; but even in this flate it is not fit to he expofed to the weather. The eafe with which thefe lanterns are repaired in cale of accident, by a flight cuating of glue, is pointed out as a great advanterge by the inventor; who likewife informs us, that they were ufed in the expedition to Ireland as lignallanterns, though contrary to his wifhes.

LAPIS Fungifer, a fpecies of earth found neear Rome, Napies, and Florence, of which the following account is taken from the New Iranfacions of the Royal

Acadcmy of Scimes at Stockbolm for the yca: 1-9-: LarlizaNear Naples the lapis fungifer is found in the chalkhills like a white flalactites, imetmixed with a great many tine roots of fhrubs; and wear Florence there is a f_{p} vecies of it, confilting of hardened turf, which is dug up near volcanoes. The author made experiments with a piece procured from Italy, and found that 100 parts contain from 45 to 40 filiccous earth, 23 argillaceons earth, 7 calcareous earth, and 20 calx of iron, with fome white magnelia and vegetable alkali. It is well known, that when this friable frecies of flone is preferved in cellars and moitened with water, it produces abundance of eatable mufhrooms, which in Italy are highly rfteemed and brought to the fift tables. Hence the origin of its name.

LARDIZABALA, a new genus of plants belonging to the diucia bexandria of Limnxus. It is a native of Chili, and is thus defcribed in Peroufe's Voyage, from drawings fent to France by La Martiniere. The leaves are alternate, on footfalks inflated at their bafe. Lach leaf is biternate, that is to fay, it is divided into three leaflets, each of which is again fubdivided into three oval fharp-pointed folioles, which, when young, are entire, but afterwards become obfeurely lobed The flowers, difpofed in fimple and pendent clutters, grow towards the top of the Item and of the branches, in the axillx of the leaves. The plant is dioccius. At the bafe of each clufter of bloffoms are two fmall, rounded, oval, floral leaves.

Male Flower.-Calyx formed of fix expanding leaves, oblong oval, and obtufe, of which the three outermoft are the larget. Corolla compofed of fix fharp lanceolated petals, oppofite to, and fhorter than, the leaves of the caly. A cylinder rifes from the centre of the flower of the length of the petals, terminated by fix. oblong bilocular anthers, which open from below.

Female Flower. - Calyx, finilar to that of the male flower, but larger. Corolla inferted beneath the piltil, compofed of lix petals, rarely entire, but general. Iy bifid or trifid at their fummit : flurter than the leaves of the calyx. Stamina fix, having the fame infertion as the corolla; filaments diftinct, broad, very fhort, furrounding the piftil; antbers, fix, upright, oblong, acuminated, barren. Seed bud, cells, from three to fix, oblung, gibbous on the outfide, of nearly the length of the corolla ; Ityles none ; figmata, fitting, oblon'g, permanent. Berries, equal in number to the cells, oblong, acuminated (divided intu fix cel!.s, containing feveral angular feeds. Flora Pcruviana).

The gencral character of the lardizabala evidently places this new grenus among the family of the menifperme, to which it is related by its climbing thall, its bunches of dicccious flowers, by its fix pctals, ftamina, and leares of its calyx, by its piftil, compofed of from three to fix cells, which contain as many feeds. It ditfers from the known genera of this order only in its fruit, which, inttead of being monofpermous, contains feveral feeds. This character, which requires the introduction of a new fection into the menifperma, Arengthens the relation of this family to the next order of the arone. In fact, the greater part of the genera of the anonr, as they have in the fame flower feveral fruits, with numerous feeds, differ in this particular from all the genera of the menifperm x; and by placing between them the lardizabala, we eftablifh a natural
tranfition.

I. A V

trarfition. In order to confirm there reforablances, it only remains to examine the infide of the fruit, and particularly the itrnctare of the feeds. Thofe of the inenifperma are reniform, at leatt on the infute, inclofed in a hinged pericarpium, and containing in their upper part a very fimall dicotyledonus embryo. The characters that we have given of the lardizabala iender probable a fimilar ftructure in its feeds.

LARMHER, in areliitecture, a flat fquare inenher of the cornice below the cimatium, and jets out farthelt; being fo called from its ufe, which is to difperfe the water, and canfe it to fall at a dillance from the wall, drop by drop, or, as it were, by tears, larme in French lignifying a tear.

LÁTUS Primarium, a right line drawn through the vertex of the fection of a cone, within the fame, and parallel to the bafe.

Lates Rataum. See Conic Scrions. Encyel.
Latus Truniverfiom of the hyperhula, is the right line between the vertices of the two oppofite fections, or that part of their common axis lying between the two oppufite concs:

LAV'A. In addition to the obfervations of Sir Willian Hamilton, Bergman, Formes, and Dahnieu, on the compofition of different lavas, which have been given in the Encyslopadia, we cannot refuie ourfelves the p'eafure of noticing, in this place, thofe of sir James Hall. From a number of well-devifed experiments, Sir James thinks himfelf warranted to conclude, that lava and wlinftone are intrinfically the fame fubflance : and that their apparent difierences arife wholly from the circunflances under which they have paffed from a liquid to a folid ftate. The lavas, it is well known, have been conled rapidly in the upen air, and the whins (accorcing to Dr Hutton's theory, which Sir James teems willing to adopt) Ilowly in the bowels of the earth.

Though we are far from adopting that theory in all its parts, to which we think infuperable objections may be made (fee Earth, Incycl. $\mathrm{n}^{\circ} 120$), we admit, that the experiments of Sir James Hall go far to eltablifh the identity of lava and whinfone. Thefe expcriments were made upon feven different fpecics of whinftone and fix lavas, of which four were broken trom the currents of Etna and Vefuvius by Sir James himfelf. Each of the original whinttones was reduced, ty fufion and fubfequent rapid cooling, to a thate of perfect glafs. This glafs, being agan placed in the furnace, was fubjected to a fecond fulion. The heat, being then reduced to a temperature generally about 28° of Wedgewood, was maintained ftationary for fome hours; when the crucible was either immediately removed, or allowed to cool with the furnace. The conlequence was, that in every cafe the fubtlance had loft the character of glafs, and by cryflallization had affumed in all refpects that'of an original whinftone. It mult be owned, that in mott cafes the new production did not exactly refemble the particular original from which it was formed, but fome other original of the fame clafs; owing to accidental varieties in the mode of refrigeration, and to chemical changes which unavoidably took place during the procefs. In the cafe, however, of the rock of Edinburgh cafle, and of that of the bafaltic columns of Staffa, the artificial fubftances bear a complete refemblance to their originals, both in colour and texture.

J $1, \wedge$ V
The lavas were now ireated in the fame way, and Lava, were each, by fufina and rapid conling, reduced, as the Lavo fier. whimitones had been, to gli'fs 'I his glats, when fufed again and conled nowly, yiclded the tance kind of cryAtallized, tlony, or earthy mafles, completely refembling an original whin or lava.

Althongh the internal ftructure of lava was thus accounted for, yet Sir James was embarraffed with the Itate of its extcrnal furface: which, thnugh cooled in contan with the open air, is feldom or never vitreous, holding an intermediate flation between glafs and fone; but this dlfficulty was removed by a cirenmitance which took place in the courfe of thefe experiments. It was found that af fmall piece of glafs of any of the lavas, or of feveral of the whins being irtroduced into a mufle, the temperature of which was at any point between the 20th and the 22.3 degree of Wedgewoud's feale, the glafs became quite foft in the fpace of one minute; but, being allowed to remain till the end of a fecond minute, it was found to have become hard throughout in confequence of a rapid cryftallization, to have lof its character of glafs, and to have hecome by 12 or 14 degres more infuthle, being unaffected by any heat under 3 o, though the glafs had been fufible at 15° or at 16°. This decounted for the follia on the furface of lavas; for the fubftance even at the furface, being in enntaet with the flowing flrean, and furrounded with heated air, could not cool with exceffive rapidity : and the experiment Shews, that thould any part of the mafs, in defcending heat, emplny more than one or two minutes in cooling from 22 to 20 , it would infallibly lofe its vitreous character.

Independently of any allufion to fyitem or to general theory, Sir James Hall ilatters himilif that thele experiments may be of fome importance, by fin plifying the liitory of volcanoes; and, above all, by fupeifeding fome very extraordinary, and, he conctives, unphilofophical opinions advanced with regard to volcanic heat, which has been ftated as polfeffing very little intenfity, and as acting by fone ocult and inconceivable influence, or with the help of come invifible agent, fo as to produce liquidity withour fufion. Thefe firppotitions, which have been maintained ferioully by fome of the moft celebrated naturalits ia Europe, have originated from the difficulty of accounting for the domy character of lavas wheo conipared with that of glafs, whichd they affume in confequence of fution in our furnaces. But now he hopes we may be, relieved from the neceffity of fuch violent efforts of imagination, lince the phenomena have been fully azcountcd for by the fimple, though unnoticcd, principle of refrigeration, and have been repeated again and acrain with cefe and certainty in a fmall clamber furnace.

LAVOISIER (Antoine L_urent), was born in Paris on the 26th of Augult $17+3$. His father, who directed lis education, was npulent, and ipared no colt for his improvement. The youth mewed a decided tafte for the phyfical fciences. In 176 d, government having propofed an extraordinary premium for the bett and cheapett mode of lighting the ftreets of a large city, Lavoifier obtained the gold medal; and his memoir, full of nice inveftigation, was printed by the Acadımy. Into that body he was reccived on the 1 , th May 1768, in fpite of a fornidable oppofition; and to its fervice he ever after devoted his labours, and became one of its mort ufeful affociates and coadjutors.

I. A V

[70]

L A V

ter is converted into earth. 'I his question Lavoifer lavoifies. refolved in 1778 , having fiewn that the earthy fediment was owing to the continual erofion of the internal furface of the retort. In that fame year he made a mose interelting difcovery; namely, that the refpirabic portion of the atmofphere is a conftituent principle of all acids, and which he therefore denominated oxygen: a mot important fact, and the firft great ftep towards the new chemiftry; which the compolition of water, aicertained in 1783 , triumphantly completed.

Lavoifier poffeffed decifive advantages over his contemporaries; he itudied a geometrical accuracy of inveftigation ; and his wealth enabled him to make experiments on a large feale, and to ufe inftuments of the mott perfect contruction. He was able to hold in his houke, twice every week, affemblies, to which he invited every literary eharacter that was moft celebrated in geometrical, phyfical, and chemical ftudies; in thefe inttractive converfationes, difuffons, not unlike fuch as preceded the firft eflablifhment of academies, regularly took place. Here the opinions of the moft eminent li. terati in Eumpe were canvaffed ; paffages the moft flriking and novel, out of foreign writers, were recied and animadverted on; and theories were compared with experiments. Here learned men of all nations found eafy admiffion; Prieflley, Fontana, Blagden, Ingenhoufz, Landriani, Jacquin, Watt, Bolton, and other illuftrious phyfiologits and chemifts of England, Germany, and Italy, found themfelves mixed in the fame eompany with La Place, La Grange, Borda, Coufin, Mennier, Vandermonde, Monge, Morveau, and Berthollet. Happy hours paffed in thefe learned interviews, wherein no fubject was left uninveftigated that could poflibly contribute to the progrefs of the fciences, and the amelioration and happinefs of man. One of the greatelt benefits refulting from thefe aflemblages, and the influence of which was foon afterwards felt in the academy itfelf, and confequently in all the phyfical and chemical works that have been publifhed for the laft twenty years in France, was the agreement eftablifhed in the methods of reafoning between the naiural philofophers and the geometricians. The precifion, the feverity of ftyle, the philofophieal method of the latter, was infenfibly tranffufed into the minds of the former; the philofophers became difciplined in the tactics of the geometricians, and were gradually moulded into their refemblance.

It was in the allemblage of thefe talents that Lavoifier embellifhed and improved his own. When any new refult from fome important experiment prefented itfelf, a refult which threatened to influence the whole theory of the fcience, or which contradicted theories till then adopted, he repeated it before this felect fociety. Many times fucceffively he invited the feverelt objections of his critical friends; and it was not till after he had furmounted their objections, to the eonviction and entire perfuation of the fociety; it was not till after he had removed from it all myftery and obfcurity, that he ventured to announce to the world any difcovery of his own.

At length he combined his philofophical views into a confiftent body, which he publifhed in 1789 , under the title of Elements of Cbemiffry; a book which is a moft beautiful model of feientifie compofition, clear, logical, and elegant. It would be foreign to our purpufe to attempt an expofition of the principles, or to expa-
voifier. tiate on the merits, of this celehrated fy fem; which, within the foace of a very few years, has been almont univerfally adopted, and which, if nut the genuine inierpretation of nature, approaches as near to it as the prefent flate of knowledge will permit. See ChemisTRY in this Supplement.

The laft, but not the leaft uffeful, of Lavoifier's philofuphical refearches, on the Perfpiration of Animals, was read to the Academy on the $4^{\text {th }}$ May 491 , and of which part was publifhed in the volume for. 1790 . He found, by fome delicate experiments, made in conjunction with Seguin, that a man in 24 hours perfpires 45 ounces; that he confumes 33 ounces of vital air ; that he difcharges from the lungs 8 cubic feet of carbonic acid gas, of which one-third is carbon and twothirds are oxygen; that the weight of water difcharged from the lungs amounts to 23 ounces, of which 3 are hydrogen and 20 oxygen, exclufive of 6 ounces of water already formed, loft in pulmonary perfpiration. Thefe difcoveries were directed to the improvement of medicine.

We have mentioned the affiftance which Lavoifier received while he was digetting his new fyftem of chemiflry; but we mult add, that to him pertains exclufively the honour of a founder. His own genius was his fole conductor, and the talents of his aflociates were chiefly ufeful in illuftrating difcoveries he himfelf had made ; he firtt traced the plan of the revolution he had been a long time conceiving; and his colleagues had only to purfue and execute his ideas.

In the twenty volumes of the Academy of Sciences, from 1772 to 1793, are 40 memoirs of Lavoifier, reflete with all the grand phenomena of the feience; the doctrine of combution, general and particular ; the nature and analyfis of atmofphcrical air ; the formation and fixation of elaftic fluids; the properties of the matter of heat ; the compofition of acids; the augmentation of the ponderofty of burnt bodies ; the decompofition and recompofition of water; the diffolution of metals; vegetation, fermentation, and animalization. For more than 15 years confecutive, Lavoifier purfued, with unfhaken conftancy, the route he had marked out for himfelf, without naking a fingle falfe flep, or fuffering his ardour to be damped by the numerous and increa. fing obflacles which conflantly befet him.
Many were the fervices rendered by Lavoifier, in a public and private capacity, to manufactures, to the fciences, and to artifts. He was treafurer to the Aca: demy after Buffon and Tillet, and introduced cconomy and order into the accounts. He was alfo a member of the Board of Confultation, and took an active flare in whatever was going forwards. When the new fyrtem of meafures was agitated, and it was propofed to determine à degree of the meridian, lee made accurate experiments on the expanfion of metals, and conltruct. ed a metalline thermometer. Dy the National Convention he was confulted on the means of improving the manufacture of affignats, and of increafing the difficulties of forging them.

Like a good citizen, Lavoifier turned his thoughts to political economy. Detween the years 1778 and 1785 , be allutted 240 arpents in the Vendômois to experimental agriculture, and increafed the ufnal produce by pne-half. In 1791, he was invitcd by the Confti-
tuent Affembly to digell a plan for timplifying the col- Lavoifier lection of the taxes. This gave occafion to an excellent $\underbrace{\text { Lead. }}$ report, afterwards printed with the title of Territorial Riclees of France. At this time, alfo, he was appointed commiffionary of the national treafury, in which he effected fome beneficial reforms.

During the horrors of the Robefuicrean dienatorfhip, Lavoifier told La Lande that he forefaw he mould be fripped of his property, but that he would worl: for his bread. The profuftion of apothecary would have fuited him the beft. But his doom was already fixed. On the Sth of May 1794 , confounded with 28 farmersgeneral, he fuffered on the fcaffold, nicrely becaufe he was rich!

Lavoifier was tall, and of a graccful fprightly appearance. He was mild, fociable, obliging, and extremely active ; and in his manners he was unaffectedly plain and fimple. Many yourig men, not bleffed with the gifts of fortune, but incited by their genius to woo the fciences, have confeffed their obligations to him for pecuniary aid ; many, alfo, were the unfortunate whom he relieved in filence, and witlout the oftentation of virtue. In the communes of the department of the Loir and Char, where he poffeffed confiderable eftates, he would frequently vifit the cottages of indigence and diftrefs; and long will his memory be cherifhed there. But his reputation, influence, virtucs, and weafth, gave him a great preponderance, which unfortunately prevo. ked the jealonfy of a crew of homicides, who made a fport of facrificing the lives of the bell of men to a fanguinary idol.

This great and good man married, in 1771, MarieAnni. Pierctte Paulce, daughter of a farmer-gencral; a woman whofe wit and accomplifments conftituted the charm of his life; who affifted him in his labours, and even engraved the figures of his laft work.

LEAD. See that article, Encycl, and ChemistryIndex in this Supplement. It is well known that lead generally contains a portion of filver, and fometimes of gold; and that there are occafions, particularly in affaying, when it is of importance to have it freed from thefe metals. For accomplifinisg thefe purpofes different proceffes have been propofed; but the following, by Pel. Jac. Hjelm, as it is the lealt expenfive, promifes to be the mon ufeful:

Litharge (fee Encycl.) was the fubflance on which this chemift made his experiments, and his principal object was to free it from ail mixture of filver. This was accomplifhed in the fullowing manner: Fle placed a crucible, in which half a pound of litharge found good room, and which was fitted with a clufe cover, in a wind furnace filled with dead coals. He then put into the crucible a mixture of four ounces of potafh and the fame quantity of powder of flint. When the whole was well melted by ftengthening the draught, and making the cuals glow, he touk off the cover, and laid hold of the crucible with a pair of tongs, in order to take it out, and to fuffer this very fufible glafs to coverthe infide of the crucible, to fecure it from the glafs of the lead which he meant to melt in it. The fuperfluous glafs was poured out ; the crucible again placed on its fout, and half a pound of litharge thrown into it with a fovel. The cover was placed upon it while the litharge was melting; and when it was thoroughly glowing

L E D [ir 1 I E D

1.mad, glowing with fuid, charemil dutt was ifted into the uncovered crucitle through a fieve, fo that the furface of the litharee was completely covered witl. it. This immediatels produced an elfenvefence, and the rifing of buhbles, by means of the feparation of the air occafioned by the reduction of the lead. Dming this procefs, the cover was put on, and a few coals tirrown into the furnace: when thefe were burst, every thing in the crucible was quiet, and the melted mafs was poured into a warm conical mould. The crucible was then again fillid with half a pound of the fame kind of litharge, and put into the furnace, and charcoal huft was, feveral times fifted over the inelted furfaee, till it was well covered before the mafs was thrown out, a fufficient fpice being every time left for the effervefcence. The firt mafs had, in the thean time, become cool, and, on examination, contained frur ounces of lead at the bottcm, and litharge at the top. When this litharge was reduced with potafhes and wine tune, the lead thence obtained, which weighed 23 ounces, was found to contain lefs than one-half grain of filver in the pound. In the fecond mafs there was found fomewhat more than fix ounces of lead, which contained all the filver that had been before mixed with the litharge, becaufe in the lead which had been reduced from the litharge in the above manner, there were no perceptible traees of lilver. This lead was then melted over a flow fire, and caft into bars, which were rolled fmooth, and formed into mafics of a known weight, to be ufed for aflaying gold and filver, and for other purpofes of the fame kind. All thefe meltings were made in one crucible, which, according to every appearance, vemained whburt. If the fame experiments were made with red lead, the like refult would infallibly follow.

With the fame view of obtaining lead free from filver, he melicd, in the like manner, lalf a pound of white lead, which produced half an ounce of lead. When the litharge Annding orir it was revived, the lead oftained was ft.1! found to contain too much filver. He therefore precipitated anotlier lalf pound of white lead by charcoal powder, after the lead that fell from it had beell feparated; and then it produced, by reviving, a mafs of lead without any mixture of filver.

LEDYARD (-), the celebra:ed, though unfurtunate, traveller, was a native of North America, but of what province we have not laarned. We are equally ignorant of the year of his birth, and the rauk of his parents; but have no reafon to think that they were opulcrit. From his early youth he difplayed a ftrong propenfity to vifit unknown and favage countries; and to gratify that propenfity, he lived for feveral years with the American Indians, whofe manners and habits he feemed in fome degree to have acquired. Afterwards he failed round the world with Captain Cook in the humble ftation of a corporal of marines; and on luis return, he determined to traverfe the raft continent of America, from the Pacific to the Atlantic Occan.

This delign being fruftrated by his not obtaining a paffage to Nootka Sound, he determined to travel over land to Kamfchatka. With this view he went over to Oftend, with only ten guineas in ł:is pocket, and proceeded by the way of Denmark and the Sound to the capital of Sweden, and endeavoured to crofs the Gulph of Bothnia on the ice ; but finding, when he came to the middle, that the water was not frozen, he walked
 felf withou ftech ings ar floes; but procured relief from the Portugnefe annanadur, and obtaned leave to proceed with a detachmert of flores to lakuz. H. made this journey of fix thoufind miles, and there nitt Mr Billengs, an Englifhnam whem he had known on buard Captain Conk's mip. From thence he wert to Oeqakow, on the coalt of the Kamichatka Sea; but becing too late to embank that year, returned to Yakut\% to winter. Here he was, on fome fufpicion, ficized, conveyed on a fedge through Nurthern Tartary, and irft on the frontiers of the Polifh doninions. In the midt of poverty, rags, and difeafe, he howter reachod Koningfburgh, where he found fricuds :hat enabled him to te.e.ch England.

On his arrival in Londun, he waited un Sir Jofepla Banks, ò whofe credit he had, in his diftefs, receired at different times 25 gumeas. Sir Joferh communicated to him the views of the African Alfuciation, and pointed out the route in which they willed Africa to be explored. On his cugaging at once in the enterprife, Sir Jofeph afked lim when lie would be alle to fet out. "To-murrow morning," replicd Ledyard, withont hefitation. At this interview the prefident of the Royal Society declares, that he was flruck with the tgure of the man, the breadth of his chen, the opennefs of his countenance, aud the rolling of his cye. Though fearcely exceeding the middle fize, his figure indicated great ftrength and activity. Defp:ling the accidental diftinctions of fuciety, he feemed to regard no man as his fuperior; but his manners, though coarie, were not difagreeable. His uncultivated genius was original and comprelenfive. From the native energy of his mind, he was adventurous, curious, and unappalled by dangers; white the frength of his judgment united caution with energy. The track pointed out to him was from Cairo to Senaar, and thence wefward in the latitude and fuppofed direction of the Niger.

He was not ignorant that the tafk afligned him was arduous and big with danger; but in:fead of thrinking from it, he faid, on the day of his departure, "I "wa accuftomed to hardfhips; I have known both hunger and nakednefs to the nimoll extremity of humaa: fulfiring; I have known what it is to have food given me as charity to a malnnan; and I have at times been obliged to helter neyfelf under the miferies of that character to a void a beavier calamity. My difteffes have been greater than I ceer owned, or ever will own to any man. Such evils are terrible to bear, but they never yet had power to turn me from my purpofe. If I live, I will faithfully perform, in its utmof extent, my engagement to the Siuciety : and if I perilh in the attempt, iny honour will be fafe ; for death cancels all bonds."

After receiving his inftructions and letters of recommendation, this intrepid traveller failed from London on the 3 oth of June 1758 ; and in 36 days arrived at Alexandria. Proceeding to Cairo, where le arrived Auguft the 17 th, he vifited the flave markets, and converfed with the travelling merchants of the caravans. Thefe fources of information, gencrally neglected by travellers, enabled him to obtain, at a very fmall expence, more correct information concerning the African nations and their trade, the pofition of plaees, the nature of the country, the manner of travelling, \&c. than could have heen eaflly obtained by any other method. He

L. E D

Ryard. thus learned, that the Arabs of the defert have an invincible attachment to liberty, though it is frugular that they have no word to exprefs liberty in their language. The Mahomedans of Africa are a trading, fuperfitious, and warlike fet of vagabonds. He fave near 200 black flaves expofed to fale, who had been brought from the interior parts of Africa ; their appearance favage, but not like prifoners of war ; they had heard ormancnts, and their hair plaited in detached phaits of great leng!h. Another parcel, which had come from 1)arteor, were motlly women; and the beals, and fome other onaments which they wore, were Venetian. They were well furmed, quite tlack, had the truc Guinea face, and culed hair. Mry Ledy ard was informed, that the king of Senaar was a merclant, and concerned in the carava:s ; that 20,000 negro faves are imported into Egypt aunually. \therefore mong tome siencar falts, he faw thrce of a bright olive cotour, but their heads uncommonly form ed, the forehead the narroweft, longen, and moft protuherant he ever filw.

The Senaar caravan is the moft rich; that of Dirfoor is not equal!y fo, though it trades with almoft the fame commodities. Betides flaves, th.cfe are gum, clephants teeth, camels, and oltrich. Feathers; for which are reccived in exchange trinkets, foap, antimony, red linen, ra\%ors, fciftars, mirrors, and beads. Wangart, to which the caravans allo trade, was reprefented to Mr I. edyard as a kingdom producing mueh gold; but the king feems to intermiddle with commerce as well as the potentate of Senaar ; for in order to deccive Atrangers. and prevent them from gueffing at the extent of his liches, he was reported to vary continually the gold ufed in barter, which it is his province to regulate, and of which he iffues at one time a great quantity, and at others little or none. A caravan goes frum Cairo to Fezzan, which they call a journey of fifty days; and as the caravans travel about 20 miles a day, the diftance muft be about I comiles; from Fezzan to Tombuctoo is 1800 miles; from Cairo to Senaar about 600 miles.

Such was the information which Mr Ledyard derived from the merchants of the caravans in Egypt; but when he was about to verify it by his own obfee vations, and had announced to the Aflociation that his siext difpatch would be dated from Senaar, he was feized with a bilinus comphaint, which fruftrated the fill of the mont eminent phy ficians, and put a period to his travels and his life at Cairo. It is needlefs to fay how much his death was regretted, or how well he was qualified for the anduous cnterprife in which he had engaged. The perfon who, with fuch fcanty funds, could penetrate the frozen regions of Tartary, fubfift among their churlifh inhabitants, and ingratiate himfelf with the ferocious Moors of Egypt, could hardly have failed to obtain a kind reception from the gentle and hofpitable Negro, had no untoward circumitance intervened. At Senaar, indeed, his rifk would have beeñ great; and Mr Bruce was decidedly of opinion, that a man fo poorly attended as Mr Ledyard, could never have made his efcape from that treacherous and ferocions people.

The obfervations of this accurate obferver on the female character, though they have been repeatedly quoted in other works, are well entitled to a place here; and with them we fhall conclude this fketch of his life: "I have always (fays he) remarked, that women in all countries are civil and obliging, tender and humane; Suppl. Vol. II. Part I.
that they are ever enclined to be gay and cheerint, ti- Le.lyard morous and modeft ; and that they do not helitate, like man, to perform a generous action. Not haughty, not arrogant, not fupercilious; they are full of courtefy, demyngton and fond of focicty; more liatile, in general, to err than man ; but in general alfo more virtuous, and performing more good actions than he. To a woman, whether civilized or fusage, I mever adrircfed myfelf, in the lan. guage of ilecency and frimdfnip, without receiving a decent and fiendly anfwer. With man it has often been otherwife. In wandering over the barren plains of inhofpitable Denmarl, through honeft Sweden, and frozun Lapland, rude and churlinh Finland, unprincipled Ruflia, and the wide fpread regions of the wandering Tartar; if hungry, dry, cold, wet, or fick, the wome:1 have ever been friendly to me, and uniformly fo. And to add to this virtue (fo worthy the appellation of benevolence), thefe actions have been performed in fo free and kind a manner, that if 1 was dry, I drank the fweeteft draught; aud if hungry, I eat the coarfeft morfel with a double relifh." For a fuller acconult of Ledyard, fee T'be Traufations of the African AlJociation, or A View of the Late Dijcoveries in Alfrica

Hyperbolic LEGs, ate the ends of a curve line that partakes of the nature of the hyperbola, or having alymptots.

LEMINGTON Priors, is a village two miles eaft of the town of Warwick, fumous for its mineral waters. One falt fpring, which rifess near the church yand, lias been long known, as well as another which ries in the bed of the river; but the moft remarkable fpring was difcovered in the year 1790. The waters of both fprings have heen analyzed with great accuracy by William Lambe, M. A. late Fellow of St John's colledge, Cambridge, who has given us the fnllowing fynoptical table of the fublances contained in them:

Gafoous Fluids contained in a Hine-rallon in Cubic inches.

Hepatic gas	Water of the	water of th
	new spring.	
	Too fmall to be nieafured.	Too fmall to be menfured.
Azotic gas.	3.5	,
Carbonic acid gas	. 5	-

Solid contents of a Wine-gallon in Grains.

	water of the NEW SPRING.	Water of the OLD SPRING.
Carlonat of iron	. 75	
Oxyds of iron and manganefe		Too fmall to rueighed.
Oxygenated muriat	Unknozun, but very	Unknown, but vers
of iron and man-	fmall.	fmall.
ganefe - -		
Sulphur - -	Unknozun, but very finall.	-
Muriat of magnefia	11.5	58
Muriat of foda	430	33°
Sulpbat of Soda	152	62
Suiphat of lime	112	146

In the courfe of his experiments, for which the mult refer to the original memoir, in Tranfactions of the Manchefter Society, Mr Lambe thinks he difcoK vered

L E N

Iemnif vered the origin of the moriatic acid. Ife found a and to convert the cxtremity of this into a fiberule by cat: coincidence, very mexpected, between the hepratifed Ledfe: folution of irom ard the oxygenated mmiat of iron. "I had almort concluded (fays he). from the refemblance between the pronerties of this falt and the ple-norrena of the water, that the water contains this very falt. Now, I conclude', that they contain a matter, be it what it may, produced by the afion of hepatic fas on ionn. But they are the very fame facts which form the bafis, upon which each feparate inference is built. Does it not follow, then, as a neceflary confoquence, that the hepatifed folution itielf contains a muriat of iron highly osygenated, and that therefore in this pooce/s muriatic acid is generated?' 'Ihis conclufion feemed atsthorifed hy reafon, and experiment has confirmed it."

LEMNTSCATE, the name of a curve in the form of the figure of 8 .

LEMON JUice, is an article of fuch harmlefs luxury, and in fome cafes of fuch real utility, that many of onr readers will be pleafed to linow a fimple method by which they may obtain it in great purity. In the arti-
 Scheele and Dizé, how to ohtain the citric acid perfectly pure, and in the form of cryftals; but here we mean nothing more than to thew how it may be completely feparated from that flimy fubllance with which it is always mixed in the lemon, without allowing it time to fpoil or to acquire any difagreeable tafte during the feparation. This we are enalled to do by M. Brugnatelli, who, in the fecond volume of the Annali de Cbimia, infurms us, that he exprelled in the common manner the juice of perfectly ripe lemons, and trained it through a piece of hinen. In half an hour he flrained it again, to free it from a little flimy matter which had fettled at the bottom of the verfel. He then added to the juice a certain quantity of the ftongelt fpirit of wine, and preferved the misture for fome days in a well-corked bottle. During that time there was a confiderable depofit, which to all appearaice was of a flimy nature, and which he feparated by filtering paper. If the fluid was too thick to pafs through the filter, he diluted it again with fpirit of wine. After this operation, the depofit remained on the paper, which was entirely covered with it ; and he olotained, in the veffe] placed helow, the pureft acid of Iemons combined with fpirit of wine.

If it be required to obtain the acid perfectly pure, nothing is neceflary but to feparate from it the fpirit of wine, which can be bett effected by tvaporation. The acid of the lemons affumes, after it has been freed from the fpirit of wine and the moifure combined with it, a yellowifh colour, and fecomes fo throng, that by its tafte it may be confiodered as a mineral acid.

It is not neceflary to evaporate the fuirit of wine in a clofe veffel, if the experimett is made only on a fmall fale; nor is there any danger that in open veffels any of the acid will be lof, as it is too fixed to be votalitifed by the fame degree of heat at which fpirit of wine evaporates. This acid las peculiar properties, which deferve farther examination.

LENSES (fee Lens and Dioptrics, Encycl.), are either bluwn or ground.

Blown LANSES are ufed only in the fingle microfcope; and the ufual method of making them has been to draw out a fine thread of the foft white glafs called cryfal,
melting it at the flame of a candle. But this glafs contains lead, which is difpofed to become opake by partial reduction, imle.fs the management be very carefully attended to. We are informed, however, by Mr Nicholfon, that the hard glafs ufed for windows feldon fails to aflord excellent fpherules. This glafs is of a clear bright green colvur when fien edgewife. A thin piece was cut from the edge of a pane of glafslefs that one-tenth of an inch broad. 'This was held perpendicularly by the upper end, and the flame of a candle was directed upon it by the blow-pipe at the diltance of about an inch from the lower end. The glafs became foft, and the lower piece defeended by its own weight to the diftance of about two feet, where it remained fuf. pended by a thin thread of glafs ahout noe five-huldreth of an inch in diameter. A part of this thread was applied endwife to the lower blue part of the flame of the candle without the ufe of the blow-pipe. 'llee extremity immediately became white-hot, and formed a glubule. The glafs was then gradually and regularly thruft towards the flame, but never into it, until the globule was fufficiently large. A number of thefe were made ; and being afterwards examined, by viewing their fucal inages with a deep magaifier, proved very bright, perfect, and round. This, as the ingenious author ob. ferves, may prove an acceptable piece of information to thofe eminent men (and there are many fuch), whofe narrow circumflances, or remote fituations, are obliged 2.0 have recourfe to their own fkill and ingenuity for experimental implements.

Ground Lenses, are fueh as are ground or rubbed in. to the defired fhape, and then polifhed. Different flapes have been propofed for lenfes; but in the article Optics, $n^{\circ} 25^{1}$ (Encycl.), it has been thewn that, after all, the fuherical is the moft practically ufeful. By many of the methods of grinding, however, the artificer, with his utmoft care, can only produce an approxi. mation to a truly fpherieal figure; and, indeed, gentlemen have, for the moft part, notling to depend on for the fphericity of the lenfes of their telefcopes, but the care and integrity of tine workmen. In the 41 th volume of the Tranfactions of the Koyal Society of London, a machine is deferibed by Mr Samuel Jenkins, which, as it is contrived to turn a fphere at one and the fame time on two axes, cutting each other at right angles, will produce the fegment of a true fphere merely by turning round the wheels, and that without any care or fkill m the workinen. The following defeription of this machine will enable our readers fully to comprehend its conftruction, and the mode of uting it: A is a glube covered with cement, in which are fixed the pieces of glafs to be ground. This globe is faftened to the axis, and turns with the wheel B. C is the brafs cup which polifhes the glafs: this is faftened to the axis, and turns with the wheel D. The motion of the $\operatorname{cup} C$, therefore, is at right angles with the motion of the globe A ; whence it follows demontrably, that the pieces of glafs ground by this double motion muft be formed into the fegments of fpheres.

LEO X. is a pontiff to whom learning, and art, and feience, are fo deeply indebted, that not to give a Netch of his life and character, in a Work of this kind, would be an unpardonable omiffion. A character of him is indeed given in the Encyclopedia; but it is fo far from the truth,

I E O

tuth, that it is difficult to conceive the prejudices under which he mut have laboured by whom fuch a libel was drawn up.

Leo, whofe name, before his elevation to the pontificate, was Giovanni de Mcalisi, was the feeond fon of Lo. renzo de Medici, jutly ityled the Magnificent. In the life of that great man publified in this Supplement, the wealer will fee by what means, and for what purpofe, he got Ciovanni raifed to the dignity of cardintl at fo carix. a period of life:; and in the elegant work of Rofooe, to which we there refer, he will fud fuch inttructions of Lorenzo to the cardinal as muft have made a deep impreftion on his youthful mind.

Speaking of his promotion, Lorenzo fays, "The firft thing that 1 would fugrgeft to you is, that yoo nught to be grateful :o God, and continually to recollect that it is not through your merits, your prudence, or your follicitule, that this event has taken place, but through bis favour which you can repay only by a pious, chafle, and exemplary life; and that your obligations to the performance of thefe dutios are fo much the greater, as in your early years you have given fone reafonable expectat:on that your riper age raay produce fuch fruits. It would indeed be highly difgraceful, and as contrary to your duty as to my. bopes, if at a time when others difplay a greater thare of reafon, and adopt a better mode of life, you fhould forget the precepts of your youtb, and forfake the path in which you have biblerto trodsen." "I well know (continues Lorenzo), that as you are now to refide at Rome, that link of all iniquity, the diffieulty of conducting yourfelf by theie admonitions will be increafed. The influence of example is itfelf prevalent ; but you will probably meet with thofe, who will particularly endeavour to corrupt and incite you to vice ; becaufe, as you yourfelf may perceive, your edisy attainment of fo great a dignity is not, obferved without pory, and thofe who could not prevent your receiving that honour, will fecretly endeavour to diminifh it, by inducing you to forfeit the good eftimation of the pub. lic."-" You are not unacquainted with the great imfortance of the character which you have to futtain ; for you well know, that all the Chriftian world would profper if the cardinals were what they ought to be; brcaufe in fuch a cafe there would always be a good pope, upon which the tranquillity of Chrittendom fo materially depends."

As this was a confidential letter from Lorenzo to his fon, the firft of thefe extracts furnifhes very fufficient ewidence, that Giovanni had been at lealt a well behaved boy, diligent in his ftudies, and regular in his conduct ; and without fuppoling him remarkably religious, the admonitions of fuch a father, aided by his own ambition and love of letters, would furely guard him againt fuch grofs licencioufnefs as that of which he is accufed in the Encyclopedia. How much he revered his father, is apparent from tbe letter which he wrote to his brother immediately after Lorenzo's death. "What a father (fays he) have we loft! How indulgent to his chil. dren! Wonder not, then, that I grieve, that I lament, that I find no reft. Yet, my brother, I have fome confolation in reflecting that I have thee, whom I flall always regard in the place of a father," Surely this is not the language of a grofs fenfualit, or of one who could foon forger the falutary admonitions of fuch a paent as Lorenzo de Medici. But it is needlefs to infer

751 I. E O

the decency of his charater by fuch reafonings as thefe. Les. The fory puhlifhed in the Lucyclopedia, of the manuer in which the Cardinal de Medici obtaned the tiard, cannot poffibly be true. The reader, who flall turn to the article Pope in that Work, will find that the conclave, when fitted up for in election, is fo lagge a place, that we may fafely affirm, that had the cardinal's ulcer difcharged matter fo fetid as to poifon all the cells, the af. fertion of the phyficians would have been verified, and that in the then late of the bealing art, the new pope could not have furvived a month. Let it be remenbered, tou, that Leo, at his accefion, was not 30 , but 37 years of age, and that lie had long ruled in Florence with fovereign fway by the fane means which had upheld the authority of his father. The follies of youth, therefore, had he ever been remarkable for fuch fullies, muft have been over with him; and in fuch a fate ats Florence he could not have maintained the authority of Lorenzo, without exhibiting not only Lorenzo's liberality, but likewife his decency of manners.

The next charge brought againtt Loo in the Encyclopedia, is, that he pablithed general indulgencice throughout Europe; and this is foexpreffed as to leas the ill informed reader to Cuppofe, either that no fuch indulgencies had ever been publimed hy any of his predeceflors, or that there was fomething peculianly fcandalous in Leo's mose of publifhing them. Bot j_{1} fuppolitions, however, are erroneous. The hitorian ot the council of Trent, who certainly was not partial to the court of Rome, or to the difpenting power of the pop», has fhewn, that the practice of railing money, by the publication of indulgencies, had prevailed ever fince the year t 100 ; that many former pupes had raifed money in this manner for purpofes much lefs laudathle than thofe which Leo had ia hiseje; and that the real caufe of Luther's attack upon Leo's iadulgencies was, that they were preached through Saxony by the Dominica: friars; whereas the preaching of former indulgencies had been committed to thie hermits of St Augutine, the order to which Luther himfelf belonged!

Leo is likewife accufed is the Encyclopadia of being a profeffed infidel, and of having called Chrittianity "a fable very prolitable for him and his predeceflors." But of the truth of this accufation there feeas not to be the Shadow of evidence. Leo had too much fenfe to utter exprefiuns of this kind, even had he been an unbeliever in his heart ; for he could not puflibly expect that his indulgencics and parduns would be purchafed, had he declared in fuch ttrong terms that they were of no salue. Father Paul indeed fays, that he was not a deep divine, or fo pious as fome of his predeceffors; but he affirms, that he adormed the papacy with many admirable qualities; that he was learned, affable, liberal, good; that he delighted in healing differences, and that his equal had not, for many years, filledthe chair of St Peter. Surely this is not the character of a profane inficlel!

Leo has been charged with raifing his own fanily to grandeur at the expence of juftice; and of dealing treacheraully, in order to effect this purpofe, both wit h_{1} the Emperor and with the French king. But the charge is cither falfe or greatly exaggerated. He lolt no opportunity indeed of aggrandizing his relations, well knowing, that in order to fecure to them any lafting benefit, it was neceffary that they fhould be powerful enough to defend themfelves, after his death, from the

L E S [76] E S

leo, rapacious aims of fucceeding pontiffs; but, in profeculeflie.

- $\mathrm{Dr}_{\mathrm{ra}}$

 berffon. ting this plan, he was fo far from acting tyranmeally or injuriounly to others, that during his pontificate, the papal dominions enjoyed a degree of tranquillity fuperior to any other Italian thate. During the contefts that took place between the emperor and the French king, fo far from acting treacheroully, he diftinguifhed himfelf by his moderation, his vigilance, and his political addrefs; on which account he is juttly celebrated by an eminent hillorian of our own*, as "the only prince of the age who obfersed the motions of the two contend- ing monarchs with a prudent attention, or who difcovered a proper folicitude for the public fafety."We truit that no zealous Proteftant will think we have employed our time ill, in vindicating the claracter of this fplendid pontiff; for good learning, and, of courfe, true religion, are more indebted to Leo X. than to any other individual of the age in which he lived, his father Lorenzo alone excepted.

Lno Minor, the Little Lion, a conftllation of the northern hemifphere, and one of the new ones that were formed out of what were left by the ancients, under the name of Stelle Informes, or unformed fars. See As. tronomy, n ${ }^{\circ}$ 4of. Encycl.

LESLIE (Charles), was a man fo eminent for lis learning, his talents, and his piety, that a fuller account of him than that which is given in the Encyclopedia muit be acceptable to our Chrittian readers. He was the fecond fon of Dr John Leflie bifhop of Clogher in Ireland, who was defcended from an ancient family in the north of Scotland, and heing an admirable fcholar, rofe to the dignity of bifhop of Orkney in his own country, whence he was tranflated, in 1633 , to Raphoe in Ireland, and afterwards, in 1661 , to the fee of Clogher.

Our author was born in Ireland, hut in what ycar we have not learned. A ludicrous tlory goes indeed of his having been begotten in prifon, and of his father having faid that he hoped he would in confequence become the greateft fourge of the covenanters that Great Britain or Ireland had ever feen. This ftory, with all its circumitances as told to us, can hardly be true; but we think it could not have been fabricated, had not Charles Leflie been born within a year of Cromwell's conqueft of Ireland, when the good bifhop, having fultained a fiege in his caftle of Kaphoe againft that arch rebel, was fome time kept in clofe confinement.

We are equally ignorant of the fchool where he was educated as of the year of his birth; but we know that he had his academical education in Trinity College, Dublin, where he took the degree of mater of arts. In the year 1671 , he loft his father, when he came over to England, and, entering himfelf in the Temple, ftudied law for fome years, but afterwards relinquifhed it for the ftudy of divinity. In 1680, he was admitted into holy orders; and, in 1687 , was made chancellor of Connor.

About this period he rendered himfelf particularly obnoxious to the Popifh party in Ireland, by his zealous oppofition to them, which was thus called forth. Roger Boyle, bifhop of Clogher, dying in 1687, Patrick Tyrrel was made titular Yopifh bifhop, and had the reBichrapbical yyrel was the fee affigned him by king James. He fet
Difivnary, venues of up a convent of friars in Monaghan: and, fixing his habitation there, held a public vifitation of his clergy with
great folemuity ; when, fome fubtile logicians attending him, he was fo infolent as to challenge the Protellant clergy to a public difputation. Leflic undertook the tafk, and performed it to the fatisfaction of the Proteftants; though it happened, as it generally does at fuch contells, that both lides claimed the victory. He af. tcrwards held another public difputation with two celebrated Popinh divines, in the church of Tynan, in the diocefe of Armagh, before a very numerous affembly of perfons of hoth religions; the ilfue of which was, that Mr John Stewart, a Popith gentleman, folemnly renounced the errors of the church of Rome.

As the Papifts had got poffeffion of an Epifcopal fee, they engroffed other offices too ; and a Popifh highfheriff was appointed for the county of Monaghan. This proceeding alarmed the gentlemen in that courty ; who, depending much on Leflie's krowledge as a juftice of peace, repaired to him, then confined by the gont to his houfe. He told them, that it would be as illegal in them to permit the fheriff to act as it would be in him to attempt it. But they infifting that he fhould appear himfelf on the hench at the next quarter feffions, and all promifing to fand by him, he was carried thither with much difficulty and in great pain. When the Pheriff appeared, and was taking his place, he was afked whether he was legally qualified ; to which he anfwered pertly, "That he was of the king's own religion, and it was his Majefty's will that he fhould be fheriff." Lefliz replied, "That they were not inquiring into his Majelty's religion, but whether he (the pretended Theriff) had qualified himfelf according to law, for acting as a proper officer; that the law was the king's will, and nothing elfe to be deemed fuch; that his fubjects had no other way of knowing his will, but as it is revealed to them in his laws; and it muft always be thought to continue fo, till the contrary is notified to them in the fame authentic mauner." Upon this, the bench unanimuufly agreed to commit the pretended fheriff, for his intrufion and arrogant contempt of the court. Lefle alfo comnitted fome officers of that tumultuous army which the Lord Tyrconnel raifed for rubbing the country.

In this fpirited conduct Lenlie acted like a found divine and an upright magiftrate ; but though he thought himfelf authorifed to refif the illegal mandates of his fovereign, like many other great and good men, he diftinguifhed between active and paffive obedience, and felt not himfelf at liberty to transfer his allegiance from that fovereign to another. Refufing therefore to take the oaths to kirg William and queen Mary, he was deprived of all his preferments; and in 1689 he removed with his family to England, where he publimed the fol. lowing works, befides thofe already noticed in the Encyclopadia: r, Anfwer to Archbihhop King's State of the Proteftants in Ireland. 2. Caffandra, concerning the new Affociations, \&c. 1703, fto. 3. Rehearfals; at firtt a weekly paper, publifhed afterwards twice aweek in a half-fheet, by way of dialogue on the affairs of the times; begun in 1704, and continued for fix cr feven years. 4. The Wolf Aripped of his Shepherd's Clothing, in Anfwer to Moderation a Virtue, 1704, 4to. The pamphlet it anfwers was written by James Owen. 5. The Bifhop of Sarum's [Burnet's] proper Defence, from a fpeech faid to be fpoken by him againft occafional conformity, 1704 , 4to. 6. The new

L E S

enic. Affociation of thofe called Muderate Churclimen, \& c. occafioned by a pamphlet, entitled, The Danger of Prieftcraft, 1705,4 to. 7. The new Aifociation, part 2d, 1705,4 to. 8. The Principles of Diffenters concerning T'oleration and occafional Conformity, 1705 , 4to. 9. A warning for the Church of England, 1706, 4to. Some have donbted whether thefe two pieces were his. 10. The good old Canfe, or Lying in Truth ; being a fecond Defence of the Bihop of Sarum from a lecond Speech, Sc. 1710. For this a warrant was iffucd out againft Leflie. 11. A Letter to the Difhop of Sarum, in Anfwer to his Sermon after the Queen's Death, in Defence of the Revolution, 1715. 12. Salt for the Leech. 13. The Anatomy of a Jacobite. 14. Gallienus redivivus. 15°. Delenda Carthago. 16. A Letter to Mr William Molyneus, on his Cafe of Ireland's being bound by the Englith Acts of Parliament. 17. A Letter to Julian Johnfon. 18. Several Tracts againt Dr Higden and Mr Hoadly. 19. A Difcourfe, fhewing who they are that are now qualified to adminifter Laptifin. 20. The Hiftory of Siia and Herefy, Scc. 1698, 8vo. 21. The Truti of Chrilianity demonftrated, in a Dialogue between a Chriltian and a Deith, $1711,8 \mathrm{vo}$.-Againtt the Papitts : 22. Of private Judgment and Authority in Matters of Faith. 23. The Cafe Itated between the Church of Rome and the Church of England, \&c. 1713. 34. The true notion of the Catholic Church, in Anfiver to the Bifhop of Mcaux's Letter to Mr Nelfon, Sc.

Befids sthefe, he publifhed the four following Tracts: 25. A Sermon preached in Chetter, againft Marriages in different Communions, $1702,8 v o$. This fermon occafioned Mr Dodwell's difcourfe upon the faune fubject. 26. A Differtation concerning the Ufe and Authority of Ecclefiattical Hittory. 27. The Cafe of the Regal and the Pontificate. 28. A Supplement, in Anfwer to a Book, entitled, The regal Supremacy in Ecclefiatical Affairs afferted, \&cc. Thefe two laft pieces were occafioned by the difpute ahout the rights of convocation, between Wake, \&c. on one fide, and Atterbury and his friends, among whom was Lenie, on the other.

It is faid by the authors of the Biographical Dictionary, that, in confequence of a publication of his, cutitled, "The hereditary right of the crown of England afferted," he was under the neceffity of leaving the kingdom; and that he repaired to the Pretender at Bar le duc, where he was allowed to officiate, in a private chapel, after the rites of the church of England; and where he endeavoured, though in vain, to convert the Pretender to the Proteftant religion.

That he repaired to Bar le duc, and endeavoured to convert to the church of England him whon he confidered as the rightful fovereign of Englind, is indeed true; but we have reafon to believe that this was not in confequence of his being obliged to leave the kingdom. There is, in the firft place, fome grounds to believe, that "The hereditary right of the crown of England afferted" was not written by him; and there is fill in exitence undoubted evidence, that, in confequence of his great fame as a polemic, he was fent to Bar le duc for the exprefs purpofe of endeavouring to convert the fon of James II. by fome gentlemen of fortune in Erigland, who wihed to fee that prince on the throne of his anceftors. The writer of this article had the hosour, 16 or 17 years ago, to be known to the grand.
daughter of one of thofe gentlemen-a lady of the itricteft veracity ; and from her he received many anecdotes of Leflic and his affociates, which, as he did not then forefee that he fhould have the prefent occafion for them, he has fulfered to llip from his memory. That lady is ftill alive, and we have reafon to believe is in poffeflion of many letters by Leflie, written in confidence to her grandfather, both from Biar le duc and from St Germains; and by the account which the gave of thefe letters, Leflie appears to have confidered his prince as a weak and incorrigible bigot, though, in every thing but religion, an amiable and accomplihed man. This may have heen his genuine character ; for we all know that it was the character of his father : but it is not of him that we are writing.

Mr Ieflie having remained abroad from the year 1709 till 1721 , returned that year to England, refolving, whatever the confequences might he, to die in his own country. Some of his friends acquainting Lord Sunderlaud with his purpores, implored his protection for the good old man, which his Lordhluip readily and generonfly promifed. Mr Leflie had no fooner arrived in Loudon, than a member of the houfe of conmons olficiounly waited on Lord Sunderland with the news, hut met with fuch a reception from his Lordthip as the malice of his errand deferved. Our author then went over to Ireland, where he died April J3.1722, at his own houfe at Glaflough in the county of Monaghan.

His character may be funmed up in a few words. Confummate learning, atterided by the loweit humility, the ftrictell piety without the leaft tincture of morofenefs, a converfation to the laft degree lively and fpirited, yet to the latt degree innocent, made him the delight of mankind, and leaves what Dr Hickes 「ays of him unqueftionable, that he made more converts to a found faith and holy life than any other man of our times.
A charge, however, has been lately brought againt him of fuch a nature, as, if well founded, mult detract not only from his literary fame, but alfo from his integrity. "The fhort and eafy method with the Deifts" is unquettionably his moft valuable, and apparently lis moft original work; yet this tract is publithed in French among the works of the Abbé St Real, who died in 1692 ; and therefore it has been faid, that unlefs it was publifhed in Englinh prior to that period, Charles Lenie mult be coufidered as a fhamelefs plagiary.
The Englifh work was certainly not publifhed prior to the death of Abbé St Real ; for the firft edition hears date July 19th 1697 ; and yet many reafons conipire to convince us, that our countryman was no plagiary. There is indeed a ftriking fimilarity between the Englifh and the French works; bat this is no complete proof that the one was copied from the other. The article Philolociy in the Encyclopectia Britannica, of which Dr Doig is the author, was publifhed the very fame week with Dr Vincent's differtation on the Greek verb. It was therefore impoffible that either of thefe learned men, who were till then ftrangers to each others names, could have ftolen aught from the other; and yet Dr Vincent's derivation of the Greek verb bears as ftriking a refemblance to Dr Doig's as the Abbć St Real's work does to Charles Leflie's. In the article Miracle (Encycl.), the credibility of the gofpel miracles is eftablifted by an argument, which the author certainly borrowed from no man, and which the late Principal.

Campbely.

L F S

 Campbell confidered as original; yet within half-a-year of the publication of that article, the credibility of the gofpel-miracles was treated in the very fame manner by F. Sayers, M. D. though there is in his differtation complete internal evidence that he had not leen the article in the Encyclopediu. Nut many months ago, the author of this fietch revieved, in one of the journals, the work of a friend, which was at the fame time reviewed in another jommal, that at this moment he has never feen. Yet he has been told by a friend, who is much verfant in that kind of reading, and knows nothing of his concern with either review, that the book in queftion mut, in both journals, have been reviewed by the fame hand; becaufe in both the fame character is given of it in almoft the very fame words!After thefe inftances of apparent plagiarifm, which we know to be only apparent, has any man a right to fay that Charles Leflic and the Abbé St Real might nor have treated their fubject in the way that they have d)ne, whout either borrowing from the other? The coincidence of arrangement and reafoning in the two works is indeed very furprifing ; but it is by no means fo furpriling as the coincidence of etymological deductions which appears in the works of the Doctors Doig and Vincent. The divines reafon from the acknowledged laws of human thought; the reafonings of the grammarians, with all due deference to their fuperior learning, we cannot help confidering as fometimes fanciful.

But this is not all that we have to urge on the fubject. If there be plagiarifm in the cafe, and the jdentity of titles looks very like it, it is infinitely more prohable that the editor of St Real's works fole from Leflie, than that Leflie fole from St Rcal, unlefs it can be proved that the works of the Abbé, and this work in particular, were publifhed before the year 1697. At that period, the Englifh language was very little read or underftaod on the continent; whilft in Britain the French language was, by fobolars, as generally underfood as at prefent. Hence it is, that fo many Frenchmen, and indeed foreigners of different nations, thought themfelves fafe in pilfering fcience from the Britifh phi-
Sec y_{z} n- lofophers; whilft there is not, that we know, one well authenticated inftance of a Britifh philofopher appropriating to himfelf the difcoveries of a foreigner. If, then, fuch men as Leibnitz, John Bernoulli, aud Des Cartes, trufting to the improbability of detection, condefcended to pilfer the difcoveries of Hooke, Nenton, and Harrior, is it improbable that the editor of the works of St Real would claim to his friend a celebrated track, of which he knew the real author to be obnoxious to the government of his own country, and therefore not likely to have powerful friends to maintain his right?

But farther, Burnet, bifhop of Sarum, was an excellent fcholar, and well read, as every one knows, in the works of foreign divines. Is it conceivable, that this prelate, when fmarting under the lafh of Leflie, would have let Mip fo good an opportunity of covering with difgrace his no!t formidable antagonift, had he known that antagonif to be guilty of plagiarifm from the writings of the Abbé Sit Real? Let it he granted, however, that Burnet was a ftranger to thefe writings and to this plagiarifm ; it can hardly be fuppofed that Le Clarc was a ftranger to them likewife. Yet this

$L 1 C$

author, wher, for reafons beft knowa to himielf, he chofe (1706) to depreciate the argument of the jisort metho!, and to traduce is author as ignorant of ancient hiftory, and as having brought forward his four marks for no other purpole than to put the deceitful tradition of Popery on the fane footing with the molt authentic doctrines of the frofpel, does not fo much as infinuate that he borrowed thefe marks from a Popin abbé, though fuch a charge, could he have eftablifled it, would have ferved his purpofe more than all his rude railnges. and invective. But there was no room for fuch a charge. In the iccond volume of the works of St Real, publifhed in 1757, there is indeed a tract entitled Methode Courte ot Aifeic pour combattre les Deifes; and there can be little doubt but that the publifer wifhed it to be contidered as the work of his countryman. Unfortunately, however, far his defign, a catalogue of the Ab . be's works is given in the firlt volume; and in that ca. talogue the Merbode Courte et tifee is not mentioned.

We have dwelt thus long on The Short and Eafy MIe. thod with the Deifs, becaule it is one of the ableft works that ever was written in prous of the Divine origin of the Jewifh and Chriftian Scriptures; a work of which the merit is acknowledged by Lord Bolingbroke, and which, as has been oblerved elfewhere, (fee Theology, no 16. Encycl.) Dr Conyers Middleton confeffes to be unanfwerable. If by men of fcience we be thought to have fpent our time well in vindicating the rights of our illutrious philofophers Hooke and Nêwton, to difcoweries which have been unjulty claimed by the philofophers of Germany and France ; we will not furely by the friends of Chriftianity be thought to have enployed our time ill in rindicating Leflie's clain to this decifive argument in fupport of our holy religion.

LEVER, the firft of the mechanical powers, for the properties of which fee Mechanics; and for a demonftration of its fundamental property, fee Steel yard, both in the Eucyclopedia.

LICENSER of books (fee Liberty of the Prefs, Encycl.), has been an officer in almolt every civilized nation, till the end of the laft century that the office was abolithed in Great Britain. Profeffor Beckmann, with his ufual induftry*, has proved, that fuch an office was * Hifory of eftatulifhed not only in the Roman Empire, but even Inventions, in the republic, and in the free flates of ancient Greece. vol. j^{d}. At Athens, the works of Protagoras were prohibited; and all the copies of them which could be collected were burnt by the public crier. At Rome, the writings of Numa, which had been found in his grave, were, by order of the fenate, condemned to the fire, becaufe they were contrary to the religion which he had introduced. As the populace of Rome were, in times of public calamity, more addicted to fuperlition than feemed proper to the government, an order was iffued, that all fuperftitious and attrological books fhould be delivered into the hands of the pretor. This order was often repeated; and the emperor Auguftus caufed more than twenty thoufand of thefe books to be burnt at one time. Under the fame emperor the fatirical works of Labienus were condemned to the fire, which was the firt inftance of this nature ; and it is related as fomething fingular, that, a few yeard after, the writings of the perfon who had been the caufe of the order for that purpofe thared the like fate, and were

L I C

enfer, alfo pablicly burnt. When Cremutius Cordus, in his isthen. hiftory, called C. Caffius the lat of the Romans, the fenate, in order to flater Tiberius, caufed the book to be burnt ; but a number of copies were faved by being concealed. Antiochus Epiphanes caufed the books of the Jews to be burnt; and in the firt centuries of our xra the hooks of the Chriftians were treated with equal feverity, of which Arnobius bitterly complains. We are told by Eufebius, that Dioclefian caufed the facred Scriptures to he burnt. After the freading of the Chritian religion the clergy exercifed, againft books that were either unfavourable or difagreeable to them, the fame feverity which they had cenfured in the heathens as foolifa and prejudicial to their owns caufe.
Soon after the invention of printing, laws hegan to be made for fubjecting books to examination; a regulation propoled even by Plato; and which has been wih. ed for by many fince. Our author gives a great deal of curious information on this important fubject, which our limits do not permit us to repeat ; but it is apparent from his work, that the liberty of the prefs is but a nodern privilege; and that it has not been enjoyed completelv in any country but this happy iiland.
LICHEN (fee Encycl.), is a genus of Plants, of which the noft valuable fpecies feems to be the Lichen Rocella, or Aryol. As that fpecies has not been noticed in the article referred to, the following account of it from Profeffor Beckmann will be acceptable to many of our readers:

It is found in abundance in fome of the iflands near the African coaft, particularly in the Canaries, and in feveral of the iflands in the Archipelago. It grows up right, partly in fingle, partly in double ftems, which are about two inches in height. When it is old, thefe flems are crowned with a button fometimes round, and fometinles of a flat form, which Tournefort, very proparly, compares to the excrefcences on the armis of the fepia. Its colour is fometimes a light, and fometimes a dark grey. Of this mofs, with lime, urine, and alkaline falts, is formed a dark red pafte, which in commerce has the fame name, and which is much ufed in dyeing. That well-known fubltance called lacmus is alfo made of it.

Theophraftus, Diofcorides, and their tranferiber Pliny, gave the name of Phycos thalafiou, or pontion, to this plant, which, notwithtanding its name, is not a fea weed but a mofs; as it grew on the rocks of different iflands, and particularly on thofe of Crete or Candia. It had, in their time, been long ufed for dyeing wool; and the colour it gave when frefh was fo beautiful, that it excelled the ancient purple, which was not red, as many fuppofe, but violet. Pliny tells us, that with this mofs dyers gave the ground or firf tint to thofe cloths which they intended to dye with the coftly purple. When it vaas firit employed as a dye by the moderns, is not fo certain, though the Profeffor has proved, we think complecely, that it muft have been at lealt as early as the beinning of the rath century.
"Among the oldeft and principal Florentine families (fays he), is that known under the name of the

79]
 L I C

Oricellarii or Rucellarii, Rufcellai or Rucellai, feveral Licien. of whom have diflinguifhed themfelves as flatefmen and men of letters. 'This family are defcended from a German noblenan, named Ferro or Frederigo, who lived in: the beginning of the twelfth century. One of his defcendants, in the ycar 1330 , carried oin a great trade inthe Levant, by which he acquired confictralle riches, and returning at lemgth to Florence, with his fortune, firlt made known in Europe the art of dyeing with argol. It is faid, that a little before his return from the Levant, happening to make water on a rock covered with this mols, he obferved, that the plant, which was there called refpio, or refio, and in Spain orciglia, acquired by the urine a purple, or, as others fay, a red colour. He therefore tried feveral experiments; and when he had brought to perfecion the art of dyeing wool with this plant, he made it known at Florence, where he alone practifed it for a confiderable time, to the great benefit of the ftate. From this ufeful i:avention, the family received the name of Oricellarii, frons which, at laft, was formed Rucellai." The Profenior, however, does not believe that this Florentine difcovered the dye by means of the above-mentioned accidert, but that he learned the art in the Levant, ard on his return taught it to his countrymen.
"Our dyers do not purchale raw argol, but a palte made of it, which the French call orfeille en patte. The preparation of it was for a long time kept a fecret by the Florentines. The perfon who, as far as I know, made it firft known was Rofetti; who as he himfelf tells us, carried on the trade of dyer at Florence. Scme information was afterwards publifhed conceruing it by Imperati * and Micheli the butanift \dagger. In later times this art has been much practifed in France, England, and + Nxvic e. So Holland. Many druggilts, inftead of keeping this patle Plantarums in a moifte fate with urine, as they ought, fufier it togenera Fioo dry, in order to fave a little dirty work. It then has encicir, the appearance of a dark violet coloured earth, with here ${ }^{\text {17290. }}$ and there fome white fpots in it.
"The Dutcli (continues our author), who have found out better methods than other nations of manufacturing many commodities, fo as to render then cheapcr, and thereby, to hurt the trade of their neighbours, are the inventors alfo of lacinus, a preparation of argol, calledorfeille on pierre, whicls has greatly leffened the ufe of. that en pifte, as it is more edifly tranfported and preferved, and fitter for ufe; aud as it is tefides, if not clicaper, at leaft not deater. This art confifts, undoubredly, in mixing with that commodity fome lefs valuable fubitance, which either improves or does not much impair its quality, and which, at the fame timie, incereades its weight (A). Thus do they pound cinnahar and fmalt finer than other nations, and yet fell buth thefe articles cheaper. Thus do they lift cochineal, and fell it cheaper than what is unfifted.
"It was for a lung time believed, that the Dutch prepared their lacmus from thofe linen rags which in the fouth of France are dipped in the juice of the crolca tincorium; but at prefent, it is alnoft certainly known, that orfoille on páte is the principal ingredient in orjeille,
(1) As dry lacmus is much cheaper than moif, it may be readily fuppofed that it is adulterated with fand. and other fubftances. Valcntini Hijloria fimplicium. Francf. ad Moen. 1716. fol. p. 152.

1. I G

Light. en fecrec that is in lacmus; and for this curious information we are indelted to Ferber. But whence arifes the fmell of the laemus, which appears fo like that of the Florentine iris?", Some of the latter nay, perhaps, be mixed with it ; for our author thinks, that he has nbferved in it fmall indentoluble particles, which may have been bits of the roots. The addition of this fubRance can be of no ufe to improve the dye; but it may increafe the wcight, and give the lack mure body; and perhaps it may lee emplayed to render imperceptible fonse unpleafant fmell, for which purpofe the routs of that plant are ufed on many other occations.

LIGHT', it has been obferved in the article Chenistry, n° 319. (Suppl.), confilts of rays differently flexible. This was eftablifhed by fome well devifed experiments made by Henry Brougham, Efq; of which it may be proper to give an account here.

In the firft experiment, he darkened his chamber in the ufual way, and let a beam of the fun's light into it through the hole of a metal plate fixed in the fhutter of the window, $\frac{1}{5}$ th of an inch in diameter. At the hole within the room be placed a prifm of glafs, of which the refracting angle was 45 degrees, and which was everywhere covered with black paper, except a finall part on each fide; and through this part the light was refracted fo as to form a diftinet fpectrum on a chart at fix feet diftance from the window. In the rays, at two feet from the prifm, he placed a black unpolifhed pin, of which the diameter was $\frac{7}{T 0}$ of an inch, parallel to the chart, and in a vertical pofition. The fhadow of the pin was found in the fpectrum; and this fhadow had a confiderable p enumbra, which was broadeft and moft diftinet in the violet part, narrowelt and moit confufed in the red, and of an intermediate thicknefs and diftinctues in the intermediate colours. The penumbra was bounded by curvilinear files, convex towards the axis to which they approached as to an afymptote, fo as to be neareft to it in the place of the leaft refrangible rays. By moving the prifm on its axis, and caufing the colours to afcend and defcend on any bodies that were ufed intead of the pin; the red, wherever they fell, made the lealt, and the violet the greateft, fhadow.

In the next experinent, a fereen was fubftituted in the place of the pin* and this fereen lad a large hole, on which was a brafs plate, picreed with a fmall hole $z^{1} \frac{1}{2} d$ of an inch in diameter. While an affittant moved the prifm flowly on its axis, the author obferved the round image made by the difierent rays paffing through the hole to the chart ; that made hy the red was great eft, that of the viulet leatt, and that of each intermediate ray was of an intermediate fize. When the fharp blade of a knife was held at the back of the hole, "fo as to produce the fringes mentioned by Grimaldo and Newton, thefe fringes in the red were broadeft and moft moved inwards to the hadow, and moll dilated when the knife was movet over the hole; and the hole itfelf on the chart was more dilated during the motion when illuminated by the red than when illuminated by any other of the rays, and lealt of all when illuminated by the violet."

From thefe two experienents, the author infers "that the rays of the fun's light differ in degree of flexibility, and that thofe which are leant refrangitle are mof inflexile." From other experiments he concludes, that the $m o f$ inflexille rays are alfo mof clefexiblo. In the fequel
angle po per, he afcertains the proportion which the angle of inflection bears to that of deffecion at equal incidences, and the propertion which the different fexilslities of the different rays bear to one amother.

LIMBERS, in artillery, a furt of advanced train, joined to the carriage of a cammon on a march. It is compofed of two thafte, wide enough to receive a horfe between them, called the fillet horje: thefe fhafis are joined by two bars of wood, and a holt of iron at one end, and mounted on a pair of rather fmall wheels. Upon the axle-tree rifes a flrong jon fpike, which is put into a hole in the hinder part of the train of the gun carriage, to draw it by. But when a gum is in action, the limbers are taken off, and run out behind it.

Limiqed Problem, denotes a problem that has but one folution, or fone determinate number of felutions: as to deferibe a circle through three given points that do not lie in a right line, which is limited to one folntion only; to divide a parallelegram into two equal parts by a lime parallel to one fide, which admits of two folutions, according as the line is parallel to the length or breadth of the parallelogram ; or to divide a triangle in any ratio by a line parallel to one lide, which is timited to three folutions, as the line may be parallel to any of the three lides.

Local, Problem, is one that is capalle of an in. finite number of different folutions; becaufe the point, which is to folve the problem, may be indifferently taken within a certain extent; as fuppofe any where in fuch a line, within fuch a plane figure, \&ce, whith is called a geometrical Locus.

A local problem is fimple, when the poiut fought is in a right line; plane, when the point fought is in the circumference of a circle ; folid, when it is in the circumference of a conic fection; or furfolid, when the point is in thee perimeter of a lise of a ligher kind.
LOCI, the plural of
LOCUS, a line by which a loeal or indeterminate problem is folved; or a line of which any point mas eqtadly folve an indeteminate problom. See Alcebra, Encyct.

Logistic Curve, the fame with Logarithaic Curve, for which fee Encych.
LOGISTICS, or Lomisticas Airitbmetic, a nmme fonetimes employed for the arithmetic of fexagetimal fractions, ufed in atronomical computations.

The fame term has been ufed for the rules of computations in algebra, and in other fpecies of arithmetic: witnefs the logillics of vieta and other writers.

Shakerly, in his Tabule Liritamice las a table of logratithms adapted to fexagclimal fractions, and which he calls Logiltical Lograrithons; and the expeditious arith. metic, obtained by means of them, he calls Logittical Arithnetic.

Labyav LOTUS has been defcriben (Encycl.) under the title Ruamus; but the following additional particulars from Mr l'ark will be acceptable to our botanical readers :

The lotus is very common in all the countries which our atulhor vifited, and he had an opportunity to make a drawing of a brauch in flower, of which an engraving is publified in his travels, that with his permiffion we have copied (fee Plate XXX.). The lotus produces fruit which the negroes call tomberongs. Thefe are fmall farinaceous berries, of a yellow colour and deličious

Lotus cious tafte. They are much efteemed by the natives, who convert them into a fort of bread, by expofing them for fome days to the fun, and afterwards pounding them gently in a wooden mortar, until the farina. ccous part of the berry is feparated from the thone. This meal is then mixed with a little water, and formed into cakes; which, when dried in the fun, refemble in colour and flavour the fweetelt gingerbread. The thones are afterwards put into a veffel of water, and thaken about fo as to feparate the nical which may ftill adhere to them: chis comromicates a fweet and agree. able tafte to the water, and, with the addition of a little pounded millet, forms a pleafant gruel called fondi, which is the common breakfaft in many parts of Luda. mar, during the months of Fchruary and March. The fruit is collected by Ipreadius a cloth upon the ground, and beating the branches with a kick. Our anthor thinks there can be little doubt of this being the lotus mentioned by Pliny, as the food of the Lyhian Lotnphagi. An army may very well have heen fed with the bread made of the meal of the fruit, as is faid by Pliny to have been done in Lybia; and as the tafte of the bread is fweet and agreeable, it is not likely that the foldiers would complain of it.

LOWANG, a Chinefe ifland of fome extent in the aeighbourhood of the Chusan-Ifles, which fee in this Supplement.

LOXODROMIC Curie, or Spiral, is the fame as the rhumb.line, or path of a thip failing always on the fame courfe in an oblique direction, or making always the fame angle with every meridian. It is a fpecies of logaritlunic fpiral, defcribed on the furface of the fphere, having the meridians for its radii.

LOXODROMICS, the art or method of oblique failing, by the loxodromic or thumb line.

LUCIOLE, a name gisen in the Annales de Chimie to the Lampyris Ifalica (See Lampyris, Encycl.). According to Dr Carradori, the light of the luciole does not depend on the influence of any external caufe, but merely on the will of thofe infects. While they fly about at freedom, their hining is very regular; but when they are once in our power, they thine very irregularly, or do not fhine at all. When they are molefted, they emit a frequent light, which appears to be a mark of their refentment. When placed on their backs, they thine almof withont interruption, making continual efforts to turn themfelves from that polition. In the day-time it is neceffary to torment them in order to make them fhise; and thence it follows, that the day to them is the feafon of repofe. The luciole emit light at pleafure from every point of their bellies, which proves that they can move all the parts of their vifcera independently of each other. They can alfo render their phofphorefcence more or lefs vivid, and continue it as long as they pleafe.

A flight compreffion deprives the luciole of their power of ceafing to thine. The author is inclined to believe, that the movement by which they conceal their light is executed hy drawing back their phofphoric fubftance into a particular membrane or tunic. He fuppofes alfo, that the farkling confifts in a trembling or ofcillation of the pliofphoric mafs. He is of opinion, that there is no emanation of a phofphoric fubftance, and that the whole phenomenon takes place in the interior part of the luminous vifcera. When the fhining

Suppl. Vol. II. Part I.
is at its greateft degree of height, it is fo Atrong that a Luciole. perfon may by it eafily dittinguifh the hours on the fmallett watch, and the letters of any type whatcver.

The phofphoric part of the luciole does not extend farther than to the extreme rings of the belly. It is there enclofed in a covering compofed of two portions of membranes, one of which forms the upper, and the other the lower, part of the belly, and which are joined together. Behina this receptacle is placed the phofphorus, which refembles a pafte, having the finell of garlic, and very little tafte. The phofphoric matter iffues from a fort of bag on the nighteft preffure; when \{queezed out, this matter lofes its fplendour in a few hours, and is converted into a white dry fubllance. A portion of the plofphoric belly put into oil, fone only with a feeble light, and was foon extinguifhed. In water, a like portion fhone with the fame vivacity as in the air, and for a much longer tine. The author thence concludes that the photphorefeence of the luciole is not the effect of flow inflammation, nor of the fixation of azotic gas, as the oil in which they thine does not contain a tingle air-bubble: befides, the phofphorus of thefe infects thines in a barometrical vacuum. The obfervation made by Fofter, that the luciole diffufed a more vivid light in oxygen gas than in atmolpheric air, does not, according to Carradori, depend upon a combultion more animated by the infpiration of this gas, but on the animals feeling themfelves, while in that gas, in a better condition. "Whence, then, arifes (fays the author) the phofphoric light of the luciole? I am of opinion (adds he), that the light is peculiar, and innate in thefe infects, and feveral other productions are peculiar to other animals. .-s fome animals have the faculty of accumulating the electric fluid, and of keeping it condenfed in particular organs, to diffufe it afterwards at pleafure, there may be other animals endowed with the faculty of keeping in a condenfed thate the fluid which conftitutes light. It is polfible, that by a peculiar organifation they may have the power of extracting the light which enters into the compofition of their food, and of iranfinitting it to the refervoir defo tined for that purpofe, which they have in their abdomen. It is not even impoffible that they may have the power to extract from the at mofpheric air the luminous Huid, as other animals have the power of extracting from the fame air, by a chemical procefs, the fluid of heat."

Carradori difcovered, that the plofphorefcence of the luciole is a property independent of the life of thete animals, and that it is chichy owing to the foft Atate of the phofphoric fubltance. Its light is fufpenced by drying, and it is again revived by foftening it in water ; but only after a certain tinse of deficcation. Reaumur, Beccaria, and Spallanzani, obferved the fane thing in regard to the plolades and the medufa.

By plunging the luciole alternately into lukewarnı and cold water, they fhine with vivacity in the former, but their light becomes extinet in the latter; which, according to the author, depends on the al:ernate agreeable and difagreeable fenfation which they experience. In warm water their liglit difappears gradually. Dr Carradori tried on the luciole and their phofphorus the action of different faline and fpirituous liquors, in which they exhibited the fame appearances as other phofphoric animals. Thefe laft experiments prove that the

I U D $\left[\begin{array}{lll}82 &] & \mathrm{L} \\ \mathrm{Y} & \mathrm{N}\end{array}\right.$

Eudamar. phofphoric matter of the luciole is only foluble in water.

LUDAMAR, a Moorifh kingdom in the interior of Africa, of which the capital Benorm is placed by Major Rennel in $15^{\circ} \mathrm{N}$. lat. and $6050^{\prime} \mathrm{W}$. Long. It has for its northern boundary the great defart (fee Sahara in this Supplement). and is deferibed by Mr Park as little better than a defert itfelf. Our traveller was taken captive on the coutines of this kingdom, and carried to the camp of the king, where he was fubjected to the cruelleft indignitics that the malice of bigotted Moors could invent. He was not fuffered to travel beyond the camp; though he moved as it moved, and of courfe faw a confiderable part of the country, and had an opportunity of ohferving the manners of the people. "The Moors of Ludamar fubfift chiefly on the fefh of their cattle; and are always on the extreme of either gluttony or abfinence. In coufequence of the frequent and fevere falls which their religion enjoins, and the toilfome journeys which they fometimes undertake acrofs the defert, they are enabled to bear both liunger and thirft with furprifing fortitude ; but whenever opportunities occur of fatisfying their appetize, they generally devour more at one meal than wonld ferve an European for three. They pay but little attention to agriculture ; purchafing their corn, cotton cloth, and other neceflaries, from the Negroes, in exchange for fat, which they dig flom the pits in the Great Defert.
"The natural barrennefs of the country is fuch, that it furnifhes but few materials for manufacture. The Moors, however, contrive to weave a frong cloth, with which they cover their tents; the thread is fpun by their women from the hair of goats: and they prepare the hides of their cattle fo as to furnifh faddles, bridles, pouches, and other articles of leather. They are likewife fufficiently fkilful to convert the native iron, which they procure from the Negroes, into fpears and knives, and alfo iutn pots for boiling their food; but their fabres and other weapons, as well as their fire-arms and ammunition, they purchafe from the Europeans, in exthange for the Ntgro llaves which they obtain in their predatory excurfions. Their chief commerce of this kind is with the French traders on the Sencgal river."

The Moors of this country have fingular ideas of feminine perfection. The gracefulnefs of figure and motion, and a countenance enlivened by expreffion, are by no means effential points in their flandard ; with them corpulence and beauty appear to be terms nearly fynonymous. A woman, of even moderate pretenfions, muft be one who cannot walk without a flave under each arm to fupport her; and a perfect beauty is a load for a camel. In confequence of this prevalent tafte for unwieldinefs of bulk, the Moorih ladies take great pains to acquire it early in life; and for this purpofe many of the young girls are compelled by their mothers to devour an immenfe quantity of food, and drink a large bowl of camel's milk every morning. It is of no importance whether the girl has an appetite or not, the meat and the drink muft be fwallowed; and obedience is frequently enforced by blows. This fingular practice,
inftead of producing indigeftion and difeare, foon covers Ludamas the young lady with that degree of plumpneis, which, in the eye of a Moor, is perfegtion itfelf.
"Althungin the wealth of the Moors confifts chiefly in their nnmerous herds of cattle; yet, as the paltoral life docs not afford full cmployment, the majority of the people are perfectly idle, and fpend the day in trifling converfation about their horfes, or in laying fehemes of depredation on the Negro villages.
"The ufual. place of rendezvous for the indolent is the king's tent, where great liberty of fpeech feems to be excreifed by the company towards each other. While in fpeaking of their chief, they exprefs but one opinion. In praife of their fovereign, they are unanimous. Songs are compofed in his honour, which the company frequently fing in concert ; but they are fo loaded with grofs adulation, that no man but a Moorifh defpot could hrar them without blufhing. The king is diftinguifhed ty the fineners of his drefs, which is compofed of thue cotton cloth brought from Tombuctoo, or white linen or muflin from Aorroceo. He has likewife ${ }^{\text {e }}$ a larger tent than any other perfon, with a white cloth over it ; but in his ufual intercourfe with his fubjects, all diftinctions of rank are frequently forgotten. He fometimes eats out of the fame bowl with his cameldriver, and repofes himfelf, during the lieat of the day, upon the fane bed.
"The military flrength of Ludamar"confifts in cavalry. They are weil mounted, and appear to be very expert in ikirmifhing and attacking by furprife. Every foldier furnifhes his own horfe, and finds his accoutrements, conffiting of a large fabre, a double barrelled gun, a fnall red leather bag for holdiug his balls, and a powder-horn flung over the fhoulder. He has ro pay, nor any remuneration but what arifes from plunder. This body is not very numerous; for when Ali the king made war upon Bambara, our author was informed that his whole furce did not exceed 2000 eavalry. They conflitute, however, by what he could learn, but a very fmall proportion of his Moorifh fubjects. The horfes are very beautiful, and fo highly efteemed, that the Negro princes will fometimes give from twelve to fourtcen haves for one borfe."

- Cut off from all intercourfe with civilized nations, and boafting an advantage over the Negroes, by pofferfing, though in a very limited degree, the knowledge: of letters, the Moors of Ludamar are at once the vaineft and proudeft, and perhaps the moft bigutted, ferocious, and intolerant of all the nations on the earth; combining in their character the blind fuperfition of the Negro with the favage cruelty and treachery of the Arab. It was with the utmoft difficulty that our author made his efeape from this inhofpitable people.

LUPUS, the Wolf, a fouthern conltellation, joined to the Contaur, containing together 19 ftars in Ptolomy's catalogue, but 24 in the Britannic catalogue.

LYNX, a conftellation of the northern hemifphere, compofed by Hevelius out of the unformed ftars. In his catalogue it confits of 19 ftars , but in the Britannic 44.

M A C H I N ERY.

THE denomination Machine is now vulgarly given to a great variety of fubjects, which have very little analogy by which they can be claffed with propriety under any one name. We fay a travelling machine, a bathing machine, a copying machine, a thrathing machine, an electrical machine, \&cc. \&cc. The only circumftance in which all thefe agree feems to be, that their conftruction is more complex and artificial than the utenfils, tools, or inftruments which offer themfelves to the firt thoughts of uncultivated people. They are more artificial than the common cart, the bathing tub, or the flail. In the language of ancient Athens and Rome, the term was applied to every tonl by which hard labour of any kind was performed; but in the language of modern Europe, it feems reffricted either to fuch tools or inftruments as are employed for executing fome philofophical purpofe, or of which the conftruction employs the fimple mechanical powers in a confpicuous manner, in which their operation and energy engage the attention. An electrical machine, a centrifugal machine, are of the firt clats; a thrafhing machine, a fire machine, are of the other clafs. It is nearly fyumymous, in ourlanguage, with ENGINE; a term altogether modern, and in fome meafure honourable, being beftowed only, or chiefly, on contrivances for executing work in which ingenuity and mechanical kill are mani. feft. Perhaps, indeed, the term engine is limited, by careful writers, to machines of confiderable magnitude, or at leaft of confiderable art and contrivance. We fay, with propriety, fteam-engine, fire-engine, platiug engine, boring engine; and a dividing machine, a copying machine, \&c. Either of thefe terms, machine or engine, are applied with impropricty to contrivances in which fome piece of work is not executed on materials which are then faid to be manufactured. A travelling or bathing machine is furely a vulgarifm. A machine or engine is therefore a tcol ; but of complicated collfiruction, peculiarly litted for expediting labour, or for performing it according to certain invariable principles: And we fhould add, that the dependence of its efficacy on mechanical principles muft be apparent, and even confpicuous. The contrivance and erection of fuch works conllitute the profeffion of the engineer; a profeffion which ought by no means to be confounded with that of the mechanic, the artifan, or manufacturer. It is one of the artes libcrales; as deferving of the title as medicine, furgery, architecture, painting, or fculpture. Nay, whether we confider the importance of it to this flourifhing nation, or the fciense that is neceffary for giving eminence to the profeffior, it is very doubtful whether it fhould not take place of the three laft named, and go pari paflu with furgery and medicine. The inconfiderate reader, who perufes Cicero de Oratore with fatisfaction, is apt to fmile at Vitruvius, who requires in his architect nearly the fame accomplifmenests which Ci -
cero requires in his orator. He has not recollected, or perhaps did not know, that the profeffion of an arclitect in the Auguftan age was the muft refpectable of all thofe which were not effentially comnected with the management of tate affairs. It appears that the architects were all Greeks, or the pupils of Greeks, altogether different from the members of the Collegium Murariorum, the corporation of builders and mafons. The architecture of temples, ftadiums, circufes, amphitheatres, feems to have been monopolifed, by fate authority, by a fociety which had long fulfifted in Afria, connected by certain myflerious bonds, both civil and religious. We find it in Syria; and we learn that it was brought thither from Perfia in very ancient times. From thence it fpread into Ionia, where it becane a very eminent and powerful affociation, under the particular protection of Bacchus, to whom the members had crected a magnificent temple at Teos, with a valt eftablifmment of priefts and priefteftes, confiting of perfons of the firft rank in the flate. They were the fule builders of temples and ftadiums throughout all Greece and theLeffer Afia; and the contractors fur the machinery that was employed in the theatres, and in the great temples, for the celebration of the high myfteries of paganifm. By the imperfect accounts which remain of the Eleufinian and other inyfteries, it appears, that this machinery mutt have been immenfe and wonderful, and muit have required a great deal of mechanical fkill. This indeed appears, in the moft convincing manuer, to any perfon who reflects on the magnificent ftructures which they erected, which excite to this day the wonder of the world, not only on account of their magnificence and incomparable elegance, but alfo on account of the mechanical knowledge that feems indifpenfably neceffary for their erection. This will ever remain a myftery. There are no traces of fuch knowledge to be found in the writings of antiquity. Even Viiruvins, writing exprefsly on the fubject, has given us nothing but what is in the loweft degree of elementary knowledge.

This aflociation of the Diony fiacs unduabtedly kept their mechanical fcience a profound fecret from the uninitiated, the profane. They werc the engineers of antiquity, and Vitrusius was perhaps not one of the initiated. He fyeaks of Myro and other Greek architects in terms of selpect which border on veneration. Perhaps the modern affociation of free mafuns is a remain of this ancient fraternity, continued to our tiries by the company of builders, who erected the cathedrals and great conventual churches. No one who confiders their works with fcientific atteution, can doubt of their being deeply veried in the principles of mechanics, and even its more refined branches. They appear tos have carried the art of vault-roofing almofl to its acmé of perfection; far outftripping their Grecian inltructors in their knowledge of this moft delicate branch of their art.

It were greatly to be wifled that fome fuch inflitu. tion did yet exift, where men might be induced by the mof powerful mutives to accomplith themfelves in the knowledge neceflary for attaining eminence in their profeffion.
We have been informed (and we thought our authority gond), that our gracious Sovereign has fignified his intention of patronifing an inftitution of this kind. We heard, that it was propofed to inflitute degrees fimilar to our univerfity degrees, and proceeding on fimilar conditions of a regular education or ftanding, which would enfure the opportunities of information, and alfo on an examination of the proficiency of the candidate. This examination, being conducted by perfons eminent in the profeffion, perhaps still exerciing it, would probably be ferions, becaufe the fuccefsful candidate would immediately become a rival practitioner. Such an inftitution would undoubtedly prevent many grofs impofitions by unlettered mill-wrights and pump-makers, who now feldum appear under any name but that of cuginecr, although they are frequently ignorant even of the elements of mechanical fcience, and are totally unacquainted with the higher mathematics; without which it is abfolutely impoffrble for them to contrive a machine well fuited to the intended puropofe, or to fay with any tolerable precifion what will be the performance of the engine they lave erected. Yet thefe are queftions fufceptible of accurate folution, becaufe they depend on the unalterable laws of matter and motion.

All who have a jult view of the unfpeakable advantages which this highly favoured land poffefies in the fuperiority and activity of its manufactures, and who know how much of this fuperiority fhould be afcribed to the great improvements which have been made in practical mechanics within thefe laft thinty years, will join us in wifhing fuccefs to fome fuch inflitution as that now mentioned.

We were naturally led to thefe reflections when we turned our thoughts to machinery in general, and obferved what is done in this country by the native energy of its inhabitants, unafiffed by fuch fcientific infructions as they might have expected from the papils of a Newton, their countryman, under the patronage of the beft of Sovereigns, eminently knowing in thefe things, and ever ready to encourage thofe fciences and arts which have fo highly contributed to the national profperity. What might not be reafonably expected from Britifh activity, if thofe among ourfelves who have knowledge and leifure had been at the fame pains with the members of the foreign academies to cultivate the Newtonian philoiophy, and particularly the more refmed branches of mechanics, and to deduce from their fpeculations maxims of conftruction fitted to our fituation as a great manufacturing nation? But fuch knowledge is not attainable by thofe who are acquaiuted only with the imperfect elements contained in the publications read by the buik of our practitioners. Much to this purpofe has been done on the continent by the moft eminent mathenraticians ; but from want of individual energy, or perhaps of general fecurity and protection, the patriotic labours of thofe gentlemen have not done the fervice to their country which might have been reafonably expected. Indeed, their differtations have generally been fo compofed, that only the learned sould fee their value. They feem addreffed only, or
chiefly, to fuch; but it is to thofe authors that our countrymen generally have recourfe for information concerning every thing in their profeffion that rifes above mere elementary knowledge. The books in our latiguage which profefs to be fyftems of mechanics rarely go beyond this: they contain only the principles of equilibrium. Thefe are abfolutely neceflary for the knowledge of machines; but they are very far indeed from giving what may be called a practical knowledge of zworking machinery. T'bis is never in a flate of equiliorium. The machine muft move in order to work. There mult be a fuperiority of impelling power, beyond what is merely fufficient for balancing the refiftance or contrary action of the work to be performed. The reader may turn to the article Starics in the Eneyclopedia Britannica, and he will there fee fome farther ob. fervations on this head. And in the article Mechawics he will find a pretty ample detail of all the ufual doctrines, and a defcription of a confiderable variety of machines or engines, accompanied by fuch obfervations as are neceffary for tracing the propagation or tranfmiffion of preffure from that part of the machine, to which the natural power is applied, to the working part of the machine. Along with thefe two articles, it will be proper to read with peculiar attention the article Rotation.
By far the greateft number of our mof ferviceable engines confift chiefly of parts which have a motion of rotation round fixed axes, and derive all their energy from levers virtually contained in them. And thefe acting parts are alfo material, requiring force to move them, over and above what is neceflary for producing the acting force at the working part of the machine. The modifications which this circumftance frequently makes of the whole motions of the machine, are indicated in the article Rotation in an elementary way; and the propofitions there inveftigated will be found almoft continually involved in the complete theory of the operation of a machine. Laftly, it will be proper to confider attentively the propofitions contained in the article Sqrenget of Materials, that we may combine them with thofe which relate wholly to the working of the machine ; becaufe it is from this combination only that we difcover the ftrains which are excited at the varions points of fupport, and of communication, and in every member of the machine. We fuppofe all thefe things already underftood.

Our object a: prefent is to point out the principles The chief which enable us to afcertain what will be the precifequeftion io motion of a machine of given confruction, when actua. mechanics. ted by a natural power of known intenfity, applied to a given point of the machine, while it is employed to overcome a known refiflance acting at another point. To abbreviate language, we fhall call that the imperied point of the machine to which the preffure of the moving power is immediately applied; and we may call that the working point, where the refiftance arifing from the work to be performed immediately acts.

To confider this important fubject, even in its chief. varieties, requires much more room than can be allowed in an undertaking like ours, and therefore we muft content ourfelves with a very limited view ; but at the fame time, fuch a view as thall give fufficient indication of the principles which fhould direct the practical reader in every important cafe. We fhall confider thofe machines. which.
which perfurm their motions round fixed axes; thefe being by far the mut numerous and important, becaufe they involve in their conftruction and operations all the leading principles.
That we may proceed fecurely, it is neceffary to have a precife and adequate notion of moving force, as applied to machinery, and of its meafures. We think this peculiarly neceflary. Different notions have been entertained on this fubject by Mr Leibnitz, Des Cartes, and other eminent inechanicians of the lalt century ; and their fucceffors have not yet come to an agreement. Nay, fome of the moft eminent practitioners of the prefent times (for we mult include Mr Smeaton in the number) have given meafures of mechanical power in machinery which we think inacenrate, and tendiag to erroneous conclutions and maxims.
We take for the meafure (as it is the effect) of exerted mechanical power the quantity of motion which it produces by its uniform exertion during fome given time. We fay uniform exertion, not becaufe this uniformity is neceffary, but only becaufe, if any variation of the exertion has taken place, it nuft he known, in order to judge of the power. This would needlefsly complicate the calculations; but in whatever way the exertion may have varied, the whole accunnulated exertion is fill accurately meafured by the quantity of motion exifting at the end of the exertion. The reader mult perceive that this is the fame thing that is expreffed in the article Dynamics of this Supplement, no 90. by the area of the figure whofe abfcifla or axis reprefents the time of exertion ; and the ordinates are as the preflures in the different inflants of that time, the whole being multiplied by the number of particles (that is, by the quantity of matter), becaufe that figure reprefents the quantity of motion generated in one particle of matter only. All this is abundantly clear to perfons converfant in thefe difquifitions; but we wih to carry along with us the diftinct conceptions of that ufeful clafs of readers whofe profeffion engages them in the conftrution and employment of machines, and to whom fuch difcuffions are not fo familiar. We muft endeavour therefore to juftify our choice of this meafure by appealing to familiar facts.

If a man, by prefling uniformly on a mafs of matter for five feconds, generates in it the velocity of eight feet per fecond, we obtain an exact notion of the proportion of this exertion to the mechanical exertion of gravity, wheo we fay that the man's exerted force has been precifely one-t wentieth part of the action of gravity on it ; for we know that the weight of that body (or, more properly, its heavinefs) would, in five feconds, have given it the velocity of 1 Go feet per fecond, by acting on it during its fall. But let us attend more clofely to what we mean by faying that the exerted force is one.twentieth of the exertion of gravity. The only notion we have of the exertion of gravity is what we call the weight of the body-the pruliure which we feel it make on our hand. To fay that this is 20 pounds weight, does not explain it ; becaufe this is only the action of gravity on another piece of matter. Both preffures are the fame. But if the body weighs 20 pounds, it will draw out the rod of a fteelyard to the mark 20 . The rod is fo divided, that the zoth part of this preffure will draw it out to I. Now the fact is, that if the man preffes on the mafs of 20 pounds weight with
a fpring fteelyard dering five feconds, and if during that time the rod of the Acelyard was always at the mark 1, the body will have acquired the velucity of eight feet per fecond. 'This is an acknowledged faet. Therefore we were right in faying, that the man's exertion is one-twenticth of the exertion of gravity. And fince we believe the weight of bodies to be proportional to their quantity of matter, all matter being equally hcavy, we may fay, that the man's exertion was equal to the action of gravity on a quantity of matter whofe weight is one pound. We exprefs it much more familiarly, by faying, that the man exerted on it the preffure of one pound of matter, or the force of one pound.

In this manner, the motinn communicated to a mais of matter, by acting on it during fome time, informs us with accuracy of the real mechanical force or preffure which has been exerted. ' 'his is judged to be double when twice the velocitý has been generated in the fame mafs, or where the fame velocity has been generated in twice the mafs; hecaufe we know, that a double preffure would have dune either the one or the other.

But farther: We know that this preflure is the exertion ; we have no other nution of our own force ; and our notion of gravity, of elafticity, or any other natural force, is the fame. We alfo know that the continuance of this exertion fatigues and ex.haufts our Itrength as completely as the mot violent motion. A dead pull, as it is called, of a horfe, at a pook fixed in the ground, is a ufual trial of his ftrength. No man can hold out his arm horizontally for much more than a quarter of an hour; and the exertion of the laft minutes gives the moft diftreffing fatigue, and difables the fhoulder from action for a confiderable tinue after. This is therefore an expenditure of mechanical power, in the ftrict primitive fenfe of the word. Of this expenditure we have an exact and adequate effect and meafure in the quantity of motion produced ; that is, in the product of the quantity of matter by the velocity gencrated in it by this exertion. And it muft be particularly noticed, that this meafure is applicable even to caffs where no motion is produced by the exertion ; that is, if we know that the exertion which is juft unable to ftart a block of ftone lying on a fmoorh ftone pavement, but would ftart it, if increafed by the fmalleft addition; and if we know that this would generate in a fecond 3^{2} feet of velocity in 100 pounds of matter-we are certain that it was a preflure equal to the weight of this 100 pounds. It is at gnod meafure, though not immediate, and may be ufed without danger of miftake when we have no other.

The celebrated engineer Mr Smeaton, in his excel- $\mathrm{Mr} \stackrel{3}{3}$ Smea lent differtation on the power of water and wind toton's meas drive machinery, and alfo in two other differtations, all fure. publifhed in the Philofophical 'Tranfactions, and afterwards in a little volume, has employed another meafure, both of the expenditure of mechanical power, and of the mechanical effect produced. He fays, that the weight of a body, multiplied by the height thro' which it defcends, while driving a machine, is the only proper meafure of the power expended; and that the weight, multiplied by the height through which it is uniformly raifed, is the only proper meafure of the effect produced. And he produces a large train of accurate expe-
riments:
riments to prove that a certain weight, defeending through a certain face, always procuces the fame effect, whether it has defcended fwiftly or flowly, employing little or mneh time.
Had this cminent engineer propofed this as a popular meafure, of eafy comprehenfion and remembrance, and as well accommodated to the ufes of thole engaged in the contruction of machines, when rettricted to a certain clafs of cafes, it might have anfwered very good purpofes; but the author is at pains to recommend it to the philofophers as a neceffary correction of their theories, which he fays tends to miffead the artifts. His own reafonings terminate in the fame conclufion with Mr Leibnitz's, namely, that the power of producing a inechanical effect, and the effect produced, are proportional to the fquare of the velocity. The differeace juftly due to Mr Smeaton's anthority, and the influence of his name among thofe who are likely to make the noft uffe of his inftructions, render it neceffary for us to examine this matter with fome attention.

Mr Smeaton was led to the adoption of this meafure by his profeffional habits. Raifing a weight to a height is, in one flape or another, the general tatk of the machines he was employed to erect; and we may add, the opportunities of expending the mechanical powers of nature which are in our command, are generally in this proportion. A certain daily fupply of water, coming from a certain height, is our beft opportunity, and may very properly be faid to be expended.
4. This being the general cafe, the meafure was obvious, Examined, and natural, and grod. The power and effect were of the fame kind, and mufl be meafures of each other ; at lealt in thofe circumftances in which they were fet in oppolition. Yet even here Mr Smeaton was obliged to make a reftriction of his meafures: "The height thro" which a body flouely and equably defcended, or to which it was raifed." And why was this limitation neceffary? "s Becaufe in rapid or accelerated motions, the inertia of bodies occafioned fome variation*." But this is too vague language for philofophical difquifition. Befides, what is meant by this variation? What is the flandard from which the unreftricted meafure varies? 'I'his tandard, whatever it is, is the true meafure, and it was needlefs to adopt any other. Now, the fandard from which Mr Smeaton eflimates the deviation, is the very meafure which we wifh to employ, namely, the quantity of motion producei. Stricily fpeaking, even this is not the immediate meafure. The immediate meafure is that faculty which we call preffure. This is the intermodium perceivable in all productions of motion ; and it is alfo the intermedium of mechanical effect, even when morion is not produced; as when the weight of a body bends a fpring, or the elafticity of a body fupports another preffure. How it operates in all or any of thefe cafes, we know not ; but we know that all thefe meafures of preffure agree with each other. A double quantity of motion will bend a fpring duubly ftrong, will raife a double weight, will withitand any double preffure, \&c. \&c. In thort, preffure is the immediate agent in every mechanical phenomenon. It penetrates bodies, overcoming their tenacity; it overcomes friction; it balances preffure; it produces motion. Mr Smeaton's meafure is only nearly true, in any cale, and in all cafes it is far from being exact in the firft inftants of the motion, during its acceleration or retardation.

We lave already noticed the complete expenditure of animal power by continued preffure, even when motion is not produced: the only difficulty is to conneet this in a meafurable way with the power which the fame. exertion las of generating motion in a body.

When a man fupports a weight for a lingle inftant, he certainly balances the preffure or action of gravity on that body ; and he continues this action as long as he continues to fupport it : and we know that if this body were at the end of a horizontal arm turning round a vertical axis, the fame effort which the man exerted in merely carrying the weight, if now exerted on the body, by puthing it horizontally round the axis, will generate in it the fame velocity which gravity would generate by its falling freely. On this authority therefore we fay, that the whole accumulated action of a man, when he has juft carried a body whofe weight is 30 pounds for one minute, is equal to the whole exertion of gravity on it during that minute ; and if employed, not to counteract gravity, but to generate motion, would generate, during the minute, the fame motion that gravity would, that is, 60×32 feet velocity per fecond, in a mals of 30 pounds. There would be 30 pounds of matter moving with the velocity of 1920 feet per fecond. We would exprefs this production or effect by 30×1920, or by 57600 , as the meafure of the man's exertion during the minute.

But, according to Mr Smeaton, there is no expenditure of power, nor any production of mechanical effect, in thus carrying $3 \circ$ pounds for a minute; there is no product of a weight by a height through which it is equably raifed; yet fucl exertion will completely exhauft a man's ftrength if the body be heavy enough. Here then is a cafe to which Mr Smeaton's meafure does not readily apply ; and this cafe is important, including all the actions of auimals at a dead pull.

But let us confider more narrowly what a man really does when he performs what Mr Smeaton allows to be the production of a meafurable mechanical effect. Suppofe this weight of 30 pounds hanging hy a cord which paffes over a pulley, and that a man, taking this cord over his thoulder, turns his back to the pulley, and walks away from it. We know, that a man of ordinary force will walk along, raifing this weight, at the rate of about 60 yards in a minute, or a yard every fecond, and that lie can continue to do this for eight or ten hours from day to day; and that this is all that he can do without fatigue. Here are 30 pounds raifed uniformly 1 to feet in a minute; and Mr Smeaton would exprefs this by 30×180, or 5400 , and wonld call this the meafure of the mechanical effect, and alfo of the expenditure of power. This is very different from our meafure 57600 .

But this is not an accurate and complete account of the man's action on the weight, and of the whole etfect produced. To be convinced of this, fuppofe that a man A has been thus employed, while another B, walking along fide of him at the fame rate, fuddenly takes the tope out of his hand, frees him of the tafk, and continues to raife the weight without the lmalleft change on its velocity of alcent. What is the action of B, and whether is it the fame with that of A or not? It is acknowledged by all, that the exertion of B againft the load is precifely equal to 30 pounds. If he holds the lupe by a fpring fteclydrd, it will ftand contfantly at the mark 30. B exerts the fame action on the load as
when he fimply fupports it from falling back into the pit. It was moving with the velocity of three feet per fecond when he took hold of the rope, and it would continue to move with that velocity if any thing could annihilate or counteract its gravity. If therefore there was no action when a perfon merely carried it, there is none at prefent when it is rifing $t 80$ fect in a minute. The man does indeed work more than on that oecafion, but not againtt the load; his additional work is walking, the morion of his own body, as a thing previoufly neceflary that he may continue to fupport the load, that he may continue his mechanical effort as it follows him. It appears to yield to him : but it is not to his efforts that it yields; its weight complctely balances thofe efforts, and is balanced by them. It was to a greatie effort of the man A that it yielded. It was then lying on the ground. He pulled at the cord, gradually perhaps increaling his pull till it was juft equal to its weight. When this obtains, the load no longer preffes on the ground, but is completely carried by the rope. But it does not move by this effort of 30 pounds ; but let him exert a force of 3 r pounds, and continue this for three feconds. He will put it in motion; will accelerate that motion; and at the end of three feconds the load is rifing with the velocity of three feet per fecond. The man feels that this as much fpeed as he can continue in his walk; he therefore flackens his pull, reducing his action to 30 pounds, and with this action he walks on. All this would be diftinctly perceived by means of a fteelyard. The rod would be pulled out beyond 30, till the load acquired the uniforns velocity intended, and after this it would be obferved to farink back to 30 .
More is done therefore than appears by Mr Sineaton's meafure. Indeed, all that appears in it is the exertion neceffary for continuing a motion already produced, but which would be immediately extinguifhed by a coutrary power, which mult therefore be counteracted. This meafure will not apply to numberlefs cafes of the employment of maclines, where there is no fuch oppofing power, and where, notwithlanding, mechanical power mult be expended, even according to Mr Smeaton's meafurement. Such are corn mills, boring mills, and many uthers.

How then comes it that Mr Smeaton's valuable experiments concur fo exactly in thewing that the fame quantity of water defeending from the fame height, always produces the fame effect (as he meafured it), what. ever be the velocity? In the firlt place, all his experiments ate cafes where the power expended and the work performed are of the fame kind: A heavy body defcends, and by its preponderancy raifes another heavy body. But even this would not enfure the precife agreement obferved in his experiments, if Mr Snccaton were not careful to exclude from his calculations all that motion where there is any acceleration, and ail the expenditure of water duriag the acceleration, and to admit only thofe motions that are fentibly uniform. In moderate velocities, the additional preffure required for the firtt acceleration is but an infignificant part of the whole; and to take thefe accelerated motions into the account, would have embarraffed the calculations, and perhaps confufed many of the readers. We fee, in the inflance now given, that the addition of one ponud con.
tinued for three feconds only, was all that was necef. fary.

Mr Smeaton's meafurement is therefore abundantly exact for practice; and being accommodated to the circurnftances molt likely to engage the attention, is very proper for the inftruction of the numerous practitioners in all manufacturing countries who are employed for urdinary erections ; but it is improperly propofed as an article effential to a juft theory of mechanies, and therefore it was proper to notice it in this place. Befides, there frequently occur moft important cafes, in which the motion of a machine is, of necefinty, defultory, alternately accelerated, and retarded. We fhould not derive all the advantages in our power from the firt mover, if we did not attend particularly, and chiefly, to the accelerating forces. And in every cafe, the improvement, or the proper employment of the machine, is not attained, if we are not able to difcriminate between the two parts of the mechanical exertion ; one of than, by which the motion is produced and accelerated to a certain degree; and the other, by which that motion is continued. We muft be able to appreciate what part of the effect belongs to each. But it is now time to procced to the important queftion,

What will be the precife motion of a macline of given conflruaion, actuated by a pozeer of knozen intenfity and manuer of ading, and oppofed by a knozun refflance?

In the folution of this queltion, much depends on the nature of both power and refiftance. In the flatical confideration of machines, no attention is paid to be confiderconficeration of machines, no attention is paid to any ed in a ma-
differences. The intenfity of the preflures is all that it is chine at neceflary to regard, in order to flate the proportion of work. preffure which will be exerted in the various parts of the machine. The preffires at the impelled and work ing points, comhined with the proportions of the machine, neceflarily determine all the reft. Preffure being the fole caufe of all mechanical action among bodies, any preffure may be fubftituted for another that is equal to it; and the preffure which is moft familiar, or of eafieft confideration, may be ufed as the reprefentative of all others. This has oceafioned the mechanical writers to make ufe of the preflure of gravity as the ftandard of comparifon, and to reprefent all powers and refiftances by weights. However proper this may be in their lands, it has hort the progrefs of the fcience. It has rendered the ufual elementary treatifes of mechanics very imperfect, by limiting the experiments and illuftrations to fuch as can be fo reprefented with facility. This has limited them to the flate of equilitriuin (in which condition a working machine is never found), becaufe illuftrations by experiment out of this fate are neither obvious nor eafy. It has alfor prevented the Audents of mechanics from accomplifing thenfotves with a mathematical knowledge required for a fuccefsful profecution of the Itudy. The melt elementary geometry is fufficient for a thorough underfanding of equilibrium, or the doctrines of Aatics; but true meclanics, the knowledge of machines as inftruments by which work is perforneer, requires more refined mathematics, and is inacceffible without it.

Had not Newton or athers improved mathematics. by the invention of the infinitefimal analy lis and calculus, we mult have relted contented with the difcoverics (really great) of Galileo and Huyghens. But New-
ton, fuâ matbefo facem praferchle, opened a boundlefs field of inveltigation, and has not only given a magnificent and brilliant fpecinen of the difcoveries to be made in it, but has alfo traced ont the particular paths in which we are to find the folution of all queftions of practical meclanics. This he has done by fhewing another fpecies of equilibrium, indicated, not by the ceffation of all mution, but by the uniformity of motion ; by the ceffation of all acceleration or retardation. As the extinction of motion ly the action of oppolite forces is affumed by is as the indication of the perfect equality of thofe forces; fo the extinction of acceleration fhould be received as the indieation of fomething equal and oppofite to the force which was known to have caufed the acceleration; and therefore as the indication of an equilibrium between oppofite forces, or clfe of the ccflation of all force.
This new view of things was the fource of all our

Me
-qualibrium diftinct notions of mechanical forces, and gave us our The 39th propafition of the firf book of Newton's Principles of Natural Philofophy, and its corollaries, contain almoft the whole doctrine of active mechanical nature, and are peculiarly applicable to our prefent purpofe, becaufe they enable us to comprehend in this mecbanical equilibrium (fo different from the fattical) every circumftance in which thofe preffures which are exerted by natural powers differ from each other, and vary in their action on the impelled and working points of a machine. Indeed, when we recollect that the operations of our machines are the fame on board a fhip as on fhore, and that all our machines are moving with the ground on which they ftand, we muft acknowledge, that even ordinary ftatics is only an imperfect view of an equilibrium among things which are in motion; and this Thould have taugbt us that, even in thofe cales where nothing like equilibrium appears, an equilibrium may fill be uffully traced. Dintinctions of preflure is all that we need attend to. But in the muft be the mechanical difcuffion of their operations, we mut attend made in the to their diftinctions in kind: and it will by no means the powers be fufficient to reprefent them all by weights; for their applied to diftinction in kind is accompanied by great differences working machines, in their manner of acting on the machine. Some natural powers, in urder to continue their action on the im-
pelled point of the machine, mult at the fame time put into motion a quantity of matter external to the machine, in which thefe powers refide; and this mut be made to follow the impelled point in its motion, and not only follow, but continue to prefs it forward ; or, this matter, thus continually put iuto motion, mull be fucceffively applied to different points of the machiuc, which become implled points in their turn. This is the cafe with a weight, with the action of a fpring, the ac. tion of animals, the action of a ftream of water or wind, and many other powers. A part of the natural mechanical powers mult therefore be employed in producing this external motion. This is fometimes a very confiderable part of the whoie natural power. In fome cafes it is the whole of it. This obtains in the action of a defcending weight, lying on the end of a lever and preffing it down, or hanging by a cord attached to the machine.

There is alfo an important diftinetion in the manner in which this external mution is kept up. In a weight employed as the moving power, the attuating preflure feems to refide in the matter itielf; and all that is ne. ceffary for continuing this preffure is merely to continue the connection of it with the machine. But in the action of animals it may be very different: A man pufhing at a capftan bar, muft frift of all walk as fall as the bar moves round, and this requires the expenditure of his mufcular force. But this alone will not render his action an effective power: He muft alfo prefs forzward the capftan bar with as much force as he has remaining over and above what he expends in walking at that rate. The proportion of theic two expenditures may be very different in different circunttances; and in the judicious felestion of fuch circumflances as make the firft of thefe as inconfiderable as poffible, lies much of the fkill and fagacity of the engineer. In the common operation of thrafhing corn, much more than half of the inan's power is expended in giving the neceffary motion to hisown body, and only the remainder is employed in urging forward the fwiple with a momentum fufficient for thaking off the ripe grains from the ftalk. We had fufficient proof of this, by taking off the fwiple of the fail, and putting the fame weight of lead on the end of the ftaff, and then caufing the hind to perform the ufual motions of thrafhing with all the rapidity that he could continue during the ordinary hours of work. We never could find a man who could make three motions in the fame time that he could make two in the ufual manner, fo as to continue this for half an hour. Hence we mult conclude, that half (fome will fay two-thirds) of a threfher's power is expended in merely moving his own body. Such modes of animal action will gherefore be avoided by a judicions engineer; but to be avoided, their inconvenjence mult be undeiftood. More of this will occur hereatter. In other cafes we are almoit, (never wholly) free from this unprofitable expenditure of power. Thus, in the fleans engine, the operation requires that the external air follow the pillon duwn the cylinder, in order to continue its preffure. But the force neceffary for fending in this rare fluid into the cylinder with the neceffary relocity, is fuel an infignicant part of the whole force which is at our command, that it would be ridiculuns affectation in any engineer to take it into account; and this is one great ground of preference to this natural power. The fame thing may be faid of the action of a ftrong and light fpring, which is therefure another very eligible firtt mover for machinery. The ancient artillerifts had difonvered this, and employed it in their warlike engines.
We mutt alfo attend to the nature of the refifance which the work to be performed oppofes to the motion of our machine. Sometimes the work oppofes, not a fimple obitruction, but a real refiftance or reaction, which, if applied alone to the machine, would caufe it to move the contrary way. This always obtains in cafes where a heavy body is to be raifed, where a fpring is to be co npreffed, and in fome other cafes. Very often, however, there is no fuch contrary action. A flour mill, a faw mill, a boring mill, and many fuch engines, exhibit no reaction of this kind. But although fuch machines, when at reft or not impelled by the firf mover, fuftain no preffure in the oppofite direction, yet
they
they will not acquire any motion whatever, unlefs they be impelled by a power of a certain determinate intenfity. Thus in a faw mill, a certdin force mult be innpreffed on the teeth of the faw, that the collefion of the fibres of the timber nay be overeome. This requires that a certain force, determined by the proportions of the machine, be impreffed on the impelted point. If this, and no morc, be applied there, a force will be excited at the tecth of the faw, which will ba. lance the collefion of the wood, but will nut overcome it. The machine will continue at rell, and nos work will be performed. Any addition of force at the impelled point, will occation anl addition to the force excited in the teeth of the faw. The cohefion will he urercome, the machine will move, and work will be performed. It is only this addilion to the impelling power that gives motion to the machine; the relt being expended nerely in balancing the cohefion of the woody fibres. While therefore the machine is in motion, perfurning work, we muft conider it as actuated by a force impreffed on the impelled point by the natural power, and by another acting at the working point, furnifhed by or derived from the refittance of the work.

Again: It not unfrequently happens, that there is not even any fuch refiftance or obftruction excited at the working point of the machine: the whole refitance (if we can with propriety give it that name) arifes from the neceffity of giving motion to a quantity of inert and inactive matter. This happens in urging round a heavy fly, as in the coiniug prefs, in the punching engine, in drawing a body along a horizontal plane without friction, and a few fimilar- cafes. Here the fmallelt force whatever, applied at the impelled point, will begin motion in the macline; and the rubole force fo applied is confumed in this fervice. Such cales are rare, as the ultimate perfornance of a machine; but occafionally, and for a farther purpofe, they frequently occur ; and it is necelfary to confider them, becaufe there are many of the moft important applications of machinery where a very confiderable part of the force is expended in this part of the general talk.

Such are the chief circumftances of diftinction among the mechanical powers of nature which mult be attended to, in order to know the motion and performance of a machine. Thefe never occur in the Itatical confideration of the machine, but here they are of chief importance.

But farther: The action of the moving power is transferred to the working point through the parts of a machine, which are materiai, inert, and heavy. Or, to defcribe it more accurately, before the neceffary force can be excited at the working point of the macline, the various connecting forces mult be exerted in the different parts of the machine; and in order that the working point may follow out the impreffion already made, all the connecting parts or limbs of the machine mult be moved, in different directions, and with different velocities. Force is neceffary for thus changing the ftate of all this matter, and frequently a very confiderable force. Time mult alfo elapfe before all this can be accomplifhed. This often confumes, and really waftes, a great part of the impelling power. Thus, in a crane worked by men walking in a wheel, it acquires motion by flow degrees; becaufe, in order to give fufficient room for the action of the number of men or cattle that

Suppl. Vol. II, Part I.
are neceflary, a very capacious whecl mun be employed, contaning a great quantity of inert matter. All of this muft be put in motion hy a very moderate preponderance of the men. It accelerates flowly, and the load is raifed. When it has attained the required height, all this matter, now in confiderable motion, mutt be ftopped. This cannot be done in an inftant with a jolt, which would be very incotavenient, and even hurt. ful; it is therefore brought to reft gradually. This alfor confumes times nay, the wheel nult get a motion in the contrary direction, that the load may be lowered into the cart or lighter. This can only be accomplifhed by degrees. Then the tackle mut be lowered down again for another load, which alfo mult be done gradually. All this waftes a great deal both of time and of foree, and renders a walking wheel a very improper form for the firlt mover of a crane, or any machine whofe ufe requires fuch frequent changes of motion. The fame thing obtains, although in a lower degree, in the fleam engine, where the great beam and pump rods, fometimes weighing very many tons, muft be made to acquire a very brifk motion in oppolite directionstwice in every working froke. It obtains, in a greater or a lefs degree, in all engines which have a reciprocating motion in any of their parts. Pump mills are of necef. fity fubjected to this inconvenience. In the famous engine at Marly, about $\frac{1}{2} \%$ of the whole moving power of fome of the water wheels is employed in giving a reciprocating motion to a fet of rods and chains, which extend from the wheels to a ciltern about three-fowths of a mile diftant, where they work a fet of pumps. This engine is, by fuch injudicious conftruction, a monument of magnificence, and the ftruggle of ignorance with the unchangeable laws of Nature. In machines, all the parts of which continue the direction of their motions unchanged, the inertia of a great mafs of matter does no harm; but, on the contrary, contrihutes to the ftcadinefs of the motion, in fpite of fmall inequalities of power or refiftance, or unavoidable irregularities of force in the interior parts. But in all reciprocations, it is highly prejudicial to the performance ; and therefore confructions which admit fuch reciprocation without neceffity, are avoided by all intelligent engrineers. The mere copying artitt, indeed, who derives all his knowledge from the common treatifes of mechanics, will never fufpect fuch imperfections, becaufe they do not ocew in the ftatical confderation of machines.

Lafly, no machine can move without a mutual rub And 10 hing of its parts, at all points of communication; fuch friction as the teeth of wheclwork, the wipers and lifts, and the gudgeons of its different axes. In many machines, the ultimate tafk performed by the working point, is either friction, or very much refembles it. This is the cafe in polifhing mills, grinding mills, nay, in boring mills, faw mills, and others. A knowledge of friction, in all its varieties, feems therefore abfolutely neceffary, esen for a moderate acquaintance with the principles of machinery. This is a very abtrufe fubject; and although a good deal of attention has been paid to it by fome ingenious men, we do not think that a great deal has been added to our knowledge of it; nos do the experiments which have been made feem to us well calculated to lead us to a diftinct knowledge of its nature and modifications. It has been confidered chiefly with a view to diminifh it as much as pofible in the communicating
parts of machinery, and to obtain fome general rules for afcertaining the quantity of what unavoidably remains. Mr Amontons, of the Royal Academy of Sciences at $P a$ is, gave us, about the beriming of this century, the chict information that we have on the fubject. He difervect, that the obetruction whieh it gave to motion was very rearly proportional to the force by whioh the rubbing furfaces are preffed together. Thus he found, tind a flunuth oaken board, laid on another fimooth board of the lame wood, requires a force nearly equal to one third of what preffes the furfaces together. Dilferent fubitances required different proporII tions.

He allo found, that neither the extent of the rubbing furfaces, nor the velocity of the motion, made any confiderable variation on the obdruction to motion. Thele were curious and unexpected refults. Subfequent obfervations have made feveral corrections neceffary in all thefe propofitions. This fubject will be more particularly confidered in another place; but fince the deviations from Mr Amontons's rule are not very confiderable, at leaft in the cafes which occur in this general confideration of machines, we fhall make ufe of it in the mean time. It gives us a very eafy method of eftimating the effect of friction on machines. It is a certain proportion of the mutual preffure of the rubhing furfaces, and therefore mult vary in the fanse proportion with this preffure. Now, we learn from the principles of ftatics, that whatever preffures are exerted on the impelled and working point of the machine, all the preffures on its different parts have the fame conftant proportion to the fe, and vary as thefe vary: Therefore the whole friction of the machine varies in the fame proportion. But farther, fince it is found that the friction does not fenfibly change with the velacity, the force which is juft fufficient to overcome the friction, and put the loaded machine in motion, muft be very nearly the fame with the force expended in overcoming the friction while the machine is moving with any velocity whatever, and performing work. Therefore if we deduct from the force which juft puts the loaded machine in motion that part of it which balances the reaction of the impelled point occafioned by the reliflance of the work, or which balances the reliftance of the work, the remainder is the part of the impelling power which is employed in overcoming the friction. If indeed the actual refitting preflure of the work varies with the velocity of the working point, all the preflures, and all the frictions in the different communicating parts of the machine, vary in the fame proportion. But the law of this variation of working refiftance being knowa, the frictios is again : feertained.

We can now fate the dynamical equilibrium of forces in the working machine in two ways. We may either confider the efficient impeling power as diminifhed by all that portion which is expended in overcoming the friction, and which only prepares the machine for performing work, or we may conlider the i:npelling power as entire, and the work as increafed by the friction of the machine; that is, we may fuppofe the machine without friction, and that it is loaded with a quantity of additional reffitance acting at the work. ing point. Either of thefe methods will give the fame refult, and each has its advantages. We took the lalt method in the nlight virw which we took of this fubject
in the Encycl. article Rotstion, no σ_{q}, and thall there. fore ufe it here.

Suppoling now this previous knowleclge of all thefe variable circumttances which affect the motion of machines of the rotative kind, fo that, for any momentary polition of it while performing work, we know what are the precife preflures acting at the impelled and working points, and the couttruction of the machine, on which depend the friction, and the momentum of its inertia (expreffed in the article Rotation by $\left.\int p r^{2}\right)$; we are now in a condition to determine its motion, or at lealt its momentary acceleration, competent to that pofition. 'Therefore,

Let there be a rotative machine, fo conftructed, that Compofiwhile it is performing work, the velocity of its inpelled tion of the point is to that of its working point as m to n. It is formula eafy to demonftrate, from the common principles of exprefling Atatics, that if a fimple wheel and axle be fublituted formance for it, having the radius of the wheel to that of the of a maaxle in the fame proportion of m to n, and having the chine. fame momentum of friction and inertia, and aetuated by the fame preffures at the impelled and working points, then the velocities of thefe points will be precifely the fame as in the given machine.

Let p reprefent the intenfity (which may be meafured by pounds weight) of the preffure exerted in the moment at the impelled point; and r exprefs the preflure exerted at the working point by the refilance oppofed by the work that is then performing. This may arife from the weight of a body to be raifed, from the cohefion of timber to be fawed, \&c. Any of thefe refiftan. ces may alfo be meafured by pounds weight ; becaufe we know that a certain number of pounds hung on the faw of a faw mill, will juft overcome this cohefron, or overcome it with any degree of fuperiority. Therefore the impelling power p, and the reliftance r, however differing in kind, may be compared as mere preffures.

Let x reprefent the quantity of inert matter which. mut be urged by the impelling power p, with the fame velocity as the impelled point, in order that this preffure p may really continue to be exerted on that point. Thus, if the impelling power is a quantity of water in the bucket of an overfhot whed, acting by its weight, this weight camot impel the wheel except by inpelling the water. Iu this way, x may be conlidered as reprefentiug the inertia of the impelling power, while p reprefents its preflure on the nachine. In like manner, let y reprefent the quantity of external inert matter which is really moved with the velucity of the working point in the execution of the tafk performed by the machine.

Whatever be the momentum of the inertia of the machine, we can always afcertain what quantity of matter, attached to the impelled point, or the working point of the wheel and axle, will require the fame force to give the wheel the fame angular motion ; that is, which thall have the fame momentum of inertia. Let the quantity a, attached to the working point, give this momentum of inertia $a n^{2}$.

Lafly, fuppofing that the wheel and axle have no friction, let f be fuch a refiftance, that if applied to the working point, it fhall give the fame obftruction as the friction of the machine, or require the fame force at the impelled point to overcome it.

Thefe

Thefe thinge being thus eftablifhed, the angular velocity of the wheel and axle, that is, the number of turns, or the portion of a turn, which it will make in a given time, will be proportional to the fraction $\frac{p m-\overline{r+f}}{x m^{2}+a+y n^{2}}$.
(I.) -Sce Rotation, $n^{\circ} 64$, \&c. Encycl.

Since the whole turns together, the velocities of the different points are as their diftances from the axis, and may be exprelfed by multiplying the commen angular velocity by thefe diftances. Therefore the above formula, inultiplied by n or n, will give the volocity of the impelled or of the working point. Therefore,

$$
\begin{align*}
& \text { ry } \tag{II.}\\
& \text { Velocity of Velocity of impelled point }=\frac{p m^{2}-\dot{r y} n n}{x m^{2}+a+y n^{2}} \\
& \text { the impel. } \tag{III.}\\
& \text { led pont. } \\
& \quad 15 \text { Velocity of working point }=\frac{p m n-r+f n^{2}}{x m^{2}+\overline{a+y} n^{2}} \text {. } \\
& \text { Velocity of }
\end{align*}
$$

In order to obtain a clear conception of thefe velo. cities, we muft compare them with motions with which we are well acquainted. T'he propofition being univerfally true, we may take a cale where gravity is the fole power and refiflance; where, for example, p and r are the weights of the water in the bucket of a wheel, and in the tub that is raifed by it. In this cafe, $p=x$, and $r=y$. We may alfo, for greater limplicity, fuppofe the machine without inertia and friction. The velucity of p is now $\frac{p m^{2}-r m n}{p m^{2}+r n^{2}}$.

Let g be the velocity which gravity generates in a fecond. Then it will generate the velocity $g i$ in the moment i. Let v be the velocity generated during this moment in p, connected as it is with the wheel and axle, and with r. This connection produces a clange of condition $=g i-\dot{v}$. For, had it fallen freely, it would have acquired the velocity $g i$, whereas it only acquires the velucity \dot{v}. In like manner, had r fallen freely, it would have acquired the velocity $g i$. But, inftead of this, it is raifed with the velucity $\frac{n}{m} \dot{v}$. The change on it is therefore $=g i+\frac{n}{m}$ v. Thefe changes of mechanical condition arife from their connection with the corporeal machine. Their preffures on it bring into action its connecting forces, and each of the two external forees is in immediate equilibrium with the force exerted by the other. The force excited at the impelled point, by r acting at the working point, may be called "he momentum or energy of r. Thefe energies are preifely competent to the production of the changes wht h they really produce, and mutt therefore be conceived as having the fame proportions. They are therefore equal and oppofite, by the general laws ob. ferved in all actions of tangible matter; that is, they are fuch as balance each other. Thus, and only thus, the remaining motions are what we obferve them to be.

$$
\begin{aligned}
& \text { That is, } \hat{p} \times \overline{g i}-v \times m=r \times g t+\frac{n}{m} \dot{v} \times n \\
& \text { Or } p m g i-p m v=r n g i+r \frac{n^{2}}{m} \dot{v} \\
& \text { Or } p m^{2} g i-p m^{2} v=r m n g i+r n^{2} v
\end{aligned}
$$

$$
\text { Or } \overline{p m^{2}-r m n} \times g i=\overline{p n^{2}+r n^{2}} \times \dot{v}
$$

That is, $p m^{2}+r n^{2}: p m^{2}-r m n=g i: \dot{v}$
That is, the denominator of the fration, exprefleng the velocity of the impelled point, is to the nunierator as the velocily which a beavy horly muruld acquire in the moment t, ly falling fireely, is in the velurity which the impeiled print acquires in that moment. The fame thing is true of the velocity of the working point.

This reafoning fufters no elainge from the more complicated nature of the general propofition. Ifere the impelling power is ftill p, hut the matter to be accelcrated by it at the working point is $a+y$, while its reaction, diminifhing the impelling power, is only r. We have only to confider, in this cafe, the velocity with which $a+y$ would fa!l freely when impelled, not by $a+y$, but only by r. The refule would be the fame; $g i$ would fill be to \dot{v} as the denominator of the fame fraction to its numerator.

Thus have we difcovered the momentary acceleration of our machine. It is evident, that if the preflures p and r, and the friction and inertia of the machine, and the external matter, comtinue the fame, the acceleration will continue the fame; the motion of rotation will be uniformly accelerated, and $p m^{2}+\overline{a+y} n^{2}$ will be to $p m^{2}-\overline{r+f} m n$ as the fpace s, through which a beavy body would fall in any given time t, is to the fjace through which the impelled point will really have moved in the fame tinue. In like manner, the fpace through which the working point moves in the fame time is $=\frac{p m n-\overline{r+f} n^{2}}{p m^{2}+\overline{a+y} n^{2}} s$.

Thus are the motions of the working machine determinerl. We may illuftrate it by a very fimple example. Suppofe a weight p of five poinds, delcending from" a pulley, and dragging up another weight r of three pounds on the other fide. m and n are equal, and each may be called I . The formula becomes $\frac{p-r}{p+r} s$, or $\frac{5-3}{5+3} s$, or $\frac{2}{8}=\frac{1}{4} s$. Therefore, in a fecond, the weight p will defcend $\frac{f}{5}$ th of 16 feet, or 4 feet; and will acquire the velocity of 8 feet per fecond.

Having obtained a knowkdge of the velucity of every point of the machine, we can eafily afeertain its per-ance of the formance. This depends on a combination of the quan-machme. tity of reliftanee that is overcome at the working point, and the velocity with which it is overcome. Thus, in raifing water, it depends on the quantity (proportional to the weight) of water in the bucket or pump, and the velocity with which it is lifted up. This will be had by multiplying the third formula by r, or by $r g i$, or by $r s$. Therefore we obtain this expreflion,

$$
\begin{equation*}
\text { Work done }=\frac{p m r n-\overline{r+j} n^{2}}{p n^{2}+a+y n^{2}} g t \tag{IV.}
\end{equation*}
$$

Such is the general expieffion of the momentary performance of the machine including every circumfance which can affect it. But a variation of thofe cireumftances produces great changes in the refults. Whefe muft be diftinctly noticed.

Cor. 1. If $p m r n$ be equal to $\overline{r+f r} n^{2}$, there will be no work done, becaufe the numerator of the fraction is annihilated. There is then no unbalanced force, and
the natural power is only able to balance the preffure propagated from the working point to the impelled point.
2 In like manner, if $n=0$, no work is done altho' the machine turns round. . The working point has no motion. For the fame reafon, if m be infinitely great, alihough there is a great prevalence of inpelling nomentum, there will not be any fenfible performance during a finite time. For the velocity which p can imprets is a finite quantity, and the impelled point cannot move faiter than x would be moved by it if detached from the machine. Now when the infinitely removed impelled point is moved through any finite fpace, the motion of the working point muft be iufinitely lefs, or nothing, and no work can be done.
Remark. We fee that there are too values of n, viz, v, and $m \times \frac{p}{r}$, which give no performance. But in all other proportions of m and n fome work is done. Therefore, as we gradually vary the proportion of m to n, we obtain a feries of values expreffing the performance, which muft gradually incrafe from nothing, and then decreafe to nothing. There mult therefore be fome proportion of m to n, depending on the proportion of p to $r+f$, and of x to $a \overline{+y}$, which will give the greatert poffible value of the performance. And, on the other hand, if the proportion of m to n be already determined by the confruction of the machine already erected, there mult be fome proportion of p to $\overline{r+f}$, and of x to $\overline{a+y}$, by which the greateft performance of the machine may be enfured. It is evident that the determination of thefe two proportions is of the utmont importance to the improvement of machines. The wellinformed reader will pardon us for endeavouring to make this appear more forcibly to thofe who are lefs infructed, by means of fome very limple examples of the firt principle.

Suppofe that we have a fream of water affording three tons per minute, and that we want to drain a pit which receives one ton per minute, and that this is to be done by a wheel aud axle? We wihh to know the beft proportion of their diameters m and n. Let m be taken $=6$; and fuppofe,

1. That $n=5$.

Then $\frac{p m r n-r^{2} n^{2}}{p m^{2}+r n^{2}}=\frac{3 \cdot 6 \cdot 1 \cdot 5-1.25}{3 \cdot 36+1 \cdot 26},=\frac{65}{133},=0,4887$
2. Let n be $=6$. The formula is $=0,5$.
3. Let $n=7$. The formula is $=0,49045$. Hence we find, that the performance is greater when n is 6 than when it is either 5 or 7 .

As an example of the fecond principle, fuppofe the machine a dimple pulley, and let p be 10 .

1. Let r be $=3$. The formula is $\frac{10 \times 3-9}{10+3}=\frac{21}{13}$, $=1,6154$.
2. Let r be $=4$. The formula is $=\frac{10 \times 4-16}{10+4}$, $=\frac{24}{14},=1,7143$.
3. Let r be $=5$. The formula is $=\frac{10 \times 5-25}{10+5}$,
$=\frac{25}{15},=1,6666$. Here it appears, that more work is done when r is 4 than when it is 5 or 3 .

It mult therefore be allowed to be one of the moft important problems in practical mechanics to determine that conftruction by which a given power fhall overcome a given refiltance with the greateft advantage, and the proportion of work which hould be given to a machine already conltructed fo as to gain a timilar end.
I. The general determinationi of the lirft queftion has Pioportion but little difficulty. We muft confider n as the vari- of the maable magnitude in the formula $\frac{p m r n-\overline{r+f r n^{2}}}{p m^{2}+a+y n^{2}}$, givestestef which expreffes the work done; and find its value whe work. the formula is a maximum. Taking this method, we fhall find that the formula IV. is a maximum when n is $=m \frac{\sqrt{x^{2}}(r+f)^{2}+\overline{p^{2} x(a+y)}-x(r+f)}{p(a+y)}$.

This expreffion of the performance, in its beft flate, appears pretty complex; but it becomes much more fimple in all the particular applications of it, as the circumftances of the cafe occur in practice.

We have obtained a value of n expreffed in parts of n. If we fubftitute this for n in the third formula, we obtain the greatelt velocity with which the refiftance r, connected with the inertia y, can be overcome by the fower p, connected with the inertia x, by the intervention of a machiue, whofe momentum of inertia and friction are $a n^{2}$ and $f n$. This is $=\frac{r+f}{2 a+y} \times$ $\left(\sqrt{\frac{p^{2} a+y}{r+f^{2} x}}+1-1\right) g i$. This expreffes the velocity of the working point in feet per fecond, and therefore the actual performance of the machine.

But the proper proportion of m to n, afcertained by this procefs, varies exceedingly, according to the nature both of the impelling power, and of the work to be performed by the machine.

1. It frequently happens that the work exerts no contrary frain on the machine, and confits merely in impelling a body which refifts only by its inertia. This is the cafe in urging round a milfone or a heavy fly; in urging a body along a horizontal plane, \&cc. In this cafe r does not enter into the formula, which now becomes $m \times \frac{\sqrt{x^{2} f^{2}+}+\frac{p^{2} x(a+y)}{p(a+y)}-x f}{p}$. If the friction be infignificant, we may take $n=m \sqrt{\frac{\overline{p^{2} x(a+y)}}{p^{2}(a+y)^{2}}}$ $=m \sqrt{\frac{x}{a+y}}$. The velocity of the working point is nearly $=\frac{p}{2 \sqrt{x a+y}}$. In this cafe, it will be found that the velocity acquired at the end of a given time will be neally in the proportion of the power applied to the machine.
2. On the other hand, and more frequently, the inertia of the external matter which mull be moved in performing the work need not be regarded. Thus, in the grinding of grain, fawing of timber, boring of cylinders, \&c. the quantity of metion communicated to the flour, to the faw-duft, \&c. is too infignificant to he taken into the account. In this cafe, y vanifhes from the formula, which becomes extremely fimple when the friction and inertia of the machine are inconfiderable. We
halk
fhall not be far from the truth if we :make m to n as $2 r$ to p, or $n=m \times \frac{p}{2 r+f}$: In this cafe, the velocity of the working point is $\frac{p^{2}}{4 \times(r+f)+\frac{a p^{2}}{4(r+f)}}$ But it is rare that machines of this kind have a fimall inertia. They are generally very ponderous and powerful; and the force which is neceffary for generating even a very moderate motion in the unloaded machine (that is, unloaded with any work), bears a great proportion to the force neceflary for overconing the relitance oppofed by the work. The formula muft therefore be ufed in all the terms, becaufe a is joined with y. It would have been fimpler in this particular, had a been joined with x in the expreflion of the angular velucity.
3. In fome cafes we need not attend to the inertia of the power, as in the fteam engine. In this cafe, if taken Atrictly, n appears to have no value, becaufe x is a factor of every term of the numerator. But the furmula gives this general indication, that the more infignificant the inertia of the moving power is fuppofed, the larger fhould m be in proportion to n; provided always, that the impelling power is not, by its nature, greatly diminifhed, by giving fo great a velocity to the impelled point. This circumftance will be particularly confidered afterwards.
4. If the inertia of the power and the refiltance be proportional to their preffures, as when the impelling power is water lying in the buckets of an overhot wheel, and the work is the railing of water, minerals, or other heavy body, acting only by its weight ; then p and r may be fubtituted for x and y, and tbe formula expreffing the value of n, when the performance is a maximum, becomes

$$
n=m \frac{\sqrt{p^{2} \times r+f^{2}+p^{3} \times a+r i}}{p \times a \times \overline{r+f}}
$$

If, in this cafe, the inertia and friction of the machine may be difregarded, as may often be done in pulleys, we have

$$
n=m \sqrt{\frac{p}{r}+1}-1
$$

If se make m the unit of the radii, and r the unit of force, we have

$$
n=\sqrt{p+1}-1, \text { in parts of } m=1
$$

Or, making $\beta=1$, we have $n=\sqrt{\frac{1}{r}+1}-1$.
Thefe very fimple expreffions are of confiderable ufe, even in cafes where the inertia of the machine is very confiderable, provided that it have no reciprocating motions. A fimple wheel and axle, or a train of good wheelwork, have very moderate friction. The general refults, therefore, which even very unlettered readers can deduce from thefe fimple formulx, will give nutions that are ufeful in the cafes which they cannot fo thoroughly comprehend. Some fervice of this kind may be derived from the following little table of the beft proportions of m to n, correfponding to the proportions of the power furnifhed to the engineer, and the refiftance which mult be overcome by it. The quantity r is always $=10$, and $n=1$.

p	n	p	n
1	0,0488	10	0,4142
2	0,0954	20	0,7321
3	0,1402	30	1,
4	0,1832	40	1,2362
5	0,2246	52	1,4495
6	0,2649	60	1,6457
7	0,3038	70	1,8284
8	0,3416	80	2,
9	0,3784	90	2,1623
10	0,4142	100	2,3166

This mult fuffice for a very general view of the firt problem.

Ir. The next quefiou is not lefs momentous, name- Beft proly, to determine for a machine of a given condruction portion of that proportion of the refiltance at the working point the power to the impelling power which will enfure the greatelt ${ }^{\text {and }}$ performance of the machine; that is, the proportion of m to n being given, to find the beft proportion of p tor.

This is a much more complicated problem than the other; for here we have to attend to the variations both of the preffures p and r, and alfo of the external matters x and y, which are generally connected with them. It will not be fufficient therefore to treat the queftion by the ufual fluxionary procefs for determining the maximun, in which r is conidered as the only varying quantity. We mult, in this curfory difculfion, reft fatisfied with a comprehenfion of the circumftances. which moft generally prevail in practice.

It mult either happen, that when r changes; there is no change (that is, of moment) in the mafs of external matter which mult be moved in perfurming the work, or that there is alfo a change in this circunftance. If no change happens, the denominator of the fourth formula, expreffing the perfornance, remains the fame; and then the formula attains a maximum when the numerator $p r m n-\overline{r+f} r n^{2}$ is a maximum. Alfo, we may include f without complicating the procefs, by the confideration, that f is alvays in nearly the fane ratio to r; and therefore $r+f$ may be confidered as a certain multiple of r, fuch as $b r$. We may therefure onit f in the fluxionary equations for obtaining the maximum, and then, in computing the performance, divide the whole by b. Thus if the whole friction be $\frac{1}{2}=$ th of the refilting preflure r, we have $r+f=\frac{21}{20}$ of r, and $b=\frac{21}{20}$. Having afcertained the beft value for r, we put this in its place in the fourth formula, and take $\frac{20}{21}$ of this for the performance. This will ncverdiffer much from the truth.
This procefs gives us $p m n=2 n^{2} r$, and $r=\frac{p m n}{2 n^{2}}$, $=\frac{p m}{2 n}$; and if we farther fimplify the procefs, by ma$\operatorname{king}^{2 n} p=1$, and $m=1$, we have $r=\frac{1}{2 n}$; a monf fimple expreffion, directing us to make the refiftance one half of what would balance the impelling power by the intervention of the machine.

This

This will evidently amply to many very important cafes, namely, to all the in which the matter put in motion by the working point is hut trifling.

But it alfo happens in mary irportant cafes, that the change is at leaft equally conkiderable in the inertia of the work. In this cafe it is very difficult to obtain a general folution. But we can hardly imagine fuch a change, without fuppofing that the inertia of the work varies in the fame proportion as the preflure excited by it at the working point of the machine; for fince r continues the fane in kind, it can rarely clange but by a proportional change of the matter with which it is connected. Yet fome very important cafes occur where this does not lappen. Such is a machine which forces water along a long main pipe. The refiftance to motion and the quantity of water do not follow nearly the fame ratio. But in the cafes in which this ratio is obferved, we may reprefent y by any multiple $b r$ of r, which the cafe in hand gives us; b being a number, integer, or fractional. In the farther treatment of this cafe, we think it more convenient to free r from all other com. binations; and inflead of fuppofing the force f (which we made equivalent with the friction of the machine) to be applied at the working point, we may apply it at the impelled point, making the effective power $q=p-f$. For the fame reafons, inftead of making the momentum of the machine's inertia $=a n^{2}$, we may make it $a \mathrm{~m}^{2}$, and make $a+x=z$. Now, fuppofing q, or $-p-f$, $=1$, and affo $m=1$, our formula expreffing the performance becomes $\frac{r n-r^{2} n^{2}}{z+6 r n^{2}}$. This is a maximum when
$r=\frac{\sqrt{z^{2}+z b n}-z}{L_{n^{2}}}$.
Cor. I. If the inertia of the work is always equal to its preffure, as when the work confilts wholly in raifing a weight, fuch as drawing water, $\dot{\alpha} \mathrm{c}$. then $b=1$, and the formuld for the maximuin perfurmance becumes $r=\frac{\sqrt{z} \overline{u+z^{2}}-z}{n^{2}}$.
2. If the inertia of the impelling power is alfo the fame with its preffure, and if we may neglect the inertia and friction of the machine, the formula becomes $r=\frac{\sqrt{n+1}-1}{n^{2}}$.

Example. Let the machine be a conmon pulley, fo that the radii m and n are cqual, and therefore $n=1$. Then, $r=\frac{\sqrt{1+1}-1}{1}=\sqrt{2}-1,=0,414^{2}$, .scc. more than $\frac{2}{5}$ ths of what wonld balance it.

Here follows a feries of the beft values of r, correfponding to different values of n. m and p are cach $=r$. The numbers in the laft column have the fatme proportion to I which r has to the reliflance which will balance p.

$$
n=\frac{\frac{3}{2}}{\frac{\pi}{3}} \quad r=1,8885 \quad 0,4724 \text { to } 1
$$

From what has now been eftablifhed, we fee with fufficient evidence the importance of the higher mathematics to the fcience of mechanics. If the velocities of
the impelled and working points of an engline are nat properly adjuted to the preflures, the inertia, ard the friction of the machine, we do not derive all the advalutages which we might from our fituation. Hence alfo we learn the falfity of the maxim which has been received as well founded, that the augmentation of intenfity of any force, by applying it to the long arm of General a lever, is always fully compenfated by a lofs of time ; but erroor, as it is ufually exprefled, "what we gain by a ma- neous ma chine in force we lofe in time." If the proportion of m to n is well chofen, we fhall find that the work done, when it refifts hy its inertia only, increafes nearly in the proportion of the power employed; whereas, when the incrtia of the work is but a fmall part of the retiltance, it increales nearly in the duplicate ratio of the power employed.

It was remarked. in the fetting out in the prefent problem, that the formulx do not immediat ly exprefs the velocity of any puint of the machine, but its-momentary acceleration. But this is enough for our purpofe; becaufe, when the momentary acceleration is a maximum, the velocity acquired, and the frace deferibed, in any given time, is alfo a maximum. We alfo, Thewed how the real velocities, and the fpaces defcribed, may be afcertained in known meafures. We may fay in general, that if g reprefent the prefure of gravity on any mafs of matter w, then $\frac{g}{w}$ is to $\frac{p m n-\overline{r+f} n}{a m^{2}+a+y n^{2}}$ as 16 feet to the fpace defcribed in a fecond by the working point in a fecond, or as 32 feet per fecond is to the velocity acquired in that time.
A remark now remains to be made, which is of the greatelt confequence, and gives an unerpected turn to Caures whing the whole of the preceding ductrines. It appears, from do not ono all that has been faid, that the motion of a machinetinually acmuft be uniformly accelerated, and that any point will ceterate. deferibe fpaces proportional to the fquares of the times; for while the preffures, friction, and momentum of inertia remain the fame, the momentary accelcration maut alfo be invariable. But this feems contrary to all experience. Such machines as are properily conitructed, and work without jots, are obferved to quicken their pace fur a few feconds after flarting; but all of them, in a very moderate time, acquire a mution that is fentioly uniform. Is our theory erruievús, or what are the circumflances which remain to be confidered, in order to make it agree with ubfervation? The feience of machines is imperfect, till we have explaired the calufes of this deviation from the theory of unior:n acceleration.

Thefe caufes are varions.

1. In fome cafes, every incteafe of velocity of the f . Increefe machisic produces an increate of friction in all its com- of friction. municating parts. Bv thefe means, the accelerating force, which is $p m-\overline{r+f} n$, or $\overline{p-f} m-r n$, is dimiviflied, and confequently the acceleration is diminithed. But it feldom happens that friction takes away or employs the whole accelerating force. We are not yet well initructed in the nature of friction. Moft of the kinds of friction which obtain in the communicating parts of maclines, are fuch as do not fenfibly increafe by an increafe of velocity; fome of them really diminifh. Yet even the moft accurately conftructed machines, unloaded with work, attain a motion that is fenfibly uniform. If we take of the pallets from a pendulum
dulum clock, and allow it to run dewn amain, it accelerates for a while, but in a very moderate time it acquires an uniform motion. So dues a common kitelen jack. Thefe two machines feem to bid the fairett of any for an unifurmly accelerated motion; for their impelling power acts with the utnout uniformity. There is formething yet unexplained in the nature of friction, which takes away fome of this acceleration.

But the chief caufe of its cefation in thefe two in ftances, and uthers of very rapid morion, is the refiftance of the air. This arifes from the motion which is communicated to the air difplaced by the fuvift moving parts of the machine. At firf it is very fimall; but it increafes nearly in the duplicate ratio of the velocity (fee R_{F}. sistance of Fiuids, Eneycl.) Thus r increafes continually ; and, in a certain flate of motion, $\overline{r+f} n$ becomes equal to $p m$. Whenever this happens, the accelerating power is at an end. The accelectation alfo ceales; and the machine is in a fate of dynamical equilibrium; not at reft, but moving uniformly, and performing work.
Still, however, this is not one of the general canfes e of the uniform motion attained by working engines. Rarely is the motion of their parts fo rapid, as to occafion any great refiftance from the air. But in the moit fiequent employments of machines, every increafe of velocity is accompanied by an increafe of refiftance fiom the work performed. This occurs at once to the imagination; and few perfons think of inquiing farther for a reafon. But there is perhaps no part of mechanics that is more imperfectly underftood, even in our prefent improved fate of mechanical fcience. In many kinds of work, it is very difficult to flate what increafe of labour is required in order to perform the work with twice or thrice the fpeed. In griading corn, for inftance, we are almof entirely ignorant of this matter. It is very certain, that twice the force is not neceflary for making the mill grind twice as faft, nur even for making it grind twice as much grain equally well. It is not tafy to bring this operation under mathematical treatment; but we have confidered it with fome attention, and we imagine that a very great improvement may fill be made in the conftruction of grift mills, founded on the lav of variation of the refiftance to the uperation of grinding, and a fcientific adjuftment of n :o n, in confequence of our knowledge of this law. We may make a fimilar obfervation on many uther kinds of work performed by machines. In none of thofe works where the inertia of the work is incontiderable, are we well acquainted with the real mechanical procefs in performing it. This is the cafe in fawing mills, loning mills, rolling mills, flitting mills, and many others, where the work confifts in overcoming the ftrung colefion of a fmall quantity of natter. In fawing timber (which is the mot eafily underfood of all thefe operations), if the faw move with a douhle velocity, it is very difficult to fay how much the actual refifing preffare on the teeth of the faw is increafed. Twice the number of fibres are neceffarily torn afunder during the fame time, becaufe the fame number are turn by one defcent of the faw, and it makes that froke in half the time. But it is -very uncertain whether the refiftance is double on this account ; becaufe if each fibre be fuppofed to have the fame tenacity in both cafes, it refifts with this tena.
ciry only for half the time. The parts of bodies refift a finilar clanger of condition in different manneis; and there is another difference in their refillance of different changes - the reliftance of red hot iron under the roller may vary at a very different rate from that of its refift. ance to the cutting tool. The refiftance of the fpindles of a cotton mill, atifing partly from friction, partly from the ivertia of che lieaped bubbins, and partly from the refiftance of the air, is ftill mure complicated, and it may be difficult to learn its law. The only cafe in which we can judge with fome precifion is, when the inertia of matter, or a conflant preffure like that of gravity, conltitutes the chief refiflance. Thus in a mill employed to raife water by a chain of buckets, the refirtance proceeds from the inertia only of the water. The buckets are moving with a certain velocity, and the loweft of them takes hold of a quantity of water lying at reft in the pit, and drags it into motion with its acquired velocity. The furce required for generating this motion on the quiefcent water munt be duable or triple, when the velocity that mult be given to it is fo. This abfurbs the overplus of the impelling power, by which that power exceeds what is neceflary for balancing the weight of the water contained in all the afcending buckets. This is a certain ceterminate quantity which does not change; for in the fame inftant that a new bucket of water is forced into motion below, and its weight added to that of the afcending buckets, an equal bucket is emptied of its water at top. The afcending buckets require only to be balanced, and they then conlinue to alcend, with any velocity already acquired. While the machine moves flow, the motion imprefied on clee new buchet of water is not fufficient to atforb all the overplus of impelling power. The quantity not abforbed accelerates the machine, and the next bucket mull produce more motion in the water which it takes up. This confumes more of the overplus. This gues on till no overplus of power is left, and the machine accelerates no inore. The complete performance of the machine now is, that "a certain cquantity of water, furmerly at reft. is now moving with a certain velocity:" Our engineers confider it differently; "as a certain weight of water lifted up." But while the machine is thas moving unifrmly, it is really not doing fo much as before; that is, it is not exerting fuch great preffures as befure the mution was rendered uniform: for at that time there was a preflure at the working point equal to the weight of all the water in the afeending buckets; and alfo an overplus of preffure, by which the whole was accelerated. In the flate of unifurm motion, the preffure is no more than juit balances the weiglit of the afcending chain. We flall learn by and bye how the preffures have been diminifhing, although the mill has been accelcrating; a thing that feems a paradox.

In this inflance, then, we fee clearly, why a machine mult attain a uniform motion. A pumping machine gives us the fame opportunity, but in a manner fo different as to require explanation. The piltun may be fuppofed at the very furface of the pit water, and the impelling power may be lefs than will fupport a column in the pipe as high as can be railed by the preffure of the atmofphere. Suppofe the impelling power to be the water lying in the buckets of an overfhot wheel.

Let this water be laid into the buckets by a very fmall fream. It will fill the buekets very flowly; and as this gives them a preponderance, the mill lofes its balance, the wheel begins to move, and the pilton to rife, and the water to follow it. 'The water may be delivered on the wheel drop by drop; the pitun will rife by infralible degrees, always flanding fiill again as foon. as the atmofpheric preffure on it jult balances the wa. ter on the wheel. The water in the rifing pipe is always a balanee to the preffure of the atmof phere on the ciftern ; therefore the preflure of the atmofphere on the pitton (which is the r in our formula) is equal to the weight of this water. Our pump-nakers therefore (calling themfelves engineers) fay, that the weight of water in the pipe balances the water on the wheel. It does not balance it, nor is it raifed by the wheel, but by the atmofphere; but it ferves us at prefent for a meafure of the power of the wheel. At laft, all the buekets of the wheel are full, and the water is (for example) 25 feet high in the pipe. Now let the fream of water run its full quantity. It will only run over from bucket to bucket, and run off at the bottom of the wheel; but the mill will not move, and no work will be performed. (N. B. We are here excluding all impulfe or Atroke on the buckets, and fuppofing the water to act only by its weight.) But now let all be emptied again, and let the water be delivered on the wheel in its full quantity as at the firft. The wheel will immediately acquire a preponderancy, which will greatly exceed the firt fmall preffure of the atmof phere on the pilton. It will therefore accelerate the pifton, overco. ming the preffure of the air with great velocity. The pifton rifes faft; the water follows it, by the preffure of the atmofphere ; and when it attains the former utmoft heirght, it attains it with a confiderable velocity. If allowed to run off there, it will continue to run off with that velocity ; becaufe there is the fame quantity of water preffing round the wheel as before, and therefore enough to balance the preffure of the atmofphere on the pitton. The preffure of the fame atmofphere on the water in the ciftern, raifed the water in the pipe with this velocity ; therefore it will continue to do fo, and the mill will deliver water by the pump with this velocity, although there is no more preffure acting on it than before, when the water ran to wafte, doing no work whatever.

This mode of action is extremely different from the former example. The mill is mot acting againt the inertia y of the water to be moved, but againt the preffure r of the atmofphere on the pifon. Tlee preffure of the fame atmofphere on the ciltern is employed againlt the inertia of the water in the pipe; and the ufe of the mill is to give occafion, by railng the pilon, to the exertion of this atmofpherical preflure, which is the real raifer of the water. The maxim of confluction, and the proper adjuftment of m to n in this eafe, are diffe. rent from the former; and we fhould run the rifk of making an imperfect engine were we to confound them.

We mult mention another cafe of a pumping mill, feemingly the fame with this, but effentially different. Suppofe the pipe of this punp to reach 30 feet below the furface of the pit water, and that the pifton is at the very bottom of it. Suppofe alfo, that the wheel buckets, when filled with water, only enable it to fup.
port 25 feet of water in the rifing pipe. Iuct the wito ter be delivered into the wheel drop by drop. The wheel will gradually preponderate ; the piilon will gradually rife, lifing the water above it, fultaning a prefo fure of water which gradually increates. At latl, the water in the pump is 25 feet higher than that in the ciftern; the wheel is full and runuing to wafte; but no work is performed. Let all be emptied, and now let the water come to the wheel in its full tream, but without impulle. The pitton will lift the water brikly, bring it to 25 feet high with a confiderable velocity, and the mill nill now raife it with this velueity. In this example the mill is the immediate agent in raling the water; but, in this cale alfo, its ultimate office is not overesming inertia, but overcoming preflure. It was the overplus of power only that was employed in overcoming inertia, while accelerating the water in the rifing pipe, in order to give it the neceffary velocity for a continued difcharge.

Thefe and fimilar examples fhew the great difference between the tatical and dynamical equilibrium of machines, and the neceffity of a fcientifie attention by all who wifh to improve practical mechanics. Without this, and even a pretty refined attention, we cannot fee the connection between a copious fupply of water to the bucket wheel and a plentiful difcharge by the pump. We believe, that the greateft part of thofe employed in erecting machines conceive it as owing to the greater weight of water impelling the wheel with greater force; but we fee that there is no difference in the preffures on the mill at reft, and the mill doing its work Ateadily and uniformly, with any velocity, however great. Without kecping the notions of that part of the impelling power which fupports ditinct from that of the part which accelerates, we thall never have a clear conception of the operation of machines, or of mechanical power in general. We cannot derive all the auvantages of our natural powers, without knowing how our machine employs the preffure excited by it at the working point ; that is, without perceiving in what cafes it is oppofed to incria, and in what to the mechanical properties of tangible matter. This only can inform us at what rate the retillance varies by a change of velocity; and when it happens that this angmentation, neceffarily accompanied by an angmentation of all the frictions, and the refiftance of the air, is in equilibrio with the whole of the impelling power, and all accoleration is at an end.

Lattly, another chief caufe of the finally uniform mo. tion of maehines is, that, in moft cafes, an inereafe of caufe ss a real dimivelocity produces a real diminution of inpelling power. nution of We hardly know any exeeption to this belides the em-power. ploymeat of one defcending weight as a power or firt mover. Moft of the powers which we employ refide in budies external to the machine; and thefe bodies muft be put in motion, and continued in that motion, in order to contiuue their preffure on the impelled point. Frequently a great part of the power is employed in giving this neceffary motion to the external matter, and the remainder only is employed in preffing forward the machine. We mentioned a remarkable inftance of this in the operation of thrafhing. Now, the power thus employed mut increafe in propartion to the motion required; that is, in proportion to the velocity of the im.
pelled point ; what remains, urging forward the machine, is therefore diminifhed. The acceleration is therefore diminifhed, and may ceafe. At laff the actual preflure is fo much diminifhed, that it is no more than what is neceffary for overcoming the increafed refillance of the work, the increafed friction. The machine therefore accelerates no more, but moves uniformly.

This caufe of the diminution of power by an increafe of velocity, obtains in all cafes where the ftrength of animals, of fprings, the force of fired gunpowder, \&c. is exerted. In fome cafes, the vilible effect is not very conliderable; as in the employment of a trong fpring, the force of gunpowder, and a few others. In the action of animals, this defaleation of power is very great when the velocity is confiderable. Nay, even in the action of gravity, although it acts as ftrongly on a body in rapid motion as on one at reft, yet when gravity is not the immediate agent, but aits by the intervention of a body in which it refides, the neceffity of previoully moving this body frequently diminimes the acceleration which it would otherwife produce. Thus, in an over. Shot wheel, if the water be delivered into the bucket with a velocity (eftimated in the direction of the part of the wheel, into which it is delivered) lefs than that of the rim of the wheel, it muft retard the motion; for it muft be immediately dragged into that motion; that is, part of the accelerating overplus, already acting on the wheel, muft be employed in accelerating this new buck. et of water, and this muft leffen the general acceleration of the machine. Hence we learn, that the water muft be delivered on the wheel with a velocity that is at leaft not lefs than that of the wheel's motion.

The cafe in which we fee this diminution of power on machines moft diftinctly is, when water or wind, acting by impulfe alone, is our moving power. Since the mutual impulfes of bodies depend entirely on their relative motions (fee Impulsion, Suppl.), it follows, that when the velucity of the impelled point is augmented, the impulfion, or effective preffure, muft be diminifhed. Nay, this velocity may be fo increafed, that there fhall be no relative motion, and therefore no impulfion. If the floats of all underhot wheel be moving with the velocity of the ftream, they remain conjoined in their progrefs, but without any mutual action. Therefore, when an underfhot wheel is fet into a running water, the firlt impulfions are ftrong, and accelerate the wheel. This diminifhes the next impulfion and acceleration : but the wheel is ftill impelled and accelerated; lefs and lefs in every fucceeding moment, as it moves fafter ; by and bye, the acceleration becomes infeufible, and the wheel appears to attain a motion which is perfeetly uniform. This requires a very long time, or rather it is never attained, and we only cannot difeern the very fmall additions which are ftill made to the velocity. All this happens generally after a very moderate time, by reafon of various other obitructions.

Animal action is fubject to the fame variation. We i-know, that there is a certain rate at which a horfe can run, exhaufting or employing his whole ftrength. If he be made to drag any the fmalleit load after him, he muft employ part of his force on it, and his fpeed will be checked. The more he is loaded with a draught, the flower he will run, ftill employing all his ftrength.
Suppl. Vol. II. Part I.

The dranght may be increafed till he is reduced to a trot, to a walk, nay, till he is unable to draw it. Now, jult inverting this procefs, we fee, that there is a certain frain which will fufliciently tire the horfe without ftirring from the fpot, but which he could continue to exert for hours. This is greater than the load that he can juft crawl along with, employing lis Atrength as much as would be prudent to continue from day to day. And, in like manner, every leffer dranght has a correfponding rate at which the horfe, employing his whole working ftrength, can continue to draw at du ring the working hours of a day. At fetting out, he pulls harder, and accelerates it. Following his pull, he walks fafter, and therefore pulls lefs (bccanfe we are ftill fuppofing him to employ his whole working ftrength). At lait he attains that fpeed which occupies his whole flrength in merely continuing the pull. Other animals act in a fimilar manner ; and it becomes a general rule, that the preflure actually exerted on the impelled point of a machine diminifles as its relocity increafes.

From the concurrence of fo many facts, we perceive We nutt that we muft be careful to diltinguif between the quan-diftinguifh tity of power expended, and the quantity that is ufe. between fully employed, which muft be meafured folely by the expended preffure exerted on the machine. When a weight of and the five pounds is employed to drag up a weight of threepower empounds by means of a thread over a pulley, it defcends, ployed.
with a motion uniformly accelerated, four feet in the firft fecond. Mr Smeaton would call this an expenditure of a mechanieal power 20 . The weight three pounds is raifed four feet. Mr Smeaton wonld call this a mechanical effect 12.- Therefore the effect produced is not adequate to the power expended. But the fact is, that the preffure, Atrain, or mechanical power really excrted in this experiment, is neither five nor three pounds; the five pound weight would have fallen 16 feet, but it falls only 4. A force has therefore acted on it fufficient to make it deferibe 12 feet in a fecond, with a uniformly accelerated motion; for it has cousiteracted fo much of its weight. The thread was ftrained with a force equal to $3^{\frac{3}{4}}$ pounds, or $\frac{3}{4}$ ths of 5 pounds. In like manner, the three pound weight would have fallen 16 feet; but it was railed 4 feet. Here was a change precifely equal to the other. A force of $3^{\frac{3}{3}}$ pounds, acting on a mafs whofe matter is only 3, will, in a fecond, caufe it to defcribe 20 feet with a uniformly accelerated motion. Now, 5×12, and 3×20, give the fame product 62 . And thus we fee, that the quantity of motion extinguifhed or proriuced, and not the product of the weight and height, is the true unequivocal meafure of mechanical power really expended, or the mechanical effect really produced; and that thefe two are always equal and oppofite. At the fame time, Mr Smeaton's theorem merits the attention of engineers ; becaufe it generally meafures the opportunities that we have for procuring the exertion of power. In fome fenfe Mr Smeaton may fay, that the quantity of water multiplied by the height from which it defcends in working other machines, is the meafure of the power expended; becaufe we mult raife this quantity to the dam again, in order to have the fame ufe of it. It is expended, but not employed; for the water, at leaving
the wheel, is ftill able to do fomething.

It requires but little confideration to be fenfible, that
the precelling account of the ceffation of accelerated motion in our principal machines, mult introduce different maxims of conftruction from thofe which were exprefsly adapted to this acceleration; or rather, which proceeded on the erroneons fuppofition of the conflancy of the impelling power and the refiltance. The examination of this point has brought into view the fundamental priuciple of working machines, nanely, the perfeet equilibrium which takes place between the impel. ling power and the finultaneous refiftance. It may be expreffed thus :
Firt prin. ciple of working raachines.

The force required for preferving a machinc in uniform motion, with any velocity zubatever, is that which is neceffary for bainancing the refiflance then actually exerted on the zuorking point of the mucbine. We faw this ditionctly in the inftance of the two weights acting againft each other by the intervention of a thread over a fixed pul. ley. It is equally true of every cafe of acting machinery: for if the force at the impelled point be greater than what balances the reliftance acting at the fame point, it mutt accelerate that point, and therefore accelerate the whole machine; and if the impelling force be lefs than this, the machine mult immediately retard in is motion. When the machine has once acquired this derree of motion, every part of it will continue in its prefent fate of motion, if only the two external forces are in equilibrio, but not otherwife. But when the preffure of the external power on the impelled point bulances the refifance oppoied by that point, it is, in fact, maintaining the equilibrium with the external power acting at the working poivt; for this is the only way that external forces can be let in oppofition to each other by the intervention of a body. The external forces are not in inmediate equilibrio with each other, but each is in equilibrio with the force exerted by the point on which it acts. This force exerted by the point is a modification of the connecting forces of the body, all of which are brought into action by means of the actions of the external forces, and each is accompanicd by a force precifely equal and oppofite to it. Now, the principles of ftatics teach us the proportions of the external preffures which are thus fet in equilibrium by the intervention of a body; and therefore teach us what proportion of power and refiftance will keep a machine of a given conftruction in a flate of uni. form motion.

This propofition appears paradoxical, and contrary to common obfervation ; for we find, that, in order to make a mill go fafter, we muft either diminith the re-
fiftance, or we muft employ more men, or more water, or water moving with greater velocity, \&c.- But this arifes fron fome of the caufes already mentioned. Either the refilance of the work is greater when the machine is inade to move fafter, or the impulfion of the power is diminifhed, or both thele changes obtain. Friction and refiftance of air alfo come in for their. Share, \&ec. The actual preflure of a given quantity of the external power is diminithed, and therefore more of it mutt be einployed. When a weight is uniformly raifed by a machine, the preffure exerted on it by the working point is precifely equal to its weight, what. ever be the velocity with which it rifes. But, even in this fimpleft cafe, more natural power mult be expend. ed in order to raife it fafter; becaufe either more natu. ral power muft be employed to accelerate the external matter which is to prefs forward the impelled point, or the relative motion of the preffing matter will be diminifhed.
lt is well known, that, in the employment of the mechanic powers, whether in their flate of greateft fimplicity, or any how combined in a complicated macline, if the machine be put in motion, the velocities of the extreme points (which we have called the impelled and zoorking points) are inverfely proportional to the forces which are in equilibrio when applied to thefe points in the direction of their motion. This is an inductive propofition, and has been ufed as the foundation of fyftems of mechanics. It is unneceflary to take up time in proving what is fo familiarly known ; confequently, the products of the preffures at thofe points by the velocities of the motions are equal ; that is, the product of the preffure actually exerted at the impelled point of a machine working uniformly, multiplied by the velo. city of that point, is equal to the product of the refift ance actually exerted at the working point, multiplied by the velucity of that point, that is, by the velocity with which the refiftance is overcome,

$$
p m=r n
$$

Now, the product of the refiftance, hy the velocity with. which it is overcome, is evidently the meafure of the performance of the machine, or the work done. The product of the actual preffure on the impelled point, by the velocity of that point, may be called the momenTUM OF IMPULSE.

Hence we deduce this propofition :
In all working macbines which bave acquired a uni-prinsiple. form motion, the performance of the machine is equal to the Momenmomentum of impulfe (A).
(A) The truth of this propofition has been long perceived in every particular inflance that happened to engage the attention ; but we do not recollect any mechanician before Mr Euler confidering it as a general truth, expreffing in a few words a mechanical law. This celebrated mathematician undertook, about the year 1735 or 1736 , a general and fyftematic view of machines, in order to found a complete theory immediately conducive to the improvement of practical mechanics. In 1743 he publifhed the firft propofitions of this ufeful theory in the 10 th volume of the Comment. Petropolitani, containing the excellent dynamical theorems of which we have given the fubflance. In the 3 d volume of the Comment. Novi Petropol. he profecuted the fubject a little farther; and in the 8 th volume, he entered on what we are now engaged in, and formally announces this fundamental propofition, calling thefe two products the momentum of impulfe, and the momentum of effecf. It is much to be regretted, that this confummate mathematician did not continue thefe ufeful labours; his ardent mind being carried away by more abftrufe fpeculations in all the moft refined departments of mathematics and philofophy. No man in Europe could have profecuted the fubject with more judgment and fuccefs. - See alfo Mem. Aicad. Berlin, 1747 and 1752.

This is a propolition of the utmoll importance in the fcience of machines, and leads to the fundamental maxim of their conftruction. Since the performance of a machine is equal to the momentum of impulfe, it increafes and diminithes along with it, and is a maxinum when the momentum of impulfe is a maximum ; therefore the fundamental maxim in the conitruction of a machine is to fathion it in fuch a manner, that the momentum of impulfe fhall be a maximum, or that the product of the preffure actually exerted on the impelled point of the machine by the velucity with which it moves may be as great as poffible. Then are we certain that the product of the refiftance, by the velocity of the working point, is as great as poffible, provided that we take care that none of the impulfe be needlefsly wafted by the way by injudicious communications of motion, by friction, by unbalanced loads, and by reciprocal motions, which irrecoverably walte the inpclling power. This maxim holds good, whether the refiftance remains conflantly the fame, or varies by any law whatever.

But much remains to be done for the improvement of mechanical fcience before we can avail ourfelves of this maxim, and apply it with fuccefs. The chief thing, and to this we fhould give the moft unremitting attention, is, to learn the changes which obtain in the actual preffure exerted by thofe natural powers which we can command; the changes of actual preffiure produced by a change of the velocity of the impelled point of the machine. Thefe depend on the feecific natures of thofe powtrs, and are different in almoft every different cafe. Nothing will more contribute to the improvement of practical mechanics than a ferics of experiments, well contrived, and accurately made, for difcovering thofe laws of variation, in the cafes of thofe powers which are moft frequently employed. Such experiments, however, would be coftly, beyond the abilities of an individual; therefore, it were greatly to be winhed that public aid were given to fome perfons of 1 kill in the fcience to inflitute a regular train of experiments of this kind. An experimental machine might be conftructed, to be wrought either by men or hy cattle. This fhould be loaded wirh fome kind of work which can be very accurately meafured, and the load varied at pleafure. When loaded to a certain degree, the men or cattle fhould be made to work at the rate which they can continue from day to day. The number of turns made in an hour, multiplied by the load, will give the performance correfponding to the velocities; and thus will be difcovered the mont advantageous rate of motion. The fame machine fhould alfo be fitted for grinding, for fawing, boring, \&c. and fimilar experiments will difcover the relation between the velacities with which thefe operations are performed, and the refiftances which they exert. The laws of friction may be inveftigated by the fame machine. It flould allo be fitted with a walking wheel, and the trial fhould be made of the flope and the velocity of walking which gives the greateft momentum of impulfe. It is not unreafonable to expect great advantages from fuch a train of experiments.

Till this be done, we mult content ourfelves with eftablifhing the above, in the moft general terms, applicable to any cafe in which the law of the variation of force may hereafter be difcovered.

There is a certain velocity of the impelled point of a machine which puts an end to the action of the moving power. Thus, if the floats of an underfhot wheel be moving with the velocity of the ftream, no impulfe is made on them. If the arm of a gin or capfan be moving with that velocity with which a horfe or a man can jult move, fo as to continue at that fpeed from day to day, employing all his working flrength, but not fatiguing himfelf; in this fate of motion, the animal can exert no preffure on the machine. This may be called the extinguishing velocity, and we may exprefs it by the fyinbol e. Let f be that degree of force or preffure which the animal can exert at a dead pull or thruf, as it is called. We do not mean the utmoft Atrain of which the animal is capable, but that which it can contime unremittingly during the working hours of a day, fully employing but not fatiguing itfelf. And let p be the preffure which it actually excrts on the impelled point of a machine, moving with the velocity m. Let $e-m$ be called the relative velocity, and let it be expreffed by v. And let it be fuppofed that it has been difcovered, by any means whatever, that the actual prefliure varies in the proportion of v^{q}, or $\overline{e-m^{q}}$. This fuppofition gives us $e^{q}: v^{q}=f: p$, and $p=f \times \frac{v^{q}}{e^{q}}$. For the machine mult be at reft, in ordér that the agent may be able to exert the force f on its impelled point. But when the machine is at rell, what we have named the relative velocity is e, the whole of the extinguifhing velocity.

The momentum of impulfe is $p m$, that is $\frac{v^{q}}{\varepsilon^{q}} f m$, or $f \times \frac{v^{q}}{e^{q}} \times \overline{e-v}$ (becaufe $m=e-v$). Therefure $f \times$ $\frac{v^{q}}{e^{y}} \times \overline{e-v}$ muft be made a maximum. But f and e^{q} are two quantities which fuffer no change. Therefore the momentum of impulfe will be a maximum when v^{\prime} $\times \overline{\varepsilon-v}$ is a maximum. Now $v^{q} \times \overline{e-v}=v^{q} e-v^{q}$ $v, \equiv v^{q} e-v^{q+1}$. The fluxion of this is qevq-1 $\dot{v}-q+1 v^{q} \dot{v}$. This being fuppofed $=0$, we have the equation

$$
\begin{aligned}
& q e v^{q-1}=\overline{q+1} v q \\
& \text { And } q e=\overline{q+1} v
\end{aligned}
$$

Therefore $v=\frac{q e}{q+1}$
And m, which is $=e-v$, becomes $\frac{e}{q+1}$. Therefore we muit order matters fo, that the velocity of the impelled point of the machine may be $=\frac{e}{q+1}$. Now p is $=f^{v^{q}} \frac{e^{q}}{}$ and therefore $=f \times \frac{q^{q}}{q+1^{q}}$. And $p m$, $=f \frac{q^{q}}{q+1^{\prime}} m,=f \frac{q^{1}}{q+1^{q}} \times \frac{e}{q+1}=f \times \frac{q^{q} e}{q+1^{q+1}}$, $=$ the momentum of impulfe, and therefore $=$ the momentum of effect, or the performance of the machine, when in its beft tate.
Thus may the maxim of confruction be faid to be Example in brought to a flate of great finplicity, and of moft eafy underthot recollection. A particular cafe of this maxim has been milis by long known, having been pointed uit by Mr Parent. Mr rent. Since the action of bodies depends on their rclative ve-
locity, the impulfe of fluids muft be as the fquare of the relative velocity. From which Mr Parent deduced, that the moft advantageons velocity of the floats of an underfhot wheel is one-third of that of the Atream. This maxim is evidently included in our general propofition; for in this cafe, the index q of that function of the relative velocity v, which is proportional to the impulfe, is $=2$. Thercfore we have the maximum when $v=$
$\frac{2 e}{2+1},=\frac{2}{3} e$, and $m=\frac{1}{3} \varepsilon$. $\quad c$, the extinguifhing velocity, is evidently the velocity of the ftream. Our propolition alfo gives us the precife value of the perforinance. The impulfe of the ftream on the float at reft being fuppofed $=f$, its impulfe on the float moving with the velocity $\frac{2}{5} e$ mult be $=\frac{4}{9} f$. This is the meafure of the actual preffure p. This being multiplied by m, or by $\frac{7}{3} e$, gives $\frac{4}{27} f$. Now f is confidered as equal to the weight of a column of water, having the furface of the floatboard for its bafe, and the depth of the fluice under the furface of the refervoir (or, more accurately, the fall required for generating the velocity of the Aream) for its height. Hence it has been concluded, that the utmoft performance of an underfhot wheel is to raife $\frac{4}{27}$ of the water which impels it, to the height from which it falls. But this is not found very agree-

Not accu.

 rate. able to obfervation. Friction, and many imperfcctions of execution in the delivery of the water, the direction of its impulfe, \&c. may be expected to make a defalcation from this theoretical performance. But the actual performance, even of mills of acknowledged imperfection, confiderably exceeds this, and fometimes is found vearly double of this quantity. The truth is, that the particular fact from which Mr Parent firt deduced this maxim (namely, the performance of what is called $P a$ rent's or Dr Barker's mill), is, perhaps of all that could have been felected, the leaft calculated for being the foundation of a general rule, being of a nature fo abAtrufe, that the firlt mathematicians of Europe are to this day doubtful whether they have a juft conception of its principles. Mr Smeaton's experiments fhew very diftinetly, that the maximum of performance of an underfhot wheel correfponds to a velocity conifiderably greater than one-third of the fream, and approaches nearly to one-lalf; and he affigns fome reafons for this which feen well founded. But, independent of this, the performance of Mr Smeaton's model was much greater than what correfponds with the velocity by the above mentioned eftimation of f. The theory of the impulfion of Auids is extremely imperfect ; and Daniel Bernoulli fhews, from very unqueltionable principles, that the impulfe of a narrow vein of fluid on an extended furface is double of what was generally fuppofed; and his conclufions are abundantly confirmed by the 29 experiments adduced by him.It is by no means pretended that the maxim of conflruction is reduced to the great fimplicity enounced in the propofition now under cunfideration. Wc only fuppofed that a cafe had been obferved where the preflure exerted by fome natural agent did follow the proportions of v^{q}. This being admitted, the propolition is Aricily true. But we do not know any fuch cafe; yet
is the propofition of confiderable ufe: for we can affirm, or the authority of our own obfervations, that the action both of men and of draught horfes does not deviate very far from the proportions of v^{2}. The obfervations were made on men and horfes tracking a lighter along a canal, and working feveral days together, without having any knowledge of the purpofe of the obfervations. The force exerted was firt meafurcd by the curvature and weight of the track rope, and afterwards by a fpring fteelyard. This was multiplied by the number of yards per hour, and the product coufidered as the momentum. We found the action of men to be very nearly as $\overline{e-m^{2}}$. The actign of horfes, loaded fo as not to be able to trot, was nearly as $\bar{e}-m^{1}$, .

The practitioner can eafily avail himfelf of the maxim, although the function g thould never be reduced to any algehraic form. He has only to inftitute a train of experiments on the natural agent, and felect that velocity which gives the higheft product when multiplied by its correfponding preffure.

When this felection bas been made, we have two rwo me ways of giving our working machines the maximum of hods of 20 effeet, having once afcertained the preflure f which our vailing ournatural power exerts on the impelled point of the ma- felves of chine when it is not allowed to move.

1. When the refiftance arifing from the work, and from friction, is a given quantity; as when water is to be raifed to a certain height by a pifton of given dimenfions.

Since the friction in all the communicating parts of the machine vary in the fame proportion with the preffure, and fince thefe vary in the fame proportion with the refiftance, the fum of the refiftance and friction may be reprefented by $b r, b$ being an abftract number. Let n be the undetermined velocity of the working poiut ; or let $m: n$ be the proportion of velocities at the impelled and working points. Then, becaufe the preffures at thefe points balance each other, in the cafe of uniform motion, they are inverfely as the velocitics at thofe points. Therefore we mult make br:p=m:n, and $n=\frac{p m}{b r}=\frac{\frac{q^{q}}{q+1} f m}{b r},=m \frac{q^{q} f}{q+1 q b r}$, or $m: n=$ $\overline{q+19} \times b r: q^{q} f$.
2. On the ocher hand, when $m: n$ is already given, by the confruction of the machine, but $b r$ is fuiceptible of variation, we muft load the machine with more and more work, till we have reduced the velocity of its impelled point to $\frac{e}{q+i}$.

In either cafe, the performance is expreffed by what exprefes $p m$, that is, by $f e \times \frac{q^{2}}{q+1^{2} q+1}$. But the ufeful performance, which is really the work done, will be had by dividing the value now obtained by the number b, which expreffes the fum of the refiflance overcome by the working point and the friction of the machine.

What has been now delivered contains, we ima- Recapituran gine, the chief principles of the theory of machines, tion. and points out the way in which we muft proceed in applying them to every cafe. The reader, we hope, fees clearly the imperfection of a confidera-
tion of machines which proceeds no farther than the ftatement of the proportions of the fimultancous preffures which are excited in all the parts of the machine by the application of the external forces, which we are accuftomed to call the power and the veiobt. Unlefs we take alfo into conficieration the immediate effect of mechanical force applied to body, and combine this with all the preffures which ftatical principles have enabled us to afcertain, and by this combination be able to fay what purtion of unbalanced foree there is acting at one and all of the preffing points of the machine, and what will be the motion of every part of it in coufequence of this overplus, we have acquired no knowledge that can be of fervice to us. We have been contemplating, not a working machine, but a fort of balance. But, by reafoning about thefe umbalanced forces in the fame fimple manner as about the fall of heavy bodies, we were able to difcover the momentary accelerations of every part, and the fenfible motion which it would acquire in any affigned time, if all the circumflances remain the fame. We found that the refults, although deduced from unqueftionable principles, were quite unlike the obferved motions of molt working machines. Proceeding ftill on the fame principles, we confidered this deviation as the indication, and the precife meafure, of fomething which we had not yet attended to, but which the deviation brought into view, and epabled us to afcertain with accuracy. Thefe are the changes which happen in the exertions of our actuating powers by the velocity with which we find it convenient to make them act. Thus we learn more of the nature of thofe powers; and we found it neceffary to diftinguifh carefully between the apparent magnitude of our actuating power and its real excretion in doing our work. This confideration led us to a fundamental propofition concerning all working machines when they have attained an uniform motion; namely, that the power and refiftance then really exerted on the machine precifely balance each other, and that the machine is precifely in the condition of a fteelyard loaded with its balanced weights, and moved round its axis by fome external force dittinet from the power and the weight. We found that this force is the previous overplus of impelling power, before the machine had acquired the uniform motion; and on this occafion we learned to eftimate the effect produced, by the momentum (depending on the furm of the machine) of the quantity of motion produced in the whole affemblage of power, refiftance, and machine.

The theory of machines feemed to be now brought back to that fimplicity of equilibrimm which we had faid was fo imperfect a fommation for a theory; but in the availing ourfelves of the maxim founded on this general propofition, we faw that the equilibrium is of a very different kind from a quiefcent equilibrium. It neceflarily involves in it the knowledge of the momentary accelerations and their momenta; without which we fhould not perceive that one flate of motion is more advantageous than another, becaufe all give us the fame proportion of forces in equilibrio.

But this is not the only ufe of the previous know. ledge of the momentary accelerations of machines; there are many cafes where the machine works in this very ftate. Many machines accelerate throughout while performing their work; and their efficacy depends en.
tirely on the final accelcration. Of this kind is the coining prefs, the great forge or tilt mill, and fome other capital engines. The fteam engine, and the common pump, are neccffarily of this clafs, although their efficacy is not cftimated by their final acculeration. A great number of engines have reciprocating motions in different fubordinate parts. The theory of all fuch engines requires for its perfection an accurate knowleclge of the momentary accelerations; and we muft ufe the furmulie contained in the firt part of this article.

Still, however, the ayplication of this knowled ge has working many difficultics, which make a good theory of fuch ma- and returnchines a much more intricate and complicated matter ing frokes. than we have yet led the reader to fuppofe. In moft of thefe engines, the whole motion may be divided into two parts. One may be called the working stroke, and the other in which the working points are brought back to a lituation which fits them fur acting again, may be called the returning stroxe. This return muft be effected either by means of fome immediate application of the actuating power, or by fome other force, which is counteracted during the working Itroke, and muit be confidered as making part of the refiftance. In the fteam engine, it is generally done by a counterpoife on the outer end of the great working beam. This muft be accounted a part of the refiftance, for it muft be raifed again ; and the proportions of the machine for attaining the maximum mutt be computed accordinglyThe quantity of this counterpoife muft be adjufted by other confiderations. It muft be fuch, that the defcent of the pump rods in the pit may $j u f$ employ the whole time that is neceflary for filling the cylinder with feam. If they defcend more brifkly (which an unkilful engineer likes to fee), this muft be done by means of a greater counterpoife, and this employs more power to raife it again. Defaguliers defcribes a very excellent. machine for raifing water in a bucket by a man's ftepping into an oppofite bucket, and defcending by his preponderancy. When he comes to the bottom, he iteps out, goes up a ftair, and finds the bucket returned and ready to receive him again. This machine is extremely fimple, and perhaps the beft that can be contrived; and jet it is one of the moft likely to be a very bad one. The bucket into which the man fteps mutt be brought up to its place again by a prepunderancy in the machine when unloaded. It may be returned fooner or later. It mould arrive precifely at the fame time with the man. If fooner, it is of no ufe, and wattes power in raifing a counterpoile which is needlefsly heavy: if later, time is loft: Therefore, the perfection of this very fimple machine requires the judicious combination of two maximums, each of which varies in a ratio compounded of two other ratins. Suppofe the man to employ a minute to go up flairs 50 feet, which is very nearly what he can do from day to day as his only work, and fuppofe him to weigh 150 pounds, and that he acts by means of a fimple pulley-the maximum for a lever of equal arms would require him to raife about 60 pounds of water. But when all the other circumftances are calculated, it will be fuund that he muft raife 13^{8} pounds (neglecting the inertia of the machine). He mould raife 542 pounds 10 feet in a minute; and this is nearly the molt exact valuation of a man's work.

There is the fame neceffity of attending to a variety
of circumfances in all machines which reciprocate in the whole or any confiderable part of their motion. The force employed for briuging the machine into another working pofition, muft be regulated by the time necelfary for obtaining a new fupply of power; and then the proportion of m to n mult be fo adjufted, that the work performed, divided by the whole time of the working and returning ftrokes, may give the greateft quotient. It is fill a difficult thing, therefore, to conftruct a machine in the moft perfect manner, or even to fay what will be the performance of a machine already confructed; yet we fee that every cireumfance is fufceptible of aceurate computation.

With refpect to machines which acquire a fort of uniform motion in general, although fubject to partial reciprocations, as in a pumping, flamping, forging engine, it is alfo difficult to affign the rate even of this general uniform motion. We may, however, fay, that it will not be greater than if it were uniform throughout. Were it entirely free from friction, it would be exactly the fame as if uniform; becaufe the accelerations during the advantageous fituations of the impelling power would compenfate the retardations.: But friction diminifhes the aceelerations, without diminifhing the retardations.

We may conclude this article with fome obfervations tending to the general improvement of machines.
Uniformity Nothing contributes more to the perfection of a maof motion chine, efpecially fuch as is maffive and ponderous, than throus heut is of great advantage. great uniformity of motion. Every regularity of motion waftes fome of the impelling power ; and it is only the greateft of the varying velocities which is equal to that which the machine would acquire if moving uniformly throughout; for while the motion accelerates, the impelling force is greater than what balances the refiftance then aetually oppofed to it, and the velocity is lefs than what the machine would acquire if moving uniformly: and when the machine attains its greateft velocity, it attains it becaufe the power is then not acting againt the whole refiftance. In both of thefe fituations, therefore, the performance of the machine is lefs than if the power and refiftance were exactly balanced; in which cafe it would move uniformly. and we fhould endeavour to remove all caufe of irregu- larity. The communications of motion fhould be fo contrived, that if the impelled point be moving uniform$1 y$, by the uniform preffure of the power, the working point thall alfo be moving uniformly. Then we may generally be certain, that the maffy parts of the machine will be moving uniformly. When this is not done through the whole machine, there are continual returns of ftrains and jolts; the inertia of the different parts acting in oppofite directions. Although the whole momenta may always balance each other, yet the general motion is hobbling, and the points of fupport are ftrained. A great engine fo conftructed, commonly caufes the building to trembie; but when uniform motion pervades the whole machine, the inertia of each part tends to preferve this uniformity, and all goes finoothly. It is allo deferving of remark, that when the communications are fo contrived that the uniform motion of one part produces uniform motion on the next, the preffures at the communicating points remain
conftant or invariable. Now the accomplifhing of this is always within the reach of mechanics.

One of the inoft ufual communications in machinery Bert form is by means of toothed wheels acting on each other. It for the is of importance to have the teeth fo formed, that the telh nf preffure by which one of them A urges the other B wheclo. round its axis thall be conftantly the faine. It can ea- Xxxili, fily be demonftrated, that when this is the cafe, the fig. x. uniform angular motion of the one will produce a uniform angular motion of the other: or, if the motions are thus uniform, the preffures are invariable. This is accomplifhed on this prineiple, that the mutual actions of folid bodies on each other in the way of preflure are perpendicular to the touching furfaces. Therefore let the tooth a prefs on the tooth b in the point C; and draw the line FCDE perpendicular to the touching furfaces in the point C. Draw AF, BE perpendicular to $F E$, and let FE eut the line $A B$ in D. It is plain, from the common principles of mechanies, that if the line FE, drawn in the manner now defcribed, always pafs through the fame poiut D , whatever may be the fituation of the acting teeth, the mutual action of the wheels will always be the fame. It will be the fame as if the arm AD acted on the arm BD . In the treatifes on the confruction of mills, and other works of this kind, are many inftructions for the formation of the teeth of wheels; and almoft every noted millwright has his own noftrums. Moft of them are egregioully faulty in refpect of mechanical principle. Indeed they are little elfe than inftructions how to make the teeth clear each other without flicking. Mr de la Hire firft pointed out the above-mentioned principle, and juitly condemned the common practice of making the fimall wheel or pinion in the form of a lantern (whence it alfo took its name), confifing of two round difks, having a number of cylindrical fpokes (fig. 2.) The fighteft infpection of this conftruction fhews that, in the different fituations of the working teeth, the line FCE continually changes its interfection with AB. If the whel B be very finall in comparifon of the other, and if the teeth of A take deep hold of the cylindrical pins of B, the line of action EF is fometimes fo difadvantageouny placed, that the preffure of the one wheel has fearcely any tendency at all to turn the other. Nir de la Hire, or Dr Hooke, ETicycloide was, we think, the firft who inveltigated the form of mended tooth which prucured this conftant action between the wheels; and in a very ingenious differtation, publifhed among the Memoirs of the Academy of Sciences at Paris 1668 , the former of thefe gentlemen fhews that this will be enfured by forming the teeth into epicycloids. Mr Camus of the fame Acadeny has publifhed an elaborate differtation on the fame fubject, in which he profecutes the principle of Mr de la Hire, and applies it to all the variety of cafes which can occur in practice. There is no doubt as to the goodnefs of the prineiple; and it has another excellent property, "that the mutual aetion of the teeth is abfolutely without any friction." The one tooth only applies itfelf to the other, and rolls on it, but does not fide or rub in the fmalleft degree. This makes them laft long, or rather does not allow them to wear in the leaft. But the conftruction is fubject to a limitation which muft not be neglected. The teeth muft be fo made, that the curved part of the tooth l is acted on by a flat part of the tooth a till it comes to the line AB in the courfe of its action; after
which the curved part of a acts on a flat part of b; or the whole action of a on b is either completed, or only begins at the line $A B$, juining the centres of the wheels.

Another form of the teeth fecures the perfect uniformity of action without this linitation, which requires very nice execution. Let the tceth of each wheel be formed by evolving its circumference ; that is, let the acting face GCH of the tooth a have the form of the curve traced by the extremity of the thread FC, unlapped from the circumference. In like manner, let the acting face of the tooth b be formed by unlapping a thread from its circumference. It is evident, that the line FCE, which is drawn perpendicularly to the touching furfaces in the point C , is juat the direction or pofition of the evolving threads by which the two acting faces are formed. This line mult thercfore be the common tangent to the two circles or circumferences of the wheels, and will therefore always cut the line $A B$ in the fame point D . This form allows the teeth to act on each other through the whole extent of the line FCE, and therefore will admit of feveral teeth to be acting at the fame time (twice the number that can be admitted in Mr de la Hire's method). This, by dividing the preffure among feveral teeth, diminifnes its quantity on any one of them, and therefore diminifhes the dents or impreffions which they unavoidably make on each other. It is nnt altogether free from niding and friction, but the whole of it can hardly be faid to be fenfible. The whole flide of a tooth three inches long, belonging to a whecl of ten feet diameter, acting on a tooth of a wheel of two feet diameter, does not amount to $\sigma^{\frac{1}{0}}$ th of an inch; a quantity altogether infignificant.

In the formation of the teeth of wheels, a fmall desiation from thefe perfect forms is not perhaps of very great importance, except in cafes where a very large wheel drives a very fmall one (a thing which a good engineer will always avoid). As the conitruction, how. ever, is exceedingly eafy, it would be unpardonable to omit it Well formed tecth, and a great number of them acting at once, make the communication of motion extremely fmnoth and uniform. The machine works without noife, and the teeth laft a very long time without fenfibly changing their fhape. But there are cafes, fuch as the pallets of clocks and watehes, where the utmoft accuracy of form is of the greatell importance for the perfection of the work.
When heavy ftampers are to be raifed, in order to drop on the matters to be pounded, the wipers by which they are lifted fhould be made of fuch a form, that the s, ftamper may he raifed by a uniform preffure, or with a motion almoft perfectly uniform. If this is not attended to, and the wiper is only a pinficking out from the axis, the flamper is forced into motion at oyce. This occafions violent jolts to the machine, and great ftrains on its moving parts and their points of fupport ; whereas, when they are gradually lifted, the inequality of defultory motion is never felt at the impelled puint of the machine. We have feen piftons mored by means of a double rack on the pifton rod. A half wheel takes hold of one rack, and raifes it to the required height. The moment the half wheel has quitted that fide of the rack, it lays hold of the other fide, and forces the pifton down again. This is propofed as a great improvement ; cor-
recting the unequable motion of the pilton moved in the common way by a crank. But it is far inferior to the crank motion. It occafions fuch abrupt changes of motion, that the machine is flaken by jolts, Indeed if the movement were aceurately exceuted, the machine would be fhaken to pieces, if the parts did not give way by bending and yielding. Accordingly, we have always obferved that this notion foon failed, and was changed for one that was more fmooth. A judicious engineer will avoid all fuch fudden changes of motion, efpecially in any ponderous part of a machine.

When feveral itampers, piftnns, or other reciprocal movers, are to be raifed and depreffed, common fenfe teaches us to diftribute their times of action in a uniform manuer, fo that the machine may always be equally loaded with work. When this is done, and the obfervations in the preceding paragraph attended to, the machine may be mace to move almoft as fmoothly as if there were no reciprocations in it. Nothing hews the ingenuity of the author more than the artful yet fimple and effectual contrivances for obviating thofe difficulties that unavoinably arife from the very nature of thes work that muft be performed by the machine, and of the fower employed. The inventive genius and found judgment of Watt and Boulton are as perceptible to a killed obferver in thefe fubordinate parts of fome nf their great engines, as in the original difcovery on which their patent is founded. In fome of thofe engines the mafs of deed matter which muft be put into notion, and this motion deftroyed and again rellored in every ftroke, is enormous, amounting to above an hundred tons. The ingenious authors have even contrived todraw fome advantages from it, by allowing a great want of equilibrium in ecrtain pofitions; and this has been condemned as a hlunder by engineers who did not fee the ufe made of it.

There is alfo great room for ingenuity and good The una. choice in the management of the moving power, when voldable init is fuch as cannot inmediately produce the kind of equalities motion required for effecting the purpofe. We men- "f mower milt tioned the converfion of the continued rotation of an be compen. axis into the reciprocating motion of a pifton, and the fated by improvement which was thought to have been made on the conthe comnon and obvious contrivance of a crank, hy fubltituting a cuuble rack on the piiton rod, and the inconvenience arifing from the jolts oceafioned by this change. We have feen a great furge, where the engimeer, in order to avoid the fame inconveniuce arifing frum the abrupt motion given to the great fledge hammer of feven hundred weight, refilting with a five-fold momentum, formed the wipers into fpirals, which communicated motion to the hammer almoft without any. jolt whatever; hut the refult was, that the hammer rofe no higher than it had been raifed in contact with the wiper, and then fell on the iron bloom with very little effect. The caufe of its inefficiency was not guef. fed at; but it was removed, and wipers of the comniun. form were put in place of the fpirals. In this operation, the rapid motion of the hammer is abfolutely neceflary. It is not enough to lift it up; it mult be tof. fed up, fo as to fly higher than the wiper lifts it, and to. ftrike with great force the flrong oaken fpring which. is placed in its way. It comprefles this fpring, and is reflected by it with a confiderable velocity, f_{0} as to hit the iron as if it had fallen from a great height. Had
it been allowed on fly to that height, it would have fallen upon the iron with fomewhat more force (becaufe no oaken f_{p} ring is perfectly elaflic) ; but this would

In employing a power which of neceffity reciprocates, to drive nachinery which requires a continuous motion (as in applying the thenm cugine to a cotton or a gritt mill), there alfo occur great difficulties. The
neceffity of reciprocation in the fift mover waftes much power; becaufe the inllrument which communicates fuch an enormous force mult be extremely iltrong, and be well fupported. The impelling power is watted in imparting, and afterwards deftroying, a valt, quantity of notion in the working beam. The ikilful engineer will attend to this, and do his utmoft to procure the neceffary ftrength of this firtt mover, without making it a valt load of inert matter. He will alfo remark, that all the ftrains on it, and on its fupports, are changing their directions in every ftroke. This requires particular attention to the manner of fupporting it. If we obferve the ftean engines which have been long erected, we fee that they have uniformly fhaken the building to pieces. This has been owing to the ignorance or inattention of the engineer in this particular. They are much more judiciounly erected now, experience having taught the moft ignorant that no building can withftand their defultory and oppoite jolts, and that the great movements muft be fupported by a frame. work independent of the building of mafonry which contains it (B).

The engineer will alfo remark, that when a fingle ftroke fteam engine is made to turn a mill, all the communications of motion change the direction of their preffure twice every ftroke. During the working ftroke of the beam, one fide of the teeth of the intervening wheels is preffing the machinery forward; but during the returning ftroke, the inachinery, already in motion, is dragging the bean, and the wheels are acting with the other fide of the teeth. This occalions a ratting at every change, and makes it proper to fafhion both fides of the teeth with the fame care.

It will frequently conduce to the good performance of an engine, to make the action of the relifting work unequable, accormodated to the inqualities of the impelling power. This will produce a more unform motion in machines in which the nomentum of inertia is inconfidcrable. There are fore beautiful fpecimens of this kind of adjuftment in the mechanifm of animal bodies.

It is very cuftomary to add what is called a Fey to machines. This is a heavy dilk or hoop, or other mafs of matter, balanced on its axis, and fo connected with the machinery as to turn brilkly round with it. This may be done with the view of rendering the motion of the whole more regular, notwithilanding unavoidable incqualities of the accelerating forces, or of the refittances occafioned by the work. It becomes a Regu-
eator. Suppofe the refifance extremely unequal, and the impelling power perfectly confant; as when a bucket wheel is employed to work one pump. When the pitton has ended its working troke, and while it is going down the barrel, the power of the wheel bein: learcely oppofed, it accelerates the whole machine, and the pifton arrives at the bottom of the barrel with a confiderable velocity. But in the rifing again, the wheel is oppofed by the column of water now prefling on the piftun. This immediately retards the wheel; and when the pifton has reached the top of the barrel, all the acceleration is undone, and is to begin again. The motion of fuch a machine is very hobbling: but the fuperplus of accelerating force at the beginning of a returning flroke will not make fuch a change in the motion of the machine if we comect the fly with it. For the accelerating momentum is a determinate quantity. Therefore, if the radius of the fly be great, this momentum will be attained by communicating a fmall angular motion to the machine. The momentum of the fly is as the〔quare of its radius; therefore it refilts acceleration in this proportion; and although the overplus of power generates the fame momentum of rotation in the whole machine as before, it makes but a fmall addition to its velocity. If the diameter of the fly be doubled, the augmentation of rotation will be reduced to one-fourth. Thus, by giving a rapid motion to a fmall quantity of matter, the great acceleration, during the returning froke of the pifon, is prevented. This acceleration continues, however, during the whole of the returning froke, and at the end of it the macline has acquired its greatef velocity. Now the working ftroke begins, and the overplus of power is at an end. The machine accelerates no more; but if the power is juft in equilibrio with the refiftance, it keeps the velocity which it has acquired, and is fill more accelerated during the next returning ftroke. But now, at the beginning of the fubfequent working ftroke, there is an overplus of refiftaice, and a retardation begins, and continues during the whole rife of the pifton; but it is inconfiderable in comparifon of what it would have been without the fly; for, the fiy, retaining its acquired momentum, drags forward the reft of the machine, aiding the impelling power of the wheel. It dues this by all the communications taking into each other in the oppofite direction. The teeth of the intervening wheels ate heard to drop from their former eontact on one fide, to a contad on the other. By confidering this proceis with attention, we eafily perceive that, ir a few ftrokes, the oucrplus of power during the returning ftroke comes to be fo adjufted to the deficiency during the working throke, that the accelerations and retardations exactly deftroy each other, and every fucceeding ftroke is made with the fane velocity, and an equal number of Atrokes is made in every fucceeding minute. Thus the machine acquires a general uniformity with periodical inequalities. It is plain, that by fufficiently enlarging either the diameter or the weight
(в) The gudgeons of a water-wheel fhould never reft on the wall of the building. It hakes it ; and if fet up foon after the building has been erected, it prevents the mortar from taking firm bond ; perbaps by fhattering the calcareous crytals as they form. When the engineer is obliged to reft the gudgeons in this way, they fhould be fupported by a block of oak laid a little hollow. This foftens all tremors, like the fprings of a wheel carriage. This practice would be very ferviceable in many other parts of the conftruction.
weight of the fly, the irregularity of the motion may be rendered as frall as we pleafe. It is much better to enlarge the diameter. This preferves the friction more moderate, and the pivot wears lefs. For thefe reafons, a fly is in general a confiderable improvement in machiuery, by equalifing many exertions that are naturally very irregular. Thus, a man working at a common windlafs, exerts a very irregular preffure on the winch. In one of his pofitions in each turn he can exert a force of near 70 pounds without fatigue, but in another he cannot exert above 25 ; nor mult he be loaded with much above this in general. But if a large fy be conected properly with the windlafs, he will act with equal eafe and fpeed againft 30 pounds.

This regulating power of the fly is without bounds, and may be ufed to render uniform a motion produced by the molt defultory and irregular power. It is thus that the moft regular motion is given to mills that are driven by a fingle ftroke Ateam engine, where for two or even three feconds there is no force preffing round the mill. The communication is made through a maffive fly of very great diameter, whirling with great rapidity. As foon as the impulfe ceafes, the fly, continuing its motion, urges round the whole machinery with almoft unabated fpeed. At this inflant all the teeth, and all the joints, between the fly and the firtt mover, are heard to catch in the oppofite direction.

If any permanent change fhould happen in the impelling power, or in the refiftance, the fly makes no ob. ftacle to its producing its full effect on the machine; and it will be obferved to accelerate or retard uniformly, till a new general fpeed is acquired exactly corre. fponding with this new power and refiftance.

Many machines include in their conftruction movements which are equivalent with this intentional regulator. A flour mill, for example, cannot be better regulated than by its millone : but in the Albion mills, a heavy fly was added with great propricty; for if the mills had been regulated by their miltoines only, then at every change of flroke in the feam engine, the whole train of communications between the beam, which is the firit mover, and the regulating milifone, which is the very laft mover, would take in the oppofite direction. Although each drop in the teeth and joints be but a trifle, the whole, added together, would make a confi. derable jolt. This is avoided by a regulator immediatcly adjoining to the beain. This continually prefes the working machinery in one direction. So judicioufly were the movements of that noble machine contrived, and fo nicely were they executed, that not the leatt noife was heard, nor the flightelt tremor felt in the building.

Mr Valoné's beautiful pile engine employed at Weft. minfter Bridge is another remarkable inftance of the See Pile. regulating power of a fly*. When the ram is dropped, and its follower difengaged immediately after it, the horles would inftantly rumble down, becaufe the load, againft which they had been flraining hard, is at once taken off; but the gin is connected with a very large fly, which checks any remarkable acceleration, allowing the horfes to lean on it during the defcent of the load; after which their draught recommences immediately. The lpindles, cards, and bobbins, of a cotton mill, are alfo a fort of fies. Indeed all bulky machines of the rotative kind ter.d to preferve their motion with fome degree of fleadinefs, and their great mo-

Sufpl. Vol. II. Part I.
mentum of inertia is as ufeful in this refpect as it is prejudicial to the acceleration or any reciprocation when wanted.
There is another kind of regulating fly, confifting of 4 r wings whirled brifkly round till the refiftance of the air A bad conprevents any great acceleration. This is a very bad a fly: one for a working machine, for it produces its effect by really wafling a part of the moving power. Frequently it employs a very great and unknown part of it, and robs the proprictor of much work. It fhould never be introduced into any machine employed in manufactures.
Some rare cafes occur wherc a very different regula- A conical tor is required; where a certain determined velocity is pendulum found neceflary. In this cafe the machine is furnifhed, is the mols at its extreme mover, with a conical pendulum, confift- gerflator. reing of two heavy balls hanging by rods, which move in very nice and fteady joints at the top of a vertical axis. It is well known, that when this axis turns round, with an angular velocity fuited to the length of thofe pendulums, the time of a revolution is determined. Thus, if the length of each pendulum be $39 \frac{1}{5}$ inches, the axis will make a revolution in two feconds very nearly. If we attempt to force it more fwiftly round, the balls will recede a little from the axis, but it employs as long time for a revolution as before; and we cannot make it turn fwifter, unlefs the impelling power be increafed beyond all probability; in which cafe the pendulum will fly out from the centre till the rods are horizontal, after which every encreafe of power will accelerate the machine very fenfibly. Watt and Boulton have applied this coutrivance with great ingenuity to their fteam engines, when they are employed for driving machinery for manufactures which have a very changeable refiftance, and where a certain fpeed cannot he much departed from without great inconvenience. 'They have connected this recefs of the balls from the axis (which gives immediate indication of an increafe of power or a diminution of refittance) with the cock which admits the fteam to the working cylinder. The balls flying out, caufe the cock to clofe a little, and diminin the fupply of tteam. The impelling power diminifhes the next moment, and the balls again approach the axis, and the rotation goes on as before, although there may have occurred a very great excefs or deficiency of power. The fame contrivance may be eaployed to raife or lower the feeding fluice of a water mill employed to drive machinery.
A fly is fometimes employed for a very different purpofe from that of a regulator of motion - it is employed as a collctior of power. Suppofe all refiftance removed from the working point of a machine furnifhed with a very large or heavy fly imnediately connected with the working puint When a fmall force is applied to the impelled point of this machine, motion will begin in the machine, and the fly begin to turn. Continue to prefs uniformly, and the machinc will accelerate. This may be contimued till the fly has acquired a very rapid motion, If at this moment a refilling hody be applied to the working point, it will be acted on with very great force; for the fly has now accumulated in its circumference a very great momentum. If a body were expofed immediately to the action of this circuntference, it would be violently ftruck. Much more will it be fo, if the body be expofed to the action of the working
working point, which perhaps makes one turn while the fly makes a hundred. It will exert a hundred times more force there (very nearly) than at its own circumference. All the motion which has been accumnlated on the fly during the whole progref's of its acceleration is exerted in an inftant at the working point, multiplied by the mumentum dependiag on the proportion of the parts of the macline. It is thus that the coining prefs perforins its office; nay, it is thus that the blackfmith forges a bar of iron. Swinging the great fledge hammer romul his head, and urging' it with force the whole way, this accumulated motion is at once extinguihed by impact on the iron. It is thus we drive a nail ; and it is thus that by accumulating a very moderate force exerted during four or five turns of a fly, the whole of it is exerted on a punch fet on a thick plate of iron, fuch as is employed for the boilers of fteam engines. The plate is pierced as if it were a bit of cheefe. This accumulating power of a lly has occafioned many who think themfelves engineers to imagine, that a fly really adds power or mechanical forse to an engine; and, not underfanding on what its efficacy depends, they often place the fly in a fituation where it only added a ufelefs burden to the machine. It thould always be made to move with rapidity. If intended for a mere regulator, it fhould be near the firft mover. If it is intended to accumulate force in the working point, it fhould not be far feparated from it. In a certain fenfe, a fly may be faid to add power to a machine, becaufe by accumulating into the exertion of one moment the exertions of many, we can fometimes overcome an obftacle that we never could have balanced by the fame machine unaided by the fly.

It is this accumulation of force which gives fuch an appearance of power to fome of our firft movers. When a man is unfortunately catched by the teeth of a paltry country mill, he is crufhed almoft to mummy. The power of the fream is conceived to be prodigious ; and yet we are certain, upon examination, that it amounts to the preflure of no more than fifty or fixty pounds. But it has been acting for fome time; and there is a milltone of a ton weight whirling twice round in a fecond. This is the force that crufted the unfortunate man ; and it required it all to do it, for the mill ftopped. We faw a mill in the neighbourhood of Elbingroda in Hanover, where there wis a contrivance which difengaged the miltone when any thing got eutangled in the teeth of the wheels. It was tried in our fight with a head of cabbage. It crufhed it indeed, but not violently, and would by no means have broken a man's arm.
Simplicity It is hardly neceffary to recommend fimplicity in the of confruc-contruction of machines. This feems now fufficiently tion recom-
mendcd. underflood. Multiplicity of motions and communications mended. increafes frictions; increafes the unavoidable lofies by beuting and yielding in every part; expofes to all the inperfections of workmanflip ; and has a great chance of being inditinctly conceived, and therefore conflructed without fcience. We think the following confruction of a capttan or crab a very grood example of the advantares of fimplicity. It is the invention of an untaught but very ingenious country tradefman.
Pigr3. EAB is the barrel of the captan, ftanding vertically in a proper frame, as ufual, and urged round by bars
fuch as EF. The upper part A of the barrel is 19 45 inches in diameter, and the lower B is 16 . C is a Exanylo ftrong pulley 16 inches in diameter, having a hook D , of a very which takes hold of a hawfer attached to the load. powerful The rope ACB is wound round the barrel A , paffes capplan. over the pulley C , and is then wound round the barrel B in the oppofite direction. No farther defcription is neceffary, we think, to fhew that, by heaving by the bar F, fo as to wind more of the rope upon A, and unwind it from B, the pulley C mutt be brouglit nearer to the capftan by about three inches for each turn of the capitan; and that this fimple capfian is equivalent to an ordinay cap flan of the fame length of bar EF, and diameter of barrel B, combined with a 16 fold tackle of pulleys; or, in fhort, that it is 16 times more powerful than the common capitan; free from the great lofs by friction and bending of ropes, which would abforb a third of the power of a 16 fold tackle ; and that whereas all other engines become weaker as they multiply the power to a greater degree (unlefs they are proportionally more bulky), this engine becomes really fronger in itielf. Suppofe we wanted to have it twice as powerful as at prefent; nothing is neceffary but to cover the part B of the barrel with laths a quarter of an inch thick. In fhort, the nearer the two barrels are to equality, the more powerful does it become. We give it to the public as an excelient capftan, and as fuggefting thoughts which an intelligent engineer may employ with great effect. By this contrivance, and ufing an iron wire inftead of a catgut, we converted a common eight day clock into one which goes for two months.
W_{E} intended to conclude this artiele with fome obfervations on the chief claffes of powers which are employed to drive machinery; fuch as water, wind, atmofphoric preffure, gunpowder, and the force of men and other animals, giving fome notion of their abfolute magnitudes, and the effect which may be expected from them. We fhould then have mentioned what has been difcovered as to their variation by a variation of velocity. And we intended to conclude with an account of what knowledge has been acquired concerning friction, and the lofs of power in machinery arifing from this caufe, and from the fliffnefs of ropes, and fome other caufes : But we have not yet been able to bring thefe matters into a connected form, which wnuld fuggelt the methods and means of farther information thereon. We muft endeavour to find another opportunity of communicating to the public what we may yet learn on thofe fubjects.

We have now eftablifhed the principles on which machines muft be conftruacd, in order that they may produce the g catelt effect; hut it would be improper to difnifs the fubject without flating to our readers Mr Bramah's new method of producing and applying a more confiderable degree of power to all kinds of machinery requiring motion and force, than by any means at prefent practifed for that purpofe. This. method, for which on the 3 rft of March 1796 he obtained a patent, confifts in the application of water or other denfe Iuids to various engines, fo as, in fome infances,
to caufe them to act with immenfe force; in others, to communicate the mution and powers of one part of a machine to fome other part of the fame machine; and, lafly, to communicate the motion and force of one machine to another, where their local fituations preclude the application of all other methods of connection.

The firt and moit material part of this invention will be clearly underftood by an infpection of fig. 4. where " A is a cylinder of i:on, or other materials, fufficient. ly flrong, and bored perfectly fmouth and cylindrical ; into which is fitted the pifton B , which mult be mane perfectly water-tight, by leather or other materials, as ufed in puntp-making. The bottom of the cylinder mult alfo be made fufficiently frong with the other part of the furface, to be capable of refifting the greatoft force or thrain that may at any time be required. In the bottom of the cylinder is inferted the ead of the tube \mathbf{C}; the aperture of which consmunicates with the infide of the cylinder, under the pitton B , where it is flut with the finall valve D , the fane as the fuctionpipe of a common pump. The other end of the tube C communicates with the fnall forcing pump or injector E , by means of which water or other denfe fluids can be forced or injected into the cylinder A, under the piton B. Now, fuppofe the diameter of the cylinder A to be 12 inches, and the diameter of the pifton of the fmall pump or injector E only one quarter of an inch, the proportion between the two furfaces or ends of the faid pillons will be as 1 to 2.304 ; and fuppofing the intermediate fpace between them to be filled with water or other denfe fluid capable of fufficient refiftance, the force of one pifton will act on the other jult in the above proportion, viz. as I is to 2304 . Suppofe the fmall pifton in the injector to be forced down when in the act of pumping or injecting water into the cylinder A, with the power of 20 cwt. which could eafly be done by the lever H ; the pilon B would then be moved up with a force equal to 20 cw . multiplied by 2304. Thus is conftructed a hydro-mechanical engine, whereby a weight amounting to 2304 tons can be raifed by a fimple lever, through equal fpace, in much lefs time than could be done by any apparatus conftructed on the known principles of mechanics; and it may be proper to obferve, that the effect of all other mechanical combinations is counteracted by an accumulated complication of parts, which renders them incapable of being ufefully cxtended beyond a certain degree; but in machines acted upon or conflructed on this principle, every difficulty of this kind is obviated, and their power fubject to no finite reftraint. To prove this, it will be only neceffary to remark, that the force of any machine acting upon this principle can te increafed ad infnitum, either by extending the proportion between the diameter of the injector and the cylinder A, or by applying greater power to the lever H .
" Fig. 5. reprefents the fection of an engine, by which very wonderful effects may be produced inilantaneoufly by means of compreffed air. AA is a cylinder, with the pifton \mathbf{B} fitting air-tight, in the fame manner as defcribed in fig. 4. C is a globular veffel made of copper, iron, or other ftrong materials, capable of refifting immenfe force, fimilar to thofe of air guns. D is a Atrong tube of fmall bore, in which is the flop-cock E. One of the ends of this tube communicates with the
cylinder under the pitton B, and the other with the globe C. Now, fuppofe the cylinder A to be the fame diameter as that in fig. 4 . and the tube D equal to one quarter of an inch didmeter, which is the fame as the imjector fig. 4.: then, fuppofe that air is injected into the globe C (by the conmon method), till it prefees agaiutt the cock E with a force equal to 20 cwt . which cau eafily be done ; the confequence will be, that when the cock E is opened, the pifton B will be moved in the cylinder AA with a power or force cqual ti) 2304 tons; and it is obvious, as in the cafe fig. 4. that any other unlimited degree of force nay be acquired by machines or engines thus conllructed.
"Fig. 6. is a fection, merely to fhew how the power and motion of one machine may, by means of fluids, be transferred or communicated to another, let their diftance and local fituation be what they nay. A and B are two fmall cylinders, fmooth and cylindrical ; in the infide of each of which is a pilton, made water and air tight, as in figs 4. and 5. CC is a tube conveyed under gronad, or otherwife, from the button of one cylinder to the other, to form a communication between then, notwithitanding their diftance be ever fo great; this tube being filled with water or other fluid, until it touch the bottom of each pitton; then, by deprefiing the pifton A, the piton B will be raifed. The fame effect will be produced vice verfa: thus bells may be rung, wheels turried, or other machincry put invifibly in motion, by a power being applied to cither.
"Fig. 7 . is a fection, fhewing another inflance of communicating the action or force of one machine to another; and how water may be raifcd out of wells of any depth, and at any diflance from the place where the operating power is applied. A is a cylinder of any required dimenfions, in which is the working piltou 1 B , as in the foregoing examples: into the bottum of this cylinder is inferted the tube C, which may be of leis bore than the cylinder A. This tube is continued, in any required direction, down to the pump cyliader 1 , fuppofed to be fixed in the deep well EE, and forms a junction therewith above the pifton F ; which piton. has a rod G, working througl the fluffing-box, as is ufual in a conmon pump. To this rod G is connected, over a pulley or otherwife, a weight H , fufficient to overbalance the weight of the water in the tube C , and to raife the pilton F when the pitton B is lifted : thus, fuppofe the pilton B is drawn up by its rod, there will be a vacuum made in the pump cylinder D , below the pifton F; this vacuuns will he filled with water through the fuction pipe, by the preffure of the atmofphere, as in all pumps fixed in air. The return of the pillon 13 . by being preffed downards in the cylinder A, will make a itroke of the pilton in the pump cylinder D, which may be repeated in the ufual way by the motion of the pilton B , and the action of the water in the tube C. The $\operatorname{rod} \mathbf{G}$ of the piton \mathbf{F}, and the weight H , are not neceflary in wells of a depth where the atmo. fphere will overbalance the water in the fuction of the pump cylinder D, and that in the tube C. The frall tube and cock in the ciftern I, are for the purpofe of charging the tube C."

That thefe contrivances are ingenions, and may occafionally prove ufeful, we are not inclined to controvert ; but we mult confefs, that the advantages of them
appear
appear not to us fo great as to their author. Why shey do not, we need not explain to any man who, with a fufficient degree of inechanical and mathenatical knowledge, has perufed this article with attention. MIr John Luccork, however, of Narley, near Leeds, thinks fo very differently from us on this fubject, that, on Nr Bramah's principle, he propoles to apply water or other denfe fuids, fo as to make them fupply the place of feam in what is commonly called the fean engine. He calls his engine the paradoxical machine ; and
he got a patent for it on the 28th of February 1799, though it differs in nothing from Mr Bramalı's machine, reprefented by fig. 4. except that the tube C in the paradoxical machine is fupplied with water, not by means of a forcing pump, but from a ciftern elevated to fuch a height as, that the water defcending through the tube may produce its effect merely by its weight. Whether this variation, for it is no improvement, of Mr Bramah's machiac, intitled its author to a patent, it is not our bufinefs to inquire.

M A C

Macpher MACPHERSON (James, Efq;), was born in the fun. farifh of Kingufie, and county of Invernefs, in the year
1738. His father was a farmer of no great afluence; and young Macpherfon received the earlier pat of his education in one of the parifn fchools in the diftrict called Badenoch. By an anonymons writer in the E. dimburgh Magazine, he is faid to have heen educated in the grammar fchool of Invernefs; and he may, for ought that we know to the contrary, have fpent a year in that feminary; but we rather think that he went directly from a country fchool to the univerfity of Aberdeen. At this our readers need not be furprifed; for at the period to which we refer, fome of the parochial fchoolmatters in Scotland, and more efpecially in the Highlands, were men eminent for tafte and elaffical litcrature.

It was in the end of October or the ift of November 1752, that James Macpherfon entered the King's College; where he difplayed more genius than learning, entertaining the fociety of which he was a member, and even diverting the younger part of it from their tudies, by his humorous and doggerel rhimes. About two years after his admifion into the univerfity, the King's College added two months to the length of its annual fe/fion or term ; which induced Macplserfon, with many other young men, to remove to the Marifchal College, where the feffion continued fhort ; and it is this circumftance which leads us to fuppofe that his father was not opulent.

Soon after he left college, and perlaps before he left it, he was fchoolmaller of Ruthven, or Riven, of Badenoch; and we believe he afterwards delighted as little as his great antagonift Johnfon in the recollection of that period when he was compelled, by the narrownefs of his fortune, to teach boys in an obfcure fehool. It was during this period, we think in 1758 , that he publifhed The Higblander, an heroic poem in fix cantos, I2mo. Of this work, as we have never feen it, we can fay nothing. By the anonymous writer already quoted, it is mentioned as a "tiflue of fuftian and abfurdity;" whilft others, and they too men of learning and character, have affured us, that it indicated confiderable genius in fo young an author.

Soon after this publication, Mr Macpherfon quitted his fchool, and was received by Mr Graham of Balgowan into his family as tutor to his fons; an employment of which he was not fond, and to which he was not long condemned. In the year 1760 he furprifed the world by the publication of Fragments of Ancient Poetry, collecled in the Highlands of Scotland, and Tranf-
lated from the Gaelic or Erfe Language, 8vo. Thefe Maepher. fragments, which were declared to be genuine remains of ancient Scottifh poctry, at their firft appearance delighted every reader; and fome very goou judges, and amonglt the reft Mr Gray, were extremely warm in their praifes. Macpherfon had intended to bury them in a Scotch magazine, but was prevented from fo injudicions a ftep by the advice of a friend. He publifhed them therefore in a pamphlet by themfelves, and thus laid the foundation of his future fortune.

As other fpecimens were faid to be recoverable, a fubfeription was fet on foot hy the Faculty of Advocates at Edinburgh, to enable our author to quit the family of Balgowan, perambulate the Highlands, and fecure, if he could, the precious treafure. He engaged in the undertaking, and was fuccefsful; for all who poffeffed any of the long.famed works, vied with each other in giving or fending them, to a man who had fhewn himfelf fo capable of doing them juftice.

Witl his collection of poems, and fragments of poems, he went to London; and tagging them together in the form which he thought bett, he publifhed, in 1762, Fingal, an Ancient Epic Poem, in fix books, together with feveral other poems, compufed by Offian the fon of Fingal, tranflated from the Gaelic language, 4to. The fubject of this epic poem is an invafion of Ireland by Swaran king of Lochlin. Cuchullin, general of the Irifh tribes during the minority of Cormac, king of Ireland, upon inteligence of the invafion, affembled his forees near Tura, a caftle on the coalt of Uliter. The poem opens with the landing of Swaran; councils are held, battles fought, and Cuchullin is at laft totally defeated. In the mean time, Fingal, king of the Highlands of Scotland, whofe aid had been folicited before the enemy landed, arrived, and expelled them from the country. This war, which continued but fix days and as many nights, is, including the epifodes, the fory of the Poem. The fcene, the heath of Lena, near a mountain called Cromleach in Ulfter. This poem alfo was received with equal applaufe as the preceding Fragments.

The next year he produced Temora, an ancient epic. poem, in eight books; together with feveral other poems compofed by Offian fon of Fingal, 4 to ; which, though well received, found the public fomewhat lefs difpofed to beftow the fame meafure of applaufe. Tho' thefe poems had been examined by Dr Blair and others, and their authenticity afferted, there were not wanting fome of equal reputation for critical abilities, who either doubted or declared their difbelief of the genuinenefs of
them,

Masher- them. Into this queftion it would be fuperfluous to for. enter here particularly, as we have fair enough on it elfewhere. See Ossian, Encycl.

That any man fhould fuppofe Macpherfon, after his tranlation of Isomer, the author of the poems which lie afcribes to Offian, appears to us very extraordinary ; and it is little leis extraordinary, that any one fhould, for a moment, believe in the exiftence of manuscripts of the fe pocins of very high antiquity. Part of them he undoubtedly received in marufeript from Macdonald of Clanronald; but we can affirm, on the beft authority, that the faid manufeript was written at different times by the Macvurichs, hereditary bards to that family. He may likewife have received fort manufcripts elfewhere ; but every Highland gentleman of learning and of candour (and none elfe have a right to decide on this queftion), declares, that by much the greater part of the poems had been preferved in fragments and popular fogs from a very remote age by oral tradition. To thee fragments Macpherfon and his affociates (A) gave form; and it was by uniting together fragments of ifferent ages, that he inadvertently furnished Gibbon and others with the opportunity of objecting, that the poems are fometimes inconfifent with the truth of hiflory. This, however, is no felid objection to their authenticity; for every Weft Highlander fixty years of age remembers to have heard, in his youth, great part of thole poems repeated by old men; and is confident that, many centuries ago, the names of Fiume Mackuil (Fingal), and of Offan's other heroes and hernines, were as familiar to a Highland ear, as the names of Agamemnon, Hector, Helen, \&ic. were to a Greclan ear at the time when the poems of Homer were reduced into their prefent form. For the fubftance of the poems, this is such evidence as none will reject who dues not prefer his own cobweb theories to the united teftimony of a whole people.

With reflect to authenticity, the poems of Offian have indeed been compared with the poems of Rowley; but the comparifon is absurd. The poems of the Cltic bard were not found in an old cheft, and prefénted to a people who had never before heard either of them or of their author; they were the popular fangs and traditions of ages collected together, and reduced into form, with additions occafionally made by the tranflator. It is ridiculous to alk how there fogs and fries could be fo long preferved among a rude and illiterate people ; for it is only among fuck a people, whore obfeats of purfuit are too few to occupy all their attentimon, that the exploits of their anceftors can be handed down by tradition; and the molt ferious objection which we have ever met with to the tranflator's account of the origin of the poems, arifes from lis having pretended that he received the greater part of them in old manufcripts.

After the publication of Olfan's poems, by which we have reafon to believe that he gained twelve hundeed pounds, Mr Macpherfon was called to an employ. ment which withdrew him, for forme time, both from
the mufice and from his country. Captain Johnftone was Macpherappointed governor of Penfacola, and Mr Macpherfon accompanied him as his fecretary, being at the fame time made furveyor-general of the Floridan. If our memory does not deceive us, forme difference arofe be tween the principal and his dependant, and they parted before their return to England. Having contributed his aid to the fettlement of the civil government of that colony, he vifited feveral of the Well India iflands, and forme of the provinces of North America, and returned to England in the year 1766 , where he retained for life his falary as furvejor, which we believe was L. 200 a-year.

He fool returned to his flies, and in 1771 prod. ed An Introduction to the Hijfory of Great Britain and Ireland, \ddagger to ; a work which he fays, "without any of. the ordinary incitements to literary labour, he was induce to proceed in by the foll motive of private amufement." The fubject of this performance, it might reafonably be fuppofed, would not excite any violent controverfial acrimony; yet neither it nor its author could efcape from feveral moot grofs and bitter inveclives; for forme of which lie perhaps gave too great occafion.
His next performance produced him neither reputaion nor profit. In 1773 he publifhed, The Iliad of Homer, tranflated in two volumes ito ; a work fraught with vanity and felf-confequence, and which met with the moot mortifying reception from the public. It was condemned by the critics, ridiculed by the wits, and neglected by the world. Some of his friends, and particularly Sir John Elliott, endeavoured to refcue it from contempt, and force it into notice. Their fuccefs was not equal to their efforts.

About this time feems to be the period of Mr Macpherfon's literary mortifications. In 1773 Dr Johufon and Mr Boswell made the tour to the Hebrides; andin the course of it, the former took dome pains to examine into the proofs of the authenticity of Oflian. Therefult of his inquiries he gave to the public in 1775 , in. his narrative of the tour; and his opinion was unfavourable. "I believe they (i. e. the poems, fays he), never exited in any other form than that which we have feen. The editor or author never could thew the ortgimmal ; nor can it be flown by any other. To revenge, reafonable incredulity by refusing evidence, is a degree of infolence with which the world is not yet acquainted; and ftubborn audacity is the late refuge of guilt. It would be early to thew it if he had it. But whence could it he had? It is too lung to be remembered, and the language had formerly nothing written. He has doubtless inferted names that circulate in popular fries, and may have tranllated forme wandering ballads, if any can be found; and the names and forme of the images. being recollected, make an inaccurate auditor imagine that he has formerly heard the whole."

A gain, he fays, "I have yet fuppofed no impoftor but in the publifincr; yet I ain far frons certainty, that forme tranfations have not been lately made, that: may,
(A) We have been allured that he had affociates: and that for the defription of Cuchullin's chariot in parricular he was indebted to Mr Macpherfon of Stramazbie; a man of native genius, and though not poffeffed of very extenfive erudition, well acquainted with Gaelic poetry.

Maepher may now be obtruded as parts of the original fon. work.
"Credulity on the sone part is a ftrong temptation to deceit on the other, efpecially to deceit of which no perfonal injury is the confequenee, and which flatters the author with his own ingenuity. The Scots have fomething to plead for their eafy reception of an improbable fiction : they are feduced by their fondnefs for their fuppofed ancellors. Neither ought the Englifh to be much influenced by Scots authority; for of the palt and prefent ftate of the whole Erfe nation, the Low. landers are at leat as ignorant as ourfelves. To be ignorant is painful ; but it is dangerous to quiet our uneafinfs by the delufice opiate of hafty perfuation."

Thefe reafonings, if reafonings they can be called, might have been calily anfwered, had not Maepherfon pretended to the pufffion of at lealt one manufcript which eertainly never exifted. He did, however, attempt to anfwer them; but adopted a mode of pioceeding which tended only to convince the world that Jolinfon's opinion had fome foundation, and that the editor of Offian had more imagination than found judgement. Prompted by his evilgenius, he fent a menacing letter to his illutrious antagonitt, which produced the following brief but fpirited reply :

> "Mr James Macpherfon, No date.
"I received your foolifh and impudent letter. Any violence that fiall be offered to me, I will do my beft to repel; and what I cannot do for myfelf, the law flall do for me; for I will not be hindered from expofing what I think a cheat, by the menaces of a ruffian. What! Would you liave me retract? I thought your work an impofition: I think fo flill; and, for my opinion, I have given reafons, which I dare you to refute. Your abilities, fince your Homer, are not fo formidable; and what I hear of your morality, inclines me to believe wather what you Alall prove than what you thall fay."

Whether this letter fhewed to Macpherfon the imprudence of his conduct, or that he had been made fenfible of his folly by the interpofition of friends, we know not, but certain it is, we hear no more afterwards of this ridiculous affair, except that our author is fuppofed to have affited Mr Maenicol in an anfwer to Dr Johufon's Tour, printed in 1779 . This fuppofition we are enclined to confider as well- Founded, becaufe we have been told by a gentleman of veracity, that Mr Macnicol affirms, that the feurrility of his book, which conftitutes a great part of it, was inferted, unkiown to him, after the manufeript was fent for publication to London.

In 1775 Mr Macpherfon publimed The Hi/Rory of Great Britain from the Refloration to the Accelfion of the Houfe of Hanover, in two volumes 4 to ; a work in our opinion of great merit, though by one party it has been indultrioufly, and, we are forry to add, too fuccefsfully, deeried. As an hillorian, our anthor could not indeed boalt the attic elegance of a Robertfon, the fplendour of a Gibbon, or the philofophical profundity of a Hume; but his Ayle, though it has fometinces been the avowed, was not the real, caufe of the coldnefs with which his hiftory was received. The writer of this k etch once faw a gentleman of rank, and of the Whig intereft, turn over one of Macpherfon's volumes, and heard him
fay, upon thutting the book, "I cannot bear that Macpherwork." He was alked if he thought the narrative futt. falfe? and he replied, "No! it is too true; but l caunot bear it, becaufe it gives me a bad opinion of thole great men to whom I lave been accultomed to look back with reverence as to the faviours of my country."

That it has been abhorred by others on the fame ac. count, we have not a doubt ; and yet language has no name too contemptuous for thofe who will not follow Truth whitherfoecer the may lead them; or who, on the abfurd pretence of having already made up their minds, will not Itudy the evidence on both fides of a difputed quellion in our national hiftory. A man needs not furely difapprove of the Revolution, or of the fub. fequent fettlements, thongh he fhould find complete proofs that Danky and Sunderland were crooked poli. ticians, that Marlborough was ungrateful, or even that King William himfelf was not that upright and difnteretted character which from their infancy they have been taught to believe. It is no uncommon thing for Divine Providence to accomplifh good ends by wicked inftuments. Every Proteftant furely confiders the Re. formation as one of the moft bleffed events that have taken place in the world fince the firt preaching of the gofpel of Chritt ; yet he would be a hardy champion who fhould undertake to vindicate the motives which influenced the conduct of the firft reformers-of Hen. ry VIII. for inftance, or even of Luther himfelf. And why may not the Revolution be confidered as in the highefl degree beneficial to the country, though the conduct of fome of thofe who brought it about Thould be found to be fuch as Macpherfon reprefents it?

That author certainly acted with great fairnefs; as together with the hiftory he publifhed the proofs upun which his facts were founded, in two quarto volumes, intitled, Original Papers, containing the ficret Hiflory of Great Britain, from the Refloration to the Acceffon of the Houfe of Hanover: 10 which are perfixed, Extrads jrom the Life of Games II. as ruriblen by bimfolf. Thefe papers were chiefly collected by Mr Carte, but are not all of equal authority. They, however, clear up many obfcurities, and fet the characters of many perfons in palt times in a different light from that in which they have been ufually viewed. On this account we have no hefitation to fay, that he who is capable of facrificing pre. judice to truth, and withes to underftand the polities of the reigns of James, and William, and Ame, fhould fudy with care the volumes of Miacpherfon.

Suon after this periud, the tide of fortume flowed very rapidly in Mr Macpherfon's favour, and his talents and indullry were amply fufficient to avail himfelf of every favourable circumilance which arofe. The refiftance of the Colonies called for the aid of a ready writer to combat the arguments of the Americans, and to give force to the reafons which influenced the conduct of government, and he was feleeted for the purpofe. Among other things (of which we Chould be glad to receive a more particular aecount), he wrote a pamplilet, which was circulated with much indultry, intitled, The Rights of Great Britain afferted againft the Claims of the Colonies; being an Anjwer to the Declaration of the General Congrefs, 8vo, 1776, and of which many editions were publithed. He alfo was the author of A Jort Hijlory of Oppofition during the laft $S_{e} / \sqrt{1}$ on of Parliament,

epher. Parliantent, $8 \mathrm{vo}, 1779$; a pamphlet which, on account of its merit, was by many aferibed to Mr Gibbon.

But a more lucrative employment was conferred on him about this time. He was appointed agent to the nabob of Arcot, and in that capacity exerted his talents in feveral appeals to the public in helaif of his client. Among others, he puhlifhed, Letters from Mebommed Ali Chan, Nabob of Arcot, to the L'ourt of Directors; to which is annexed, a State of Fals relative to Tanjore, with an Appendix of Original Papers, 4to, 1777; and he was fuppofed to be the author of The Hiflory and Manaeenent of the Eaft Iudia Company from its Orgin in 1600 to the prefent Times, vol. i. containing the affairs of the Carnatic, in which the rights of the nabob are explained, and the injuftice of the Company proved, 4to, 1779.

In his capacity of agent to the nabob, it was probably thought requifite that he fhould have a feat in the Britifh Parliament. He was aecordingly in 1780 chofen member for Camelford: but we do not recollect that he ever attempted to fpeak in the Houfe. He was alfo rechofen in 1784 and 1790 .

He had purchafed, we think before the year 1790, an eftate in the parifh in which he was boru; and changing its name from Retz to Belville, built on it a large
and elegant manfion, cominanding a very romantic and Macplecr. pifturefque view; and thither he retired, when his fon, health began to fail, in expectation of rece:iving benefit $\underbrace{\text { Magma, }}$ from the change of air. He continued, however, to decline; and after lingering fome time, died at his feat at Belville, in Invernefs, on the 17 th of Fcbruary 1796.

He appears to have died in very opulent circumfances; and by his will, dated June $\mathbf{8} 793$, gave various annuities and legacies to feveral perfons to a great a. mount. He alfo hequeathed L. 1000 to John Mackenzie of Figtree Court, in the Temple, London, to defray the expence of priating and puhlifhing Ofian in the original. He directed L. 300 to be laid out in erecting a monsment to his memory in fome confpicuous fituation at Belville, and orderea that his body thould be carried from Scotland, and interred in the Abbey Church of Wittminter, the city in which he had paffed the beft part of his life. His remains were accordingly taleen from the place where he died, and buried in the Poets Corner of Weftminfter Church.

MAGMA is properly the refufe of any fubfance which has been fubjected to preflure; bat, in chemiftry, the term is fornetimes ufed to denote a mixture of two or more bodies, reduced to the confiltence of dough or pafte.

M A G N E T I S M,

IN natural phildophy.-Our intention in the prefent article was principally to give a more ditinct account of the theory of Mr 灰pinus than is contained in the article Magvetism of the Encyclopiedlia Britunnica, referring for proof and illuftration to the many facts contained in that article: but, on more mature confideration, we concluded, that this method would fret and confufe the reader by continual references, and leave but a feeble impreffion at laft. We have therefore prefer. red the putting the whole into the furm of a fhort treatife on magnetifm, fimilar to our fupplenentary article of Electricity. This, we hope, will be more perfpicuous and fatisfactory; ftill leaving to the reader the full ufe of all the information contained in the article Magnetism of the Dictionary.

The knowledge which the ancient naturalifts poffeffed of this fubject was extremely imperfect, and affords, we think, the ftrongett proof of their ignorance of the true method of philofophifing; for there can hardly be named any object of phyfical refearch that is more curious in itfelf, or more likely to engage atteution, chan the apparent life and activity of a piece of rude unorganifed matter. This had attracted notice in very earIy times; for Thales attributed the characteriftic phe. n.menon, the attraction of a piece of iron, to the agrency of a mind or foul refiding in the magnet. Philofophers, as they were called, feem to have been contented with this lazy notice of a hight fuggeltion, unbecoming an inquirer, and rather fuch as might be expected from the moft incurious peafant. Even Arifotle, the moft zealous and the moft fyftematic ftudent of Nature of whofe labours we have any account, has collected no information that is of any importance. We know that the general imperfection of ancient phyfics has been afcribed to the little importance that was attached to the know.
ledge of the material world by the philofophers of Greece and Rome, who thought human nature, the active purfuits of men, and the fcience of public affairs, the only objects deferving their attention. Moft of the great philofophers of antiquity were alfo great actors on the flage of human life, and defpifed acquifitions which did not tend to accomplifh them for this dignified em. ployment : but they have not given this reafon themfelves, though none was mure likely to be uppermoft in their mind. Socrates difuades from the ftudy of inaterial nature, not becaufe it was unworthy of the attention of his pupils, but becanfe it was too diffienlt, and that certainty was not attainable in it. Nothing can mure diftinctly prove their ignorance of what is really attainable in fcience, namely, the knowiedge of the lazos of nature, and their ignorance of the orly inethod of acquiring this knowledge, viz. obfervation and cxperiment. They had entertained the hopes of difcovering the cauges of things, and had furmed their philofophical. language, and thcir mode of refearch, in conformity with this hopelefs project. Making little advances in. the difcurery of the caufes of the phenomena of material nature, they defertel this fludy for the fludy of the coinduct of man ; not becaufe the difcorery of caufes was more eafy and frequent here, but becaufe the fudy it felf was more immediately interefling, and becaufe any. thing like fuperior knowledge in it puts the poffeflor in the defirable fituation of an advifer, a man of fuperior wifdom; and as this ftudy was clofely connected with morals, becaufe the fear of God is truly the beginning of wifdom, the character of the philofopher acquired an enuinence and dignity which was highly flattering to human vanity. Their procedure in the moral and intellectual fciences is ftrongly marked with the fame ignorance of the true method of philofophifing; for we
rarely Gind them forming general propofitions on copious inductions of facts in the conduct of men. They always proceed in the fynthetic method, as if they were fully converfant in the firft principles of human nature, and had nothing to do but to make the application, according to the eftablifhed forms of logic. While we admire, therefore, the fagacity, the penetration, the candid obfervation, and the happy illuftration, to be found i_{1} the works of the ancient moralifts and writers on juriiprudence and politics, we cannot but lament that fuch great men, frequently engaged in public affairs, and therefore having the fineft opportunities for deducing general laws, have done fo little in this way; and that their writings, however engaging and precious, cannot be confidered as any thing more refined than the obfervations of judicious and worthy men, with all the dif. fufenefs and repetition of ordinary converfation. All this has arifen from the want of a jult notion of what is attainable in this department of fcience, namely, the laws of intellectual and moral nature ; and of the only pofible method of attaining this knowledge, viz. ob. fervation and experiment, and the formation of general laws by the induction of particular facts. was the firftention of the ancients to the curious phenomena of experinen- magnetifm; which nuft have occurred in confiderable tal inquirer and entertaining variety to any perfon who had taken
aionu: nagEetifa. to the experimental method. And we have hazarded thefe free remarks, expecting the acquiefcence of our readers, becaufe the fuperior knowledge which we, in thefe later days, have acquired of the magnetical phenomena, were the firlt fruits of the true method of philofophifing. This was pointed out to the learned world in 1590 by our celebrated countryman Chancellor Bacon, in his two great works, the Novum Organum Scientiarum, and De Argunentis Scientiarum. Dr Gilbert of Colchefter, a philofopher of eminence in many refpects, but chiefly becaufe he had the fame juft views of philofophy with his noble countryman, publifhed about the fame time his Phyfiologia Nova, feu Tralatus de Magnete et Corporibus Magneticis. In the introduction, he recounts all the knowledge of the ancients on the fubject, and their fupine inattention to what was fo entirely in their hands; and the impoffibility of ever adding to the ftock of ufe ful knowledge, fo long as men imagined themfelves to be philofophifing while they were only repeating a few cant words, and the unmeaning phrafes of the Ariftotelian fchool. It is curious to remark the almoft perfect famenefs of Dr Gilbert's fentiments and language with thofe of Lord Bacon. They both charge, in a peremptory manner, all thofe who pretend to inform others, to give over their dialectic labours, which are nothing but ringing changes on a few trite truths, and many unfounded conjectures, and immediately to betake themfelvcs to experiment. He has purfued this method on the fubject of magnetifm with wonderful ar. dour, and with equal genius and fuccefs; for Dr Gilbert was poffefed hoth of great ingenuity, and a mind fitted for general views of things. The work contains a prodigious number and variety of oblervations and ex. periments, collected with fagacity from the writings of others, and infituted by himfelf with confiderable ex. pence and labour. It would indeed be a miracle, if all i): Gilbert's general inferences were juft, or all his ex.
periments accurate, It was untrodden ground. But, on the whole, this performance contains more real information than any writing of the age in whish he lived, and is fcarcely exceeded by any that has appeared fince. We may hold it with juffice as the firfl fruits of the Baconian or experimental philofophy.
This work of Dr Gillert's relates chiefly to the loadflone, and what we call magnets, that is, pieces of fteel which have acquired properties fimilar to thofe of the loadftone. But he extends the term magnetifm, and the epithet magreetic, to all bodies which are affccted by loadfunes and nuagnets in a manner fimilar to that in which they affect each other. In the courfe of his inveltigation, indeed, he finds that thefe bodies are only fuch as contain iron in fome flate or other: and in proving this limitation he mentions a great variety of phenomena which have a confiderable refemblance to thofe which he allows to be magnetical, namely, thofe which he called eletrical, becaufe they were produced in the Came way that amber is made to attract and repel light bodies. He marks with care the diffinetions between thefe and the characteriftic phenomena of magnets. He feems to have known, that all budies may be rendered elećtrical, while ferruginous fubftances alone can be made magnetical.

It is not faying too much of this work of Dr Gilbert's to affirm, that it contains almoft every thing that we know about magnetifm. His unwearied diligence many difin fearching every writing on the fubject, and in get-coveries. ting information from navigators, and his inceffant occupation in experiments, have left very few facts unknown to him. We meet with many things in the writings of pofterior inquirers, fome of them of high reputation, and of the prefent day, which are publifhed and received as notable difcoveries, but are contained in the rich collection of Dr Gilbert. We by no means afcribe all this to mean plagiarifm, although we know traders in experimental knowledge who are not free from this charge. We afcribe it to the general indolence of mankind, who do not like the trouble of confulting originals, where things are mixed with others which they do not want, or treated in a way, and with a painful minutenefs, which are no longer in farhion. Dr Gilbert's book, although one of thofe which does the higheft honour to our country, is lefs known in Britain than on the continent. Indeed we know but of two Britih editions of it, which are both in Latin; and we have feen five editions publifhed in Germany and Holland before 1628. We earnefly recommend it to the perufal of the curious reader. He will (befides the found philofophy) find more facts in it than in the two large folios of Scarella.

After this moft deferved eulugy on the parent of magnetical philofophy, it is time to enter on the fubject.
In mechanical philofophy, a phenomenon is not to be We can or confidered as explained, unlefs we can fhew that it is'y clafs the the certain refult of the laws of motion applied to mat-phenometer. It is in this way that the general propofitions in "a. phy fical iffronomy, in the theory of machines, in hydranlics. \& © c. are demouftrated. But the phenomena called magnetical have not as yet obtained fuch an explanation We do not fee their immediate caufe, nor can we fay with coufidence that they are the effects of
any particular kind of matter, acting on the bodies cither by impultion or preffure.

All that can be done here is to clafs the phenomena in the moot diftinct manner, according to their generality. In this we obtain a two-fold advantage. We may take it for granted that the noft general phenomenon is the nearefl atlied to the general caufe. But, farther, we obtain by this method a true theory of all the fubordinate phenomena, For a juil theory is only the pointing out the general fact of which the pheno. menon under confideration is a particular inftance. Begrinning therefore with the phenomenon which compreliends all the particular cafes, we explain thofe cafes in newing in sulat manner they are included in the general plienomenon, and thus we flall be able to predict what will be the refult of putting the body under confideration into any particular fituation. Aud perhaps we may find, in them all, coincidences which will enable us to Shew that they are all modifications of a fact dill more general. If we gain this point, we fhall have ellablifhed a complete theory of them, having difeovered the general fact in which they are all comprethended. Should we for ever remain ignorant of the caufe of this general fact, we have neverthelefs rendered this a complete branch of mechanical theory. Nay, we may perhaps difcover fuch circumftances of refemblance between this general fact and others, with whicla we are better acquainted, that we fall, with great probability at leatt, be able to affign tie caufe of the general fact itfelf, by fhewing the law of which it is a particular inftance.
We thall attempt this method on the prefent occafion.
The leading facts in magnetifm are the two follow. ing:

1. If any oblong piece of iron, fuch as a bar, rod, or wire, be fo fitted, that it can affume any direction, it will arrange itfelf in a certain determinate direction with refpect to the axis of the earth. Thus, if, in any part of Briton, an iron or fleel wire be thruft though Plate a piece of cork, as reprefented in fig. 1. fo as that the xxsiv. whole may fivim level in water, and if it be laid in the water nearly north-weft and fouth eaft, it will flowly change its pofition, and finally fettle in a direction, making an angle of about 25 degrees with the meridian.

This experiment, which we owe to Dr Gilbert (fee B. I. ch. 11.), is delicate, and requires attention to many circumfances. The furce with which the iron tends toward this final pofition is extremely weak, and will be balanced by very minute and otherwife infenfi. ble refiftances; but we have never found it fail when executed as here directed. An iron wire of the fize of an ordinary quill, and about eight or ten inches long, is very fit for the purpofe. It fhould be thrutt through the cork at right angles to its axis; and fo arjufled, by repeated trials, as to fwim level or parallel to the horizon. The experiment muft alfo be made at a great diflance from all iron; therefure in a bafon of come other metal or earthen ware. It may fometimes require a very long while before the motion begin; and if the wire has been placed at right angles to the direction which we have mentioned as final, it will never change its pofition : therefore we have directed it to be laid in a direction not too remote, yet very fenfibly different from the final direction.

Suppl. Vol. II. Part I.

But this is not the true pofition affected by the iron rod. If it be thrult through a piece of wood or cork perfectly (fplierical, in fuch a manner that it paffes thro)' its ceatre, and if the centre of gravity coincide with this centre, and the whole be of fuch weight as to remain in any part of the water without cither afeend. ing or defeending, then it will finally fettle in a plane inclined to the merislian about 25°, and the murth end will be deprefed about 73° below the horizon.

All this is equivalent with faying, that if any oblong piece of iron or Atect be very nicely poifed on in centre of gravity, and at perfect liberty to turn round that centre in every direction, it will finally take the potition now mentioned.

We have farther to obferve with regard to this exFeriment, that it is indifferent which end of the rod be placed toward the north in the beginning of the experiment. That end will finally fettle toward the noth; and if the experiment be repeated with the fame rod, but with the other end north, it will finally fettle i., this new attitude. It is, bowever, not always that wefind pieces of iron thans perfectly indifferent. V'ery frequently one end affects the northerly poftion, and we camot make the other end affume its place: the caulcis of this difference will be clearly feen by and bye.

The pofition thus affected by a rod of iron is called Magnetin by Dr Gilhert the magnetical position or direc- cal posttion. It is nut the fame, nor parallel in all parts of ${ }^{\text {tion. }}$ the earth, as will be more particularly noticed afterwards.
2. The other leading facts is this: When a piece of Secord fact. iron, lying in the magnetical pofition, or nearly to, and Irmatat perfect liberty to move in every direction, is ap-repels iron. proached by another oblong piece of iron, held nearly in the fame pofition, it is attracted by it ; that is, the moveable piece of iron will gradually approach to the one that is prefented to it, and will at laft cume intos contact with it, and may then be flowly drawn along by it.

This plenomenon, although not fo delicate as the former, is ftill very nice, becaufe the attraction is f_{0} weak that it is balanced by almoft infenfible obftricetions. But the experiment will fcarcely fail if conducted as follows: Let a flrong iron wire be made to float on water by means of a piece of cork, in the manner already deferibed, having one end under water. See fig. 1. B.

When it is nearly in the magnetical poftion, bring the end of a pretty big iron rod, fuch as the puint of a new yoker, within a quarter of an inch of its fouthern end (holding the poker in a pofition not very different from the magnetical pofition), and hold it there for fome time, not exactly fouthward from it, but a little to one fide. The floating iron will be obferved to turn towards it with an accelerated motion; will touch it, and may then he drawn by it through the water in any direction. We fhall have the fanie refult by approaching the northern extremity of the floating iron with the upper end of the poker.

The fame phenomenon may be obferved by fufpending the firft piece of iron by its middle by a long and flender hair or thread. The fufpenfion mult he long, otherwife the ftiffnefs of the hair or thread mery be fut. ficient for balancing the very fmall force with which the pieces of iron tend toward each other. The pheirme-

P
non
non may alfo be obferved in a piece of iron which turns frecly on a fine point, like the needle of, the mariner's compafs.

In this, as in the former experiment, the ends of the pieces of iron are obferved, in general, to be indifferent ; that is, either end of the one will attract either end of the other. It often lappens, however, that the ends are not thus indifferent, and that the end of the moveable piece of iron, inflead of approaching the oher, will be obferved to recede from it, and appear to avold it. We thall foon learn the caufe of this difference in the fates of iron.
This action muutual. fer from thefe experiments, that the action is mutual between the two pieces of iron. Either of them may be the moveable piece which approaches the other, manifefting the attraction of that other. This reciprocity of action will be abundantly veritied and explained in its proper place.

Not ${ }^{9}$ pecu-

 Nar tocure hoadfones and artificisl magnets, that is, pieces of iron netorload- which have acquired this property by certain treatment ftone; with loadfones; but they were dilcovered by D_{1}. Gilbert to be inherent in all iron in its metallic ftate; and were thought by him to be neceffary confequences of a general principle in the conflitution of this globe. Thefe phenomena are indeed much more confpicuous in loaditones and magnets; and it is therefore with fuch that experiments are beft made for learning their various modifications.But there is another circumfance, befides the degree of vivacity, in which the magnetifm of common iron and fteel remarkably differs from that of a loadtone or magnet. When a loadilone or magnet is fo fupported as to be at liberty to take any polition, it arranges itfelf in the magnetical direction, and one determined end of it fettles in the northern quarter; and if it be placed fo that the other end is in that fituation, it does not re- main there, but gradually turns round, and, after a few of cillations, the jame end ultimately fettles in the north. This is diftinctly feen in the needle of the mariner's compafs, which is jult a fmall magnet prepared in the fame way with all other magnets. The feveral ends of loadfones or magnets are thus permanently the north or the fouth ends; whereas we faid that either end of a piece of common iron being turned to the northern quarter, it linally fettles there.

It is this circumftance which has rendered magnetifm fo precious a difcovery to mankind, by furnifhing us with the compafs, an inflrument by which we learn the different quarters of the horizon, and which thus tells the direction of a thip's comfe through the pathlefs ocean (fee Compass and Variation, Encycl.); and alfo thews us the directions of the veins and workings in the deepeft mines. It was natural therefore to call thofe the north and fouth ends of the mariner's needle, or of a loadfone or magnet. Dr Gilbert called them the poles of the loadfone or magnet. He had found it convenient for the propofed train of his experiments to form his loaditones into fpheres, which he called terRELLEE, from their refemblance to this globe; in which cafe the north and fouth ends of his loadtlones were the poles of the tearella. He therefore gave the name pole to that part of any loadfone or magnet which thus turned to the north or fouth. The denomination was
adopted by all fubfequent writers, and now makes a term in the language of magnetifm.

Allo, when we approach either end of a piece of iron A to either end of another B, thefe ends mutually attract; or if cither end of a magnet A be brought near either end of a piece of common iron, they mutually attrack each othor. But if we bring that end of a magnet A which turns to the north near to the fimilar end of another magnct 13 , thefe ends will not attract each other, but, on the contrary, will repel. If the two magnets are made to float on pieces of wood, and have their north poles fronting each other, the magnets will retire from each other; and in doing fo, they generally turn round their axis, till the north pole of one front the fouth pole of the other, and then they run together. This is a very notable diftinction between the magnetifm of magnets and that of common iron ; and whenever we fee a piece of iron thew this permanent diftinction of its ends, we muft confider it as a magnet, and conclude that it has met with fome peculiar treatment.

It is not, however; fricily true, that the poles of loadfones or magnets are fo fixed in particular parts of their fubitance, nor that the poles of the fame name fo conllantly repel each other; for if a fmall or weak magnet A have its pole brought near the fimilar pole of a large or ftrong magnet B, they are often found to attract when almof touching, although at more confiderable diffances they repel each other. But this is not an exception to the general propofition; for when the north pole of A is thus attracted by the north pole of B, it will be found by other trials to have all the qualities of a fouth pole, while thus in the neighbourhood of the north pole of 13 .

The magnetic properties and phenomena are conve- Magnetic niently diftinguifhed into thofe of Force and of pola-forcrand raty. Thofe of the firft clafs only were known to the polarity ancients, and even of them their knowledge was extremely fanty and imperfect. They may all be claffed under the following general propotitions.

1. The fimilar pules of two magnets repel each other similar with a force decreafug as the diftances increafe. poles re-
2. The difimilar poles of two magnets attract each pel, and other with a force decrealing as the diftances increafe. diffimilar
3. Magnets arrange themfelves in a certain determi- poles atnate pofition with refpect to each other.

The firf object of refearch in our further examination of thefe propertics is the relation which is obfer- The law ved to obtain between the diftances of the acting poles of at'racand their force of action. This has accordingly occu-pultion is pied much attention of the philofophers, and numherlefs of difficult experiments have been made in order to afcertain the inveftign. law of variation, both of the attraction and the repul. fion. A great number of thefe have been narrated in the article Magnetism of the Encycl. from which it appears that it has been a matter of great difficulty, and had not been afcertained with certainty or precifion when that article was publifhed. It is obvious, from the nature of the thing, that the determination is very difficult, and the inveltigation very complicated. We can only obferve the fimultaneous motion of the whole magnet; yet we know that there are four feparate actions coexifting and contributing in different directions, and with different forces, to the fenfible effect. The force which we meafure, in any way whatever, is com-
poinded of four different forces, which we cannot feparate and meafure apart ; for the north pole of A repels the north pole of B, and attracts its fouth pole, while the fouth pole of A excrts the oppofite forces on the fame poles of B. The attraction which we ohferve is the excefs of two unequal attractions above two unequal repulfions. The fame might be faid of an obferved repullion. Nay, the matter is incomparably more complicated than this; hecaufe, for any thing that we know, every particle of A acts on every particle of B , and is acted on by it ; and the intenfity of thofe actions may be different at the fame diftances, and is certainly different when the diftances are fo. Thus there is a combination of an unknown number of actions, cach of which is unknown individually, both in direction and intenfity. The precife determination is therefore, in all probability, impofible. By precife determination, we mean the law of mutual action between two magnetic particles, or that precife function of the diftance which defines the intenfity of the force; fo that meafuring the diftance of the acting particles on the axis of a curve, the ordinates of the curve may have the proportions of the attractions and repulfions.

It is almoft needlefs to attempt any deduction of the law of variation from the numerous experiments which have been publifhed by different philofophers. An ample collection of them may be feen in Scarella's treatife. Mr Mufchenbroek has made a prodigious number; but all are fo anomalous, and exhibit fuch different laws of diminution by an increafe of diflance, that we may be certain that the experiments have been injudicious. Attention has not been paid to the proper objects. Magnets of moft improper fhapes have been einployed, and of moft diffure polarity. No notice has been taken of a circumftance which, one fhould think, ought to have occupied the chief attention; namely, the joint action of four poles, of which the experiment exhibits only the complex refult. A very fight reflection might have made the enquirer perceive, that the attractions or repulfions are not the mofl proper phenomena for declaring the precife law of variation ; becaufe what we obferve is only the excefs of a fmall difference of attractions and repulfions above another fnall difference. Mr Hawk fee and Dr Brook Taylor employed a much , better method, by obferving the deviations from the meridian which a magnet occafioned in a compafs needle at different diftances. This is occafioned by the difference of the two fums of the fame forces; and this difference may be made a hundred times greater than the other. But they employed magnets of moft improper flapes.

We mult except from this criticifm the experiments of Mr Lambert, recorded in the Memoirs of the Academy of Berlin for 1756, publifhed in 1758. This molt fagacious philofopher (for he higlily merits that name) placed a mariner's needle at various diftances from a magnet, in the direction of its axis, and obferved the declination from the magnetic meridian produced by the magnet, and the obliquity of thie nagnet to the axis of the needle. Thus was the action of the magnet fet in oppufition and equilibrium with the natural polarity of the needle. But the difficulty was to difoover in what proportion each of thefe forces was changed by their obliquity of action on this little lever.

No man excelled Mr Lambert in addrefs in devifing methods of mathematical inveftigation. He obfervel, that when the obliquity of the magnet to the axis of the needle was 30°, it caufed it to decline 15°. When the obliquity was 75°, the diftance being the fame, it declined 30°. Call the obliquity 0 , and the declination d, and let f be that function of the angle which is proportionable to the action. Alfo let p be the natura! polarity of the needle, and m the force of the magnet. It is evident that

$$
\begin{aligned}
& p \times f, 15=m \times f, 30 \\
& \text { And } p: m=f, 30: f, 25 \text {; for the fane rearon } \\
& p: m=f, 75: f, 30
\end{aligned}
$$

Thercfore $f, 15: f 30=f, 30: f, 75^{\circ}$.
But it is well known that
Sine $15:$ Sine $30=$ Sine $30:$ Sine 75.
Hence Mr Lambert was led to conjecture, that the fine was that function of the angle which was proportional to the action of magnetifm on a lever. But one experiment was infufficient for determining this point. He made a fimilar comparifon of feveral other obliquities and declinations with the fame diftances of the magnet, and alfo with other dillances; and he put it palt all. difpute, that his conjecture was juft.

Had Mr Lambert's experiments terminater here, it muft be granted that he has made a notable diccovery in the theory of the intimate uature of magnetifin. It completely refutes all the theories which pretend to explain the action of the magnet by the impulion of a tream of fluid, or by preflure ariling from the motion of fuch a Atream ; for in this cafe the preffure on the needle mult have diminifhed in the duplicate ratio of the fine. The directive power with the angle 90 muit be 4 times greater than with the angle 30°; whereas it was obferved to be only twice as great- Maguetifm does not act therefore by the impulition or preffure of a ftream of fluid, but in the manuer of a fimple incitement, as we conceive attraction or repulfion to act.

Having afcertained the effect of obliquity, Mr Lambert proceeded to examine the effect of dittance; and, by a moft ingenious analyfis of his obfervations, he difcovered, that if we reprefent the force of the magnet by f, and the diftance of the neareft pole of the magnet from the centre of the needle by δ, and if a be a coultant quantity, nearly equal to two-thirds of the length of the needle, we have f proportional to $\overline{d-a^{2}}$.

Mr Lainbert found this hold with very great exactnefs with magnets ten times larger, and needles twice as floort. But he acknowledges, that it gives a very fingular refult, as if the action of a magnet were exerted from a centre beyond itfelf. He attributes this to its true caufe, the ftill great complication of the refult, arifing from the action of the remote pole of the magnet. He therefore takes another inethod of examination, which we fhall undertand by and bye, when we confider the diretive power of a magnet. We have mentioned this imperfect attempt chicfly on account of the uncureftionable manuer in which he has afertained the effect of obliquity, and the importance of this determination.
We have attempted this inveftigation in a very firmple manner. We got fome magnets made, confiting of two balls connected by a flender rod. By a very particular mode of impregnation, we gave them a pretty good
magncto
magnetiin ; and the force of each pole feemed to refide almoft in the centre of the ball. This was ovir object ia giving them this flape. It rebued the examination both of the attractive and of the dirctive power to a very eafy computation. The: refult was, that the force of each pole varied in the inerfe duplicate ratio of the diftare The error of this hypothefis in no cafe amounted to $\frac{\dot{T}}{\bar{j}}$ th of the whole. In computing for the phenomena of the directive power, the irregularitics and deviations from this ratio were much fmaller.

The previous knowledge of this function would greatby expedite and facilitate our father inveltigation; but we muft content oarfelves with a very inperfect ap. proximation, and with arriving at the defired determi-
nation by degrees, and by a very circuitons route.
It is a matter of experience, that whein two magnets are taken, each of which is as nearly equal as poffible in the ftrength of both poles, then, if they are placed with their axes in one flraight line, and the north pole of one fronting the fouth pole of the other, they attract each other with a force which diminifhes as the diftance increafes ; and this variation of furce is regular, that is,
without any fudden changes of intenfity, till it becomes infenfible. No inttance bas uccurred of its breaking fuddenly off when of any fenfible foree, but it appears to diminif continually like gravity. No inftanee occurs in which attraction is changed into repulfion.

But it is, moreover, to be particularly remarked, that, having made this obfervation with the north pole of A fronting the fouth pole of B , if the experiment be repeated with the fouth pole of A fronting the north pole of B , the refults will be precifely the laine. And, lafly, it is a matter of unexeepted experience, that the fenfible action of A on B, meafured by the force which is nereflary for preventing the farther approach of B , is precifely equal to the aetion of B on A. This is the cafe, however unequal the force of the two inagnets may be; that is, although A may fupport ten pounds of iron: and 13 only ten ounces.

Now, the fimplett view we can take of this experiment is, by fuppofing the whole action of one end or pole of a magnet to be exerted at one print of it. This will give us four actions of A on B, accompanied by as many equal and oppofite actions of B on A . It is plain that we may content ourfelves with the inveftigation of one only of thefe fets of actions.

What we obferve is the excefs of the attractions of the poles of A for the diffimilar poles of D above the repulfions of the fame poles of A for the limilar poles of B. At all diflances there is fuch an excefs. The fum of the attractions excects the fun of the repulfions competent to every diftance.

Now this will really happen, if we fuppofe that the poles of a magnet are of equal ftrength, and that, however thefe different magnets differ in tre:gth, they have the fame law of diminution by an increate of diftance. The frit circumftance is a very pofible thing, and the laft is demonftrated by the obferved equality of action and reaction. Every thing vill now appear very plain, by reprefenting (as we did in Electricity, Suppl. $n^{\circ} 44, \& \varepsilon$.) the intenfities of attraction and repullion by the ordinates of a curve, of which the abfciffix reprefent the diflances of the acting poles.

Therefore let A and B (fig. 2.) reprefent the two magnets, placed with their four poles S, N, s, n, in a

Atraight line. In the ftraight line O_{q} take $\mathrm{O} n, \mathrm{O}_{p}$, $\mathrm{O} n, \mathrm{O} q$, tefoctively equal to is $s, \mathrm{~N} n, \mathrm{~S} s, \mathrm{~S} n$; and let MPNO be a curve line, having $\mathrm{O} q$ fur its axis and aflymptote; and let the curve, in every part, be convex towards its axis. Then draw the ordinates $m \mathrm{M}$, $p \mathrm{P}, n \mathrm{~N}, q \mathrm{Q}$, to the curve. Thefe ordinates will reprefent the intenfities of the forces exerted between the poles of the magnets, in fucha manner as to fulfil all the conditions that are really ubferved: For m M reprefents the attraction of the north pole N of the magnet, A for the fouth poles of the magnet $\mathrm{B} ; p \mathrm{P}$ reprefents the repultion of N for $n ; n \stackrel{N}{\mathrm{~N}}$ reprefents the repulion of S for s; and q Q reprefents the attraction of S for n. The diflance between m and n, or between p and q, is equal to the length of the magnet A , and $m p$, or $n q$, is equal to that of $\mathrm{B} . \mathrm{M} m, \mathrm{P} p$, and $\mathrm{N} n$, Qq, are pairs of equidiftant ordinates. It furcly requiites only the infpection of the figure to fee that, in whatever lituation along the axis we place thofe pairs of equidinant ordinates, the fum of $\mathrm{M} m$ and $Q q$ will always exceed the fum of $\mathrm{P} p$ and $\mathrm{N} n$; that is, the fun of the attractions will always exceed that of the repulfions. This will not be the eafe if the curve, whofe ordinates are proportional to the forces, have a point Z of contraty flexure, as is reprefented by the dotted curve $\mathrm{P}^{\prime} \mathrm{ZQ}^{\prime}$. For this curve, having O_{q} for its affymptote (in order to correfpond with forces which diminifh continually by an increafe of diftance, but do not abrubtly ceafe (mult have its convexity turned toward this affymptote in the remote parts. But there will be an arch MPZ between Z and O , which is concave toward the affymptote. In which eafe, it is impofible that $\mathrm{M} m+\mathrm{Qq}$ fhall be lefs than $\mathrm{P} p+\mathrm{N} n$; and then the repulfions will exceed the attractions; which is contrary to the whole train of obfervation.

It may be thought, that if the repulfion exerted between two particles be always lefs than the attraction at the fame diffance, the phenomena will be accounted for, alchough the law of action be not reprefented by fuch a curve as has been affumed. Undoubtedly they will, while the diffimilar poles form each other. But the refults of fuch a fuppofition will not agree with the phenomena while the frimilar poles front each other: For it is an uncontradicted fact, that when two fine hard magnets, whofe poles are nearly or exactly of equal vigour, have their fimilar poles fronting each other, the repulfions fall very little fhort of the attractions at the fame diftances when their pufition is clanged: When the diftances are confiderable, ieareely any difference can be obferved in the berinning of the experiment. The differences, alfo, which are obferved at fmaller diflances, are obferved to augment by continuing the magnets in their places without changing their diftanees; and therefore feem to arife from fome change produced by each on the magnetifm of the other. And, accordingly, if we invert one of the magnets, we fhall find that the attractions have been diminihed as much as the repulfions. Now, the confequences of magnetic repulfion, being always weaker than attraction, would be the reverfe of this. The differences would appear moft remarkable in the greater diftances, and magnets might be found which repel at fmall diftances, and attract at greater diffances; which is contrary to all obfervation.
From all this it follows, with fufficient evidence for
our prefent purpofe, that the function of the diflance which exprefes the law of magnetic action mult be reprefented by the ordinates of a curve of the hyperb, slic kind, referred to its allymptote as an axis; and therefore always convex toward this axis. We think it alio futficiently clear, that the confequences which we have deduced from the fimple fuppolition of four acting points, inftead of the cembined action of every particle, may be adopted with fafety. I'or they would be juit, if there were only thofe four particles; they would be int with refpect to another four particles-therefore they would be jult when thefe are joined; and fo on of any number. Therefore the eurec, whofe ordinates exprefs the mean action of each pole, as if cxerted by its centre of effort, will have the fanee gencral form: It will be convex toward its affymptotic axis.

It will greatly aid our conceptions of the combined actions of the four maguetic poles, if we notice fome of the primary properties of a curve of this kind, limitad by no other condition.
Diaw the chords MQ, PN, MP, NQ. Bifect them in B, D, E, F, and join EF. Draw the ordinates E_{e} $\mathrm{F} f$, and $\mathrm{BD} b$ (cutting EF in C . Draw $\mathrm{P} u$ parallel to the axis, cutting E_{e} in \&. Draw alfo $Q i$ parallel to the axis, cutting $\mathrm{F} f$ in f. Alto draw $\mathrm{FH} L$ parallel to the axis, and Pot paraltel to QN ; and draw PLI, and $\mathrm{P} e x$, cutting $M m$ in $/$ and x.

Let each ordinate be reprefented by the letter at its interfection with the axis. Thus, the ordirates $\mathrm{M} m$ and $Q q$ may be reprefented by m and q, \&c.

Becaufe MP is bifected in $\mathrm{E}, \mathrm{M} t$ is double of $\mathrm{E}:$; $\mathrm{M} /$ is double of $\mathrm{EL} ; \mathrm{M} x$ is double of $\mathrm{E} e$. Alfo, becaufe $\mathrm{P} t$ is parallel to QN , and $\mathrm{P} u$ to $\mathrm{Q} i$, we have $t u=\mathrm{N} i$. From thele premifes, it is eafy to perceive, that,

$$
\begin{aligned}
& \text { 1. } \mathrm{B} b=\frac{m+q}{2} . \\
& \text { 2. } \mathrm{D} b=\frac{p+n}{2} . \\
& \text { 3. } \mathrm{BD}=\frac{\overline{m+q}-\overline{p+n}}{2} . \\
& \text { 4. } \mathrm{M} u=m-p . \\
& \text { 5. } u t=n-q \cdot \\
& \text { 6. } \mathrm{M} t=\overline{n-p}-\overline{n-q} . \\
& \text { 7. } \mathrm{E} e=\frac{m+p}{2} . \\
& \text { 8. } \mathrm{F} f=\frac{n+q}{2} . \\
& \text { 9. } \mathrm{M} l=\overline{m+p}-\overline{n+q} \\
& \text { 10. } \mathrm{CL}=\frac{m+p}{n+q} \\
& 2
\end{aligned}
$$

Thefe combinations will fuggef to the attentive read. er the explanation of many modifications of the combined action of the four poles of two magnets. They are all comprehended in one propofition, which it will be convenient to render familiar to the thought ; namely, if two pairs of equidiftant ordinates be taken, the fum of the two extremes exceeds that of the interme.
ditte ones. $m+q$ is greater than $p+n$. Alfo, the diference between the pair nearell to O escceds the dif. ference ketween the remote pair.

Now, eunceiving thefe ordinates to reprefent the mutual actions of the magnetic poles, we fee that their tendency to or from each other, or their fenfible attractions or repulfions, are expreffed by $\overline{m+4}-\overline{n+p}$; that is, by the excefs of the fun of the actions of the neareft and molt remote poles above the fun of the actions of the internediate diflant poles. It will alfo be frequently convenient to counder this tendency as reprefented by $\overline{m-p}-n-q$; that is, by the excefs of the difference of the activns of the nearsit pole of A on the two poles of B, above the difference of the actions of its renote pole on the fame pules of B.

Let ns now confider fome of the chief modifications of thefe actions.

1. Let the difitimar poles front each other. It is Explanaplain that $m+q$ reprefent attractions, and that $p+n$ tion of the reprefent repulfions. Alfo $m+q$ is greater than $p+n$. obferved Therefore the magnets will attract each other. This af namguets, attraction is alfo reprefented by $\overline{m-p}-\overline{n-q}$.

Now $\overline{m+q}-\overline{p+n}$ is cridently equal to $M t$, or to twice E o, or to twice BD, or to four times CD. This action will be increafed,

1. By increafing the tlrength of either of the magnets. The action of the magnets is the combined action of each acting particle of the oue on each acting. particle of the other; and it is mutual. Therefore all the ordinates will increafe in the ratio of the Atrength of each magnet, and their fums and differences will increafe in the fame ratio.
2. By diminifhing the diffance between the magnets. For this brings all the ordinates nearer to O , while their diftance $m p, p n, n q$, remain as before. In this cafe it is plain that $\mathrm{M} u$, the difference of $\mathrm{M} m$ and $\mathrm{I}^{\prime} p$, will increafe falter than $t u$ or $\mathrm{N} i$, the difference between $\mathrm{N} n$ and Q_{q}. Therefore $\mathrm{M} t$ will increafe; that is, the attraction will increafe.
3. By increafing the length of A, while the diftance between them remains the fame. For Om remaining the fame, as alfo $m p$ and $n q$, while $n q$ is only removed farther from $m p$, it is plain $\mathrm{M} u$ remains the fame, and that $N i$ and $t u$ are diminifhed; therefore $M t$ muft increafe, or the attraction muft increafc.
4. By increaling the length of B, the diftance between them remaining the fame. For this increafes $m p$ and $n q$; and confequently incrafes $\mathrm{M} u$ and $t u$. Dut $\mathrm{M} u$ increafes more than $f t$; and thercfore $\mathrm{M} t$ is increaled, and the attraction or tendency is increafed.

All thefe confequences of our original fuppofition, that the magnetic action may be reprefented by the ordinates of a curve every where convex to an aflymptotic axis, are ftrictly confurmable to obfervation.

If we place the magnets with their fimilar poles And of fronting each other, it is evident that the ordinatestheir repul. 'which expreffed at tractions in the former cafe, will now fionso exprefs repulfions; and that the forces with which the magnets now repel each other, are equal to thofe with which they attracted when at the fame diftances. When the experiments are made with good loadfones, or very fine magnets, tempered extremely hard, and having the energy of their poles fenfibly refiding in a fmall fpace very near the extremities, the refults are alfo very near-
ly conformable to this mathematical theory; but there is generally a weaker action. The magnets feldom repel as flrongly as they attract at the faine diflance; at lealt when thefe diftances are fmall. If one or buth of the magnets is foft, or if one of them be much more vigorous than the other, there are obferved much greater deviations from this theory. The repulfions are confidercoly weaker than the attractions at the fame diftance, and the law of variation becomes extrenely different. When placed at very confiderable diftances, they repel. As the magnet B is brought nearer to A , the repulfion increafes, agreeable to the theory, but not fo faft. Bringing them fill nearer, the repulfion ceafes to increafe, then gradually diminifhes, and frequently vaninhes altogether, before the magnets are in contact; and when brought fill nearer, it is changed into attraction.

But more careful offervation flews, that this anomaly does not invalidate the theory. It is found that the vigour of the magnet is permanently changed by this procefs. The magnets act on each other in fuch a way as to weaken each other's magnetifm. Nay, it frequently happens, that the weaker or the fofter of the two has had its magnetifm changed, and that the pole nearelt to, the other has changed its mature. While they are lying in contact, or at fuch a diftance that they attract, although their fimilar poles front each other, it is found that the pole of one of them is really changed; although it may fometimes recover its former fpecies again, but never fo vigoroufly as when the other magnet is removed. In fhort, it is obferved, that the magnetifn is diminifhed in all experiments in which the magnets repel each other, and that it is improved in all experiments in which they attract.

We have hitherto fuppofed the magnets placed with their axes in one flraight line. If they are differently placed, we cannot afcertain by this fingle circuanflance of the law of magnetic action, whether they will attract or repel-we nuff know fomewhat more of the variait tion of force by a change of diftance.
Directive If the magnet B be not at liberty to approach to. powne ex- ward A, or recede from it, but be fo fupported at its plained.
centre B that it can turn round it, it is very plain that it will retain the pofition in which it is drawn in the figure. For its fouth pole s heing more'attracted by N than it is repelled by S, is, on the whole, attracted by the magnet A; and, by this attraction, it would vibrate like a pendulum that is fupported at the centre B. In like manner, its north pole n is more repelled by N than it is attracted by S . and is, on the whole, repelled. The part $\mathrm{B} n$ would therefore alfo vibrate like a pendulum round B. Thus each half of it is urged into the very pofition which it now has; and if this pofition he deranged a little, the attraction of $s \mathrm{~B}$ roward A , and the repulfion of $n \mathrm{~B}$ from it, would impel it toward the pofition $s \mathrm{~B} n$.

This will be very evident, if we put the magnet B in. to the pofition $s^{\prime} \mathrm{B} n^{\prime}$ at right angles to the line AB . 'The poles' and the pole n ' are urged in oppofite, and therefore confpiring, direstions w, wh equal torces, very nearly at right angles to $n^{\prime} s^{\prime}$, if the mas net B be fmall. In any oblique pofition, the forces will be fomewhat unequal, and account muft be had of the obliquity of the action, in order to know the precife rotative momentum of the actions.

Dr Gilbert has given to this modification of the action of A on B, the name of vis misponens; which we may tranflate by directive poiver or force. Alfo, that modification of the teadency of B to or from A is called by him the verticiras of B . We might call it the verticity of B ; but we think that the name poLarity is fufficiently expreflive of the phenomenon; and as it has come into general ufe, we mall abide by it.

It is not fo eafy to give a general, and at the fame time precife, meafure of the directive power of A and polarity of B . The magnet B mut be confidered as a lever; and then the force tending to bring it into its ultimate pofition $n s$ depends both on the difance of its poles from N and S, and alfo on the angle which the axis of B makes with the line AB. When the axis of B coincides with AB , the force acting on its poles, tending to keep them in that fituation, is evidently $\overline{m+p}-$ $\overline{n+q}$, and therefore may be reprefented by $\mathrm{M} l$ (in fig. 2.), or by twice EL, or by four times CH. If B has the prifition $n^{\prime} \mathrm{B} s^{\prime}$, perpendicular to AB , let the ordinates $\mathrm{E} e$ and $\mathrm{F} f$ cut the curve on I and K ; and draw KL parallel to the axis (our figure caufes this line almoft to coincide with QL, and in all important cafes it will be nearly the fame). In this cafe IL will exprefs one half of this force. Either of thefe cftimations of this modification of the mutual action of the magnets will be fufficient for the objects we have in view.

The directive power of A, and the polarity of B, are ${ }_{\mathrm{How}}{ }^{23}$ in. increafed,
creafed anc

1. By increafing the flrength of one or both of the diminithees magnets. This is evident,
2. By diminifhing the diftance of the magnets. For this, by increafing the fum of $\mathrm{M} n$ and $\mathrm{P} p$ more than the fum of $\mathrm{N} n$ and $\mathrm{Q} q$, mutt increafe EL or M $/$.
3. By increafing the length of A. For this, by removing n and q farther from m and p, mult deprefs the points L : 1 d , and increafe EL, or IL, or M 1 .
4. By diminifhing the length of B, while the difance $\mathrm{N} s$ between the magnets remains the fame. For this, by bringing p and q nearer to m and n, muft increafe $\mathrm{M}_{n}+\mathrm{P}_{\hat{p}}$ more than $\mathrm{N} n+\mathrm{Q}_{q}$. Or, by bringing E e and $\mathrm{F} f$ nearer to $\mathrm{M} m$ and $\mathrm{N} n$, it muft increafe EL. and $\mathrm{M} \%$.

If the dillance $\mathrm{N} n$ between the pole of A and the remote pole of B remain the fame, the directive force of A, and polarity of B, are diminifhed by diminifhing the length of B, as is eafily feen from what has been juf now faid. It is alfo diminifhed, but in a very fmall degree, by diminiining the length of B, when the diflance between the centres of A and B remain the fame. For, in th:s cafe, the ordinates $I e$ and $K f$ retain their places; but the points m and p approach to e; and this brings the interfection E of the ordinate and chord nearer to I, and diminifhes EL, becaufe the point L is nit fo much deprefted by the approach of F to K as E is depreifed.

But in all cafes, the ratio of the directive power of A io its at ative force, or of the polarity of B to its cirances tenzency t. It. is increafed by diminifhing the length of feeling the B. F rit of in that by diminifthin! $m p$ and $n q$, while proportior $I e$ and K scep their places, the point o is raifed, and of the atthe puini L is heppreffed; and therefore the ratio of ${ }^{\text {t-artivean }}$ EL - rot $M /$ to $M t$, is increafed. We even powers. fee that, $\dot{\text { L }}$ dunimifung the length of B continually
and without end, the ratio of $M /$ to M t may be made to exceed any ratio that can be affigned.

Now, fince diminifhing the length of B increafes the ratio of the directive power of A to its attractive power, while increafing the length of A increafes both, and alfo increafes the ratio of EL to Eo (as is very eafily feen), and fince this increafe may be as great as we pleafe, it neceffarily follows, that if the fame very fmall magnet B be placerl at fuch diftances from a large and ftrong magnet A , and from a fmaller and lefs vigorous one C , as to have equal polarities to both, its tendency to A will be lefs than its tendency to C . It may even be lefs in any ratio we pleafe, by fufficiently diminifing the length of B.

Dr Gilbert obferved this; and he exprefles his obfer. vation by faying, that the directive power extends to greater diftances than the attractive power. We muft juit conclude, that the laft becomes infenfible at fmaller diftances than the firf. This will be found a very impurtant ohfervation. It may be of ufe to keep in mind, that the directive power of a magnet A on another magnet B , is the difference of the funs of the actions of each pole of A on both poles of B; and the attractive power of A for another magnet B, is the difference of the differences of thefe actions.

It may alfo be remarked juft now, that the directive force of A always exceeds its attractive force by the quantity $2(p-q)$. For their difference may be expreffed by $t l$, which is cqual to twice $o \mathrm{~L}$. Now ε is equal to $\mathrm{P} p$, or to p; and \& L is equal to $\mathrm{P} p-\mathrm{F} f$, or to $\mathrm{P}_{p}-\mathrm{Q} q-\mathrm{F} q$, or to $\mathrm{P} p-\mathrm{Q} q-o$. Therefore o $L=P_{p}-Q_{q}$, and $l l=2\left(P_{p}-Q_{q}\right),=$ $2(p-q)$.

By infpecting this figure with attention, we obtain indications of many interefting particulars. If the lengths of the magnets A and B are the fame, the point n in the axis of the curve will coincide with p. As the length of A increafes, the part $n q$ is removed farther from the part $m p$. The line P , becomes lefs inclined to the axis, and is ultimately parallel to it, when n is infinitely remote. At this time L falls on e; fo that the ultimate ratio of the attraction to the polarity is that of E, to $E e$, when the magnet A is infinitely long. It is then the ratio of the difference of the actions of the neareft pole of A on the two poles of B to the fum of thefe actions. Hence it follows, that when A is very great and B very finall, the polarity of B is vaifly greater than its tendency to A. It may have a great polarity when its tendency is infenfible.

The ratio of the polarity to the attraction alfo increafes by increafing the dillance of the magaets while their dimenfions continue the fame. This will appear, by remarking that the chords MP and NQ muft inter: feet in fome point $s w$; ard that when the four points m, p, n, and q, move off from O , keeping the fame diftances from each other, E o will diminifl fafter than EL, and the ratio of EL to EO will continually increafe.

Therefore when a fmall magnet B is placed at fuch a dittance from a great magnet A, and from a fmaller one C , as to have cqual polarity to both, its tendency to C will exceed its tendency to A . For the polarities being equal, it mult be farther from the great magnet; in which cafe the ratio of its polarity to its attraction is increafd.

And this will alfo obtain if the magnets differ alfo in ftrength. For, to have equal polarities, B mult be fill farther from the great and powerful magnet.

For all thefe reafons, a large and powerful magniet may exert a flrong directive power, while its attractive power is infenfible.

We have hitherto fuppofed the magnet B to be placed in the direction of the axis of A and ouly at Peculiariberty to turn round its centre B. But let its centrise obs be placed one the evidently take pofition which, as he f. 3 . it mutt tivo mag. trary to that of A, the north pole of B turning toward nets. the fouth pole of A , and its fouth pole turning toward the north pole of A.
The fane thing nuth happen when the centre of B is placed in B , any where in the line AE perpendicular to NS. S attracts n with a force $n b$, while N repels n with a force $n o$, fomewhat finaller than $n b$. Thefe two compofe the force $n d$. In like manner, the two forces $s e$ and $s f$, exerted by N and S on the pole s, compofe the force $s q$. Now if the axis of the magnet B be parallel to NS, but the poles in a contrary pofition, and if each maguet be equally vigorous in hoth poles, the magnet 13 will retain this pofition; becaufe the forces $n b$ and $s e$ are equal, as alfo the forces $n c$ and $s f$. Thefe mutt compore two forces $n d$ and $s q$, which are equal, and equally inclined to $n s$; and they will therefore be in equilibrio on this lever.

Let us now place the centre of the finall magnet in C, ueither in the axis of the other, nor in the perpeno dicular AE. Let its north pole n point toward the centre of A . It cannot remain in this polition; for N repels n with a force $n c$, while S attracts it with a force $n b$ (fmaller than $n c$, becaufe the diflance is greater). Thefe two compofe a force $n d$ confiderably different from the direction $c n$ of its axis. In like manner, the fouth pole s of the fmall magnet is acted on by two: forces $s e$ and $s f$, exerted by the two poles of A, which compofe a force $s q$ nearly equal and parallel to $n d$, but in a nearly oppofite direction. It is plain that thefe forces mult turn the fmall. magnet round its centre C , and that it cannot reft but in a pofition nearly parallel to $n d$ or of. Its polition is better reprefented by fig. 4. with its fouth pole turned toward the north pole of the other magnet, and its north pole in the oppofite direction.

What the precife pofition will be, depends on that function of the diftance which is always proportional to the intenfity of the action; on the force of each of the poles of A, and on the length of the magnet B. Nay, even when we know this function, the problem is flill very intricate.

Thefe are methods by which we may approximate means of ${ }^{27}$ to the function with fuccefs. If the magnet B be in-2chiring; a definitely fmall, fo that we may confider the actions on f.car meaits two poles as equal, the inveftigation is greatly fimplis fure of the fied. For, in this cale, each pole of the fmali magnet on or B (fig. 5.) nay be conceived as coinciding with its centre. Then, drawing NB, SB, and taking i3 b toward N , to reprefent the force with which \mathcal{O}.teracts the fouth pole of B , and taking $\mathrm{B} c$, in SB protuct to reprefent the force with which S repels the fant.c pole, the compound force acting on this pule is $B d$, the diagonal of a parallelogram $B b d c$. In like matner, we mult take $\mathrm{B} e$, in N $\mathcal{N} b$ produced, and cqual to $B b$,

MAGNETISM.

in reprefent the repulion of N for the north pole of B , and $\mathrm{B} f$ equal to $\mathrm{B} c$, to reprefent the attraction of S for this pole. The compond force will be 13 g , equal and oppofite to $\mathbf{B} d$. It follows evidently from this invertigation, that the fmall marget will not reft in any pofitiou but $d j$. In this fuppotition, therefore, of estreme minutenefs of the magnet ε, one of the parallelograms is fuficient. We may farther remark, that we have this approximation fecure againft any error ariling from the fuppolition that all the action of each pole of B is exerted by one point. Although we fuppofe it diffufed over a confiderable portion of the magnet, ftill the extreme minutenefs of the whole makes the action, even on its extreme points, very nearly equal.
Hence may he desived a conftraction for afcertaining the pofition of the needle, when the function m of the diftance is given, or for difcovering this function by obfervation of the pofition of the needle.

Let NS (fig. 5. $110^{\circ} 2$.) meet the direction of the needle in K. Make $\mathrm{BG}=\mathrm{BN}$, and draw NF, GE, SH , perpendicular to BK . It is evident that $\mathrm{B} b$ is to $\mathrm{B} c$, or $b d$, as the fine of the angle HBS to the KBN. Therefore, becaufe BG and BN are equal, we have $\mathrm{B} b: \mathrm{B} c=\mathrm{GE}: \mathrm{NF}$.
Therefore $\mathrm{GE}: \mathrm{NF}=\mathrm{BS}^{m}: \mathrm{BN}^{m}$
But $\mathrm{SH}: \mathrm{GE}=\mathrm{BS}$
Therefore $\mathrm{SH}: \mathrm{NF}=\mathrm{BN}^{m+1}: \mathrm{BN}^{m+1}$
And $\mathrm{SK}: \mathrm{NK}=\mathrm{BS}^{m+1}: \mathrm{BN}^{m+1}$.

If maguetic action be inverfely as the diftance, we have $S K: N K=B S^{2}: B N^{2}$, and B is in the circumference of a circle which paffes through S and N, and has BK for a tangent, as is plain by elementary geometry. If the action be inverfely as the fquare of the diflance, we have $\mathrm{SK}: \mathrm{NK}=\mathrm{DS}^{3}: 13 \mathrm{~N}$, and B is in the circumference of a curve of more difficult inveltigation. But, as in the circle, the fum of the angles BSN and BNS is a conflant augle; fo, in this curve, the fum of the colines of thofe angles is a conftaut quantity. This fuggetts a sery fimple contruction of the curve. Let it pais through the point T of the line AT , drawn from the centric of the magnet, perpendicular to its axis. Deferibe the femicircle SPCN, cutting ST and NT in P and Q Then, in order to find the point where any line SB cuts the curve, let it cut the femicircle in p, and apply the line $N q=S P+N Q-S p$, and produce it till it meet the line $S B$ in 1 , which is a point in the curve; for it is evident that isp and $\mathrm{N} q$ are the coflues of BSN and BNS. We hupe to give, by the hetp, of a learned friend, the complete conflt tiction of curves for every value of m, in an Appendix to this article. It will furm a new and curious clafs, arranged by the functions of the angles at N and S .

But, in the mean time, we have determined the pofition of an indetinitely finall needle, in refpect of a magnet of which we may conceive the polar activity cuncentrated in two points; and we may, on the other hand, make ufe of the obferved pofitions of fuch a ncedle and magact for difcovering the value of m. For, fince $\frac{S K}{N K}=\frac{S^{m+1}}{N B^{m+1}}$, it it pldin that $m=\frac{\text { Lng. SK:NK }}{\text { Log. } S B: N B}-1$. Thus, in an obfervation which the writer of this article made on a very fmall needle, and a magnet having globular poles, and $8_{\frac{1}{8}}$ inches between their centres, he found $\mathrm{SB}=5 \frac{1}{3}, \mathrm{NB}=\frac{1}{3}, \mathrm{SK}=11,49$, and $\mathrm{NK}=3,37$. This gives $m=1,97$, which differs from 2 only ${ }_{\sigma}{ }^{3}$ th
part. Finding it fo very near the inverfe dupiicate ra. tio of the diflance, a circle VUZ was defcribed, the circumference of which is the locus of $\mathrm{SB}: \mathrm{BN}=8$: 5,333 . When the centre of the needle was placed anywhere in the circumference of this circle, it feareely deviated from the point K, except when in far rerioved from the marget that its natural polarity prevailed over the directive power of the magnet, or fo near its nicde that the action of the cylindrical part became very fenfible.

It is plain that the length of the needle mult occafion fonie deviation from the magnetic disection, by deItroying the perticte equality of action on its two poles. He therefore employed three needles of $\frac{1}{2}, \frac{1}{2}$, and $\frac{1}{4}$ of an inch in length; and hy noticing thee differences of direction, he inferred what would be the direction, if the forces on each pole were precifely equal. He had the pleafure of feeing that the deviation from the inverfe duplicate ratio of the diflances was fearcely perceptible.

Mr Lambert's experiments on the directive power of the maguet, narrated in his fecond differtation in the 22d volume of the memoirs of the Academy of Berlin, are the mofl valuable of all that are on record; and the ingenious addrefs with which they arc conducted, and the inferences are drawn, would have done credit to Newton himfelf. We earnefly recommend the careful perufal of that Effay, as the mof infl ructive of any tbat we have read. The writer of this found himfelf obliged to repeat ali his former experiments, mentioned above, in Mr Lambert's manner, and with his precaution of keeping the needle in its natural pofifion ; a circumftance to which he had not infficiently attended before. The new refults were fill more conformable to his conjecture as to the law of variation. Mr Lambert clofes his difertation with an hypotheffs, "that the force of each tranfverfe element of a magnet is as its diflance from the centre, and its action on a particle of another magnet is inverfely as the fquate of the diftance." On this fuppofition, he calculates the pol:tion of a very fmall needle, and draws three of the curves to which it fhould be the tangent. Thefe are very exactly coincident with fome that he obferved. We tried this wihh feveral magnetic bars, and found it very confurmable to obfervation in fume magnets; but deviating fo far in the cafe of other macnets, that we are convineed that there is no rule for the force of tach tranfuerfe element of a magnet, and that the magnetifm is differently difpofed in different magnets. It was chiefly this which induced us to form the magnets employed in this refearch of two halls united by a fender rod. Lichtenbery, in his notes on Erxleben's Natural Plilofoply, foys, that there is a MS of the celebrated Tobias Mayer in the library of the Acadeny of Gottingen, in which he affumes the hy pothelis above mentioned, and gives a conilruction of the magnetic curves founded on it, making them a kind of catenaria. The interior curves do indeed refemble the catenaria, but the exterior are totally unlike. But there is no occation for much argument to convince us, that the firit part of this hypothelis is not only gratuitous, but unwarranted by any general phenomena. WTe know that a magnetical bar may have its magnetifm very differently difpofed; for it may have more than two poles, and the intermediate poles cannot have this difpofition of the maynetifm.
netifm. Such a difpofition is perhaps poffible; but is by no means general, or even frequent. We are difpofed to think, that permanent magnetifn muft have its intenfity dimininining in the very extremity of the bar. The reader may guefs at our reafons from what is faid in Eleetricity, Suppl. no 222.

The following very curious and inflructive phenomenon was the firtt thing which greatly excited the curiofity of the writer of this article, and long puzzled him to explain it. Indeed it was his endeavours to explain it which gradually opeued up to him the theory of the mutual action of magnets cs :tained in thefe paragraphs, and firt gave him weeation to admire the fagacity of Dr Gilbert, and to fee the connecting principle of the vaft variety of obfervations and experiments which that philofoplier had made. It feems owing to the want of this commecting principle, that a book fo rich in facts fhould be fo little read, and that io many of Dr Gilbert's olfervations have been publifhed by others as new difcoveries.

Amufing hinfelf in the fummer 175^{8} with nagnetic experiments, two large and Arong magnets A and B (fig. 6), were placed with their diffimilar poles fronting each other, and about three inches apart. A fmall needle, fupported on a point, was placed between them at D , and it arranged itfelf in the fame manner as the great magnets. Happening to fet it off to a good dittance on the table, as at F , he was furprifed to fee it immediately turn round on its pirot, and arrange itfelf nearly in the oppofite direction. Bringing it back to D reftored it to its former polition. Carrying it gradually out along DF, perpendieular to NS, he obferved it to become fenfibly more feeble, vibrating more flowl_{y}; and when in a certain point E , it had no polarity whatever towards A and B , but retained any pofition that was given it. Carrying it farther out, it again acquired polarity to A and B , but in the oppoite direction ; for it now arranged itfelf in a pofition that was parallel to NS, but its north pole was next to N , and its fouth pole to S.

This fingular appearance tiaturally excited his attention. The line on which the magnets A and B were placed had been marked on the table, as alfo the line DF perpendicular to the former. The point E was now marked as an important one. The experiments were interrupted by a friend coming in, to whom fuch things were no entertainment. Next day, wifhing to repeat them to fome friends, the magnets A and B were again laid on the line on which they had been placed the day before, and the needle was placed at E , expecting it to be neutral. But it was found to have a confiderable verticity, turning its north pole toward the magnet B ; and it required to be taken farther out, toward F , before it beeame neutral. While flanding there, fomething chanced to joggle the magnets A and I_{s}, and they inflantly rufhed together. At the fame inflant, the little magnet or needle turned itfelf brikly, and arranged itfelf, as it had done the day before, at F, quivering very brinkly, and thus flewing great verticity. This naturally furprifed the beholders; and we now found that, by gradually withdrawing the magnets \mathbf{A} and B from each other, the needle became weakerthen became neutral-and then turned round on its pivot, and took the contrary pofition. It was very amufing to obferve how the fimply feparating the magnets \mathbf{A}

Suppl. Vol. II. Part 1.
and B, or bringing them together, made the needle affume fuch a variety of pofitions and degrees of vivacity in each.

The needle was now put in various fituations, in refpect to the two great magnets; namely, off at a fide, and not in the perpendicular DF. In thefe fituations, it took an inconceivable variety of pofitions, which could not be reduced to any rule; and in moft of them it required only a motion of one of the great magnees for an inch or two, to make the needle turn brifkly round on its pivot, and affume a pufition nearly oppofite to what it had before.
But all this was very puzzling, and it was not till afo ter feveral months that the writer of this article, having conceived the notion of the magnetic curves, was in a condition to explain the phenomena. With this affiftance, lowever, they are very clear, and very inftructive.
Nothing hinders us from fuppofing the magnets A. and B perfectly equal in every refpect. Let NHM, NEL, he two magnetic curves belonging to A; that is, fuch that the needle arranges itfelf along the tangent of the curve. Then the magnet B has two curves SGK, SEI, perfectly equal, and fimilar to the other two. Let the curves NHM and SGK interfect in C and F. Let the corves NEL and SEI touch each other in E .
The needle being placed at C , would arrange itfelf in the tangent of the curve KGS, by the action of B alone, having its north pole turned toward the fouth pole S of B. But, by the action of A alone, it would be a tangent to the curve NHM, having its north pole turned away from N. Therefore, by the combined action of both magnets, it will take neither of thefe pofitions, but an intermediate one, nearly bifecting the angle formed by the two curves, having its north pole turned toward B.
But remove the neenle to F. Then, by the action of the magnet A, it would be a tangent to the curve FM, having its north pole toward M. By the action of B , it would be a tangent to the curve KFG, having its north pole in the angle MFG, or turned toward A. By their joint action, it takes a polition nearly bifecting the angle GFM, with its north pole toward A.

Let the needle be placed in E. Then, by the action of the magnet A, it would be a tangent to the curve NEL, with its unth pole pointing to F. But, by the action of B , it will be a tangent to SEI, with its north pole pointing to D. Thefe actions being fuppofed equal and oppofite, it will have no verticity, or will be neutral, and retain any pofition that is given to it.
The curve SEI interfects the curve NHM in P and Q. The fame reafoning fhews, that when the needle is placed at P , it will arrange itfelf with its north pole on the angle SPH: but, when taken to Q, it will fland with its north pole in the angle EQM.

From thefe facts and reafonings we muft infer, that, for every diftance of the magnets A and B , there will be a feries of curres, to which the indefinitely fhort needle will always be a tangent. They will rife from the adjoining poles on both lides, croffing diagonally the lozenges formed by the primary or simple curves, as in fig. 6. Thefe may be called compound or secondary magnetic curves. Moreover, theie fecondary
condary curves will he of two kinds, according as they pafs through the firft or fecond interfections of the primary curves, and the needle will have oppofite pofitions when placed oa them. Thefe two fets of curves will be feparated by a curve GliH, in the circumference of which the nestile will be neutral. This curre paffes through the points where the primary curves touch each other. We may call this the line of neutrality or inactivity.
We now fee diftinctly the effect of bringing the magnets A and B nearer together, or feparating them farther from each other. By bringing them nearer to each other, the point E , which is now a point of nentrality, may be found in the fecond interfection (fuch as F) of two magnetic curves, and the needle will take a fubcontrary pofition. By drawing them farther from each other, E may be in the firf interfection of two magnetic curves, and the needle will take a pofition $f_{1}-$ milar to that of C .

If the nagnets A and B are not placed fo as to form a fraight line with their four poles, but have their axes making an angle with cach other, the contacts and interfections of their attending curves may be very dif. ferent from thofe now reprefented; and the pofitions of the needle will differ accordingly. But it is plain, from what has been faid, that if we knew the law of action, and confequently the form of the primary curves, we fhould always be able to fay what will be the potition of the needle. Indeed, the confideration of the fimple curves, although it was the mean of fuggefting to the writer of this article the explanation of thofe more complicated phenomena, is by no means neceffany for this purpof. Having the law of magnetic action, we muft know each of the eight forces by which the needle is affected, both in refpect of direction and inienfity; and are therefore able to afeertain the fingle force arifing from their compofition.

When the fimilar peles of A and B are oppofed to each other, it is eafy tor fee, that the pofition of the needle muft be extremely different from what we have been deferibing. When placed anywhere in the line DF, between two magnets, whofe north poles frent cach other in N and S , its north pole will always point away from the middle point 1). There will be no neutral point E. If the tieedle he placed at P or Q, its north pole will be within the angle UPH, or FCI. This pofition of the magnets gives another fet of fecondary curves, which alfo crofs the primary curves, paffing diagonally through the lozenges formed by their interfection. Fut it is the other diagonal of each lezenge which is a chord to thofe fecondary curves. They will, therefore, have a form totally different from the former fpecies.

The confideration of this compound magnetifm is important in the fcience, both for explaining complex phenomena, and for advancing our knowledge of the great defideratum, the law of magnetic action. It ferves this purpofe remarkably. By employing a very fmall needle, the points of neutrality afcertain very nearly where the magnetic curves have a common tangent, and fhews the pofition of this tangent. By placing the two magnets $f 0$ as to form various angles with each other, we can, by means of thefe neutral points, know the pofition of the tangent in every point of the curee, and thus can afcertain the form of the curve, and the law of action, with confiderable accuracy. The writer of this
article twok this method; and the refult confirmed hinn in the opinion, that it was in the inverfe duplicate ratio of the difances. The chicf (perbaps the only) ground of errur feemed to he the difficulty of procuring large magncts, having the action of eacli pole very much concentrated. Large magnets muft be employed. He attempted to make fuch, confifting of two fpherical balls, joined by a flender rod. But he could not give a flrong magnetifm to magnets of this form, and was forced to make ufe of common lars, the poles of which are confiderably diffufed. This diffufion of the pole renders it very difficult to feleet with propricty the points from which the dillances are to be eftimated, in the invef. tigation of the relation hetween the forces and diftances.

He tried another method for afcertaining this fo much defired law, which had alfo the fame refult. Having made a needle confinting of two balls joined hy a flenjer rod, and having touched it with great care, fo that the whole Arength of its poles feemed very little removed from the centres of the balls, he counted the number of horizontal vibrations which it made in a given time by the force of terreftrial magnetifm. He then placed it on the middle of a very fine and large magnet, placed with its poles in the magnetic meridian, the north pole pointing fouth. In this fituation he counted the vibrations made in a given time. He then raifed it up above the centre of the large magnet, till the diftance of its poles from thofe of the great magnct were changed in a certain proportion. In this fituation its vibrations were again counted. It was tried in the fame way in a third fituation, confiderably more remote from the great magnet. Then, having made the proper reduction of the forces correfponding to the obliquity of their action, the force of the poles of the great magnet was computed from the number of vibrations. To thate here the circumftances of the experiment, the necuffary reductions, and the whole computations, wonld occupy feveral pages, and to an intelligent reader would anfwer little purpofe. Mr Lambert's excellent difertation in the 22 d vul. of the A.Mem. de l'Acald de Berlin, will fhew the prolixity and intricacy of this inveltigation. Suffice it to fay, that thefe experiments were the moft confintent with each other of any made by the writer of this article, with the view of afcertaining the law of magnetic actinn ; and it is chiefly from their sefult that he thinks himfelf authorifed to fay, with fome confidence, that it is inverfely as the fquare of the diftance. Thefe experiments were firft made in a rough way in 1769 and 1770 . In 1775, obferving that NIr Æpinus feemed to think the action inverfely as the diltance (fee his Tentam. Theor. Eleatr. et Magn. § $301.8 c$.), they were repeated with very great care; and to thefe were added another fet of experiments, made with the fame magnet and the fame needte, placed not above the magnet, but at one fide (but always in the line through the centre, perpendicular to the axis, fo that the actions of the two poles might be equal). This difpofition evidently fimplifies the procefs exccedingly. The refult of the whole was Atill more fatisfactory. This conclufion is alfo confirmed by the experiments of Mr Coulomb in the Memoirs of the Academy of Sciences at Paris for 1786 and 1787. It would feem therefore to be pretty well eftablifhed. Another method, which feems fufceptible of confiderable
confiderable arcuracy, ftill remains to be tried. It will be mentioned in due time.

Such then ate the general laws offerved in the mutual ation of magnets. We think it feareely neceffary to enter into a fa. ther detail of their confequences, cor. refponding to the inaumerable varieties of pofitions in which they may be placed with refpect to each other. We are confident, that the fenfible actions will always be found agreeable to the legitimate confequenees of the general propofitions which we have eflablifhed in the preceding paragraphs. We proceed therefore to confider fome phyfical facts not yet taken notice of which have great influence on the phenomena, and greatly affift us in our endeavours to undertand fomething of their remote caufe. temprora pulfion, and direction, is, in general, of a temporary or perifhing nature. The beft loadlones and magnets, unlefs kept with care, and with attention to certain circumflanees, are ubferved to diminilh in their power. Natural loadfones, and magnets made of feel, tempered as hard as poffible, retain their virtue with greateft obftinacy, and feldom lofe it altogether, unlefs in fituations which our knowledge of magnetifin teaches us to be unfavourable to its durability. Magnets of tempered fteel, fuch as is ufed for watch-fprings, are much fooner weakened, part with a greater proportion of their force by fimple keeping, and fually retain litile or nane. Soft fteel and irun lofe their magnetifm almoit as foun as its producing caufe is removed, and cannot he made to retain any fenfible portion of it, unlefs their metallic ftate fuffer fume change.

1. Nothing tends fu much to impair the power of a magnet as the keeping it in an improper pofition. If its axis be placed in the magnetic direction, but in a contrary pofition, that is, with the north pole of it where the fouth pole tends to fettle, it will grow weakor from day to day; and unlefs it be a natural loadfone, or be of hard tempered fteel, it will, after no very long time, lofe its power altogether.
2. This diflipation of a flrong magnetic power is greatly promoted by heat. Even the heat of boiling water affects it fenfibly; and if it be made red hot, it is entirely deftroyed. This laft fact has long been known. Dr Gilbert tried it with many degtees of violent heat, and found the confequences as now flated; but having no thermometers in that dawn of fcience, he could not fay any thing precife. He only obferves, that it is deftroyed by a heat not fufficient to make it vifible in a dark room. Mr Canton found even boiling water to weaken it; but on cooling again the greatelt part was recovered.
3. What is more remarkable, magnetifm is impaired by any rough ufage. Dr Gilbert found, that a mag. net which he had impregnated very Atrongly, was very nuech impaired by a fingle fall on the floor; and it has been obferved fince his time, that falling on Atones, or receiving any concuffion which caufes the inagnet to ring or found, hurts it much more than beating it with any thing foft and yielding. Grinding a natural loadflone with coarfe powders, to bring it into fhape, weakens it much; and loadflones fhould therefore be reduced into a thape as little different from their natural form as polible; and this hould be done brifkly, cutring them with the thin dilks of the lapidary's wheel,
cutting off only what is neeeffary for leaving their moft active parts or poles as near their extremitics as we call.

All thefe caufes of the diminution of magnetifm are more operative if the maguet be all the while in an im. proper pofition.
4. Laflly, magnetifm is impaired and deftroyed by 4. Ey ohez placing the magnet near another magnet, with their fi. magnety. milar poles fronting each other. We have had oceafion to remark this alrearly, when mentioning the c x perimeats made with magnets in this pofition, for afcertaining the general laws or variations of their repulfion. We there obferved, that magnets fo fituated always weakened eaeh other, and that a powerful magnet of en changed the fpecies of the neareft pole of one !.fs puwerful. This change is recovered, in part at lent, when it has taken place in a loadfone or a magnet of hard fteel; but is fpring tempered fteel the clange is generally permanent, and almoft to the full extent of its condition while the magnets are together. It is to be remarked, that this change is gradual; and is expedited by any of the other caufes, particuiarly by heat or by knocking.

On the other hand, magnetifm is acquired by the Magierfm fame means, when fume other circumftances are at nay be actended to.

1. A bar of iron, which has long flood in the mag. n By nage netic direction, or nearly fo, will gradually acquire netican pomagnetifm, and the ends will acquire the polarity correfponding to their fituation. In this country, and the nurth of Europe, the old fpindles of turret vanes, old bars of wiadows, \&c. acquire a feafible magnetifm; their lower extremity becoming a morth pole, and the other end a fouth pole. Giibert fays, that this was firft obferved in Mantua, in the vane Ipindle of the Auguftine church -"Vento flexa (fays he) de prompta. et apotbecario cuidam conceffa, attrabebat ferrea ramenta, vi perquam infigni." Thie upper bar of a hand rail to a ftair on the north fide of the higheft part of the teeple of St Giles's church in Edinburgh is very magnetical ; and the upper end of it, where it is lodged in the flone, is a vigorous fouth pule. It is worth notice, that the parts of fuch old bars acquire the itrangeft magnetifin when their metallic ftate is changed by expofure to the air, becoming foliated and friable. It would be worth while to try, whether the xthiops martialis, produced by fteam in the experiments for decompofing water, will. acquire magnetifm during its production. The pipe and the wires, which are converted into the fhining xthiops fhould be placed in the magnetic direction.
2. If a bar of theel be long hammered while lying in z. By hamo the magnetic direction, it aequires a fenfible magnetifm nering; (See Dr Gibert's plate, reprefenting a hlack fmitli hammering a bar of iron in the magnetic direction). The points of drills, efpecially the great mes, which are urged by very great preffure; and broaches, worked by a long lever, fo as to cut the iron very faft, accuire a ftrong magnetifin, and the low er end always becomes the north pole (Phil. Tranf. xx. 417.) Even driving a hard fteel punelh into a picce of iron, gives it rnagnetifan by a fingle blow. In fhot, any very violent fqueeze given to a piece of tempered fteel readers it magnetic, and its polarity correfponds with its pofition during the experiment. We can fearcely take up a cutting or boring tool in a fimith's fhop that is not nagnetical. Even
foft Acel and iron aequire permanent magnetifm in this way. Iron alfo acquires it by twitting and breaking. It is therefore difficult to procure pieces of iron or fteel tutally void of determinate and permanent magnetifm; and this frequently mars the experiments mentioned in the firt paragraphs of this article. The way therefore to enfure fuccefs in thefe experiments is to deprive the rods of their accidental magnetifm, by fome of the methods mentioned a little ago. Let them be heated red hot, and allowed to cool while lying in a direction perpendicular to the magnetic direction (nearly E. N. F. and W.S. W. in this country).
3. By heat- 3. As heat is obferved to deftroy marnetifm, to it ing; may alfo be employed to induce it on fubftances that are fufceptible of magnetifm. Dr Gilbert makes this obfervation in many parts of his work. He fays, that the ores of iron which are in that particular metallic fate which he confiders as moft fufeeptible of magnetifm, will acquire it by long continuance in a red heat, if lairl in the magnetic direction, and that their polarity is conformable to their pofition, that end of the mafs which is next the north becoming the north pole. He alfo made many experiments on iron and fteel bars expofed to ftrong heats in the magnetical direction. Such experiments have been made fince Gilbert's time in great number. Dr Hooke, in 1687 , made experiments on rods of iron and fteel one.fifth of an inch in diameter, and feven inches long. He found them to acquire permanent magnetifm by expofure to ftrong heat in the magnetic direction, and if alluwed to cool in that direction. But the magnetifm thus acquired by tteel rods was much fronger, and more permanent, if they were fuddenly quenched with cold water, fo as to temper them very hard. He found, that the end which was next to the north, or the lower end of a vertical bar, was always its permanent north pule. Even quenching the "pper end, while the reft was fuffered to cool gradually, became a very fenlible fouth pole. No magnetifm was acquired if this operation was performed on a rod lying at right angles to the magnetical direction.

In thefe trials the polarity was always eftimated by the action on a mariner's needle, and the intenfity of the magnetifm was eftimated by the deviation caufed in this needle from its natural pofition. Dr Gilbert made a very remarlsable obfervation, which has fince been repeated by Mr Cavallo, and publifhed in the Philufophical Tranfactions as a remarkahle difeovery. Dr Gilbert lays, p. 69. "Bacillum ferreum, valide isnitum ap. pone verforio excito; flat verforium, nec ad tale ferrum convertitur: fed flatim ut primum de candore aliquantuIum remiferit, confluit illico." In feveral other parts of his treatife he repeats the fame thing with different circumfances. It appears, thercfore, that while iron is red hot, it is not fufceptible of magnetifm, and that it is during the oling in the magnetic direction that it acquires it. Gilbert endeavourcol to mark the degree of heat moft favourable for this purpofe; but being unprovided with thermometers, he could not determine any thing with precifion. He fays, that the verforium, or mariner's needle, was moft deranged from its natural pofition a little while after the bar of iron ceafed to thine in day light, but was tlill pretty bright in a dark room. But there are other experiments which we have made, and which will be mentioned by and bye; by which it appears, that although a bright red or a white
heat makes iron unfufceptible of magnetifm while in that Itate, it predifpofes it for becoming magnetical. When a bar of fteel was made to acquire magnetifm by tempering it in the magnetical direction, we found that the acquired magnetifm was much itronger when the bar was made firit of all very hot, even although allowed to come to its muft magnetical flate before quenching, than if it had been heated only to that degree; nay, we always found it ftronger when it was quenched when red hot. We offer no explanation at prefent; our fole bufinefe jult now being to flate facts, and to generalize them, in the hopes of finding fome fact which fhall contain all the uthers.
4. The moft diftinct acquifitions and changes of mag- 4. By justa netifm are by juxtapofition to other magnets and to iron. Pnitiou. As the magnetifm of a loadtone or magnet is weaken. ed by bringing its pole near the fimilar pole of another magnet, it is improved by bringing it near the other pole; and it is always improved by bringing it near any piece of iron or foft fteel.

But this action, and the mutual relation of magnets and common iron, being the molt general, and the molt curious and inlluctive of all the phenomena of magne: tifm, they merit a very particular confideration.

Of the communication of Magnetifm.

THE whole may be comprehended in one propofition, Communi which may be faid to contain a complete theory of mag-cation of netifm.

Fundamental propofition.
Any piece of iron, when in the neigbbourbood of a magnet, is a magnet, and its polarity is fo difpofed that the magnet and it mutually attraa each other.

The phenomena which refult from this fundamental principle are infinitely various, and we muft content ourfelves with defcribing a fimple cafe or two, which. will fufficiently enable the reader to explain every other.

Take a large and frong magnet NAS (fig. 7.), of Attractiv which N is the north, and S the fouth pole. Let it be powercot properly fupported in a horizontal pulition, with its ${ }^{\text {municate }}$ poles free, and at a diftance from iron or other bodies. Take any fmall piece of common iron, not exceeding two or three inches in length, fuch as a fmall key. Take alfo another piece of iron, fuch as another fmaller key, or a hit of wire about the thicknels of an ordinary quill.

1. Hold the key horizontally, near one of the poles, (as hewn at n° s.), taking care not to touch the pole with it ; and then bring the other piece of iron to the other end of the key (it is indifferent which pole is thus approached with the key, and which end of the key is held near the pole). The wire will hang by the key, and will continue to hang by it, when we gradually withdraw the key horizuntally from the magnet, till, at a certain diftance, the wire will drop from the key, becaufe the magnetifm inparted from this diftance is too weak. That this is the fule reafon of its dropping, will appear by taking a fhurter, or rather a nenderer, bit of wire, and touch the remote end of the key with it : it will be fupported, even though we remove the key ftill farther from the magnet.
2. Hold the key beloze one of the poles, as at $n^{\circ} 2$. or 3. and touch its remote end with the wire. It will be fufpended in like manner, till we remove the key too far from the magnet.
3. Hold the key above the poles, as at $n^{\circ} 4$. or 5 . and tuluch its adjacent end with the wire (taking care that the wire do not alfo touch the maguet). The wire will till be fupported by the key, till both are removed too far from the nagnet.

Thus it appears that, in all thefe fituations, the key has flewn the charafterillic phenomenon of magnetifm, pamely, attraction for iron. In the experiment with the bey held above the pole, the wire is in the fame fituation in refpect to maguetifm as the key is whe: held below the pole; but the actions are mutual. As the key attracts the wire, fo the wire attracts the key.

If the magnet be fupported in a vertical pofition, as in fig. 8. the phenomena will be the fame; and when the key is held directly above or directly below the pole, it will earry rather a beavier wire than in the ho. rizontal pofition of the magnet and key.

Inftead of approaching the magnet with the key and wire, we may bring the magnet toward them, and the phenomena will be itill more palpable. Thus, if the bit of wire be lying on the table, and we teuch one end of it with the key, they will fhew no connection whatever. While we hold the key very near one end of the wire, bring down the pole of a magnet toward the key, and we fhall then fee the end of the wire rife up and ftick to the key, which will now fupport it. In like manner, if we lay a quautity of iron filings on the table, and touch them with the key, in the abfence of the magnet, we find the key totally inactive. But, on bringing the magnet anyhow near the key, it immediately attracts the iron filings, and gathers up a heap of them.

In the next place, this vicinity of a magnet to a piece of iron gives it a directive power. Let NAS (hg. 9.) be a magnet, and BC ($\mathrm{n}^{\circ} \mathrm{I}$.) a key held near the north pole, and in the dircetion of the axis. Bring a very fmall mariner's needle, fupported on a fharp point, near the end C of the key which is fartheft from N . We fhall fee this needle immediately turn its fouth pole tuwards C , and its north pole away from C. This pofition of the needle is indicated at c, by marking its north pole with a dart, and its fouth with a crofs. Thus it appears that the key has got a directive power like a magnet, and that the end C is performing the office of a north fole, attracting the fouth pole of the needle, and repelling its north pole. It may indeed be faid, that the needle at c arranges itfelf in this manner by the directive power of the magnet; for it would take the fame polition although the key were away. But if we place the needle at b, it will arrange itfelf as there reprefented, fhewing that it is infuenced by the key, and not (wholly at leaft) by the magnet. In like manner, if we place the needle at a, we fhall fee it turn its north pole toward B , not withllanding the action of the magnet on it . This action evidently tends to turn its north pole quite another way: but it is influenced by B , and B is performing the office of a fouth pole.

In like manner, if we place the key as at n^{5} 2. we fhall obferve the end B attract the fouth pole of the needle placed at a, and the end C attract the north pole of a needle placed in \dot{b}. In this fituation of the key, we fee that B performs the office of a north pole, and C performs the office of a fouth pole.
Thus it appears that the key in both fituations has
become a magnet, poffefed of both an attractive and a directive power. It has acquired two poles.

Lattly, the magnetifm of the key is fo difpofed that The att ${ }^{36}$. the two magnets NAS and BC muft mutually attract tion of won each other; for their diffinuilar poles front each other. is nwing to Now, it is a matter of uniform and uncontradicted ob- the diff fis. fervation, that when a piece of iron is thus placed near own tema magnet, and the difpolition of its magnetifin is thusporary examiued by means of a mariner's needle, the difpofi-magnetifm, tion is fuch that two permanent magnets with their poles fo difpofed inuth attrast each other. The piece of iron, therefcre, laving the fame magnetic relation to the maguet that a fimilar and fimilarly difpofed magnet has, mult be affected in the fame manner. We cannot, by any knowledge yet contained in this article, give any precife intimation in what way the polarity of the piece of iron will be difpofed. This depends on its fhape as much as on its pofition. By deferibing two or three examplcs, a notiou is obvioufly enough fuggefted, which, although extremely gratuitous, and perhaps erroneous, is of fervice, becaufe it has a greueral analugy with the objerved appearances.
If one end of a flender rod or wire be held near the north pole of the magnet, while the rod is held in the direction of the ax: (like the key in fig. 7. no 1.), the near end becomes a fouth, and the remote end a north pule. Keeping this fouth pole in its place, and turning the rod in any direction from thence, as from a centre, the remote end is always a north pole. And, in general, the end of any oblong piece of irnn which is neareft to the pole of a magnet becomes a pole of the oppofite name, while the remoie end becomes a pole of the fame name with that of the magnct.

If the iron rod be held perpendicularly to the axis, with its middle very near the north pole of the magnet, the two extremities of the iron become north poles, and the middle is a fouth pols.

If the north pele of a magnet be held perpendicular to the centre of a round iron plate, and very near it, this plate will have a fouth pole in its centre, and every part of its circumference will have the virtue of a north pole.

If the plate be fhaped with points like a Aar, each of thefe points will be a very diftinct and vigorous north: pole.

Something like this will be obferved in a piece of iron of any irregular fhape. The part immediately adjoining to the north pule of the magnet will have the virtue of a fuuth pole, and all the remote protuberances will be north poles.

The notion naturally fuggefted by thefe appearances is, that the virtue of a north pole feems to refide in fomething that is moveable, and that is protruded by the north pole of the magnet tuward the remote parts of the iron; and is thus conftipated in all the remote edges, points, and protuberances, mueh in the fame manner as electricity is obferved to be protruded to the remote parts and protuberances of a conducting body by the prefence of an overcharged body. This notion will greatly affift the imagination ; and its confequences very much refemble what we oblerve.

As a farther mark of the complete communication of every magnetic power by mere vicinity to a magnet, we may here obferve that the wire D, of fig. 7. n ${ }^{\circ} 2$ a and 3. will fupport another wire, and this another; and fo,
on, to a number dependiag on the flength of the nagnet. The key las therefore become a true magnet in every refpes; for it induces complete magnetifm on the apmended wire. That this is not the fance operation of the great magnet (at lealt not wholly fo) appears by ex. aminit g the magnetifin of D) with the needle, which will be feen to be more inftuenced by I) than by A . 'This fact has been long known. The ancients fpeak of it : They obferve, that a loadllone caufes an iron ring to carry another ring, and that a thind; and fo on, till the ftring

What has now been faid will explain a feeming exception to the univerfality of the propofition. It the key be held in the fituation and pofition reprefented by fig. 10. the bit of wire will not be attracted by it ; and we may imagine that it has acquired no magnetifn: But if we bring a mariner's needle, or a hit of wirc, near to its remote end B , it will be ffrongly attracted, and fhew B to be a north pole. The needle held near to C will alfo fhew C to be a fouth pole. Alfo, if held rear to D, it will fhew D to be a north pole. Neww the ends C , both of the key and of the wire, being fouth poles, they cannot attract each other, hut, on the contary, they will repel; and therefore the wire will not adhere to the key. And if the key of fig. 17. no 4 . with the wire hanging to it, be gradually carried outward, beyond the north pole of the magnet, and then brought down till its lower end be level with the pole, the wire will drop off.

There is however, one exception to the propofition. If the key in fig. 7. with its appending wire D, be gradually carried from any of the fituations $2,3,4$, or 5 , toward the middle of the magnet, the wire will drop of whenever it arrives very near the middle. If we fuppole a plane to pafs through the magnetic centre A, perpendicular to the axis (which plane is very properly (alled the magnetic equatorial plare by Gilbert), a flender piece of iron, held any where in this plane, acquires no fenfible magnetifm. It gives no indication of any polarity, and it is not attraged by the magnet. It is well known, that the activity of a loadfone or magnet refides chiefly in two parts of it, which have been called its poles; and that thofe are the beft magnets or loadftones in which this aetivity is leaft diffufed; and that a certain circumference of every loadtone or magnet is wholly inactive. When a luadtone or magnet of any fhape is laid among iron filings, it collects them on two parts only of its furface, and between thefe there is a fipace all round, to which no filings attach themfelves.

We prefume that the reader already explains this appearance to limfelf. Many things flew a contraricty of action of the two poles of a nagnet. We have already obferved, that the north pole of a Atrong magnet will produce a flrong northern polarity in the remote end of a fmall fteel bar ; and if it be then applied near to that end in the oppofite direction, it will deflroy this polarity, and produce a fouthern polarity. In whatever thefe actions may confift, there is fomething not only different hut oppofite. They do not blend their effects, as the yellow and blue making rays do in pro. ducing green. They oppofe each other, like mechanical preffures or impulions. We have every mark of mechanical action ; we have local motion, though unfeen, except in the gradual progrefion of the magnetical faculties along the bar; but we have it diftinctly in
the ultimate cffect, the approach or recefs of the marnets: and in thefe phenomena we fee plainly, that the forces, in producing their effects, act in optolite dincetions. Whatever the intermal invifible motions may le, they are compofed of mutions whofe equivalents are the feme with the equivalents of the ultimate, external, fenfible motions; therefore the internal motions are oppofite and equal if the fenfible motions are fo, and converfily.

Adopting this principle, therefore, that the actions of the two poles are not only different but oppofite, it follows, that if they are alfo equal and act fimilarly, cocli mult prevent the action of the other; and that chere will be a mechanical equilibrium - it may even be called a magnetical equilibrium. Therefore if evety part of a nender rod, or of a thin plate of iron, lie in the piane of the magnetic equator, the magnetic fate (in whatever it may confift) cannot be produced in it. It will exhibit no magnetifm; have no polar faculties; and we can fee no reafon why it fhould he attracted lyy the magnet, or fhould attract iron. We muft not forget to obferve in this place, that iron in a ftate of incandefeence acquires no magnetifm by juxtapofition. We lave already remarked, that iron in this flate does not alfect the magnet. If a bar of red hot iron be fet near a nariner's ueedle, it does not affect it in the fmallefl degree till it almolt ceafes to appear red hot in day-light, as bas been obferved by Dr Gilbert. All actions that we know are accompanied by equal and oppotite re-actions; and we flould expect, what really happers it the prefent cafe, namely, that red hot iron fhould not be rendered magnetical and attractable.

There is a very remarkable circumftance which ac- Magnetifi companies the whole of this communication of magne-not intpair. tifm to a piece of iron. It does not impair the powered by comof the magnet ; but, on the contrary, improves it. This municafact was obferved, and particularly attended to, by Dr Gilbert. He remarks, that a maguet, in the hands of a judicious philofopher, may be made to impart more magnetifm than it poffeffes to each of ten thoufand bars of fteel, and that it will be more vigorous than when the operations began. A magnet (fays he) may be fooiled by iujudicious treatment with other magnets, but never can touch a piece of common iron without being improved by it. He gives a more direct proof. Let a macrnet carry as heavy a lump of iron as pofible by its lower pole. Bring a great jump of iron clofe to its upper pole, and it will now carry more. Let it be loaded with as much as it can carry while the lump of iron touches its upper pole. Remove this lump, and the load will inftantly drop off. But the following experiment dhews this truth in the moft convincing manner:

Let NAS (fig. ri.) be a magnet, not very large, nor of extreme hardnefs. Let CD be a ftrong iron wire, hanging perpendicularly from a hook by a fhort thread or loop. The magnet, by its action on CD , renders D a north pole and C a fouth pole, and the polarity of D 's magnetifm fits it for being attracted. Let it affume the pofition $\mathrm{C} e$, and let this be very carefully marked. Now bring a great bar of iron $s \mathrm{~B} n$ near to the other end of the magnet. We fhall inftantly perceive the wire $\mathrm{C} e$ approach to the fouth pole of the magnet, taking a pofition C f. Withdraw the bar of iron, and $\mathrm{C} f$ will fall back into the pofition $\mathrm{C} e$. As we bring the iron bar gradually nearer to the magnet,
the wire will deviate farther from the perpendicular, and when the bar B touches the magnet $C D$, will ftart a great way forward. It is alfo farther to be obferved, that the larger the bar of iron is, the more will CD deviate from the perpendicular.

Now this mull be afcribed to the action of the bar on the magnet. For if the magnet be removed, the bar alone will make no fenfible change on the pofition of the wire. We know that the bar of iron becomes magnetical by the vicinity of the magnet. If we doubt this, we need only examine it by means of a piece of iron or a mariner's needle. This will fhew us that s has become a fouth, and n a north polle. Here then are two magnets with their diffimilar poles fronting each other. In conformity with the whole train of magnetical phenomena, we mult conclude that they attract each other, and maft improve each other's magnetifm.

This is a moft important circumftance in the theory of magnetifm. For it thews us, that, in rendering a piece of iron magnetic, there is no material communication. There is no indication of the transference of any fubltance refiding in the magnet into the piece of iron; nor is there even any transference of a power or quality. Were this the cafe, or if the fubftance or quality which was in A be now transferred to B, it can no longer be in A; and therefore the phenomena refulting from its prefence and agency mult be diminifhed. We muft fay that the magnet has excited powers inherent, but dormant, in the iron ; or is, at leaft, the occafion of this excitement, by difturbing, in fome adequate manner, the primitive condition of the iron. We muft alfo fay, that the competency of the maguet and of the iron to produce the phenomena, is owing to the fame circumftances in hoth; becaufe we fee nothing in the pliemomena which authorifes us to make any ditinction between them. Whatever therefore canfes one magnet to attract another, is alfo the reafon why a piece of iron in the neighbourhood of a nagnct attraEts another piece of iron; and we muit fay that the caufe of pola. rity, or the origin of the directive power, is the fame in both. Now we underland perfectly the directive power of a magnet, as exerted on another magnet. We fee that it arifes from a combination and inechanical compofition of attractions and repulfions. It mult be the fame in this nagnetifin now inherent in the iron. The piece of iron direets the marincr's nceilc, as a magnet would direct it ; therefore, as there is fomething in a piece of iron which now attracs fomething in another piece of iron, fo there is fomething in the firit which repels fomething in the lalt.

It may indeed be faid that it is not a piece of iron, but a mariner's needle, or magnet, that is thus dircted by our iron maguctifed by vicinity to a magnct. This objection is completely removed by the moft curious of all the facts which occur in this manner of producing magnetifm. Take a piece of common iron, fahthon it, and fit it up precifely like a mariner's needle, and carefully avoid every treatment that can make it magnetical. Set it on its pivot, and bring it acar the noth pole of a magnet, placing the end, made like the fouth pole of the needle, next to the north pole of the magnet. In Mort, place it by hand exactly as a real mariner's necdle would arrange itfelf. It will retain that pofition. Now carry it round the magnet, along the circumference of a magnetic curve, or in any regular and continuous
route. This piece of iron will, in every fituation, affume the very fame pofition or attitude which the real magnetical needle would affume if in the fame place, and it will ofcillate precifely in the fame way.

Here then it is plain, that there is no diftinction of power between the magnetifm of the iron and of the real needle. To complete the proof: Inflead of approaching: the magnet with this iron needle, bring it into the vicinity of a piece of iron, which is itfelf magnetical only by vicinity to a magnet, it will arrange itfelf jult as the real needle would do, with the fole difference, that it does not indicate the kind of polarity exifting in the extremities of the iron, becanfe either end of it will be attracted by them. And this circumfance leads us to the confideration of the only dittinction between the magnetifm of a loadftone or magnet and that of common iron.

The magnetifm of common iron is momentary, and Magnetifu. therefore indifferent; whereas that of a magnet is per- nf irm is manent and determinate. When iron becomes marne- tranditery tic in the way now mentioned, it remains fo only rent; but while the magnet remains in its place; and when tlat is that of removed, the iron exhioits no figns of magnetifm. magnees Therefore when the noth pole of a magnet has produ- is duratele ced a fouth pole in the nearett end of an iron wire, and minate. a north pole at its remote end, if we turn the magnet, and prefent its fouth pole, the neareft end of the wire in. flantly becomes a north pole, and the other a fouth pule; and this change may be made as often, and as rapidly, as we pleafe. This is the reafon which made us direct the experimenter on the iron needle to begin his operation, by placing the end marked for a fouth pole next to the north pole of the magnet. It becumes a real fouth pole in an indant, and acts as fuch during its peregrination round the maynet. But in any onee of its fituations, if we turn it half round with the fingere, the end which formerly turned away from a pole of the magnet, will now turn as vigoroufly toward it. There. fore, in carrying the iron needle round the magnet, we directed the progrefs to te made in a continuous line, to avoid all chance of mittaking the polarities.

For all the reafons now adduced, we think ourfelves Macoeobliged to fay, that the magnetifm produced on com-ricn mon iron by mere juxtapofition to a magnet, is gene- rivouce rated without any communication of fubilance or faculty. The power of producing magnetical phesomena is not foared between the magnet and the tron. We thall call it induced magnetism; magnetism by induction.

We have faid that induced magnetilm of common iron is quite momentary. This mult be undertuod with careful limitations. It is trictly true only in the cafe of che lineft and pureft foft iron, free of all knots and hard veins, and therefure in its molt metallic atate. Iron is rarely found in a ftate fo very pure and metallic; and even this iron will acquice permanent and determinate magnetifm by induction, if it had beentwilled or hammered volently, although not in the magnetic di. rection; alfo the changes produced (we imagine) on the plireft iron by the action of the atmofphere make it fufceptible of fixed magnetifm. But the magnetifm thus inducible on good iron is fearcely fenfible, and of no duration, unlefs it las lain in the neighbourhood of a magnet for a very long while.

What has now been faid of comm on iron, i_{5} alfu truc of it when in the fate of foft deel.

But any degree of temper that is given to fteel makes a very important change in this refpect. In the firlt place, it acquires magnetifm more flowly by induction than an equal and fimilar piece of common iron, and finally acquires lefs. Thefe differences are eafily examined by the deviations which it caufes in the mariner's needle from the magnetic meridian, and by its attraction.

When the inducing magnet is removed, fome mag. netifn remains in the fleel bar, which retains the pola. rity which it had in the neighbourhood of the magaet.

Steel tempered to the degree fit for watch fpings acquines a ttrong magnetifm, which it exhibits inme. diately on the removal of the magnet. But it diffipates very faft ; and, in a very few nimutes, it is reduced to lefs than one-half of its intenfity while in contact with the magnet, and not two-thirds of what it was immediately on removal from it. It continues to diffipate for fome days, though the har he kept with care; but the diffipation diminifhes fant, and it retains at leat onethird of its greateft power for any length of time, unlefs carelefsly kept or injudicioufly treated.

Steel tempered for frong cutting tools, fuch as chifels, punches, and drills for metal, acquires magnetifm fill more flowly by induction, and acquires leis of it while in contact with the gnagnet : but it retains it more firmly, and finally retains a greater propurtion of what it had acquired.

Steel made as hard as poffible, is much longer in acquiring all the magnetifm which fimple juxtapofition can give to it. It aequires lefs than the former ; but it retains it with great firmnefs, and finally retains a much greater proportion.

Such ores of iron as are fufceptible of magnetifm, are nearly like hard fteel in thefe refpects; that is, in the time neceffary for their greatef impregnation, and in the durability of the acquired magnetifm. They differ exceedingly in refpect to the degree of power which they can attain by mere justapolition, and the varieties feem to depend on heterogeneons mixture. We muft obferve, that few nres of iron are fufceptible of magnetifm in their natural fate. The ordinary ores, confiting of the metal in the flate of an oxyd, and combined with fulphur, are not magnetizable while remaining in that fate. Moft ores require roalling, and a fort of cementation, in contact with inflammable fublances. 'I'his matter is not well underfood ; but it would feem that complete metallization is far from being the moft favourable condition, and that a certain degree of oxydation, and perhaps fome other compalition, yet unknown, make the bell loaditones. But all this is extremely obfeure. The late Dr_{r} - Gowin Kuight made a compofition which acquired a very flong and permanent magnetifm, but the fecret died with him. Dr Gilbert fpeaks of fimilar compofitions, in which fcrrugineous clays were ingredients; but we know nothing of the flate of the metal in them, nor their mode of acquiring mag. netifm.

It is of peculiar importance to remark that the acquifition of magnetifm is gradual and progreflive, and that the gradation is the more perceptible in proportion as the Ateel is of a harder temper. When a magnet is brought to one end of a bar of common iron, its remote extremity, unlefs exceedingly long, acquires its utmoft magnetifm immediately. But when the north pole of
a magnet is applied to one end of a bar of hard feel, the part in contact immediately becomes a fouth pole, and the far end is not yet affected. We obferve a north pole formed at fome diftance from tle contact, and heyond this a faint foush pole. Thefe gradually advance along the bar. 'The remote extremity becomes firt a faint foutly pole, and it is not till after a very long while (if ever) that it becomes a fimple, vigorous, north pole. More frequently it remains a diffufed and feeble north pule : nay, if the bar be very long, it often happens that we have a fuccefiion of north and fouth poles, which never make their way to the far end of the bar. This phenomenon was firft obferved (we think) hy Dr Brook Taylor, who gives an account of his obfervations in the Pbilofopbical Tranfacions, $1^{\circ} 344$.

From the account we have given of thefe phenomena of induced magnetifin, it appears that the temporary magnetifm is always fo difpofed that the fum of the magnetifm is always fo difpofed that the fum of the it hecome
mutual attractions of the diffimilar poles exceeds the magnetica fum of the repulfions between the limilar poles, and that therefore the two magnets tend to each other. This is evidently equivalent to faying, that a piece of unmagnetic iron is always attracted by a magnet. No. exception has ever been obferved to this fact; for Pliny's ftory of a Theamedes, or loadftone, which repels iron, is allowed by all to have been a fable.

We think ourfelves authorifed to fay that this attraction of the luadftone for iron, or this tendency of iron to the loadftone, is a fecondary phenomenon, and is the confequence of the proper difpofition of the induced mag. netifm. The proofs already given of the compound nature of this phenomenon, namely, that it arifes from the exccis of two attractions above two repulfins, need (we imagine) no addition. But the following confiderations place the matter beyond douht :

1. The magnetifm of the two poles is evidently of an oppofite nature; the one repelling what the other attracts. If the one attracts iron, therefore, the other thould repel it. But each pole, by inducing a marnetifm oppofite to its own, on the neareft end of the iron, and the fame with its own on the remote end, and its action diminilhing with an increafe of difance, there mult always be an excefs of attraction, and the iron muit be attracted.
2. Each of the magnets A and B, in either of the pofitions reprefented in fig. 12. would alone attract the piece of common iron C But when placed together, the fouth pole of A tends to render the upper end of C a north pole; while the noth pole of B tends to make it a fouth pole. If their actions be nearly equal, the weight of C cannot be fupported by the magnetifin induced by any difference of action that may remain. While C is hanging by B alone, let A be gradually brought near; it gradually deftroys the action of the north pole of B , fo that C gradually lofes its magnetifm and polarity, and its weight prevails.
3. In all thofe cafes where the induction of magnetifm is flow, the attraction is weak in proportion. This is particularly remarked by Dr Gilbert. If we take pieces of common iron, and of fteel of different tempers, but all of the fame fize and form, we fhall find that the iron is much more ftrongly attracted than any of the reft, and that the attraction for each of them is weaker in proportion as they are harder. This diverfity is fo accurately obferved, that when the piece is thoroughly
fufeep.
sufceptible of magnetifm, we can tell, with confiderable precifion, what degree will be ultimately acquired, and how muels will be finally retained. Alfo, the attraction of the magnet for any of thofe pieces of fteel inereafes exacty in proportion as their acquired magnetifm increafes.
4. An ore of iron incapable of acquiring nagnetifm is not attracted by a magnet. But we know that, by cementation with charcoal duft, they may he rendered furceptible of magnetifm. In this fate they are attracted. It is an univerfal fact, that any fubftance that is attracted by a magnet may be rendered magnetical, and that none elfe can. We have already obferved that red hot iron is not attracted; nor does it acquire any directive power while in that flate. From all this we mult conclude, that the previous induction of magnetifm is the mean of the obferved attraction of magnets for iron, and that this is not a primary fact in maguetifm.

Thefe ohfervations alfo complete the proof that magnetic attraction and repulfion are equal at the fame diftance, and follow the fame law. Dr Gilbert feems to think that the repulfion is always weaker than the attraction; and this is almoft the only miftake in conception into which that excellent philofopher has fallen. But it only requires a fair comparifon of facts to convince a good logician, that fince, in every cafe, and at cvery diltance, either pole of a magnet attracts either end of a picee of common iron, it is impoffible that one of thefe forces can exceed the other. It might be fo, were it not that induced magnetifm is durable in proper fubflances. And if we take magnets which have been made fuch by induction, and prefent them to each other with their fimilar poles fronting each other, they never fail to repel each other at confiderable diftances, and even at very fmall diftances for a few moments; and this is the cafe whichever poles are next each other. This cannot be on any other fuppofition. Cafes would occur of polarity without attraction, or of attraction witheut polarity. Such have never been feen, any more than the Theamedes. always repelling iron.

Let a great number of fimall oblong pieces of iron be lying very near each other on the furface of quickfilver. Bring a ftrong magnet into the midft of them. It immediately renders them all magnetical by induction. The one neareft the north pole of the magnet immediately turns one end toward it, and the other end away from it. The fame effect is produced on the one that is jult beyond this neareft one Thus the semote end of the fift becomes a north pole, and the neareft end of the fecond becomes a fouth pole. Thefe, being very near each other, muft mutually attract. The fame thing may be faid of a third, a fourth, and fo on. And thus it appeats that not only is magnetifin induced on them all, but alfo that the magnetifin of each is fo difpofed, that both ends of it are in a flate of attraction for the ends of fome of its neighbours; and that they will therefore arrange themfelves by coalefence in fome varticular manner. Should a parcel of them chance to he ftanding with their centres in a magnetic curve, with their leads and points turned in any ways whatever, the moment that the magnet is bronght among them, and fet in the axis of that maguetic curve, the whole pitces of this row will inftantly turn towards each other, and their ends will adhucre together, if they are near enough ; otherwife they will only point tuward each

Suppl. Vol. II. Part I.
uther, forming a fet of tangents to the magnetic curve, reaching from one pole of the magnet to the other.

Or, fuppofe a yaft number of fmall bits of iron, each flaped like a grain of barley, a little oblong. Let them be icattercd over the furface of a table, fo near eacla other as juft to have room to turn round. Let a magnet be placed in the midit of them. They will all have magnetifm induced on them in an inflant; and fuch as are not already touching others, will turn round (becaufe they reft on the table by one point only), and each will turn its ends to the ends of its neighbours; and thus they will arrange themfelves in curves, whieh will not differ greatly from true magnectic curves (becaufe each grain is very fhort), iffuing fiom one pole of the magnet, and terninating in the orher.

Does not this fuggeft to the, reflecting rcader an explanation of that curious arrangement of iron filings round a magnet, which has fo long entertained and puzzled both the philofophers and the unlearned, and which has given rife to the Cartefian and other theories of magnetion? The particles of iron filings are little rags of foft iron torn off by the file, and generally a little oblong. Thefe muft have magnetifm induced on them by a magnet, and, while falling through the air from the liand that flrews them about the magnet, they are at perfect liberty to arrange themfelves nagnetically ; and muft thercfore fo arrange themfilves, forming on the table curves, which differ very little indeed from the true magnetic curves. Suppofe then featered about the table before the magnet is laid on it. If we pat the talle a little, fo as to throw it into tremors, this will allow the particles to dance, and turn round on their points of fupport, till they coalefce by their ends in the manner already defcribed.

All this is the genuine and inevitable confequence of. what Dr Gilbert has taught us of induced magnetifm. It mult be fo ; and cannot be otherwife. This curious arrangement of iron filings round a magnet is therefore not a primary fact, and a foundation for a theory, but the efult of principles mucla more general.

Moft of our readers know that this difpofition of Renarke iron filings has given rife to the chief meclanical theo- on the theries which have bren propofed by ingenious men for the ories by intexplanation of all the phenomena of magnetifn. An pullion. inviitble fluid has been fuppofed to circulate through the pores of a magnet, running along its axis, iffuing from one pole, Atreaming round the magnet, and entering again by the other pole. This is thonght to be indicated by thofe lines formed by the filings. The ftream, running alfo through them, or around them, arranges them in the direction of its motion, juft as we ohferve a flream of water arrange the flote grafs and weeds. It would require a volume to detail the different manners in which thofe mechaniciaus attempt to account for the attraction, repulfion, and polarity of magnetic bodies, by the meclanical impultion of this fluid. Let it fulfice to fay, that almoll every tep of their theories is in contradiction to the acknowledged laws of impulfion. Nay, the whole attenpt is againft the frift rule of all philofophical difurfion, never to admit for an explamation of phenomena the agency of any caufe which we do not how to exill, and to operate in the very phatemenon. We know of no fuek fluid; and we ean demonflrate, that the genuine effeets of its inpulfical would be totally unlike the phe-
nonena of magnetifin. But the proper refutation of thefe theories would fill volumes. Let it fuffice (and to (very logician it will abundantly fuffice) to remark, that this phenomenon is but a fecondary fact, depending on, and refulting from, principles much more general, viz. the induetion of magnetifm, and the attraction of diffinilar, and repultion of fimilar, pules.
The above explanation of the curious difpofition of irow filings round a magnet, occurred to the writer of this article while ftudying natural philofophy, on feeing the Profelfor extibit Mr Henthaw's beautiful experiment in proof of terreflial magnetifm *. He at that * Sce V_{A-} time imagined himfelf the author, and promifed himmation, felf fome credit for the thought. But having feen the Encyct. Pbyjologit Nova de Magnete by Dr Gilbert, he found p. 62 . that it had not efcaped the notice of that fagacious phi-
lofopher; as will appear paft difpute from the following paffage, as well as fome others, lefs pointed, in that work: " Magnetica frufta (that is, fubftances fufceptible of magnetifm) bene et convenienter intra vires pofita, mutuo coherent. Ferramenta, prefente magnete (etiamfi magneten non attingant), concurrunt, folicité fe mutuo querunt, et amplexantur, et, conjuncta, quafif ferruminantur. Scobs ferrea, vel in pulverem redacta, fiftulis impofita chartaceis - fupra lapidem meridionaliter locata, vel propius tantum admota, in unum coalefeet corpus; et fubito tam multæ partes concrefcunt et combinantur; ferrumque aliud affectat conjuratorum turina et attrahit, ac fi unum tantum et integrum effet ferri baeillum; dirigiturque fupra lapidem in feptemtriones et meridiem. Sed cum longius a magnete removeantur ($\operatorname{tanquam~fo-~}$ luta rurfus) feparantur, et diffluunt fingula corpufcula." B. ii. c. ${ }^{23}$.

Mr 历pinus alfo had taken the fame vieur of the fub* See $\S 3 c 6$. ject *. It is alfo very clearly conceived and expreffed by the celebrated David Gregory, Savilian Profeffor of aftronomy in the Univerlity of Oxford, in a MS. volume of notes and commentaries, written by him in 1693, on Newton's Principia, and ufed by Newton in improving the fecond edition. The MS. is now in the library of the univerity of Edinburgh. Gregory's words are as follow: "Mihi femper dubium vifum eft num magnetica virtus mechanicé, i. e. per impulfum, producatur. Mirum eft, effluvia, yuæ ferrum agitare valent, bracteas aureas interpofititas ne vel minimum a loco movere. Lucretii et Cartefii theoriam, de fugato intermedio aëre, refutat experimentum infra aquam inftitutum. Sulci in limatura ferri, magneti in plano cujuf. vis meridiani circumpofita, non funt ab efluviis fecundum iffos canales motis, fed ex inde, quod iffa ramenta, magnetice excilata, fofe fecundum longitulinem et fecundum polos dijponumt. Ex altera vero parte exinde quod vis magnetica, interveniente flamma aut calore, interrumpatur, quod virga ferrea, vel diuturno fitu perpendiculari, vel in eo fitu frigefcendo, virtutem magneticam a tellure acquirat, ut nos docet perfpicaeilimus Gilbertus. Qnod mallei fuper incudem ictu forti ad alterum extremum, virtutem aequirat magneticam; quod ictu forti vel faltern fortiuri ad alterum extremum poli permutantur, ut qui prius feptemtriones refpiciebat nunc auftrum refpicit ; quod ictu forti ad medium, virtutem
illam prorfus amittat. Hxc inquam, et fimilia, mecha. nicam ejus qualitates ortum arguunt. Hugenius, proter gravitatem, etian magneticam, et electricam virtutem, aliafque plures experimento novit vires naturales, ut mihi ipli narravit hac eftate anni 1693 . Qualis ut hæe furlitan quod cymba papyraced, prope labra valis aquaun, cui innatet, continentis, pofita, labruin viciaiflimum continuo, et cum impetu petat (A)." Nat. MS. in Prop. 23. ii. Prin.

Not only the mere arrangement of the filings in curve Filings ar ${ }^{48}$ lines follows of neceffity from the properties of induced wakiy at magnetifm, but all the fubordinate circumentances of this ${ }^{\text {tracted. }}$ phenomenon are included in the fame explanation. By continuing to tap the table, and throw it into tremors, the filings are obferved to approach gradually, but very flowly, to the poles of the magnet. Each particle is a very fnall temporary magnet. The attractive power of the great magnet, $\overline{n-p}-\overline{n-q}$, is therefore extremely finall in proportion to its directive power, $\overline{m+p}$ $-\overline{n+q}$. And we obferve that the accumulation of the filings round the poles of the magnet is fo much the flower as the filings are finer.

If a paper be laid above the magnet, and the filings Curious be fprinkled on it, we obferve them to conftipate along fact. its edges, while none remain immediately above its fub. ftance; they are all beyond, or on the outfide of its outline, and they are obferved not to he lying flat on the paper, but to be flanding obliquely on one point. They move off from the paper immediately above the magnet, becaufe they repel each other. They ftand obliquely from the edges, becaufe that is the direction of a magnetic meridian at its parting from the pole. If the magnet be at fome diftance below the paper, then tapping the paper will caufe the filings to move away fiom the magnet laterally. This fingular and unexpected appearance is owing to the combination of gravity with the magnetic action. A particle, fuch as $n s$ (fig. 13.), refts on the paper by the point n, which is a temporary north pole (S being fuppofed the fouth pole of the magnet). The particle takes a pofition n s nearer to the lorizon than the pofition $n 0$, which it would take if its centre of gravity b were fupported. The poftion is fuch, that its weight, acting vertically at b, is in equilibrio with the magnetic repulfion $s d$, exerted between S and s. When the paper is tapped, it is beaten down, or withdrawn from n, and the farticle of iron is left for a moment in the air. It therefore turns quickly round b, in order to affume a pofition parallel to n o, and it meets tl.e paper, as that rifes again after the flroke, in a point farther removed from the magnet, and again defcends by its weight (turning round the newly fuppurted point n), till it again takes a pofition parallel to $n s$, but farther off, as reprefented by the dotted line. Thus it travels gradually outwàrds from the magnet, appearing to be repelled, although it is really attracted by it. If the magnet be held above the paper, at a little diftance, the filings, when we repeatedly pat the paper, gradually collect into a heap under it. This will appear very plainly to one who confiders the fituation of a particle in the manner now explained.
(A) Perlaps it may be proper to obferve, that Dr Gregory exprefles his differing in his opinion from Newtonabout magnetifin. Newton, in this propolition, thinks that the law of magnetic action approaches to the in:verfe triplicate ratio of the diftances. Dr Gregory invalidates the argument ufed by Newton.

The curve lines formed by very fine filings approach very nearly to the form of the primary curve which indicates the law of magnetic action in the way already explained. If the magnet be placed onder water, and if filings be fprinkled copiounly on the furface of it from a gavize fearce, held at fome dillance ahove it, the refittance to their motion through the water gives them time to arrange themfelves magnetically before they reach the bottom, and the lines become more accurate. But they were fo much deranged by any method that we could take for removing the water, and meafuring them, that we were difappointed in our expectations of obtaining a very near approximation to the law of action.

We took notice of fome very fingular phenomena of a compafs needle in the weighbourhood of two magnets, and we obferved that, in this cafe alfo, the needle was always a tangent to a curve of another kind, and which we called fecondory and compound magnetic curves. Thefe are produced in the fame way, by flrewing iron-filings round the magnets. Many reprefentations have been given of thefe curves by different authors, particularly by Mufchenbroeck, in his Effais de Pbyfique; and by Fufs in the Comment. Petropolit. Great uie has been made of thefe arrangements of filings by two magucts in the theories of magnetifm propofed by thofe who infilt on explaining all motion by impulfe. When the diffimilar poles of two magnets A and B (fig. 14.) face each other, the curves formed by the filings confiderably refemble thofe which furround a fingle magnet, and give the whole fomewhat of the appearance of a magnet with very diffufed poles. The arranging fluid, which fireams from one pole of a magnet, is fuppofed to meet with no obftruction to its entry into the adjoining pole of the other magnet, but, on the contrary, to be impelled into it ; and therefore (fay the propofers) it circulates round buth as one magnet, and by its vortex brings the magnets together; which phemomenon we call the attraction of the magnets. But when the fimilar poles front each other; for example, the poles from which the arranging fluid iflues, then the two ftreams meet, obitruct each other, accumulate, ard, by this accumulation, caufe the magnuts to recede from each other; which we call the repulion of the magnets. This is the only explanation of this kind that can niake any pretenfions to prubability, or indeed that can be conceived. For how the fice circulation in the former cafe can bring the two magnets torether, no perfon can form to himfelf any conception. We fee nothing like this produced by any vortex that we are aequainted with. All fuch vortices caufe bodies to feparate. But even this explanation of magnetic repulion is inadmiffible. It will not apply to the repulfion of the recciving poles; and the pbenomena of the filings are inconifitent with the notion of accumulation. The filings indeed accuinulate, and they look not unlike two ftreams which oppofe each other, and deflect to the fides (fee fig. 15.): But, unfortunately, by tapping the paper gently, the filings do not move off from the magnets, but approach them much fafter than in any other experiment. The phenomenon receives a complete and palpable explana. tion from the principles we have eftablifhed. Both magnets concur in giving the fame polarity to every particle of the iilings. Thus, if the fronting poles are north poles, each particle has its neareft end made a vi-
gorous fouth pole, and its remote end a nortis pole; and it is therefore ltrongly attracted towards both magnets while it is arranged in the tangent to the fecondary curve of that clais, which croffes the others nearly at right angles.
Since it is found, that the magnetifm, even of natu Magret, ral lwadllones and hard fteel, and fill more thole of fof- numf affect ter tempered fteel, are continuaily tending to decay; each other. and fince we find that it may be induced by mere approach to a magnet; and fince we know that magnets may oppofe each other in producing it-it is reafonahle to fuppofe, that when a picce of iron has acquired a flight, though permanent magnetifm, by the vicinity of a magnet, a magnet applied in the oppofie direction will deftroy it, and afterwards produce the oppofite magnetifm.

Accordingly, we may clange the pules of foft mar. nets at pleafure.

Farther; fince we find that loadtones and hard tempered theel bars are diftinguithed from foft ones only by the degree of obftinacy with which they retain their prefent condition, we fhould alfo expect that hard magnets will even affect each other. It mult therefore happen, that a powerful magnet applied to a weak one, fo that their fimilar poles are in contact, thall weaken, deftroy, and even change the magnetifm of the weaker. Dr Knight's famous magazine of magnets enabled him to change the poles of the greateft and the ftrongeft natural loadfone, or artificial magnet, that conld be given him, in the fpace of one minute.
We now fee clearly the reafon why magnetic repul- Attration fion is weaker than attraction at the fame diftance, muft apWhen magnets are placed with their fimilar poles front- pear to ex. ing each other, in order to make trials of their repul- ceed rejulo fion, they really do weaken each other, and are not in the fame magnetical condition as before. For fimilar reafons, we fee how experiments with magnets attracting each other rather improve them, and make their attractive powers appear greater than they are. All thefe effects mult be moft remarkable in foft magnets, efpecially when long.
We alfo fee, that the obferved law of attraction and The "bbirrepulfion hetween two nagnets mull be different from ved law the real law of magnetic actiom. For, in the experi- hffers from ments made on attraction at different diftances, begin. the true. ming with the greateft diftarice, the magnetifm is contim:ally increafing, and the attraction will appear to increafe in a higher rate than the jult one: the contrary may happen, if we begin with the fmaller diftances. The refults of experiments on repulfion muft be ftill more erronenus ; becaufe it is eafier to diminifh any accumulation which required an exertion to produce it, than to pufh it fill farther.
We have now a complete explanation of the remark-Magnetifim able fact, that the induction of magnetifm does notimproves weaken the magnet employed; but, on the contrary, by induimproves it. The magnetifm induced on the iron caufes cugg it on it to act on the magnet employed in the very fane manner that a permanent magnet of the fame Chape, fize, and ftrength, would do. Nay, it will have even a greater effect; for as it improves the magnet, its own induced magnetifm will improve; and will therefore flill farther improve the magnet.
Hence it is, that, in whatever manner a magnet touches a piece of iron, it improves by it. It may be
huit
hurt by a magnet in an impraper pofition; but it always puts common iton into a flate which increafes its own magnetifm. This has been know: as long as magnetifm itfelf; and the ancients conceived the notion that the magnet fomehow fed upon the irou (B).
We thiak that thefe obfervations authorife us to fay, that in reducing a loadfune into a convenient hape, as much as poffible of the operation fhould be performed by grinding them with emery, in cavities made in large blocks of bammered iron. The magnetifm iuduced on the iron mult be favourable to the confervation of that in the loadtlone; which, we are perfuaded, is rapidly diflipated by the tremors into which this very elaftic fubfance is thrown by the grinding with coarle powders in any mould but iron. We imagine that the cutting off flices by the lapidaries wheel has the fane bad effect.

Not only will a magnet lift a greater lump of iron by its north pole, when another lump is applied to its fouth polc, but it will lift a greater piece of iron from an anvil than from a wooden table: for the magnet induces the properly difpofed polarity, not only in the iron which it lifts, but alfo in the anvil, or any piece of iron inmediately beyond it. This is fo difpofed as to in. creafe the magnetifm of the piece of iron between them; and therefore to increafe their attraction. The magnetifm induced on the anvif is alfo in part, and perhaps cliefly, induced by the intervening iron. Thefe experiments are extremely variable in their refults. Sometimes a fmall magnet will pull an iron wire from a large and frong one. Sometimes this will be done even by a piece of unmagnetic iron ; and the refults appear quite capricious. But they are accurately fixed, depending on the induced compound magnetifm. Mr ※pinus has flated fome of the more fimple cafes, in which we can tell which magnet thall prevail. But the unfolding even of thefe cafes would take a great deal of room, and mult be omitted here. Befides, we are too imperfectly acquainted with the degree of magnetifm induced on the varions parts of an iron rod, and the degree of magnetifm inherent in the various parts of the magnets, to be able to fay, with certainty, even in thofe fimple cafes, on which fide the fuperiority of attraction will remain. (for fo it may juflly be called, fince all is reduced to one fact) the procefs for communicating magnetifm to
bringing the pole of a magnet near to any magnetifable matter, produces a magnetifm of the kind oppofite to that of the pole employed. We know that this is the cafe with both poles, and that it obtains at all the diftances where magnetifm is obferved. We know that the action of one pole is contrary to that of the other; that is, it counteracts the other, prevents it from producing its effect, and deftroys it when already produced: and we know that the production of thefe effects refembles, in its refult, the protrufion of fomething fluid through the pores of the body, conflipating it in all remote parts; as if the virtue of a pole refided in this moveable matter. This is nearly all that we know of it ; and by the fe facts and notions we mult judge of the proopriety and effect of all the proceffes for magnetifing bodies.
The noft fimple method of magnetiling a fleel bar, is to apply the north pole of a magnet to that end which we wifh to render a fouth pole. Attention to the effects of this application is very inftructive. Have in readincfs a very finall compafs needle; turning on its pivot. It fhould not exceed half an inch in length, and fhould be as hard tempered as poffible, and Arongly impregnated. Immediately after the application of the magnet, carry the needle along the fide of the bar. If the bar be long, and very hard, we thall obferve a fouth polarity at the place of contact ; a north polarity at a fmall ditlance from it; beyond this a weak fouth polarity; then a weak and diffufed north polarity, \&c.; toward the remote end the polarity will be found very uncertain. The fame thing may be difcovered by laying a fiff paper on the bar, aud fpriakling iron filing over it , and then gently tapping the paper, to make then arrange themfelves in curve lines; which will point out the various poles, and flew whether they are diffufed or conitipated. It is very amufing and inftructive to oblerve the progrefs of this impregnation. In a few minutes after the lirft application of the magnet, we fhail perceive the flate of magnetifm very fentibly changed. The north pole will be farther from the magnet, and will be more diltinct; the fouthern polarity will alfo be protruded, and may appear for a moment at the remote extremity. The change advances; but the progrefs is more fow, and at laft is infenfible. When the bar is not harder than the temper of a cutting tuol, the procefs is foon over ; and if the bar is but fix or eight inches long, the remote cud thews the north polarity in a very few minutes. When the bar is very hard, the progrefs of impregnation is greatly expedited by Ariking it fo as to make it found. If it be fufpended by a ftring in a vertical pofition, and the magnet applied to its lower end, the friking it with a key will make it ring; and in this way make the progrefs of magnetization very quick : hut it does not allow it to acquire all the magnetifm that can be given it by a very flrong magnet.

But this is a bad way of impreguation. It is feldom that uniform magnetifn, with only two poles, and thofe bodies fitted for receiving and retaining it ; that is, the method of making artificial magnets. We fhall not employ much time on this, becaufe the moft approved methods have betn delivered at length in the article Magnetism of the Encyclopadia Britannica; and therefore we fhall juft make fuch obfervations on them as ferve to confirm, or to perfect them by the theory. We acknowledge, that we do not know the internal procefs by which magnetifm is induced, nor even in what this magnetifm confifls. All that we know is, that the
of equal ftrength, can be given. Even when there are but two, the remote pole is generally diffufed, and therefure feeble. It is much improved by employing two magnets, one at each end. And if the bar is not more than fix or eight inches long, and good magnets are employed, the magnetifm is abundantly regular. This, accordingly, is practifed for the impregnation of dipping needles, which mult not be touched, left we difturb the centre of gravity of the needle. But in all cafes, this method is tedious, and does not give ftrong magnetifm.

The method which was ufually practifed before we had obtained a pretty clear knowledge of magnetifm, was to apply the pole of a magnet to one end of the bar, and pafs it along to the other end, preffing moderately. This was repeated feveral times on both fides of the bar, always beginning the flroke at the fame end as at firt, and, in bringing the magnet back to that end, keeping it at a diftance from the bar. The effect of this operation was to leave the end at which we beEan the ftroke poffeffed of the polarity of the pole em. ployed.

A general notion of the procefs may be given as follows, obferving, however, that there occur very many great and capricious anomalies. When the north pole N (fig. 16.) of the magnet A is fet on the end C of the bar CBD, a fouth pole is produced at C, and a north pole at D, when the length of the bar is moderate. As the magnet advances flow Fylong the bar, the fouthern polarity at C firt increafes, then diminifhes, and vanilhes entirely when N has arrived at a certan point a; after which, a northern polarity appears at C, and increafes during the whole progrefs of the magnet. In the mean time, the northern polarity firft produced at D increafes till the magnet reaches a certain point ε, then diminifhes, vanifhes when the magnet reaches a certain point f; aft:r which, a fouthern polarity appetars at D , which increafes till the magnet reaches D . Mr Brugnann, who firlt attended minutely to theie particulars (for Gilhert fpeaks of them puintedly), calls a and f points of indifference, and e the culminating point of the pole 1 , and i the culminating point of the pole C. Hardly can any general rule be given for the fituation of thefe points, nor even fur the order in which they fland; fo great and capricious are the anomales in an amazing leries of experiments narrated by brugmann and by Van Swinden. Repeating the operation, and beginning at C , the nurthern polarity there is weakened (fometimes deflroyed), then reflured, and continually increafed during the reft of the flroke. The fouthern polarity at D is alfo firt weakend, and fometimes deflroyed; then rettored, and fivally angmerited. The points i, n, f, f, change their fituativis, and fiequently their urder.
Van Swiuden has attempted to deduce fome gencral laws from his immenfe lift of experiments, avoiding every confideration of a hypothefis, or the lealt conjecture by what means thefe faculties are excited. But though we have perufed his invelligation with care and candor, we mult acknowledge, that we have not derived any knowledge which can help us to predict the refult of particular modes of tratment with any greater precifion than is fuggetted by a fort of cump:on fenfe aided (or perhaps perverted) by a vague nution, that thefe energies refide in fumething, which avoild the pole of the fame name, carrying along with it this di-

Ainctive energy or polarity. This conception tallies perfectly with thefe obfervations of Brugmann and Van Swinden; and admits of all the anomalies in the fituation of Bergmann's indiferent and culminating points, if we only fuppofe that this motion is obltructed by the particles of the body. We mull leave this to the reflection of the reader, who will guefs how, when the magnet is between C and i, this fubflance, avoiding the pole N of the magnet, efcapes below it, and gocs toward the farther end. As the magnet advances, it drives fome of this back again, \&c. \&\& c. This is gratuitous; but it aids the fancy, which, without fome conception of this kind, has no object of fteady contemplition. We have no thought when we fpeak of the generating at C , or a, or e, a faculty of foime kind, by the exertion of the fame faculty in N . The conception is too abffracted, and much too complex. We inuft content ourfelves with knowing, that N produces a fouth pole immediately under it, and a north pole everywhere elie, or endeavours to do fo. It is unneceflary to intifit longer on this method: Common fenfe fhews it to be a very judicious one.

This method was greatly improved in beginning the friction at the centre. Apply the north pole at the centre or middle of the bar, and draw it over the end intended for the fouth pole. Having done this feveral times to one end on both fides, turn the magnet, applying its fouth pole to the middle of the bar, and drawing it feveral times over the end intended for the north pole.

It was fill more improved by employing two magnets at once, placed as in fig. 17 . on the middle L of the bar, and drawing them away from each other, wrer the ends of it, as hewn by the directing darts, and repeating this operation. It is plain that, as far as we undertiand any thing of this matter, this procefs mult. be much preferable to cither of the furmer two. The magnets A and E certainly concur in producing a pro-perly difpofed maguectim on all that lies between thein; and therefore on the whole bar at the end of each. Itroke. The end C mult become a north, and 1) a. fouth pole. Still, however, as the flroke goes on to the point of indifference, (ach magnet tends to weaken tie polarity of the parts fituated beyond it.
T his method continued to be practifed till abuut the year 175 2. Mr Canton, availing himfelf of the experiments of Mr Mitchell of Canbridge, publifhod his method by the double touch as it is called. Sice Monthly Revien for 1785 .

We need not repeat what has been detailed in the Miethod of? Encyclopadia, Magnetism, p. 440, \&c. and thall only doulle make tome obfervations on the peculiar advantages of ${ }^{\text {toucli. }}$ this proceis, as preferibed by Mitchell, Canton, andinproved by Mr Antheaume, in his memoir fur les Aimans artificiels 1766, which was crowned by the Acadeny of Sciences, (See alfo differtations on the futject by L.e Maire and Du Hamel, 1745).

There is an evident propriety in the arrangement invented by Mr Mitchell, reprefented in fig. 18. The, magnetifin induced on the two pieces of foft iroa AD and BC is an excellent methor for fecuring every acceflion of magnetifm to either of the bars. A good deal depends on the proper lize and length of thefe pisces; and our ignorance of the interior procefs obliges us to have recourle to experiment alone for afcertaining this. Whatever circumftances induce the Aronget magnetifm
on thefe pieces of iron, will caufe them to produce the greseet effect on the theel bars; and this will he indicate: by a srater attraction. Therefore that difance will be tle beit whic! enables two lars $A B$ and $D C$ to lit the gitatell veiglit huag on the piece $A D$ or $B C$. When we imprignated bars whole breadth was about one wen 'h of their length, and their thicknefs about oneliail ciftheir beadih, we \{ou:d, that if AD was about or: "uurth, o: newly ons-h hind, of $A B$, they carried mus: insl if it was (hther minch longer or much thorter. IIr Antheanites adlition of the tw , great bars of irom: I and F makes a felfble improvement of the begir.i.is of the impuçnations when very weak riagnets are mployed; but did not feem to us to be of any farther fervice os: the table. This is agreeable to any theory which can be eftablifhed by what we have faid hitherto.

The method of employing the magnets A and E (fig. 19), prefcribed by Mitchell and Canton, is extremely judicious. T'he meeting of the diflimilar poles at top increafes the magnetilm of each. The two dif. fimila: p iles F and G, certainly tend to give a regular and 1roper inagnetifm to the part FG of the bar which lics leetween them; and this is the cafe on whatever part of the bar they are placed. But each pole tends to deftroy the prefent magnetifm of what lies between it and the pole of the bar on that fide. But markthey tend to produce the defired magnetifm on what lies letween them with the fum of their forces; while each tends to deftroy the magnetifm of the part without it by the difference only of their forces. 'Iherefore, on the whole, as they are moved to and fro along the bar, and the foremoft one even made to pais over the end of it a little way, they always add to the magnetifm already acquired. This confideration feems to enjoin fetting F and G extremely near each other; for this feems to increafe the fum, and to diminifh the difference of their action. But it may he a queftion, Whether we gain more by ftrongly magnetifing a very fmall part during a very fhort white that the magnets pals over it, or hy acting on more of the bar at once, and continuing a weaker action for a longer while on this larger portion. Mr Espinus adds anc:aer conlideration depending on his notion of the internal procefs; but we defer this to another opportunity. The fafeft direction feems to be, to place them at the ditance which enaw bles them to lift the greateft weight. They are then undoubtedly acting with the greateit effect.

Mr Antheaume diceststo place the touching magnets as in fig. 20. for a reafon to lie mentioned alterwards. Mr Epinus alfo recommends it for reafons founded on his own hypothefis. We muit fay, that in our trials, we have found this method very fenlibly fuperior, cfpecially in the latter parts of the operation, when the refiftance to fatiher impregnation becomes nearly a balance for the accumulating power of the magnets; and we confider this as no inconfiderable argument for the juftice of Mr Epinus's bypothefis.

The great advantage of this method is the regularity of the magnetifm which it produces. We nover find more then two poles; and when the bars are hard, and of uniform texture, the polarity is very little diffufed, and feemingly confined to a very fmall fpace at the very extremities of the bar. This is indeed a prodigious advantage in point of ftrength. It is no lefs fo
in ordcr to fit the maguets for experiments on the law of maguetic action ; for the latitude which the diffured condition of the poles gives in the felcetion of the points from which the diftances are to be computed, has hitherto hindered us from pronouncing on the law of magnetic action with the precifion of which we think it fully fufceptible. This method alfo is the only one by which we have heen able to impregnate two bars joited end to end, confidering them: as one bar. We have fometimes (though very rarely) fucceeded in this; fo that when filings were flrewed over then, the appearance could not be diftinguilhed from a fingle bar.$N . B$. Yet even in this cafe, in one experiment with two bars of fix inches long, treated as one, when it could not be diftinguifhed, either by the appearance of the filings, or by going round it very near with a com. pais needle, a very frmall compafs needle difcovered a neutral point, and a reverfion of polarity fimilar to fig. ${ }^{4}$. at F, fhewing that it was really acting as two bars. Perhaps it mutt always be fo; and this queftion is of confiderable importance in the eftablifhment of any theory of the internal procefs.
It deferves remark, that, in order to fucceed in this attempt, a very conliderable preffure is neceffary. We were otiliged to clean the ends of the bars very carefully, and to force the frame of bars and foft pieces of iron Atrongly together by wedges, in the manuer of a form of types. We thought that wetting the ends of the bars with pure water aided the experiment ; and we are very cerlain that oil not only greatly obftructed it, but even fenfibly impeded the common proces. We had put a fingle drop of oil on a pair of bars which we were touching in the cominon Cantoniau method, that the magnets might be more eafily drawn along them; but we were furprifed at finding that we could not give a ffrong impregnation. The oil undoubtedly prevents the clofe contact. We found the finelt gold leaf produce the fame effect -in a great degree; as alfo talc, of which a fquare inch weighed $\frac{\pi}{3}^{2}$ th of a grain. We do not infer any thing like obftruction to the paffage of fomething material, but rather afcribe it to mere diflance; although we are of opinion, that in the impregnation of two contiguous bars, fo that the magrietifm (whatever it is) is difpoled precifely as in one bar, there is a material transference. But we fhall fpeak of this ia its due place.

It is not unworthy of remark, that we found bars to acquire more powerful magnetiom when pretty well polifhed than when rough. But we alfo found, that bars confiderably rough acquired the firf degrees of it much more expeditioully than thofe which are fmonth; although we never conld bring them to that high degree of magnetifm that the fame hars acquired after they had been polified. We think it probable, that the tremors, occalioned by the rough and harfh furfaces of the hard fteel, are the caufes of this phenomenon.

Some more obfervations on this method of the double touch will be made afterwards, when we confider the hypothefis of Mr Epinus; and we conclude the prefent fubject, by attempting to explain fome puzzling appearances which frequently occur in naking artificial magnets.
as poffible, the weaker magnet, when paffed over it ius the way practifed by Mufchenbroek, mult frrf deftroy part of this magnetifm ; and having done fo, it is unable to raife it anew to the fame degree of vigour.

Yet (fays Mufchenbroek with furprife) a large bar of common iron has greatly improved the magnet. A very large piece of iron mufl do this (efpecially if thaped like a horfefhoe, and applied with both heels), if the bar be not already at its maximum.

It was thourht wonderful, that, in the method of double touch, not only was the magnetifm of the mag. nets employed uot impaired, but, beginning with two magnets, whofe power is almoft infentible, and repeating the operations in the precife manner defcribed by Mitchel or Canton, not only the bars intended to be made magnetical, but alfo the magnets employed, may tee brought to their higheft poffible fate of magnetifm. This is in evident conformity to the general facts of induced magnetifm, and affords the ftrongeft proof that nothing is communicated in this operation, but that powers refiding in the hars are excited, or hrought into action. The manipulation merely gives occafon to this action, as a fpark of lire kindles a city.

There fill remain fome circumitances of this method, as practiled by Savery, Canton, and Antheaume, which are extremely cturious and important.

Mr Savery had obferved a fmall bit of fleel acquire very fertible magnetifm by lying long in contad with the lower end of a great window bar. T'elling this to a friend, he was, for the firft time, informed, that this had been long obFerved, and that Dr Gilbert had made fome curious inferences from it. Mr Savery wanted fome magnets, and was at a diftance from town. Reflecting, like a philofopher, on what he had heard and obferved, he faw here a fource of magnetifm which be could increafe, in the manner commonly practifed in making magnets. He placed the bar AB (fig. 21.) to be magnetifed between two great bars of common iron C and D , placing all the three in the magnetical direction. He took another bar EF, and put two little pieces of iron, like the armour of a loadtone, on its ends: and with thefe ends he rubbed the bar AB, rubbing the upper half of it with the end F, and the lower with the end E. The refult of this was a very brifk magnetifm in a few minutes, which, by various well devifed alternations, he brought it to its highett degree. His numerous experiments publifhed in the philofophieal Tranfactions in 1745, contain much curious information, highly deferving the attention of the philofophers. Mr Canton, proceeding on the fame principle, that bars of iron, which have been long in a vertical pofition, acquire an efficient magnetifm, begińs his operations by placing his fteel bar on the head of a kitchen poker, and rubs it with the lower end of a pair of kitchen tongs. Mr Antheaume adheres more ftrictl_{y} to the inferences from the principle of terreftrial magnetifm, and repeats precifely the previous difpofition of things practifed by Mr Savery, placing his little fteel bar AB (fig. 22.) between two great bars C and D of common iron, and arranging the whole in the magnetic direction. Then, proceeding moft judicioufly on the fame principle, he greatly improves the procefs, by employing two bars EF and GH for the touch, holding them about an inch apart, inclined about 15° to the bar AB . It is plain, that the lower end
of each of thefe five bars is a north pole, and the upper end a fouth pule. Therefore the poles F and G concur in giving the proper magnetifm to the portion FG of the fteel bar which is between them; and by rubbing it with thefe poles up and down, overpalfing each extremity ahout half an inch, he mut foon give to the bar AB a regular magnetifm ; weak, perhaps, but to be afterwards increafed in the Cantonian method, on a horizontal table. In this manner did Mr Antheaume make naagnets of very great flrength in $1_{7} 66$. Sce his Diferration already quoted.
Thefe obfervations naturally bring us to the Physio-Gilberr's ingia Nota de Magnet et corporibus Magne-tertefrial TICIS of Dr Gilbert; a difcovery which the fagacious magnetifin. Kepler claffes among the greatet in the annals of fience.

It could not be that a phenomenon fo general, and fo interefting and important as the natural pularity of magnetic hodies, would be long known without exciting caniofity about its caufe. Accordingly the philofophers of the 15 th century fpeculated much about it, and entertained a variety of opinion, if that can be called an opinion which can hardly be faid to exprefs a thought. We have in Marfigli Ficino a hort notice of many of thefe opinions. Some mainta:ned that the needle was directed by a certain point in the heavens, as if that were faying more than that it always pointed one way. Others, with more appearance of reafoning, afcribed the direction to valt magnetic rocks. But all this was without giving themfelves the trouble of trying to afcertain what fituation of fuch rocks would produce the direction that is obferved. Fracateri was, if we miftake not, the firlt who thought this trouble at all ne. ceffary ; and he obferves wery fentibly, that if thofe rocks. are fuppofed to be in any place yet vifited by navigators, nod if they act as loaditones do (a circumftance which he fays muft be admitted, if we attempt to explain), the direction of the needle will be very different from what we know it to be. He therefore places them in the inacceffible polar regions, but not in the very pole. Norman, the difcoverer of the dip of the mariner's needle, or of the true magnetic direction, was naturally led by his difoovery to conceive the directing caufe as placed in the earth; becaufe the north point of the needie, in every part of Europe, pointy very far below the horizon. But although he calls the treatife in which he announces his difcovery the Nerw Altrative, he does not exprefs himfelf as fuppofing the needle to be attracted by any point within the earth, but only that it is always directed to that point.

It is to Dr Gilbert of Colchefter that we owe the opinion now univerfally admitted, that magnetic polarity is a part of the conflitution of this globe. Norman had, not lung before, difcorered, that if a fleet needle be very exactly balanced on a horizontal axis, like the beam of a common balance, fo that it would retain any pofition given it, and if it be then touched with a magnet, and placed on its axis in the magnetic merdian, it is no longer in equilibrio, but at (at London) the north point of it will dip 72 or 73 degrees below the horizon. He did not, however, publifl his difcovery till he had obtained information how it food in other parts of the world. The differences in the variation in different places naturally fuggelled the neceffity of this to him. Being a maker of mariners compaffes,
paffes, and teacher of navigation in London, he had the fairel's opportunities that could be defired, by furnifhing dipping needles to fuch of the navigators, his fcholars, as lhe knew moft able to give him good information. And the accounts which he received made his difenvery, when announced to the world, a very complete thing ; for the commanders of thips engaged in long voyages, and particularly to China, informed him that, it the vicinity of the equator, his dipping needles remained parallel to the horizon, but that in coming toward the north pole, the north end of the needle was depreffed, and that the fouth end dipped in like nanner at the Cape of Good Hope, and in the Indian Ocean; that the needle, gradually approached"the horizontal pofition as the fhip approached the equator, hut that in coming to the north of it at Batavia, the north point again dipped, and at Canton was feveral degrees below the horizon.

On thefe authorities, Norman boldly faid that, in the equatorial regions, the needle was horizontal, and that either end dipped regularly as it approached either pole; and that in the poles of the earth, the needle was perpendicular to the horizon. He therefore announced this as a difcovery, not only fingularly curious, but alfo of immenfe importance; for by means of a dipping needle the latitude of a fhip at fea may be found without feeing the fun or flars.

Dr Gilbert, comparing this pofition of the compafs needle with the pofitions which he had obferved fmall ricedles affume in his numerous experiments in relation to a magnet, as we have defcribed at great length, was naturally led to the notion of the earth's being a great loadftone, or as containing one, and that this arranged the dipping, or, in general, the mariner's needle, in the fame manner as he obferved a great magnet arrange a fmall needle poifed on its pivot. He therefore compofed his Phifiologia Nova de Magnete, et de Tcllure magno Magnele ; in which he notices fo many points of refemblance to the directive power of a magnet, that the point feems no longer to admit of any doubt. Dr Gilbert's theory may be thus expreffed:

All the phenomena of natural magnetifm are analogous to what we fhould obferve, if the earth were a great magnet, having its poles near the poles of the tarth's equator, the north pole not far from Baffin's Bay, and the fouth pole nearly in the oppofite part of the globe. A dipping needle, under the influence of this great magnet, muft arrange itfelf in a plane which paffes through the poles of the magnet, the pofition of which planc is indicated (at lealt nearly) by the ordinary compafs needle ; and it will be inclined to the horizon fo much the more as we recede from the equator of the great magnet.

This opinion of Dr Gilbert was nnt lefs ingenious than impoitant ; and if firmly eftablifhed, it furnifhes a complete theory of all the phenomena of magnetifin. But obfervations were neither fufficiently numerous in the time of Dr Gilbert, nor fufficiently accurate, to - enable that great genius to affign the pofition of this great magnet, nor the laws of its action. The theory was chiefly founded on the phenomena of the dipping needle; phenomena which might have been unknown for ages, had the firt notice of them fallen into any other hands than Norman's. They are not, like thufe of variation, which might be made by any failor. They
require for their exhibition a dipping needle, and the attention to circumfances which can occur only to a mathematician. A dipping needle is to this day, notwithitanding all our improvements in the arts, one of the mout delicate and dificult talks that an inftrument maker can take in hano, and a good one cannot be had for lefs than twenty guineas. We are confident that fuch as even Nornan could make were far inferior to what are now made, and quite unfit for ufe at fea while the thip is under fail, although they may be tolerably exact for an obfervation of the dip in any port; and we prefume that it was fuch offervations only that Norman confided in. Our readers will readily conceive the difficulty of poifing a needle with fuch a perfect coincidence of its centre of gravity and axis of notion, and perfect roundnefs of this axis, that it fhall remain in any pofition that is given it. Add to this, that a grain of duf, invifible to the nicent eye, getting under one fide of this axis, may be fufficient for making it affume another pofition. It muft alfo be a dificult matter to preferve this delicate thing, fo as that no change can happen to it. Befides, all this muft be performed on a piece of tempered fleel which we are certain has no magnetifm. Where can this be got, or what can infure us againft magnetifin? Nor is there lefs difficulty in making the obfervations without great rik of error. If the needle, moveable only in a vertical plane, be not fet in the plane of a magnetic meridian, it will always dip too much. At London, where the magnetic direction is inclined 73° to the hdrizon, if it be in a plane 20° from the magnetic meridian, it will ftand almoft perpendicular; for it is eafy to fee, by the mechanical refolution of forces, that it will take the pofition which brings it neareft to the true magnetic direction. This, we think, is confirmed by feveral of Normaii's and other uld obfervations of dip. They are much greater than they lave been fince found in the fame places.

Mr Daniel Bernoulli has given a very ingenious prin- ${ }_{\text {annell }}^{6,}$ ciple, by which we can make a dipping needle which unnlli'od will give a very accurate obfervation on fhore; and be-ping nee ing fo eafily executed, it deferves to be generally known. Let a dipping needle be made in the beft manner that can be done by a workman of the place, and balanced with fome care before impregnation, fo that we may be certain that when touched it will take nearly the true dip. Tuuch it, and ohferve the dip. Deftroy its magnetifm, and then alter its balanet in fuch a manner that, without any magnetifm, it will arrange itfelf in the inclination of the obferved dip. Now touch it again, giving it the fame poles as before. It is plain that it will now approach exceedingly near iudeed to the true dip, becaule its want of perfect equilibrium deranged it but a few degrees from the proper direction. If this fecond ohfervation of the dip thould differ feveral degrees from the firt, by the inaccurate firff formation of the needle, it will be proper to repeat the operation. Very rarely, indeed, will the third obfervation of the dip vary frum the truth half a degree.

Mr Bernoulli makes this fimple contrivance anfwer the purpofe of an univerfal inftrument in the following ingeniou, nammer. A very light brafs graduated circle EFG (fig. 23.) is fixed to one fide of the needle, concentric with its axis, and the whole is balanced as nicely as pulfible before impregnation. A very light index
$C D$ is then fitted on the axis, fo as to turn rather ftifly on it. This will detray the equilibrium of the needle. If the needle has been made with perfect accuracy, and perfectly balanced, the addition of this index would caufe it always to fettle with the index perpendicular to the horizon, whatever degree of the circle it may chance to point at. But as this is fearcely to be expected, fet the index at various degrees of the circle, and note what inclination the unnagnetic needle takes for each place of the index, and record them all in a table. Suppofe, for example, that when the eindex is at 50 , the needle inclines 46^{n} from the horizon. If in any place we obferve that the needle (rendered magnetic by lying between two ftrong magnets), having the index at 50 , inclines 46°, we may be certain that this is the dip at that place; for the needle is not deranged by the marnetifin from the pofition which gravity alnne would give it. As we generally know fomething of the dip that is to be expected in any place, we mult fet the index accordingly. If the needle docs not fhew the expected dip, alter the pofition of the iadex, and again obferve the dip. See whether this fecond pofition of the index and this dip form a pair which is in the tahle. If they do, we have got the true dip. If not, we muft try another pufition of the index. Noticing whether the agreement of this laft pair be greater or lefs than that of the former pair, we learn whether to change the polition of the index in the fame direction as before, or in the oppofite. The writer of this article has a dipping needle of this kind, made by a perfon totally unacquainted with the making of philofoplical inftruments. It has been ufed at Leith, at Cronftadt in Ruffia, at Scarborough, and at New York, and the dip indicated by it did not in any fingle trial differ $1 \frac{1}{2}$ degrees from other trials, or from the dip obferved by the fineft inftrumerts. He tried it himfelf in Leith Ruads, in a rough fea; and does not think it inferior, either in certainty or difpatch, to a needle of the moft elaborate conftruction. It is worthy of its moft ingenious author, and of the public notice, becaufe it may be made for a moderate expence, and therefure may be the means of multiplying the obfervations of the dip, which are of immenfe confequence in the theory of magnetifm, and for giving us an accurate knowledge of the magnetieal conllitution of this globe.

This knowledge is ftill very imperfect, owing to the want of a very numerous collection of obfervations of the dip. They are of more importance than thofe of the ho:izontal deviations from the meridian. All that we can fay is, that the earth acts on the mariner's needle as a great loadftone "would du. But we do not think that the appearances refemble the cftects of what we would call a good loaditone, having the regular magnetifm of two vigorous poles. The dips of the needle in various parts of the earth feem to be fuch as would refult from the action of an extremely irregular loadfone, having its poles exceedingly diffufed. The increafe of the dip, as we recede from thofe places where the needle is horizontal, is too rapid to agree with the fuppofition of two pules of conttipated magnetifm, whether we fuppofe the magnetic action in the inverfe fimple or duplicate ratio of the diftances, unlefs the great terreftrial magnet be of much fmaller dimenfions than what fome other appearances oblige us to fuppofe. If there be four poles, as Dr Halley imagined, it will be next to

Suppl. Vol. II. Part I.
impoffible to afcertain the pofitions of the dipping needle. It will be a tangent to one of the fecondary magnetic curves, and thefe will be of a very intricate fuecies. We cannot but confider the difcovery of the magnetic conflitution of this glube as a point of very great inportance, both to the phitofupher and to fo. ciety. We have confodered it with forne care; hut hio. therto we have not been able to form a fyitematic view of the appearances which gives us any fatisfaction. The well informed reader is fenfible, that the attempt by means of the horizuntal or variation needle is extremely tedious in its application, and is very unlikely to fucceed; at the fame time it mutt be well inderitood. The two differtations by Euler, in the $13^{t h}$ and 22 d volumes of the Men.oirs of the Royal A^{2} cademy at Berlin, are moft exccllent performances, and give a true notion of the difficulty of the fuhjoct, Yet, even in thefe, a circumftance is overluoked, which, for any thing we know to the contrary, may have a very great clect. If the magnctic axis be far removed from the axis of revolution, as far, for example, as Mr Chutchman places it, the magnetic meridians will be (generally) murh in-See Varisa clined to the horizon; and we thall err very far, if we Tion, En. fuppofe (as in Euler's calculus) that the dipping luce ${ }^{\prime} \mathrm{c}^{\text {cyd. }}$. will arrange itfelf in the verticle plane, paffing through the direction of the horizontal or variation needle; or if we imagine that the poles of the great magnet are in that plane. We even prefume to think that Mr Euler's affumption of the place of his fictitious poles (namely, where the needle is vertical), in order to obtain a manageable calculus, is erroneous. The introduction of this circumftance of inclination of the magnetic meridians to the horizon, complicates the calculation to fuch a degree as to make it alnoft unmanageable, except in fome felected fituations. Fortunately, they are important ones for afcertaining the places of the poles. But the inveftigation by the pofitions of the dipping needle. is incomparably more fimple, and more likely to give us a knowledge of a multiplicity of poles. The confideration of the magnetic curves (in the fenfe ufed in the prefent article), teaches us that we are not to imagine the poles immediately under thofe parts of the furface where the needle ftands perpendicular to the horizon, nor the magnctic equator to be in thofe places where the needle is hurizontal; a notion commonly and plaufibly entertained. Unfortunately our moft numerous obfervations of the dip are not in places where they are the molt inftructive. A feries thould be obtained, ex. tending from New Zealand northward, acrofs the Pacific Ocean to Cape Fairweather on the weft coaft of North America, and continued through that part of the continent. Awother feries fthould extend from the Cape of Good Hope, up along the wett coaft of Africa to the tropic of Capricorn; from thence acrofs the interior of Africa (where it would be of great in pertance to mark the place of its horizontality) through Sicily, Italy, Dalmatia, the eaft of Germany, the Gulph of Bothnia, Lapland, and the weft point of Greenland. This would be nearly a plane paffing through the probable fituations of the poles. Another feries fhould be made at right angles to this, forming a fmall circle, croffing the other near Cape Fairweather. This would pafs near Japan, through Borneo, and the weft end of New Holland; alfo near Mexico, and a few degrees weft of Eafter Illand. In this place, and at Borneo, S
the inclination of the magnetic plane to the horizon would be confiderable, but we cannot find this out. It may, however, be difcovered in other points of this circle, where the dip is confiderable. We have not roon in this fhort account to illuftrate the advantages derived from thefe feriefes; but the reflecting reader will be very fenfible of them, if he only fuppofes the great magnet to be accompanied by its magnetic curves, to which the needle is always a tangent. He will then fee that the firlt feries from New Zealand to Cape Fairweather, and the fecond from Cape Fairweather round the other fide of the globe, being in one plane, and at very different diftances from the magnetic axis, mut contain very inftructive pofitions of the needle. But we ftill confefs, that when we compare the dips already known with the variations, they appear fo irreconcileable with the refults of an uniform regular magnetifm, that we defpair of fuccefs. Every thing feems to indicate a multiplicity of poles, or, what is ftill more adverfe to all calculation, an irregular magnetifm with ve. ry diffufed polarity.

Much inftruction may furely be expected from the obfervations of the Ruffian academicians and their eleves, who are employed in furveying that valt empire; ret we do not meet with a fingle obfervation of the dip of the needle in all the bygone publications of that acade.
65°
And con. cerning the fituation of its poles. my, nor indeed are there many of the variation.

For want of fuch information, philofophers are extremely divided in their opinions of the fituation of the magnetic poles of this globe. Profeffor Krufft, in the 17th volume of the Peterfourgh Conmentaries, places the north pole in lat. $70^{\circ} \mathrm{N}$. and long. $23^{\circ} \mathrm{W}$. from London; and the fouth pole in lat. $50^{\circ} \mathrm{S}$. and long. $92^{\circ} \mathrm{E}$.

Wilcke of Stockholm, in his indication chart (Swed. Mem. tom. xxx. p. 218.), places the north pole in N. Lat. 75°, near Baffn's Bay, in the longitude of California. The fouth pole is in the Pacific Ocean, in lat. $70^{\circ} \mathrm{S}$.

Churchman places the north pole in lat. $59^{\circ} \mathrm{N}$. and long. $135^{\circ} \mathrm{W}$. a little way inland from Cape Fairweather; and the fouth pole in lat. $59^{\circ} \mathrm{S}$. Long. $165^{\circ} \mathrm{E}$. due fouth from New Zealand.

A planifphere by the Academy of Sciences at Paris for 1786 , places the magnetic equator fo as to interfect the earth's equator in long. 75°, and 155° from Ferro Canary Ifland, with an inclimation of 12 degrees nearly, making it a great circle very nearly. But we are not informed on what authority this is done; and it does not accord with many obfervations of the dip which we have collected from the voyages of feveral Britifh navigators, and from fome voyages between Stockholm and Canton. Mr Churchman has given a Nketch of a planifphere with lines, which may be called parallels of the dip. Thofe parts of each parallel that have been afcertained by oblervation are marked by dots, fo that we can judge of his authority for the whole conftruction. It is but a fketch, but gives more fynoptical information than any thing yet publifhed. The magnetic equator cuts the earth's equator in long. 15°, and $195^{\circ} \mathrm{E}$. trom Greenwich, in an angle of nearly 17 degrees. The circles of magnetic inclination are not parallel, being confiderably nearer to each other on the Short ineridian than on its oppofite. This circuinHance, being founded on obfervation, is one of the
ftrongeft arguments for the exiffence of a magnet of to. lerable regularity, as the caufe of all the ponitions of the compafs needle; for fuch muft be the pofitions of the circles of equal dip, if the axis of this magnet is far re. moved from the axis of rotation, and does not interfect it.

Now, if the fituation of the poles be any thing near the average or medium of thefe determinations, and if we form all our notions by analogy, comparing the pofitions of the compars needle in relation to the great terreftrial magnet, with the pofitions affumed by a finall needle in the neighbourhood of a magnet, we mult conclude, that the magnetical conflitutien of this globe has little or no reference to its regular exterinal form. The axis of the magnet is very far remuved from that of the globe (at leat 1500 miles), and is not wearly parallel to it, nor in the fane plane. It required the fagacity and the fkill of a Euler to fubject fuch anomalous maronetifm to any rules of computation; and every perfon qualified to judge of the fubject mutt allow his differtation in the $3^{\text {th }}$ volume of the Berlin Memoirs to be a work of wonderful refearch. It is a very agreeable thing to fee fuch a conformity between the lines which exprefs the regular magnetifm of Euler's differtation, and the lines drawn by Dr Halley from obfervation, and which appeared to himfelf fo capricious, tlat he defpaired (notwithfanding his confummate filll in geometry) of their ever being reduced to a mathematical and precife fyftem.

Without detracting from the merit of Dr Gilhert, Confirnawe may prefume to fay that his notion of the earth'stions of.Dr being a great magnet was not, in his mind, more than Gibert's a fagacious conjecture, formed from a very general and even vague comparifon. Yet the comparifon was fufficiently good to give him great confidence in his opinion that the action of this great magnet, in perfect conformity to what we obferve in our experiments with magnets, is the fource of all the magnetifm that we obferve. If there was nothing elfe in proof of the jultnefs of his theory, it is abundantly proved by the beautiful experiment of Mr Henfhaw, mentioned in the article Varsation, Encycl. p. 621. col. 2. An iron bar held nearly upright, attracts the fouth end of a compafs needle with its lower end ; and if that end of the bar be kept in its place, and the bar turned round till it becomes the upper end, the fouth point of the needle immediately turns away from it, and the north end is now attracted. This experiment may be perfectly imitated with artificial magnetifm.

Having fupported a large magnet SAN (fig. 24.), fo that its ends are detached from furrounding bodies, place a fmall needle B (poifed on its pivot) about three inches below the north pole N of the magnet, and in fuch a fituation that its polarity to the magnet may be very weak. Take now a fmall piece of common iron, and hold it in the pofition reprefented at C . Its lower end becomes a north pole, attracting the fouth pole of the needle. Keeping this in its place, turn round the piece of iron into the pofition D ; the fouth pole of B will now avoid it, and the nurth pole will be attracted. We directed the needle to be fo placed, that its polarity, in relation to the magnet, may be weak. If it be ftrong, it may act on the end of C or D like a magnet, and counterack the magnetifm induced on C or D by vicinity to A.

An anonymons writer in the Philofophical Tranfactions, No ${ }_{177}$. Vol. XV. relates feveral obfervations made during a voyage to the Eaft Indies, which are quite conformable to this. A few leagues northwefl from the ifland Afcenfion, the fouth point of the compafs needle hardly fhewed any tendency to or from the lower end of an iron bar. It feemed rather to avoid the upper end; it was not in the leaft affected by the middle of the bar; but when the bar was laid horizontal, in the magnetic direction, its two ends affected the diflimilar ends of the compafs needle very Atrongly; but when horizontal, and lying at right angles to the magnetic direction, its pularity was altogether indifferent.

As the other phenomena of induced artificial mag. netifm have the fame refemblance to the phenomena of natural magnetifm, a bar which has remained long in the vicinity of a magnet acquires magnetifm (permanent) in the fame way, and modified by the fame circumftances, as in natural magnetifm. Hammering a bit of common iron in the immediate vicinity of a magnct, gives it very good magnetifm. Expofing a red hot bar to cool in the neighbourhood of a magnet has the fame ef. fect. Alfo quenching it fuddenly has the fame effect. Quenching a fmall red hot fleel bar between two magnets, was found by us to communicate a much ftronger magnetifm than we could give it by any other method. Its form indeed was very unfavourable for the ordinary method of touching ; for it confifted of two little fpheres connected by a flender rod, and could fcarcely be impregnated in any other way than by placing it for a very long while between magnets. In all thefe experiments, the polarity acquired is precifely fimilar to that acquired by the fame treatment in relation to this fuppofed great terreftrial magnet. In fhort, in whatever manner we purfue this analogy in our experiments, we find the refemblance moft perfect in the phenomena.

We cannot but think, therefore, that this new phyfiology of the magnet by Dr Gilbert is well eftablifhed; and we think ourfelves authorifed to aflume it as a propofition fully demonftrated, that the earth is a great magnet, or contains a great magnet, the agency of whieh produces the direction of the magnetic needle, and all the magnetifm which iron acquires by long continuance iil a proper pofition. It is this which made us fay, in the beginning of this article, that attraction and polarity were not confined to maguets, but were properties belonging to all iron in its metallic flate. We now fee the reafon why any piece of iron brought very near to another piece will attract it-both become magnetical, in confequence of the agency of the great magnet; and their magnetifm is fo difpofed, that their mutual attractions exceed their repulfions. Alfo, why an iron rod, placed nearly in the magnetical direction, will finally arrange itfelf in that direction. Alfo, why the terreftrial polarity of common iron is indifferent, and either end of the rod will fettle in the north, if it have nearly that pofition at firf. The magnetifm induced by mere momentary pofition is fo feeble as to yield to any artificial magnetifn. As a moment was fufficient for imparting it, a moment fuffices for delfroying it ; and another moment will impart the oppofite magnetifin. But artificial magnetifm requires more force for its production, and fome of it remains when the producing caule is removed, and it does not yield at once to the contrary magnetifm. That there is no farther
difference appears from this, that long continued pofition gives determined and permanent magnetifm, and that it is deftroyed by an equally long continuance in the contrary polition. It feems to be very generally true, that a magnet will carry more by its north than by jts fouth polc. It fhould be fo in this part of the world, becaufe the terreffrial magnetifm induced on the iron confpires with the magnetifm induced by the north pole of a magnet, but counteracts the magnetifm induced by the fouth pole.

The propriety of Mr Savery's, Mr Canton's, and Mr Antheanme's proceffes for begiuning the impregnation of hard fteel bars is now plain, and the fuperior effect of the two great bars of common iron in the propoied method of Mr. Antheaume. We cannot but take this opportunity of paying the proper tribute of praife to the ingenuity of Mr Savery. Every circumptance of his procefs was felected in confequence of an accurate conception of magnetifm, and the combination of this fcience with Dr Gilbert's theory. His procefs is the fame with Antheaume's in every refpect, except the circumftance of the double touch borrowed from Mitchell and Canton. Thefe obfervations do not detract from the difcernment of Mitehell and Canton, who faw in thofe experiments what had efcaped the attention of hundreds of readers.

But there occurs an objection to this theory of Dr Seeming Gilbert, which was urged againt it with great force. objedtion We obferve no tendency in the magnet or compaff fronned the neédle toward this fuppofed magnet. An iron or ileel want of bar is not found to increafe its tendency downwards, fenfible atthat is, is not fenfibly heavier, when its fouth pole is up- traction. permoft in this part of the world. A needle fet afloat on a piece of cork arranges itfelf quickly in the proper direction; but if continued ever fo long afloat, it has never been obferved to approach the north fide of the veffel. This is quite unlike what we obferse in the mutual actions of magnets, or the action of magnets on iron. This objection appears to have given Dr Gilbert fome concern; and he mentions many experiments which have been tried on purpofe to difcover fome magnetical tendency. He gets rid of it as well as he can, by faying that the directive power of a magnet extends much farther than its attractive power. He confirms this by feveral experiments. But Dr Gilbert had not fludied tbe fimultaneous actions of the four poles, nor explained, by the principles of compound motion, how thefe produced all the poffible pofitions of the needle. Indeed, the compofition of mechanical forces was hy no means faniliar with philofophers at the end of the 16th century. We fee it now very diffinctly. The polarity of the needle, or the force with which it turrs itfelf into the magnetical pofition, depends on the difference between the furns of the actions of each pole of the magnet on both the poles of the needle; whereas its tendency towards the magnet depends on the difierence of the differences of thofe actions (fee $n^{\circ} 22,25$.) The firt may thus he very great when the other is almolt infenfible. We fee that coarfe iron filings heap about the magnet very faft, and that very fine filings approach it very flowly. Now, the largeft magnet that we can employ, when compared with the great magnet in the earth, is but as a particle of the finelt filings that can be conceived. This furely diminifhes exceedingly, if it does not entircly annihilate the objection: but as we
have heard it urged by many as an improbable thing, that a long magnet, kept afloat for many months (which has been done) fhall not thew the fmallff tendency towards the pole of the terreftrial magnet, we think it deferves to he conlidered with accuracy, and the queftion deciued in a way which will admit of no doubt.
This completely anfiwered.

Let the very fmall magnet C (fig. 25.) be placed near a great magnet A, and then near a fmaller magnet 13 , in fuch a manner that its polarity to both fhall
be the fame; and then let us determine the proportion between the attractions of A and B for the imall magnet C .

This will evidently depend on the law of magnetic action. For greater limplicity of invettigation, we fhall content ourfelves with fuppofing the action to be inverfely as the diftance.

Let $\mathrm{A} \mathrm{N},=\mathrm{AS},=a ; \mathrm{BN}=b ; \mathrm{C} n=c, \mathrm{AC}=d$, $\mathrm{BC}=\delta$; and let the abfolute force of A be to that of B at the fame diftance as m to 1 .

The maguetic action being fuppofed proportiunal to $\frac{1}{d}$, we have,

$$
\begin{aligned}
& \text { 1. Action of } \mathrm{AN} \text { on } \mathrm{C} s=\frac{m}{d-a-c} . \\
& \text { 2. } \\
& \text { 3. } \\
& \text { 4N on } \mathrm{C} n=-\frac{m}{d-a+c} \\
& \text { 4. } \\
& \text { 5. The on } \mathrm{C} s=-\frac{m}{d+a-i} . \\
& \mathrm{AS} \text { on } \mathrm{C} n=\frac{m}{d+a+c} . \\
& \mathrm{C}^{\circ}
\end{aligned}
$$

6. If c be very fmall in comparifon with a or b, the Whole action of A is very nearly $=\frac{8 \mathrm{macd}}{d^{2}-a^{2^{2}}}$.
7. And the tendeney of C to B is, in like manner, $=\frac{8 b c \delta}{\delta^{2}-b^{2}}$.

The directive powers of A and B are at their maximum itate when C is placed with its axis at right angles to the lines AC or BC. In which cafe we have,
8. The directive power of $A=\frac{4 m a}{d^{2}-a^{2}}$.
9. The directive power of $\mathrm{B}=\frac{4 b}{d^{2}-b^{2}}$.

When thefe directive powers are made equal, by plasing C at the proper diftances from A and B , we have,

$$
\begin{aligned}
& \text { 10. } \begin{array}{c}
\text { ma } a: 4 b \text {, or } m a: b=d^{2}-a^{2}: d^{2}-b^{2} \\
\text { And } m a y^{2}-m a b^{2}=b d^{2}-b a^{2} \\
m a \delta^{2}=b\left(d^{2}-a^{2}\right)+m a b^{2} .
\end{array} \\
& \text { 11. } \delta^{2}=\frac{b}{m a}\left(d^{2}-a^{2}\right)+b^{2} .
\end{aligned}
$$

Let the attractions of A and B for the very fmall magnet C , when its polarity to both is the fame, be expreffed by the fymbols α and β. We have
$\approx: \beta=\frac{8}{\left(d^{2}-a^{2}\right)^{2}}: \frac{8 b c d}{\left(\delta^{2}-b^{2}\right)^{2}}$, which, by n^{0} 10. is
 $=b d: m a d ;$ that is,
13. Attrn of $\mathrm{A}: \operatorname{artr}^{\mathrm{n}}$ of $\mathrm{B}=l d: m$ a δ.

As an example of this comparifon, let us fuppofe the great terreftrial magnet to be a thoufand times larger and ftronger than the magnet whofe attraction we are comparing with that of terreflrial magnetifm. Let us alfo fuppufe the diftance from the pule of the great marnet to be fmall, fo that its attiaction may be confiderable. Let us make $d=1200, a$ being $=1000$, and $b=1$. Thefe are all very reafonable fuppofitions. Subitituting thefe values in the formula, we have attrn of A : attrn of $B=1: 1000$ very nearly; and therefore when the needle, when placed near a magnet, vibrates by its polarity as faft as it does by natural magnetifm, its tendency toward that magnet muft be altugether infeufible; for the difproportion is incomparably greater than that of I to 1000 , in the larget magnets with which we can make experiments. Obferve alfo, that we have taken the cafe where the attractions are the ftrongeft, viz. when the magnet C is placed in the axis of A or B . In the oblique pofitions, tangents to the magnetic curves, the attractions are fmaller, almoft in any ratio.

We took the inverfe ratio of the diftances for the law of action, only becaufe the analy fis was very fimple. It is very evident that the difproportion will be trill more remarkable, if the action be inverfely as the fquare of the diftance.

The objection therefure to the origin of the polarity of the compafs needle, and of all other magnets, namel y, the action of a great magnet contained in the carth, appears plainly to be of no furce. We rather think that the want of all fenfible attraction, where there is a brifk polarity, is a proof of the juflnefs of the conjecture; for if the compafs needle were arranged by the action of magnetic rocks, or even extenfive itrata, near the furface of the earth, the attractions would bear a greater proportion to the polarities. We have cven obferved this. A confiderable mafs of magnetic flratum was found to derange the needle of a furveyor's theodolite at a confiderable diftance all around (about 140 yards). The writer placed the needle on a thin lath, which juft floated it on water in a large wooden difh, and fet it in a place where it was drawn about 15 degrees from the magnetic meridian. It was left in that fituation a whole night, well defended from the wind by a board laid on the difh. Next morning it was found applied to that fide of the difh which was nearelt to the difturbing rucks. It had moved about fix inches. This was repeated three times, and each time it moved in the fame direction (nearly), which differed confiderably from the direction of the needle itfelf.

It is now plain that we may, with confidence, affirme Dr Gilbert's theory of terreftrial magnetifm as fuffo ciently eftablifhed. And, fince we muit certainly call that the north pole of the grear magnet which is fituated in the northern parts of the earth, and fince thofe poles of magnets which attract cach other have oppofite polarities, we mult fay, that what we call tbe north pole of a mariner's needle, or of any other magnet, has the fouthern polarity.
We may now venture to go farther with Dr Gilbert,
and to fay that all the magnetifm which we obferve, whether in nature or art, is either the immediate or the remote effect of the action of the great magnet. As foft bars foon acquire a tranfient magnetifm; as hard bars, after long expofure, accuire a fenible and perma. nent magnetifin-we muft infer, that ores of iron, which are in a ftate fit for impreguation, mult acquire a fenfible and permanent magnetifm, by continuing, for a feries of ages, in the bowels of the earth. And thus the magnetifm of loadtones, which, till the difcuvery of the natural magnetifm acquired by pofition, were the fourees of all our magnetical phenomena, is now proved to be a neceffary confequence of the exiflence and agency of a great marget contained in the bowels of the earth.

It feems to refult from this theory, that, in thefe northern parts of the world, that part uf every watural loadfone that is at the extremity of the line drawn through the fone in the magnetic direesion fhould be its pole ; and that the loaditone, when properly poifed, fhould of itfelf affume the very pofition which it had in the mine. I)r Gilbent complains of the inatrention of miners (rude bominum genus, lucro porius quam phyficu confalentes) to this important circumitance. Once, however, he had the gond fortune to be advertifed of a great magnetic mafs lying in its matrix. He repaired quick. If to the nuine, examised it, and marked its points which were in the extremities of the magnetic line. When it was detached from its matrix, lie had the pleafure of finding its poles in the very places he expected. The loadftone was of confiderable fize, weighing about 20 pounds.-Mr Wilcke gives, in the Swedifh Commentaries, feveral inftances of the fame kind.

But fhould this always be the cafe? By no means. There are many circumftances which may give the magnetifm of a loadtlone a very different direction. We have found, that fimple juxtapofition to a magnet will fometimes give a fucceffion of poles to a long bar of hard fteel. The fame thing may happen to an extenfive wein of magnetifable matter. The loadtone taken out of this vein may have been placed like that of a foft bar placed in the magnetic line, if lying in one part of the vein: if taken from another part of it, its polarity may be the very reverfe; and in another part of it may have no magnetifm, although completely fitted for acyuiring. it. It may lave its poles placed in a direction different from all thefe, in confequence of the vicinity of a greater lesadftone. As loadftones poffeffed of vigorous magnetifm are alway found only in fmall pieces, and in pieces of various tizes and force, we mult expect every pofition of their pules. The only thing that we can expect by theory is, that adjoining loadftones will have their friendly poles turned toward each other, and a general prevalence of or tendency to a polarity fymmetrical with that of the earth. The reader will find fome more obfervations to this purpofe in the article Variation, Encycl. p. 623. as alfo in Gilbert's Treatife, B. III. c. 2. p. 121.

Nor fhould all ftrata or maffes of iron ore be magnetical. We know that none are fufceptible of induced magnetifm, but fuch as are, to a certain degree, in the metallic ftate. Such ores are not abundant. Nay, even all of fuch ftrata do not neceffarily acquire magnetifm by the action of the great magnet. If their prin. cipal dimenfions lie nearly perpendicular to the magne-
tic direction, they will not acquire any fenfible quantity. A Aratum in this country, rifing about 17° to the N. N. W. will fearcely acquire magnetifm. It may alfo happen, that the influence of the great magnet is counteracted by that of fome extenfive Itratum inacceffible to man, by reafon of its great depth.

Thus we fee that all the appearances of the original probable magnetifm of loadtones are perfectly confitent with caufe of the nution that they are effects of one general cofmical thatrereat caufe, the action of the great magnet contained in the naturat sio earth; and that there is no occafion to fuppofe this great magnet to differ, in its conllitution or manner of action, from the fmall maffes of fimilar natter called loadfone. The only difficulty that prefents itfelf is the great fuperiority of magnetic force oblervable in fome loadthones over other maffes of ores circumjacent, which are not diftinguiftable by us by any other cireumflance. We acknowledge ourfelves unable to folve this difficulty for the magnetion of fuch pieces is fometimes incomparatly ftronger than what a bar of iron acquires by podition ; yet this bar is much more fufceptible than the ores which art fit for tecoming loadfones. Perhaps there is fume chemieal change which obtains gradually in certain maffes, which aids the irpregnation, in the fane way that we know that being red hot deflroys all magnetifm, whether in a metal bar or in anore. This feems to be confirmed by what we fee in fome old iron. ftanchions, which acquire the ftrongeft magnetifm in thofe parts of thcir fubftance which are combining themfelves with ingredients floating in the atmofphere. That part which is eafed in the fone, and exfoliates. and 5_{p} lits with ruft, being converted into fomething like what is called finery-cinder, becomes highly and permanently magnetic. Such pecularities as thefe, operating for ages, may allow a degree of magnetical impregnation (iil whatever this may confill) to take place, to which we can fee no refemblance in our experiments. It would be worth while to place iron wires in a tube in the magnetic direction, which could be kept of a proper red heat, while it is converted into xethiops by feam. It is not unlikely that it would acquire a fenfible and permanent magnetifm in this way. It may be, that the little atoms, as they arrange themfelves in a fört of eryflalline or fymmetrical form, may alfo arrange fo as to favour magnetifin. Were this tried in the vicinity of a Atrong magnet, the effect might be more remarkable and precife. Perhaps, too, while irom is precipitated in a metallic form from its folutions by another metal, fomething of the fame kind may happen. We know that proper ores of irisi, expofed to cementation in a low red beat, in the magnetic direction, becomes magnetic.

Notice has been taken in the Encyol. article VAria- Natural TION, of the attempts of ingenious men to explain the caufes of change which is obferved in all parts of the globe, on the changes the direction of the mariner's needle, the gradual change of the magof the variation. The hypothefis of Dr Halley, that tion. the globe which we inhabit is hollow, and inclofes a magnetic nucleus, moving round another axis, is not inconfiltent with any natural law, if he did not fuppofe the interval filled up with fome fluid. 'The action of the nucleus and fhell on the intervening fluid would gradually bring the two to one common mution of rotation, as may be inferred from the reafonings employed by Newton in his remarks on the Curtelian vortices

Leaving:

Leaving out this circumftance, there is only another caufe which can affect, and muft affect, the rotation of both; namely, the mutual action of the magnetic nucleus, and the maffes of magnetic matter in the fhell. If the axis of rotation of this nucleus be different from the line joining its magnetic poles, thefe poles will have a motion relative to the fhell; and this motion may eafily be conceived fuch as will produce the changes of magnetic direction which we obferve. It may even produce a motion of the northern magnetic pole in one direction, and of the fouthern pole in the oppofite direetion, and this with the appearance of different periods of rotation, as fuppofed by Mr Churchman. We may here obferve, by the way, thät the change of magnetic direction in this country is not nearly fo great as is commonly imagined. The horizontal needle has fhifted its pofition about 35° at London fince 1585 ; but the point of the dipping needle has not changed 10°. We may alfo obferve, that when the pole of the central magnet changes its place, the magnetifm of an extenfive fratum, influenced by it, may fo alter its difpofition, as to change the pofition of the compals needle in the oppofite direction to that of the change which the central magnet alone would induce on it.

But as motions have not yet been affigned to this nucleus, which quadrate with the obferved pofitions of the needle, and as the very exiflence of it is hypothetical, it may not be amifs to examine whether fuch a change of variation may not be explained by what we know of the laws of magnetifm, and of the internal conftitution of this earth?

1. It is pretty certain that the veins in which loadftones are found are nut parts of the great magnet. This appears from their having two poles while in the mine, and alfo from the very finall depth to which man las been able to penetrate. When we compare the pofitions of the dipping necdle with thofe of a fmall needle near a magnet, we mult infer, that the poles are very far below the furface.

Yet we know that there are magnetifable flrata of very great extent, occupying a very confiderable portion of the external covering. Though their bulk and abfolute power may be fmall, when compared with thofe of the great magnet, yet their greater vicinity to the necdles on which obfervations are made, may give them a very fenfible influence. In this way may a great deal of the obferved irregularities of the pofitions of the needle be accounted for. In the Lagoon at Teneriffe, Feuillée obferved the variation $13^{\circ} 30^{\prime}$ weft in 1724 , while at the head of the ifland it was only 5°. The dip at the Lagoon was $63^{\circ} 30^{\prime}$, greatly furpaffing what was ohferved in the neighbourhood. Muller found. in the -mountains of Bolenia, great and defultory differences of declination, amounting fometimes to 50°. At Mantua, the variation in 175^{8} was 12°; while at Bononia and Brixia it was nearly 18°. Great irregularities were obferved by Goëte in the Gulph of Fiuland, efpecially near the ifland of Suffari, among fume rocks : on one of thefe, the needle fhewed no polarity. Captain Cook and Captain Phipps obferved differences of 10°, extending to a confiderable diffance, on the weft coalts of North America. In the neighbourhood of the ifland Elba in the Mediterranean, the pofition of the needle is .greatly affected by the iron ftrata, in which that ifland fo much abounds. In this country, there are alfo ob-
ferved fmall deviations, which extend over coniderable tracts of country, indicating a great extent of itrata that are weakly magnetic. Since fuch ftrata rcceive their magnetifm by induction, in a manner fimilar to a bar of hard fteel, and fince we know that this receives it gradually, it may very probably happen, that a long feries of years may elapfe before the magnetifm attains its ultimate difpofition.

Here then is a neceffary change of the magnetic direction ; and although it may be very different in different places, according to the difpofition and the power of thofe ftrata, there muft be a general vergency of it one way.
2. It is well known that all metals, and particularly iron, are in a progrefs of continual production and demetallization. The veins of metals, and more particularly thofe of iron, are evidently of pofterior date to that of the rocks in which they are lodged. Chemiftry teaches us, by the very nature of the fubitances which compofe them, that they are in a fate of continual change. This is another caufe of change in the magnetic direction. Nay, we know that fome of them have fuddenly changed their fituation by earthquakes and volcanoes. Some of the ftreams of lava from Vefuvius and Etna abound in iron. This has greatly changed its fituation ; and if the flrata from which it proceeded were magnetical, the needle in its neighbourhood mult be affected. Nay, fubterranean heat alone will effect a change, by changing the magnetifm of the ftrata. Mr Lievog, royal aftronomer at Breffeftedt in Iceland, writes, that the great eruption from Hecla, in 178?, changed the dircction of the needle nine degrees in the immediate neighbourhood. This change was produced at a mile's diftance from the frozen lava; and it diminifhed to two degrees at the diftance of $2 \frac{1}{8}$ miles. He could not approach any nearer, on account of the heat fill remaining in the lava after an interval of 14 months.
Ail thefe caufes of change in the direction of the mariner's needle muft be partial and irregular. But there is another caufe, which is cofmical and univerfal. Dr Halley's fuppofition of four poles, or, at leatt, the fuppofition of irregular and diffufed poles, feems the only thing that will agree with the obfervations of declination. We know that all magnetifm of this kind (that is, difpofed in this manner) has a natural tendency to change. The two nortiern poles may have the fame or oppofite polarities. If they are the lane, their action on each other tends to diminifh the general magnetifm, and to caure the centre of effurt to approach the centre of the magnet. If they have oppofite pularities, the contrary effect will be produced. The general magnetifm of each will increafe, and the pole (or its centre of effort) will approach to the furface. In either of thefe cafes, the compound magnetifm of the whole may change exceedingly, by a change by 110 means confiderable in the magnetifm of each pair of poles. It is difficult to fubject this to calculation ; but the reader may have very convinting proof of it, by taking a ftrong and a weaker magnct of the fame length, and one of them, at leaft, of fteel not harder than fpring temper. Lay them acrofs each other like an acute letter X ; and then place a compafs needle, fo that its plane of rotation may be perpendicular to the plane of the X. Note exactly the pofition in which the needle fettles. In a few minutes after, it will be found to change confiderably,
fiderably, although no remarkable change has yet happened to the maguets themfelves.

WE flatter ourfelves, that our readers will grant that the preceding pages contain what may jultly be called a theory of magnetifm, in as much as we have been able to conelude every phenomenon in one general fact, the induction of magnetifm; and have given fuch a defeription of that fact and its modifications, that we can aceurately prediet what will be the appearances of magnets and iron put into any defired fituation with refpect to each other. If our notions of philofophical difquifition (delivered in art. Philosophy, Encycl. Brit.) be juft, we have explained the fubordinate phenomena, or have given a theury of magnetifm.

But it is not eafy to fatisfy human curiofity. Men have even invelligated, or fought for caufes of the perfeverance of matter in its prefent condition. We have not been contented with Newton's theory of the celeftial motions, and have fought for the caufe of that mutual tendency which he called gravitation, and of which all the motions are particular inftances.

Philofophers have been no lefs inquifitive after what may be the canfe of that mutual attraction of the diffimilar poles, and the repulfion of the fimilar poles, and that faculty of mutval impregnation, or excitement, which fo renarkably diftinguifh iron, in its various thates, from all other fubftances. The action of bodies on each other at a diflance, has appeared to them an abfurdity, and all have had recourfe to fome material intermedium. The phenomenon of the arrangement of iron filings is extremely curinus, and naturally engages the attention. It is hardly poffible to lonk at it without the thought arifug in the mind of a flream iffuing from one pole of the magnet, moving round it, entering by the other pole, and again ifluing from the former outlet. Accordingly, this notion has been entertained froin the earlient times, and different fpeculatifts have had different waysof conceiving how this ftream operated the effects which we obferve.

The fimpleft and moit obvious was juft to make it act like any other ftream of fluid matter, by impulion. Impulfion is the thing aimed at by all the fpeculatilts. They have a notion, that we ennceive this way of communicating motion with intuitive clearnefs, and that a thing is fully explained when it ean be fhewn that it is a cafe of impulfion. We have confidered the authority of thefe explanations in the artiele Infulsion of this Supplement, and neel not repeat our reafons for refuling it any pre-eminence. But even when, we have fhewn the phenomena to be cafes of impulfion by fuch a fream, the greateft difficulty, the molt curions and the moft embarraflug, is to afcertain the fources of this impulfive motion of the fluid-How, and from what caufe does it begin? What forces bend it in curves round the magnet? Thofe philofuphers, whofe principle obliges them to explain gravitation alfo by impulfe, muft have another flream to impel this into its curres. Acting by impulfion, this magnetic Atream muft lofe a quantity of motion equal to what it communicates. What is to reflore this? What directs it in a partieular courfe thro, the magnet ? And what is it that can totally alter that courfe-in a moment-in all the phenomena of induced magnetifm? How does it impel? Lucretius, either of himfelf, or fpeaking after the Greek philofophers,
makes it impel, not the iron, but the furrounaing air, fweeping it out of the way; and thus giving occafion for the furrounding air to rufh around the magnet, and to hurry the bits of iron toward it. There is, perlaps, more ingenious refinement in this thought than in any of the impulfive theories adupted fince his day by Des Cartes, Euler, and other great philofophers: But it is fagacioully remarked by D. Gregory, in his MS. notes oul Newton, that this theory of Lucretius falls to the ground; beeaufe the experinents fucceed juta as well under water as in the air. As to the explanations, or deferiptions, of the canals and their doek gates, opening in one direction, and fhutting in the other, conftructions that are changed in an inftant in a bar of iron, by changing the pofition of the magnet, we only wonder that men, who have a reputation to lofe, fhould ever hazard fueh erude and unmechanical dreams before the public eye. The mind of man eannot conceive the poffibility of their formation; and if they are really form. ed, the effects thould be the very oppofite of thofe that are obferved: the flream fhould move thofe bodies lealt which afford ready channels for its paflage. If a rag of iron filings be arranged by the impulion of fuch a ftream, it fhould be carried along by it ; and if it is impelled toward one end of the magnet, it fhould be impelled from the other end. Since we now know, that each particle of lilings is a momentary magnet, we mult allow a fimilar ftream whirling round each. Is that an explanation which exeeeds all power of conception?

But las it ever been fhewn that there is any impul. fion at all in thefe phenomena? Where is the impelling fubtance? The only argument ever offered for its exittence is, that we are refolved that the phenomena of magnetifm fhall be produced by impulion, and the arrangement of iron filings looks fomewhat like aftream. But enough of this. We truft that we have fhewn the way in which this arrangement obtains in the cleareft manner. Every particle beeomes magnetic by induc. tion. This is a fact, which fets all reafoning at defiance. The polarity of each rag is fo difpofed, that their adjoining ends turn to each other. This is another uncontrovertible fact. And thefe two facts explain the whole. The arrangemenit of iron filings, therefore, is a. fecondary fact, depending on principles more general; and therefore cannot, confiftently with juft logic, be affunmed as the foundation of a theory.

Had magnetifm exhibited no phenomena befides the attraction and repulfion of magnets, it is likely that we fhould not have proceeded very far in our theories, and would have contented ourfelves with reducing thefe phenomena to their moft general laws. But the communication of magnetifin feems a great myftery. The fimple approach of a magnet communicates thefe powers to a piece of iron; and this without any diminution of its own powers. On the cuntrary, beginning with magnets which have hardly any fenfible power, we can, by a proper alternation of the manipulations, communicate the ftrongeft magnetifm to as masy hard fteel bars as we pleafe; and the original magnets fhall be brought to their higheft degree of magnetifm. We have no notion of powers or faculties, but as qualities of fome fubtlances in which they are iuherent. Yet here is no appearance of fometling abftracted from one body, and communicated to, or.fhared with another. The procefs is like kindling a great fire by a fimple fpark ; here

MAGNETISM.

is no communication, but only occafion given to the exertion of powers inherent in the combuftible matter. It appears prohable, that the cafe is the fame in magnetifm; and that all that is perfurmed in making a magnet is the excitement of powers already in the flecl, or the giving occafion for their exertion : as burning the thread which ties together the two ends of a bow, allows it to unbend. This notion did not efcape the fagacity of Dr Gilbers; and he is at nuch pains to flew, that the coitio magnetica is a quaily wherent in all magnetical boolies, and on'y requires the proper circumftance for its exertiun. He is not very fortunate in his attempts to explain borv it is seveloped by the vicinity of a magnet, and how this faculty, or actual exertion of this power, becomes permanent in one body, white in another it requires the conftant prefence of the magnet.
74
Magnetical
It is to Mr 屈pinus, of the Imperial Academy of St hypothefis Peteriburgh, that we are indebted for the firlt really of Epinuas philofoplical attempt to explain all thefe myfteries. We mentioned, in the article Elecrricity, Suppl, the circumftance which fuggefted the firf hint of this theory to Æpiaus, viz. the refemblance between the attractions and repuifions of the tourmaline and of a mag. net. A material caufe of the electric phenomena had long been thought familiar to the philofophers. They had attributed them to a fluid which they called an electric fluid, and which they conceived to be fhared among bodies in different proportions, and to be transferable from one to another. Dr Franklin's theory of the Leyden phial, which led him to think that the faculty of producing the electrical phenomena depended on the deficiency as well as the redundancy of this fluid, combined with the phenomena of induced electricity, fuggett ed to Epinus a very perfpicuous method of ftating the analugy of the tourmaline and the magnet; which he publihed in 1758 in a paper read to the academy.

Reflecting more deeply on thefe things, Mr Epinus came by degrees to perceive the perfect dimilarity be tween all the phenomera of electricity by pofition and thofe of magnetifm; and this led him to account for them in the fame manner. As the phenomena of the Leyden phial, explained in Franklin's manner, fhews that a body may appear electrical all over, by having lefs than its natural quantity of the electric fluid, as well as by having more, it feemed to follow, that it may alfo be fo in refpect to different parts of the fame body; and therefore a body may become electrified in uppofite ways at its two extremities, merely by abftracting the fluid from one end, and condenfing it in the other; and thus may be explained the phenomena of induced electricity, where nothing appears to have been communicated from one body to the other. If this be the cafe, the two ends of a body rendered electric by induction fhould exhibit the fame diftinctions of phenomena that are exhibited by bodies wholly redundant and wholly deficient. The redundant ends flowld repel each other; fo fhould the deficient ends; and a redundant part fhould attract a deficient. All thefe refults of the conjecture tally exactly with obfervation, and give a high degree of probability to the conjecture. The fimilarity of thefe phenomena to the attractions of the diffimilar poles of a magnet, and the repulfions of the fimilar poles, is fo ftriking, that the fame mode of explavation forces itfelf on the mind, and led Mr 庣pinus to think, that the faculty of producing the magnetical phenomena be-
longed to a magnetical fuid, refiding in all hodien fufcep. tible of magnetiim ; and that the exertion of this faculty require nothing but the abftraction of the fluid from one end of the magnetic bar, and its conflipation in the other. And this conjecture was confirined by obferving, that in the induction of magnetifin on a piece of iron, the power of the magnet is not diminithed.

All thefe circumflances led Mr Repinus to frame the following hypothefis:

1. There exiltsa fubfance in all magnetic bodies, which may be called the magnetic fluid; the particles of which repel each other with a force decreafing as the diftance increafes.
2. 'The particles of magnetic fluid attract, and are attracted by the particles of iron, with a force that varies according to the fame law.
3. The particles of irun repel each other accoording to the fame law.
4. The magnetic fluid moves, without any confiderable obftruction, through the pores of iron and foft fteel; but is more and more obflructed in its motion as the fteel is tempered harder; and in hard tempered fleel, and in the ores of iron, it is moved with the greatelt difficulty.

In confequence of this fuppofed attraction for iron, the fluid may be contained in it in a certain determinate quantity. This quantity will be fuch, that the accumulated attration of a partiele for all the iron balances, or is equal to, the repulfion of all the fluid which the iron contains. The quantity of fluid competent to a particle of iron is fuppofed to be fuch, that the repultion exerted between it and the fluid competent to another particle of iron is alfo equal to its attraction for that particle of iron : And therefore the attraction between the fluid in an iron bar A for the iron of another bar B, is juit equal to its repulfion fur the fluid in B ; it is alfo equal to the repultion of the iron in A for the iron in B. This quantity of flid refiding in the iron may be called its natural guatity.

In confequence of the mobility through the pores of the iron, the magnetic fluid may be abftracted from one end of a bar, and condenied in the other, by the agency of a proper external force. But this is a violent ftate. The inutual repulion of the partiches of condenfed fluid, and the attraction of the iron which it has quitted, tend to produce a more uniform diftribu. tion. If we reflect on the law of action, we faall clearly pereeive, that fomewhat of this tendency muft obtain in every ftate of condenfation and rarefaction, and that there can be a perfect equilibrium only when the fluid is diffufed with perfect uniformity. This, therefore, may be called the natural state of the iron.

If the refiftance oppofed by the iron to the mution of the magnetic fluid be like that of perfeet fluids to the motion of folid bodies, arifing entirely from the communication of motion, there is no tendency to uniform diffurion fo weak as not to overcome fuch refiltance, and finally to produce this uniform diftribution. But (as is more prohable) if the obftruction refembles that of a claminy fluid, or of a foft plaflic body like clay, fume of the accumulation, produced by the agency of an external force, may remain when the force is removed; the diffufion will ceafe whenever the equalifing force is jult in equilibrio with the obftruction.

All the preceding circumftances of the hypothefis
are fo perfectly analogous to the hypothefis of $\mathrm{Mr} \pi$. pinus for explairing the electrical phenomena, which is given in detail in the article Electricity of this Sup. flement, that it would be fuperfluous to enter into a minute difeufion of their immediate refults. We therefore beg the reader to perule that part of the article Electricity where the elements of Repinus's hyputhefis are delivered, and the pheromema of induced clectri(iity explained (viz, from 110 11. to 60 . inclufive), and to fuppoie the difcourfe so relate to the magnetical fluid. Let $\mathrm{N}, \mathrm{S}, n, s$, be confidered as the overcharged and undercharged parts of a magnetical body, or the poles of a magnet, and of iron rendered magnetical by induction. We flall confine our obfervations in this place to thofe circumftances in which the mechanical phenomena of magnetifm are limited by the circumitance that magnets always contain their natural quantity of fluid; fo that their action on iron, and on cach other, depends entirely on its unequable ditribution; as is the cafe with induced electricity.
Let the magnet NAS (fig. 26.), having its north pole NA overcharged, be fet near to the bar $n \mathrm{~B} s$ of common iron, and let their axes form one itraight line.

NA acts on the bar B only by means of the redundant fluid which it contains. For that portion of its fluid, which is juft fufficient for faturating the iron, will repel the fluid in B, juft as much as the iron in NA attracts it ; and therefure the fluid in B fuftains no change from this portion of the fluid in NA. In like manner, the pole SA acts on B only in confequence of the iron in SA, which is not faturated or attended by its equivalent fluid.

If the fluid in B is immoveable, even the redundant fluid in NA, and redundant iron in SA, will produce no fenfible effect on it: For every particle of iron in B is accompanied by as much fluid as will balance, by its repulions and attractions, the attractions and repulfions of the equidiftant particle of iron. But as the magnetical fluid in B is fuppofed to oe eafily moveable, it will be repelled by the redundant fluid in AN toward the remote extremity n, till the reliftance that it mects with, joined to its own tendency to uniform diffulion, jutt balances the repulion of AN. This tendency to uniform diffurion obtains as foon as any fluid quits its place; as has been fufficiently explained in the supplementary article Electricity, D° 16, 17, \&e.

But, at the faine time, the redundant iron in AS attracts the fluid in B , and would abftract it from $\mathrm{B} n$, and condenfe it into Bs. This attraction oppofes the repulfion nuw mentioned. But, becaufe As is more remote from every point of B than AN is from the faine point, the repulfions of the redundant fluid in AN will prevail ; and, on the whole, fluid will be propelled toward n, and will be rarefied on the part B s. But as to what will be the law of diftribution, both in the redundant and deficient parts of B , it is plain that nothing can be faid with precifion. This muft depend on the diftribution of the fluid in the magnet NAS. The more diffufed that we fuppofe the redundant fuid and matter in the magnet, the farther removed will the centres of effort of its poles be from their extremities; the fmaller will be the action of AN and AS, the fmaller will bc their difference of action; and therefore the fmaller will be the condenfation in $\mathrm{B} n$, and the rareSuppl. Vol. II. Part I.
faction in $\mathrm{B} s$. Hence we learn, in the outfet of this attempt to explanation, that the action of a magnet will be fo much the greater as its poles are more concentiated. This is agreeable to ubfervation, and gives fome credit to the hypothedis. W'e can juft fec, in a voly general manner, that the fluid will be rarer than its nacural ftate in s, and demfer in n; and that the change of denfity is gradual, and that the denfity may be reprefented by the ordinates of forne line o $b d$ (lig. 27.), while the natural denfit is reprefuted by the ordinates to the line $C 6 D$, paraliel to sn. There will be fome puint B of the iron bar, where the fluid will be of its natural denfity, and the ordinate $\mathrm{B} b$ will meet the liue $c b d$ in the point of its intelfection with CD.

All this action is internal and imperceptible. Let us inquire what will be the fenfible external action. There is a fuperiority of attraction towards the magnet: For fince the magnetic action is fuppufed to diminifh continually by an increafe of diltance, the curve, whene ordinates reprefent the forces, has its convexity loward the axis. Alfo, the force of the poles AN, AS, are equal at equal diftances: Fur, by the hypothets the attraction and repulfion of an individual particle are equal at equal dittances; and the condenfation in $a \mathrm{~N}$ is equal to the deficiency in AS, by the fare hyputhefis; becaufe NAS fill contains its natural quantity of fluid. Therefore the action of both poles nay be ex. prefled by the ordinates of the fame curve, and they will differ only by reafon of their diftances. We may therefore exprefs the actions by the four ordinates $\mathrm{M}_{\mathrm{m}, \mathrm{P}} \mathrm{P}$, $\mathrm{N} n, \mathrm{Q} q$, of fig. 2.; of which the property (decuced from the fingle circumftance of its being convex toward the axis) is, that $\mathrm{M}_{m}+Q_{q}$ is greater than P_{p} $+\mathbb{N} n$. There is therefore a furplus of attraction. It is only this furplus that is perceiv.d. The flyd, moveable in B, but retained by it fo as nut to be allowed to efcape, is preffed towards its remote end n by the excefs $P p-Q q$ of the repulion of the redundant fluid in AN, above the attraction of the reduadant iron in AS. This excefs on every particle of the fluid is tranfmitted, by the common laws of hydrollatics, to the ftratum immediately incumbent on the extremity n, and B is thus prefled away from A. But every particle of the folid matter in D is attraceed towards A by the excefs $\mathrm{M} m-\mathrm{N} n$ of the attraction of the redundant fluid in AN above the repulfion of the redundant iron in AS : and this excefs is greater than the other; for $\overline{m+q}$ is greater than $\overline{p+n}$.

The piece of common inon $n \bar{B}$ s is therefore attracted, in confequence of the fluid in it having been propelled towards its remote extremity, and dillributed in a manner fomewhat refembling its diftribution in NAS. Now, in this hypothefis, magnetifn is held to depend entirely on the diftribution of the fluid. B has therefure become a magnet, has magnetifm induced on it, and, only in confequence of this induction, is attracted by A .

Had we fuppofed the deficient, or fouth pole of A , to have been neareft to B , the redundant matere in $\lambda \mathrm{N}$ would have attracted the moveable fluid in B more than the remoter redundant fluid in AS revels it ; and, on this account, the magnetic fluid would have been conftipated in Bs, and rarefied in Br. It would, is this cafe alfo, have been diftributed in a manner fimilar to
its fituation in the magnet. And B would therefore have been a momentary magnet, having its redundant pole fronting the delicient or diffimilar pole of A. It is plain that there would be the fame furplus of attraction in this as in the forner infance, and B would (on the whole) be attracied in confequence, and ouly in confequence, of having had a properly difpofed magnetifna induced on it by juxtapufition. The fenfible attraction, in this cafe, is a conficquence of the dittribution now deferibed; becaufe, fince the fluid conftipated in the end next to A cannot quit B , the tendeacy of this fluid toward A muft prefs the folid matter of B in this direction (by bydinflatical laws) more than this folid matter is repelled in the oppofite direction.

Thus it appears that the hypothefis tallies precifcly with the induction of magnetifm, We do not call this an explanation of the phenomenon ; for the fact is, that it is the hypothefis that is expluined by the phenomenon: That is, if any perfon be told that induced mag. netilm is produced by the action of a fluid, in confequence of its fituation being changed, he will find, that in order to agree with the attraction of diffinilar, and the repulfion of funilar poles, he muft accommodate the fluid to the phenomena, by giving it the proper-
wire reprefented in fig. 7 . the actions of fome of the poles un the moveable fluid in the iron are oblique in regard to the length of the pieces; but, fince the moveatle matter is fuppofed to be afluid, it will fill be propelled along the pieces, notwithftanding their obliquity, in the fame manner as gravity makes water occupy the lower end of a pipe lying obliquely. If indeed the nagnetic fluid could efcape from the iron without any obltruction by the propulfiun of the magnet, it could produce no attraction, or fenfible motion, any more than light does in a tranfparent body. What is demonflrated of the electric fluid in the Supplemental article Electricity, n° 133. is equally true here. Why the fluid does not efcape when it is fo perfectly moveable, is a queftion of another kind, and will be confidered afterwards; at prefent, the bypotbefis is, that it does not efcape.

If the key and wire have the pofition fig. $10 . \mathrm{n}^{\circ} \mathrm{J}$. the fluid is expelled from the parts in contact, and is condenfed in the remote ends. So far from attracting each other, the key and wire mult repel. They are temporary magnets, having their fimilar poles fronting each other. They mult repel rach other, if prefented in a limilar mauner to the fouth pole of the magnet.

If they be prefented as in $n^{\circ} 2$. fig. 10. where the actions of both poles of the magnet are equal, the ftate of the fluid in them will not be affected. The redundant pule of the magnet repels the moveable fluid in both the key and the wire toward the upper ends; but the deficient pole acts equally on it in the oppofite direction. It therefore remains uniformly diftributed through their fubftance; and therefore they can exhibit no appearance of magnetifn.

Eut if the key and wire be prefented to the fame part of the magnet, but in another polition, as flewn in fig. 8. n°. the fluid of the key will be abftracted from C , and condenfed in B , by the joint action of buth poles of the magnet. The fame thing will laappen in the wire BD. Here, therefore, we have two magnets with their diflimilar poles tuuching. They will attract each other itrongly; and if carried gradually toward the upper or lower end of the magnet, they will feparate before the point B arrives abreaft of N or S . For fimilar reafons, the pieces of inun prefented to the mildle of the magnet, as in fig. 10 . will have one fidc a weak north pole, and the other fide a weak fouth pole; but this will not be confpicuous, unlefs the pieces be hroad.

This experinent fhews, in a very perficious manner, the competency of the liypothefis to the explanation of the phenomena. When the fluid is not moved, magnetifm is not induced, even on the molt fufeeptible fubitance.

When a piece of iron A (fig. 10.), nearly as large as the inagnet can carry, hangs at either pole, a large piece of iron B, brought near to the pole on the other fide, fhould eaufe it immediately to fall. If S be the deficient pole, it caules the fluid in A to afcend to the top, and A is attracted: but, for the fame realon, it caufes the fluid in B to accumulate in its lower end. This redundant fuid mult evidently counteract the redundant matter in S , in the induction of the magnetic ftate on A. Deing more remote from A than S is, it eannot wholly prevent the accumulation in the upper end of A; but it renders it fo trifling, that the remaining
attraction
zttraction thence ariing cannot fupport the weight of A. This is a very inftructive experiment.

But if, on the contrary, we bring a large piece of frun C below the heavy key A , this piece C will have its fluid accumulated in its upper end, both by the action of A on it, and by the action of the magnet. The attraction of the magnet for A fhould therefore be ang. mented : and a magnet flould carry a heavier lump of iron when a great lump is beyond it. And it is clear (we think), for fimilar reafons, that the magnetifin of the magnet itfelf in fig. 11. fhould be increafed by bringing a great lump of iron near its oppofite pole : for the magnet differs from common iron only in the degree of the mobility of its fluid.

When a compafs needle is placed oppofite to the redundant pole N of a magnet AN (fig. 28.), it arranges itfelf nuagnetically. If a piece of common iron be now prefented laterally to the near point of the needle, the redundant matter in the adjoining parts of the needle and the iron thould make them repel; but if prefented to the remote end, the redundant matter in the iron flould attract the redundant fluid in that end of the needle, and that end fhould turn toward the iron.

A parcel of flender iron wires, carried by the pole of a magnet, as in fig. 29. Thould avoid each other. If N be the redundant pole, the fluid in each wire will be driven to the remote end, where it mult repel the fimilarly fituated fluid of its neighbour. The fame external appearance mult be exhibited by pieces of wire hanging at the deficient pole of the magnet.

The redundant pole of a magnet A (fig. 30.) being held vertically above the centre of two pieces of common iron, moveable round a flender pin, renders the middle of each deficient, and their extremities redundant ; therefure they fhould repel each other, and fpread out. The fame effect fhould be produced by the un. dercharged pole of A.

The redundant pole of a magnet A being applied to one branch of the piece of forked iron NCS (fig. 3 1.), fhould drive the fluid into its remote parts C , and then the branch NC thould be able to induce the magnetic ftate on a bit of iron D . But if the deficient pole S of another magnet B be applied to the other branch, thefe two actions fhould courteract each other at C , and the iron fhould remain indifferent, and fall.-Yet the magnet B alune would equally caufe C to carry the piece of iron.

It is furely unneceffary to demontrate, that the conlequerce of this hypothefis mult be, that when a magnet puts any piece of iron into the magnetic ftate, its own magnetifm is improved. For the induced magnetifm of the iron is always fo difpofed as to give the fluid in the magnet a greater contlipation where already condenfed, and to abftract more fluid from the parts already deficient. If magnetifm be prodnced by fuch a fluid, a magnet inut always improwe by lying any how among pieces of iron.

Bat the cafe may be very difierent when magnets are kept in each others neighbourhood. When the overcharged poles of two magnets are placed fronting each o. ther, the redmunt fluid in each repels that in the other more than it attracts the remoter redundant iron. The magnets muft therefore repil each uther. Moreover, in rendering then magnetical, the repulion of redundant Auid, or the attraction of redundant matter of fome
other magnet, had been employed; and when the marnet was removed, fome of the conftipaterl fluid over. came the obfruction to its uniform diffution, and efcaped into the deficicnt pole; what remains is withleldi by the obftruction, and the refloring forces are juft in equilibrio with this obitruction. If we now add to them the repulfion of redundant fluid, directed tnward the deficient pole, fome more of the conftipats 1 fluid mult be driven that way, and the magnet mult be weakened. Nay, it may be deflroyed, and even reverfed, if one of the magnets be very powerful, and have its own magnetifm very fixed ; that is, if its fluid lee very redundant, and meet with very great obftruction to its motion. Hence it alfo flould follow, that the repulfion obferved hetween two inagnets flould be weaker at the fame dillance than their attraction, and fhould follow a different law. For in the courfe of the experiments, the fituation of the fluid in the magnets is continually changing, and approaching to a ftate of uniform diffution.

Let us now examine into the fenfible effect of this Explanafluid on a magnet which cannot move from its place, nn of the but can turn on its centre like a compafs needle. This diettive fearcely requires any difcuffion. We thould only be re-of polarity. peating with regard to the redundant fluid and redundant matter, what tve formerly faid in regard of north pole and fouth pole ; the little magnet muft arrance itfelf nearly in the tangent of a magnetic curve. But it requires a more minute invefligation to determine what the fenfible phenomenon thould be whell the fluid of the little magnet is perfectly moveable.

Suppofe therefore a particle C (ig. 32.) of magnetic fluid, at perfect liberty to tnove in every direction, and acted on by the redundant and deficient poles of a magnet NAS. The redundant iron in S attracts C in the direction and with the force CF, while the redundant fluid in N repels it ia the direction and with the force CD. By their joint action it mult be urged in the direction and with the force CE, the diagonal of the parallelogram CDEF, which nult be accurately a tangent to a magnetic curve. If this particle of fuid belong to the piece of iron $n \mathrm{C} s$, wimeh lies in that very direction, it will unqueltionably be pufhed towards the extremity n. The fane inut lappen to other particles. Hence it appears that a piece of common iron in this fituation and pofition muft become a magnet, and mult retain this pufition; ouly the mechanical energy of the lever may change the equilibrium of the magnetic forces a little; becaufe when the piece of iron $n \mathrm{C} s$ has any fenfible magritude, the action on its different points will be a little urequal, and may compofe diagonals which divide a little from the tangent.

Should the iron needle chance not to have the exact pofition, but not deviate very far from it, it is alfo clear that the fluid, not being able to efcape, will prefs on the fide toward which it is impelled; and thus will caufe the needle to turn on its pivot, and finally arrange itfelf in magnetical and mechanical equilibrium, deviating fo much the lefs from a tangent to a magnetic curve as the piece of iron is fimaller. Any piece of common iron, held in the neighbnurhood of a magnet, will become none overcharged at one end and undercharged at the other, in proportion as the pofition of its length comes nearer to the tangent of a magnetic curve. A thender wire held perpendicular to this pofition, that
is, perpendicular to the curve, fonuld not acquire any curves formed by iron filings.

79

Explana-
tion of
tranfitory and of permancnt magoecifm, and of indifferent and deter minate magnetifm

We furely need not now employ many words to nlew that a parcel of iron filings, itreysd round a magnet, fhould arrange thenfelves in the primary nagnetic curves, or that when Atrewed round two magnets they fhould form the fecondary or compufite curves.

Let us now enquire more particularly into the modifications of this accumulation of magnetic fluid which may refult from the nature of the piece of iron, as it is put into the magnetic flate. The propelling force of , A acte againft the mutual repulion of the particles of fluid in B, aid alfo againat the obftruction to its motion through the pores of B. The greater this obllruction, the frmaller will be the accumulation which fuffices, in conjunction with the obfruction and the attraction of the deferted iron, to balance the propulive force of the redundant fluid in the overcharged pule of A. This circumflance therefore mult limit the accumulation that can be produced in a given time. Therefore the mag. netifin produced on foft fteel or iron fhould be greater than that produced in hard fleel at the fame diltance. Hence the great advantage of foft poles, or of armour, or of capping, to a loadftone, or to a bundle of hard bars. The beft form and dimenfions of this annour is certainly determinable by mathematical principles, if we krew the law of magnetical action, and the difpofition of the magnetifm in our loadtone; but thefe are too imperfectly known in all cafes for us to pretend to give any exact rules. We mult decide experimentally by making the caps large at frift, and reducing them till we find the loadfone carry lefs; then make them a fmall matter larger. The chief things to be minded are the purity, the uniformity, and the foftnefs of the iron, and the clofeft poffible contact.

If the oblfruction refemble that to motion through a clammy fuid, the fual accumulation in hard teel may be nearly equal to that in iron, but will require much longer time. Alfo, becaufe fucl obftruction to tise motion of the fluid will nearly balance the propelling force in parts that are far removed from the magnet, the accumulation will begin thereabouts, while the bar beyond is not yct affected. A redundaut pale will be formed in that place. This will operate on what is immediately beyond it, driving the fuid farther on, and occafioning another accumulation at a fmall diffance. This may produce a fimilar effeet in a fill fraaller degree farther on. Thus the fleel bar will have the fuid alternately condenfed and rarefied, and contain alternate north and fouth pules. This ftate of diftribution will not be permanent; fluid will be gradually changing its place; thefe poles will gradually advance alung the bar, the remoter polts becoming gradually more diffufe and faint; and it will not be till after a very lo. g time that a regular magnetifm with two poles will be produced. To flate mathematically the procedure of this mechanifm would require many pages. Yet it may be done in fome fimple cafes, as Newton lias fated the procefs of aerial undulation. But we cannot enter upon the tafk in this limited differtation. What is faid in the Supplementary article Elecrricity ($\mathrm{n}^{2} 217,218$.) on the diltribution of the electric fluid in an imperfect infulator, will affit the reader to furm a notion of the fate of magnetifm during its induction. That fuch alterna. tions proceed from fuch mechanifm, we have fufficient
proof in the inftances mentioned in the furmer part of this article. The wave, or curl, produced on the furface of a clammy fluid, is a phenomenon of the fauc kind, and owing to fimilar caufes.

When the magnet which has produced all thefe changes is removed, it is evident that a part of this accumulation will be undone again. The repulfion of the condenfed fluid, and the attraction of the deferted iron, will bring back fome of the fluid. But it is very evident, that a part of the accumulation will remain, by reafon of the obflruction to its motion in returning; and this remainder mult be fo nuch the greater as the obflruction to the change of fituation is greater. In flort, we cannot doubt but that the magnetifns which remains will be greater in hard than in fpring-tempered fleel.

Thus have we traced the hypotliefis in a great variety Rationate of circumitances and fituations, and pointed uut what of the proflould be the external appearance in each. We did cefs for not, in each inftance, mention the perfect coincidence maknets. of thefe confequences with what is really obferved, but left it to the recollection of the reader. The coincidence is indeed fo complete, that it feems hardly poffible to refufe granting that nature operates in this or fome very fimilar manner. We get fome confidence in the conjecture, and may even proceed to explain complicated phenomena by this hypothetical theory. We might proceed to hew, that the efiects of all the me. thods practifed by the artifts in making artificial magnets are eafy confequences of the hypothefis; but this is liardly neceflary. We fhall jult mention fome facts in thofe proceifes which have puzzled the naturalifls.

1. A flrong magnet is known to communicate the greateft magnetifm to a bar of hard fleel; but Mufchenbroek frequently found, that a weak magnet would communicate more to a fuft than to a hard bar.

Explanation. When the magnet is ftrong enough to impregnate both as highly as they are capable of, the hard bar nuft be the frongeft ; but if it can faturate neither, the fpring-tempered bar muft be left the moft magnetical.
2. A ftrong magnet has fometimes communicated no higher magnetifm than a weaker one; both have been able to faturate the bar.
3. A weak nlagnet has often impaired a ftrong one by fimply paffing along it two or three times; but a piece of iron always inproves a magnet by the fame treatment.

Explanation. When the north pole of a weak but hard magnet is fet on thie north pule of a frong one, it muft certainly repel part of the fluid towards the other end, and thus it muft weaken the magnet. Whien it is carried furward, it camot repel this back again, becaufe it is not of itielf fuppofed capable of making the magnet fo flrong. But the ond of a piece of iron, always acquiring a magnetifm oppofite to that of the part which it tnuches, mult increafe the accumulation of fluid where it is already condenfed, and mult expel more from thufe parts which are already deficient.
4. All the parts of the procefs of the double touch, as practifed by Meffrs Mitchell and Canton, are eafly explained by this hypothefis. A particle of fluid p (fig. 33.), fituated in the middle between the two magnets, is repelled in the direction $p e$ by the redundant pole of the magnet $A N$, whofe centre of effort is fuppofed to
be at C. It is attracted with an equal force in the direction $p d$ toward the centre of effort of the deficient pole of AS. By thefe combined actions it is inpelled in the direction if. Now it is plain that, although by increafing the diftance between N and S , the forces wihh which thefe poles act on p are diminifhed, yet the compound force $p f$ may increafe by the diminution of the angle $d p e$. If the action is as $\frac{1}{x^{2}}, p f$ will be greateft when $\frac{\text { Cof. }}{d} \frac{d p f}{p^{*}}$ is a maximum, or (wearly) when $\operatorname{Sin}^{2}{ }^{2} d f f \times$ Cof. $d_{p} f$ is a maximum: the this depends on the place of the centre of effort. We can, however, gather from this obfervation, that the nearer we fuppufe the centres of effort of the poles N and S to the extremitics of the nagnets, the nearer nult they be placed to each other. But we muft alfo attend to another circumftance; that by bringing the pules nearer together, although we produce a greater action on the inturening fluid, this action is exerted on a fraller quantity of it, and therefore a lefs tffect may be produced. This makes a wider pofition preferable; but we have too imperfect a knowledge of the circumitances to be able to determine this with accuracy. The unfavourable action on the fluid beyond the magnets mult alfo be confidered. Yet all this may be afcertained with precifion in fome very fimple inftances, and the determination might be of fervice, if we had not a better method, independent of all hypothefes or thcory ; namely, to place the magnets at the diftance where they are obferved to lift the heavielt bar of iron; then we are certain that their action is mof favourable, all circumftances being combined.

We alfo fee a fufficient reafon for preferring the pofition of the magnets employed by Mr Antheaume (and before him by Mr Servington Savery), in his procefo for making artificial magnets. The form of the parallelogram $d p e f$ is then much more favourable, the diagonal $p f$ being much longer.

We alfo fee, in general, that, by the method of double touch, a much greater accumulation of fluid may be produced than by any other known procefs.

And, laftly, fince no appearanses indicate any diffe. rence between natural and artificial magnetifm, this hypothefis is equally applicable to the explanation of the phenomena of natural magnetifm; fuch as the pofition of the horizontal, and of the dipping needle, and the impregnation of natural headfones.

Having fuch a body of evilence for the aptitude of this hypothefis for the explanation of phenomena, it will furely be agreeable to meet with any circumttances which render the hypothefis itfelf nore probable. Thefe are not wanting; although it muft be acknowledged that nothing has yet appeard, betides the phenonsena of magnetifm, to give us any indieation of the exiftence of fuch a fluid; but there are many particulars in their appearance which greatly refemble the meclanical properties of a fluid.

Heating a rod of iron, and allowing it to cool in a pofition perpendicular to the magnetic direction, deftroys its magnetifm. Iron is expanded by heat. If the particles of the magnetic fluid are retained between thofe of the iron, notwithllanding the forces which tend to diffure them uniformly, they may thus efcape from between the ferruginous particles which withheld them.

For fimilar reafons, magnetifin fhould be acquired by heating a bar and letting it cool in the magnetic direction. But, befides this evident mechanical opporiunily of motion, the mion of fire (or whatever name the neologits may choofe to give to the caufe of expanfion and of heat) with the particles of iron may totally change the action of thofe particles on the particles of fluid in immediate cuntact with them; nay, it may even change the fenfitle law of action between magnet and magnet. Of this no one can doubt who underfands the application of mathematical fcience to corpufcular attraction (See Boscuvicu, Suppl.) A change may be produced in the action between magnets without any renarkable change happening in the actions withia the magnet, and it may be juit the reverfe. The union of fire with the magnetic fluid may increafe the mutual repulfion of its parts, as it does in ail acrial fluids or gafes. This alone would produce a difipation of fome magnetifm. It may increafe the attraction (at iufentible diftances) between the fluid and the iron, as it does in numberleis cafes in chemillry.

It is well known that viukently knocking or hammer- Farther $\frac{8_{2}}{2}$ ing a maguet weakens its force, and that hammering agrounds piece of ivon in the magnetic direetion will give it forme of belicf. magnetifm. By this's treatment the parts of the iron are put into a tremulons motion, alternately approaching and receding from each other. In the inftants of their recefs, the pent-up particics of the fluid nay make their efcape. A quautity of fmall thot may be uniformly mixed with a quantity of wheat, and will remain fo for ever, if nothing difturb the veffel; but continue to tap it finartly with a fick for a long time, and the grains of fmall thot will efcape from their confinements, and will all go to the buttom. We may conceive the particles of magretic fluid to be affeced in the fame way. The fame iffect is produced by grinding or filing magnets and loaditones. The latter are frequently made worthlefs by grinding them into the proper fhape. This fhould be avoided as much as poffible, and it fhould always be done in moulds made of foft iron and very maffive; but this will not always prevent the diffipation of firong magnetifm. As a farther reafon for affigning this caule for the diffipation in fuch cafes, it mult be obferved (Mufchenbrock takes notice of it), that a magnet or loadflone may be ground at its neutral point without much damage. But we had the following mon diftinct example of the procefs. A very fine artificial magnet was fufpended by a thread, with its fouth pole down. A perfon was emphoyed to knock it inceffantly with a piece of pebi,le, in fuch a manner as to make it ring very clearly, being extrenely harel and elaflic. It magnetifm was examined from time to time with a very fmall compafs needle. In three quarters of an hour, its magnetifm was not only deftroyed, but the lower end thewed fignis of a north pole. The fame nagnet was again touched, and made as itrong as before, and was then wound about very tight with wetted whipeord, leaving a fmall part bare in the middle. It was again knocked with the pebble, but could no longer ring. At the end of three quarters of an hous its magnetifn was fill vigorous, and was not near gone after two hours and a quarter. We difcharged a Leyden jar (coated with gold leaf) in the fame way. It ftood on the top of an axis; and while this was turned round, the edge was rubbed with a very dry cork filled

M A G NETISM.

with robn, and faftened to the end of a glafs rod. This made tlie jar found like the glals of a hamonica. One wi them was fplit in this operation.

A finall bar of Ateel was heated red hot and tempered hard between two ftrong magnets lying in thallow boxes tilled with water, and was more ftrongly impreghated in this way than in any other that we could think of for a bar of that flape. It has not yet been afcertained in what temperature it is molt fufecptilile of magnetifan, hat it was confiderably lotter than to be juit vifible in a dark place. It is no objection to our way of conceiving magnetifm, that the fluid is immoveable or inactive when the iron is red hot. Either of thefe, or both of them, may refult from the union with the caufe of heat. Even a particular degree of expanfion may fo change the lau of action as to make it inmoveable; or the union with caloric may render it inactive at all fenfible diftances. We cannot but think that fome sery inftructive facts might be obtained by experiments made on iron in the moment of its production, and changes in various chemical proceffes. All magnetifm is grone when it is united with fulphur and arfenic in the greatef number of ores; and when it is in the flate of an oelire, ruft, xthiops, or folution in acids; and when minted with aftringent fubflances, fuch as galls. When, and in what fate, does it become maguetic? And whence comes tl?e fluid of Æpinus? It were worth while to try whether magnets have any influence in the formation or eryftallization of the martial falts ; and what will be their effect on fron when precipitated from its fulutions by another metal, \&c. \&c.

There remains one remarkable fact to be taken notice of, which, in one point of view, is a confirmation of the hypothefis, but in another prefents confiderable difficulties. It is well known that no magnet has ever been feen which lias but one pole ; that is, on the bypothetis of Epinus, which is wholly redundant, or wholly deficient. If all magnetifm be either the inmediate or the remote effect of the great magnet contained in the earth, and if it be produced by induction, without any communication of fubflance, but only by changing the difpofition of the fluid already in the iron, we never fhould fee a magnet with only one pole. It inuft be owned, that we never can make fuch a magnet by any of the proceffes hitherto deferibed; but the ex. iftence of fuch does not feem impoffible. Suppofing a magnet, of the moft regular magnetifm, having only two poles; and that we cut it through at the neutral point, or that we cut or break off any part of it-the lact is (for the experiment las been tried ever fince men began to fpeculate about magnetifin), that each part becomes an ordinary magnet, with two poles, one of which is of the fame kind as befure the feparation. Ihe queftion now is, What fhould happen according to the theory maintaned by Epinns?-Tentam. Theor Elca. et Magnetifmi, p. 104 , Bic.

Let NAS (fig. 34.) be a magnet, of which N is the overcharget pole. Let the ordinates of the curve DAE exprefs the difference between the natural denli ty of the fluid, in a ftate of uniform diffulion, and its denfity as it is really difpofed in the magnet. The area $p n$ ND will there exprefs the quantity of redundant fluid in the part $n \mathrm{~N}$, and the area q ES m expreffes the fluid wanting in the part $\mathrm{S} m$. The interfection A marks that part of the nagnet where the fluid is of
its natural denfity. Suppofe the part N_{n} to be fepan rated from the reft, containing the redundant fluid ND $p \pi$. The tendency of this fluid ro efcape from the iron with which it is connected will be greater (Mr Epinus thinks) than before ; becaule its tendency to quit the maguet formerly was repreffed by the attrictions of the redundant matter contained in S. This is certainly true of the extremity N ; nay, perlaps of all the old external furface. Fluid will therefore efcape. Suppofe that fo much has quitted the iron that the point n has the fluid of its natural denfity, as is repre. fented in $n^{\circ} 3$. there is ftill a force operating at n, tending to efcape, arifing from the repulfion of all the re-. dundant fluid $n \mathrm{DN}$. If this be fufficient for overcoming the obltruction, it will really efcape, and the iron will be left in the flate reprefented by $n^{0} 4$. with an overcharged part $f \mathrm{~N}$, and an undercharged part $f n$.

In like manner, the tendency of the magnetic fluid furrounding the magnet to enter into its deticient pole, will be greater when it is feparated from the other, not. being checked by the repulion of the redundant fluid in that other.

Mr Epinus relates fome experiments which he made on this fubject. The general refult of them was, that the moment the parts were feparated, each had two poles, and that the neutral point of each magnet was much nearer to the place of their former union than to their other ends. In a quarter of an hour afterward, the neutral points had advanced nearer to their middle, and continued to do fo, by very fmall fleps, for fome hours, and fometimes days, and finally were ftationary in their middles.

We acknowledge that this reafoning does not alto.有 nentral foint toward the middle of each picec, althoughing. agrecable to what fhould refult' from an efcape of fluid, is not a proof of it. We know already, that the induction of magnetifm is a progreffive thing; and we thould have expected this change of the fituation of the neutral point, whatever be the nature of magnetilm. There is fomething finilar to this, and perhaps cqually pu:zling, in the immediate recorery of magnetifm which. has been weakened by heat; it is partly recovered on cooling.

But our chief difficulty is this: At the point A (fig. 34.) every thing is in equilibrium before the fraeture. The particle A is repelled by the redundant fluid in AN, and attracted by the redundant matter in AS ; yet it does not more, for the magnetifm is fuppufed to have permanency. Therefore the obfruction at A cannot be overcome by the bnited repulfion of A N and attraction of AS. Nor can the obftruction at N be overcome by the difference of thefe two forces. Now fuppofe AS annihilated. The change made on the flate of things at A is furely greater than that at N , becanfe the force abftracted is greater, the diftance being lefs. It does not clearly appear, therefore, that the removal of AS fhould occafion an efflux at N. This, however, is not impoffible; becaufe the fluid nay be fo difpoled, by great conflipation near N, and no great excels of denlity near A, that a fmaller change at N may produce an eflux there. But furtly the tendency to efrape at A muft now be diminifhed, inftead of being greater after the fracture. And if any efcape from N , this will ftill more diminifh that tendency to efcape from
from A. It does not therefore appear a clear confequence of the general theory, that the conftipated fluid fhould efcape; and more particularly, that A fhould becone deficient. And with refpect to the entry of fluid into the other fragment, and its becoming overcharged at m, the reafoning feems fill lefs conviuciug. The iteps of the phyfical procels in the two parts of the original magnet are by no means convertible or counterparts of each other. There is nothing in the part AS to refemble the force of repulfion really excrting itfelf in the correfponding point of AN. - There would be, if there were a particle of fluid in that place; but there is not. The tendency therefore of external fluid to enter there, does not refemble the tendency of the interual fluid to expand and diffipate. It is true, indeed, the difcourfe fhould be confined to points of the furface. But the internal motion muft alfo be confidered; and the great objection always remains, namely, that the obftruction at $A\left(n^{\circ}\right.$.) or at $n\left(n^{\circ} 3\right.$) is fufficient to prevent the paffage of a particle of fluid from the pole $A \mathrm{~N}$ into the pole AS , when urged by the repulfion of the fluid in the one and the attraction of the iron in the other; and yet will not prevent the efcape of a particle when one of thofe caufes of motion is removed. Add to this, that the whole hypothetis affumes as a principle, that the refiftance to efcape from any point is greatet than the obftruction to motion through the pores. This is readily granted; for however great we fuppofe the attraction, in the limits of plyfical contact, it will be no obflruction to motion through the pores, becaufe the particle is equally affected by the oppofite fides of the pores; whereas, in quitting the budy altogether, there is nothing beyond the body to connteract the attraction by which it is retained.

There feems fomething wanting to accommodate this beautiful lypothefis of Mir 屁pinus to this remarkable phenomenon; and the coincidence is otherwife fo complete, that we are almott obliged to conclude that it is merely a deficiency, arifing from our not having a fufficient knowledge of the law of magnetic action. This is quite fufficient : For it may be flrictly demonitrated, that if the magnetic action decreafes in ligher ratio than that of the fquares of the diitances, the permanency of the flud in any particular difpolition has feareely any dependence on the particles at auy fenfible dittance, and is effected only by the variations of its denity (See Electricity, Suppl. in 217 . for a cafe fomewhat fimilar). Therefore, if the lluid be fo difpofed, that its denfity may be reprefented by the ordinates of fuch a curve as is drawn in fig. 34. laving its two extremities concave toward the axis, and a point of contrary flexure at A, the tendency to efcape at A will be the greateft poffible; and when the magnet is bruken at A (n° 1.), or when the fluid has taken the arrangement reprefented by $n^{\circ} 3$. it cannot flop there, and m:y f becume deficient in that part. Now, it muft be acknowledged, that we are not abfolutely certain that the magnetic action is in the precife inverfe duplicate ratio of the diRance. All that we are certain of is, that it is much nearer to it than to either the inverfe limple or inverfe triplicate ratio. We own ourfelves rather difpofed to afcribe the prefent difficulty to our ignorance of fonse circumflanice, purely mathematical, overlooked, or mif.
taken, than to thiuk a conjecture unfounded, which tal. lies fo accurately with fuch a variety of phenomena.

We nay here obferve, that we are not altogether f_{d} tisfied with Kepinus's form of the experiment. He did not break a magnet ; he fet two tleel bars end to end, and touched them as one bar, making the magnetifin perfectly regular ; he then feparated them, and found that each had two poles. But was he certain that, when joined, they made but one magnet? We have fometimes fucceeded in doing this, as we thought, by the curves of iron filings; but on putting the needle with which we were examining their polarity into proper fituations, we fometimes found it in the fecond interfection of the fecondary curves, fhewing that the bars were really two magnets, and not one.

On the other hand, when a piece is broken off from a magner, the fuccuffion and elaflic tremor into which the parts are thrown, and even the bending previous to the fracture, may give opportunity to a diffipation, which could not otherwife happen. The parts fhould be feparated by corrofion in an acid, and the gradual change of magnetiim fhould be carefully noted. Thic writer of this article has made fome experiments of this nature, the refults of which prefent fome curious obfervations: but they are not yet brought to a conclufion that is fit to be laid before the public.

Mr Prevôt of Geneva, in a differtation on the origin Hyprithefs 88 of magnetic forces, endeavours to give a theory which of Prevor. obviates the only difficulty in that of Repinus; but it is incomparably more complex, employing two fluids, which by their union compofe a third, which he calls combined fluid. There is much ingtouity, and even mathematical addrefs, in adjufting the relative propertics of thofe ीuids. But fome of thein are palpably incompatible; ex. gr. the particles of each attract each other, but thofe of the other kind moft trongly; yet they are both etattic like air. This is furely inconceivable.Granting this, however, he fuits his different attractions, fo that a flong elective attration of the combinad fluid for iron decompofes part of the fluid in the iron, and each of its ingredients occupies oppofite ends of the bar ; then will the bars approach or recede, according as the near ends contain a different or the fame ingredient. All this is operated without repulfion.

But the whole of this is mere accommodation, like Epinus's, hut fo much more complex, that it requires very intenfe contemplation to follow the author through the confequences. Add to this, that his attractions are operated by another fluid, infinitely nore fubtle than either of thofe already mentioned, every particle of thefe being, as it were, a world in comparifun of thofe of the other. In flort, he adopts all the extravayant fuppofitions of Le Sage of Geneva, and every thing is ultimately impulfion. Nor is the contrivalace for obviating the difficulty (fo often mentioned) at all clear and conviucing; and it is equally gratuitous with the reft. We cannot think this hypothefis at all intitled to the name of explanation.

This muft ferve fur an account of the hypothefis of ss Epinus. The philofophical reader will fee, that how- Renarks hypoever exacly it may tally with every phenomenon, it te:cfes cannot be callcd an explanation of the phenomena; becaufe it is the phenomena which explain the hypothefis, or give us the characters of the magnctic fluid, if

MAGNETISM.

fuch fluid exifts. But we are not obliged to admit this exillence, as we admit that to be the true decyplisring of a letter which makes fenfe of it. In that cafe we know both parts of the fubjeet-the charachers and the founds; but are ignorant which correfponds to which. Did we fee a flaid abltrated from one part of a har and conttipated in another, and perceive the abfraction and conflipation always accompanied by the obferved attractions aud repulions, the rules of philofophical difeuffion, nay, the contlitution of our own mind, would oblige us to affign the one as the caufe or occafion of the other. But this important circumftance is wanting in the prefent cafe. We think, however, that it merits a clofe attention; and we eutertain great hopes of it being one day completed, by including this fingle exception.

At the fame time, it mult be owned, that it gives no extenfion of knowledge ; for it can have no greater extenfion than the phenomena on which it is founded, and cannot, without rifk of error, be applied to an untried cafe, of a kind diffimilar in its nature to the phenomena on which it is founded. We doubt not but that its ingenious author would have faid, that a bit broken off from the north. pole of a magnet would be wholly a north pole, if he had not known that the fact was otherwife.

But this hypothefis greatly aids the imagination in conceiving the procefs of the magnetical phenomena. The more we ftudy them, the more do they appear to refemble the protrufion of a fluid through the parts of an obftructing body. It proceeds gradually. It may be, as it were, overdone, and regorges when the propel. ling caufe is removed. The motion is aided by what we know to aid other obitructed motions. As a fluid would be conftipated in all protuberances, fo the faculty of producing the phenomena is greater in all fuch fi_{i} tuations, \&c. \&c. This, joined to the impollibility of fpeaking, with clearnefs of conception, of the proparation of powers without the protrufion of fomething in which they inlere, gives it a hold of the imagination which is not eafily thaken off.
To fay that nothing is explained when the attraction of the fluid is not explained, and that this is the main queftion, gives us little concern. We ofíer no explanation of this attraction, more than of the attraction of gravity. There is nothing contrary to the laws of human intellect, nothing inconliftent with the rules of reafoning, in faying, that things are fo conflituted, that when two particles are together, they fiparate, although we are ignorant of the inmediate caufe of their feparation. Thofe who tlink that all motion is performed by imputtion, and who explain magnetifin by a fream of fluid circulating round the magnet, muft have another fluid to impel this fluid into its curvilineal path; for they infif, that the planets are fo impelled. Then they muft have a third fluid to deflect the vertical motions of the fecond, and fo on without end. This is evident, and it is abfurd. But we have faid enough in the article Impulsion, Suppl. to fhew that all bypothefes framed on purpofe to explain action e difanti by impulfion are illogical; becaufe impulfion requires explanation as much as the other, and neither the one nor the other will ever be refolved into any thing but the fiat of the Allwile Author of the univerfe.

We conclude with defiring the reader to remark, that the explanation which we have given of the nagnetical ${ }^{\text {Tre }}$ pre, phenomena is independent of the hypothefis of Epi- is rove a nus, or any hypothefis whatever. We have narrated a sothcis. variety of very dittinguifhable facts, and have marked their diftinctions. We have been able to reduee then to general clafies; and even to groupe thofe claffes into others fill more general; and at laft, to point out one which is difcoverable in thent all. This is giving a philofophical theory, in the Atricteft fenfe of the word; becaufe we fhew, in every cafe, the modification of the general fact which allots it this or that particular place in the claffification. Thus we have fhewn that the polarity or directive power of magnets is only a mo. dification of the general fact of attraction and repulfion. Dr Gilbert's theory of terrefrial magnetifin is indeed a hypothefis, and we enounced it as fuch. It only claims probability, and we apprelnend that a very high degree of credit will be given to it.
We hope that many of our readers will have their curiolity excited by the account we have given of Epinus's theory. To fuch we earnetly reconmend the ferious perufal of the book Tentamen Thboria Elearicitis et Magnetifini, Auct. F. 压pino, Petropoli, 1759. Van Swinden has included a very good abitract of it in his 2d volume Sur l'Elecaricité, written by profeffor Steiglehner of Ratifoon or Ingolftadt. The mathematical part is greatly fimplified, and the whole is prefented in a very clear and accurate manner. Mr Van Swinden is a profefled foe to all hypothefes; but he is not moderate, and we wifh that we could fay that he is candid. He attacks every thing; and takes the opportunity of every analogy pointed out by Repinus between magnetifm and electricity to repeat the firlt fentence of his differtation, namely, that magnetifn and elcetricity are not the fame; a thing that Repinus alfo maintains. But he even charges \mathbb{E} pinus with a miftake in his fundamental equations, which invalidates his whole theory. He fays that $\mathbb{\pi}$ рinus has united one of the acting forces affumed in his hypothefis. This is a moft groundlefs charge ; and we own that we eanrot conceive how Van Swinden could fall into fuch a millake. We are unwilling to call it intentional, for the mere purpofe of raing a man of Atraw to hnock hime down again. Abbé Hä̈y of the French Acdemy has alfo publithed an abridgment of EApinus's theory, with many excelient remarks, tending to clear the theory of the ouly defeet that has been found in it. This work was much approved of, and recommended by the Academy. We have not had the good furtune to fee a copy of it.

The reader cannot but have remarked the ciofe analogy between the magnetical phenomena ansl thofe of induced electricity ; indeed, all the phenomena of attraction city and repulfion are the fame in both. The mechanical compofition of thofe actions produces a directive power aid a polarity, in electrical as well as in magnetical bodies. We can make an electrical needle which will arrange itfelf, with refpect to the overcharged and undercharged ends of a body electrified by mere pofition, jult as a compafs needle is arranged by a magnet. We can touch a itick of fealing wax in the manner of the double touch, fo as to give it poles of confiderable force and durability. As a red hot theel bar acquires permanent poles by quenching it near a magnet, fo melted wax acquires them by freezing in the neighbourhood of a pofitive
pofitive and negative electric. Some have inferred a famenefs of origin of thefe two fpecies of powers from thofe various circumftances of refemblance; but the original caufes feem to be diftinct on many accounts. Electrieity is common to all hodics. The caufe of magnctifm can operate only on iron. Although lightning or an electrical fhock gives polarity to a needle, we need not infer the identity of the caufe, becaufe the polarity which it gives is always the fame with that given by great heat; and there is always intenfe heat in this operation. The phenomenon which looks the moft like an indication of identity of the origin of electricity and magnetifm is the direction of the rays of the aurora borealis-they converge to the fame point of the heavens to which the elevated pole of the dipping needle directs itfelf. But this is by no means a fufficient foundation for eftablifhing a famenefs. Electricity and magnetifm may, however, be related by means of fome powers hitherto unknown. But we are decidedly of opinon, that the electric and magnetic fluid are totally different, although their mechanical actions are fo like that there is hardly a phenomenon in the one which has not an exact counterpart in the other. But we fee them both operating, with all their marks of dillinc. tion, in the fame body; for iron and loadfones may be electrified, like any other hody, and their magnetifm fuffers no change of modification. We can fet the fe two forces in oppolition or compofition, jult as we can oppofe or compound gravity with either. While the iron filings are arranging themfelves round a magnet, the mechanical action of electricity may be employed either to promote or hinder the arrangement. They are therefore diftinct powers, inherent in different fubjects.

But there are abundance of other phenomena which fhew this diverfity. There is nothing in magnetifm like a body overcharged or undercharged in toto. There is nothing which indicates the prefence of the fluid to the other fenfes-nothing like the fpark, the fnap, the vifible diffipation ; becaufe the magnetic fluid enters into no union with air, or any thing but iron. There is nothing refembling that ineonceivably rapid motion which we fee in electricity ; the quickeft motion of magnetifm feems inferior (even beyond comparifon) with the floweft motion along any electric conductor. Therefore there is no poffibility of difcharging a magnet as we difcharge a coated plate. Indeed, the refemblance between a magnet and a coated plate of glafs is exceedingly fight. The only refemblance is between the magnet and an inconceivably thin fratum of the glafs, which fratum is pofitive in one lide and negative in the other. The only perfect refemhlance is between the induced marnetifm of common iron, and the induced electricity of a conductor.
The following feem the moft inflructive differtations on magnetifm, either as valuable collections of obfervations, or as judicious reafonings from them, or as the fpeculations of eminent or ingenious men concerning the nature of magnetifm.

Gilbertus de Miagnete, Lond. 1600 , fol.
Epini Tcritamen Theorix Magn. et Electr.
Eberhard's Tentarn. Theor. Magnetifmi, 1720.
Differtations fur l'aimant, par du Fay, 1728.
Mufchenbrock Differt. Phytico Experimentalis de Magnete.

Pícces qui ont emportè le prix de l'Acad. des Sciences Suppl. Vol. II. Part I.
à Paris fur la meilleure conftruction des Bouffoles de declination. Recueil des pieces courounèes, tom. v.

Euleri opufcula, tom iii. continens Theoriam Magnetis, Berlin, 1751.

Repini Oratio Academica, 1758.
发pini item Comment. Petrop. nov. tom. x.
Anton. Brugmanni tentam. Pliil. de materia Magnetica, Francquere, 1765.
There is a German tranflation of this work by Eifenbach, with many very valuable additions.

Scarella de Magnett, 2 tom. fol.
Van Swinden 'lientamina Magnetica, 4 to.
Van Swinden fur l'Analogie entre les phenomenes Electriques et Magnetiques, 3 tom. 8 vo .
Differtation fur les Aimans artificiclles par An. theaume.
Experiences fur les Aimans artificielics par Nicholas, Fus, 1782.

Efai fur l'Origine des Forces Magnetiques par Mr Prevoft.
Sur les Aimans artificielles par Rivoir, Paris 1752.
Differtatio de Magnetifmo par Sam. Klingenftier et Jo. Brander, Holm, 1752.

Defeription des Courants Magnetiques, Straßbourg, 1753.

Traitè de l'Aiman par Dalancè, Amft. 1687.
Befides thefe original works, we have feveral differtations on magnetical vortices by Des Cartes, Bernoulli, Euler, Du Tour, \&c. publifhed in the collections of the works of thofe authors, and many difiertations in the memoirs of different academies; and there are many popular treatifes by the traders in experimental philofoply in London and Paris. Dr Cown Knight, the perfon in Europe who was moft eminently fkilled in the knowledge of the phenomena, alfo publifled a difertation intitled, An attempt to explain the Pbenomena of. Nuture by two principles, Altraĉion and Repulfion, Lond. 1748,4 to, in which he has included a theory of magnetifn. It is a very curious work, and flould be fludied by all thofe who have recourfe without feruple to the agency of invifible fluids, when they are tired of patient thinking. They would there fee what thought and combination are neceflary before an invifible fuid can be really fitterl for perforining any office we choofe to affign it. And they will get real inltruction as to what fervices we may expect of fuch agents, and from what tafks they muft be excluded. The Doctor's theory of magnetifm is very unlike the refl of the performance; for he does not avail himfelf of the valt apparatus of propotitions which he had ellublifled, and adopts without any nice adjufment the moit common notions of an impulive vortex. Loth the production and inaintenance of this vortex, and its mode of operation, are irreconcileable with the acknowledged laws of impulion.

Si quid novifi rcalius jfis, candidus imporei-finonbis utere mecam.

APPENDIX.

We have been favoured with the following inveftiga- Inverigation of the curves, to wbich a ncedle of indefinite minute- tion of the nefs will be a tangent, by Mr Playfair, Profeffor of Ma- magnetic thernatics in the Univenfity of Edinburgh.
curve.
U
Two

Two marnetical poles being given in pofition, the force of each of which is fuppofed to be as the m th power of the diftance from it reciprocally, it is required on find a curve, in any point of which a needle (indefiwitely fhort) being placed, its direction, when at reft, may be a tingent to the curve?

1. Let A and B (fig. 35.) be the poles of a magnet, C any point in the curve required; then we may fuppofe the ene of thefe poles to act on the needle only by repulfion, and the other only by attraction, and the direction of the needle, when at refl, will be the diagonal of a parallelogram, the fides of which reprefent thefe furces. Therefore, having joined $A C$ and $B C$, let $A D$ be drawn parallct to BC , and make $\frac{1}{\mathrm{AC}^{m}}: \frac{1}{\mathrm{BC}^{m}}:: \mathrm{AC}$ $A D$; join $C D$, then $C D F$ will touch the curve in C.
2. Hence an expreffion for AF may be obtained. For, by the conftruction, $\mathrm{AD}=\frac{\mathrm{AC}^{m+1}}{\mathrm{BC}^{m}}$, and fince BC $: A D:: B F: F A$, and $B C-A D: A D:: A B: A F$, $\mathrm{AB} \times \mathrm{AC}^{m+1}$
we have $A F=\frac{A B \times A C}{B C^{m+1}-A C^{m+i}}$.
3. A fluxionary expreflion for AF may alfo be found in terms of the angles $\mathrm{CAB}, \mathrm{ABC}$. In CF take the indefinitely fmall part CH , draw AH, BH, and from C draw CL perpendicular to AH , and CK to BH . Draw alfo BC and AM at right angles to FH. Let the angles $\mathrm{CAB}=q$, and $\mathrm{CBA}=\psi$; then CAH $=\dot{q}$, and $\mathrm{CBH}=-\dot{;} ;$ alfo $\mathrm{CL}=\mathrm{AC} \times \dot{p}$, and CK $=-B C \times \psi$. Now HC:CL: : AC : AM $=$ $\frac{\mathrm{AC}^{2} \mathrm{X}_{\dot{p}}}{\mathrm{H}}$; and for the fame reafon $\mathrm{BC}=-\frac{\mathrm{BC}^{2} \times \dot{\psi}}{\mathrm{HC}}$. Therefore fince $\mathrm{AF}: \mathrm{FB}:: \mathrm{AM}: \mathrm{BC}, \mathrm{AF}: \mathrm{FB}::$ $\frac{\mathrm{AC}^{2} \times \dot{q}}{\mathrm{HC}}:-\frac{\mathrm{BC}^{2} \times i}{\mathrm{HC}}$, and $\mathrm{AF}: \mathrm{AB}::$ fin. $\dot{\psi}_{2}:-$ fin. $\psi^{2} \dot{p}$ - fin. $p^{2} \dot{\psi}$; wherefore if $\mathrm{AB}=a, \mathrm{AF}=$ $-a \dot{f} \mathrm{in} . \mathrm{t}^{2}$
$i \operatorname{fin} . \sigma^{2}+\operatorname{tin} \cdot \psi^{2}$
4. If this value of $A F$ be put equal to that already found, a flusionary equation will be ohtained, by the integration of which the curve may be conftructed. Becaufe $\mathrm{AF}=\frac{\mathrm{AB} \times \mathrm{AC}^{m+1}}{\mathrm{~B} e^{m+}-A e^{m+2}}$; and fince $\mathrm{AC}=\frac{a \sqrt{2} \mathrm{a} \cdot \downarrow}{\operatorname{fin}(\varphi+\psi)}$, and $\mathrm{BC}=\frac{a \text { fin. }}{\operatorname{lin} .(a+\psi)}$, we have by fubftitution $A F=\frac{a \text { fin. } \nu^{m+1}}{\text { fin! } p^{m+1}-\text { fine } \cdot \psi^{m+1}}=$ $-\frac{a \dot{\rho} \text { fin. } \psi^{2}}{\psi \operatorname{fin}, q^{2}+\underset{q}{\operatorname{lin} \cdot \downarrow^{2}}}$. Hence, fin. $q^{2} \times \dot{\psi}$ fin. $\psi^{m+x}+$ \dot{i} fin. $\psi^{m+3}=-$ fin. $\downarrow^{2} \times ;$ fin. $\overbrace{}^{m+x}+\dot{i}$ fin. ψ^{m+3}, and therefure $\dot{\psi}$ fin. $\psi^{m-1}=-;$ fin. φ^{m-1}; and alfo, $\int \dot{\psi}$ fin. $\iota^{m-1}+\int_{\varphi} f_{n} \varphi_{\varphi}^{m-1}=C$.
5. Thefe fluents are eafily found when m is any whole pofitive number.

$$
\begin{aligned}
& \text { If: } n=1 \text {, we have } \dot{\psi}+\dot{q}=0 \\
& m=2, \quad \dot{\operatorname{fin} .} \psi+\dot{q} \sin . \quad=0 \\
& m=3, \quad i \operatorname{fin}, \psi^{2}+i \operatorname{in} . \varepsilon^{2}=0 \\
& m=4, \quad \dot{\psi} \text { in. } \psi^{3}+\dot{q} \operatorname{fin} . q^{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Alro if } m=1, \text { Therefore, } \& \mathbb{c} \text {. } \\
& \text { Alfo if } m=1, \quad \quad+\downarrow=\mathrm{C} \\
& m=2, \quad \text { cor. }+ \text { cof. } \psi=\mathrm{C} \\
& m=3, \quad-\operatorname{lin}_{i_{2}}+2_{r}-\operatorname{fin} \cdot 2 \downarrow+2 \psi=\mathrm{C} \\
& m=4 \text {, }
\end{aligned}
$$

g cof. $\psi=\mathrm{C}, \& \mathrm{c}$. \&c.

The firft of the above equations belongs to a fegment of a circle defrribed upon $A B$, which therefore would be the curve required if the magnetical force were inverfely as the diftances.

If the magnetical force be inverfely as the fquare of the diflance, that is, if $m=2$, cof. $q+$ cof. ψ is. equal to a comflant quantity. Hence if, befide the points A and B, any other point be given in the curve, the whole may be defcribed. For inftance, let the point E (fig. 36.) be given in the curve, and in the line DE which bifects AB at right angles. Deferibe from the centre A a circle through E, viz. QER; then $A D$ being the cofine of DAE to the radius $A E$, the fum of the cofines of ${ }_{0} X_{4}$ will be everywhere (to the fame radius) $=2 \mathrm{AD}=\mathrm{AB}$. Therefore to find E^{\prime}, the point in which any other line AN, making a given angle with $A B$, meets the curve, draw from N, the point in which it meets the circumference of the circle QER, NO, perpendicular to $A B$, fo that $A O$ may be the cofine of NAO, and from O toward A takc $O P=A B$, then $A P$ will be the cofine of the angle ABE ; fo to find BE , draw PC perpendicular to AP, meeting the circle in Q ; join AQ , and draw $B E^{\prime}$ parallel to $A Q$, meeting $A E^{\prime}$ in E^{\prime}, the point E^{\prime} is in the curve. In this way the other points of the curve may be found.

The curve will pafs through B, and will cut $A B$ at. an angle of which the cofine $=\mathrm{RB}$. If then E be fuch, that $A E=A B$, the curve will cut $A B$ at right angles. If $\mathrm{E}^{\prime \prime}$ be more remote from A , the curve will make with $A B$ an obtufe angle toward D; in other cafes it will make with it an acute angle.
A confruction fomewhat more expeditious may be. had by defcribing the femicircle $A F B$, cutting $A E$ in F, and $A E^{\prime}$ in N, and deferibing a circle round A, with the diftance $A L=2$ AF, cutting $A E^{\prime}$ in b. If $A G$ be applied in the femicircle $\mathrm{AFB}=\mathrm{N} b, \mathrm{AG}$ muft cut $A N$ in a point E ' of the curve, becaufe $A N+B G=$ $2 A F$, and $A N$ and $G B$ are cofines of the angles at \bar{A} and B.
As the lines $A N$ and BG may be applied either above or below AB , there is another fituation of their interfection E'. Thus A n being applied above, and $\mathrm{B} g$ below, the interfection is in ϵ^{\prime}. The curve has a branch estending below A ; and if $\mathrm{D} e$ be made $=\mathrm{DE}$, and $\mathrm{B} e$ be drawn, it will be an affymptote to this branch. Tlicre is a fimilar branch below B. But thefe portions of the curve evidently fuppofe an oppofite direction of one of the two magnetic forces, and therefore have no connection with the pofition of the needie.

We orritted the inferting in its proper place, $n^{\circ} 65$. Addition 4 a hypothefis of the celebraied aflronomer Tobias Mayer $\mathrm{n}^{0} 45$. of Gottingen, by which the direction of the mariner's. necdle in all parts of the earth may be determincd. He fuppofes that the earth coutains a very powerful magnet of inconfiderable dimenfions, which arranges the needlc according to the known laws of magnetifm. The centre of this magnct was diftant from the centre of the earth :hout 4^{80} Englifh miles in 1756, and a line joining thefe centres interfected the earth's furface in a point fituated in 17° N. Lat. and 183° E. Long. from London. The axis of the magnet is perpedicular to this line, and the plane in which it lies is inclined about 11° to the plane of the meridian, the north end of the axis lying on the eaft fide of that meridian. From thefe data, it will be found that the axis of this magnet cuts the
furface
furface of the earth about the middle of the eatern fhore of Bafin's Bay, and in another point about 800 miles S.S.W. of the fouthern point of New Zealand. Profeffor Lichtenberg of Gottingen, who gives this extract from the manufrijt, fays, that the hyporthefis is accompanied by a confiderable lift of variations and dips calculated by it, and compared with obfervations, and that the agreement is very remarkable. He gives indeed a dozen inftances in very different regions of the earth. Bat we fafpect that there is fome error or defect in the data given by him, beeaufe the annual changes, which be alfo gives, are fuch as are inconfiftent with the data, and even with each other. He fays, that the diflance from the centre increales about four miles annually, and that thence arifes an amual diminution of 8 minutes in the latitude and 14. in the longitude of that point where the ftraight line joining the centres meets the furface. It can have no fuch confequence. He fays alfo, that the above mentioned inclination of the phanes increafes 8 minutes annually. The compound force of the naynet is faid to be as the fquare root of the dillance inverfely. We are at a lofs to underfand the meaning of this circumftance ; becaufe Mayer's hypothefis concerning the law of magnetic action is exceedingly different, as related by Mr Lichtenberg from the fame manufcript. But it was vur duty to communicate this notice, though imperfect, of the fpeculations of this celebrated mathematician. See Exliben's Elem. of Nat. Phil. publihed by Lichtenberg ${ }_{7} 784$, p. 645.

Addition to $\mathrm{n}^{\circ} 64$.

Let HZOF (fig. 37.) be the plane of a magnetic
meridian, $\mathrm{H} n^{\prime} \mathrm{O}$ the plane of the horizon, and NS the pofition of the magnetic needle in any place, when it is at liberty to fettle in the true magneric disection. The angle HON is the inclination or dip of the needle. Let $\mathrm{Z} n \mathrm{~F}$ be a vertical circle, in which a well contructed dipping needle can freely play up and down. This needle eamot place itfelf in the magnetic dibction, becaufe it can only move in a vertical plane. Its north point is impelled in the direction no, and its fouth point in the direction s p, both of which are parallel to NS. By the laws of mechanical equilibrimm, it cannot relt, except in fuch a pofition that the forces $n o$ and $s p$ are in a plane perpedicular to the phane Zn F . In any other pofition, there would be a force impelling the needle toward that lide on which no makes an acute angle with the tangent $r n t$ of the vertical eircle. Therefore the \{pherical triangle $\mathrm{N} n \mathrm{~F}$ is right ang!d in n, and Cof. NF $n: \mathrm{R}=$ Tan, $n \mathrm{~F}: \Gamma \mathrm{n}$. NF, $=$ Tan. HN : Tan. $n^{\prime} n$. Therefo:e

$$
\text { Tan. } n^{\prime} n=\frac{\text { Tan. HN }}{\text { Cuf.H } n},=\operatorname{Tan} . H N \times \text { Sec. H } n^{\prime}
$$

Therefore, in any place, the real inclination of the mag. netical direction to the horizun is different from what is pointed out by a dipping needle when it is in a plane which declines from the magnetic moridian ; and the tangent of the obferved dip of the necetle exceeds that of the inclination of the magnetic direction in the pro. portion of radius to the coline of the deviation HC n^{\prime}, or the proportion of the feeant of this angle to the radius. If therefore the dipping needle play in a magnetic eaft and welt circle, it will ftand perpendicular to the horizon.

M A L

MalcMrerbes.

MALESHERBES (Chritian William de Lamoignon) was born December the 6th 1721 . At the age of 24 he became a ccunfellor of Parliament, and lix years afterwards chief prefident of the cour des aides. He remained in that important fituation during a period of 25 years, and difplayed on many occations proofs of firmnefs, eloquerice, and wifdum.

When the prince of Condé was fent by the king in 768 to fitence the magittrates who oppofed the taxes, Malefherbes replied to him, "Truth, Sir, mult indeed be formidable, fince fo many efforts are made to prevent its approach to the throne." About the fame time that he became prefident of the cour des aides, he was appointed by his father, then chancellor of France, fuperintendant of the prefs; an office of the greatefl importance, of which the principles which Malefherbes had imbibed from D'Alembert rendered him very ill qualified to difcharge the duties. He was what the French called a phillofopier ; a term with them of the fame import with a naturalit, who openly denies revealed religion, and has no adequate notions of the moral attributes of God. The confequence was, that when the authors of impious and inmoral books were brought before him in his official capacity to undergo examination, he appeared to them as advifing, affifting, and protecting them, againft that very power which was velted in himfelf; and they were commonly difmiffed with the fenfelefs obfervation, that all books of whatever tendency fhould be confidered merely as objeets of conimerce. Had it not

M A L

been for the protecting influence of Malefherbes, the Encyclopedie, of which the publication was frequently fufpended (fee Dioerot in this Supplement), would probably have been altogether fuppretted; and the works of Rouffeau and Raynal, which fo powerfully contributed to that rezulution in which he was (verwhelmed, would certainly not havc fpread fo rapidly over the kingdum of France. It was he, faid D'Alembert, who broke the fharkles of literature.

In vain will it be replied, that he left the fame liberty to the religious as to the impious writers; for that was not always ftrictly true. The Abbć Barruel has brought the teltimony of D'Alembert himfelf to prove, that it was much againit his will that Malefherbes fuffered works refuting the fophillers to appear; and, as he very properly obferves, what a miniller allows with reluctance, he finds abundant means of preventing.

In 1775 he refigned the office of chicf prefident of the cour des aides, and was appointed minifter and lecretary of thate in the place of L_{3} Vrillière. Thus placed in the centre of a frivolous yet brilliant court, Malefherbes did not in the leaft deviate frum his former fimplicity of life and manners; hut, defpifing the eftablifhed etiquette which required magittrates, when they became minifters of flate, to exchange their fahle habit and head-drefs for a coloured fuit, hag-wig, and fword, he retained his black coat and magitterial peruke! This is recorded by a panegyritt to his honour ; but we perceive not the honour which it

Male fherbes,

M A L [156] M A L

MaleSutibes.
reflects on him. It furely requires no great powers of abftraction to difcover, that a coloured coat, bag.wig, and fword, are not in themfelves more frivolous or contrary to nature, than a black coat and enormous peruke ; and if the manners of a country have appropriated thefe different dreffes to different fations in life, the individual muft be aćtuated by a very abfurd kind of pride, who lets up his own caprice againf the public upinion.

As, when invefted witl the power to reftrain within juft limits the freedom of the prefs, it was his chief aim to encourage and extend that frcedom; fo, when raifed 10 an office which gave him the malimited power of iffuing leflres de cachet, it was their total fuppreffion that became the earlieft object of his mof ardent zeal. Till that time litires de cachet, being conlidered as a part of the general police, as well as of the royal prerofative, were iffued not only at the will of the miniter, but even at the pleafure of a common clerk, or perfons fill more infignificaut. Malefherbes began by relinquifhing himfelf this abfurd and iniquitous privilege. He delegated the right to a kind of tribunal. compofed of the tnof upright magiftrates, whofe opinion was to be unanimous, and founded upon open and well eftablifhed facts. He had out one more object to attain, and that was to fubtitute a legal tribunal in the place of that which he had eltablithed; and this object lie was upon the point of accomplifhing, when the intrigues of the court procured the difmiffion of Turgot ; and Malefherbes, in confequence, religned on the teth of May 1776. For this part of his conduct he is intitled to praile, which we fecl not ourfelves inclined to withhold from his memory. Even M. Barruel admits, that he had many moral virtues, and that he difplayed real benevolence when alleviating the rigours of imprifonment, and remedying the abufe of lellres de cachet; but France, lays he, faall neverthelefs demand of him her temples that have been deftroyed; for it was he who, above all other minifters, abufed his authority to eflablifh in that kingdom the reign of inpiety.

After this epoch he undertook feveral journeys into different parts of France, Holland, and Switzerland, where he collected with zeal and tafte objects of every lind interefting to arts and feiences. As he travelled with the fimplicity and econumy of a man of letters, who had emerged from obfenrity for the purpofe of making obfervations and acquiring knowledge, he by that means was enabled to referve his fortune for important occalions, in which it might procure him information on interefing lubjects. He travelled fluwly, and frequently on foot, that his ubfervations might be the more minute; and em-iuyed part of his time in fuitably arranging them. Thefe obfervations formed a valuable cullection of intereftiog matter relative to the arts and fciences, but which has been almoft totally deftroyed by the fury of revolutionifts, who have done as much prejudice to the interefts of fcience as of humanity.

Returning from his travels, Malefherbes for feveral years enjoyed a philofophic leifure, which he well knew how to direct to ufeful and inportant objects. The two treatifes which he compofed in the years 1785 and 1786 on the civil fate of the proteftants in France are well known. The law which he propofed in thefe, was only preparatory to a more extenfive reform ; and thefe treatifes were to have been followed up by another
work, the plan of which he had already laid down, when affairs growing too difficult to be managed by thofe who held the reigns of government, they were compelled to call him to their conncils. They did not, however, affirn him the direction of any department, and introduced him nuerely (as fublequent events have fhewn) to cover their tranfactions under a popular name, and pafs them on the world as acts in which he bad taken part. Malefherbes accepted their overtures metely to fatisfy the defire he felt to reveal fome ufeful truths; but it was not for that purpufe that they had invited him to their councils. Thofe who prefided at them took umbrage at his firft efforts to call their attention to the voice of truth and wifdom; and fucceeded fo well in their oppolition, that he was reduced to the neceflity of delivering in writing the counfel which he wifhed to offer. Such was the origin of two treatifes relative to the calamities of France, and the means of repairing them. He tranfmitted thefe treatifes to the king, who never read them; nor was he ever able to obtain a private audience although a miniter of thate.

Such is the account of his laft condnet in office which is given by his friends; and as we have not read his treatifes on the calamities of France, we have no right to controvert it. From his known principles, however, we are intitled to conclude, that his plans of reformation were fimilar to thofe of Neckar, the offforing rather of a head teeming with vifionary theories, than of the enlightened mind of a practical ftatefman, or the corrupt heart of a Jacobin confpirator.

Perceiving the inutility of his endeavours, difgufted with what he thought the repeated errors of the government, and deprived of every means of expofing them, or preventing their fatal effects; after frequent folicitations, he at length obtained leave to retire. He repaired to his eftate at Malefherbes, and from that moment entirely devoted his time to thofe occupations that had ever formed the chief pleafure of his life. He paffect the evenings and a great part of the uight in reading and ftudy.

In this tranquil tate he was paffing the evening of his days amidat his woods and fields, when the horrurs of the Revolution brought him again to Paris. During the whole of its progrefs, he had his eyes conftantiy fix. ed on his unhappy fovereign, and, fubduing. his natural fondnefs of retirement, went regularly to codurt every Sunday, to give him proofs of his refpect and attachment. He impofed it as a duty on himfelf to give the minifters regular information of the defigns of the regicide faction *; and when it was determined to bring *Bertrands's the king to trial, he voluntarily offered to be the de-Memairs, fender of his mafter, in his menorable letter of the 1 ith of December 1792, that eternal monument of his loyalty and affection. His offer was accepted; and he pleaded the caufe of the monarch with a ftrength of argument that nothing could have refilted but the bloodthinfty minds of a den of Jacobins. "What Frenchman (fays a valuable writer), what virtuous man of any country, can never forget that affecting feene, when the refpectable old man, penetrating, for the firlt time, into the prifon of the Temple, melted into tears, on finding himfelf preffed in the arms of his king; and that ftill more affecting feene, when, entrufted with the moit agonizing commifion that a fubject could poffibly have to his fovereign, he threw himfelf at the feet of the innocent victim, while, fuffocated with his fobs, his voice,

M A I [$\left.\begin{array}{lll}157 & 1\end{array}\right]$ M A I

till re-animated by the courage of the virtuous Louis, was inadequate to announce the fatal fentence of death *."

Having difcharged this painful and hazarous duty he once more returned to his country refidence, and refumed his tranquil cuurfe of life. But this tranquillity was of fort duration. A bout a twelvemonth afterwards, in the monih of December 1793, three worthy members of the Revelutionary Committee of Paris came to refide with him, his fon-in-law, and his daughter, and apprehended the two latter as criminals. Left alone with his grandchildren, Malefherte's endeavoured to confole the reft of his unfortunate family with the hopes which he himfelf was far from entertaining, when, the next day, the new formed guards arrived to apprehend him, and the whole of his family, even the youngelt infants. This circumftance fpread a general confernation throughout the whole department; fur there was hardly a man in France, a few ex-jefuits excepted, who did not revere the mild virtues of the laft friend of the unfort unate king.

In this calamity Malefherbes preferved the unditurbed equanimity of virtue. His affability and good humour never forfook him, and his converfation was as vfual ; fo that to have beheld him (without noticing his wretched guards), it feemed that he was travelling for his pleafure with his neighbours and friends. He was conducted the fame night to the prifon of the Madelonette with his grandfon Louiṣ Lepelletier, at the fame time that his other grandchildren were feparated into different prifuns. This feparation proving cxtremely afflicting to him, he earneltly folicited againlt it ; and at length, on his repeated entreaties, they all neet together once mure at Port-Libre. They remained there but a fiort period. The fon-in-law of Malefherbes, the virthous Lepellctier Rafambo, the firft of them who was arrefted, was ordered into another prifon, and facrificed a few days after. Malefherbes himfelf, his daughter, his grand-daughter, and her hufband, were foon after all hrought to the guillotine. They approached it with fortitude and ferenity. It was then that his daughter addreffed thefe pathetic words to Mademoifelle Sombreuil, who had faved the life of her own father on the 2d of September: "You have had the exalted hononr to preferve your father-I have, at leaf, the confolation to die with mine."

Malefherbes, till the fame, even to his lat moments exhibited to his relations an example of fortitude. He converfed with the perfons that were near him without beftowing the lealt attention on the brutalities of the wretches who tied his hands. As he was leaving the prifon to afcend the fatal cart, he fumbled agaisift a ftone, and made a falfe ftep. "See (faid he fmiling), how had an omen! A Roman in my fituation would have been fent hack again." He paffed through Paris, afcended the feaffold, and fubmitted to cieath with the fame unthaken courage. He died at the age of 72 years, 4 months, and $1 ;$ days. He had unly two daughters; and the fun of one of them alone remains to fucceed. From this account of Maleflerbes's behaviour at his laft momeuts, we are inclined to believe that his intentions were bettur than fome parts of his practical conduct ; and we know, that having difpelled the vain illufons of philoforhifm, the achmowledgect his paft errors; exclaiming, in the accents of grief; "That falfe. philofophy (to which I confefs I was myfelf a dupe)
has plunged us into the gulph of deftruction, and, by Malguzza. an inconceivable magic, has fafcinated the cycs of the nation, and made us facrifice rcality to a mere phantum. For正 that focial-frecdom which the poffefed in every refpect, in a higher degree, than any other nation! How truly great did the king appear in his lan moments! All their effurts to degrade him were vain; his unhalien virtue triumphed over their wickednets. It is true, then, that religion alone transfufes fufficient courage into the mind of man, to enable him to fupport, with fo much dignity, fuch dreadful trials $\uparrow . "$

MALGUZZARY, in the language of Bengal, pay. ATemoirs, mont of revenue; the revenue itfelf.

MALPHAGHINO (John), otherwife called Juhn de Ravenna, from the place of his birth, was born in the year 1352, of a family diftingnifhed neither by riches nor nohility. His father, however, committed him to the care of Donatus the grammarian, an intimate friend of Petrarch, who at that time taught the Latin tongrue with great applaufe at Venice. Donatus thought he difcovered fuch happy difpolitions in young Malphaghino, that he recommended him to Petrach, not only is an excellent affitant to facilitate his labours, hy reading or tranferioing for him, but as a youth of the moft promifing talents, and worthy of being formed under the infpection of the greateft man of the fourteenth century.

It appears from fome of Petrarch's letters, for it is from thefe chiefly we can obtain information refpecting John de Ravenna, that he fully anfwered the expectatiuns formed of him ; and that he even gained the favour and affection of his patron fo much, that he loved him and treated him as if he had been hisown fon. In a letter to John de Certaldo (a), Petrareh highly extols him, not only for his genius and talents, but alfo for his prudent and virtuous conduct. "He poffeites (fays he) what is very rarc in our times, a great turn for poetry, and a nuble defire to become acquainted with every ufeful and ornamental part of knowledge. He is favoured by the Mufes, and already attempts verfes of his own; from which one can foretel, that, if his life be fpared, and if he goes on as hitherto, fomething great may be expected from him."

Not lung, however, after this panegyric was written, young Malphashino conceived an infuperable defire to fee the world; and, notwithtanding all Petrarch's remonftrances, perfifted in his refulution of quitting lain. Petrarch's paternal care and regard for his pupil appear, on this occafion, in the moft favourable light, as may be feen in his letters to Donatus ; and his whole belaviour, though the young man infilterl on leaving binn, withont alfigning a fufficient reafon for his precipitate aid ungrateful conduct, does as nuci honour to his head as to his heart,

The precipitation with which Juhn de Ravenna carried his plan into execution was not likely to make it anfwer his expectations. He departed without taking with hims letters of recommendation which Pcirarch utfered him to his friends. He, howerer, purfutd his journey over the Appenines, amidat continual rain, giving out that be had heen difmiffed by Petrarch; but, though he experienced fion many a conapaltion to wuich he was not entitled by his cunduct, he now began to awaken from his dreain. He proceeded therfore to
(a) Better known under the name of Bocsacio or Boccace. Certaldo was the place of his birth.

Malplag. Pifa, in order to procure a venfel to carry him back to. hino. wards Pavir ; but being difappointed while his money watted as much as his patience decreafed, he fuddenly refolved to travel back acrofs the Appenines. When he defcenked iuto the Ligurian planes, he attempted to wade through a siver in the diltrict of Pama, which was much fwelled by the rains: and being carried by the force of the fleam into a whirlpool, he would have loft his life, had he not heen faved by fome people who were accitentally paffung that way. After efaping this danger, he arrived, pennylefs and famifhed, at the houfe of lis former patron, who happened then not to be at home ; but he was received and kindly entertained by his fervants till their mafter returned.

Petrarch, by his intreaties and paternal admonitions, retained the young man at his houfe for about a year, and prevented him from engaging in any more romantic adventures; but, at the end of that period, his defire for rambling again returned; and as Petrarch found that all attempts to check him would be fruitlefs, he gave him letters of recommendation to two of his friends, Hugo de St Severino and Francifous Brumus, at Rome. To the former of thefe, Petrarch fays, "This youth of rare talents, but ftill a youth, after propofing to himfelf various plans, has at length embraced the nobleft ; and as he once travelled, he is now defirous of doing fo again, in order to gratify his thirft of knowledge. Fe has, in particular, a ftrong inclination for the Greek language : and entertains a wifh which Cato frift conceived in his old age. This wifh I have endeavoured for fome years to fubdue; fometimes by intreaties, at other times by admonition; fowetimes by reprelenting how much be is itill deficient in the Roman language ; and fometimes by laying before him the difficulties which muft attend him in his journey, efpecially as he once before left ine, and by want was obliged to retorn. As long as that unfortunate excurlion was frefh in his memory he remainel quict, and gave me hopes that his refteis fpirit could be overiome and reftrained. But now, fince the remembrance of his misfortunes is almoft obliterated, he again fighs after the world; and can be retained neither hy force nor perfuafion. Excited by a defire which betrays more ardour than prudence, he is refolved to leave his comntry, friends, and relations, his ared father, and me whom he loved as a father, and whofe company he preferred to a refidence at home, and to haften to you whom he knows only by name. This precipitation even has an appearance of prodence. The young man forlt wifhed to vifit Conftantinople; but when $[$ told hin that Greece, at prefent, is as poor as it was formerly rich in learning, he gave credit to my affertion, and at any rate altered his plan, which he conld not carry into execution. He is now defirous of traverfing Calabria, and the whole coaft of Italy, dillinguifhed formerly by the name of Magna Grecia, becaufe I once told him that

Greek languace, particularly a monk, Burlaam, and one MalpratLeo, or Leontius, with whom I was intimately acquain:ed, and of whom the firf had been fome time my fcholar. In conlequence of this propofal, he begged me to give him a recommendatory letter to yon, as you have confiderable iufluence in that part of the eountry. This requet I granted, in hopes that the young man, by his gemius and talents, will afford you fatisfaction equal to the fervice which you may render to hia." In lis letter to Brunus, Petrarch expreffes himfelf as follows: "He is a young man who wifhes to fee the world as I formerly did; but I never reflect on it without horror. He is defirous of feeing Rome; and this defire I cannot condemn, as I myfelf have for often vilited that city, and could ftill revifit it with pleafure. I fufpect, however, that he will venture on a more extenfive ocean, and that he imagines to find a fort une where he will, perhaps, neet with a fhipwreck. At any rate, he is defirous, he fays, of putting his fortune to a trial. I wifh it may be favourable; fhould it be adverfe, he is ftill at liberty to return to my peaceful, though fmall, haven ; for 1 hang out a light during the day as well as the night, to guide thofe who quit me through youthful folly, and to enable them to find their way back. The ardour by which he is impelled muft not be aferibed fo much to him as to his age, and is in itfelf commendable. If I am not much deceived, the young man lores me and virtue in general. He is unteady, but modeft; and deferves that all good men fhould contribute to his profperity as far as they can."

From the letters of Petrarch, there is reafon to believe, that John de Ravenna lived with him only about three years in all ; and that he had not attained to the full age of manhood when he left him. It appears alfo, for this circumftance is very obfoure, that atter he quitted him, he wandered about a confiderable time betore he was fo fortunate as to meet with a protector and patron, at whofe houfe, as he wrote to Petrarcls, he at last found a permanent afylum. How long he remained with his patron, whom fome believe to have been Cardinal Philip, and what happened to him till the dath of Petrarch in 1374 , and for fome years after, is unknown. The literary monuments of the fourteenth and fifteenth centuries ray nothing farther of him till his appearance at Pallus; where, according to the tellimony of Sicco (B), one of the moit celebrated of his feholars. he not only taught the Roman Eloquence, but alfo the fcience of moral philofophy, with fuch fuccefs and applaule, and impruved his icholars fo much by lis cife and example, that, according to univerfal opinion, he far ex. celled all the profeffurs of thofe fciences who had ever before appeared. That he was here of confiderable feryice in revivi:g the fudy of the Latin langnage, and of the works of the ancient Romans, was acknowled ged by all his fcholars, and is confirnied by the following teftimony of Blondus (c).
"About the fame period, Ravenna produced that learned
(s) Adolefcens tum ego poetas, et inflituta Tullii audiebam. Legebat tunc hac in civitate Padua, literarum nutrice, Fohannes Ravennas, vir et fanctimonia morum et ftudio ifto excellens, atque fi poteft fine invidia, dici ceteris, qui magiftri artis huivs in terra Italia ufquam degerent et doctifimi haberentur, quantum recordari videor, omnium judicio prxferendus. Hoe namque a præeeptore non eloquentia modo, quam ex ordine legerit, fed more 3 etiam, ac quædam bene honeteque vivendi ratio cum doctrina tum exemplis difiebatur. - Sicco Poleutonus, Ap. Mehus, l. c. p. 139.
(c) Blondi Flavii Forlivienfis Italia illuitrata. Bas. 1559. fol. p. 346.

M A L

ifhag. learned grammurian and rhetorician Johannes, of whom Leonardus Aretinus ufed to fay, that he firlt introduced into Italy, after a long pe:iod of barbarifin, the Itudy of the latin language and cloquence, now fo flourifhing; a circumftance which deferves to be enlarged on in the prefent work. Thofe well acquainted with Ruman literature know, that after the periods of Ambrofe, Jerom, and Augultine, there were nome, or very few, who woute with any thegance, unlefs we add to thefe good witers, St Gregory, the vencrable Beda, and St Bernard. Francis Petrarcha was the firft who, with much genius, and thill greater care, recalled from the duft the true art of poetry and of eloquence. He did not attain to the flowers of Ciceronian eloquence, with which many are adoraed in the prefent century; but this was owing rather to a want of books than of talents. Though he boaked of having found at Vercelli Cicero's letters to Lentulus, he was uanequainted with the bouks of that great Roman D_{e} Oratore, Quintilian's Inititutes, the Orator, the Brutus, and other writings of Cicero. John de Ravema was known to Petrarch both in his youth and in his olll age. He was not more converfant with the ancients than leetrarclı; and, as far as 1 know, left no works behind him. By his excellent genius, however, and, as Leonardus Aretinus fays, by the particular difpenfation of God, he was the preceptor of this Leonardus, of Pe trus Paulus Vergerius, of Annebouns de Padua, of Robert Rofin, of Jumes Angeli of Florence, of Poggins and Guarino of Verona, of Vicoorinus, Sicco, and other men of lefs note, whom he incited to the ftudy of hetter knowledge, and to imitate Cicero, if he could not form them or intruct them completely.
"About the fame time, Manuel Chryfoloras: a man as virtuous as learued, came from Conlantinople to Italy, and inftructed in the Greek language, partly at Venice and partly at Florence and Rome, all the before mentioned fcholars of Joha de Ravenma. After hie had continued this inflruction for fome years, thole unacquainted with the Greek langnage, and the ancient Greek writers, were confidered in Italy as more ignorant than thofe unacquainted with the Lation. A great many young inen and youths were inflamed with an enthufiatic defire for the works of the ancient Greeks and Romans. At the time of the council of Conillance, in the begiming of the $15^{\text {th }}$ century, many of my countrymen endeavoured, by fearching the neighbouring convents and cities, to difcover fome of the Roman manufcripts which had been loft. Poggins firt difcovered a complete copy of Quintilian, which was foon followed by the letters of Cicero to Atticus. As our youth applied to the Rudy of thefe works with the utmof diligence, that celebrated grammarian and rhetorician Cafparnius de Bergamo, opened a fchool at Venice, fuperior to the former, and in which young perfons were encouraged to Audy the ancient langruages and writers. About the fame time flourifhed Petris Paulus Vergerus, Leonardus Aretinus, Robert Roffi, James Angeli, Poggins, and Nicolaus de Medici, whom Aretin had long intructed. Guarinus alfo had begun to inftruit many at Venice, and Vietorinus at Mantua, when Phillip III. Duke of Milan, recalled Cafparinus as his fubject, from Venice to I'adua and Milan. The increafing Aludy of ancient literature was much promoted by Gerard Landriano bifhop of Lodi, difcovering under fome ruins an old copy of Cicero, written in cha.
rasters fcarcely legible, which, among other thetorical
writings of that great Ronan, contained the whole writings of that great Roman, contained the Whole
books De Oratore, with his Brulis and Orator. This faved Cafparinus the trouble of fupplying the books of Cicero De Oratore, as he had attompted to fupply the works of Qnintilian. As no one was found in all Milan who could read this eld manufcrijt of Cicero, an ingenious young man of Verona, named Cifnuus, was fo fortunate as lirt to tranfcribe the books De Oralore, and to fill all Italy with copies of a work which was univerfally fought for with the utmoft avidity, I myfelf, in my youth, when I went to Milan on the bufinefs of my native city, tranferibed, with as much ardour as fpeed, the Bratus of Cicero, and fent copies of my tranfcription to Cuarinus at Verona, and to Lconand Jultiniani at V'enice; by which means this work was foon difperfed all over Italy. By thefe new works eluquence acquired new fire ; and hence it happens, that in our age people feak and write better than in the time of Petrarch. The fludy of the Greek language, belides the abundance of new and uffful knowledge which it dicluced, was attended with this gitat adwantarge, that many attempted to tranfate Greck works into Latia, and thereby improved their flye much more than they could have done without that practice. After this period, fchuols for teaching the ancient languages increafed in Italy, and flowrithed more and mote. Molt cities had fohools of this kind; and it grives one pleafure to obferve, that the feholars excelled their maflers, not only when they left them, but even while they were under their tuition. Of the fcholars of John de Ravenna, two of the oldeft, Guarinus and Vietorinus, the former at Venice, and the hitter at Mantua, Verona, Florence, and 「errara, initructed an immenfe number of pupils; and among thefe, the Princes of Ferrara and Mantua. George of Trebifonde, when he leetured at Rome, had for his auditors, befides Italians, manyFrench, Spaniards, and Germans, among whom fometimes there were men of rank and enminence. Francifcus Phitelphus, who had been taught at Conftantinople by Chryfoluras himfelf, inatructed a great many young. men and youths in the Greek and Latin languages at Venice, Florence, Siena, Bologna, and, Jalt of all, at Milan." In the above quotation, the fhare which John de Ravenna had in revifing and diffuling a knowledge, not only of the Roman, but alfo of the Grecian literature, is fo clearly reprefented, that no farther teftimony is neceffary to eflabilifh his claim to celebrity.

After John de Ravenna had taught at I'adua, he removed for the like purpofe to Flurtnce; where, as appears, he infructed young people for fome time, without being exprefsly invited by the government, and vithout being publicly paid for his Jabours. In the begiming of his refidence at Florence, he feems to hate. been recoumended by Colucius to the learned Charles de Malatefla. "There lives here at prefent (fays Colucius, in one of his letters) a teacher of great merit, John de Raverna.-He is (continues he) of mature age ; irreproachable in his manners, and fo difpofed in. general, that if you receive him, as I hope and wifh, among the number.of your intimate friends, you will find him an agreeable and incomparable affiftant to you in your labours and fudies. What can be more defirable to you than to poffers a man who will lucubrate and labour for you? and who, in a fhort time, can communicate to you what you could not obtain by your

M 1.3 , ow expertions without grat dificulty. I do not know
1.:10,

Ni風教. ulether you will tud his like in all Italy ; and I therefore wilh, that, if you confide in my jndgment, you will
rerive Joln de Ravenna in the room of your late learned ariend Janeq de Alegretti." It is not known whether John de Ravenna went to refide with Malatefta or not. It is, however, certain, that the former, in 1397 (the fame year in which Manuel Chryfoloras came to Florence), was invited thither by the magitrates of that city, with the promile of an annual falary, to inflruct young people in the Roman language and eloquence: that John de Ravenua, at the period when be entered into this honourable engagement, was 45 years of age ; and that the fclolars of John de Ravenna were, at the fame time, feholars of Chyfoloras. Saluratus Colucius, in all probability, was the caufe of this invitation, as he was acquainted with the fervices of John de Ravenna, and knew how to appreciate them. "We know (fays he), in one of his letters to John det Ravenna), and all who refpect you know alfo, that none of the moderns, or even ancients, approached fo near to Cicero as you; and that to the moft wonderful beauty and powers of fpeech, you join the deepeft knowled ge." John de Ravenna, like Chryfoloras, and moft of the teachers of the Greek and Roman languages in the begiming of the fiftecntin century, was, no doubt, engaged at firt only for a few years; when thefe were elapfed, the engarement was renewed, perhaps for the latt time, in 1412, and he was bound, befides teaching the Roman eloquence, to read publicly, and explain in the cathedral, on feftivals, the poems of Dante. John de Ravenna did not long furvive the above renewal of his engagement ; for an anonymous writer, who, in 1420, finilhed A Guide to Letter-writing, accorlling to the Principles of Fobn de Ravenna," Speaks of his preceptor as of a man not then in exiftence.

MALT. See Brewing (Encycl.), where a full account is given of Sir Robert Murray's method of maltmaking, together with fome valuable obfervations on malt by Mr Richardfon of Hull. In a late edition of this latter genteman's Thboretic Hints on Brewing, we are told, that Mr Edward Rigby of Norwich is of opinion, that the mere exficcation of corn is not the only object obtainable by drying it on the kiln, but that fome portion of the faccharum of malt is the effect of that procefs. "I'he operation of kiln drying the malt (fays Mr Rigby) is as follows:-The grain is fpread thick upon a floor marle of flat bricks (tiles), or iron plates, which are full of perforations; inmediately ur 'er this floor is the oven or furnace, in which is a large fire made of coaks, cinders, or, in fome places, billet wood; a current of air, at the mouth of the furnace, keeps up tlie combuftion of the coaks, and the air which is phlogifticated by their buming, and which, in a common fire-place, rifes up the chimney, palfes, in this infance, through the apertures in the floor, and penetrates the whole fratum of malt before it can pafs into the exterwal air. Under thefe circumttances, it is evident, that the interfices of the malt mutt be filled with phlogiltic air ; and as the grain ufually remains in this fituation about two days, it is obvions, that if it have the power of abforbing phlogitton, it certainly mutt do it when (i) long in contact with it. And that the malt does rally imbibe fome of this principle, is not only probable 0.1 the general ground of the truth of the preceoing
theory, but, I believe, it will be found, that the phlo. Malt. gilticated air which rifes from the burning fubflances underncath, is corrected in paffing through the malt ; for withour its heing meliorated by this or fome other caufe, it is evident that the air in the kiln-chamber, more efpecially the lower ftrata of it, muft be noxious, and probably even fo much fo as to be unfit for refpira. tion and combuftion. But fo far from this being the cafe, I am informed, that workmen will lie and fleep many hours on the malt in this fituation without fuffering any inconvenience. And after mentioning this, it is fcarcely neceffary to add, that I find alfo, by experiment, that a candle will burn perfectly well in the air which is immediately on the furface of the malt.
"Were heat alone fufficient for the purpofe of com. pleting the operation of malting, it certainly might be applied in a much more cheap way thin is at prefent done; for the floor on which the grain is laid might, unqueftionably, be beated equally without there being perforations in it, as with them. In which cafe, one kind of fuel would be as good as another ; and, confequently, the prefent expence of previoully hurning the roals, to convert them into coaks or cinders, might be faved.
"But, admitting that the application of phlogiton to the malt, as well as heat, is requifite in this operation, the neceffity of thefe perforations becomes evident, and alfo the propriety of previoufly burning the coals in fuch a way, that all the water, and thofe other heterogeneous particles which compofe fmoke and foot, may be diffipated; for thefe, merely as fuch, would obvionf. ly contribute little to the phlogiftication of the malt, and would evidently impart fome offenfive flavour, if not fome obnoxious quality to it.
"Reafoning from the above premifes (Mr Rigby concludes), it would feem, that as all the farinaceous parts of the barley are feldom diffolved in brewing, and the grains which are left have ufually the difpofition to become four, therehy manifefting fome of the acid principle to be ftill exifting in them, it is not improbable but fome further faccharine matter might be obtained from the grain by another expofure to phlogiticated air, or, in other words, by being once more laid on the kiln."

This is indeed fo far from being improbable, that we think it muft infallibly be the cafe. Sugar, it is well linown, confitts of oxygen, hydrogen, and carbon (fee Chemistry in this Supplement, $1^{0} 466$.) ; but from the difpolition of the grains to become four, it is plain, that after the procefs of brewing they ftill retain much oxygen ; and the azotic gas, which is here called phlogillicated air, there is every reafon to believe contains both hydrogen and carbon. Thefe, therefore, uniting with the oxygen of the grains, mut make an addition to the faccharine matter. This has, indeed, been found to be the fact by Mr Richardfon, who, in confequence of Mr Rigby's fuggention, was induced to brew a finall brewing of malt, of ten quarters only, and llopping the procefs when, according to his general practice, one extract was fill due, he ordered the grains to be laid upon one of his malt-kilns, and cinders to be applied the fame as for drying of malt. 'This was continned for two days and a half, when the grains, being perfecly dried, were put into facks, and, when cold, returned again into the mafl-tut. The event, in fonie meafure, juftified Mr

Righy's expectation ; for the produce of fermentabie matter was confiderably more than he had reafon to conclude would have been the cafe, had the extract beea made in immediate fuceeffion, as it would have been in the ordinary courfe of his practice. He attempts, indeed, to aecount for it in a way very different from nurs; but though we have the higheft confidence in Ms Richardfon as an experienced brewer, we mutl fometinnes beg leave to think for ourfelves as chemifts. Like a man of fenfe, however, and a man of feience, he fays, "I am fo well fatisfied with the event of this experiment, that I thall prosably be inclined, on fome fucture occafion, to repent it, in various ilages of the procefs. The fine lively froth on the furface of the wort, in the underback, added to its tranfparency and goond flavour, are eidcumflanees which induce me to thank Mr Rigby for the hint, which, it is not improbable, may be applied to fome ufeful purpure, in certain fituations which fometimes occur in the brewing trade."

MAMmalukes, Manalucs, Mamelores, or Mamluks, were a dynafty that reigned for a confiderable time in Egypt, and of which fome account has been given in that article (Encycl) A fuller accourt of them muft, however, be acceptable to our readers, as, fince their connections with the French, they have attracted confiderable attention.

They were firft introduced into Egypt, as we have already obferved, by Saladine, who, when he had it in contemplation to befiege Jerufalem, very naturally endeavoured to collect the moft forcible meanis to accom. plifh fo defirable an end; and, in confequence, obferving that the ancient inhabitants of Egypt were, from their effeminate mode of education, and the quiet and tranquil habits of their lives, much fitter for thofe occupations in which they delighted, namely, the arts, merchandize, and mechanics, than military tactics and military toil, he refolved, as little as poffible, to employ or depend upon them.

This refolution alimulating him to procure a hardier race of foldiers, he therefore commiflioned agents to treat with the Circaffians, by the Lake of Mxotis, near Tawrica Cherfonefas, whence, about the year 1176, they purchafed more than a thoufand flaves. Min inured to hardhip, nurtured in the iap of toil and danger, and bred from their infancy to war, which was to them rather than an inftiuct than a fcience, as the continual incurfions of the Tartars rendered felf-defence, in their fituation, abfolutely neceffary.
Thefe flaves Saladine trained to military' difcipline, and, at the fame time that he made them renounce Chrifianity, had them inftructed in the Mahometan religion ; and although he prohibited them from marrying, he allowed them an unbounded licenfe with refpect to defultory gallantry. What progrefs they made in the doctrines of the Alcoran, whether the tenets of that facred volums effectually eradieated all their firlt principles, is uncertain ; but it is certain, that in time they became excellent foldiers, and that the military glory of Saladine, which was feebly fupported by the native Egyptians, expanded in the hands of the Mameloues, who extended their conquefts on every fide, until, pervading the Holy Land, they entered in the plain of Afkelon.

Thefe Mameloucs, who were continually adding to their numbers, in procefs of time became naturalized Suppl. Vol. II. Part I.
to the country; and, as it has been obfervea, they ex. Mammiscelled the Egyptians in ftrength of body, in military difcipline, in their Anill in horfemanhip, and in courage; fo they, by the liberality of their generals, and the plunder of cities and provinces, alfo excelled them in wealch. In fact, their mode of education fitted them for the moft dangerous and adventurous enterprifes, and, from being the flaves, enabled them in time to become the matters of even the Tuks, by whom they had originally been purchafed.

After the deatlo of Saladine, who left the kingdom to his brother, they rofe to thill greater importance than they lad acquired during his reign, and continned, if not abfolutely to govern, yet, like the Ruman foldiers in the time of Pertinax, Alexander, and Valerian, to awe the monarch.

This influence continmed through the reigns of five fucceffive Caliphs, until that of Melachfala, the laft of the pofterity of Saladine, who being at war with the Arriftians, and, at the fame time, wifhing to reprefs the enormous power of the Mameloncs, purchafed flaves from all the furrounding countries, whom, in imitation of his anceftor, he armed and appointed to defend his dominions. The event of this meafure was exactly what might have been expected. Melachfala was, in confequence of a confpiracy betwixt his new and his old foldiers, fain ; and Turquemenus, the leader of this mutiny and rebellion, hailed by the title of Great Sultan of Egypt. With him began the government of the Mameloucs, about the year 1250; which had the next year gathered fuch frength, that it was thought neceffary, in order to reprefs thofe exuberances to which new formed governments are liable, and bring it nearer to a fyitem, to caufe the following articles, in the form of a charter, to be fubferibed to by their principal leaders, as an act of the whole people:-" 1 n , That the Sultan fhould be chofen from the body of Mameloucs; 2 dly, That none thould be admitted into the order that were by birth either Jews or Turks, but only Christian captives; 3 dly, That the native Egyptians fhould not be permitted to ufe, or have, any weapons, except the in. ftruments of agriculture."

Turquemenus, as is frequently the practice with thofe that experience a fudden elevation, endeavoured to kick cown the ladder by which he had been raifed; or, in other words, his carriage was fo haughty and difdainful tu his former companions, that he was by them, or rather by one of them wamed Clotho, fuddenly llain; for which the murderer was rewarded with his fceptra, After him fucceeded a long race of princes, many of whom were as eminent for their talents as for their valour; among whom, the name of Caitbeius has been tranfmitted to us as that of the greateft ftatefinan and general of his age ; but, as every one who confiders the materials of which the government was compofed, muit rather wonder that it exifted fo long, than that it fould, through almoft the whole courfe of its operation, be expofed to all the various evils and diftreffes arifing from a long train of fedition and tumults, fo he muft Iament that it thould expire in the reign of one of their wifeft and beft monarchs: yet it is fome confolation to reflect, that Campfon, the laft Sultan of the Mameloucs, was not murdered by bis own fubjects, but having for many years governed the kingdons of Egypt, Judea, and Syria, in a manner that has excited the praife

Msmm3- of the hilloric pen, he, oppreffed with age and difcafe,
lurkec. of battie, and, with his laft breath, yielded the vicarory to the fortunate Selim.

With this monarch, who expired January 20, 1516 , ended the government of the Mameloucs, alter it had continued 276 years; for although an attempt was made by Tomumby to get hinfelf dechared Sultan, in which attenipt he actuslly fuccecded in far as to be invefted with the title, yet he was foon after defeated by the victorious Selim. He was then forfakea hy his troops, taken and executed; while the Ma:neloucs, hroken and difperfed, it was the policy of Selin to rally, and, by offers too tempting to be by thein refufed, engage in his fervice. The ufe of thefe foldiers foon became fuficiently apparent to the 'Furkith Emperors, to ftimulate them to augment their number, enlage their fphere of astion, and combine them clofer to the flate, by the allowance of fiill greater privileges and advantages than they had befnere enjoyed.

The leys were ordained to he chofen from among them; and the Paßha, or chief governor for the Porte, was to thare his power with thofe Beys, and eveut to continue in ofice no longer than flould be agreeable to their collective will. At firlt the power of the Pafna was very cxtenfive ; but, by the intrigues and ambition of the Beys, it has been reduced almoft to a cypher. It was rather of a civil than military nature. He was always prelident of the Divan, which was held in the cafle where he refided. But that comeil now comnonly meets in the palace of one of the chief Beys, except when a frman or mandate is received from Contantiauple, when the Beys are funmoned to the caftle, to hear the commands of the Porté. The few who attend, as foon as the reading is finifhed, anfwer, as is ufual, " Efinana aya iaana," "We have heard, and we obey." On leaving the cafte, their general voice is "Efinana wo anyfinc," "We have herard, and fliall difobey."

In the year 1791. Salah Aga, a flave of Murad Bey, *as depated from the governinent of Egypt to negoerate their peace with the Porte. He carried prefents of horfes, wich ftufis, \&c. A fpontaneons tribute, which the Purte was in no condition to enforce, implied obligation on the part of the latter. He was well received, and afterwards was appointed IWaquil es Sultan, agent or attorney to the Sultan in Cairo. it probable this office was given him to iacline him to fecond the efforts of the Court in difuniting the Beys; but it was ineffectual. Thefe had formerly experienced the evils of divifion, and now were united by common interefl, grown rich, and well provided with flaves; fo that no tribute has fance that time found its way to Conftantinople.
'The Mameloucs remain, as they have ever been, miLitary flaves, imported from Georgia, Circaffia, and Mingrelia. A few have been prifoners, taken from the Auftrians and Ruflians, who have exchanged their religion for an eftablifhment. The Beys give general orders to their agents at Contantinople to purchafe a certain number every year; and many are brought to Egypt by private merchants on fpeculation. When the fupply proves infufficient, or many have beell expended, black flaves from the interior of Africa are fubftituted, and, if founl docile, are armed and accoutred like the reft.

Particular attention is paid to the education of thefe Mamman favoured flaves. 'They are intructed in every exercife of agility or ftrength, and are, in general, diftinguilhed by the grace and beauty of their perfons. The gratitude of the diciples is equal to the favour of their maflers, whom they never quit in the hour of danger. If they liave a difpofition for learning, they are taught the ufe of letters, and fome of them are excellent feribes; tut tle greater part neither can read nor write. A ftrihing example of which deficiency is obfervable in Murad Bey himfelf.

The inferior Mameloues contantly appear in the military drefs, and are commonly armed with a pair of pifols, a fabre, and a dagger. They wear a peculiar cap of a greenih hue, around which is wreathed a turban. The reft of their drefs refembles that of other Mahomedan citizens, and is reftricted to no particular colour; but another fingularity is, their large drawers of thick Venetian cloth, of a crimfon colour, to which are attached their flippers of red leather. On horfeback they add to their arms a pair of large horfe piftols, and the duhbus or battle-axe. In batele, many of them wear an open helmet, and the ancient ring ai:mour of interwowen links of fteel, worn under part of their drefs, and thus concealed. Thefe are dear ; fometimes cofting 500 piaftres, or about L. 40. Some of them are made at Conftantinople, others in Perfia. Their horfes are of the fineft Arabian breed, and are often purchafed at three or four purfes, L. 150 to L. 200 fterling.

I'hey have no pay, as they eat at a talle in the houfe of their mafter the Bey, Cafhef, or other officer. Any military officer may purchafe a flave, who becomes ipfs faZo a Mamelouc. The name, from malek, to pofefs, implies merely a perfon who is the property of another, After a proper education, the candidate thus conflituted a Mamelone, receives a prefent of a horfe and arms from lis mafter, together with a fuit of cluthes; whieb is renewed every year in the month Ramadan. The generofity of their mafters, and rewards or extortions from others, afford them fupplies of moaey, either for avarice er debauchery. Some of them, admitted to peculiar favour by the Beys, as chafnadars, or purfe-bearers, Sc. acquire great wealth. They are rather gray: and thoughtlef's than infolent, fond of thow, and unprincipled in their meaus of acquiring it. They feldom marry till they acquire fome office.

Though born of Chriftian parents, they feem highly fatisfied with their condition, which they have heen known to refufe to exchange for freedom. The :najority are regarded by the Arabs as little ftrict in the principles or duties of Mohamedifn. It is worthy of remark, that though the Mameloucs, in general, befrong and perfonable men, yet the few who marry veryfeldom have children. As the fon, even of a Bey, is. not honoured wirh any particular corfideration, the women, perhaps, procure abortions. Of eighteen Beys, with whofe hiftory Mr Browne was well acquainted, two only had any children living.

Hardy, capable of every fatigue, of undaunted courage, and eminent fkill in horfemanihip and the ufe of the fabre, the Maneloues may be regarded as by far the belt troops in the Eaf. But in a regular battle, conducted by manœuvres, and large or rapid movements, they are equally inferior to European troops.

Manma- Bcing diflinguifhed by favouritifm or merit, the Mamelouc becomes a Cafhef, and in time a Bey. The chief caufe of prcference arifes from political adherence to fome powerfull leader.

Before the invafion of Egypt Ly the French (Sce Revozution, Suppl.), the Government of Cairo, and indecd of the whole country, was vefted in 24 Beys; but the Porte has fince endeavoured to deprive them of all power ; with what fuccefs is not yet perfectly known.

MAN, has been confidered in a great number of particulars under the title Man (Encycl).; but a reference was made from that article to the article Variegies of she Fiuman Species, which was, after all, omitted entirely.

Perhaps enongh has been faid on the varieties of the human fpecies in the articles Complexion and Negro (Encycl.) ; hut as infidel ignorance is perpetually pretending, that the diminutive Icelanders, the ugly Efquimaux, the woolly-headed Negro, and the copper-culoured American, could not have defcended from one original pair, either of European complexion or of Hindoo fymmetry - it may not be improper, in this place, to fhew the weaknefs of this popular objection to the Mofaic hiftory of the origin of man. This has been done in fo fatisfactory a manner, by Profefor Blumenbach, that we fhall content ourfelves with laying his obfervatín before our readers, convinced, as we are, that they are intelligible to every capacity, and that they will carry conviction to all who are not the flaves of prejudice.
"Some late writers on natural hifory (fays the Profeffor) feem doubtful whether the numerous diftinct races of men ought to be confidered as mere varieties, which have arifen from degeneration, or as fo many fpecies altogether different. The caufe of this feems chiefly to be, that they took too narrow a view in their refearches; felected, perhaps, two races the molt different from each other poffible, and, overlooking the intermediate races that formed the connecting links between them, compared thefe two together; or, they fixed their attention too much on man, without examining other fpecies of animals, and comparing their varicties and degeneration with thofe of the human fpecies. The firt fault is, when one, for example, places together a Senegal negro and an European Adonis, and at the fame time forgets that there is not one of the bodily differences of the fe two beings, whether hair, colour, features, \&c. which does not gradually run into the fame thing of the other, by fuch a variety of fhades, that no phyfologift or naturalift is able to eftablin a certain houndary between thefe gradations, and confequently betwcen the extremes themfelves.
"The fecond fault is, when people reafon as if man were the only organifed being in nature, and confider the varieties in his 「pecies to be ftrange and problematical, without reflecting that all thele varieties are not more ftriking or more uncommon than thofe with which fo many thoufands of other fecies of organifed beings degenerate, as it were, before our eyes."

As what we have faid under the articles Complexion and NEGro may be fufficient to warn mankind againft the firt error, and at the fame time to refute it, we hafen to refute the fecond by our author's comparifon between the human race and that of fwine.
"More reafons (fays he) than one have induced me so make choice of fwine for this comparifon; but, in
particular, becaufe they have a great fimilarity, in many Nan. refpects, to man : not, however, in the form of their entrails, as pcople formerly believed, and therefore ftudied the anatomy of the human body purpofely in fwine: fo that, even in the laft century, a celebraterl difpute, which arofe between the phyficians of Heidel. berg and thofe of Durlach, refpecting the polition of the heart in man, was determined, in confequence of orders from government, by infpecting a fow, to the great triumph of the party which really was in the wrong. Nor is it becaufe in the time of Galen, according to repeated affertions, human flefh was faid to have a talle perfectly fimilar to that of fwine; nor becanfe the fat and the tanned hides of both are very like to each other ; but becaufe both in regard to the ceconomy of their bodily ftructure, taken on the whole, thew unexpectedly, on the firl view, as well as on elofer examination, a very ftriking fimilitudc.
"Both, for example, are domeftic animals; both omnivora ; both are difperfed throughout all the four yuarters of the world; and both confequently are expofed, in numerous ways, to the principal caules of degeneration arifng from climate, mode of life, nourifimment, \&c. ; both, for the fame reafon, are fubject to many difeafes, and, what is particularly worthy of remark, to difeafes rarely found among other animals than inen and fwine, fuch as the tone in the bladder; or to difeafes exclufively peculiar to thefe two, fuch as the worms found in meafled fwine.
"Another reafon (continues he) why I have made choice of fwine for the prefent comparifon is, becaufe the degeneration and defcent from the original race are far more certain ia thefe animals, and can be better traced, than in the varieties of other domeltic animals. For no naturalift, I believe, has carried his fcepticifm fo far as to doubt the defcent of the domeltic fwine from the wild boar; which is fo much the more evident, as it is well known that wild pigs, when canght, may be eafily rendered as tame and familiar as domeftic fwine : and the contrary allo is the cafe ; for if the latter by any accident get into the woods, they as readily become wild again; fo that there are inftances of fuch animals being fhot for wild fwine; and it has not been till they were opened, and found caftratced, that people were led to a dificovery of their origin, and how, and at what time, they ran away. It is well afcertained, that, before the difcovery of America by the Spaniards, fivine were unknown in that quarter of the world, and that they were afterwards carried thither from Europe. All the varieties, therefore, throngh which this animal has fince degenerated, belong, with the original European race, to one and the lame fpecies; a:ad fince no bodily difference is found in the human race, as will prefently appear, either in regaid to flature, colour, the furm of the cranium, Sc. which is not obferved in the fame proportion among the fwine race, while no one, on that account, ever doubts that all thefe different kinds are merely varieties that have arifen from degeneration through the influence of climate, \&cc. this comparifon, it is to be hoped, will filence thofe fceptics who have thought proper, on account of thefe varities in the human race, to admit more than one fpecies.
"With regard to ftature, the Patagonians, as is well known, have afforded the greateft employment to an
thropologifts. The romantic talea, however, of the old travellers who give to thefe inhabitants of the fouthern extremity of America a flature of ten feet and more, are fcarcely worth notice; and even the more modelt relations of later Englih navigators, who make their leight from fix to feven feet, have been doubted by other travellers, who, on the lame coaft, fought for fuch children of Enoch in vain. But we fhall admit every thing faid of the extraordinary fize of thefe Patagonians by Byron, Wallis, and Carteret ; the firf of whom af. figns to their chief, and feverals of his attendants, a height of not lefs than feven feet, as far as could he determined by the eye; the fecond, who afferts that he actually meafured them, gives to the greater part of them from 5 feet 10 inches to 6 feet; to fome 6 feet 5 inches, and 6 feet 6 ; but to the talleft, 6 feet 7 inches : and this account is confirmed by the laft-mentioned of the above circumnavigators. Now, allowing this to be the cafe, it is not near fuch an excefs of flature as that obferved in many parts of America among the fwine, originally carried thither from Europe; and of thefe I thall mention in particular thefe of Cuba, which are more than double the fize of the original flock in Europe.
"The natives of Guinea, Madagafcar, New Holland, New Guinea, \&c. are black; many American tribes are reddin brown, and the Europeans are white. An equal difference is obferved among fwine in different countries. In Piedmont, for example, they are black. When 1 paffed (fay our author) through that country, during the great fair for fiwine at Salenge, I did not fee a fingle one of any other colour. In Bavaria, they are reddifh brown ; in Normandy, they are all white.
"Human hair is, indeed, fomewhat different from fwine's briftics; yet, in the prefent point of view, they may be compared with each other. Fair hair is foft, and of a filky texture; black hair is coarfer, and among feveral tribes, fuch as the Abyfinians, Negroes, and the inhabitants of New Holland, it is woolly, and molt fo among the Hottentots. In the like manner, among the white fwine in Normandy, as I was afured by an incomparable oblerver, Sulzer of Ronneburg, the hair on the whole body is longer and foffer than among o. ther fwine; and even the brifles on the back are very little different, but lie flat, and are only loncer than the hair on the other parts of the body. They cannot, therefore, be employed by the brum-makers. The dif. ference between the hair of the wild boar and the domeftic fwine, particularly in regard to the fofter part between the ftrong briftles, is, as is well known, ftill greater.
"The whole difference between the cranium of a Negro and that of an European, is not in the leaft degree greater than that equally friking difference which exifts between the cranium of the wild boar and that of the domeftic fwine. Thofe who have not obferved this in the animals themfelves, need only to caft their eye on the figure which Daubenton has given of both.
"I fhall pafs over (fays our author) lefs national va. rieties which may be found among fivine as well as among men, andonly mention, that I have been affured by Mr Sulzer, that the peculiarity of having the bone of the leg remarkably long, as is the cafe among the Hindoos, has been remarked with regard to the fwine in Normandy. "They ftand very long on their hind legs (fays he, in one of his letters) ; their back, therefore, is highelt at the rump, forming a kind of inclined plane; and the head proceeds in the fame direction, fo that the fiout is not far from the ground.' I flall here add, that the fwine, in fome countries, have dege. nerated into races which in fingularity far exceed erery thing that has been found Itrange in bodily varicty among the human race. Swine with folid hoofs were known to the ancients, and large herls of them are found in Hungary, Sweden, Sic. In the like manner, the European Swine, firt carried by the Spaniards, in 1500 , to the inand of Cuba, at that time celehrated for its pearl fifhery, degenerated into a monitrous race, with hoofs which were half a fpan in length."

From thefe facts our author concludes, that it is ab. furd to allow the vaft variety of fiwine to have defcended from one original pair, and to contend that the varieties of men are fo many diftinct fpecies.

MANDING, a large ftate in the interior of Africa, of which the only farisfactory account that we have is by Mr Park, who, for feveral months, was hofpitably entertained in Kamalia, one of its towns, fituated in $12^{\circ} 40^{\prime} \mathrm{N}$. Lat. and $6^{\circ} 40^{\prime} \mathrm{W}$. Long. The go. vernment of Manding appeared to our author to be a fort of republic, or sather an oligarchy. Every town is indeed governed by a chief magiftrate called Manfa, which ufually fignifies kin! ; but the chief power of the fiate, in the laft refort, is lodged in the affembly of thefe manfas (A). The cafe, however, is different in other countries, which are occupied by people who have emigrated from Manding ; for in all the Mandingo ftates near the Gambia, the government is monarchical, tho' the power of the fovereign is by no means unlinited.

As Mr Park's route was confined to a tract of country, bounded nearly by the 12 th and 1 sth parallels of latitude, the climate throughout the whole was nearly the fame as that of Manding, and extremely hot: Yet, where the country afcended into hills, he found it comparatively cool and pleafant ; though none of the diflricts which he traverfed could be called mountainous. A bout the middle of Jume, the hot and fultry atmofphere is agitated by violent gufts of wind (called tornadoes), accompanied with thunder and rain. Thefe ufher in what is denominated the rainy feafon; which continues until the month of November. During this time, the diumal rains are very heavy; and the prevailing winds are from the fouth weft. The termination of the rainy feafon is likewife attended with violent tornadoes; after which the wind Thifts to the northeaft, and continues to blow from that quarter during the reft of the year.
(A) Mr Park, for the moft part, writes with remarkable perfpicuity; but we are not fure that here we have not miftaken his meaning. He fays, that the chief power of the ftate is lodged in the affembly of that whole body; but we think, that by the whole body muft be meant the body of Manfas, otherwife the government. could not be called an oliryarcliy.
ling. When the wind fets in from the north-enf, it produces a wonderful change ia the face of the country. The grafs foon becomes dry and withered; the rivers fubfide very rapidily, and many of the trees fhed thcir leaves. About this period is commonly felt the barmittan, a dry and parching wind, blowing from the morth calt, and accompanied by a thick fmoky haze; through which the fun appears of a dull red colour. This wind, in paffing over the great defert of Schara, accuires a very ftrong attraction for humidity, and patches up every thing expofed to its current. It is, however, rechoned very falutary, particularly to Europeans, who generally recover their health during its continaance, The truth of this our anthor experienced both at Kamalia and Pifania, when he had becu brought to the very brink of the grave by ficknefs.

Whenever the grafs is fufficiently dry, the nearroes fet it on fire ; but in Ludamar, and wher Moorith countries, this practice is not allowed; for it is upon the withered Inubble that the Moors feed their cattle until the return of the rains. The burning of the grafs in Manding exhibits a fcene of terrific grandeur. "In the middle of the night (fays Mr Park), I could fee the plains and mountains, as far as my eye could reach, variegated with lines of fire; and the light refeeted on the fly made the heavens appear in a blaze. In the day time, pillars of fmoke were feen in every direction; while the birds of prey were obferved hovering romd the conflagration, and pouncing down upon the fnakes, lizards, and other reptiles, which attempted to efcape from the flames." This annual burning is foon followed by a freth and fiveet verdure, and the country is thereby rendered more healthful and pleafant.

Though many fpecies of the edible roots, which grow in the Wef India iflands, are fomd in Africa, yet our traveller never faw, in any part of his journey, either the fugar cane, the coffee, or the cucoa tree; nor could he learn, on inquiry, that they were known to the natives. The pine-apple, and the thouland other delicious fruits which the induftry of civilized man (improving the bounties of nature), has brought to fo great perfection in the tropical climates of America, are here equally unknown. He obferved, indeed, a few orange and banama trees, near the mouth of the Gambia; but whether they were indigenons, or were formerly planted there by fonie of the white traders, he could not pointively learn.

Concerning property in the foil, it appeared to Mr Park, that the lands in native woods were confidered as belonging to the king, or (swhere the government was not monarchical) to the fate. When any individual of free condition had the means of cultivating more land than he actualle poffeffed, he applied to the chief man of the ditrict, who allowed him an extenfion of territory, on condition of forfeiture if the lands were not brought into cultivation by a given period. The condition being fulfilled, the foil became vefted in the poffeffor ; and, for aught that appeared, defcended to his heirs.

The Mandingoes are a very gentle race of people ; cheerful in their difpofitions, inquifitive, credulous, fimple, and fond of flattery. The men are commonly ahove the middle fize, well haped, ftrong, and capable of enduring great labour ; the women are good-natured,
fprightely, and agrceablc. The drefs of both fexes is Manding compofed of cotton cloth of their own manufactuic; that of the men is a loofe frock, not unlike a furplice, with drawers which reach half way down the leg; and they wear fandals on their fcet, and white cotton caps on their heads. The womens drefs confills of two pieces of cloth, each of which is about fix feet long and three broad; one of thefe they wrap round the wait, which, banying down to the ancles, anfwers the purpofe of a petticoat ; the other is thirown negligently over the bofom and fhoulders. Both men and women among the Mandingoes feem to lave an invincible propenfity to commit depredations on the property of unprotected ftrangers; whilit fuch is the good nature of thofe poor heathens, that they will readily fympathife in the fufferings, relieve the ditreffes, and contribute to the perfonal fafety, of the very ftrangers whom they are bent upon piundering.

Anong the Mandingoes, the parental and filial affection is remarkably frong between the mother and her child ; -hut not fo between the father and his children. This, as Mr Park obferves, is eafly accounted for. The fytteon of polygamy, while it weakens the father's attachment, by dividing it among the children of different wives, concentrates all the mother's jealous tendernefs to one point, the protection of her own offspring. He perceived, with great fatisfaction too, that the maternal folicitude cxten. d, not only to the growth and fecurity of the perfon, but alfo, in a certain degree, to the improvenient of the mind of the infant; for one of the firtt leflons, in which the Mandingo women inftruct their children, is the pradice of truth.
The Mandiago women fuelle their childern until they are able to walk of themfelves. Three years nur. ling is not uncommon; and during this period, the hudband derotes his whole attention to his other wives. To this practice it is owing, that the family of each wife is feldom very numerons. Few women have more than five or fix children. As foon as an infant is able to walk, it is permitted to run about with great freedom. The mother is not over folicitous to preferve it from night falls, and other trifling accidents. A little practice foon enables a child to take care of itfelf, and experience acts the part of a nurfe. As they advance in life, the girls are taught to fpin cotton, and to beat corn, and are inftruged in other domettic duties ; and the boys are employed in the labours of the field. Both fexes, whether Bufhreens or Kafirs, on attaining the age of puberty, are circumcifed. This painful operation is not confidered by the Kafirs fo mych in the light of a religious ceremony, as a matter of convenience and utility. They have, indeed, a fuperfitious notion, that it contributes to render the marriage date prolific.

When a young man takes a fancy to a young girl, and wifhes to marry her, it is by no means confidercd as neceffary that he fould make an overture to the girl herfelf. The firft object is to agree with the parents, concerning the recompence to be given them for the lofs of the company and fervices of their daughter. The value of two flaves is a common price, unlefs the girl is thought very handfome; in which cafe, the parents will raife their demand very confiderably. If the lover is rich enough, and willing to give the fum demanded, he then communicates his wifhes to the damfel : but her confent

Mindirg. confent is by no means ncceflary to the match; for if the parents agree to it, and eat a few kolla-nuts, which are prefented by the fuitor as an earuen of the bargain, the young lady mult either have the man of their choice, or continuc unmarried, for the cannot aftcrwards be giyen to another. If the parents fhould attempt it, the lover is then authorifed, by the laws of the country, to feize upon the girl as his flave. At the celebration of a marriage, no religious ceremony feems to be practifed. A felect number of people are indeed invited to the wedding, and feafted; but confummation conflitutes the marriage ; for towards the morning, the new married couple are always difturbed by the women, who affemble to infpect the nuptial fieet (according to the manmers of the ancient Hebrews, as recorded in Scripture), and dance round it. This ceremony is thought indifpenfably neceffary ; nor is the marriage confidered as valid without it.

The Madingoes, and indeed all the negro ftates, whether Mahomedan or Pagan, allow a plurality of wives. The confequence is, that the wives frequently quarrel among themfelves. When this happens, the hufband decides between them; and fometimes finds it neceffary to adminifter a little corporal chaftifement before tranquillity can be reftored. But if any one of the ladies complains to the chief of the town, that her hufband has unjufly punifhed her, and fhewn an undue partiality to fome other of his wives, the affair is brought to a public trial. In thefe palavers, however, which are conducted chiefly by married men, our author was informed, that the complaint of the wife is not always confiCered in a very ferious light; and the complainant herfelf is fometimes convicted of ftrife and contention, and left without remedy. If the murmurs at the decifion of the court, the magic rod of Mumbo $\mathcal{F} u m b o$ foon puts an end to the bufinefs. See Mumbo Jumbo in this Suppl.

A child, among them, is named when it is feven or eight days old. The cerenony commences by thaving the infant's head; and a difi called dega, made of pounded corn and four milk, is prepared for the guefts. If the parents are rich, a theep or a goat is conmonly added. This feaft is called ding koon lee, "the child's head fhaving." During Mr Park's ftay at Kamalia, he was prefent at four different feafts of this kind, and the ceremony was the fane in each, whether the child belonged to a Buthreen or a Kafir: The fchoolmafter, who officiated as prieft on thofe occalions, and who is neceffarily a Buithreen, firt faid a long prayer over the dega; during which, every perfon prefent took hold of the brim of the calabafh with his right hand. After this, the fchoolmafter took the child in his arms, and faid a fecond prayer: in which he repeatedly folicited the blefing of God upon the child, and upon all the company. When this prayer was ended, he whifpered a few fentences in the child's ear, and fpit three times in its face; after which he pronounced ite name aloud, and returned the infant to the mother. T'his part of the ceremony being ended, the father of the child divided the clega into a mumber of thalls, one of which he diftributed to every perfon prefent. And inquiry was then made, if any perfon in the town was dangeroully fick; it being ufual, in fucl cafes, to fend the party a large portion of the dega, which is thought to poffefs great medical virtues.

The Madingoes have no attificial method of divi- Mandi ding time. They calculate the years by the number of rainy frefons. They portion the year into moons, and reckon the days by fo many funs. The day they divide into morning, midday, and evening ; and further fubdivide it, when neceffary, by pointing to the fun's place in the heavens. Our author frequently inquired of fome of them, what became of the fun during the night, and whether we fhould fee the fame fun, or a different one in the morning ? But that fubject appeared to them as placed heyond the reach of human inveftigation; they had never indulged a conjecture, nor formed any hypothefis, about the matter. The moon, hy varying her form, has more attracted their attention. On the firf appearance of the new moon, which they look upon to be newly created, the Pagan natives, as well as Mahomedans, fay a fhort prayer; and this feems to be the only viible adoration which the Kafirs offer up to the Supreme Being. This prayer is pronounced in a whifer; the party holding up his hands before his face: its purport is to return thanks to God for his kindnefs through the exiftence of the patt moon. and to folicit a contimuation of his favour during that of the new one. At the conclufion, they fpit upor their hands and rub them over their faces. Great attention is paid to the changes of this luminary in its monthly courfe; and it is thought very unlucky to bcgin a journey, or any other work of confequence, in the latt quarter. An eclipfe, whether of the fun or moon, is fuppofed to be effected by witcheraft. The ftars are very little regarded; and the whole Audy of aftronomy appears to them as a ufelefs purfuit, and attended to by fuch perfons only as deal in magic.

Their notions of geography are equally puerile. They imagine that the world is an extended plain, the termination of which no eye has difcovered; it being, they fay, overhung with clouds and darknefs. They deferibe the fea as a large river of falt water, on the farther thore of which is fituated a country called Tobculbo doo; "the land of the white people." At a diltance from Tobaubo doo, they defcribe another country, which they allege is inhabited by cannibals of gigantic fize, called Koomi.

Mr Park fays he has converfed with all ranks and conditions of negroes on the fubject of their faith, and that he can pronounce, without the fmallef fadow of doubt, that the belief of one God, and of a future ttate of reward and punifhment, is entire aud univerfal among them. It is remarkable, however, that, except on the appearance of a new moon, as before related, the Pagan natives do not think it neceflary to ofler up prayers and fupplications to the Almighty. They reprefent the Deity, indeed, as the creator and pueferver of all things; but in general they confider him as a Being fo remote, and of fo exalted a nature, that it is idle to imagine the feeble fupplications of wret ched mortals can reverfe the decrees, and change the purpofes, of unerring wiftom. The concerns of this world, they believe, are committed by the Almighty to the fuperintendance and direction of fubordinate fpirits, over whom they fuppofe that certain magical ceremonies have great influence. A white fowl, fufpended to the branch of a particular tree, a fnake's head, or a few handfuls of fruit, are offerings which ignorance and fupertition frequently prefent, to deprecate

M A N [167] M A N

ling. dcprecate the wrath, or to conciliate the favour, of thefe tutelary agents.
The MIandingoes feldom attain extreme old age. At forty, moft of them become grey haired, and covcred with wriakles; and but few of them furvive the age of fifty-five, or fixty. Yet their difeafes appeared but few; fevers and fluxes being the molt common, and the moft fatal. For thefe they generally apply fapbies, i. e. charms, to different parts of the body; though fometimes, on the firt attack of a fever, the patient is, with great fuccefs, placed in a fort of vapour bath. The other difeafes which prevail among the negroes, are the races, the elephanticisis, and a leprofy of the very wort kind, together with the Guinea zworm, which they attribute to bad water.

When a perfon of confequence dies, the relations and neighbours meet together, and manifeft their forrow by loud and difmal howlings. A bullock or goat is killed for fuch perfons as conic to affif at the funeral ; which generally takes place in the evening of the fame day on which the party died. The negroes have no appropriate lurial places, and frequently dig the grave in the floor of the deceafed's hut, or in the fhade of a favourite tree. The body is dreffed in white cotton, and wrapped u_{1}, in a mat. It is carried to the grave, in the dufk of the evening, by the relations. If the grave is without the walls of the town, a number of prickly bufles are laid upon it, to prevent the wolves from digging up the body; but our author never obferved that any tone was placed over the grave as a monument or memorial.

With refpect to employment, the men cultivate the ground, or catch fifh in large rivers; while the women manufacuure cotton cloth. It is only the fpinning and the dyeing, however, that are performed by the women; for the web, which is feldom more than four inches bruad, is wove by the inen in a loom made exactly upon the fame principle as that of Europe. As the arts of weaving, dyeing, ferving, \&e. tnay eafily be acquired, thofe who exercife tiern are not confidered in Africa as following any particular profefion; for almof every Gave can weave, and every boy can few. The only artifts which are diftinctly acknowledged as fuch by the negroes, and who value themfelves on exerciting appropriate and peculiar trades, are the manufacturers of leather and of iron. The firft of thefe are called Karrankea (or as the word is fometimes pronouced Gaungay). They are to be found in almoftevery town, and they frequently travel through the country in the exercife of their calling. They tan and drefs leather with very great expedition, by fleeping the lide firf in a mixture of wood-a fhes and water, until it parts with the hair; and afterwards by ufing the pounded leavez of a tree, called goo, as an all ringent.

The manufacturers in iron are not fo numerous as the Karrankeas; but they appear to have ftudied their bufinefs with equal diligence. The negroes on the coaft being cheaply fupplied with iron from the European traders, never attempt the manufacturing of this article themfelves; but in the inland parts, the natives fmelt this ufeful metal in fuch quantities, as not only to fupply themflves from it with all neceflary weapons and infruments, but even to make it an article of commerce with fome of the neighbouring fates. During our author's flay at Kamalin, there was a fmelting. furnace at.
a flort diflance from the hut where he lodged, and the Marometes owner and his workmen made no fecret about the manner of conducting the operation; and readily allowed him to examine the furnace, and afiilt them in breaking the iron-fone. The procefs it is necellefs to defcribe; though it be proper to obferve, that the mafs of metal obtained by it was rather fteel than iron. Moft of the African blackfiniths are acquainted alfo with the method of fmelting gold, in which procefs they ufe an alkaline falt, obtained from al ley of burnt corn-talks evaporated to drynefs. They likewife draw the gold into wire, and form it into a varicty of ornaments, fome of which are executed with a great deal of tafle and i... genuity.

The reader will obferve, that in the extracts which we have made from Mr Park's interefting travels, thic terms African and Negro are frequently ufed as if all Africans and Negroes were Mandingoes. The reafon is, that the Mandingoes were not only the moft numerons tribe which he vifited, but were alfo fipread over all. that tract of country whicla he traverfed.

MANOMETER, a fnall glafs tule two or three inches high, hermetically fealed at one end, and open at the other, and divided regularly into inches and lines. It is employed in order to afcertain the rarefaction of the air produced by working an air.fump. The tube previoufly filled with mercury, and having its open end planged into a bafon of mercury, is placed in the receiver of an air-pump. As the piton is worked, the mercury gradually finks in the tube, and the expanfion is eltimated by its height; for the fmaller the height at which the mercury in the tube flands above the mercury in the bafon, the greater is the expanfion.

MANIANA, a fmall negro kiugdom l_{j} ing between 12° and 14° North Lat. and between the meridian of Greenwich and 10 and 35^{\prime} Weft Long. Its inhahio tants, as Mr Park was informed by a variety of people in many different kingdoms, are remarkable for cructy and ferucity; carrying their refentment to their enemies fo far as never to give quarter, and even indulging themfelves with banquets of human fleth. Hence the iuha. bitans of Banmarra, who carried on with then a long and bloody war, and muft of courfe be well afcertained of the fact, call them Ma dumnulo, which fignifies meneaters.

MANURE is.fo effential to agriculture, that the want of it, or an improper manner of ufing it, is the principal caufe of the flerility of a country. We have therefore treated of manures and their action at fome length in the article Agriculture in the Encychopadia; but as the theoretical part of that difquifition refts in a great meafure on the doctrine of phlogiton, which is now exploded, it may not be improper to refume the fubject here. Experience however being, after all, the ouly guide which the farmer can fafely and conlidently follow, inftead of amufing our readers with theories of our own, we flall lay before them the obfervations of a man who feems to have united theory with practice.
"The ufe of manures (fays M. Parmentier *) has * Merosiors been known in all ages, hut we are yet far from having of the Reyal any clear and precile ideas of the nature of the juices sociely of A. which are deftined for the nourihment of vegetables, , pricutiture, and of the manner in which they are tranfmitted to their

M A N

Manure. organs. The writers on agriculture, who have endeavoured to exphain thicfe matters, perceiving falts in mok plants, were perfuad 3 that thefe falts, by the help of water and heat, paffed, in a faline form, through the vegetable filter. Thefe firt philefophers did not hefitate to confider every thing that has been done by the induftry of man, to improve the nature of land, and its productions, as merely forming refervoirs of thefe falts, which they confidered as the principle of fertility. This opinion was fo well eftablifted among the improvers of land, that, to this day, many of thera have no object in view, in their operations, but to difengage falts; and, when they attempt to explain certain phenomena which take place in their fields or orchards, they talk confidently abuut the nitre of the air, of rain, of fnow, of decw, and fors: of the falis of the earth, of duug, of marle, of lime, of chalk, \&e. and makc ufe of thore vague terms, oil, fulphur, /pirit, scc. whicls ought henceforward to be banifhed from our elementary books on agriculture.
"A mong the authors who have attacked, and combated with moft fuccefs, the opinion that the fruitfulnefs of foils, and the aliment of vegetables, retide in faline fubftances, mult be reckoned Eller and Wallerins. Thefe philofophers examined, by every means which chemiltry at that time could furnifh, the various kinds of earth proper for cultivation, and alfo thofe fubftances which have always been confidered as the molt powerful manures, without being able to obtain, from any of them, any thing more than mere atoms of falt.
"A Animated with the fame zeal, and taking advantage of the inftrustions found in their writings, I thought it neceffary to determine, by experience, whether, as has been afferted, there really exitt neutral falts in earths; and alfo, whether thofe earths are more fertile in proportion to the quantity of fuch falts they contain. With this view, I lixiviated, by means of dittalled water, many fpecies of cultivated earths, taken in various flates, from frefh earth to that which had been impoverifhed by the growth of feveral crops; I allo tried dung, reduced more or lefs into the fate of mould; and like. wife the moft active manures, fuch as the offal of animal fubftances rotted by putrefaction; but in none of thcfe, however carefully analyzed, were found any falts in a free ftate. They contain indeed the materials proper for forming falts ; but if they contain any ready formed, it is merely by accident.
"The refearches of Kiraft, and thofe of Alfon, were not attended with different refults. Having fown fome oats in aftes, not lixiviated, and in fand trongly impregnated with potafh and with faltpetre, and having found that the oats did not grow, they concluded that weutral falts, and alkalies, not only retarded the growth of vegetables, but that they abfolutely prevented it . It is well kuown that in Egypt there are diftricts where the earth is entirely covered with fea-falt, and thefe diftricts are quite harren. It is probably owing to this property of fea-falt, that the Romans were accuftomed to fcatter large quantities of it over fields where any great crime had been committed, and of which they wihed to perpetuate the remembrance, by rendering the part barren for a certain time.
"The idea that falts lad great influence in vegetation, ought to have been greatly weakencd by the fol-
lowing fimple reftection. Suppofing that falte exifed in garden mould, they would be very foun diffolved by the rain, and carried away, towards the lower itrata of the earth, to a depth to whiel the longelt roots would not reach. Indeed the famous experiment of Vanhelmont would have been fufficient to have deftroyed the above opinion, if it did not generally happen that we are no fooner fet free from one error than we fall into another not lefs extraordinary. The furpriting effects of vegetation brought abont by the overflowing of water, and in the neighbourhood of falt marfhes, and the infinite number of inhaling capillary tubes obferved upon the furface of vegetables, led to an opinion that the air and water, abforbed by the roots and leaves of plants, were only veliches loaded with faline matter, analogous to the vegetables nourifhed by them.
" 'To the experiment of Vanhelmont, which was repeated by many accurate obfervers, fucceeded thofe of modern philofophers; from which it clearly appeared, that plants could grow, and produce fruit, in the air of the atmofphere, and in dittilled water, alro in pure fand, in powdered glafs, in wet mofs or fponge, in the cavity of flefly roots, \&c. and that plants which had nothing but the above-mentioned fluids for their nourifhment, gave, when fubmitted to chemical analyfis, the fame products as thofe which had undergone their procefs of vegetation in a foil perfcetly well manured. It was alfo obferved, that the moft barren foils were rendered fertile when they were properly fupplied with water ly canals; and the efficacy of irrigation was repeatedly evinced in different ways: from thefe obfervations was formed the following fy ftem, that water rifes in plants in the form of vapour, as in diftillation; that air introduces itfelf into their pores; and that, if falts contribute to the fruitfulnefs of foils, it is only in confequence of their containing the two fluids above-mentionsl ia great abundance."

Our author, after making many experiments mion various foils and falts, and after attending minutely to the procefs of vegetation, thinks himfelf warranted to maintain, "that daline fubflanees have no fenfible effects ia promoting vegetation, excepting inafmuch as they are of a deliquefcent nature, have an earthy balis eatily decompofed, and are ufed only in fnall quantity. In thofe circumflances they have the power of attracting, from the immenfe refcrvoir of the atmofphere, the vapours which circulate in it ; thefe vapours they retain, along with the moilture that is produced from rain, fnow, dew, fog, exc. which moifture they prevent from running together in a mafs, or from leing loft, either by exhaling into the air of the atmofpherc, or by filtering itfelf through the inferior fltata of the earth, and thereby leaving the roots of vegetables dry; they diftribute that moilure uniformly, and tranfmit it, in a ftate of great divifion, to the orifices of the tubes deftined to carry it into the texture of the plant, where it is afterwards to undergo the laws of affimilation. As every kind of vegetable manure poffeffes a vifcous kind of moillure, it thereby partakes of the property of deliquefcent falts. In fhort, the preparation of land for vegetation has no other object in view but to divide the earthy particles, to foften them, and to give them a form capable of producing the above-mentioned effects. It is fufficient, therefore, that water, by its mixture
anure. with the earth and the manure, be divided, and fpread out fo as to be applied ouly by its furface, and that it keep the ront of the plant always wet, without drowning it, in order to become the effential priaciple of vegetation. But as plants which grow in the flade, even in the beff foil, are weakly, and as the greater part of thofe whioh are made to grow in a place that is perfecly dark neither give fruit nor flowers, it cannot be denied that the influence of the fun is of great importance in vegetable economy."

Such was the opinion which our author gave of the manere in which falts act in vegetation, at a time when it was not known that air and water (which had been fo long conlidered as elements), far from being fimple fuibtances, are capable of being decompofed by a great variety of operations both of nature and art ; and nothing was wanting to complete his theory, hut to know that air and water act their part in vegetation only in a fate of deconspofition; and that if earth well manured is a better matrix than water itfelf, it is hecaufe fuch earth has the power of cunverting the water into grafes which are eaflly abforbed, and which, while their abforption takes place, communicate to the plants a motion and heat which they received wher taking the form of gas, and which they lofe when they enter again into conibination; whence it is natural to conclude, that this motion and this heat muft neceffarily develope themfelves in feeds, and maintain the vital action in plants.

What is a vegetable, confidered chemically, according to the prefent ftate of our knowledge? It is, fay the chemifts, a compound of hydrogen, oxygen, and carbon, the proportions of which vary acicording to the agents which have concurred to its developement, and according to the matrix which received and affimilated them, in order to create thofe combinations which are varied to infinity, by their forms and properties, and known by the generic terms of falt, oil, and mucilage. It appears, therefore, needlefs to feek thefe combinations in the different fubftances which are ufed for manure, when we wifh to determine the nature of them, and explain their manner of acting in vegetation; becaule, fuppofing it true that thefe falte, thefe oils, or thefe mucilages, exit in their combined ftate, nothing but their conflituent elements, namely, hydrogen, oxygen, and carbon, can poffibly have any action.
The fuperiority of animal fubitances, as manures, and the remarkable luxuriance of thofe plants which are watered with putrid water, prove inconteftibly, that the putrid fate is favourable to vegetation, and that every fubftance which is liable to enter, to a certain degree, into that flate, contributes very powerfully thereto. The moft aerated waters are, in this cafe, the moof beneficial. It is obferved that rain, particularly in formy weather, quickens vegetation fo much, that the gardeners in the neighbourhood of Paris are often obliged to drench their plants with water taken from their wells, which, in confequence of its rawnefs, or its want of air. retards the vegetation of the plants; either becaufe it precipitates the meteorifed or electrified water, or becaufe, by being mixed with the other water, it dimi. nifhes its fertilizing quality; whereas, in fummer, this fame well-water, by heing expofed to the fun for fome фays, acquires a fmell like that of fale eggs, lofes its rawnefs, and becomes very fit for accelerating vegeta-
tion. An atom of vegetable or animal matter is, at that time, fufficient to bring about more quickly this flate of putrefaction; while thefe fame fubllances, by being employed in certain proportions, far from acting as a leaven on the liquids which hold them in folution, preferve thofe liquids, or at leaft make them more flow to change.

Salts and dung, therefore, are not merely decompofed by the power of vegetation ; by furnifhing the refults of their decompofition, they alfo act in the manner of leavens, the action of which is fearcely perceptible in cold or dry weather; but when they are heated by the fun, and fufficiently penetrated with moifture, they very foon enter into a fort of fermentation, fuffering the va. rious gafes with which they are provided to efcape. Thus manures may be confidered as decompofing inftruments, provided by nature, and prepared by att, to act upon water fo as to bring it to a proper ftate of attenuation. The fubftances which enter into the compofition of plants, are, therefore, nothing hut products of the decompofition of air and water, and combinations of the conftituent principles of thefe two fluids, determined by the power which prefides in the leed, and which thence has paffed into the plant.

It is now eafy to account for the effects of charcoalpowder, ftraw, \&c. which are made ufe of to cover ground during long droughts with undoubted benefit: they are mechanical means of preventing the diffipation of moifture, and of determining it to take the form of thofe gafeous fluids which have fuch powerful effect in vegetation. As water is compofed of hydrogen and oxygen, it is not furprifing that, when affifted by the influence of the fin, and that of electricity, it is capable of forming, almof by itfelf, the folids and fluids of vegetables; taking from the atmofphere the carbon it ftands in need of, to give them their muft effential characters. We fay their moft effential characters; for thofe terreftrial plants which have grown in air and water do not abound in principles; and their offspring, when they have any, is by no mans vigorous. We fee alfo, that plants which are naturally of an equatic nature, have in general but little fmell, becaufe the medium in which they live and grow furnifhes only a farall quantity of carbon, in proportion to the hydrogen and oxygen, which are the conftuent principles of warer. This is the reafon why, in cold and wet years, fluwers are lefs odorifetons, fruit lefs full of havour, and more difficult to he preferved. The germ of their reproduction is weak; and they are, it the expreffion may be ufed, in a fort of dropfy; that is to fay, they are load. ed with the principles which conftitute water, and even with water itfelf.

Thefe obfervations, to which more miglit be added, may ferve to explain why vegetation is flow and weak in a foil which is too much charged with faline mater, while it is rendered quick and vigorous by a fmall squantity of this fame matter; and why earth, which is perfectly lixiviated, and watered, from time to time, with diftilled water only, is capable of giving to bitter plants their bitternefs, to fweet ones their fweetnefs, to acid ones their acidity, to aromatic ones their fpicinefs, and to poifonous ones their deleterious qualities; in fhort, why the inherent characters of plants are more ftrongly marked, in proportion as the foil in which they grow is furnifhed with natural or mechanical means to pro-

M A N [170] M A N

Manure. duce a quantity of gas neceffary to the formation of the fubflances on which thofe characters depend.

If a nitrous or marine plant can, even when growing in a foil deflitute of nitre or fea-falt, occafion the production of thefe falts, it mutt be allowed that fuch -plants would vegetate more ftrongly, and contain pore of fuch falts, if they grew in forls more abounding in materials proper to form them. Thus, the different fpecies of famphire, glaffivort, fea-wrack, \&c. flourifh on the borders of the fea, fuch foils being ftrongly impregnated with the fluids neceffary to form the muriatic gas and fea-falt which enter jnto the compofition of thofe plants, while the fun-flower, pellitory, \&c. fucceed beft in earth which is mixed with the ruins of old buildings, in which the materials for the production of nitrous gas, and even of nitre itfelf, are very abundant. In fhort, the organization of thefe plants is a real elaboratory for forming the forementioned falts.

Thofe plants which, for their vegetation, require the molt affitance from the foil and manure, are very apt to contract a difagreeable talte, if either the foil or manure are capable of fupplying the principles from which it is acquired. The clafs tetradynamia, particularly all forts of cabbages (which contain fulphur ready formed), contract a bad tafte in a foil compofed of mud and dung, becaufe thefe fubfances, as they are decompofed, furnifh a great quantity of hepatic gas, or of fulphurifed hydrogen gas; yet plants of another clafs may grow in the fame foil, clofe by the cabbages, without partaking even in the finallett degree of the bad tate of the latter. The plants laft mentioned, when growing in hepatic gas, retain only fo much of it as is fufficient for the production of the fubftances of which they are formed; the overplus, which could not be affimilated, is thrown out by the excretory veffels, after undergoing thofe modifications which the digettive juices and organization of the plant, and the flate of the atmofphere, have produced.

Thus we fee that thofe plants which abound moft in oily, faline, and mucilaginous principles, are generally fuch as require a foil well manured. Tobacco, for inftance, gives forty pounds of alkaline falt or potafh from every hundred weight of athes : this plant may, by being buried in the ground, be converted into a very powerful manure; while other plants, which thrive in a soiddling foil, and appear as vigorous, are, in general, fuch as have not fo great a quantity of principles in their cumporition, and when thrown on the dunghill, and left to rot, furnifh very little manure. From fuch obfervations, it may perhaps not be impofible hereafter to judge, by the analyfis of a plant, nut only whether it requires a large or a fmall quantity of manure, but likewife what kinds of foil and manure are moft fit to promote its vegetation: wild plants alfo may ferve to frew the nature of the foil which they feem molt to flourith in.

Befides the phyfical action of manures, they have a very, evident mechanical action. When mixed with earth, in a certain proportion, they not only render it more permeable to water, but the roots of plants can with greater eafe acquire their proper fize and form in it: in other cafes, manures tend to unite that earth which is too loofe, and, by rendering it more tenacious, they prevent the water from being loft, and the roots from becoming dry. Thofe manures which are
called warm are fuited to cold lands, not only becaufe Manures they render them lefs compact, but alfo becaufe they take off a part of that moifture which fuch lands always have in tou great quantity. Cold manures, on the other hand, by their vifcid quality, give tenacity to dry and hot foils, attracting and retaining, for a longer time, the moifture which comes in their way. The nature of the foil muft therefore determine what kind of manure it ftands in need of, and alfo whether cultivating it by means of oxen or hy horfes is preferable; for the manures produced from thefe two animals have thofe oppofite qualities which we have above defcribed. By fuch oblervations, we fhall perhaps be able to refolve a queltion, refpecting which the fentiments of cultivators in many parts of the kingdom are much divided.

It cannot, however, he denied, that the earth is able of itfelf to ferve as a bafis and fupport to plants, and that it has an action more or lefs evident upon air, upon water, and upon dung. There is a well-known method of diftinguifhing clay from other earths ; by merely breathing upon it, a fmell is immediately perceived, fufficiently itrong to fhew that a decompolition and frefh combination have taken place. In fummer, after a drought of fome days continuance, there always arifes in the fields a particular fmell during a fhower of rain; and there is no kind of vegetable manure which, when mixed with earth, does not fend forth a fmell. This proves, that the nature of the foil mult have an influence, not only upon air and upon water, but alfo upon the effect of manures; and that before we fpeak of their power, we hould always fpecify what kind of earth they were applied to ; becaufe when manures and earth are inixed together, there enfues an action and reaction more or lefs favourable to vegetation.

Having examined to what degree air and water enter, in fubftance, into the veffels of plants, and having fhewn that the principal action of earth, of falts, and of manures, confifts in preparing, elaborating, and decompofing thefe two fluids, and in griving to the products of their decompofition the forms they require, to accomplifh the purpofe of nature in vegetation, our author makes fome obfervations upon the particular effects of certain fubftances ufed for improving laud, fuch as: marl, lime, chalk, and wood afhes; which are ufually applied either to an exhaufted foil, in order to reftore it, or to a drooping plant, with a view to give it ftrength. Of the efficacy of thefe fubftances no one doubts, but it does not appear that we are equally $a_{\text {- }}$ greed refpecting their manner of acting.

Marl (a manure whofe effects are well known, and which is found to be of the greateft benefit in thofe diftricts where it can be procured in fufficient quantity) is capable of acting in the fame manner as the moff fertile foil, when the principles of which it is compofed, namely, clay, fand, calcateous earth, and magnefian earth, are juftly proportioned to each other. But it is fometimes compact and tenacious, becaufe it contains a fuperabundant portion of clay, and at other times porous and friable, becaufe it contains too much fanch, and therefore is not in general fit for vegetation by itfelf. Thefe confiderations ought always to be our guide when we mean to employ marl as a manure.

It has been fuppofed that to marl was a fort of technical expreffion, intended to denote the bringing toge-

M A N [17 r$] \quad$ M A N

fronure. ther or dividing the earthy particles by means of clay or fand. It appears to our author, that neither of the above operations can properly be called marling : becaufe, in either cafe, all we do is, to put the foil into a lituation to reccive and to profit by the influence of the atmofphere, and that of the manures made ufe of. The peculiar principle of marl is, that part of it which, like lime, acts very powerfully upon the different aeriform fluids, is cafily reduced to powder, effervefees with acids, and fends forth a quantity of air-bubbles when water is poured upun it. Now this matter, which in a particular manner does the office of manure, refides neither in clay nor in fand. Upon the proportion of it depends the duration of the fertility it produces ; confequently it is of importance, when we make ufe of marl, to know which of its conftituent parts it contains in the greatelt proportion, otherwife in fome cafes we fhould only add one common kind of earth to another. Hence our autlor infers, that for a chalky foil clay is the proper manure, and that in fuch a foil a clay bottom is of more value than a gold mine.
"Wood-afhes, as a manure, may be, in fome refpects, compared to marl; at leaft they contain the fame earths as thofe which generally enter into the compofition of marl, but they contain a greater quantity of faline fubftances, proceeding from the vegetables of which they are the refidue, and from the procefs made ufe of in their combuftion; a procefs which increafes their activity, and foould render us careful in what manner and for what purpoles we employ them. Wood-afhes, when feattered over fields, at proper times and in proper quantities, deftroy weeds, and encourage the vegetation of good plants. But do the afhes produce this effect by a fort of corrofive power? I cannot (fays our author) think it ; for in that cafe all kinds of plants would indifcriminately he acted upon by them, and to a certain degree deftroyed.
"Belides, the athes of frefh wood are feldom employed until they have been lixiviated, in which ftate they are deprived of their cauftic principle; thofe afhes which are moft commonly made ufe of for manure are produced either from wood that has been floated in water, or from turf, or from pit-coal, and contain little or no alkaline falt.
"It appears much more probable that afhes, when laid upon ground, deftroy the weeds by a well-known effect, namely, by feizing with eagernefs that moifture which ferved to produce thofe weeds, and which in a fuperabundant quantity is neceflary to their exiftence and fupport. Whereas thofe plants which have a firmer texture and a longer root, which are rendered ftrong by age and by having withftood the rigour of winter, and which are in fact the plants of which the fields are compofed, do not fuffer any damage from the application of the afhes; but, on the contrary, by being freed from the fuperfluous weeds which fiffed them, and robbed them of a part of their futtenance, they receive a quantity of nourifhment proportioned to their wants. The ftate of relaxation and langour to which they were reduced by a fuperabundance of water, leaves them, the foil gets its proper confitence, and the grafs, corn, \&c. acquiring the ftrength and vigour which is natural to them, foon overcome the mofs, rufhes, and other weeds; thus a good crop, of whatever the field confilts of, is produced. It is in the above manner that woud-afhes act,
whenever in the fpring it is neceffary to apply them to meadows, corn-fields, \&cc. the plants of which are ftifled and weakened by a luxuriant vegetation of weeds, the ufual confequence of mild and wet winters.
"When wood-afhes produce an effect different from what is above deferibed, it is either becaule they lappen to contain too much alkaline falt, or that they are lad on the gronnd in too great quantity, or that the fields to which they are applied were not fufficiently wet to reftrain their action ; for when they are fcattered upon cold foils, and buried by the plough before the time of fowing, they are like lime, of great fervice. The laft. mentioned fubftance is very efficacious in other circumftances; and there is a well known method of ufing it, practifed by the Germans, as follows: A heap of lime is forned by the fide of a heap of poor earth, and wa. ter is poured upon the lime ; the earth is then thrown over it, and becomes impregnated with the vapours which efcape from the lime while it is flaked. The earth, after being thus aerated, may be feparated; and although no lime remains mixed with it, is, by the operation jult deferibed, rendered capable of giving a luxuriant vegetation to whatever plants may be put into it.
"It is poffible, therefore, to aerate earth as well as fluids; for this purpofe, by mixing it with certain fubftances, during their decompofition, we mult attach ta it the principles of which thofe fubitances are compofed; from which there refults a inatter fo loaded with gas, as to form a more compound fubftance, and one which has acquired new properties. The Arabians, for example, who take great pains to improve their land, are accultomed to make large pits, which they fill with animals which happen to die: thefe pits they afterwards cover with calcerous or clayey earth; and after fome time thefe earths, which of themfelves are fterile, acquire the properties of the richeft manures.
"The foregoing obfervations may at leaft be confidered as proving, that thofe fubttances which, wher employed frefh and in too great quantity, are more prejudicial to vegetation, have, on the contrary, an advantageous effect, when they are previoully made to undergo a fermentation ; or when they are mixed with earth or water, in a proportion adapted to the end propofed. The grafs of fields in which cattle or poultry go to feed, after the firlt or fecond crop of hay, appears to be dried by the urine and dung of thofe animals; as if fire had been applied to it ; whereas thefe fame excrementitious fubftances, when combined with earth, or diluted with water, are capahle, without any other preparation, of performing the office of good manure.
ss But if animal fecretions, when applied in fubtlance to plants, were capable of acting upon them, as is affirmed, in fuch a way as to corrode or burn them, how could feed which has been fwallowed, and efcaped the action of the digeftive powers, be prolific when thrown out by the animal, after having remained fo long in its dung? yet we often fee oats, fo circumftanced, grow and produce feed. It is not more confiftent with experience and obfervation to fuppofe, that thefe excrememtious fubtances, being ftill cndowed with animal lieat, and with an organic motion, difure round plants in vegetation a deletcrious principle or inflammable gas, which deltroys them: for foon after their application, the foliage of the plant grows yellow, dries up, and the plant withers, unlefs there happens a fhower of rain
which

M A N [

$\underbrace{\text { Manure. which revives it. When thefe fublances are diluted, }}$
$\underbrace{\text { Manure. which revives it. When thefe fubfances are diluted, }}$ principle which is fo deftructive to regetable life, and av incipient fermentation augments their power as a manure, fo that they may be immediately made ofe of without any apprehenfion of injury from their effects.
"It appears, therefore, that any operation upon excrementitious fubfances, by which they are dried and reduced to powder, cannot be practifed without depriving thofe fubitances of a great part of fuch of their principles as are eafily evaporated, and upon which their fluidity depends; thefe principles, when diluted with water, and confined by being mixed with earth, are capable of increafing the produce of the foil. Such is the way in which the hufbandmea in Flanders make ufe of this kind of manure, in the cultivation of a kind of rape or cole feed, which is to them a very important branch of agricultural induftry and commerce; and they never obferve that the fap carries up any of thofe principles which give fuch manure its offenfive fmell; nor do they obferve, that the fodder produced from fields fo manared, whether eaten freth or dry, is difagreeable to their cattle. The excrerients of all animals would be injuriuus to plants, if applied too frefh, or in too great quantity ; and a gardener could not commit a greater fault, than to put more than a certain quantity of them into the water he means to make ufe of to wa. ter his young plants; in fhort, this kind of manure is to be ufed in a very fparing manner; and he that is too prodigal of it will find, to his colt, that excefs, even of that which is otherwife beneficial, becomes an evil.
" It muft certainly be allowed, that excrementitious fubtances are a very advantagcous manure for cold foils, and fuited to moft vegetable productions; a long experience of their effects over a large tract of country, and the acknowledged intelligence of the Flemilh farmers, ought to be confidered as fufficient to overcome the prejudice that has been raifed againft this fort of manure. Suppofing that the bad effects which have been attributed to it, when ufed in the flate in which it is taken out of privies, \&c. are not the offspring of a prejudiced inagination, they may have arifen from its having been made ufe of at an improper time, or in too great quantity; or from its having been applied to a foil and for the cultivation of plants to which it was not adapted; for we know that the excefs of any kind of manure changes the fmell and tafte of plants, and the fame effect is produced by watering them too frequent. ly. Striking examples of this change are feen in the ftrawberry and in the violet, when fuch as have grown in the woods are compared to thofe produced from fome of our over-manured gardens; alfo in the lettuce, and foone other plants, when thofe raifed for fale by the gardeners about Paris are compared to thofe of fome particular kitchen gardens. In the markets of fome cities, the carrots, turnips, and potatoes of the fields, are preferred to the fame kind of roots cultivated by the gardeners (A) ; for though the laft are of a larger fize, they have not got fo good a flavour. Some vegetables, therefure, are like certain wild fpecies of the animal kingdon? ; they refift every kind of culture, as thefe animalls refifl every effort to tame then. mers, that excrementitious fubftances are more active their uatural ftate than when dried, yet it cannot be denied that drying them, and reducing them into powder, is fometimes very advantageous; becaufe in that ftate they are much lefs offenfive, are eafily tranfported to any diftance, and may be ufed when moft convenient or moft proper. In many cities the inhabitants pay to have their privies emptied: in other places, thole who empty them pay fur their contents; and it would aftonifh any one to be told how great a revelue is produced in the city of Lifle in Flanders by the fale of this kind of manure. I am, however (fays our author), far from thinking that it is right, in all cafes, to employ it in the above-mentioned flate of concentration; it would be better, in my opinion, to follow the example of the Flemilh farmers, who ufe it the firft year for the cultivation of plants for oil, or for hemp or flax; and the fecond jear for the bell kinds of grain : thus obtaining two crops, inftead of one, without any farther preparation of the land. What is faid above may be applied alfo to the mamures produced from the dung of cattle, poultry, \&cc. (particulary to pigeon's dung, the noft powerful manure of its kind), all which, by being dried and powdered before they are ufed, lofe a great portion of their activity. From thefe obfervations another fact may be deduced, namely, that manure fhould not be taken from the place where it has been thrown together until the feafon of the year and the flate of the land are fuch that it may be put into the ground as foon as it is brought to it. In fome diftricts a very injurious cuftom prevails of carrying the manure into the fields, and leaving it there formed into fmall heaps, expofed for fome days to the elements; during which time, either the fun or wind dry up its natural moifture, leaving a mafs which is much lefs active; or the rain diffolves and carries away the extractive part impregnated with the falt. This kind of brine, which is the moft powerful part of the manure, penetrates the earth to a confiderable depth, and fhew's (by the thick tufts which arife in thofe places, and which produce more ftraw than grain) that manure ouglat to be put into the ground as foon as it is brought to it, becaufe it then poffeffes its full force and effect, and confequently would be then ufed to the greatelt advantage.
"We have always at haod the means of compofing, from a great variety of vegetable and animal fubftanees, fuch manures as, when brought into a proper flate, and mixed with land, contribute to its fertility. Chemiltry alfo offers to us a number of fubltances, which, although when ufed feparately they tend to diminifh the fertilifing quality of the earth, are yet capable, by being combined, of forming excellent manures; fuch, for inflance, is that faponaceous combination which is produced from a mixture of potafh, oil, and earth. What an advantage it would be, if, inttead of being fparing of manure, the inhabitants of the country would endeavour to increafe the number of thefc refources, and to render them more beneficial, by employing them in a more effectual manner. How many years had paffed before it was known that the refufe of apples and pears, after they are preffed (and which ufed to be thrown away as. ufelefs),

[^1] cyder and perry countries, as the refufe of grapes does in wine countries."

From what has been obferved, our author concludes, that manures act, in many circumftances, like medicines, and confequently that the fame fort of manure cannot be adapted to every fituation, and every kind of fuil; we nuft therefure take care to make proper diltinctions between them. Whoever fhall pretend that any particular kind of manure may be ufed, with equal benefit, in grats.tunds corn-fields, vineyards, orchards, kitchengardens, \&c. unght to be claffed annong thofe quacks who undertake to cure all perfons with the fame remedy, without any regard to the ir age, cunftitution, \&e. It is probably from not having paid fuficient attention to the forcmentioned diftinctions, that fome authors have found fault with particular manures, while others have fyoken too lighly in their favour. He thinks, however, and we agree with him, that we are ftill in want of a courfe of comparative experiments upon the various kinds of manures, confidered according to their influence with refpect to different foils, fituations, and productions. If this part of rural ceconony were better undertood, we thould perhaps fee many places in a fate of cultivation, which, on account of the bad quality of their foil, have hitherto refifted all our endeavours to render them fertile.
Perhaps it would not be proper to difinifs this fubje\&t withont noticing Mr Middleton's obfervations on various kinds of manure, which were publifted in the Tranfactions of the Society of Arts for the year 1799. This gentleman agrees with Mr Parmentier, in recommending the excrementitious mather of prizies as the moft ponverful of all manures on fome kinds of fuil ; but he differs from him, and we believe from mult writers on agriculture, when he affirms, that cwood a/bes, when fpread on the grafs in February or March, are of very little fervice, and that the afhes of coal and even of peat are of none upon any kind of land. He likevzife affirms foot to be of very little value as a manure, foapmakers suafe to be of none, or rather to be hurtful; and he feems to confider malt. duff, including the duft from the nalt. kilns, to be, atter the foil of privies, one of the moft powerful manures. He affirms, from his own experience, that, with refped to fertilifing power, the foil of privies, compared with farm. yard dung, is in the proportion of five to one. See more on the fubject of Manure, under the title Vegetable Substances, Chap. 2d.

MAOUANA, one of that cluftre of iflands in the Sonth Sea which were difcovered by M. Bongainville, and hy him named Navigator's Iflands. It was vieited by La Peroufe in 1787 , who defcribes it as exceedingly rich in every animal and vegetable production necelfary to the fuftenance of inair. The two frigates which he commanded hat no fwoner approached the fhore, than he difcovered at the bottom of each creek a number of villages, from whence came innumerable canoes, laden with hogs, cocoa-nuts, and other fruits, which were purchafed for glafs ware. This was in the evening; and next morning the commerce was renewed in the mof friendly manner. As early as the dawn of day, the iflanders had furrounded the two frigates with 200 canoes full of different kinds of provifion, which they would exchange only for beads-in their eflimation dia-
monds of the firft water. Axes, cloth, and all other Maouana. articles of commerce, they difdained. Abounding in real bleflings, they were defirous of obtaining fupetfluities alone.

Two boats, filled with empty cafks, were fent a fhore for freth watcr ; and Pcroufe himfelf accompanied them in his pinnace. A line of foldiers was pofted between the beech and the Indians, who amoanted to about 2 CO , including a great many women and children. The French commander prevailed upon them all to fit down under cocoa trees, that were not more than eight toifes dittant from the fhips buats. Each of them had by him fuwls, hogs, parrots, pigeons, or fruit, and all wihed to fell them at once, which occafioned fume confution.

The women, fome of whom were very pretty, offered their favours, as well as their fowls and fruit, to all thufe who had beads to give them; and fown tried to pafs through the line of foldiers, who oppofed but a fceble retitance to their attempts. Europeans who have made a v. yage round the world, efpecially Frenchmen, have no arms to ward off fimilar attacks. Accerdingly the fair favages found little difficuity in breaking the ranks; the men then approached; and the confufion was growing general ; when Indians, who feemed to he chiefs, made their appearance with fticks in therr lands, and reftored urder, every one returuing to his poit, and the traffic beginning ancw, to the great fatisfaction of buth buyers and fellers.

While all this was pafing with the greateft tranquillity, and the ealks were filling with waiter, Peroufe thought he might venture to the diftance of 200 yards to vilit a charning village, fituated in the midet of a wood, or rather of an orchard, all the trees of which were loaded with fruit. Thie houfes were placed upon the circumference of a circle, of about 150 toifes in diaineter, the interior forming a vaft open fpace, covered with the mon beautiful verdure, and fladed by trees, which kept the air delightfully cool. Women, children, and old men, accompanied him, and invited him into their houfes. They fpread the finet and frefheft mats upon a foor formed of little chofen pebhles, and raifed about two feet above the ground, in order to guard againf humidity. He went into the landfonef of thefe huts, which probably Lelonged to a chief; and great was lis furprife to fee a large cabin of latice-work, as well exceuted as any of thofe in the euvirons of Paris. The befl architect cnuld not have given a more elegant curve to the extremitics of the elliplis that terminated the building; while a row of pillars, at five feet difance from each other, formed a complete colonnade round the whole. The pillars were made of trunks of trees very neatly wrought, and between them were fine mats laid over one another with great art. like the tcales of a fifle, and drawing up and down with cords, like our Venetian blinds. The reft of the houfe was covered with leaves of the cocoa palm.
This charring country combines the advantages of a fioil fruifful without culture, and of a climate which renders clothing unneceffary. The trees that produce the bread fruit, the cocoa nut, the banana, the guava, and the orange, hold nut to thefe fortunate people as abundance of wholefome food; while the fowls, hogs, and dogs, which live upon the furplus of thefe fruits, afford them an agreeable variety of viands. What cold imagination could feparate the idea of bappinefs from

M A S [174] M A S

Nous. fo enchanting a place! But Maouna is not the abode of imbocence. No arms were indeed perceived; but tlie bodies of the Indians, covered over with fcars, proved that they were often at war, or elfe quarrelling among themfelves; while their features announced a ferocity that was not perceptible in the countenances of the women. Nature had, no doubt, ftamped this character on their faces, by way of fhewing, that the half-favage, living in a ftate of anarchy, is a more mifchievous being than the moft ferocions of the brute creation.

Of their ferocity and their treachery, Peroufe had too foon the moft complete evidence. M. de Langle, the fecoud in command, went afhore for frefh water, accompanied by fixty Frenchmen, officers, failors, and foldiers. They were received with an air of good humour by crowds of people waiting on the beach with immenfe quantities of fruit and hogs; but this calm was of fhort duration. The Indians picked a quarrel with them, pelted them with fones, thrown with great dexterity and with equal force; and it was with difficulty tbat, of the fixty-one, forty-nine reached the fhips, many of whom were feverely wounded. Among the killed were De Langle, and Lamanon the naturalit (fee Lamanon in this Suppl.) Peroufe defcribes the men of Maouna as of gigantic ftature, and of great mufcular ftrength. See Navigafors Iflands in this Suppl.

MASON (the Rev. William) was a man of fuch eminence both as a poet and as a fcholar, that a more particular account of his life and of his ftudies fhould be publified than our fcanty materials enable us to give. He was born at Hull, where his father poffeffed the vicarage of St Trinity; but where he received his fchool education we have not been able to learn. At the proper time he was admitted into St John's College, Cambridge; where he took the degrees of B.A. and M. A. and in 1747, he obtained a fellowfhip in Pembroke Hall. It was there that he contracted an intimate friendfhip with Gray the poet, and with Mr Hurd, now Bifhop of Worcefter. When the former of thefe gentlemen died, Mr Mafon took upon himfelf the office of editor of his works and guardian of his fame ; and upon the promotion of the latter to the fee of Litchfield and Coventry, he expreffed his fatisfaction in fome beautiful verfes, which we read at the time, but do not recollect where.

In 1754 he entered into holy orders, and was patronifed by the then Earl of Holdernefs, who obtained for him the appointment of chaplain to the king, and prefented him with the valuable rectory of Afton in York fhire. He was fome time afterwards made precentor of York Cathedral, when he publifhed a fmall volume of church mufic, which has alternately met with oppofition and applaufe. In our opinion fome of his anthems are unrivalled.

It was natural for the precentor of a cathedral church, swho was likewife a poet, to turn his attention to facred mufic ; and Mafon bad been a poct from lis early years. His Elfrida and Caradacus, two tragedies on the Grecian model, were buth publifhed before the year 1757. 'Thefe two drames, in the opinion of Dr Hurd, do honour to modern poetty, and are, according to him, a fufficient proof of the propricty of reviving the chorus on the Britifl flage. In this fentiment few critics, we believe, will agree with his Lordhip; but the tragedies have certainly great merit, and tranfeend perhaps every
poens of the fame cat in our own or any other modern tongue. In the firfl, the language is elegant and fweet; in the latter, it is dariag and fublime. The author himfelf always conlidered the former as the moft perfect ; and Johnfon, whofe critical judgment will not be rahly queftioned, feems to have been of the fame opinion. Johnfon's partiality to Oxford, as is well known, made him embrace every opportunity of turning into ridicule Cambridge men and Cambridge poems; but while he boafted of having fpent hours in burlefquing Carachacus for the amufement of his Oxford friends, he confeffed that Elfrida was too beautiful to be hurt by ridicule. The voice of the public, however, feems to give the preference to the latter, and to conlider it as flanding, like Dryden's celebrated ode, without a rival. In both are fentiments and expreffions which would do honour to the genius of Shakefpeare; and Caractacus, in the Greek verfion of Mr Glafs, would not have difgraced an Athenian theatre.

Befides his two tragedies, Mr Mafon publifhed many other poems. His Englifh Garden is univerfally read and admired, being unqueftionably the fineft poem of the kind that has appeared fince the days of Thomfon; though fome have affected to confider it as treating the fubject rather with profeffional fkill than with poetical genius. That there are in it a few profaic expreffions we fhall not controvert ; for fuch feem infeparable from didactic poetry ; but, taken as a whole, where fhall we find its equal? His elegies, particularly that on the death of his wife, and that on the demife of Lady Coventry, have been generally read and extolled, though not more than they deferve, as fuperior in claffic elegance to any thing of the kind in the Englifh tongue, and expreffing a manlinefs and tendernefs of the pathetic, rarely found in the moft polifhed elegies of Roman writers. The fplendor of genius, and accuracy of judge. ment, confpicuous in his dramas, are equally difplayed in his character as a lyric writer. His quarry was bold and impetuous, and he never fwept the ground with an ignominious flight. In his Sappho and Phaon he has happily imitated the ftyle of Dryden and Metaftafio ; and at his deatlo he was employed on a poem in which he propofed to meafure his frength with Dryden.

We have reafon to believe that this ingenious man was not only a poet and a mufical performer, but the inventor of the fafhionable inftrument the Piano Forte. We cannot indeed at prefent bring evidence of this fact ; but we have inftituted fuch inquiries as, we hope, fhall enable us to afcertain the truth under the article Piano Forte.

Poetry and mufic, and the duties of his office, might be fnppofed to have empleyed all his time ; but, unfortunately, he caught the alarm which in 1769 was fpread over the nation by the expulfion of Mr Wilkes from the Houle of Commons, and immediately enrolled himfelf among the fupporters of the Bill of Rights. The decifion of the Houfe, which pronounced Mr Lutteral duly elected in oppofition to Mr Wilkes, he confidered as a grofs violation of the rights of the people ; and though he furely did not approve of the conduct of the exiled member, he joined with other freeholders in Yorkhire in a petition to the king that he would diffolve the parliament.

Being now leagued with the oppofition, he joined in fome violent clanours for a parliamentary reform. In

M A S [175] M A S

afon. the year 1799, when the city of London, and fome other commercial towns, agreed to prefent their petitions to parliament for a more economical expenditure of the public money, and a more equal reprefentation of the people, Mr Mafon came forward, and took an active part in promuting thefe defigns, as one who was convinced of their importatice and neceffity. When the county of York affembled, on the 3oth of December 1779, and refolved unanimoufly, "that a committee of correfpondence fhould be appointed, for the effectually promoting the object of the petition then agreed to, and allo to prepare a plan of affociation to fupport that laudable reform, and fuch other meafures as may conduce to reftore the freedom of parliament," he was chofen upon the committee, and was confulted with, or affilted in drawing up thofe various high-fpirited refolutions and addrefles to the public, for which the Yorkfhire committee was fo celebrated ; and which was afterwards generally adopted by the other affociated bodies of reformers. This part of his conduct is furely entitled to no praife. Thinking as we do of the parliamentary reformers, we carinot but regret that a man of Mr Mafon's talents and virtues fhould have embarked in their dangerous purfuits; and though we perceived lefs hazard in thofe purfuits than we do, we fhould Atill confider then as unfuitable to the character of a clergyman. Our author, however, was of a different opinion. In reply to a cenfure paffed by a dignified clergyman on the political conduct of himfelf and fome of his reverend bretliren, he publifhed, without his name indeed, a fpirited defence of their proceedings and defigns in fome of the country papers. The York committee, too, at its next meeting, refolved, "that a Proteftant, by eutering into holy orders, does not abandon his civil rights;" they alfor refolved, "that the thanks of the committec be given to thofe reverend gentlemen who, thus preferring the public good to their own private emoluments, have flood forth the firm friends to the true interefts of their country."

Mr Mafon, lowever, fhowed, by his fulfequent conduct, that however earnefly he might wifl for what he doubtlefs confidered as an expedient refurm in the com-mons-houfe of Parliament, he was firmly at tached to the Britif1 conflitution. He was indeed a whig; but he was a whig of the old fchool. In the beginning of 1794, when the reformers had betrayed the principles of French democrates, he deferted them, and ranged himFelf under the banners of the fervants of the crown; and for this conduct, which was certainly confiftent, he has. been plentifully traduced by our Jacobin journalits as all alarmitt, who not only deferted his old friends, but afcribed to them a certain degree of guilt and political depravity.

The death of this great and good man, which happened in April 1797, was occafioned neither by age nur by inveterate difeafe. As he was flepping into his chariut, his foot flipped, and his fhin grazed againft the ftep. This accident had taken place feveral days before he paid the proper attention to it; and on April the 3d a mortification enfued, which, in the fpace of fortyeight hours, put a period to his life.

That he was a fchular and a poet of high eminence is univerfally acknowledged; and we are affured, that his pofthumous works, when publifhed, will not detract from his living fame. In private life, though he affect-
ed perhaps too much the faftidious manners of Mir Gray, Mafonry. whofe genius he eftimated with a degree of enthufiafm amounting almoft to idolatry, his character was diftinguifhed by philauthropy and the moft fervid friendhips; and he may be confidered as a man who merits to be ranked with the abieft fupporters of Britin_ liberty and Britifh morals.

Free MASONRY, is a fubject which, after the copions detail given in the Encycloperdia of its lodges, and wardens, and grand mafters, we-fhould not have refumed in this place, but to warn our countrymen againtt the pernicious fuperflructures which have been raifed by the French and Germans on the fimple fyftem of Britifh mafonry.

Much falfehood is current refpecting the origin and antiquity of the mafonic affociations. That the Dionyfiacs of Afia Minor were a fociety of architects and engineers, who had the exclufive privilege of building temples, fladia, and theatres, under the nyyfterious tutelage of Bacchus, feems to be unqueftionable. "We are alfo certain, that there was a fimilar trading affociation during the dark ages in Chriftian Europe, which monopolized the building of great churches and caftes, and enjoyed many privileges under the patronage of the various fuvereigns. Circumftances (fays Dr Robifon), which it wonld be tedious to enumerate and difcufs, continued this affociation longer in Britain than on the continent ;" but there is no good evidence, that, anterior to the year 1648 , any man fought admiffion into it, who was not either a builder by profeffion, or at leaft fkilled in the fcience of architecture. At that period, indeed, Mr Aflmole, the famous antiquary (fee Ashmole, Encycl.), was admitted into a lodge at Warrington, together with his father-in.law Colond Mainwaring: and thefe are the firft diftinct and uncquivocal inflances that we have in Britain of men uncunnected with the operative mafons being received into their myflerious fraternity. The fecrecy, however, of the lodres, made them fit places for the meetings of the royalitts; and accordingly many royalifts became free mafons. "Nay, the ritual of the inafter's degree feems to have been formed, or perhaps twitted from its-original inflitution, fo as to give an opportunity of founding the political principles of the candidate, and of the whole brethren prefent. For it bears fo eafy an adaptation to the death of the king, to the overturning of the venerable conftitution of the Englifh government of three orders by a mean democracy, and its re-eftablifhment by the effurts of the loyalits, that this would flart into every ferfon's mind during the ceremonial, and could hardly fail to fhew, by the countenances and belhaviour of the brethren, how they were affected."

This fuppofition receives much countenance from the well known fact, that "Charles II. was made a mafon, and frequented the lodges. It is not unlikely, that befides the amufeneent of a vacant hour, which was always agreeable to him, he had pleafure in meeting with his loyal friends, and in the occupations of the lodge, which recalled to his mind their attachment and fervices. His brother and fucceffor James II. was of a more ferions and manly caft of mind, and had little pleafure in the frivolous ceremonies of mafonry. He did nut frequent the lodgcs. But, by this time, they were therefort of many perfuns who were not of the profeffion, or members of the trading corporation. This circum-.

Mafonry. itance, in all probability, produced the denominations of free and accepted mafons. A perfon who has the privilege of working at any incorporated trade, is faid to be a freeman of that trade. Others were accepted as brethren, and admitted to a kind of honorary freedom ; as is the cafe in many other trades and incorporations, without havi:g, (as far as we can learn for certain) a legal title to earna livelihood by the exercife of it."

It was not till fome years after this period that the lodges made open profeffion of the cultivation of general be:avolence, and that the grand aim of the fraternity was to enforce the exercife of all the focial virtues. The ellablifhment of a fund for the relief of unfortunate brethren did not take place till the very end of the daft century ; and we may prefune, that it was brought about by the warn recommendations of fome benevolent members, who would naturally enforee it by addreffes to their affembled brethren. Hence the probable origin of thofe philanthropic difcourfes, which are occafionally delivered in the lodges by one of the brethren as an official talk.

The boafted philanthropy of mafons ferves, however, ancther purpofe. The inqquifitive are always prying and teazing, eager to difcover the fecrets of their neighbours ; and hence the brethren are induced to fay, that univerfal beneficence is the great aim of the order, for it is the only point on which they are at liberty to fpeak. They forget, that univerfal beneficence and philanthropy are inconfiftent with the exclufive and monopolizing fpirit of an affociation, which not only confines its benevolence to its own members (like any other charitable affociation), but hoards up in its bofom ineftimable fecrets, whofe natural tendency, they fay, is to form the heart to this generous and kind conduct, and infpire us with love to all mankind. The profane world cannot fee the beneficence of concealing from public view a principle or a motive which fo powerfully induces a mafon to be good and kind. The brother fays, that publicity would rob it of its force; and we muft take him at his word : and our curiofity is fo much the more excited, to learn what are the fecrets which have fo fingular a quality, for they mult be totally unlike the principles of fcience, which produce their effects only when made public.

Froin this account of mafonry, it would appear to have been at firf a loyal affociation, and as fuch it was carried over from England to the continent ; for all the mafons abroad profefs to have received their mylteries from Great Britain. It was firft tranfported into France by the zealous adherents of King James, who, together with 'their r_{7} unfortunate mafter, took-refuge in that country; and it was cultivated by the French in a manner fuited to the tafe and habits of that highly polifhed and frivolous people. To the three fimple Britifh degrees of apprentice, fellow-cruft, and mafier, they gradually added degrees innumerable, all decorated with ftars and ribbons; and into their lodges they introduced the inpieties and feditious doctrines of Voltaire and the other philufophits. Indeed, if the account which the Abbè Barruel gives of mafonry be junt, it mult be admitted, that even the fecrets of the mof ancient lodges, though in one fenfe harmlefs and juft, are fo expreffed, that they may be eafily twifted to very dangerous purpofes. This author was adranced by a few friends to the degree of matter, without being obliged to take the
oath of fecrecy; and being furnifhed with the figne, be got admiffion into a lodge, where he heard the fecret regularly communicated, with all the ordinary forms to an apprentice. "It would be ufelefs, (fays he), to defrribe the ceremonials and trials on fach occations; fur in the firt degrees, they are notling more than the play of children. The grand object was the communication of the famous fecret, when the candidate was ordered to approach nearer to the venerable. At that moment, the brethren, who had been armed with fwords for the occalion, drawing up in two lines, held their fwords, elevated, leaning the points towards each other, and formed what in mafonry is called the arch of flect. The candidate paffed under this arch to a fort of altar elevated on two fteps, at the furtheft end of the lodge. The mafter, feated in an arm chair, or a fort of throne, behind this altar, pronounced a long difcourfe on the inviolability of the fecret which was to be imparted, and on the danger of breaking the oath which the candidate was going to take. He pointed to the naked fwords, which were always ready to pierce the breat of the traitor ; and declared to him that it was impolible to efcape their vengeance. The candidate then fwore, "that rather than betray the fecret, he confented to have his head cut off, his heart and entrails turn out, and his afhes caft before the winds." Having taken the oath, the mafter faid the following words to him: "My dear brother, the fecret of mafonry confits in thefe words, equality and liberty; all men aréequal and free; all men are bretbren.". The matter did not utter another fyllable, and every body embraced the new lrother equal and free. The lodge broke up, and we gayly adjourned to a mafonic repaft."

In the Britifh lodges, the author admits, that no other interpretation is given to this famous fecret, than that, as all inen are children of one common parent, and creatures of the fame God, they are in duty bound to love and help each other as brethren ; but he contends, that in France it was differently interpreted; and he fupports his opinion by the following arguments:

Oia the 2 2 th of Augult 1792, Louis XV1. was carried a prifoner to the tower of the temple, fo called hecaule it formeny belonged to the knights templars. On that day, the rebel affembly decreed, that to the date of liberly the date of equality fhould be added in future in all piblic acts; and the decree itcelf was dated the fourth year of liberty, the finft year and finf day of equality. It was on that day, for the firt time, that the fecret of frec-mafonry mas made public; that fecret fo dear to them, and which they prefered withall the folemnity of the molt inviolable oath. At the reading of this fanous decree, they exclaimed, "We have at length fucceeded, and France is no other than an immenfe lodge. The whole French people are free mafons, and the whole univerfe will foon follow their example."
"I witneffed (fays our author) this enthufiafm; I heard the comverfation to which it gave rife ; I faw mafons, till then the moft referved, who freely and openly declared, ' Yes, at length the grand object of free-mafonry is accomplifled, equality and liberty ; all men are equal and brothers ; all men are free. That was the whole fubitance of our doctrine, the object of our wifhes, the whole of our grand fecret!"'

This is a very ferious charge againft the original fe-

Mafonry, cret of mafonry, as it was underftood in France; and though the author dues not bring it directly againft the fame feeret as underfood in Britain, he yet feems to fay, that in all lodges, the following queftion is put to the candidate before he is entrufted with any fecret:"Brother, are you difpofed to execute all the orders of the grand matter, though you were to receive contrary orkers from a king, an emperor, or any other fovereign whatever?" And as the brother is obliged to promife this unlimited ubedience, it is eafy to concrive how much a traiterous confpiracy may be promoted by means of mafon lodges. The allegorical ftory which is tohd at the conferring of the degree of matter, is capable of various and even contrary interpretations; for though in this country it was originally rendered fubfervient to the purpofes of the royalits, in the oecult lodires on the continent it has been made the vehicle of treafon and impiety.

When the degree of mafter-mafon is to be conferred, the lodge is hung round with black. In the middle is a coffin covered with a pall, the brethren ftanding round it in attitudes denoting forrow and revenge. When the new adept is admitted, the mafter relates to him the following hiftory or fable :
"Adoniram prefided over the pavement of the workmen who were building the temple of Solomon's orders. They were three thoufand workmen. That each one might receive his due, Adoniram divided them into three chaffes, apprentices, fellow crafts, and mafters. He entrutted each clafs with a word, figns, and a gripe, by which they might be recognifed. Each clafs was to preferve the greatefl fecrecy as to thefe figns and words. Three of the fellow-crafts, wifhing to know the word, and by that means obtain the falary of mafter, hid themfelves in the temple, and each pofted himfelf at a different gate. At the ufual time when Adoniram came to fhut the gates of the temple, the firlt of the three met him, and demanded the avord of the mofters ; Adoniram refufed to give it, and received a violent blow with aftick on his head. He flies to another gate, is met, challenged, and treated in a fimilar manner by the fecond: Aying to the third door, he is killed by the fellow-eraft pofted there, on his refuling to betray the word. His atfallins buried him under a heap of rubbifh, and marked the fpot with a branch of acacia.
"Adoniram's abfence gave great uneafinefs to Solomon and the mafters. He is fought for every where: at length one of the mafters difcovers the corple, and, taking it by the finger, the finger parted from the hand; he took it by the writt, and it parted from the arm ; when the mafter, in aftonifhment, cried out, Mac Benac; which the craft interprets by "the fleß parts from the bones."
"Left Adoniram thould have revealed the zuord, the mafters convened and agreed to change it, and to fubftitute the words Mac Benac; facred words, that freemafons dare not pronounce out of the lodges, and there each only pronounces one fyllable, leaving his neighbour to pronounce the other."

The hiftory finifhed, the adept is informed, that the object of the degree he has juft received is to recover the word loft by the death of Adoniram, and to revenge this martyr of the mafonic fecrecy. The generality Suppl. Voz. II. Part I.
of mafons, looking upon this hiftory as no more than a fable, and the ceremonies as pucrike, give themfelves very little trouble to fearch farther into thefe myfteries.

Thefe fports, however, aflume a more ferious afpect when we arrive at the degree of elect (E/u). 'Ilis degree is fubdivided into tivo parts; the frit has the revenging of Adoniram for its object, the other to reco. ver the zoord, or rather the facred dostrine which it expreffed, and which has been luft.

In this degree of elect, all the brethren appear dref. fed in black, wearing a brealt-piece on the left fide, on which is embroidered a death's head, a bone, and a poignard, encircled by the motto of Conquer or Die. The fame motto is embroidered on a ribband which they wear in faltier. Every thing breathes death and revenge. The candidate is led into the lodge blindfolded, with bloody gloves on his hands. An adept with a poignard in his hand threatens to run him through the heart for the crime with which he is accufed. After various frights, he obtains his life, on condition that he will revenge the father of mafoury in the death of lis affaffin. He is fhewn to a dark cavern. He is to penetrate into it ; and they call to him, Strike all that fhall oppofe you; enter, defend yourfelf, and avenge our malter; at that price you thall receive the degree of elect. A poignard in his right hand, a lamp in his left, he proceeds; a phantom oppofes his paffage; he hears the fame voice repeat, Strike, avenge Hiram, there is his affaffin. He ftrikes, and the blood flows. - Strike off his head, the voice repeats; and the head of the corple is lying at his feet. He feizes it by the hair (Λ), and triumphantly carries it back as a proof of his victory; thews it to each of the brethren, and is judged worthy of the new degree.

Our author fays, that he has queltioned divers mafons whether this apprenticethip to ferocity and murder had never given them the idea, that the head to be cut off was that of kings; but they all affirmed that fuch an idea had never oceurred to them till the Freuch re. volution had convinced them of the fact. At this in deed we are not furprifed. The affaffin of Hiran is no where faid to have been a king; and why hould the yougg clect have fuppofed, that when itabling that affafin, he was training to be a regicide? The eeremony, however, is certainly ferocious in the higheft degree, and obvioufly calculated to reconcile the mafons of the oceult lodges to the practice of affaffination at the command of their fuperiors ; and when it is remembered, that they are bound to pay obedience to thofe unfeco fuperiors even againtt their lawful fowereigns, the atrocities of the revolutionwould naturally make them interpret this thocking ceremony as it is interpreted by the Abbè.

It was the fame with refpect to the religious part of this degree, where the adept is at nuce pontiff and fa. crificer with the reft of the brethren. Velked in the ornaments of the priefthood, they offer bread and wine, according to the order of Melchifelec. The feceret object of this ceremony is to re-eftablifh religious equality, and to exhibit all men equally priefts and puntiffs, to recal the brethren to natural religion, and to perfuade them that the religion of Mofes and of Chitit had vio. lated religious equality and liberty by the diftinction Z
rtafonry. of priefts and laity. It was the revolution again which opened the eyes of many of the adepts, who then owneal that they had been dupes to this impiety, as they had been to the regicide effly in the former part.

Our auther treats the fraternity of the occult lodges through the higher degrees of Scotch mafonry, thofe of the Roficrucians, and that of the knights Kadofch; and funs up his aecount in the following terms ;
"In the two firft degrees, that is to fay, in thofe of aftrentice and fellozu.craft, the fect begins by throwing out its equality and liberty. After that, it occupies the attention of its novices with pucrile games of fraternity or mafonic repalts; hut it alrcady trains its adepts to the profoundell fecrecy by the mofl frightful oatls.
"In that of mater, it relates the allegrorical hifory of A doniram, who is to be avenged; and of the worl, which is to be recovered.
"In the degree of clet, it trains the adypts to vengeance, without pointing out the perfon on whom it is to fall. It carrics them back to the time of the patriarehs, when, according to them, men knew no religion but that of nature, and when every body was equally prieft and pontiff. But it had not as yet deciared that all religion revealed fince the time of the patriarchs was to be thrown afide.
"This laft mytlery is only developed in the Scotch degrees. There the brethren are declared free: The word fo long fought for is, Deifm; it is the worhip of Jehorah, fuich as was known to the plilofophers of nature. The true mafon becomes the pontiff of Jehovah; and fuch is the grand myftery by which he is extricated from that darknefs in which the prophane are involved.
"In the degree Rofie Crucis, he who wrefted the word, who deftroyed the worfhip of Jehovah, is Chritt himfelf, the anthor of Chriftianity ; and it is on the Gofpel and on the Son of Man that the adept is to avenge the brethren, the pontiffis of Jehovah.
"At length, on his reception as Kadofch, he learns that the affaffin of Adoniram is the king, who is to be killed to avenge the Grand Mafter Molay, and the order of the mafons fucceffors of the knights templars. The religion which is to be deffroyed to recover the word, or the true ductrine, is the religion of Chrif, founded on revelation. This word in its full extent is equality and liberty, to be eftablifhed by the total overthrow of the altar and the throne.
"Such are the incipient degrees, the procefs, and the whole fyftem of mafonry; it is thus that the fect, Wy its gradual explanation of its twofold principle of equality and liberty, of its allegory of the founder of mafunry to be avenged, of the word to be recovered, leading the adepts from feicet to fecret, at length initiates them into the whole Jacobinical code of revolution."

If this account of mafonty be not greatly exaggerated, what are we to think of thole men anoong ourfelves, who, fince the publication of the Abbè Barruel's book and Dr Robifon's, have difplayed a zeal for the propagation of their myfteries, by which they feemed not to be formerly actuated, and to which the importance of the bufinefs that, by their own account, is tranfacted in the lodges, cannot be thought to bear an adequate proportion? It is not enough to fay that Britifh mafonry is harmlefs, and that the equality and liberty taught in our lodges are the equality and liberty taught in the
bills. Without directly queftioning this affertion, we only beg leave to put our countrymen in remembrance, that French and German mafonry, as it was derived from Britain, mult have been originally as harmlefs as our own; and to c.ll their attention to the monfrous fuperltructures of impiety and rebellion which in thefe countries have been raifed upon our foundation. Have there been no fymptoms of fedition and irreligion among us, lince the commencement of the Frencla revolution, that we fhould be fo confident that the equality and li berty of our lodgres will never degenerate into the equality and liberty of the French Jacobins? This cannot be faid; for it has been proved, that there are feveral occult lodges in Britain; and what fecurity have we, or what fecurity can we receive, that their number fhall not increafe? The legillature indeed has lately laid fome falutary reftraints on the meetings of mafons; but fuch is the nature of thefe meetings, that nothing can eflectunlly fecure us againft the introduction of the higher mytheries, but the voluntary fhutting up for a time of all lodges. This has been done hy the honeft mafons in Germany ; and why may it not be done by the mafons in Britain? The fund for the relief of poor brethren may furely be managed without fecrecy ; the figns and gripe may be communicated without the word, or exacting a promife of inplicit obedience; and the relinquifhing of the joys of a focial hour would be no great facrifice to the prace of the country.

But is Britifh mafonry really fo larmlefs as the younger mafons wilh us to believe? The writer of thete reflections was never initiated in its mylferies, and therefore cannot, from his own knowledge, fay what is their tendency; but he has no hefitation to affim, becaufe he believes himfelf able to demonftrate, that it is grofsIy immoral to promife implisit obedience to unknown fuperiors, or to fwear that one will keep inviolate a fecret, to the nature of which be is an abfolute Aranger. He hopes, indeed, and is inclined to believe, that, in the decent lodges of Britain, the candidate is affured, before he is required to take the oath, that the fecret to be conmunicated, and the obedience which he is to pay, militate in no refpect againft the civil goverument or the rcligion of his country: but ftill if the fecret contain information of value, it is, in his opinion, finful to keep it a fecret; and he cannot conceive upon what principle a native of Britain can promife unlimited obedience to any human being. The myfteries of mafoury muft relate to fomething which is either important and laudable; frivolons, theugh innocent; or dangerous and immoral. To confine to a fect any inforination which is laudable and important, is furely not to aed the part of genuine philanthropits; to adminifter the molt tremendous oaths in the midit of frivolous amufements, is to violate one of the moft facred precepts of our holy religion; and, as no man will pretend to vindicate dangerous and immoral myiteries, mafonry appears, in every point in which it can be placed, an affociation which no good Chriftian will think himfelf at liberty to encourage.

MASUAH (See Massuah, Encycl.) is in latitude $1535^{\prime} 5^{\prime \prime}$ north, and in longitude $35^{\prime} 36^{\prime} 30^{0^{\prime \prime}}$ ealt of Greenwich. Ont the 22 d of Septenber 1769 Mr Bruce found the variation of the needle at Mafuah to be 120 48 weit.
matmai, or Matsumat, is the largef of the Kurile illands; and if it be not independent; is tributary

M A Y [1 1;9] M A Y

Mayorga, to Japan. The capital town of the fame name, Mat mai, Mayow. is fituated on the fea-flore, on the fouth-weft fide. It was built and is inlatited by the Japanefe. It is a fortified place, furnifhed with artillery, and defended by at numerous garvifon. The illand of Matmai is the place of exile for perfons of diftinction at Japan: it is feparated from that empire by unly a narrow clanuel, but which is conficlered as dangerous, becaufe the capes, which project on both fides, render the navigation diffcult. The people are faid to be fentible to friendfhip, hofpitable, generous, and humane.

MAYORGA (Martin de). See Don Martin, \&c. in this Suppl.

MAYOW (John), whofe difcoveries in cheniflry have aftonifhed the fcientific part of the public, defcended, fays Wood, from a genteel family living at Bree in the county of Cornzoall. His father was probably a younger fon, bred to bufinefs; for our author was born in Fleet-ftreet, London, in the parifh of St Dunflan's in the Weft. At what fehool he received the rudiments of his education, a circumfance which the biographers of men eminent in the republic of letters fhould never omit, we have not been able to learn; but on the ${ }^{2}$ th of September 166 t , when he had juft completed his : 6 th year, he was admitted a fcholar of Wadham college, Oxford. Some time afterwards, on the recommendation of Henry Coventry, Efq; one of the fecretaries of fate, he was chofen a probationer fcliow of All-fouls coliege. As Wood informs us that he had here a Legifl's place, an expreffion by which we underfand a law-fellow hip, it is not wonderful that he took his degrees in the civil law, though phyfic and the plyfical fciences were the favourite objects of his ftudy. He was indeed an eminent phyfician, practifing both in London and in Bath, but in the latter city chiefly in the fummer months, till the year 1679, when he died, fome time during the month of September, in the houfe of an apothecary in York-fteet, Covent-Garden, and was buried in the ehurch of that parifh. He had been married, fays Wood, a little before his death, not altogether to his content ; and indeed he muft have been very difcontented, if he chofe to die in the houfe of a friend rather than in his own. He publifhed, "Tractatns quinque medico phyfici, 1. De faluitro; 2. De refpiratione; 3. De refpiratione foetus in utero et ovo; 4. De motu mufculari et fpiritibus animalibus; 5. De Rachitide." Thefe were publifhed together in 8 vo at Oxford, in 1764 ; but there is an addition of two of them, "De refpiratione," and "De Rachitide," publifhed together at Leyden in 1671.

The fame of this author has been lately revived and extended by Dr Beddoes, who. publifhed, in 1792, "Chemical Experiments and Opinions, extracted from a work publithed in the laft century," Svo; in which he gives to Mayow the highefl credit as a chemift, and afcribes to him fome of the greatelt modern difcoveries refpecting air, giving many extracts from the three firft of his treatifes. His chief difcovery was, that oxygen gas, to which he gave the name of fire air, exilts in the nitrous acid, and in the atmofphere; which he proved by fuch decilive experiments, as to render it impoffible. to explain bow Boyle and Hales could avoid availing themfelves, in their refearches into air, of fo capital a difcovery. Mayow alfo relates his manner of paffing aeriform fluids under water, from veffel to veffel, which
is generally believed to be a new art. He did not collect dephlogiticated air in veffels, and transfer it from one jar to another, but he proved its exiltence by finding fubllanees that would burn in vacuo, and in water when mixed with nitre; and after animals had breathed and died with refels filled with aunofpheric air, or after fire had been extinguifled in them, there was a refiduum which was the part of the air unfit for refpiration, and for fupporting fire; and he further fhewed, that nitrous acid canot be formed, but by expofing the fubtlances that generate it to the atmofplicre. Mayow was undoubtedly no common man, efpecially fince, if the above dates are right, he was only 34 at the time of his death. But he was not fo miknown as Dr Beddoes fuppofed; for fince the repetition of the fame difcovery by Priefley and Scheele, reference has frequently been made by the chemitts to Mayow as the uriginal inventor; thus allowing to hin a fpecies of merit, to which he has perhaps but a doulsful clain, and which, if that claim be well founded, inufl certainly be flared between him and Dr Hooke. See Hoore in this Supplement.

MEAN, in general. Sce Encycl.
Aritbmetical MEAN, is half the fum of the extremes. So 4 is an arithmetical mean between 2 and 6 , or hetween 3 and 5 , or between 1 and 7 ; alfo an arithmeti-

Geometrical Mean, commonly called a mean proportional, is the fquare root of the product of the two extremes; fo that, to find a mean proportional between two given extremes, multiply thefe together, and ex. tract the fquare root of the product. Thus, a mean proportional between I and 9 , is $\sqrt{1 x_{9}}=\checkmark 9=3$; a mean between 2 and $4 \frac{1}{2}$ is $\sqrt{2 \times 4 \frac{1}{2}}=\sqrt{2}=3$ alfo; the mean between 4 and 6 is $\sqrt{4 \times 6}=\sqrt{24}$; and the mean between a and b is $\sqrt{ } a b$.
Harmonical MsaN. See Harmonical Prorortton, Encycl.
$M_{\text {EAN }}$ and Extreme Proportion, or Extreme and Mean Proportion, is when a line or any quantity is fo divided -that the lefs part is to the greater, as the greater is to the whole.
$M_{E A N}$ Anomaly of a Planet, is an angle which is always proportional to the time of the planet's motion from the aphelios or peribelion, or proportional to the area deferibed by the radius vector; that is, as the whole pcriodic time in one revolution of the planct, is to the time patt the aphelion or perihilion, fo is 360° to the mean anomaly. See Anomaly, Encycl.
$M_{\text {EAN }}$ Conjungion or Offofition, is when the mean place of the fun is in conjunction, or oppofition, with the mean place of the moon in the ecliptic.

MEAN Difance of a Planet front the Sun, is an arithmetical mean between the planet's greateft and leait diflances.
$M_{\text {E.AN }}$ Motion, is that by which a planet is fuppofed to move equably in its orbit; and it is always proportional to the time.

MEAN Time or Equal Time, is that which is meafured by an equable motion, as a clock; as dillinguifhed from apparent time, arifing from the unequal motion of the earth or fun.

Universal or Perpetual MEASURE, is a kind

Minn.
ATealure.

Mechanics. of meafure unalterable by time or place, to which the meafures of different ages and nations might be reduced, and by which they may be compared and eflinated. Such a meafure would he very ufeful if it could be attained; fince, being ufed at all times, and in all places, a great deal of confufion and errur would be avoided.
It has been attempted, at different times and in different countries, more efpecially by the French, who, fince the commencement of their revolutionary government, have laboured hard to obtrude their innovations in arts and fcience, as well as in polities, upon all nations. Propofals, bowever, have been made by foberer men fur a flandard both of weights and of meafures for all uations; and fume of the noft rational of thefe fhall be noticed under the word Weights in this Supplement.

MECH \pm NICS.-Our readers will recollect that in the article Prysics, Encycl. we propofed to diflinguifh by the term Mechanical Pbilofoplyy that part of natural fcience which treats of the local motions of bodies and the eaufes of thofe phenomena. And, althougla all the changes which we obferve in material nature are accome panied by local motion, and, when completely explain. ed, are the effects (perbaps very remote) of thofe powers of matter which we eall moving forces, and of thofe alone, yet in many cafes, this local motion is not obferved, and we only perccive certain ultimatc refults of thofe changes of place. This is the cafe (for example) in the folution of a graia of filver in a phial of aquafortis. In the beginning of the experiment, the particles of filver are contained in a fmall fpace at the bottom of the 'phial; but they are finally raifed from the bottom, and uniformly differniuated over the whole fluid. If we fix our attention fteadily on one particle, and trace it in its whole progrefs, we contemplate nothing but a particle of matter acted on by moving forces, and yielding to their action. Could we flate, for every fituation of the partiele, the direction and intenfity of the moving force by which it is impelled, we could confruct a figure, or a formula, which would tell us the precife direction and velocity with which it changes its place, and we could delineate its path, and tell the time when it will arrive at that part of the veffel where it finally refts in perfect equilibrium. Newton having done all this.it the cafe of bodics acted on by the moving force ealled gravity, has given us a complete fyftem of mechanical aftronomy. The plilofopher who fhall be as fortunate in afeertaining the paths and motions of the particles of filver, till the end of this experiment, will eftablifh a fyitem of the mechanical folution of filver in aquafortis; and the thenrems and formule which characterife this particular moving force, or this modification of force, Atating the laws of variation by a change of ditlance, will he the complete theory of this chemical fact. It is this moditieation of moving force which is ufually, (but moft vaguely) called the chemical aflinity, or the elecive altradion of filver and aquafor. tis.

But alas! we are, as yet, far from having attained this perfection of chemical knowledge. All that we have yet difcovered is, that the putting the bit of filver into the fpirit of falt will not give occafion to the exertion of this moving force: and we exprefs this obfervation, by calling that unknown furce (unknown, becaufe
we are ignorant of the law of its action) an afinity, an Mechaniten elective attraction. And we have obferved many fuch elections, and have been able to clafs them, and to tell on what occafions they will or will not be exerted; and this fcrap of the complete theory becumes a molt valuable aequifition, and the elaffification of thofe fcraps a moft curious, and extenfive, and inportant fcience. The chemical philofopher has allo the pleafure of feeing gradual approaches made by ingenious men to the complete meebanical explanation of thefe unfeen motions and their caules, of which he has arranged the ultimate refults.

The ordinary chemift, however, and even many moft acute and penetrating enquirers, do not think of all thefe motions. Familiarly converfant with the refuits, they confider them as principles, and as topics to reafon from. They think a chemical phenomenon fufficiently explained, when they have puinted out the affinity under which it is arranged. Thus they aferibe the propagation of heat to the expanfive nature of fire, and imagine that they conceive clearly bow the effect is produced. But if a mathematical philofopher fhould fay, "What is this which you call an expantive fluid? Explain to me diftinetly, in what manner this property which you call expanlivenefs operates in producing the propagation of heat." - We imagine that the chemit would lind himfelf put to a fand. He will then, perhaps for the firft time, try to form a diftinct conception of an expanfive fluid, and its manner of operation. Hewill naturally think of air, and will refeet on the manner in which air actually expands or occupies more room; and he will thus contemplate loeal motion and mechanical preflure. He will find, too late, that this gives him no affiftance ; becaufe the phenomena which he has been accultomed to explain by the expantivenefs of fluids have no refemblance whatever to what we fee refult from the actual expanfion of air. Experience has made him acquainted with many effects which the air produces its expanfion; but they are of a totally different kind from thofe which he thought that he had fufficiently explained by the expanfivenefs of fire. The only reremblance he obferves is, that the air and the heat, which were formerly perceived only in a fmall fpace, now appear in a much larger fpace. The mathematician now defires him to tell in what manner he conceives this expanfivenefs, or this actual expanfion of air or gas. The chemift is then obliged to confider the air or gas, as confilting of a:oms or particles, which muft be kept in their prefent fituation by an external force, the mott familiar of all to his imagination, name1 y , preffure; and all preffures are equally fit. Preflure is a moving force, and ean only be oppofed to fuch another moving force; therefore expanfivenefs fuppofes, that the particles are under the influenee of fornething which would feparate them from each other, if it were nut oppofed by fomething perferily of the fame kind. It cannot be oppofed by greennefs, nor by londnefs, nor by fear, but only by what is competent to the produetion of motion ; and it may be oppofed by any fucb natural power ; therefore by gravity, or by magnetifm, or electricity, or corpulcular attraction, or by an elective attraction. The elemif, being thus led to the contemplation of the phenomenon in its moft fimple flate, can now judge with fume diftinctrefs, what is the nature of thofe powers with which expanfivenefs can
$\underbrace{\text { Mechanics be brought to co-operate or combine. And only now }}$ will be able to fpeculate on the means for explaiuing the propagation of heat ; and he will perccive that the general laws of motion, and of the action of moving forces (doctrines which we comprehend under the title of Dynamics, Suppl.), mult be teforted to for a complete explanation of all chemical phenomena. The fame may be faid of the phenomena perceived in the growth of vegetables and animals. All of them lead us ultimately to the contemplation of an atom, which is charaeterifed by being fufeeptible of lycal motion, and requires for this purpofe the agency of what we call a moving force.

We would ditinguifh this particular oajfct of our contemplation (confifing of two conflituent parts, the atom and the force, related, in fact, to each other by conftant conjunction) by the term mechanism. We conceive it to be the charactereftic of what we call $\mathrm{M} \Phi \mathrm{r}$ ter ; and we would conffer it as the monf fimple mechanical fhenomenon. We are difpofed to think, that this moving furce is as fimple and miform as the atom to which it is related; and we would alcribe the inconceivalle diverlity of the moving forces which we fee around us to combinations of this univerfal force ex. erted by many atoms at once; and therefore mudified by this combination, in the very fame manner as we frequently fee thofe feemingly different moving forces combine their influerce on a fenfible mafs of tangible matter, giving it a fenfible local motion. Having tormed fuch notions, we would fay that we do not conecive either the atom or the force as being matter, but the two thus related. And we would then fay, that whatever object of contemplation does not ultimately lad us to this complex nution is immaterial; meaning by the epithet nothing more than the negation of this particular character of the object. It is equivalent to faying, that the phenomenon does not lead the mind to the confideration of an atom actuated by a moving force; that is, moved, or prevented from moving, by an oppofite preffure or force.

Such is the extenfion which the difcoveries of laft century have enabled us to give to the ufe of the term mechanifm, mechanical a\&tion, mechanical caufe, \&c.

The Greeks, from whom we have borrowed the term, gave it a much more limited meaning; contining it to thofe motions which are produced by the intervention of machines. Even many of the naturalitts of the prefent day limit the term to thofe motions which are the immediate confequences of impulfe, and which are cafes of fenfible motion. Thus the chemift fays, that printers ink is a mechanical fuid, but that ink for writing is a chemical fluid. We make no objection to the diftinction, becaufe chemiftry is really a val body of rea! and important fcience, although we have, as yet, heen able to clafs only very complicated phenomena, and are far from the knowledge of its elements. This diftinction made by the chemifts is very clear, and very proper to be kept in view; but we fhould be at a lofs for a term to exprefs the analogy which is perceivable between thefe fenfible motions and the hidden motiors which obtain even in the chemical phenomena, unlefs we give mechanifm a fill greater extenfion than the effects of percuffion or impultion.

Mechanics, in the ancient fenfe of the word, confiders -nly the energy of organa, machines. The authors who
have treated the fubject fy ftematically, have obferved, Mect anice. that all machines derive their efficacy trom a few fimple forms and difpofitions, which may be givell to that piece of matter called the tool ' $0 \cdot \frac{\gamma}{}$ an.. , or machine, which is interpofed between the workman or watual agent, and the tafk to be performed, which is always fomething to be moved, in oppofition to refiting preffures. To thofe fimple formsthcy have given the name of mechanical fowers, finple powers, fimple machines.

The nachine is interpofed for various reafons.

1. In order to enable a natural power, having a certain determinate intenfity, which cannot be increafed, to balance or overcome another natural power, acting with a,greatcr intenfity. For this purpofe a piece of folid matter is interpofid, counected in fuch a manuer with firm fupports, that the preffure exerted on the im. pelled point by the power occalions the excitement of a prefure at the working point, which is equal or fupesior to the refiftance, arifing fiom the work, to the motiun of that point. Thus, if a red three feet long be fupported at one foot from the end to which the refiftance of two pounds is arplied, and if a preflure of one pound be applied to the other end of the rod, perpendicular to its length, the cohefive forces which conneet the particles of the rod will all be excited, in certain proportions, according to their fituation, and the fupported point will be made to prefs on its fupport as much as thrce pounds would prefs on it ; and a preffure in the oppofite direciiun will be excited at the working point, equal to the preffure of two pounds. The refiftance will therefore be balanced, and it will be overcome by increafing the natural power acting on the long divifion of the rod. This is called a lever. Toothed wheels and pinions are a perṕetual fucceffion of levers in one machine or mechanical power.
2. The natural power may act with a certain velocity which cannot be changed, and the work requires to be performed with a greater velocity. A machine is interpofed, moveable round a fixed fupport, and the diftances of the impelled and working points are taken in the proportion of the two velocities. Then are we certain, that when the power acts with its natural velocity, the working point is moving with the velocity we defire.
3. The power may act only in one unchangeable direction, and the refiftance mult be overcome in another direction. As when a quantity of coals muft be brought from the bottom of a pit, and we have no power at command but the weight of a quantity of water. We let the water pull down one end of a lever, either inımediately or by a rope, ard we lhang the coals on the other end, while the middle point is firmly fupported. This lever may be made perpetual, by lapping the ropes round a cylinder which turis round an axis tirmly fup. ported. This is a fixed pulley. We can fet unequal powers in oppofition, by lapping each rope round a differem cylinder, having the fame axis. This is a windlass or gin. All thefe forms derive their energy from the lever virtually contained in then.

Any of thefe three purpofes may be gained by the interpofition of a folid body in another way. Inftead of being fupported in one point, round which it is moveable, it may be fupported by a folid path, along which it is impelled, and by its fhape, it thrufts the refifting

Mcchanics body out of its way. This is the cafe with the wedge when it is employed to force up a fwagging joitt, or prefs things ftrongly together. If this wedge be lapped or formed rond an axis, it becomes a screw or a spiral wiper. This is alfo the operation of the balance wheel of a horizontal or cylinder watch. The obilique face of the tooth is a wedge, which thrufts the edge of the cylinder out of its way. The pallet of a clock or watch is :alfo a wedge, acted on in the oppofite direction.

Thefe are the different forms in which'a folid body is interpofed as a mechanic power. All are reducible to the lever and the wedge.

But there are other mechanic powers befides thofe now mentioned. The carmen have a way of lowering a cafk of liquor into a cellar, by paffing a rope under it, making the, end faft to fome ftake clofe to the ground, and bringing the other end of the rope round the cafk, and thus letting it nip down in the bight of the rope. In this procefs they feel but half of its weight, the other half being fupported by the end of the rope that is faftened to the llake. This is called a parbuckle by the feamen. A hangiig pulley is quite the fame with this more artlefs method. The weight hangs by the axis of the pulley, and each thalf of the hanging rope carries half of the weight, and the perfon who pulls one of them upwards acts only againit half of the weight, the other being carried by the hook to which the ftanding rope is fattened. This mechanical power does not (as is commonly imagined) derive its cfficacy from the pulley's turning round an axis. If it were made faft, or if the tackle rope merely paffed through a loop of the rope which carries the weight, it would ftill require only half of the weight acting on the running rope to balance it. The ufe of the motion round an axis is merely to avoid a very great friction. When the two hanging parts of the rope are not parallel, but inclined in any angle, the force neceffary for balancing the weight is to the weight as the fide is to the diagonal of the parallelogram formed by the directions of the three ropes. Varignon calls this the funicular machine or power. Our failors call it the swigg.

We may employ the quaqua verfum preflure of fluidity with great cffect as a mechanic power. Thus, in the hydroftatic bellows deferibed by Gravefande, § 145 I , and by Defaguilliers, the weight of a few ounces of water is made to raife feveral hundred pounds. In like manner, Dr Wallis of Oxford, by blowing with a pipe Into a bladder, raifed 64 pounds lying on it. Otto Guericke of Magcieburgh made a child balance, and even overcume, the pull exerted by the emperor's fix coach hories, by mercly fucking the air from below a pifton: Mr Bramah, ironmonger in Piccadilly, Loudon, has lately obtained a patent for a machine aeting on this

* See MA. cuinery in this Suppl.
taught as a mechanic power of great efficacy by the Piofetfor of Natural Philofophy at Edinburgh cerery feffion of the college for thefe twenty years paft, but he never thought of putting it in practice. It forms a moft compendious machine of prodigious power, and is fufceptible of the greateit ftrength. If the fame multiplication of power be sttempted by toothed wheels, pinions, and racks, it is fcarcely poflible to give ftrength enough to the teeth' of the racks, and tle machine becomes very cumberforne and of great expence. But Mr Bramah's machine may be made abundantly ftrong in very fmall compafs. It only requires very accurate execution. We give it all praife; but Mr Bramah is mittaken when he publifnes it as the invention or difcovery of a new mechanic power: for it has been familiar to every ftudent of mechanics and hydroftatics éver fince Boyle's firft publication of his hydroftatic paradoxes.

MFDiCAL Jurisprudence. See Medicina Forenfis in this Suppl.

MEDICI, is the name of an illuftrious family in Flo. rence, which contributed more than perhaps any other family whatever to the revival of letters in Europe. To trace this family from its origin, or even to give biographical fketches of all the great men whom it produ. ced, would occupy by far too great a part of our work: for, during fome centuries, almoft every individual of the houfe of Medici was diftinguifhed among his contemperaries. That houfe, after having rendered itfelf mentorable in the annals of Florence, for oppofing the encroachments of the nobles on the liberties of the people, had luft much of its influence under the ariftocratic government of the Albizi, when it was raifed to a rank fuperior to what it had ever held, by

Giovanini de MEDICI, who was born in the year 1360. This man determined to reftore his family to fplendour; but, confcious of his critical fituation, furrounded as he was by powerful rivals and enemies, he affected ra. ther a fecure privacy than a dangerous popularity. Even when raifed to the office of gonfalonier, or generaliflimo of the republic, he carefully avoided any defire of partaking in the magiftracy, and feemed to be cntirely engroffed by merclandize, which he extended from the Eaft throughout Europe. This conduct, as on one hand it threw his enemies off their guard, on the other, cnabled him to acquire an immenfe fortune, of which he made a proper difpofition amongft all ranks of people.

Many, even of the ruling party, either gained by his liberslity, or pleafed with his amiable and retired conduct, piopofed to the 但gniory to admit him into the magiftracy ; and though the propofal met with great oppofition, it was carried in the affirmative.

It was by rafhly declaring for the plebeians againft the noiles that an ancellor of Giovanni's had loft to his family their rank in the fate. Giovann; refolving not to folit on the fame rock, continued to affect privacy and ietirement, accepting any office in the fate with the utmoft appearance of reluctance, and never attending at the lalazzo, unlefs particularly fent for by the feigniory. Rifing by thefe means in the efteem of the people, his conemiés became, of comfe, unpopular ; and having obtamed a decided fuperiority over his oppo"Hents, he now ventured to procure, that thofe taxes which the nobles had exacted with the utmoft feverity and partiality from the people alone, fhould be levied

M E D

Medici. upon the two firk orders, in common with the plebeians; and that a law hould be urdained, by which perfonal property might be taxed.

The nobles feeing, with the deepeft concern, their eonfeqence fo fenfibly wounded, and their power fo much diminifhed, held feveral confultations in private how they might effect his ruin; but their want of unaninity prevented any thing decifive from being carried into execution. The people, alarned for the fafety of their leader and patron, offered him the fovereignty, which his relations and friends urged hin to accept; hut this his prudence forbad him to take, as with the title of lord he would have gained that alfo of tyrant. Thus, by his fingular pradence he died poffeffed of all the power of the itate, with the affectation of being the moft difinteretted citizen in the commonwealth. His death happened in the year 1420.

Giovanui was graceful in his perfon, and his affability to all eflablithed his character for moderation. His extentive knowledge and pleafantry made his company eagerly fought. As all his actions were placid and ferene, he was not in want of that trumpet of feditini, popular declamation, which he never attempted. Much to his honour, his elevation was not procured even by the baniflinent of a fingle individual; a circumftance until then unknown in Florence, where every new adminiftration was marked with the ruin of families, and by fcaffolds itained witia blood.
" The maxims (fays Mr Rofcoc) which, unifornily purfued, raifed the houfe of Medici to the fplendour which it afterwards enjoyed, 'are to be found in the clarge given by this venerable old man, on his deathbed, to his two fons Cufmo and Lurenzo. ' I feel (faid he) that I have lived the sime preferibed me. I die content, leaving you, my fons, in afluence and in health, and in fuch a ftation, that, whilt you follow my: example, you may live in your native place honoured and refpected. Nothing afferds me more pleafure than the reflection, that my conduct has given offence to no one; but that, on the contrary, I have endeavoured to ferve all perfons to the belt of my abilities. I advife you to do the fame. With refpect to the honours of the flate, if you would live with fecurity, accept only fuch as are befluwed on you by the laws, and the favour of your fellow-citizens; for it is the exercife of that power which is ubtaind by violence, and not of that which is soluntarily given, that occafions hatred and contention."

Medici (Cofmo de), the eldell fon of the preceding, was born in 1389 . During the life time of his father; he had engaged himfelf deeply, not only in the extenfive comnerce by which the fanily had acquired its wealth, but in the weightier matters of government. When Giovanni died he was in the prime of life; and though his complexion was fwarthy, he had an agreeable perfon, was well made, of a proper flature, and in converfation united a happy intermixture of gravity with occafional fallies of pleafantry and repartee. His conduct was uniformly marked by urbanity and kindnefs to the fuperior ranks of his fellow-citizens, and by a conitant attention to the interefts and the wants of the lower clafs, whon he relieved with unbounded generofity. By thefe means he acquired numerous and zealous partizans of every denomination; but he rather confidered them as pledges for the cont:nuance of the
power which he poffeffed, than as inftrmments to he em ployed in extending it to the ruin and fubjugation of the itate. Air interchange of reciprocal good offices was the only tie by which the Florentines and the Mcdici were bound; and perhaps the long continuance of this connection may be attributed to the very cireum!tance of its being in the power of either of the parties at any time to lave diffulved it.

But the prudence and moderation of Cofmo could not reprefs the ambitious clefigus of thofe rival families, who wifhed to pollefs or to thare his authority. In the year 1433, Rinaldo de Albizi, at the head of a powerful party, carrical the appointment of the magiftracy. At that time Cofmo had withdrawn to his feat in the country, to avoid the difturbances which he faw likely to enfue; but at the requeft of his friends he returned to Florence, where he was led to expect fuch a union of parties, as might at leaft preferve the peace of the city. No fooner did he make his appearance in the palace, where his prefence had been requefted, on pretence of his being intended to thare in the adminittration of the republic, than he was feized upon by his adverfaries, and committed to prifon.

The confpirators were divided in their opinions as to the difpofal of their prifoner. Moft of them inclined to follow the advice of Peruzzi, who recommended taking hin off by poifon. Cofmo, confined in the Alberzettino, a room in one of the turrets of the Palazzo, could hear this dreadful confultation, which was determining, not in what manner he fhould be tried, but in what manner he fhould be put to death; and finding that he was to die hy an infufion of pnifon fecretly adminillered to him, a fmall portion of bread was the only food which he thought proper to take.

Cofmo lived in this manner four days; and, fhut up from all his kindred and friends, he fuon expected to be numbered with the dead; but here, as it fometimes happens, he found relief where leaft expected, from the man who had been engaged to take him off. Malavol. ta, the keeper of the prifon, either from compunction, diffatisfaction, or the youth and misfortunes of the illultrious fufferer, relented; and inftead of purfuing any criminal intentions againtt the life of Cofmo, after upbraiding him with entertaining fo unworthy an opinion of him, declared that his fears were entirely groundlefs. To convince him of this, he fat down, and partook of every thing the prifoner chofe to eat of. The expreffons of gratitude, torgther with his moft engaging manners, and great promifes, entirely won Malavolta, who, to ingratiate himfelf fill farther in the good opinion of Cofmo, invited Fargaccio, the moft celebrated wit in Florence, to dine with him the next day, from the idea that his fprightly mirth would contribute to lighten his misfortunes.

In the mean time, his brother Lorenzo, and his coufin Averardo, having raifed a confiterable body of men in Romagna a::d other neighbouring diftricts, and being joined by the commander of the troops of the republic, approached towards Florence to his relief. The apprehenfion, however, that the life of Cofmo might be endangered, if they fliould proceed to open violence, induced them to abandon their enterprife. At length Rinaldo and his adherents obtained a decree of the magiftracy, by which Cofmo was banifhed to Padua for ten years, his brother to Venice for five years; and fe-
veral of their relations and adherents fhared the fame fate.

Cufmo received this determination of his judges with a compofure that gained him the compafion and the admiration of many of his molt inveterate enemies. He would gladly have left the city pufuant tu his fentence ; but he was detained by his enemies till their authority fhould be eftablifhed: and it was not till he thought of bribing the gonfolonier, and another creature of Rinaldo's, that be was privately taken from his confinement, and conducted nut of Florence.

Padua, to which he was confined by his fentence, was in the dominions of Venice; but before he conld reach that place, he received a deputation from the fenate, the purport of which was to condole with him for his misfortures, and to promife him their protection and affiftance in whatever he fhould defire. He experienced the treatment of a prince rather than that of an exile. Nor were that wife people without good reafons for fuch a conduct. Venice had long regarded Florence as her rival in commerce, and hoped, by conferring upon Cofmo the moft flatlering diftinctions, to prevail upon him to refide there in future; prudently fuppofing that the manufactories of Florence, and the great commerce the Medici had carried on throughout ltaly, and extended far beyond it to the wealthieft kingdoms in Europe, would become their own by enrolling him amongit their fubjects.

The readinefs with which Cufmo had given way to the temporary elamour raifed againf him, and the reluctance which he had fhewn to renew thofe rencounters which had fo often deluged the Areets of Florence with blood, gained him new friends, even during his exile. The utmoft exertions of his antagonifts could not long prevent the choice of fuch magitrates as were known to be attached to the caufe of the Medici; and no fooner did they enter on their office than Cofmo and his brother were recalled, and Rinaldo with his adherents were compelled 'to quit the city. This event took place about a year after the banifment of Cofmo.

The fubfequent eonduct of this great man (for great all allow him to have been) has been painted in different colours by different writers. Mr Noble, after Ma. chieval, compares his cruelties to his fallen foes with thofe of Sylla and Octavius to the partizans of Marius and Brutus ; whilf Rofcoe reprefents his conduct as in a high degree amiable and generous. It appears to us evident, from his own words, that he had exercifed fome cruelties on his exiled enemies; for when one of them wrote to him, that " the hen was hatching," he replied, "She will have but a badtime of it, fo far from her neit." When fome other exiles acquainted him that "they were not afleep," he anfwered, " he could eafily believe that, for he thought he had fpoiled their fleeping." At another time, fome of the citizens remonitrated with him upon the odioufnefs of his conduct in banifhing fo many perfons; telling him " the republic would be extremely weakened, and God offencled, by the expulfion of fo many good and pious men as he was fending into banihment." His anfwer was, " it would be better for the republic to be weakened than utterly ruined; that two or three yards of fine cloth made many a one look like a good man : but that ftates were not to be governed or maintained by counting a ftring of beads, and murabling'over a few Pater noflers."

From this time the life of Cofmo de Medici was an almoft uninterrupted feries of profperiry. His misfortunes had taught him, that the affectation of grandeur is mure dangerous in a free ftate than ufurpation. He adopted, therefore, the drefs, behaviour, and manners, of a private citizen. His clothes were of the fame fathion and materials as the reft of the Flurentines. In the ftreets he walked alone and unguarded. His table was fupplied from what his eltate of Mugello produced, nor had he one fervant more than was abfolutely necef. fary; thus endeavouring to unite the character of a prince with that of a merchant, and a private perfon in a republic.

Whilft he rejected all offices in the magittracy, no bufinefs was tranfacted without its being firft fettled at Mugello : nor did he contract any alliances but with the fons and daughters of the citizens of Florence; yet all foreign princes and courts paid his children the re, fpect due only to thofe of fovereigns; and the family of Cofmo received educations equal to thofe of the greatelt potentates.

A proper judgment may be formed of his immenfe traffic, and the prodigious advantages accruing from it : For though a private citizen of Florence only, yet he poffeffed at one time more money than what was in all the treafuries of the different fovereigns in Europe. When Alfonfo king of Naples leagued with the Venetians againft Florence, Cofmo called in fuch immenfe debts from thofe places, as deprived them of refources for carrying on the war. During the conteft between the houfes of York and Lancafter, he furnifhed Edward IV. with a fum of money fo grear, that it might almof be confidered as the means of fupporting that monarch on the throne.

In his public and private charities, in the number and grandeur of the edifices he erected, not only in Fiorence, but in the mof diftant parts of the world, and in the foundations which he endowed, he feemed to more than vie with majefty. He fupplied mott of the exigencies of the fate from his private purfe; and t • re were few citizens that had not experienced his liberality, and many without the leart application, particularly the nobles.

But in nothing did his munifieence produce fo much good to the world, or acquire fuch honour to himfelf, as when it was exerted for the promotion of fcience, and the encouragement of learned men ; and up nno. thing did Cofmo delight fo much to exert it. The fludy of the Greek language had been introduced into Italy towards the latter part of the preceding century; but it had again fallen into neglect. After a fhort interval, an attempt was made to revive it, by the intervention of Emanuel Chryfoloras, a noble Greek, who taught that language at Fl.rence, and other cities of Italy, about the beginaing of the $1 g^{\text {th }}$ century. I- is difciples, who were numerous and refpectable, kept the flame alive till it received new aid from other learned Greeks, who were driven from Contantinople by the dread of the Turks, or by the total orerthrow of the Eaftern Empire. To thefe illuttrious foreigners, as well as to the learned Italians, who fhortly became their fuccefsful rivals, even in the knowledge of their national hiftory and language, Cofmo afforded the moft liberal fupport and protection. The very titles of the works of ancient authors, which were brought to light by his mu. nificence,
mancence, would extend this article beyond its proper limits. Such, indeed, was the eftimation in whieh thefe works were then held in Italy, that a manufeript of the history of Livy, fent by Cofino de Medici to Alfonfo king of Naples, with whom he was at variance, conciliated the breach between them.

As the natural difpofition of Cofmo led hins to take an active part in collecting the remains of the ancient Greck and Roman writers, fo he was enabled by his wealth, and by his extenlive mercantile intercourfe with different parts of Europe and of A fia, to gratify a paffion of this kind beyond any other individual. To this end he laid injunctions on all his friends and eorrefpondents, as well as on the miffonalies and preachers who travelled into the remotelt countries, to fearch for and procure ancient manulcripts, in every language, and on every fubject. The fituation of the Eaftern Empire, then falling into ruins, afforded him an opportunity of obtaining many inettinable works in the Hebrew, Greek; Chaldaie, Arabic, and other eattern languages. From thefe beginnings arofe the celebrated library of the Me. diei; which, after various vieiflitudes of fortune, and frequent and confiderable additions, has been preferved to the prefent times under the name of the Bibliobeca Mediceo Laurentiana.

Nor was Cofmo a mere collector of books, he was himfelf, even in old age, a lahorious ftudent. Having been ftruck with the fublime fpeculations of Plato, which he had heard detailed in lectures by a Greek monk, who had come from Conftantinople to the council of Florence, he determined to found an acadeny for the cultivation of that philofophy. For this purpole he felected Marfilio Ficino, the fon of his favourite phyfician, and deltined him, though very young, to be the fupport of his future eftablithment. The edueation of Ficino was entirely directed to the Platonic philofophy; nur were the expectations which Cofmo had formed of him difappointed. The Florentine academy was forne years afterwards eftablifhed with great eredit, and was the firf inftitution in Europe for the purfuit of fcience, detached from the fcholaftic method then univerfally adopted. It is true, the faneiful docirines of Plato are as remote from the purpofes of life as the fubtleties of Ariftotle: but, by dividing the attention of the learned between them, the dogmas of the Stagyrite were deprived of that fervile refpect whieh had fo long been paid to them, and men learned by degrees to think for themfelves.

The foitering hand of Colmo was held out to art as well as to fcience; and architecture, fculpture, and painting, all flourifhed under his powerful protection. The countenance fhewn by him to thefe arts was nut fuch as their profeffors generally receive from the great. It was not coneeded as a buunty, nor received as a favour, but appeared in the friendfhip and equality that fubfilted hetween the artift and his patron; and the fums of money, which Cofmo expended on pictures, ftatues, and public buildings, appear almoft incredible.

Cofmo now approached the period of his mortal exiftence; but the faenltics of his mind remained unim. paired. About twenty days hefore he died, he fent for Suppl. Vol. II. Part I.

M E D

Medici. Fino, and enjoined him to trannate finm the Greck the treatife of Xenocrates on dcath. Calling into his chamber his wife and his fon Piero, he cntered into a narrative of all his public tranfactions; in which lie gave a full aceount of his extenfive mercantile conncections, and adverted to the flate of his domeftic concerns. T'o Piero he recommended a ftrict attention to the education of his fons: and requefted, that his funeral might be couducted with as much privacy as poffible. He died on the firft of Augult 1464, at the age of 75 years, deeply lamented by a great majority of the eitizens of Florence. Their etteem and gratitude had indeed been fully fhewn fome time before, when, by a jublic decree, he was honoured with the title of Pater Patrie, an appellation which was inferibed on his tomb; and which, as it was founded, fays Rofeoe, on real merit, has ever fince been attached to the name of Coimo de Medici.

Medici (Lorenzo de), juftly fyled the magnificent, was the grandfon of Cofmo, and about 16 years of age when his grandfather died. His father Piero de Medici, though poffeffed of more than ordinary talents, as well as of a very confiderable fhare of worth, was, from various circumftances, little qualified to maintain the influenee whieh his family had gained in the reputlic of Florence. From very early life he had been tortured by the gout ; and almoft uninterrupted pain had made him peevifh. Such a difpofition was not calculated to retain the affections of the giddy Florentines, or to perfuade republicans that they were free, while they fubmitted to the government of a fingle individual. All this Cofno had forefeen, and had done what wifdom could do to preferve to his family that afcendeney in the republic which he had himfelf acquired. He exhorted Piero to beftow the utmoft care on the education of his fons, of whofe eapacity he expreffed a high opinion; he recommended to him Diotifalvo Neroni, a man whom he had himfelf raifed from obicurity to an eminent rank, as a counfellor, in whofe wifdom and fidelity he might place the utmolt confidence: and to bind the inhabitants of Florence to the houfe of Medici by the ftrongeft of all ties, he had dill ributed among them, under the denomination of luans, innmenfe fums, which he knew they would not foon be able to repay.

Piero paid the utmofl deference to the dying injunctions of his father. He had himfelf an ardent love of letters; and under the eye of the venerable Cofino, he had given his two fons, Lorenzo and Juliano, the beft poffible domeitic education. In the Greek language, in ethics, and in the principles of the Ariftotelian philofophy, Lorenzo, the eldeft, had the advantage of the precepts of the learned Argyropylus (A), and in thofe of the Platonic feet he was feduloully infructed by Marfilio Ficino (fee Ficinus, Encycl.); but for his moit valuable accomplifhments he was not indebted to any preceptor. To complete his education, however, it was judged expedient that he fhould vilit fome of the principal courts of Italy ; and very foon after the death of his grandfather, he repaired to Rome, Bologna, Ferrara, Veniee, and Milan, where he gained the efteem of all whofe efteem was of value.

> A a

Thus
(A) This man had fled from Conftantinople, when it was taken by the Turks, to Florence, where he was protected by Cofmo de Medici.

Melici. Thus atter tive was Piero to the advice of his father with refpect to the educution of his elden fon; nor was he lefs attentive to it in the choice of his principal counfellor. He intrufted the whole of his affairs into the Hands of Neroni, and gave him Cofno's accounts to perufe and fettle. 'I'h,it ambition, which perhaps had lain lurking in this man's mincl, was now called forth, and he baftly formed the fcheme of ruining the fon of his patron, by building upon his misfortunes his own future grandeur. For this purpofe, he lamented the abfolute neceffity there was for an immediate call upon thofe who were indebted to Piero as Cofmu's reprefentative; telling him that a delay might fubject him to the greate it inconveniences. Piero confented, though with reluctance, to his fuppofed friend's advice. The refult was fuch as Neroni expected. Thofe who were friends of the father became cnomics of the fon ; and had not Piero difcovered the fuare, and cefifted from fuch rigorous procecoings, he might have found, when too late, that in fupporting the character of the merchart, he had forgotten that of the fatefman; for all the citizens of Flurence were his debtors.

Soon after this, an attconpt was made to affafinate Piern, by a powerful party which had always been inimical to the houfe of Medici: but it was defeated by Lorenzo, who difplayed un that nccafion a fagacity and promptitude of mind which would have done honour to the oldeft Itatefman. A fuw of the confpirators were declared encmies to the flate, and condemned to baniflment ; but by far the greater part of them were pardoned on the fulicitation of Lorenzo, who declared, that " he only knows how to conquer, who knows how to forgive."

In the year 1469 Piero de Medici died; and Lorenzo fucceeded to his authority as if it had been a part of his patrimony, heing requetted by the principal inhabitants of Flosence, that he would take upon himfelf the adminitation of the republic in the fame manmer that his grandfather and father had done.

In the mutth of December 1470, a league was folemnly concluded between the pope, the king of Naples, the duke of Milan, and the Flurentines, againt Maho. met II. who had vowed not to lay down his arms till he had abolifhed the religion of Chrift, and extirpated all his followers. The pope, however, (Paul 11.), died on the 26 th of July 147 I ; and Sistus 1 V . fucceeding to the chair of St Peter, Lorenzo was depuied from Florence to congratulate him on his elevation. 'Two more oppofite characters can hardly be conceived than thofe of Sixtus and Lorenzo. The former was cruel, treacherous, and fordid; the latter was merciful, candid, and generous. Yet fuch inftances of mutual good will took place between them on this occation, that Lorenzo, who, under the direction of his agents, had a bank eflablifhed at Rome, was formally inveßted with the office of treafurer of the Holy See.

Pifa had been under the dominion of Florence from the year 1406, and it had acquired fome celebrity on account of its academy, which had exifted almoft two centuries. That academy, however, had fallen into decay; and, in the year 1472, the Florentines refolved
to reftore it to its pritine fplendour. Five citizens, Medicis. of whom Lurenzo de Medici was one, were appointed to fuperintend the execution of their purpofe ; but Lorenzo, who was the projector of tlie plan, undertook the chief management of it; and, in addition to 6000 flurins annually granted by the fate, expended, in effecting his purpofe, a large fum of money from his private fortunc. In doing this, he only imitated the example of his father and grandfather; fur in the courfe of 37 years, reckoning from the return of Cofno from banifment, this ilhnitrious family had expended on works of charity or public utility upwards of 660,000 florins. "Some perfons (faid Lorenzo) would perhaps be better pleafed to have a part of it in their purfe; but 1 conceive that it has heen of great advantage to the public, and well laid out, and am therefore periectly fatislied."

In the year 1474, Lorenzo incurred the difpleafure of the pope for oppofing fume of his encroachments on. the petty princes of ltaly; and the revenge planned by Sixtus was of fuch a nature as would have difgraced, we do not fay a Chriftian binop, but the rudelt favage. He began by depriving Lurenco of the office of treafurer of the Roman See, which he gave to the Pazzi, a Florentine family, who, as well as the Medici, had a public bank at Rome. By this tlep he fecured the intereft of the Pazzi, who, it is probable, were to govern Florence under the pope, when Lorenzo and Juliano de Medici mould be cut oIf, and their friends and adherents driven from the republic. The principal agent engaged it the undertaking was Franfefco Salviati archtiithop of Pifa, to which rank he had lately been promoted by Sixtus, in oppofition to the wilhes of the Medici. The other confpirators were Giacopo Salviati, brother to the archbinhop; Giacopo Poggio, one of the fons of the celebrated Poggio Bracciolini (fee Poggius, Encjcl.) ; Barnardo Bandini, a daring l!bertine, rendered defperate by the confequence of his exceffes; Giovanui Battilti Monteficco, who had diftinguifhed himfelf as general of the pope's armies; Antonio Maffei, a priell of Volterra; and Stephano de Bagnona, one of the apritolic fcribes; with feveral others of inferior note. The cardinal Riario, then at Pifa, was likewife an inftrument in the confpiracy; but he can hardly be confidered as an agent, for he was kept ignorant of what was going on, and enjoincd only to ohey whatever directions he might receive from the archhifhop of Pifa.

The aflaflination of the illuftrious youths was fixed for Sunday, April 26.1478 ; the place the cathedral of Florence, at the moment the hoft was to be elevated; and their murder was to be the fignal for feizing and expelling from the walls of the city all their relations and friends. What a tranfaction this for one who prefumed to ftyle himfelf the vicar of Chrift, the common father of Chriftendom, to patronize!

The tatal day arrived, and Lorenzo was already in the church; but Juliano remained at home, occafoned by a flight indifpolition. The confpirators, determining not to lofe one of their victims, went to invite, to in. treat him, to go. They embraced (B), and led him, by a tender violence, to the cathedral. The figual was given
(B) The affafins embraced Juliano, to difcover whether he wore any fecret armour, that they might know whre to ftrike with the fureft aim. given by the elevation of the confecrated wafer; and whift the people fell upon their knees to adore, the aflaffins rofe, and, as was concerted, two of them, Francifoo Pazzi and Barnardo Bandini, fell upon Juliano. The latter directed his poignard fo truly, that it entered into the bufom of the unoftending youth, and he fell mortally wounded at his feet.

In a moment, as muft be fuppofed, all was confufion. Lorenzo, alarmed, put himfelf in a polture of defence, when in an inftant, Antonio of Volterra, and Stephano a priet, the dependant of the archbithop, who, upon Giovanni Battitti's declining the infamous tafk, under. took his deftruction, rufhed upon him as their deftined prey. The conteft continued fome time. Lorenzo had received a wound in his neck, and feemed to contend for his life in vain; but a fervant, whom he had lately relieved from prifon, infpired by gratitude, hervically threw himfelf between his beloved lord and his affaffins, receiving in his body thofe weapons that were aimed at the breait of Lorenzo. This fidelity faved him; for by one vigorous effort he broke from Antonio and Stephano, and with a few friends rufhed into the facrifty, thutting the doors behind them, which were of brafs. Apprehenfionsbeing entertained, that the weapon which had wounded him was poifoned, a young man fucked the wound, endangering his own life to fave that of Lorenzo.

The rage of the people to fee one of their favourites expiring, and the other covered with blood, was inexpreffible. The cardinal Riario found it dificult to fave his life at that altar which he had flained by fo horrid a deed, and to which he then fled for protection.

Whilft this infamous feene was acting in the cathedral, others of the confpirators were attempting to Ceize the Palazzo; but with no better fuecefs. 'The arch. bifhop Salviatti, who had undertaken to head them, gave the magiftrates fufpicion by thofe violent emotions which agitated his whole frame. The nine fenators who compofed the magitracy, including the gonfalonier, who had been appointed by, and were, in other words, the privy conncil of the Medici, immediately attacked thofe who intended to have furprifed them; and Salviatti and his followers had no fooner gained the fecond floor, than they found themfelves prifoners.

Jacobo Pazzi foon appeared in the flreet, proclaiming, with exultation, the murder of Juliano; and inviting the Florentines to free themfelves from the Medicean flavery; but perceiving that he was not joined by the people, the magiltrates fent off 100 horfe to the refcue of Lorenzo. This was the mure to be commended, becaufe they continued tu be alTaulted by the confpirators, who finding their fituation defperate, forced them. felves to the ground floor, determining, if poffible, to feize the Palazzo. The magiftrates, with their attendants, aeted with fuch refolution and valour, that as often as they gained an entrance they drove them back, killing fome of the aftalants upon the fpot, others they threw out of the windows upon the pavement; and ro flrike an awe intu thofe that were without, they had the boldnefs and virtue to hang the archbifhop from one of the winduws, dreffed as he was in inis pontifical robes, with Poggio, another of the chief confpirators. Florence refounded in every part with the exclamation-Medici, Medici! down with their enemies!

Lurenzu was liberated from that part of the cathe.
dral to which he had fled, and conveyed home in cri- Medici. umph, where his wounds were attended to, and where he found himele furrounded by his mott valuable friends, to whom he was endeared by the fhocking occurrences of the dlay. His partizans, however, did not fpend their time only in lamentations for the death of one of the brothers, and exultations for the prefervation of the other; they united in purfuing the confpirators, fpariug sone that fell into their hands. Jacubo Pazai was taken flying with his forces into Romania, and immediately hung. An officer of the pope's, who commanded a brigade under Count Hirronimo, had alone the favour of decapitation. Bandini fled privately to lifa, thence to Naples, and, laftly, to Coustantinople; but Malumet, to oblige Lorenzo, feized, and fent him back; and he was hung out of the fame window from which the archbiflop had fuffered. An embalfy was fent from Florence to thank the fultan in the name of the republic.

Throughout the whole of this jutt but dreadful retribution, lorenzo had exerted all his influence to reftrain the indignation of the populace. He entreated that they would refign to the magiltrates the talk of afcertaining and of punifhing the guilty, left the innucent fhould be incautionfly involved in deftruction; and his appearance and admonitions had an inftantaneous effect. By his moderation, and even kindnefs to the relatives of the confpirators, he fought to obliterate the remembance of pait difturbances; and by his interference, even the furvivors of the Pazzi were reftored to their honours, of which they had been deprived by a decree of the ftate.

The generolity and moderation of Lorenzo had no effect on the temper of Sixtus, who folemuly exconmunnicated him, the gonfalonier, the magiltrates, and their immediate fuccefors; and in the bull which he iffued on this occafion, he Ayles Lorenzo de Medici " the child of iniquity and the nurfling of perdition!" Not content with this ebullition of refentment, he fufpended the binops and clergy of the Florentine territories from the exercife of their fpiritual functions; thus laying the whole republic under an interdict. This had been a formidable weapon in the hands of his predeceffors, who had, hy means of it, overawed the mot powerful monarchs; but the general character of Sixtus was fo infamous, and his prefent injullice fo manifent, that by the exertions of the bithop of Arezzo, a convocation was held in the cathedral church of Florence, in which Sixtus was accufed of fornication and adultory, withother infamous vices; declared to be the principal infligator of the confpiracy againft the Medici; and the lentence of excommunication which he had fulminated against Lorenzo and the Florentine magiftrates was called in direct terms, the " exccrable malediction of a damned judge (maledialam malediaionem diannatifimi judicis)!"

How fuch language could be reeonciled to the notions which then prevailed of the fanctity of the pope, and the plenitude of his power, it is needlefs to inqui:e; but the reader will nut be furprifed that the prelates, who made ufe of $i t$, paid no regard to the interdict of Sixtus. The pontifl, however, did not relax from his purpofe. Whilft he brandithed with one hand the fpiritual weapon, which the Florentines treated with fuch contempt, in the other he grafped a temporal fword, which he now openly, as he lad before fecretly, aimed at the breaft of Lorenzo. At his inftigation the king of Naples
difpatched

Melici- difpatched an envoy to Florence, to require the citizens to banifh Lorenzo from the Tufcan territories, if they would nos incur the vengeance both of him and of the pope. Thefe threats produced not the intended effect; for the Florentines avowed their firm refolution to fuffor every extremity, rather than betray the man whom they confidered as guardian of the republic. War therefore was commenced and the republic was on the point of being ruined, when Lorenzo taking advantage of a truce, threw himfelf, with a refolution not to be equalled, into the hands of the king of Naples. He judged, perhaps, that any flipulations for his perfonal fafety would be ufelefs with a prince who had fported with honour, juftice, mercy, and the moit folemn treaties. But, whillt all viewed him as a vietim who had devoted himfelf to fave his country, he, by perfuafive eloquence, obtained of this crafty perfidious monarch a feparate peace, and returned to Florence crowned with a fuccefs that no one thought poflible, and where he was received as its tutelar deity. The pope, however, continued inflexible, till a defcent of the Turks upon Italy reltored hin to his fenfes, and made hin willing to receive the fubmifion of Florence, and reconcile its inhabitants to the church.

Soon after the termination of the hoflilities between Sixtus and the republic of Florence, Lorenzo began to unfold plans for fecuring the peace of Italy, which confer the highet honour on his pulitical life. To counterpoife all the jarring interefts of the petty ftates of which that country was compufed, to rettrain the powerful, fuccour the weak, and to unite the whole in one firm body which might be able, on the one hand, fuccersfully to oppofe the formidable power of the Turks, and, on the other, to repel the incurfions of the French and Germans, were the important ends which this great man propofed to accomplifh. But before he engaged in thefe momentous undertakings, he had further perfonal dangers to encounter. By the inftigation of Cardinal Riario, and fume Florentine exilez, one Battifa Frafcobaldi, with only two affiftants, undertook to affalfinate him in the church of the Carmeli, on the fellival of the afeenlion 1481 ; but the plot was difcovered, the confpirators executed, and Lorenzo henceforth feddun went abroad without being furrounded by a number of tried friends.

Lorenzo was now at liberty to profecute his benevolent purpofes; and after contributing to the expultion of the Turks from Italy, he fet himfelf in good earneft to fupport the weak fates againft the eneroachments of the more powerful. This neceffarily embroiled the republic at one time with the pope, at another with the king of Naples; now with the Venetians, and then with the Duke of Milan: but when fome exclaimed againft him as being too precipitate in involving the republic in dangerous and expentive wars, he explained to them the neceffity of maintaining the balance of power, if they would preferve the independence of their own ftate; and fo completely had he made himfelf mafter of this fubject, that he convinced the moll ineredulous of the propriety of his incafures, which, in 1488 , introduced general tranquillity into Italy.

At this period, the city of Florence was at its higheft degree of profperity. The vigilance of Lorenzo had fecured it from all apprelienfions of exteraal attack; and his acknowledged difintereftednefs and moderation had
almoft extinguihed that fpirit of internal diffenfion for which it had bcen fo long remarkable. The Florentines gloried in their illuftrious citizen, and were gratified by numbering in their body a man who wielded in his hands the fate of nations, and attracted the refpect and admiration of all Europe.

Yet amidft public affairs fo intricate and fo momentous, fuch was the capacity of this man's mind, and fuch his verfatility of genius, that, for the greater part of his life, he carried on a commerce as extenfive as that of his grandfather, whilt he afforded ftill greater encouragement to learning and learned men. Cofmo had greatly promoted the ftudy of the ancient languages and ancient philofophy. Lorenzo did the fame thing: but he did much more; he encouraged the cultivation of his own tongue, whict had been neglected fince the age of Petrarca; and by fetting. a great example himfelf, he produced a race of Italian potts, which have hardly been furpaffed in any age ornation. To enumerate even the names of the elegant fcholars whom he patronifed, would extend this article far beyond its limits. In the acadeny of Pifa, of which mention has been already made, the fludies were chiefly conlined to the Latin language, and to thofe fciences of which it was the principal vehicle. At Florence the Greek tongue was taught under the fanction of a public inflitution, either by native Greeks or learned Italians, whofe fervices were procured by the diligence of Lorenzo de Medici, and repaid by his bounty. He placed Michael Angelo at the head of an academy, which he erected for painting and fculpture, furnifhing it with the beft models of antiquity. He built and endowed a public library, and fent Lafcaris, of imperial defcent, to Conflantinople more than once, to procure Greek manufcripts. For father Muriano, the orator, a monattery was built; and Florence owed many of her fineft edifices to him. Politiano and Ficino were among his mof intimate friends; and it is not perhaps too much to fay, that he did more for letters and fcience and art than any other individual that ever exited. His own acquirements in learning were great; and his poetry, of which the reader will tind many fpecimens in the elegant work of Rofcoc, was exquifte.

Is it furprifing, when we examine Lorenzo's character, that all Italy, all Chritendom, even the Mahomctans, gave him the moft flattering marks of approbation, and frove who fhould oblige him moft, by prefenting him with whatever was rare and valuable? His palace was conflantly filled with men famous in every elegant, every uffful fcience, and the neighbouring princes flocked to it as the temple of wifdom. The celebrated prince of Mirandula, on his account, chofe Flurence for his refidence, and died there.
To a moll engaging perfon was added each grace, and every accomplifhment. He was the favourite of the ladies, the envy of the men, and the admiration of both. The flatefman of his time; unrivalled in chivalry; one of the moft eminent orators that the world has produced. His poetic merit, with his judgment in, and patronage of that art, procured him the title of "Father of the Mures." In liberality to his fellow citizens, as well as in every other refpect, except as a general, he exceeded even Cæfar himfelf; and had not peace been his dear delight, his talents would have made him a confummate commander. Yet with all thefe fu-

M E D

Aedici, perior accomplifhments, he did not think it beneath Medicina. him to indulge in amulements which perfons, lefs wife, would have thought an impeachment of their underttanding, and he would often feck pleafure in his nurfery, fpending hours there in all the frivoluus pranks of childifh diverfion. In fine, "the gravity of his life, if compared with its levity, mult make him appear as a compolition of two differcut perfons, incompatible, and, as it were, impoffible to be joined with the other."

Lorenzo, like molt other great men, had withed to Spend his laft years in the tranquillity of retirement. He therefore at an early period wound up his mercantile concerns, and divided his time between the cares of the republic at Florence, and the cultivation of his eftates in the country. He withed even to diveft himfelf of all public concerns, and get his fecond fon Giovanni admitted into boly orders at the age of feven years, that he might be fit for ecclefaftical prefernent before he fhould be deprived of the protection of his father. The young ecclefiaftic, who afterwards made futh a figure as Leo \mathbb{X}. was accordingly appointed by Louis XI. of France, abbot of Fonte Dolac, hefore he was eight years of age; and by Innocent VIII. a cardinal, when he was little more than thirteen. This added much to the influence of the family, not only in the Tufcan flates, but through all ltaly; and Lorenzo having introduced his eldeft fon into public life, and accomplifhed a marriage between him and the daughter of a mohle family at Rome, thought he might commit the affairs of the republic in a great meafure to Piero, and indulge his own talte in the converfation of his learned friends. This dream of felicity however was not realized. Early in the year 1492, he was attacked by a difeafe, under which he had long laboured, with fuch violence, that on the Sth of April he died in the midft of his weeping friends, after having taken of them, one by one, an affectionate farewel, and given to his fon Piero much falutary counfel, which he thought not fit to follow.

The character of this great and good man is developed in the detail which we have given of his conduct through life: But it may not be improper to add, that fuch was the love and veneration of the citizens to him, that the phyfician, who had attended him on his deathbed, afraid to return to Florence, left the houfe in a Atate of diftraction, and plunged himfelf into a well. Throughout the refl of Italy the death of Lorenzo was regaided as a public calamity of the moft alarming kind. Of the arch which fupported the political fabric of that country he had long been confidered as the centre, and his lofs feemed to threaten the whole with immediate deltruction. When Ferdinand king of Naples was informed of the event, he exclaimed, "This man has lived long enough for his own glory, but too flort a time for Italy."

MEDICINA forensis, is a phrafe ufed in Germany to denote thofe parts of anatomical and phyfiolugical knowledge, which enable phyficians and furgeons to decide certain caufes as judges in courts of juftice. In that country it has long been law and cuttom (if we miftake not, by the Caraline code of Cbarles V.) to refer cafes of poifoning, child-murder, rape, pregnancy, impotency, ideotism, \&c. to the medical faculty, which, in the univerfities and fome other great towns, is conftituted into a kind of court for the trial of fuch queftions. In this country there are no fuch courts; but in criminal.
trials medical gentlemen are often called upon to defcribe Medicina, the fymptoms of poifoning, child-murcler, rape, \&c. and Medina therefore it becomes them to obtain an accurate knowledge of thefe fymptoms, and to fore their momories with a number of minute facts, to which they may have occafion to appeal when giving their evidence.

The importance of this fulject induced the profeffor of the inftitutes of phyfic in the univerfity of Edinburgh to refolve lately to read an annual courfe of lectures on Medical Jurisprudence. This, we doubt not, will prove a valuable courfe; for though it is hardly conceivahle that, under the head nedical jurifprudence, any knoculedge can be communicated which a well.educated phyfician would not neceffarily have acquired, without attending fuch a courfe; yet it is very obvious, that the recollection of the young phyfician may receive great aid from his liftening to the well arranged lectures of an accurate profefior. From thefe lectures he may fore. his mind with a collection of aphorims which thall be always ready on the day of examination; or the lectures thenfelves may be delivered in quettions and anfwers with all the formalities of a criminal court.

Wre have heard it obferved, thist to attend a courfe of fuch leetures would be of the utmoft advantage to all who may be called upon to ferve as jurymen in criminal trials; but of the truth of this obfervation we are move than doubtful. Perfons who are only balf inftructed are always conceited of their own attamments; and men not acquainted with anatomy and phyfiology cannot be more than half inftructed by the ableit courfe peffible to be given of medical jurifurudence. Such perfons indeed can hardly avoid miftaking the fenfe of the profeffor's language, however porficuous that language may be. Of this we had lately a very flriking inftance. A gentleman, by no means illiterate, though a ftranger to anatomical and phyfological feicuce, was expatiating to the writer of this article upon the general importance of medical jurifprudence, a courfe of which, he faid, he had attended for the folt purpofe of qualifying himfelf for difcharging the important duties of a juryman. Upon being alsed what he had leamed? he replied, that he had been taught, among other things which we thought frivolous, to difcern, from the fymptoms of banging whether the dead man had been hanged by binjelf or by anotber. We need not furely obferve, that no fuch leffon was ever taught in any univerfity, or hy any medical lecturer; but it is worthy of conifideration whether lectures on medical jurifprudence may not have the mot pernicious effects on the minds of men fo little qualified as this gentleman to profit by them. To the regularly educated phyfician and furgeon fuch lectures may prove ufeful; to the plain citizen, not ikilled in anatomy and phyfiology, they muft prove dangerous; as their only tendency is to make him defpife the evidence given befure him by the regular playfician or furgeon; to place implicit confidence in his own fuperficial knowledge; and thas to decide at random on the life or death of his fellow-creature :

A little learning is a dangerous thing ;
 Drink deep, or tafe not the Pierian fpring.

MEDINA, the capital of the kingdom of Woolli in Africa, is fituated in $13^{\circ} 40^{\circ} \mathrm{N}$. Lat. and $12^{\circ} 40^{\prime} \mathrm{W}$. Long. It is a place of confiderable extent, and may contain from 800 to 1000 houfes. It is fortified in the

Nictifa, common African manner, by a furrounding high wall Musame huilt of clay, and an outward fence of pointed ftakes ter. and prickly bufhes; but the walls are neglecicd, and the outward fence has fuffered contiderably from the active hands of bufy houfewives, who pluck up the fakes for hrewond. Mr Park pafled through it on his route ealtward, and was treated with much kindnefs buth by the king and the people. The geod old fovereign warned him of the dangers he was abour to encounter, and endenvoured to perfuade him to relinquifl all thoughts of his journey eaftward; but when he could not prevait, he gave liin a guide, who conducted him in fafety to Koojar, the frontier town of the kingdom towards Bondou, from which it is feparated by an inttrvening wildernefs of two days journey. Here our author was prefented, by way of refrellment, with a li. quor which tafted fo much like the ftrong beer of his native country (and-very good beer too), as to induce him to inquire into its compofition; and he learned, with fome degree of fururife, that it was actually made fron corn which had been previoufly malted, much in the fame manner as barley is malted in Great Britain : a root yielding a grateful bitter was ufed in licu of hops, the name of which he forgot; but the corn which yields the wort is the bolcus fpicatus of botanits.

MEDUSA. In addition to the different fpecies' of this genus of vermes defcribed in the Encyclopidia, that which is reprefented in two different attitudes, fig. 1 . and
en wembles a bagpipe in mape, may be worthy of notice. It is merely a white tranfparent veficle, furnifhed with feveral blue tentacles yellowifh at their extremity; its long tail, which is alfo blue, appears to be compofed of a number of imall glandulous grains, flattened and united together by a gelatinons membrane. The upper part of the veficle exluibits a kind of feam with alternate punctures of three different fizes ; its elongated part, which may be confidered as the lhead of the animal, is terminated by a fingle trunk, the exterior edge of which is fringed with 25 or 26 tentacles, much fmaller than thofe which originate from the infertion of its long tail, and the number of which fometimes amounts to 30 . By means of thefe laft, the diameter of which it is capable of increafing at pleafure by forcing in a little of the air from its body, it fixed itfelf to the fide of the veffel, in which it was placed, in fuch a manner as that the extremity of forne of its tentacles occupied a furface of two or three lines from its body. The mott moveable part of the veficle is its elongation, or the head of the animal , as it is by means of this that it performs its different motions. The rounded fubftance, marked by the letter P, is fituated in the centre of the larger tentacles, which are firmly fixed to the body of the animal near its tait; and is only an adfemblage of a few minute gelatinous globules, from the middle of which arife other larger ghobules, with a fimall peduncle, about the middle of which is fixed a curved bluifh coloured body, which is reprefented magnified in two politions at R. Martiniere, the raturalift, who accompanied Peroufe in his voyage round the world, met with this animal in about the zeth degree of lat. and 179° of long, eaft from Paris.

MEGAMETER, a name fometimes given to the M crumeter, which fee, Encycl.

MEHALL, in the language of Bengal, a place or diftric.

MENINSKI (Francifcus), a moft celchrated German orientalift, was born in Lonaine, then fubject to the emperor, in the year 1623; and for copioulnefs of learning, elegance of genius, and profound knowledge of languages, particularly thofe of the Eaft, proved undoubtedly one of the principal ornaments of the age in which he lived. He tudied at Rome under Giattino. When he was about 30 , his love of letters induced him to accompany the Polifh ambafador to Conttantinople, where he ftudied the Turkik language under Bobovius and Alımed, two very fkilful teachers. So fuccefsful was he in this ftudy, that when he had been there only two years, the place of firft interpreter to the Polifh embafly at the Porte was promifed to him. When the place became vacant, he was accordingly appointed to it, and obtained fo much credit by his conduct, that, after a time, he was fent for into Poland, and again fent out with full powers as ambaffador to the Porte. For his able execution of this office, he was further honoured, by being naturalized in Poland; on which oceafion he added the Polifh termination of $f k i$ to his family name, which was Menin. Being defirous afterwards to extend his fphere of action, he went to the court of the emperor as interpreter of oriental languages in 1661. Here alfo, as in other inftances, his talents and behaviour obtained the ligheft approbation ; on which account he was not only fent as interpreter to feveral iniperial ambaffadors at the Porte, but was intrulted in many important and confidential fervices; and, in 1069 , having paid a vifit to the holy fepulehre at jerufalem, was made one of the knights of that order. After his return to Vienna he was advanced to further honours; being made one of the comfellors of war to the emperor, and firft interpreter of oriental languages. At Vienna he died at the age of 75 , in the year 1698 . His great work, 1.The "Thefaurus linguarum orientalium," was publifhed at Vienna in 1680 , in 4 vols folio; to which was added, in 1687 , another volume, intitled, "Complementum Thefauri linguarum orientalium, feu onomafticum Latino-Turcico-Arabico-Perficum." The former volumes having become extremely fearce, partly on account of the deitruction of a great part of the impreffion, in the fiege of Vienna by the Turks in 1683 , a defign was formed fome time ago in England of reprinting the work, by a fociety of learned men, mong whom was Sir VVilliam Jones. But as this undertaking, probahly on account of the valt expence which mult have been incurred, did not proceed, the emprefs queen Maria Therefa, who had heard of the plan, took it upon herfelf, and with vaft liherality furnifhed every thing neceffary for its completion. In confequence of this, it was begun to be fplendidly republined at Vienna in 1780, with this title: "Francifci a Mcfguien Meninlki Lexicon Arabico-Perfico-Turcicum, adjecta ad lingulas voces et Phafos interpretatione Latina, ad ulitatiores, ctiam Italica." Of this edition only two vols folio are yet publifhed, extending no farther than zal, the ninth letter of the Arabic alphabet, which is about a third of the whole. Thise delay of the reft is much to be lamented. In this addition, fay the editurs, the Lexicon of Meninki may be faid to be increafed, diminifhed, and amended. Increafed, becaufe many Arabic and Perfian

Veninnci, words are added, from Wankuli and Ferhengi, the bert Ierchetta. Arabic and Perfic lexicographers whom the Eaft has produced; and from Herbelot are inferted the names of kingdons, cities, and rivers, as well as plurafes in common ule among the Turks, \&ec. Diminibed, becaufe many ufelefs fynonyma are omitted, which rather puzzled than alfifted the fudent; as well as all the Frenel, Polifh, and Gernan interpretations, the Latin being confidered as fufficient for all men of learning. Amended, with refpect to inoumerable typographical errors; which, however, from a work of this nature, no care can perlaps altogether exclude. The other works of Meniniki were occaffoned chiefly by a violemt conteft between him and a man named J. B. Podelta, in which much acrimony was employed on both fides. Thefe it is hardly worth while to enumerate, but they may all be feen in the account of his life from which this article is taken (A). It flould be obferved, however, that in 1674, Podefta publifhed a Look, iutitled, "Prodrorous novi linguarum orientaliun collegii, juffu Aug. \&c. enigendi, in Univ. Viennerfi;" to whicl Meninki upnofed, 2. "Meninikii Antidotum in I'rodromum novi Iing. orient. collegii, \&c." 4 to. But fuch was the credit of his antagonift in the univerfity, that foon after there cane nut a decree in the name of the rectur and confiftory, in which that antidote of Meninki's is profcribed and prohibited, for fix fpecific reafons, as impious and infamous. Meninfii was defended againft this formidable attack by a friend, in a fmall tract, intitled, "Veritas defenfa, feu jufitia caufx Dn. F. de M. M. [Meninki] contra infame decretum Univerfitatis Viennenfis, Anno 1674,23 Novembris, \&c. ab Anuico luci expofita, Anno 1675 ," in which this friend expofes, article by article, the falfehood of the decree, and exclaine frongly againf the arts of Podefta. This teact is in the Dritifn Mufeum. Podefa was oriental fecretary to the emperor, and profeffor of thofe languages at Vienna; Lut is defcribed in a very fatirical manner by the defender of Menimfi. "Pudefta, natura Semi- Italus, flatura nauns, cæcutiens, balbus, imo bardus repertus, ahifque vitiis ac fulitiis plenns, adeoque ad difcendas linguas orientales inlabilis." A lift of the works of Pudeth is, however, given by the late editors of Mesinfai.

MERCHETTA, or Marchetta Mulierum, is commouly fuppofed to have heen a right which, during the prevalence of the feudal fytem, the lurd had of paffing the firf night after marriage with his female villain. This opiniun has been held by the greater part of our antiquarians; and we have adopted it in our hiftury of Scotland publifhed in the Encyclopadia. It appears, however, to be a mittake. That there was a cuifom called merchetta mulierum, which prevailed not only in England, Scotland, Wales, and the ine of Guernicy, but alfo on the continent, is indeed a fact unqueftionable; but Mr Aftle has clearly proved, that, inftead of 'being an adulterous connection, the merchetta was a compact between the lord and his valful fur the redemption of an offence committed by that valfal's unnarriel dauyhter. He admits, however, that it denoted likewile a
fine paid by a fokcman or a villain to his lord for a li. Meridian. cence to marry his daughter to a free man ; and that if the valfal gave her away without obtaining fuch at li cence, he was liable to pay a heavier fine. He quotes two authorities in fuppurt of his opinion from Bracton; one of which we fhall traufcribe, as bsing alone complute evidence.
" Ric. Burre tenet unum mefuaginm et debet tellia. gium fectam curix, et merchet, hoc molo, quod fi marilare volucrit fliant fuant cum quodiam litero bomine, caira villam, faciet pacein donini pro maritagio, at fo cum maritaverit alicui cuflunario villa, nibil debzit pro maritagio."
"The probable reafon of the cuftom (f.ys Mr Afte) appears to have been this. Perfous of low rank, refiding on an eftate, were either aforipti glcbur, or were fubjected to fome fylecies of fervitude fimilar to the aforiphis gleba. They were bound to refide on the eftate, and to perform feveral fervices to the lord. As women neceffarily followed the refidence of their hulbands, the confequence was, that when a woman of low rank marricd a ftranger, the lord was deprived of part of his live flock; he therefore required a fine to indemnify him for the lofs of his property," Further particulars on the merchetta are to be found in the Appendix to vol. it of Sir David Dalrymple's Anuals of Scotland.

MERIDIAN LINE, an arch or part of the meridian of the place, terminated each way by the horizon. Or, a meridian line is the interfection of the plane of the meridian of the place with the plane of the horizon, often called a north and fouth line, becaufe its direction is from north to fouth.

In the article Astronomy (Encycl.), n° 376. and 377. we have given two methods of drawing a meridian line; but it may he proper to add, in this place, the following improvement of the former of thcese from Dr Hutton's Mathematical Dictionary. "As it is nct eafy (fays the Doctor) to determine precifely the ex:tremity of the fladow, it will be beft to make the Itile flat at the top, and to drill a fmall hole through it, noting the lucid point projected by it on the feveral concentric circles, inftead of marking the extremity of the hadow itfelf on thefe circles."

We thall give another method of drawing a meridian line frum the fame valuable dictionary.
" Knowing the fouth quarter pretty nearly, obferve the altitude FE of fome flars on the eaft fioe of it, and not far from the meridian HZRN: then, keeping the quadrant firm on its axis, fo as the plummet nay flill cut the fame degree, direct it to the weftern fide of the ineridian, and wait till you find the flar has the fame altitude as before, as $f c$. Lafly, bifect the angle ECe, formed by the interfection of the two planes in which the quadrant has been placed at the time of the two obfervations, by the right line HR , which will be the meridian fought.

NIaguetical Meridian, is a great circle pafing thro' or by the magnetical poles; to which meridians the magnetical needle conforms itfelf. See Magnetism, Suppl.

Plate
xxxv?

Mefce MESO-Logaritam, a term ufed by Kepler to figlogarithm nify the logarithms of the cofines and cotangents.
Mills. MESURATA, a fea port of the kingdom of Tri$\xrightarrow[\sim]{\text { poli, in Africa. A caravatn proceeds from this place to }}$ Fezzan, and other interior parts toward the fouth of Africa. It is 260 miles north of Mourzook. E. Lon. 15.5.N. Lat. 3 1. 3 .

Met'Allic 'Tractors. See Perkintsm in this Suppl.

METONIC Cycle, called alfo the Golden Number, and Lunar Cycle, or Cycle of the Moon, that which was invented by Meton the Athenian; being a period of 19 years. See Cycle, Encyel.

MHA Rajah, the higheft title of Hindoos.
MICROCOUSTICS, or Microphanes, inftruments contrived to magnify fmall founds, as microfcopes do fmall objects.

MiCrocosmic Salt. See Chemistry-Index, Suppl.

MIDDLE Latitude, is half the fum of two given latitudes; or the arithmetical mean, or the middle between two parallels of latitude. Therefore,

If the latitudes be of the fame name, either both north or both fouth, add the one number to the other, and divide the fum by 2 ; the quotient is the middle latitude, which is of the fame name with the two given latitudes. But,

If the latitudes be of different names, the one north and the other fouth; fubtract the lefs from the greater, and divide the remainder by 2 , fo flall the quotient be the middle latitude, of the fame name witl the greater of the two.

MIDSUMMER.DAy, is held on the 24th of June, the fame day as the nativity of St John the Baptilt is held.

MILK, or Miekyet, property in Bengal.

MILLS of various kinds are defcribed in the article Mechanics (Encycl.); and he who flall ftudy that article, together with Water. Worss, and Machinery, in this Supplement, will have a fufficient knowledge of the principles upon which mills muft be conttructed, fo as that they may produce their proper effects. The fubject is introduced into this place merely to put it into the power of our countrymen to adopt, if they thall
think fit, the improvements which bave been made in the machinery of flour mills in America.

The chief of thefe confift in a new application of the forew, and the introduction of what are called ele. vators, the idea of which was evidently borrowed from the chain-pump. The forew is made by ficking farall thin pieces of board, about three inches long and two wide, into a cylinder, fo as to form the ipiral line. This ferew is placed in a horizontal pofition, and by turning on its axis it forees wheat or flour from one end of a trough to the other. For inftance, in the trough which receives the meal inmediately coming from the fones, a fcrew of this kind is placed, by which the meal is forced on, to the diftance of fix or eight feet, perhaps, into a refervoir ; from thence, with. out any manual labour, it is conveyed to the very top of the mill by the elevators, which confift of a number of fmall buckets of the fize of tea cups, attached to a long band that goes round a wheel at the top, and an. other at the bottom of the mill. As the band revolves round the wheels, thefe buckets dip into the refervoir of wheat or flour below, and take their loads up to the top, where they empty themfelves as they turn round the upper wheel. The elevators are inclofed in fquare wooden tubes, to prevent them from catching in any thing, and alfo to prevent duft. By means of there two fimple contrivances, no manual labour is required from the moment the wheat is taken to the mill till it is converted into flour, and ready to he packed, during the various prociffes of fcreening, grinding, lifting, \&c.

That this is a confiderable improvement is obvious; and we are not without hopes that it may be adopted. The licentioufnefs of an Englifh mob has indeed perfecuted an Arkwright, expelled the inventor of the fly fhuttle from his native country, and by fuch conduct prevented the re-erection of the Albion mills, and the general eftablifment of faw-mills throngh the kingdom; but their fovercignty perhaps will not be roufed by fo eafy and fimple a coutrivance as this to leffen the quantity of manual labour. For an account of the Dutch oil-mill, which was fomehow omitted in its proper place in the Encjelopredia, fee Ois. Mill in this Supplement.

MINERALOGY

Definition. I
IS a fcience, the object of which is the defcription and arrangement of inorganic bodies or minerals; or of all the bodies which belong to our globe, excepting animal and wegetable fubitances.

Since the publication of the article Mineralogy, Encycl. fcarcely a fingle day has paffed without the difcovery of fome new mineralugical fact, or the detection of fome old and unfufpected error. 'Thefe improvements cannot be overlooked in the prefent Supplement. But they are fo numerous in every part of the fcience, that we can hardly notice them without giving a pretty complete view of the prefent flate of mineralogy. This will fcarcely occupy more room, and muft be much more ufeful as well as entertaining, than an undigefted mafs
of annotations and remarks. We undertake this tank the more readily, becaufe in the article Mineralogy in the Encyclopadia, the improvements of Mr Werner and his difciples, to which the fcience is indebted for a great part of its prefent accuracy, have been entirely overlooked.

The object of mineralogy is twofold. I. To defcribe every mineral with fo much accuracy and precifion, that it may be eafily diltinguifhed from every other mineral. 2. To arrange them into a fyftem in fuch a manner that every mineral may be eafily referred to its proper place, and that a perfon may be able, merely by the help of the fyltem, to difcover the name of any mineral whatever. When thefe two objects are accomplifhed, mineralogy,

Deforiptimn neralogy, frietly fo called, is completed. But were we of Mincrals to ffop here, the utility of the feience, if it would be $\underbrace{}_{\text {- entiuled to the name of fcience, could hardly be conli- }- \text { - }}$ dered as very great. We mutt therefore apply chemiffry to difcover the ingredients of which mincrals are connpured, and to detect, if poffible, the laws which the fe fingredients have obferved in their combination. Thus we thall really extend our knowledge of inurganic nature, and be enabled to apply that knowiedge to the inpiovement of amoft eve y art and nanufacture.
Divifion of Mineralogy naturally divides iticlf into there parts. the aricle. The jinf treats of the method of deferibing mincrals; the ficond, of the method of arranging then; and the thircl exlibits them in a fy tem defaibed and arranged according to the rules laid down in the two firlt parts. Thefe three parts thall be the fubjects of the following chapters; and we fhall finith the aticle with a chapter on the chemical analyfis of mineials.

Chap. I. Ofthe Description of Minerals.

Nothing, at fivf fight, appears eaficr than to defcribe a mincral, and yct, in reality, it is attended with a great deal of difficulty. The mineralugical defcriptions of the ancients are fo loofe and inaccurate, that many of the minerals to which they allude cannot be afcertained; and confequently their obfervations, however valuable in themfelves, are often, as far as refpects us, altogether lof. It is obvious, that to diftinguifh a mineral from every other, we muft either mention fome peculiar property, or a collection of properties, which exift together in no other mineral. Thefe properties mult be defcribed in terms rigidly accurate, which convey precife ideas of the very properties intended, and of no otber properties. The fmalleft deviation from this would lead to confufion and uncertainty. Now it is inpofitble to defribe minerals in this manner, unlefs there be a peculiar term for each of their properties; and unlefs this term be completely underftood. Minera. logy therefore muft have a language of its own ; that is to lay, it muft have a term to denote every mineralogical property, and each of thefe terms mult be accurately delined. The language of mineralngy was invented hy the celehrated Werner of Freyberg, and firft made known to the world by the purlication of his treatife on The External Charaders of Minerals. Of this language we fhall give a view in the following general defrription of the properties of minerals (A).
$\stackrel{4}{4}$ of minerals.clafles. $1 / /$, Properties difenverable without deftroying the texture of the mineral ; 2d, Propertics refulting from the action of other hodies on it. The firl clafs has, by Werner and his difciples, been called external properties, and by fume French writers phyfical; the fecond clafs has been called cbernical.

The external propetties may be arrarged under the following heads:

Suppl. Vol. II. Part I.
3. Figure,
2. Surface,
3. Tranfparency,
4. Colour,
5. Seratch,
6. Luitre,
7. Hardnefs,
8. Ductility,
9. Fracture,
10. Texture,
11. Structure,
12. Fragments, 13. Fecl,
14. Sound,
15. Smeil, 16. Talte, 17. Gravity, 18. Magnetifin, 19. Liccrrucity.

1. By figure is meant the niape or form which a mineral is obferved to have. The figure of miserals is either regular, particular, or amorplons. 1. Minerals which affume a reguiar figure are fand to be cryftal. lized *: The filles of a ciyllal are called jaces; the * See Cure. fharp line formed by the inclination of two taces is call. mestrpy. ed an edge; and the corner, or angle, furmed by the part tilt. meeting of feveral edges in one puiut, is called :1 Jolid chiv. Supp angle, or fimply an angle. Thus a culte has fix faces, twelve edges, and eight angles. 2. Sume mineral, though not cryllallized, affect a particular ligure. Thete particular figures are the folluwng: Giobular, like a glube; oval, like an oblong fpheioid; ovith, like an egg; cheefe. Joapel, a very flattened fylere; almondBuapel, like an almond; centiculur, like a double convex lenfe, compreffed and gradually thinner towards the edges; cunciform, like a wedige; nolulous, having depreffions and protuberances like a putatoe; lotryuiáai, like grapes clofely preffed together; dentiform, longilh and tortuous, and thicker at the bottom than the top; wireform, like a wire ; capillary, like hair, finer than the preceding ; retiform, threads interwoven like a net; dentritic, like a tree, having branches iffuing from a common ftem; frubform, branches not ariling from a common ftem ; coraloidal, branched like coral ; faladitical, like ificles; clavated, like a club, long, and thicker at one end than another; fafciform, long flraight cylindrical bodies, united like a bundle of rods; tubular, cylindrical and hollow. 3. When minerals have neither a regular nor particular flape, they are faid to be amorplous.
II. By surface is meant the appearance of the ex. Surface, ternal furface of minerals. The furfouce is either uneven, compofed of fmall unequal elevations and deprelfions; fcabrous, having very fuall /bard and rough clevations, mure eatily felt than feen; drufy, covered with very minute cryitals; rough, compofed of very minute blunt eievations, eafily dillinguifhable by the fied ; fcaly, compofed of very minute thin fcale-like leaves; fimooth, free from ail inequality or roughnefs; fpecular, having a fmooth polifhed furface like a mirror ; or freaked, having elevated, Itraight, and paralled lines. This laft character is confined to the furface of cry ftals. The flreaks are either tranfverfe; longitudinal; altcrnate, in different directions on different faces; plumofe, running from a middle rib; or decufated, croffing each other.

1II. By transparency is meant the proportion of Tianfa light which minerals are capable of tranfmitting. They rency. are tranfparent or pellucid when objects can be feen dif. tinctly through them; diaphanous, when ubjects are B b

Exterual Cliasacters. $\underbrace{\text { Clatren }}$

Figure. 4
\qquad -
\qquad

\qquad

\qquad
\qquad -
\qquad

External feen through them indifinclly ; fubdiaphanous, when light Charasters. paffes but in fo fmall a quantity that objects cannot be feen through them (B ; opaque, when no light is tranfmitted.

When opaque minerals become tranfparent in water, they are called bydrophanous. When objects are feen double through a tranfparent mineral, it is faid to refrad doubly.
IV. The colours of minerals may be reduced to eight
claffes.

1. Whites.

Snow white. Pure white.
Reddifh white. White with a light tint of red. Yellowifh white. White with a light tint of yellow.
Silver white. Yellowifn white with a metallic luftre.
Greyin white. White with a light tint of black.
Greenifh white. White with a light tint of green.
Milk white. White with a light tint of blue.
Tin white. Milk white of a metallic luftre.
2. Greys.

Bluifh grey. Grey with a little blue.
Lead grey. Bluifh grey with a metallic luftre.
Pearl grey. Light grey with a flight mixture of vio-
let blue.
Smoke grey. Dark grey with a little blue and
brown.
Greenifh grey. Light grey tinged with green.
Yellowifh grey. Alight grey tinged with yellow.
Steel grey. A dark grey with a light tint of yellow
and a metallic luitre.
Black grey. The darkef grey with a tint of yellow. 3. Blacks.

Greyifh black. Black with a little white.
Brownifh black. Black with a tint of brown.
Black,- Pure black.
Iron hlack. Pure black with a fmall mixture of white and a metallic luftre.

Bluifh black. Black with a tint of blue.
4. B/ues.

Indigo blue. A dark blackifn blue.
Pruffian bluc. The pureft blue.
Azure blue. A bright blue with fearce a tint of red.

Smalt blue. A light blue
Violet blue. A misture of azure blue and carmine.
Lavender blue Violet blue mixed with grey.
Sky blue. A light blue witha flight tint of green.
5 Greens.
Vedigris green. A bright green of a bluifh caft.
Seagreen. A very light green, a mixture of verdi. gris green and grey.

Beryl green. The preceding, but of a yellowifh cait.

Emerald green. Pure green.
Grafs green. Pure green with a tint of yellow.
Apple green. A light green formed of verdigris green and white.

Leek green. A very dark green with a caft of brown.

Blackifh green. The darkeft green, a mixture of leek green and black.

Piftachio green. Grais green, yellow and a little External
brown Charaekers.
Ulive green. A pale ycllowifh green with a tint of brown.

Afparagus green. The lighteft green, yellowifh with a little brown and grey.
6. Tellows.

Sulphur yellow. A light greenifh yellow.
Brafs yellow. The preceding, with a little lefs green and a metallic luftre.

Lemon yellow. Pure yellow.
Gold yellow. The preceding with a metallic luftre.
Honey yellow. A deep yellow with a little reddifh brown.

Wax yellow. The preceding, but deeper.
Pyritaceous. A pale yellow with grey.
Straw yellow. A pale yellow, a mixture of fulphur yellow and reddih grey.

Wine yellow. A pale yellow with a tint of red.
Uchre yellow. Darker than the preceding, a mix. ture of lemon yellow with a little brown.

Ifabella yellow. A pale brownih yellow, a mixture of pale orange with reddifh brown.

Orange yellow. A bright reddifh yellow, formed of lemon yellow and red.

> 7. Reds,

Aurora red. A bright yellow red, a mixture of farlet and lemon yellow.

Hyacinth red. A high red like the preceding, but with a fhade of brown.

Brick red. Lighter than the preceding ; a mixture of aurora red and a little brown.

Scarlet red. A bright and high red with fcarce a tint of yellow.

Copper red. A light yellowifh red with the metallic luttre.

Blood red. A deep red, a mixture of crimfon and fcarlet.

Carmine red. Pure red verging towards a caft of blue.

Cochineal red. A deep red; a mixture of carmine with a little blue and a very little grey.

Crimfon red. A deep red with a tint of blue.
Flefh red. A very pale red of the crimfon kind.
Rofe red. A pale red of the cochineal kind.
Peach bloffom red. A very pale whitifh red of the crimfon kind.

Mordoré. A dark dirty crimfon red; a mixture of crinfon and a little brown.

Brownith red. A mixture of blood red and brown.
8. Browns.

Reddifh brown. A deep brown inclining to red.
Clove brown. A deep brown with a tint of carmine.
Yellowifh brown. A light brown verging towards ochre yellow.

Umber brown. A light brown, a mixture of yel. lowifh brown and grey.

Hair brown. Intermediate between yellow brown and clove brown witls a tint of grey.

Tombac brown. A light yellowinh brown, of a metallic luftre, formed of gold yellow and reddith brown.

Liver
(в) After Mr Kirwan, we have denoted thefe three degrees of tranfparency by the figures $4,3,2$. When a mineral is fubdiaphanous only at the edges, that is denoted by the figure 1. Opacity is fometimes denoted by 0 .

External Iiver brown, A dall brown; blackinn brown with $\underbrace{\text { Chasaters a tint of grecn. }}$

Blackini brown. The darkeft brown.
Colours, in refpect of intenlity, are cither dark, dace, light, or pale. When a colour cannot be referred to amy of the preceding, but is a mixture of two, this is exprefed, by faying, that the prevailing one verges towards the other, if it lias only a fmall timt of it ; paffes into it, if it has a greater.
V. liy the scratch or streak, is meant the mark leit when a mineral is feratched by any hard budy, as the point of a knife. It is either fimilar, of the fame colour with the mineral ; or diffimilar, of a different colour.
Vi. Lustre, is the glofs, or briglenefs which appears on the external furface of a mineral, or ou its internal furface when freih broken. The firit is called external, the fecond intermal luiftre. Luftre is either common, that which moft minerals puffefs; filly, like that of tilk or mother-of-pearl; suaxy, like that of wax; greafy, like that of greafe; or netallic, like that of metals.

As to the degree, the greateft is called ftendent, the next /bining, the third dullif); and when only a few feattered particles fhine, the luftre is called dull (c).
VII. We have ufed figures to denote the comparative hardeess of bodies; for an explanation of which, we refer to the article Chemistry, Vol. I. p 226. of this Supplenent.

Vill. With refpect to ductility and brittleNEss, minerals are fither malleable; feaill, eapable of being cut without breaking, but not malleable; ficille, capable of heing bent, and when bent retaining their fhape ; or eiaffic, capable of being bent, but recovering their former fhape. Minerals deflitute of thefe properties are trittle. Brittle minerals, with refpect, to the eafe with which they may be broken, are either very tough, tough, fragile, or very fragile.
iX. By fracture is meant the frefh furface which a mineral difplays when broken. It is either flat, without any general elevation or depreffion; or conchoidal, having wide extended roundifh hollows and gentle rifings. When thefe are not very evident, the fracture is called fat conchoidal ; when they are fmall, it is called fruall conchoidal ; and when of great extent, great conchoidal.

The fracture may alfo be even, free from all afperities; uneven, having many fmall, fharp, abrupt, irregular clevations and inequalities; and from the fize of there, this fracture is denominated coarfe, fmall, or fine ; Jflintery, having fmall, thin, half detached, tharp edged fplinters, aceording to the fize of which this fracture is denominated coarfe or fine: or rugred, having many very minute fharp hooks, more fenfible to the hand than the eyc.
X. By texture is meant the internal ftructure or difpofition of the matter of which a mineral is compofed, which may be difeovered by breaking it. The texture is either compatt, without any diftinguifhable parts, or the appearance of being compofed of fmaller parts ; eartly, compofed of very minute almof imperceptible rough parts; granular, compofed of fmall fhapelefs grains ;
glotuliform, compofed of fmall fpherical bndies; filrous, compofed of fibres which may be lenr, hort, firirht Charactere crooked, paralld, divergent, Aellated, fafciculated, or dicuf. fated; radiuted, conlitting of long narrow flattif lamelliw: or lamellar or foliated, confiting of fmooth continucd plates covering each other; thele plates may be cither Alraight, crooked, or undulating.
XI. The structure or onmpouxd texture is Structure the manner in which the parts that form the texture are difpofed. It is either flaty, in fraight lay ers like flate ; teflaceous, in incurvated liyyers; concentric, in concentric layers; or colunnar, in columns.
The fexture and firulizure may at lint view appear the fame; but in reatity they are very diflerent. Thus common flate has oiten :at flay frufure and enrthy texture. The texture of pitcoal is conipat, but its itructure is oficn flaty.
XII. By fragments is meant the flape of the picces pragments. into which a mineral breaks when ftruck with a ham. mer. They are either cubic ; rbomboidu! wuedgeflaped: Splintery, thin, long, and pointed; ralwar, thin, and broad, and fharp at the corners, as common flate; or indeter minate, without any particular refomblance to any other body. The edges of indeterminate fragments are either very Jlare, Jbarp, Jarpifh, or biunt.
XIII. Dy the EEEL of minerals is meant the fenfation which their furfaces communicate when handled. The feel of fome minerals is greafy, of others, $d r y$, \&c.
XIV. Some minerals when ftruck give a ciear sound, as common flate; others a dull found.

The smell, taste, specific grayity, and magNETISM of minerals, require no explanatim.

With refpect to electricity, lome mincrals become electric when beated, others when rubbed, others cannot be rendered electic. The electricity of fome minerals is poffitive or vitreous, of others negative or refinous.

As for the chemical properties of minerals, they have been already explained in the article Chemistry, which makes a part of this Supplement. And for the defcription of the blow-pipe, and the manner of ufing it, we refer the reader to a treatife on that fubject prefixed to the article Mineralogy in the Eucyclopadia.

Chap. 1I. Of the Arrangement of Minerals.

Minerals may be arranged two ways, according to their external characters, and according to their chemieal compofition. The firtt of thefe methods has been called an artifcial claffification; the fecond, a natural one. The firlt is indifpenfably neceffary for the itudent of nature ; the fecond is no lefs indifpenfable for the proficient who means to turn his knowledge to account. Without the firft, it is impoffible to difcover the names of minerals; and without the fecond, we muft remain ignorant of their ufe.

Almoft every fyitem of mineralogy hitherto publifh. ed, at leaft fince the appearance of Werner's exticrnal cbaralters, has attempted to combine thefe two arrange. ments, and to obtain at one and the fame time the ad. vantages peculiar to each. Bnt no attempt of this kind thas hitherto fuceceded. Whether this be owing to any thing impolfible in the undertaking, or to the

Bb 2
prefent
(c) Thefe four degrees have been denoted by Kirwan by the figures $4,3,2,1$, and no luftre by 0 . We have imitated him in the prefent article.

Artificial prefent imperfect ftate of mineralogy, as is more pro. Syftem. bable, we do not take upon us to determine. But furely the want of fuccefs, which has hitherto attended all attempts to combine the two arrangements, ought to fuggeft the propriety of feparating them. By adhering ftrietly to one languge, the trouble of Itudying two different fyitems would be entirely prevented. They would throw mutual light upon each other; the artificial fy ftem would enable the flulent to difcover the names of minerals; the natural would enable him to arrange them, and to ftudy their properties and ufes.

The bappy arrangement of Cronfledt, together with the fubfequent improvements of Dergman, Werner, Kirwan, Hauy, and other celebrated mineralogitts, has brought the natural fyllem of mineralogy to a confiderable degree of perfection. But an artifcial fy ftem is ftill a defideratum; for excepting Linnæus, whofe fuccefs was precluded by the flate of the fcience, no one has hitherto attempted it. Though we are very far from thinking ourfelves fufficiently qualified for undertaking fuck a tak, we fhall nevertbelefs venture, in the next chapter, to fketeb out the rudiments of an artificial fyftem. The attempt, at leaft, will be laudable, even though we fhould fail.

Chap. III. Artificial System.

ORDER IV. Sp. gr. from 4.8 to 4.5 .
Genus I. Tinges borax dark green.
Sp. 1. Common magnetic iron ftone.
Genus II. Tinges borax reddilh brown.
Sp. 1. Grey ore of manganefe.
ORDER V. Sp. gr. from $4.416 ;$ to 3.092 . Infufible with fixed alkalies.

Genus I. Hardnefs 20.
Sp. 1. Diamond.
Genus II. Hardnefs is to 17. Caufes fingle refraction.

Sp. 2. Telefia.
Sp. 2. Corundum.
Genus III. Hardnefs 13 , Single refraction. Sp. 1. Ruhy.

Cryftallizes in octahedrons.
Genus IV. Hardarefs 12. Single refraction. $s p$. Chry foberyl.
Genus V. Hardnefs 12. Caufes double refraction. Becomes electric when lieated.

Sp. I. Topaz.
Genus VI. Hardnefs to to i6. Double refrac. tion. Sp. gr. 4.2 to 4.165 .

Sp. 1. Zircon.
Genus VII. Hardnefs 6 to 9. Feels greafy. Sp. 1. Cyanite.
Genus VIII. Hardnefs 9 to io. Feel not greafy. Double refraction. Sp. gr. 3.283 to 3.285 . Sp. i. Chryfolite.
Genus IX. Hardnefs 12 . Infufible with borax. Culour of large maffes black, of thin pieees deep green. sp. I. Cylanite.

ORDER VI. Sp. gr. from 2.9829 to 1.987 . Infufible with fixed alkalies.

Genus I. Hardnefs 12. sp. I. Emerald.
Genus II. Hardnefs 10. Sp. 1. Jade.
Genus III. Hardnefs 6 to 7. Somewhat tranf. parent. Sp. I. Phofphat of lime.

Before the blow-pipe becomes furrounded with a luminous green vapour.
Genus IV. Hardnefs 6. Opaque. Sp. 1. Micarelle.
Genus V. Stains the fingers. Colour lead grey. Sp. 1. Plumbago.

Spanifh wax rubbed with plumbago does not become electric ; or if it does, the electricity is negative. Streak lead grey even on earthen ware.
ORDER VII. Sp. gr. from 4.73^{85} to 4.569 . Fun̂ble with fixed alkalies.

Genus I. Stains the fingers. Colour lead grey: Sp. 1. Molybdena.

Spanifh wax rubbed with molybdena becomes pofitively electric. Streak on. earthen ware yellowifh green.
ORDER VIII. Sp. gr. from 4.1668 to 2.479 . Fufible with fixed alkalies.

* Hardnefs from 10 to 12.

Genus I. Ufually white. Cryftals dodecaledrons. Double refraction. Fracture impcrfectly conchoidal or fplintery. Brittle.

Sp. 1. Quartz.
Gesus II. Utually dark brown. Fracture perfectly conchoidal. Brittle. Eafily breaks into fplinters.
Sp. I. Flint.
Genus III. Not brittle. Fracture even or imperfectly conchoidal.
sp. I. Chalcedony.
Sp. 2. Jafper.
Genus IV. Forms witl potafs a violet glafs, with foda or borax a brown glafs, with microcofmic falt a honey yellow glais. Colour green. Amorphous.

Sp. 1. Chryfoprafium.
Geivus V. Tinges foda red. The colour difappears before the blue flame, and returns before the yellow flame.

Sp. I. Oxide of mangancfe and barytes.
Sp. 2. Black ore of manganefe.
Sp. 3. Carbonat of manganefe.
(Brown ore of iron. Red ore of iron.)
** Hardncfs 9 to 3.
Genus VI. Flexible and elaftic in every direction. Sp. I. Elallic quartz.
Genus VII. Emits white flakes before the blowpipe.

Sp. 1. Blende.
Genus VIII. Becomes electric when heated. sp. 1. Calamine.
Genus IX. Tinges borax green. Blackens before the blow-pipe.
sp. 1. Mountain blue.

Colour blue.

Sp. 2. Green carbonat of copper. Colour green.
Genus X. Tinges borax green. Becomes attractable by the magnet by the action of the blowpipe.
Sp. I. Brown iron ore. Colour brown.
Sp. 2. Red iron ore. a Colour red.
Genus XI. Tinges borax fmutty yellow. Becomes brownih black before the blow-pipe.
$s p$. 1. Carbonat of iron.
Genus XII. Feels greafy.
sp. I. Steatites.
(Black ore of Manganefe. Carlonat of manganefe. Mica.)
ORDER IX. Sp. gr. from 2.39 to r.7.
Genus I. Lultre glafly.
Sp. 1. Opal.
sp. 2. Hyalite.
Genvs II. Luftre greafy.
Sp. 1. Pitchftone.
Genus III. Luftre wasy or pearly.
Sp. I. Staurolite.

Class II. FUSIBLE.

ORDER I. Sp. gr. from 19 to 10.
Genus I. Colour yellow.
sp. 1. Native gold.
Genus 11. Colour white.
Sp. I. Native filver.
Genus III. Culour yellowifh white.
Sp. r. Alloy of filver and gold.
ORDER II. Sp. gr. from 7.786 to 4.5 .
Genus I. Flexible and mallcable.
s_{p}. 1. Sulphuret of filver.
** Brittle.
Genus II. Tinges borax white.
$s p$. Tinfone.
Genus III. Tinges borax green.
Sp. I. Sulphuret of copper.
Colour bluifh grey.
Sp. 2. Chromat of lead.
Colour aurora red.
Sp. 3. Purple copper ore. Colour purple.
Genus IV. Tinges borax faint yellow. Becomes black when expofed to the vapour of fulphuret of ammonia.
sp. 1. Galena.
Colour bluifh grey. Lufte metallic. Fragments cubic.
Sp. 2. Black lead ore.
Colour black. Luftre metallic.
Sp. 3. Lead ochre.
Colour yellow, grey, or red. Luftre o.
Sp. 4. Carbonat of lead.
Colour white. Luftre waxy.
Sp. 5. Phofylat of lead.
Ufually green. Luftre waxy. Afier fufion by the blow-pipe cryftallizes on cooling.
Sp. 6. Molybdat of lead.
Colour yellow. Streak white. Lufte waxy.
ORDER III. Sp. gr. from 4.35 to 3 .

* Hardnefs $1+$ to 9 .

Genus I. Melts without frothing into a grey en. amel.

Sp. x. Garnet.
Colour red.
Genus II. Melts into a brownifh enamel.
sp. I. Shorl.
Colour black. Opaque.
Gente III. Froths and melts into a white enamel.
Sp. 1. Tourmaline.
Becomes electric by heat.
Genus IV. Froths and melts into a greenifh black enamel.

Sp. i. Bafaltine.
Genus V. Froths and melts into a black enamel. Sp. 1. Thallite. Colour dark green.
Sp. 2. Thumerfone.
Colour clove brown.
** Hardnefs 5 to 8.
Genus V1. Mèlts into a tranfparent glafs.
$s p$. x. Fluat of lime.
Powder phofphorefces when thrown, on a hot iron.
Genus YII. Melte into a black glafs.

Artificial
syftem.
S_{f}. 1. Hornblende.
Genus VIII. Melts into a black bead with a fulphureous fmell, and depofits a blue oxide on the charcoal.

Sp. 1. Sulphuret of tin.
Genus IX. Melts into a brown glafs. Tinges borax violet.

Sp. 1 Afbefluid.
Colour green.
Genus X. Melts into a brown (?) glafs. When fufed with potals, and diffolved in water, the folution becomes of a fine orange yellow.

Sp. 1. Chromat of iron.
Genus XI. Before the blow-pipe yields a bead of copper.

Sp. I. Red oxide of copper.
(Sulphuret of copper.)
ORDER IV. Sp. gr. from 2.945 to 2.437 .
Genus 1. Compofed of fcales.
Sp. 1. Talk.
Feels greafy. Spanifh wax rubbed by it becomes pofitively electric.
Genus II. Compofed of thin platef, eafily reparable from each other.

- sp. I. Mica.

Plates flexihle and elaftic, may be torn but not broken. Spanifh wax rubbed by it becomes negatively electric.
Sp. 2. Stilbite.
Plates fomewhat flexible. Colour pearl white. Powder renders fyrup of violets green. Froths and melts into an ppaque white enamel. Sp. 3. Lepidolite.

Colour violet. Powder white with a tint of red. Froths and melts into a white femitranfparent ena. mel full of bubbles.
Gentrs III. Texture foliated.
Sp. 1. Felfpar.
Fragments rhomboidal. Hardnefs 9 to 10.
Sp. 2. Leucite.
Always cryftallized. White. Powder'renders fyrup of violets green. Hardnefs 8 to 10.
Sp. 3. Argentine felfpar.
Always cryftallized. Two faces dead white, two filvery white.
Sp. 4. Prehnite.
Colour green. Froths and melts in. to a brown enamel.
Genus IV. Texture fibrous. Fibres eafily feparatcd.

Sp. 1. A foeftus.
Feels Comewhat greafy.
Genus V. Texture ftriated.
sp. 1. Edelite.
Abforbs water. Froths and melts into a frothy mafs.
Genus VI. Texture earthy or compact.
Sp. 1. Lazulite.
Froths and melts into a yellowifh
black mafs. If previoully calci- Areificial ned, gelatinizes with acids. Syftem,
Sp. 2. Borat of lime.
Tinges the flame greenifh, froths and melts into a yellowifle enamel gatnified with fmall projecting points, If the blaft be continued, thefe dart off in fparks.
ORDER V. Sp. gr. from 2.348 to 0.68 .
Genus I. Hardnefs 10.
Sp. 1. Obfidian.
Colour blackif, in thin pieces green. Genus II. Hardnefs 6 to 8.

Sp. 1. Zeolite.

> Gelatinizes with acids. Becomes c lectric by heat.

Genus III. 'Hardnefs 3 to 4 .
Sp. 1. Amianthus.
Feels greafy. Texture fibrous.
Sp. 2. Mountain cork.
Elaftic like cork.
Class III. FUSIBLE by the BI.UE FLAME, INFUSIBLE ву the YELLOW.

Genve I. Sp. gr. from 4.43 to 4.4 .
Sp. I. Sulphat of barytes
-Genus II. Sp. gr. from 3.96 to 3.5 I .
Sp. r. Sulphat of ftrontites.
Genus III. Sp. gr. from 2.3II to 2.167 .
Sp. I. Sulphat of lime.
Class IV. FUSIBLE, and partly EVAPORA. TING.

ORDERI. Sp. gr. from 10 to 5 .
Genus I. Colour white or grey. Luftre metallic.

* Sp. gr. 9 to 10.

Sp. 1. Native amalgam.
Tinges gold white. Creaks when cut.
Sp. 2. Alloy of filver and antimony.
Powder greyifh black.
** Sp. gr. from 6.467 to $5 \cdot 309$.
Sp. 3. Sulphuret of bifmuth.
Melts when held to the flame of a^{3} candle.
Sp. 4. Dull grey cobalt ore.
Streak bluifh grey. Hardnefs 10. When ftruck emits an arfenical fmell. Luftre fcarcely metallic.
Genus II. Colour red, at leaf of the ftreak.
Sp. 1. Red filver ore.
Burns with a blue flame.
Sp. 2. Hepatic mercurial ore. Does not flame, but gives out mercury before the blow-pipe.
Genus III. Colour blue.
Sp. 1. Blue lead ore. Burns with a blue flame and fulphureous fmell, and leaves a button of lead.
Gentrs IV. Colour yellowifh green.
Sp. I. Phofphat and arfeniat of lead combined. When fufed by the blow-pipe, cryfallizes on cooling.
Genus V. Colour ufually that of copper. Sp.
gr. 6.6084 to 66481 .
Sp. 1. Sulphuret of nickel.
Exhales before the blow-pipe an arfenical fmoke.

ORDER II. Sp. gr. from 4.6 to 3.44 .
Genus I. Colour grey.
Sp. I. Grey ore of antimony.
Burns with a blue flame, and leaves a white oxyd.
Sp. 2. Grey copper ore.
Crackles before the blow-pipe.
Genus II. Culour yellow.
Sp. 1. Pyrites.
Burns with a hlue flame and fulphurreous [mell, and leaves a brownifh bead.
Sp. 2. Yellow copper ore.
Melts into a black mafs.
Class V. EVAPORATING.
ORDER I. Sp. gr. 13.6.
Genus I. Fluid.
Sp. I. Native mercury.
ORDER II. Sp. gr. from 10 to 5.419 .
Genus I. Colour red.
Sp. 1. Native cinnibar.
Genus II. Colour white or grey. Luftre metallic.

Sp. I. Native bifmuth.
Melts into a white bead, and then evaporates in a yellowifh white fmoke. Sp. gr. 9 to 9.5 .
Sp. 2. Native antimony.
Melts and evaporates in agrey fmoke. Sp. gr. 6.6 to 6.8.
sp. 3. Native arfenic.
Evaporates without melting, and gives out a garlic fmell.
ORDER III. Sp. gr. from 4.8 to 3.33 .
Genus I. Colour red.
Sp. I. Red antimonial ore.
Melts with a fulphureous fmell. Sp. gr. 47
Sp. 2. Realgar.
Melis with a garlic fmell. Sp. gr. $3.38+$
Genus II. Colour yellow. Sp. 1. Orpiment.

Class VI. SOLUBLE witu EFFERVESCENCE in MURIATIC ACID.

Genus I. Sp. gr. from 4.33^{8} to $4 \cdot 3$.
Sp. I. Carbonat of barytes.
Genus II. Sp. gr. from 3.66 to 3.4 -
Sp. I. Carbonat of Itrontites.
Genus III. Sp. gr. from 2.3 to 1 ur under.
Sp. 1. Carbonat of lime.
We have purpofely avoided giving names to the claffes, orders, and genera; becaufe a more careful examination will doubtlefs fuggef many improvements in the arrangement, and an artificial fyftem ought to be brought to a great degree of perfection before its claffes, orders, and genera be finally fettled.

We have excluded from this arrangement all thofe bodies which in the following fyftem are arranged un. der the clafs of combuntibles; becaufe there can fcarcely be any difficulty in diftinguifhing them both from the other claffes and from one another. For fimilar reafons we have excluded the clafs of falts.

Chap. IV. Natural System.

Avicenna, a writer of the nth century, divided minerals into four claffes; ftones, falts, inflammable bodies, and metals (D). This divifion has been, in fome meafure, followed by all fucceeding writers. Linnæus, indeed, the firft of the moderns who publifhed a fyftem of mineralogy, being guided by the external characters alone, divided minerals into three claffes, petre, minera, foflilia: but Avicenna's claffes appear among his orders, The fame remark may be made witl refpect to the fy f_{0} tems of Wallerius, Wullerdorf, Cartheufer, and Jufti, which appeared in fucceffion after the firft publication of Linnzus's Sylema Nature, in 1736 . At laft in 1758, the fyftem of Cronfledt appeared. IIe reinftated the claffes of Avicenna in their place; and his fyttem was adopted by Bergman, Kirwan, Wenier, and the moft celebrated mineralogits who have written fince. We alfo fhall adopt his claffes, with a few flight exceptions; becaufe we are not acquainted with any other divifion which is intitled to a preference.

We thall therefore divide this treatife into four claffes. I. Stones. II. Salts. III. Combuftibles. IV. Ores.

The firt clafs comprehends all the minerals which are compofed chiefly or entirely of earths; the fecond, all the combination of acids and alkalics which occur in the mineral kingdom; the third, thofe minerals which are capable of combuftion, and which confif chiefly of fulphur, carbon, and oil; the fourth, the mineral bodies which are compofed chiefly of metals.

Class I. Earthi and STONES.

W^{E}E fhall divide this clafs into three orders. The firft order fhall comprehend all chemical combinations of eartlis with each other; the fecond order, chemical combinations of earths witls acids; and the third order, mechanical mixtures of earths or flones. All the minerals
belonging to the firf order exhibit the fame homoge- ${ }^{\text {n }}$ neous appearance to the eye as if they were fimple bodies. We fhall therefore, for want of a better name, call the firlt order fimple; the fecond order we thall diAtinguifh by the epithet of faline; and the third we fhall
(D) Corpora mineralia in quatuor fpecies dividuntur, feilicet in lapides, et in liquifactiva, fulphurea, et fales. Et horum quædam funt raræ fubfantix et debilis compofitionis, et quædam fortis fubitantix, et quædlam duchibilia, et quædam non. Avicenna de congelatione et conglutinatione lafidum, Cap. 3. Tbeatrum Chenicum t. iv. p. 99%

Earthe and call aggoogatis : becaufe mof of the minerals belonging Stures to it confilt of various f.mple flones, cemented, as it were, together.

Order I. SIMPLE ST'ONES.

21
Cronttedt's Cronstedr divided this order into nine genera, corgenera, refponding to nine earths; one of which he thought compofed the ftones arranged under each genus. 'The names of his genera, wete calcard, filica, granutina, argillacie, micace, fluores, afoelina, zoolithice, magnefia. All his earths were afterwards found to be compounds, except the firt, fecond, fourth, and winth. Bergman, therefore, in his Sciagraphia, firlt publifhed in 1782, reduced the number of genera to five; which was the number of primitive earths known when he wrote. Since that period three new earths have been difcovered. Accordingly, in the latelt fytems of mineralogy, the genera belonging to this order amount to eight. Each genus is named from an earth; and they are arranged in the neweft Wernerian fyftem, which we have feen, as follows :

1. Jargon genus.
2. Siliceous genus.
3. Magnefian genus.
4. Glucina genus.
5. Calcareous genus.
6. Argillaceous genus.
7. Barytic genus.

Mr Kinwan in his serontian genus. Krwan, in his very valuable fyftem of mineralogy, has adopted the fame gencra. Under each genus, thofe flones are placed, which are compofed chicfly of the earth which gives a name to the genus, or which at leaft are fuppofed to poffefs the characters which diAtinguifh that earth.
Still defici- A little confideration will be fufficient to difcover ent. that there is no natural foundation for thele genera. Moft flones are compofed of two, three, or even four ingredients : and, in many cafes, the proportion of two or more of thefe is nearly equal. Now, under what genus foever fach minerals are arranged, the earth which gives it a name mult form the fmalle ft part of their compofition. Accordingly, it has not been fo much the chemical compolition, as the external character, which has guided the mineralogitt in the diftribution of his fpecies. The genera cannot be faid properly to have any character at all, nor the fpecies to be connected by any thing elfe than an arbitary title. This defect, which mult be apparent in the molt valuable fyftems of mineralogy, feems to have arifen chiehy from an attempt to combine together an artificial and natural fyftem. As we have feparated thefe two from each other, it becomes neceffary for us to attend more accurately to the natural diftribution of genera than has hitherto been donc. We have accordingly ventured to form new genera for this order, and we have formed then according 24 to the following rules.
New gene. The only fubftances which enter into the minerals ra.
belonging to this order, in fuch quantity as to deferve attention, are the following:

Alumina,	Glucina,
Silica,	Zirconia,
Magnefia,	Oxide of iron,
Lime,	Oxide of chromum,
Barytes,	Potafs,

All thofe minerals which are compofid of the fame ingredicnts we arrange under the fance genus. Accord. ing to this plan, there mult be as many genwa as there are varicties of combinations of the ahove fubitances exitting in nature. The varietics in the proportion of the ingredients conftitute fpecies. We have not impofed names upon our gencra, but, in imitation of Bergman* * Opufc iv. have denoted each by a fymbol. This fymbol is com- ${ }^{2}{ }^{2} 1$. pofed of the firdt letter of every fubitance which enters in any confiderable quantity into the compofition of the minerals arranged under the genus denoted by it. Thus, fuppofe the minerals of a genus to be compofed of alumina, filica, and oxide of iron, we denute the genus by the fymhol ff . The letters are arranged according to the proportion of the ingredients; that which enters in the greateft proportion being put firll, and the others in their order. Thus the genus afi is compored of a confiderable proportion of alumina, of a fonaller proportion of dilica, and contains leaft of all of iron. By this contrivance, the fymbol of a genus contains, within the compafs of a few letters, a pretty accurate defcription of its nature and character. Where the proportions of the ingredients vary in the fame genus fo much, that the letters which conititute its fynhol change their place, we fubdivide the genus into parts; and whenever the minerals belonging to any genus become too numerous, advantage may be taken of thefe fubdivifions, and cach of them may be formed into a feparate genus. At prefent this feems unneceffary (E).

The following is a view of the different genera belonging to this order, denoted each by its fymbol. Every genus is followed by the fpecies included under it ; and the whole are in the order which we mean to follow in reforibing them:
I. A.
Telefia,
Corundum,
Native alumina.
II. Amc.

Ruby.
III. Arm.

Ceylanite.
IV. s.

Quartz,
Elaftic quartz,
Flint,
Cpal,
Pitchfone,
Chryfoprafium.
V. 1. As

Topaz,
Summite,
Shorlite.
2. SA .

Rubellite,
Hormflate,
Hornltone,
Chalcedony,
Jafper.
Tripoli.
VI. i. Asi.

Micarell, Shorl, Grawatite,
2. SAI.

Tourmaline,
Argentine felffar,
Mica,
Tale,
Bafaltine,
Hormblende,
Oblidian,
Petriite, Felfite.
VII. sap.

Felfpar,
Lepidolite,
Leucite.
VlII. sag.
Emerald.
IX. $s a b$.

Staurolite.
X. I. ASL.

Chryfoberyl.
2. sAL

Hyalite,
Edelite.
(e) We need hardly remark, that the laft three genera of Werner belong to the fecond order of the firft clafs of this treatife.
3. SAWL,

Zeolite, Stilbite, Analcime.
4. SLA. Lazulite.
XI. Sall.

Garnet,
Thumertone,
Prehnite, Thallite.
XII. 1. ams.

Cyanite.
2. MSA.

Serpentine.
XIIL. mat.
Potitone,
Chlorite.
XIV. slam.

Siliceous fpar.
XV. samli. Argillite.
XVI. sm.

Kiffekill, Steatites.
XVII. msi. Chryfulite, Jade. XVIII. sile. Afoeltus, Afoeflinite.
XIX. 1. silm.

Pyroxen, Albeftoid.
2. Smil. Actinolite. XX.sL. Shiftofe hornfone. XXI. zs. Zircon.

Genus I. A. spectes 1. Telefia (f). Oriental ruby, fapphire, and topaz of mineralogits.Rubis d'orient of De Lifle.
Three ftones, diltinguifhed from each other by their colour, have long been held in high eltimation on account of their hardnefs and beauty. Thefe ftones were known among lapidaries by the names of ruby, fispobire, and topaz, and the epithet oriental was ufually added, to difinguifh them from other three, known by the fame names and the fame colours, but very inferior in hardnefs and beauty. Mineralugits were accuitumed to confider thefe itones as three diftinct fpecies, till Romé de Lille obferved that they agreed in the form of their cryftals, their hardnefs, and moft of their other properties. Thefe obfervations were fufficient to conititute them one fpecies; and accordingly they were made one fpecies by Romé de Lifle himfelf, by Kirwan, and feveral other modern mineralogical writers. But this fpecies was deftitute of a proper name, till Mr Hauy, whofe labours, diftinguilhed equally by their ingenuity and accuracy, have contributed not a little to the progrefs of mineralogy, denominated it telefia, from the Greek word tineros, which lignifies perfeat.

The telefia is found in the Eaft Iudies, efpecially in Pegu and the inland of Ceylon; and it is moft commonIf cryftallized. The cryftals are of no great fize: Their frimitive form, according to Mr Hauy, is a regular fixfided prifm, divifible in directions parallel both to its bafes and its lides; and confequently giving for the form of its primitive nucleus, or of its integrant molecule, an equilateral three-fided prifm *. The moit ufual variety is a dadecahedron, in which the telelia appears under the form of two very long flender fix-fided pyramids, joined hafe to bale \dagger. The fides of thefe pyramids

Suppl. Vol. II. Part I.
are ifulceles triangles, having the angle at their vertex Simple $22^{\circ} 54^{\prime}$, and each of thofe at the bafe $78^{\circ} 4^{\prime}(\mathrm{G})$. Stones. The inclination of a fide of one pyramid to a contiguous file of the other pyramid is $139^{\circ} 5+7$. In fome! llid and fpecimens the fummits of the pyramids are wanting, fo iome do that the erydlal has the appearince of a fix lided prim, Life, ii. fomewhat thicker in the middle than towards the extre- 355 . mities \S. The three altornate angles at each extrenity of \$ Fig. 2. this prifin are alfo fometimes wanting, and a fmall triauguld ${ }^{\text {face }}$ inftead of them, which renders the bafes of the fuppofed prifm nine-fided. I'he inclination of each of thete fmali triangles to the bafe is $122^{\circ} 18 \mathrm{~F}$. For figures f Hauy, ibid. oi thefe cryftals we refer the reader to Rome de Lifle and Hany $\|$.

The texture of the telefia is foliated, and the joint Ibid. are parallel to the bufe of the prifn*. Its luftre va. "Hauy. ries from 3 to $+(\mathrm{H})$. Tranfparency ufually 3 or 4 , fometimes only 2. It caufes only a fingle refraction. Specific gravity from 4 . th +288 . Harduefs from 15 to 17. It is either colourlefs or red, yeilow or blue. Thefe colours have induced lapidaries to divide the telefia into the three following vanicties.

Variety 1. Red telefia.
Oriental ruby.
Colour carmine red, fometimes verging towards violet. Sometimes various colours appear in the fame fone, as red and white, red and blue, orange ied. Hardnefs 17. Sp. gr. 4.238.

Variety 2. Yellow telefia.

Oriental topaz.
Colour golden yellow. Tranip. 4. Hardnefs 15. Sp. gr. 4.0105.

Variety 3. Blue telefia. Oriental fapphyr.

Colour Berlin hlue, often fo very faint that the fone appears almolt culourlefs. Tranfp. 3, 4, 2. Hardnefs 17. Sp. gr. 3.991 to 4.083 t. That variety is not + Gremille, probably the fame with the fapphyr of the ancients. Nicholfon's Their fapphyr was diftinguifhed by gold-coloured fpots, Four.iii. n I none of which are to be feen in the fapphyr of the moderns \ddagger.

A fpecimen of this laft variety, analyfed by Mr Kla- Theopbraproth, was found to contain in 100 parts, Pus, wif

$$
\begin{aligned}
& 985 \text { alumina, } \\
& 1.0 \text { oxyd of iron, } \\
& 0.5 \text { lime, }
\end{aligned}
$$

$100.0 \oint^{\prime}$

Beiträr:
The colouring matter of all thefe varieties is, accord- i . $8 \mathbf{I}$. ing to Bergman's experiments, iron in different ilates of oxydation. He found that the topaz contained .of, the ruby. 1 , and the fapphyr. 02 of that metal $\|$. But || Bergman, when thefe experiments were made, the analy fis of fonesii. 96. was not arrived at.a fufficient degree of perfection to enfure accuracy. No conclufion, therefore, can be drawn from thefe experiments, even though we were certain that they were made upon the real varieties of telefia.

C c
3PECIES
(F) See Kirwan's Mineralogy, I. 250.-Gmelin's Syfema Natura of Linn zus, III. ${ }^{170} 0$-Romé de Life's Cryfallographie, II. 212.-Bermanni Opufcula, II. 72.
(G) In fome inftances, the angle at the vertex is $3 \mathrm{I}^{\circ}$, thofe at the bafe $74^{\circ} 30^{\prime}$, and the inclination of two triangles $122^{\circ} 3^{6^{\prime}}$. See Hauy, ibid.
(н) When the kind of luftre is not fpecified, as in the prefent inftance, the common is always meant.

Earths and
Stones.
26
Corundum.
species 2. Corundum (1).
Corundunt of Gmelin-stlmantine fpar of Klaproth and Kirwan - Corimlon of Hauy-Corivindun of Woodward.
This ftone, though it appears to have been known to Mr Woodward, may be faid to have been firft diftincuifhed from other minerals by Dr Black. In 1768 , Mr Berry, a lapidary in Edinburgh, received a box of it from Dr Anderfon of Madras. Dr Black aleertain. ed, that thefe fpecimens differed from all the ftones known to Europeans; and, in confequence of its hardr.efs, it obtained the name of adamantine fpar. Notwithfanding this, it could fcarcely be faid to have been Known to European mineralogifts till Mr Greville of London, who has done fo much to promote the feience of mineralogy, obtained fpecimens of it, in 1784, from India, and diftributed them among the moft eminent chemitts, in order to be analyfed. Mr Greville alfo learned, that its Indian name was Corundum. It is found in Indoftan, not far from the river Cavery, which is fouth from Madras, in a rocky matrix, of confiderable hardnefs, partaking of the nature of the fone itfelf *. It occurs alfo in China; and a fubtance, not unlike the matrix of cormendun, has been found in Teree, one of the weftern iflands in Scotland \dagger.

The corundum is ufually eryfallized. Its primitive form, difcovered by Mr Hauy \ddagger and the Count de Bournon \oint, is a rhomboidal paralletopiped, whofe fides are equal rhombs, with angles of 86° and 94°, according to Bournon, or whofe diagnonals are to each other as $\sqrt{17}$ to $\sqrt{15}$, according to Hauy; which is very nearly the fame thing 9 . The inut common variety, for the primitive form has never yet been found, is the regular fix-fided prifm, the alternate angles of which are fometimes wanting $\|$, and the triangular faces, which occupy their place, are inclined to the bafe at an angle of 122° $34^{\prime *}$. Sometimes the corundum is cryftalized in the form of a fix-fided pyramid, the apex of which is generally wanting. For a defcription and figure of thefe, and all the other varieties of eorundum bitherto obferved, we refer the reader to the differtation of the Count de Bournon on the fubject \dagger.

The texture of the corundum is foliated, and the natural joints are parallel to the faces of the primitive rhomboidal parallelopiped. Luftre, when in the direction of the laminx, 3 ; when broken acrofs, 0 . O. pake, except when in very thin picces. Hardnefs 15 . Sp. gr. from 37.10 to $4.180 \ddagger$. Colour grey, often with various thades of blue and green.

According to the analy fis of Klaproth, the corundum of India is compofed of
> 89.5 alumina,
> $5 \cdot 5$ filica,
> 1.25 oxide of iron,
> 96.25 s .
§ Beitröge,
i. 77.

MINERALOGY.

Notwithfanding the quantity of filica and of iron which thefe analyfes exhibit in the corundum, we have been induced to include it in the prefent genus on account of the flrong refemblance between it and the third variety of telefia. The friking refemblance between the crytals of telefia and corundum will appear evident, even from the fuperficial defcription whiclı we have given; and the obfervations of De Bournon IT ren- F Nicbolder this refemblance thill nore ftriking. It is not im- fin's Youro probable, thcrefore, as Mr Greville and the Count de ${ }^{\text {iii.9. }}$ Bournon have fuggefted, that corundum may be only a variety of telefia, and that the feeming difference in their ingredients is owing to the impurity of thofe fpecimens of corundum which have hitherto been brought to Europe. Let not the difference which has been found in the primitive form of thefe ftenes be confidered as an infuperable objection, till the fubject has been again examined with this precife object in view; for nothing is ealier than to commit an overfight in fuch difficult examinations.

27
species 3. Native alumina (k). Native alue
This fubftance has been found at Halles in Saxony mina. in compact kidney-forin maffes. Its confiftence is earthy. Luftre o. Opaque. Hardnefs 4. Brittle. Sp. gr. moderate. Feels foft, but meagre. Adheres very lightly to the tongue. Stains very fightly. Colour pure white. Does not readily diffufe itfelf in water.

It conlifts of pure alumina, mixed with a fmall quantity of carbonat of lime, and fometimes of fulphat of lime *. *scireber. Genus II. amc.
species i. Ruby (l).
G. Il. amc. Ruby.

Spinel and balafs Ruby of Kirwan-Ruby of Hauy - Rubis Spinclle oetoedre of De Lifle-Spinellus of Gmelin.
This Itoue, which comes from the ifland of Ceylon, is ufually crytallized, The primitive form of its cryitals is a regular octohedron, compofed of two fourfided pyramids applied bafe to bafe, each of the fides of which is an equilateral triangle $\dagger(M)$. In fome cafes \dagger Fig. 5. t wo oppofite fides of the pyramids are broader than the other two ; and fometimes the edges of the octuhedron are wanting, and narrow faces in their place. For tigures and defcriptions of thefe, and other varieties of thefe cryitals, we refer the reader to Romé de Lille and the Abbé Efner \ddagger.

The texture of the ruby is foliated. Its luftre is 3.226 . $F R$ Tranfp. 3.4. It caufes a fingle refraction. Hardnefs ner's Minere. 13. Sp. gr. 3.570 \$ to 3.625 F . Colour red ; if deep, ${ }^{73}$. the ruby is ufually called balafs; if pale rofy, fpinell. The and Greville.
(1) See Kirwan's Mineralogy, I.-Klaproth in Beob. der Berlin, V11I. 295, and Beiträge, I. 47.-Mr Greville and the Count de Bournon in the Philofophical Tranfations 1799, p. 403. and in Nicholfon's Fournal, 11. 540. and 1II. 5.-Mr Hauy Four. de Pbyf. XXX. 193. and Four. de Min. N0 XXVIII. 262.
(к) See Kirwan's Mineralogy, I. 175, and Schrw'er. 15. Stück, p. 209.
(६) See Kirwan's Min. I. 253 - Romé de Lifle, II. 224.-Klaproth Beob. der Berlin, III. 336. and Beiträge, II. 1.-Vauquelin Ann. de Chim. XXVII. 3. and XXXI. 14t.
(M) We fhall afterwards diftinguifh this octohedron either by the epithet regular or aluminiform, becaufe it is she well-known form of crytals of alum.
yarths and The ruby, according to the analyfis of Vauquelin, is $\underbrace{\text { Stones. compofed of } \quad 86.00 \text { alumina, }}$ 8.50 magnefia, 5.25 chromic acid.

* Ann. de

Cbim. xxvii. The ancients feem to have claffed this fone among 15.
\ddagger Ptinii,

1. 37. c.9.

29
G. III. AIM.
$\underset{\text { Ceylanite. }}{\text { G. }}$
Genus III. alm.
species 1. Ceylanite.
The mineral denominated ceylanite, from the ifland of Ceylon, from which it was brought into Europe, had \ddagger Cryfallog.been obferved by Romé de Lifle \ddagger; but was firft deiii. 150 .

Note 21 fcribed by La Metherie in the Journal de Phyfique for January 1793.

It is moft commonly found in rounded maffes; but fometimes alfo cryftallized. The primitive form of its cryftals is a regular oftaledron : it commonly occurs under this form, but more commonly the edges of the \$Havy, octahedron are wanting, and fmall faces in their place \int.

The fracture of the ceylanite is conchoidal !|. Its internal luftre is glaffy. Nearly opaque, except when in very thin pieces. Hardnefs 12. Sp. gr. from

Four. de Min. \mathbf{N}° xxxviii. 264. |f Ibid. 263. * Hauy.
\dagger Defootils. 3.7647 * to 3.793 t. Colour of the mais, black; of very thin pieces, deep green. Powder, greenifh grey. According to the analyfis of Defcotils, the ceylanite is compoled of 68 alumina, 16 oxide of iron, 12 magncfia, 2 filica.

98 \ddagger
$\ddagger A n n$. de

Chim. xxiii.

$1+3$.
${ }^{30}$
G.IV. s.

Quariz.
§Kirvean's
, is fometimes amorphous. The primitive form of its cryytals, accordangles of whofe rhombs are $93^{\circ} 22^{\prime}$, and $86^{\prime \prime} 38^{\prime}$; fo
f Four. de Min. N^{0} xxviii. 255. that it does not differ much from a cube $\|$. The moft common variety is a dodecahedron *, compofed of two fix-fided pyramids, applied bafe to bafe, whofe fides are ifofceles triangles, having the angle at the vertex 40°, and each of the angles at the bafe 70°; the inclination of a fide of one pyramid to the contiguous fide of the other pyramid is 104°. There is often a fix-fided prifin interpofed between the two pyramids, the lides of which always correfpond with thofe of the pyramids + . For a defcription and figure of the other varicties of quartz cryftals, and for a demonftration of the law which they have followed in cryftallizing, we refer the reader to Romé de Lifle \ddagger and Mr Hauy \wp.
\ddagger Crysal.
ii. 71.
$\oint M_{\text {cm }}$.
Par. 1786, p. 78. See alfo Larretberie, Jour de Pbyy. xiii. 470 .

The texture of quartz is more or lefs foliated. Fracture, conchoidal or fplintery. Its luttre varies from 3 to 1 , and its tranfpatency from 4 to 1 ; and in fome cafes it is opaque. It caufes a double refraction. Hardnefs, from 10 to 1 r. Sp. gr. from 2.64 to 2.67 , and in one variety 2.691 . Its colom is exceedingly va-
rious; a circumftance which has induced mineralogifts to divide it into numerous varietics. Of thefe the following are the chief:

1. Pure colourlefs, perfeetly tranfparent cryftallized quartz, having much the appearance of artificial cryftal: known by the name of rock cryjal.
2. Quartz lefs tranfparent, and with a fplintery fracture, has ufually been diftinguifhed by the name of quartz, and feparated from rock cryftal. As there is no occafion for this feparation, we have, in imitation of Mr Hauy, chofen the word quartz for the \int pecific name, comprehending under it all the varieties.
3. Bloorl red quartz; formerly called compofella byacinth, and by Hauy quartz hematoide. It owes its colour to oxide of iron. The mineral known to mineralogitts by the name of finople, and confidered by them as a variety of jafper, has been difcovered by Dolomieu to be merely this variety of quartz in an amorphous ftate *. \#our. de
4. Yellow quartz ; called falfe topaz.

Min ${ }^{\circ}$
5. Rofy red quartz; called Bohemian ruby.

Ixviii. 255.
For a fuller enumeration of thefe varieties, we refer the reader to Smeifer's Mineralogy \dagger, Kirwan's Miner-t i. 89. alogy \ddagger, and Gmelin's edition of the Syllema Nature of 1.2 .24 Linnæus \oint. This laft writer, however, has arranged fe- \S iii. 194. veral minerals under quartz which do not belong to it.

Pure quartz is compofed entirely of filica; but fome of the varieties of this fpecies are contaminated with metallic oxides, and with a fmall quantity of other earths.

species 2. Elaftic Quartz (n).

35
This fingular fone is moderately elaftic, and flexible $\begin{gathered}\text { Elaftic } \\ \text { quartz. }\end{gathered}$ in every direction. Texture, earthy. Luttre 0 or 1. Hardnefs, 9. Brittle. Sp. gr. 2.624. Colour, greyifh white. Phofphorefces when fcraped with a knife in the dark. The fpecimen analyfed by Mr Klaproth contained

> 96.5 filica,
> 2.5 alumina,
> 5 oxide of iron.

99.511

species 3. Fliat (o).
4. Beiträge, ii. 116 .

32 Pyromachus-Pierre a fufil-Silex of Hauy.
This ftone, which has become fo neceffary in modern war, is found in pieces of different fizes, and ufually of a figure more or lefs globular, commonly among chalk, and uften arranged in fome kind of order. In Saxony it is faid to have been found cryftallized in hexanedrons, compofed of two low threc-fided pyramids applied bafe to bafe *.

Gmelin's
Its texture is compact. Its fracture, fmooth con- $\begin{gathered}\text { Surferma, iii. }\end{gathered}$ choidal. Luftre, external, 0 , the ftones being always 3^{18}. covered by a white crult; iuternal, 1 , inclining to greafy. Tranfp. 2; when very thin, 3. Hardnefs, 10 or 11. Sp. gr. from 2.58 to 2.63 . Colour varies from honey yellow to brownifh black. Very brittle, and fplits into fplinters in every direction. Two pieces of flint rubbed fmartly together phofphorefce, and emit a peculiar odour. When heated it decrepitates, and becomes white and opaque. When expofed long to the

C c 2
air
($)^{\prime}$ Kirwan's Min. I. 316.-Gerbard, Men. Berlin, 1783, 107.-Klaprotb's Beiträge, 2 Band. 113. See alfo Four. de Pbyy. XLI. g1.
(o) Kirwan's Min. 1. 301 -Dolomieu, Gour. de Min. No XXXIII. 693. and Salivet, ivid. 713. Thefe laft gentlemen give the only accurate account of the method of making gun fiatio.

Earthe and air it often becomes covered with a white crult.
$\underbrace{\text { Stones. }}$ Specimen of fint, analy fed by Klaproth, contained

> 98.00 filica,
> .50 lime,
> .25 alumina,
> 0.25 oxide of iron,
> 1.00 water.

* Baitrage,

100.00^{*}
i. 46 .

Another fpecimen, analyfed by Dolomieu, was compofed of 97 filica, I alumina and oxide of iron, 2 water.
$100 \dagger$
Min. No
Ixxiii. 702
The white cruft with which flint is enveloped, confifts of the fame ingredients, and alfo a little carbonat of lime. Dolomien difcovered that water is effential to fint ; for when it is feparated by heat the fone lofes its properties \ddagger.

The manufaEure of gun flints is chiefly confined to two or three departments in France. The operation is exceedingly fimple: a good workman will make 1000 flints in a day. The whole art confifts in Atiking the ftone repeatedly with a kind of mallet, and bringing off at each ftroke a fplinter, fharp at one end and thicker at the other. Thefe fplinters are afterwards fhaped at pleafure, by laying the line at which it is wifhed they fhould break, upon a fharp iron inftrument, and then giving it repeatedly fmall blows with a mallet. During the whole operation the workman holds the fone in his
$526 i j_{0}$ hand, or merely fupports it on his knee δ.
species 4. Opal (p).
This ftone is found in many parts of Europe. It is ufually amorphous. Its fracture is conchoidal, commonly fomewhat tranfparent. Hardnefs from 6 to 10. Sp. gr. from 1.7 to 2.66. The lownefs of its fpecific gravity, in fome cafes, is to be alcribed to aecidental cavities which the fone contains. Thefe are fometimes filled with drops of water. Some fpecimens of opal have the property of emitting various coloured rays, with a particular effulgency, when placed between the eye and the light. The opals which poffefs this property, are diftinguifhed by lapidaries by the epithet oriental; and often by mineralogits by the epithet nobilis. This property rendered the fone mucli elteemed by the ancients.

Variety 1. Opal edler-Opalus nobilis.

Luftre glafty, 3. Tranfp. 3 to 2. Hardnefs, 6 to 8. Colour, ufnally light bluifh white, fometimes yellow or green. When heated it becomes opaque, and fometimes is decompofed by the action of the atmofphere. Hence it feems to follow, that water enters effentially into its compofition. A fpecimen of this variety, analyfed by Klaproth, contained

$$
\begin{aligned}
& 90 \text { filica, } \\
& 10 \text { water, }
\end{aligned}
$$

rarious, greys, yellows, reds, browns, greens of different kinds.

Specimens of this variety fometimes occur with rifts : thefe readily imbibe water, and therefore adhere to the tongue. Thefe fpecimens fometimes become tranfparent when foaked in water, by imbibing that fluid. 'They are then called bydrophanes.

Variety 3. Cat's eyc *.

*Kirwan's
'This variety comes from Ceylon, and is feldom feen Min, i. 30%. by European mineralogifts till it has heen polifhed by Klaproti, the lapidary. Mr Klaproth has defcribed a fpecimen Beitrïje, io which he received in its natural ftate from Mr Greville ${ }^{9}$ of London. Its figure was nearly fquare, with fharp edges, a rough furface, and a good deal of brilliancy.

Its texture is imperfeclly foliated. Luftre greafy, 2. Tranfp. 3 to 2. Hardnefs 10. Sp. gr. 2.56 to 2.66. Colour, grey; with a tinge of green, yellow, or white: or brown, with a tinge of yellow or red. In certain pofitions it reflects a fplendid white, as does the eye of a cat ; hence the name of this ftone.

Two fpecimens, analyfed by Klaproth, the firft from Ceylon, the other from Malabar, were compofed of

$$
\begin{array}{cc}
95.00 & \begin{array}{c}
94.50 \text { filica, } \\
1.75
\end{array} \\
1.00 \text { alumina, } \\
1.50 & 1.50 \text { lime, } \\
0.25 & 0.25 \text { oxide of iron. } \\
\hline 98.5 \dagger & -125 \ddagger \\
\text { species 5. Pitchitone } \$.
\end{array}
$$

+ Beiträgres
i. 94 .
\ddagger Ibid.
P. 96.

This fone, which occurs in different parts of Ger-Pitchtone. many, France, and other countries, has obtained its § Kir. Min. name from fome refemblance which it has been fuppofed i. 292.to have to pitch. It is moft ufually in amorphous pieces Drubanton, of different fizes; and it has been found alfo cryitalli. ${ }_{178} 87,5.86$ zed in fix-fided prifms, terminated by three-fided pyramids.

Its texture is conchoidal and uneven, and fometimes approaches the fplintery. Luitre greafy, from 3 to 1. Tranfp. 2 to 1 , fometimes 0 . Fiardnels 8 to 10 . Exceedingly brittle; it yields even to the nail of the fin. ger. Sp. gr. 2.049 to 2.39. Its colours are numerous, greyifh black, bluifh grey, green, red, yellow of different fhades. Sometines feveral of thefe colours appear together in the fame fone. A fpecimen of pitchftone from Mefnil-montant near Paris \||, analyfed by || see Four. Mr Klaproth, contained

$$
\begin{aligned}
& 85.5 \text { filiea, } \\
& 11.0 \text { air and water, } \\
& 1.0 \text { alumina, } \\
& .5 \text { iron, } \\
& \frac{.5 \text { line and magnefia. }}{98.5 \pi}
\end{aligned}
$$

$$
\text { xxxi. } 2 \text { I } 90
$$

species 6. Cliryfoprafum (c).

Ti Beiträger
ii. 169.

This mineral, which is found in different parts of Chryfopra. Germany, particularly near Kofemiitz in Silefia, is al-frum. ways amorphous. Its fracture is either even or incli. ning to the fplintery. Scarcely any luftre. Tranfp. 2 to 3. Hardnefs 10 to 12 . Sp. gr. 2.479. Colour, green. In a heat of 130° Wedgewood it whitens and becomes opaque.

Earthe and A fpecimen of this ftone, analyfed by Mr Klaproth, Seunes contained 96.16 filica,
1.00 oxide of nickel, 0.83 lime, 0.08 alumina, 0.08 oxide of iron.
\ddagger Beitrage,
ii. 133 .
${ }^{36}$
G.V. r.As.

Topaz.

$98.15 \ddagger$

Genves V. 1. As.
species 1. Topaz (r).
The name topaz has been reffricted by Mr Hauy to the ftomes called by mineralogilts occidental ruby, topaz, and fapphyr; which, agreeing in their crytallization and molt of their properties, were arranged under one fpecies hy Mr Romé de Lille. The word topaz, derived from an ifland in the Red Sea (s), where the ancients ufed to hind topazes, was applied by them to a inineral very different from oors; One varitty of our topaz they denominated chryfolité.

The topaz is found in Saxony, Bohemia, Siberia, and Brazil, nixed with other mineruls in granite rocks.

It is comnouly cryftallized. The prinitive form of its cryftals is a prifm whufe ficks are rectangles, and bafes rloumbs, laving their greateft angles $124^{\circ} 22^{\prime}$,
§ Fig. 9.

H Jeur. de
MTim, ibid.

I Hany, ibid. and the integral molecule has the fame form + ; and the heigbt of the prifm is to a fide of the rhomboidal bafes as 3 to $2 \ddagger$. The different varieties of topaz cryltals hi. therto obferved, amount to 6 . Five of thefe are eightfided prifms, terminated by four-fided pyramids, or wedge fhaped fummits, or by irregular figures of 7,13 , or 15 fidesp; the laft variety is a tivelve-fided prifm, terminated by fix-fided pyranids wanting the apes. For in accurate defcription and figure of thefe varieties we refer the reader to Mir Hauy $\|$.
The texture of the topaz is fuliated. Its luftre is from 2 to 4 . Tranip. from 2 to 4. It caufes a duoble refraction. Hardneis 12 to 14 . Sp. gr. from 3.5311 to 3.564 . The Siberian and Brazil topazcs, when lieated, become pofitively eleftrified on one fide, and negatively on the other π. It is infufible by the blowpipe. The yellow topaz of Brazil becomes red when expofed to a ftrung heat io a crucible; that of Saxony beconles white by the fame procefs. This fhews us that the colouring matter of thefe two flones is different.

The colour of the topaz is various, which has induced mineralogitts to divide it into the following varieties:

1. Red topaz, of a red colour inclining to yellow; called Brazilian or occidental ruly.
2. Yellow topaz, of a golden yellow colour, and fometimes alfo nearly white; called occidental ur Brazil topaz. The powder of this and the following variety caufes fyrup of violets to affume a green colour *.
3. Saxon topaz. It is of a pale wine yellow colour, * Vougue- 3. Saxion topaz.
lin, Four. d and fometinies greyifh whitc.

zxiz. 165 .
4. Aigue marine. It is of a bluifh or pale green colour.
5. Occidental fafplyr. It is of a biue colour; and fome. times white.
A fpecimen of white Saxon topaz, analy fed by Vauquelin, contained 68 alumina,

3: filica.
 94*.

* Four. de

Min. N^{9}
species 2. Sommite.
This ftone was called fonmite by La Metherie, from ${ }^{\text {x }}$ the mountain cumma, where it was firf found It is 37 the mountain homma, where it was firft found. It is sommite,
ufually mixed with volcanic productions. It crytallizes in fix-fided prifms, fometimes terminated by pyramids. Colour white. Somewhat tranfparent. Sp. gr. 3.274I. Infutihle by the blow-pipe. According to the analyfis of Vauquelin, it is compofed of

49 alumina,
46 filica,
2 lime,
1 oxide of iron.

$9^{8} \dagger$

specifs 3. Shorlite \ddagger.
This fone, which recelved its vame from Mr Klap- \ddagger Kirzwn's roth, is generally found, in irregular oblong maffes or Minn.i. 286. columns, inferted in granite. Its texture is foliated.
Fracture uneven. Lultre 2. Tranfparency 2 to 1. Hardnefs 9 to 10. Sp. gr. 3.53. Colour greenifh white, or fulphur yellow. Not altered by heat. According to the analy fis of Klaproth, it is compofed of

$$
\begin{aligned}
& 50 \text { alumina, } \\
& 50 \text { filica. }
\end{aligned}
$$

100
Genus V. 2. sa.

$$
\begin{aligned}
& \text { species 4. Rubellite (} \mathrm{T} \text {) } \\
& \text { Red fiorl of Siberia. }
\end{aligned}
$$

This fone is found in Siheria mixcd with white quartz. It is cryftallized in fmall needles, which are grouped together and traverfe the quartz in various directions. Texture fibrous. Fracture even, inclining to the conchoidal. Tranfparency 2 ; at the edges 3 . Hardnefs 10. Brittle. Sp. gr. 3.1. Coluur crimfon, blood or peach red. By expofure to a red heat it becomes fnow white; but lofes none of its weight. It tinges foda blue, but does not melt with it.
A ccording to the analy fis of Mr Bindheim, it is compofed of 57 filica,
$\frac{5}{57}$ oxides of iron and manganefe.
97

$$
\begin{aligned}
& \text { species 5. Hornflate (u). } \\
& \text { Shijofe forphyry. }
\end{aligned}
$$

35 alumina,

40 Hormate.

This flone, which occurs in mountains, is generally amorphous; but fometimes alfo in columns. Struc-
(R) Kirwan's Mir. I. 254.-Pott. Mem. Berlin, 1747, p. 46.-Margraf, ilid. 1776, p. 73. and 160. Henkel. Ac. Acad. Nat. Cur. IV. 316.
(s) It got its name from ronaç, to feek; becaufe the ifland was often furrounded with fog, and therefore diffo cult to find. Sce Plinii lb. 37. c. 8.
(т) Kirwan's Min. I. 288. Bindbeim, Crell's Annals, 1792, p. 320.
(u) Kirwan's Min. I. 307.-Wiegleb, Crell's Annals, 1787 . I Band. 302.-See alfo Reufs. Semml. Naturo. Hij. Aufäą , p. 207.

Ear•he and
ture faty. Texture foliated. Fracture uneven and fplintery ; foinetimes approaching the conchoidal. Luftre 0. Tranfparency 1 or 0 . Hardnefs about 10. Sp. gr. from 2.512 to 2.7. Colour different flades of grey, from afs to blui/b or olive grecn. Melts at 145° Wedgewood into an enamel. A ipecimen, analyfed by Wedge. wood, contained 73.0 filica,
23.9 alumina,
3.5 iron.
100.4

Hournone.

* Kirwan,
i. 303 .
\ddagger Ibid. p.

305.

Chalcedomy.

This ftone, which makes a part of many mountains, is ufually amorphous; but, as Mr Kirwan informs us, it has been found cryftallized by Mr Beyer on Schneeberg. Its cryftals are fix-fided prifms, fometimes terminated by pyramids: hexaliedrons, confitting of two three-fided pyramids applied bafe to bafe; and cubes, or fix.fided plates *. Its texture is foliated. Fracture fplintery, and fometimes conchoidal. Luftre o. Tranfparency ${ }^{1}$ to 2. The cryftals are fometimes opaque. Hardnefs 7 to 9. Sp. gr. 2.532 to 2.653. Colour ufually dark blue : but horntone occurs alfo of the following colours ; grey, red, blue, green, and brown of different thades \dagger,

> According to Kirwan, it is compored of 72 filica, 22 alumina, 6 carbonat of lime.

$100 \ddagger$

species 7. Chalcedony.

This ftone is found abundantly in many countries, particularly in Iceland and the Faro iflands. It is noof commonly amorphous, ftalactitical, or in rounded maffes; but it oceurs alfo cryftallized in fix-fided prifms, terminated by pyramids, or more comnonly in four or fix fided pyramids, whofe fides are convex. Surface rough. Fracture more or lefs conchoidal. Lutte 1. Somewhat tranfparent. Hardnefs 10 to 11. Sp. gr. 2.56 to 2.665 . Not brittle.

According to Bergman, the chalcedony of Foroe is compofed of 84 filica, 16 alumina, mised with iron.

100
Variety 1. Common chalcedony.
Fracture even, inclining to conchoidal. Tranfparen. cy 2 to 3 ; fometimes 1. Its colours are various; it is moft commonly greyifh, with a tint of yellow, green, blue, or pearl; often alfo white, green, red, yellow, brown, black, or dotted with red. When friped white and black, or brown, akernately, it is called onyx; when ftriped white and grey, it is called chalcedonix. Black or brown chalcedony, when held between the eye and a trong light, appears dark red.

Variety 2, Cornclian.
Fracture conchoidal. Tranfparency 3 to 1 ; often cloudy. Its colours are various fhapes of red, brown,
and yellow. Several colours often appear in the fame nals. To this variety belong many of the fones known by the name of Scotch pebbles.

This fone is an ingredient in the compofition of many mountains. It occurs ufually in large amorphous maffes, and fometimes alfo cryttallized in fix-fided irregular priims. Its fracture is conchoidal. Luftre from 2 to 0 , Either opaque, or its tranfparency is 1. Hardnefs 9 to 10 . Sp. gr. from 2.5 to 2.82 . Its colours are various. When heated, it does not decrepitate. It feems to be compofed of filica and alumina, and often alfo contains iron.

Variety 1. Common jafper.
Sp . gr. from 2.58 to 2.7 . Its culours are different fhades of white, yellow, red, brown, and green; often variegated, fpotted, or veined, with feveral colours.

Variety 2. Egyptian pebble.
This variety is found chicfly in Egypt. It ufually has a fpheroidal or flat rounded figure, and is enveloped iu a coarfe rough crult. It is opaque. Hardneis $10 . \mathrm{Sp}$. gr. 2.564. It is chiefly diflinguifhed by the variety of colours, which always exit in the fame fpecimen, cither in concentric Arripes or layers, or in dots or dentritical figures. Thefe colours are, different browns and yellows, milk white, and ifabella green; black alfo has been obferved in dots.

Varicty 3. Striped jafper.
This variety is alfo diflinguifhed by concentric ftripes or layers of different colours: thefe colours are, yellow, brownih red, and green. It is diftinguifhed from the laft variety by its occurring in large amorphous maffes, and by its fracture, which is nearly even.
species 9. Tripoli.
This mineral is found fometimes in an earthy form, Tripolir but more generally indurated. Its texture is earthy. Its firacture often fomewhat conchoidal Luftre 0 . Generally opaque. Hardnefs 4 to 7. Sp. gr. 2.080 to 2.529. Abforbs water. Feel, harfh dry. Hardly adheres to the tongue. Takes no polifh from the nail. Does not ftain the fingers. Colour generally pale yellowifh grey, alfo different kinds of yellow, brown, and white.

It contains, according to Haaffe, 90 parts of filica, 7 alumina, and 3 of iron. A mineral belonging to this fpecies was analyfed by Rlaproth, and found to contain

$$
\begin{aligned}
& 66.5 \text { filica, } \\
& 7.0 \text { alumina, } \\
& 2.5 \text { oxide of iron, } \\
& 1.5 \text { magnefia, } \\
& 1.25 \text { lime, } \\
& 19 . \text { air and water. } \\
& 97.75 \\
& \text { GENUS VI. 1. AS1. }
\end{aligned}
$$

This name las been given by Mr Kirwan to a fone *Kirwan's which former nineralogifts confidered as a variety of Min. i. mica. It is found in granite. Its texture is foliated, ${ }^{2 \boldsymbol{2} 2 .}$

Earth and and it may be fplit into thin plates. Luftre metallic, 3. Stones. Opaque. Hardnefs 6. Sp.gr. 2.980. Colour brown$\underbrace{\text { ifh black. At } 153^{\circ} \text { Wedgewood, it melts into a black }}_{\text {Kirw.ibid. }}$ * Kirwi.ibid. compact glafs, the furface of which is reddlifh *.

A Specimen analyfed by Klaproth contained 63.00 alumina, 29.50 filica, 6.75 iron.

99.25

Species 2. Shorl \dagger.

No word has been wed by mineralogits with lefs limitation than horl. It was firft introduced into mineralogy by Cronftedt, to denote any ftone of a columnar form, confiderable hardnefs, and a fpecific gravity from 3 to 3.4 . This defcription applied to a very great number of fones. And fucceeding mineralogitts, though they made the word more definite in its fignification, left it fill fo general, that under the defignation of floorl almolt 20 diftinct fpecies of minerals were included.

Mr Werner firft defined the word foorl precifely, and reltricted it to one fpecies of ftones. We ufe the word in thic fenfe aftigned by him.

Shorl is found abundantly in mountains, either maffive or cryftallized, in three or nine fided prifms, often terminated by three fided fummits. The fides of the cryltals are longitudinally freaked. Its texture is foliated. Its fracture conchoidal. Luftre 2. Opaque. Hardnefs 10. Sp. gr. 2.92 to 3.212 . Colour black. Streak grey. It dces not become electric by heat. When heated to rednefs, its colour becomes brownifh red; and at 127° Wedgewood, it is converted into a
\ddagger Ibid. i. brownifh compact enamel \ddagger. According to Wiegleb, 166.
it is compofed of 41.25 alumina, 34.16 flica,
20.00 iron,
$5,+1$ manganefe.
§Crell's
Beiträge, r. Bandes. 4 . Stick, p. 21. 47.
$100.82 \oint$
species 5 . Granatite.
Staurotide of Hauy - Pierre de Croix of De LifleStaurolithe of Lametherie.
We have adopted from Mr Vanquelin the term granatite to denote this ftone, becaufe all the other names are ambiguous, having been ajplied to another mineral poifeited of very different preperties.
Granatite is found in Galicia in Spain, and Britanny in France. It is always cry tallized in a very peculiar form; two fix-fided prifms interfect each other, either at right angles or obliquely 9 . Hence the name crof $\mathrm{f}_{\text {Pone, }}$ by which it was known in France and Spain *. Mr Hauy has proved, in a very ingenious manner, that the prinitive form of the granatite is a rectangular prifm, whofe bafes are rhombs, with angles of $129 \frac{1}{7}^{\circ}$ and $50 \frac{1}{2}^{\circ}$; and that the height of the prifm is to the greater diagonal of a rhomb as 1 to 6 ; and that its integrant molecules are triangular prifms, fiunilar to what would be obtained by cutting the primitive cryftal in two, by a plane pafing vertically through the florter
diagonal of the rhomboidal bafe. From this ftructure he has demonftrated the law of the formation of the cruciform varieties \dagger. The colour of granatite is greyifh or reddilh brown.
t Anno de
Simple $\underbrace{\text { Stcries. }}$ Cbim. vi.
According to the analyfis of Vauquelin, it is com-1+2.
pofed of 47.06 alumina, 30.59 flicica, 15.30 oxide of iron, 3.00 lime.
$95.95 \ddagger$.
\ddagger 1bis. xxx .
Genus VI. 2. sai.
106.
species 4. Tourmaline (z).
G. Vi.2.

This ftone was firt made known in Europe by fpeci- s.at. mens brought from Ceylon ; but it is now found fre- Tourmaquently forming a part of the compofition of mountains. line. It is either in amorphous pieces, or crytallized in three or mine fide prifms, with four-fided fummits.

Its texture is foliated : Its fracture conchoidal. Internal luftre 2 to 3. Tranfparency 3 to 4 ; fometimes only 2 (a). Caufes only fingle refraction \oint. Hardnefs \S Hauy, 9 to 11. Sp. gr. 3.05 to 3.155. Colour brown, often Fuur. de fo dark that the tone appears black; the brown has al- $\begin{gathered}\text { Min. } \\ \text { xiii. } \\ 26 \sigma_{5}\end{gathered}$, fo fonetimes a tint of green, blue, red, or yellow.

When heated to 200° Fahrenheit, it becomes electric ; one of the fummits of the cryftal negatively, the other pofitively \mathbb{T}. It reddens when heated; and is fu- \mathbb{I} Epinus, fible per $\sqrt{ }$ e with intumefcence into a white or grey enamel.
A feecimen of the tourmaline of Ceylon, analy fed by Vauquelin, was compofed of

40 lilica,
39 alumina,
12 oxide of iron,
4 Jime,
2.5 oxide of manganefe,

* Ann. de species 5. Argentine fetfpar \uparrow. Cbinn. $x \times$. This ftone was difcovered by Mr Dodun in the black 105. mountains of Langueduc. It is either amorphous, or 49 eryftallized in rhomboidal tables, or tix or eight fided Argentinc prifnis. Its texture is foliated. Fragments rectangu- felfpar. lar. Laminx inflexible. Internal luftre 4. Tran!pa- i. Kirzearo rency 2. Colour white; two oppofite faces of the cryftals are filver white, two others dead white. Hardnefs of the filvery laminx 6, of the reft 9. Brittle. Sp. gr. 2.5. When the flame of the hlow-pipe is directed againt the edges of the cryftal (ftuck upon glafs), it eafily melts into a clear compact glafs; but when the flame is directed agrainlt the faces, they preferve their luitre, and the edges alone flowly melt.
According to the analytis of Dodun, it is compofed of

$$
\begin{aligned}
& 46 \text { filica, } \\
& 36 \text { alumina, } \\
& 16 \text { oxide of iron, } \\
& \frac{98}{98}
\end{aligned}
$$

When this ftone is expofed to the atmofphere, it is apt
(z) Kirw. I. 271.-Berg. II. 1 18. and V. 402.-Githard. Mem. Berlin, 1777. p. 14.--Hauy Mem. Par. 1784, 270.-Wilfon Pbil. Tranf. XII. 308.- Kpinus. Recueil fur la Tournaline. See alfo La Porterie. Le Sapphir, l'Oeil de Cbat, et la Tourmaline de Ceylon denafqués.
(A) And when black only 1 .

Earths and apt to decay: Its fuaface becomes iridefcent, and at laft Stones. changes to ochre yellow: Its fpecific gravity is 2.3 or 2.212 ; and when breathed upon, it gives out an earthy fmell.
. 50
Mica.

- Kirw i. lin, Nov.
Com. $P_{6} t, 0$
pol, xii. 549
+Fig. 11. of 120 . of 120° and $60^{\circ}+$: Its integrant molecule las the fame form. Sonetimes it occurs in rectangular prifms, whofe bafes alfo are rectangles, and fometimes alfo in a thort fix-
; Fig. 12.
§ Hauy,
Four. $d e$
Min. ${ }^{\circ}$
zxviii. 296 fided prifms \ddagger; but is much more frequently in plates or fcales of no determinate figure or fize \oint.

Its-texture is foliated. Its fragments flat. The lamellx flexible, and fomewhat elaftic. Luftre metallic, from 3 to 4 . Tranfparency of the laminx 3 or 4 , fometimes only 2 (c). Hardnefs 6. Very tough. Often abforbs water. Sp. gr. from 2.6546 to 2.9342 . Feels fmooth, but not greafy. Powder feels greafy. Colour, when pureft, filver white or grey ; but it occurs alfo yellow, greenifh, reddifh, brown, and black. Mica is fufible by the blow-pipe into a white, grey, green, or black, enamel ; and this laft is attracted by the magnet (D). Spanifh wax rubbed by it becomes negatively

A fpecimen of mica, analyfed by Vauquelin, contained 50.00 filica, 35.00 alumina, 7.00 oxide of iron. 1.35 magnefia, 1.33 lime, 94.68*.

Mica has long been employed as a fubfitute for glafs. A great quantity of it is faid to be ufed in the Ruffian marine for panes to the cahin windows of thips; it is preferred, becaufe it is not fo liable as glafs to be broken by the agitation of the thip.

This fone has a very ftrong refemblance to mica, and was long confidered as a mere variety of that mineral. It occurs formetimes in fmall loofe fcales, and fome- times in an indurated form; but it has not hitherto been found cryltallized.

Its texture is foliated. The lamellæ are flexible, hut not elaftic. Its luftre is from 2 to 4 . Traniparency from 2 to 4. Hardnets 4 to 6. Sp. gr. when indurated, from 2.7 to 2.8 . Feels greaiy. Culour moft commonly

个 Hauy,
Tour. de Min. №
xxviii.2gI. whitifh or greenifh. Spanilh wax rubbed with it be. comes pofitively electric \ddagger.

Variety 1. Scaly talこ.
 Talcite of Kirwan.

This variety occurs under the form of fmall fcales,
fearcely cohering. Luflre 3 to 4 . Very lisht. Adheres to the fingers. When rubbed upon the Akin, it gives it a glofs. Colour white, with a thade of red or green ; fometimes leek green.

Varicty 2. Common talc.
 Venetian talc.

This varicty often occurs in oblong nodules. Lulle, nearly metallic, 4. Tranfparency 2 to 3 ; when very thin 4. Hardues 4 to 5. Colour white, with a fide of green or red; or apple green, verging tuwards filver white. By tranfmitted light green.

Variety 3. Shiftofe talc.
Its ftructure is flaty. Fracture hackly and long [plintery. Eafily crumbles when rubbed in the fracture. External luftre 2 to 3 ; interıal, $1:$ but fometimes, in certain politions, 3 . Colour grey, with a fhade of white, green or blue. Becomes white and fcaly when expoled to the air.

A fpecimen of common talc, analyfed by Mr Chenevix, contained $\quad 4^{8.0 ~ f i l i c a, ~}$ 37.0 alumina, 6.0 oxide of iron, 1.5 magnefia,
I. 5 lime,
5.0 water,
$99.0 \$$.
species 8. Bafaltine $\$ 1$.
$\oint A n m . d e$
Cbim.xxviii.
Bafalit bornblende of Werner-Acinote of Hauy-Zil-
200. lertite of Lametherie-Shorl prifmatique bexagone Bafaluse. of Saullure.
This flone is found commonly in bafaltic rocks; hence its name, which we have borrowed from Mr Kirwan. It is cryitallized, either in rhumboidal prifms, or lix or eight fided prifms, terminated by three-fided pyramids. Its texture is foliated. Its fracture uneven. Laltre 3. Tranfparency, when in very thin plates, 1 . Harduefs from 9 to 10. Sp. gr. 3333. Colour black, dark green, or yellowifh green. Streak white. Tranfmits a redcifh yellow light. Before the blow-pipe, it melts into a greyith coloured enamel, with a tint of yeliow *. *Lt Lieure, A fpecimen, fcemingly of this fone, analy fed by Berg- Your. de N° man, contained 58 filica,
xxviii. 269.

27 alumina,
9 iron,
4 lime,
1 magnefia,
$99 \dagger$.
species 9. Horrablende f. $^{-}+$Berg. iii.
Ampbibole of Hany (E).
207.
$\stackrel{53}{4}$
This fone enters into the compofition of various blende. monntains. Its texture is very confpicuoufly foliated. \ddagger Kirau. i_{0} Fracture couehoidal. Fragments often rhomboidal. 213 . Luftre 2. Opaque. Hardnefs 5 to 9. Tough. Sp. gr. 2.922 to 34 I. Colour black, blackifh green, olive green,
(в) Hif. General de Voynges, T. XV1II. 272, quoted by Hauy Jour. de Min. No XXVIII. 299.
(c) Black mica is often nearly opaque.
(D) Hauy, ibid. p. 295 . Bergman, however, found pure mica infufible per $f e$; and this has been the cafe with all the fpecimens of Mufcovy glafs which we have tried.
(E) We fufpect, that under this name Mr Hauy comprehends floorl allo.

Earths and green, or leek green. Streak greenifh. It neither be-
$\underbrace{\text { Stones. }}$

* Hauy,

Four. de
Min. No
axviii. 26%.

+ Beob. der
Berlin, 5 -
Band. 317

Refplen-

dent horn

blende.
\ddagger Kirw. i
225. comes clectric by friction nor heat*. Before the blow. pipe it melts into a black glafs. A fpecimen of black hornbleude, analyfed by Mr Hermann, was compofed of

37 filica,
27 alumina,
25 iron,
5 lime,
3 magnefia.
$97 \dagger$
species 10. Refplendent Homblende.
There are two inincrals which Weruer confiders as varieties of hurnblende, and Mr. Kirwan as conitituting a dittinct freeies 'Thefe till future analy fes decide the point, we fall place here under the name of refplendent hornblende, the name given them by Mr Kirwan; and we fhall deferibe them feparately:

Variety' 1. Labradore hornblende.
Texture, curved foliated. Luftre, in fome pofitions, 0 ; in others metallic, and from 3 to 4 . Opaque. Hardnefs 8 to 9. Sp. gr. from 3.35 to 3.43 t. Colour, in moft pofrions, greyifh black; in uthers, it reflects a ftrong iron grey, fometimes mixed with copper red.

Variety 2. Shiller fpar \ddagger.
Texture foliated. Luftre metallic, 4. Tranfparency, in thin pieces, 1. Hardnefs 8 to 9. Sp. gr. 2.882. Colour green, often with a thade of yellow; alfo golden yellow. In fome pofitions it reflects white, grey, or yellow. At 141 Wedgewood, hardened into a porce. lain mafs. A fpecimen, analy fed by Gmelin, was com-
§ Bergbau-
kunde, 1 Band.
f. 92 . 55.

Obfidian.

- Kirwo t.

204. tine rock.
43.7 filica,

179 alumina,
23.7 iron,
11.2 magnefia.
26.55

It has been found in the Hartz, ftuck in a ferpen-

This fone is found either in detached mafles, or forming a part of the rocks which compofe many mountains. It is ufually invelted with a grey or opaque cruft. Its fracture is conchoidal. Its internal luitre 3. C'ranfparency 1. Hardnefs 1c. Sp. gr. 2.348. Colour black or greyinh black; when in very thin pieces, green. It melts into an opaque grey mals. According to Bergman, it is compofed of 69 filica,

22 alumina,
9 iron.

+ Berg iii.

 20436
Pctrilite. \ddagger Kirw. i. 3:5.

57
Felifite
f Kiru, i.
326.
$100 \dagger$
species 12. Petrilite \ddagger.
Cubic fulfpar.
This fone is found in the mafs of mountains. It is amorphous. Texture foliated. Fracture fplintery. Fragments cubic, or inclining to that form ; their faces unpolifhed. Luftre 2. Tranfparency partly 2, partly 1. Hardnefs 9. Sp. gr. 3.081. Colour reddifh brown. Does not melt at 1600 Wedgewood.

Species 13. Felfite o.
Compaa felfpar.
This ftone alfo forms a part of many mountains, and Suppl. Vol. II. Part I.
is amorphous. Texture fomewhat foliated. Fracture bneven, approaching to the fplintery. Luftre 1. Tranfparency fearce 1. Hardnefs 9. Colour azure blue, and fometimes brown and green Streak white. Before the hlow-pipe, whitens and becomes rifty; but is infulible per fe.

Grinus VII. sap. G. 58
species 1. Fclfpar*.
This fone forms the principal part of many of the highell mountains. It is commonly cryfallized 1 ts * Xirwa primitive form, according to De Lille, is a rectangular four and prifm, whole hafes are rhombs, with angles of 65° and $P b y f_{0}$ pafo $115 t^{\circ}$. Sunctimes the edges of the prifin are wanting, fim. and faces in their place ; and fometimes this is the eafe + Fig. I3. alfo with the acute angles of the rhomb. For a de-and 14. feription and figure of thefe, and other varieties, we refer the reader to Romé de Liffef, Mr Haizy $\}$, and Mr \ddagger Cryfollo Pini ${ }^{*}$.

Its texture is foliated. Its crofs fracture uneven. §Mem. Fragments thomboidal, and commonly fmooth and po. Psr. 1984 , lifhed on four fides. Luftre of the polifined faces often ${ }^{p}{ }^{2 / 3 / 3}$ Sur de 3. Tranfparency from 3 to 1. Hardnefs 9 to 10. Sp. Aouvelle gr. from 2.437 to 2.7. Gives a peculiar odour when Coryfallifaw rubbed. It is made electric with great diffeulty by tion, \&ic. B. $^{\text {. }}$ friction. Fufible per fo into a more or lefs tranfparent glafs. When cryitallized, it decrepitates before the blow-pipe.

Variety 1. Pure Felfpar. Moon fone-Adularia.

This is the pureft felfpar hitherto found. It occurs in Ceylon and Switzerland ; and was firf mentioned hy Mr Sage. Luftre nearly 3. Trarifparency 2 to 3. Hardnefs 10. Sp. gr. 2.559. Colour white; fometimes with a fhade of yellow, green, or red. Its furface is fometimes iridefcent.

Variety 2. Common Felipar.
Luftre of the crofs fracture 0 ; of the fraciure, in the direction of the lamine, from 3 to 1 . Tranfparency 2 to 1. Colour moit commonly fiefh red; but often bluifh grey, yelluwifh white, milk white, brownifh yellow; and fometimes blue, olive green, and even hlack.
I^{F} ariety 2. Labradore felfpar.
This variety was difeovered on the coaft of Liabradure by Nr Wolfe: and fince that time it has been found in Europe. Luftre 2 to 3. 'I'raufparency from I to 3. Sp. gr. from 2.07 to 26925 . Coluur grey. In certain pofitions, fpots of it reflect a blue, purple, red, or green coluur.

Varicly t. Continuous felfpar.

This varicty inolt probably belongs to a different fpecies; but as it has not hitherto been analyfer, we did not think ourfelves at liberty to alter its place.

It is found in large maffes. Texture earthy. Fracture uneven, fometimes fplintery Luftre o. Tranf. parency 1. Hardnefs 10. Sp gr. 2.609. Colour reddifh grey, reddifh yellow, feih red.

A fpecimen of green felfpar from Siberia, analyfed by Vauquelin, contained

Sh This ftonc appears to have been firft obferved by the
Lepitlite. Abbé l'oda, and to have been firlt clefcribed by De

* Crell'sAn. 13orn *. Hitherto it has only been found in Moravia
S9 This ftonc appears to have been firf obferved by the
Lepilnlite. Abbé l'oda, and to have been frrit sleferibed by De
* Crell's An. Born *. Hitherto it has only been found in Moravia ii. 190.
t Beyer,
Ann. de
Cbim. xxix. 10S.
\ddagger Le Lieqre, Jour. de М1in. $\mathrm{N}^{0} \mathrm{li}$. 219 \$ Ibid.
* Kl.protb 1 Hauy
\ddagger Le Lisevre, Jour de Min. Nuli. 219.
$\$$ Klad
* Klaproth, Ann. de Cbim. xsii. 37.

species 2. I.epidolite (F).

 rilalitic. in Germany, and Sudermania in Sweden + . There it is mised with granite in large amorphous mafles. It is compofed of thin plates, eafily feparated, and not unlike thofe of mica \ddagger Luftre, pearly 3. Tranfparency between 1 and 2. Hardnefs 4 to 5. Not eafily pulverifed \S. Sp. gr. from 2.816^{*} to $2.5549 \dagger$. Colour of the mafs, violet blue; of the thin plates, filvery white. Powder white, with a tint of red \ddagger Before the blowpipe, it froths, and melts eafily into a wlinte femitranfparent enamel, full of bubbles. Diffolves in borax with effervefcence, and communicates no colour to it $\$$. Effervefces flightly with foda, and melts into a mafs fpotted with red. With microcofmic falt, it gives a pearl coloured globule *.This flone was firt called lilalite from its colour, that of the lily. Klaproth, who difcovered its component parts, gave it the name of lepidolite (c).
It is compofed of
53 filica,

20 alumina,
18 potafs,
5 fluat of lime,
3 oxide of manganefe,
1 oxide of iron.
\dagger Vanqualin, Ann.de
Cbim. xxx. 105. 60
Leucite.
\ddagger Kirwo i. 38.
$100 \dagger$
species 3. Leucite \ddagger
Vefuvian of Kirwan-White Garnet of Vefuvins.
This flone is ufually found in volcanic productions, and is very abundant in the neighbourhood of Vefuvius. It is always cryftallized. The primitive furm of its cryftals is eithcr a cube or a rhomboidal dodecahedron, and its integrant molecules are tetrahedrons; but the varieties hitherto obferved are all polyhedrons: The moft common has a fpheroidal figure, and is bounded by 24 cqual and fimilar trapeziods \S; fometimes the faces are 12, 18, $3^{6,54}$, and triangular, pentagonal, \&c. For a defcription and figure of feveral of thefe, we refer the reader to Mr Hauy ${ }^{*}$. The cryftals vary from the fize of a pin-head to that of an inch.

The texture of the leucite is foliated. Its fracture fomewhat conchoidal. Luftre 3 ; when in a flate of decompofition 0 . Tranfparency 3 to 2 ; when decompofing 0 . Hardnefs 8 to 10 ; when decompofing 5 to 6 . Sp . gr. 2.4648. Colour white, or greyifh white (H). Its powder caufes fyrup of violets to affume a green colourt. $l:$ is compofed, as Klaproth has fhewn, of

> 54 filica,
> 23 alumina,
> 22 potafs.

99 (1)

It was by analyfing this fone that Klaproth difco. vered the prefence of potafs in the mineral kingdom; which is not the leaft important of the numerous difcoveries of that accurate and illuitrious chemift.
Lcucite is found fometimes in rocks which have never been expofed to volcanic fire; and Mr. Dolomieu has rendered it probable, from the fubftances in which it is found, that the leucite of volcanoes has not been formed by volcanic fire, but that it exifted previoully in the rocks upon which the volcanoes have acted, and that it was thrown out unaltered in fragments of thefe rocks \ddagger.

Genus VIII. sag.

Min. No
xxxix. \mathbf{x}^{77}

6 I
This fone has hitherto been only found cryftallized. G.vili,s AO_{0} The primitive form of its cryitals is a regular fix-fided Emerald. prifm; and the form of its integrant molecules is a triangular prifm, whofe fides are fquares, and bafes equilateral triangles \oint. The moft common variety of its cry $\$$ Souny, ftals is the regular fix-fided prifm, fometimes with the Mour. de edges of the prifm or of the bafes, or the folid angles; 7_{2} or both wanting ${ }^{*}$, and fmall faces in their place \dagger. The *Fig. 16. fides of the prifm are generally channelled. $\quad \dagger$ Rome de
Its texture is foliated. Its fracture conchoidal. Luftre ${ }_{245}^{L i / e}$, ii. ufually from 3 to 4. Tranfparency from 2 to 4. Caufes Aauy, 3nd a double refraction. Hardnefs 12 . Sp. gr. 2.65 to 2.775. Colour green. Becomes electric by friction, but not by heat. Its powder does not phofphorefce when thrown on a hot iron \ddagger. At 150° Wedgewood \ddagger Dolomieuc it melts into an opaque coloured mafs. According to $\frac{\text { Gour. de }}{\text { Min. }} \mathrm{N}^{0}$ Dolomieu, it is fufible per fe by the hlow-pipe *. xviii. re*

This mineral was formerly fubdivided into two diftinct * Ibid. fpecies, the emerald, and beryl or aqua marina. Hauy demonftrated, that the emerald and beryl correfponded exactly in their ftruEture and properties, and Vanquelin found that they were compofed of the fame ingredients; henceforth, therefore, they mult be confidered as varieties of the fame fpecies.

The variety formerly called emerald varies in colour from the pale to the perfect green. When heated to 120° Wedgewood, it becomes blue, but recovers its colour when cold. A fpecimen, analyfed by Vauquelin, was compofed of

> 64.60 filica,
> 14.00 alumina,
> 33.00 glucina,
> 3.50 oxide of chromum,
> 2.56 lime,
> 2.00 moifure or other volatile ingredient.
$99.66+$
$+A n n, d z$
The beryl is of a greyifh green colour, and fometimes Cbim. xxvis blue, yellow, and even white: fometimes different co- ${ }^{26+}$ lours appear in the fame ftone \ddagger It is found in Ceylon, 1 Dolomises, different parts of India, Brazil, and efpecially in Siberia $i_{b i d}$. and Tartary, where its cryftals are fometimes a foot
long $\$. \$ 1 b i d i$
(f) Kirzu. I. 208.-Karfen. Beob. der Berlin, 5 Band. 71.-Klaproth Beiträge, I. 279. and II. 191.
(G) That is, ficale fone, or fone compored of fcales: From netis the fcale of a fifh, and nisos a fone.
(H) Hence the name leucite, from x:unns, white.
(1) See Jour. de Min. N ${ }^{\circ}$ XXVII. 164. and 201. and Klaproth's Beiträge, II. 39.
(x) Kir. I. 247. and 248.-Dolomieu. Magazin Encuclapadique, II. 17. and 145.; and Your de Min, No XVIII. 19.—Klıgrath Beiträge, II.

Earths and long. A fpecineas of beryl, analyfed by Vauqueliń, Stones. contained

* Ann. de

Cbim, xxviii.

 168.$$
62
$$

G. IX. $\mathrm{sAB}^{\mathrm{B}}$

Staurolite.
t Kirw. i.
282. Andre species 1. Staurolite \dagger. Andreolite of Lametherie and Hauy-Hyacinthe blanche cruciforme, var. 9 of Romé de Lifle.
This ftone has been found at Andreafberg in the Hartz. It is cryfallized, and the form of its cryftals has induced mineralogits to give it the name of crofsfone. Its cryftals \ddagger are two four-fided flattened prifms, terminated by four fided pyramids, interfecting each other at right angles : the plane of interfection paffing longitudinally through the prifms (L).

Its texture is foliated. Its luftre waxy, 2. Tranfparency from 1 to 3. Hardnefs 9 . Brittle. Sp. gr. 2.355 to 2.36 . Colour milk white. When heated flowly, it lofes 0.15 or 0.16 parts of its weight, and falls into powder. It effervefces with borax and microcofmic falt, and is reduced to a greenifh opaque mafs. With foda it melts into a frothy white enamel. When its powder is thrown on, a hot coal, it emits a greenifh yellow light \oint.

A fpecimen analyfed by Weftrum was compofed of 44 filica,
20 alumina,
20 barytes,
16 water.
100
Klaproth found the fame ingredients, and nearly in * Beiträge, the fame proportions *.
ii. 80.

A variety of flaurolite has been found only once, which has the following peculiarities.

Its luftre is pearly, 2. Sp. gr. 2.361. Colour brownifh grey. With foda it melts into a purplifh and yellowifh frothy enamel. It is compofed, according to Weftrum, of 47.5 filica,
12.0 alumina,
20.0 barytes,
16.0 water,
4.5 oxides of iron and manganefe.

63
G. X. A8L. Chryfobe-

100.0

Genus X. I. asl.
species i. Chryfoberyl \dagger.
Oriental chryfolite of jewellers-Cymophane of Hauy.
Hitherto this ftone has been found only in Brazil, the illand of Ceylon, and as fome affirm near Nortfchink in Siberia. Werner firft made it a diftinct fpecies, and gave it the name which we have adopted. It is ufually found in round maffes about the fize of a pea, but it is fometimes allo cryftallized. The primitive form of its cryftals is a four-fided rectangular prifm, whofe height
is to its breadth as $\sqrt{ } 3$ to 1 , and to its thicknefs as $\sqrt{2}$ to i^{*}. The only variety hitherto obferved is an eight- Stones. fided prifm, terminated by fix-fided fummits \dagger. Two of *Fiq. 18 . the faces of the prifm are hexagons, two are reetangles, f Fig. 19. and four trapeziums; two faces of the fummits are rectangles, and the other four trapeziums. Sometimes two of the edges of the prifm are wanting, and fmall faces in their place \ddagger.

1Hauy,
Its texture is foliated. Lamine parallel to the faces Jour. de of the prifm. Luftre 3 to 4 . Tranfparency 3 to 4. Min. $\mathrm{N}^{\text {o }}$ Caufes fingle refraction. 'Hardnefs 12 . Sp. gr. from 3.698 \$ to 3.7961^{*}. Colour yellowih green, furface $\$$ Wrerner. fparkling. It is infufible by the blow-pipe per fe, and * Hany. with roda.

A fpecimen of chryfoberyl, analyfed by Klaproth,
was compofed of
71.5 alumina,
18.0 filica,
6.0 lime,
1.5 oxide of iron.
$97.0 \dagger$
\dagger Beitrigges
Genus X. 2. sal.
species 2. Hyalite*.
This fone is frequently found in trap. It occurs * Kirwo i_{2} in grains, filaments, and rhomboidal maffes. ' Tcxture fo. 296.
liated. Fracture uneven, inclining to conchoidal. Luftre glafly (M), 2 to 3 . Tranfparency 2 to 3 ; fometimes, tho' feldom, it is opaque. Hardnefs 9. Sp. gr. 2.11 $\dagger .+$ Kirwan Colour pure white. Infufible at 150° Wedgewnod; but it yields to foda \ddagger. According to Mr Link, it is $\ddagger 18$. compofed of $\quad 57$ filica, 18 alumina,
15 lime.
90 and a very little iron \oint.
§Crell's Amo
wals, 1790. 2 Band. 232

Species 3. Iddelite *.

This fone has litherto been found only in Sweden ${ }^{65}$ sdelite. at Moffeberg and Adelfors. From this laft place Mr * Kirwo i Kirwan, who firft made it a diftinct fpecies, has given 276. it the name which we have adopted. It was firft mentioned by Bergman \dagger. Its form is tuberofe and knotty. \dagger opufc. vi Texture ftriated; fometimes refembles quartz. Luftre ${ }^{101}$.
from o to 1. Sp. gr. 2.515 after it has abforbed wa-
ter \ddagger. Colour light grey, often tinged red; alfo yel- \ddagger See Kirlowifh brown, yellowifh green, and green. Before the zoan's Mir. blow-pipe it intumefces and forms a frothy mafs. Acids ${ }^{\text {i. } 276 . ~}$ convert it into a jelly \oint. A fpecimen from Moffeberg, \S. Berg. iii. analyfed by Bergman, contained

> | 69 filica, |
| :--- |
| 20 alumina, |
| 8 lime, |
| 3 water. |
| 100^{*} |

A fpecimen from Edelfors yielded to the fame che. 101 .

$$
\begin{aligned}
& 62 \text { filica, } \\
& 18 \text { alumina, } \\
& 17 \text { lime, } \\
& 4 \text { water. } \\
& 100 \dagger
\end{aligned}
$$

$+26 . i_{6}$
Dd2 Genus
(1) See Gillot, Jour. de Phyf. 1793, p. 1 and 2.
(m) Hence probably the name byalite, which was impofed by Wemer from 'vanis, and asos, a fone.

Earths and Stones． 66 G．X． 3 ． sawl． Zeohte．

According to the analy fis of Vauquelin，it is compo－
fed uf
52.0 fllica，
17.5 alumina，
9.0 lime，
18.5 water．
9.7 .0
species 6．Analcime．
This fone，which was difcuvereci by Mr Dolomieu， is found cryftallized in the cavities of lava．It was firf made a dittinct fpecies by Mr Hauy．Mineralogitts had formerly confounded it with zeolite．

The primitive form of its cryftals is a cube．It is fometimes found cryftallized in cubes，whofe folid angles are wanting，and three fimall triangular facts in place of each；fometimes in polyhtedroins with 24 faces．It is ufually fomewhat tranfparent．Hardnefs about 8 ； feratches glafs 要解tiy．Sp．gr．above 2．When rubbed， it acquires only a fmall degree of electricity，and with difficulty（ R ）．Before the blow－pipe it melts without + Hauy， frothing，into a white femitranfparent glafs \dagger ．

> Genus X. 4. sla.
> species 7. I.azulite f.

This ftone，which is found chiefly in the northern parts of Afia，has been long known to mineralogits by parts of Afia，has been long known to mineralogifts by Lazulite．
the name of lapis lazuli．This term has been contract．\ddagger Kirzu，i． ed into lazulite by Mr Hauy；an alteration which was ${ }^{2830}$ certainly proper，and which therefore we have adopted．
Lazulite is always amorphous．Its texture is earthy． Its fracture uneven．Luftre o．Opaque，or nearly fo． Hardnefs 8 to 9．Sp．gir． 2.76 to 2.945^{*} ．Colour $*$ Brijom。 blue（s）；often fpotted white from fpecks of quartz， and yellow from particles of pyrites．

It retains its colour at 100° Wedgewood；in a higher heat it intumefces，and melts into a yellowifh black mafs．With acids it effervefces a little，and if previ－ oufly calcined，forms with them a jelly．
Margraff publifhed an analyfis of lazulite in the Ber－ lin Memoirs for 1758．His analyfis has fince been confirmed by Klaproth，who found a fpecimen of it to contain
46.0 filica，
14.5 alumina，
28.0 carbonat of lime，
6.5 fulphat of lime，
3.0 oxide of iron，
2.0 water．

$100.0 \dagger$

＋Beitrieige，
Genus XI．sall．
species 1．Garnet（t）．
This fone is found abundantly in many mountains． It is ufually cryftallized．The primitive form of its
（n）Kirzv．I．278．－Guettard，IV．637．－Bucquet，Mim．Sav．Etrang．IX． 576. －Pollctier，Four．de Pbyf． XX． 420 ．
（0）Hence the name zeolite，given to this mincral by Cronftedt；from $6 \omega_{0}$ to ferment，xi日－s，a fione．
（ P ）Dr Black was accuftomed to mention，in the courfe of his lectures，that Dr Hutton had difcovered foda in zeolite．This difcovery has not hitherto been verified by any other chemical mineralogitt．
（a）Hence the name given to this mineral by Hany，flilbite，from oinh 6, to finine．
（R）．Hence the name analcime given it by Hauy，from avanats，sueak．
（s）Hence the name lazulite，from an Arabian word $a z u$ l，which fignifies blue．
 －Wiegleb，Ann．de Cbim．I． 23 I．

Earths and crytals is a dodecahedron whofe fides are rhomb?, with stones- angles of $78^{\circ} 35^{\prime} 44^{\prime \prime}$, and $120^{\circ} 29^{\prime} 16^{\prime \prime}$. 'The inclisation of the rhombs to each other is 120°. This dodecahedron may be confidered as a four-fided prifin, ter- minated by four-fided pyramids *. It is divifible into four parallelopipeds, whofe fides are rbombs; and each of thefe may be diviled into four tetrahedrons, whofe fides are ifofeeles triangles, equal and limilar to cither of the halves into which the rhombuidal faces of the dodecahedron are divided by their fhorter diagonal. The + Hauy, ibilis.integrant nolecules of garnet are fimilar tetrahedrons \dagger 306. Sonretimes the edges of the dodecahedrons are wanting, and finall faces in their place ; and fometimes garnet is crytallized in polyhedrons, having 24 trapezoidal faces. For a defcription and figure of thefe, and other varieties of garnet, we refer to Romé de Liffe and Hauy \ddagger.

The texture of garnet, as Bergman firlt fhewed, is 1ometimes only 1 or 0 . Caules hingle refraction 1. . Hardnefs from 10 to 14 . Sp. gr. 2.75 to 4.182 . Colour ufually red. Often attracted by the magnct. Fufible per fo by the blow-pipe.

Varity I. Oriental garnet (v).
Internal luftre 3 to 4. Tranfparency 4. Hardnefs 13 to 14. Sp. gr. 4 to 4.188 . Colour deep red, inclining to violet (x).
liariety 2. Common garnet.
Fracture uneven, inclining to the conchoidal. Internal luttre 2 to 3. Tranfparency from 3 to 0 . Hardnefs 10 to 11 ; fometimes only 9. Sp. gr. 2.75 to 4. Colour commonly deep red, inclining to violet ; fometimes verging twwards black or olive; fonietinies leek green, brown, yellow.

> Varicty 3. Amorphous garnet.

Structure flaty. Luftre 2. Tran parency 2 to 1. Hardnefs it to 12. Sp. gr. 3.89 . Colour brownifh or blackihh red. Found in Sweden, Switzerland, and the Eaft Indies.

A fpecimen of oriental garnet, analyfed by Klaproth, contained $\quad 35.75$ flica,

$$
\begin{aligned}
& 27.25 \text { alumina, } \\
& 36.00 \text { oxide of iron, } \\
& 0.25 \text { oxide of manganefe. } \\
& 9925^{*}
\end{aligned}
$$

A fpecimen of red garnet, analyfed by Vauquelin, contained 52.0 filica, 20.0 alumina, 17.0 oxide of iron, $\frac{7.7}{06.7+}$ lime.
A fpecimen of blac's garnet yielded to the fame che. mift
\ddagger Ibid. 573.

Mr Klaproth found a fpecimen of Bohemian garnet, compofed of to.co filica, 28. 50 alumina, 16.50 oxide of iron, 10.00 magnefin, 3.50 lime, .25 oxide of manganefe.

```
        98.75*
        species z. Thumerfone t.
    Franolite of Lamatheric-Aximits of Hauy.
```

 This itone was hirft deferibed by Mr Schreber, who fone. Kirw. is
 found it near Balme d'Auris in Danphinć, and gave it 7 - Feh
 the name of foorl viole \(\ddagger\). It was afterwards found near thter, Journ

called it thumerflone.

cryttallized. The primitive form of its cry thals is a
rectangular prifm, whofe bafes are parallelograms with
anyles of $11^{\circ} 32^{\prime}$ and $75^{\circ} 28 \%$. The mioft ufual va- I Houry,
riety is a fat rhombuidal parallelopiped, with tue of Mint . No
its oppofite edyes wanting, and a fmall face in place of xxvini . 264 .
each $\|$. The iaces of the parallelopiped are generally if tig. 2I.
ftrak:d longitudiually f .

The texture of thumerflone is foliated. Its frachure conchoidal. Luftre 2. Tranfparency, when cryflallized, 3 io 4 ; when amorphous, 2 to 1. Caufes imple refraction*. Harlnefs 10 to 9. Sp. gr. 3.2956. Co- ${ }^{*}$ Hauy, ibiz lour clove brown; fometimes inclining to red, green, grey, violet, or black. Before the blow-pipe it froths like zeolite, and melts into a hard black enamel. With borax it exhibits the fame phenomena, or even when the ftone is fimply lieated at the end of a pincer \dagger.
A fpecimen of thumeritone, analyfed by Elaproth, contained

$$
\begin{aligned}
& 52.7 \text { filica, } \\
& 25.6 \text { alutina, } \\
& 9.4 \text { lime, } \\
& 9.6 \text { uxide of iron with a trace of } \\
& \text { manganefe. }
\end{aligned}
$$

18 alumisa,
19 lime,
${ }^{1} 4$ oxide of iron,
4 oxide of manganefe.

99 §

species 3. Prehnite (y).
Though this flone had been mentioned by Sage \|, Prehnite. Romé de Lifle \mathbb{G}, and other mineralogits, Werner was || Miner. io. the firlt who properly diftinguifhed it from other min.e. ${ }^{232}$. rals, and made it a diftinct fpecies. The fpecimen which $\frac{5}{\text { Cry }}$ attogo he examined was brought frum the Cape of Good Hope ${ }^{\text {i. } 275}$. by Colonel Prchn; hence the name grebuite, by which he diftinguifled it. It was found near Dunbarton by Mr Grotche *; and fince that time it has been obfer- * Ann. de ved in other paris of Scotland.

\author{

- Beiträge,
 ii. 2 I.
 71
 Thumerflone. 7 - Hel iftier, Journ. xvi. uo. : D_{e} Lijir,
}
ii. 126 .

Cb im. 2 I 3
(v) This feems to be the carbuncle ($\alpha \otimes \theta_{\rho} \alpha_{\xi}^{\xi}$) of Theophraftus, and the carbunculus garamanticus of other ancient writers. See Hill's Theophrafius, xeci nefav, p. 74. and 77 .
(x) Hence, according to many, the name garnet (in Latin granatus), from the refemblance of the fone in co. lour to the bloffoms of the pqmegranate.
(y) Kirwu. I. 274--Hafenfratz, Four. de Phyf. XXXII. 81.-Sage, ibid. XXXIV. 446.-Klaproth. Beots. der Berlin, 2 Band. 211 . Aud Ann. de Chim. I. 201.

Larthy and It is both amorphous and cryftallized. The cryftals

Stulics.

* Hauy,
$\mathrm{c}_{\mathrm{a}} \mathrm{mi}$. de
Min. N ${ }^{\circ}$
xaviii.277.
\dagger Hauy, iVid
t Anno dc
Cbim: i.
$20 \$$. are in groups, and confufed : they feem to be fourfided prifnes with dihedral fummits *. Sometimes they are irregular fix.fided plates, and fometimes flat thomboidal parallelopipeds.

Is texture is foliated. Fracture uneven. Internal luftre pearly, fcarcely 2. Tranfparency 3 to 2. Hardnefs 9 to 10 . Brittle. Sp. gr. 2.6969t. Colour apple green, or greenifh grey. Before the blow-pipe it froths more violently than zeolite, and melts into a brown enamel. A fpecimen of prehnite, analyfed by Klaproth, was compofed of
43.83 filica,
30.3 alumina,
I 8.33 lime,
5.66 oxide of iron,
1.16 air and water.
99.31 \ddagger

Gour. de
Pby. No
Exxii. 8t.
73

'Thallite.

fl Cryfallog. This ftone is found in the fiffures of mountains; and
ii. 401. hitherto only in Dauphiné and on Chamouni in the Alps.

It is fometimes amorphous, and fometimes cryftallized. The primitive form of its cryftals is a rectangu_ lar prifm, whofe bafes are rhnmbs with angles of 114°

If Hauy,
Tour. de
Min. No
xyviii. 271 .
*Fig. 22 .
\dagger Romé de
Liffe, ibid.
and H iuy,
Jour. de
Min. No
EIX. 415 .
37^{\prime}, and $65^{\circ}{ }^{2} 3^{\prime} \pi$. The moft nfual variety is an elongated four-fided prifm (often flattened), terminated by four-fided incomplete pyramids * ; fometimes it occurs in regular fix.fided prifms t. The cryftals are often very flender.

Its texture appears fibrous. Luftre inconfiderable. Tranfparency 2 to 3, fometimes 4 ; fometimes nearly opaque. Caufes fingle refraction. Hardnefs 9 to 10. Brittle. Sp.gr. $3 \cdot 4529$ to $3 \cdot 46$. Colour dark green (z). Powder white or yellowifh green, and feels dry. It does not become electric by heat. Before the blowpipe, froths and melts into a black flag. With borax
$\ddagger H_{\text {auy }}$, and melts into a green bead \ddagger.
Defcotils, A fpecimen of thallite, analyfed by Mr Defcotuls, ibid. contained

> Genus XII. I, ams. species t. Cyanite *. Sappare of Sauftire.
 who gave it the mainc of fapparet. It is commonly Cyanite. found in granite rocks. The primitive form of its cry- * Kirve i. ftals is a four-fided oblique priiin, whofe fides are incli- 209--Sage, ned at an angle of 103°. The bafe forms with one fide $P b_{2} V_{0 x x y}$. of the prifm an angle of 103°; with another an angle of 39 . 77°. It is fometimes cryltallized in fix-fided prifms \ddagger. \dagger Four. de

Its texture is foliated. Laminx long. Fragments Pbyf. xxxiv. long, fplintery. Luftre pearly, 2 to 3. Tranfparency \ddagger H. of the lamiuæ 3. Canfes fingle refraction \oint. Hardnefs four. de 6 to 9. Brittle. Sp.gr. from 3.092 to $3.622 \|$. Feels Min, No fomewhat grealy. Colour milk white, with fhades of xxviii. 282 . fky or pruffian blue (A) ; fometimes blnifh grey ; fome- Houy, ibid. times partlybluifh grey, partly yellowifh or greenifh grey.

Before the blow-pipe it becomes almolt perfectly white; but does not melt. According to the analyfie of Sauflure, it is compofed of

$$
\begin{aligned}
& 66.92 \text { alumina, } \\
& 13.25 \text { magnefia, } \\
& 12.81 \text { filica, } \\
& 5.48 \text { iron, } \\
& 1.71 \text { lime. } \\
& \hline 100.17^{*}
\end{aligned}
$$

Cyanite has alfo been analyfed by Struvius and Her. Pbyf. ibid. mann, who agree with Sauffure as to the ingredients; but differ widely from him and one another as to the proportions.

Struvius.	Hern
$5 \cdot 5$	- 30 alumina,
30.5	- 39 magnefia
51.5	- 23 filica;
5.0	- 2 iron,
4.0	3 lime.
96.5 \dagger	97才

\dagger Crell'sAn
nols, 1790.
\ddagger Ibid.
species 2. Serpentine (b).
This ftone is found in amorphous maffes. Its frace c. XII. 2. ture is fplintery. Luftre o. Opaque. Hardnefs 6 to msa. 7. Sp.gr. $2.26+5$ to 2.709 . Feels rather foft, almoft Serpentine greafy. Generally emits an earthy fmell when breathed upon. Its colours are various thades of green, yellow, red, grey, brown, blue: commonly one or two colours form the ground, and one or more appear in fpots or veins (c).

Before the blow-pipe it bardens and does not melt.
A fpecimen of ferpentine, analyfed by Mr Chenivix,
contained
34.5 magnefia,
28.0 filica, 23.0 alumina, 4.5 oxide of iron, 0.5 lime,
10.5 water.
101.0§

Genus § Ann.de Cbim.xxviii 199.
(z) Hence the name thallite given it by Lametherie, from өxanos, a green leaf.
(a) Hence the name cyanite, impofed by Werner.
(в) Kirw. I. л56.-Margraf, Mem. Berlin, I759, p.3.-Eaycn, Jour. de Phyf. XIII. 46.-Majer, Crell's Annals, $1789,11.416$.
(c) Hence the name ferpentine, given to the ftone from a fuppofed refemblance in colours to the Rin of a ferpent.
C. Xint. This tome is found in' nefts and beds, and is always msai morphous. Its ftructure is often flaty. Texture unPotturne. dulatingly foliated. Luftre from 1 to 3. TranfpaPottoune. rency from 1 to 0 ; fometimes 2. Hardnefs 4 to 6. Kirrvu. i. Brittle. Sp. gr. from 2.8531 to 3.023 . Feels greafy. Sometimes abforbs water. Colour grey with a fhade of green, and fometimes of red or yellow ; fometimes leek green; fometimes fpecked with red.

Pot tone is not much affected by fire ; and has therefore been made into utenfils for boiling water; hence its name.

According to Wiegleb, the potfone of Como cantains
3^{8} magnefia,
3^{8} filica,
7 alumina,
5 iron,
1 carbonat of lime,
$\frac{1}{90}$ Auoric acid..

77
This mineral enters as an ingredient into different mountains. It is fometimes amorphous, and fometimes cryitallized in oblong, four-fided, acuminated cry tals.
Its texture is foliated. Its luftre from 0 to 2 . O. paque. Hardnefs from 4 to 6 ; fometimes in loofe fcales. Colour green.

Variety 1. Farinaceous chlorite.
Compofed of fcales fcarcely cohering, either heaped tngether, or invefting other ftones. Feels greafy. Gives an earthy fmell when breathed on. Difficult to pulverife. Colour grafs green; fometimes greenifh brown ; fometimes dark green, inclining to black. Streak white. When the powder of chlorite is expofed to the blowpipe it becomes brown. Before the blow-pipe, farinaceous chlorite froths and melts into a dark brown glafs; Vouguclin, with borax it forms a greenifh brown glafs \ddagger.

Variety 2. Indurated chlorite.
This variety is cryftallized. Luftre 1. Hardnefs 6. Feel meagre. Colour dark green, almoft black. Streak mountain green.

Variety 3. Slaty chlorite.
Structure flaty. Fragments flatted. Internal luffre 1 to 2. Hardnefs 5. Colour greenifh grey, or dark green inclining to black. Streak mountain green.

A fpecimen of the firft variety, analyfed by Vauquelin, contained 43.3 oxide of iron,

$$
26.0 \text { filica, }
$$

15.5 alumina,
8.0 magnefia,
2.0 muriat of potafs,
4.0 water.
98.8 §

A fpecimen of the fame variety yielded Mr H xpner

A fecimen of the fecond variety, analy-red by the ${ }^{\text {Yo oyoges }}$, ii. fame chemitt, contained

> 10.15 oxide of iron,
> 41.15 flica,
> 6.13 alumina,
> 39.47 magnefia,
> 1.50 lime,
> 1.50 air and water.
$99.90 \dagger$
$\dagger \operatorname{Crell}: A \pi$
On the fuppofition that thefe analyfes are accurate, p.bss, 1793 , the enormous difference between them is a demonftration that chlorite is not a chemical combination, but a mechanical mixture.

Genus XIV. slam.
98
G. XIV.
species 1. Siliceous fpar (d).
sLam
This ftone has been found in 'Tranfylvania. It is filiceous. cryftallized in 4 or 6 fided prifms, channelled tranf. fpar. verfely, and generally heaped together. Its texture is fibrous. Its luftre filky, 2. Its colours white, yellow, green, light blue. According to Bindheim, it contains
61.1 filica,
21.7 lime,
6.6 alumina,
5.0 magncfia,
1.3 oxide of irong
3.3 water.
99.0 *

* Eerg. vi.

104.

Genus XV. samli: species 1. Argillite \dagger.

Its fructure is flaty. Its texture foliated. Fracture \dagger Kirzo. ir fplintery. Fragments often tabular. Luftre, moft com. ${ }^{234}$ monly filky, 2 ; fometimes 0 . Tranfparency from o to x. Hardnefs from 5 to 8. Sp. gr. from 2.67 to 2.88. Does not adhere to the tongue. Gives a clear found when ftruck. Often imbibes water. Streak white or grey. Colour moft commonly grey, with a fhade of blue, green, or black; fometimes purplifh, yellowifh mountain green, brown, bluifh black: fometimes itriped or fpotted with a darker colour than the ground.

It is compofed, according to Kirwan, of filica, alumina, magnefia, lime, oxide of iron. In fome varieties
(D) Is this the tremolite of Lowitz from the lake Baikal in Siberia? If fo, the name of the genus ought to be sLm ; for he found it contain no alumina. According to his analyfis, it was compofed of

> 52 filica,
> 20 lime,
> 12 carbonat of lime,
> 12 magnefia,

Eart's and the lime is wanting. Several varieties contain a confs-
Stone.
G. XVI.
slacmi.
Smaragdite.

* Hauy,

7our. de
$\operatorname{Min} \mathrm{N}^{2}$
spectes i. Smarasdite.
\dagger Ann. $\mathcal{S e}_{0}$
Cbin. xxx.
106.

8 I
G. XVif.
sm.
Kiffekil.
\ddagger Kizvan's
Min, i. I4i$+7$
Genus XVI. slacmi.

This fone was called fmaragdite by Mr Sauffure, from fone refemblance which it has to the emerald. Its texture is foliated. The laminx are infexible. Fracture even. Hardnefs 7. Colour in fome cafes fine giecm, in others it has the grey colour and metallic luftre of mica: it aflumes all the fhades of colour between the e iwo extremes *.

Aecording to the analyfis of Vauquelin, it is compofed of

This mineral is dug up near Konie in Natolia, and is employed in forming the bowls of Turkifh tobacco dervifes eftablifed of it fupports a large monatery of is fore etablifhed near the place where it is dug. It is found in a large fiffure fux feet wide, in grey calcare-
ous earth. The workmen affert, that it grows again
§ Reigregg.
Pbiliof.
Mag. iii.
165.

* Kloprotb. mineral, when frefl dug; is of the confiftence of wax ; it feels foft and grealy ; its colour is yellow; its f p . gr. 1.600^{*} : when thrown on the fire it fweats, cmits a fetid vapour, becomes bard, and perfectly white.

According to the analyfis of Klaproth, it is compofed of

+ Beitröge.
ii. 172.

Steatites.
Though this mineral was noticed by the ancients, little attention was paid to it by mineralogilts, till Mr Pott publifhed his experiments on it in the lierlin Memoirs for 1747.

It is ufually amorphous, but fometimes it is cryftallized in fix-fided prifms. Its texture is commonly earthy, but fometimes foliated. Luftre from o to 2. Tranf-
\& Brifor. pareney from o to 2. Hardnefs 4 to 7. Sp. gr. from 2.61 to $2 . \% 94$ f. Feels greafy. Seldom adheres to the tongue. Colour ufually white or grey; often with
a tint of other colours; the foliated commonly green. Simple,
Does not melt per fe Lefore the blow-pipe.
Varicty 1. Semi-indurated teatites.
Texture eartliy. Fracture fometimes coarfe fplintery. Luftre 0 . Tranfparency 0 , or farce 1 . Hard nefs 4 to 5. Abforbs water. Takes a pulith from the nail. Colour white, with a hade of grey, yellow, or green; fometines pure white; fornetimes it contains dendritical figures; and fometimes red veins.

Varity 2. Indurated fteatites.
Fracture fane fplintery, oftel mixed with imperfectly conchoidal. External luftre 2 to 1, internal o. Tranf. parency 2. Often has the feel of foap. Abforbs water. Coluur yellowith or greenifh grey ; uften veined or fpotted with deep yellow or red.

Variety 3. Foliared or ftriated fleatites.
The texture of this variaty is ufually foliated ; fometimes Atriated. Fragments cubiform. Luftre 3. T'ranfparency 2 to 1. Hardnefs 6 to 7 . Colour leek green, paffing into mountain greeu or fulphur yelluw. Streak pale greenifh grey. When heated to rednefs, it becounes grey; and at 147° Wedgewood, it forms a grey porous porcelain mafs*.

A fpecimen of featites, analyfed by Klaproth, con. i. Iss. tained
59.5 filica,
30.5 magnefia,
2.5 iron,
5.5 water.
$98.0+$
A fpecimen of white fteatites, analy fed by Mr Che-ii. + Beitriors, nevix, contained 60.00 filica,
28.50 magricfia,
3.00 alumina,
2.50 lime,
2.25 iron.
$96.25 \ddagger$
\ddagger Ann. d_{s}
Cbim.
xxviii. 200

Genus XVIII. msi.
spfecies 1. Cliryfolite (g).
Peridot of the French - Topaz of the ancients.
G. XVIII.
mst.
'The name cbryfolite was applied, without difcrinina-Chryfolite. tion, to a great variety of itoncs, till Werner defised it accurately, and confued it to that Itone which the French chemits diftinguifh by the appellation of peridot. This flone is the tofaz of the ancients; their chryfulite is now called topaz *.

* Plinii, lib

Chryiolite is found fometimes in unequal fragments, 37 7. c. 8 . and fomet imes erytallized \dagger. The primitive form of its + Fig. 23. cryftals is a right angled parallelopiped \ddagger, whofe length, \ddagger Fig. 24.
breadth, and thicknefs, are as $5, \sqrt{ } 8, \sqrt{ } 5 \$$.

The texture of the chryfolite is foliated. Its frac. §our. de ture conchoidal. Its internal luftre from 2 to 4. Its $\begin{aligned} & \text { Min. } \mathrm{N}^{\circ} \text {. }\end{aligned}$ trinfparency from 4 to 2 . Caufes double refraction.xxvii:。

The carbonat of lime was only mechanically interpofed between the fibres of the fone. See Pallas, Neu. Nord. Beiträge, 6 Band, p. 146.
(E) Hence the name kiff-kil, or rather keff-kelli, "clay frotl"," or "light clay."
(f) Kirw. I. $151 .-$ Pott, Mem. Berlin, 1747, p. 57.-Wiegleb, Four. de Pbyf. XXIX. 60.--Lavoifier, Mem. Par. 1778, 433.
(G) Ki-zu. I. 262.-Cartherfer, Min. 94.-Dolomier, Four. de Min. Noxxix. 365.-La Metherie, Nouv. Four. de PbyJ. I. 397.

Earths and Hardnefs 9 to 10. Brittle. Sp. gr. from 3.26 ; to S:ones. 3.45 . Colour green. It is infufible at 150°, but lofes

* Kir. Llin.
i. 253. rax it inelts without effervefcence into a tranfparent glafs of a light green colour. Infufible with microcofmic †rouquelin, falt \dagger and fixed alkali \ddagger.
Alnn. ide

Cbim. xxi.

 parency 4 to 3 . Colour yellowilh green, fometimes verging to olive green, fometimes to pale yellow.
Variety 2. Olive chryfolite-Olivine *

Found commonly among traps and bafalts; fometimes in fmall grains, Lometimes in pretty large pieces; but it has not been obferved in cryftals. Luftre 2 to 3. Tranfparency 3 to 2 . Colour olive green.

The firft variety, according to the analyfis of Kilaproth, is compofed of 41.5 magnefia,

$$
3^{8.5} \text { filica, }
$$

19.0 oxide of iron.

+ KlafrotL's
Beisräge, i .

103.

f $A n n d e$
Cbim. ibid.
$99.0 \dagger$
According to that of Vauquelin, it is compofed of 51.5 magnefia, 38.0 filica, 9.5 oxide of iron.
$99.0 \ddagger$
The fecond variety, according to the analyfis of Klaproth, is compofed of 37.5^{8} magnefia,

$$
\begin{aligned}
& 50.00 \text { filica, } \\
& \text { I } 75 \text { oxide of iron, } \\
& .21 \text { lime. }
\end{aligned}
$$

Bciträge,
1.112.
$8+4$

Jade.

$99.54 \oint$

Species 2. Jade (h).
This ftone was formerly called lapis napbriticus, and was much celebrated for its medical virtues. It is found in Egypt, China, America, and in the Siberian and Hungarian mountains. It is fometimes adhering to rocks, and fometimes in detached round pieces.

Its furface is fmooth. Its fracture fplintery. Ex. ${ }^{\circ}$ ternal luftre O, or fearce 1 ; internal wasy, 1. Tranf. parency from 2 to 1 . Flardnefs 10 . Not brittle. Sp. gr. from 2.95 to 2.9829 ; or, accordiner to Sauffure, to $33^{8} 9$. Feels greafy. Looks as if it had imbibed oil. Colour dark leek green, or verging towards blue; in fome prominences inclining to greenifh or bluifl white. When heated it becomes more tranfparent and brittle, but is infufible per fe. According to Hoepfner, it is compofed of 47 lilica,
3^{8} carbonat of magnefia,
9 iron,
4 alumina,
2 carbonat of lime.
100
This is the ftone in which the inhabitants of New Zealaud make into hatchets and other cutting inftruments.

Genus XIX. sml.
species i. Abeltus (1).
This mineral was well known to the ancients. They even made a kind of cloth from one of the varieties, which was famous anong them for its incombunibility. It is found abundantly in moft mountainous countries, and no where more abundantly than in Scotland.

It is commonlyamorphons. Its texture is fibrous. Its fragments often long filintery: Luitre from 0 to 2; fometims 3, and then it is metallic. Tranfparency from o to 2. Hardnels frum 3 to 7. Sp. gr. from 2.7 to 0.6806 . Abforbs water. Colour ufually white or green. Fufible per fe by the bluw-pipe.

Variety 1. Common afbeftus.
Luftre 2 to 1. "「ranfparency 1. Hardnefs 6 to 7. Sp. gr. 2.577 to 2.7. Feels fomewlat greafy. Colour leek green; fometimes olive or mountain green; fometimes greenifh or yellowifh grey. Streak grey. Powder grey.

Variety 2. Flexible afbeftus.

Amiantus.

Compofed of a bundle of threads nightly cohering. Fibres 甘exible. Luftre 1 to 2, fometimes 3. Trandparency 1 to 2, fometimes 0. Hardnefs 3 to 4. Sp. gr. before it abforbs water, from 0.9088 to 2.3134; after abforbing water, from $1 . ; 662$ to 2.3803 *. Feels ${ }^{*}$ iBrifano grealy. Colour greyifh or greenifh white; fometines yellowifh or filvery white, olive or mountain green, pale flefh red, and mountain yellow.

Variety 3. Elaftic aboftus.

Mountain cork.
This variety has a Itrong refemblance to common cork. Its fibres are interwoven. Luftre commonly 0 . Opaque. Hardnefs 4. Sp. gr. before abforbing water, from 0.6806 to 0.9933 ; after abforbing water, from 1. 2792 to 1.3492. Feels meagre. Yields to the fingers like cork, and is fomewhat elatlic. Colour white ; fometimes with a thade of red or yellow; fometimes yellow or brown.

A fpecimen of the firft variety from Dalecarlia, analyfed by Bergnan, contained

$$
\begin{aligned}
& 63.9 \text { ilica, } \\
& 16.0 \text { carbonat of lime, } \\
& 12.8 \text { carbonat of magnefia, } \\
& 6.0 \text { oxide of iron, } \\
& \frac{1.1}{9.8^{*}}
\end{aligned}
$$

A rpimen Opuf.ivo
A fpecimen of the fecond variety yielded to the fame 170 .
chemift 64.0 filica,
17.2 carbonat of magnefia,
13.9 carbonat of lime,
2.7 alumina,
2.2 oxide of iron.
$\overline{100.0} \ddagger$
A fpecimen of the third variety contained, according ${ }^{163}$.
to the fame analyfis, 56.2 filica,
26.1 carbonat of magnefia, 12.7 carbonat of lime, 3.0 iron,
2.0 alumina.
$\overline{100.0} \oint$

Simple
stoncs.

Genus XX. 2. smil.
spectes 3. Shorlaceous actinolite (m).
This tlone cryftallizes in four or fix fided prifns, thicker at one end than the other; lience it has heen 80 called by the Germans frabllein, " arrow-ftone." Th G. XX. 2 . eryftals fometines adhere longitudinally. Fraciure Shorlaceous hackly. External luftre glafly, 3 to 4 ; initernal, 1 to ${ }^{\text {actinolite. }}$
 nefs from leek or dark green.

This fone is often the niatrix of iron, copper, and tin ores.

$$
\begin{aligned}
& \text { species 5. Lamellar actinolite. } \\
& \text { This tone refembles hornblende. It is amorplions. actinolite. }
\end{aligned}
$$ Texture foliated. Luftre parious in different places. Tranfparency o, or fearce 1. Sp. gr. 2.916. Colour dark yellowith or greenith grey.

$$
\text { species 6. Glaffy actinolite. G'ay } \quad \begin{aligned}
& \text { GI } \\
& \text { Glti- }
\end{aligned}
$$

This fone is found amorphous, compofed of fibres nolits.
adhering longitudinally, or in flender four or fix fided prifms. Texture fibrous. Fragments long fplintery, in fharp that they can fearcely be handled without injury. External luftre glafly or filky, 3 to 4 ; internal 0. Tranfparency 2. Exceedingly brittle. Sp. gr. 2.95 to 2.493. Colour leek green; fometimes verging towards greenith or filver white; fometimes tlained with yellowifh or brownith red. According to Bergunan it is compofed of 72.0 filica,
12.7 carbonat of magnelia, $\delta .0$ carbonat of lime, 7.0 oxide of iron, 2.0 alumina.

99.78

Genus XXI. sl.
species i. Shiflofe hornitone *.
§ Opufi. iv.
171.
G. XXI.sLo

The flructure of this ftone is flaty. I uftre from o Shinofe to 1. Commonly opaque. Hardnefs 9 to 10 . Sp. hornftonce. rr. from 2.506 to 2.64 I. Colour dark bluih or black. ${ }^{*}$ Kirvaan, gr. from 2.596 to 2.64 I . Colour dark bluith or black-i. 305. ith grey. infufible per fe.

Variety 1. Siliceous fintus.
Commonly interfected by reddifh veins of iron flone. Fracture fplintery. Luitre 0 . Tranfparency from o to 1.

Tariety 2. Bafanite or Lydian fone.
Commonly interfected by veins of quartz. Fracture even; fometimes inclining to conchoidal. Luftre farce 1. Hardnefs 10. Sp. gr. 2.596. Powder black. Colour greyifh black.

This, or a ftone fimilar to it, was ufed by the ancients as a touchitone. They drew the metal to be examined along the fone, and judged of its purity by
\ddagger Kirwan's grey, fometimes incliaing to red \ddagger.
Min. i. 167.

$9.5 \dagger$

There is a variety of this fpecies which Kirwan calls metalliform afbeftoid. Its luftre is fommetallic, 3 . Opaque. Hamdrefs 8 to 9. Sp. gr. 3.356. Colour *Macquart, rax it forms a violet coloured globule verging towards

Ann. de

Ann.
Cbim.
83.
83.
$+7 b i d$. hyacinth *. According to the analyfis of Mr Macquart, it is compofed of 46 filica,

20 oxide of iron, It lime, 1o oxide of manganefe, ö magnefia. 52.06 of Vactin, it is com 14.66 oxide of iron, 13.20 lime, rc.co magnefia, 3.33 alumina, 2.00 oxide of manganefe.
§ Four de
Min. \mathbf{N}°
Species 2. Aboctotd *
It its * Kirzuan, is foliated or ftriated. Its luftre common or glafly, i. 166 . from 2 to 3. Tranfparency from 0 to 1 . Hardnefs 6 to $\%$. Sp. gr. from 3 to $3 \cdot 3 \mathrm{~L}$. Colomr olive or leek green; when decompoling, brown. Before the blow. pipe it melts per f_{c} into a brown globule. With bo-

Earths and the colour of the metallic ftreak. On this account Stones. they called it pazays, the trier. They called it alfo I.ydian flone, becaufe, as Theophraftus informs us, it was * Hill's found moft abundantly in the river Tmolus in Lydia *. Theopr:fus, A fpecimen of the firf varicity, analyfed by Wieg-
 p. 190.

$$
\begin{aligned}
& 75.0 \text { filica, } \\
& 10.0 \text { lime, } \\
& 4.6 \text { magnefia, } \\
& 3.5 \text { iron, } \\
& \frac{5.2}{9.2} \text { carton. }
\end{aligned}
$$

This feecics is rather a mechanical mixture than a chemical combination.
\ddagger Fig. 25.
s Hizzy,
Jour. de
Min. No
xxvi. 91.
in France, Spain, and other parts of Europe. It is
commonly cry tallized. The primitive form of its cryftals is an octahedron f, conmofed of two four.fided Fyramids applied bafe to bafe, whofe fides are ifofceles triangles (N). The inclination of the fides of the fame triangles (N). The inclination of the fides of the fame
pyramid to each other is $124^{\circ} 12^{\prime}$; the inclination of the dides of one pyramid to thofe of another $82^{\circ} .50^{\prime}$. The folid angle at the apex is $73^{\circ} 44^{\prime} \oint$. The varieties
of the cry ftalline forms of zircon amount to feven. In The fold angle at the apex is $73^{\circ} 44^{\prime} \mathrm{\rho}$. The varieties
of the cry falline forms of zircon amount to feven. In Some cafes there is a four-fided prifm interpofed between the pyramids of the primitive form; fometimes
all the angles of this prifm are wanting, and two fmall tween the pyramids of the primitive form; fometimes
all the angles of this prifm are wanting, and two fmall triangular faces in place of each; fometimes the cryftals are dodecahedrons, compofed of a flat four-fided
prifm with hexagonal faces, terminated by four-fided ftals are dodecahedrons, compofed of a flat four-fided
prifm with hexagonal faces, terminated by four-fided
\| Fig. 26. Lummits with rhombuidal faces \|; fometimes the edges of this prifm, fometimes the edges where the prifm and fummit join, and fometimes both together, are wanting, and we find fmall faces in their place. For an accurate defcription and figure of thefe varieties, we refer to Mr

> Genes XXII, zs.
> species i. Zircon + . Jargon-Hyacinth.

This fone is brought from Ceylon, and found alfo Hauy ${ }^{1}$.

The texture of the zircon is foliated. Internal luftre 3. Tranfparency from 4 to 2 . Caufes a very great double refraction. Hardnefs from 10 to 16 . Sp. gr. from 4.2 to 4.165^{*}. Colour commonly reddifi or yellowifl; fumetimes it is limpid.

Before the blow-pipe it lofes its colour, but not its tranfparency. With borax it melts into a tranfparent glafs. Infufible with fixed alkali and microcofmic falt.

1. The variety formerly called byacinth is of a yellowifh red colour, mixed with brown. Its furface is fmooth. Its luftre 3. Its tranfparency 3 to 4.

2 The variety furmerly called jargon of Ceylon, is either grey, greenifh, yellowith brown, reddifh brown, or violet. It has little external luftre. Is fometimes nearly opaque.

The firft variety, aceording to the analytis of Vauquelin, is compofed of 64.5 zirconia,
32.0 filica, 2.0 oxide of iron.

$$
=
$$

$$
98.5 \dagger
$$

A fpecimen analyfed by Klaproth contained
70.0 zirconia; 25.0 filiea, 0.5 oxide of iron.
95.5*

Saline Si'nes. $\xrightarrow{\text { StM }}$

- Beifräge,

The feeond variety, according to Klaproth, who dif. i. 231 .
covered the component parts of hoth thefe itones, con-
tains
60.0 zirconia,
31.5 filica,
0.5 nickel and iron.
$100.0 \ddagger$
\dagger Thid. i.
219.

Order II. Saline stones.

Under this order we comprehend all the minerals Gesera, which confift of an earthy bafis combined with an acid. They taturally divide themfelves into five genera. We fhall defcribe them in the following order.
I. calcareous salts.

Carbonat of lime, Sulphat of lime,
Phofphat of lime,
Fluat of lime,
Borat of lime.

II. barytic salts.

Carbonat of barytes,
Sulphat of barytes.
III. strontitic salts.

Carbonat of ftrontites,
Sulphat of ftrontites.
IV. magnesian salts.

Sulphat of magnefia.
V. aluminous salts.

Alum.
Genus I. calcareous salts. G. $9 .{ }^{5}$ Cal.
This genus comprehends all the combinations of lime careous and acids which form a part of the nineral kingdom. falts.

species 1. Carbonat of lime.

No other mineral can be compared with carbonat of of lime.
lime in the abundance with which it is fattered over the earth. Many mountains confift of it entirely, and hardly a country is to be found on the face of the globe where, under the names of limeftone, chalk, marble, fpar, it does not conftitute a greater or finaller part of the mineral riches.

It is often amorphous, often ftalacitical, and often cryftallized. The primitive form of its cryftals is a parallelopiped, whofe fides are rhombs, with angles of 77° 30^{\prime} and $102^{\circ} 30^{\prime} \ddagger$. Its integrant molecules have the \ddagger Fig. 28 . fame form. The varieties of its cryftals anount to more than 40 ; for a defcription and figure of which we refer to Romé de Lifle * and Hauy (o).

When cryfllized itspal. is phous, its fructure is fometimes foliated, fometimes ftriated, fometimes granular, and fometimes earthy. Its Ee2 luftre
(n) Let ABC (fig. 27.) be one of the fides. Draw the perpendicular BD ; then $\mathrm{AB}=5, \mathrm{BD}=4, \mathrm{AD}=3$.
(o) Efai d'une Theorie, \&c. p. 75.- Jour. de Phyf. 1793 , Auguft, P. 114.- Four. d'Hift. Nat. 179^{2}, Febru. ary, p. I48.-Ann. de Chim. XVII. 249. \&c.-Four. de Min. N ${ }^{\text {s XXVIII. 304. }}$

Earths and luftre varics from o to 3 . Tranfparency from o to 4 . Stones. It caufes double refraction : and it is the only mineral
which caufes double refraction through two parallel foces of the cryftal. Harduefs from 3 to 9 . Sp. gr. from 2.315 to 2.78 . Colour, when pure, white. Ef. fervefces viokntly with muriatic acid, and diffolves completely, or leaves but a fmall refidunm. The folution is colourlefs.

This fpecies occurs in a great variety of forms: and therefore has been fubdivided into numerous varieties. All thefe may be conveniently arranged under two general divifions.

I. Soft carbonat of lime.

Farisiy 1. Agaric ninerul.
Mountain nilk, or mouatain meal of the Germans.
This variety is found in the clefts of rucks, or the bottom of lakes. It is neariy in the flate of powder; of a white colour, fometimes with a hade of yellow; and fo light that it almoft floats on water.
l^{7} arivty 2. Chalk.
The colour of chalk is white, fometimes with a fhade of yellow. Luitre o. Opaque. Harduefs 3 to 4. Sp. gr. from 2.315 tu 26 67. Texture earthy. Adheres flightly to the tongue. Feels dry. Stains the fingers, and marks. Falls to powder in water. It generally contains about $\frac{2}{80} 0$ of alumina, and $\frac{3}{0} \frac{3}{0}$ of water; the reft is carbonat of lime.

Variety 3. Arenaccous limeftone.
Colour yellowih white. Luftre 1. Tranfparency i. So brittle that fmall pieces crumble to powder between the fingers. Sp.gr. 2.742. Phofphorefces in the dark when feraped with a knife, but not when heated. It confifts almott entirely of pure carbonat of lime.

Fariety 4. 'Teftaceous tufa.
The colour of this variety is yellowifh or greyif. white. It is exceedingly purous and brittle; and is either compofed of broken fhells, or refembles mortar containing fells; or it confifts of fifulous concretions varioufly ramified, and refembling mofs.

II. Indurated carbonat of lime.
 Varidy 1. Cumpact limeftone.

The texture of this variety is compact. It las little luftre; and is moft commonly opaque. Hardnefs 5 to 8. Sp. gr. I. $3^{86}{ }_{7}$ to 2.72. Culour grey, with various fhades of other colours. It mofl commonly contains about ${ }_{1}^{7}$ th of alumina, oxide of iron, \&c. ; the rett is carbonat of lime. This variety is ufually burnt as lime.

Varity 2. Granularly foliated limeftone.
Structure fometimes flaty. Texture foliated and granular. Luffre 2 to 1 . Tranfparency 2 to 1 . Hardnefs 7 to 8 Sp. gr. 2.71 to 2.8376 . Colour white, of various fhades from other colours.

Varitty 3. Sparry limeflone.
Structure fparry. Texture foliated. Fragments Thomboidal. Luftre 2 to 3. Tranfparency from 2 to 4 ; fometimes 1. Hardnefs 5 to 6 . Sp. gr. from 2.693 to 2.718. Colour white; often with various fhades of other colours. To this variety belong all the cryftals of carbonat of lime.

Variety 4. Striated limetone.
Texture friated or fibrous. Luftre ito 0 . Tranfparency 2 to 1. Hardnefs 5 to 7. Sp. gr. commonly from 2.6 to 2.77. Colours various,

Variely 5. Swinc fone.
Saline
Texture often earthy. Fracture often fplintery. Stores. Iufle 1 to 0 . Tranfparency 0 to 1 . Hardnefs 6 to 7. Sp. gr. 2.701 to 2.7121. Colour dark grey, of various fhades. When feraped or pounded it emits an urinous or galic fmell.

I'ariety 6. Oviform.
This variety confifts of a number of fmall round bodies, clofely cumpacted together. Luftre o. Tranfparency 0 or 1. Hardnefs 6 to 7 .
species 2. Sulphat of lime. Con $_{1}$, fum - Selenite.

97 Sulphat of lime.

This mineral is found abundantly in Germany, France, England, Italy, \&c.
It is found fometimes in amorphous maffes, fometimes in powder, and fornetimes cryftallized. The primitive form of its cryftals, according to Romé de Lifle, is a decahedron $*$, witich may be conceived as two four-fided *ig. 29. pyramids applied bare to bafe, and which, inflead of terminating in pointed fummits, are trulcated near their bafes; fo that the fides of the pyramids are trapeziums, and they terminate each in a rhomb. Thefe rhombs are the largett faces of the cryftal. The angles of the rhombs are 52° and 158°. The inclination of two oppofite faces of one pyrannid to the two fimilar faces of the other pyramid is 145°, that of the other faces $110+.+$ Gryfal. Sumetimes fome of the faces are elongated; fometimesi. 144. it cryitallizes in fix-fided prifms, terminated by three or four-fided fummits, or loy an indetermisate number of curvilinear faces. For a defcription and figure of thefe varieties, we refer to Romé de Lille \ddagger.

The texture of fulphat of lime is mof commonly foliated. Luftre fromo to 4. Tranfpareticy from 0 to 4. It caufes double refraction. Its hardnefs does not exceed 4. Its fp. gr. from 1.872 to 2.311 . Colour commonly white or grey.

Before the blow-pipe, it melts into a white enamel, provided the blue flame be made to play upon the edges of its laminx. When the flame is directed againf its faces, the mineral falls into powder \S.
lt does not effervefce with muriatic acid, except it be Le Lievre, impure ; and it does not diffolve in it. Min. No

The following varieties of this mineral are deferving ${ }^{\text {xxviii. }} 315^{3}$ of attention.

Variety 1. Broad foliated fulphat.
Texture broad foliated. Luftre glafy, from 4 to 2. Tranfparency from 4 to 3. Harduefs 4. Sp. gr. 2.31 I. Colour grey, often with a fhade of yellow.

I'ariety 2. Grano-foliated fulphat.
Texture foliated, and at the fame time grauclar; fo that it cafily crumbles into powder. Luftre 2 to 3. Tranfparency 2 to 3 . Hardnefs 4 to 3. Sp. gr. from 2.274 to 2.31c. Feels foft. Colour white or grey, often with a tinge of yellow, blue, or green; fometimes flefh red, brown, or olive green.

Variety 3. Fibrous fulphat.
Texture fibrous. Fragments long fplintcry. Luftre 2 to 3. Tranfparency 2 to 1 ; fometimes 3. Hardnefs 4. Brittle. Sp. gr. 2.300. Colour white, often with a fhate of grey, yellow, or red; fometimes flefh red, and fometimes honey yellow; fometimes feveral of thefe colours meet in ftripes.

Variety 4. Compact fulphur.
'Testure compact. Luftre 1 or 0 . Tranfparency 2 to

Earthe and 1 , fometimes 0 . Hardncfs 4. Sp. gr. from 1.872 to S'ones. 2.288. Feels dry, but not harfl. Colour white, with a fhade of grey, yellow, blue, or green; fometimes yellow; fometimes red; fometimes fpotted, flriped, or veined-

Vority 5. Farinaceous fulphat.
Of the confiltence of meal. Luftre o. Opaque. Sicaredy finks in water. Is not gritty between the teedh. Feels dry and ineagre. Colour white. When heated below rednefs, it becomes of a dazzling white.

This fubftance is found in Spain, where it forms whole mountains, and in different parts of Cermany. It is fometimes amorphous, and fometimes cryllallized. The primitive form of its cryftals is a regular fix-fided prifm *. Its integrant molicule is a regular triangular prifm, whofe height is to a lide of its bafe as I to $\sqrt{2}+$. Sometimes the ealges of the prinitise hexagonal prifin are wanting, and imall faces in their place ; fometimes there are franll faces inflead of the edges which terminate the prifm ; fometimes thefe two varicties are united; fometimes the terminating edges and the angles of Fig. 3 r. the prifm are replaced by fmall faces \ddagger; and fometimes SHacy, ibil. the prifm is terminated by four fided pyramids $\$$.

Its texture is foliated. Its fracture uneven, tending to conchoidal. External luftre from 2 to 3 , internal 3 to 2. Tranfparency from 4 to 2 . Caufes fingle refraction. Hardnef 6 to $\%$. Brittle. Sp. gr. from 2. $\$_{249}$ to 3.218. Colour commonly green or grey; fometimes brown, red, blue, and even purple.

It is infufible by the blow-pipe. When its powder is thrown upon burning coals, it cnits a yellowifh green phofphorefcent light. It is foluole in muriatic acid without effervefcence or decompolition, and the folution often bomes gelatinous.

spectes 4. Fluat of lime. F/uor.

This mineral is found abundantly in different countries, particularly in Derbyhire. It is both amorphous and cryitallized.

The primitive form of its eryftals is the regular octohedron ; that of its integrant molccules the regular te$\|$ Ifny, ibid. trahedron $\|$. The varieties of its cryflals hitherto obferved amount to 7 . Thefe are the primitive octohedron; the cube: the rlomboidal dodecahedron; the eubo octolsedron of, which has both the faces of the cube and of the octohedron; the ofohedron wanting the edges; the cube wanting the edges, and either one

* Fip. 33. §ace:*, or two faces in place of each. For a defeription
\dagger IVid. and ligure of thefe we refer to Mr Hany \dagger.
The texture of fluat of lime is foliated. Luftre from 2 to 3, fometimes 0 . Tranfpateney from 2 to 4 , fometimes 1 . Caufes fingle refraction. Hardnefs' δ. Very brittle. Sp.gr. from 3.0943 to 3.191 I . Colours numerous, red, violet, green, red, yellow, blackifh purple. Its powder thrown upon hot coals emits a bluifh or greenifh light. 'Two pieces of it rubbed in the dark phoiphorefee. It decrepitates when heatel. Before the blowpipe it inclts into a tranfparent glafs. S

It admits of a polifh, and is often formed into vafes. and other ornaments.
species 5. Borat of lime. Boracile.
This mineral has been found at Ka lkberg near Lu-
neburg, feated in a bed of fulphat of lime. It is cryfallized. The primitive form of its cryfals is the cube *. In general, all the edges and angles of the cube are truncated; fometimes, however, only the alternate anerles are truncated + . The fiec of the cryttals Min. No does not exceed lialf an inch.
The texture of this mineral is eompact. Its fracture ${ }_{4}^{32.6}$ Houy, and xxvi. p. is flat conchoidal. External lufte 3 ; internal, greafy, $\begin{aligned} & \text { fofrkm. }\end{aligned}$ 2. Tranfpareney from 2 to 3. Hardnefs 9 to 10. Sp. gr. 2.566. Coluar greyifh white, fometimes paffing into greenilh white or purplifh.

When leated it becomes clectric ; and the angles of the cube are alternately jolitive and negative \ddagger.
| Hauy, ibis.
Before the blow-pipe it frotlis, emits a greenifh light, and Ann. ds and is converted into a yellowifh enamel, garnifhed with Clim, is. fmall points, which, if the heat be continued, dart out 59.
in fparks \oint.
According to Wefrum, who difcovered its compo- Four. de
nent parts, it contains 63 boracic acid, Min.ibis.

- 3.5 magnefia,
it lime,
alumina,
2 filica,
1 iron.
9^{6}
¢ Ann.dic
Clis.in. ii.
species 6. Nitrat of lime.

116.

Found abundantly mixed with native nitre. For a ror defeription fee the article Chemistry in this Supple- Nitrat ment, $11^{\circ} 672$.

102
Genus II. barytic salts. G.11. Ba-
This genus comprehends the combinations of barytes rytic falts. with acids.
species i. Carbonat of barytes.
Witherite.
103
Carhonat of barytes.
This mineral was difeovered by Dr Withering; hence Werner has given it the name of witherite. It is found both amorphous and cryftallized. The cryftals are octohedrons or dodecahedrons, confiting of four or fix fided pyramids applied bafe to bafe; fometimes the fixfided pyranids are feparated by a prifm; fometimes feveral of thefe prifins are joined together in the form of a ltar.

Its texture is fibrous. Its fracture conchoidal. Its fragments long fplintery. Luftre 2. Tranfparency 2 to 3. Hardnefs 5 to 6 . Brittle. Sp. gr. $4 \cdot 3$ to 4.338 . Colour greenifh white. When heated it becomes opaque. Its powder phofphorefees when thrown on burning coals *.

It is foluble with effervefeence in muriatic acid. The folution is colourlefs.

According to Pelletier it contains
62 barytes,
22 carbonic acid,
16 water.

$100 \uparrow$

\dagger 7our. do
Min. No
specres 2. Sulphat of barytes. Borofclenite.
This mineral is found abundantly in many countries, particularly in Britain. It is fometimes in powder, of ten in amorphous maffes, and often cryftallized. The primitive form of its cryftals is a rectangular prifm,

Farths and whofe bafes are rhombs, with angles of $10 I^{\circ} 30^{\circ}$ and Soniss. $78^{\circ} 30^{\prime *}$. The varieties of its cryftals are very nume* Haty, Ef, rous. For a defeription and figure of them we refer fai d'une to Romé de Lifle \dagger and Hany \ddagger. The moit common vaTheorie, \&e. rieties are the octohedron with cunciform fummits, the P. III, fix or four fided prifm, the bexangular table with be$+\mathrm{Clr}_{2}$ pal i. velled edges. Sometimes thefe cry itals are needle form. $\underset{\ddagger}{5 \mathrm{Ss}} \ddagger \mathrm{Il}$, and Its textore is commonly foliated. Lultse from o to Anno de 2. Tranfurency from 2 to 0 ; in fome cafes 3 or 7 . Cbim. xii. 3. Harduefs from 5 to 6 . Sp. gr. from 4.4 to 4.44 . Colour commonly white, with a hade of yellow, red, blue, or brown.

When heated it decrepitates. It is fufible per fe by the bhe flame of the blow-pipe, and is converted into fulphurat of barytes. Soluble in no acid except the fulphuric ; and precipitated from it by water.

Variety 1 . Foliated fulphat.
Lutre 3 to 3. Tranfparency from 4 to 2, fometimes 1. Colours white, reddifh, bluifh, yellowifh, blackifh, greenifh. Mr Werner fubdivides this variety into three, according to the nature of the texture. Thefe threc fubdivitions are granularly foliated, fraight foliated, curve foliatect.

Vuriety 2. Fibrous fulphat.
Texture fibrous; fibres converging to a common centre. Luftre filky or waxy, 2. Tranfparency 2 to 1. Hardnefs 5. Colours yellowifh, bluifh, reddifh.

Variety 3. Compact fulphat.
Texture compact. Luftre c to r. Tranfarency I to o. Feels meagre. Almolt conftantly impure. Co. lours light yellow, red, or blue.

V'ariety 4. Earthy fulphat.
In the form of coarfe dulty particles, nightly cohering. Colour reddifh or yellowifh white.

105
G. It.

Strantitic falis.

This genus compreliends all the combinations of Arontites and acids which form a part of the mineral kingdom.

SPECIES I. Carbonat of ftrontitcs
106 This mineral was firft difeovered in the lead mine of Carbonat of Srontion in Argylefhire; and fince that time it is faid to have been difcovered, though not in great abundance, in other countries. It is found amorphous, and alfo cryftallized in aecdles, which, according to Hauy, are regular fix-fided prifms.

Its texture is fibrous; the fibres converge. Frachure uneven. Lufte 2. Tranfuarency 2. Hardnefs 5. Sp. gr. from 3.4 to 3.56 . Colour light green. Does not decrepitate when heated. Before the blow-pipe becomes opaque and white, but does not melt. With borax it effervefces, and melts into a tranfparent colourlefs glafs. Effervefees with muriatic acid, and is totally diffolved. The folution tinges flame purple.

spectes 2. Sulphat of Atrontites.
 Ceicfine.

$\stackrel{10 y}{\text { Sulphat of }}$
ftrontites.
This mineral has beenfound in Pennfylvania, in Germany, in France, in Sicily, and Britain. It was firft difcovered near Briftol by Mr Clayfield. There it is found in fuch abuudance, that it has been employed in mending the roads.

It occurs both amorphous and cryftallized. The cryftals are moft commonly bevelled tables, fometines rhomboidal cubes. Its texture is foliated. More or
lefs tranfparent. Hardaefts Sp. gr. from 3.51 to Aggregaces 3.96. Colour molt commonly a fine fky blue; fome- \& Clayield,

Klaproth found a fpecimen of this mineral from Penn- Fom. iii. fylvania compofed of 58 frontites,

$$
42 \text { fulphuric acid. }
$$

$100 \|$.
|| Beifrïges
According to the analyfis of Mr Clay field, the ful.ii. 97.
phat frontites found near Brittol is compofed of
58.25 Itrontites,
41.75 fulphuric acid of 2.24 , and a little iron 9 .
100.30

Ibid. Ni-
chotfon's
Journal.
According to the analyfis of Vauquelin, the fulphat of frontites found at Bouvron in France, which was contaminated with . 1 of carbonat of lime, is compofed of

$$
\begin{aligned}
& 54 \text { ftrontites, } \\
& 45 \text { fulphuric acid. } \\
& 99^{*}
\end{aligned}
$$

- Your. de

GenusiV. magnesian salts. $\begin{gathered}\text { Min. No } \\ \text { Ne } \\ \text { Mus comprehends the combinations of magne-xxvii. } 6 \text {. }\end{gathered}$
This genus comprehends the combinations of magne-xxxvii. 6 .
fia and acids which occur in the mineral kingdom. On-
G. IV.
ly two fpecies have hitherto been found; namely,
Magnefian

species i. Sulphat of magnefia.

Salts.
It is found in Spain, Bohemia, Britain, \&c.; and Sulphat of enters into the compolition of many mineral waters. magnefia.

For a defcription of it, we refer to Chemistry, n° 633 . in this Suppl.
species 2. Nitrat of magnefia.
110
Found fometimes aflociated with nitre. For a de- magnefia. feription fee Chemistry, $\mathrm{n}^{\circ} 674$,

Genus V. aluminous salts.
This genus comprehends thofe combinations of alu. G. V. Alemina and acids which occur in the mineral kirigdom. minnus species 1. Alum.

113
This falt is found in crythals, in foft maffes, in flakes, Alum. and invilibly mixed with the foil. Fur a defeription, we refer to Chemistry, $110^{\circ} 6{ }_{3} 6$.

Order lil. AgGregates.

This order comprehends all mechanical mixtures of carths and fones found in the mineral kingdom. Thefe are execedingly numerous: the mountains and hills, the mould on which vegetables grow, and incieed the greater part of the globe, may be contidered as compofed of them. A complete defcription of aggregates belongs rather to geology than mineralogy. It would be improper, therefore, to treat of them fully here. But they cannot be altogether omitted; becaufe aggregates are the firft fubltances which prefent thomfelves to the view of the practical mineralogit, and beculufe, without being acquainted with the names and component parts of many of them, the moft valuable mineralogical works could not be undertood.
Aggregates may be comprehended under four divi- Divifion of fions: I. Mixtures of earths; 2. Amorphous fragments aggregates. of ftones agglutinated together; 3. Cryftallized ftones, either agglutinated together or with amorphous flones; 4. Aggregates formed by fire. It will be exceedingly convenient

Earchs and convenient to treat each of thefe feparately. We hall stone-. therefore divide this order into four fections.

Sict. I. Aggregates of Earths.

The moft common earthy aggregates inay be comprehended under the following genera:

1. Clay,
2. Colorific earths,
3. Marl,
4. Mould.

Genus I. clay.
Clay is a mixture of olumina and filica in various propotions. The alumina is in a ftate of an impalpable powder; but the flica is almoft always in funall ftones, large cnough to be dillinguihed by the eye. Clay, therefore, exhibits the character of alumina, and not of filica, even when this laft ingredient predominates. The particles of tilica are already combined with each other; and they have fo ftrong an affinity for each other that few bodies can feparate them; whercas the alumina, not being combined, readily difplays the characters which diftinguish it from other bodies. Beffides alumina and filica, elay often contains carbonat of lime, of magnefia, barytes, oxide of iron, \&c. And as clay is merely a mechanical mixture, the proportion of its ingredients is exceedingly various.

Clay has been divided into the following fpecies:
spectes 1. Porcelain clay.
Its texture is earthy. Its luftre o. Opaque. Hardinefs 4. Sp. gr. from 2.23 to 2.4 . Colour white, fometimes with a fhade of yellow or red. Adheres !lightly to the tongue. Feels foft.- Falls to powder in water.

A fpecimen, analyfed by Haffenfratz, contained 62 filica, 19 alumina, 12 magnefia, 7 fulphat of barytes.

100*
A fpecimen, analyfed by Mr Wedgewood, contained 60 alumina, 20 filica, 12 air of water. 92
species 2 . Common clay.
Its texture is earthy. Luftre o. Opaque. Harinefs 3 to 6 . Sp. gr. 3.8 to 2.68. Adheres nlightly to the tongue. Often feels greafy. Falls to powder in water. Colour, when pure, white; often tinged blue or yellow.

Variety r. Potter's clay.

Hardnefs 3 to 4. Sp. gr. 1.8 to 2. Stains the fingers flightly. Acquires fonse polifh by friction. Colour white; often with a tinge of yellow or blue; fometimes brownih, greenifh, reddifh. Totally diffufible in water ; and, when duly moiftened, very ductile.

Variety 2. Indurated clay.
Hardnefs 5 to 6 . Does not diffufe itfelf in water, but Falls to powder. Difcovers but little ductility, Co . lours grey, yellowifh, bluifh, greenifh, reddifh, brownifh.

Varicty 3. Shitofe clay.
Aggregatce
Structure flaty. Sp. gr. from 2.6 to 2.68. Feels fmooth. Streak white or grey. Culour commonly bluifh, or yellowifh grey; fometimes blackith, reldifl, greenifl. Found in Itrata, ufually in coal mines.

This variety is fometimes impreguated with bitumen. It is then called bituminous /kale.
species 3. Lithomarga.
117
Lithonar.
Texture earthy. Fracture conchoidal. Luftre fromga. O to 2. Opaque. Hardnefs 3 to 7 . Sp. gr. when pretty hard, 2.815 . Surface fmooth, and feels foapy, Adheres ftrongly to the tongue. Falls to pieces, and then to powder, in water; but does not diffufe it felf through that liquid. Fufible per fe into a frothy mafs. Variety 1. Friable lithomarga.
Formed of fcaly particles flightly cohering. Luftre 1 to 0 . Hardnefs 3 to 4. Exceedingly light. Feels very f:mooth, and affunes a polifh from the nail. Colour white; fometimes tiuged yellow or red.
V ariety 2. Indurated lithomarga.
Harduefs 4 to 7 . The fofter forts adhere very ftrongly to the tongue when newly broken; the harder very moderatcly. Coluurs grey, yellow, red, brown, blue.

A feceimen of lithomarga from Ofmund, analy fed by Bergman, containcd 60.2 filica,
11.0 alumina,
5.7 carbonat of lime,
4.7 oxide of iron,
0.5 carbonat of magnefia,
18.0 water and air.
99.$)^{*}$
species 4. Bole. a * 118
Texture earthy. Fracture conchoidal. Luftre o. Bule. Tranfyarency farce I. Hardnefs 4. Sp. gr. from 1.4 to 2. Acquires a polifh by friction. Scarcely adheres to the tongue. Feels greafy. Colour yellow or brown; fornetimes red ; fometimes fjoted.

The lemnian earth which belongs to this fpecies, according to the analy fis of Bergman, contains

> 47,0 filica,
> 19,0 alumina,
> 6.0 carbonat of magnefia..
> 5.4 carbonat of lime,
> 5.4 oxide of iron,
> 17.0 water and air.
99.S \dagger
species 5. Fullers carth.
\dagger IVid. p.
157.

Fullerg
Texture carthy. Structure fonctimes flaty. Frac- Fullers ture imperfectly conchoidal. Luftre o. Opaque. Hardnefs 4. Receives a polifh from friction. Does not adhere to the tongue. Feels greafy. Colour ufually light green.

A fpecimen from Hampflire, analyfed by Bergman, contained $\quad 51.8$ filica,
25.0 alumina,
3.3 carbonat of lime,
3.7 oxide of iron,
0.7 carbonat of magnefia.

- 15.5 moiture.
$100.0 \ddagger$

Eartheard This earth is ufed by fullers to take the greafe out Stones. of their cluth before they apply foap. It is eflential to fillers earth that the particles of filica be very line, otherwife they would cut the cloth. Any clay, porfeffed of this laft property, may be confidered as fullers earth; for it is the alumina alone which acts upon the cloth, on account of its ftrong affinity for greafy fubftances.
G. ${ }^{120} \mathrm{Co}$ lerific earths.

The minerals belonging to this genus confift of clay, mixed with fo large a quantity of fome colouring ingredient as to render them ufeful as paints. The coluuring inatter is commonly oxide of iron, and fometimes charcoal.
121
Red chalk.
species t. Red chalk. Reddle.
Texture earthy. Fracture conchoidal. Luttre o. Opaque. Hardnefs 4. Sp. gr. inconfiderable. Colour dark sed.

Feels rough. Stains the fingers. Adheres to the tongue. Falls to powder in water. Does not becume ductile. When heated it becomes black, and at 159° Wedgewood melts into a greenifh yellow frothy enamel. Compufed of clay and oxide of iron.

Yellow
chaik.

B Ment
Par. 1779,
313.

123
chalk.

+ Anr. d_{0}
Cbim. xxx.

13.

124
Green earth.

species 2. Yellow chalk.

Testure earthy. Fracture conchoidal. Hardnefs 3. Sp. gr. inconfiderable. Colour ochre yellow.

Feels fmooth or grealy. Stains the fingers. Adheres to the tongue. Falls to pieces in water. When heated becomes red; and at 156° Wedgewood melts into a brown porous porcelain.

According to Sage, it contains

$$
50 \text { alumina, }
$$

40 oxide of iron, Io water, with fome fulphuric acid.

$$
100^{*}
$$

species 3. Black chalk.
Structure flaty. Texture earthy. Fragments fplintery. Luftre 0. Opaque. Hardnefs 5. Sp. gr. 2.144 to 2.277 . Colour black. Streak black.

Feels fmooth. Adheres flightly to the tongue. Does not moulder in water. When heated to rednefs it becomes reddifh grey.

According to Wiegleb, it is compofed of

$$
64.50 \text { filica, }
$$

11.25 alumina,
11.00 charcoal,
2.75 oxide of iron, 7.50 water.

$$
97.00 t
$$

species 4. Green earth.
Texture earthy. Luftre o. Opaque. Hardnefs 6 to 7. Sp. gr. 2.637. Colour green.

Commonly feels fmooth. Does not fain the fingers. Often falls to powder in water. When heated it becomes reddifh broivn; and at 147° Wedgewood melts into a compack glafs.

Compofed of clay, oxides of iron, and nickel.

Genus III. Marl.

A mixture of carbonat of lime and clay, in which the
carbonat confiderably exceeds the wther ingredient, is Aggregate called man\%.

Its texture is earthy. Louftre o. Opaque. Hardnefs from 4 to 8 ; fometimes in powder. Sp. gr. from 1.6 to 2.877. Colour ufually grey, often tinged with other colours. Effervefces with acids.

Some inarls crumble into porvder when expofed to the air; others retain their hardnefs for many years.

Marls may be divided into two fpecies: 1. Thofe which contain more filica than alumina; 2. Thofe which contain more alumina than filica. Mr Kirwan has called the firlt of thefe filiceons, the fecond argilleccous, marls. Attention fhould be paid to this diftinction, when marls are ufed as a manure.

Genus IV. Mourd.

126
G. IV.

By mould is meant the foil on which vegetahles grow. Mouks,
It contains the following ingredients: filica, alumina, lime, magnefia (fometimes), iron, carbon derived from decayed vegetable and animal fubftances, carbunic acid, and water. And the gond or bad qualities of foils depends upon a proper mixture of thefe ingredients. The filica is feldom in the fate of an impalpable powder, but in grains of a greater or fmaller fize : Its chief ufe feems to be to keep the foil open and pervious to moiture. If we pafs over the carbon, the iron, and the carbonic acid, the goodnefs of a foil depends upon its being able to retain the quantity of moilfure which is proper for the nourifhment of vegetables, and no more. Now the retentive power of a foil increafes with the proportion of its alumina, lime, or magnefia, and diminifhes as the proportion of its filica increafes. Hence it follows, that in a dry country, a fertile foil thould contain lefs filica, and more of the other earths, than in a wet country.

Giobert found a fertile foil near Turin, where it rains annually 30 inches, to contain

From 77 to 79 filica,
9-14 alumina,
5 - 12 lime.
Near Paris, where it rains about 20 inches annually, Mr lillet found a fertile foil to contain

Coarfe fand 25
Fine fand 21
46.0 filica,
16.5 alumina,
37.5 lime.

100.0*

* Kirzan

The varieties of mould are too numerous to admit an on Manzures. accurate defcription : we fhall content ourfelves, therefore, with mentioning the moft remarkable.

species 1. Sand.

This confifts of fmall graits of filiceous ftones not cohering together, nor foftemed by water. When the grains are of a large fize, the foil is called gravel.
species 2. Clay.
This confifts of common clay mixed with decayed vegetable and animal fubitances.

> 127
> Sand.

$$
\begin{aligned}
& \text { Any foil which does not cohere fo frongly as clay, Loam. } \\
& \text { but more frongly than chalk, is called loam. There } \\
& \text { are many varietics of it. The following are the moft } \\
& \text { common. } \\
& \text { Varitty }
\end{aligned}
$$

Farthe and Vavicty 1. Clayey loam; called alfo firong, fiff, cold, stones.

It confifts of a mixture of clay and coarfe fand.
Variely 2. Chalky loam.
A mixture of elay, chalk, and coarfe fand ; the chalk preduminating.

Faricty 3. Sandy loam.
A mixture of the fame ingredieats; the fand amounting to .8 or .9 of the whole.

Till is a mixture of clay and oxide of iron. It is of a red colour, very hard and heavy.

Sect II. Aggregates of Amorphous Stones.

The aggrègates which belong to this fection confift of amorphous fragments of ftones cemented together. They may be reduced to the folluwing genera:

> 1. Saudfone,
> 2. Pudding ftone,
> 3. Amygdaloid, 4. Breccia.

Genus I. Sandstone.
Small grains of fand, confilting of quartz, flint, horn-, ftone, filiceous thiftus, or felfpar, and fometimes of mica, cemented together, are denominated fanditones. They feel rough and fandy; and, when not very hard, eafily crumble into fand. The cement or halis by which the grains of fand are united to each other is of four kinds; namely, lime, alumina, filica, iron. Sandftones, therefore, may be divided into four fpecies.
132 ealcareous.
species t. Calcareous fandfones.
Calcareous fandftones are merely carbonat of lime or marl, with a quantity of fand interpofed between its particles. Though the quantity of fand, in many eafes, far exceeds the lime, calcareous fandftones are fometimes found cryftallized ; and, in fome cales, the cryftals, as might be expected, have fome of the forms which diftinguifh carbonat of lime. Thus the ealcareous fandftone of Fountainbleau is cryftalized in rhomboidal tahles. It contains, according to the analyfis of Laf. fone 62.5 filiceous fand, $37 \cdot 5$ carbonat of lime.

100

Calcarcous fanditones have commonly an earthy texrure. Their furface is rough. Their hardnefs from 6 to 7. Their fpecific gravity about 2.5 or 2.6. Their colour grey ; fometimes yellowifh or brown. They are fometimes burned for lime.

13.3

Aluminous. SPEC1ES 2. Aluminous fandfones.
The bafis of argillaceous fandfones is alumina, or rather clay. Their ftructure is often flaty. Their texture is compact, and either fine or coarfe grained, according to the fize of the fand of which they are chiefly compofed. Their hardnefs is from 6 to 8 , or even 9. Their colour is ufually grey, yellow, or brown.

They are often formed into mill-ftones, filteringftones, and coarfe whet-ftones.
spectes 3. Siliceous fandfones.
Siliceous fandilones confint of grains of fand cemented together by filiea, or fome fubtance which confifts chiefly of filica or flint. They are much harder than any of the other fpecies.

Suppl. Vol, II. Part I.

Sometimes Rones oceur, confiling of graine of lime Aerregates eemented together with filica. Thefe ftones are alfo denominated filiceous fandfoncs.
spectes 4. Ferruginous fandftones.
The iron which aets as a cement in ferruginous fand nous. fones is not far from a metallic ftate. When iron is completely oxidated, it lufes the property of acting as a cement. This is the reafon that ferruginous fandftones, when expofed to the air, almolt always crumble into powder.

The colour of ferruginous fanditones is ufually dark red, yellow, or brown. The grains of fand which compofe them are often pretty large. Their hardnefs is commonly inconfiderable.

Gfnus II. Puditing Stone.
G. II. Pud-

Pebbles of quartz, flint, or other fimilar ftones of a ding ftone. round or eliptical form, from the fize of rape feed to that of an egg, cemented together by a filiceous cement, often mixed with iron, have been denominated pudding fones.

Pudding fones, of courfe, are not inferior in hardnefs to quartz, flint, chalcednny, \&ec. of which the pebbles may confift. The colour of the cement is ufually yellow, brown, or red. Its fracture is conchoidal.

The finer forts of pudding ftones are eapable of a fine polifh; the coarfe are ufed for mill ftones.

> Genus III. Amygdaloid. G.llf. A-

Rounded or eliptical maffes of chalcedony, zeolite, mygdaloid limeftone, lithomarga, featites, green earth, garnets, hornblende, or opal, cemented together by a bafis of indurated clay, trap, mullen, walken or kragg, conftitute an amygdaloid.

Anygdaloids are opaque. They have no luftre. Their fracture is uneven or conchoidal. Hardnefs 6 to 9. Their colours are as various as the ingredients of which they are compofed.

Genus IV. Breccia.
Angular fragnents of the fame fipecies of ftone, agglu. Breccia. tinated together, conflitute a breccia. This calcareous breccia confits of fragments of marble cemented together by means of lime.

Sect. III. Aggregates of Crypals.

T'ie minerals belonging to this fection confift either of crytals of different kinds cemented together, or of cryftals and amorphous ftones cemented together.

They may be reduced under the following genera.
I. Grauite,
2. Sienite,
3. Granatine,
4. Granitell,
5. Granilite,
6. Trap,
7. Porphyry.

Genus I. Granite.
139
An agregate of felfpath, quartz, G. I. Graever be the fize or the figure of the ingredients, is denominated granite. This aggregate may be divided into two fpecies, namely, common granite, and Jbiflofe granite or gneifs.
species i. Commongranite.
Its itrueture is always granular. The felfpar is often Ff
amor-

140
Common.

Earths and amorphous, and conftitutes moft frequently the greateft Stone: part of the aggregate.

Commongranites differ much in their appearance, aceording to the lize, proportion, colour, and figure of their component parts. They are conmonly very hard: Their fpecific gravity varies from 2.5388 to 2.9564 .

Mr Kirwan has applied the name granatine to the following aggregates.

$\begin{aligned} & \text { Quartz, } \\ & \text { Felipar, } \\ & \text { Shorl. } \end{aligned}$	$\begin{aligned} & \text { Quartz, } \\ & \text { Mica, } \\ & \text { Garnet. } \end{aligned}$	Quartz, Hornblende, Iarle.	Felfpar, Mica, Shor
Quartz, Felfpar, Jade.	Quartz, Shorl, Hornblende.	$\begin{gathered} \text { Quartz, } \\ \text { Hornblende, } \\ \text { Garnet. } \end{gathered}$	Felfpar, Mica, Hornblende
Quartz, Felfpar, Garnet.	Quartz, Shorl, Jade.	Quartz, Jade, Garnet.	Felfpar, Quartz, Serpentine.
Quartz, Mica, Shorl.	Quart , Shorl, Garnet.	Quartz, Hornblende, Hornflone,	Felfpar, Quartz, Steatites.
$\begin{aligned} & \text { Quartz, } \\ & \text { Mica, } \\ & \text { Jarle. } \end{aligned}$			

One of thefe aggregates, namely, quartz, mica, garnet, was called by Cronftedt morka or murkfen.

$\stackrel{\$ 44}{\text { G. } V^{4 . G r a}}$
 Ditell.

Mica, Shonl.	Mica, Jade.	Hornblende, Jade.	Jarle, Garnet.
Mica, Hormblende,	Mica, Garnet.	Hormblende, Garnet.	Steatites, Shorl.

Some of thefe aggregates have received particular names. 'The aggregate of quarta and mica, when its ftructure is flaty, is called by Werner ßifiofe mica: by the Swedes, it is denominated Aell/Ren, whatever be its Atructure.

The aggregate of hornblende and mica is called grunfein, from the da k green colour which it ufually has.

> Genus V. granilite.

145
G.V. Gra

Under the name of granilite, Mr Kirwan comprehends ${ }^{\text {ni itc. }}$ all aggregates containing more than three ingredients. Of thefe the following are the noft remarkable.

Quartz, Felfpar, Mica, Shorl.	Quartz, Mica, Shorl, Garnet.	Quartz, Sulph. of barytes, Mica, Shorl.
Quartz, Felfpar, Mica, Steatites.	Quartz, Felfpar, Mica, Garnet.	Quartz, Sulph. of barytes, Mica, Hornblende.

Genes VI. trap (p).

Under this genus we clafs not only what has commonly been called trap, but alfo wacken, and mullen, and kragftone of Kirwan.
species f. Commontrap.
146.
G. VI.

Tray.

147
This fone is very common in Scotland, and is known by the name of whinfone. Whole hills are formed of it ; and it occurs very frequently in large rounded detached fragments. Sometimes it affumes the form of immenfe columns, and is then called bafolt. The Giants Caufeway in Ireland, the ifland of Staffa, and the fouth fide of Arthur's Seat in Scotland, are well known inftances of this figure.

Its texture is earthy or compact. Its fracture uneven. Its luftre commonly o. Opaque. Hardness 8 to 9. Not brittle. Sp. gr. from 2.78 to $3.02 I^{*}$ Colour black, with a flade of grey, blue, or purple; fometimes blackifh or reddifh brown; in fome cafes greenifh grey. By expufure to the atmofphere, it often becomes invefted winh a brownifh rind. Before the blow-pipe, it melts per fe into a more or lefs black glafs.

Trap confifts of fmall crytals of hornblende, felfpar, olivine, sc. ufually fet in a ground compofed apparently of clay and oxide of iron. A fpecimen, in the form of bafaltes, from Staffa, analyfed by Dr Kennedy of Edinburgh, contained 48 filica,

> 16 alumina,
> 16 oxide of iron,
> 9 lime,
> 5 moiture,
> 4 foda,
> I muriatic acid.
$99 \dagger$
(p) Kirw. I. 231 and 43 1.-Faujas de St Fond. Effai fur l' Hifl. Nat. des Roches de Trap.-Pbil. Tranf. paffim. Sce allo a very ingenious let of experiments on the fufion of trap, by Sir James Hall in Tranf. Edin. V. 43.

Earits and A fpecimen from Salituury rock, near Edinburgh, Stones. \rightarrow contained, according to the analyfis of the fame gentle mais,
46.0 filica,
39.0 alumina,
17.0 oxide of jron,
8.0 lime,
4.0 moifture,
3.5 foda,
1.0 muriatic acid.

Edin.
Tranf. v.

98.5 *

Dr Kennedy conducted thefe analyfes with great ingenuity and judgnent; and the difcovery in which they terminated, that trap contains foda, is certainly of importance, and may lead to valuable confequences both in a geological and mineralogical view.
148
Wacken.

+ Kirvaan,
i. 223 .

This ftone often forms confiderable parts of hills, and, like trap, is amorphous. Its texture is earthy. Its fracture ufually even. Luftre o. Opaque. Hardnefs
\ddagger Kirwan. 6 to $9 . S_{p}$ gr. from 2.535 to $2.893 \ddagger$. Colour grey, with a fhade of green, black, red, brown. When expofed to the atmofphere, it withers and becomes more grey.

It melts into a grey porous flag.

This fone is alfo found in contiderable maffes, and fometimes has a tendency to a columnar form like bafalt. Texture eartby. Fracture uneven, and fine fplintery. Luftre o , except from fome fhining particles of bafaltine. Opaque. Hardnefs from 7 to 9 . Sp. gr. from 2.6 to 2.738 . Colour afh or bluifl grey ; fometimes mixed with ochre yellow, in confequence of the decompofition of the flone. At 130° Wedgewood it melts into a black compact glafs.

When mullen is expofed to the air, its furface becomes covered with a greyih white rind fometimes nightly ochry.

* Kirw. i. 226.

This fone, which, like the others, forms confiderable parts of rocks, was formed into a difting fpecies by Mr Kirwan. Its texture is earthy. It is exceedingly porous, and the pores are often filled with the cryftals of other minerals. Fraeture uneven. Luftre 0 . O. paque. Hardnefs 5 to 7 . Sp. gr. 2.314. Feels rough and harfh. Colour redoifh grey. Streak yellowih grey. At $13^{8^{\circ}}$ Wedgewood it melts into a reddifh brown porcelain mafs.
G. VIf.

Porphyry

Genus VII. porphyry.

Any flone which contains feattered crytals or grains of felfpar, vifible to the naked eye, is denominated a porphyry. Befides felfpar, purphyries generally contain fimall cryitals of quartz, hornblende, and mica. Thefe crytals are ufually of a different colour from the ftone in which they are found, and they are fluck in it as in a cement. It is evident from this definition, that the number of porphyries mult be great. Each fpecies receives its name from the flone which forns its bafis. To defcribe them would be unneecflary. We Shall only give a catalogue of the principal fpecies.

1. Hormatone porpliyry.
2. Pitchitonc porphyry.
3. Hornflate porphyry.
4. Felfpar or petunfe porplyyry.
5. Clay porphyry.
6. Homblende porphyry.
7. Trap porphyry.
8. Wacken porphyry.
9. Mullen porphyry.
10. Krag porpliyry.
11. Argillitic porphyry.
12. Potitone porphyry.
13. Serpentine porphyry.
14. Sanditone porphyry.

The aggregates belonging to this fection compofe moft of the mountains of the globe. In giving an account of them, we have adhered implicitly to the ar. rangement mofl generally reccived by mineralogifts. It mult be acknowledged, that this arrangenent is by no means complete, and that fome of the genera are too vague to be of much ufe. The number of aggregates already difcovered is too great for giving to each a particular name. Perhaps it would be better henceforth to adopt the method propofed by Mr Hany, namely, to conftitute the genera from that ingredient which enters moft abundantly into the aggregate, and which forms as it were its batis, and to dillinguifh the fecies according to the nature and proportion of the other ingredicnts. According to this plan, the aggregates hitherto difcovered have been divided by Hany into the following genera:
s. Felfpathic rock.
2. Quartzous rock.
3. Micaceous rock.
4. Chloritous rock.
5. Serpentine rock.
6. Trappean rock.
7. Hornblendean rock.
8. Petro filiceous rock.
9. Garnetic rock.
10. Calcareous rock.
11. Argillaceous rock.
12. Corneous rock.

Sect. IV. Volcanic Aggregates.

Aggregates formed by volcanoes may be reduced to the following genera.
s. Lava.
2. Tufa.
3. Pumice.
4. Allies.

Genus I. lava.
All fubtances which have iffued out of a volcano in a ftate of fufion are called lavas. They have been divided into three fpecies.

species 1. Vitrecus lava.

I53
Found in fmall pieces.
'Texture glofy. Fracture conchoióal. Luftre 3. Tranfparency from 3 to 1. Hardnefs 9 to 30. Sp. gr. from 2 to 3. Colour blackifh, greenif, or whitih. Commonly fumewhat porous.

species 2. Cellular lava.

r 54
Cellular.
This fpecies is full of cells. Surface rough and full of cavities. Texture earthy. Luttre 0 . Opaque. Hardnefs 7 to 9. Sp. gr. varief, but does not exceed 2.8. Colour brown or greyifl black. Commonly fomewhat magnetic.
species 3. Compact lava.
Conapata,
This feecies is the moft common of all; it runs into Ff 2 the

* Tranfo

Edin. 93.

+ Ibid. 94.
the fecond by infenfible degrees; and indeed is feldom found of any confiderable fize without fome pores. It bcars in general a very ftrong relemblance to trap.
A fpecimen of the lava of Catania in Sicily, analy fed - by Dr Keonedy, contained
51.0 filiea,
19.0 alumina,
14.5 oxide of iron,
9.5 lime,
4.0 foda,
I. 0 muriatic acid.

99.0*

A fpecimen of the lava of Sta. Venere in Sicily he found to contain
50.75 filica,

17.50 alumina,

14.25 oxide of iron,
10.00 lime,
4.00 foda,
1.00 muriatic acid.

$97.5 \dagger$

Thus we fee, that the refemblance between trap and lava holds not only in their external appearance, but alfo in their component parts.

Genus II. puzzolana.
Combur.
Found in fmall pieces. Surface rough. Texture earthy and porous. Fracture uneven, Luftre o. O. $\underbrace{\text { tible. }}$ paque. Hardnefs 3. Very brittle. Sp. gr. from 2.57 G. II Puz. to 2.8. Colour brown or dark grey. Magnetic. Edazulana. fily melts into a black flag.

When mixed with lime into a mortar, it poffeffes the property of hardening even under water. This property it owes mort probably, as Mr Kirwan fuppofes, to the iron which it contains. The iron decompofes the water of the mortar, and by this means it becomes too hard to be acted upon by water in a very fhort time.

> Genus ili. pumice. G.	157

This is a rery light fubltance ejected from volcanoes. mice.
It is porous. Hardnefs 3. Brittle. Sp. gr. below 1. Colour grey or brown.

In fome varieties the luftre and tranfparency are 0 : in others, the luftre is glaffy, 2. Tranfparency from 1 to 2.

Genus IV. volcanic asheg.

15^{8}
G IV. Vol-
Thefe are analogous to the afhes of common pit coal. canic a fhes. Loofe and fmooth, very light and fine. Slowly diffufible in water, and when wet fomew bat ductile.

Class II. SALTS.

UNDER this clafs we comprehend all the combina. tiens of alkalies with acids which exit in the mineral kingdom. As they have been already deferibed in the article Cafmistrys. Suppl. we fhall here only give a lift of their names.

Cenus I. potass.
Sp. 1. Sulphat of potafs. 2. Nitrat of potafs.

Genuis II. snda.
Sp. 1. Carbonat of foda.
2. Sulphat of foda.
3. Muriat of foda.
4. Borax.

Genus III. ammonia.
Sp. 1. Sulphat of ammonia. .
2. Muriat of ammonia.

Class III. COMBUSTIBLES.

fometimes they are truncated near their bafes, and a low four-fided pyramid rifes from the truncature : this pyramid is alfo fometimes truncated near its apex IT. Fi- I Fig. 39. nally, one of the edges of the pyramids is fometimes truncated. For figures of thefe varieties and for the laws of their formation, we refer to Mr Lefroy *. * Your. de

Colour yellow, with a thade of green; fometimes Min. No reddifh (e). Luftre greafy, 2. Tranfpareney varies ${ }^{\text {xix. }}$ 337. from o to 4. Caufes double refraction \dagger. Texture t Hauy. compact. Hardnefs 4 to 5. Brittle.-For its other properties, we refer to Chemistry in this Suppl.

Sometimes fulphur is mixed with different proportions of earths. Thefe combinations are hardly fufeeptible of accurate defcription.

Sulphur combines alfo with metals. Thefe combinations fhall be deferibed in the fourth clafs.

Genus II. Carbon. 162

This genus comprehends all minerals compofed of Carbon. pure earbon, or of carbon combined with a little earth.
spectes 1 . Diamond.
This mineral, which was well known to the ancients, ${ }^{\text {Diamond }}{ }^{163}$

Combur. is found in different parts of A fia, particularly in the $\underbrace{\text { tibles. }}$ kingdoms of Golconda and Vifapour; it is found alfo in Brazil.

It is always cryftallized ; but fumetimes fo imper-
ii. 591.
† Your. de Min. No xxix. 343 . Hany, ibid fecly, that at the firlt fight it might pafs for amorphous. Its primitive form is a regular octogon \dagger; but it more comnonly allumes a fpheroidal form, and then has wfually 36 curvilinear triangular faces, fix of which are raifed upon each of the faces of the primitive octogon \ddagger. Its integrant molecule, according to Hayy, is a regular tetrabectron.-For a more particular account of the cryftals of this mineral, we refer the reader to Mr Romé de Lifle* and Mr Hazy \dagger.

Texture foliated. Luftre t. Tranfparency from 2 to 4. Caufes fingle refraction. Harduefs 20. Sp. gr. 3.5185 to $3.5310 \ddagger$. Colour various; fometimes limpicl, fornetimes red, oraige, jeliow, green, blue, and even blackifh.

When rubebd it becomes pofitively deetric, even before it. has been cut by the lapidary, which is not
h Id. ibid.
§ Morveau, Ann. de Cbim. xxxi. 72.

164
Mineral diarcoal.
the cafe with any other gem $\|$.
It is compofed of pure carbon \S.

species 2. Mineral charcoal.
 Kilkenny coal-Wales culm.

This mineral has been foumd in Hungary, Italy, France, Ireland, and Wales. It occurs in Itratified maffes, or in lumps nefted in clay.

Colour black. Luflre 4, metallic. Opaque. Texture foliated. Hardnefs 5 to 7. Sp. gr. 1.4 to 1.526, Often fains the fingers, Infoluble in acids. Deflagrates with nitre. Does not burn till wholly ignited, and then confumes fluwly without emitting flame or fnoke.

It confilts almoft entirely of charcoal, which, as Mor. veau has proved, is an oxide of carbon*.

species 3. Anthracite (r).

Anthracolite.

This fubftance, as Dolomieu informs us, is found ex. dufively in the primitive mountains. It is always amor. phous. Colour black or brownifh black. Luftre 3 to 4. Structure faty. Fragments rhomboidal. Hardnefs 6 to 7. Sp. gr. greater than that of coal.- Often ftains the fiugers.

Burns precifely like the lant fpecies, and leaves .40 of white afhes. According to Dolomicu; it is compoled of about
64.3 charcoal,

325 filica,
3.5 iron,
$100.0 \dagger$
It is probable that the charcoal in the two laf fubftances is in the fame fate in which it exilts in plumbago, combined with oxygen, bot not containing fo much as charcoal does \ddagger.

Genus III. bitumen.
By bitumen we underftand, with mineralogifts in general, an oil, which is found in different parts of the earth, in various fates of confiftence. 'llefe different tlates form diftinct fpecies; in our arrangement of which we fhall be guided by the obfervations which Mr Hatchett has made in his valuable paper on bituminous fubitances *.

This fubftance is fooid fometimes on the furface of the water of fprings, and fometimes iffuing from certain Itrata. It is found in great abundance in Perlia.

Comiluftibl s. 167 Naphtha.
It is as fluid and tranfparent as water. Colour white or ycllowifh white. Smell ftrong, but not difagrecable. Sp. gr, when white, $.708^{*}$ or $.729 \dagger$; when yellowifh, Mufchen. $.8+75 \ddagger$. Feels greafy. Catches fire on the approach broek. of flame, burns with a white flatne, and leaves fcarce ${ }^{t}$ Boulduso any reliduum.

Infoluble in alcoliol. Does not frecze at 0° Fahrenlieit. When pure naphtha is expofed to the air, it becomes yellow and then brown ; its confiftence is increafcd, and it pallics into petraleum *.

species 2. Petroleum.

This fubftance is alfo found in Perlia, and likewife in many countries in Europe, particularly Italy, France, Switzerland, Germany, Sweden, England, and Scotland.

Not fo fluid nor tranfparent as water. Colour yellow, either pale or with a thade of red or green ; reddifh brown and reddifh black. Smell that of naphtha, but lefs pleafant. S'p. gr. 8783^{*}. When burned it yields * Erifon. a foot, and leaves a lmall quantity of coally refiduum.

By expofure to the air it becomes like tar, and is then called mineral tar \dagger.
species 3. Mineral tar.

+ Hatcbert,
ilis.
169
This fubftance is found in many parts of Afra, Ame- Mineral rica, and Europe. It is vifcid, and of a black, brown-tar.
ifh black, or reddifl colour. Smell fometimes itrong, but often faint. Sp. gr 1.1. When burned, emits a difagrecable bituminous fmell. By expulure to the air it palfes into nineral pitch and mallja *. \quad *iatiodt,

> SPECIES 4. Mineral pitch and maltha.
ib:d.
This fubftance has a Itrong refemblance to common Mineral pitch. When the weather is warm it is foft, and has pitch and fome tenacity; it is then callcd adhefive mineral fitch: ${ }^{\text {maltha. }}$ when the weather is cold, it is brittle; its hardnefs is 5 ; and its fracture has a glaffy luftre. In this llate it is called maltha. Colour black, dark brown, or reddifh. Lultre 0. Opaque. Sp. gr. from 1.45 to 2.07 . Does not itain the fingers. On a white hot iron it fames with a froug fmell, and leaves a quantity of grey athes. It it is to the prefence of the carths whicls compofe thefe afles that the great fpecific gravity of this bitumen is to be afcribed. By farther induration, it paffes into
afplall.

> Species 5. Afphalt.

> 19 r Afphalt.

This fubftance is found abundantly in many parts of Europe, A fia, and America, efpecially in the ifland of Trinidad.

Colour black or brownifh black. Luftre grealy 2. Opaque. Iracture conchoidal, of a glatry luftre. Hardnefs trom 7 to 8. Very brictle. Sp. gr. 1.07 to $1.165^{*} \cdot$ * Kirwan. lieel fmooth, but not greafy. Does not ftain the fingers. Has little or no fmell, unlefs when rubbed or heated. When heated melts, fivells, and inflames; and when pure, burns without leaving any afhes.

> species 6. Elaftic bitumen.

Mineral caoutchouc. Elaftic bic
This fubfance was found about the year 1.786 in the tumen.

Combur- lead mine of Odin, near Caftetown, Derby hire. It was tible:. firlt mentioned by Mr De Born.

Colour yellowifl or reddifh brown, fometimes blackin brown. In its appearance it has a ftrong refemblane to caontchouc or Indian rubber ; hence us name. Confifincy various: fometimes fo foft 2.3 to adhere to the fingers; fumetimes nearly as hard as afphalt. When foft it is elattic; when hatrd brittle. Sp. gr. 0.9053 to * Hatcteth, 1.0233^{*}.

Infoluble in alcohol, ether, and oil of turpentine, but foluble in oil of olives. Not affected by nitric acid. When diftilled, it yields a bituminous oil infoluble in

+ Lanctise- alcohol ; the refiduum is carbonaceous \dagger.
rie, Your.de There is a variety of this fubflance found in a rivulet
near the minc of Odin, which, when frefl cut, exactly refembles fine cork in colour and texture; but in a few days after being expofed to the air, becomes of a pale reddifh brown. This fubflance coutains within it in nucleus of elaftic bitumen. It feems to be the elaftic bitumen altered in its texture by the water \ddagger.

Genus IV. coal.

G.IV. Coal. The fubftances belonging to this genus are compofed of carbon, or rather charcoal, and bitumen.
174
Jet.

$$
\text { species I. Jet }(s) \text {. }
$$

This fubflance is found in France, Spain, Germany, Britaill, and other countries. It is found in detached kidneyform maffes, of various fizes, from an inch to feven or eight feet in length.

Colour full black. Luatre 3 to 4 ; internal glaffy. Opaque. Harduefs 7 to 8. Not near fo brittle as alphalt. Texture ftriated. Fracture conchoidal. Sp. gr. 1.259 . It has no odour except when heated, and then it refembles the odour of afplialtum. Melts in a flong heat, burns with a greenifh flame, and leaves an \dagger Hatchctt. earthy refiduum \dagger.
\ddagger Kiruan. Becomes Komewhat electric by friction \ddagger. When §Vanquclin, diftilled yields a peculiar acid y.

This mineral is formed into buttons, beads, and other trinkets. The manufacture has been almoft confined
4 Jour. de to France $\|$.
Min. Noiv.
41.

175 coal.

Mincral.
ii. 523 .
species 2. Cannel coal.
This mineral is found in Lancaflire, and in different parts of Scotland, where it is known by the name - of parrot coal.

Colour black. Luitre common, 2. Opaque. Structure fometimes naty. Texture compact. Fracture conchoidal. Hardnefs 5 to 8. Britile. Sp. gr. 1.232 to 3.426. Does not ftain the fingers.

Kindles eafily, and burns with a bright white flame like a candle (T), which lafts but a fhort time. It does not cake. It leaves a flony or footy refiduum.

A fpecimen of Lancafhire cannel coal, analyfed by Mr Kirwan, contained 75.20 charcoal,
21.68 maltha, 3.10 alumina and filica.

A fpecimen of the flaty kind from Airhire, called Cumburfplent conl, was compured of

$$
\begin{aligned}
& 47.62 \text { charcoal, } \\
& 32.52 \text { maltha, } \\
& \frac{20.00 \text { eaichs. }}{100.14^{*}}
\end{aligned}
$$

Cannel coal is fufceptible of polifh, and, like jet, is often wrought into trukets.

This:very ufful combutible is never found in the coal. primitive mountains, but only in the fecondary mountains, or in plains formed of the fame materials with them. It is always in ftrata, and generally alternates with clay, fandfone, or limeftone.

Colour black, more or lefs perfect. Luftre wifually greafy or metallic, 2 to 4. Opaque. Structure generally laty. Texture often foliated. Fracture various. Hardnefs 4 to 6 . Sp. gr. 1.25 to 1.37. Ufually ftains the fingers. T'akes fire more flowly, and burns longer, than the lat fpecies. Cakes more or lefs during combutt:on.

Of this fpecies there are many varitties, diftinguifhed in Britain by the names of caking coal, rock coal, \&c. Thefe are too well known to require any defcription.

Mr Kirwan analyfed a variety of different kinds of coal: The refult of his experiments may be feen by the following table.

Whitehaven coal.	Wigari.	Swanfic.	Lecirem.	
57.0	61.73	73.53	71.43	charcoal.
$4^{\text {I }} 3$	36.7	23.14	23.37	maltha \& afph.
1.7	1.57	3.33	5.20	earths \dagger.
100.0	100.00	100.00	100.00	1

species 4. Spurious coal.
spurious
This mineral is generally found amid! frata of ge-coal. nuine coal. It is alio called parrot-conl in Scotland.

Colour greyif? black. Luftre o to 1. Structure ufually flaty. Texture earthy. Hardnefs 7 to 8. Sp. gr. 1.5 to 1.6. Gencrally explodes, and burfts when heated.

Compofed of charcoal, maltha, and afphalt, and above 20 of fony matter.

Genus V. amber.

species i. Common amber.
${ }^{178}$ G. V. $A B x$ ber.
This fubtance, called elearum by the ancients, is found in different countries; but moft abundantly in Pruffia, either on the fea-flore, or under-ground at the depth of about 100 feet, repofing on suood-coal \ddagger. It \ddagger Kiruw, is in lumps of different íses.

Colour jellow. Luftre 3 to 2. Tranfparency 2 to 4 . Fracture conchoidal. Hardnefs 5 to 6. Sp. gr. 1.078 to 1.085 . Becomes electric by friction.

If a piece of amber be fixed upon the point of a knife, and then kindled, it burns to the end without melting T .

By ditillation it yields fuccinic acid.
Class
(s) It was called gagathes by the ancients, from the river Gages in Licia, near which it was found; jayet in French, ozabache in Spanifh, gagath in German.
(T) Hence it has been called cannel coal. Candlf, in the Lancafhire and Scotch dialect, is pronounced sarno.

THIS clafs comprehends all the mineral bodies, compofed either entirely of inetals, or of which metals conftitute the moft confiderable and important part. It is from the minerals belonging to this clafs that all metals are extracted; for this reafon they have obtained the name of ores.

The metals hitherto difcovercd amount to 21 ; we mall therefore divide this clafs into 21 orders, allotting a diftinct order for the ores of every particular metal.

Metals exit in ores in one or other of the four following ltates: 1 . In a metallic ftate, and either folitary or combined with each other. 2. Combined with fulphur. 3. In the ftate of oxides. 4. Combined with acids. Each order therefore may be divided into the four following genera.

$$
\begin{array}{ll}
\text { 1. Alloys, } \\
\text { 2. Sulphurets, } & \text { 3. Salts. }
\end{array}
$$

It mult be obferved, however, that every metal has not hitherto been found in all thefe four fates, and that fome of them are hardly fufceptible of them all. Sume of the orders therefore want one or more genera, as may be feen from the following table.

Order I. Gold ores. 1. Alloys.

Order II. Silver ores.

1. Alloys.
2. Sulphurets.
3. Oxides.
4. Salts.

Order III. Platinum ores. 1. Alloys.

Order IV. Ores of mercury. 1. Alloys.
2. Sulphurets.
3. Oxides.
4. Salts.

Order V. Copper ores. 1. Alloys.
2. Sulphurets.
3. Oxides.
4. Salts.

Order VI. Iron ores.

1. Alloys.
2. Sulphurets.
3. Carburets.
4. Silicated iron.
5. Oxides.
6. Salts.

Order VIt. Tín ores. 1. Sulphurets. 2. Oxides.

Order VIII. Lead ores. 1. Sulphurets. 2. Oxides.
3. Salts.

OrDer IX. Zinc ores. 1. Sulphurets.
2. Oxides.
3. Salts.

Order X. Antimonial ores. 1. Alloys.
2. Sulphurets.
3. Oxides.
4. Salts.

Order XI. Bifmutb ores. 1. Alloys. 2. Sulphurets. 3. Oxides.

Order XII. Arfenic ores. 1. Alluys.
2. Sulphurets. 3. Oxides.

Order Xiti. Cobalt ores. 1. Alloys.
2. Sulphurets.
3. Oxides.
4. Salts.

Order XIV. Nickel ores. 1. Sulphurets.
2. Oxides. 3. Salts.

OrderXV. Manganefeores. 1. Oxides. 2. Salts.

OrderXVI.Tungsten ores. 1. Oxides. 2. Salts.

Order XVII. Ores of molybdenum.

1. Sulphurets.

Order XVIIT. Ores of u ranium.

1. Oxides.
2. Salts.

Order XIX. Ores of tita-

1. Oxides.
 Order XX. Ores of tellurium.
 I. Alloys.
 Order XXI. Ores oplchro.
 1. Oxides.

Order I. Gold ores.

No metal perhaps, if we except iron, is more widely where feattered through the mineral kiugdom than gold *. Fund. Hitherto it has been found only in a metallic ftate ; * Bergmarm. moft commonly in grains, ramifications, leaves, or rhomboidal, octahedral, or pyramidal cryftals. It is generally mixed with quartz, though there are inftances of its having occurred in caleareous rocks. It is not unconumon allo to find it diffeminated through the ores of other metals; efpecially iron, mercury, copper, and zinc. The greateft quantity of gold is found in the warmer regions of the earth. It abounds in the fands of many African tivers, and is very common in South America and India. Europe, however, is not deffitute of this metal. Spain was famous in ancient times for its gold mines, and feveral of the rivers in France contain it in their fands \dagger. But the prineipal gold mines \dagger Renumur, in Europe are thofe of Hungary, and next to thein thofe Mrem. Porr. of Salzburg. Gold allo has been difcovered in Swe 1718, p.68. den and Norway, and more lately in the county of philit Tranf. Wicklow in Ireland \ddagger.

$$
\begin{aligned}
& \text { Genus I. Alloys of gold. } \\
& \text { species 1. Native gold. }
\end{aligned}
$$

Native gold is never completely pure; it is alluyed Yourn, ii. with fome filver or copper, and Cometimes with iron. ${ }_{132}^{224}$ In the native gold found in Ireland, indeed, the quan- G.I. Native tity of alloy appears to have been excecdingly fmall. Eold.

Its colour is yellow. Lultre metallic. Fracture hackly. Hardnefs 5. Sp. gr. from 12 to 9.

Order II. Silver Ores.

SILver is found mof commonly in quartz, limeftone, where horntone; or combined with the ores of other metals, found. moft commonly with copper, antinony, zinc, cobalt, and lead. This laft metal indeed is feldon totally def. titute of filver.

$$
\begin{gathered}
\text { Genus I. Alloys of filver. } \\
\text { Species i. Native filver *. }
\end{gathered}
$$ a flate of purity, forms the principal part of fome of ling. $A E_{0}$ Cat the richeft filver mines in the world. It is fometimes Liver. Svein fmall lumps; fornetimes cryftallized in cubes, hexa-cis, 173 s, hedrons, octahedrons, or dodecahedrons; fometimes in $\mathrm{E}^{\circ} \cdot \mathbf{2 0}$. leaves, or threads, often fo connected with each other as to refemble branches of trees, and therefore called dendrises. The filver in the famous mines of Potoli has this laft form. When newly extracted, it is not unlike frall branches of fir \dagger.

The colour of to \quad. \quad Pleman' the colver is white ; often tarnified. Geogr Loultre metallic. Fracture hackly. Hardnets 6. Mal- Min. No leable. Sp. gr. from 1 to 1 c. 33^{88}. xvi p. 36.
The filver in the ipecies is almolt confantly alloyed with from .03 to .05 of fome other metal, frequently gold or arfenic.

* Pbil.

Tromf.
1776, p. 532.

186
Alloy of filver ard antimony. + Kirzan, ii. 1 Io.
\ddagger Romé de Lifce, iii. 461.
§ Hauy,
Four. de
Min. ${ }^{\circ}$
xxx. P. 473

* Kirwan, juid.
$+0 p u f c_{0}$ ii.

415.

\ddagger Four. de
SMin. ibid

species 3. Alloy of filver and antimony \dagger.

 Antimoniated filver ore.This alloy, which is found in the filver mines of Spain and Cermany, is fometimes in grains or lumps, and fometimes cryftallized in fix-fided prifms, whofe fides are longitudinally channelled \ddagger.

Its colour is white. Its luftre metallic. Hardnefs 10. Brittle. Sp. gr. from $9.4406 \$$ to 10.* Texture foliated. Fracture conehoidal. Before the blow-pipe the antimony evaporates in a grey fmoke, and leaves a brownifh flag, which tinges borax green. If borax be ufed at firt, a filver bead may be obtained.
This alloy was long fuppofed to contain arfenic. Bergman examined it, and found only filver and antimony $\dagger \mathrm{His}$ analyfis has been confirmed by the experiments of Vauquelin and Selb \ddagger. According to Selb, it is compofed of 89 filver,

> it antimony.

100
A fpecimen analyfed by Klaproth, contained 84 filver, t 6 autimony.

Another fpecimen contained

$$
76 \text { filver, }
$$ 24 antimiony.

1. Beiträge,

100 \ddagger
ii. 301 . 187 G. II. Sul. phurets. Common fulphuret of filver.

Genus İI. sulphurets of siliter. species i. Common fulphuret of filver *. Vitreous filver ore.
This ore oceurs in the filver mines of Germany and Hungary. It is fometimes in maffes, fometimes in threads, and fometimes eryftallized. Its cryftals are either cubes or regular octohedrons, whofe angles and edges are often varionly truncated. For a defeription of the varieties produced by thefe truncatures, we refer the reader to R'omé de Lifle \dagger.

Its colour is dark hluifh grey, inclining to black; often tarnifhed. Internal luytre metallic. 'Pexture foliated. Fracture meven. Hardnefs 4 to 5. May be cut with a knife like lead. Flexible and mallcable. Sp. gr. $6.959 \ddagger$ to 7.215 H In a gentle heat the fulphur evaporates. Melts when heated to rednefs.

A fpecimen of this ore, analyfed by Klaproth, con. tained

$$
\begin{aligned}
& -85 \text { filver, } \\
& 15 \text { fulphur. } \\
& \hline 100^{*}
\end{aligned}
$$

species 2. Antimoniated filver ore *.
Sulpburet of filver with antimony and iron.
This ore, which oceurs in Saxony and IHungary, to be confidered merely as a varicty of the laft fpecies. It is fometimes in maffes, but more frequeutly cry falli. .i. Kirruar zed in fix-fided prifms, tables, or thomboids; genemally indiftinct and accumulated together.

Its colour is iron grey; often tarnifhed. Its luftre metallic. Fracture uneven. Hardnefs 4 to 5 . Brittle. Sp. gr. $7 \cdot 208 \dagger$. Before the blow-pipe the fulphill + Gellert. and antimony exhale, leaving a bead, which may be freed from iron by fufion with nitre and borax.

A fpecimen of this ore, analyfed by Kliproth, contained
66.5 filver,

$$
12.0 \text { fulphur, }
$$

10.0 antimony,
5.0 iron,
1.0 filica,
0.5 arfenic and copper.

$95.0 \ddagger$

\ddagger Beiträge,
i. 166 .

I 89
SPECEES 3. Sulphuret of filver and copper \|
Cupriferous fulpburated filver ore.
This ore, which is found in the Korbolokinf moun- of filver tains in Siberia, was firft deferibed by Mr Renovaniz. and copper It is in amorphons maffes, varying in fize from that of Hi. Kirwe the thumb to that of the fift.

Its colour is bluifh grey like lead. Luftre metallic. Hardnefs 5 to 6. Brittle. Its powder, when rubbed on the fkin, gives it a black colour and a leaden glofs. Before theblow-pipe the fulphuret of filver melts readily; that of copper with difficulty. This ore is compofed of about

> 42 filver,
> 2 I copper,
> 35 fulphur.

98

190
G. III.

Oxides. Calciform
Genus III. oxides of silver.
species i. Calciform filver ore *.
This ore was firft deferibed by Mr Widenman. It filver o.e. is fometimes in maffes, fometimes diffeminated through ${ }_{i i}$. $\mathbf{I 1 2}$. other minerals.

Its colour is greyifh black. Its freak bright. Its luflre metallic. Its fracture uneven. Hardnefs 4 to 5 . Brittle. Sp. gr. confiderable. Effervefces with acids. Melts eafily before the blow pipe. Froths with borax.

According to Selb, it contains 72.5 filver,
15.5 copper,

1 2.0 carbonic acid.
100.0
species 2. Red filver ore (u).
This ore is very common in feveral German filver Red filver mines. It oceurs in maffes, diffeminated and cryitalli- ore.
zed. The primitive form of its cryftals is a dodecabedron \ddagger, whofe fides are equal rhombs, and which may bef Fig. 33 .
(u) Kirw. II. 122.-Scopoli de Minera Argenti, Rubra.-Sage, Four. de Phyf: XXXIV. 331. and XLI. 37°; and Nouv. Jour. de Phy. II. 284.-Welrum, Four. de Phyf. XLIII. 291.-Klaproth, Beiträge, I. 141.
silver. confidered as a fix-fided rhomboidal prifn, terminated
*Romé de Lifle, iii.

Colour intermediate between bluod and cochineal red; fometines variegated. Streak orange red. Powder black.

Variety 2. Dark red.
Colour commonly between dark cochineal red and lead grey; fometimes nearly black, and without any fhade of red. Streak dark crimfon red.

This ore svas long fuppoled to contain arfenic. Kla. - Ann. de proth firft afcertained its real compofition *; and his Cbim. sviii analy fis has been confirmed by Vauquelin, who found a
fpecimen compofed of 56.6748 filver,

$$
16.1300 \text { antimony }
$$

15.0666 fulphur,
12.1286 oxygen.

100.

Klaproth proved, that the filver and antimony are in the ftate of oxides; and Vauquelin, that the fulphur is combined partly with the oxide of filver and partly with thic oxide of antimony. Klaproth obtained a litele fulphuric acid; but this acid, as Vauquelin, with his ufual ingenuity, demonftrated, was formed during the analy fis.

This ore fometimes contains a minute portion of ar$\uparrow V^{i}$ uuquelin, fenic, but never more than $.02 \dagger$.
ibid. T. 8 .

> Genus IV. salts of silver.
> species I. Muriat of filver (x. Corneous fliver ore.

This ore occurs at Johanngeorgenftadt in Saxony, in South America, \&cc. It is often amorphous, fometimes nearly in powder, and fometimes crytallized in cubes or parallelopipeds.

Its colours are various: when expofed to the light it becomes brown. Internal luftre greafy, 2 ; external, 2 to I . Acquires a glofs when fcraped with a knife. Tranfparency 2 to I . Texture foliated. Hardnefs 4 to 5 . Sp. gr. $4745 \ddagger$ to $4.804 \|$. Before the blowSuppl. Vol. II. Part I. by three-fided fummits*. Sometimes the prifm is lengthened, and fonctimes its edges, or thofe of the terminating fummits, or both, are wanting. For a defeription and figure of thefe varietics, we refer to De Lijle \dagger and Hauy \ddagger.

Its colour is commonly red. Streak red. External luftre metallic, internal common. Tranipaiency from 3 to 1 ; fometimes opaque. Fraétre flat conchoidal. Hardnefs 5 to 7. Brittle. Sp. gr. from $5.44|\mid$ to 5.592^{*}. Becomes electric by friction, but only when infulated \dagger. Soluble in uitric acid without effervefcence \ddagger. Before the blow-pipe melts, blackens, burns with a hlue flame, gives out a white fmoke with a flight garlic finell, and leaves a filver head $\|$.

Variety r. Light red.
pipe it inftantly melts, and gradually evaporates, but may be reduced by adding an alkali.

Metallic
That this ore contains muriatic acid, has been long
known. Mr Woulfe firft flewed that it contained alfo fulphuric acid * : and this difcovery has been confirmed. Trant. by Elaproth, according to whofe analy fis this ore is 17770 . compofed of 67.75 oxide of filver,
6.00 oxide of iron,
21.00 muriatic acis.
.25 fulphuric acid,
1.75 alumina.

$$
\overline{96.75 \dagger} \quad \stackrel{\text { Beitröge, }}{1.0}
$$

The alumina can only be confidered as mixed with ${ }^{\text {i. } 134 .}$
the ore. Sunctimes its quantity amounts to .67 of the whole \ddagger.

Order III. Ores of Platinum (y).

Hirterto no mine of platinuin has been difoovered. Mines. It is found in fmall fcales or grains on the fands of the river Pinto, and near Carthagena in South America. It is always in a metallic ftate, and always combined with iron.

Genus I. alloys of platinum.

$$
\text { SPECIES } j \text {. Native platinum. }
$$

Its colour is whitifh iron grey. Magnetic. Sp. gr. G. ${ }^{194}$. Alioyn from 12 to 16. Soluble in nitro-muriatic and oxy- Native plamuriatic acids.

Order IV. Ores of mercury.

Mercury is employed in medicine; it ferves to feparate filver and gold from their ores; the filvering of looking-glaftes, gilding, \&c. are performed by means of it ;'and its fulphuret forms a beautiful paint.
Mercury abounds in Europe, particularly in Spain, Germany, and Hungary: it is found alfo in China (z), the Phillipines $\|$, and in Peru, and perhaps Chili (A) \|Carreri's in South America. The moft productive mines of Trayge, Scon mercury are thofe of Idria *; of AImaden, near Cordo. Sctcolf, va in Spain, which were wrought by the Romans (B); Min. No of the Palatinate \dagger; and of Guanca Velica in Peru (c). xxxti. p.
Mercury has never been found in Britain, nor hasyns. any mine worth working been difcovered in France. Jour. do $\mathrm{Min}^{\circ} \mathrm{N}^{\circ}$ It occurs moit commonly in argillaceous shiftus, lime- vi. and vii. ftones, and fanditones.

> Genus I. alloys of mercury. species i. Native mercury.
196. Native mercury is found in moft mercurial mines: it G. I. Allogs is in fmall globules, feattered through different kinds of native ftones, clays, and ores.

Fluid. Colour white. Sp. gr, about 13.6 .
Gg species
(x) Kirw. II. 113.-Laxman. Nov. Comm. Petropol. XIX. 482.-Monnet, Merm. Sçav. Etang. IX. 717.
(y) See Browarigz, Phil. Tranf. XLVI. 584-LLewis, ibid. XLV1II. 638. and L. 148.-Margraf, Mem. Berlin, 1757, p. 314.-Macquer, Mem. Par. 1758 , p. 119.-Buffon, Jour. de Phy. III. 324.-Mouteau, ibid. VI. 193.-Bergnan, Opufc. II. 166.-Tiliet, Mem. Par. 1779, P. 373, and 385, and 545.-Grell, Grell's Annals, 1784. 1 Band. 328.-Willis, Manchefler Memoirs, III. $467 .-$ Mufin Pufchkin, Ann. de Chim. XXIV. 205.-Morveau, ibid. XXV. 3.
(z) See Entrecolle's Lettres Edificantes.
(A) See Molina's Natural Hifory of Cbili.
(в) See Bozule's Natural HiPory of Spain, and Jour. de Min. N ${ }^{0}$ xxxi. p. 555.
(c) See Ulloa's Memoirs concerning America.
(Beitröge, i. 183 .

198
G. II. Sul-
!'hurets Comman fuly hure'. || Kirzvan, ij. 228.

Its colour is filvery white or grey. Lutre metallic. Creaks when cut. Sp. gr. above 10. 'Tinges grold white. Before the blow-pipe the mercury evaporates and leaves the lilver.

A fpecimen of this amalgan, anaiyfed by Klaproth, contained 64 mercury,

36 filver.

species 2. Amalgam of filver**
 Native amalgam.

$$
1009
$$

Sometimes it contains a mixture of alumina, and fonetimes the proportion of mercury is fo great that the amalgam is nearly as foft as paite.

Genus II. sulphurets of mercury. species 1 . Common fulphuret $\|$.
 Native cinnalar.

This ore, which is found in almoft all mercurial mines, is fometimes in veins, fometimes diffeminated, fometimes in grains, and fometimes crytallized. The form of its cryftals is a tetrahedron or three-fided pyramid, noft commonly wanting the fummit; fometimes two of thefe pyramids are joined hafe to bafe; and fometines there is a three fided prifm interpofed hetween them 9 .

Its colour is red. Its ftreak red and metallic. Luftre when cryfallized 2 to 3 ; when amorphons, often c. Tranfparency, when cryitallized, from it to 3 ; when amorphous, often o. Texture generally foliated. Hardnefs from 3 io 8. Sp. gr. from $5 \cdot+19$ to 10.1285 .

Before the blow-pipe evaporates with a hlue flame and fulphureous fmell. Infoluble in nitric acid *.
V^{\top} ariety 1. Dark red.
Colour cochineal red. Hardnefs 6 to 7. Sp. gr. when pure, $10.1285 \dagger$; fometimes only 7.2 , or even $6.188 \ddagger$.

Varicty z. Bright red.
Colour commonly fcarlet. Sp. gr. 6.9022 § to 5.419 \|.

Genus III. oxides of mercury.
species I. Hepatic mercurial ore 7 .
This ore, which is the moft common in the mines of Idria, is always amorphous, and is often mixed with native mercury and cinnabar.

Its coluur is fomewhat red. Its ftreak dark red and brighter. Luftre commonly metallic. Hardnefs from 6 to 8. Sp. gr. from 9.2301^{*} to 7.186 t.' When heated the mercury evaporates.

Though this ore has never been accurately analyfed, chemifts have concluded that the mercury which it contains is in the flate of a red oxide, because it is infoluble in nitric and foluble in muriatic acid \ddagger. When pureft, it contains ahout .77 of mercury \wp. It contains alfo fome fulphur and iron.

Werner has divided this fpecies into two varietie's, the compag and the Raty. The fecond is often nothing more than bituminous thale impregnated with oxide of mercury !.

Genlis IV. mercurtal salts. SPECIES 1. Muridt of arercury*. Corneous mercury'.

Mctallic

This ore, which occurs in the Palatinate, is fome-Mercurial times in fales, fometimes in grains, and fometimes cry-Salts, ftallized. Its cryftals are either fmall four or fix fided Muríat of prifms whofe fides are rhombs t, or cubes, or four-fided $\begin{gathered}\text { mercury. Kirwan, }\end{gathered}$ pyramids wanting their angles. They are always veryii. 226 . imall and generally confufed.

+ Kome de
Its colours are various; but it is moft frequently Line, iii. white. Its luftre, when white, is pearly. Sometimes ${ }^{161 .}$ opaque, and fometimes femitranfparent. Evaporates before the blow-pipe.

Mr Woulfe difcovered that this ore generally contains fome fulphuric acid \ddagger. Specimens have been found \ddagger Pbit. in which the quantity of fulphuric acid exceeds that of Tranf. lavis. the muriatic $\$$.
618.
§ Suckourul.

Order V. COPPER ORES.

Many of the moft ufeful utenfils are formed of copper : it enters largely into the compofition of brals, bronze, and bill metal; not to mention the dyes and paints of which it is the bafis.

Copper mines abound in moft countries. They are 20 r wrought in China, Japan, Sumatra; the north of Africa ; in Chili and Mexico ; and in moft parts of Europe; efpecially Britain, Germany, Ruffia, Hingary.

Copper is found moft commonly in rocks of hornblende, fhiftus, and quartz.

> Genus 1. alloys of copper. species i. Native copper $\|$.

202
G. I. Alloye

Native cope

Native copper occurs now and then in the greater per. number of copper mines: Sometimes it is in maffes, il Kirzan, fometimes in plates and threads, which affume a variety Cartbenfer. of forms; and fometimes, as in Siberia, it is cryftallized in cubes, or other forms nearly refembling cubes δ.
Colour commonly that of copper, but fomerimes dark Jour. de brown. Luftre metallic. Streak brighter. Fracture Min. No hackly. Flexilile and malleable. Hardnefs 6 to 7. ${ }^{\text {xxxi. sog. }}$

Sp. gr. from 7.6^{*} to $8.584+$ t.

> species 2. White copper ore \ddagger.
> Alloy of capper, iron, atd arfenic.

Thirwan,
Min. ii.
128.
\dagger Hauy, ibid.
This ore, which is laid to be uncommon, occurs in f. 509 . maffes. Colour white. Lufte metallic. Fracture un- 203 even. Hardnefs 8 to 9 . Brittle. Sp. gr. confider. White copable.
fer ore.
Before the blow-pipe gives out a white asfenicalii. 152. fmoke, and melts into a greyifh black flag \wp.
§ Widenman.
Genus II. sulphurets of copper. species 1. Common fulphuret of copper $\|$.
G. ${ }^{204}$ II. Sul-
phurets.
Copper.
This ore, which is found in Cornwall, Hungary, and Common.
Siberia, occurs in maffes, plates, threads, and cry falli... fulphuret of zed in fix-fided prifms, or four-fided pyramids, joined copper. bafe to bafe.

Colour bluifh grey. Streak brighter grey." Luftre metallic. Hardnefs 4 to 7. Sp. gr. 5.452 II to 5.555^{*}; q Kirzoan, fométimes fo low as $4.129 t_{\text {. Detonates with nitre. Gellert. }}$

Before the blow-pipe'it melts eafily; and while the fu-t Kirwan. fion ex hibits a green pearl, which, on cooling, is covered with a brown cruft.' Tinges borax green.

Werner makes two varieties of this ore: the firft he
calls compand, from its frature; and the fecond, for the fame reafon, he calls foliated. This laft is fomewhat darker coloured than the firtt, but in other refpocts they ,agree.

> species 2. Copper pyritcs*.
> Yellow copper ori.

This ore, which is probably nothing elfe than fulphuret of iron combined with copper, and which, therefure, would be more properly placed among iron ores, is found frequently in copper mines, and mixed with common pyrites or fulphuret of iron. It is fometimes amorpbous, and Cometimes cryftallized. Its cryftals are either three or four fided pyramids applied bafe to bafe, or fix-fided plates.

Its colour is yellow ; often tarnihed. Its internal luftre metallic. Hardnefs 6 to 7 ; fometimes 9. Brittle.

+ Brifon. Sp. gr. $4.3!4 \dagger$ to $4.08 \ddagger$. Deflagrates; but dues not
\ddagger Kirwan,
§Id. Nin*
i. 14 . detonate with nitre \oint.

Before the blow-pipe decrepitates, gives a greenift fulphureous fmoke, and melts into a black mafs, which tinges borax green. Does nut effervefce with nitric acid.

206
Purplecopper ore. If Kirwan, ii. 142 .

II Ibid. ii. 43.
species 3. Purple copper ore $\|$.
This ore is found in maffes, or plates, or diffeminated; fometimes, alfo, it is cryftallized in octahedrons. Colour various, but moft commonly purple ; internally reddifh. Streak reddith and bright. Luftre metallic. Hardnefs 6 to 7. Brittle. Sp. gr. 4.956 to 4.983 サा.

Effervefces with nitric acid, and tinges it green. Deflagrates with nitre. Before the blow-pipe melts readily, withour fmoke, vapour, or fmell ; but is not redu. ced. Tinges borax a bright green.

A fpecimen of this ore, analyfed by Klaproth, contained

58 copper,

- 18 iron,

19 fulphur,
5 oxyger.
\& Beitrage,
ii. 256 .

207
Grey copper ore. \ddagger Kirvan, ii. 14^{0}.
§ Romé de
Lifle, iii. 345.

HI Heuy.
Jour. 1 e
Min. No
xxxi. 512.
$100 \dagger$
Species 4. Grey copper ore \ddagger.
This ore is found in Cornwall, Saxony, Hungary, \&c. It is often amorphous, but often alfo cryltallized. The primitive form of its cryftals is the regular tetrahedron; but, in general, either the angles or the edges, or both, are truncated or bevelled \oint.

Colour tteel grey ; often tarnifhed, and then dark grey. Streak dark grey; fometimes reddifh brown. Powder blackifh; fometimes with a tint of red. Luftre metallic. Hardnefs 7 or 8. Very brittle. Sp. gr. 4.8648 I . Deflagrates with nitre. Before the blowpipe crackles, but at laft melts, efpecially if affifted by borax. The bead gives a white fmoke, without any particular fmell; tinges borax jellow or brownifh red, but does not minte with it.

A fpecimen of this ore from Cremuitz, analy fed by Klaproth, contained 31 copper,

14 filver,
$3 \pm$ autimony,
3 iron,
is fulphur.
93

Napion, in an ore from the valtey of lanzo, found copper, filver, and antimony, nearly in the fime proportions, but more iron, and fome arfenic ". Savorefi, portions, but more iron, and fome artenic . Savorelh, Werm. Ta* Klaproth's analyfis, found fome gold and mercury in grey copper ore f : and Klaproth hinnfelf found lead in t Catal. ii. moft of the other fpecimens which he examined.

$$
\begin{aligned}
& \text { Genus III. oxides of copper. } \\
& \text { species i. Red oxide of cupper } \ddagger \text {. } \\
& \text { Florid red copper ore-Red copper glajs. }
\end{aligned}
$$ ries. It occurs in maffes, cliffeminated, in fcales, and ii. 835. cryftallized. The figure of its cryitals is molt commonly the octahedron 9 .

Colour commonly cochineal red. Streak brick red. Ludtre feminetallic. Tranfparency, when anorphous, generally 0 ; when cryftallized, 3 or 4 . Hardncis from 4 to 7 . Soluble with effervefcence in nitric acid. Before the blow pipe melts eafily, and is reduced.

This ore was fuppofed to be compofed of carbonic acid and red oxide of copper; but a 〔pecimen, examined by Vauquelin, which confifted of pure cryitals, contained no acid $\|$. It mult therefore be confidered as an $\|$ Ibrd. oxide of copper.

Werner has made three varieties of this ore, which, from their texture, he has denominatcd compuat, foliated, and fibrous. The firft is feldom or never found cryftallized, and is opaque; the fecond occurs amorphous, cryftallized, and in fcales; the third is carmine, ruby, or fearlet red; and occurs always in thurt capillary cryftals, or delicate flakes.

This ore fometimes cuntains a mixture of red oxide of iron; it is then called brick red cosper ore, copper malm, or coffer ocbre.

This ore is fometimes mixed with bitumen. Its colour is then brownifh black, and it is called pitcls ore.

> species 3. Green uxide of copper *.

$$
2 \subset 8
$$

Ked axide
§ Hauy,
Your. de
Min. ${ }^{10}$
xixi. 517. Ores. \xrightarrow{v}

$$
\text { G. } 111 .
$$

Oxises.
Mctalle rin, v.173.

[^2]

\qquad
\qquad

[^3] $\%$

209 Grcenoxide
of copper.

I'his ore, which was brought from Peru by Dombey, * Kirwar, is a grafs green powder, mixed, with grains of quartz. ii. 149 . When thrown on burning eoals, it communicates a green colour to the flame. It is foluble both in nitric and muriatic acids without effervefecnce. 'The folution is green. It was fuppofed to contain muriatic acid $\dagger ; \dagger$ Eertioliet, but Vauquelin has difeevered that the appearance of Merm. Par. this acid was owing to the prefence of fome cummon ${ }^{1780,462 .}$ falt, which is accidently mixed with the fand \ddagger.
\ddagger Four. de
Genus IV. salts of copper. Min, No
SPECIES 1. Blie carbunat of copper (D).
Mouniain llue - Azure de cuivre - Blue calk of copper-G.IV. Salts. Kuffer lazur.

Blue carho.
This ore, which occurs in the copper mines of Sibe-nat of copria, Sweden, Germany, Hungary, Cornwal, \&c. is ci-per. ther amorphous or cryftallized. The cryftals are fmall, and difficult to examine. According to Romé de Lifle, their primitive form is an octahedron, the fides of which are ifofeeles triangles, and two of them more inclined than the others $\$$. Be that as it nay, the cry ftals of $\$$ Crypul, iii. olne carbonat of copper are oftell rhomboidal prifms, $3+3$. either regular, or terminated by dihedral fummits $\|$.

Its colour is azure or fmalt blue. Streak blue. Hard-345. p. Gg 2 nefs nefs 4 to 6. Brittle. Sp. gr. $3.608 \ddagger$. It effervefces with nitric acid, and gives it a blue colour. Before the blow pipe it blackens, but does not melt. Tinges borax green with effervefrence.

The cryltals, according to Pelletier, are compoled of 66 to 70 copper,
18 - 20 carbonic acid, 8- 10 oxygen, $2-2$ water.
Fontana firll difcovered that this ore contained carbonic acid gas

Variety I. Earthy blue carbonat. Mountain blue.

This variety generally contains a mixture of lime. It is never cryftallized; and fometimes is almoft in the state of powder. Luftre 0 . Texture earthy.

Variely 2. Striated blue carbonat of copper.
Luftre glaffy. Tranfparency, when cryitallized, 2; when amorphous, 1. 'Texture friated; fometimes approaching to the foliated.

211
Green carbonat of copper.
species 2. Green carbonat of copper (e). Oxygenated carbonat of copper - Malacbite.
This ore is generally amorphous, but fometimes it is cryftallized in four-fided prifms, terminated by fourfided pyramids.

Colour green. Luftre filky. Harduefs 5 to 7 . Brittle. Sp. gr. 3.57I * to $3.653 \ddagger$. Effervefces with nitric acid, and gives a blue colour to ammonia. Before the blow-pipe it decrepitates and blackens, but. does not melt. 'Tinges borax yellowifh green. It is compofed of carbonic acid and green oxide of iron.

Irariety 1. Fibrous malachite.
Texture fibrous. Opaque when amorphous; when cryftallized its tranfparency is 2 . Colour generally grafs green.

Variety 2. Compact malachite.

Texture compact. Opaque. Colour varies from the dark emerald green to hlackifh green.

A fpecimen of malachite from Siberia, analy fed by Klaproth, contained

$$
\begin{aligned}
& 58.0 \text { copper, } \\
& 18.0 \text { carbonic acid, } \\
& 12.5 \text { oxygen, } \\
& 11.5 \text { water. } \\
& 120^{*}
\end{aligned}
$$

* Beilrïge,

This fpecies is fometimes mixed with clay, chalk, and gypfum, in various proportions; it is then linown by the name of

Common mountain green.
Its colour is verdigris green. Luftre o. Tranfpa. -mency 0 to 1 . IFardnefs 3 to 4. Brittle. Texture earthy. Effervefees feebly with acids. Before the blowpipe it exhibits the fame phenomena with malachite.

$$
212 \text { spectes 3. Sulphat of copper. }
$$

Sulphat of For a defcription of this falt, fee Chemisery, n° copper. 648. in this Supplement.
$2{ }^{2} 3$
Arfenat of copper.
\ddagger Kirwan,
ii. 151.

SPECIES 4. Arfeniat of copper \ddagger. Oive coner ore.
This ore is found at Cararach in Cornwal. It is ge-- nerally cryftallized in fix-fided compreffed prifins. Its colour is olive green. Stieak fometimes ftrav coloured,
fometimes olive green. Luftre glaffy. Tranfparency Metallic from 4 to 2. Fracture conchoidal. Hardnefs 4 to 7 . Ore. Before the blow-pipe deflagrates with an arfenical finoke, and melts into a grey coloured bead. This bead, fufed with borax, leaves a button of pure copper $\|$.

Klaproth difcovered that it was compofed of oxide of tione on copper and arfenic acid. Sometimes this ore is combined with iron. It then p. 39 . cryfallizes in cubes. Thefe cubes are of a dark green colour; before the blow-pipe they frothe, give out an arfenical fmoke, and do not fo quichly form a grey bead as the arfeniat of copper *.

Order VI. IRON ORES.
To defcribe the ufes of iron, would be to write the hiltory of every art and manufacture, fince there is not one which is not more or lefs dependent upon this ufe. ful metal. Nor is its abundance inferior to its utility. 214. It exifts almolt everywhere, and feems, as it were, the Mines. bond which connects the mineral kingdom together.

> Genus I. alloys of iron.
> speciesi. Native iton (f).
215°
G. I. Alloyes

Native
Native iron has been found in Siberia and in Peru iron in immenfe maffes, which feemed as if they had been fufed. Thefe mafles evidently did not originate in the place where they were found. See Firebballs, Suppl.

Colour bluift white. Fracture hackly. Luftre me. tallic. Malleable. Magnetic. Hardnefs-8 to 9. Sp. gr. 7.8. Prouft has difcovered, that the native iron found in Pern is alloyed with nickel I.

> Genus II. sulphurets of iron.
> species i. Commun fulphuret of iron *. Pyrites.

This mineral occurs very frequently both in ores and G. IJ. Sulmised with other bodies, for inftance in Mates. It is churets. often amorphous, and often alfo cryftallized. The pri-fulphuret of mitive form of its cryftals is either a regular cube or aniron. octohedron. The varicties of its form hitherto deferi- * Kirwan, bed amount to 30 ; for a defcription of which we refer the reader to Romé de Lifle \dagger.

Its colour is yellow. Its luftre metallic. Hardnefs + Cryfot. 8 to 10 . Brittle. Sp. gr. 3.44 to 4.6 . Soluble in iii. 208. nitric acid with effervefcence. Scarce foluble in fulphuric acid. Before the blow-pipe burns with a blue flame and a fulphureous finell, and leaves a brownifh bead, which tinges borax of a fmutty green.

Variety 1. Common pyrites.

Fracture uneven. Hardnefs 10. Decrepitates when heated. Emits a fulphureous fmell when rubbcd. Not magnetic. It occurs often in coal mines and in flates. Variety 2. Striated Pyrites.
Texture ftriated. Hardnefs $1 c$. Not magnetic. I'ariety 3. Capillary.
Colour often fteel grey. Found in needle-form cry. Atals. Uncommon. Not magnetic.

Variety 4. Magnetic pyrites.
Found in maffes. Texture compact. Hardnefs S, 9. Slightly magnetic. Seems to contain lefs fulphur than the other varieties.

In pyrites the proportion of the fulphur to the iron is variable; and this explains the variety of its cryftalline forms.

Genus
(e) Kirw. II. 131.-Fontaña, four. de Pbyf. XI. s09.-Klaproth, Beitrg̈ge, II. 287.
(f) Pallas, Pbil. Tranf. LXVI. $5^{2} 3 \cdot-$ Rubin de Celis, iVid. LXVIII. 37.-See alfo Sclureiber, Jour. de Phif. XLI. 3.; and Stelin, Pbil. Tranf. LXIV. 461.
\ddagger Four. de
$A I_{1 n} \mathrm{~N}^{\circ}$
xii. p. 16. 218.
G. iV.

Eniery.

- Kirwan,
ii. 193.
+ Brijon.

 pure it contaius yo carbon,

10 iron.

100

But it is often exceedingly impure: A fuecinen, for intance, fron the mine of Pluffier, in France, analyfed by Vauquelin, contained 23 carbun,

$$
2 \text { iron, }
$$

38 filica,
37 alumina.

GBnus III. carburet of iron.

 species 1. Plumbago*. Graphite of Werner.
$100 \ddagger$

Genus IV. iron combined with silica. species 1. Emery ${ }^{*}$.
This mineral is com'oully differminated through other foffils, but fometimes in the Eafl Indies it occurs in large maffes.

Its colour is bluifh grey, greyifh brown, or bluifh black, often covered with a yellowifh rind; internally it difcovers red or purple fpots. Luftre 1 or 0 ; in fome parts 2, and metallic. Opaque. Hardnefs 14. Brittle. Sp. gr. $3.92 \dagger$. Before the blow-pipe it blackens and gives a frutty yellow tinge to borax.

According to Wiegleb it contains

$$
\begin{aligned}
& 95.6 \text { filica, } \\
& 4.3 \text { izon. }
\end{aligned}
$$

99.9

Genus V. Oxides of iron.
This genus is very extenfive; for iron is much more frequently found in the flate of an oxide than in any other.
Spfales 1. Black oxide of iron \ddagger.
Common magnetic iron flone - Blackifo oatobelral iron ore.
This fpecies of ore is very common in Sweden; it is found alfo in Switzerland; Norway, Ruffia, \&c. It occurs in maffes, plates, grains, and cryflallized. The primitive form of its cryftals is a regular octohedron + . Sometimes two oppofite fides of the pyramids are trapeziums, which renders the apex of the pyramins cunciform. Sometimes the cryftals pafs into rhomboidal parallelopipeds, and into dodecaliedrons with rhomboidal faces $\$$.

Its furface is brownih black; internally blnih grey. Powder black *. Streak blackif grey, brighter. Luftre metallic. Hardnefs 9 to 10. Brittle. Sp. gr. from 4.094 to 4.688 t . Attracted by the magnet, and generally poffeffed of more or lefs magnetic virtue \ddagger. To
this fpecies belongs the magnct. Before the bluw pipe it becomes browner, but does not melt. Tinges borax dark green.

When pure it confilts entirely of oxide of iron ; and this oxide appears to contain from 15 tn .24 oxygren, and from .76 to .85 iron \S. Undoubtedly it confitts $\$$ Kirvan. of a mixture of iron in two diflerent ftates of oxida- Min. ii. tion. It is often alfo mixed and contaninated with 159 . foreign ingredients.

There are two varieties of this ore. The firft is what we bave jult defrribed; the fecond is in the form of fand, and has therefore been calied

$$
\begin{aligned}
& \text { Magnuetic fand *. }
\end{aligned}
$$

This fubftance is found in Ttaly, Virginia, St. Do. ii.- Dupumingo, the Eaft ludies, and in the fand of the river Don get, Your. de at Aberdeen in Scotland. It is black, very hard, mag. Min. No.
netic. Sp. gr. ahout 4.6 Not altered by.the blownetic. S_{p}. gr. alout 4.6 Not altered by the blowpipe por fe $_{\text {e }}$ melts into a black glafs with potafs, and into a green glafs with micrucotinic fult, both opaque \dagger. \dagger Furreroy, It probatly contains fome filica, as Kirwan has fup- Ann. de pored \ddagger.
127.
\ddagger Min, ii.
species 2. Specular iron ore 4 .
161. Fer oligife.
This ore is found abundantly in the ine of Elba near Specular 22 Tufcany. It is either in maffes or cryftallized. The inon ore. primitive furm of its cryitals, and of its integrant mole. Kirzu. iir cules, is the cube *. The varieties hitherto obferved a- $162 .-$ Couramount to 7. Thefe are the rlomboidal parallelopiped a drai, Your. the cube, with three triangular faces inftead of two of 52 . its angles diagonally oppofite; two fix. fided pyrumids, *Hayy, applied bafe to bafe, wanting the fummits \ddagger, and fome. Jour de times the angles at the bafes, and fumetimes the alter- Mxxyiii. Goo. nate edges of the pyramid; a polyhedron of 24 fides, 1 fig. 39. refembling a cube with three triangular faces for two angles diagonally oppofite, and two tiangles for the reft of its angles. For a defcription and figure of thefe varieties, we refer to Roné de Lijle \dagger and Hauy \ddagger.
Colour fteel grey; often tarnithed, and beautifully 189. iridefcent, reflecting yellow, blue, red. Streak red. $\ddagger 16 i d .660$. Powder dark red. Luftre metallic. Hardnefs 9 to 10. Not brittle. Sp. gr. $5.0116+105.218 \ddagger$. Slightly
 borax an obfcure ycllow.

This ore, according to Mr Muhet, is compofed of
66.1 iron,
21.2 oxygen,
10.7 water and carbonic acid,
2.0 lime.

$100.0 \dagger$

 fmall, owing to the unavoidable inaccuracy which re- $35+$. fults from the dry way of analyfis which Mr Mufhet followed.

Micaceous iron ore

Is generally confidered as a variety of this fpecies. Kirwan, however, fuppofes it to contain carbon, and to be a diftinet fpecies.

It is found in Saxony, and in the iflc of Elba, \& ec. generally in amorphous maffes, compofed of thin fixfided laminx. Colour iron grey. Streak bluifh grey. Luftre metallic. Opaque. Feels grecfy. Hardnefs 5 to 7. Brittle, Sp. gr. from 4.5 to 5.07 . Slightly magnetic.

Iron Oref. magnetic. Infufible by the bluw-pipe. Tinges boraz 222 greenilh brown.
1.aninneed EDECIES 3. Laminated fpecular ironore.

Slieculir
iron ore.
This ore, which is found at Montd'or in Auvergn, was ufually arranged under the laft fuecies; but has been feparated from it, we think properly, by Mr Hauy, becaufe the form of its cryltals is incompatible with the fuppolition that their primitive aucleus is a cube, as we have feen is the cafe with common fecular iron ore. Its cryftals are thin octagonal plates, bounded by fix linear

* De Life, trapeziums, alternately inclined different ways *.
iii. 188.

Calour fteel grey. Powder reddifh black. Luftre metallic; furface polifhed. Fracture glafly. Very
\dagger Hany,
Four. de
M in. ${ }^{\circ}$
1xxi. 33 .
223.

Brown iron
\$re. Kirsu.ii.
26j.
§ Gellert.
॥ Kirzoan. 8 to 10. Brittle. Sp. Mr. 3.780 to 3.95 I $\%$. Not magnetic.

This variety has not been analyfed, but it feems to confift of brown oxide of iron, oxide of manganefe, and I Kirwan's allumina of.
Min. ii. Variety 2. Compact brown iron fone.
164.

This variety occurs in maftes of very various and often fantaftieal thapes.

Colour brown. Internal luftre metallic. Texture * Briflon. compact. Hardneis 6 to 9. Brittle. Sp. gr. 3.477^{*} t Kirwan to $3.551+$.

Variety 3. Brown fealy iron ore.
This variety is generally incumbent on other minerals. Colour brown. Luftre metallic. Stains the fingers, marks ftrongly. Feels unctuous. Texture foliated. Hardnels 3 to 5. Brittle. So light as often to float on water.

Variety 4. Brown iron ochre:
This variety occurs both maffive and diffeminated. Colour from nut brown to orange. Luftre 0 . Strongly ftains the fingers. Texture earthy. Hardnefs 3 to 4 . When nimhity heated reddens.
224
Red iron
ore.
\ddagger Kirw, ii. 168.

SPECIES 5. Red iron ore \ddagger.
Colour red. Streak blood red. Sp. gr. from $3.42 \hat{3}$
to 5.005. Before the blow pipe blackene, but does Metalic not melt. Tinges borax yellowith olive green. W'hen Ores. digetted in ammonia, it becomes black and often magnetic.

Variety 1. Red hematites.

Found in maftes, and all the variety of forms of Aa. lactites. Colour between brownifh red and fteel grey. Powder red. Internal luftre metallic. Texture fibrous. Hardnels 9 to 10. Brittle. Sp. gr. 4.74* to 5.co5t. * Getiert.

When pure it confifts of red oxide of iron, but it oî- \dagger Kirzoan. ten contains manganefc and alumina \ddagger.

Variety 2. Compact red iron ore.
Found maffive and ftalactitic; fometimes in cryftals 169. of varionus forms, but they feem to be only fecondary; fometimes in columns like bafalt.

Colour between brown red and fteel grey. Stains the fingers. Luftre 1 to 0 ; often femimetailic. Texture compact. Hardnefs 7 to 9. Brittle. Sp. gr. $\hat{2.423}$ to $3.76 \oint$. Sometimes invefted with a rofy red S Kirwam: ochre.

Variety 3. Red ochre.
Found fometimes in powder, fometimes indurated. Colour blood red. Stains the fingers. Luftre o. Texture earthy. Hardnefs 3 to 5. Brittle.

Variety 4. Red fcaly iron ore.
This variety is generally found incumbent upon other iron ores. Colour between cherry red and fteel grey. Stains the fingers. Luftre filky, inclining to metallic. Texture foliated. Feels unctuous. Hardnefs 3 to 4. Brittle. Heavy.

$$
\begin{array}{ll}
\text { species } 6 \text {. Argillaceous iron ore \|. } & 225 \\
\text { Oxid of iron combined or mixed with clay. } & \text { Argillace. } \\
\text { ous iron }
\end{array}
$$

This ore is exceedingly common; and though it con- ore. tains lefs iron than the fpecies already defcrihed, it is, Kirw. ii. in this country at leaft, preferred to them, becaufe the ' ${ }^{173 .}$ method of extracting pure iron from it is eafier, or rather becaufe it is better underftood.

Colour moft commonly dark brown. Streak red or yellowifh brown. Sp. gr. from 2.673 to 3.47 I *. Be-* Kirwor: fore the blow-pipe blackens, and tinges borax olive green and blackifh. It is compofed of oxide of iron, alumina, lime, filica in various proportions. It generally yields from 30 to 40 per cent. of iron.

Variety I. Common argillaceous iron ore.
The minerals arranged under this variety differ confiderably from each other in their external characters. They are found in maffes of various hapes, and often form large ftrata.

Colour various fhades of grey, brown, yellow, and red. Streak reddifh yellow or dark red. Luftre 0. Hardaefs from 3 to 8 . Smell earthy when breathed upon.

Variety 2. Columnar or fcapiform iron ore.
This variety is found in columns, adhering to each other, but eafily feparable : They are commonly incurvated, and their furface is rough. Colour brownith red. Streak dark red. Slightly ftains the fingers. Luftre o. Adheres Atrongly to the tongue. Sound hollow. Feel dry. Texture eartliy.

Vuriety 3. Acinofe iron ore.
This variety is found in mafles, and is commonly lenticular. Colour generally brownifh red. Luftre metallic, nearly. Testure granular. Hardnefs 5 to 90: Brittle.

Variety

on Ores. Varicty 4. Nodular, or kianey-form iron ore. AEtites or Eaglefione.

This variety, which was mentioned by the ancients, is generally found under the form of a rounded kuob, more or lef's refembling a kidney, though fometimes it is quadrangular ; and it contains, within it a kernel, which is fometimes loofe, and fometimes adheres to the outfide rind. Colour of the flone yellowinh brown; of the kernel ochre yellow. Surface generally fouled with earth. Luftre of the rind metallic; of the kernel o. Hardnefs from 4 to 7. Brittle.

Variely 5. Pifiform or granular iron ore.
This variety occurs in rounded maffes, from the fize of a pea to that of a nut. Surface rough. Colour commonly dark brown. Streak yellowifh brown. Hardnefs 5 to 6. Brittle.

The oolitic ore found at Creufot, near mount Cenis, belongs to this variety. It is compofed of

$$
\begin{aligned}
& 50 \text { lime, } \\
& 30 \text { iron, } \\
& 20 \text { alumina. }
\end{aligned}
$$

100

species \%. Lowland iron ore *.

This fpecies of ore is fuppofed to confift of oxide of iron, mixed with clay and phofpluret or phofphat of iron. It is called lowland ore, becaufe it is found only in low grounds; whereas the latt fpecies is more commonly in high grounds; and is therefore cally bigbland ore.
This ore occurs in amorphous naffes, and alfo in grains or powder. Its colour is brown. Streak yellowifh brown. Luftre 0 , or common. Texture earthy. Hardnefs 3 to 5 .

Variety 1. Meadow lowland ore.
Colour blackinh or yellowifh brown: Both colours often meet in the fame fpecimen. Fond in lumps of various fizes, often perforated. Fracture compact. Moderately heavy.

Frequently yields from 32 to 38 per cont. of iron. Variety 2. Swampy iron ore.
This variety is generally found under water. It is in lumps, which are commonly perforated or corroded, and mixed with fand. Colour dark yelluwih brown, or dark nut brown. Hardnefs 3 to 4 . Brittle. Sp. gr. 2.944. It often contains. 35 of iron.

Variely 3. Moraffy iron ore.
This variety is found either in a loofe form or in perforated lumps. Colour light yellowih brown. Stains the fingers. Hardnefs 3. Friable.

It is fuand fometimes in amorphous maffes, and fometimes cryfallized.

Its culour is white; but it becomes tarnifhed by expofure to the air, and then affumes various colours. Streak grey or white. External luftre often metallic ; internal common or glafty. Tranfparcucy y or 2 ; fometimes 0 . Texture foliated. Fragnents rhomboidal. Hardnefs 5 to 7. Brittle. Sp. gr. 5.6 to 3.8 Ic. Not magnetic. Soluble in acids with very little eflervefcence. Before the blow-pipe decrepitates, becomes brownifh black, and magnetic; but is fcarcely fulible. Tinges borax fmutty yellow, with fome effervefcence.

This ore, as Bergman afcertained, confits of iron, manganefe, lime, and carbonic acid.

One fpecimen, according to his analyfis, contained 38 iron, 24 manganefe, 3^{8} carbonat of lime.

$$
\begin{aligned}
& 100 \\
& \text { A nother contained } 22 \text { iron, } \\
& 28 \text { manganefe, } \\
& 50 \text { carbonat of lime. }
\end{aligned}
$$

Whether the iron be combined with the carbonic acid is fill a difputed point. The cry fals of this ore are rhomboidal parallelopipeds; which is precifely the form of carbonat of lime. This amounts nearly to a demonftration, that the carbonic acid is combined with the lime; and that, as Cronftedt and Hany have fuppofed, this ore is merely carbonat of lime, contaminated with a quantity of the oxids of iron and manganefe.

species 2. Arfeniat of iron.

228
Mr Prouf has difcovered this ore in Spain. Its co. Aren. lour is greenifh white. Its texture gtanular. Infoluble in water and nitric acid. When melted on charcual, the arfenical acid efcapes with effervefeence *.

> SpECIES 3. Sulphat of iron. (huse i. igs.

* Ann. dé

For a defcription of this falt, fee Chemistry, no sufthat of 63 1. in this $S u p p$ l.
iros.

Order Vif: TIN ORES (h).

Tin is employed to cover plates of iron and copper, and to filver the backs of looking glafies: It enters into the compofition of pewter; and forms a very important article in dycing.

Tin ores are by no means fo common as the ores of the metals which we have alrcady defrribed. They mina are found only in the primitive mountains (1). Hence Mints. Werner fuppofes them to be the molt ancient of all me. tallic" ores. They occur moft frequently in granite, fometimes in porphyry, but never in limefone.

Almoft
(G) Kirav. II. 190.-Bergman, 1I. 184.-Bàyein. Gour. de Pbyf. VII. 213.- Razorumozufik, Mem. Laufunne, 1983. p. 449.
(11) Geoffoy, Menn. Par. 1738, p. 103. -Morveau, Ann. de Chim. XXIV. 127.
(s) Geologits have divided muuntains into three claffes'; primitive, fecondary, and tertiary. The primitive occupy the centre of all extenfive chains: they are the higheft, the molt rugged, and exhibit the moll poinied tops. They are confideted as the moft ancient mountains of the globe.

The fecondary mountains occupy the outfide of extenfive ranges. They are ufually compofed of frata, more or lefs inclined, and commonly ref againft the fides of the primitive mountains. - The acitiary mountains are much fmaller than the others, and are often folitary. We ufe the terms prinitive, feeondary, \&ic. merely as

Fin Ore:
Almon the only tiv mines known to Earnpeans are
thofe of Cornwal, Devonhire, Saxony, Bohemia, Silefia, Hungary, Gallicia ; thofe of the ifland of Banca and the peninfula of Malacea in India; and thofe of Chili and Mexico and America.
2.3 I
G. J. Sulphurets. Sulphuret of tin and copper

- Kirw. ii. 202.
+ K'lap e $^{\prime}$: L^{\prime}
Cornzual, p. 21.
- Klaproth.

Genus I. sulphurets of tin.
species 1. Sulphurct of tin and copper *. Tin pyrites.
Hitherto this ore hais only been found in Cornwal. There is a vein of it in that county, in the parifh of St Agnes, mine feet wide, and twenty yards beneath the furface \dagger.

Its colour is yellowifh grey, paffing into the fleel gree. Not unlike grey copper ore. Luftre metallic. Hardnefs 5 to 6. Very brittle. Sp. gr. 4.3 j \ddagger. Before the blow pipe it melts eafily, with a fulphureous finell, into a black bead, and depofits a bluifh oxide on the charcoal.
The compofition of this ore, as Klaproth informs us, was firtt difcovered by Mr Rafpe. According to Klaproth's analylis, it is compofed of

> 34 tin,
> 36 copper,
> 25 fulphur,
> 3 iron, 2 earth.

5 1d. 58.
${ }^{232}$
G. 11. Ox-
ides. Brown
oxide of tin

* Kirrv. ii. 197.
\dagger Y Your. $d e$
Min. N°
xxxii. 576 .
\ddagger Cryfallog. iii. 413. 1 Pbilof. Mag. iv. 152.
§ Ramí de
Lije, ibid.

$100 \$$

Genus Il. oxides of tin. spectes 1. Brown oxide of tin*. Tinfone - ${ }^{\text {Woodtin. }}$
This ore, which may be confidered as almof the only ore of tin, occurs in maffes, in rounded pieces, and cryftallized. Thefe cryftals are very irregular. Hany fuppofes, that their primitive form is a cube \dagger; but Rumé de Lifle, with more probability, makes it an oetohedron \ddagger; and in this opinion Mr Day agrees with him $\|$. The oftohedron is compofed of two four-lided pyramids, applied bafe to bafe. The fides of the pyramids are iffofceles triangles, the angle at the vertex of which is 70°, and each of the other angles 55°. The fides of the two pyramids are inclined to each other at an angle of 90%. The primitive form, however, never occurs, but cryftals of tinftone are fometimes found, in which the two pyramids are feparated by a prifin. For a complete defeription of the varieties of the cryfals of
$A l O G Y$.
tiultone, we refer the reader to Romé de Lijfe and Mrr Metalic Day*。

Its colour is commonly brown. Streak grey. Hard. Pbile.
nefs 9 to 1c. Sp. gr. 6.9 to 7.0 . Brittle.
$\Lambda \Delta d_{g}, \quad b: d$.
V ariety 1 . Common tinitoric.
Colour dark brown ; fometirns yellowifh grey, and fometimes nearly white. Strcak light grey. Somewhat tranfparent when cryftallized. Hardnefs ro. Sp gr . 6.9 to 6.97 . " Before the blow pipe it decrepitates, and 6 on charcoal is partly reduced. Tinges bordx white.

According to klaproth, it is compofed of

$$
\begin{aligned}
& 72.50 \text { tin, } \\
& 22.50 \text { oxygen, } \\
& .25 \text { iron, } \\
& .75 \text { filica. } \\
& \hline \text { Io.00 } \dagger \\
& \text { Variety } 2 . \text { Woodtin. }
\end{aligned}
$$

+ Beiträge,
ii. 256 .

This variety lias hitherto been found only in Corn. wal. It occurs always in fragments, which are generally rounded. Colour brown ; fometimes inclining to yellow. Streak yellowifh grey. Opaque. Texture fibrous. Harduefs 9 . Sp. gr. 7.0. Before the blow-pipe becomes brownifh red; decrepitates when red hot, but is not reduced.

Klaproth obtained from it .63 of tin ; and, in all probability, it is an oxide of tin nearly pure.

Order Vili. ores of lead.

The ufful purpofes to which lead in its metallic ftate is applied, are too well known to require deffription. Its oxides are employed in painting, in dyeing, and fometimes alfo in medicine.

Ores of lead occur in great abundance in almoft every part of the world. They are generally in veins; fometimes in filiceous rocks, fometimes in calcareous rocks.

Genus I. sulphurets of lead.

species i. Galena, or pure fulphuret of lead \ddagger.
This ore, which is very common, is found buth Gharets. maffes and cryltallized. The primitive form of its cry fure fulfals is a con the of ftals is a cube. The moft common varieties are the cube, lead.
fomet imes with its angles wanting, and the octohedron, t Kirzv. it. compofed of two four fided pyranids applied bafe to ${ }^{2}$ bafe: The fummits of thefe pyramids are fometimes cuneiform, and fometimes their folid angles are wanting \|.

Its colour is commonly bluifh grey, like lead. Streak bluifh grey and metallic. Luftre metallic. Sometines
proper names, withont affirming or denying the truth or falfelood of the theory on which thefe names are founded. That the reader may have a nore accurate idea of the compofition of thefe different claffes of mountains, we have fubjoined a lift of the fubflances which, according to Werner, enter into the compofition of each.
I. Primary Mountains.

1. Granite,	4. Argillaceous fliftus,	7. Shiftofe porphyry,	io. Serpentine,
2. Gneifs,	8. Syenite,	8. Quartz,	11. Topaz rock.
3. Micaceous fiftus,	6. Porphyry,	9. Primitive limeftone,	

II. Secondary Mountains.

1. Argillaceous fhiftus,
2. Rubble ftone,
3. Secondary limeftone,
4. Grunftein,
5. Shiftofe hornblende,
6. Amygdaloid.
III. Tertiary Mountains.
7. Trap,
8. Argillaceous fhiftus,
9. Stratified limeftone,
10. Sanditone,
11. Breccia,
12. Coal,
13. Chalk,
14. Sulphat of lime,
15. Rock falt,
16. Ferruginous clay, II. Potters earth.

MINERALOGY.

and which is fuppofed to be comtion galena decayed, is fometimes in italactites of various forms, and fometimes cryftallized in fix-fided prifms, which are generally truncated and confufed.

Colour black, often with fome ftreaks of red. Strcak light bluifh grey. Internal luftre metallic. Hardnefs 5 to 6. Brittle. Sp. gr. from 5.744 || to 5.77^{*}. Before the blow-pipe decrepitates, melts eafily, and is reduced.

According to the experiments of Laumont, this ore is a fulphuret of lead (or rather fulphuret of oxide of lead), mixed with fome phof phat of lead.
species 5. Sulphuret of lead, bifmuth, and filver.
This ore, which occurs in the valley of Schapbach in of lead, biif Saxony, was firft taken notice of by Selb, and after murh, and wards defcribed by Weidenmann and Emerling.

Its colour is light bluifh grey. Its luftre metallic Its fracture uneven. Hardnefs 5 . Melts eafily before the blow-pipe, emitting fome fmoke, and leaves a filver bead.

> A fpecinen, analyfed by Mr Klaproth, contained 33.0 lead, 27.0 bifmuth, 15.0 filver, 16.3 fulphur, 4.3 iron, 0.9 copper.

$$
96.5 \dagger
$$

+ Beilräge!
ii. 297.

238
G. 11. Ox-
ite:. Lead 0 hre.
This ore, which is a mixture of the oxide of lead with varions earths, is found maffive, and various degrees of hardnefs.

Kirzu.ii.
Its colour is either yellow, grey, or red. Luftre o. Tranfparency o to 1. Hardnefs 6 to 8 ; fometimes in powder. Sp. gr. from 4.16 ; to $5.545 \$$. Texture § Kirwan. compact. Effervefees with nitric and muriatic acids. Eafily reduced by the blow-pipe, leaving a black flag, unlefs the lead be inixed with too great a proportion of earth.

> Gembs III. salts of leao.
> species I. Carbonai of head \ddagger. IWbite lead fyar.

239
G. III.
saltc.
Carbonat
rfled. . 03.
 lization is in general fo confufed, that the primitive form of the cryitals has not yet been afeertained (κ).

Its colour is white. External luftre, waxy or filky, from 3 to $1:$ interval it to 2. Generally fomewhat tranfparent. Hardnefs 5 to 6. Brittle. Sp. gr. from 5.349 i| to 6.92 §. Effervefíces with nitric and nuriatic || Kirean. acids when they are heated. Soluble in fat oils. Black- \& Cectast ened by fulphuret of ammonia *. Decrepitates when Annde de heated. Before the blow-pipe, in a filver fpoon, it be- ©imo is. comes red by the yellow cone of the flame, while the so. blue cone renders it yellow \dagger. On charcoal it is inme- \dagger Fibbendiately reduced.
 .24 of carbonic acid. It is gencrally contaminated with carbunat of lime and oxide of iron.

Hh
spectes

Merallic

Oies.

Briphn.
Gcllers.

Sulphuret
of lead, with filver many.
$97.25 \ddagger$
species 3. Blue lead ore*.
This ore, which is found in Siberia, Germany, and Hungary, and is very rare, occurs fometimes in maffes, and fometimes cryftallized in fix-fided prifms.

Colour between indigo blue and lead grey; fometimes inclining to black. Internal luttre metalic. Streak brighter. Texture compact. Hardnefs 6. Sp. gr. $5.461 t$. Before the blow-pipe melts with a low blue flame and a fulphureous fmell, and is eafily reduced.

species 4. Black lead ore \ddagger.
 This ore, which is found in Germany and Brittanny,

 Suppl. Vol. II. Part I.(x) See Hauy, Gour. de Min. No XXXI. 502. and Romé de Liffc, LII. 3 So.

- Brifon.
\dagger Klaproth.
\ddagger Fourcroy,
Ann. de Cbim. ij. 227.

Ibid.
241
Arfeniat of lead. § Kirzu. ii. 309.

* Prouft,

Four. de
Pby. xxx. 394.
${ }^{242}$
Phofphat
and a'fe-
níat of
lead.
\dagger Kirw. is. 310.
\ddagger Brijon.
species 2. Phofplat of lad *.
This ore, which is found in Siheria, Scotland, Eng. land, Gernany, Carinthia, Brittany, \&ic. is fometimes a:norphous, and fometimes cryttallized. The primitive form of its cryfals, according to Romé de Lifie, is a dodecahedron, confifting of a fix-fided rectangular prifm, terminated by fix-fided pyramids, the fides of which are ifofceles triangles (L). Sometimes the pyramids are truncated, and even altogether wanting. The cryftals of this ore are often acicular.

Its colour is commonly green ; fometimes yellowifh or brownifh, or greyifi white. Streak commonly greenifh white. Powder yellowin. External luftre, waxy, 2 to 3. Somewhat tranfparent, except when its colour is greyifh white. Hardnefs 5 to 6 . Brittle. Sp. gr. from 5.85^{*} to $6.27 \dagger$. Infoluble in water and fulphuric acid, and nearly infuluble in nitric acid; foluble in hot muriatic acid, with a flight effervefence \ddagger. Before the blow-pipe it eafily melts on charcoal, and cryftallizes on cuoling: with foda the lead is in fome meafure reduced.

The compofition of this ore was firft difcovered by Gahn.

According to Fourcroy's analy fis, a fpecimen from Erlenbach in Alface confifts of

96 phofphat of lead,
2 phofphat of iron,
2 water.
100
Or it contains 79 oxide of lead, I oxide of iron, 18 phofphoric acid, 2 water.

100 \#
specses 3. Arfeniat of lead \wp.
This ore, which has hitherto been found only in Andalufia in Spain, and always in quartz or feldfpar, is in fmall maffes. Colour neadow green, often paffing into wax yellow. Luftre waxy, 2. Tranfparency 2. Before the blow-pipe it melts, and retains its colour, and does not cryftallize on cooling. When heated to whitenefs, the arfenic acid efcapes, and the lead is reduced *.

> species 4. Phofphat and arfeniat of lead.
> Aefenio pho/pbat of lead \dagger.

This ore, which has been found in Auvergne in France, is either in maffes, or cryftallized in fmall fixfided prifms, with curvilineal faces.

Colour yellowifh green, or fhews alternate layers of pale and light green. Pcwder yellowin. The cryftals are fomewhat tranfparent ; but when maflive, this ore is opaque. Hardaefs 5 to 7. Brittle. Sp. gr. $6.8+65 \ddagger$. Soluble in hot muriatic acid, but not in nitric. When heated it decrepitates. Before the blow-pipe melts eafily, effervelces, emits a white fmoke, with an arfenical fmell. Some particles of lead are reduced, a brown fluid remains, which cryftallizes on cooling like phofphat of lead.

According to Fourcroy, from whom the whole of Metallic this delcription has been taken, it is compoled of 65 arfeniat of lead, 27 phofphat of lead, 5 phofphat of iron, 3 water.

SPECIES 5: Molytdat of lead (M).

\author{

* Ann. de Cbim. ji. 23-
 24.3
}

This ore, which is found in Carinthia and at Lead. Mollead. hills in Scotland, was firft mentioned in 1781 by Mr Jacquin (s). It occurs either in mafles, or cryftallized in cubic, or rhomboidal, or cetohedral plates.

Its colour is yellow. Streak white. Luftre waxy. Generally fomewhat tranfparent. T'exture foliated. Fracture conchoidal. Hardnefs 5 to 6. Sp. gr. 5.486 t; when purificd from its gangue by nitric acid, $5 \cdot 706 \ddagger$.

Soluble in fixed alkalies and in nitric acid. Communicates a blue colour to hot fulphuric acid. Soluble in muriatic acid, and decompuled by it. Before the blowpipe decrepitates, melts into a yellowifh grey mafs, and globules of lead are reduced $\|$.

Klaproth firf proved that this ore was molybdat of lead.

A very pure fpecimen, analyfed by him, contained 64.42 oxide of lead,
34.25 molybdic acid,
34.25 molybdic acid,

```
98.674
II Beiträge,
3i. \(275{ }^{\circ}\)
```

According to the analy fis of Mr Hatchett, it is com-
pofed of 58.40 oxide of lead,
38.00 molybdic acid,
2.10 oxide of iron,
.28 filica.
98.78^{*}

* Pbil.

Macquart found a fpecimen to contain \quad Tranf.

$$
\begin{aligned}
& 58.7+\text { lead, } \\
& 4.76 \text { oxygen, } \\
& 28.00 \text { molybdic acid, } \\
& 4.50 \text { carbonat of lime, } \\
& 4.00 \text { filica. } \\
& \hline 100.00 \dagger
\end{aligned}
$$

IxExvi. 32.3.

Its gangue is carbonat of limc.
species 6. Sulphat of lead *.

+ Four. de Min. No svii. 32.
This ore, which is found in Anglefey and in Anda. ${ }^{244}$ lufia, is generally eryftallized. The cryftals are regu-lead. lar octahedrons \dagger, and very minnte.

Colour white. Luftre 4. Tranfparency 4. Before Min. ii. the blow-pipe it is immediately reduced.

The compofition of this ore was firlt afcertained by $\begin{aligned} & \dagger \text { Hour. de } \\ & \text { Ge Withering. }\end{aligned}$
Min. Ne Dr Withering.
xxyi. 508

Order IX. ORES OF ZINC.

Hitherto zinc has not been applied to a great variety of ufes. It enters into the compofition of brafs; it is ufed in medicine; and Morveau has fhewn that its
(土) Cryfal. III. 391. See alfo Hauy's remarks on the fame fubject in the Four. de Min. No XXXI. 506.
(m) Kirw. II. ${ }^{212 .-K l a p r o t h, ~ A n n . ~ d e ~ C b i m . ~ V I I I . ~ 103 .-H a l c h e t t, ~ P b i l . ~ T r a n f . ~ 1796, ~ p . ~} 285$.
(s) In his Mifiellanea Aufriaca, Vol. II. p. 139.

Ores of oxide might be employed with advantage as a white Zinc. paint.

Ores of zinc are very abundant ; they generally accompany lead ores, particularly galena. Calamine, or oxide of zinc, has never been difcovered in the primitive mountains.

G 1. SuI-
phurets. Common fulphuret of zinc.

* Kirw. ii. lead lt occurs both in ant 23 S.-Berg.lized. The primitive form of its crythals is a rhomboiii. 329.
\div Hay
Jour. de Min. No xxxiii, 660 \ddagger Fig. 40. § Fig. 4 t . $\|$ See Hay, equilateral triangles $\|$.

Rome de Lille, ii. 65. * Gillert. \dagger Brijon. to 8. Sp. gr. 3.93 to 4.1665t. Before the blow-pipe decrepitates, and gives out white flowers of zinc, but does not melt. Borax does not affect it. When breathed upon, lofes its luftre, and recovers it very flowly \ddagger.

Variety 1. Yellow blende.
Colour commonly fulphar yellow, often faffing into olive green or brownifh red. Powder pale yellow. Streak yellowifh or reddifl grey, not metallic. Luitre metallic. Tranfparency 2 to 4 . Often phofphorefces § Bergman, when fcraped or rubbed ρ.
ii. 345 . According to Bergman, it is composed of

64 zinc,
20 fulphur,
5 iron,
4 fluor acid,
1 filica,
6 water.

1 Ibid. 34\%
$100 \mid 1$
Variety 2. Brown blende.
Colour different fades of brown. Surface often tarnifhed. Powder brownifh grey. Streak reddish or yellowish grey, not metallic. Lull re commonly metallice. Transparency o to 2.

A fpecimen of this variety, analyfed by Bergman, contained

44 zinc,
17 sulphur,
24 filica,
5 iron,
5 alumina,
5 water.
7 Ibid. 333.
$100 \$$
Variety 3. Black blende.
nifhed blue; tips of the crystal often blood red. Powder brownifh black. Streak reddifh, brownifh, or grey. Luftre common or metallic. Tranfparency o to 1 ; the red parts 2. Hardnefs 8.

A specimen of this variety, analyzed by Bergman, contained

$$
5^{2} \text { zinc, }
$$

Metallic

```
26 fulphur,
4 copper,
8 iron,
6 filiea,
4 water.
100*
Genus II, oxides of zinc.
species r. White oxide of zinc \(t\). Calamine.
4 copper,
.
```



```
100*
Genus II, oxides of zinc.
species i. White oxide of zinc \(\dagger\).
Calamine.
```

* Bergman. ii. 335 .

This ore is either found loofe, or in mattes, or cry- + Kirw. ii. Aallized. The primitive form of its cryftals appears, 233.-Berg. from the mechanical divifion of one of them by Mrii. 321. Hay, to be an octohedron compofed of two fourfined pyramids, whole fides are equilateral triangles \ddagger. Your. do But the cryftals are minute, and their figure not very xxxii. 596 . diftinct. They are either four or fix-fided tables with bevelled edges, fix-fided prifms, or three-fided pyamids.

Colour commonly white, grey, or yellow. Luftre often 0 , fminetimes 2 or 1 . Opaque. The cryftals are fomewhat transparent. Hardnefs from 4 to 9 , formetimes in powder. Sp. gr. from 2.585 to 3.674 S. When $\$$ Kirman. heated, becomes electric, without friction, like the tourmaline $\|$. Not blackened by fulphuret of ammonia. \#Hary, Soluble in fulphuric acid. Before the blow-pipe de- Four. de crepitates, and does not melt.

This ore confilts of oxide of zinc more or left contrminated with iron, filica, lime, and other foreign ingredents. In one fpecimen Bergman found the following ingredients :
8_{4} oxide of zinc,
3 oxide of iron,
12 filica,
r alumina.

100%

- Bergman,
ii. 323 .

In another Specimen, which gelatinized with acids like zeolite, Klaproth found 66 oxide of zinc,

33 filica,
99
In another fpecimen, analyzed by Pelletier, the contents were 52 filica,

36 oxide of zinc,
12 water.
100^{*}
Mr Kirman has divided this feecics into three varies Ply. $42 \mathrm{xm}_{1}$ ties.

Variety I. Friable calamine.

In maffes which eafily crumble between the fingers. Lute 0. Opaque. Texture earthy. When its co. lour is white, it is pure oxide of zinc ; when yellow, it is mixed with oxide of iron. The white often becomes yellow when placed in a red heat, but refumes its colour on cooling. Common in China, where it is called wo. ban or ore of. Tutenago.

Ores of Antimony.

Colour different flades of grey; fometimes yellow or brownih red. Luitre o. Opaque. 'Texture compact.

Variety 3. Striated calamine.

This variety alone is found cryffallized; but, like the others, it is alfo often amorphons. Colour white, and alfo various fhades of grey, yellow, and red. Some.

Genus III. salts of zinc.
species t. Sulphat of ziac.
For a defcription of this falt, we refer to C_{h}. mistry, $n^{c} 643$. Suppl.

Qrder X. ORes of antimony.

Antimony is much ufed to give hardnefs to thofe metals which otherwife would be too foft for certain purpofes: printers types, for initance, are compofed of jead and antimony. It is ufed alfo in medicine.

Ores of antimony are found abuadantly in Germany, Hungary, France, Spain, Britain, Sweden, Norway, \&c. They often accompany galena and hæmatites. They are found both in the fecondary and primitive Atratified mountains. Their gangue (0) is often quartz and fulphat of barytes.

248

G. J. Alloys

Native aneinauly.

* Kirzu. ii. 245 .

249
6., IT. sulphurets.
Grey ore of antiminny.

* Kirzw. ii.

147.

+ Romé de
Ziff, iii.
4.)
\ddagger Ibid, -See
alfo Hayy, Jour. de
Min. No
xxii. 606.
§ Brifon.

Genus I. alloys of antimony. species i. Native antimony *.
This mineral, which was fiff difcovered by Dr Swab, las been found in Sweden and in France, both in maffes and kidney fhaped lumps. Colvur white, between that of tin and filver. Luftre metallic. Texture foliared. Hardnefs 6. Sp. gr. above 6. Deflagrates with nitre. Before the blow-pipe melts and evaporates, depofiting a white oxide of antimony.

It coulfifts of antimony, alioyed with 3 or 4 per cent. of arfenic.

Genus II. sulphurets of antimony.

species t. Grey ore of antimony *.
This ore, which is the mofl common, and indeed aln moft the only ore of antimony, occurs both maffive, diffeminated, and cryflallized. Its cryftals are four-fided prifms, fornewhat flattened, whofe fides are nearly reetangles, terminated by fhort four-fided pyramids, whofe fides are trapeziums \dagger. Sometimes two of the edges are wanting, which renders the prifin fix-fided \ddagger.

Colour grey. Luftre metallic. Streak grey, metallic, and brighter. Powder blaek or greyifh blaek. Hardnefs 6 to 7. Sp. gr. from 4.1327 to 4.516 §. Often ftains the fingers. Before the blow-pipe melts eatily, burns with a blue flame, and depofits a white oxide on the eharcoal. When plaeed in an open veffel, over a llow fire, the fulphur evaporates, and leaves a grey oxide of antimony. This oxide, if fufed with tartar, is reduced.
'This ore, when taken out of the mine, almof always
contains a large proportion of quartz or other flony Metallic matter. When pure, it is compofed of about

$$
74 \text { antimony, }
$$

26 fulphur.

100

Werner has divided this fpecies into three varieties.

Variely 1. Compact fulphuret.
Colour bluifh grey, furface often tarnifhed, and then it is blue or purplifh. Luftre 1 to 2 . Texture compact. Fracture fine grained, uneven. Powder black, dull, and earthy. Slirhtly ftains the fingers.

Varicty 2. Foliated fulphuret.
Colour light fteel grey. Luftre 3 to 4 . Texture foliated. Powder as that of the laft variety.

Variety 3. Striated fulphuret.
Colour dark ftecl grey, and light bluing grey, furface often tarnified, and then it is dark blue or purplif. Luftre 3 to 2. Texture ftriated. Powder greyifh black. This variety alone has been hitherto found crytallized.

species 2. Plumofe antimonial ore \dagger. Sulphurets of antimony and arfenic.

This fpecies, which is fometimes found mixed with the cryflals of fulphurated antimony, is in the form of 2 brittle, capillary, or lanuginous cryftals, often fo fmall that they eannot be diftinctly feen without a mierofcope.

Colour fteel or hluifh grey, often tarnifhed, and then brown or greyifl black. Luffre 1 , femimetallic. Before the blow-pipe emits a fmoke, which depofits a whitifh and yellowif powder on the charcoal : it then melts into a black flag.

It is fuppofed to confilt of fulphur, antimony, arfenic, and fome filver.

> SPECLES 3. Red antimonial ore \dagger. Hydrofulphuret of antimony.

235
Red antimonial ore,
This fpecies is generally found in cavities of fulphu- \dagger Kirww. म. 2 rated antinonial ore. It is eryftallized in delicate 250° needles, often diverging from a common centre.

Colour red. Luftre 2, filky. Sp. gr. 4.7. Before the blow-pipe melts eafily, and evaporates with a fulphureous fmell.
This ore has not been analyfed. Mineralogitts have fuppofed it to be a natural kermes. If fo, we may eonclude, from the experinents of Berthollet *, that it is * Ann. de a hydrofulphuret of antimony, and confequently compofed of oxide of antimony, fulphur, and fulphurated ${ }^{259}$. hydrogen gas.

Genus IlI. oxides of antimony.

There is a fubftance found ineumbent on fulphuret
G. 25^{2}

Oxides of antionony. of antimony, of a yellow colour, and an easthy appearance, which has been fuppofed an oxide of antimony, and denominated antimonial ochre. But hitherto it has not been analyfed.

Genus
(o) The word gang is ufed by German mineralogifts to dencte a metallic wein. Now, it is not often that thefe veins confift entirely of ore; in general, they contain ftony matter befides. For inftance, in the copper mine at Airthry, near Stirling, the copper ore is merely a narrow fripe in the middle of the vein, and the reft of it is filled up with fulphat of harytes. We ufe the word gangue (as the French do), to denote, not the metallic vein, but the fony matter which accompanies the ore in the vein. The gangue of the copper ore at Airthry is fulphat of barytes.

Genus IV. salts of antimony. species i. Muriat of antimony *. - 253 Salentimes in quadrangular tables; fumetimes in acicular cry. Muriat of ftals grouped like zeolites; and fometimes in prifms. georgenftadt, \&c. in Germany, has commonly the form of fmall plates lying above one another. Sometimes it is cryftallized in four-fided tables, or indiftinet cubes.
Colour white with a fhade of red; furface often tarnifhed red, yellow, or purple. Luftre metallic, 3 to 2 . Opaque. Texture foliated or ftriated. Hardnefs 6. Sp. gr. 9.022 † to 9.57 f. Exceedingly fufible. Before the blow-pipe gives a filvery white bead, and at laft cvaporates in a yellowifh white fmoke, which is depofited on the charcoal.

It is generally accompanicd by cobalt, and fometimes centains arfenic.
G. ${ }^{2}{ }^{2}$ Sulphurets.
Common Gulphuret

A fpecimen, analyfed by Klaproth, contained 95 bifmuth, 5 fulphur.
$100+$
It is commonly accompanied by quartz, afoellos, or $i .256$. fparry iron ore.

256
Genus III. oxides of bismuth. species 1. Yellow oxide of bifmuth f. Bifmuth ochre.
This ore generally accompanies the two fpecies al oxide of ready defcribed. It is found in two flates; either of \dagger Kirar, ii an earthy confiftence, or cryttallized in cubes or qua-269. drangular plates.

Colour ufually greenith yellow, fometimes grey. Soluble in nitrous acid without effervefcence, and may in a great meafure be precipitated by the effufion of water.

Order Xif. ores of arsentc.

Arsenic is ufed as an alloy for feveral other metals, efpecially copper. It is fometimes employed to facilitate the fufion of glafs, or to render it opaque, in order to form an enamel. Preparations of arfenic are cmployed as paints; and, like moft other violent puifons, it has been introduced into medicine.

This metal is fcattered in great abundance over the mincral kingdom, accompanying almoft every other metal, and forming alfo fometimes peculiar veins of its own. Of courfe it occurs in almoft every fpecies of mountain, and is accompanied by a variety of gangues.

> Genus l. alloys of arsenic. species i. Native arfenic \dagger.

This mineral is found in differemt parts of Germany +1 Kis us, ii It occurs generally in maffes of various fhapes, kidney- 255. form, butryoidal, \&c.

Colour that of feel. Its furface quickly becomes tarnifhed by expofure to the air. Luftre metallic (when frefh), 2 to 3 . Streak bluith grey, metallic, and bright. Puwder dull and black. Texture compast. Harduefs 7 to 8. Brittle. Sp. gr. $5.67 \dagger 105.7249 \ddagger$. Gives \dagger Kirveag. an al fenical fnell when ilruck. Before the bluw- pipe ${ }^{\prime}$ Drijorno emits a white fmoke, diffufes a garlic fmell, burns with a blue flame, gradually evaporates, depofiting a white powder.

It is always alloyed with fome iron \oint, and often contains filver, and fometimes gold.

Genus II. sulphurets of arsenic. species 1. Orpiment (p). Auripigmentum.

§ De Born.
Catal of M. Rab. 1
94.
2.5
G. II. Sul1hurets. Urpiment.

This ore, which is found in Hungary, Wallachia, Georgia, and Turkey in A fia, is cither maflive or cryftallized. The crytals are confufed, and their figure cannot be tafily determined; fome of them appear octohedrons, and others minute fuar-fided prifms.

Its colour is yellow. Streak orange yellow. Luftre waxy, 2 to 3. Tranfparency from 0 to 2 . Texture foliatcd. H Fardnefs 4 to 8 Sp . gr. from 3.048* to * Kirwa. $3.521+$. Efiervefices with hot nitric acid. Burns with + Gillurh

Ores of a bluin white flmme. Befure the hlow-pipe melts,
A feniat. fmokes, and evaporates, leaving only a little earth and
fome traces of iron.
Compofed of 80 fulphur,
20 arfenic.

100

259
Realgar.

- Kircu. ii.
species 2. Realgar *.
 ii. $297 . \quad$ vers, in Hungary, Tranfylvania, and various parts of Germany. It is either maffive or cryitallized. The primitive form of the cryflals is, according to Romé de Lifle, a four-fided rhonboidal prifm, terminated by

iii. 34. It commonly appears in $4,6,8,10$, or 12 fided prifms, \ddagger Ibid. terminated by four fided fummits \ddagger.

Colour red. Streak yellowih red. Powder fcarlet. LuAlre 3 to 2. Tranfparency from 2 to 3 ; fometimes
§ Brijon. O. Hardnefs 5 to 6. Sp. gr. 3.3384 §. It is an electric per. f e, and becomes negatively electric by fric-
$\|$ Hary, tion $\|$. Nitric acid deprives it of its colour. Before
Four de the blow-pipe it melts eafily, burns with a blue flame
Min. No
Exsii. 612.
and garlic fimell, and foon evaporates.
Compofed of 20 fulphur,
80 arfenic.
300
260
G. 111 .

Oxides,
oxide of
arfenic.

* Kirzv. ii. 25^{8}-Berg.
ii. 285 .
t Kircuan.
This ore is found in various parts of Germany, Hun-
Genus III. oxides of arsenic. species 1. White oxide of arfenic *. Native calx of arfenic. gary, \&c. either in powder, or maffive, or cry ltallized i prifmatic needles.
Colour white or grey, often with a tint of red, yellow, green, or black. Luftre common, 1 to 2. Tranfparency 1 to 0 ; when crytailized, 2 . Texture earthy. Hardnefs 6. Brittle. Sp. gr. 3.7 \dagger. Soluble in hot diluted nitric acid without effervefcence. Soluble at 600 Falrenhcit in 80 times its weight of water. Before the blow-pipe fublimes, but does not inflame. Tinges borax yellow.

Order Xill. cobait ores.

Cobalt is employed to tinge glafs of a bhe colour, and is ufeful in painting upon porcelain.

Cobalt ores are found almoft exclufively in the ftratified mountains, except one fecies, fulphuret of cobalt, which affects the primitive mountains. They are not very abundant ; and for that reafon cobalt is more valuable than many of the cther metals which have been already treated of. They are commonly accompanied by nickel, bifmuth, or iron. They are moft abundant in Germany, Sweden, Norway, and Hungary; they have been found alfo in Britain and France, but not in any great quantity.

261
G.1. Alloys

Cobale al-
Ioyed with arfenic.

+ Kirw. ii. 270.
\ddagger Roméde
Lif $\boldsymbol{c}_{\text {, }}$ iii.

123.

Genus I. alloys of cobalt.
species i. Cobalt alloyed with arfenic \dagger. Dull grey cobalt ore.
This ore, which occurs in different parts of Germany, is either amorphous or cryftallized. The forms of its cryftals are the cube; fometimes the cube with its angles, or edges, or both wanting ; and the octahedron \ddagger.

Its colour, when fren broken, is whitits or bluifh grey, Cometimes with a flade of red; when expofed to Metallic grey, fometimes with a made of red; when expoled to
the air it foon becomes tarnifhed. Streak hluifh grey and metallic, Luttre fearcely metallic, o to 1 . Hexture compact. Hardnefs 10 . Difficultly frangihle. Sp. gr. when anorphous, 5.309 to 5.5 ! $\$$; when cryllal- § Kirw. ii. lized $7.7207 \dagger$. When fruck it gives out an arlenical ${ }^{27} 0$ fmell. Before the blow-pipe it gives out an arfenical Hour. ${ }^{+}$He
 contains a great quantity of iron. Tinges borax darkaxxii. 588. blue, and a fmall metallic bead is obtained.

A fpecimen of this ore from Cornwall, examined by Mr Klaproth, contained 20 cobalt,

> 24 iron,
> 33 arfenic.
with fome bifmuth and fony matter *.

* K"luproth's

Another fpecimen from Tunaberg, according to the Corruzull, analy lis of the fame chemit, contained p. 61.

> 55.5 arfenic,
> 44.0 cobalt,
> .5 fulphur.
> $-100 \dagger$
\dagger Beiträge,
ii. j07.

Genus II. sulphurets of cobalt.
species i. White cobalt ore \ddagger. Sulpburel of cobalt, arfenic, and iron.

It occurs either in maffes, or cryftallized in cubes, 53 . dodecahedrons, octohedrons, and icofahedrons.

Colour tin white, fometimes tarnifhed reddifh or yellowin. Powder fteel grey. Luftre partly metallic, and from 2 to 4 ; partly 0 or 1 . Texture foliated. Harduefs 8 to 9. Sp. gr. from $628 \dot{+}$ to $6,4509 \ddagger$. + Kirwan. Before the blow-pipe generally gives out an arienical \% Hayy. vapour, and does not melt.

The analy fes that have been given of this ore are very various. Sometimes it has been found to contain no arfenic nor iron, and fometimes to contain both. A fpecimen from Tunaberg in Sweden, which ought to belong to this fpecies, was analyfed by Taffaert, and found to confift of 49 arfenic, 36.6 cobalt, 5.6 iron, 6.5 fulphur.
$97.7 \dagger$
\dagger Ann. de
Klaproth found a fpecimen of the fame ore to con- Clim. xxyii tain

$$
\begin{aligned}
& 55.5 \text { affenic, } \\
& 44.0 \text { cobalt, } \\
& 0.5 \text { fulphur. } \\
& \hline 100.0 \ddagger
\end{aligned}
$$

Genus III. oxides of cobalt. Oxides.
species I. Black cobalt ore or ochre §
This ore, which occurs in different parts of Germa- Black co- hatt ore or ny, is either in the form of powder, or indurated.

Colour black, often with a thade of blue, grey, brown, $\$$ Kiruc. ii. or green. Luitre o to 1. Streak brighter. Hardnefs 275 . (of the indurated) from 4 to 8 . Sp. gr. 3 to 4 . Soluble in muriatic acid. Tinges borax blue.
species
species 2. Brown cobalt ore *.
Colour greyifh or dark leather brown. Streak brighter, unctuous. Comnunicates a pale blue tinge in fufion.
species 3. Yellow cobalt ore \dagger.
Colour yellow. Dull and earthy. Hardnefs + to 5 . Texture earthy. Streak brighter, unctuous. Gives a weak blue tinge.

Genus IV. salts of cobalt.
 species I. Arfeniat of cobalt \ddagger.
 Red cobalt ore.

This feecies, like moft other ores of cobalt, has neither been accurately deferibed nor analy fed.

It is found in mafies of various flapes, and crythallized in quadiangular tables or acicular prifms.

Colour red. Luftre from 2 to 3 , fometimes o. Tranfparency 0 to 2. Hardnefs 5 to 7 . Brittle. Before the blow-pipe becomes blackith grey. Diffulcs a weak arfenical fmell. Tinges borak blue.

Order XIV. ORES OF Nickel.

Hitherto nickel has been found in too fmall quan. tities to be applied to any ufe; of courfe there are, properly fpeaking, no mines of nickel. It occurs only (as far as is yet known) in the fecondary mountains, and it commonly accompanies cobalt. It has been found in different parts of Germany, in Sweden, Siberia, Spain, France, and Britain.

Genus I. sulphurets of nickel.
acids and by ammonia. The acid folution is green; the alkaline blue.

Genus III. salts of nickel.
spectes I. Aricuiat of nickel \dagger.
This ore, which was lately difcovered at Regendorff by Mr Gmelin, is found in flapelcfs maffes, and is of ten mixed with plates of fulphat of barytes.
Colour pale grey, here and there inixed with pale green. Streak white. Luftre o. 'Texture compaet. Hardnefs 7. Difficultly frangible. Sp. gr. comiderable. Adheres nightly to the tongue, and gives an earthy finell when breathed on. Soluble in hot nitric and muriatic acids : folution green.

Contains fone cobalt and alunina.

Ordir XV. ORES OF MANGANESE (Q).

Hitherto manganefe, in its metallic flate, has fcarce1) been put to any ufe; but under the form of an oxide it has become of great in!portance. The oxide of mangranefe has the property of rendering colourlefs a variety of bodies which injure the tranfparency of glafs; and it has been long ufed in glafs manufactories for this purpofe under the nime of glafs foop. By means of the fame oxide, oxy-muriatic acid is prepared, which las rendered manganefe of great importance in bleaching. Not to mention the utility of mangranefe to the chemift, the property which it has of facilitating the oxidation of other metals, and of rendering iron more fufible-will probably make it, in no very remote period, of very confiderable importance in numerous manufactories.

Ores of manganefe occur often in Atrata, both in the prinitive and fecondary momtains; fcarcely ever, however, we believe, in thofe mountains which are confidered as the moft ancient of all. They are very common, having been found abuudantly in Germany, France, Spain, Britain, Sweden, Norway, Siberia, and other countries.

Genus I. oxides of manganese.
Gerto manganefe has only been found in the fate Hitherto manganefe has only been found in the fate of oxide. La Peroufe, indeed, furpected that he had found it in a metallic flate : but probably there was fome miftake or other in his obfervations.
SPECIES 1. Oxide of manganefe combined with barytes.
This fpecies, which exitts in great abundarice in Romaneche near the river Soane in France, is found maf- combined with bafive, forming a ftratum in fome places more than 12 rytes. feet thick.

Colour greyifh black or brownilh black, of great in. tenfity. Luttre, external, 0 ; internal, metallic, 1. Soon tarnifhes by expofure to the air, and then becomes intenfely black. Texture granular. Fracture uneven; fometimes conchoidal. Often porous. Hardnefs is. Difficultly frangible. Sp. gr. from 3950 to 4.16 . Abforbs water. When taken out of water after a minute's immerfion it has a ftrong argillaceons fmell. Conducts electricity nearly as well as if it were in a metallic ftate. Infufible by the blow-pipe. Tinges foda red; the colour difappears before the blue cone of flame, and is reproduced by the action of the yellow flame.

Ores nf Mangancfe.

From the analy fis of Vauquelis, it appears that it is 50.2 whit uxide of mangranefe, 33.7 oxygen, 14.7 barytes,
1.2 filica, .4 charcoal.

- Dolemiry,

Tour. de
'Min. No xix 42. 272 Grey ore of mangan fe.

* Kíruan, ii. 29 :
species 2. Grey ore of manganefe *.
This ore occurs both maffive and diffeminated: it is alfo fometimes cryitallized in flender four-fided prifms or needles.

Colour ufually dufky feel grey; fometimes whitifh grey, or reddifh grey. Streak and powder black. External luftre 3 to 2 ; intermal metallic, 2 to 1 . Texture Atriated or foliated. Hardnefs 4 to 5 . Brittle. Sp.

+ Varguelir. gr. from 4.073 t to 4.8165 t. Before the blow-pipe \ddagger Brijon. darkens. Tinges borax reddifh brown.
A. fecimen of oxide of manganele from the mountains of Vofges, which probably belonged to this Species, and which was analyfed by Vauquelin, was compofed of

> 82 oxide of manganefe,
> 7 carbonat of lime,
> 6 filica,
> 5 water.
8. Yuw. de

Min. N° xvii. 13. 273
Black or
brown ore of manga nefe.

* Kirwan,
ii. 292.Pbil. Tranf. Ixxiii. 284.

Sometimes it contains a little barytes and iron.
species 3. Black or brown ore of manganefe *.
This ore is found fometimes in the flate of powder, and fometimes indurated in amorphous maffes of various ligures. Colour either black, fometimes with a flade of blue or brown; or reddifh brown, Streak of the harder forts metallic; of the others, black. Luftre O to 1 ; internal $\dot{\text { i when }}$ it is indurated), metallic. Texture compact. Hardnefs 5 to 7. Sp. gr. 3.7076 to 3.9039 ; that of the powdery fometimes only 2 . Before the blow-pipe it exluibits the fame phenomena as the latt fpecies.

A fpecimen of this ore, analyfed by Wettrum, contained

> 45.00 manganefe, 14.00 nxide of iron, 11.00 filica, 7.25 alumina, 2.00 lime, 1.50 oxide of copper, $\frac{18.00 \text { air and water. }}{9^{8.75}}$

274
G. II. Salte.

Carbonat of manganefe.
\dagger Kirzuan,

Genus II. salts of manganese.
species i. Carbonat of manganefe t.
White ore of manganefe.
This fpecies occurs in Sweden, Norway, and Tranffylvania. It is either in the form of loofe fcales, or inaffive, or cryftallized in needles.

Colour white, or reddith white. Texture either ra. diated or fcaly. Luftre of the fcaly 2. Tranfparency I to 2. Hardnefs of the maffive 6 to 9. Sp. gr. 2.794. Effervefces with mineral acids. Heated to rednefs, blackens. Tinges horax violet.
species 2. Red ore of mangmefe \dagger. Carbonat of manganefe and iron.
This fpecies has been found in Piedmont and in the Prrences. It is fonnetimes in powder, fometines maf ${ }^{275}$ five, fometimes cryftallized in rhomboidal prifns or mankanefe. needles.
Colour pale rofy red, mixed with white. Powder iit 297,nearly white. Luftre o. Tranfparency !. Hardnefs Mem. Tue 8. Sp. gr. 3.233. Effervelces with nitric and muria-rin, iv. 303 tic acids. When heated to redneis becomes reddifh brown. Tinges borax red.

A fpecimer, analyfed by Ruprecht, contained

$$
\begin{aligned}
& 55.0 \text { filica, } \\
& 25.0 \text { oxide of manganefe, } \\
& 7.0 \text { oxide of iron, } \\
& 1.5 \text { alumina. } \\
& \hline 98.5
\end{aligned}
$$

Order XVI. ORES OF TUNGSTEN.
As no eafy method has hitherto been difcovered of reducing tungften to a metallic ftate, we need not be furprifed that it has been applied to no ufe. Ores of tungften are by no means common. They have hitherto been found only in the primitive mountains. Their gangue is commonly quartz. They very often accompany tin ores.

Genus I. oxides of tungsten. _species 1. Welfram (r).

276
G. I. Orides

Woifram.
Oxides of tungsten, iron, and manganefe - Tunastat of iron and manganefe.
This fpecies is found in different parts of Germany, in Sweden, Britain, France and Spain ; and is almoft conftantly accompanied by ores of tin. It occurs both maffive and cryftallized. The primitive form of its cryftals, according to the obfervations of Mr Hauy, is a rectangular parallelopiped \ddagger, whofe length is 8.66 , whofe \ddagger Fig. 42 . breadth is $\hat{3}$, and thicknefs 4.33^{*}. It is not common, $*$ four. de however, to find cryftals of this perfect form ; in many Min. Ne cales, the angles, and foonetimes the edges, of the cry-xix. S. Atal are wanting \dagger; owing, as Mr Hauy has fhewn, to + Fig. 43 . the fuperpufition of plates, whofe edges or angles decreafe according to a ccrtain law \ddagger.

Colour brown or brownifh black. Streak reddifh Min. No brown. Powder ftains paper with the fame colour. xix. s. Luftre external, 2 ; internal, 2 to 3 ; nearly metallic. Texture foliated. Eafly feparated into plates by percuffion. Hardnefs 6 to.8. Sp. gr. from \%.006* to *Kirwan. $7.333 \uparrow$. Moderately electric by communication. Not \dagger Hany. magnetic. Infufible by the blow-pipe. Forms with bor'ax a greenifl globule, and with microcofmic falt a tranfparent globule of a deep red π.

The fpecimen of this ore, examined by Meffrs d'Elhuy'art's, was compofed of 65 oxide of tungften,

Another
(8) Kirzu. 11. 3:6.-De Luyart, Mem. Thouloufe, II. 14ı-Gmelin, Crell's Four. Englifh Trauf. III. 127, 205, and 293-LLa Peroufe, Four. de Min. No IV. p. 23.

Ores of Another fpecimen from Pay's le Nlines in Irance, Mulubde- analyfed by Vanquelin and I-leche, cuntained

num.

§ Prouquelin,
Four. de
Min. No
xix. 11.

27
G. ti. Salre.

Turgtat of
lime.

+ Four. de Min. No

Colour yellowith white or grey. Luftre 3 to 2. xsiii. 657. Tranfparency 2 to 3. Texture foliated. Hardnefs 6 tu 9. Sp. gr. 5.8 to 6.0665 . Becomes yellow when digefted with nitric or muriatic acids. Infulible by the hlow-pipe. Witlı borax Corms a colourlefs glafs, unlefs the borax exceed, and then it is brown. With microcofinic falt it forms a blue glafs, which lofes its colour by the yellow flame, but recovers it in the blue flame F. \ddagger Sabele anc
Bergman. It is compofed of about 70 oxide of tunglten, . $\frac{30}{100}$ lime.
§Scbele. witli a little filica and iron \oint.

279
G. I. Sulphuret. Common fulphuret.
fasen

$$
\begin{aligned}
& 67.00 \text { oxide of tunglen, } \\
& 18.00 \text { binck uxide of irun, } \\
& 6.25 \text { black oxide of manganefe, } \\
& 1.50 \text { flica, } \\
& 7.25 \text { oxide of the iron and manganefe. }
\end{aligned}
$$

$100.00 \oint$

Genus II. salts of tungsten. species I. Tungftat of lime (s). T'ungsien.
This ore, which is now exceedingly fcarce, has hitherto been found only in Sweden and Germany. It is either maffive or cryltallized; and, according to Hauy, the primitive form of its cryftals is the octahedron t.

This ore is found in Cornwall, and is either maffive or compofed of fmall cryftalline grains.

Colour grey, variegated with yellow and brown. Luftre 2, waxy. Hardnefs 6 to 7. Sp. gr. 5.57. Its powder becomes yellow when digefted in aqua regia.

According to Klaproth, it is compofed of
88.0 oxide of tungiten, 11.5 lime.
99.5

Order XVII. Ores of molybdenum.

If ever molybdenum be found in abundance, it will probably be ufeful in dyeing and painting. At prefent it is very fearce, having only been, found in Sweden, Germany, Carniola, and among the Alpes. Like tin and tungften, it affects the primitive mountains.

Genus I. sulfhuret of molybdenum. species i. Common fulphuret (r). Molybdena.

This ore, which is the ouly fyecies of molybdenum ore at prefent known, is found commonly maflive; fome. times, however, it is cryttallized in hexaluedral tables.

Colour light lead grey; fometimes with a thave of red. Streak bluifh grey, metallic. Powder bluith. Luftre metallic, 3 to 2. Texture foliated. Lamellæ * Korfen. Nightly flexible. Hardnefs 4. Sp. gr. 4.569^{*} to t Brifono $4.7385 \dagger$. Feels greafy; ftains the fingers. Marks SUPpl. Vol. II. PartI.

URanium has litherto been found only in Germany,
and has not been applied to any ufe. 'The only two . mines where it has occurred are in the primitive mountains.

Genus I. oxides of uranium. species 1. Sulphuret of uramiuin \dagger. Peclublende.

This ore which las been found at Jobarwan
This ore, which has been found at Johanngeorgen- \dagger ii. 305 .
tadt in Saxuny, and Juachimfthal in Bohemia, is either ftadt in Saxuny, and Joachimfthal in Bohemia, is either maffive or flratified with other minerals.

Colour black or brownifh black; fumetines with a thade of grey or blue. Streak darker. Puwder opaque and black. Luftre femimetallic, from 3 to 1 . Frac. ture conchoidal. Hardnefs 7 to 8. Very brittle. Sp. gr. from $6.3785 \ddagger$ to 7.5 , and even higher ρ. Imper- \ddagger Morveas, fectly foluble in fulphuric and nuriatic acids; perfectly Jour. de in nitric acid and aqua regia. Solution wine yellow. Min. No Infufible witl alkalies in a crucible: infufible by the ${ }^{8 x x} \mathbf{x i i . 6 1 0}$. blow-pipe per fe. With burax and loda forms a grey Beifröge, opaque flag; with microcormic falt, a green glafs. .i. 19:-

Compofed of oxide of uranium and fulphur, and mixed with iron and filica, and fometimes lead.

A fpecimen of this ore from Joachimithal, analyfed lately by Klaproth, contained

$$
\begin{aligned}
& 86.5 \text { uranium, } \\
& 6.0 \text { fulphuret of lead, } \\
& 5.0 \text { filica, } \\
& 2.5 \text { oxide of iron. } \\
& \text { 100.0* } \\
& \text { SPEC1ES 2. Yellow oxide of uranium } f \text {. } \\
& \text { Uranit:c oclore. } \\
& \text { * Beitröge, } \\
& \text { (Mapro }
\end{aligned}
$$

bluifh black. A piece of refin rubbed with this mine- Metalic
ral becomes politively electric \ddagger. Infoluble in ful\},hu- Ores. ral becomes politively elcetric \ddagger. Infoluble in fulphu- $\underbrace{\text { Ores. }}$ ric and muriatic acids; but in a boiling licat colours 1 Hary, them green. Effervefees with warm uitric aciel, lea- Jour. de vine a grey oxide mindifulved. Before the bluw-pipe, on .Min. N^{\prime} a filver fponn, cmits a white fmoke, which condenfes in- xix. 70. to a white powder, which becomes hlue in the internal, and lofes its culour in the external, thace. Scarcely af. fected by burax or microcofmic isli. Effervefeco will fodia, and gives it a reddifh pearl colour.

Compofed of about 60 molybdenun,
40 fulphur.

100^{*}

* RHaprut?

Order XVIII. ORES OF URANIUM.

290
G.I. Oxidem

Sulphuret of uranium,
Kirwan,

This ore is generally found on the furface of the lattoxide of fpecies at Johanngeorgenlladt, and is cither mafive or uianium. in powder.

Colour yellow, red, or brown. Streak of the yellow furts yellow; of the red, orange yellow. Luitre c. Slightly Itaiius the fingers. Feels meagre. Texture earthy. Hardnefs 3 to 4. Sp. gr. 3.2138 ||. Infu- 1 Houy, fible by the blow-pipe; but in a ftrong heat becomes Four. de brownilh grey.

Compufed of oxide of uranium and oxide of iron.
I i
Genus
(s) Kirw. II. 314.-Schecle's Works (French tranflation), II. S1.-Bergman, ibid. p. 94.-Crell, Chem. Annalen. 1784, 2 Bard 195 .
(r) Kirzv. II. 322.-Schecle's Works (French traulation), I. 236.-Pelleticr, Tour. de Pby. XXVII. 434Ilfemann, ibid. XXXIII. 292.-Suge, ibid. $3^{3} \mathrm{~g}$.-Khaproth and Mudeer, Anno de ©iom. III. I 120.

Titanium.
$\underbrace{}_{2 S_{2}}$ G. II. Salts and near Eibenflock and Rheinbreidenbach \oint. It is Carbonat fometimes amorphous, but more comnonly cryitallized. Carbonat fometimes amorphous, but more comnionly cryitallized.
of uraniumi Its cryftals are fquare plates, octahedrons, and fix fided
ii. 3 . 0 .
§Gmelin.
Colour green ; fometimes nearly white; fometimes,
though rarely, yellow. Streak greenifh white. Luftre 3 to 2 ; interual, 2 ; fometimes pearly; fometimes nearto 2 ; internal, 2 ; fometimes pearly; fometimes near-
ly metallic. Tranfparency 2 to 3 . Texture foliated. Hardnefs 5 to 6. Brittle. Soluble in nittic acid without effervefcence. Infulible by alkalies.

Compofed of carbonat of uranium, with fome oxide Compofed of carbonat of uranium, with fome oxide
of copper. When its colour is yellow it contains no copper.

Order XIX. ORES OF TITANIUM.

'Titanium has been known for fo hort a time, and its properties are yet fo imperfectly afcertained, that many of its ufes mult remain to be difcovered. Its

- Yoir. de

Min. N ${ }^{\circ}$
xv. 27.

+ Ibid. N ${ }^{\circ}$
xii. 5 .
\ddagger Your. ${ }^{2}$ e
Min. ${ }^{\circ}{ }^{\circ}$
xxxii. 614.
\Downarrow Ibid.
G.I. Oxides.

Ked oxide of titanium

Genus if. salts of uramium.
species 1. Carbonat of uranium 9 .
This fubltance is alfo found at Johanngeorgenftadt, oxide, as we learn from Mr Darcet, has been employed in painting on porcelain *. Hitherto it has heen found only in the primitive mountains, the Crapacks t, the Alpes (U), and the Pyrenees \ddagger. It has been found al. fo in Brittany \| and in Cornwal.

Genus I. oxides of titanium. species i. Red oxide of Titanium. Red Borl-Sagenite.
This ore has been found in Hungary, the Pyrences, the Alpes, and in Brittany in France. It is generally cryftallized. The primitive form of its cryitals, according to the obfervations of Mr Hany, is a reClangular prifm, whofe bafe is a fquare ; and the form of its molecules is a triangular prifi, whofe bafe is a right angled ifofceles triangle, and the height is to any of the fides of the bale aloout the right angle as $\sqrt{12}$ to $\sqrt{5}$, or nearly as $3: 2 \mathrm{~T}$. Sometimes the cryftals of titanium are fix-lided, and fometimes four-lided, prifms, aud often they are implicated together \ddagger.
Colour red or brownifh red. Yowder brick or orange red. Luttre 3. 'Tranfparency commonly o; fometimes 1. Texture foliated. Hardnefs 9. Brittle. Sp. gr.

* Klaprotb from 4.18 * to $4.24^{\text {n }} 9 \mathrm{t}$. Not affected by the mineral
 ted with water, a white powder precipitates, heavier than the titanium employed. Before the blow-pipe it does not melt, but becomes opaque and brown, With microcofmis falt it forms a globule of glafs, which appears black; but its fragments are violet. With borax it forms a deep. yellow glafs, with a tint of brown. With foda it divides and mixes, but does not form a tranfparent glafs.

When pure, it is compofed entirely of oxide of titanium.
species 2. Menachanite (x).
Oxide of titanium combined zuitb iron.
This fuhtance has heen found abuudantly in the valley of Menachan in Cornwal; and hence was called me-
nachanite by Mr Gregor, the difcoverer of it. It is in fmall grains, like gunpowder, of no determinate fhape, and mixed with a fine grey fand. Colour black. Eatily pulverized. Powder attracted by the magnet. Sp. gr. 4.727. Does not detonate with nitre. With two parts of fixed alkali it melts into an olive coloured inafs, from which nitric acid precipitates a white powder. The mineral acids only extract from it a little iron. Diluted fulphuric acid, mixed with the powder, in fuclu a proportion that the mafs is not ton liquid, and then evapurated to drynefs, produces a blue coloured mafs. Before the bluw-pipe does not decrepitate nor melt. It tinges microcofmic falt green ; but the colour becomes brown on cooling : yer microcoimic falt dues not diffolve it. Soluble in borax, and alters its colour in the fame manner.

According to the analy fis of Mr Gregor, it is compofed of 46 oxide of iron, 45 oxide of titanium.

91 with fome filica and manganefe $\dagger \cdot \dagger$ M.Grgor-
According to Mr Klaproth's analy fis, it is compofed four. de
of

$$
\begin{aligned}
& 51.00 \text { oxide of iron, } \\
& 45.25 \text { oxide of titanium, } \\
& 3.50 \text { filica, } \\
& .25 \text { oxide of manganefe. }
\end{aligned}
$$

Pby.f. xxxix.
72. 152.

$100.00 \ddagger$

\ddagger Beiträger
A mineral, nearly of the fame nature with the one ${ }^{i i}$. 231 . juft deferibed, has been found in Bavaria. Its fpecific gravity, however, is only 3.7. According to the analy fis of Vauquelin and Hecht, it is compofed of

49 oxide of titanium,
35 iron,
2 manganefe,
14 oxygen combined with the iron and manganefe.

ICO §

§ Jour. d_{6}
Min. ${ }^{\text { }}$
xir. 57 Oxide of titanium combined with lime and filica-Titanite \dagger - Caicareo.

This ore has hitherto been found only near Paffau. filiceous ore It was difcovered by Profeffor Hunger. It is fome of titanium. times maffive, but more commonly crytallized in four-t Kirzoun, fided prifms, not longer than one fourth of an inch.
ii. 331.

Colour reddifh, yellowifh, or blackifh brown; fometimes whitifh grey. Powder whitih grey. Luftre waxy or nearly metallic, 2 to 3. Tranfparency fromo to 2. Texture foliated. Hardncfs 9 or more. Brittle. Sp. gr. 3.5 rc . Muriatic acid, by repeated digettion, difolves one third of it. Ammonia precipitates from this folution a clammy yellowih fubtance. Infufible by the blow pipe, and allo in a clay crucible; but in charcoal is converted iuto a black opaque porous flag.

According to the analy fis of Klaproth, it is compofed of

33 oxide of titanium,
35 filica,
33 lime.
101
Order
(u) Dolon eu, Four. de Min. No XLII. 43I. and Saufure, Voyages, ${ }^{\circ} 1894$.
(x) Kirw. II. 326.-Gregor, Jour. de Pbys. XXXIX. 72. and 152.-Scbmeifer, Crell's Ansals (Englifh tranlation), III. 252.
$\S A n \pi \cdot d e$
Cbim. xxv.
2 SO.
30 gold,
10 filver.

$100 \oint$

The yellow gold ore of Nagyag would belong to this \{pecics were it not that it contains lead. Its compofi. tion, according to Klaproth's anaylfis, is as fullows:

> 45.0 tellurium,
> 27.0 gold,
> 19.5 lead,
> 8.5 filver,

* Ibid.

285
Grey folizted gold ore of Nagyag.
species 3. Grey foliated gold ore of Nagyag.
This ore is found in plates, of different degrees of thicknefs, adhering to orie another, but eafily feparable: thefe are fometimes hexahedral, and often accumulated fo as to leave cells between them.

Colour deep lead grey, pafing to iron black, fpotted.
Luftre metallic, moderate. Texture foliated; leaves \dagger Klaproth, nlightly flexible \dagger. Hardnefs 6. Sp. gr. 8.919. Stains
\ddagger De Born,
Kirwan's
Min. ii. 99.

$$
100.0 \text { and an atom of fulphur *. }
$$

the fingers. Soluble in acids with effervefcence \ddagger.
According to Klaproth, it is compofed of
50.0 lead,
3.3 .0 tellurium,
8.5 gold,
7.5 fulphur,
1.0 filver and copper.
100.0 §

Order XX.
 Ores of Order XX. ORES OF TELLLURIUM
 Hitherto tellurium has only been fonnd in Tranfylvania. It occurs in three different mines; that of Fatzhay, Offenbanya, and Nagyag, which are confidered as gold mines. becaufe they contain lefs or more of that metal. Its gangue is commonly quartz.

M I NERALOGY.
$=86$
G. 1. Alloys.

White gold are of Fuzbay.

Genus I. alloys of tellurium. species i. White gold ore of Fatzbay. Alloy of teilurinm and iron, with fome gold.
This fuecies is generally maffive. Its colour is' between tin white and lead grey. Luftre confiderable, me* Anr de tallic. Texture granular*.

Clim. xxv. According to Klaproth's analyfis, it is compored of 327.
$+1 \mathrm{bid} .280$.

287
Graphic gluden ore of Ofienbanya.
\ddagger Ann. de
Cbim. xxv.
328.
species 2. Graphic golden ore of Offenbanya.
Teilurium alloged with gold and filver.
This ore is compofed of flat prifmatic cryftals; the arrangement of which has fome refemblance to Turkifh letters. Hence the name of the ore.

Colour tin white, with a tinge of brafs yellow \ddagger. Luftre metallic, 3, Hardnefs 4 to 5. Brittle. Sp. gr. 5.723. Before the blow pipe decrepitates, and melts like lead. Burns with a lively brown flame and difagreeable fmell, and it laft vanifhes in a white fmoke, "De Born, leaving only a whitifh earth $\|$.
Kirsern's According to Klaproth's analyfis it is compofed of Min. ii. 110.
60 tellurium,

Order XXl. ORES OF CHROMUM.

Chronsum has hitherto been found in too fmall quantities for its extenfive application to the arts. Whenever it becomes plentiful, it s properties will render it of great importance buth to the dyer and painter. Nature lats ufed it to colour fome of her moft beautiful mineral productions: And can art copy after a better model? Hitherto ir has been found only in two places, near Ekaterimbourg in Siberia, and in the department of the Var in France. In the firt of thefe places, and probably alfo in the fecond, its gangue is quartz.

> Genus I. salts of chromum. spects I. Chromat of lead. Red lead ore of Siteria.

$$
2.5 \text { gold. }
$$

```
\(100.0 \dagger\)
```

110

Analygs of whofe induftry and addrefs bronght the art of anaiyfung Minctal. $\xrightarrow{\longrightarrow}$ minerals in a confiderable degree of perfection.

But their methods, though they fiad very confiderable merit, and, confidering the Atate of the feience, are wonderfn! proofs of the genius of the inventors, were
29.3

Impr ve by Kla[roth tedious and uncertam, and could mot in all cafes be applied with confidence. Thele defects were perceived by Mr Klaproth of Berlin, who applied himfelf to the analy fis of minerals with a perfevering induftry which nothing cund fatigue, and an ingennity and accuracy which nothing could perplex. He corrected what was wrong, and fupplied what was wanting, in the analytical method; invented new proceffes, difcovered new inftruments : and it is to his labours, more than to thofe of any cther chemitt, that the degree of perfection. to which the analylis of minerals has attained, is to be afcribed. Many improvemente, however, were introduced by other chemifts, efpecially by Mr Vanquelin, whofe analyfes in puint of accuracy and ingenuity ival thofe of Klaproth himfllf.

We fhall, in this chapter, give a flurt defeription of the moft perfect method of analyfing minerals, as far as we are acquainted with it. We hall divide the chapter into four lections. In the firf, we fhall give an account of the inftrments ufelin analyfes; in the fecond, we fhall treat of the method nf andyling fones; in the third, of analyling combutlibles; and in the fourth, of the analyfes of ores.

SECT. I. Of the Infruments of Analyfes.

I. The chymical agents, by means of which the analyfis of minesals is accomplifhed, ought to he prepared with the greatelt care, becaule upon their purity the exactnefs of the operation entirely depends. Thefe agents are the three alkalies, both pure and combined with carbonic acid; the fulphuric, nitric, and muriatic acids; hydrofulphuret of potals and fulphurated hydrogen gas diffulved in water; pruffic alkali, and a few neutral falts.

1. Potafs and foda may be obtained pure, either hy means of alcobol, or by the method deferibed in the article Chemistry, no 372. Suppl. Thefe alkalies are known to be pure when their folution in pure water occafions no precipitate in lime and barytic water; when the precipitate which it produces in a folution of filver is completely diffolved by nitric acid; and, laftly, when faturated with carbonic acid it depolits no filica.
2. Ammonia is procured by diftlling one part of muriat of ammonia with two parts of quicklime, and receiving the gas in a difh containing a quantity of pure water, equal in weight to the muriat employed. Its purity is known by the fame tefts which afcertain the pu. rity of fised alkalies.
3. The carbonats of potafs and fucla may be formed by diffolving the potafs and foda of commerce in pure water, faturating the folution with carbonic acid, and cryftallizing them repeatedly. When pure, thefe cryfals efflorefee in the air ; and the precipitate which they occafion in folutions of barytes and of filver is completely foluble in nitric acid. Carbonat of ammonia is obtained by diftilling together one part of muriat of ammonia and two parts of carbonat of lime.
4. The fulphuric acid of commerce often contains nitric acid, potafs, lead \&c. It may be purified by distitlation in a low cucurbite. The firft portion, when
it comes over, muft be fet afide; it contains the nitric Analyfis of acid. ' Yhe other impurities remain hehind in the ch. Mizeralso curbite. Sulphuric acid, when pure, diffolves indigo without altering its colour, does not attack mercury while cold, and caufes no precipitate in pure alkaline folutions.
5. Nitric acid often contains both fulphuric and muriatic acids. It is calily purified by throwing into it about three parts of litharge in fine powder for every 100 parts of the acid, allowing the mixture to remain for 24 hours, fhaking it occafonally, and then dilitling it. The fulphuric and muriatic acids combine with the lead, and remain behind in the retort. Pure nitric acid occafions no precipitate in the folutions of barytes and tilver.
6. The muriatic acid of commerce ufually contains fulphuric acid, oxymuriatic acid, and oxide of iron. It may he purified by diftilation with a little muriat of foda: taking care to fet afide the firft portion which comes over. When pure it caufes no precipitate in the folution of barytes, nor of pure alkalies, and does not at tack inercury while cold.
7. Hydrofulphuret of potafs is made by faturating a folution of pure potafs with fulphurated hydrogen gas; and water may be faturated with fulphurated hydrogen gas in the fame manner. See Chemistry, no 857. Swopl.
8. The method of preparing pruffic alkali, oxalic acid, and the other fubftances ufed in analyles, has been alrcady defcribed in the article Chemistixy, Suppl. it is unneceflary therefore to repeat it here.
II. Before a mineral is fubmitted to analy lis, it ought How to re* to be reduced to an impalpable powder. This is by no duce the means an eafy tafk when the fone is extremely hard. mineral to It ought to be raifed to a bright red or white heat in a crucible, and then intantly thrown into cold water. This fudden tranfition makes it crack and break into pieces. If thefe pieces are not finall enough, the operation may be repeated on each till they are reduced to the proper fize. Thefe fragments are then to be beaten to fmall pieces in a polifhed lleel mortar ; the cavity of which fhould be cylindrical, and the ftecl peftle fhould fit it exactly, in order to prevent any of the tone from efcaping during the act of pounding. As foon as the Atone is reduced to pretty fmall pieces, it ought to be put into a mortar of rock cryital or flint, and reduced to a coarfe powder. This murtar fhould be about four inches in diameter, and rather more than an inch in depth. The pettle fhould be formed of the fame ftone with the mortar, and care flould be taken to know exaetly the ingredients of which this mortar is compofed. Klaproth's mortar is of flint. We lave given its analyfis in $n^{\circ} 32$ of this article.

When the tlone has been reduced to a coarfe powder, a certain quantity, whofe weight is known exactly, 100 grains for inftance, ought to be taken and reduced to as fine a powder as poffible. This is beft done by pounding fmall quantities of it at once, not exceeding 10 graine. The powder is as fine as poflible when it feels foft, adheres together, and as it were forms a cake under the peftle. It ought then to be weighed exactly. It will almof always be found heavier after being pounded than it was before; owing to a certain quantity of the fubtance of the mortar which has been rubbed off during the grinding and mixed with the pow-
der.

Analyfis ofder. This additional weight muft be carefully noted; Minerals, and after the analy fis, a portion of the ingredients of $\underbrace{}_{297}$ the mortar, correfponding to it, mual be fubteractcd.
III. It is neceffary to have a crucible of pure filver, or, what is far preferable, of platinum, capable of holding rather more than fevell cubic inches of water, and provided with a cover of the fame metal. There fhould allo be ready a fpatula of the fame metal about four inches long.
The difhes in which the folutions, evaporations, \&cc. are performed, ought to be of glafs or poreclain. Thofe of porcelain are cheaper, becaufe they are not fo apt to break. Thofe which Mr Vauquelin ufes are of porcelain; they are fections of fpheres, and arc glazed both within and without, except that part of the buttom which is immediately expofed to the firc.

Sect. II. Analyfis of Stones (y).

The only fubftances which enter into the compofition of the fimple ftones, as far at leaft as analy fis has difcovered, are the fix earths, filica, alunina, zirconia, glacina, lime, and magnefia; and the oxides of iron, nanganefe, nickel, chromum, and copper (z). Seldom more than four or five of thefe fubftances are found combined together in the fame ftone: we fhall fuppofe, however, in order to prevent unneceflary repetitions, that they are all contained in the mineral which we are going to analyfe.
Let 100 or 200 grains of the fone to be analyfed, previounly reduced to a fine powder, be mixed with three times its weight of pure potafs and a little water, and expofed in the filver or platinum crucible to a troug heat. The heat fhould at frift be applied flowly, and the matter fhould be conftantly firred, to prevent the potafs from fwelling and throwing any part out of the crucible. When the whole water is evaporated, the mixture fhould be kept for half an hour or three quarters in a ftrong red heat.

If the matter in the crucible melts completely, and appears as liquid as water, we may be certain that the tone which we are analyfing confifts chiefly of filica; if it remains opaque, and of the contitence of patle, the other earths are moot abundant; if it remains in the form of a powder, alumina is the prevalent earth. If. the matter in the crucible be of a dark or brownifh red colour, it contains oxide of iron; if it is grats green, manganefe is prefent ; if it is yellowith glecn, it contains chromum.

When the crucible has been taken from the fire and wiped on the outfide, it is to be placed in a captule of porcelain, and filled with water. This water is $\omega 10$ be renewed from time to time till all the matter is detached from the crucible. The water diffolves a part of the combination of the alkali with the filica and alumina of the-fume; and if a fufficient quantity were uted, it would diffolve the whole of that cumbination.

Muriatic acid is now to be poured in till the whole of the matter is diffolved. At firlt a flaky precipitate appears, becaufe the acid combines with the alkali
which kept it in folution. Then anc cffervefence takes Ana'yfis of place, owing to the decompofition of fome carbonat of Mineraits. potafs formed during the fufion. At the fame time the flaky precipitate is rediffolved; as is alfo that part of the matter which, not having been diffilved in the water, had remained at the bottom of the dith in the form of a powder. This powder, if it conlits only of filica and alumina, diffolves without cherveleence; but if it contains lime, an effervefcence takes place.

If this folution in muriatic acid be colourlefis, we may conclude that it contains no metallic oxide, or only a very finall portion; if its colour be purplifh red, it contains manganefe ; orange red indicates the prefence of iron; and golden yellow the prefence of chromum.

This folution is to be poured iuto a capfule of porceJain, covered with paper, and evaporated to drynefs in a fand bath. When the evaporation is drawing towards its completion, the liquor allimes the form of jelly. It muit then be ftirred couflantly with a glafs or porcelain rod, in order to facilitate the difengagement of the acid and water, and to prevent one part of the matter from being too much, and another not fufficiently dried. Without this precaution, the filica and alumina would not be completely feperated from each other.
When the matter is reduced almof to a dry powder, a large quantity of pure water is to be poured on it; and, after expofure to a light heat, the whole is to be poured on a filter. The powder which remains upon the filter is to he wafhed repeatedly, till the water with which it has been wafhed ceafes to precipitate filver from its folutions. This powder is the whole of the filica which the flone that we are analyfing contained. It mult firft be dricd between folds of blotting paper, then heated red hot in a platinum or filver crucible, and weighed while it is yet warm. It ought to be a fine powder, of a white colour, not adhering to the fingers, and entirely foluble in acids. If it be eoloured, it is contaminated with fone metallic oxide; and thews, that the evaporation to dynefs has been performed at too high a temperature. To feparate this oxid:, the filica mult be boiled with an acid, and then wafhed and dried as before. The aeid folution muit be added to the water which pafied through the filter, and which we flatil denominate A .

The watery folution A is t_{1}, be evaporated till its quantity does mot exceed 30 cubic inches, or nearly an Englifi piut. A folution of carbonat of potais is then to be poured into it till no more matter precipitates. It ought to be builed a few moments to enable all the precipitate to fall to the buttom. When the whole of the precipitate has collected at the bottom, the fuperratant liquid is to be decanted off; and water being fubstituted in its place, the precipitate and water are to be thrown upon a filter. When the water las run off, the filter with the precipitate upon it is to be placed between folds of bloting paper. When the precipitate has acquired fome conliftence, it is to be carefully collected by an ivory knife, mixed with a folution of pure potafs, and boiled in a porcclain capfule. If any
(y) Part of this fection is to be confidered as an ablract of a treatife of Vauquelin on the analy fis of flomes, publifhed in the Annales de Chintic, Vol. XXX. p. 66.
(z) Barytes has alfo been difcuvered in one fingle ftone, the Aauroilte; but its prefence in flones is fo unconmon, that it can.fcareely be looked fur. The method of detecting it thall be noticed afterwards.

Anslyfis of alumina or glucina be prefent, they will be diffolved in $\underbrace{\text { Minera!s }}$ the potafs; white the other fubitances remain untouch301 ed in the form of a powder, which we fhall call B.

And the alumina,

302
Clucina,

And nickel. Evaporate the folution, and the oxide of nickel will alfo precipitate; and its weight may be afcertaincd in the fame manner with the other ingredients.
The weights of all the ingredients obtained are now to be added together, and their fum-total compared with
the weight of the matter fubinitted to analy fis. If the Analsfio of two are equal, or if they differ only by .03 or . 24 pats, Namera's we may conclude that the analy fis has becn properly performed: but if the lofs of weight be confidcrable, fomething or other has been loft. The analy fis muft therefore be repeated with all poffible care. If there is Rill the fame lufs of weight, we may conclude that the ftone contains fome fubltance, which has either evaporated by the heat, or is foluble in water.

A frefh portion of the ftone mult therefore be bro- Method of ken into fall pieces, and expofed in a porcelain cru-d.tect ng cible to a itrong heat. If it contains water, or any vila rile boother volatile fubitance, they will come over into the erceiver ; and their nature and weight may be afeertained.

If nothing comes over into the receiver, or if what comes over is not equal to the weight wanting, we may conclude that the fone contains fome ingredient which is foluble in water.

To difcover whether it contains potafs, let the fone, Method of reduced to an impalpable powder, be boild five or fixafeertain. times in fucceffion, with very Arong fulphuric acid, ap-ing wheplying a pretty flrong heat towards the end of the ope. ther thones ration, in order to expel the excefs of acid; but taking potazf care that it be not frong enough to decompofe the falts which have been formed.

Water is now to be poured on, and the refiduum, which does not diffolve, is to be wafhed with water till it becomes taftelefs. The watery folution is to be filtered, and evaporated to drynefs, in order to drive of any excefs of acid which may be prefent. The falts are to be again diflolved in water; and the folution, after being boiled for a few moments, is to be filtered and evaporated to a confiflence proper for cryitallizing. If the fone contains a fufficient quantity of alumina, and if potafs be prefent, cryftals of alum will be formed; and the quantity of potafs may be difcovered by weighing them, it being nearly $\frac{1}{r o t}$ th of their weight. If the fone does not contain alumina, or not in fufficient quantity, a folution of pure alumina in fulphuric acid mult be added. Sometimes the alum, even when potafs is prefent, does not appear for feveral days, or even weeks; and fometimes, when a great quantity of alumina is prefent, if the folution has been too mueh concentrated by evaporation, the fulphat of alumina prevents the alum from cryftallizing at all. Care, therefore, mult be taken to prevent this laft fource of error. The alum ob. tained may be diffolved in water, and barytic water poured into it as long as any precipitate forms. The liquor is to be filtered, and evaporated to drynefs. The reliduem will confift of potafs and a little carbonat of potafs. The potafs may be diffolved in a litte water. This folution, cvaporated to drynefs, gives us the potafs pure ; which may be examiued and weighed.

If no cryitals of alum can be obtained, we mut look ${ }^{311}$ for fome other fubfance than putafs. The fone, for inflance, may contain foda. The prefence of this alkali may be difeovered by decompofing the folution in fulphuric acid, already defcribed, by means of ammonia. The liquid which remains is to be evaporated to drynefs, and the refiduum is to be calcined in a crucible. By this method, the fulphat of ammonia will be volatilized, and the foda will remain. It may be rediffolved in water, cryttallized, and examined.

If fulphuric acid does not attack the flone, as is often the cafe, it muft be decompofed by fufion with fo-

Analy fis of da, in the fanse manner as formerly directed with pot. Maikrale. afs. The matter, after fufion, is to be diluted with water, and then faturated with fulphuric acid. The folution is to be evaporated to drynets, the reficluum agrain diffolved in water, and cvaporated. Sulphat of fuda will cryltallize firtt; and by a Cecond evaporation, if the fone contains potafs and altumina, eryllals of alum will be depolited.

The prefence of potafs may be difcovered, hy mixing with a fomewhat concentrated folution of mariat of platinum, the falt obtained, either by decompofing the flone immediately by an acid, or by faturating with an acid the inater obtained by fufing the fone with foda. If any potafs be prefent, a very red precipitate will be formed. 'This precipitate is a triple falt, compofed of potafs, muriatic acid, and oxide of platinum. Ammonia, indeed, produces the fame precipitate; but ammonia has not hitherto been difcovered in itones.
Analyfis of In this manner may fimple fones and aggregates be Analyits of analyfed. As to faline flones, their analy ios mutt vary
faline ftones, according to the acid which they contain. But almott all of them myy be decompofed by one or other of two methods; of each of which we fhall give an example.

I. Analyfis of Carbonat of Strontites.

of Carbo. Klaproth analyfed this mineral by diffolving 100 nats, parts of it in diluted muriatic acid: during the folution, 30 parts of carbonic aeid efeaped. The folution cryfallized in needles, and when diffolved in alcohol, bursit with a purple flame. Therefore it contained Atrontites. He diffolved a grain of fulphat of potafs in fix ounces of water, and let fall into it three drops of the nuriatic folution. No precipitate appeared till next day. There. fore the folution contained no barytes; for if it had, a precipitate would have appeared immediately.

He then decompoled the muriatic acid folution, by mixing it with carbonat of potafs. Carbonat of ftrontites precipitated. By the application of a ftrong heat, the carbonic acid was driven off. The whole of the earth which remained was diffolved in water. It cry-

- Klaprotb's ftallized ; and when dried, weighed $6 y_{i}^{\prime \prime}$.

Beitrdye, i.
 260.
 II. Analyfis of Sulphat of Strontites.

Mr Vauquelin analyfed an impure fpecimen of this mineral as follows :

On 200 parts of the mineral, diluted nitric acid was poured. A violent effervefcence took place, and part of the mineral was diffolved. The undiffolved porsion, after being heated red hot, weighed 167. Therefore 3.3 parts were diffolved.

The nitric folution was evaporated to drynefs: A reddilh fubftance remained, which indicated the prefence of oxide of iron. This fubitance was rediffolved in water, and fome ammonia mixed with it; a reddifh preeipitate appeared, which, when dried, weighed r, and was oxide of iron. The remainder of the folution was precipitated by carbonat of potafs. The precipitate weighed, when dried, 20 , and polfeffed the properties of carbonat of lime. Therefore 200 parts of this mineral contain 20 of carbonat of lime, 1 of oxide of iron, and the remainder of the 33 parts he coneluded to be water.

The 167 parts, which were infoluble in nitric acid, were mixed with 500 parts of carhonat of potafs, and 7000 parts of water, and boiled for a confiderable time.

The folution was then filtered, and the refiduum waft.Ana'ylisof ed and dried. The liquid fearcely effervefeed with Minerale acids; but with barytes it produced a copious precipitate, totally indiffoluble in untiatic acid. Therefore it contained fulphuric acid.

The undiffolved relidumn, when dried, weighed 129 parts. It difolved completely in muriatic acid. The folution eryftallized in needles; when diffolved in alcohol, it burnt with a purple flame; and, in thort, had all the properties of muriat of flrontites. Therefore thefe 129 pants were carbonat of itrontites. Now, 102 parts of this carbonat contain 30 of carbonic acid ; therefore 129 contain 39.7. Thercfore the mineral mult contain in 200 parts 90.3 of frontites.

Nuw, the infoluble refilum of 167 parts was pure fulphat of frontites ; and we have feen that it contained go. 3 of drontites. Therefore the fulpharie acid muft amount to 76.7 parts *.

Neally in the fame manner as in the firlt of thefe ex. Jin . de amples. may the analy fis of carbonat of lime and barytes xxrvii.p. I. be performed; and nearly in the fame manuer with the fecond, we may analyfe the fulphats of lime and barytes.

Phofifhat of lime may be diffolved in muriatic acid, and the lime precipiated by fulphuric acid, and its quantity afeertained by decompofing the fulphat of lime obtained. The liquid folution may be evaporated to the confiftence of honey, mixed with charcoal powder, and diftilled in a ftrong heat. By this means phofphorus will be obtained. The impurities with which the phofphat may be contaminated will partly remain undif. folved, and be partly difolved, in mariatic acid. They may be detected and afcertained by the rults laid down in the fecond fection of this chapter.

The fluat of lime may be mixed with fulphuric acid' and dittilled. The fluuric acid will come over in the form of gas, and its weight may be afcertained. What remains in the retort, which will confift chiefy of fulphat of lime, may be analyfed by the rules already laid down.

375
Phofphats,

The
The borat of lime may be diffolved in nitrie or ful. And bophuric acid. The fulution may be evaporated to dry-rats. nefs, and the boracic acid feparated from the refiduum by means of alcohol, which will diffolve it without acting on any of the other ingredients. The remainder of the dry mafs may be analyfed by the rules laid down in Sect. II. of this Chapter.

Sect. III. Of the Analy is of Combufilles.

The only combuftibles of whofe analyfis it will be neceffary to fpeak are coals and fulphur : for the inethod of analyfing the diamond and oil has already been given in the article Chemistry, Suppl.
\qquad
\qquad

Coal is compofed of carbon, bitumen, and fome por- Earths of tion of earth. The earths may be detected by burning coal how completely a portion of the coal to be analyfed. The examined. afhes which remain after incineration conlift of the earthy part. Their nature may be afcertained by the rules laid down in Sect. II. of this Chapter.

For the method of afcertaining the proportion of carbon and bitumen in coal, we are indebted to Mr Kirwan.

When nitre is heated red hot, and charcoal is thrown detecting of on it, a violent detonation takes place; and if the quan-the relative tity of charcoal be fufficient, the nitre is completely de-proportions compofed. Now, it requircs a certain quantity of pure of clarcoal bitu. carbon men.
analy ifs, icarbon to deconpofe a given weight of nitre. From

Minerali.
$\longrightarrow-$

* Merr.

Scap. Ef1ang. xi. 610. the experiments of Lavoitier, it follows that, when the detonation is performed in clofe veffels under water, 13.21 parts of charcoal are capable of decompofing 100 parts of nitre *. But when the detonation is performed in an open crucible, a fnaller proportion of charcoal is neceffary, becaufe part of the nitre is decompofed by the action of the furrounding air. . Scheele found that under thefe circumftances 10 parts of plumbago were fulficient to decompofe 96 parts of nitre, and Mr Kirwan found that nearly the fame quantity of charcoal was fufficient for producing the fame effect.

Macquer long ago obierved, that no volatile oily matter will detonate with nitre, unlefs it be previoully reduced to a charcoal; and that then its effect upon nitre is precifely proportional to the charcoal which it con\dagger Macquer'stains \dagger. Mr Kirwan, upon trying the experiment with Distionary, veretalle pitch and maltha, found that thefe fubilances 2 dedit . did not detonate with nitre, but merely burn upon its p. $4^{\text {SI }}$.
\ddagger Minera-
logy, ii.
522. Turface with a white or ycllow flame; and that after they were confumed, nearly the fame quantity of charcoal was neceffary to decompofe the nitre which would lave been required if no bitumen had been ufed at all \ddagger. Now coals are chiefly compofed of charcoal and bitumen. It occurred therefore to Mr Kirwan, that the
quantity of charcoal which any coal contains may be atcertained by detonating it with nitre: For fince the bitumen of the coal has no effect in decompofing nitre, it is evident that the detonation and decompolition mult be owing to the charcoal of the coal ; and that therefore the quantity of cual neceffary to decompofe a given portion of nitre will indicate the quantity of carbon which it contains: and the proportion of charcoal and earth which any coal contains being afcertained, its 'bituminous part may be eafily had from calculation.

The crucible which he ufed in his experiments was large: it was placed in a wind furnace at a diflance from the flue, and the heat in every experiment was as equal as proffible. The moment the nitre was red hot, the coal, previoufly reduced to fmall pieces of the fize of a pin head, was projected in portions of one or two grains at a time, till the nitre would no longer detonate ; and every experiment was repeated feveral times to enfure accuracy.

He found that 480 grains of nitre required 50 grains of Killsenny coal to decompofe it by this method. Therefore 10 grains would have decompofed 96 of nitre ; precifely the quantity of charcoal which would lave produced the fame effect. Therefore Kilkenny coal is compofed almoft entirely of charcoal.

Cannel coal, when incinerated, left a refiduum of 3.12 in the 100 parts of earthy afhes. 66.5 grains of it were required to deconpofe 480 grailns of nitre ; but 50 parts of clarcoal would have been fufficient : therefore 66.5 grains of cannel coal contain 50 grains of charcoal, and 2.08 of earth ; the remaining 14.42 grains muft be hitumen. In this manner may the compofition

As for fulphur, in order to afcertain any accidental impurities with which it may be contaminated, it ought to be boiled in thirty times its weight of water, afterwards in diluted muriatic acid, and lafly in diluted nitro muriatic acid. Thcfe fubltances will deprive it of all its impurities without acting on the fulphur itfelf, at lealt if the proper cautions be attended to. The
fulphur may then be dried and weighed. The defi. Analy fis of cicncy in weight will mark the quantity of the fulftan- Minerals. ces which contaminate the fulphur. The folutions may be evapented and examined, according to the rules laid down in the fecond and fuurth fections of this chapter.

Sect. IV. Of the Analyfis of Ores.

The method of analyfing ores mult vary confider- ${ }^{3} 2 \boldsymbol{r}$ ahly, according to the metals which they are fufpected No peticral to contain. A general method, therefore, of analy fing malying would be of no ufe, even if it could be given, becaufcoree. it would be too complicated ever to he pragifed. We fhall content ourfelves with exhiliting a fufficient number of the analyfis of ores, to take in moft of the cafes which can occur. He who wifhes for more information on the fubject, may confult the treatife of Bergman on the Analyjes of Ores; Mr Firwan's treatife on the fame fubject ; and, above all, he ought to tludy the numerous analyfes of ores which have been publifhed by Mr Klaproth.

I. Analyfis of Red Silver Ore.

Mr Vauquelin analyfed this ore as follows:
He reduced 100 parts of it to fine powder, poured Method of over it 500 parts of nitric acid previoully diluted withred filves water, and applied a gentle heat to the mixture. The ore. colour of the powder, which before the mixture with nitric acid was a deep purple, became gradually lighter, till at laft it was pure white. During this chaarge no nitrous gas was extricated; hence he concluded, that the metals in the ore were in the itate of oxides.

When the nitric acid, even though boiled gently, did not appear to be capable of diffolving any more of the powder, it was decanted off, and the refiduum, after being carefully wafhed, weighed 42.06 .

Upon thefe 42.06 parts concentrated muriatic acid was poured; and by the application of heat, a confiderable portion was diffolved. The refiduun was repeatedly wafhed with muriatic acid, and then dried. Its weight was 14.6666 . One portion of thefe 14.6666 parts, when thrown upon burning coals, burnt with a blue flame and fulphureous fmell. Another portion fublimed in a clofe veffel without leaving any refiduum. In fhort, they had all the properties of fulphur. Therefore 100 parts of red filver ore contain 14.6666 of fulphur.

The muriatic acid folution was now diluted with a great quantity of water; it became milky, and depofited a white flaky powder, which when wafhed and dried weighed 2 I .25 . This powder, when heated with tartar in a crucible, was converted into a bluin white brittle metal, of a foliated texture, and poffeffing all the other properties of antimony. Red filver ore, therefore contains 21.25 of oxide of antimony.
The folution in nitric acid remained now to be examined. When muriatic acid was poured into it, a copious white precipitate appeared, which, when wafled and dried, weighed 72.66. It had all the properties of muriat of filver. According to Mr Kirwan's tables, 72.66 of muriat of filver contain 60.57 of oxide of filvcr. Therefore red filver ore, according to this analy fis, is compoled of 60.57 oxide of filver,
21.25 uxide of antiniony,
14.66 fulphur.
$\frac{96.48}{}$

Analffes of The lofs, which antotuts to 3.5^{2} parte, is to be afuriMincraly bed to unavoidable errors which attend fuch experiinents.

II. Antimoniated Silver Ore.

323 Analylis of antimoniated Giver

Klaproth analyfed this ore as follows:
On roo parts of the ore, reduced to a fine powder, he poured diluted nitric acid, raifed the misture to a boiling heat, and after pouring off the acid, added new quantities repeatedly, till it would diffolve nothing more. 'I'he refiduum was of a greyifh yellow colour, and weighed, when dry, 26.

Thefe 26 parts he digeited in a mixture of nitric and muriatic acid; part was diffolved, and part ftill remain. ed in the form of a powder. This refiduun, when wathed and dried, weighed 13 parts. It had the properties of fulphur; and when burnt, left a refiduum of one part, which had the properties of filica. Antimo. niated filver ore, thwrefore, contains, in the 100 parts, 12 parte of fulphur and 1 of filica.

When the nitro-muriatic folution was diluted with about 20 times its weight of water, a white precipitate appeared ; which, when heated to rednefs, became yellow. Its weight was 13. No part evaporated at a red heat : therefore it contained no arfenic. On burning coals, efpecially when foda was added, part was reduced to a metal, having the properties of antimony; and in a pretty high heat, the whole evaporated in a grey fmoke. Thefe 13 parts were therefore oxide of antimony: They contain ahout 10 parts of metallic antimony; and as the Itate of oxide was produced by the action of the nitric acid, we may conclude that antimoniated filver ore contains 10 parts of antimony.

The nitric acid folution remained ltill to be examined. It was of a green colour. When a folution of common falt was poured in, a white precipitate was obtained, which poffeffed the properties of muriat of fil. ver. When dried, it weighed 87.75 parts; and when reduced, 65.8 I parts of pure filver were obtained from it. Antimoniated fiver ore, therefore, contains 65.8 t of filver.

Into the nitric acid folution thus deprived of the filver, he dropped a little of the folution of fulphat of foda; but no precipitate appeared. Therefore it contained no lead.

He fuperfaturated it with pure ammonia, on which a grey precipitate appeared. When dried, it weighed 5 parts. This, on burning coals, gave out an arienical -Imell. It was rediffolved in nitric acid; fulphurated alkali occafioned a finutty brown precipitate ; and pruffic alkali a pruifian blue, which, after torrefaction, was magnetic. Hence be concluded, that thefe five parts were a combination of iron and arlenic acid.

The nitric folution, which had heen fuperfaturated with ammonia, was blue; he therefore fufpected that it contained copfer. To difcover this, he laturated it with fulphuric acid, and put into it a polifhed plate of iron. 'the quantity of copper was fo Imall, that bone could be collected on the iron.

III. Grey Copper Ore.

Klaproth analufed this ore as follows:
Three hundred grains of it, not completely freed from its matrix, were reduced to a fine powder ; four times their weight of nitric acid was poured on them, and the Sufpl. Vol. II. PartI.
whole was digefted. The acid was then poured off, Analyfis of and an equal quantity again digelled on the refiduam. Ninerat. The two acid folutions were mixed together. 'The refoduum was of a yellowifl grey colour, and weighed 188 grains.

On this refiduum fix times its weight of muriatic acid was boiled. 'The refiduum was walhed, firlt with muriatic acid, and afterwards with alcohol, and the waft.r ings added to the muriatic acid folution. The refuluum, when dried, weighed 105.5 grains. Part of it burned with a blue flame; and was therefore fulphur. The refiduum amounted to 80.25 grains, and had the properties of lilica. When melted with black flux, about $\frac{1}{2}$ ths of a grain of filver were obtained from it. Thus 300 parts of grey copper ore contain 25.25 gr . of fulphur, and 79.5 of filica.

The nuriatic acid folution, which was of a light yellow colour, was concentrated by dilillation, a few cryItalls of muriat of filver appeared in it, which contained about $\frac{1}{4}$ th grain of filver. The folution, thus concentrated, was ciluted with a great quantity of water; a white precipitate was depofited, which, when dried, weighed $97: 25$ grains. It puffeffed the properties of oxide of antimony, and contained 75 graius of antimony. Therefore 300 grains of grey corper ore contain 70 of antimony.

The nitric acid folution was of a clear green colour. A folution of common falt occafioned a white precipitate, which was muriat of filver, and from which 31.5 grains of filver were obtained.

A little fulphat of potafs, and afterwards fulphuric acid, were added, to dee whether the folution contained lead; but no precipitate appeared.

The folution was then fuperfaturated with ammonia; a loofe fleaky brownifh red precjpitate appeared, which, when heated to rednefs, became brownifh black, and weighed $9 \frac{1}{7}$ th grains. This precipitate was diffolved in muriatic acid; half a grain of matter remained undiffolved, which was filica. The muriatic acid folution, when pruffic alkali was added, afforded a blue precipitate ; and foda afterwards precipitated 1.5 grains of alu. mina. Therefore 300 grains of grey copper ore contain 7.25 grains of iron, and 1.5 of alumina.

Into the mitric folution fuperfaturated with anmo. nia, and which was of an azure blue colour, a polifhed plate of iron was put: By this method 69 grains of copper were obtained.

IV. Sulpharet of Tin.

Klaproth analyfed this ore as follows.*:
On 120 grains of the ore redueed to powder, fixtions on the times their weight of nitro-muriatic acid, compofed of Fopils of 2 parts of muriatic, and 1 of nitric acid, were putured. iornzeall, There remained undiffolved 43 grains, which had the ${ }^{\text {P. }} 48$. appearance of fulphur; but containing green fots, was Analylis of fufpected nut to be pure. After a gentle combuftion, fulphurct 13 grains remained; 8 of which were diffolved in nitro- of tin. muriatic acid, and added to the firft folution. The remaining 5 were feparated by the filtre, and heated along with wax. By this method about a grain of matter was obtained, which was attracted by the magnet ; and which therefore was iron. 'The refiduum weighed 3 grains, and was a mixture of alumina and filica. Thus 120 grains of fulphuret of tin contain 30 grains of fulphur, I of iron, and 3 of alumina and filica.

K k
The

The nitro muriatic folution was completely precipitated by potafs. The precipitate was of a greyifh green colour. It was wathed and dried, and again difolved in diluted muriatie acid. Into the folution a cylinder of pure tin was put, whieh weighed exactly 217 grains. The folution became gradually colourlefs, and a quantity of eopper precipitated on the eylinder of tin, whieh weighed 44 grains. To fee whether it was pure, a quantity of mitric acid was digetted on it ; the whole was difolved, except one grain of tin. Therefore 120 grains of fulphuret of tin contains 43 grains of enpper.

The cylinder of tin now weighed only 128 grains; fo that 89 grains had been diffolved. Into the folution a cylinder of zine was put ; upou which a quaptity of tin precipitated. When wafhed and dried, it weighed ${ }^{1} 30$ grains. The tin he melted with tallow and powdered charcoal ; and when cold, he wafted off the charcoal. Among the tin globules were found fome blaek floceuli of irur, which weighed one grain. Deducting this grain, and the 89 grains of the tin cylinder which had been diffolved, we fee that the 120 grains of fulphuret of tin contained 40 grains of tin befides the grain whieh had been detected in the copper.

V. Plumbiferous Antimoniated Silver Ore.

Klaproth analyfed this ore as follows:
He digefted 400 grains of it, reduced to a fine powder, firt in five times its weight of nitric aeid, and then in twice its weight of the fame acid. Fe then diluted
this laft portion of acid with eight times its weight of water, and continued the digeftion. The undiffolved refiduum, when wathed and dried, weighed 326 grains.

On this refidum he boiled muriatic acid repeatedly. The folution, on cooling, depofited aejcular cryftals. Thefe he earefully feparated, and put by. The undiffolved refiduum weighed 51 grains. It had the properties of fulphar. When burned, it left one grain of flica.

The muriatic aeid folution was eoncentrated to half its former bulk by dittillation : this made it depofite more aeieular eryflals. He continued the diftillation as long as any eryftals continued to appear. He then cellected the whole of thefe cryllals together. They had the properties of muriat of lead. When mixed with twice their weight of black flux, and heated in a crucible lined with charcoal, they yielded $160 \frac{x}{8}$ grains of lead.

Sulphuret of ammonia was now added to the muriatic acid folution; an orange-coloured precipitate appeared, which hewed that the folution contained antimony. It was precipitated by a eopious effution of water, and by foda. The oxide of antimony being reduced to a mals with Spauilh foap, mixed with blaek flux, and heated in a lined erueible, yielded 28.5 grains of antimony.

Into the nitrie acid folution, obtained by the firft part of the proeefs, a folution of muriat of foda was dropped ; a white precipitate was depofited, and over it acicular eryftals. Thefe eryftals he diffolved, by pouring boiling water on the preeipitate. The water was added to the nitric acid folution. The white precipitate was muriat of Gilver: when heated with twiee its weight of foda, it yielded 81.5 grains of filver.

He now concentrated the nitric acid folution by eva.
poration; and then adding a folution of fulphat of fuda, Analyfio of a white precipitate was obtained, which had the pro- Minerals. perties of fulphat of lead, and weighed 43 grains. It \longrightarrow contained 32 grains of pure lead.

He now poured ammonia into the folution; a pale brown preeipitate was obtained, which weighed 4° grains, and which appeared to confift of oxide of iron and alumina. He rediffolved it in nitric aeid, preeipitated the iron by pruffic alkali, and the alumina by foda. The alumina, after being heated to rednefs, weighed 28 grains; confequently the oxide of iron was 12 grains, which is equivalent to 9 grains of iron.

VI. Molybdat of Lead.

Mr Hatchett analyfed this ore as follows *
On 250 grains of the ore, reduced to a fine powder, ${ }^{*}$ Tranf. he poured an ounce of ttrong fulphuric acid, and digeft-lxaxvi. 320. ed the mixture in a ftrong heat for an hour. When the folution was cool, and had fei•led, he decanted it off, and wafhed the undiffolved powder with pure water, till it eame away taftelefs. This operation was repeated twice more; fo that three ounces of fulphuric acid were ufed. All thefe folutions were mixed together, and filtered.

Four ounces of a folution of earbonat of foda were poured upon the powder which remained undiffolved, and which confifted of fulphat of lead. The mixture was boiled for an hour, and then poured off. The powder was then wafhed, and diluted nitrie aeid poured on it: The whole was diffolved, except a little white powder, which, when wafhed, and dried on a filter by the heat of boiling water, weighed feven.tenths of a grain. It poffeffed the properties of filica.

The nitric aeid folution was faturated with pure foda; a white precipitate was obtained, whieh, when wathed, and dried for an hour in a heat rather below rednefs, weighed 146 grains. It poffered the properties of oxide of lead.

To fee whether this oxide of lead entained any iron. it was diffolved in diluted nitric aeid, and the lead precipitated by fulphuric acid. The folution was then fa. turated with ammonia: a brown powder precipitated, which, when dried, weighed one grain, and had the properties of oxide of iron.

The fulphuric acid folution was of a pale blue colour: It was diluted with 16 times its weight of pure water, and then faturated with ammonia. It beeame of a deep blue eolour, and appeared turbid. In 24 hours a pale yellow precipitate fubfided, which, when collected un a filter, and dried by a boiling water heat, weighed 4.2 grains. Its colour was yellowith brown. Muriatic acid diffolved it, and prufliat of potafs precipitated it from its folution in the thate of pruffian blue. It was therefore oxide of iron.

The fulphuric acid folution, faturated with ammonia, was gradually evaporated to a dry falt. This falt was a mixture of molybdat of ammonia and fulphat of am. monia. A ftrong heat was applied, and the dittillation continued till the whole of the fulphat of ammonia was driven off; and to be certain that this was the eafe, the fire was raifed till the retort became red hot. The reliduum in the retort was a blaek bliftered mafs; three ounces of nitric aeid, diluted with water, were poured upon it, and ditilled off. The operation was again re.

Analyfis of peated. By this method the oxide of molybdenum was $\underbrace{\text { Minerals. }}$ converted into a yellow powder, which was yellow acid of molybdenum. It weighed 95 grains.

VII. Grey Ore of Manganefe:

* Four. de

Min. ${ }^{0}$
xvii. r. 12. When 20 grains of it were expoled to a itrong leat in a retort, there came over 10 grains of water, and 18 Analyfis of cubic inches of oxygen gas, mixed with a little carboarey ore of nic acid gas. The mineral now weighed only 176 grains. manganef. Therefore the weight of the gas was 14 grains.

On 202 grains of the fame mineral muriatic acid was poured, and heat applied. 75 cubic inches of oxy musriatic acid gas came uver, which, though mixed with fome carbonic acid gas, enflamed metals when reduced t powder. When no more gas came over, the relidu. um was boiled. The whole was dillolved except a white powder. which weighed 12 grains, and which poffelled the properties of filica.

Carbonat of potafs was poured into the folution; a white precipitate was obtained, which became black by expofure to the air, and weighed 288 grains Strong nitric acid was hoiled un it repeatedly to drynefs. It became of a deep black colour, and, when well wafhed with water and dried, weighed $16+$ grains. This powder was black oxide of manganefe.

To fee whether it contained iron, nitric aeid, with a little fugar, was poured upon it, and digefted on it. The acid diffolved it completely. Therefore no oxide of iron was prefent.

Into the water with which the black oxide of manganefe had been wathed, carbonat of potals was poured; a white powder precipitated, which, when dried, weighed 149 grains, and which poffeffed the properties of carbonat of lime.

VIII. Wolfram.

Meffrs Vauquelin and Hecht analyfed this mineral as follows :

On 200 parts of Wolfram in powder, three times its weight of muriatic acid were poured, and the mixture boiled for a quarter of an hour: a yellow powder ap. peared, and the folution was of a brown colour. The acid was allowed to cool, and then carefully decanted off, and the refiduum wafhed. The refiduum was then digetted for fome hours with ammonia, which diffolved a part of it. The refiduum was wafhed, and new muriatic acid again poured over it ; then the refiduum was digefted with ammonia, as before: and the operation was continued till the whole wolfram was diffolved.

All the ammoniacal folutions being joined together, were evaporated to drynefs, and the falt which remained was calcined: a yellow powder was obtained; it weighed 134 grains, and was yellow acid of tungften.

Into the muriatic acid folutions, which were all mixed together, a fufficient quantity of fulphuric acid was poured to decompofe all the falts. The folution was then evaporated to drynefs; and the falts which were obtained by this evaporation were rediffolved in water.

A white powder remained, which weighed three grains, and which poffefed the properties of filica.

The excefs of acid of the folution was faturated with carbonat of potafs; the liquor becane brown, but no. thing precipitated. When boiled, a red powder precipitated, and the brown colour difappeared. The addition of more carbonat of potafs caufed a farther precipitation oi a yellowith powder. This precipitate confilted of the oxides of iron and inanganefe combined. Nitric acid was diflilled off it repeatedly ; it was then builed in acetous acid. The acetous folution was precipitated by potafs. Nitric acid was again diftilled wf it, and it was again boiled in acetous acid. This procefs was repeated till nitric acid produced no further change. The different powders which could not be diffolved in the acetous acid were collected, nixed with a little oil, and heated red hot. . The poweler became black, and was attracted by the magnet. It was therefore oxide of iron. It weighed 36 grains.

The acetous folution contained the oxide of manganefe: It was precipitated by an alkali, and, whendried, weighed $t 2.5$ grains.

IX. Oxide of Titanium and Iron.

Vauquelin analyfed this ore as follows:
A hundred parts of the ore, reduced to a fine pown- Ana'yfis of der, and mixed with 403 pats of potafs, were multed can, तe o! tio in a tilver crucible for an hour and a half. When cool, itwn. the mixture was diluted with water ; a powder remained of a brick red colour, which when wathed and dried weighed 124 parts.

The watery folution had a fine green colour; when an excefs of muriatic acid was added, it becane rcd. By evaporation the liquor loft its culour. When cvaporated to drynefs, a falt remained, which was totally diffolved by water. From this folution carbonat of potafs precipitated two parts, which had the properties of oxide of manganefe.

The 124 parts of refiduum were boiled in a folution of pure potals for an hour. The folution was faturated with an acid, filtered, and carbonat of potafs added, which precipitated three parts. Thefe had the properties of oxide of titanium.

The remainder of the 124 parts of refiduum, which ftill was undiffolved, was builed with diluted muriatic acid. The liquor became yellow, and depofited 46 parts of a white powder, with a tint of red. This powder was foluhle in fulphuric and muriatic acids: from thefe folutions, it was precipitated of a brick red coluur by the infufion of nut-galls; of a green colonr by fulphuret of ammonia and pruffiat of potafs; and of a white culour by carbonat of potals and pure ammonia. A rod of tin made thefe folutions red; a rod of zinc made them violet. Thefe 46 parts therefore are oxide of titanium.

The muriatic folution, from which thefe +6 parts were depofited, formed, with pruffiat of potafs, a pruffian blue; and ammonia precipitated from it $5 \circ$ parts, which had the properties of yellow oxide of iron.
A.

1^{C}CINOSE iron ore, $n^{\circ} 225$ Aainolite, fhorlaccous, 89. -_- lamellier, 99.
Aainote, 52 .
Adamantine [par, 26.
雨delite, 65.
EEtites, 225°
Agaric mineral, 96.
Agate, Iceland, 55°
Aigue narine, 3^{6}.
Alumina, native, 27.
Amalgam, native, 197.
Amber, 178.
Amiantus, 85.
Amplibole, 53.
Amygdaloid, 137.
Analcine, 68.
Andreolite, 62.
Antbracite, 165.
Astbracolite, 165.
Antimoniated filver ore, 186. 188.

Antimony, native, 248.
——— grey ore of, 249.
Apatite, 98 .
Aqua marina, 36. and 61.
Argillaceous iron ore, 225.
Argillite, 79.
Arfeniat of lead, 24 J .
Arfenic, native, 257.
Arfenio-pho/phat of lead, 242.
Aboflinite, 86.
Afbefloid, 88.
Abeflus, 85 .
Afphalt, 171.
Auriferous native filver, 18 :
Auripigmentum, 258.
Axinite, 71.
Azure de cuivre, 210.

B.

Balafs ruby, 28.
Barofelenite, 104.
Barytes, carbonat of, 103.
\ldots fulphat of, 104 .
Bafanite, 93.
Bafaltine, 52 .
Beryl, 61.
Bitumen, 166.
——elaftic, 172.
Bifmuth, native, 254 .

- ochre, 256 .

Black chalk, 123°.
Blackifo oftohedral iron fone, 220.

Blende, 245.
Blue calx of copper, 250 .
Bole, 118.
Boracite, 100.
Brectia, $13^{8 .}$
Brick red copper ore, 208.

Rriblenefs, $\mathrm{n}^{\circ} 12$.
Browun iron ore, 223.

C.

Culamine, 246.
Calciform filver ore, 190.
Canal coal, 171. 176.
Carbon, 162.
Carbonat of lead, 239.
Cat's eye, 33.
Cielefline, 107.
Ceylanite, 29.
Chalk, 96.
Chalceriony, 42.
Cbert, 41.
Cblorite, 77.
Chry Joberil, 63.
Chryfolite, 83: $9^{8 .}$

- oriental, 6_{3}.

Chryfoprafizm, 33 .
Cinnabar, native, 198.
Clay, 114. 127°

- porcelain, 115.
common, 116.
-_ potters, 116.
Coal, 173.
- cannel, 171.
- Kilkenny, 64 .
—— parrot, 171.176.
- fpurions, 177.

Cobalt ore, black, 263.
————brown, 264 .
___ dull grey, 261.

- - red, 266.
- white, 262.

Colour, 8.
Columnar iron ore, 225.
Copper, pyrites, 205.
—— malm, 208.
——ochre, 208.
Corivindum, 26.
Cork, mountain, 85 .
Cornelian, 42.
Corneous mercury, 200.

- filver ore, $19^{2 .}$

Corundunt, 26.
Culm, Wales, 164.
Cupriferous fulphurated filver ore, 189.
Cyanite, 63.
Cymophane, 74 .

D.

Delfbinite, 73 .
Diamond, 163.
Duaility, 12.
E.

Eagle ftone, 225 .
Emerald, 61.
Eniery, 258.
F.

Feel, 17.
Felfite, 57°

Felfpar, ${ }^{\circ}{ }^{\circ} 58$.
F-argentine, 49.
Fer oligite, 221.

- pyrocete, 222.

Flint, j^{2}.
Flurid red copper ore, 208.
Fluor, 99.
Fraflure, 13.
Fragments 16.
Fuller's earth, 119. G.

Galena, 233.
Gongue, page 244, note.
Garnet, n° 70.
- white, 60.
Glacies marix, 50.
Gneifs, 142.
Gold, native, 182.
Granatire, 142.
Granatite, 47.
Granilite, 144.
Granite, 138.
Granitell, 143.
Granular iron ore, 225.
Grapbite, 217.
Green earth, 123.
-- fand of Peru, 209.
Grey copper ore, 227.
Gy欠fum, 97.

H.

Hamatites, 223 . 224.
Harduefs, 11.
Hepatic mercurial ore, 199.
Hornblende, 53 :

- - baraltic, 52.
- refplendẹnt, 54*

Hornflate, 40.
Hornflone, 41.
- Chiftofe, 92.
Hyacinth, 93.
-_ blanche cruciforme,
62.

Hyalite, 64.
Hiydrofulpburet of antimony, 251.

I.

Fade, 84.
'7argon, 93-
-7afper, 43.
-7et, 174 .
Iron ore, 214.

$$
K .
$$

Kiff kil, 8ı.
Kragglone, 150.
Kuffir lazur, 210.

- nickel, 267.

L.

Lapis nephriticus, 84

- lazuli, 69.

Lava, 152.
L.azulite, 69.

Lead ochre, 238.

Lepidolite, no 59
Leucite, 60.
Lilalite, 59.
lime, berat of, 100.

- carbonat of, 96 .
-- fluat of, 99 .
phofphat of, 98.
-. fulphat of, 97.
Limefone, 96 .
Litlonarga, 117.
Loam, 128.
Lowland iron ore, 226.
Lułre, 10.
Lydiun ftone, 92.
M.

Magnetic iron ftone, 220.
fand, 220.
Malachite, 211.
Maliba, 170.
Manganefe, black or brown ore of, 273.
———. grey ore of, 272 .
red ore of, 275.
white ore of, 274.
Marl, 124.
Meadow lowland ore, 226.
Menachanite, 284 .
Menalites, $34 \cdot$
Mercury, 195.
Mica, 50.
Micaceous iron ore, 221.
Micarell, 45 .
Mineral caoutchouc, 172. pitch, 170
tar, 169.
Molybdena, 279.
Molybdat of lead, 243.
Morafly iron ore, 227.
Mould, 125 .
Mountain blue, 210. green, 211.
Mountains, different, P. 240 , 130te.
Mullen, 149.
Muriat of antimony, 252 .
Mufiovy glafs, 50.
Myrjen, 81.

N.

Napbtha, 167.
Nickel ochre, 268.
O.

Obfidian, 55.
Olive copper ore, 213.
Olivine, 83 .
Opal, 33.
Orpiment, 258.
Oviform, 96.
Oxygenated carbonat of copper, 211.
P.

Pechblende, 280.
Perilot, 83.

Index.
Petrilite, $\mathrm{n}^{\circ} 56$ Petroleum, 168
Petrofilex, 4 I.
Phofphat of lead, 240.
Phoopporite, 98.
Pierre a fufil, 32.
_- de croix, 47.
Pifform, 225.
Pitchlono, 34 .
Platinum, native, 193.
Plumbago, 217.
Plumbiferous antimoniated filver ore, 234.
Plumofe antimonial ore, 250.
Porplyry, 15 I.
Potfone, 76 .
Prebnite, 72.
Pudding.flone, I36.
Pumice, 157.
Puzzolano, 156.
Pyrites, 216.
Pyromachus, $3^{2 .}$
Pyroxcu, 87 .
2uartz, 30.
——elaftic, 3^{1}.
R.

Realgar, 259:
Red antimonial ore, 251.
_chalk, 12 I .

- copper glafs, 208.
- iron ore, 224
_ lead ore of Siberia, 289.

Red filver ore, n° igr.
Reddle, 121.
Rock eryftal, 30.
Rubellite, 39 -
Ruby, 28.

- balafs, 28 .
- Bohemian, 30.
- occidental, 36 .
- oftohedral, 28.
- oriental, 25.
- fpinell, 28.
S.

Sagenite, 283.
Sand, 127.
Sandfione, 131.
Sappare, 74:
Sapphyr, oriental, 25.

- occidental, 36.

Scapiform iron ore, 225.
Seafroth, 8 :.
Selenite, 97.
Serpentine, 75.
Sbiller fpar, 54.
Shifus, argillaceous, 79.
Shorl, 46.

- green, 73.
— prifmatic hexagon, 52. red, 39. 283 .
Shorlite, 38.
Sienite, 142.
Silex, 32.
Siliceous fpar, 78.
Silver, native, 184.
Sinopli, 30.

Slate, $\mathrm{n}^{\circ} 79$.
Smaragdite, 80.
Sommite, 37.
Sound, 18.
Sparry iron ore, 227.
Specular iron ore, 221.
-- laminated, 222.
Spinell, 28.
Staurolite, 62.
Staurolitbe, 47.
Staurotide, $47 \cdot$
Steatites, 82.
Stillite, 67.
Streak, 9.
Strontites, carbonat of, 106. fulphat of, 107.
Structure, 15.
Sulphat of lead, 244.
Sulphur, 16 :
Surface, 6.
Swampy iron ore, 226.
Swineflone, 96.
T.

Tale, 51.
Talcite, 5^{1}.
Telefia, 25.
Texture 14.
Tballite, 73 .
Thumerflone, 71 .
Till, 129.
Tin pyrites, 23 .
Tinflone, 23 2.

Titanite, no 285.
Topaze, ancient, 83. - falfe, 30.

- occidental, 30.
——oriental, 25.
-—Saxon, 36.
Tourmaline, 48.
Tranfparency, 7.
Trap, 146.
Tripoli, 44.
Tufa, teftaceous, 96.
Tungsten, 277.

V.

Vefuvian, 60.
V itreous filver ore, 187.
-- eopper ore, 204.
Volcanic afhes, 158.
Uranitic ochro, 281.
W.

Wacken, 14^{8},
White copper ore, 203.

- lead fpar, 239.

Witherite, 102.
Wolfram, 276.
Woodin, 23 :

Y.

ranolite, 7 I .
rellow chalk, 22.

- copper ore, 208.
Z.

Zeolite, 66.
Zellertit, 5^{2}.
Zircon, 93.

M I R

Mirabeau. MIRABEAU (Honnoré Gabriel, Compte de), wcll known both by his writings and the active part which he took in bringing about the French revolution, was born in 7499 of a noble family. Throughout life he difplayed a fpirit averfe from every reltraint, and was one of thofe unhappy geniufes in whom the moll brilliant talents ferve only as a fcourge to themelves and all around them. It is told by his democratical panegyrifts, as a wondcrful proof of family tyranny under the old government, that not lefs than 67 lettres de cachet had been obtained by Mirabcau the father againt this fon and others of his relatives. This flury, if true, proves, with at leaft equal force, what many anechotes confirm, that, for his fhare of them, the fon was not Iefs indebted to his own ungovernable difpofition than to the feverity of his parent. He was indeed a monfler of wickednefs. Debauchery, gaming, impiety, and every kind of fenfuality, were not enough for him. He was dellitute of decency in his vices; and to fupply his expences, fcruple? not to perform tricks which would diligrace a thief.catcher. His father and mother difagreeing, commenced a procefs of feparation ; when Misabeau, jult liberated from prifon for a grofs mifdemeanor, was in want of money. He went to his father, fided with him againft his mother, on whom he poured a torrent of invectives; and, for 300 guincas, wrote his

M I R

father's memorial for the court. He then went to his Nifrabeau. mother; and by a fimilar conduct got the fame fum from her ; and both memorials were prefented. That the father of fuch a man fhould frequently get him Thut u_{p} in prifon, can excite no furprife; for confinement only could withhold him from the perpetration of crimes.
The talents of Mirabeau led him frequently to em. ploy his pen; and his publications form the chisf eporchas ot his life. His firtt publication was, I. Effai fur le Defporifine, "An Eflay on Defputifin," in 8vo. Next, in one of his confinements, he wrute, 2. a work in two vols Svo, On Lettres de Cachet. 3. Confiderations fur l'Ordre de Cincinnatus, 8 vo . A remonftrance againit the order of Cincinnatus, propofed at one tinie to be eftablifhed in America. The public opinion in America favoured this remonftrance, and it proved effectual. 4. His next work was in favour of the Dutch, when Jofeph IT. demanded the opening of the Sheldt, in behalf of the Brabançons. It is entitled, Doutes jur la Liberté de l'Efcant, 8vo. s. Lettre à. l'Ennpereur Fofiph II. Jur fon Réglement concernant l'Emigration; a pamphlet of furty pages, in Sro. 6. De la Caife d^{\prime} Efcompte ; a volume in $8 v o$, written againt that eifablifhment. . 7. De la Bunque d'F/pagne, 8 vu ; a remonflrance agraintt eftablifting a Ficach bank in Spain. A

Mirabert enntroverfy arifing upon this fubject, he wrote again upon it. 8. Two pamphlets on the monopoly of the water company in Paris.

Sorn after the publication of thefe works, he was fent in a public claracier to the court of Berlin; where he condicted the kiag's affairs juft as he had formerly done thofe of his father and muther, fully ready to facrifice all parties, and to fell himfelf to the highect bidder. With fuch a difrofition, he could not lung avoid the notice of the Prufian illuminees; and Nicolai Biefter, Gedicke, and Leachfenring, foon became his conflant companions. At Brunfwick he met with Mauvillon, the worthy difciple of Philo Knigg, and at that time a profeffor in the Caroline college. This was the man whe initiated the profligate Marquis in the laft my fterics of illuminifm.
Mirabeau was fill at Berlin when Frederick 11. died. That monarch, as is well known, was a naturalift, who, holding this life for his all, encouraged the propagation of infidelity in his dominions, from which refulted the very worft confequences to the peace of fociety. Of this truth his fucceffor Frederick William was duly fenfible; and determined to fupport the church eftablifhment in the moft peremptory manuer, confiftent with the principles of religious toleration. He publifhed, therefore, foon after his acceffion, an edict on religion, which is a model worthy of imitation in every country ; but it was attacked with the greateft virulence in numberlefs publications. It was called an unjuftifiable tyranny over the confciences of men; the dogmas fupported by it were termed abfurd fuperfitions; the king's private character and his religious opinions were ridiculed and fcandaloufly abufed. The moft daring of thefe attacks was a collection of anonymous letters on the conflitution of the Prufian flates, univerfally believed to be the compofition of Mirabean, who certainly wrote a French tranflation, with a preface and notes more impudent than the work itfelf. The monarch is declared to be a tyrant ; the people of the Prufian dominions are addrelfed as a parcel of tame wretches, crouching under oppreffion; and the inhabitants of Si lefia, reprefented as fill in a worfe condition, are repeatedly called upon to roufe themfelves, and affert theirrights.

About this time he publihed, g. An Effai fir le Secte des Illumines; one of the ftrangeft and moft impudent books that ever appeared. In it he defcribes a fect exitting in Germany, called the Illuminated; and fays, that they are the moft abifurd and grofs fanatics imaginable, waging war with every appearance of reafon, and maintaining the molt ridiculous fuperfitions. He gives fome account of thefe, and of their rituals and ceremonies, as if he had feen them all; yet no fuch fociety as he defcribes evcr exited : and Mirabeau employed his powers of deception, merely to fereen from obfervation the real illuminati, by holding ont to the rulers of ftates this ignis fatuus of his own brain. For a while the eflay certainly contributed to blind the eyes of the German princes; and Nicolai, with others of the junto, adopting the whim, called Mirabeau's fanatics Obfouranten, and joined with him in placing on the lift of Obfcuranten feveral perfons whom they wifhed to make ridiculous.

Long before his initiation in the myfteries of illuminifm, Mirabeau had been acquainted with all the re-
volutionary powers of the mafonic lodges ; nor did he, Mirabean. when initiated, undervalue thofe which flowed, or might Aluw, from Weifhaupt's inventive genins. On his re. turn to France, he began to introduce the new myfteries amung fome of his mafonic brethren. His firit affociate was the Abbe Talleyrand de Perigord, who had already begun to act the part of Judas in the firlt order of the church. But to have only introduced the myAteries was not fufficient for the Marquis; he would have teachers come from Germany, who were better verfed than he was in the illuminizing arts. Well acquainted with the reafons that had indused the chiefs of the order to defer the converfion of France, hes, found means to convince them, that the time was now come for the accomplifhment of their views; and at his requeft a deputation was fent by Spartacus to illuminize that great kingdom. See Illuminati, $n^{\circ} 40$, 41, Suppl.

When the affembly of Notables was convened at Pa ris, Miraheau foretold that it would foon be followed by a meeting of the States; and at that period he publifhed a volume againft the fockjobbing, then carried to a great height, intitled, 10 . Denonciation de l'agiotage au Roi, et a l'Afenblee de Notalles, 8vo. A letire de cachet was iffued againf him in confequence of this publication ; but he eluded purfuit, and publifhed a pamphlet as a fequel to the book. His next work was again凡 M. Necker, ${ }^{11}$. Lettre á MI. de Cretelle, Jur l Adminiffration de M. Necker, a paniphlet in 8vo. 12. A volume in 8vo, againft the Stadtholderhip: Aux Bataves, fur le Stadthouderat. 13. Obfervations fur la maijon de force appellé Bicetre, an 8 vo pamphlet. 14: Another tract, intitled, Confeils à un jeune Prince qui fent la néceffité de refaire fon education. 15. He now proceeded to a larger and more arduous work than any he had yet publifhed, on the Pruffian monarchy under Frederick the Great: De la Monarcbic Prulfeune fous Frederic le Grand, 4 vols, 4 to, or eight in 8 vo. In this work he undertakes to define precifely how a monarchy fhould be conflituted. When the orders were iflued for convening the States-general,-Mirabean returned into Provence; and at the fame time publifhed, 16. Hifoire Secrette de la Cour de Berlin, two volumes of letters on the Secret Hittory of the Court of Berlin. This work was condemned by the parliament of Paris, for the uneferved manuer in which it delivered the characters of many foreign princes. As the elections proceeded, he offered himfelf a candidate in his own order at Aix; but he was fo abhorred by the nobleffe, that they not only rejected him, but even drove him from their prefence. This affront fettled his meafures, and he deternined on their ruin. He went to the commons, difclaimed his being a gentleman, fet up a little fhop in the market-place of Aix, where he fold trines; and now fully refolved what line he fhould parfue, he courted the commons, by joining in all their exceffes againtt the nobleffe, and was at laft returned a member of the affembly.

In confequence of this, he went to Paris; where the part he took was active, and fuch as tended, in general, to accelerate all the violences of the revolution. He now publifhed, periodically, ${ }^{17}$. his Lettres à Jes Commettans, Letters to his Conflituents, which form, when collected, 5 vols 8 vo . It is fuppofed, that the fatal meafure of the junction of the three orders into one national

Pirabeau, tional affembly, was greatly promoted hy thefe letters. The public events of thefe cimes, and the part taken in them try Mirabeau, are the fubject of gencral hiffory. He lived to fee the contitution of 1789 eftablihed, but not to fee its cunfequences-the deflruction of the monarchy, the desth of the king, and the ruin of all property! He was accufed, as well as the duke of OrLans, of hiring the mob which attacked Verfailles on the 5 th and 6th of Octuber 1789; but with him was alfo acquitted by the tribunal of the Châtelet. The domirion of his eloquence in the National Affembly had long been abfolute, and, on the 29th of January 1791, he was elecked prefident. At the latter end of March, in the fame year, he was feized by a fever, and died on the $2 d$ of April.

The talents of Mirabean will not be doubted, though they were certainly rather brilliant than profound. To be noticed, and to lead, were the fole objects of his amhition; and for the attainment of them, he took the fide of the difcontented, as the beft field for his matchlefs eloquence. Yet there was no man mure deroted to the principles of a court than this Marquis, provided be could have a thare in the adminitration; and a thare he would have obtained, if any thing moderate would lave fatisfied him: But he thought nothing worthy of him but a place of active truft, and a high department ; ftations which all knew him not qualified to fill. Wanting knowledge of great things, he was learned only in the butlling detail of intrigue, and would, at any time, have facrificed his deareft friend, and the interefts of his country, for an opportunity of exercifing his brilliant cloquence, and indulging his propenfity to fatire and lampoon. But the greatell ohftacle to his advancement under the old government was the abject worthleffnefs of his character. Drinking was the only vice in which he did not indulge ; and from this he was reftrained by his exhautted conflitution. To his brother, the Vifcount, who was frequently intoxicated, the Marquis one day faid, "How can you, brother, fo expofe yourfelf? " What (replied the Vifcount)! how infatiable are you? Nature has given you every vice; and having left me only this one, you grudge it me!

MISTRAL, the name of a wind, which is mentioned in almoft every accurnt that we have of Provence, and which is remarkable for blowing almott the whole year from north.wett or weft-north-weft, in a climate where the wind fhonld be variable. It is faid to contribute to the falubrity of the air, by difperfing the exhalations of the marfhes and ftaynant waters, fo common in the fouth of Languedoc and Provence; but at times it is alfo very injurious, or at leaft very troublefome. It is not, however, on either of thefe accounts that it is introduced into this Work, but for the fake of the canfes affigned by Saufure for its contancy, which may be applied to other winds that nearly re. femble it; and which he found miglit be reduced to three.
"The firt and moft effectual caufe (he fays) is the fituation of the Gulf of Lyons, the banks of which are the principal theatre of its ravages. This Gulf, in fact, is fituated at the bottom of a funnel, formed by the Alps and Pyrenees. All the winds blowing from any point between weft and north, are forced by thefe mountains to unite in the Gulf. Thus, winds which would not have prevailed but at one extremity of the

Gulf, or even much beyond it, are obliged to take this route, after having mid rgune the regercuflimn of thefe mountains; and the middle of the Gulf, inftead of the caln whish it onight have enjoyed, is expofet io the united effirts of two Arcams of wind, ivcer dirob in different dircetions. Hence arife thofe whrlwinds which feem to characterife the miffral, and appear to have induced the ancients to call it Cirius, ì turbine gus ac vertigine. See Aul. Gelius. 1. ii, cap. 22.
"The fecond caufe is, the general flope of the grounds, defcending from all lides towards the Gulf; which becoming all at once lower and more foutherly than the lands extending behind it, is, from thefe joint circunitances, rendered the hottefl point of all the adjacent country: and, as the air on the furface of the earth always tends from the colder to the warmer regions, the Gulf of Lyons is actually the centre towards which the air from all colder points between eaft and weft mult prefs. This eaufe, then, alone would be productive of winds directed to the Gulf, even if the repercuffion of the mountains did not exert its influence.
"Finally, it is well known, that in all gulfs the landwinds blow more forcibly than oppolite to plains and promontorics. whatever be the fitnation of thofe gulfs. I appretenc, indeed, on flrict examination (fays our author), that this caufe is blended with the preceding ; but as the fact is generally admitted, and in fume caties can be explained only by reafons drawn from the effects of heat, it may not improperly, perhaps, be diftinctly mentioned. It is, at leaft, necefliary to fuppofe, that feveral caufes produce the mittral, in order to under. ftand why, notwithtanding the variablenefs of the feafons and temperatures, that wind is fo fingularly conftant in Lower Languedoc and Lower Provence. A very remarkable inftance of this contancy is recorded by the Abbé Papon, in his Voyage de Provence, tom. ii. p. 81. He afferts, that during the years 1769 and 1770, the miftral contimued for fourteen months fucceffively. But the three caufes which I have ftated, taken feparately, will explain its frequency, and, united, will account for its force."

MIXI' Angle, or Figure, is one contained by both right and curved lines.

Mixt Number, is one that is partly an integer and partly a fraction; as $3 \frac{1}{2}$.

Mixt Ratio, or Proportion, is when the fum of the antecedent and confequent is compared with the difference of the antecedent and confequent ;

$$
\text { as if }\left\{\begin{array}{l}
4: 3:: 12: 9 \\
a: b:: c: d \\
7: t: 0: 21: 3 \\
7+b: a-b:: c+d: c-d .
\end{array}\right.
$$

MOCASSIMAH, in Bengal, revenue fetted by a divifion of the prodnce.

MOCFIULKAH, bond or ubligation.

MGERIS', a lake in Egypt, occalionally mentioned in that article (Encycl.), and generally fuppofed the production of human art. Of this, however, Mr Brown fays it bears no mark. "The fhape, as far as was diftinguifhable, feems not inaccurately laid down in D'Anville's map, unlefs it be, that the end neareft the Nile Thould run more in a north-weft and fouth-eaft direction. The length may probably be between 30 and 40 miles ; the breadth, at the wideft part he could gain, was 5000 toifes, as taken with a fextant ; that is, near-

Mifnal'
II
Maris.

M O I $\quad\left[\begin{array}{lll}264\end{array}\right] \quad \mathrm{M} O \quad \mathrm{~L}$

Rinfurfel ly fix miles. The urmolt poffible extent of circuit mult of courfe be 30 leagues. On the north eat and fouth is a rocky ridge, in every appearance primeval. In fhort, nothing can prefont an appearance more unlike the works of men. Several fithermen, in miferable boats, are conftantly employed on the lake. The water is brackifh, like molt bodies of water under the fame circumftances. It is, in the language of the country, Birkef-el-kerun, probably from its extremities bearing fome refemblance to horns.

MOFUSSEL, a relative term, fignifying the fubordinate lauds or diftricts, oppofed to SudDer, which is the head.

MOHACZ, Mohatz, or Moboz, a town in the J, ower Hungary, upon the Danube, between the river Sarwizu to the north, and the Drave to the fouth ; four German miles from either, fix from Effeck to the north, and nine from Colocoa to the fouth. This otherwife finall place is memorable for two great battles here fought ; the firlt between Lewis king of Hungary and Solyman the Magnificent, in 1526 : in which that unfortunate Prince Lewis (being about 20 years old), with 25,000 men, fought 300,000 Turks; when, being overpowered by nuinbers, 22,000 of the Chriltian army were flain upon the place; 5000 waggons, eighty great cannon, 600 fmall ones, with all their tents and baggage, were taken by the victors; and the King, in his flight over the brook Curafs, fell into a quagmire, and was fwallowed up. After which, Solyman took and flew 200,000 Hungarians, and got fuch a footing in that kingdom, that he could never be expelled. This fatal battle was fought Oetober 29. 'The fecond, in fome part, retrieves the lufs and infamy of the former. The Duke of Loraine being fent by the Emperor, with exprefs orders to pafs the Drave and take Effeck, his highnefs, July 10,1687 , with great difficulty paffed that river, then extremely fwelled with rains; but find. ing the Prime Vifier encamped at Effeck, with an army of 100,000 men, fo ftrongly, that it was not poffible is attack him in that poft without the ruin of the Clirittian army, he retreated, and repaffed it the 23 d of the fame month; where, upon the 29 th, the Prime Vifier paffed that river at Effeck; and upon Augult 12 th, there followed a bloody fight, in which the Turks loft 100 pieces of cannon, 12 mortars, all their ammunition, provifion, tents, baggage, and treafure, and about 8000 men upon the place of battle, befides what were drowned in paffing the river, which could never be known. After which victory, Geueral Dunewalt, September 3oth, found Effeck totally deferted by the Turks, and touk poffeffion of it.

MOHER, in Bengal, a gold coin, worth about 33 fhillings.

MOHERIR, a writer of accounts.
MOINE. \mathcal{I}, a flat baltion raifed before a curtin when it is too long, and the baftions of the angles two remote to be able to defend one another. Sometimes the moineau is joined to the curtin, and fometimes it is divided from it by a moat. Here mufquetsy are placed to fire each wa;

MOLE (See Talpa, Encycl.), is an animal exceed. ingly trouljlefome, both to gardeners and farmers; and there are perfons who contrive to make a livelihood by the trade of molecatcbing. Thefe men, it is well known, are generally quacks and cheats; and the fecrets which
they fell for extripating thofe dettructive animals are of voly little avall. Lven p ifon feldom produces any confuderable effict; becaufe the mole, while it does not drink, lives only on roots and worms. Under the word Mole (Encycl.), fome directions will be found for clearing fields of this deftructive animal; but the following are perhaps preferable, as they feem to have been the refult of much experience:

Immediately at day-break, it will be neceffary to make a tour round the garden or meadow, from which it is wimed to extirpate the moles; for at that time they will be all found at work, as may be feen by the hills newly thrown up. If the perfon is then clofe to the hill, he muft proceed as the gardeners do, and turn up with a Itroke of the \{pade the hill together with the digger. The paffage is then cut through before the animal is aware of the attack; and therefore it has not power to efcape. If the mole-hill be frefh, even though the animal may not be throwing up earth, the perfon ought not to lofe his time in waiting, but hould imme. diately proceed to the operation above-mentioned.

If you find a frefh hill llanding by itfelf, which feems to fhew by its fituation that it has no communication with any other, which is always the cafe when the mole las worked from the furface downwards in endeavouring to procure a more convenient habitation, after the hill has been turned up with the fpade, a bucket of water fhould be poured over the mouth of the paffage. By thefe means the animal, which is at no great difo flanc, will be obliged to come forth, and may be eafily caught with the hand.

You may difcover alfo wliether a hill has any communication with another, if you apply your ear to it, and then cough or make a loud noife. If it has no communication with the neighbouring bills, you will hear the terrified animal make a noife by its motion. It will then be impoffible for it to efcape; and you may either pour water into the hole, or turn up the hill with a fpade, until the mole is found; for, in general, it never goes deeper into the earth than from fifteen to eighteen inches.

When any of the beds in a garden have been newly watered, the mole, attracted by the coolnefs and moifture, readily repairs thither, and takes up its refidence in them, making a paffage at tle depth of farcely an inch below the furface. In that cafe it may eafly be caught. When you fee it at work, you need only tread behind the animal with your feet on the paflage to prevent its retreat, and then turn up the hill with a fpade; by which means you will be fure to catch it.

When you dig after it with a fpade, the animal forces its way downwards into the earth in a perpendicular direction, in order that it may the hetterefcape the threatened danger. In that cafe it will not be neceffary to dig long, but to pour water over the place, which will foon make the animal return upwards.

People, in general, are not aware of the great mif chief occalioned in lields and gardens by thefe animals. We are, however, informed by Buffon, that in the year I 740 he planted fifteen or fixteen acres of land with acorns, and that the greater part of them were in a little time carried away by the moles to their fubterranean retreats. In many of thefe there were found half a buthel, and in uthers a bufbel. Buffon, after this circumflance, caufed a great number of iron traps to be conitructed:

M O N

Momente, confructed; by which, in lefs than three weeks, he $\underbrace{\text { Mongeart ss caught } 1300 \text {. To this inflance of the devaftation oc- }}$ cationed by thefe animals, we may add the following: In the year 1742 they were fo numerous in fome parts of Holland, that one farmer alone caught between five and fix thouland of them. The deftruction uccafioned by thefe animals is, however, no new phenomenon. We are informed by hittory, that the inhabitants of the ifland of Tenedos, the Trojans, and the 灰olians, were infefted by them in the earlieft ages. For this reafon a temple was erected to Apollo Smynthius, the detroyer of moles. See Economifche Hefte, Vol. VII. Part 5. and Vol. IX. Part 4. ; or Phil. Magazine, No 5.

MOMENTS, in the new doctrine of infinites, denote the indefinitely fmall parts of quantity; or they are the fame with what are otherwife called infinitefimals and differences, or increments and decrements; being the momentary increments or decrements of quantity confidered as in a continual flux.

Moments are the generative principles of magnitude; they have no determined magnitude of their own, but are only iuceptive of magnitude.

Hence, as it is the fame thing if, inftead of thefe moments, the velocities of their increafes and decreafes be made ufe of, or the finite quaritities that are proportional to fuch velocities; the method of proceeding which contders the motions, changes or fluxions of quantities, is denominated by Sir Ifaac Newton, the method of fuxions.

Leibnitz, and moft foreignert, confidering thefe infinitely fmall parts, or infinitefimals, as the differences of two quantities, and thence endeavouring to find the differences of quantities, i. e. fome moments, or quantities indefinitely fmall, which taken an infinite number of times fhall equal given quantities, call thefe moments differences; and the method of procedure, the differential calculus.

MONGEARTS, one of the tribes of wandering Arabs which inhabit the Sahara, or Great Defert of A frica. Their time is wholly occupied by tending their eattle; and becaufe they are little fkilled in the ufe of arms, Monjeart is a term of contempt among the people by whom they are furrounded. The country, with its produce, will be defribed under the title Sahara in this Supplement; it is the bufinefs of this article merely to exhibit the manners of the people.

They are all Mahometans, and offer up prayers three times a-day, fonetimes oftener ; but having no mofques, thefe prayers are never pronounced in public, except when the horde is vifited by a prieft, who feldom comes but upon account of the childrens education. Then all the Arabs affemble at the hour of prayer, place themSelves in a line, turn to the eatt, and, wanting water in the defert, rub their face and hands with fand; while the prieft recites aloud the general prayer. It is the fame as that which is rehearled by the public crier in the mofques in civilized countries.

The priefts are employed in travelling ahout the country to inftruct the children. There is nnthing like force in their education. The little boys meet in the morning of their own accord, at the place of inftructimn, whicl is to them a place of recreation. They go there with a fmall board infcrihed with the Arabic chasacters, and a few maxims of the Koran. The oldeft, and the beft iaformed, reccive their lefons directly from
the priefts, and afterwards communicate them to their Mongeves. fellows. They are never corrected; becaufe it woult be a crime to beat a child, who, according to the received notions, has not fufficient reafou to diftinguifh good from evil. This lenity extends even to the children of Chriftians, though in a flate of Alavery. They are treated in all refpects like the children of Λ rabs; and the man who thould be rafh enough to friike oure of them would endanger his life. Very different is their treatment of Negro children; who may indeed join in all the amufements of the young trabs, and cven attend the public fchools; but if they be guilty of a fault, they are feverely punifhed.
When the child of a Mongeart becomes tired of the places of public inftruction, he quits them at pleafurc, and, without feeling conftraint, or hearing reproach, gues and employs himfelf in tending his father's flocks: and accordingly there are very few among then who can read. Thofe who perfevere in the ftudy of the Koran are made pricfts, after having paft an examination befure the learned elders, and enjoy the greateft public conlideration. They have no need of cattle; for thofe of the nation being theirs, they find their fubfiftence everywhere.

It is generally at ieven or eight years of age that children undergo the painful operation of circumcifion. Their head is alfo fhaved, nothing being left but four locks of hair ; one of which is cut off in a mecting of the family, at eaclı remarkable action performed by the child. If, at the age of 12 or 13 , he kill 2 wild boar, or other bealt of prey, that fhould fall upon his flock, he lofes one of his locks. If, in the paffage of a river, a camel be carried away by the fream, and he fave it by fwimming to its affiftance, another is cut off. If he kill a lion, a tyger, or a warrior of an hoftile nation, in a furprife or an attack, he is confidered as a man, aad his head is entirely fhaved.

Different from the other Arabs their neighbours, and indeed from the Mahometans in general, the Mungearts trouble no man on account of his religion. The only one which they do not tolerate is the Jewift ; and were a Jew to enter their territory, and have the nisfortune to be taken, he would certainly be burnt alive.

According to M. Sangnier, the women are much more refpected among the Mongearts than among the neighbouring nations; but the evidences which he gives of that refpect are very extraordinary.

When a Mungeart is defirous of undertaking the care of a family, he pitches upon the girl that pleafes him the moit, and anks her of her father withont further formality; nor can the latter refufe her, unlefs the man who pretends to her hand have done fomething contrary to the laws of the nation. The girl is conducted by her parents to the tent of her future hufland, where there is alway 6 au abundant repalt prepared for the ceremony. Prefents are made to the father; but if the fon-in-law be poor, his wife's family affit him, and furnilh him with the means of increafing his flocks; if, on the contrary, he be rich, and the father poor, he fupports the whole family in his own tent. The employment of the wife, thus married, is to prepare the food; to fpin the goats and camels hair, of which the tents are made; to nilk the cattle; to pick up the neceflary fruply of wood for the night; and when the hour of rqual is come, to wait upon her hulband. She then eats

L!

Mangearts. by herfelf what has been left by him and his male flaves. $\xrightarrow{\text { She is, indeed, in no great danger of having a rival }}$ breught into the family; for though polygamy be allowed by his religion, the poverty of the Mongeart generally prevents him from taking a plurality of wives. She is, however, liable to be divoreed at will when the does rant bear boys; but if the have the good fortune to have one or more male chithren, her hufband's regard for her is inconceivable. She has no longer a divorce to fear, has an abfolute authority in the tent, and paffes her whole time in converfation, fleep, or dancing, as the thinks fit. The captive negreffes do all her work, and are no longer affitted in their labour by the Arab's wife, who treats them, on the contrary, with the greateft harflnefs and arrogance.

When a woman is not agreeable to lier hufband, or when he is difagreeable to her, they have it in their power to part. The formality in this cale confifts in the wife's retiring to her pareuts. If the hufband be attached to her, he goes thither in queft of her; but if The perfift in refuling to return, fhe is free, and at liberty to marry another. If, however, fhe have had a child, efpecially a boy, the has not the fame privilege; in that cafe, if her retreat fhould laft more than eight days, it might be punifhed with death.

When a man beats his wife, it is a fure fign that he is fincerely attached to her, and that he does not mean to part with her; if he content himfelf with reproaches, the wife thinks herfelf defpifed, and infallibly retires to her parents. Hence it is, that in the moft trifling difputes the women are cruelly beaten: they prefer it to the complaints that the huband might make to their parents; this proof being the moft certain one of a man's fondnefs for his wife. When a girl marries, the makes up her mind to fuch treatment, deeming it much more fupportable than the humiliations the would otherwife experience from her family, in confequence of her hufband's complaints.

The conjugal fidelity of the Mongeart women is incorruptible. 'Differing in their opinions from many other Mahometans, they believe themfelves immortal like the men; but they do not flatter themfelves with the poffibility of happinefs in the other world, unlefs they flall have been faithful to their hubands in this. Women, who have been falfe to their hufoand's bed, will be doomed, they think, to eternal flavery to the more virtuous part of their fex, without ever partaking, in the fmalleft degree, of their blifs.

Mongeart women often vifit one another; and on thofe occafions, the honour confifts in letting the female who comes to fee her friend or relation do all the work of the tent. The vifitor alfumes the management of every thing, dreffes the victuals, churns the butter, and keeps herfelf continually employed; while her friend entertains her with an account of the different affairs of the family or nation. The heartinefs of the welcome is meafured by the extent of the work fubmitted to the gueft, who generally prepares double the ufual quantity of food; fo that the Arab is obliged to iuvite his neighbours to partake of the repaft. The flaves are always pleafed with thefe entertainments, a larger portion then coming to their lot. It is the bufinefs of the vifitor to do the honours: nor will fhe fuffer any body about her to remain diffatisfied.

The laws of hofpitality are obferved among the Mon-
gearts as among all the wandering Arabs. Indeed they Mongeartso are carried to fuch a length, that were a man to enter the tent of him whom he had wounded, or even killed, he would there meet with a facred and inviolable afylum, although furrounded by thofe who muft naturally defire his ruin. The tent of the chief is always that to which ftrangers, upon their arrival in the horde, are directed. But the chief could not entertain, at his own expence, all the ftrangers that happen to pafs; and therefore every tent in the horde is ubliged to furnith him with two pounds of ground barkey per week, to enable him to maintain the ancient hofpitality.

The chiefs of hordes are always the eldeft of their families. The difference of wealth is not confidered: the chief often having feveral individuals at his houfe richer than himfelf, who neverthelefs obey him in every particular. He is, properly fpeaking, their king; examines their difference with the old men, and judges without appeal. As to himfelf, he cannot be tried but by the chiefs of feveral hordes affembled. It is his bu. finefs to determine the fpots where the tents are to be. pitched, the moment of departure, and the place where the caravan is to flop. If the pafturage do not fuffice for the herds of all the horde, it divides, and the chief afligns the ground for the different encampments. They are very often compofed of no more thanfeven or eight tents, according to the quality of the ground they meet with. The tent of the chief is always the largeft and mof lofty, and is placed in the centre of the divifions. When it is determined upon to quit an encampment, which neverhappens till the pafture is exhaufted, the chief fets off to choofe another fpot. In thefe removals the women alone do all the work. Early in the morning they fold up the tent, and load every thing upon the camels backs; they then move fowly on, that the cattle may have time to feed upon the way.

Great refpect is paid by the Mongearts to all old men, who enjoy the fame prerogatives as the priefts, and fuch Arabs as have vifited the tomb of Mahomet at Mecca. Together with the chief they are the judges of the horde, and take cognizance of all offences, the pain of death being the only punifhment which they cannot decree. An affembly of feveral chiefs is the only tribunal which can inflict capital punifument; but as the accufed has generally a number of friends, it fel. dorn happens that he is eapitally convicted.

A war between two Mongeart trihes feldom happens. and is never bloody; but the different families deftroy one another falt enough in their inteftine broils. They are all thieves; and indeed theft is a crime only in the day-time, being authoriled by law during the night, in order to compel them to take care of their cattle. Could they find rearefs when robbed by night, they wonld be lefs vigilant ; and their herds and flocks would be more expoled to the wild beafts that over-run their country ; but being obliged to be on their guard even againft their neareft neighbours, they are always ready to repel both the lion and the tiger. Theft, even in the day-time, is fo far from being punifhed, unlefs detected at the inftant of commiffion, that when any thing is flolen unperceived, it becomes the lawful property of the thief. In vain would the rightful owner recugnize it in his neighbour's tent ; he cannot reclaim it; it eeafes to be his from the moment he has been negligent in its care. Hence arifes this peoples inclination for rapine?

$\left.\begin{array}{llllll}\mathrm{M} & \mathrm{N} & \mathrm{N} & 267\end{array}\right] \quad \mathrm{M} O \quad \mathrm{~N}$

Mongearts they do not think they commit a crime, and only follow, in this regard, a cuftom allowed by their laws.

When an Arab is going to market, or on his return from thence, if he do not take the greated care to keep his journey a fecret, he is often attacked. Neighbouring Arabs are defirous of profiting by his induftry ; and as there are no perfons in the country appointed to apprehend robbers, the hope of booty fpurs them on to the attack. That they may have nothing to fear, they lie in wait, when the night is coming on, for hin whom they mean to pillage. Their intention is never to bill; they only endeavour to furprife, to difarm, and to make themfelves malters of every thing that comes in their way. But it fometimes happens, that the man they intend to plunder, being acquainted with the cuftoms of his country, keeps an attentive ear, flands on his guard, fires upon his aftailants at the firt motion he obferves, and then fights defperately with his dagger. The report of the mufket almolt always brings out the neighbouring Arabs, who, in virtue of the laws of hofpitali$t y$, take the defence of the weaker fide. 'They run up well armed ; and then woe to the aggreffors, if they do not fave themfelves hy a fpeedy flight.

The flocks and herds of the Mongearts are compofed of nothing but fheep, goats, and camels; all animals patient of thirft. Horfes are very fearce in thefe cantons, none but the poffeftors of numerous herds being able to keep them ; becaufe, for want of water, it is neceflary to have milk in fufficient abundance to give it them to drink. Great care is taken to preferve the camel's urine, both to mix with milk, and to wath the different veffels in which they put their food. Deteftable as is this mixture of milk and urine, they are often reduced to the ufe of it ; hunger and thirl give a relifh to every thing.

The only workmen ufeful to this nation are blackfiniths or goldfmiths, as they may be called indifferentl_{y}. The Mongearts not being fufficiently laborious to apply themfelves to fuch occupations, thefe workmen come from Bilidulgerid, and difperfe themfelves all over the different parts of the defert. Wherever there are tents they are fure to find work. They are fed for nothing, and receive befides the hire for their labour. They make trinkets for the women, fuch as ear-rings and bracelets, \&c. mend the broken veffels, by rivetting them, and clean the arms. They are generally paid in fins, goats and camels hair, or oftrich feathers, according to their agreement. Thofe who have filver pay them a tenth part of its weight for any thing wrought out of that metal. On their return they fell what they , have earned; four or five excurfions at mont enabling them to live afterwards at their eafe in their own country.

The Mongearts always carry a leathern bag, fufpended from their neek, in which they put their tinder, their pipe, and their tobacco. Their daggers are elegant; the hilt is always black, and inlaid with ivory; the blade is crooked, and Sharp on either fide; the fheath is of brafs on one fide, and of filver on the other, and of very tolerable workmanhip. They wear fabres when they can get them, and prefer thofe of Spanifh make. Their mukets are always highly ornamented; the fock is very fmall, and inlaid on every fide with ivory, and the barrel emboffed with brafs or filver, according to the opulence of the owner. There is a fpring to the
lock, covering the priming, to prevent the piece froni Mongearts. going off, contrary to the intention of hins who carries
it. The poor, who do not poffefs mufkets, wear daggers, made like the Flemifh kuives, with leathern fheaths. I'hey arm themfelves alfo with a thick ttick, to the end of which they fix a kind of iron wedge. This weapon is exceediugly dangerous at clofe quarters. Others carry zagays, or fender javelins. In a word, the principal riches of an Arab, and his higlelt gravifications, are a landfome muket and a good dagger. He prefers them to neatuefs of apparcl; for as to drefs, it is indif. ferent to him whether he be clothed in Guinea blues, woollen ftufls, or groats fkins. Their arms being their principal ormament, they take particular care to put the mukets in leathern bags, by way of keeping them in good order, and preferving them from the rull.

All the riches of the Mongearts confit in their hords; and accordingly they take the greatell care to preferve them. If a beaf be fick, every thing is done to cure it ; no care is fpared; it is ceven treated with more attention than a man: but when it evidently appears that there is no hope of faving its life, they kill and eat it. If it be a camel, the neighbours are called in to partake of the repalt ; if a goat, the inhabitants of the tent fuffice for its confumption. An animal that dies without fhedding blood is unclean. Its throat mult be cut ; the perfon who kills it turning to the eaft, and pronouncing beforehand the firl words of the general prayer. An animal killed by a wild boar is unclean; nor is it eaten although its blood has been fhed, becaufe the wild boar is itfelf an unclean beaft. That fpecies is fo numerous in the defart, that chey do more mifchief than all the other wild beafts together. The Arabs kill as many as they can, but never tafte their flefh.

Whatever loffes an Arab may meet with, he is never heard to complain; he rifes fuperior to poverty, fupports hunger, thirft, and fatigue, with patience, and his courage is proof againlt every event. God will have it fo, fays he : he employs, however, every means in his power to avert misfortune; and often expofes himfelf to the greateft dangers to procure matters of no real utility.

When a father of a family dies, all the eflects in his tent are feized upon by the eldeft fon prefent at his deceafe. Gold, filver, trinkets, every thing difappears; and the abfent children have only an equal fhare in the divifion of the cattle and the flaves. The girls are entirely excluded from all participitation, and take up their refidence with their elder hrother. If the deceafed leave children in helplefs infancy, the mother takes them with her to her fitter's, if the have a fitter married; if not, to her own maternal roof. The dead man's poffeffions, however, are not loft; the chief of the horde takes care of them, and delivers them in equal pertions to the heirs, as foon as they are old enough to manage their own property. If an Arab die without male children, his wife returns to her relations, and his brother inherits his effects.

The Mongearts have a rooted abhorrence of the Spaniards, and never fail to maflacre every man of that nation who is fo unfortunate as to be fhipwrecked on their coats, while they referve the women for fale at Morocco. The reafon of this hatred is, that the inhabitants of the Canaries make frequent defcents on the Mougeart coafts, and carry off men, women, cattle, and

Monnier. every thing that they meet with; and thefe people, being ignorant of thr fate of their comntrymen, retaliate by death on all Spauiards that fall into their hands, whilit they treat the Britih and French as well as they can.

MONNIER (Peter Charles Lee), was born at Paris on the 20th of Novenher 1715. The profeflion of his father, or the rank which he held in fociety, we lave not learned, and we are equally ignorant of the mode in which he educated his fon. All that we know is, that roung Monnier, from his earlieft years, devoted hinifelf to the ftudy of aftronomy; and that, when only fixteen years of age, he made his firt obfervation, vi\%. of the oppofition of Saturn. At the age of twenty he was nominated a member of the Royal Academy of Sciences at Paris. In the year $; 735$ he accompanied Manpertuis in the celebrated expedition to Lapland, to ineafure a degree of latitude. In $17+8$ he went to Sicotland with Lord Macclesfield, to oblerve the annular eclipfe of the fun, which was moot vifible in that country; and he was the-firlt altononer who had the pleafure to meafure the diameter of the moon on the difk of the fun.

Louis XV. it is well known, was extremely fond of aftronomy, and greatly honoured its profeffors: he loved and efteemed Le Monnier. I have feen the king himfelf (fays I Lalande) come out of his cabinet, and look aromd for Lee Momier; and when his younger brether was prefented to him on his appointment to the office of firft phyfician, his Majelty was pleafed to wifh him the merit and reputation of his brother the altronomer. All the remarkable celeftial phenomena were always obferved by the king, in company with Le Monnier. Thus he obferved with him, at his chatean of St Hubert, the two celebrated tranfts of Venus thro' the difk of the fun in the years 1761 and 1769 ; as appears from the Mencirs of the Royal Parifian Acadeny of Sciences. It well deferves to be here recorded in what manner the king behaved during thefe important obfervations, and how little he difturbed his aftronomers (the celebrated La Condamine being likewife permitted to obferve the tranfit in his prefence) in this occupation; the proper time for which, if permitted to pafs by, could not be recalled. Le Monnier relates in his Differtation, that " his Majefty perceiving that we judged the laft contacts to be of the greatef importance, a profound filence at that moment reigned around us." At the tranfit of Venus in 1769 , the king allowed the Marquis de Chabert, an intelligent and expert naval officer, who was juft returned from a literary voyage to the Levant, to affift at the obfervation. In a court like that of Louis XV. fo Ccrupulonfy obfervant of etiquette, thefe will be allowed to have been moft diftinguifhed marks of honour, and of royal favour and condefcenfion.

In the year $\mathbf{1 7 5 0}$, La Monnier was ordered to draw a meridian at the royal Chateau of Bellevue, where the king frequently made obfervations. The monarch on this occafion rewarded him with a prefent of 15,000 livres; but Le Monnier applied this fum of money likewife in a manner that redounded to the honour of his munificent fovereign and of his country, by procuring new and accurate infruments, with which he afterwards made his beft and moft remarkable obfervations. In 1742, the king gave him in Paris Rue de la Pofle,
a beautiful free dwelling, where, till the breaking out Monnier. of the revolution, he refided, and purfued his aftronounical labours, and where his inftruments in part yet remain. Some of then the prefent French government has, at the infance of Lailande, purchafed for the National Ohfervatory. In 1751, the king prefented hins with a block of marble, eight feet in height, fix feet in breadth, and fifteen inches in thicknefs, to be ufed for fixing his mural quadrant of five feet. This marble wall, together with the inftruments appended to it, turns on a large brafs ball and focket, by which the quadrant may be directed from fouth to north; thus ferving to rectify the large mural quadrant of eight feet, which is immoveably made faft to a wall towards the fouth.

With thefe quadrants Le Monnier obferved, for the long period of forty years, the moon with unwearied perfeverance at all hours of the night. It is requifite, to be a diligent aftronomer, to be able to conceive to what numberlefs inconveniences the philofopher is expofed during an uninterrupted feries of lunar obfervations. As the moon during a revolution may pafs. through the meridian at all hours of the day or night ; the aftronomer who, day after day, profecutes fuch obfervations, muft be prepared at all, even the moft inconvenient, hours, and facrifice to them his fleep and all his enjoyments. How fecluded from all the pleafures of focial intercourfe, and how fatiguing fuch a mode of life is, thofe aftronomers, indeed, know not who then only fet their pendulun clocks in motion, when fome of the eclipfes of the fun, moon, or of the fatellites of Jupiter, are to be viewed. At this time, and in the prefent fate of the fcience, thefe are juft the moft infignificant ohfervations; and an able aftronomer, well fupplie: with accurate inftruments, may every day, if he take into his view the whole of his profeffion, make more important and nore neceffary obfervations.

Le Monnier was Lalande's preceptor, and worthy of fuch a feholar; and he promoted his fudies by his advice, and by every other means in his power. Lee Monnier's penetrating mind, iudeed, prefaged in young Lalande, then only fixteen years old, what in the fequel has been fo fplendidly confirmed. In his tweritieth year, he became, on the recommendation of his preceptor, a member of the Royal Academy: and in 1752 he was propofed by him as the fitteft perfon to be fent to Berlin, to make with La Caille's, who had been fent to the Cape of Good Hope, correfpondent obfervations, for the purpofe of determining the parallaxes of the moon, then but imperfectly known. Le Monnier lent his pupil for this expedition his mural quadrant of five feet. His zeal for aftronomy knew no bounds. For this reafon Lalande, in his Notice des Travaux duc. Le Monnier, fays of himfelf: "Fe fuis moi:neme le principal rcfultat de fon zele pour l'aftronomic."
La Monnier was naturally of a very irritable temper: as ardently as he loved his friends, as eafily could he be offended; and his hatred was then implacable. Lalande, as he himfelf expreffes it, had the misfortune to incur the difpleafure of his beloved preceptor; and he never after could regain his favour. But Lalande's gratitude and refpect for him always continued undiminiho ed, and were on every occalion with umremitting conflancy publicly declared: patiently he endured from him undeferved ill treatment; fo much did he love and
efteem

Monnier. efteem his inftruetor and mafter to the day of his death. "I have not cealed to exclaim (writes Lalande, as Dio. genes exelaimed to his mafter Antifthenes, "You cannot find a fick froug enough to drive me away from you!"

What a noble trait in the character of Lalande, who in 1797 wrote likewife an eulogium on Le Monnier in the fyle of a grateful pupil, penetrated with fentiments of profound veneration and efteem for his beloved mafter ; but Le Momier would not read it. This is not the place to give a circumftantial account of this intricate quarrel: we fhall only further remark, that Lalande was the warm friend and admirer of the no lefs eminent aftronomer La Caille, whom Le Monnier mortally hated. An intimate friendfhip likewife fubfifted between Le Monnier and D'Alembert; but Lalande had no friendly intercourfe with the latter.

Among the fcholars of Le Monnier may likewife be reckoned Henwart, the celebrated geometrician and pro. feffor of mathematics at Utrecht ; who, in a letter to Von Zach, aftronomer to the Duke of Saxe Gotha, dated the 26 th of May 1797, fays, " Le Monnier is a penetrating and philofophical aftronomer: I learned much from him in Paris; though I lodged with the late De l'Ine, where I frequently made obfervations in company with Meffier. Le Monnier was the friend of D'Alembert; and confequently an oppofer of Lalande."

This great man, who had, for fome years, ceafed to exift either for the fience of aftronomy, or for the comfort of lis friends, died at Lizeaux, in the province of Normandy, in 1799, aged 84 years. He left behind him fome valuable manufcripts, and a number of good obfervations; with refpect to which he had always been very whimfical, and of which in nis latter years he never would publifh any thing. He had by him a feries of lunar obfervations, and a multitude of obfervations of the flars, for a catalogue of the ftars, which he had announced fo early as the year 1741 ; among whiel was iwice to be found the new planet Uranus: (See La. lande's Afironomic, Tables, p.-188, (A). The more he was'requefted to communicate his obfervations, the more obftinate he became; he even threatened to deftroy them. At the breaking out of the revolution, Lalande was greatly alarmed for the fafety of thefe papers; he wifhed to preferve them from deftruction, and made an attempt to get them into his poffefion; but all his endeavours were in vain. He was oniy able to learn, that Le Monnier had hidden them under the roof of his houfe. Le Monnier having been firt feized with a fit of the apoplexy fo early as the roth of No. vember 1791, Lalande apprehended, left, if no one except himfelf fhould know where he had hilden his papers, the infirm old man might perlaps have himfelf forgot it. He hopes, however, that La Grange, who married his fecond daughter, may have fome inforna-
tion concerning them. Le Monnier left behind him no Moanmias, fon.

MONOMIAI, in algebra, is a fimple or fingle nomial, confifting of only one term; as a or $a x$, or $a^{2} b$ x^{3}, \& c .

MONOTRIGLYPH, a term in architecture, denoting the fpace of one trigly ph between two pilaftres, or two colnmes.

MONSELEMINES, are a people which inhabit that part of Biledulgerid (fee Encycl.) that borders on the territories of the Emperor of Morocco. They are a mixed race, being defeended from the ancient A. rabs and fugitive Moors; and they occupy a fpace of land, of which the limits are indicated by lofty columns placed at intervals towards the defart. Their territory extends from about 30 leagues beyond Cape Non, to the diftance of 20 leagues from St Croix or Agader. Though of different qualities, it is, for the moft part, very fertile, and produces the neceffaries of life with little cultivation. The plains are watered by an infinite number of ftreams, and abound with palm, date, fig, and almond trees. The gardens produce excellent grapes, which are dried by the Arabs, and converted into brandy by the Jews. Great quantities of oil, wax, and tobacco, appear in the public markete.

More induffrious and more laborious than their neighbours, the Monfclemine nation cultivates the earth. The chiefs of families choofe the ground moft fit for cultivation. Its furface is turned flightly over with a kind of hoe, and then the feed is fown upon it : the field is furrounded with bufhes, to mark the fpot, and to preferve it from the cattle of the wandering Arabs. When the crop is ripe, which is generally at the end of Auguf, three months after the fowing of the feed, it is cut about fix inches from the ear, and formed into little bundles; during which time every one labours without intermiffion from norning to night. The corn is brought before the tent, thrafhed, winnowed, and placed in the nagazines. When the harvelt is over, they fet fire to the long ftubble, and abandon the field for two or three years. Their magazines are large boles in the earth, formed like the fruftum of a cone, the infides of which are hardened by burning wood in them, before the half-winnowed corn be depofited. When filled with corn, they are covered with planks placed elofe to each other; over which a layer of earth is laid level with the foil, to prevent it from heing difcovered by enemies. In thefe magazines every one fhares in proportion to the number of men be employed in the common labour.

The inhabitants of the plains remain by the cultivated fields in feed time, and return at the time of harvert. During the intervals they wander in all directions with their cattle, taking only neceffaries along with them, and having recourfe to the magazines when they re-
quire
(A) Such is the French and German account of his difcovery of this planet; but our readers have been very inattentive, if they have not perceived, in various articles of this Work, complett proofs of the plagiarifm of our neighbours on the Continent, froin the celebrated philofophers and divines of England. As it is extrensely probable that, half a century hence, a claim may be put in for Le Monnier's difcovery of the Georgium Sidus (Uranus), fimilar to that which in 1757 the Editor of Abbè St Keal's works put in for that Abbé being the muthor of Leflie's Short Method zuith the Deifs (fee Leslie in this Suppl.), we think it our duty to declars, that in 1800 there was no evidence whatever on which to found that claim, and that the difcovery was then univerfally allowed to have been made by Herfchel.

M O N

Monicle- quire a fupply. The more opulent people, and the armines ti\%ans who are engaged in fedentary occupations, dwell
in towns, which are all fituated upon the declivity of hills. Their houfes are built of ftone and earth, according to the Moorifh contruction, low and covered with fluping terraces; yet they are fo much injured by the heavy rains which prevail for three months of the year, as to be rendered uninhabitable in 15 or 20 years. Thofe who refide in towns are generally weavers, fhoemakers, goldfmitlis, potters, \& ${ }^{\circ} \mathrm{c}$. and have no cattle ; but the more opulent perfons have flocks and herds of cows, horfes, camels, theep, goats, befides poultry, which are kept by their flaves at a diftance from the towns. In the towns they take two meals a-day ; one at ten o'clock, and the other at the fetting of the fun, though the inhabitants of the country only eat in the evening. In the towns they feep in mats upon the floors of their apartments, and make ufe of linen; but the inhabitants of the country fleep upon terraces in the open air. The paftoral families of the country practife hofpitality like thofe of the defart, and make the traveller pay nothing for his entertainment. In the towns this practice is impoffible, as the concourfe of Atrangers, efpecially on market-days, would foon impoverifh the inhabitants. In this manner hofpitality is always extinguithed among a trading and commercial people. It is only where the fuperfluity of commodities runs neceffarily to wafte, that it is ever practifed in a great extent ; but where every commodity can find a market, every kind of property acquires a definite value, and will be preferved with the fame care as money.

By M. Saugnier the government of the Monfelemines is faid to be republican; but he writes inconfittently about it. In one place, he fays that they choofe their chiefs annually; in another, that in the time of war they choofe from the natives or fugitive Moors indiferiminatelr, chiefs, whofe authority lafts no longer than the canpaigo, during which it is abfolute ; and he afterwards reprefents their government as a kind of theocracy, during war as well as peace. But we muft follow him in his detail, as it has been well arranged in a late anonymous publication, entitled, An Hilorical Sketch of Difcoveries in Africa.
At the end of each campaign, he fays the chief gives an account of his actions to the affembled aged men, and is rewarded or puninhed according to his conduct; after which his fucceffor is appointed, and he ferves in the army he commanded as an undiftinguifhed individual. The country is populous, and would be ftill more fo, were it not for the continual wars which its inhabitants are obliged to fupport againft the Emperor of Morroco. The liberty they enjoy imparts energy and courage to their charaster, and renders their arms invincible to the Moors. They confider it as the moft invaluable poffefion, and defend it to the laft extremity. The nature of the country, furrounded on every fide by Iteep and arid mountains, contributes to fruftrate the efforts of their enemies. The Monfelemine, richer than the fubjeet of Morocco, is always well clothed and armed. He pays no tribute, enjoys the fruit of his labour and commerce, and, as no contributions are requifite for the charges of the ftate, whatever he acquires is his own. The fugitive Moars are never armed, except when they go to battle ; but the natives go contimually armed, whether they refide in the country, refort
to the markets, attend the affemblies of the nation, or Monfelepay vifits.

As the Monfelemine territory is the retreat of the rich Moors, who wifh to fly from the tyranny of the Emperor of Morocco, they are too well acquainted with the Moorifh cultoms to be furprifed by that prince. No fooner does a Moorifh army take the field, than the inhabitants of the country camons mount their horfes, and occupy the paffes of the mountains; while the women and flaves, efcorted by a fufficient number of warriors, retire to the anterior parts of the country, or, if they be hard preffed, to the defart. Among the paftoral tribes there are many that addiat themfelves entirely to arms, and ferve as cavalry in the time of war. During peace they efcort caravans, or exercife themfelves in military evolutions, and the management of their horfes. Being almoft always on horfeback, and wearing no boots, they have a callous lump on that part of the leg that comes in contact with the iron of the ftirrup. Their horfes, which they break in an ad. mirable manner, are the bef in the world : as they are treated with great care by their mafters, they know them, and are obedient to their voice, and will admit no franger to inount them.
The Monfelemines derive their origin and name from Mofeilama, a contemporary of Mahomet ; and, in their love of liberty, as well as in many of their cuftoms, refemble the Arabs of remoter times. They refpect the prophet like other Mahometans; but neither believe that he was infallible, nor that his defcendants are all infpired by God, nor that their will fhould be a law, nor that fuch faith is neceffary in order to be a good Mahometan. Their pricfts are refpected, and in old age generally become the civil judgts of the nation ; but the influence of the high prieft is almort defpotic. Though he has no troops, he may command the nation ; and war and peace depend upon his will. Though he has no property, every thing is at his difpofal: he requires nothing from any one, and yet all are inclined to give. He adminitters jutice according to the opinion of his counfel, without pretending to be infpired by the . prophet.

On Friday the Monfelemines affemble in their mofques to pray : this is likewife the day of their prircipal market, when their merchandize is expofed to fale in the public fquares, where the old men judge without appeal, when difputes arife. Diferent from their neighbours of Morocco and Sahara, the Monfelenines never attempt to make profelytes. Their Chritian flaves are treated with humanity; but they owe this to the avarice of their matters. Thefe detet Chriftians, but they love money, and are afraid left ficknefs or death flould deprive them of the ranfom of the flave, or of the advantage of his labour. Among the inhabitants of the defart, a Chriftian, that adopts the religion of Mahomet, is admitted as a citizen and member of the family, and is prefented with cattle to form an eftablifhment. The Monfelemines pay more attention to the value of their property than the fituation of the infidel. A Chriftian who enters a mofque at Morocco is put to death, or forced to affume the turban. The Monfelemines would turn him civilly out, and content themfelves with impofing the higheit poffible fine. Among the Moors, a ${ }^{\circ}$ Chriftian difcovered in an intrigue with a woman of that nation fuffers death, or fubmits to

M O N

Monfele- converfion; but the Monfelemines prefer money to remines, Monterey. ligion. Frum them the Chriftian has nothing to fear: the woman alone is punifhed, being put into a fack and thrown into the fea, If a Chritlian flave among the
neighbouring nations defends himfelf againtt his mafter, he is punithed with death; but money faves him among the Monfelemines; he would at mull receive a llight correction.

The Jews are allowed the free exercife of their religion among the Monfelemirres, but are treated with the fame indignity as among other Mahonetan tribes. A Jew is not permitted to carry arms; and if he fhould make ufe of them againtt an Arab, he would be punifhed with death, and probably involve his family in his fate. The Jews inhabits the towns only, where they follow trade and various arts, but are not allowed to cultivate the earth.

Polygamy is permitted, as in other Mahometan countries; but the fituation of the women is more refpectable, and they are not fo much feeluded as among the Moors. They mingle more in fociety, walk at large, and vifit their friends; neither are their apartments fo inviolable. Among the Monfelemines, that degrading picture of humanity is never feen which fometimes occurs in Morocco, a woman drawing the plough with an afs, a mule, or fome other beaft of burden. Mure happier than the women of the Sahara, and treated with greater attention by their hufbands, they are more humane in their diffolicions. Like other Arab women, they ftain the edges of their eyelids black with henna, and paint their faces red and yellow. Their children are brought up with great care, and are not obliged to exhibit proufs of their courage before they can be confidered as men, as is the cuftom in the defart. Avarice is the principal defect in the character of the Monfelemines. They hoard their money with the ut mofl care, bury it in the earth, and in many cafes die without difcovering their fecret even to their children. Mifers, fays M. Saugnier, fhould go to that country, where they would learn means of econony ; which would fhew them, that, in comparifon with the Monfelemines, they are themfelves pertect prodigals.

The medicinal applications of the Monfelemines, which differ not from thofe of the Mongearts and other inhabitants of the defart, are extremely fimple, but appear fufficiently complex from the mummery of the priefts, who are the depofitories of their medical feience. Flefh wounds are cauterifed with a hot iron, and then covered with herbs dipped in turtles oil and tar. In headachs, a comprefs is applied with fuch violence that the blood ftarts from the forehead. In internal difeafes, the general remedies are regimen, reft, and a few maxins of the Kuran mylleriounly applied to the aifected parts.

MONTEREY BAy, in North California, was vifit. ed in 1786 by La Peroufe, who places it in $36^{\circ} 58^{\prime} 43^{\prime \prime}$ N. Lat. and $124^{\circ} 40^{\prime} \mathrm{W}$. Long. from Paris. It is formed by New-year point to the north, and by that of Cyprus to the fouth; has an opening of eight leagues in this direction, and nearly fix of depth to the eaftward where the land is fandy and low. The fea breaks there as far as the foot of the fandy downs with which the
coaft is furrounded, with a roaring which may be heard Moneecey. more than a learue off. The lands morth and fouth of this bay are high, and covered with trees. Thofe fhips which are defirous of touching there ought to follow the fouth coaft, and after having doubled the Point of Pines, which ftretches to the northward, get fight of the prefidency, and may come to an anchor in ten fathoms within it, and a little within the land of this point, which fhelters from the winds from the offing. The Spanifh Mips, which propofe to make a long ftay at Monterey, are accullomed to bring up within one or two cables lengths of the land, in lix fathoms, and make falt to an anchor, which they bury in the fand of the beach; they have then nothing to fear from the foutherly winds, which are fometimes very ftrong; but, as they bluw from the coalt, do not expofe them to any danger. The two French frigates, which our author cummanded, found bottom over the whole bay, and anchored four leagucs from the land, in 60 fathoms, foft muddy ground; but there is a very heavy fea, and it is only an anchorage fit for a few hours, in waiting for day, or the clearing up of the fog. At full and change of the moon it is high water at half paft one o'clock : the tide rifes feven feet; and as this bay is very open, the current in it is nearly imperceptitle. It abounds with whales; a genus of fifhes, of which our fcientific voyagers knew fo little, that they were furprifed at their fpouting water!

The coafts of Monterey Bey are almont continually enveloped in fogs, which caufe great difficulty in the approach to them. But, for this circumftance, there would be few more eafy to land upon ; there is not any rock concealed under water that extends a cable's lengt! from the flore; and if the fog be too thick, there is the refource of coming to an anchor, and there waiting for a clear, which will enable you to get a good fight of the Spanifh fettement, fituated in the angle formed by the fouth and eaft coalt. The fea was covered with pelicans. Thefe birds, it feems, never go farther than five or fix leagues from the land; and navigators, who fhall hereafter meet with them during a fog, may reft affured that they are within that diftance of it.

A lieutenant-colonel, whofe refidence is at Monterey, is governor of the Californias : the extent of his government is more than 800 leagues in cireumference, but his real fubjects confilt only of 282 cavalry, whofe duty it is to garrifon five fmall forts, and to furnifh detachments of four or five men to caeh of the 25 miffions, or parifhes, eftablifhed in old and new California. So fmall are the means which are adequate to the reftraining ahout 50,000 wandering Indians in this valt part of America, among whom, nearly 10,000 have embraced Chriftianity. Thefe Indians are, in general, fmall and weak (A), and difcover none of that love of liberty and independence which characteriíes the northern nations, of whofe arts and induftry they are alfo deltitute. Their colour very nearly approaches that of the negroes whofe hair is not woolly; the hair of thefe people is Atrong, and of great length; they cut it four or five inches from the roots. Several among them have a beard; others, according to the miffionary fathers, have never had any: and this is a queftion which is even un-

Munteref. decided in the country. The governor, who had travelled a great way into the interior of thefe lands, and who had paffed 15 years of his life among the favages, affured our author, that thofe who had no beards had plucked them up with bivalve fiells, that ferved them as pincers: the prefident of the miffions, who had refided an equal length of time in California, maintained the contrary;-it was difficult, therefore, for travellers to decide between them." The difficulty, furely, was not great. By their own account, the governor had travelled much farther into the country than the miffionary; and his report being confirmed by the evidence of their own fenfes, was intitled to unlinited credit.
Thefe Indians are extremely fkilful in drawing the bow ; they killed, in the prefence of the Freneh, the fmalleft birds: it is truc, they difplay an inexpreffible patience in approaching them; they conceal themfelves, and, as it were, glide along near to the game, feldom Thooting till within 15 paces. Their induftry in hunting the larger animals is itill more admirable. Peroufe faw an Indian, with a flag's head fixed upon his own, walk on all fours, as if he were broufing the grafs; and he played this pantomime to fuch perfection, that all the Fiench hunters would have fired at him at 30 paces, had they not been prevented. In this manner they appronch herds of ftars within a very fmall diftance, and kill them with a flight of arrows.

Before the Spanifh fetelements, the Indians of California cultivated nothing but maize, and almott entirely lived by fifhing and hunting. There is not any conntry in the world which more abounds in fifh and game of every defcription; hares, rabbits, and flags are very common there; feals and otters are alfo found there in prodigious numbers; but to the northward, and during the winter, they kill a very great number of bears, foxes, wolves, and wild cats. The thickets and plains ahound with fmall grey tufted partridges, which, like thofe in Europe, live in fociety, but in large companies of three or four hundred; they are fat, and extremely well flavoured. The trees ferve as habitations to the moft delightful hirds; and the ornithologits of the voyage ftuffed a great variety of fparrows, titmice, fpeckled wood-peckers, and tropic kirds. Among the birds of prey are found the white-headed eagle, the great and fimall falcon, the gofs.hawk, the fparrow-hawk, the black vulture, the large owl, and the raven. On the ponds and fea-fhore are feen the wild duck, the grey and white pelican with yellow tufts, different fpecies of gulls, cormorants, curlews, ring.plovers, fmall fea water hens; and herons; together with the beeeeater, which, according to moft ornithologits, is peculiar to the old continent.

The country about Monterey Bay is inexpreffibly fertile. The crops of maize, barley, corn, and peafe, camnot be equalled but hy thofe of Chili; our European cultivators can have no conception of a fimilar fertiIity; the medium produce of corn is from feventy to eighty for one; the extremes fixty and a hundred. Fruit trees are ttill very rare there, hut the climate is extremely fuitable to them: it differs a little from that of the fouthern Frencl provinees. The forelt trees are, the ftone-pine, cyprus, evergreen oak, and occidental plane.tree. There is no underwood; and a verdant carpet, over which it is very agreeable to walk, covers
the ground. There are alfo valt favannals, abounding with all forts of game.
Peroufe writes with great refpect of the wife and pions conduct of the Spanilh miffionaries at Montercy, who fo faithfully fulfil the purpoie of their inflitution. Totally unlike the monks at Concertion in Chili (fee that article in this Suppl.), they have left the lazy life of a cloifter, to give themfelves up to cares, fatigues. and folicitudes of every kind. They invited the officers of the frigates to dine with then at their monattery, contiguous to which ftands the Indian village, confitting of about 50 cabins, which ferve as dwelling-places to 740 perfons of both fexes, comprifing their children, whicli compofe the miffion of Saint Charles, or of Monterey. Thefe eabins are the moft niferable that are to be met with among any people; they are round, fix feet in diameter, by four in height; fome ftakes, of the fize of an arm, fixed in the earth, and which approach each other in an arch at the top, eompore the timber work of it ; eight or ten bundles of ftraw, very ill arranged over thefe ftakes, defend the inhabitants, well or ill, from the rain and wind; and more than half of this cabin remains open when the weather is fine; their only precaution is to have each of them two or three bundles of ttraw at hand by way of referve.

All the exhurtations of the miffionaries have never been able to procure a change of this general architecture of the two Californias. The Indians fay, that they like plenty of air ; that it is convenient to fet fire to their houfes when they are devoured in them by two great a quantity of fleas; and that they can build ano. ther in lefs than two hours. The independent Indians, who as hunters fo frequently elange their places uf abode, have a ftronger motive.

The monks gave the moft complete information refpecting the government of this fpecies of religious community; for no other name can be given to the legillation they have eftablifhed. They are fuperiors both in fpiritual and temporal affairs : the products of the land are entirely entrufted to their adminiftration. There are feven hours allotted to labour in the day, two hours to prayers, and four or five on Sundays and feftivals, which are altogether dedicated to reft and divine worthip. Corporal punifhments are inflicted on the Indians of both fexes who neylect pious exercifes ; and feveral fins, the punifhment of which in Europe is referved only to Divine Juftice, are punifhed with chains or the ftocks.

The Indians, as well as the miffionaries, rife with the fun, and go to prayers and mafs, which laft an hour ; and during this time there is cooked in the middle of the fquare, in three large kettles, barley meal, the grain of which has been roalted previous to being ground: this fpecies of boiled food, which the Indians call atole, and of which they are very fond, is feafoned neither with falt nor butter, and to us would prove a very infipid mefs. Every cabin fends to take the portion for all its inhahitants in a veffel made of bark: there is not the leaft eonfution or diforder; and when the coppers are empty, they diftribute that which tticks to the bottom to the children who have beft retained their leffons of catechifm. This meal continues three quarters of an hour, after which they all return to their labours; fome go to plough the carth with oxen, others to dig the garden; in a word, every one is employed in diffe-

M O N

273 M O N

Monterey. rent domentic occupations, and always under the fuperintendance of one or two of the religious.

The women are charged with little elfe but the care of their houlewifery, their children, and roafting and grinding the feveral grains: this laft operation is very long and laborious, becaufe they have no other means of doing it but by cruhing the grain in pieces with a cylinder upon a ftone. M. de Langle, being a witnefs of this operation, made the miffionaries a"prefent of his mill ; and a greater fervice could not have been rendered them, as by thefe means four women would in a day perform the work of a hundred, and time enough will remain to fpin the wool of their Cheep, and to manufacture coarfe ftuffs.

At noon the dinner was announced by the bell; the Indians quitted their work, and fent to fetch their rations in the fame veffels as at breakfaft: but this fecond mels was thicker than the firft there was mixed in it corn and maize, and peafe and beans; the Indians name it pouffole. They return again to their labour from two o'clock till four or five ; afterwards they attend evening prayers, which continue near an hour, and are follow ed by a new ration of atole like that at breakfaft. Thefe three diftributions are fufficient for the fubfiftence of the far greater number of Indians; and this very economical foup might perhaps be very profitably adopted in our years of fcarcity ; fome feafoning would certainly be neceffary to be added to it, their whole knowledge of cookery confifting in being able to roalt the grain before it is reduced into meal. As the Indian women have no veffels of earth or metal for this operation, they perform it in large bafkets made of bark, over a little lighted charcoal: they turn thefe veffels with fo much rapidity and addrefs, that they effect the fwelling and burfting of the grain without burning the bafket, though it is made of very comburtible materials.

The corn is diftributed to them every morning ; and the fmalleft difhonefty, when they give it out, is punifhed by whipping: but it is very feldom, indeed, they are expofed to it. Thefe punifhments are adjudged by Indian magiftrates, called caciques; there are in every miffion three of them, chofen by the people from amongt thofe whom the miffionaries have not excluded: but thefe caciques are like the governors of a plantation, paflive beings, blind executors of the will of their fuperiors; and their principal functions confit in ferving as beadles in the church, and their maintaining order and an air'of contemplation. The women are never whipped in public, but in an enclofed and fomewhat diftant place, left perhaps their cries might infpire too lively a compaffion, which might ftimulate the men to revolt ; thefe laft, on the contrary, are expofed to the view of all their fellow-citizens, that their punifhment may ferve as an example. In general they afk pardon; in which cafe the executioner leffens the force of his lathes, but the number of them is never receded from.

The rewards are particular fmall diftributions of grain, of which they make little thin cakes, baked on burning coals : and on the great feltivals the ration is in beef; many of them eat it raw, efpecially the fat, which they efteem equal th the beft butter or cheefe. They fkin all animals with the greateft addrefs; and when they are fat, they make, like the ravens, a croaking of plea-

Suppl. Vol. II, Part I.
fure, devouring, at the fame time, the moft delicate Monteres. parts with their eyes.

They are frequently permitted to lount and fifh or their nown account ; and on their return they generally make the nillionaries fome prefent in game and fifl: but they always proportion the quanticy to what is abfolutely neceffary for them, always taking care to increafe it if they hear of any new guefts who are on a vifit to their fuperiors. The women rear fowls ahout their eabins, the eggs of which they give their children. Thefe fowls are the property of the Indians, as well as their clothes, and other little articles of houfehold furniture, and thole neceffary for the chace. There is no inftance of their having robbed each other, though their faftenings to the doors confilt only of a fimple bundle of ftraw, which they place acrofs the entrance when all the inhabitants are abfent.

The men in the miffions have facrificed much more to Chriflianity than the women ; becaufe they were accuitomed to polygamy, and were even in the cultom of efpoufing all the fifters of a family. The women, on the other hand, have acquired the advantage of exelufively receiving the carefles of one man only. With this, however, it would appear that they are not fatisfied: for the religious have found it neceffary to conftitute themfelves the guardians of female virtue. At an hour after fupper, they have the care of fhitting up, under lock and key, all thofe whofe hufbands are abfent, as well as the young girls above nine years of age; and during the day they are entrufted to the fuperintendance of the matrons. So many precautions are fill infufficient; for our voyagers faw men in the ftocks, and women in irons, for having deceived the vigilance of thefe female arguffes, who had not been fufficiently fharp-fighted.

The converted Indians have preferved all the ancient ufages which their new religion does not prohibit ; the fame cabins, the fame games, the fame dreffes : that of the richeft confifts of an otter's flin cloak, which covers their loins, and defcends below their groin ; the moft lazy have only a fimple piece of linen cloth, with which they are furnifhed by the miffion, for the purpofe of hiding their nakednefs; and a fmall cloak of rabbit's \mathfrak{k} in covers their fhoulders, which is faftened with a paek-thread under the chin; the head and the reft of the body is abfolutely naked; fome of them, however, have hats of ftraw, very neatly matted. The womens drefs is a cloak of deer fkin, ill tanned; thofe of the miffions have a cuftom of making a fmall boddice with fleeves, of them : it is their only apparel, with a fmall apron of rufhes, and a petticoat of ftag's fkin, which covers their loins, and defcends to the middle of the leg. The young girls, under nine years of age, have merely a fimple girdle; and the children of the other fex are quite naked.

The independent favages are very frequently at war ; but the fear of the Spaniards makes them refpect their miffions; and this, perhaps, is not one of the leaft caufes of the augmentation of the Chritian villages. Their arms are the how, and arrow pointed with a flint very fkilfully worked : thefe bows are made of wood, and ftrung with the finews of an ox. Our author was affured, that they neither eat their prifoners, nor their enemies killed in battle; that, neverthelefs, when they M m

Moore. had vanquified, and put to death on the field of battle, chiefs, or very comragenus men, they have caten fome pieces of them, lefs as a lign of hatred or revenge, than as a homage which they paid to their valour, and in the full perfuagion that this fuod would be likely to in. creafe their own courage. They fealp the vanquithed as in Canada, and pluck out their eyes; which they have the art of preferving free from corruption, and whicit they carefully keep as preciuns ligns of their victory. Their cuttom is to burn their dead, and to depolit their afhes in morais.

MOORS, in common language, are the natives of Morocco, of whom an acconnt is given under that title in the Encyclopadia; but there is another people, a mixed race, called alfo Monrs, who lead a wandering and paltoral life in the habitable parts of the Great Defert, and in the countries arljacent to it. Of the origin of thefe Moorifh tribes, as diftinguifhed from the inhabitants of Barbary, nothing farther feems to be known than what is related by John Leo the African; whofe account may be abridged-as follows :

Before the Arabian conquelt, about the middle of the feventh century, all the inhabitants of A frica, whether they were defeended from Numidians, Phoniciaus, Carthaginians, Romans, Vandals, or Guths, were comprehended under the general name of Mauri, or Moors. All thefe nations were converted to the religion of Mahomet, during the Arabian empire, under the Kaliphs. About this time many of the Numidian tribes, who led a wandering life in the defert, and fupported themfelves upon the produce of theircattle, retired fouthward acrofs the Great Defert, to avoid the fury of the Arabians; and by one of thofe tribes, fays Leo (that of Zanhaga), were difcovered, and conquered, the Negro nations on the Niger. 13y the Niger, is here undoubtedly meant the river of Senegal, which in the Mandingo language is called Bafing, or the Black River.

To what extent thefe people are now fpread over the African continent, it is difficult to afcertain. There is reafon to believe, that their dominion ttretches from weft to eaft, in a narrow line or belt, from the mouth of the Senegal (on the northern fide of that river) to the confines of Abyfinia. Mr Park deferibes them as refombling, in complexion, the Mulattoes of the Weit Indies, and as having cruelty and low cunning pictured in their countenances. "From the flaring wildnefs in their eyes (fays he), a ftranger would immediately fet them down as a nation of lunatics. The treachery and malevolence of their character are manifetted in their plundering excurfions againt the Negro villages. Oftentimes, without the fmalleft provocation, and fometimes under the faireft profetions of friendihip, they will fuddenly five upon the Ngroes cattle, and even on the inhabitants themfelves. Ths Negroes very feldom retaliate. The enterprifing boldnefs of the Moors, their knowledge of the country, and, above all, the fuperior ficetnefs of their horfes, make them fuch formidable enemies, that the petty Negro thates, which horder upon the defert, are in continual alarm white the Moorifh tribes are in the vicinity, and are too much awed to thirk of refittance.
" Like the roving Arabs, the Moors frequently remove from one place to another, according to the feafon of the year, or the convenience of palturage, In the month of February, when the heat of the fun feorches
up every fort of regetation in the defert, they frike their tents, and approach the Negro country to the fouth; where they relide until the rains commence, in the month of July. At this time, having purchafed corn, and other neceffaries from the negrues, in exchange for falt, they again depart to the northward, and continue in the defert until the rains are over, and that part of the country becomes burnt up and barren.
" 'This wandering and rettlefs way of life, while it inures them to hardfhip;, ftrengthens, at the fame time, the bonds of their little fociety, and creates in them an averfion towards trangers, which is almoft infurmountable. Cut off from all intercourfe with civilized nations, and hoalting an advantage over the Negroes, by poffefling, though in a very limited degree, the knowledge of letters, they are at once the vainelt and proudeft, and perhaps the molt bigotted, ferocious, and intolerant, of all the natiuns on the earth; combining in their character the blind fuperfition of the Negro with the favage cruelty and treachery of the Arab." But for them Mr Park would have accomplihed the utmoft cbject of his miffion, and have reached Tombuctoo, and even Houffa, with no other danger than what arifes neceffarily from the climate, from wild beafts, and from the poor accommodation afforded in the huts of the hofpitable Negroes. The wandering Moors, however, have all been taught to regard the Chritian name with inconceivable abhorrence; and to confiler it nearly as lawful to murder a European as it would be to kill a dog. It is, therefore, much lefs furprifing that our traveller did not proceed farther along the banks of the Nigre, than that he efcaped the fnares of fo relentlefs a people.

MORINDA, is a plant, of which a very meagre defription has been given in the Encyclopedia, though it is of much importance in oriental commerce. It is cul. tivated to a great extent in the province of Maleva, in the Eaft Indias, where it furnifhes a valuable dye-ftuff; and is thus defcribed by William Hunter, Efq; in the fourth volume of the Afiatic refearches:
" It is a tree of a middling fize; the root branchy ; the trunk columnar, ereck, covered with a fabrous bark. Branches, from the upper part of the trunk, fcattered; of the ftructure of the trunk. Leaves (feminal) oval, obtule, entire (mature), oppofite, decuffated, ovate, pointed at both ends, fmooth, with very fhort petioles. Stipules, lanced, very fnall, withering. Peduncles, from the axils of the leaves, folitary, hearing an aggregate flower. Calyx, common receptable roundih, collecting the feffile flowers into an irregular head. Perianth, mot entire, fearce obfervable above. Coral, one petalled, funnel-form. Tube, cylindric : Border, five cleft; the divifions lanced. Stamen: Filaments, five, threadform, arifing from the tube, and adhering to it through two thirds of their length, a little fhorter than the tube. Anthers, linear, erect. Pifil. Germ, beneath, four-celled, containing the rudiments of four feeds. Style, thread form, longer than the Itanmens. Stigma, two cleft, thickifh. Pericarp, common, irregular, divided on the furface into irregular angular fpaces; compofed of berries, pyramidal, tcompreffed on all fides by the adjacent ones, and concreted with them; lopped; containing towards the bafe a Refhy pulp. Seeds, in each berry four ; towards the point oblong, externally conves, internally angular."

The

Morion

The Epecies here defcribed is the morinda arborea pedunculis folitariis of Linnens. It grows beft in a black rich foil, free from fones, in fituations moderat ely moill, not too high, yet fufficiently elevated to prevent the rain water from ftagnating, and where a fupply of water can be had for the diry months. As the colouring matter, for which alone it is valuable, refides chiefly in the bark of the root, the fmail twirgs, which contain little wood, bear a higher price than the larger pieces. The natives employ it in dyeing a pale eed, or clay coLour ; which Mr Hunter fays is more valuable for its durability than for its beauty. They likewife ufe it in dyeing a dark purple or chocolate colour; but for the procefs, in buth caies, we mult refer to the original memoir.

MORION, in botany, a name given by the ancients to a kind of nighthade. See Solanum, Encyel.

Morion, in ancient mineralogy, a name given to one of the femipellucid genns, more commonly called pramnion. It is a fone appearing externally of a fine deep black; but when held up againft a candle, or againft the fun-bearns, it gives a very beautiful red in different degrees.

MOSHAIRA, or Moshabereh, penfion or allow. ance in Bengal.

MOSS, the name given in Scotland, and we believe alfo in fome parts of England, to what is more proper$1 y$ called a morafs, a fen, or a \log. On the formation of thefe moffes fome conjectures have been hazarded in the Encyclopedia, where the reader will likewife find a copious account of the method which has for many years been fuccefffully employed to convert the Moss of Kincardine into an arable foil, or rather to remove the fubftance called mofs or peat from the rich foil which is found below it. A method, however, has been in: vented by Mr John Smith of Swindrig-muir, in tbe thire of Ayr, for atually converting the fubftance called mofs into a vegetable mould, which has been found by experience to carry rich crops of corn, hay, potatoes, \&c. Of this gentleman's practice we have the follow. ing account in a fmall pamplilet publifhed in Edinburgh, 1798, by Fairbairn and Dickfon.
" The firt thing to be done is to mark off, and cut out, proper main or matter drains, in order to carry off the fuperfluous water, taking care to preferve the greateft poffible level ; which drains are fo conflructed as to divide the field into inclofures from fix torten Scotch acres. If the moss hangs or declines, the inclofures may be of any dimenfion whatever. The dimenfions of thefe drains when firft made are eight feet wide, by four and a half feet deep, declining to two and a half feet at bottom, and coft at the rate of one fhilling per fall of eighteen and a half feet, running meafurc. The ridges are then to be malked off regularly, fix or feven yards broad, formed with the fpade in the manner following:
"In the centre of each ridge, a fpace of about 20 inches is allowed to remain untouched, on each fide of which a furrow is opened, and turned upon the untouched fpace, fo as completely to cover it (like what is called the feering of a gathered ridge). Thus begun, the work is continued, by cutting with the fpade, in width about 12 inches, and turming it over to appearance as if done with a plough, until you come to the divifion furrow, which fould be two feet wide, cut out and thrown upon the fides of the ridges. The
depth of the divifion furrow is to be regulated by circunttances, according as the mofs is wet or dry, but fo as to anfwer the purpofe of as it were bleeding the mofs, and conducting the water to the main drains.
"It may be here obfervect, that the fuccefs of the aftercrops depends very much upon a proper formation of the ridges. They muft not be made too high in the midlle, for there they will be too dry like a peat, upon which the lime cannot ant, and near the furrows they will he too wet, which is equally prejudicial ; they fhould therefore be conflrueted with a gentle declivity to the furrows, fo as the rain which falls may rather filtrate through the ridge to the furrows than run quickly off the furf: e.
"The next operation is to top drefs the riliges with lime, at the sate of from four to eight chalders per acre. Five Winchefter bufhels make a bell, and eiglat bolls a ehalder of fhell lime, producing fixteen bolls powdered lime. The quicker the lime is put on after being flacked the better.
"The proper ferafon to prepare the mofs for a firt erop is early the preceding fummer; in that cafe the lime, aided by the heat, the after rains, and the winter frofts, makes coniderable progrefs in the procefs of putrefaction, confequently forms a mould to receive the feed.
" Though oats have fometimes fucceeded as a firit crop, potatoes have been found greatly preferable. The method of planting them is fimple, and attended with little expence. The mofs, prepared by ridges, and limed as before defcribed, beds for the potatoes are, in the fpring, marked off, acrofs the ridges, five or fix feet broad, with intermediate fpaces of about two feet, as furrows or trenches. The beds are covered over with a thin ftratum of dung, about eighteen fingle-horfe carts to an sere, the cuttings of the potatoes are laid or placed upon the beds, about ten or twelve inches afunder, and the whole covered over with a thin ftratum of mofs from the intermediate trenches, which is followed by another covering from the trenches when the potatoe plants make their firf appearance; the covering in whole four or five inches. In this flate they remain without any hoeing till the crop is taken up. The produce on Mr Smith's mofs has never been lefs than from forty uofifty bolls of excellent potatoes, eight Winchefter buftels to the boll, and the buflicl a litile heaped.
"When the pota:ne crop is remored, the rilges are again formed as before deferibed, and the divition furrow cleared out. In performing this part of the work, it will naturally oceur, that a great part of the mamured furface will be buried in filling up the trenches between the potatoe beds: but that is not the cafe; the workman makes two cuts with the fpade, at eighteen inches diftance, upon the fide of the trench; another, one foot from the edge of it, as deep as the trench; which, in. ftead of turning over, he preffes a foot forward into the trench, which is continued the length of it ; and when he comes to the other fide he does the fame, making both meet, and fo proceeds; fo that no part of the iranured furface is thrown down, and the ridge is left in the fame form as before the lazy-beds* were made.
"When the potatoe crop is taken off, and the ridges for bed of formed as before defcribed, they remain in that flate a particular till fpring, when oats are fown (a wet or dry feafon bas kind of po-

Mofs. from experience been found a matter of indifference), and harrowed in with a finall harrow drawn by two men. Four men with eafe harrow at leaft one acre one rood per day, two and two by turns with the harrow, and the other two in the interim with fpades, fmooth ing the inequalities, breaking and dividing the mould, and clearing out the divifion furrows; which laft in all operations upon mofs are effentially neceflary. The early or hot feed oats are always preferred for feed. The late or cold feed runs too much to ftraw, falls down, and becomes floomy, confequently the grain is of mean quality, and unproductive in meal.
"The produce of the firft crop of oats after potatoes is feldom lefs than ten bolls per acre, the Linlithgow boll of fix Winchefter buthels, and confiderably more has been known; as good grain in quality, and meals as well as any in the country. It lias been fold when growing, what is called upon the foot, including the ttraw, from eight to ten pounds per acre. To prepare for a fecond crop of oats, the ridges mult be dug acrofs, and turned over in the manner before defcribed, and the divifiou furrows cleared out as foon as convenient after the firtt crop is removed.
"Such is the effect of lime in confolidating mofs, aided by the draining, that often after the fecond, and always after the third year, it can be ploughed by horfes within two bouts or flitches of the divifion furrow; and alfo harrowed by horfes, and the crops taken off by carts.
"Five and often fix confecutive crops of oats are taken, without any other manure than what it received the firft year for potatoes, without any apparent figns of it being exhaufted. The produce of the firft two crops of oats has been mentioned to be ten bolls, and the third, fourth, fifth, and fixth, produce from lix to ten bolls per acre. The mols is now turned into a feeming rich dark brown mould ; and what renders it lefs productive of corn crops the fourth, fifth, and fixth years is, its naturally running into fweet and luxuriant grafles. The foft meadow grafs, the daify, fome plaintain, but principally the white clover, are the moft prevalent graffes; or more probably it may be afcribed to thefe crops being ploughed, in place of being dug with the fpade, as the furmer years ware. Along with the fifth or fixth crop of oats, rye grafs is fown, which, with the natural grafles in general, produce an abundant crop of hay.
"If the mofs in the original fate has been wet and fpongy, it will be found to have fublided fome feet after the third or fourth year's operation has been performed ; but care muft always be taken to deepen, clear out, and keep clear the main drains and the divifion furrows, to prevent a fuperahundance of moifture, which would infallibly be the cafe were they neglected in confequence of the fubfidence of the mofs. Indeed mofs of all forts will fubfide lefs or more, in proportion as it has been dry or wet in its original flate; at the fame time, as ftated before, care muft be taken not to lay it too dry, but to keep in a proper degree of temperature between thefe two extremes."

By having recourfe to the pamphlet from which this extract has been made, the reader may fatisfy himfelf of the real advantages of this fpecies of agriculture. The author calculates, with much apparent fairnefs, the expence of improvement, and the value of each crop, and
concludes that no wate can be improved with equal ad. vantage as mofs. It mult not, however, be concealed, that we have heard practical farmers, who feemed to be acquainted with the fuhject, give it as their opiuion that this mode of cultivation anfwers only in moffes of no great depth ; though our author affirms that it has with great fuccefs been practifed by Mr Smith in mofles of the depth of it feet.

MOTION in fluids. When in the publication of this Supplement we had arrived at the title Fluids, we were ftruck with the importance given, in fome of the journals, to The Experimental Refeurches of Venturi concerning the Principle of the lateral communication of Motion in Fluids, applied to the Explanation of various $H y$ draulic Phenomena. Of thefe refearches we intended to lay an abridged account before our readers under the prefent title; but having examined the work with fome attention, we find in it hardly any thing of confequence which the mechanical philofopher may nut learn from our articles Resistance of Fluids and River in the Encyclopadia. That our readers, however, may find fomething under a title to which we rafhly referred them, we hall, in the words of Nicholfon's Journal of Natural Philofuphy, \&c. inform them what Venturi's work contains.
" This author, who is profeffur of experimental philofophy at Modena, has introduced an horizontal current of water into a veffel filled with the fame fluid at reft. This ftream entering the veffel with a certain velocity, paffes through a portion of the fluid, and is then received in an inclined channel, the bottom of which gradually rifes until it paffes aver the border or rim of the veflel itfelf. The effect is found to be, not only that the fream itfelf paffes out of the veffel through the channel, but carries along with it the fluid contained in the veffel; fo that after a hort time no more of the fluid remains than wasoriginally below the aperture at which the fream enters. This fact is adopted as a principle or primitive phenomenon by the author, under the denomination of the lateral communication of motion in fluids, and to this he refers many important hydraulic facts. He does not undertake to give an explanation of this principle, but thews that the mutual attraction of the particles of water is far from being a fufficient caufe to account for it.

The firf phenomenon which the author propofes to explain by this eftablifhed principle, is the emilfion of a fluid through different adjutages applied to the refervoir which contains it. It is known that the vein of fluid which iffues from an orifice or perfuration through a thin plate, becomes contracted, fo as to exhibit a fection equal to about $0,6+\frac{1}{}$ of the orifice itfelf, fuppofed to be circular; and that the place of the greateft contraction is ufually at the diftance of one femi-diameter of the orifice itfelf. If a fmall adjutage be adapted to the orifice, having its internal cavity of the fame conoidal form as the fluid itfelf affects in that interval, the expenditure is the fame as by the fimple orifice. But if at the extremity of this adjutage a cylindric tube be affixed, of a greater diameter than that of the contracted vein, or a divergent conical tube, the expence of fluid increales, and may exceed the double of that which palfes through the aperture in the thin plate, though the adjutage poffefs an horizontal or even afcending direction.

By the interpofition of a fmall adjutage, adapted to the form of the contracted vein, Venturi afcertained, in the firlt place, that there is an increafe of velocity in the tubes he employed, though the vel city of emiffion itfelf be lefs than that of the ftream which iffues from a hole in a thin plate. He afterwards proves, by the fact, that the interior velocity and expenditure of fluid, which is increafed through tubes, even in the horizontal or afcending direction, is owing to the preffure of the atmofphere. If the fmalleft hole be made in the fide of the tube near the place of contraction of the vein, the increafed expenditure does not take place ; and when a verticle cube is inferted in fuch a hole, the lower end of which tube is immerfed in water or mercury, it is found that afpiration takes place, and the water or mercury rifes; and this afpiration in conical tubes is lefs in proportion, as the place of infertion of the upright tube is more remote from the fection where the greatef contraction would have taken place. And, laftly, the difference between the expenditure of fluid, through an orifice made in a thin plate, and that which is obferved through an additional tube, does not take place in vacuo!

The influence of the weight of the atmofphere on the lorizontal or afcending flux being thus eftablifhed, the author confiders it as a fecondary caufe, referable to, and explicable by, his principle of the lateral communication of motion in fluids. In conical divergent tubes, for example, the effect of this lateral cominunication is, that the central cylindrical jet, having for its bafis the fection of the contracted vein, carries with it the lateral fluid which would have remained ftagnant in the enlarged part of the cone. Hence a vacuum tends to be produced in this enlarged part which furrounds the central cylindric ftream ; the preffure of the atmofphere becomes active to fupply the void, and is exerted on the liurface of the refervoir, fo as to increafe the velocity of the fluid at the interior extremity of the tube.

The author proves, that the velocity or total expenditure of fluid throngh an aperture of given dimenfions, may be increafed by a proper adjutage in the proportion of 27 to 10 ; he applies this refult to the conftruction of the funnels of chimneys. He determines the lofs of emitted fluid, which may be fuitained by finuofity in pipes. He fhews by experiment, that a pipe which is enlarged in any pait affords a much lefs quantity of fluid than if it were throughout of a diameter equal to that of its fmallett \int fection. This, as he remarks, is a circumitance to which fuffecient attention has not been paid in the conltruction of hydranlic machines. It is not enough to avoid elbows and contractions; for it fometimes happens that, by an intermediate enlargement, the whole of the advantage arifing from other judicious difpufitions of the parts of the machine is loft.

There are two cafes of the increafe of expenditure through defcending pipes. The firft is owing to the lateral communication of motion which takes place in defcending pipes, in the fatne manner as in thofe which poffefs an horizontal fituation; the fecond arifes from the acceleration by gravity which takes place in the fluid while it fails through the defcending tube. This fecond kind of augmentation was known to the ancients, though they poffeffed no good theory nor decifive experiments refpecting it. The author endeavours
to eftablifh a theory on the principle of virtual afcenfion Motion. combined with the preffure of the atmofphere. His deductions are confirmed by experiment, in which he has fucceeded fo far as to feparate the two caufes of augmentation, and affigned to each their refpective de. gree of influence.

Profeffor Venturi then proceeds to different objects of enquiry, to which his principle feemed applicable. He gives the theory of the water-blowing machine (fee Water Blowing Machine in this Suppl.), and he determines by calculation the quantity of air which one of thefe machines can afford in a given time. He ohferves, that the natural falls of water in the mountains always produce a local wind; and he even thinks, that the falling ftreams in the internal parts of mountains are in fome inflances the caufe of the winds which iffue from caves. He proves, by the facts, that it is poffible, in certain inftances, to carry off, without any machinery, the waters from a fpot of ground, though it may be fituated on a lower level than that of the channel which is to receive the water.

The whirlpools, or circular eddies of water fo frequent in rivers, are, according to the theory of our aum thor, the effeet of motion communicated from the parts of the current which are moft rapid, to thofe lateral parts which are lealt fo. In the application of this principle, he points out the circumftances adapted to produce fuch eddies at the furface or at the bottom of rivers. He concludes, that every movement of this kind deftroys a part of the force of the current, and that in a channel through which water conftantly flows, the height of this fluid will be greater than it would have been if the dimentions of the channel had been uniformly reduced to the meafure of its fmallett feca. tion.

There is another kind of whirling motion fomewhatdifferent in its nature from thefe laft. It is produced in the water of a refervoir, when it is fuffered to flow through an horizontal orifice. The author deduces the theory of thefe vortices from the doctrine of central forces. The form of the hollow funnel, which in this cafe opens through the fluid of the refervoir, is a curve of the $6+t h$, fpecies of. the lines of the third order, enumerated by Newton. Theory and experiment both unite here in proving, that it is not only poffible, but that there really exilts in nature a vortex, the concavity of which is convex towards the axis, and of which the revolutions of its different parts follow the ratio of the fquare of the diftance from the centre. Daniel Bernoulli was in the wrong, in his Hydrodynamics, to reproach Newton for having fuppofed a vortex to be moved accordigg to this lav.

In the laft place, the author confiders that lateral communication of motion which takes place in the air as well as in the water. This is the caufe of fuch local and partial winds as fometimes blow contrary to the direction of the general wind. It is by virtue of the fame principle, that the refonant vibration, excited laterally in the extremity of an organ-pipe, is communicated to the whole, column of air contaned in the pipe itfelf.

From the fame principle, the author deduces the augmentation of force which found receives in conical divergent tubes, compared with thofe of a cylindrical form. On this occafion, he points out the remarkable

$\begin{array}{lll}\mathrm{M} & \mathrm{O} & 2\end{array}$

differences which appear to take place between the refonant vibrations of air contained in a tube, and the fonorous pulfations propagated through the upen atnoSphere. See Spealing Trempst, Encrocl.

In an appendix. Venturi relates diffierent experiments which he has mate to determine the convergence and velocity of the fluid filanents which prefs forward to iffue out of a refervoir by an orifice through a thin plate. He proves, by a very clear experimeat, that the contraction of the vein is made at a greater diftance from the orifice under ftrong than under weak preffures. He explains why, in a right-lined orifice, the fides of the contracted vein correfpond with the angles of the orifice and the angles with the fides. He examines the expenditure through a tube, the extremity of which is thruft into the refervoir itfelf, according to the nethod of Borda in the Memoirs of the Academy of Sciences for the year ${ }^{7} 665$."
For a full account of the author's experiments, and his deductions from them, we refer the reader either to the original work, intitled, Rechercbes expérimentales fur le Principe de la Communication latérale du Mouvement dans les Fluides, appliqué à l'Explication de différens Phénoménes hydrauliques. Par le Citoyen 7. B. Venturi, Profeffeur de Pbyyique expérimentale à Modène, Membre de Ia Societé Italicnne, EJc. E゙c. A Paris chez Houel at Ducros, Rue du Bacq, No. 940 -Théophile Barrois, Rue Haute feuille, N.22. Ann. VI. 1797-or to the 2 d and 3 d vols of the valuable Journal from which this abftract is taken.
NOURZOUK, the capital of Fezzan in Africa, is fituated on a fmall river, and fupplied with water from multitudes of fprings and wells. Being formerly built of fone, it fill retains the appellation of a Chriftian town ; and the medley which it prefents to the eye, of the vaft ruins of ancient buildings, and the humble cottages of earth and fand that form the dwellings of its prefent Arab inhabitants, is fingularly grotefque and ftrange. It is furrounded by a high wall, which not only affords the means of defence, but enables the government to collect, at its three gates, a tas ous ail goods (provifions excepted) that are brought for the fupply of its people. A caravan fets ont annually from Mefurata to this place; and hence the Feyzaners themfelves difpatcli every year a caravan to Cafhna and another to Bornou. For the lattitude of Mourzouk, fee Fezzan in this Suppl. Dr Brookes, in his Gazetteer, places it in $1^{\circ} 5^{\prime}$ E. Long.
MOWAZZEF, in Bengal, fixed revenue.
MOZART, the celebrated Gernan mufician, was born at Salzburg in the year 1756. His father was alfo a mufician. of fome eminence, but nut to be compared with the fon ; of whom we have the following account in one of the monthly mifcolfanies, taken by Mr Bufhby from fome biographical fietcles by two eminent German profeffors,

At the age of three years, young Mozart, attending to the leffons which his fifter, then feven years old, was reeeiving at the herpfichord, he became captivated with harmony: and when the had left the inftrument, he would inftantly place himfelf at it, lind the thirds, founc them with the liveliet joy, and employ whole hours at the exercife. His father, urged by fuch early and friking indications of genius, immediately began to teach him fome little airs; and foon perceived that his pupil
improved even beyond the hopes he had formed of hin!. Half an hour was gencrally fufficient for his acepuining a minuet or a little fong, which, when once learned, he would of himfelf perform with tafte and expreffion.

At the age of fix years he had made fuch a progrefs as to be able to compore fhort pieces for the harpfichord, which his father was obliged to commit to paper for him. Frons that time nothing made any im. preffion upon him but larmony; and infantine ansufements loft all their attractions unlefs mufic had a thare in them. He advanced from day to day, not by urdi. nary and infenfible degrees, but with a rapidity which hourly excited new fiuprife in his parents-the happy witneffes of his progrefs.

His father returning lome one day with a Itranger, found little Mozart with a pen in his hand. "What are you writing," faid he? "A concerto for the harp. fichord," replied the child. "Let us fee it (rejoined the father) ; it is a marvellous concerto without doubt." He then took the paper, and faw nothing at firft but a mafs of notes mingled with blots of ink by the mal-addrefs of the young compofer, who, unflilled in the management of the pen, had dipped it too freely in the ink; and having blotted and fmeared his paper, had endeavoured to make out his ideas with his fingers; but on a clofer examination his father was loft in wonder; and his eyes delighted and flowing with tears, became rivetted to the notes. "S See (exclaimed be to the Atranger) how juft and regular it all is! but it is impoflible to play it; it is too difficult." "It is a concerto (faid the child), and muft be practifed till one can play it. Hear how this part goes." He then fat down to perform it ; but was not able to execute the paffages with fufficient fluency to do juftice to his own ideas. Extraordirary as his manual facility was univerfally allowed to be for his age, it did mont keep pace with the progrefs of his howledge and invention Such an inflance of intellectual advancement, in a clild only fix years of age, is fo far out of the common 1oad of nature, that we can only contemplate the fact with alloniflment, and ack nowledge, that the poffible rapidity of mental maturation is not to be calculated.

In the year 175_{2}, his father took him and his fifter to Munich, whete he performed a concerto before the elector, which excited the admiration of the whole court ; nor was he lefs applanded at Vienna, where the cmperor called him the limte forserer.

His father gave him leftons only on the barpfichord; but he privately taught himfelf the viclin; and his consmand of the inflrument afforded the elder Mozart the utmoft furprife, whon he one day at a concert tool a fecond violin, and acquitted himfelf with more than paffable addrefs. True genius fees no uffacles. It will not therefore excite vur wonder, if his conttant fuccefs in whatever he attempted hegot an unbounded conflence in his own powers; he had even the loudallo hardihood to undertake to qualify himfelf for the forld violin, and did not long remain fhort of the neceflary proficiency

He had an ear fo correct, that he felt the moft minute difcordancy ; and fuch a fondnefs for ftudy, that it was frequently neceffary to take him by force from the inftrument. This love of application never diminifhed. He every day paffed a confiderable time at his harpfichord, and generally practifed till a late hour at
night.
night. Another characteriftical trait of real genius; always full of its ohject, and loit as it were in itfelf.

In the year 1763 he made, with his father and fifter, his frill grand mufical journey. He vifited Paris; and was heard by the Freach court in the chapel-royal at Verfailles, where his talent on the organ was admired even mure than on the harpfichord. At Paris the mufical travellers gave two concerts, which procured them the higheft reputation, and the diftination of public purtraits. It was here that a fet of fonatas for the hary,fichord, fome of his carlieft compolitions, were engraved and publifhed.

From Palis they went to London, where they alfo gave two concerts, confilting of fymphonies campofed hy young Mozart, who even at that early age fang alfo with much exprefion, and practifed publicly with his tifter. Mozart played already at Gght, and in a concert, at which the king was one of his auditors, a bafs being placed before him as a sround, immediately applied to it a moft beautiful meludy. Thofe who are beft acquainted with the extent of fuch a tafk, will be the molt altonifhed at fuch mature familiarity with the intricacies of the fience, and fuch prompt and ready invention in fo juvenile a mind.

From London, where Mozart alfo publifhed fix fonatas for the harpfichord, the mufical family went to Holland, thence again to France, and in 1766 returned 10 Salzburg. There this extraordinary youth remained more than a year in perfect repufe; devoting the whole -of his time to the fludy of compolition, the principles of which he fcrutinized with the depth and penctration of confirmed manhood. Emmanuel Bach, Haffe, and Handel, were his chief guides and models; though he by no means neglected the old Italian mafters.

In 1,65 he again vifited Vienna, where Jofeph II. engaged hin to fet to mufic a comic opera, entitled, La Finta Semplice, which obtained the approbation of Haffe and Metatalio. At the houfe of the prince of Kaunitz, it often happened that the firtt Italian air which came to hand would be given him, that in the prefence of the company he might add to it accompaniments for numerous inftruments; which he would write in the firtt tyle of excellence, and without the leall premeditation. This is at once a proof with what acutenefs of obfervation he had liftened to the mufic of the beft malters; how intimate he had already rendered himfelf with the characters, capacities, and effects of the different inltruments; and what fikill he had acçuired in that abitrufe art of mixed combination which, while it calculates the conjoint effect of founds, as they regard the eftablifhed laws of harmony, accommodates the dif. ferent parts to the feales, tones, and powers of the refpective inftruments by which they are to be executed. It was at this tine alfo that, although but twelve years of age, he compofed the mufic for the confecration of the church of orphans, at the performance of which he himfelf prefided.

In ${ }_{17} 69$ Mozart again returned to Salzburgh, where he became maitre de concert. Not having yet feen Italy, in December of the fame year he fet out for that feat of the fine arts. Thofe talents which had already excited the admiration of Germany, France, and England, now awakened in that land of mufical tatte the moft lively enthufiafm.

In 1771 he had no fooner given perfonal proofs of
his gernius, than la firibura for the following carnival Mozart. was conferred upon him. He vilited Bologna, then as famous for harmonic excellence as Naples, where the celebrated theorit Martini was amazed to fee a German hoy work and execute the theme of a fugue which he prefented to him, in the extraordinary ftyle in which Mozart acquited himfelf. He next went to Florence. Florence even enhanced the eulogiums which Bologna had lavifhed upons him.

During the holy week he arrived at Rome, and affifted at the Miferere in the Sixtine chapel; which performance is juftly confidered as the ne plusultra of vocal mufic. This circumftance claims particular notice, as inducing a proof of another faculty of his mind, only to be equalled by thofe wonderful powers which he had already demonftrated. He was prohibited front taking a copy of this Miferere, and therefore piqued himfelf on retaining it in his memory. Having heard it with attention, he went home, made out a manufcript from recollection, returned the next ddy to the chapel, heard the piece a fecond time, corrected the rough draught, and produced a tranfcript which furprifed all Rome. This diferere formed a foorer numerous in its parts, and extromely difficult of execntion. His mind had embraced and retained the whule!

He foon after received from the Pope the order of the gilt fpur ; and at Bologna was cumplimented, by an unanimous decilion, with the title of Member and Mafier of the Phil-barmonic Academy. As a proof, pro forma, of his qualifications for this academical honour, a fugue, for four vcices, in the church flyle, was required of him, and lie was fhat up alone in his chamber. He completed it in härin an hour, and received his dipluma. This evinced that he poffeffed an imagination confantly at his command, and that his mind was ftored with all the riches of his beloved feience.

The opera which he compufed for Milan was called Miibridates. This piece procured him la fcrittura for the grand opera of the carnival of $1-73$, which was his Lucio Sulla. At length, after a tour of fifteen months. he returned to Salzburgh.

In 1771 Mozart vilited Paris; but not relifhing the mulic of that capital, he foon quitted it, and returned to his domeftic comforts. In 1781, at the requeit of the clector of Bavaria, he compofed the opera of $I d o$. menco for the carnival of that year. The general merit of this opera is fo great, that it might ferve for the bafis of a dittinguifhed reputation. At his twenty.fifth year he was invited to Vienna, where he continued fpreading, as from a centre, the talte of his compofitions through all Germany, and the lutre of his name over the whole of Europe.

Of all the virtuofi of the piano forte who then crowded Vienna, Mozart was much the molt fikiful. His finger was extraordinarily rapid and tafteful, and the execution of his left hand exceerded every thing that had before been heard. His touch was replete with delicacy and expreflion; and the profound fiudy he had beflowed on his art, gave his performance a flyle the moft brilliant and finihed. His compofitions had a rapid circulation; and every new piece the connoiffeurs were ftruck with the originality of its calt, the novelty of the paffages, and the energy of the effect.

Jofeph II. folicitous for the perfection of the German opera, engaged Mozart to compofe a piece. He accordingly for the firlt time in 1782 . It excited the jealouly of the Italian company, who therefore ventured to cabal againft it. The emperor, addrefling himfelf to the compofer, faid, "It is too fine for our ears, my dear Mozart, and moft cloarmingly crowded with notes." "Precifely what it ought to be," replied the fpirited mufician, who juftly fulpected that this remark had been fuggefted to Jofeph by the envious Italians. o Though I cannot deferibe, as an auricular evidence, (lays the faithful author of the biography), the applaufes and the admiration which this opera produced at Vienna, yet I have witneffed the enthufiarm it excited at Prague among all the comoiffeurs, as well as among thofe whofe ears were lefs cultirated. It was faid, that all which had been heard before was not mufic: it drew the moft overflowing audiences: every body was amazed at its new traits of harmony, and at paffages fo original, and till then fo unheard from wind inftruments."

The cautioue reader will perhaps hefitate to admit, in its fulleft extent, this account by the author of the biography; but even after an allowance for fome exaggeration, the mofl phlegmatic will grant that much muft have been atchieved by this great malter, to afford a balis for fo glowing a picture of the merit and fuccefs of L'enlevement du Serail. During the compofition. of this opera, he married Mademoifelle Weber, a diftinguifhed virtuofa; and the piece was fuppofed to owe to this felicitous circumftance much of that endearing character, that tone of tendernefs, and that expreffion of the fofter paffions, which form its principal attractions.
"The Marriage of Figaro," which was in the higheft repute at all the theatres, was in the year 1787 trausformed into an Italian opera; and Mozart, at the inllance of the empernr, fet it to mufic. This piece was highly received everywhere, and kept poffeffion of the theatre at Prague during almoft the whole of the winter in which it firft appeared: numerous extracts were made from it, and the fongs and dances of Figaro were vociferated in the ftreets, the gardens, and the taverns. Mozart came that very winter to Prague, and performed in public on the piano forte. 'His auditors at all times liftened to him with admiration ; but whenever he played extempore, and indulged the fpontaneous and uninterrupted fallies of his fancy, which he fometimes would for more than half an hour, every one was feized with the moft enthufiaftic raptures, and acknow. ledged the unrivalled refources of his imagination. Ahout this time the manager of the theatre contracted with him for the compolition of a new opera, which, when produced, was called Il diffoluto Punito, or Don Giovanni. His reputation was now fo exalted, that the Bohemians piqued themfelves on the circumftance that this opera was compofed for their entertainment.

But this fame, this great and univerfal applaufe, had not yet produced to the admired artilt any folid advantages; he had obtained no place, no fettled income; but fubfifted by his operas, and the inftructions and occafional concerts which he gave. The profits of thefe proved infufficient for the ftyle which he was obliged to fupport ; and his finances became much deranged. The critical fituation in which be now found himfelf, made him refolve to quit Vienna, and feek an afylum in

London; to which metropolis he had often been invi- Mezart. ted; but Jofeph nominating hin compofiteur de la chambre, though, with a very inadequate falary, he was induced to accept it ; and Germany had the advantage of retaining him.

It is lamentable that premature genius too rarely enjoys a long career: The acceleration of nature in the mental powers feems to hurry the progrefs of the animal cecorrmy, and to anticipate the regular clofe of temporal exifience.

In the year 1791, Mozart, juft after he had received the appointment of Maitre de chapelle of the church of St Peter, and when he was only thirty five years of age, paid the laft tribute ; and left the world at once to admire the brilliancy, and lament the fhurtnefs of his earthly fojournment.

Indefatigable, even to his death, he produced, during the laft few months of his life, his three great mafter pieces La Flutte Enchantée, La Clemence de Titus, and a Requiem, his latt production. La Flutte Enchantée was compoled for one of the theatres at Vienna; and no dramatic Olio could ever boaft a greater fuccefs. Every: air Atruck the audience with a new and fweet furprife ; and the tout enferble was calculated to afford the deepeft and moft varied impreffions. This piece had, in fact, fo great a number of fucceffive reprefentations, that for a long time it was unneceffary to confult the opera. bill ; which only announced a permanent novelty. And the airs felected from it, and repeated throughout the empire, as well in the cottage as in the palace, and which the echoes have refounded in the moft diftant provinces, favoured the idea that Mozart had actually the defign to enchant all Germany with his Flutte Enchantée.

La Clemence de Titus was requefted by the fates of Bohemia for the coronation of Leopold. The compofer began it in his carriage during his route to Prague, and finifhed it in eighteen days.

Some circumftances attending the compofition of the piece which we have already mentioned as the laft effort of his genius, are too interefting to be omitted. A Thort time before his death, a ftranger came to him with the requeft that he would compofe, as fpeedily as poffible, a requiem for a catholic prince, who, perceiving himfelf on the verge of the grave, wifhed, by the excecution of fuch a piece, to footh his mind, and familiarife it to the idea of his approaching diffolution. Mozart undertook the work; and the ftranger depofited with him as a fecurity 400 ducats, though the fum demanded was only 200 . The compofer immediately began the work, and during its progrefs felt his mind unufually raifed and agitated. He became at length fo infatuated with his requiem, that he employed not only the day, but fome hours of the night in its compofition. One day, while he was converfing with Madame Mo. zart on the fubject, he declared to her that he could not but be perfuaded that it was for himfelf he was writing this piece. His wife, diffreffed at her inability to diifipate fo melancholy an impreffion, prevailed on him to give her the foore. He afterwards appearing fomewhat tranquillized, zad more matter of himfelf, the returned the foore to him, and he foon relapped into his former defpondency. On the day of his death he afked for the requiem, which was accordingly brought to his bed: "Was I not right (faid he), when I declared that it

M O Z

Mozart, was for myfelf I was compofing this funeral piece ?" And the tears trickled from his eyes. This produc. tion of a man, impreffed during iss compofition with a prefentiment of his approaching death, is unique in its kind, and contains paflages which have frequently drawn tears from the performers.
Only one complaint efcaped him during his malady : "I muit quit life (faid he), precifely at the moment when I could enjoy it, free from care and inquietude; at the very time when, independent of fordid fpeculations, and at liberty to follow my own principles and inclinations, I flould only have to write from the impulfes of my own heart: and I am torn from my family jult when in a fituation to ferve it." Muzart, at the time of his death, was conliderably involved in debt ; but Vienna and Prague difputed the honour of providing for his widow and children.

The countenance of this great mafter did not indicate any thing uncommon. He was fmall of tature; and, except his eyes, which were full of fire, there was nothing to announce fuperiority of talent. His air, unlefs when he was at the harpfichord, was that of an abfent man. But when he was performing, his whole phyfiognomy became changed: a profonnd ferioufnefs recalled and fixed his eyes; and his fentiments were expreffed in every movement of his mufcles. Never has a mutician more fuccefsfully embraced the whole extent of his art, and fhone with greater luftre in all its departments. His great operas, no lefs than his mott fimple fongs; his learned fymphonies as well as his airy dances-all carry the flamp of the richelt imagination, the deepefl fenfibility, and the pureft tafte. All his works develope the originality of his genius; and imply a mind great and exalted; an imagination which ftrikes out for itfelf a new courfe. He therefure merits to be ranked with that fmall number of original geniufes, thofe phonomena /plendida, who form an epoch in their art, by carrying it to perfection, or giving it an unknown career.

It is in the employment of wind inftruments that Mozart difplays his greaten powers. His melody is ahways fimple, natural, and full of force; and expreffes with precifion the fentiments and individual fituations of his perfonages. He wrote with extraordinary facility. "La Clemence de Titus," the reader will recollect, cof him the Itudy of but eighteen days; and his requiem, which is equal in length to an opera, was produced in four weeks. It is alfo worthy of remark, that the overture to his Don Giovanni was not begun till the night befure the piece was to be performed. At midnight, after having devoted the evening to amufement, he locked himfelf up in his Atudy, and compofed it. in a few hours. His memory was wonderfully retentive, as we may judge from his copying by recollection the miferere at Rome. But a fact equally aftonifhing is, that, foon difcovering the eagernefs of people to procure his works, and fearful that they might be pirated, it was his conltant cuifom to tranferibe from the foores of his fenatas only a part for one hand, and at the public performance to fupply the other by memory.

He very early began to difplay that true dignity of an artift which renders him indifferent to the praifes of thofe who are unqualitied to judge. The commendations of the ignorant great he never confidered as fame. His hearers, whether the wealthy or the titled, mult

Suppl. Vol. II. Part I.
have acquired fome credit for their judgment before he could be ambitious of their applaufe. Indeed he entertained fo jult a fenfe of fcientific clevation and importance, that be would infilt upon refpect. And the leaf noife or idle batble, white he was at the influnment, excited a difpleafure which he was too indignant to conceal. Once, to the honour of his feelings, he fuddenly rofe from his feat, and left his inattentive auditory to experience the keen though tilent reproach of infulted genius.

His mind was by no means unlettered; not was it embellifhed with one feience alone. He was matter of feveral larguages, and had made confiderable progrefs in the mathematics. He was honelt, mild, generons, full of franknefs; and with his friends had an air at once amiable, gay, and free from the leaft tincture of pedantry.

Far from viewing with envy the fuccefs of others, a weaknefs ton clofely interwoven in the general nature of man, he was always juit to the talents of his fellow profeffors; and valued and refpected merit wherever he found it ; a clearer proof of which cannot be adduced than the following circumftance : At a concert, where a new piece compofed by the celebrated Jofeph Haydn was performed, a certain mufician, who never difcovered any thing worthy of praife except in his own productions, did not fail to criticife the mufic ; exclaiming to Mozart, "There now! there again! why, that is not what I fhould have done:" "No; neither fhould I (replied Mozart); but do you know why? Becaufe neither you nor I fhould have been able to conceive it."

MUMBO-Jumbo, a ftrange bugbear employed by the Pagan Mandingues (fee Manding, Suppl.) for the purpole of keeping their women in fubjection. Polygamy being allowed among thefe people, every man marries as many wives as he can conveniently maintain; and the confequence is, that family quarrels fometimes rife to fuch a height, that the hufband's authority is not fufficient to reltore peace among the ladies. On thefe occafions, the interpofition of Mumbo. Fumbo is called in ; and it is always decifive. This Arange minifter of juftice, who is either the hufband himfelf, or fome perfon intructed by him, difguifed in a fort of mafquerade habit, made of the bark of trees, and armed with the rod of public authority, announces his coming by loud and difmal fcreams in the woods near the town. He begins the pantomine at the approach of night; and as foon as it is dark, he enters the town, and proceeds to the Bentany or market-place, at which all the inhabitants immediately affemble.

It may eafily be fuppofed that this exhibition is not much relifhed by the women; for as the perfon in difguife is entirely unknown to them, every married female fufpects that the vifit may poffibly be intended for herfelf; but they dare not refufe to appear when they are fummoned; and the ceremony commences with fongs and dances, which continue till inidnight, about which time Munbo fixes on the offender. This unfortunate victin being thereupon immediately feized, is ftripped naked, tied to a poft, and feverely fourged with Mumbo's rod, amidtt the fhouts and derifion of the whole affembly; and it is remakable, that the reft of the women are the loudeft in their exclamations on this occation againft their unhappy filter. Daylight puts an end to this N n
indecent

Mczart. Numba.

Munfy indecent and unmanly revel. It is truly anonihing that
pofture, and that the men fhould fo faithfully keep
their own fecret. That the women are dehuded feems evilert; for Mr Park affures us, that the drefs of Mumbo is fuffered to hang on a tree at the entrance of each town; which could hardly be the eafe, if the women were not perfuaded that it is the drefs of fome fuperiatural being.

MUNSHY, a Perfian fecretary or writer.
MUNSUB, in the language of Bengal, a dignity or command conferred by the emperor.

MITNSUBD AR, a dimnitary or commander.
MURRAY (William), afterwards Earl of Mansfield and Lord Chice Juftice of England, was the fourth fon of David Vitcount Stormont. He was horn on the 2d day of March 1705 at Perth, in the kingdom of Scotland, of which kingdom his father was a peer. His refidence in Scotland, however, was of fhort duràtion; for he was carried up to London at the early age of three years. Hence his tutal exemption from the peculianties of the dialect of his native country.

At the age of fourteen he was admitted as a king's fcholar of Weltmintter fchool ; and during his refidence in that feminary, fays his contemporary Bifhop Newton, he gave early proofs of his uneommon abilities, not fo much in his poetry, as in his other exercifes; and particularly in his declamations, which were fure tokens and prognotics of that bloquence which grew up to fuch a maturity and perfection at the bar, and in both houfes of parliament. At the election in May 1723, he flood firlt on the lift of thofe gentlemen who were fent to Oxford, and was entered of Chrif Chureh, June the 18 th , in that year. In the year 1727 he har taken the degree of B.A. and on the death of King Geerge the Firft, was amonglt thofe of the univerlity who com. pofed verfes on that event.

In April 1724 he was admitted a fundent of Lincolin's Inn, though he fill continued to refide much in the univerfity; where, on the 26 th of June 1730, he took the degree of M. A. and foon afterwards left Oxford, determined to make the tour of Europe before he fhould devote hinfelf ferioufly to bulinefs. About this period he wrote two letters to a young nobleman on the fludy of ancient and mudern hiftory, which are publifhed by his biugrapher Mr Holliday, and flew how amply his own mind was then ftured with general literature.

On his return to England he commenced his legal fudies; but proceeded not in the way then ufually adopted, of labouring in the clambers of a \{pecial pleader, or copying (to ufe the words of llackitone) the trafl of an attorney's office. Being bleffed with the puwers of oratory in their highelt perfection, and having foon an opportunity of difplaying them, he very early acquired the notice of the chancellor and the judges, as well as the confidence of the inferior practifers. How much he was regarded in the houfe of lords, Pupe's well-known couplet will prove:

Grac'd as thon art with all the power of words, So known, fo honour'd at the houfe of lords.

The graces of his elocution, however, produced their Muray. ufual effect with a certain clafs of people, who would not believe that fuch bright talents could affociate with the more folid attainments of the law, or that a man of genius and vivacity could be a profound lawyer. As Pope obferved at that time,

The Temple tate two brother ferjeants faw,
Who deem'd each other oracles of law ;
With equal talents thefe congenial fouls,
One lull'd the exchequer, and one flum'd the rolls; Each had a gravity would make you fplit, Aud fhook his head at Murray as a wit.

It is remarkable that this ridiculous prejudice accompanied Lord Mansfield to the end of his judicial life, in fpite of daily proofs exlibited in the court of King's Bench and in the Houfe of Lords, of very profound knowledge of the abftrufeit points of jurifprn. dence. Lord Chefterfield has given his fanction to this unfounded opinion. In a letter to his fon, -dated Feb. 12. 1754, he fays, "The prefent Solicitor General Murray has lefs law than many lawyers, but he has more practice than any, merely upon account of his elo. quence, of which he has a never-failing flream."

In the outfet of Lord Mansfield's life, it will be the lefs furprifing, that a notion fhould have been entertained of his addicting himfelf to the purfuits of Belles Lettres too much, when the regard newn to him by Mr Pope, who defpotically ruled the regions of literature at that period, is confidered. That great Poet feemed to entertain a particular affection for our young lawyer, and was eager to fhew him marks of his regard. He addreffed to him his imitation of the 6th Epiltle of the Firl Buok of Horace; and even condelcended to become his mafter in the art of elocution. "Mr Murray (fays lis biographer) was one day furprifed by a gentleman of Lincoln's Inn, who could take the liberty of entering his rooms without the ceremonious intro. duction of a fervant, in the lingular act of practifing the graces of a Ppeaker at a glafs, while Pope fat by in the character of a friendly preceptor. Mr Murray, on this occation, paid that poot the landfome compliment of Tu es mibi Mecenas (A)."

Whatever propenfities this fprightly lawyer might have towarls polite literature, he did not permit them to divert his attention from his profeffion. He foon ditilinguifhed himfelf in an extraordinary manner, as may be feen by thofe who are converfant with, or chufe to refer to the Books of Reports. In the year 1736, the murder of Captain Porteons by a mob in Edinburgh, after he bad been reprieved, occafioned a cenfure to fall on that city, and a bill of pains and penalties was brought into parliament againt the Lord Provof and the corporation; which, after various modifications, and a firm and unabated oppofition in every flage of its progrefs, pafled into a law. In both Houfes Mr Murray was enployed as an advocate, and fo much to the fatisfaction of his clients, that afterwards, in September 1743, he was prefented with the freedom of Edinburgh in a gold box, profefedly, as it was declared,
(A) It is thus that eminence is attained even by genius, and Mr Murray was properly employcd ; thopgh we do not clearly perceive the uie of the glafs, when his mafter was watching all his geftures.

$M \quad \mathrm{U}$

Mur:ay. red, for his fignal fervices by fpeeches to both Houfes of Parliament in the conduct of that bufinefs.

On the 24 th of November 173 , he had married Lady Elizabeth Finch, daughter of the Earl of Winchelfea, and in the month of November $\mathbf{1 7 4 2}$, was appointed Solicitor Gencral in the place of Sir John Strange who refigned (B). He likewife was chofen to reprefent the town of Buroughbridge in Parliament, for which place he was alfo returned in 1747 and 1757°

In the month of March $1746-7$ he was appointed one of the managers for the impeacliment of Lord Lovat by the Houfe of Commons, and it fell to his lot to obferve on the evidence previous to the Lords giving their judgment. This tafk he executed with fo much candour, moderation, and gentleman-like propricty, that Lord Talbot, at the conclufion of his fpeech, paid him the following compliment : "The abilities of the learned manager who jult now foke, never appeared with greater fplendour than at this very hour, when his candour and humanity has been joined to thofe great abilities which have already made him fo confpicuous, that I hope one day to fee him add luftre to the dignity of the firft civil employment in this nation." Lord Lovat limfelf alfo bore teltimony to the abilities of his adverfary: "I thought myfelf (fays his lordfhip) very much loaded by one Murray (c), who your lordfhips know was the bittereft evidence there was againft me. I have dince fuffered by another Mr Murray, who, I mult fay with pleafure, is an honour to his country, and whofe cloquence and learning is much beyond what is to be expreft by an ignorant man like me. I hęard him with pleafure, though it was againlt me. I have the honour to be his relation, though perbaps he neither knows it nor valites it. I wifh that his being born in the North may not hinder him from the preferment that his merit and learning deferve."

During the time that Mr Murray continued in office, he fupported, with great ability, the adminittration with which he was conneeted; and, of courfe, rendered himfelf obnoxions to thofe who were in oppofition. Nothing, however, could be urged either againt his public conduct or his private life; but he was involved in fome trouble by an ill-devifed tale, concurring with the known principles of the family of Stormont, to make him fufpected of Jacobitifm. Of this affair, a full and particular account is given by the date Lord Melcombe in the following words:
" Meffrs Murray, Fawcett, and Stone, were much acquainted, if not fchool fellows, in earlier life. 'Their fortune led them different ways; Fawcett's was to be a country lawyer and recorder of Newealtle. Johnfon, now Bifhop of Gloucefter, was one of their affociates.

$283] \quad \mathrm{M} \mathrm{U} \mathrm{R}$

On the day the King's birth day was kept, they dined Murrar. at the Dean of Durham's at Durham ; this Faweet, l.ord Ravenfworth, Major Davidfon, and one or two more, who retired after dinner into another room. The converfation turning upon the late Biflop of Gluncefter's preferments, it was afked who was to have his prebend of Durham? The Dean faid, that the laf news from Londou was, that Dr Johnfon was to have it : Fawcett faid, he was glad that Johinfon got off fo well, for he remembered lim a Jacobite feveral years agu, and that he ufed to be with a relation of his who was very difaffected, one Vernon, a mercer, where the Pretender's health was frequently drunk. This pafling among a few familiar acquaintance, was thought no more of at the time : it fpread, however, fo much in the North (how I never heard accounted for), aud reached town in fuch manner, that Mr Pelham thought it neceffary to defire Mr Vane, who was a friend to Fawcett, and who employed him in his bulmefs, to write to Fawcett, to know if he had faid this of Johnfon, and if he had, if it was true.
" 'This letter was written on the gth of January ; it came to Newcaltle the Friday following. Fawcett was much furprifed; but the poft going out in a few hours after its arrival, he immediately acknowledged the letter by a long, but not very explicit, anfwer. This Friday lappened to be the club-day of the neighbouring gentlemen at Newcaftle. As fonn as Lord Raventworth, who was a patron and employer of Fawcett, came into the town, Fawcett acquainted him with the extraordinary letter he had received; he told him that he had already anfwered it; and being afked to fhew the copy, faid he kept none; but delired Lord Ravenfworth to recollect if he held fuch a converfation at the Deanry of Durham the diy appointed for the birth-day. Kavenfworth recollected nothing at all of it: they went to the club together, and Ravenfworth went the next moreing to fee his mother in the neighbourhoud, with whom he flaid till Monday; hut this thing of fuch confequence lying upon his thoughts, he returned by Newcallle. He and Fawcett had another converfation; and in endeavouring to refrefh each other's memory about this dreadful delinquency of Johnfon, Fawcett faid he could not recollect pofitively at fuch a ditance of time, whether Johnfon drank thefe healths, or had been prefent at the drinking of them, but that Murray and Stone had done both feveral times. Ravenfworth was exceffively alarmed at this with relation to Stone, on account of his office about the prince; and thus the affair of Johnfon was quite forgotten, and the epifode became the principal part. There were many more conferences between Raveufivorth and FawNn_{2}
cett
(в) On this occafion a doggrel poem was publifhed by one Morgan, a perfon then at the bar, entitled, "The Caulidicade," in which all the principal lawyers were fuppofed to urge their refpective claims to the poft. At the conclufion it is faid,

> Then Murray, prepar'd with a fine panegyric
> In praife of hinfelf, would have fpoke it like Garrick; But the Prefident ftopping him faid, "As in truth
> "Your worth and your praife is in every one's moutl,
> "Tis needlefs to urge what's notorioufly known,
> "The office, by merit, is your's all mult own;
> "The voice of the public approves of the thing,
> "Concurring with that of the Court and the King."
(c) One of the evidences againlt him.

Murrap. cett upon this fubjeet, in which the latter always perfifted that Stone and Murray were prefent at the driuking, and did drink thofe healths. It may be obferved leere, that when he was examined upon oath, he fivore to the year 1731 or 1732, at latelt. Fawcett comes up as ufual about his law bufinefs, and is examined by Meffrs Pelham and Vane, who never had heard of Murray or Stone being named: he is afked, and anfwers only with relation to Iohnfon, never mentioning either of the others; but the love of his comatry, his king, and potterity, burned fo ftrongly in Ravenfworth's bofom, that he conld lave no reft till he had difcovered this enormity. Accordingly, when he came to town, he acquainted the miniflry and almoft all his great friends with it, and inifited upon the removal of Stone. The miniftry would have fighted it as it deferved ; but as he perfifted, and had told fo many of it, they could not help laying it before the king, who, though he limfelf fighted it, was advifed to examine it ; which examination produced the mott injudicious proceeding - Lord AICl- in parliament *."
combe's Di.. This is Lord Melcombe's account ; and the fame ry, P. 220. author informs us, that Mr Murray, when he heard of the committee being appointed to examine this idle affair, fent a meffage to the king, humbly to acquaint him, that if he floould be called before fuch a tribunal on fo fcandalous and injurious ais account, he would refign his office, and would refufe to anfwer. It came, however, before the Houfe of Lords, 22d January 1753, on the motion of the Duke of Bedford.

The debate was long and heavy, fays Lord Melcombe; the Duke of Bedford's performance inoderate enough ; he divided the Houfe, but it was not told, for there went below the bar with him the Earl. Harcourt, Lord Townhend, the Bifhop of Worcefter, and Lord Talbot only. The Bihop of Norwich and Lord Harcourt both fpoke, not to much purpofe; but neither of them in the leaft fupported the Duke's quertion.

Upon the whole, Lord Melcombe concludes, "It was the worft judged, the worft cxecuted, and the worft fupported point that I ever faw of fo much expectation."

The King, his late Majefty, viewed it in its true light; and is reported to have faid, "Whatever they were when Weftminfter boys, they are now my very good friends." He was likewife, as we have been informed by a gentleman connected with the family of Stormont, fo delighted with Mr Murray's fpeech in his own vindication, that he defired to have a copy of it, as a model of dignified and candid eloquence. Fawcett, the original authur of the flory, feems indeed to have been a very fucaking knave, totally unworthy of credit. Bifhop Johnfon, who was overlooked in the zurmoil, excited by the fuppofed gult of Murray and Stone (fee Stone, in this Suppl.) went to Fawcett's chambers in the Temple, and defired an interview. Being told by the fervant that his mafter was not at home, he renewed his vifit very early next morning, and de. clared his refolution to wait till Mr Fawcett should rife, the laundrefs having inadvertently confeffed that he was ftill in bed. Fawcett, upon this, left his thorny pillow with reluctance; for fomething fharper than thorns (fays Mr Holliday) awaited him, which he could not now poffibly avoid. The refult of the interview produced expreffions of deep contrition, together with
a letter addreffed to the Lord Bifhop of Gloucefter, Murray. ackuouledging, in the moll explicit terms, that his Lordhip was innocent of the charge which he had been the inftrument of bringing againft him.

On the advancement of Sir Dudley Ryder to the chief jufticefhip of the King's Bench in 1754, Mr Murray fucceeded him as attorney general ; and on his death, November 175 π, again became his fuccefor as chief juftice, when he was created Baron of Mansfield. in the connty of Nottingham, with remainder to the heirs male of his body lawfully begotten.

As foon as Lord Mansfield was eftablifhed in the King's Bench, he began to make improvenents in the practice of that conrt. On the 12 th of November, four days after he had taken his feat, he made a very neceffary regulation, obferving, "Where we have no doubt, we ought not to put the partics to the delay and expence of a farther argument; nor leave other perfons, who may be interefted in the determination of a point fo general, unneceffarily under the anxiety of fufo pence."

The anxiety of fufpence, from this period, was no longer to be complained of in the court of King's Bench. The regularity, punctuality, and difpatch of the new chief jullice, afforded fuch general fatisfaction, that they, in procefs of time, drew into that court moft of the caufes which could be brought there for determination.
Sir Janies Burrows fays, "I am informed, that at the fittings for London and Middlefex only, there are not fo few as 800 caufes fet down in a year, and all difpofed of. And though many of them, efpecially in London, are of confiderable value, there are not mure, upon an average, than between 20 and 30 ever heard of afterwards in the fhape of fpecial verdicts, fpecial cafes, motions for new trials, or in arreft of judgment. Of a bill of exceptions there has been no inftance (I do not include judgments upon criminal profecutions; they are neceffary confequences of the convitions). My reports give but a very faint idea of the extent of the whole bufinefs which comes before the court : I only report what I think may be of ufe as a determination or illuftration of fome matter of law. I take no notice of the numerous queftions of fact which are heard upon affidavits (the moft tedious and irkfome part of the whole bufinefs). I take no notice of a variery of conteftations, which, after having been fully difcuffed, are decided without difficulty or doubt. I take no notice of many cafes which turn upon a conftruction fo peculiar and particular, as not to be likely to form a precedent for any other cafe. And yet, notwithflanding this immenfity of bulinefs, it is notorious, that, in confequence of method, and a few rules which have been laid down to prevent delay (even where the parties themfelves would willingly confent to it), nothing now hangs in court. Upon the laft day of the very laft term, if we exclude fuch motions of the term as by defire of the parties went over of courfe as peremptories, there was not a fingle matter of any kind that remained undetermined, excepting one cafe relating to the proprietary Lordfnip of Maryland, which was profeffedly poftponed on account of the prefent fituation of America. One might fpeak to the fame effect concerning the laft day of any former term for fome years backward."

The fame author alfo informs us that, excepting two cafes,
cafes, there had not been, from the 6th of November 1756 to the time of his then prefent publication, 26 th May 3776, a final difference of opiniot in the court in any cafe, or upon any point whatfoever. " lt is remarkable, too (he addis), tliat, excepting thefe two cales, no judgment given during the fame period has been reverfed, either in the exchequer chaniber or in parliament; and even thefe reverfals were with great diverfity of opinion among the judges." Of the two eafes here mentioned, one was the famons queftion conecrning literary property, which the majority of the judges of the court of King's Bencl held to be permanent; and in fupport of which opinion, fuch arguments were urged by thic chief juttice, as have not yet perhaps been completely anfiwered.
The ill fuccefs of the war, which had lately been begun, nceafioned a change in the adminittration; and the conflicts of conter:ding parties rendered it impracticable for the crown, at that jumeture, to fettle a new minitry. In order therefore to give paufe to the violenee of buth fides, Lord Mansfield was induced to aceept the poft of chancellor of the exchequer on the 9 th of April 1757 ; which he held until the 2 d of July in the fame year. During this interval, he employed himfelf, with great fuccefs, to bring about a cualition; whici being effected, produced a feries of events, which raifed the glory of Great Britain to the ligheft point at which it has ever been feen. In the fame year he was offered, but refured, the office of Lord High Chancellor ; and in November 1758, he was elected a governor of the charter houfe, in the room of the Duke of Marlborough, then lately deceafed.

For feveral years after this period, the tenor of Lord Mansfield's life was marked only with a moft feduluus difcharge of the duties of his office. In 1760 Geo . II. died, and the new reign commenced with alterations in the adminiftration; which gave rife to a virulent fpirit of oppofition, conducted with a degree of violence and afperity never known at any former time. As a friend to the thea adminiftration, Lord Mansfield was marked out for a more than ordinary fhare of malicious invective. It is in allufion to this, that Warburton, after tracing the rife and progrefs of the irreligion and licentioufnefs which then prevailed, and obferving that, amid fuch general corrnption, the pure adminitfration of public juftice Atill afforded a cheerful confolation to thinking men, proceeds thus:
"But the evil genius of England would not fuifer us to enjoy it long; for, as if envious of this laft fupport of government, he hath now inltigated his blackeft agents to every extent of their malignity; who, after the moft villanous infults on all other orders and ranks in fociety, have at length proceeded to calumniate even the king's fupreme court of juttice, under its ableft and molt unblemifhed adminiftration. After this, who will not be tempted to defpair of his country, and fay with the good old man in the fcene,

A change of adminiftration again took place in $\mathbf{r} 6 \mathbf{5}$, which introduced the Marquis of Rockingham and his friends to govern the country; and the meafures then adopted not agreeing with Lord Mansfield's fentiments, he, for the firft time, became an opponent of government. On the bill for repealing the ftamp act, be fpoke, and divided agaiuft it ; and is fuppofed to have had fume flare in the compofition of the protefts on that occafion, though he did not fign them. In the fame year, he is faid to have animadverted, with no fmall degree of feverity, on the incantious expreffions of Lord Canden, on the affair of prohibiting the exportation of corri, that it was but a 40 days tyranny at the outide. (s).

In 1767 the Difinenters caufe was determined, in whicht Lord Mansfield delivered a fpeech, which has fince been printed, and fhews his Lordhip to have been at feady friend to religious toleration, as well as to the rights of the eftablifhed church. The confeientious Diffenters themfeives lavifhed upon that fpeech the higlett praife; whilit others of them, in the fucceeding year, deluged the public prints with torrents of abufe on the Chief Juftice. In that year was the general election. Mr Wilkes returned from alroad, became a candidate for the city of Londun, and afterwards was chofen reprefentative for the county of Middlefex. Having been outlawed fome years before, he now applied for a reverial of that proceeding. On the 8 th of June, the confideration of it came before the court of King's Bench; when the judges delivered their opinions very fully, and were unanimous that the outlawry was illegal, and mult be reverfed. On this oceafion Lord Mansfield took the opportunity of entering into a full flateinent of the eafe, and a jultification of his own conduct. The reader will find the eafe reported by Sir James Burrow; from whon we fhall extract the fullowing, which appears to have been the moft important part of his Lordhhip's fpeech.
" It is fit to take fome notice of the varions terrors lung out ; the numerous crowds which have attended, and now attend, in and about the hall, out of all reach of hearing what paffes in court; and the tumults which in other places have flaminefully infulted all order and government. Audacious addrefics in print dictate to us, from thofe they call the people, the judgment to be given now, and afterwards upou the conviction. Reafons of policy are urged, from danger to the kingdom, by commotions and general confution.
" Give me leave to take the opportunity of this great and refpectable audience, to let the whole world know all fuch attempts are vain. Unlefs we have been able to find an error which will bear us out to reverfe the outlawry, it muft be affirmed. The conflitution does not allow reafons of ftate to influence our judgment :

God
(D) See the dedication of the $\mathrm{g}^{\text {th }}$ edition of the Divine Legation of Mofes, which deferves to be read at prefent with peculiar attention, as the work of a man of gigaritic talents, deeply read in law as well as in theology.
(E) The fpeeehes in the debate were never printed; but the fubflance of them all was confolidated in a pamph. let publihed at the time, intitled, "A Speech againft the fufpending and difpenfing prerogative," \&vo, Since reprinted in Debrett's Debates, Vol. IV. P. 384.

M U R

2:turay. God forbid it thould! We mull not regard politie:al confequences, how formidable focver they may be; we are bound to fay, Fial Yufitia, mat Calum. The conflitution trufts the king with reafons of fate and policy: He may prordon offences ; it is his to judge whether the law or the criminal thould yield. We have no election. None of us encouraged or approved the commiffion of either of the crimes of which the defender is convicted: none of us had any hand in his being profecuted. As to nyfelf, I took no part (in another place) in the addreffes for that profecution. We did not ad. vife or alfill the defender to fly from jullice; it was his own act, and he murk take the confequenees. None of us have been confulted, or had any thing to do with the prefent profecution. It is not in cur power to ftop it ; it was not in our power to bring it on. We caunot pardon. We are to fay what we take the law to be If we do not \{peak our real opinions, we prevaricate with God and our own confciences.
"I pals over many anonymous letters 1 have received : thofe in print are public; and fome of them have been brought judicially before the court. Whoever the writers are, they take the wrong way. I will do my duty unawed. What am I to fear? That mendax infamia from the prefs, which daily coins falfe facts and Falfe motives? The lies of calumny carry no terror to me. I truff that my temper of mind, and the colour and conduct of my life, have given me a fuit of armour againit thefe errors If, during this king's reign, I have ever furported his government, and aflifted his meafures, 1 lave done it without any other reward than the confcioufnefs of doing what I thought right. If I have ever oppofed, I lave done it upon the points themfelves, without any collateral views. I honour the king, and refpect the people. But many things acquired by the favour of either are, in my aceonnt, objects not trorth ambition. 1 wifh popularity; but it is that pojularity which follews, not that which is rui after.It is that popularity which, fooner or later, never fails to do juftice to the purfuit of noble ends by noble means. I will not do that which my confcience tells tne is wrong upon this occainon, to gain the huzzas of thoufands, or the daily praife of all the papers which come from the prefs. I will not avoid doing what I think is right, though it fhould draw on me the whole artillery of libels, all that falfehood and malice can invent, or the credulity of a deluled populace can fwallow. I can fay with a great magittrate, upon an occafion, and under circumftances not unlike, 'Eyo boc onimo femper fui, ut invidian virtute partam, gloriam, non invidiam putarem.'
" The threats go furthur than abule: Perfonal violence is denounced. I do not believe it : it is not the genius of the worlt men of this country in the worlt of times. But I have fet my mind at relt. The laft end that can happen to any mann never comes too foom, if he falls in fupport of the law and liberty of lis country (for liberty is fynonymous to law and government). siuch a fhock, too, mult be productive of public cुocd: It might awake the better part of the kingdom out of that lethargy which feems to have benumbed them; and hring the mad part back to their fenfes, as men intoxicated are fometimes flumed into fobriety.
"Once for all, let it be underfiood, that no endeavours of this kind will influence any man who at prefent fits here. If they had any effect, it would be contrary
to their intent: Leaning againft their impreffion might Murray. give a bias the other way. But I hope, and I know, that I have fortitule cnough to refift even that weakuefs. No libcls, no threats, nothing that has happenad, nothing that can happen, will seigh a feather againl allowing the defendant, upon this and every other queftion, not only the whole advantage he is intitled to from fubiftantial law and jultice, but every benefit from the moll critical nicety of form, which any other defender could elaim under the like objection. The only effeet [feel is an ansiety to be able to explain the grounds upon which we proceed; fo as to fatisfy all mankind, that a flaw of form given way to in this cafe, could not have been got over in any other."

In January 17%, Lord Mansfield again was offered the Great Seal, which was given to Mr Charles York : and in Hilary Term 1771, he a third time declined the fame offer, and the Seal was entrufted to Lord Bathurit.

The year 17:0 was alio memorable for various attacks made on his Lordhip's judicial character, in both the Houfes of Lords and Commons. In one of thefe, the propriety of a direction given to the jury in the cafe of the king and Woodfal was called in qucttion; which occafioned his Lordfhip to produce to the Houfe a copy of the unanimous copinion of the court of King's Bench in that caufe ; which, after being much canvaffed and oppofed, was fuffered to fland its ground without being over-ruled.

On the $19^{\text {th }}$ of Otober 17,6 , his Lordhip was advanced to the dignity of an Earl of Great Britain, by the title of the Earl of Mansfield, and to his male iflue; and for want of fuch iffue, to Louifa Vifcounteis Stormont, and to her heirs-male by David Vifcount Stormont her hufband. The fane title, in 1792, was limited to Lord Stormont himfelf; who afterwards fucceeded to it.

We come now to a period of his Lordihp's life, which furnifhes an event difgraceful to the age and country in which the fact was committed. An union of folly, enthufiafin, and knavery, had excited alams in the minds of fome weak prople, that encouragements were given to the favourers and profeffors of the Roman Catholic faith inconfiftent with religion and true policy. The adt of Parliament, which excited the clamour, had paffed with little oppofition, and had not received any extraurdinary fupport from Lord Mans* field. The minds of the public were inflamed by artful mifreprefentations; the rage of a popular mob was foon directed towards the moft eninent perfons. Accordingly, in the night between Tuefday the 6 th and Wednefday the 7 th of June 1780 , his Lordhip's houfe in Bloontbury Square was attacked by a party of rioters, who, on the Friday and Tuefday precering, had, to the amount of many thoufands, furrounded the avenues of both Houfes of Parliament, under pretence of attending Lord George Gordon when he prefented the petition from the Proteflant Affuciation. On 'Tuefday evening the prifon of Newgate had been thrown open, all the combuntible part reduced to afhes, and the felons let loofe upoas the public. It was after this attempt to dethroy the means of fecuring the vietims of criminal juftice that the rioters affaulted the refidence of the chief magitrate of the firit crimial court in the kingdom; nor were they dif red till they had burnt all the furmiture, pictures, books, nanuferipts, deeds, and, in fhort, every thing which fire could confume in his Lord-
fhip's

$\mathrm{M} U \mathrm{R} \quad\left[\begin{array}{lll}287\end{array}\right] \quad \mathrm{M} \quad \mathrm{U}$ R

Murray. Thip's houfe; fo that nothing remained bist the walls, which were feen next morning almoft red hot from the violence of the flames, prefenting a melaneholy and aw. ful ruin to the eyes of the paffengers. For a fuller account of thofe dreadful riots, fee Brıtans, $11^{\circ} 647$. Encyclopiedia.

So unexpected was this daring outrage on order and government, that it burtt on Lord Mansfield withont his being prepared in the flighteft manner to refift it. He efcaped with his life only, and retired to a place of fafety, where he remained until the $14^{\text {th }}$ of June, the laft day of term, when he again took his feat in the court of King's Bench. "The reverential filence (fays Mr Douglas) which was obferved when his Lordfhip refumed his place on the Bench; was expreflive of fentiments of condulence and refpect, more affecting than the moft eloquent addrefs the occation could ! we fuggefted.
"The amount of that part of Lord Mansfield's lofs which might have been eftimated, and was capable of a compenfation in money, is known to have been very great. This he had a right to recover againtt the bundred. Many others had taken that courfe; but his Lordthip thought it more confiftent with the dignity of his character not to refort to the indemnification provided by the legiflature. His fentiments, on the fubject of a reparation from the flate, were communicated to the Board of Works in a letter, dated 18 th July 1780 , written in confequence of an application which they had made to him (as one of the prineipal fufferers), purfuant to directions from the treafury, founded on a vote of the Houfe of Commons, requefting him to tate the nature and amount of his lofs. In that letter, after fome introductory expreffions of civility to the furveyor general, to whom it was addreffed, his Lordfhip fays, - Befides what is irreparahle, my peeuniary lofs is great. I apprehended no danger, and therefore took no precaution. But how great fuever that lofs may be, I think it does not becume me to claim or expect reparation from the fate. I have made up my mind to my mis. fortune, as I ought, with this confolation, that it came from thofe whofe object manifefly was general confufion and deftruction at home, in addition to a dangerous and complicated war abroad. If I thould lay before you any account or computation of the pecuniary damage I have fuftained, it might foem a claim or expectation of being indemnified. Therefore you will have no further trouble upon this from, \&e.- Fifansfitd."

From this time the luttre of Lord Mansfield continued to thine with unclonded brightnefs until the end of his political life, unlefs his oppolition to the meas800. fures of the prefent adminiftration, at the eariy period of their appointment, fhall be thought to detract, in fome fmall degree, from his merit. It is certain many of his admives faw, with concern, a connection with the opponents of government at that juncture, fearee compatible with the dignity of the chief jultice of Great Britain. At length infirmities preffed upon him, and he became unable to attend his duty with the fame punctuality and affiduity with which he had been accuftomed. It has been fuppofed that he held his office after he was difabled from executing the duties of it, from a wifh to fecure the fucceffion of it to a very particular friend. Be this as it may, the chief juftice continued in his office until the month of June 1788 , when he fent in his refignation.

From this period the bodily powers of his Ioordhip continued to deeline; his mental faculties, however, re. mained without decay almoft to the laft. During this time he was particularly inquifitive and anxious about the proceedings in France, and felt his fenfibility, ira common with every good man, wounded by the horrible inllance of democratic infatuation in the marder of the innocent Louis XVI. He lived juft long enough to exprefs his fatisfaction at the check given to the French by the Prince of Cobourg in March 1793; on the zoth of which month, after continuing fome days in a flate of infenfibility, he departed this life, at the age of 88 years.
"In his political oratory (fays a writer of the pre. fent times), he was not without a rival; no one had the honour of furpaffing him; and let it be remembered, that his competitor was Pitt.
"The rhetorician that addreffed himfelf to Tully in thefe memorable words - Demonflhenes titi proripuit ne primus effes Orator, tu illine folus-anticipated their application to Mansfield and Pitt. If the une poffeffed Demofthenean fire and energy, the other was at leaft a Cicero. Their oratory differed in fpecies, but was cqual in merit. There was, at leaft, no fuperiority on the fide of Pitt. Mansfield's eloquence was not, indeed, of that daring, bold, declamatory kind, fo irreliftihly powerful in the momentary hutle of popular affemblies; hut it was poffeffed of that pure and Attic fpirit, and feductive power of perfuafion, that delights, inftructs, and eventually triumphs. It has been very beautifnlly and juftly compared to a river, that meanders through verdant meads and flowery gardens, reflecting in its cryftal bofom the varied objects that adorn its banks, and refrefhing the country through which it flows.
"To illuftrate his oratory by example, would require voluminous tranicripts from the records of Parliament ; and it is unneceffary, as we can appeal to living recol. lection.
"Having added weight and dignity" to the offices of attorney and folicitor general, his reputation as a fpeaker, a lawyer, and a politician, clevated him to the peerage, and the exalted poit of chief jullice of Eugland. He afcended to the dignities of thate by rapid frides: they were not beftowed by the caprice of party favour or affection. They were (as was faid of Pliny) hberal difpenfations of power upon an ohject that knew how to add new huftre to that power, by the rational exertion of his uvin.
"Here we can fpeak of this great man within our own recollection; and however party prejudices may adopt their different favourites, and each contend in de. tracting from the merit of the other, it is, we believe, generally undertlond that precedence is allowed the Earl of Mansfield, as the firt magithrate that ever fo pre-eminently graced that important flation. The wifdom of his decitions, and unbiaffed tenor of his public conduci, will be held in veneration by the fages of the law, as long as the fpirit of the conftitution, and juft notions of equity, continue to have exiftence. No man has ever, in an equal degree, puffeffed that wonderful fagacity in difcovering chicanery and artifice, and feparating fallacy from trutb, and fophitry from argument, fo as to hit the exact equity of the cafe. He fuffered not juflice to be flrangled in the nets of form.
"His memory was aftonifling - he never tock notes,

M U R

Marras.
ferences to expreffions which fell from him in the courfe of the debate, or has quotations from books, were fo faithful that they might lave been faid to have been repeated verlatian. The purpofes to which he employed thefe amazing talents were fill more extraordinary: if it was the weak part of his opponent's arguments that he referred to, he was fure to expofe its fallacy, weaknefs, or abfurdity, in the moft poignant fatire, or hold it up in the moft ridiculous point of view. If, on the eontrary, it were a point on whici his adverfaries laid their chief ftrefs, he flated the words correctly; collected their obvions meaning, confidered the force of the feveral argoments that had or might have been raifed upon them, with a prccifion that would induce an auditor almoft to fuppofe that he had previouny comfidered the whole, and that his fpeech was the refult of moch previous ftudy.
"It may be faid of Mansfield as of Virgil, that if he had any faults, they might be confidered in the fame manner with thofe of fome eminent fixed ftar, which, if they exift at all, are above the reach of human obfervation. The luminous æther of his life was not obfcured by any fhade dark enough to be denuminated a defect. On account of his defcent, local prejudices and propenfities were imputed to him, and his conduct, on that account, cxamined with a microfcopie eye; but the optic through which it is vicwed poffeffed a party tinge, equally odious and deceptive.
" His political principles were cver confiftent; and to preferve confftency in fuch flations and in fuch times as occupied the life of Mansfield, conititutes an ordeal ffrongly impreffive of virtue. It has been faid that he wanted firit. Is the uniform oppofition of popular opinion, and apparently the contempt of it, any proof of the affertion? His fpeech and couduct in the affair of Wilkes's outlawry, when popular prejudice ran in torrents, illuftrate each other. He defpifed (to borrow an expreffion of his own) that mufhroom popularity that is raifed without merit, and loft without a crimc. He difdained being the flave of popular impulfe, or to acknowledge the flouts of a mob for the trumpet of fame."

He had a mind too great to be afhamed of revering the ordinances of religion; and as, after the molt impartial inquiry, he was a firm believer of the truth and importance of Chrittianity, he frequented the elhureh regularly, and reeeived the holy facrament on the higher feftivals. Mr Holliday has publifhed a fermon, which he fays was dictated by Lord Mansfield to his friend bifhop Johnfon, and preached by that prelate before the Houfe of Lords. It is a very ferious and appropriate difeourfe ; but judging upon internal evidence, we fhould not have fuppofed it the compofition of the eloquent and argumentative chief juftice of England. His Lord. fhip's will, which was written with his own band, upon little more than half a fheet of paper, begins with the following elegant and pious paragraph, with which we Thall cunclude this \&etch of his character :
" When it fall pleafe Almighty God to call me to that ftate, to which, of all I now enjoy, I can carry only the fatisfaction of my own confcience, and a full re-
liance upon his mercy through Jefus Chrit, I defire Museum. that my body may be interred as privately as may be: and ont of refpect for the place of my early education, I thould wifh it to be iu Weftminter Abbey." It was interred in Weftminfler Abbey, in the fame vault with the Countefs (who had died April 10, 7784 , between the late Earl of Chatham and Lord Robert Manners.

MUSEUM, in the language of the prefent day, is a building in which are depolited fpecimens of every object that is in any degree curions, whether fuch objects be natural or artificial. What the word mufeun exprefled origivally, has been told under that title in the Encyclopedia.

A complete mufeum contains collections of preferved bealls, birds, fillhes, reptiles, \&cc.; models of machines; rare manufcripts; and indeed fpecimens of every thing neceflary to illuitrate phyfical fcience, to improve art, to aid the antiquarian in his refearches, and to exhibit the manners and cuftoms of men in difant ages and uations. As natural objects of uncommon fize or beauty, and other rare productions, were, in the carlieft periods, confecrated to the gods, the temples were, of courfe, the firft repolitories of fuch collections, or, in other words, the firlt Mufeums. This, we think, has been completely proved by Frofeffor Beeknanu *. *Inventien
"When Hanno (fays he) returned from his diftant vol.ii. voyages, he brought with him to Carthage two flins of P. 4 the hairy women whom he found on the Gorgades iflands, and depofited them as a memorial in the temple of Juno, where they continued till the deftruction of the city. The horns of a Seythian animal, in which the Stygian water that deftroyed every other veffel could be contained, were fent by Alexander as a curiofity to the temple of Delphi, where they were fufpended with an infeription, which has been preferved by Alian. T'he monitrous horns of the wild bulls which had occafioned fo mueh devaftation in Macedonia, were, by order of King Philip, hung up in the temple of Hercules. The unnaturally formed fhoulder bones of Pelops were depofited in the temple of Elis. The horns of the fo called Indian ants were fhewn in the temple of Hercules at Erythre; and the erocodile found in attempting to difcover the fourees of the Nile was preferved in the temple of lisis at Cæfarea. A large piece of the root of the cinnamon tree was kept in a golden veffel in one of the temples at Rome, where it was examined by Pliny. The flkin of that monfler which the Roman army in Africa attacked and deftroyed, and which probably was a crocodile, an animal common in that country, but never feen by the Romans before the Punic war, was, by Regulus, fent to Rome, and hong up in one of the temples, where it remained till the time of the Numantine war (A). In the temple of Juno, in the ifland of Melita, there were a pair of elephants tecth of extraordinary fize, which were carried away by Mafinifla's admiral, and tranimitted to that priace, who, though he fet a high value upon them, fent them again back, becaufe he heard they had been taken from a temple. The head of a bafilifk was exhibited in one of the temples of Diana ; and the bones of that fea monfter, probably a whale, to which Andromeda was expofed, were preferved at Joppa, and afterwards brought to

Rome.
(A) We think, with the tranflator of Beckmann's Hiftory, that this animal was not the crocodile, but the Boa confirigor. See Boa and Serpent, Encycl.

Rome. In the time of Paufanias, the head of the celebrated Calydonian bear was fhewn in one of the temples of Greeee ; but it was then dellitute of brifles, and liad fuffered confiderably by the hand of time. The monflrous tufks of this animal were brought to Rome, after the defeat of Anthony, by the Emperor Auguftus, who caufed them to be fufpended in the temple of Bacchus. Appollonius tells us, that lie faw in India fome of thofe nuts which in Greece were preferved in the temples as curiofities."

Though thefe curiofities were preferved in the temples for purpofes very different from thofe for which our collections are made, there can be no doubt but that they contributed to promote the knowledge of natural hiltury. If it be true, as Pliny and Strabo inform us, that Hippocrates availed himfulf of the aecounts which were hung up in the temple of 不culapius of different difeafes, and of the medicines and mode of treatment by which they were cured; it will eafily be believed, that the natural hiftorians availed themfelves, in a fimilar nanner, of the various rare objects which were preferved in the temples of the other gods. This, we fee, Pliny actually did.

Suetonius informs us, that Augufus had, in his palace, a collection of natural curiolities; and it is well known that Alexander gave orders to all huntfmen, bird-catchers, fifhermen, and others, to fend to Ariftotle whatever rare animals they could procure. M. Beckmann feems to be of opinion, that the firf private mufeum was formed by Apuleitis, who, next to Arifotle and his fcholar Theophraitus, eertainly examined natural objects with the greatefl ardonr and jndgment ; who caufed animals of every kind, and particularly fifh, to be brought to lim either dead or alive, in order to deferibe their external and internal parts, their number and fituation, and to detemmine their characterifing marks, and eflablifh their real names; who undertook ditant journeys to become acquainted with the fecrets of nature ; and who, on the Getulian mountains, collected petrefactions, which he confidered as the effects of Deuealion's food.

The prineipal caufe why collections of natural curio. fities were fearee in aneient times, muft have been the ignorance of naturalits in regard to the proper means of preferving fuch bodies as foon fpoil or corrupt. Some methods were indeed known and practifed, but they were all defeclive and inferior to that by firit of wine, which prevents putrefaction, and which, by its perfect tranfparency, permits the objects which are covered by it to be at all times viewed and examined. Thefe methods were the fame as thofe employed to preferve provifions, or the bodies of great men deceafed. They were put into falt brinc or honey, or were covered over with wax. Thus the hippopotanus, deferibed by Columna, was fent to him from Egrypt preferved in falt. The borly of Agefipolis King of Sparta, who died in Macedoria, was fent home in honey; the celebrated purple dye of the ancients was preferved freth for many years by the fame means; and at this day, when the Orientals are defirous of tranfporting filla to any diftance, they cover them over with wax.

In thofe eenturies whiels are ufually called the middle ages, the Profeflor finds no traces of what can be called a mufeum, exeept in the treafuries of emperors, kings, and princes, where, belides articles of great value, cu-
Suppl. Vol. 11. Part I.
riofitics of art, antiquities, and relics, one fometimes found faree and lingular foreign animals, which were dried and preferved. Such objects were to loe icen in the old treafury at Vienna; and in thot of S. Denis was exhibited the claw of a griffi.i, fut ly: a kitg of Perfia to Charlemagne; the teceh of the hippopotariuc, and other things of the like kind. In thefe collections, the number of the rarities always increafed in proportion as a tafte for natural hiftory becane more prevalent, and as the extenfion of commeree afforded better opportunities for procuring the proriuctions of remote comintries. Menageries were eftablifhed to add to the magnificence of euurts, and the fleufed fkins of rare , wimals were hung up as memorials of their having exifted. Public libraries alfo were made receptacles for fuch naitural curiolities as were from time to time prefented to then!; and as in univerfities the faculty of medicine had a hall appropriated for the diffection of human bodies, euriofities from the animal kingdum were collected there alfo by degrees; and it is prutible that the profeffors of anatomy firft made attemuts to preforve different parts of animals in fpirit of wine, as they were obliged to keep them by them for the ufe of their fcholars; and becaufe in old times dead bodies were not given up to them as at prefent, and were more difficult to be obtained. Private collections appear for the firt time in the 16 th century ; and there is no doubt (fays our anthor) that they were formed by every learned man who at that period applied to the fludy of natural hiltory.

MUSHROOM, a fungous, of which fome of the principal fpecies have been deferibed in the Encyclopadia under the generic name Agericus. There is, however, one \{pecies not mentiond there-the Boletus birfutus of Bulliard, which is eertainly worthy of notice, fince one of the French Chemilts has lately extracted from it a bright, fhining, and very durable yellow dye. This pretty large mufhroom grows commonly on walnut and appletrees. Its colouring-matter is contained in abundance, not only in the tubular part, but alfo in the parenehyma of the body of the mumroom. In order to extract it, the mufhroom is pounded in a mortar, and the liquor thence obtained is boiled for a quater of an hour in water. An ounce of liquor is fuffieient to communicate colouring-matter to fix pounds of water. When the liquor has been thained, the ftuff to be dyed is put into it, and boiled for a quarter of an hour. All kinds of thulf receive this colour and-retain it; but on linen and cottor it is lefs bright. 'This colour may be modified, in a vety agreeable manner, by the effect of mordants.

The procefs fucceeded beit in lilk. When this fubftance, after being dyed, is made to pafs through a bath of foft foap, it aceruices a hining golden-ycllow colour, which has a perfect refemblance to the jellow of that filk employed to imitate embroidery in gold, and whieh has nitherto been brought from China and fold at a dear rate, as the method of dyeing it is unknown in Europe. The yellow colour extracted from this maihroom nay be employed alfo with advantage for painting in water colours as well as in oil.

MU'l'SUDDIES, in Bengal, writers, accountants, officers of government.

MUYCOORE'T, allowances to zemindars in land or money. See Zemindir, Suppl.

00
$\mathrm{N} \Lambda \mathrm{BOB}$,

Mufema \|
\qquad vet.
\qquad
 \longrightarrow

N$A B O B$, or Nowab, a title of courtely given in lndia to Mahomedans high in flation, particularly provincial governors.

The Sun's NADIR, is the axis of the cone projected by the fladow of the earth: fo called, becaufe that axis being prolonged, gives a point in the eeliptic diametrically oppolite to the fun.

NAIB, a deputy.
NAKED, in architeeture, as the naked of a wall, \&ic. is the furface, or plane, from whence the projectures arife; or which ferves as a ground to the projectures.

NANCOWRY, or Sourr, as it is fometimes called, is one of the Nicobar inles, and fituated nearly in the centre of the cluiter (See Nicobar, Encycl.). Its length may be about eight miles, and its breadth nearly equal. The ifland of Comerty, which is near it, is more extenfive, but does not perhaps contain more folid land, being excavated by a very large bay from the fea. The fpace between thefe two iflands forms a capacious and excellent harbonr, the eallern entrance of which is sheltered by another ifland, called Tricut, lying at the diftance of about a league. The inlet from the weft is narrow, but fufficiently deep to admit the largell fhips when the wind is fair.

The Danes have long maintained a fmall fettlement at this place, which ftands on the northern-molt point of Nancowry, within the harbour. A ferjeant and three or four foldiers, a few black flaves, and two rufty old pieces of ordnance, compofe the whole of their eftablifhment. They have here two houfes; one of which, built entirely of wood, is their habitation; the other, formerly inhabited by their miffionaries, ferves now for a ftorehoufe.

Thefe illands are in general woody, but contain likewife fome portions of clear land. From the fummits of their hills the profpects are often beautiful and romantic. The foil is rich, and probably capable of producing all the various fruits and vegetables common to bot climates. The natural productions of this kind, which mofly abound, are cocoa nuts, papias, plantains, limes, tamarinds, beetle-nuts, and the melori, a fpecies of breadfruit ; yams, and other roots are culfivated and thrive ; but rice is here unknown. The mangoflain tree, whofe fruit is co juflly extolled, grows witd; and pineapples of a delicious flavour are found in the woods.

Of all the Nicobar ifles Nancowry and Comerty are faid to be the belt peopled; the population of both being fuppofed to amount to eight hundred. The natives of Nancoswry and of the Nicobar iflands in general, live in villages on the fea-fhore, and never ereet their habitations inland (a). Their houfes are of a circular form, and are covered with clliptical domes, thatehed with grafs and the leaves of cocoa nut. They are raifed up-
on piles to the beight of fix or eight feet above the Nancowry ground; the floor and fides are laid with planks, and $\underbrace{-\quad \text { nan }}$ the afeent is by a ladder. In thofe bays or inlets which are fheltered from the furf, they erect them fometimes fo near the margin of the water as to admit the tide to flow under, and wath away the ordure from below.

In front of their villages, and a little advanced in the water, they plant beacons of a great height, which they adorn with tufts made of grafs, or the bark of fome tree. Thefe objects are difcernible at a great diftance, and are intended probably for landmarks; their houfes, which are overfhadowed by thick groves of cocoa-nut trees, feldom being vifible from afar.

The Nicobareans, though indolent, are in general robuft and well-limbed. Their features are fomewhat like the Malays, and their colour is nearly fimilar. The women are much inferior in fature to the men, but more active in all domeftic affairs. Contrary to the cuftom of other nations, the women Mave the hair of thcir heads, or keep it clole cropt, which gives them an uncouth appearance, in the eyes of ftrangers at leafl.

The inhabitants of Nancolvry perform, every year, a very extraordinary ceremony in honour of the dead. It is thus deferibed by Lieutenant Colebrooke:
"On the anniverfary of this fettival, if it can be fo called, their houfes are decorated with garlands of flowers, fruits, and branches of trees. The people of each village affemble, dreft in their beft attire, at the principal houfe in the place, where they fpend the day in a convivial manner; the men, fitting apart from the women, finoke tobacco, and intoxicate themfelves; while the latter are nurfing their children, and employed in preparations for the mournful bulinefs of the night. At a certain hour of the afternoon, amounced by ftriking the Goung, the women let up the moft difmal howls and lamentations, which they continue without intermiffion till about fun-fet; when the whole party get up, and walk in proceffion to the buryingground. Arrived at the place, they form a circle around one of the graves, when a ftake, planted exactly over the head of the corpfe, is pulled up. The woman who is neareft of kin to the deceafed, fleps out from the crowd, digs up the fkull, and draws it up with her hands. At fight of the bones, her ftrength feens to fail her; the thrieks, the fobs; and tears of anguifh abundantly fall on the mouldering object of her pious care. She clears it from the earth, ferapes off the fellering fleth, and laves it plentifully with the milk of frefh cocoa-nuts, fupplied by the byftanders; after which the rubs it over with an infufion of faffron, and wraps it carefully in a piece of new cluch. It is then depofited again in the earth, and covered up; the fake is replanted, and hung with the various trappings and imple.
(A) The great Nicobar inlands is perhaps an exception, where, it is faid, a race of men exifts, who are totally different in their colour and manners. They are connfidered as the Aborigines of the country. They live in the interior parts among the mountains, and commit frequent depredations on the peaceable inhabitants of the coalts.

N A N

Naneowry implements belonging to the deceafed. They proceed | I |
| :---: |
| nkeen | then to the other graves; and the whole niglit is fpent in repetitions of thefe difmal and difguffful rites.

"On the morning fullowing, the ceremony is concluded by an oftering of many fat fivine; when the facrifice made to the dead affords an ample feall to the living: they befmear themfelves with the blood of the flaughtered hogs, and fomse, more voracious than others, eat the flefh raw. . They have various ways, however, of dreffing their meat, but always eat it without falt. A kind of palle made of the melcri ferves them for bread; and they tinith their repaft with copions potations of taury, an inebriating liquor."
'The Nicobareans are hofpitable and honeft, and are remarkable for a frict obserwance of truth, and for punctuality in adhering to their engagements. Such crimes as theft, robbery, and murder, are unknown in thefe inands; but they do not want fpirit to revenge their injuries, and will tight refolutely; and tlay their enemies, if attacked or unjuftly dealt with. Their only vice, if this failing can be fo called, is incbriation; hut in their cups they are generdly jovial and good-humoured. It fometiones, however, happens at their fealts, that the men of different villages fall out ; and the quarrel immediately becomes general. In thefe cafes they terminate their differences in a pitched battle ; where the only weapons ufed are long fticks, of a hard and knotty wood. With thefe they drub one another moft heartily, till, no longer able to endure the contlict, they mutually put a ftop to the combat, and all get drunk again.

NANTKAR, ancient allowance to zemindars in land or money.

NANKEEN, or NAN-King, is a well-known cotton fluff, which derives its name from the ancient capital of China (See Nan-king, Encycl.). It is, however, according to Van Braam, manufactured at a great diftance from that city, in the diftrict of Fong-kiang-fou, fituated in the fuuth-eaft of the province of Kiang-nam upon the fea-fhure. The colour of nankeen is natural, the down of which it is made being of the fame yellow tinge with the cloth. The colour, as well as fuperior quality of this cotton, feems to be derived from the foil ; for it is faid that the feeds of the nankeen cotton degenerate in both particulars when tranfplanted to another province, however little different in its climate The common opinion, that the colour of the ftuff is given by a dye, occafioned an order from Europe, fome years ago, to dye the pieces of nankeen of a deeper colour than they had at that period; and the reafon of their being then paler than formerly is as follows:

Shortly after the Americans began to trade with China, the demand increafed to nearly double the quantity it was poffible to furnifh. To fupply this deficiency, the manufacturers mixed common' white cotton with the brown; this gave it a pale calt, which was immediately remarked; and for this lighter kind no purchafer could be found, till the other was exhaufted. As the confumption is grown lefs for thefe fome years pait, the mixture of cotton is no longer neceffary, and nankeen is become what it was before. By keeping them two or three years, it even appears that they have the property of growing darker. This kind of fluff mult be acknowledged to be the frongeft yet known. Many perfons have found that clothes made of it will laft three
or four years, although for ever in the wath. This it is Naples. that makes them the favourite wear for breeches and wailtcoats both in Europe and America. The white nankeen is of the fame quality, and is made of white cotton as good as the brown, and which alfo grows in Kiang-nam

NAl'LeS-Yellow, called alfo Neapolitan curth, in Italian Giallolino, and in French Jaune de Nafles, is a beautiful pigment, concerning which we have much information from the indefatigable beckmann. "It las (fays he) the appearance of an earth, is of a pale orangeyellow colour, ponderous, granulated, exceedingly friable, does not efllorefce, nor become moitt when expofed to the air, but when applied to the tongue feems to adhere to it. When reduced to a fine powder, it remains for fome time fufpended in water, but foon depofits itfelf at the bottom in the form of a flime. When boiled with water, the water, at leatt fometimes, is obferved to have a fomewhat faline tafte. It does not effervefce with acids, but is in part diflolved by aqua regia (nitromuriatic acid). In the fire it ensits no fulphureous vapour, is difficult to be fuled, and by that operation undergoes no material change, only that its colour becomes fomewlat redder. When fufed with colourlefs glafs, it gives it a milk-white colour, a fure proof that it contains no iron; and, with inflammable fub. ftances, there is obtained from it a regulus which has the appearance of a mixture of lead and antimony.
" This article is brought from Naples for the moft part in the form of an earthy crult about thiree or four lines in thicknefs, and it fometimes retains the form of the veffel in which it has hardened. It can be procured alfo as a fine powder, as the colourmen keep it fometimes ready pounded for ufe."

About the nature of the fubftance called Naples-yellow there has been much diverfity of opinion. Moft of thofe who have written about it, conlider it as originating from fire, and as a volcanic production of Mount Vefuvius or Mount Etna; others have pronounced it to be a natural ochre. Guettard thought it rather a kind of bole; but Pott approached nearett the truth, by afferting it to be an artificial preparation *. Fou- "Lithogen geroux is entitled to the merit of having prosed this, ognofie, v. it, and of having fhewn the poffibility of preparing it. According to his experiments, Naples-yellow will he obtained if you boil tor feven or eight hours, firlt over a Now and then over a ftrong fire, a mixture finely pulverifed of twelve parts of pure white lead, one part of alum, one part of fal ammoniac, and three parts of diaphoretic antimuny \dagger (white oxide of antimuny by + Mem. of nitre). But tefore Fougeroux, who may have obtain the Acad. ed an account of the procefs during his travels through of Sciences,保 1760. 175^{8}, more certain proceis was publithed in the year by Giambattifta Pafferi, in his interefting work on the painting of earthen ware \ddagger. The articles to be \ddagger in Nirove employed, according to this author, are, "one pound raccolts of antimony, a pound and a half of lead, one ounce of $d^{d} \rho p u f f l f$ alume di feccia, and the fame quantity of common ${ }_{\text {t.ive }}$ falt." I am inclined (fays M. Beckmann) to think that this receipt was not unknown to Fougeroux, and that he confidered alume di feccia to be alum. Profeffor Leonhardi, a man of very found learning, has tranllated this expreffion by the word alum. I will, however, freely confefs, that I confider alume di feccia not to mean alum, but falt of tartar, or potafh. Paf: 0.2
feri

Naplee, feri fays, that the proportions may be varicd different Nardus. ways; and he gives fix other receipts, in which he loes
not mention alane di feccia, b, ut only feccia; and this word certainly means sucinbefon or winefone (tartar). Profefor l.eonhardi himfelf feems to confrm this opinion, by faying, that Vairo, profeffor of chemittry at INaples, has tranflated " the afthes of wine lees" (cineres inf(charii) by the words alume dif fectia.

After Fougeroux's paper was printed, De la Lande publithed a receipt which he had received from the well-known prince Sin Severu, and in which lead and antimony only are employed; but no mention is made either of ahun, tartar, or any other falt. This receipt is as follows:

Take lead well calcined and fifted. with a third part of its weight of antim:ony pounded and fifted aifo. Mix thefe fubftances well together, and fift them again through a piece of filk. Then take large flat earthen dithes, not varnifhed, cover them with wlite paper, and fpread out the powder upon them to the depth of about two inches. Place thefe difhes in a potter's furnaee, but only at the top, that they may not he expofed to too violent a heat. The reverheration of the Hame will be fufficient. The dihes may be taken out at the fame time as the catthen-ware, and the fubllance will then be found hard, and of a yellow colour. It is then pounded on a piece of marble wihl water, and afterwards dried for ufe.

The enamel painters in Germany prepare a yellow glazing, not very different from the real Naples yellow, by a prefeription, according to which, "one pound of antimony, fix ounces of red lead, and two ounces of white fand, are to be fufed together. The produce, which appears quite black, is to be pounded, and then fufed again; and this procefs is to be repeated till the whole mafs becomes thoroughly yellow. Half a pound of this mafs is to be mixed with two ounces of red lead, and aitervards fufed; and by this tedious procefs an orange-yellow pigment will be obiained."

All antifs who fpeak of the ufe of Naples yellow, give cautions againt applying iron to it, as the colour by the fe means becomes greenifh, or at leaft dirty. Fur this reafon, it nuft be pounded on a flune, and feraped together with an ivory fpatula. It is employed chicfly in ol painting, beeaufe the colour is foftur, brighter, and richer than that of ochre, yellow lead, or orpiment, and becaufe it far exeteds thefe pigments in durability. It is employed in particular when the yellow eught to have the appearance of gold, and in this reffect it may be prepared with gum water, and ufed as a water colour. A ftill greater advantage of it is, that it is proper for enamel painting, and on that account may he employed on porcelain or earthen ware (A). Profeffur Beckmann, however, recommends to artitts to examine whether the oxide prepared from wolfram, by boiling in the muriatic acid, which has a beautiful yellow colour, might not he ufed in the fame manner as Naples yellow.

NARDUS. Under this generic term we have, in the Encyclopaclia, given, from the Pbilofophical Tranf. ations, a defcription of the plant or grafs which Dr Blane confiders as the fpikenard of the ancients. It is
our duty, in this place, to inform our readers, that Sir Willian Jones, in the 2d and $4^{\text {th }}$ volumes of the Afatic Refrarclies, fcems to have completely proved that the fuikenarl of Diufcorides and Galci, or Nardus Indica, was a very different plan from the Andropogon of Dr Blane, and that it grows in a country far ditant from Mackran. 'IThe proofs brought by the illull rious prefillent of the Afiatic Socicty, in lipport of his own opinion, are too numerous and circunitantial to be introduced into fuch a work as this. We fhall therefore only give one of them ; which though, when feparated from the reft, it lofes much of its furce, muit he allowed, even fingly, to have great weight.

The true Indian fikenard is confeffedly called by the Arabs Sunduln't Hind; for fo they trannate the name of it in Diofeorides. Now (fays Sir William) I put a fair and plain queftion Ceverally to thrce or four Muffulman phyticians: "What is the Indian name of the plant which the Arabs call Sumbulu'? Hind ?" They all anfwered, but fome with more readinefs than others, Jótámansí. After a pretty long interval, I thewed them the fpikes (as they are called) of fítiomansi, and afked, what was the Arabic name of that Ifdian drug? They all anfwered readily, Sambuln'l Hind. The fame evidence may be obtained in this country by any other European who feeks it; and if among twelve native phyficians, verfed in Arabian and Indian philology, a fingle man fhould, after due confideration, give different anfwers, I will cheerfully fubmit to the Roman judgment of non liquet. But the Fitámansí* evidently belongs to the natural order which Linnæus calls aggregate; with the following charaders:

Calyx, fcarce any; margin, hardly difernible. Corolla, one petal; tube fomewhat gibbous; border five cleft. Stamina, three Antbers. Piffula, Germ beneath; one Style erect. Seed, folitary, crowned with a pappus. Root, tibrous. Leazes, hearted, fourfold ; radical leaves petioled.

It appears therefore (continues the learned author) to be the Protean plant Valerian, a filler of the Mountain and Celtick Nard, and of a fpeeies which I fhould defcribe in the Linnean Alyle, Valcriana Fátimansí floribus triandris, foliis cordatis quaternis, radicalibus fetiolatis. The radical leaves, rifing from the ground, and enfolding the young ftem, are plucked up with a part of the root, and being dried in the fun or by an artificial heat, are fold as a drug, which, from its appearance, has been called fpikenard. The Játámansí is a uative of the moft remote and hilly parts of Iudia, fuch as Ne'pal, Marang Butan, near which Ptolemy fixes the native foil of the Nardus Indica. It grows erect above the furface of the ground refembling an ear of green wheat ; and when recent, it has a faint oduur, which is greatly increafed by the fimple procelis of drying it.

NARES (JAMEs), doctor of mufic, an eminent compofer and teacher in that fcience, under whom fome new edis. of the firlt muficians of the prefent day received the whulc or part of their education, was the fon of Mr Nares, who was, for many years, fteward to Montague
(A) In the Memoirs of the Academy of Sciences for ${ }^{3} 767$, Fougeroux has proved that the giallolino prepared by him produced on porcelain a much more beautiful colour than the Naples yellow fold ia the thops.

Nares. and Willoughby, earls of Alingdon. He was born, as well as his brother, the late Mr Juftice Nares, at Stanwell in Middlefex; the former in 1715 , the latter in 1716. His mufical education he commenced under Mr Gates, then mafter of the royal rhoriters; and completed it under the celcbrated Dr Pepuich. 'Thus prepared, he officiated, for fome time, as deputy to Mr Pigott, organift of Windfor; hut on the relignation of Mr Salifbury, organift of York, in 173 , was chofen to fucceed hin, being then only mineteen. It is related, on undoubted authority, that when the old mufician firt faw his intended fucceftor, he faid, rather angrily, "What! is that child to fucceed me ?" which being mentioned to the organiftelect, he took an early opportunity, on a difficult fervice being appointed, to play it throughout half a note below the pitch, which brought it into a key with feven fharps ; and went through it without the flightell crror. Being anked why he did fo? he faid, that "he only wifhed to fhew Mr Salifury what a child could do." His knowledge in all branches of his profeffion was equal to his practical Ikill in this inftance; and, during his refidence at York, where he was abundantly employed as a teacher, and where he married, Mr Nares, by his good conduct, as well as profeffional merit, obtained many powerful friends. Among the foremoft of thefe was Dr Fontayne, the refpectable and venerable dean of York; who, when Dr Green died, towards the letter end of 1755, exerted his intereft fo fuccesffully, that he obtained for him the united places of organift and compofer to his Majefly. He removed therefore to London in the beginning of 1756 ; and, about the fame time, was created doctor in mufic at Cambridge.

On the refignation of Mr Gates, in 1757, Dr Nares obtained alfo the place of inatter of the chorifters; which having been, for a long time, without increafe, notwithfanding the increafe of expences attending it, was, by royal favour, augmented about 1775 , firft with the falary of the violift; and, on the revival of that place for Mr Crofdill, in 1777, with that of lutanill, which was annexed to it for ever. It was in this fituation that Dr Nares fuperintended the education of many pupils, who have fince become famous; particularly Dr Amold, who. though with him only for a hort time, was highly dittinguihed by him for talents and application. The anthems and fervices which Dr Nares produced, as compofer to the ruyal chapel, were very numerous; many of them have fince been printed, and many which exift only in manufcript ftill continue to be performed in the choirs with much effect. Having been originally a mufician rather hy accident than choice, with very frong talents and propenlitics alio for literature, Dr Nares was particularly attentive to exprefs the funfe of the words he undertook to fet ; and was the firt who attempted to compofe the 'Te Deun for the choir fervice, in fuch a manner as to fet off the fentiments it contains to advantage. Before his time, it lad been fet rather to a regular thrain of chaunt than to any expreffive melodies. The merits of Dr Nares were not overlooked by his royal patrons, whom he had occafionally the honour to attend in private, theugh not a part of his regular duty. To manifent his refpeet and gratitude for them, be compofed his dranatic ode, entitled The Royal Paftoral ; the words of which were
written by Mr Bellamy, author of a book, entitled Ethic Amufements.

In July 1780, Dí Nares was obliged, by declining health, to relign the care of the choritters, in which place he was fucceeded by Dr Ayrton, his pupil and valued friend. In his fixty-eighth year, a coullitution, never rohult, gave way, and he died on February 10. 1783. Teftimony has been horne to the merits of 1 r Nares by feveral writers, but more particularly by Mr Mafon, in his preface to a book of anthems, printed for the ufe of York Cathedral; and in his late Eflays on Church Mufic, page 138. The late Lord Morning (om, fo well known for mufical talents, frequently confulted lim ; and Sir John Hawkins derived advantage from his acquaintance, in the progrefs of his Hillory of Mufic. Throughout life, he was not lefs refpected as a man than admired as a mufician ; he had a vivacity that rendered his fociety always pleafing; and a generous contempt for every thing bafe, that manifefted itfelf on all proper occafions, and very juftly commanded efteem.

His printed works are thefe : 1. Eight fets of Leffons for the Harpfichord; dedicated to the Right Hon. Willoughby Earl of Abingdon. Printed in 1798 ; reprinted in 1757. 2. Five Leffons for the Harpfichord, with a Sonata in fcure for the Harpfichord or Organ ; dedicated to the Right Honourable the Counters of Carlifle; publifhed in 1758 or 1759. 3. A Set of Eafy Leffons for the Harpfichord, three in number; with a dedication to the public, figned J. N. 4. A Treatife on Singing, fmall fize. 5. 11 Principio ; or A regular Introduction to playing on the Harpfichord or Organ. This was the firft fet of progreffive leffons publifhed on a regular plan. 6. The Royal Pattoral, a Dramatic Ode; dedicated to his Royal Highnefs the Prince of Wales ; printed in fcore, with an overture and chorufes. 7. Catches, Canons, and Glees; dedicated to the late Lord Mornington. 8 Six Fugues, with Introductory Voluntaries fur the Organ or Harpfichord. 9. A Concife and Eafy Treatife on Singing, with a Set of Englith Duets for Beginners. A difierent work from the former finall treatile. 10. Twenty Anthems, in fcore, for one, two, three, four, and five Voices. Compofed for the Ufe of his Majefty's Cinipels Royal, 1778. 11. Six Eafy Anthems, with a favourite Morning and Evening Service, left for public.ation at his death, and publified in $1 ; 88$, with a portrait and a concife account of the author. Of thefe comprofitions the following fhort character is given by an ela i nent mufician, to whom they are all well-known: "'Ihe leffons are compofed in a maftenly and pleafing fityle; free from thofe tricks and unmeaning fucctimus of femitones, to which a good ear and found judgment never can be reconciled. The treatifes on finging contain duets compofed for the ufe of the children of the royal chapels, fuperior to any thing yet publifl. ed ; and fuch as every teacher ought to perufc. His catches, canons, and glecs, are natural and pleafing; efpecially the glee to all Lovers of Harmony, which gained the prize medal at the catch-club in 1770 . The Royal Iaftoral is compofed throughout in a very mafterly manner: prarticularly the chorufes, with which each part cuacludes. This ode, containing 108 pages, was writter, and all the vocal and inftrumental paits tranfcribed for periorming, within twelve days. The

N A V

Navigatorb. fix fugues, with introductory voluntaries for the organ, contain the frongelt pronfs of ingenuity and judgeinent; few, if any, have ever been written that can be preferred to them. In both fets of the anthems, the fame characterittics appear; and the fervice of the latter very jullly aequired the citle of favourite ; nor can there be any doubt that the works of this author will be adniired as long as a tatte for mufic flall fubfift."

NAVIGATORS islands, an archipelago in the South Sea, difcovered by Bougainville, who gave to them that name, becaufe the natives do not pafs between the different villages, which are all built in creeks and bays, but in their canoes. The Navigators 1 llands are ten in number ; namely, Opoun, Leoné, Fanfoué, Maouna, Oyolava, Calinufín, Pola, Shika, Ofjamo, and Ouera.

We have already given an account of the foil and productions of Maouana; and as the other iflands of this clufter are equally fertile, we need not go over the fame ground again. It may be proper, however, to obferve, that in fome of them the fugar-caue was found growing fpontaneoufly, though its juice contained lefs of the faccharine fubftance than the fugar cane of the Wefl Indies, which our voyagers attributed to its growing in a richer foil an! in the fhade. According to Peroufe, the Navigators ! llands are fituated about the 14 th degree of fuuth latitude, and between the 17 Iit and $175^{\text {th }}$ degrees of longitude well from Paris. In Oyolava the fmoke was feen hovering over a village as over a large European town; and the number of canoes which from that ifland furrounded the frigates was immenfe. Thefe are very ticklifh veffels, and would be abfolutely ufelefs to any body but fuch excellent fiwimmers as the iflanders, who are no more furprifed or uneafy at their overfetting than we are at the fall of a hat. Taking up the canoe on their fhoulders, they empty it of water, and then get in again, with the certainty of having the fame operation to perform a fecond time in half an hour. Sometimes they join two canoes together by means of a crofs piece of wood, in which they make a ftep to receive the malt; and in this way they are lefs liatle to be overfet, fometimes performing a long voyage without any fuch accident. It is needlefs to add, that thefe canioes are very frall, generally containing only five or fix perfons, though fome few of then may contain as many as fourteen.

The natives of the Navigators Iflands are tall and well made. Their ufnal beight is five feet nine, ten, and eleven inches; but their fature is lefs aftonifhing than the coloffal proportions of the different parts of their bodies. "Our curiofity (fays Peroufe), which often led us to meafure them, gave them an opportunity of making frequent comparifons of their bodily ftrength with ours. Thefe comparifons were not to our advantage; and we perhaps owe our misfortunes (fee Maouana in this Suppl.) to the idea of individual fuperiority refulting from repeated trials. Their countenances often appeared to exprefs a fentiment of difdain, which I hoped to dettroy, by ordering our aums to he ufed in their prefence : but my end could only have been gained by directing them againft human victims; for otherwife they took the noife for fport, and the trial for a diverfion.
"Among there Indians a very fmall number is below the height indicated above. I have, however, mea-

294] N A V
fured feveral who were only five feet four inches, but Navisatorn thefe are the dwarfs of the country; and although their flature refembles ours, their ftrong and nervous arms, their broad chetts, and their lege and thighs, are of a very different proportion.
" The men have the budy painted or tatowed, fo that any one would fuppofe them clad, although they go almoof naked. They have only a girdle of feaweeds encircling their loins, which comes down to their knees, and gives them the appearance of the river gods of fabulous hiflory, whom it is cuftomary to depict with rufhes round their waift. Their hair is very long. They often twill it round their heads, and thus add to their native ferocity of countenance, which always expreffes either furprife or anger. The leaft difpute between them is followed by blows of fticks, clubs, or paddles; and often, without doubt, cofts the combatants their lives. They are almoft all covered with fcars, which can only be the confequence of their individual quarrels. The flature of the women is proportioned to that of the men. They are tall, flender, and not without grace; but they lofe, while yet in their prines, thofe elegant forms, of which Nature has not broken the mould among this harbarous race, but of which the appears to leave them in poffeffion only for a monent, and with reluctance. Among a great number of women that I had an opportunity of feeing, I only ohferved three really pretty. The grofs effrontery of the reft, the indecency of their motions, and the difgulting offers which they made of their favours, rendered them fit mothers and wives for the ferocious beings that furrounded us." Our author gives the following inftance of indecent manners, which is, perhaps, without a parallel.

The young and prettieft females foon attracted the attention of Peveral Frenchmen, who, in fpite of the Commodore's prohibition, endeavoured to form a conneetion with thern, and were fuccefsful. The hooks of the Europeans expreffing dcfires which were foon divined, fonie old women undertack the negociation. The altar was prepared in the handfomell hut in the village, all the blinds were let down, and the inquifitive were excluded. The victim was then laid in the arms of an old man, who exhorted her, during the ceremony, to moderate the exprefluon of her pain; while the matrons fang and howled: the ceremony being performed in their prefence. and under the aufpices of the old man, who ferved at once as prieft and altar. All the women and children in the village were round the houfe, gently lifting up the blinds, and feeking to enjoy the fight through the fnallett crevices in the mats. Whatcver former navigators may have faid, Peroufe was convinced that, in the Navigators Inands at leaft, the young girls, before they are married, are miftrellies of their perfons, and that they are not difhououred by their complaifance. It is even more than proiable, that in marrying they are called to no account concerning their patt conduct; but he had no doubt that they are obliged to be more referved when provided with a hufband.

Thefe people cultivate certain arts with fuccefs. Under the article Maouana mention has beeu made of the elegant form which they give to their huts. It is not with fuch folly as is commonly fuppofed that they difdain our inftruments of iron; for they finifh their work

N A V

svigatore, very neatly with tools made of a very fine and compact fpecies of bafaltes in the form of an allze. For a few glafs beads they fold to Peroufe large three-legged dilhes of a fingle piece of wood, and fo well polifhed that they feemed to have been laid over with a coat of the fineft varnifh. It would take an European workman feveral days to produce one of thefe difhes, which, for want of proper inftruments, muft coft an Indian feveral months labour. They fet, however, fcarcely any value upon them, becaufe they fet little upon the time they employ. The fruit trees and nutritious roots that grow fpontaneoufly around them, infure to them their fubfiftence, as well as that of their hogs, dogs, and fowls; and if they fometimes ftoop to work, it is to procure enjoyments rather agreeable than ufeful. They manufacture very fine mats, and fome paper thuffs. Our author remarked two or three of them, whom he took for chiefs, with a piece of cloth tied round their wailt like a petticoat, inftead of a girdle of weeds. It is compofed of real thread, prepared no doubt from fome filamentous plant like the nette or flax; and is mannfactured without a flhuttle, the threads being abfolutely laid over one another like thofe of their mats. This cloth, which lias all the fupplenefs and folidity of ours, is very fit for the fails of their canues; and appeared far fuperior to the paper fuff of the Society and Friendly Iflands, which they manufacture alfo. Their canoes are well conftructed, and furnifh a good proof of the flill with which they work in wood. For a few glafs beads they gave to the Frenchmen, among other things, a wooden veffel filled with cocoa nut oil, exact ly of the flape of our earthen pots, and fuch as no European would undertake to fafhion by any other means than a turning lathe. Their ropes are round, and t witted like watch chains of ribbon : their mats are very tine; but their ituffis are inferior to thofe of the Eatter and Sandwich Iflands.

Peroufe derives the natives of thofe inands, whofe colour, he fays, nearly refembles that of the Algerines and other nations on the coalt of Barbary, from the Malays ; and as we do not vouch for the truth of his theory, though we admit it to be ingenious, we fhall give the reafoning by which he fupports it in his own words.
"We did not at firft difcover (fays he) any identity between their language and that of the natives of the Society and Friendly Iflands, of which we had vocabularies; but a more mature examination convinced us, that they fpeak a dialeet of the fame language. A faet which tends to prove it, and which confirms the opinion of the Englifh concerning the origin of thefe pcople, is, that a young domeftic, a native of the province of Tagayan in the north of Manilla, underltood and explained to us the greater part of their words. It
is well known that the Tagayan, the Talgal, and the Navigatne. generality of languages fooken in the Philippines, are derived from the Malay: a language mure diffufed than were thofe of the Greeks and Romans, and common to the numerous tribes that inhabit the iflands of the great Pacific Ocean. It appears to me evident, that all thefe different nations are the progeny of Malay culonics, which, in fome age extremely remote, conquered the iflands they inlabit. I fhould not even wonder, if the Chinefe and Egyptians, whofe antiquity is fo much vaunted, were mere moderns in comparifon of the Malays. But however this may be, I am fatisfied that the aborigines of the Philippine Inlands, Furmufa, New Guinea, New Britain, the New Hebrides, the Friendly llands, \&c. in the fuuthern hemifphere, and thofe of the Marianna and Sandwich iflands in the northern, were that race of woolly headed men fill found in the interior of the iflands of Luconia and Formofa. They were not to be fubjugited in New Guinea, New Britair, and the New Hebrides; but being overcome in the more eaftern inands, which were too fmall to afford them a retreat in the centre, they mixed with the conquering nation. Thence has refulted a race of very black men, whofe colnur is ftill feveral thades deeper than that of certain families of the country, probably becaufe the latter have made it a point of honour to keep their blood unmixed. I was Atruck with thefe two very diftinet races in the Iflands of Navigatorss, and cannot attribute to them any other origin.
"The defcendants of the Malays have acquired in thofe iflands a degree of vigour and ftrength, a lofty ftature, and a Herculeas form, which they do not inherit from their forefathers, but which they owe, without doubt, to an abundance of food, to a mild climate, and to the influence of different phyfical caufes which have been conftantly acting during a long feries of generations. The arts which they perlaps brought with them may have been loft for want of materials and inftruments to practife them; but the identity of language, like Ariadne's clue, enabies the obferver to follow all the windings of this new labyrinth. The feudal government is alfo preferved here ; that government which little tyrants may regret ; which was the difgrace of Europe for feveral centurics ; and of which the Gothic remains are ttill to be found in our laws, and are the medals that attelt our ancient barbarifm: that goverument, wbich is the moft proper to keep up a ferocity of manners, becaule the finalle dif diputes occafion wars of village againft village, and becaufe wars of this nature are conducted wihcut magnamimity, and without courage. Surprifes and treachery are employed by turns; and in thefe unfortunate countaies, inftead of generous warriors, nothing is to be found but hafe affaffins (A). The Malays are fill the mult perfidious na-

[^4](A) This was written under the old government of France by a man who, like other declaimers in the caufe of liberty, forgot the excellencies, and intifled only on the defects of the feudal inftitutions. Had Peroufe, how ever, returngd to Europe, and witneffed the philofopbic government of his country, he would have perceived, that liberty and equality, and the rigbts of man, are as well calculated to generate bafe affafins, as the Gothic remains of that Government by which he fuppofed Europe to have been fo long difgraced. He might even have lived to regret, that his lot was not caft among the bold and ferocious inhabitants of Maouna; for the treachery and cruelty of thefe people bears no proportion, even in his affecting narrative, to the fyttematic cruelty of thofe who decreed, that the end fanctifies the means, and that nothing, however atrocious in the eftimation of antiquated moralift, is to be omitted, which contributes to elevate the mean above the noble.

Nazer tion of Afa; and their children have not degenerated, becaufe the fame caufes have led to and produced the fame effects. It may be objected, perliaps, that it
muft have been very difficult for the Malays to make: their way from well to eaft, to arrive at thefe different iflands; but the wefterly winds blow as frequently as the ealterly in the vicinity of the equator, along a zone of feven or eight degrees from north to fouth, where the wind is fo variable, that it is hardly more difficult to navigate eat than weft. Befides, thefe different conquelts may not have been effected at the fame time: the people in quettion may, on the contrary, have fpread themfelves by little and little, and gradually have introduced that form of government which Atll exifts in the peninfula of Malacca, at Java, Sumatra, and at Borneo, as well as in all the other countries fubject to that barbarous nation."

NAZER, Nazr, Nezer, Nuzzer, Nuzzerana; a prefent from an inferior; fees of office.

NEBULOUS, or Cloudy, a term applied to certain fixed fars which fhew a dim hazy light; being lefs than thofe of the fixth magnitude, and therefore fearcely vilible to the naked eye, to which at beit they only appear like little duflay fpecks or clouds. Through a moderate telefcope, thefe nebulous fars plainly appear to be congeries or clutters of feveral little ftars.

NECKAR Isle, a fmall barren ifland, or rather rock, difcovered by Peroufe in the Pacific Ocean. Though its fterility renders it of no importance in itfelf, its exact fituation mutt be interefting to navigators, who are therefore obliged to the French Commodore for having afcertained its latitude to be $23^{\circ} 34^{\prime}$ north, and its longitude to be $166^{\circ} 52^{\prime}$ welt from Paris. From the foundings the Neckar feemed to be only the top or nucleus of a much more confiderable ifland, which, proWably from being compofed of a foft and diffoluble fubftance, the fea had gradually wathed away. In propartion as the frigates left the fhore, the depth, whieh at the diftance of a mile was very little, gradually increafed, till, at the diftance of about ten miles, nos bottom was found with a line of 150 fathoms; and over the whole of that fhore the buttom confited of coral and broken thells.

NEPAL, a kingdom of India, fituated to the northeatt of the city of Patna, at the dittance of ten or twelve days journey. Within the diftance of four days journey from Nepal the road is good in the plains of Findoftan, but in the mountains it is bad, narrow, and dangerous. At the foot of the hills the country is called Teriani; and there the air is very unwholefome from the middle of March to the midrle of November; and people in their paffage eatch a diforder called in the language of that country oul; which is a putrid fever, and of which the generality of people, who are attacked with it, die in a few days; but on the plains there is no apprehenfion of it. Although the road be very narrow and inconvenient for three or four says at the palfes of the hills, where it is neceflary to crofs and recrofs the river more than fifty times, yet, on reaching the interior mountain before you defcend, you have an ayreeable profpect of the extenfive plain of Nepal, refembling an amphitheatre covered with populous towns and villages : the circumference of the plain is about 200 miles, a little itregular, and furrounded by hills on
all fides, fo that no perton can enter or come out of it without pafing the mountains.

There are three principal cities in the plain, each of which was the capital of an independent kingdom; the principal city of the three is fituated to the northward of the plain, and is called Cat'bmandu: it contains ahout $\mathrm{x}, \mathrm{000}$ houfes; and this kingdom, from. fouth to north, extends to the ditance of twelve or thirteen days journey as far as the borders of Tibet, and is alunolt as extenfive from eaft to weft. The king of Cat'hmandu has always about $50,0=0$ foldiers in his fervice. The fecond city to the fouth-welt of Cat'hmandu is called Lelit Pattan; it contains near 24,000 houfes. The third principal city to the ealt of Lelit Pattan is called B'batzan: it contains about 12,000 families; and is the metropolis of a ditrict which extends towards the eaft to the diftance of five or fix days journey ; and burders upon another nation, alfo independent, called Ciratas, who profefs no religion. Befides thefe three principal cities, there are many other large and lefs confiderable towns or fortrefles; one of which is Timi, and another Cipoli, each of which contains about 8000 houfes, and is very populous. All thofe towns, both great and fmall, are well built ;'the houfes are conftructed of brick, and are three or four ftories high; their apartments are not lofty; they have doors and windows of wood well worked and arranged with great regularity. The itreets of all their towns are paved with brick or ftone, with a regular declivity to carry off the water. In almoft every flreet of the capital towns there are alfo good wells made of thone, from which the water pafles through feveral fone canals for the public benefit. In every town there are large fquare varandas well built, for the accommodation of travellers and the public: thefe varandas are called $P a l i$; and there are alfo many of them, as well as vells, in different parts of the country for public ure. There are alfo, on the sutfide of the great towns, finall fquare refervoirs of water, faced with brick, with a good road to walk upon, and a large flight of fteps for the convenience of thofe who choofe to bathe.

The religion of Nepal is of two kinds: the more ancient is profeffed by many people who call themfelves Baryefu; they pluck out all the hair from their heads; their drefs is of coarfe red woollen cloth, and they wear a cap of the fame; they are confidered as people of the religious order, and their religion prohibits them from marrying, as it is with the Lamas of Tibet, from which country their religion was originally brought; but in Nepal they do not obferve this rule, except at their difcretion. They have large monafteries, in which eveiy one has a feparate apartment or place of abode. They obferve alfo particular feltivals, the principal of which is called ratra in their language, and continues a month or lunger according to the pleafure of the king. The ceremony confits in drawing an idol, which at Lelit Pattan is called Baghero, in a large and richly ornamented car, covered with gilt copper: round about the idol fand the king and the principal Baryefus; and in this manner the vehicle is almoft every day drawn thro' fome oue of the Atreets of the city by the inhabitants, who run about beating and playing upon every kind of influment their country affords, which make an inconceivable noife.

Nepal. The other religion, the more comman of the two, is that of the Bralmens, and is the fame as is followed in Hindoftan, with the diference that, in the latter country, the Hindus being mixed with the Mahommedans, their religion allo abounds witl many prejudices, and is not ilrictly ublerved; whereas in Nepal, where there are no Muffelmans (exeept one Cafhmirian merchant), the Hindu religion is practiled in its greatelt purity: every day of the month they clais under its proper name, when certain facrifices are to be performed and certain prayers offered up in their temples: the plaees of worfhip are more in number in their towns than are to the found in the molt populous and moft flourifhing cities of Chriftendom; many of them are inagnificent according to their ideas of architecture, and conftructed at a very confiderable expence; fome of them have four or five fquare cupolas, and in fome of the temples two or three of the extreme cupolas, as well as the doors and windows of then, are decorated with gilt copper.

In the city of Lelit Pattan the temple of Baghero is more valuable, on account of the gold, filver, and jewels it contains, than even the houfe of the king. Befides the large temples, there are alfo many fmall ones, which have flairs, by which a fingle perfon may alcend, on the outfide all around them; and fome of thofe fmall temples have four fides, others fix, with fmall ftone or marble pillars polifhed very fmooth, with two or three pyramidal ftories, and all their ornaments well gilt, and neatly worked according to their ideas of tafte. On the outfide of fome of their temples there are great fquare pillars of fingle fones from twenty to thirty feet ligh, upon which they place their iduls fuperbly gilt. The greateft number of their temples have a good ftone ftaircafe in the middle of the four fquares, and at the end of each flight of ftairs there are lines cut out of ftone on both lides: around about their temples there are allo bells, which the people ring on particular occafions; and when they are at prayers, many cupolas are alfo quite filled with little bells hanging by cords in the infide about the diftance of a foot from each other, which make a great noife on that quarter where the wind conveys the found. There are not only fuperb temples in their great cities, but alfo within their catles.

To the ealtward of Cat'hmandu, at the dillance of about two or three miles, there is a place called Tolu, by which there flows a fmall river, the water of whieh is efteemed holy, according to their fuperftitious ideas, and thither they carry people of high rank, when they are thought to be at the point of death: at this place there is a temple, which is not inferior to the beft and richeft in any of the capital cities. They alfo have it on tradition, that at two or three places in Nepal valuable treafures are concealed under ground: one of thofe places they believe is Tolu; but no one is permitted to make ule of them except the king, and that only in cales of neceffity. Thole trealures, they fay, have been accumulated in this manner: When any temple had become very rich from the offerings of the people, it was deftroyed, and deep vaults dug under ground one above another, in which the gold, filver, gilt copper, jewels, and every thing of value, were depofited. This was found to be aetually the cale when the miffionary, from whole memoir this aecount of Nepal is taken, was at Cat'hmandu. One of the kings, or pretenders to the crown, who were then at war with each

Supfl. Vol. 1I. Part I.
other, being in the utmoft diftrefs for want of money to pay lis troops, ordered the vaults at Tolu to be opened ; and found in the firit vault more muney, befides filver and guld idols, than he had immediate occafion for.
'Co the weftward alfo of the great city of Lelit Pat. tan, at the diftance of only three miles, is a caftle called Banga, in which there is a magnificent temple. No one of the miffouaries ever entered into this calle; becaufe the people who have the care of it, have fuch a [crupu. lous veneration for the temple, that no perfon is permitted to enter it with his fhoes on ; and the mifionaries, unwilling to fhew fuch refpect to their falfe deities, ne. ver entered it. The author of this memoir, however, who acted as phyfician to the commandant, was of courfe admitted within the ca!lle, and got a fight of the celebrated temple, which he declares that for magaificence he believes fuperior to every thing in Europe.

Befides the magnificence of the temples, which their cities and towns contain, there are many other rarities. At Cat'hmandu, on one fide of the royal garden, there is a large fountain, in which is one of their idols called Narayan. This idol is onf blue fone, crowned and fleeping on a matirafs alfo of the fame kind of flone, and the idol and the mattrals appear as floating upon the water. This flone machine is very large, being about 18 or 20 fcet lung, and broad in proportion, but well worked, and in good repair.

In a wall of the royal palace of Cat'hmandu, which is built upon the court before the palace, there is a great flane of a fingle piece, which is about fifteen feet long, and four or five feet thick; on the top of this great ftone there are four fquare holes at equal ditlances from each other; in the inlide of the wall they pour water into the holes; and in the court fide, each hole having a clofed canal, every perfon may draw water to. drink. At the foot of the ftone is a large ladder, by which people afcend to drink; but the curinfity of the fone conlifts in its being quite covered with characters of different languages cut upon it. Sume lines contain the characters of the language of the country, others the characters of 'Tibet, others Perfian, others Greek, befides feveral others of different nations; and in the middle there is a line of Roman characters, which appears in this form, AV IOMNEW INTER LHIVERT; but none of the inhabitants have any knowledge liow they came there, nor do they know whether or nut any European had ever been in Nepal before the miffinaries, who arrived there only the beginning of the prelent century. They are manifeftly two French names of feafons, with an Englifh word between them.

There is alfo to the northward of the city of Cat'h. mandu a hill called Simbi, upon which are fome tombs of the Lamas of Tibet, and other people of high rank' of the fame nation. The monuments are conflrueted after various forms: two or three of them are pyramidal, very high, and well ornamented; fo that they have a very good appearance, and may be feen at a confiderable diftance. Round thefe monuments are remarkable Itones covered with characters, which probably are the inferiptions of fome of the inhabitants of libet, whofe bones were interred there. The natives of Nepal not only look upon the hill as facred, but imagne it is protected by their iduls; and from this erroneous fuppofition never think of fationing troops there for the
P_{p}
defence

Newton. defence of it, although it be a poft of great importance, and only at a thurt mile's difance from the city. During the hoftilities, however, which prevailed when our nuthor was in the conntry, this facred hill was fortified by one of the armies, who, in digging their ditcbes among the tombs, found confiderable pieces of gold, with a quantity of which metal the corpfes of the grandees of Tibet are always interred.

The kingdom of Nepal our author believes to be re. ry ancient, becaufe it has always preferved its peculiar language and independence. It was completely ruined, however, about thirty or forty years ago by the diffenfions of its nobles, who, on the death of their fuvereign, and, as it would feem, the extinction of the royal line, could not agree in their choice of a proper fucceffor. The confequence was, that different fovereigns were fet up by the nohles of different diflicts; and thefe waged war with each other, with a degree of treachery and favage atrocity that has hardly a parallel in the annals of the world. Even the Brahmens, whom we are accuftomed to confider as a mild and innocent people, were, in the civil wars of Nepal, guilty of the meaneft and bafeft villanies: thcy brought about treaties between the rival fovereigns, and then encouraged him whon they favoured, to maffacre the adherents of the other in cold blood.

NEWTON (John), an eminent Englifh mathemaician, was born at Oundic in Northamptomhire, 1622. After a proper foundation at fchool, he was fent to Oxford, where he was entered a commener of St Edmund's Hall in 1637 . He took the degree of bachelor of arts in 16.41 ; and the year following was created mafter, anong feveral gentemear that belonged to the king and court, then reliding in the univerfity. At which time, his genius being inclined to aftronomy and the mathematics, he applied himfelf diligently to thofe fciences, and made a great proficiency in them, which he found of fervice during the times of the ufurpation. After the ryftoration of Charles II. he reaped the fruits of his loyalty ; being created dotur of divinity at Oxford Sept. 1661, he was made one of the king's chaplains, and reftor of Rofs in Herefordflire, in the place of Mr John Toombes, ejected for nonconformity. He held this living till his death, which happened at Rofs on Chriftnas-day 1678. Mr Wond gives him the character of a capricious and humourfome perfon: however that may be, his writings are fufficient monunvents of his genius and fill in the mathematics. Thefe are, 1. Afronomia Britannica, \&c. in three parts, 16.56 , in 4\%o. 2. Help to Calculation; with Tables of Decliriation, Afcenfion, \&c. 1657, 4to. 3. Trigononetria Britannica, in two books, 1658 , folio ; one conpofed by our author, and the other tranflated from the Latin of Henry Gellibrand. 4. Chiliades centum Logarithmorum, printed with, 5 . Geometrical Trigonometry, 1659. 6. Mathematical Elements, three parts, 1660, 4 to. 7. A perpetual Diary or Almanack, 1662. 8. Deferip. tion of the ufe of the Carpenter's Rule, 1667. 9. Ephemerides, fhewing the Intereft and rate of Money at 6 per cent. \&c. 1667. Io. Chiliades centum Logarith. morun, et Tabula Partium proportionalium, 1667 . II. The Rule of Intereft, or the cafe of Decimal Fractions, \&ic. Part 11. 1668, 8vo. 12. School Paftime for young Children, \&c. 1669, 8vo. 13. Art of practical Gauging, \&c. 1069. 14. Introduction to the Art of

Rhetoric, $16 \% 1.15$. The Art of Natural Arithmetic, in whole Numbers, and Fractions Vulgar and Decimal, 1671, 8vo. 16. The Englifh Academy, 1677, 8vo. 1%. Cofmography. 18. Introduction to Aftronomy. 19. Introduction to Geography, 1678, 8vo *. *Biog. Dia: NICOLE (Francis), a very celebrated French ma-new edit. thematician, was born at Paris Decennber 23. 1683. His early attachment to the mathematics induced M . Montmort to take the charge of his education; and he opened out to him the way to the higher geometry. He firft became publicly remarkable by detecting the fallacy of a pretended quadrature of the circle. This quadrature a M. Mathulon fo affuredly thought he had difcovered, that he depofited, in the hands of a public notary at Lyons, the fum of 3000 liveres, to be paid to any perfor who, in the judgment of the Academy of Sciences, flauld demonftrate the falfity of his folution. M. Nicole, piqued at this challenge, undertnok the tank, and expofing the paralogifm, the Academy's judgment was, that Nicole had plainly proved that the rectilineal figure which Matlulon had given as equal to the circle, was not only unequal to it, but that it was even greater than the polygon of 32 fides circumfcribed about the circle. The prize of 3000 livres Nichole prefented to the public hofpital of Lyons.

The Academy named Nicole, Eleve-Mechanician, March 12. 1707 ; Adjunct in 1716, Aflociate in 1718, and Peufioner in 1724; which he continued till his death, which happened the 18th of January 1758 , at 75 years of age.

His works were all inferted in the different volumes of the Memoirs of the Academy of Sciences; and are as follow: 1. A General Methad for determining the Nature of Curves formed by the Rolling of other Curves upon any Givell Curve; in the volume for the year 1707. 2. A General Method for Rectifying all Roulets upon Right and Circular Bafes, 17ot. 3. General Method c: determining the Nature of thofe Curves which cut an Infinity of other Curves given in Pufition, cutting them always in a Conitant Angle, 1715. 4. Solution of a Problem propofed by M. de Lagny, 1716. 5. Treatife of the Calculus of Finite Differences, 1717. 6. Second Part of the Calcuhs of Finite Differences, 1723. 7. Second Section of ditto, 1723. 8. Addition to the two foregoing papers, 1724. 9. New Propofition in Elementary Geometry, $1 ; 25$. 10. New Solution of a Problem propofed to the Euglifh Mathematicians, by the late M. Leibuitz, 1725. 11. Methad of Summing an Infinity of New Series, which are not fummable by any other known method, 1727 . 12. Treatife of the Lines of the Third Order, or the Curves of the Second Kind, 1729. 13. Examination and Refolution of fome Queftions relating to Play, 173°. 14. Method of determining the Chances at Play. 15. Obfervations upon the Conic Sections, 1731. 16. Manner of generating in a Solid Body all the Lines of the Third Order, 1731. 17. Manner of determining the Nature of Roulets formed upon the Convex Surface of a Sphere; and of determining which are Geometric and which are ReCifiable, 1732. 18. Solution of a Problem in Geometry, 1732. 19. The Ufe of Series in refolving many Problems in the Inverfe Method of Tangents, 1737. 20. Obfervations on the Irreducible Cafe in Cubic Equations, 1738. 21. Obfervations upon Cubic Equations, 1738. 22. On the Trifection of

N I E

freuland an Angle, $17.7 c$. 23. On the Irroducible Cate in Cubic Equations, 1741 . 24. Addition to ditto, 1713 . 25. His Laft Paper upon the fame, 1774. 26. Determination, by Inconmenfurables and Decimals, the Values of the Sides and Areas of the Series in a Double Progreffion of Regular Polygons, infcribed in and cirHution's cumferibed about a Circle, 1747^{*}.

NIEUWLAND (Peter), profeffor of mathematics and natural philufophy in the univerfity of Leyden, was born at Diemermeer, a village near Amfterdan, on the $5^{\text {th }}$ of November, 1764 . His father, by trade a carpenter, having a great fondnefs for books, and being tolerably well veried in the mathematics, inftructed his fon himfelf till he attained to his cleventh year. Young Nieuwland appears to have difplayed flrong inarks of genius at a very early period. When about the age of three, his mother put into his land fome prints', which had fifty verfes at the botom of them by way of explanation. Thefe verfes fhe read aloud, without any intention that her fon fhould learn them; and fhe was much furprifed fome time after to hear him repeat the whole from memory, with the utmoft correctncfs, on being only fhewn the prints.
Before he was feven years of age he had read more than fifty different books, and in fuch a manner that he could frequently repeat paffages from them both in profe and in verfe. When about the age of eight, Mr Aenex at Amiterdam, one of the greateft calculators of the age, afked him if he could tell the folid contents of a wooden flatue of Mercury which ftond upon a piece of clock-work. "Yes (rcplied young Nieuwland), prorided you give me a bit of the fame wood of which the ^atue was made; for I will cut a cuhic inch out of it, and then compare it with the fatue." Poems which (fays his eulogift) difplay the utnott livelinefs of imagination, and which he compofed in his tenth year, while walking or amufing himfelf near his fat her's houfe, were received with admiration, and inferted in different poetical collections.

Such an uncommon genius mult foon burt through thofe obftacles which confine it. Bernardus and Jeronimo de Bofch, two of the firft and wealthieft men at Amfterdan, became young Nieuwlands benefactors, and contributed very much to call forth his latent talents. He was taken into the houfe of the former in his eleventh year, and he received daily inftruction from the latter for the fpace of four years. While in this fituation he made confiderable progrefs in the Latin and Greek languages, and he fludied philufophy and the mathematics under Wyttenbach. In the year 1783 he tranflated the two differtations of his celebrated inftruc. tors, Wyttenbach and de Bofch, on the opinions which the ancients entertained of the flate of the foul after death, which had gained the prize of the Teylerian theological fociety.

From the month of September $178+$ to 1785 , Nieuwland refided at Leyden as a ftudent in the univerfity, and afterwards applied with great diligence, at Ainfterdam, to natural philofophy and every branch of the mathematics, under the direction of Profeffor Van Swinden. He had fearcely begun to turn his attention to chemiftry, when he made himfelf mafler of the theory of the much lamented Lavoifier, and coukd apply it to every phenomenon. He could read a work through
with uncommon quicknefs, and yet retain in his inind Nieuwhend the principal part of its contents.

Nieuwland's attention was direeted to three principa! purfuits, whicl are feldom united; poetry, the pure mathematics, and natural philofnphy. In the latter part of his life he added to thefe alfo aftronomy. Among the poems which he publifhed, his Orion alone has rendered lis name immortal in Holland. Of the finall eflays which he publifhed in his youth, the two following are particularly deferving of notice: 1. A comparative View of the Value of the different Branches of Science; and, 2. The beft Means to render general, not learning, but Soundnefs of Judgment and Good Tatle.

One of his great objects was to bring the pure mathematics nearer to perfection, to clear up and conneet their different parts, and in particular to apply them to natural philofophy and aftronomy. Curnelius Donwes difcovered an eafy method of determining the latitude of a place at fea, not by the meridian altitude of the fun, but by two obfervations made at any other period of the day. This method, however, being till imperfect, Nienwland turned his thoughts towards the improvement of it, and in the beginning of the year 1789 wrote a paper on the fubject, which he tranfmitted to M. de Lalande at Paris, from whom it met with great approbation. In the year 1792, when Nieuwland refided two months at Gotha with Major Von Zach, thefe two learned men often converfed on this method of finding the latitude, and calculated the refult of obfervations which they had made with a fextant and an artificial horizon. The above paper, eularged by thefe obfervations, was inferted by Major Von Zach with Nieuwland's name in the firft Supplement to Bode's Aftronomical Almanack, Berlin, 1793.

This, however, was not the only fervice which Nieuwland endeavoured to render to aftronomy. It had been obferved by Newton, Euler, De la Place, and others, that the axes of the planets do not fand perpendicular, but inclined, to the plane of their orbits; and Du Sejo:n, in his analytical treatife on the apparent motion of the heavenly bodies, conliders it as highly probable that this phenomenon depends on fome phyjical caufe ; which, however, he does not venture to affign. Nieuwland proceeded farther, and laid down principles, from which he drew this conclufion, that the above phenomenon is intimately connected with the whole fyftem of attraction. On thefe principles he made calculations, the refult of which was exactly equal to the angle of the inclination of the earth's axis to the plane of it orbit. Nieuwland communicated his difcovery with much modefly to the celcbrated Profeflor Damen at Leyden, who propofed fome objections to it which difcouraged Nienwland, and induced him to revife his calculatıons with more accuracy. Major Von Zach tranfmitted the paper which contained them to M. De la Place at Pan is, and caufed it to be priuted alfo, for the opinion of the learncd, in the Supplement to Profeffor Bode's Aftronomical Almanack for the year 1793.
The writer of this anticle is not acquainted either with the prineiples which this young aftronomer affumed, or with the calculations which he made from them ; but if he holds gravitation to be effential to matter, and the inclination of the axes of the planets to be the neceffary refult of the law of gravitation, he is un$\mathrm{P}_{\mathrm{p}} 2$ doubtedly

Nieuwland. doubtedly in an error. The axes of the planets are not all equally inclined, nor does the iuclination vary in exact proportion to the fquares of the diftances.

Nieuwland's talents and diligence foon recommended luin to the notice of his commtry. In his twenty-fecond year, he was appointed a member of the coinmiffion chofen by the Cullege of Admiralty at Amterdam for determining the longitude and improving marine charts. On this labour he was employed eight years, and un. dertook allo to prepare a nautical almanack, and to calculate the neceflary tables. The mathematical part was in general entrulled to Nicuwland; but he affitited alfo his two collcagues van Swinden and van Keulen, in the departments afiggned to them, with fuch afiduity, that moit of the work publined on the longitude, together with the three additional parts, were the fruits of his labour. In the fecond edition of the explanation of the nautical almanaek, he had alfo the principal thare; and he was the anthor, in particular, of the explanation of the equation of time, the method of determining the going of a time-piece, and of calculating the declination of the moon.

Suon after Nieuwland engaged in this employment, it appeared as if his deftination was about to be changed. In the year 1787 , he was chofen by the States of Utrecht to fucceed Profeflor Hennert ; but on account of certain circumftances this appointment did not take place. He was, however, invited to Amfterdam by the inagiftrates of that city, to give leetures on mathematics, aftronomy, and navigation. While in this fituation, he wrote his ufeful and excellent treatife on navigation, the firf part of which was publifhed at Amfterdam in 1793, hy George Hulft van Keulen; and it is much to be wifhed that M. van S winden would complete this work from the papers bequeathed to him by his deceafed friend the author.

In altronomical purfuits, Nieuwland applied not only to the theoretical, but alio to the practical part; and in this Atudy he was encouraged and affilted by Major von Zach, with whom he refided fome time in the courfe of the year 1792, and who inftructed him in the proper ufe of the fextant. This affectionate friend publifhed alfo all his obfervations and calculations in the beforementioned Supplement to Bode's Aftronomical Almanack.

In the year $1 ; 89$, Nieuwland was chofen member of a learned fociety whofe object was chemical experiments; and fo apt was his genius for acquiring knowledge, that in a little time he made himfelf completely mafter of the theory of chemiftry. A proof of this is the treatife which he read on the $24^{\text {th }}$ of May 1791, in the fociety, diftinguifhed by the motto of Felix Meritis, and which has heen priated is the firft part of the New Gencral Magazine (Niezv Algemeen Magazyn). At the fame time he was able to examine the important difcoveries made by the fociety, to affit in preparing an account of them for the prefs, and to publin them with fufficient aceuracy in the French language. Three parts of this work appeared under the title of Recherches Pbyjico-chymiques. The firt part appeared in 1792, and was afterwards reprinted in the Yourual de P hyfique. The fecond was publifhed in 1793 , and the fourth in 1794. Some letters of his on chemiftry may be forond alto in a periodical work called The Mefenger (Letterlode).

This ingenious and diligent man was of great fervice Niet oland alfo in the philofophical department to the above fo. ciety, Feclix Mcritis, of which he had been chofen a titular member on the 15 th of January 1788, and an honorary member on the 15 th of March 1791. The papers for which it was indebted to him are as follows:1. On the Newef Difcoveries in Aftronomy, and the Progrefs lately made in that Science, 1788. This is an extract from a Latin oration which he intended to deliver at Utrecht when he expected to fucceed Profeffor Hennert.-2. On the Figure of the Earth, 1798. -3. On the Courfe of Comets, and the Uucertainty of the Return of the Comet now Expected, 1790.4. On the Nature of the Mathematics. The principal object of this paper was to illuftrate the idea, that the mathematics nay be confidered as a beautiful and perfect language.-5. On the Periodical Decreafe or Increafe in the Light of Certain Fixed Stars, and Particularly of the Star Algol, 1790.-6. On the Solution of Spherical Trigonometry by Means of a New Inilrument Invented by Le Guin, 1791. M. le Gain having tranfmitted to the College of Admiralty at Amfterdam an inftrument which might be ufed with great advantage in trigonometrical operations, and by which, in calculating the longitude, one could deduce the real from the apparent diflance, the admiralty charged Nieuwland to examine this infrument; and he found that it might be of excellent fervice for the above pur-pofe.-7. On the Relative Value or Importance of the Sciences, $1791 .-S$. On the Syitem of Lavoifier, 1792. -9. On the Selenotopographia of Schröder, 1793.10. On what is Commonly Called Cultivation, Intiruction, or Enlightening, 1793.

Nieuwland had applied clofely to the mathematics, aftronomy, and navigation, for fix years; during which - time he made confiderable improvements in nautical charts, and filled up his vacant hours with the ftudy of philofophy and chemittry. In the month of July 1793 he was invited to the univerfity of Leyden, to be profeffor of philofophy, aftronomy, and the ligher nathematics, in the roum of the celebrated Damen; and the admiralty of A mfterdam requefted him to continue his nautical refearches, which he did with great affiduity till the period of his death. The only variation which. he now made in his ftudies related to natural philofophy, for with the mathematics he was already fufficiently aequainted. He applied therefore to the experimental part, and fpared no pains nor labour to breome perfeet in it ; which would certainly have been the cafe, had he not been fnatched from fcience and his friends at the early age of thirty. Fe died of an inflammation. in his throat, accompanicd with a fever, on the $13^{\text {th }}$ of November 1794.

In his external appearance, Nieuwland was not what might be called luandfume, nor had he ever been at pains to acquire that eafe of deportment which diftinguifhes thofe who have frequented polite company. His behaviour and converfation were however agreeable, becaufe he could difcourfe with facility on to many fubj cets, and never wifhed to appear but under his real claracter. On the firt view one might have difcerned that he was a man of great modefly and the Atricteft morality. His father was a Lutheran, and his motheraibaptift ; but he himfclf was a member of what is called. the reformed church, i. e. a Calvinift, and always hew-

N I G [301] N I L

Nigar. cd the utmont refpeet for the Supreme Being buth by his words and his actions.

NIGER, a large river in Africa, of which many erroneous accounts have been publifhed, and among them that which we have given in the Encyclopiedla Britannica. By Herodotus, Pliny, Ptolemy, and other ancient authors, it is unifurmly faid to flow from zuef to enfl, dividing Africa as the Dambe divides Europe; and from the report of the Africans, the firt of thefe authors calls it a large river abounding with crocodiles. In the twelfth century, however, Edrifi defcrihes the Niger, which he calls the Nile of the negroes, as running from enft to \quad efef, and falling into the Atlantic Ocean ; and his account was univerfally adopted by fubfequent witers, till its falfehood was difcovered by the African Alfociation. From a number of concurring reports, Major Houghton was led to helieve that the courle of the Niger is from wefl to eafl, according to the molt ancient account; and the truth of thefe reports has been eftablifhed beyond all controverfy by Mr Park, who faw the Niger himfelf, and actually accompanied it for many miles in its majeftic courfe as laid down by Herodotus.

This river rifes in or near the country of Manding (which fee in this Supplement), between the parallels of 10 and 11 degrees of north latitude, and between the sth and 9 th degree of weft longitude, which comprehends a Space the molt elevated of all this portion of Africa. This is evident from the oppofite courfes of the three great rivers which rife in it. Thefe are the Gambia, which runs to the weft north-weft; the Senegal, which runs to the north-weft ; and the Joilba (A), or Niger, ruming to the eaft north-eaft. The head of the principal branch of the Senegal river is about 8 o geographical miles to the weft of that of the Niger; and the head of the Gambia is again about 100 miles wett of the Senegal.

Mr Park traced the Niger to Silla, a confiderable town about 420 miles from its fource; and it was there larger than the Thames at Weflminfler. But 420 miles are but a very fmall part of the courfe of the Niger, which doubtlefs receives many tributary ftreams before it reach Caffiana, 700 miles farther eaftward, where there is every reafon to believe that it was view. ed by the ancient Romans. Our traveller collecte.? at Silla what information he could from the Moorifh and Negro traders concerning the further courfe of this majeftic ftream, as well as of the kingdoms through which it runs; and the following notices he believes to be au authentic:

Two fhort days journey to the eaftward of Silla, is the town of Jenne, which is fituated on a fmall ifland in the river ; and is laid to contain a greater number of inhabitants than Sego itfelf, or any other town in Barnbarra. (Sce Sego, Suppl.) At the diftance of two days more, the river fpreads into a contiderable lake, called Dibbie (or the dark lake); concerning the extent of which, all the information which our author could obtain was, that in croffing it, from weit to eaft, the canoes lofe fight of land one whole day. From this lake, the water iffues in many different freams, which terminate in two large branches, one whereof flows to.
wards the north-eaft, and the other to the caif; but thefe branches join at Kabra, which is one day's journey to the fouthward of Tumbucton, and is the port or thipping-place of that city. The tract of land which the two ftreams encircle, is called Jiabala, and is inhasbited by negroes; and the whole diftance, hy lind, from Jenne to Tumbuctoo, is twelve days journey.

From Kabra, at the dillance of eleven days journey, down the flream, the river paffes to the fouthward of Houffa, which is two days journey diftant from the river. Of the further progrefs of this great river, and its final exit, all the natives with whom Mr Park converfed feemed to be entirely ignorant. Their commercial purfuits feldom induce them to travel further than the cities of Tombuctoo and Houfla; and as the fole object of thofe journeys is the acquirement of wealth, they pay but little attention to the courfe of rivers, or the geography of countries. It is, however, highly probable that the Nigre affords a fafe and eafy commanication between very remote nations. All our author's informants agreed, that many of the negro merchants who arrive at Tumbustoo and Houffa, from the calt ivard, fpeak a diferent Janguage from that of Bambara, or any other kingdom with which they are acquainted. But even thefe merchants, it would feem, are ignorant of the termination of the river; for fuch of them as can fpeak Arabic, defcribe the amazing length of its courfe in very general terms, faying only, that they believe it runs to the suorld's ent.

Major Rennel, by comparing a great many accounts of the progrefs of this river beyond Houffa, with the idea which prevails in that city of its termination, has fhewn it to be in a very high degree probable, that the waters of the Niger have no direct communication with the fea, but that they are fpread out into a great lake in Wangara and Ghane, and cvaporated by the heat of the fun. See Wangara in this Supplement.

NILE, the name of a celebrated river, which, as it has been defcribed in the Encyclopxdia, fhould not have been introduced into this place, did we not think ourfelves bound candidly to confefs that, in our opinion, its fources, at leaf thofe fources which were the objects of ancient curiofity, have never yet been feen by any European. This feems to he proved, beyond the pol fibility of controverfy, by Major Rennel in the Appendix to Mr Park's 'Travels, ard by Mr Drowne in his. account of the Babr-el-abiad, and Dar-Fur or Soudan. See Soudan in this Suppliment.

Mr Bruce himfelf acknowledges that the Nilc, which waters Egypt, is the confluence of two Itreams, and that the weftern ftream, which he, with others, calls Babr-el abiad, or the white river, is the largett of the two. Were a man therefore to travel from Cairo up the banks of the Nile in queft of its fource, he would, doubtlefs, when he fhould arrive at the divifion of the river into two channels, continue his journey up the greater of thefe; for what could induce him to turn. afide with the lefs? Not the name; for neither the lefs nor the greater has by it felf the name which, in Egypt, is given to both when united. The former, which undoubtedly has its fource in Abyffinia, is there called the Abay or Abavi; and, in other countries through.
which

Nile which it runs, the Bahr el-Arck; the latter is, from Nimiqu.as. its fource to its junction with the Abay, called the Bahr-el abiad. Pliny believed that the Nile came from the weft; and Ptolemy fays exprefsly that its remote lource is in the mountains of the moon. But this Nile nuft be the White River, which certainly rifes to the weftward of Abyffinia, and, according to Abulfeda, in the mountains of Fiomri or Kummeri; which, in Arabic, figwifies lunar, being the adjective of Kummer, the moon.

In perfect conformity with this ancient account of the fource of the Nile, Mr Ledyard was told at Cairo by certain perfons from Dar-Fur, that this celebrated river has its coj^{-}fountains in their country, at the diftance of 55 days journey to the weftward of Senaar, which brings them to the Komri mountains of Abulfeda, who, as well as Ptolemy and Edrifi, places the head of the Nile in a quarter far removed from Abyflinia. Ptolemy has indeed mentioned both branches; and while he deferibes the eaftern in fuch a way as that it canuot betaken for any other than the Ahyflinian branch, or the Nile of Bruce and the Portuguefe Jefuits, fpeaks of a larger branch flowing from a more diftant fource, fituated to the fouth weft. But this can be no other than Bruce's white river, the Balbrel-abiad of Ledyard and Browne. It is true, there is an apparent difference in the account given by thefe two laft mentioned travellers -of the country in which the Bahr-el-abiad rifes; but it is a difference only apparent. Ledyard was told at Cairo that it rifes in Dar-Fur; Mr Browne, who refuled long in Dar-Fur, was there told, that the fources of the river are near to a place called $D_{\text {onga, }}$ the refidenee of the chief or king of an idolatrous nation to the fouthward of Dar-Fur. It is to be obferved, however, that the flave-merchants who trade between Donga and Cairo are always attached to the Soudan or DarFur caravan ; and that therefore the perfors who told I.edyard that the Nile rifes in their country were probably from Donga, though he took them for Furians from the name of their caravan. Mr Browne informs us that the country about Donga is very mountainous, and that in the fpot where the river rifes there are faid to be forty diftinct hills, which are called Kumri. From them iflues a great number of fprings, that, uniting into one great channel, form the Bahr-el-abiad, which fuffers the fame periodical increafe and cuuinution as the Nile in Egypt. The people of Donga are quite naked, black, and, as we have already obferved, idulaters. Major Rennel places the mountains of the moon between $5^{\circ} 4^{\circ}$ and $8^{\circ} 10^{\prime} \mathrm{N}$. Lat. and between 24° 30^{\prime} and $30^{\circ} 25^{\prime}$ E. Long. Their latitude and longitude, as laid down by Mr Browne, are fomewhat, tho' very little, different ; whilf Geefh, the foutce of Bruce's Nile, lies between the roth and ith degree of N. Lat. and in about the 37 th degree of E. Long.

NIMIQUAS, a nation, or, more properly, two tribes in Suuth Africa, called by Vaillant the Lefs and Greater Nimiquas.

The country of the Lefs Nimiquas cxtends in longitude from the mountains of Camis to the fea on the well, i. c. from $15^{\circ} 25^{\prime}$ to $58^{\circ} 25^{\prime}$ eaft from London, and in latude from $28^{\circ} 12^{\prime}$ to $29^{\circ} 36^{\prime}$ fouth. From the information which our author could collect, he thinks that the number of inhabitants throughout the whole of this tract does not exceed 6000 fouls. Even
this nuniber is annually diminified by the frequent at- Nimine tacks of Botlmen, and the aridity of the foil. Of the Bosamen we have altready given fuch an account as can leave no donbt of the deftructive nature of their incurfions; and the foil muft be arid indeed, if it be true, as Vaillant affures us, that in the country of the Lefs Nimiquas rain never falls except when it thunders, and that thunder is fo rare ae frequently not to be heard for the fpace of a whole ycar.

For this :want of rain our author accounts in a fatisfactory manner: "The country (he fays) having neither furefts nor lofty momizains to arreft the clouds, thofe which come from the north pals freely over it, and proceed on to Camis, where they burt and fall, either in rain in the valleys, or in fnow on the fummits of thefe mountains, which are the loftief throughout the fouth of Africa." The country is of courfe not fruitful, and its therility obliges the inhabitants frequently to change their refidence, fo that they are the moft wandering of all the Hottentot tribes. In this barren region the Dutch colonits fuppofe that gold mines may be found ; but our author difcovered among the hordes no traces of this metal, though he found many indica. tions of rich copper mines.

The Lefs Nimiquas, though of a tolerable fature, are not fo tall as their neighbours to the eaftward ; and indced Vaillant affirms, that the people to the eaft in the fouthern part of Africa are much fuperior to thofe of the weft both in moral and phyfical qualities, while the animals are far inferior. The Lefs Nimiquas are great believers in witcheraft; and our author gives a ridiculous account of an interview that he had with an old witch named Kakoes, who had a complete aicendency, not only over the whole horde, but affo over the favage Bofhmen. Thefe rohbers, he fays, never attempted to plunder the territory where fhe took up her refidence; and fhe has been known, when their thefts came to her knowledge, to proceed alone, and unguarded, to their retreats in the midn of the woods, to threaten them with her vengeance, and thus compel them to a reflitution of the floleu property. All her influence, however, over her own tribe, could procure for our author and lis attendants only fix fheep.

The women of the horde received his Hottentots with great kindnefs; and petmitted them to difcover very fingular charms, of which it is needlefs here to infert a defeription. Among this people he faw abundance of bracelets, necklaces, and ear-rings of copper : and fome of thefe ornaments were fo well made and finely polified, that they mutt have been manufactured in Europe, and the fruits of an intercourfe with the whites. But he faw feveral others, which, from their grotefque fhape and rude workmanfhip, evidently flewed that they were fabricated by the favages therufelves.
" Thefe ornaments (fays he) are woru by the Nimiquas in the fame manner as by the other favages ; yet 1 obferved among them fome whimfical peculiarities. J. have feen perfons with fix ear-rings of the fame fhape in one ear, and none in the other: I have feen fome with bracelcts from the wrilt to the elbow on one arm, while the other arm was bare: I have feen others with one fide of the face painted in compartments of various colours, while on the other fide both the colours and figures were different. In general, I obferved greaz propenfity to ornaments among the Lefs Nimiquas;

Nimiquas. for their kroffes and all their garments were plentifully covered with glals and copper beads, ftruxg on threads, and faftened on every part of their drefs. They even wore them in their hair, which was plattered with greafe in the moft difgulting manner. Many had their heads covered with a reddifh incruftation, compofed of greafe and a yowder refembling brick-dull, with which their hair was fo pafted together, that you would have fworn it to be a cap of red mortar. Thofe who had it in sheir powei to difplay this luxury of drefs, were as proud as are our petits-maitres, when they can hake a head loaded with powder, perfume, and pomatum. The nuyp-kros, or fhort apron, of the women, was adorned with rows of glafs-beads hanging down to their fect ; in other refpects they were dreffed like the other Hottentots."

The country of the Greater Nimiquas is placed by the author in nearly the fame longitude with that of the Lefs, and between 25° and 28° fouth latitude. It is barren like the other; but the people are much taller, being generally about five feet ten inches high. The men are dull and ftopid, but the women are lively and extremely amorous; and both men and women are comparatively handfome and of a flender make. Extravagantly addicted to fmoking tobacco, the youg girls bartered their favours for a fingle pipe; and as Vail. lant was chief of the caravan, a white, and poffeffor of tobacco of much better quality, many advances were made to him. "I have no doubt (fays he) but I might have formed, for a few pipefuls only, an alliance with every family in the horde. I was even preffed fo clofely, as to be obliged to employ fome refiftance : but, at the fame time, I muft confefs, that my refufals were given in fuch a way as not to offend; and they who, in confequence of their advances, had been expofed to them, having foon found other arrangements to make, did not fhew me the lefs friendihip. I mult here add, that the girls alone appeared to me thus free; while the married women on the contrary were modelt and referved. This is a characteriftic difference, which diftinguifhes the Greater Niniquas from the Hottentot people in general: as likewife does the low cringing air they affume when they have any thing to ank."

It has been faid by Kolben, that the Nimiqua women, when they bear twins, dellroy one of the infants; but Vaillant affures us that this is a falfehood, as is like. wife another tale which is current in the colony. It has been faid that the fathers, to fhow what affection they bear their children, feed their eldeft in a particular manner, as being of right the firft object of patemal care. For this purpofe they put him in a coop as it were; that is, they fhut him up in a trench made under their hut, where, being deprived of motion, he lofes little by perfpiration, while they feed and cram him in a manner with milk and greafe. By degrees the child fattens and gets as round as a barrel; and when he is come to fuch a late as not to be able to walk, but to bend under his own weight, the parents exhibit him to the admiration of the horde; who from that period conceive nore or lefs efteem and confideration for the family, according as the monlter has acquired more or lefs rotundity.

Such was the account given to our author by a man who affirmed that he had been an eye-witnefs of this mode of cramming the heir-apparent; but whenever

303] N I Z
any queftions were afked on the fubject of the Nimi- Nimiquas. quas themfelves, the perfons addreffed were ready to laugh in our author's face. "Still (fays he), as it ap-

Nizolius. peared ftrange to me, that a man hould talk of what he had feen, when he liad in reality feen nothing; as it was poffible that the fable might have fome foundation, without being true in all particulars - I was willing to convince my felf what could have given rife to it : and every time I vifited a horde, I took care, under different pretences, to examine, one after another, all the huts of the kraal, and to afk which was the cldeft child of the family : but I nowhere faw any thing that indicated either this pretended coop, or this pretended cramining."

The Nimiquas are great cowards; yet, like the furrounding nations, they lave their affagays and poifoned arrows; and, like them, can handle thefe arms with dexterity. They poffels alfo thofe war oxen, fo for* midable in battle, and fo favourable to the cowardice or inactivity of the combatants. They have even a peculiar implement of war, which their neighbours have not. This is a large buckler, of the height of the perfon who bears it, behind which the Nimiqua can completely conceal himfelf. But, befide that his natural apathy prevents him from giving or taking offence, he is in reality pufillanimous and cowardly from the coldnefs of his difpofition. To utter only the name of Houzouana before him is fufficient to make him trem. ble. See Houzouanas in this Suppl.

Notwithftanding his frigidity, the Nimiqua is not infeufible to pleafure. He even feeks with avidity thofe which, acquiring but little exertion, are capable of agitating him and procuring agreeable fenfations. 'Their mnfical inftruments are the fame as thofe of the other Hottentots; but their daneing is very different, and refembles the temper of the nation. If the connte. nance have received from nature features that can ex. prefs our paffions, the body alfo has its attitudes and movements that paint our temper and feelings. The dance of the Miniqua is frigid like himfelf, and fo devoid of grace and hilarity, that, were it not for the ex: treme gaiety of the women, it might be called the dance: of the dead.

Thefe tortoifes, to whom dancing is a fatigne, thew. little eagernefs for any thing but wagers; games of cal. culation and chance, and all the fedentary amufements which require patience and reflection, of which they are more capable than they are of motion. When onr author, with great propriety, prohibited gaming in his camp, the Nimiquas, who had tlaid long with him, took their departure.

NITIA, a fpecies of the Mimosa, which flourifhes on the banks of the Senegal in Africa. It is valuable to the inhabitants for its fruit, the pods of which are long and narrow, containing a few black feeds enveloped in a tine mealy powder, of a bright yellow culour, which refembles the flour of fulphur, and has a fweet mucilaginous tafte. When eaten by itfelf it is clammy; but when mixed with milk or water, it contitutes a very pleafant and nourihing food, fupplying the place of corn to the negroes. - Park's Travels.

NIZOLIUS (Marius), a grammarian of Italy, who by his wit and erudition contributed much to the promotion of letters in the 1 Gth century. He publifhed, in 1553, Lib. 4. De veris Principiis et veriz Ratione shilofoo

Nocturnal. philofophandi, contra Pfeudo philofophos. In this work he attacks, with much vivacity, the fchoolmen, not onl_{y} for the barbarifm of their terms, but for many ridi. culous opinions which they held. Leibnitz was fo fluck with its folidity and elegance, that, to expofe the obilinacy of thofe who were zealously attached to Ariftotle, he gave a new edition of it, with critical notes of his own, 670 , in 4 to. Nizolius publifhed alfo Thefaurus Ciceronianus, five Apparatus Lingue Latine e Scriptis Tullii Ciceronis collectus, in folio. This is a good Latin dictionary, compoled of the words and expreffions of Cicero; to which, it feems, Nizolius fhewed as much bigotry as the fchoolmen to their no-

Biog. Dictionary. tions; and fell under the character of thofe pedants whom Erafmus has ridiculed in his Ciceronianus. We do not find the year either of his birth or death.

NOCTURNAL ARCH, is the arch of a circle defcribed by the fun, or a far, in the night.

NONAGESIMAL, or Nonagestmal Degree, cal. Nonazeltled allo the Mid beaven, is the higheet point, or 9xth degree of the ecliptic, reckoned from its interfection with the horizon at any tine ; and its altitude is equal to the angle that the ecliptic makes with the hori\%on at their interfecion, or equal to the dillance of the zenith from the pole of the ecliptic. It is much ufed in the calculation of folar eclipfes.

NONAGON, a figure liaving nine fides and angles. In a regular nonagon, or that whofe at - les and fides are all equal, if each fide be 1 , its area will be 6.1818242 $=\frac{9}{3}$ of the tangent of 70°, to the radius 1 .

NORMAL, is ufed fometimes for a perpendicular.

NUEL, or Newel, the upright poft about which ftairs turn, being that part of the itaircale which fuftains one end of the fleps.

O.

Oafis

OASIS (plur. OASES), a fertile fpot in the midft of a fandy defart. In the Sahara, or Great Defart of Africa, there are many Oafes of exreme fertility.

OBLATE, flatted or fhortened; as an oblate fpheroid, having its axis fhorter than its middle diameter; being formed by the rotation of an ellipfe about the fhorter axis.

OBLIQUE ascension, is that point of the equisoctial which rifes with the centre of the fun, or flar, or any other point of the heavens, in an oblique Sphere.

ObLIQUe Circle, in the ftereographic projection, is any circle that is oblique to the plane of projection.

Obligus $D e f c e n f i o n$, that point of the equinoctial which fets with the centre of the fun, or ftar, or other point of the heavens, in an oblique f phere. $^{\text {p }}$

Obligita Force, or Percufion, or Pozver, or Stroke, is that made in a direction oblique to a body or plane. It is demonftrated, that the effect of fuch oblique force, \&c. upon the body, is to an equal perpendicular one, as the fine of the angle of incidence is to radius.

OBLONG sPheroid, is that which is formed by an ellipfe revolved about its lunger or tranfverfe axis; in contradiction from the oblate fplueroid, or that which is flatted at its poles, being generated by the revolution of the ellipfe about its conjugate or fhorter axis.
observatory, portable. See AstronoMy, ${ }^{\circ} 5 \mathrm{O}_{4}$, Encycl.

OCCIDENT Equinoctial, that point of the horizon where the fun fets, when he croffes the equinoctial, or enters the fign Aries or Libra.

Occonent Efival, that point of the horizon where the fun fets at his entrance into the fign Cancer, or in our fummer when the days are longeft.

Occideng Hybernal, that point of the horizon where
the funfets at midwinter, when entering the fign Ca pricorn.

OCTANT, the eighth part of a circle.

ODD, in arithmetic, is faid of a number that is not even. The feries of odd numbers is $1,3,5,7$, \&cc.

ODDLY-ond. A number is laid to be oddly-odd, when an odd number meafures it by an odd number. So 15 is a number oddly odd, becaufe the odd number 3 meafures it by the oud number 5 .

ODOUR, that quality of certain bodies which excites the fenfation of fmell. In the Annales de Cbimic, Vol. XXI. p. 254, we have a detailed accomnt of certain experiments made by M. Benedict Prevoft of Geneva, with a view to render the emanations of odorant bodies perceptille to fighb. The account is by much too long for a work like ours; efpecially as we fech not ourfelves inclined to attribute to the experiments all the importance which feems to have been allowed to them by the firft clafs of the French National Indtitute. We fhall therefore ftate only a few of them, which feem mof to farour the author's hypothefis.

1. A concrete odorant fubftance, laid upon a wet glafs or broad faucer covered with a thin Itratum of water, immediately caufes the water to recede, fo as to form a fpace of feveral inches around it.
2. Fragments of concrete odorant matter, or fmall morfels of paper or cork, impregnated with an odorant liquor, and wiped, being placed on the furface of water, are inmediately moved by a very fwift rotation. Romien had made this obfervation on camphor, and erroncoully attributed the effect to electricity. The motion was perceptible even in pieces of campbor of feven or eight gros.
3. An odorant liquor being poured on the water, ftops the motion till it is diffipated by evaporation. Fixed oil arrefts the motion for a much longer time,

$0 \quad \mathrm{D} \quad \mathrm{O}$

[305]
fingers when hot or moit, are merely apparent; for if our fenfes do not in thofe cafes difconcr odour, thofe of animals more powerfully energetic, fuch as the dog, perccive and dittinguith individuals by its peculiar cha. racter. The odorofeope may afford the information which is wanting refpecting thefe effluvia. Thus it is that the fat of game, the fincll of which is nearly to us imperecptible, is very mach fo to dogs, and exhibits fenfible marks by the odorofcope."

Profeffor Venturi of Mudena, who heard Prevof's memoir read in the National lnttitute, had limfelf nade fome experiments with cimphor kept feparately in the air, in the watcr, and at lle furface of the water; whence he deduces, that the moft active virtue for diffolving camphor refodes at that part where buth the air and the water tonch the camphor at the fane time. Hence he explains why, in like circumftances, carphor evaporates mure quickly in a moif than in a dry air; and why the Hollanders ufe water in their procels for fubliming this fubftance.

It might be thonght that the camphor was ciecompofed at the furface of the 1 ater ; that the water mixht feize the acidifying part, which eteders the cany hor concrete; and that the volatile part is diffipated in the atmophere. The anthor rejects this notion. He thinks that water with camphor floatirg on it furface becomes charged with no more than a very fmall portion: 1. Becaufe in thefe circumftaces the water acquires the fame tafte and fmell of camphor as it ob. tains when a fmall quantity of this lubitance is kept plunged in the fame fluid. This water, by expcfure to the air, Infes the qualities with which it had been charged, and becomes infipid, and without fmell. 2. Becaufe when the water is faturated with all it can take $u p$, the diffipation of the camphor continues at its furface as before. 3. Becaufe the aerial emanations of camphor made at the furface of water do themfelves cryflallize into camphor.

Camphor at the furface of the water does nothing, therefore, but difiolve ; and when diffelved at the ordinary temperature of the atmofuhere, it is nut at firit in the ttate of vapuur as has heen thought. It is dimply a liquid which estends itfelf over the furface of water itfelf; and by this means coming into contact with a great furface of air, it is afterwards abforbed and evaporated. This is proved by the following facts: 1 Thee folution of camphor at the furface of water is more rapid in proportion to the extent of the furface. In narrow veflels, the fection of the column would not be completed in ten days, even though the wates might be extremely pure. 2. When the column of camphor has projecting parts, the liquid may be feen iffuing by preference front curtain points of the column, covering the furface of the water, and driving fimall floating bodies before it, in the fanse manner as floating hodies go and return in a bafon into which the water of a canal enters with rapidity. 3. If a fmall piece of camphor, already wetted at one end, be brought near the edge of water contained in a broad faucer, and be made to touch the faucer itfelf, it depofits a vilible liquor, which is oily; and by attaching itfelf to the faucer, deftroys the adhefion between the veffel and the border of the water, fo that the water retires on account of the affinity of ag. gregation, which not being oppofed by the attraction of the faucer, caufes the water to terminate in a round Qq
edge.

O E C [306] O E C

Odour, edge. If you remove the piece of camphor, the water Cicono mift.
will not return to its place until the oily fluid is evaporatel. 4. In the faine manner, when the colunn of
camplor is half immerfed in the water, the oily liciuor which iffucs forth deftroys the adhection of the water to the colurna, and prodicts a fmall furrounding cavity. The fulution llops, or is retarded for a moment, until the Huid, ex:ending itfelf uver the water, becomes evaporatul: the water then returns to its place, and touches the fame part of the camphor; the folution begins again, and in this manner the procefs is effected by alternations of contact and apparent repulifion.

Of thefe inemoirs by Prevoff and Veaturi, the Englifi reader will find accurate and full tranfations in the fint volume of Nichalfon's Pbilafophical Yournal, together with fome judicious obfervations on them by the editor, which we fhall talse the liberty to adopt. "The philofuphical confideration of odorant bodies is fomewhat obfcured by the old method of generalizing, or referring the properties of bodies to fome dillinct principle or thing fuppofed capable of being feparated from the body itfelf. Thus the odours of bodies have been fuppofecl to depend on a fubttance imagined in a loofe way to be conmon to them all and feparable from therm. Hence the terms, principle of fmeil, fpiritus rector, and even in the modern nomenclature we find aroma. There does not in effect feem to be any more reafon to infer the exiftence of a common principle of fimell than of pafte. The fmell of ammoniac is the action of that gas upon the organ of fenfe; and this odorant invitible matter is exhibited to the fight when combined with an acid gas. But in the fame inanner as ammoniac emanates from water, and leaves moit part of that fluid behind, fo will the volatile parts of bodies be moft eminently productive of this action : and very few, if any, natural bodies will be found which rife totally. The moft flriking ciccumftance in the effect is, that an act of fuch power thould be attended with a lofs by exhalation which is fearcely to be appreciated by weight, or in any other method during a fhort interval of time. But we know fo little of nervous action, and of other phenomena of eledricity, of galvanifm (See Galva. sism in this Suppl.), or even of heat, which Atrongly affect the fenfes, but elude admeafurement by gravitation, that the difficulty of weighing the efluvia of odorant bodies becomes lefs aftonithing."

ECONOMISTS, a fect of philufophers in France, who have made a great noife in Europe, and are generally believed to have been unfriendly to religion. The founder of this fect was a Dr Duquefrai, who had fo well infinuated himfelf into the favour of Louis XV. that the king ufed to call him his thinker. The fect was called aconomifs, becaule the oconomy and order to be introduced into the finances, and other means of anleviating the dillreffes of the people, were perpetually in their mouths. The Abbe Barruel admits, that there may have been fome few of them who directed their fpeculations to no other object; but he brings very fufficient proof that the great aim of the majority of the fect was to eradicate from the minds of the people all reverence for divine revelation.
"Duquefnai (fays he) and his adepts had more efpecially undertaken to perfuade their readers, that the country people, and mechanies in tuwns, were entirly deflitute of that kind of infruction neceffary for their
profeffions; that men of this clafo, unable to acquire Greoro. knowledge by reading, pined away in an ignorance equally latal to therrifives and to the fate; that it was neceflary to eftabilin free fchools, and particularly throughout the country, where children might be brought up to dinerent trades, and inftructed in the principles of agriculture. D'Alembert, and the Voltairean adepts, Ionn perceived the advantages they could reap from thete ctlablifhments. In union with the oconomills, they prefented various memorials to Louis XV. in which not only the temperal but even the fpiritual advantages of fuch eftablifhments for the people are ftrongly urged. The king, who really loved the people, embraced the project with warmth. He opened his mind on the fubject to Mr Bertin, whom he honoured with his confidence, and had entrufted with his privy purfe;" and it was with great difficulty that this minifter could convince him of the dangerous defigns of the fect.

Determined (fays he) to give the king pofitive proof that the occonomifts impofed upon him, I fught to gain the confidence of thofe pedlars who travel through the conntry, and expofe their goods to fale in the villages, and at the gates of country feats. I fufpected thofe in particular who dealt in books to be nothing lefs than the agents of philofophifm with the good couniry folks. In my excurfons into the countyy I fixed my attention above all on the latter. When they offered me a book to buy, I queftioned them what might be the hooks they had? Probably catechifms or prayer books? Few others are read in the villages? At thefe words I have feen many fmile. No, they anfwered, thofe are not our works; we make much more money of Voltaire, IDiderot, and other philofophic writings. What! faid I; the country people buy Voltaire and Diderut? Where do they find the money for fuch dear wooks? Their conftant anfwer was, we have them at a much cheaper rate than prayer-books; we can fell them at ten fols (5 d .) a volume, and have a pretty profit inte the bargain. Quellioning fome of them ftill farther, many of them owned that thofe books colt them nothing; that they received whole bales of them without knowing whence they came, but being fimply defired to fell them in their juurncys at the lowett price.
" Louis XV. warned by the difcovery made by his minifter, was at length fatisfied that the eftahlifhmert of thefe fchools, fo much urged by the confpirators, would only be a new inftrument of feduction in their hands. He abandoned the plan; but, perpetually haraffed by the protecting fophifters, he did not tlike at the root of the evil, and but feebly impeded its progrefs. The pedlars continued to promote the meafures of the confpirators; yet this was but one of the inferior means employed to fupply the want of their free fchools, as a new difcovery brought to light one far more fatal.
"About the middle of the month of September 1789 , little more than a fortnight antecedent to the atrocious $5^{\text {th }}$ and 6 th of October, at a time when the conduct of the National Affembly, having thrown the people into all the horrors of a revolution, indicated that they would fet no bounds to their pretenfions, Mr Le Roy, lieutenant of the King's hunt, and an acade. mician, being at dinner at the houfe of Mr D'Angevilliers, intendant of the buildings of his majetty, the

O E C

Ocono. mils.

307

O I L

This recital is too well autsenticated to be called in queftion, and too plain to need a commentary. Let it be a warning againit all fecret focieties, by whatever title of benevolence they may be defigued by thofe who form them.

OIL-mule, a mill for expreffing the oils from fruits, or grains, \&c. As thefe kingdoms do not produce the olive, it would be needlefs to defcribe the mills which are employed in the fouthern parts of Europe. We flall content ourfelves, therefore, with a defeription of a Dutch oil-mill, employed for grinding and prefling lintfeed, rape-feed, and other oleaginons grains. Farther, to accommodate our defeription ftill more to our local circumflances, we flall employ water as the firft mover; thus avoiding the enormous expence and compli. cation of a windmill.

In Plate XXXVIII. fig. A,
נ. Is the elevation of a wheel, over or underfhot, as the fituation may require.
2. The bell-metal focket, fupported by mafonry, fo: recciving the outer gudgeon of the water.wheel.
3. 'The water courfe.

Fig. B.
I. A fpur wheel upon the fame axis, having 52 teeth.
2. The crundle that is driven $\mathrm{b}^{\circ} \mathrm{N}^{\circ} 1$ and has 78 flaves.
3. The zuallower, or axis for raifing the peftles. It is furnifhed round its circumference with wipers for lifting the pefles, fo that each may fall twice during one turn of the water wheel, that is, three wipers for each pettle.
4. A frame of timber, carrying a concave half cylinder of bell-metal, in which the wallower (cafed in that part with iron plates) refts and turns round. It will be feen in profile, fig. G.
5. Mafonty fupporting the inner gudgeon of the water wheel and the abore-mentioned frame.
6. Gudgeon of the wallower, which bears againft a bell-metal flep fixed in the wall. This double fupport of the wallower is found to be neceffary in all mills which drive a number of heavy tampers.

Fig. C, Is the elevation of the pettle and prefsframe, their furniture, the mortars, and the prefs. peltles.
I. The fix peitles.
2. Crofs pieces between the two rails of the frame, forming, with thefe rails, guides for the perpendicular notion of the pettles.
3. The two rails. The back one is not feen. They are checked and bolted into the fandards $\mathrm{N}^{2} 12$.
4. The tails of the lifts, correfponding to the wipers upon the wahower.
5. Another rail in front, for canying the detents which hold up the pedtles when not acting. It is marked 14 in fig. M.
6. A beam a little way behind the peftles. To this are fixed the pulleys for the ropes which lift and ftop the pefles. It is reprefeated by 16 in fig. M.
7. The faid pulleys with their ropes.
8. The driver, which Arikes the wedge that prefles the oil.
9. The difcharger, a flamper which frikes upon the inverted wedge, and loofens the prefs.
and on thofe that were too clearly to be forefeen. Dinner over, the nubleman above-mentioned, a friend of Le Roy, hurt at having feen him fo great an admirer of the fophifers, reproached him with it in the following expreffive words : Well! thes, then, is the auork of Pbito. fopby! Thunderftruck at thefe words-Alas! cried the acadenician, 10 ruhom do you fay fo? I know it but too quell, and I foall die of grief and ren:orfe! As the word remor $/ e$, the fame nubleman queftioned him whether he had fo greatly contributed towards the revolution as to upbraid limfelf with it in that violent manner? 'Yes (anfwered he), I have contributed to it, and far more than I was aware of. I was fecretary to the committee to which you are indebted for it ; but I call heaven to witnefs, that I never thonght it would go to fuch lengths. You have feen me in the king's fervice, and you know that I love his perfor. I little thought of bringing his fubjects to this pitch, and I jkall die of grief and remorfe!"
"Preffed to explain what he meant by this committee, this fecret fociety, entirely new to the whole company, the academician refumed: "This fociety was a fort of club that we philofuphers had formed among us, and only admitted into it perfons on whom we could perfectly rely. Our littings were regularly held at the Baron D'Holbach's. Lett nur object fhould be furmifed, we called ourfelven ceonomifts. We created Voltaire, though ablent, our honorary and perpetual prefident. Our pincinal members were D'Alemhert, Turgot, Condorcet. Diverot, La Harpe, and that Lamoignon, keeper of the feals, who on his difmiffion flot himfelf in his park.'
"The whole of this declaration was accompanied with tears and fighs; when the adept, deeply penitent, continued: "The following were our occupations; the moft of thofe works which have appeared for this long time palt, againft religion, morals, and government, were curs, or thofe of authors devoted to us. They werc all compofed by the members or by the orders of the fociety. Before they were fent to the prefs, they were delivered in at our office. There we revifed and corrected them ; added to, or curtailed them, according as circumftances required. When our philofophy was $t 00$ glaring for the times, or for the object of the work, we brought it to a lower tint; and when we thought that we might be more daring than the author, we fpoke more openly. In a word, we made our writers fay exacly what we pleafed. Then the work was publithed under the title or name we had chofen, the better to hide the hand whence it came. Many, fuppoled to have been pofthumous works, fuch as Chrifitiunity U_{n} majked, and divers others allributed to Freret and Boulanter after their deaths, were iffued from our fociety.

- When we had approved of thofe works, we began by printing them on fine or ordinary paper, in fufficient number to pay our expences, and then an immenfe number on the commonelt paper. Thefe latter we fent to lawkers and bookfellers free of cout, or nearly fo, who were to circulate them among the people at the towelt rate. Thefe were the means ufed to pervert the people, and bring them to the flate you now fee them in. I thall not fee them long, for I foall die of grief and remorfe!"

10. The lower rail with its crofs pieces, forming the lower guides of the peitles.
11. A finall cog-wheel upon the wallower, for turning the Spatala, which flirs about the oil-feed in the chauffer-fin, It has 28 teeth, and is marked $\mathrm{N}^{\circ} 6$. in fig. M.
12. The four itamdards, mortifed helow into the block, and above into the joifts and beatas of the building.
13. The fix mortars hollowed ont of the hlock itfelf, aud in fhape pretty much like a kitehen pot.
1.1. The feet of the peftles, romded into cylinders, and hod with a great lump of iron.
14. A board hehind the peftles, flanding on its edge, but inclining a little backwards. There is fuch another in front, but not reprefented here. Thefe form a fort of trough, which prevents the feed from being feattered about by the fall of the peitles, and loft.
15. The firit prefs-box (alfo hollowed out of the block), in which the grain is fqueezed, after it has come for the firt time from below the milftones.
16. The fecond prefs-box, at the other end of the block, for fqueezing the grain after it has paffed a fecond time under the peftles.
17. Frame of timber for fupporting the other end of the wallower, in the fame manner as at N° 4. fig. 13.
18. Small cog-wheel on the end of the wallower for giving motion to the milltones. It has 28 teeth.
19. Gudgeon of the wallower, bearing on a bell metal focket fixed in the wall.
20. Veffels for receiving the oil from the prefsboxes.
21. Joifts fupporting the block.

Fig. D. Elevation and mechanifm of the militones.

1. Upright foaft, carrying the great cog-wheel above, and the runner milfones below in their frame.
2. Cog-wheel of 76 cogs, driven by $\mathrm{N}^{0} 19$. of fig. C.
3. The frame of the runners. This will be nore diftinetly underflood in $\mathrm{N}^{0} 4$. fig. H .
4. 'The innermof runner, or the one neareft the Maft.
5. Outermoft ditto, being farther from the flaft.
6. The inner rakc, which collects the grain under the outer runner.
7. The outer rake, which collects the grain under the imner runner. In this manner the grain is always turned over and over, and crufhed in every direction. 'The inner rake lays the grain in a flope, of which fig. O. is a fection; the rumner flattens it, and the fecond rake lifts it again, as is marked in fig. P; fo that every fide of a grain is prefented to the militone, and the reft of the legger or netber milfone is fo fwept by them, that not a fingle grain is left on any part of it. The outer rake is alfo furnithed with a rag of cloth, which rubs againt the border or hoop that furrounds the nether militone, fo as to drag out the few grains which might other. wife remain in the corner.
8. The ends of the iron axle which paffes through the upright fhaft, and through the two runners. Thus they have two motions: $1: 30$, A rotation round their own axis. 2do, That by which they are carried round upon the nether milllone on which they roll. The holes in thefe milftones are made a little widifh; and the holes in the ears of the frame, which carry the ends
of the iron axis, are made oval up and down. This great freedom of motion is neceffary for the runner miltones, becaufe frequently more or lefs of the grain is below them at a time, and they mut therefore be at liberty to get over it without ftraining, and perhaps breaking, the fhaft.
9. The ears of the frame which lead the two extremities of the iron axis. 'They are mortifed into the under fide of the bars of the fquare frame that is earried round with the fhaft.
10. 'The border or hoop which furrounds the nether milfone.
11. and 12. The nether militone and mafonry which fupports it.

Fig.' E. Form of the wallower, fhewing the difpofition of the wipers along its furface.

1. Two parts of this fhaft, which are nicely round. ed, and fortified with iron plates, and which reft upon the bell-metal concaves, which are reprefented in $n^{4} 4$. of fig. C.
2. The little wheels at each end, for giving motion to the two fpatulx, marked $n^{\circ} 11$. fig. C.
3. The wipers for the fecond prefs.
4. The wipers for the firlt prefs.
5. The wipers for the fix pellles.

Fig. F. Reprefents the furface of the wallower unfolded into a rectangular parallelogram, in order to fhew the diftribution of the wipers, and confequently the fucceffion of the ftrokes given by the different pettles. This diftribution has fomething peculiar. Each peftle has three wipers; and there are alfo three for the driver and difcharger of the fecond prefs. The driver and wiper of the firft prefs have but one and a half; one for the driver, and the half for the difcharger ; fo that it ftrikes twice, and the driver only once, in a turn of the fhaft. 'This is the Dutch practice, which differs from that of Flanders. The fucceffion of the ftrokes may be conceived as follows: Reckon the fampers, including thofe of the prefles, from the water-wheel toward the other end of the wallower, and calling them $a, b, c, d, e, f, g, b, i, k$, and fuppofing that a makes. the firft ftroke, they proceed in the following order for one turn of the wallower:
$a b, d, f, b, c, c, g, a b, d, f, b, c, c, g, a b, d, f, b, c, e, g$.
Here it may be obferved that a and b ftrike together. They would do fo if allowed; but one of them is held up by its detent till the workman fees proper to dif. engage it. Each peftle, and the driver and difcharger of the fecond prefs, makes three ftrokes for one turn of the wallower. But the driver k of the firft prefs makes only one ftroke in that time, namely, in the interval between the laft ftrokes of e and g. The difcharger i of this prefs makes two ftrokes; one of them in this fame interval, and the other along with the firt Atroke of e. The fecond preffing requires a much more violent preffure than the firit, becaufe the cake muft be left perfectly dry and hard.

Fig. G, Profile of the frame of timber which carries the wallower, and greatly contributes to render its motion fteady.

Fig. H. Is a view of one of the milftones.

1. 'The nether milfones, and the mafonry fupporting the whole.
2. The runner.
3. A fort of cafe which eaclufes the two wings of the miltone at a very fmall diflanee from it, in order to prevent the grain which Iticks to it from being fcattered. There is another method practifed at fume mills.

Fig. I. Reprefents that of Sardamm. AA arc two iron rods, about fialf an inch fquare, langing on the axde, on each fide of the militunc. 'Thefe rods are joined by a crofs piece C , which alnout touches the militunce. A piece of leather is pui between, which rubs upon the milhtone, and clears it of the grain which chances to ftick to it. $\mathrm{N}^{\prime} 4$ and 6 . reprefent the ears of this frame, by which the end of the iron asle is fupported, and carrid round by the upright fhaft $n^{6} 5$.

Fig. K. Plan of the rutner militunes, and the frame which carries them round

1, 1. Are the two millones.
3, 3, 3, 3. The outide pieces of the frame.
$4,4,4,4$. The crofs bars of the frame which em. brace the upright fhaft 5 , and give motion to the whole.

6, 6 . The iron axis upon which the runners turn.
7. The onter rake.
8. The inner ditto.

Tig. L. Reprefents the nether militone feen from ahove.

1. The wooden gutter, which furrounds the nether militone.
2. The berder or hoop, about tix inches high, all round, to prevent any feed from being fcattered.
3. An opening or trap-door in the gutter, which can be opened or fhut at pleafur: When open, it allows the bruifed grain, collected in and thoved along the gutter by the rakes, to pafs through into troughs placed below to receive it.
4. Portion of the ciccle defcribed by the outer rumer.
5. Portion of the circle deferibed by the inner one. By thefe we fee that the two flones have different routes round the axis, and bruife more feed.
6. The outer rake.
7. The inner ditto.
8. The fweep, making part of the inner rake, occafionally let down for fiweeping off all the fied when it has been fufficiently bruifed. The preffure and action of thefe rakes is adjufted by means of wooden fprings, which cannot be ealily and diftinctly reprefent. ed by any figure. The ublique pofition of the rakes (the outer point going foremoll) caufes them to thove the grain inwards or toward the centre, and at the fame time to turn it over, formewhat in the fame manner as the mould-board of a plough fhoves the earth to the right hand, and partly turns it over. Some mills have but one fweeper; and indeed there is great variety in the form and conitruction of this part of the machinery.
Fig. M. Profile of the pettie frame.
9. Section of the horizontal fhaft.
10. Three wipers for lifting the peftles.
11. Little wheel of 28 teeth for giving motion to the Spatula.
12. Another wheel, which is driven by it, having 20 teeth.
13. Horizontal axle of ditto.
14. Another wheel on the fame axle, having 13 teeth.
15. A wheel upon the upper end of the fpindle, having 12 teeth.
16. Two guides, in which the fpindle turns freely, and fo that it can be fhifted higher and lower.
17. A lever, moveable round the picee no 1q. and havitg a hole in it at 9 , through which the findle palles, turning freely. The tpindle has in this place a thoulder, which rests on the border of the hole 9 ; fo that by the mution of this lever the finalle may be difengaged from the whed-work at pleafure. This motion is given to it by means of the lever 10, 10 , moveable round its middle. 'Jhe workman employed at the chauffer pulls at the rope 10,11 , and thus dithigages the fpindle and fpatula.

1I. A peflle feen fidewife.
12. The l.ft of ditto.
13. The upper rails, marked $1^{\circ} 3$. in fig. C.
14. The rail, marked $n^{0} 5$. in fig. C. To this are fixed the detents, which ferve to llup and hold up the peftes.
15. A detem, which is moved by the rope at its outer end.
16. A bracket behind the pefles, laving a pulley, threngh which paffes the rupe goong to the detent 15 . 17. The faid pulley.
13. The rope at the workman's hand, paffing through the pulley 17 , and fixed to the end of the detent 15 .

Thid detent natmally hangs perpendieular by its own weight. When the workman wants to fop a pelle, he pulls at the rope 18 , during the vife of the pofle. When this is at its greated height, the detent is horizontal, and prevents the peftle from falling by means of a pin projecting from the fide of the pefle, which refls upon the detent, the detent iffiff heing held in that pofition by hitching the loop of the rope upon a pin at the workman's hatid.
19. The two lower rails, narked n° ro. fig. C.
20. Great wooden, and fometimes fone, block, in which the mortars are formed, narked $\mathrm{n}^{\circ} 21$. in tig. C.
21. Veffel placed below the prefs boxes for receiving the oil.
22. Chauffer, or little furnace, for warming the bruifed grain.
23. Backet in the front of the chauffer, tapering downwards, and opening below in a narrow thit. The hair bags, in which the grain is to be preffed after it has been warmed in the chauffer, are filled by placing them in this backet. The grain is lifted out of the chauffer with a ladle, and put into thefe bags; and a good quantity of oil runs from it through the flit at the bottom into a veffel fet to receive it.
24. The fpatula attached to the lower end of the fpindle, and turning round among the grain in the chanfer-pan, and thus preventing it fromi flicking to the bo:tum or tides, and getting too much heat.
Fig. N, Plan of part of the works.
1, 1. Furnaces for warming the grain.
2, 2. The backets for holding the facks while they are a-filling.

3, 3. The pan in which the bruifcd grain is heated by the chauffer.

4, 4. A trough for receiving the chips, into which the preffed oil-cakes are cut, to be afterwards put into the pan and warmed.
5. The prefs-box for the fecond preffing.
6. The prefs-box for the firft preffing.
7. The fix mortars.
8. The floping boards, to hinder the feattering of the oil feed.
9. The nether milkone, but out of its place. 10. Its centre a little higher than the reft.
15. A rib of wood going round the edge of the nether milftone, and even with its furface, but rifing a very little outwards, and furrounded with a border or boop about an inch high, to prevent the feed from being feattered on the ground.

Fig. Q. A fection lengthwife of the great block, with the mortars and prefs-boxes.

1. 'The fix peftles.
2. The fix mortars, each of which has an iron plate at its bottom.
3. The driving ftamper, which falls on the wedge of the firft preffing.
4. Ditto, for the fecond ditto.
5. The difcharger, which flrikes on the inverted wedge in order to free the prefa.
6. Ditto, for the fecond preffing.
7. Wedge for freeing the prefs.
8. Wedge for preffing.
9. Wooden cheeks, two inches thick, which are placed between the middle wedge and the fiding wedges on each fide.
10. Prefs-irons, between which are placed the hairbags containing the bruifed grain.
11. Iron plate, called the fountain, at the bottom, pierced with holes, correfponding with a hole in the block, for allowing the oil to run off from the preffed grain.
12. Veffel for receiving ditto.
13. A long iron plate at the botiom of the prefs box, under the drawing and difcharging wedges.

Fig. R. Another view of the prefs-irons.
I. The fide-irons laid flat.
2. The fame feen edgewife.
3. The pierced iron plate, upon which the two irons, $n^{n} \mathrm{~J}$. fland upright, with the hair-hag between them.
4. One of the hair-bags. It may be obferved that the feams of thele bage are made on the flat lides, and not on the edges, where they would be in danger of burfting.
5. A long hair-cloth, in which the bag is wrapped before it is fet into the prefs. The bag, being filled with bruifed grain, is placed with its bottom at a, and the top at b; the part $c a$ is lapped over it, reaching to b, and then the other end d is lapped over that, and reaches to a, and the loop at its end ferves as a handle by which to lift it, and place it properly between the prefs-irons.

Fig. S. The principal pieces of the prefs.

1. The wooden cheeks.
2. The difcharging wedge.
3. The driving wedge.

4 and 5. The fliding blocks, which tranfinit the preffure produced by the driving wedge.

The foregoing enumeration and views of the different parts of a Dutch oil mill, are fufficient, we imagine, to enable an intelligent mill-wright, to whom the machine is altogether new, to underltand its manner of working,
and its adaptation to the various parts of the procefs for extracting the oil from feeds or kernels. It wonld require a very minnte defcription indeed to explain it to a perfon altogether unacquainted with millwork.

The firf part of the procefs is bruifing the fecd under the runner flones (A). 'I hat this may be inore expeditioully done, one of the rumers is fet about $\frac{2}{3}$ de of its own thicknefs nearer the fhaft than the other: I'hus they have different treads; and the grain, which is a little heaped towards the centre, is thus bruiled by both. The inner rake gathers it op under the outer ftone into a ridge, of which the fection is reprefented in Plate XL. fig. O. The ftone palles over -it, and flattens it. It is gathered up again into a ridge, of the form of fig. P. under the inner tone, by the vuter rake, which confilts of two parts. The outer part preffes clofe on the wooden border which furrounds the nether ftone, and fhoves the feed obliquely inwards, while the inner part of this rake gathers up what had fpread toward the centre. The other rake has a joint near the middle of its length, by which the outer half of it can be raifed from the nether ftone, while the inner half continues preffing on it, and thus fcrapes off the moift pafte. When the feed is fufficiently bruifed, the miller lets down the outer end of the rake. This im. mediately gathers the whole pafte, and fhuves it obliquely outwards to the wooden rim, where it is at lait brought to a part that is left unboarded, and it falls through into troughs placed to receive it. Thefe troughs have holes in the bottom, through which the oil drips all the time of the operation. This part of the vil is directed into a particular ciltern, being conlidered as the purelt of the whole, having been obtained, without preffurc, by the mere breaking of the hull of the feed.

In fome mills this operation is expedited, and a much greater quantity of this beit oil is ohtained, by having the bed of mafonry which fupports the legger formed into a little furnace, and gently heated. But the utmoft care is neceffary to prevent the heat from becoming coufiderable. This, enabling the oil to diffolve more of the fermentable fubitance of the feed, expofes the oil to the rifk of growing foon very rancid; and, in general, it is thought a hazardous practice, and the oil does nor bring fo high a price.

When the pafte comes from under the ftones, it is put into the hair bags, and fubjected to the firft preffing. The oil thus obtained is alfo efteemed as of the finft quality, fcarcely inferior to the former, and is kept apart. (The great oil ciftern being divided into feveral portions by partitions.)

The oil cakes of this preffing are taken out of the bags, broken to pieces, and put into the mortars for the firlt famping. Here the pafte is again broken down, and the parenchyma of the feed reduced to a fine meal. 'Thus free egrefs is allowed to the oil from every weficle in which it was contained. But it is now rendered much more clammy, by the forcible mixture of the mu-
(A) We are told that, in a mill at Reichenhoffen in Alface, a confiderable improvement has been made by paffing the feed between two fmall iron rollers, before it is put under the militones. A great deal of work is faid to be faved by this preliminary operation, and finer oil produced, which we think very probable. The flamping and preffing go on as in other mills.

O I L

 cillage, and even of the finer parts of the meal. When fufficiently pounded, the workman flops the pefle of a mortar, when at the top of its lift, and carries the contents of the mortar to the firlt clauffer pan, where it is heated to about the temperature of melting bees wax (this, we are told, is the tell), and all the while firred abour by the fpatula. From thence it is again put into hair bags, in the manner already defcribed; and the oil which drips from it during this operation is confidered as the beft of the fecond quality, and in fome mills is kept apart. The pafte is now fubjected to the fecond preffing, and the oil is that of the fecond quality.All this operation of pounding and heating is performed by one workman, who has conftant employment by taking the four mortars in fucceffion. The putting into the bags and conducting of the prefling gives equal employment to another workman.

In the mills of Piccardy, Alface, and moft of Flanders, the operation ends here; and the produce from the chauffer is increafed, by putting a fpoonful or two of water into the pan among the pafe.

But the Dutch take more pains. They add no water to the patte of this their firf /lamping. They fay that this greatly lowers the quality of the oil. The cakes which refult from this prefling, and are there fold as food for cattle, are fill fat and foftifh. The Dutch break them down, and fubject them to the peftles for the ficond famping. Thefe reduce them to an impalpable pafte, fiff like ciay. It is lifted out, and put into the fecond chauffer pan; a few fpoonfuls of water are added, and the whole kept for fome time as hot as boiling water, and carefully flirred all the while. From thence it is lifted into the hair bags of the laft prefs, fubjected to the prefs; and a quantity of oil, of the loweft quality, is ubtained, fufficient for giving a fatisfactory profit to the miller. The cake is now perfectly dry, and laard, like a piece of board, and is fold to the farmers. Nay, there are fmall mills in Holland, which have no other employment than extracting the oil from the cakes which they purchafe from the French and Brabanters; a clear indication of the fuperiority of the Dutch practice.

The nicety with which that induftrious people conduct all their bufincfs is remarkable in this manufacture.

In their oil ciftern, the parenchymous part, which unavoidably gets through, in fome degree, in every operation, gradually fubfides, and the liquor, in any divifion of the ciftern, comes to confift of itrata of diflerent. degrees of purity. The pumps which lift it out of each divifion are in pairs; one takes it up from the very buttom, and the other only from half depth. The lait on. ly is barrelled up for the market, and the other gots into a deep and narrow ciltern, where the dreg again fubfides, and more pure oil of that quality is obtained. By fuch careful and judicious practices, the Dutch not only fupply themfelves with this important article, but annually fend conliderable quantities into the very provinces of France and Flanders where they bought the feed from which it was extracted. When we reflect on the high price of labour in Holland, on the want of timber for machinery, on the expence of building in that country, and on the enormous ex pence of wind mill machinery, both in the firft erection and the fubiequent
wear and tear, it muft be evident, that oil mills erected in England on water falls, and after the Dutch manner, cannot fail of being a great national advantage. The chatellanie or feigneurie of Lille alone makes annually between 30,000 and 40,000 barrels, each containing about 26 galluns.

What is here delivered is only a fketch. Every perfon acquainted with :machinery will underftand the general movements and operations. But the intelligent mechanic well knows, that operations of this kind have many minute circumftances which cannot be deferibed, and which, neverthelefs, may have a great influence on the whole. The rakes in the bruifing-mill have an office to perform which refembles that of the hand, directed by a carcful eye and unceafing attention. Words cannot communicate a clear notion of this; and a mill, conftructed from the beft drawings, by the molt fkilful workman, may gather the feed fo ill, that the half of it thall not be bruifed after many rounds of the machinery. This produces a feanty return of the finelt oil; and the mill gets a bad character. The proprietor lofes his money, is difcouraged, and gives up the work.There is no fecurity but by procuring a Dutch mill. wright, and paying him with the liberality of Britons. Such unhoped.for talks have been performed of late years by machinery; and mechanical knowledge and in. vention is now fo generally diffufed, that it is highly probable that we fhould foon excel our teachers in this branch. But this very diffufion of knowledge, by encouraging fecculation among the artilts, makes it a flill greater rifk to erect a Dutch oil mill without having a Dutchman, acquainted with its moft improved preler: form, to conduct the work. We do our duty in giving this counfel.

OKU-jesso. See Segaliev in this Suppl.
omphalopter, or Omphaloptic, in optics, a glafs that is conves on both fides, popularly called a convex lens.

ONISCUS. See Encyel. -Two new fpecies of this genus of infects were dificovered by La Martinierc, the naturalit who accompanied Peroufe on his latt voy:gge of difcovery. For the information of fuch of our read. ers as are entomologits, we fhall give the author's defcription of thefe fecies. Of the firth, which he fays only nearly aniwers to the generic character of unifeus; E (fig. 1.) is a view of the upper part of its body, and at F of the lower. Its body is crultaceous, and of an opaque white, with two round ruit-colunred fputs on the anterior part of its corlet ; two others, much larger, in the form of a crefcent, are on the clytra; its thield is alfo of the fame colour. The under part of the thorax is furnihhed with four pair of legs: the firft and third of which are terminated with fharp claws; the fecond, from its form, ferves it to fwim with; the fourth is very fmall, conlifting of two membranaceous threads. Some fcales, alfo membranaceous and very channelled, may alfo perform the office of legs: of the fe the two lower are the largett. Its belly is filled with vermicular inteftines of the lize of a hair; its mourh is placed between the firft and fecund pair of legs, and is of the form of a fimall trunk placed between two lips, joined only at the upper extremity.

Fig. 2. reprefents an infect of the genus onijcur; Linn. Its body is nearly of the form, confiftence, and colour, of the onifcus afellus, cxcept that it is not d^{\prime},
vided

Plate

xxx.!.

0 P A [312$] \quad$ O P H

Opaque, vided by fegments as this latit is. It has a double tail, Oparo. three times as lorg as the body; from the infertion of
which, at the hinder part of the body, fpring two legs, ufed chiefly by the animal in fuimming upon its back. The infect, viewed on the lower part H, prefents in pair of lags ; the two firft of which terminate in very tharp and thick points; it makes ufe of the third to fwin with, and to balance its hody, together with that pair which is inferted at the bafe of the tail; the fourth pair, and the largett of all, is armed with two very fharp points, which the animal forces into the body of any fifh on which it feizes; the tivo laft pair are nothing more than very linely divided nembranes. Between the two firft is fitated its trunk, fmooth, and about lialf a line long; at the bale of the third pair are two points, of a horny confiltence, very hard, and firmly fixed. The two horns alfo below the large pair of legs are, in like manner, very firmly united to its body. Martiniere imagines it to be by means of thefe darts that it pierces the body of the fifh on which it is found, and that then, changing it fituation, it finds means to introduee its trunk into the holes thus formed, When put into a glafs it finks to the bottom, and rifes again to the furface with the greateft eafe, advancing with the edge of its body, and deferibing curves. Its two long tails are very eafily pulled off, without the animal appearing to fuffer any pain.

OPAQUE, not tranflucent, nor tranfparent, or not admitting a free paffage to the rays of light.

OPARO or Oparro, the name given by Captain Vancouver to a finall illand which he difcoveted in la. titude $27^{\circ} 36^{\prime}$ fouth, and in longitude $215^{\circ} 49^{\circ}$ caft from Greenwich. It was eflimated at about $\delta \frac{1}{2}$ miles in length, and no other land was in fight. Its prineipal character is a clutter of high craggy momitaius, forming, in feveral places, mott romantic pinicles, with perpendicular cliffs nearly from their fummits to the fea: the vacancis between the mountains would more properly be termed chafms than valleys. The tops of fix of the higheft hills bore the appearance of fortified places, refembling redoubts; having a fort of blockhoufe, in the Gape of an Englifh glafs-houre, in the centre of each, with rows of pallifadoes a conliderable way down the fides of the hills, nearly at equal diftances. Thefe overhanging, feemed intended for advan. ced works, and apparently capable of defending the citadel by a few againt a numerous hoit of affailants. On all of them people were noticed as if on duty, contantly moving about. What we confidered (fays the author) as block-houfes, fron their great limilarity in appearance to that fort of building, were fufficiently large to ludge a confiderable number of perfons, and were the only habitations we faw. Yet, from the number of canoes that in fo thort a time alfembled round the Englifh hip, it is natural to conclude, that the inhabitants are very frequently afloat; and to infer, that the fhores, and not thofe fortified hills which appeared to be in the centre of the inand, would be preferred for their general relidence.

Whether the fortified places here deferibed were intended for defences of the iflanders againt each other, or againtt attacks from fome more powerful neighbours, could only be conjectured ; but the latter idea feems the moit probable. From the language of the people, and their refemblance to the Friendly inlanders, Captain Vancouver confiders them all as having fprung
from the fame original fock. The people of Oparo, huwever, are difinguifhed by two circumftances, certainly in their favour. Not ose of them was tattowed; and though they appeared not to have ever feen a Eu. ropean before, they all feemed perfestly well acquainted with the ufes to which they cuuld apply iron, and preferred articles of it to looking glafies, beads, and other trinkets, with which favages are ufually delighted. Though there appeared to be anchoring ground near the north-weft end of the ifland, circumfances rendered it inconvenient for Captain Vanccuver to land on it ; fo that we ale yet in a great meafure Arangers to the difpufitions of the people, though they appeared to be hoipitable.

OPEN PLANK, in fortification, is that part of the flank which is covered by the orillon or thoulder.

OPENING of the Trenches, is the firt breaking of ground by the befiegers, in order to carry on their approaches towards a place.

OPERA Glass, is a diagonal perfpective, of which the following concife and perfpicuous defeription is taken from Dr Hutton's Mathematical Dictionary. ABCD (Plate XLI.) seprefents a tube about four inches loog; in each fide of which there is a hole EF and GH, exactly againft the middle of a plane mirror IK, which reflects the rays falling upon it to the convex glafs LM; through which they are refracted to the concave eye-glafs NO , whence they emerge parallel to the eye at the hole $r s$, in the end of the tube. Let $P a Q$ be an object to be viewed, from which proceed the rays $\mathrm{P}_{c}, a b$, and $Q a:$ thefe rays, being reflected by the plane mirror $I K$, will thew the object in the direction $c p, b a, d q$, in the image p, q, equal to the object $P Q$, and as far behind the nirror as the object is before it : the mirror being placed fo as to make an angle of 45 degrees with the fides of the tube. And as, in viewing near objects, it is not necelfary to magnify them, the focal dittances of both the glafles may be nearly equal ; or, if that of LM be three inches, and that of NO one inch, the diltance between them will be but two inches, and the object will be magnified three times, being fuficient for the purpofes to which this glafs is applied.

When the object is very near, as XY, it is viewed through a lowe $x y$, at the other end of the tube $A l 3$, without an eyeghis; the upper part of the mirror being polimed for that purpofe as well as the minder. The tube unferews near the object-glafs LM, for taking out and cleanfing the glaffes and mirror. The pofition of the object will be erect through the concave eye-glafs.

The peculiar artifice of this glafs is to view a perion at a fmall diftance, fo that no one fhall know who is obferved; for the inftrunent points to a different object from that which is viewed; and as there is a hole on each fide, it is inpoffible to know on which hand the object is lituated which you are viewing. It is chieily ufed in play-houfes; and hence its name: but we have feen it molt indecently employed by thofe who flould have fet a better example, even in a cathedral church!

OPHRYS (See Encycl.), A new \{pecies of this plant has been lately deferibed in the Annual Hamp/bire Repofitory, by a Fellow of the Linnean Suciety, in the following words:
"Stem-about 12 inches high, erect, ftipulate, geni-

Open
$\underbrace{\text { Oph }}$

fpiral, flowers fpirally afcending, about 24 , brightity white. Upper petal ovato acuminate, pubefcent, lightly ciliate, itraight. Two middle petals ohlong-recurved. Two lower petals oblong-zcuminate, lightly ciliate only on the lower fide near the bafe, projecting like elephant's tulks. Nefary, hroad, recurved, ragged, bicipitate. Leaves floral-carinate acuminate, ciliate reaching and pointing to the middle of the flowers. Leaves radical five or fix, about fix inches long, narrow, attenuate both ways, acuminate, the lower more haftate. Leaves cumine-lancesilate, alternate.
"Obfervation - This plant has much the habit, as well as autumnai forefuence, of Oriental fpiralis, and is fo perfectly firal alfo, that the feccific name of the other fhould be altered, as being no longer exclutively fpiral ; at the fame time that a ipectific name flould be given to this: neither of which (fays the author) I thall prefumie to do, but fhall fuggeft it to the Limnean Society, of which I have the honour to be a Fcllow." This oplorys flowered, for the firft time, it is believed, in England, in Hamphire, October 179°.

OPHIUCUS, a contellation of the northern hemif. phere ; called alfo Serpentarius.

OPIUM (See Encycl.), is a medicine of fuch intrinfic value, and of fo high a price, that every method which promifes to increafe the quantity in the market muft be of importance. It was therefore, with much propriety, that The Socirty for the Encouragement of Arts, Eoc. Tome time ago, voted 50 guineas to Mr John Ball of Williton, Somerfethire, for the difcovery of his method of preparing opium from poppies of the growth of England. The poppies, which he recommends as the moft productive, are the double or femi-double, of a dark colour; the feeds of which he advifes to be fown the latter end of February, and again about the fecond week in March, in beds three feet and a half wide (well prepared with good rotten dung, and often turned or ploughed, in order to mix it well, and have it fine), either in fmall drills, three in each bed, in the manner fallads are fown, and when about two inches high, to thin them one foot apart; or otherwife, to fow them in beds, in the broad-catt way, and thin them to the fame dillance. If they be kept free from weeds, they will grow well, and will produce from four to ten heads, fhewing large and different culoured flowers; and when their leaves die away, and drop off, the pods then being in a green ftate, is the proper time for extracting the opium, by making fuch longitudinal incifions as are, for this purpofe, made in the eaft (See Opium and PA. faver, Encycl.). Immediaiely on the incifion being made, a milky fuid will iffue out; which is the opium, and which, being of a glutinous nature, will adhere to the bottom of the incifion; but fome poppies are fo productive, that it will drop from the pod on the leaves underneath The next day, if the weather thould be fine, and a good deal of funfhine, the opium will be found a greyifh fubftance, and fome almoft turning black: it is then to be fcraped from the pods, and (if any there) from the leaves, with the edge of a knife, or other inftrument for that purpofe, into pans or pots; and in a day or two it will be of a proper confiftence to make into a mafs, and to be potted.

According to Mr Ball, fields cannot be fown with any thing more lucrative to the farmer than poppies, Suppl. Vol. II. Part I.
efpecially if thofe fields have a fouth expofure. "By a calculation (fays he) which I have made, fuppoling one poplly to grow in one fquare foot of earth, and to produce only une grain of opium, more than L. 50 will be collected from one fatute acre of land: but if we condider that one poppy produces from three or four to ten heads, that in each head from fix to ten incilions may be made, and that from many of them (I mean from one incifion) I have taken away two or three grains of opium-What mufl then be the produce?"

Mr Ball produced to the Saciety letters from Dr Latham of Bedford-row, Dr Pearfon of Leiceiterfquare, and Mr Wilfon of Bedford-Itreet, declaring, that, in their opinion, his Englith opium is equal in effeet, and fuperior in purity, to the beft foreign opium.

OPlIC Inequality, in aftronomy, is an apparent ircegularity in the motions of far ditant bodies; fo called, becaufe it is not really in the moving bodies, hut arifing from the fituation of the obferver's eye. For if the eye were in the centre, it would always fee the motions as they really are.

Optic Pyramil, in perfpective, is a pyranid formed by the vifible object which is the ba/e, and the rays drawn from the perimeter of that object, which meet at the eye in a point, which is the apex of the pyramid. Hence, alfo, we may know what is meant by an opric triangle.

Optic Rays, particularly means thofe by which an optic pyramid, or optic triangle, is terminated.

ORAN, a confiderable city, occupied by the Spaniards, in the province of Mafcara, in the country of Algiers. It has ftrong and regular fortifications, and can eafly be fupplied from Spain with provifons and warlike ftores. It lies in 35^{\prime} of longitude weft frons Greenwich, and in $35^{\circ} 55^{\circ}$ north latitude. Since the year 1732, the Spaniards have held uninterrupted poffeffion of Oran. It has a parifh church, three monaIteries, an hofpital: and the number of the inhabitants, according to the account given of it by the Spaniards, amount to 12,000 . Towards the fea, the city rifes in the form of an amphitheatre, and is furrounded with forts and batteries. Clofe to the city lies a ftrong cattle, Alcazava, in which the Spanifh governor refices. On the highelt hill ftands Fort St Croix, whofe guns command the city and the adjacent country. From this fort they make fignals of the approach of flaps, and carefully watch the mutions of the Muors, who often attempt predatory incurfions into the neighbouning diftriets. A confiderable number of Mahomedans take refuge in Oran ; they dwell in a dittinct part of the city, receive pay from the court of Spain, and render fignal fervices againit the Moors. The greateit part of the inhahitants of Oran confifts of fuch as have been banifhed from Spain; and the fame may, in a great meafure, may be faid of the foldiers who compofe the garrifon. Five regiments are commonly ftationed here; but owing to continual defertion, their Atrength farcely equals that of four complete regiments. One of them wholly confits of malefactors, who have been cundemned to remain here for life; the reft are fuch as have been tranfported for one or more years. There is here likewife a military fchool. Around the city are pleafait gardens; but it is very dangerous to cultivate them, on acconnt of the Moors and Arabs, who friquently lie in amburh among them. The fame reafon prevents the cuitivation of the fields in the vicinity; and the garrifon and

R r
inha-

Opic,
Oran:

Orarge- inhabitants mult be fupplied with provifions immediateMen. ly from Spain.

CRANGE-MEN, an appellation affumed by certain focirties in Ireland, of which the firlt was formed in the county of Armagh, on the 2 Ift of November 1795, others in fome towns of Uliter and Leinter in the ycar 1797, another in the city of Dublin 1798; and fince that period, thefe focieties lave fpread over the whole of our filter kingdom. 'Tlee object of thefe affociations is cxhibited in the following authentic Declaration of the Priuciples of Orange-men, publifhed 1799.
"From the various attempts that have been made to poifon the public mind, and flander thofe who have had the fpirit to adhere to their king and conflitution, and to maintain the laws:-
" We, the Protefants of Dublin, affuming the name of Orange-men, feel ourfelves called upon, not to vindicate our principles, for we know that our honour and loyalty bid defiance to the fhafts of malevolence and difaffection, but openly to avow thofe principles, and declare to the world the objects of our inftitution.
"We have long obferved, with indignation, the efforts that have been made to foment rebellion in this kingdom, by the feditious, who have formed ohemfelves into focieties, under the fpecious name of United Iri/kmen.
"6 We have feen with pain the lower orders of our fellow. fubjects, furced or feduced from their allegiance, by the threats or machinations of traitors.
" And we have viewed with horror the fuccefsful ex. ertions of mifcreants, to encourage a foreign enemy to invade this happy land, in hopes of rifing into confequence on the downfal of their country.
"We therefore thought it high time to rally round the conftitution, and there pledge ourfelves to each other, to maintain the laws, and fupport our good king againft all his enemies, whether rebels to their God or to their country ; and by fo doing, fhew to the world that there is a body of men in this ifland, who are ready , in the hour of danger, to fand forward in defence of that grand palladium of our liberties, the conftitution of Great Britain and Ireland, obtained and eftablifhed by the courage and loyalty of our anceftors under the Great King William.
"Fellow fubjects, we are accufed with being an infitution, founded on principles too thocking to repeat, and bound together by oaths, at which human nature may fhudder: but we cantion you not to be led away by fuch malevolent falfehoods; for we folemnly affure you, in the prefence of the Almighty God, that the idea of injuring any one, on account of his religious opinion, never entered into our bearts: we regard every loyal fubject as our friend, be his religion what it may; we have no enmity but to the enemies of our country.
"We further declare, that we are ready, at all times, to fubmit ourfelves to the orders of thofe in authority under his Majefty, and that we will cheerfully undertake any duty which they fhall think proper to point out for us, in cale either a foreign enemy fhall dare to invade our coalts, or that a domeftic foe fhall prefume to raife the fandard of rebellion in the land. To thefe
principles we are pledged-and in fupport of them we Orchard are ready to fpend the latt drop of our blood- (Signed) Thomas Verner, Grand Mafer ; John Clau. Beresford, Grand Secretary; William James, J. De Joncourt, Edward Ball."

ORCHARD. As an appendix to this article in the Encycl. fome of our readers will be pleafed with the following means, employed by the Rev. Mr GermerSoraufin, for promoting the growth of young trees, and increafing the fize and flavour of the fruit in orchards.

Having planted feveral young plum trees in an orchard, he covered the ground, for fome years, around the trunks, as far as the roots extended, with fax-fhows (A); by which means thefe trees, though in a grafso field, increafed in a wondefful manuer, and far excelled others planted in cultivated ground. As far as the fhows reached, the grafs and weeds were choaked; and the foil under them was fo tender and foft, that no bet. ter mould could have beeen wifhed for by a florift.

When be obferved this, he covered the ground with the fame fubfance, as far as the roots extended, around an old plum-tree, which appeared to be in a languinhing ftate, and which ftood in a grafs-field. The confequences were, that it acquired a ftrong new bark; produced larger and better-tafted fruit ; and that thofe younz hoots, which before grew up around the fkem, and which it was every year neceffary to deftroy, were prevented from fprouting forth, as the covering of flaxThows impeded the free accefs of air at the bottom of the trunk.

In the year 1793, he tranfplanted, from feed-beds, into the nurfery, feveral fruit-trees; the ground around fome of which he covered, as above, with flax-fhows. Notwithtanding the great heat of the fummer, none of thofe trees where the earth was covered with fhows died or decayed ; becaufe the flows prevented the earth under them from being dried by the fun. Of thofe trees, around which the ground was not covered as before mentioned, the fourth part mifcarried ; and thofe that continued alive were far weaker than the former.

The leaves which fall from trees in autumn may alfo be employed for covering the ground in like manner; but ftones, or logs of wood, mutt be laid on them, to prevent their being difperfed by the wind. In grafsland, a fmall trench may be made around the roots of the tree, when planted, in order to receive the leaves. If flax-fhows are ufed, this is not neceflary; they lic on the furface of the ground fo faft as to refift the force of the moft violent ftorm. The leaves which our author found moft effectual in promoting the growth and fertility of fruit trees, are thofe of the walnut-tree. Whether it is, that, on account of their containing a greater abundance of faline particles, they communicate manure to the ground, which thereby becomes tender under them; or that they attract nitrous particles from the atmofphere; or that, by both thefe means, they tend to nourifh the tree both ahove and below.

Thofe who are defirous of raifing tender exotic trees from the feed, in order to accuftom them to our climate, may, when they tranfplant them, employ flax-fhows
with
(A) Shows are the refufe of flax when it is feutched or heckled.

Orclilla with great advantage. This covcring will prevent the

Ifyreus's Wheel.
frolt from making its way to the roots; and rats and mice, on account of the fharp prickly points of the flax-fhows, will not be able to fhelter themfelves under them.
ORCHILLA, a weed ufed in dyeing, which grows in the Canary iflands, and is monopolized by the government. "It is a minute vegetable (fays Sir George Staunton), of the lichen kind, growing chiefly upon rocks of a loofe texture, and produces a beautiful vio. let blue colour."
ORDEAL.. See this article in the Encyclopedia, at the end of which we have given, from Dr Henry's Hiftory of England, fome ftrong reafons for fufpecting that the ordeal, by fire at lealt, was a grofs impofition on the credulity of an ignorant and fuperfitious age. This fufpicion of impoture is raifed to certainty by Profeffor Beckmann, who', in his Hiftory of Inventions, gives us the whole procefs by which the clergy conducted the trial, and brought proofs of innocence or of guilt at their pleafure. The perfon accufed was put entirely under their management for three days before the trial, and for as many after it. They covered his hands (when he was to lift red-hot iron) both before and after the proof; fealed and unfealed the covering. The former was done, as they pretended, to prevent the hands from being prepared any how by art ; the latter, that it might be accurately known whether or not they were burnt.
Some artificial preparation was therefore known, elfe no precautions would have been neceflary. It is highly probable, that during the three firft days the preventative was applied to thofe perfons whom they wifhed to appear innocent ; and that the three days after the trial were requifite to let the hands refume their natural ftate. The facred fealing fecured them from the examination of prefumptuous unbelievers; for to determine whether the hands were burnt, the three laft days were certainly not wanted. When the ordeal was abolifhed, and this art rendered ufelefs, the clergy no longer kept it a fecret. In the $13^{\text {th }}$ century, an account of it was publifhed by Albertus Magnus, a Dominican monk (A). If his receipt be genuine, it feems to have confifted rather in covering the bands with a kind of palle than in hardening them. The fap of the althea (marfhmallow), the flimy feeds of the fea-bane, which is ftill ufed for ftiffening by the hat-makers and filk-weavers, together with the white of an egg, were employed to make the pafte adhere. And by thefe means the hands were as fafe as if they had been fecured by gloves.

ORFFYREUS's Wheel, in machanics, is a machinc fo called from its inventor, which he afferted to be a perpetual motion. This machine, according to the account given of it by Gravefande, in his Ocuvres Philofophiques, publifhed by Allemand, Amft. 1774, confifted externally of a large circular wheel, or rather drum, 12 feet in diameter, and 14 inches deep; being
very light, as it was formed of an affemblage of deals, O nyreus's lhaving the intervals between them covered with waxed Wheel, cloth, to conceal the interior parts of it. The two ex. tremities of an iron axis, on which it turned, refted on two fupports. On giving a light impulfe to the wheel, in either direction, its motion was gradually accelcrated ; So that, after two or three revolutions, it acquired fo great a velocity as to make 25 or 26 turns in a minute. This rapid motion it actually preferved during the fuace of two months, in a chamber of the Landgrave of Heffe, the door of which was kept locked, and fealed with the Landgrave's own feal. At the end of that time it was ftopped, to prevent the wear of the materials. The Profeffor, who had been an cyc-witnefs to thefe circumftances, examined all the exterual parts of it, and was convinced that there could not be any communication between it and any nciglibouring room. Orffyreus, however, was fo incenfed, or pretended to be fo, that he broke the machine in pieces; and wrote on the wall, that it was the impertinent curiofity of Profeffor Gravefande which made him take this fep. The Prince of Heffe, who had feen the interior parts of this wheel, but fworn to fecrecy, being afked by Gravefands whether, after it had bcen in motion for fome time, there was any change obfervable in it, and whether it contained any pieces that indicated fraud or deception? anfwered both queftions in the negative, and declared, that the machine was of a very fimple conftruction.

ORICOU, a new fpecies of the vulture, difcovered by Vaillant at Orange river in South Africa. As he thinks it unqueftionably the moft beautiful of its genus, and tells us, as ufual with him, a wonderful itory about it, we have given a figure of this vulture in Plate XLI. Our traveller fays, that it is more than three feet high, and eight or nine in breadth of wing. Its feathers, the general hue of which is a light brown, are of a particular kind on the breaft, belly, and fides, where they are of unequal lengths, pointed, curved like the blade of a fabre, and briftle up ditinct from each other. The feathers being thus feparated, would difclofe to view the fkin on the breaft, if it were not completely covered with a very thick and beautiful white down, which is eafily feen between the ruffled plumage.

A celebrated naturalift has faid, that "no bird has eye-lafhes or eye-brows, or, at leaft, hair round the eyes like that in quadrupeds." This affertion, advanced as a general law of Nature, is a miftake. Not only the oricou has this peculiarity, but we know of many other fpecies in which it exifts; fuch as, in general, all the calaos, the fecretary, and feveral other birds of prey. Befide thefe eye-lafhes, the vulture in queftion has ftiff black hairs on its throat. All the head and part of the neck are bare of feathers; and the naked fkin, which is of a reddifh colour, is dafhed in certain places with blue, violet, and white. The ear, in its external circumference, is bounded by a prominent Nkin, which forms a

$$
\mathrm{R}_{\mathrm{r}} 2
$$

fort
(A) In his work De Mirabilibus Mundi, at the end of his book De Secretis Mulierum, Amfted. 1702, 12 mo , p. 100. Experimentum nirabile quod facit hominem ire in ignem fine læfione, vel portare ignem vel ferrum ignitum fine lafione in manu. Recipe fuccum bifmalvæ, et albumen ovi, et femen piylli et calcem, et pulveriza, et confice cum illo albumine ovi fuccum raphani ; commifce ; ex hac confectione illineas corpus tuum vel manum, et dimitte ficcari, et poftea iterum illineas, et poft hoc poteris audacter fulinere ignem fine nocumento.

Oricou fort of rounded conch, that mult neceffarily heighten the II
faculty of licaring in this fpecies. This kind of conch is prolonged for fome inclics, and defeends down the neck ; which induced our author to give it the name of oricot.

Its firength, he fays, mult be very confiderable, if we may judge from its mufcles and finews; and he is perliaded, that there is not a ftronger amung the whole order of carnivorous birds, not excepting the famous conder, which fo many travellers have feen, but of which their deycriptions are fo different as to render its exiltence extremely doubtful. But there was no occation for this reafoning, and thofe inferences, if what he relates as facts deferve any credit. The oricou which he deferibes, he firtt perceived perched on the carcale of a hippopotamos. eagerly devouring its flefh. He fhot at it, and wounded it flightly; upon which, "though it had already gorged itfelf with a confiderable quantity of flefh (for upon opening it, he found in its thomach no lefs a quantity than fix pounds and a balf), yet its hunger and voracity were fuch, that it fruck its beak into the carcafe when attempting to take wing, as if defirous of carrying the whole of it away.
"On the other hand, the weight of the it had devoured rendering it the more heavy, it could not eafily rife: fo that we had time (fays he) to reach it before it was on the wing, and we endeavoured to knock it on the head with the butt.ends of our mukets. It defended itfelf a long time with great intrepidity. It bit or ftruck at our weapons with its beak, and its ftrength was fill fo great, that every ftroke made a mark on the barrel of the piece."

ORIENT, the eaft, or the eaftern point of the ho. rizon.
Orient Equinozial, is ufed for that point of the horizon where the fun rifes when he is in the equinoctial, or when he enters the figns Aries and Libra.

Orient Aefival, is the point where the fun rifes in the middle of fummer, when the days are longeft.

Orient Hybernal, is the point where the fun rifes in the middle of winter, when the days are fhortef.
OROTAVA, a town in the ifland of Teneriffe, at the bottom of thofe mountains out of which the Peek rifes, neatly built of fone, on an irregular furface. The moft remarkable object near it is a dragon's blood tree, of which the trunk meafures, at the height of ten feet from the ground, 36 feet in girth. Concerning this tree there is a tradition current in the inland, that it exifted, of no incoufiderable dimenfions, when the Spaniards made the conqueft of Teneriffe, abuut three centuries ago ; and that it was then, what it fill is, a landmark, to diftinguift the boundaries of landed poff flions near it.

Diftant about three miles on the fea-coaft is the puerto, or fea-port, of Orotava, where is carried on a confiderable degree of commerce, principally for the exportation of wine. It is chiefly, as at Madeira, in the hands of a few Britith commercidl houfes, which import, in return, the manufactures of Great Britain. Within a mile is a collection of living plants from Mexjco, and other parts of the Spanifh dominions in America. From hence they are to be tranfplanted into Spain. It is an eftablifhment of forme expence; and, whatever may be its fuccefs, it fhews a laudable atten-
tion, on the part of that government, to the promotion Orotchyo of natural knowledge.
OROTCHYS and Bitchys, two tribes of Tartars, who were vifited by La Peroufe in 1787, and of whofe manners he gives fuch an account as renders it difficult to fay whether they have the beft claim to be called a favage or a civilized people. He fell in with a finall village of them on the ealt coaft of Tartary, in a bay to which he gave the name of Baie de Cafrie, in Lat. 5° 29' North, and Long. $139^{\circ} 39^{\prime}$ Eaft from Paris.

Their village, their employment, their drefs, and their apparent ignorance of all religion, befpoke them favages. Their village was compofed of four cabins, built in a foid manner, of the trunks of fir-trees, and covered with bark. A wooden bench compafied the apartment round about ; and the hearth was placed in the middle, under an opening large enough to give vent to the fmoke.

This village was built upon a tongue of low marihy land, which appeared to be uninlabitable during the winter ; but on the oppofite fide of the gulph, on a more elevated Gituation, and expofed to the fouth, there was, at the entrance of a wood, another village, confilting of eight cabins, much larger and better built than the firf. Above this, and at a very fmall diftance, were three yourts, or fubterraneous houfes, pcrfectly fimilar to thofe of the Kamtfchadales, defcribed in the third volume of Captain Cook's laft voyage ; they were extenfive enough to contain the inlabitants of the eight cabins during the rigour of the cold feafon ; befides, on fome of the ikirts of this village were feen feveral tombs, which were larger and better built than the houfes; each of them enclofed three, four, or five biers, of a neat workmanflip, ornamented with Chinefe ftuffs, fome pieces of which were brocade. Bows, arrows, lines, and, in general, the moft valuable articles of thefe people, were fufpended in the interior of thefe monu-- ments, the wooden door of which was clofed by a bar, fupported at its estremities by two props.

Their fole employment feemed to be the killing and curing of falmon, of which they eat raw, the fnout, the gills, the fmall-bones, and fometimes the entire fkin, which they ftript off with infnite dexterity. When the ftript falmon were carried to the huts, the women, in the moft difgufting manner, devoured the mucilaginous part of them, and feemed to think it the molt exquifite food. Every cabin was furrounded with a drying place for falmon, which remain upon poles, expofed to the heat of the fin, after having been during three or four days fmoked round the fire, which is in the middle of their cabin ; the women, who are charged with this operation, take care, as foon as the fmoke has penetrated them, to carry them into the open air, where they acquire the hardnefs of wood.

The bones of the falmon fo cured were feattered, and the blood fpread round the hearth; greedy dogs, though gentle and familiar enough, licked and devoured the remainder. The naftinefs and ftench of this people are difgufting. There is not perhaps anywhere a race of people more feebly conftituted, or whofe features are more different from thofe forms to which we attach the idea of beauty; their middle ftature is below four feet ten inches, their bodies are lank, their voices thin and feeble, like that of children; they have high
cheek

$0 \quad \mathrm{R} \quad \mathrm{O}$

Oritehy:

$\underbrace{-}$

check bones, fmall blear eyes, placed diagonally; a large mouth, flat nofe, fhort chin, almoit beardlefs, and an olive-coloured $0 k i n$, varnifhed with oil and fmoke. They fuffer their hair togrow, and tie it up nearly the rane as we do; that of the women falls loofe about their fhoulders, and the portrait which has juft been drawn agrees equally well with their countenanees as thofe of the men, fiom whom it would be diffecult to diftinguin them, were it not for a flight difference in the drefs, and a bare neek; they are not, however, fubjected to any labour, which might, like the American Indians, change the elegrance of their features, if nature had furnithed then with this adrantage. Their whole cares are limited to the eutting and fewing their elothes, difpoling of their fift to be dried, and taking eare of their children, to whom they give the brealt till they are three or four years of age.

With refpect to drefs, the men and little boys are clothed with a waiftcoat of nankeen, or the fkin of a dog or a fih, eut in the flape of a waggoner's frock. If it reach below the knee, they wear no drawers; if it do not, they wear fome in the Chisefe ftyle, which fall as low as the calf of the leg. All of them have bouts of feal's Kkin , but they keep them for the winter; and they at all times, and of every age, even at the breait, wear a leather cirdle, to which are attached a knife in a fheath, a fteel to ftrike a light with, a pipe, and a fmall bag to contain tobaceo. The drefs of the women is fomewhat different; they are wrapped up in a large nankeen robe, or falmon's Akin, which they have the art of perfectly tanning, and rendering extremely fupple. This drefs reashes as low as the ankle-bone, and is fometimes bordered with a fringe of fmall copper ornaments, which make a noife fimilar to that of fuall bells. 'Thofe falmon, the flins of which ferve for clothing, are never eaught in fummer, and weigh thirty or forty pounds.

Though they had neither priefts nor temples, they feemed to be believers in foreery, and took the motion of the Frenehmens iands, when writing, for figns of magic. Thus far they appeared favages.

Their facred regard of property, their attention to their women, and the delicacy of their politenefs to ftrangers, would, on the other hand, do honour to the mont eivilized nation. While Peroufe and his people were in the bay, one of the families took its departure on a voyage of fome length, and did not return during their ftay. When he went away, the mafter of the fa. mily put fome planks before the door of his houfe, to prevent the dogs from entering it, and in this ftate left it full of their effects. "We were foon (fays our author) So perfectly convinced of the inviolable fidelity of thefe people, and their almoft religious refpect for property, that we left our facks full of fuffs, beads, iron tools, and, in general, every thing we ufed as artieles of barter, in the middle of their cabins, and under no other feal of feeurity than their own probity, without a fingle initance of their abufing our extreme confidence; and on our departure from this bay, we firmly entertained the opinion, that they did not even fufpect the exiftence of fuch a crime as theft."

Their attention to their women, fo uncommon among favages, was difplayed in their exempting them from hard labour; in their never concluding a bargain with the Erenchmen without previoufly confulting their wives;
and in their referving the pendent filver ear-rings and Ornechys copper trinkets, which they purchafed, for their wives and daughters. Of the delicacy of their manners to ftrangers, we fhall give the following interefting inftance $\underbrace{\text { lus }}$ in the words of Peroufe's trantlator:

Ohferving with what repugnance they received prefents, and how often they refufed then with obitinacy, "I imagined (fays Peroufe) I could perceive, that they were perhaps defiruus of more delicacy in the manner of offering them; and to try if this fufpicion were well founded, I fat down in ont of their houfes, and after having drawn towards me two little children, of three or foor years old, and made them fome trifling carefles, I gave them a piece of rofe-culuured nankeen, which I had brought in my pocket. The moft lively fatisfaction was vilibly teftified in the countenances of the whole family, and I ann eertain they would have refufed this prefent, had it been directly offered to themfelves. The hufband went out of his eabin, and foon afterwards returning with his mont beautiful dog, he entreated me to accept of it. I refufed it, at the fame time endeavouring to make him underftand, that it was more ufeful to him than to me: but he infifted; and pergiving that it was without fuecefs, he caufed the two children, who had received the nankeen, to approach, and placing their little hands on the back of the dog, he gave me to underftand, that I ought not to refule his children.
"The delicaey of fuch manners eamnot exift but among a very polifhed people. It feems to me, that the eivilization of a uation, which has neither flocks nor hulbandry, cannot go beyond it. It is neceffary to obServe, that dogs are their molt valuable property; they yoke them to finall and vary light fledges, extremely well made, and exactly fimilar to thofe of the Kanatfchadales. Thefe dogs, of the fpecies of wolf doge, and very ftrong, though of a middle fize, are extremely doeile, and very gentle, and feem to have inbibed the character of their maiters."

ORTHODROMICS, in navigation, is great-eirele failing, or the art of failing in the areh of a great circle, which is the fhorteft courfe: For the areh of a great circle is orthodromia, or the fhorteft diftance between two points or places.

ORYCTEROPUS, the name given by M. Geoffroy, profeffor of zoology in the French mufeam of natural hiftory, to the animal called by uther zoologits. Myrmecophaga Capenfis. (See Myrmecophaga, Encyct.) He confiders it as a ditinct genus, and feems indeed to have pruved, by a comparifon of the organs of the orycteropus with thofe of the tatous $d a f /$ pus of Lin . næus, and of the myrmecophagi, that this genus is intermediate, by its forms and habits, between thofe two families. It approaehes to the tatous in its organs of maftication, and the form of the toes and nails, and in. having a flrort and fingle eæcum, whilft that of the myrmeeophagi is double, as in birds, by the reuniting of the bones of the os pubis, which are not articulated together in the myrmecophagi. The orycteropus, however, bears a relation to the lait, finee it lias, like then, a very fmall mouth, whence its tongue, covered with hair, may be protruded to a confiderable length. Finally, the habits of the orycteropus refemble thofe of the animals to which it approaches the moft; it does not climb trees, but lives under the earth like the ta-

O U A

ter. They are tall, handfome, ftout, and vigorons Ouadelim. men. Their hair is briftled, and their nails, which they often ufe in battle, as long as claws; large hanging ears and a long beard give them a ftern ferocious air. The Ouadelim in particular are fierce, arrogant, and warlike, but foon difpirited by obftinate refiflance, cfpecially when they have not a decided fuperiority in numbers. In their hordes they lodge by families, in tents which are covered wich a thick cloth of camels hair, which the women fpin and weave upon a loom fo fmall, that they work fitting on the ground. The furniture of their tents confit of two large facks of leather, in which they keep old clothes, and pieces of old iron, three or four goat $\mathrm{Kk}_{\mathrm{ins}}$ for holding milk and water, two large flones for grinding their barley, a fmaller one for driving the pins of their tents, an ozier matting which ferves for a bed, a thick carpet for a covering, a fimall kettle, and fome wooden difhes, with pack-faddles for their camels. The perfon who, befides thefe articles, poffeffes a few horfes, camels, fheep, and goats, is reckoned wealthy, as there are many Arabs who only poffefs fheep and goats. Except fore eyes and the cholic, they are fubject to few endemic difeafes. The firtt diforder is caufed by the reflection of light from the burning fands of the defart, the other proceeds from the verdigreafe which contaminates all their victuals. Their kettles are not tinned, and never wahed, fo that they are quite crufted over with verdigreafe, the virulence of which is probably diminifhed by the quantity of milk they ufe. When they refide long in one place, they fometimes plough the fpots which are moiftened by the rain, and fprinkle them with feed in a carelefs manner. Plentiful crops are often thus produced ; but inftead of waiting till the grain attains maturity, they cut it down, and dry it over hot cinders. Treachery and perfidy are the innate vices of the Arabs; affaffinations are frequent; no man trufts the promife of another ; no man makes a written agreement, as the poignard cancels all bonds and obligations. The men often relate their exploits to each other ; the embellifhing of a ftory is fucceeded by a charge of falfehood, and the poignard folves every difficulty. The ancient rites of hofpitality, however, are practifed among thefe tribes in their utmoft extent. The Arab, who in the field is a rapacious plunderer, becomes liberal and generous as foon as he enters his tent. War is only a feecies of rapine, and the victory is decided at the firft thock. The Arab is devoid of fanguinary courage; he attacks only to plunder, and never thinks that booty is to be put in competition with his life. When the battle is ended, each party makes graves for the flain, and enclofe the tombs with mounds of fones. The ages of the warriors are denoted by the fpace of ground which the grave occupies, and the funeral proceffion is clofed by the howls of the females.
" The women never affume the name of their hufbands, and never eat with them at meals. They are faithful to their hufbands, and cannot be divorced except by the decree of the feniors of the horde. The Arabs difplay their opulence by the ornaments of their women, whofe ears, arms, and legs, are generally adorned with rings of gold and filver. An Arab beauty muft have long ceeth fhooting out of her mouth, a body extremely thick, and limbs of the longeft fize. At the birth of a fon, every woman, to teftify her joy, black-

O U A

onadelim, ens her face for 40 days. At the birth of a daughter, the only daubs the half of her face during the fpace of 20 days. A mother treats her fon with the fame refpect as her humand, almoft as foon as he is able to walk; fhe prepares his food, ferves him, and eats when he has finithed his repati. In the education of their young men, the mof important acquifitions are, dexterity in the ufe of the poignard, fkill in embowelling the ir enemies with their long nails, and a plaufible air in uttering a falfehood. More rude and ferocious than the tribes whofe territories lie upon the fhore of the fea, the Labdefteba and Ouadelim Arabs are alfo more confined and illiberal in their ideas, not only believing that they are the firft nation in the world, hut fancying that the fun rifes only for then. Brifon relates, that fome of them expreffed this idea in unequivocal terms. 'Behold (faid they) that luminary, which is unknown in thy country. During the night, thou art not enlightened, as we are, by that heavenly body, which regulates our days and our fafts. His children (the Itars) point out to us the hours of prayer. You have neither trees nor camels, fheep, goats, nor dogs. Are your women fimilar to ours?' "How lông didf thou remain in the womb of thy mother (faid another)?" 'As long (replied Briffon) as thou in that of thine.' - Indeed (faid a third, counting the fingers and toes of the Frenclman) he is made like us; he difiers only in his colour and language.' 'Do you fow barley in your houfes?' faid the Arabs, alluding to the frips of the Europeans. 'No (faid Briffou), we fow our fields almoft in the fame feafon as you.' 'How! (cried feveral) do you inhabit the earth? we believed that you were born and lived upon the fea.' Thefe Arabs, according to the Turkifh proverb, believe that all the world is like their father's houfe : unacquainted with the manners of other nations, and unaceuftomed to reflect upon the caufes of national character, every varia. tion from their own cuftoms appears not only ridiculous, but monftrous; every difference of opinion not ouly abfurd, but criminal. This ignorance of the Arabs, conjoined with their local and religious prejudices, enables us to account for the infulting treatment which Briflon and his companions received, without having re surfe to inherent depravity of mature." That treatment was indeed fhocking.

Brifon had furrendered himfelf, on his ihipwreck, toSidi Mahomet, a Talbe or prieft of the tribe of Labdeffeba. During the abfence of the prieft, the Labdeffeba, who guarded the captives, were attacked and maltreated by a party of the Ouadelinis, and during the. buftle which enfued, Brifion had almoft loft his life. Inftead of compaffionating his forlorn fituation, the women threw fand into his eyes, as they faid, to dry his eye-lids. The Arabs, into whofe hands he had fallen, had only come down to the fea-coaft to gather wild grain, three days before the fhipwreck; and to preferve their booty, they immediately retreated to the interior part of the defart. A guide preceded the horde, to place at intervals fmall pyramids of ftone, to direct their courfe, at a diftance from every hoftile tribe. After paffing fome very high mountains, wholly covered with fmall greyifh pebbles as fharp as flints, they defcended into a fandy plain overfpread with thorns and thifles. When Brifon was unable to walk, on account of the bleeding of his feet, he was mounted
on a camel ; the briflly hair and hard trot of which Ouadelim. foon excuriated hini fo much, thit the blood run co. piounly down its flanks. By throwing heated fones into a wooden veffel, filled with barley meal, diluted with water procured on the fea-hore, preferved in a goat's $\mathbb{R i}$, and mixed with pitch to prevent putrefac. tion, the Arabs prepared a kind of foup, which they kneaded with their hands, and ate unchewed. They roafted a goat in heated fand, ate its fat raw, and, after having devoured the flefh, gnawed the bones, and fcraped them with their nails, threw them to Briffon and his companions, deliring them to eat quickly, and load the camels, that the journey might not be impeded. Procecding eaftward, they crolled a vaft plain, covered with fmall ftones white as fnow, round and flat as a lental, where not a fingle plant was produced. The earth beneath their feet refounded dull and hol. low, and the fmall fones pricked them like fparks of fire. The reflection of the rays of the fun from the fand was fcorching; the atmolphere was loaded with a red vapour, and the country appeared as if filled with flaming volcanoes. Neither birds nor infects could be feen in the air. The profound filence was frightful. If a gentle breeze ever arofe, it produced extreme languor, chopping of the lips, burning heat of the fkin, with fmall fmarting pimples. This plain was even fhunned by wild bealts. After traverfing this plain, they entered another, where the wind had thrown up in furrows the fand, which was of a reddifh colour. On the tops of the furrows grew a few fweet-fcented plants, which were devoured by the camels. On quitting this fandy plain, they entered a valley furrounded by mountains, where the foil was white and 腅, and where they found water of a noxious fmell, covered with green mofs, and foon after difcovered a horde of the friendly tribe Rouffye.

After another journey of fixteen days, they arrived at the tents of the Labdeffeba horde, to which Sidi Mahomet belonged. The tents pitched among thick bufhy trees, and the numerous flocks feeding along the fides of the hills, prefented at a diftance an aspect of happinefs and paftoral fimplicity: On approaching near, the trees of beautiful green foliage proved to be only old gummy ftumps, almoft void of branches, fo encircled with thorns that their fhade was inacceffible. The women approached, with loud cries and the moft fawning fervility, to welcome their tyrants, to throw ftones at the Chriftians, aud fpit in their faces, whik the children imitated the example of their mothers. Briflon, who endeavoured to ingratiate himfelf with his mafter's favourite, not only failed in this, but incurred her implacable refentment, through his irritability, which to the Arab women feemed extremely to refemble!petulance. During his refidence with Sidi Mahomet, the hardfhips he endured were almoft incredible. With the exceffive heat, the milk of the fheep, goats, and camels, diminifhed, and then the dogs fared better than the Chriftians, who were forced to fubfift on wild herbs and raw fnails. When the rains fell, and the leaft preffure made the water to fpring up through the fandy foil, the Chriftians flept behind a bufh, unfheltered, on the bare ground. Briffon and his mafter fometimes reafoned about religion; when the latter al. ways anfwered the harangues of the former by declaring, that he preiersed a bowl of churned milk to fifch
abfurditieos.

Oryglycus, abfurditice, Several of his companiuns perinied, and Oxy-- luria were left by the Arabs to be dewoured by the ravens, alic Acis. while in the ftruggles of death. One of them was fup- pofed to he murdered by his mafter for milking his cainels clandeftincly. An application made by Briffon to the conful at Mogador, by a hitter entrufted to a Jewifh merehant, wis frutrated through the negligence of the vice conful; and the Labdeffeba Arabs thought the journcy too dangerous to be encountered for the ranfom of their flaves. He was, however, at laft relieved, through the lumanity of his matter's hrother-in law, who carried him to Morocco, where his ranfom was paid by the Emperor, and whence he returned to France. For a fuller account of thefe two favage tribes, fee Saugnier's and Briffon's Narratives; or a very pleafing Hiflorical and Pbilojophical Sketch of the Dijcoveries, ξ_{c}. of the Europeans in Nortbern and IVeflern Ajrica, publifhed 1799 by Symington Edinburgh, and Vernor and Hood London.
-OXYGLYCUS cerasus, the name given by the Editor of Dalzel's Hiftory of Dahomy to a very fingular fruit produced in that country, as well as in fome other parts of Africa. It refembles a fmall olive in every. refpect but the colour; being of a dufky reddifh hue, changing at the end next the flalk to a fa:nt yellow. The pulp is firm, and almoft infipid; the flone is hard like that of the olive. After having clewed one or more of fuch berries, and fpit out or fwallowed the pulp at pleafure, a glafs of vinegar will tafte, to the perfon trying the experiment, like fweet wine; a lime will feem to have the flavour of a very ripe China orange ; and the fame change is produced on other aeids, the ordinary effects of which upon the palate is deftroyed in a very unaccountable manner, without effervefcence or any fenfihle motion. Indecd, the effect is very different from neutralization, arifing from the mixture of acid and alkali; fuch combination producing a neutral faline liquor, whillt this miraculous berry feems to convert acids to fweets. Food or drink, not containing any acid, fuffer no change by the previous ufe of this fruit ; its effect upon acids continues, even after a meal, though in a much fmaller degree. The natives ufe it to render palatable a kind of gruel called guddoe, which is made of bread after it becomes too tale for any other purpofe. They deferibe it as the fruit of a large tree.

Plants fix or feven inches high were raifed from this fruit by Mr Dalzel, who tried to carry them from Angola to the botanic garden at St Vincent's ; but they died on the paffage. He preferved the berries in Spirits, in fyrup, and in a dry form ; but they loft their fingular qquality in all thofe preparations. The plant is an evergreen, and the leaves in this infant fate are like thofe of the olive.

OXY-Muriatic Acid (See Chemistry.Index iu this Suppl.), is the principal agent in the new procefs of bleaching (fee Bleaching, Suppl) ; but, till very lately, at leaft, if not even at preient, the bleachers were in the practice of adding fome alkali to the acid, notwithtanding the ftrong objections which M. Bertholet made to that aldition, and notwithfanding the proofs urged by Mr Rupp, that it increafes the expence of bleaching about 40 per cent. The chief reafon for perfifting in a practice to which fuch objections were urged was, that the addition of the alkali deprives the
liquor of its fuffocating effects without defloy hleaching powers. Mr Rupp, however, has contrived anc Acid. the following apparatus, in which may be fafcly ufed the pure oxy-muriatic acid fimply Jiffolved in water, which is at once its cheapeft and beft vehicle.

Figure I ((Plate XL1.) is a festion of the apparatus. It coalifits of an oblong deat ciftern ABCD, made wa-ter-tight. A rib EE of allo or becch wood is firmly fixed to the midde of the botton CD , being mortifed into the ends of the ciltern. This rib is provided with holes at FF, in which two perpendicular axes are to turn. The lid AB has a rim GG, which finks and fits intes the ciftern. Two tubes HH are fixed into the lid, their centres being perpendicularly over the centres of the fockets FF when the lid is upon the cillern. At I, is a tube by which the liquor is introduced into the apparatus. As it is neceffary that the fpace within the rim GG be air-tight, its joints to the lid, and the joints of the tubes, mult be very clofe; and, if neceffary, lecured with pitch. Two perpendicular ases KL, made of ath or beech wood pafs through the tubes HH, and reft in the fockets FF. A piece of ftrong canvas M is fewed very tight round the axis K , one end of it projecting from the axis. The other axis is provided with a fimilar piece of canvas. N are pieces of cloth rolled upon the axis L . Two plain pulleys 00 are fixed to the axis, in order to prevent the cloth from flipping down. The flafts are turned by a moveable handle P. Q is a moveable pulley, round which paffes the cord R. This cord, which is faftened on the oppofite of the lid (fee fig. 2.), and paffes over the fmall pulley S , produces friction by means of the weight T . By the f pigot and fauffet V , the liquor is let off when exhautted.

The dimenfions of this apparatus are calculated for the purpofe of bleaching twelve or fifteen pieces of $\frac{4}{4}$ calicocs, or any other ftuffs of equal breadth and fuhItance. When the goods are ready for bleaching, the axis L is placed on a frame in an horizontal pofition, and one of the pieces N being faftened to the canvas M by means of wooden Rewers, in the manner reprefented in fig. I. it is rolled upon the axis by turning it with the handle P. This uperation muft be performed by two perfons; the one turning the axis and the other sirecting the piece, which mut be rolled on very tight and very even. When the firf piece is on the axis, the next piece is faftened to the end of it by fiewers, and wound on in the fame manner as the firft. The fame method is purfued till all the pieces are wound upon the axis. The end of the laft piece is then faftened to the canvas of the axis \mathcal{K}. Both axes are afterwards placed into the ciftern, with their ends in the fockets FF, and the lid is put on the ciftern by paffing the axis through the tubes HH . The handle P is put upon the empty axis, and the pulley Q upon the axis on which the cloth is rolled, and the cord R , with the weight T, is put round it and over the pulley S. The ufe of the friction, produced by this weight, is to make the cloth wind tight upon the other axis. But as the effect of the weight will increafe as one cylinder increafes and the other leffens, Mr Rupp reconsmends that three or four weights be fufpended on the cord, which may be taken off gradually as the perfon who works the macline may fund it convenient. As the weights hang in open hooks, which are faftened to and to remove them.

Things being thus difpofed, the bleaching liquor is to be transferred from the veffels in which it has been prepared into the apparatus, by a moveable tube paffing through the tube I, and defcending to the bottom of the ciftern. This tube being connected with the veffels, by mearis of leaden or wooden pipes provided with cocks, hardly any vapours will efeape in the trans. fer. When the apparatus is filled up to the line a, the moveable tube is to be withdrawn, and the tube I clofed. As the liquor rifes above the edge of the rim G, and above the tubes HH , it is evident that no evaporation car take place, except where the rim does not apply clofely to the fides of the box; which will, however, form a very trining furface if the carpenter's work be decently done. The cloch is now to be wound from the axis L upon the axis K, by turning this; and when this is accomplifhed, the handle P and pulley Q are to be changed, and the cluth is to be wound back upon the axis L . This operation is, of courfe, to be repeated as often as neceflary. It is plain, that by this procefs of winding the cluth from one axis upon the other, every part of it is expofed, in the moft complete manner, to the action of the liquor in which it is immerfed. It will be neceffary to turn, at firft, very brifkly, not only becaufe the liquor is then the Arongett, but alfo becaufe
it requires a number of revolutions, when the axis is bare, to move a certain length of cloth in a given time, though this may be performed by a lingle revolution when the axis is filled. Experience mult teach how long the goods are to be worked; nor can any rule he given refpecting the quantity and Arength of the liquor, in order to bleach a certain number of pieces. An intelligent workman will foon attain a fufficient knowledge of thefe points. It is hardly neceflary to ohferve, that, if the liquor fhould retain any Atrength after a fet of pieces are bleached with it, it may again be employed. for another fet.

With a few alterations, this apparatus might be made applicable to the bleaching of yam. If, for inftance, the pultey O were removed from the end of the axis K , and fised immediately under the tube H ; - if it were perforated in all directions, and tapes or ftrings paffed thro the holes, Akains of yarn might be tied to thefe tapes underneath the pulley, fo as to hang duwn towards the bottom of the box. The apparatus being afterwards filled with bleaching liquor, and the axis turned, the motion would caufe every thread to be acted upon by the liquor. Several axes might thus beturned in the fame box, and being connected with each other by pulleys, they might all be worked by one perfon at the fame time; and as all would turn the fome way and with the fame fpeed the fains could not poffibly entangle each other.

P.

2 Encaustic PAINTING is an art of very high antiquity, which, after being loft for many ages, was reftored, as is commonly believed, by the celehrated Count Caylus, whofe method was greatly improved, firft by Mr^{r} Jofiah Colebrooke, and afterwards by Mifs Greenland, who brought the rudiments of her knowledge from Italy (fee Encaustic, Encycl.) In that country encauftic painting had employed the attention of various artifts and men of learning, fuch as Requeno, Lorgna, and Aftori, \&c.; but the beft account of it that has fallen under our notice, is in that valuable miईcellany called the Pbilofoplical Magazine, taken from a work of Giov. Fabbroni, publifhed at Rome in the year 1797.

According to this author, "the knowledge and ufe of encauftic painting is certainly older than the time of the Greeks and the Romans, to whom the learned Requeno feems to affign the exclufive poffeffion of this art; becaufe the Egyptians, who, with the Etrufcans, were the parents of the greater part of the inventions known among mankind, and from whom the Greeks learned fo much, were acquainted with and empluyed encauftic painting in the aucient ages of their greatnefs and fplendour, as is proved by the valuable fragments of the bandages and coverings of fome mummies which he had examined. No oil-painting (he fays), of only two or three hundred years old, exhibits a white paint which has kept fo well as that feen on thefe fragments; and this circumftance fufficiently proves the luperiority of the

Suppl. Vol. II. Part I.
encaufic method over the common oil painting, which, Painting. notwithRanding the general opinion, cannot, he thinks, $\underbrace{\text { Pa }}$ have been unkrown to the ancients.
" It is impoffible (fays he) that in Egypt and Pho. nicia, where fo much ufe was made of flas, the oil procured in abundance from that plant fhould have been unknown. Thofe who have kept oil, or who have fpilt any of it, whether nut or lintfeed oil, mult have re. marked that it poffeffes the property of foon drying by the effects of the atmofphere; and therefore it may be eafily believed that mankind mult foon have conceived the idea of employing it, particularly for flips, which, as Herodotus fays, were painted with red ochre in the carliett periods, and adorned with figures and ornaments. The ufe of oil afforded painting a much fimpler and eafier method than that of wax ; it mut therefore have been firft adopted, and tive tranfition from oil to wax mutt be confidered as a Atep towatds bringing the art to perfection; becaufe encautlic painting is nor expofed to the irremediable inconveniences that arife in oil paint. ing, the value of which we extolled through ignorance, and praifed as a new invention.
"Oil in general, and in particular drying oil which the painters ufe, has naturally a flrong inclination to combine it felf with the vital air or oxygen of the atnofphere, and by imbibing oxygen it beconies dry, and aflumes the character of refin; but the colour then becomes darker, as is the eafe with tranfpareut turpentine, u hich gradually becomes a black piteh.
6. Accord.
"According to the new and more accurate method of decompofing bodies, oil confifts principally of hydrogen and carbon. By coming into contact with the atmofphere, and abforhing itsoxygen and light, it undergocs a flow and imperceptible combuttion, which is not effentially different fronit the fpeedy and violent one which it would undergo in the common mode of burning. It nift paffes, by imbibing oxygen, into the ftate of a more or lefs dark refin; lofes gradually its effential hydrogen, which makes a new combination, and afterwards the oxygen itfelf which has attracted the carbon ; and at length leaves behind a thin layer of actual carbon, which in the end becomes black in the courfe of time, and confiderably obfcures the oil-painting. By a continuance of the hefore-mentioned flow combuftion, the carbon itfelf, as it were, burns alfo: if it be Atrongly acted upon by the light, it attracts the oxygen of the atmorphere, and again brings forward the carbonic acid or fixed air, which gradually flies off. By this, which I may call the fecond degree of combuftion, the painting muft become dulty aud friable, like crayon painting.
"Hence it appears (fays our author) that one can hope only for a tranfient or deceitful effect from the refrefhing of oil paintings with oil; becanfe the harmony of the tones, which the painter eliablifhes as fuited for the moment, does not proceed with equal tteps, and cannot preferve itfelf in the like meafure for the courfe of a few years, as each tint, as they fay, ought to increafe, or, to fpeak more properly, to burn in proportion to its antiquity. It thence follows, that mere wafhing may be prejudicial to an old painting; and that the method of refrefhing paintings, as it is called, by daubing over the furfacc, from time to time, with new drying oil, is highly prejudicial and ill calculated for the intended purpofe, fluce the oil when it becomes dry contracts in its whole furface, carries with it the paint under it, and occafions cracks in the painting. New oil of this kind gives occafion to mineral paints to be reftored; but covers the pi\&ure with a new coat of refin, and then of carbon, which arifes from the gradual combultion, and always caufes more blacknefs, and the decay of the painting which one wifhes to preferve.
"Wax, on the other hand, undergoes a change which is very different from that of drying oil. The wax, inftead of becoming hlack by the contact of the atmofphere, increafes in whitenefs, and, according to its natural quality, is not decompofed in the air, and it does not ftrongly attract the oxygen of the calces or metallic afhes which are commonly ufed in painting. Moreover, the fo-called earths, which are in themfelves white, and are never variable either by the prefence or abfence of oxygen, cannot be employed in oil-painting, becaufe that fluid makes them almoit tranfparent, and caufes them to remain as it were without body, and not to produce the wifhed for effect. That beautiful white, which may be obferved on the before-mentioned Egyptian encauttic, is nothing elfe than a fimple earth, and, according to our author's chemical experiments, a chalk which is alfo unalterable."

That the ancients were once acquainted with the ufe of oil-painting, and neglected it on account of the great
fuperiority of the encauftic method, our anthor thinks Painting. farther evident from the different accounts which we have of the ancient paintings. "Thus Petronius praifes the frefh appearance which the valuable works of Zeuxis and A pelles had, even in his time ; but Cicero, on the other hand, fpeaks of the paintings of the ancients having fuffered from hlacknefs. The former fpeaks of wax-painting, and the latter certainly alludes to paintings in oil. It is well known that paintings with wet chalks or water colours do not become black by age, and that this is the cafe alfo with encautic. Of this any one may be convinced, not only by the expreffions of the above quoted anthors, but by one's own eyes on furveying the Egyptian fragment alluded to. Galland proves, on various grounds, that a painting was made with oil fo early as the reign of Marcus Aurelins; and if no fpecimens of that period have reached us, this is perhaps to be afcribed to the frail and perifhable nature of this fpecies of painting."

Sign. Fabbroni, after fome farther obfervations, calculated to prove that metallic oxides or calces could not have been employed as pigments on fuch mummies as ftill retain their colours frefh, proceeds thus: "Thofe who are acquainted with the accuracy and certainty of the method not long lince introduced into chemical operations, will be convinced, that in $2+$ grains of the encauftic painting, which I ventured to detach from the above-mentioned Egyptian fragment, in order to fubjeed it to examination, the mixture of an hundredth part of a foreign fubftance would have been difcovered with the greatef certainty; that the refin of Requeno mult undoubtedly have been perceptible to me, and that the alkali of Bachelier and Lorgna could not have efcaped the counteracting medium. But in this Egyptian encauftic I found nothing except very pure wax, though I varied my analyfis in every known method. I mult therefore conclude, that modern learned writers, at leaft in refpect to this Egyptian mode of painting, were as far from the truth as the accounts of ancient authors appear to me precife and fatisfactory; and that the encauftum with which formerly the fore part of fhips and the walls of houfes and temples were painted, was fomething different from foap or refinous crayons.
" I am well aware that it will be afked, In what manner call wax at prefent be rendered fufficiently i quid for the ftrokes of the pencil, if it be not converted into powder or foap? This queftion, in my opinion, can be fully anfwered from the words of an ancient author, and, in the next place, by experience.
"V Vitruvius in particular, book vii. chap. ix. exprefles himfelf in the following clear manner :

- Thofe (fays he) who wifh to retain cinnabar on walls, cover it, when it has been well laid on and dried, with punic wax diluted in a little oil (let this be well remarked; and after they have fpread ont the wax with a hair brufh, they leat the wall by means of a brazier filled with burning coals (hence it is called encaultic painting), and then make it fmooth and level by rubbing it with wax tapers and clean cloths, as is done when marble fatues are covered with wax. The effect of this wax cruft is, that the colour is not deflroyed by the light of the fun or the moon (A)?
(A) The reader will find the origiral of this paffage, with a tranlation fomewhat different, in the article Ewcaustic, Encycl.
"It here appears, that the Romans, who copied the Grecian proceff, which the latter borrowed from the Egyptians, mixed the wax with an oil to make it pliable under the brufh; buit no mattic, alkali, or honey, as has been ingenioully imagined, and which fome have thought might be employed with fuccefs. The difficulty now will be confined to point out in what mamer this oil was employed. It does not appear that they ufed thofe fat oils which are commonly called drying oils; becaule they could have employed thefe as we do, without the addition of wax, which, in fuch a cafe, would have been entirely fuperfluous. Fat wils which do not dry would not have been proper for that purpofe, as they would have kept the wax continually in the fate of a fuft pomade or falve. Beides, my experiments (continues the author) would withont doubt have fhewn me the exitlence of any oily matter.
" With regard to effential or volatile oils, a knowledge of them is not allowed to the ancients, as the invention of diftilling is not oider than the cighth or ninth century, and therefore falls in with the period of Geber or Avicenna." Yet it is certain, that, in order to ufe wax in their encaultic painting, they mult have combined it with an ethereal wolatile oil, of which no traces thould afterwards remain; becaufe this was neceffary for the folidity of the work, and becaufe no oil was found in the fragnent that was examined. But naphtha is fuch an oil, much lighter (fays our author) than ether of vitriol itfelf. It is exceedingly volatile, and evaporates without leaving a trace of it behind. On this account it is ufed when fignatures and manufcripts are to be copied; becaufe the paper, which is moittened by it, and fo rendered tranfparent, quickly becomes white and opaque as before by the complete evaporation of the naphtha. That the Affyrians, Chaldeans, and Perfians, were well acquainted with the properties of naphtha is known to every fcholar; and hence our author thinks it highly probable that it was ufed by thofe nations to render wax fit for painting. "It appears to me (fays he) that the Greeks, as was the cafe with many other things, learned encauftic from the Egyptians, who probably derived it from the Affyrians or Chaldeans; and if fo, we have difcovered the real mixture ufed for ancient encauftic painting."

To put the matter, howevcr, beyond a doubt, Sign. Fabbroni prepared, for an eminent Saxon painter, a fo1ution of Venetian wax, in highly purified naphtha, defiring him to mix up with it the colours neceffary for a painting. The artift complied; and both he and our author were aftonifhed, as well as all their friends, at the high tone which the colours affumed, and the agrceable luftre which the painting afterwards acquired when it had been rubbed over with a foft cloth. A fimilar fulution of wax was made for mother artit, in which the fpirit of turpentine was ufed inftead of naphtha with equal fuccefs. Our author therefore concludes, we think with reafon, that if he has not difcovered the real compofition employed by the ancients in their encauftic paintings, he has at leaft approached much nearer to that difcovery than any of his predeceffors who have employed their learned labours in the fame field of inveftigation.

PAINTINGS, or Pictures, are often done upon objects from which, when they are valuable, it would be defirable to transfer them. Thus, a connoiffeur in
painting might naturally wifh to transfer an old and va. Paintinge luable picture from the ceiling or walls of his room to ftetehed canvas : and fuch a man would confider himfelf as dceply indebted to the artill who fhould perform fo arducus a tafk. This tafk has actually been performed by Mr Rolert Salmon of Woburn, Bedfordhire, who was honoured by the Socicty for the Encouragement of Ares, Ec. with the greater filver pallet, for communicating the method by which he accomplifhed it.
" 1 he firll thing (fays Mr Salmon) to be attended to with refpect to paintings, cither on plattered walls or ceilings, or on boards, is, that the place in which they are be fecure from wht or damp. If the paintings are on old walls in large buildings, or other places where this cannot be attained by art, then the fummer feafon fhould be taken for the purpofe, as the picture will rarely efcape damage, if wet or damp gets at it while under the procefs. At the fame time, care fhould be taken that the room, or other place, be not overheated; as that would produce equally bad eftects.
" Thefe precautions being taken, the next thing is to examine the furface of the painting. If there are any holes in the fame, they mult be carefully filled up with a pafte or putty, made of glue and whiting: this, if the holes are large, fhould be twice or thrice done, fo as entirely to fill them up, and leave the furface even and fmooth; but if there are any bruifed places, with paint ftill remaining on the furface of the bruifed parts, then this ftopping muft not be applied, but the fecuring.canvas, hereafter defcribed, muft be preffed down into thefe places. In the places that are ftopped, there will of courfe appear blemifhes when the picture is transferred; but the procefs is rendered much more certain and fure by being fo done. Attention mult next be paid to lay down any blifters, or places where the paint is leaving the ground : this is done by introducing, between the paint and the ground, fome very flrong patte of flour and water; and the furface of the bliftered paint being damped with a wet fponge or brufh, it may be preffed with the hand home to the ground, to which it will then adhere.
"All the unfound places being thus fecured, care muft be taken to clear the furface of any greafe or dirt, as alfo of any particles of the pafte that may happen to be left on it. The next thing is, to determine the fize of the painting meant to be taken off: If it is on a plain furface, a board of the fize of the picture mult be procured, not lefs than an inch in thicknefs, and framed together with well feafoned wood, in fmall pannels, fmooth and flufh on one fide. This done, a piece of fine open canvas mutt be provided, fuch as the finelt fort ufed for hanging paper on; which canvas is to be fomewhat larger than the picture, and fo fewed together, and the feam fo preffed, that it be perfectly fmooth and even. This is what Mr Salmon calls the fecuring canvas; which, heing fo prepared, is to be ftuck on the furface of the picture with a pafte made of frong beer, boiled till it is half reduced, and then mixed with a fufficient quantity of flour to give it a very ftrong corfiltence. To large pifures on walls or ceilings, the canvas muft for fome time be preffed, and rubbed with the hand as fmouth as peffible, working it from the middle to the outfide, fo as to make it tolerably tight; obferving, as it dries, to prefs it, with the hand or cloth, into any hollow or bruifed places, fo

Paintioge. $\underbrace{\text { intiof. }}$ Wat it may adhere to every part of the painting: this dene, it is left to dry; which it will generally do in a day or two When dry, a ferond canvas, of a flrenger and clofer fort, and of the fame fige as the other, is in like manner to be attached on the top of the firft. This lat will want very little attention, as it will readily adhere tu the firft ; and, being dry, attention muft be paid to take off any fmall knots or unevennefs that may be upon the lurface of it; which done, the whole Phould be again covered with a thin pafte of fize and whiting; which is to be pumiced over when dry, fo as to trake the whole perfectly fmooth and even.
"The painting being thus fecured, the board, already prepared to the fize of the picture, is to be put with the fmootl lide againt the furface thereof, fo as exactly to cover as much as is intended to be transferred. The edges of the canvas, which, as is before directed, is to be larger than the painting, are then to be pulled tight over, and clofely nailed to the edge of the board. If the painting is large, and either on a ceiling or wall, the buard muft, by proper fupports, be firmly fixed againlt it, fo that it can readily be lowered down when the plafter and painting are detached.
"The canvas and board being fixed, the painting is to be freed from the wall or ceiling, together with a certain portion of the plattering: this, with proper care and attention, may be readily done. If on a ceiling, the firlt thing is to make fume holes through the plaftering, round the outfide of the board and painting; and, with a finall faw, to faw the plattering from one hole to another, till the whole is difunited from the other parts of the ceiling: this done, the workman mult get at the upper fide of the ceiling, where he muft free the plaftering from the laths, by breaking off the keys thereof, and with a chifel cut out the laths; whereby the plaftering, together with the picture, will be left refting on the beard and fupports.
"If the painting is on a brick or ftone wall, the wall mult be cut away at top, and down the fides of the painting; and then, by means of clifels or faws in wondon handles, of different lengths, the wall muft be cut away quite behind the painting; leaving the fame, together with the platlering, refting on the board. This operation may fometimes be done with a faw: or, if the wall be not thick, nor the other fide of much confoquence, the bricks or ftones may be taken out from that fide, leaving the plaftering and painting as before. This laft method (fays the author) 1 have not pracifed: the other, of cutting away fome part of the wall, I have, and fee no difficulty, or very great labour, in the operation ; but that, of conrfe, mut be varions, according to the texture of the wall and mortar.
"If the paintings are on curved furfaces, fuch as the coves of ceilings, then the only difference of operation is, that fome ribs of wood muft be cut out, and hoarded fmooth to the curve of the furface of the painting, and then fixed up thereto, in place of the before defcribed bearing-loard; the pianting is then to be freed, and left with the plaftering, refling on the bearers.
"For paintings on wainfcot or boards, the fame feevring and procefs is to be exactly followed; only that, as the wainfeot or board can always be cut to the fize wanted, and laid horizontal, the fecuring-eanvas is to be fretched theteon, and turned over the edges of the fame till it is dry ; after which, the edges are again to
be turned up, and naild to the board, in th.
ner as with refpect to paint ings from walls.
"Having, as hefore defcribed, in any of the aforementioned cafes, freed the paintings from their original places, you have got them fecured to two thicknefles of canvas, with their furfaces on the board prepared for that jurpofe; this being the cafe, they can readily be removed to any room or fhop, to be finified as follows: Having carried the painting into the fhop or room, which thould be moderately warm and dry, but by no means ovcrheated, lay the board on a bench or treffels, fo that the back of the picture be uppermoft : the plaftering or woord, as may happen, is then to be cleared away, leaving nothing but the body of paint, which will be firmly attached to the fecuring-canvas. To perform this, a large rafp, a narrow plane, and chifels, will le requifite. This operation, though difficult to be deferibed, would foon be learned by any one who fhould make the attempt ; nor is it very tediots; and being performed, the pifture is ready to be attached to its new canvas, as follows.
"The painting being cleared, and lying on the board, the back thereof is to be painted three or four times over fucceffively, with any good ftrong-bodied paint; leaving one coat to dry before another comes on: a day or two between each will generally be found fufficient. Each of thefe coats, and particularly the firft, fhould be laid on with great care, taking but a fmall quantity in the brulh at a time, and laying it very thin. This precaution is neceffary, to prevent any of the oil or paint from palfing through any fmall cracks or holes in the furfacc of the picture; as fuch oil or paint would run into the pafte, and fo attach the fecuring-canvas to the picture, as to prevent its being afterwards got off. If any fuch sholes or cracks are obferved, they fhould be flopped up with the glue and whiting pafte, and the paiuting then repeated, till a complete coat is formed on the back of the picture. It is then ready for attaching to its canvas. which is dune by freading all over the pichure a pafte made of copal varnilh, mixed with ftiff white lead, and a fmall quantity of any other old fat paint ; all which being fpread equally over with a pallet-knife, fuch a canvas as the firft fecuring-canvas is laid thereon, and flrained and nailed round the edges of the buard ; in which flate it is left till it becomes tolerably dry : then a fecond canvas, of a ftronger fort, nult be in like manner attached on the firft, and left ith it is perfectly dry and hard. This generally takes about two months; and the longer the painting is left, the more fecnrely it will be attached to its canras, and lefs liable to crack or fiy therefrom. When fufficiently dry, all the four canvalfes are to be unnailed from the board, and the enges turned up the reverfe way, and nailed to a proper ftetching.frame. This is done by unnailing from the board a part on each fide at a time, and immediately nailing it to the ftretching-frame, fo as never to leave the canvas to crack or partially Itretch, which would damage the picture In this manner, by degrees, the cloths are entirely detached from the board, and firmly fixed on the flretching-frame. The fuperfluous canvas, left larger than the frame, may then be cut off, and the wedges put in the frame, and moderately tightened up. There remains then only to clear the furface of the paintiug from the fecuring-canvas: which is done by repeatedly wathing the furface

P A I [325] P A L

?aintings. with a Sponge and moderatcly warm water. In doing this, no violence or force muft be ufed; and, by frequent and gentle wafhings, the palte will all be worked out with the fponge. The cdges of the outer canvas are then to be cut round, and fripped off : the other, next the furface of the picture, is to be ferved in like manner : which done, nothing remains but to take the pafte clean off, and repair any defects: the picture will then be as flrong as if painted on the canvas.
"For taking pictures off walls, withont taking the walls down, or cutting away more thereof than the plaftering, the following procels is propofed:
"The furface of the picture is to be firfl fecured, in the manner before defcribed; but inftead of the plain board, a bearer fhould be prepared with a convex furface, compofed of ribs, boarded over, fo as to form part of a cylinder, of not lefs than five feet radius, and as long as the height of the picture. This bearer being prepared, in order to apply it, a floor or platform fhould be erected, and placed horizontally, with its furface level, and its edge immediately in contact wish the bottom of the picture meant to be transferred. The ufe of this platform is for the above-defcrihed bearer to reft and move upon ; which bearer fhould be fet on its end, with one edge in contact with the wall, at one fide of the picture; confequently the other edge will be at fome diftance from the wall, according to the fize of the picture and convexity of the bearer. Being thus placed, the fuperfluous edge of the fecuring-canvas thould he turned uver, and nailed to that edge of the bearer that is next the wall: This done, the operation of cutting away the plaftering fhould be begun; which may be done with the corner and end of a fhort faw; fawing between the brick-work and plaftering, and leaving the thicknefs, or part of the thicknefs, of the plaftering on the painting faftened to the bearer. When this edge of the pieture is freed, the whole height, for nine or ten inches under the edge of the bearer that is fartheft from the wall, mult then be gently forced nearer; confequently the nther edge, together with the painting and plater that is freed, will leave the wall, and give an opportunity of introducing the faw behind, and cutting away the fame to a certain diflance farther under; and, by repeating this, the whole of the picture will at length be freed, and lift on the hearer. Each time the bearer is removed, and, as it were, rolled on the vertical furface of the wall, care muft be taken to turn and nail the fecuring-canvas on the top and bottom edges of the bearer, fo as to fecure the feced plaftering and picture from moving about; and, laftly, before the bearer and plaftering be moved, to nail the ather edge of the picture in the fane way, which will fecure the whole to the bearer. This done, the picthere and bearer are at liberty to be moved to a proper place, in order to be freed from the remaining plafter. The edges may then be unnailed; the painting and canvas flipped from this bearer on to a plain board; and the new canvas may he then put on ; which is to remain till dry, as in other cafes.
"It may appear, that the bending of the car:vas and platering to the convex bearer will crack the plafter, and damage the painting.; but, from experience (fays Mr Salmon) I have obferved, that, to a curve of fuch or even lefs radius, plaftering will bend, without any vifible crack, (ven on the exterior part thercof; and
that part next the bearer, not having occafion, in bend. Paliicum ing, to extend its parts, will confequently be much lefs liable to be ditturbed by fueh bending."

In clearing the wood from the paintings, our aththor never made ufe of aquafortis, or ary other liquid; the ufe of which he conceives would be very tedious, and attended with danger, left it fhould get through the paint, and wet or damp the palte by which the fecuring canvas is fixed. In working off the wood, he generally made ufe of fuch planes as by the joiners are called the levelled rablit-plane, and fmall rounds. I3y the corners of the former, and proper handling of the latter, the wood is cleared off without force or violence: even the furalleft particles may, in general, be got off; although in fome paintings, and in particular parts of others, he has mact with places on which he thought it beft to leave fome particles, or fine fplinters, of wood, but nothing more. Rafps, and fometimes a fine chifel, are ufeful, to clear off fuch parts as may be in hollow places, or where particles of wood are left, as above. The time required will be various, according to the manner in which the painting was originally done; fome being painted on boards previoufly prepared with a water colour ; others immediately painted with oil on the wood. This laft fort is by much the moft difficult ; the other is more eafy, as the previous preparation prevents the wood from imbibing the oil, and confequently admits it to be more eafily feparated.

PALILICUM, the fame as Aldebaran, a fixed flar of the firf magnitude, in the eye of the bull, or dign Taurus.
PALLification, or Piling, in architecture, denotes the piling of the gromud-work, or the ftrengthening it with piles, or timber driven into the ground ; which is practifed when buildings are erected upon a moitt or marihy foil.

PALM, an ancient long meafure, taken from the extent of the hand. See Palaus, Encycl.
PALME, palms. See Encycloperdia. The fuljeet is introduced here to notice a kind of palm, the product of North America, of which we have the following account by Dr Barton.
"There grows upon the river Mohile a fpecies of palm, which is but little known to naturalins, but which promifes to be an important article of food to man. It has no ftalk or them above ground. The leaves fpread regularly all round, and when fully expanded are fabelliform. In the centre of thefe leaves is produced the receptacle of the fruit, which is of the form and fize of a common fugar-luaf. This receptacle confits of a valt number of drupes, or berries, of the fize and fhape of common plums: each is covered with a fibrous, farinaceous, pulpy coating, of confiderable thicknefs. This fubltance is faid to refemble inanna in texture, colour, and tafte; or, perhaps, it thill more refembes moit brown fugar, with particles of loaf-fugar mixed with it. It is a mot delicious and nourifing food, and is dillgently fought after in the places where it grows. Upon firlt tafting it, it is fomewhat bitter and pungent.

PANORAMA, a word derived from ${ }_{\text {ma }}$ and $_{\text {oprapa }}$; and therefore employed of late to denote a painting, whether in oil or water colours, which reprefents an entire view of any country, city, or othe natural objects, as they appear to a perfon flanding in any fituaLion, and turning quite round. 'Io produce this effect,

Panoama, the painter or drawer mult fix his ftation, and delineate Paper. correctly and connectedly every object which prefents itfelf to his view as he turns round, concluding his drawing by a connection with where he began. He muft obferve the lights and chadows, how they fall, and perfect his piece to the beft of his abilities. There mutt be a circular building or framing erected, on which this drawing or painting may be performed; or the fame may be dune on canvas, or other materials, and fixed or fufpended on the fame building or framing, to anfwer the purpofe complete. It mult be lighted entircly from the top, either by a glazed dome, or otherwife as the artid may think proper. There mult be an inclofure within the faid circular building or framing, which thall prevent an obferver going too near the drawing or paiuting, fo as it may, from all parts it can be viewed, have its proper effect. This inclofure may reprefent a room, or platform, or any other fituation, and may be of any form thought moft convenient ; but the circular form is particularly recommended. Of whatever extent this infide inclofure may be, there muft be over it (fupported from the bottom, or fufpended from the top) a fhade or roof; which, in all directions, fhould project fo far beyond this inclofure, as to prevent an obferver from feeing above the drawing or painting when looking up; and there muft be without this inclofure another interception, to reprefent a wall, paling, or other interception, as the natural objects reprefented, or fancy, may direct, fo as effectually to prevent the obferver from feeing below the bottom of the drawing or ptinting; by means of which interception, nothing can be feen on the outer circle but the drawing or painting intended to represent nature. The entrance to the inner inclofure mult be from below, a proper building or framing being erected for that purpofe, fo that no door or other interruption may difturb the circle on which the view is to be reprefented. And there fhould be, below the painting or drawing, proper ventilators fixed, fo as to render a current circulation of air through the whole: and the inner inclofure may be elevater, at the will of an artift, fo as to make obfervers, on whatever fituation he may wifh they fhould imagine themfelves, feel as if really on the very fpot.

PAPER is an article of fuch importance, and at prefent * of fo enormous a price, that no improvement in its manufacture fhould pafs unnoticed in a work of this nature. The difcovery made in France by M. Bertholet of the efficacy of oxy-muriatic acid in expediting the procefs of Bleaching (fee that article in this Suppl.), has contributed effentially to facilitate the manufactures, not only of cotton and linen cloths, but alfo of paper, of which it has even increafed the materials. Formerly writing paper could be made of unprinted linen alone; but by means of the procefs of M. Bertholet even printed lineu may be made into the finelt and whiteft paper. In the year 1795 a patent was granted to Mr Elias Carpenter of Bermondfay, Surrey, for a method of bleaching paper of fuch materials in the water-leaf or fheet, and fizing it without drying.

In the preparation of the pulp, the coarler rags are to be macerated for two or three days in a cauftic alkaline ley, and wrought into fheets of paper in the ufual way; a ftrong wooden box or trough is then to be procured, of a fize proportioned to that of the paper, lined on the infide with white paint, and furnifhed
with feveral Atages of crofs bars of glafs: the bottom of the box is to be covered with a flratum about one inch deep of cautic ley, and the paper laid by quarter reams, or lefs, acrofs the glafs bar. A hole mult be made in the box to admit the beak of an earthen-ware retort, into which muft be put manganefe and fea falt, in powder, fulphuric acid, and an equal quantity of wate impregnated with the fteams of burning fulphur (fulphue reous aeid). The eover of the box is to be made air. tight by luting or flips of paper dipped in palte. The apparatus being thus prepared, the belly of the retort is to be plunged in water, kept boiling, and in a flort time the oxy muriatic gas will be driven into the box, will penetrate the paper, and render it of a dazzling whitenefs, while the alkaline ley at the bottom will, by gradually abforbing it, prevent its becoming fo concentrated as to deftroy or injure the texture of the paper. From three to four pounds of fulphuric acid will fuffice for one hundred weight of paper, and the operation will be completed in about eight hours. The fheets as they are taken out of the box are to be fized with the following misture :

To 1 cwt. of elippings of κ kin add 14 lb . of alum, 7 of calcined vitriol, and Ilb . of gum arabic, with a fufficient quantity of water to fize 50 reams of fools cap.

The fame method will ferve equally well to clean engravings or printing; for though the oxy-muriac acid difcharges all ftains, dirt, \&c. yet it is incapable of acting on printers ink.

This, however, is not the only improvement in the manufacture of paper derived from modern chemiftry. In Crell's Chernical Annals for the year 1797, we have an account of fome curious experiments made by M . L. Brugnatelli, with the view of rendering

Paper incombuftible, and the writing on it, of courfe, indeftructible by fire. Of all the fubitances which he tried, he found the liquor of flints the mote proper to fecure paper from deltruction by fire. He dipped a fheet of paper feveral times in the above liquor frefh made, or danbed it feveral times over the whole paper with a hair brufh, and dried it in the furn or in an ovan. Paper prepared in this manner loft fome of its foftnefs, became a little rougher than before, and acquired a lixivious cauftic tafte. In other reipects it was not different from common white paper. When this paper was laid upon glowing coals, it did not burn like common paper, but became red, and was converted to a coal, which however did not fall into alhes like the coal of common paper, fo that it might therefore be confidered as petrified paper. This coal, however, is exceedingly friable; for when it is taken between the fingers, or preffed together in any manner whatever, it drops to pieces. Still the difcovery mutt be a valuable one, if there be any kind of ink of fuch a nature as that the characters written with it continue vifible on this coal. Such an ink M. Brugnatelli made by combining difolved mitrite of zinc with common ink; and found, that the colour of this mixture, though it appeared fomewhat pale on common paper, became fo dark on prepared paper; that words written with it appeared inore confpicuous than words written with common ink. When the paper was burnt, or reduced to a coal, thofe characters were fo vifible, in a clear white colour on a dark ground, that they could be read with as much eafe as characters written with the beft ink on
white
arabolic white paper. If the ingenious author fucceed in his attempts to difcover a method of rendering his prepared paper lefs friable when burnt, his difoovery will be one of the moft important of the prefent age.

PARABOLIC Conomb, is a folid generated by the rotation of a parabola about its axis. This folid is equal to half its circumferibed cylinder; and therefore if the bafe be multiplied by the leeight, half the product will be the folid content.

Pakabozic Pyramidoid, is a folid figure, thus named by Dr Wallis from its geuefis or formation, which is thus:. Let all the fquares of the ordinates of a parabola be conceived to be fo placed, that the axis thall pals perpendicularly throughall their centres; then the aggregate of all thefe planes will form the parabolic pyramidoid. This figure is equal to half its circumfribed parrallelopipedon. And therefure the folid content is found by multiplying the bale by the altitude, and taking half the product ; or the one of thefe by half the other.

Pakabolic fpace, is the fpace or area included by the curve line and bafe or double ordinate of the parabola.

Parabolic Spindle, is a folid figure conceived to be formed by the rotation of a parabula about its bafe or double ordinate.

PAR.sBoLic Spiral, is a curve ariting from the fuppofition that the common or Apullonian parabola is bent or twifted till the axis come into the periphery of a circle, the ordinates ftill retaining their places and perpendicular pofitions with refpect to the circle, all thefe lines ftill remaining in the fame place. This figure is fometimes called the Helecoid parabola.

PARABOLOIDES, parabalas of the higher orders. The equation for all curves of this kind being $a^{m-n} x^{n}=y^{m}$, the proportion of the area of any one to the complement of it to the circumferibing parallelogram, will be as n to n.

PARACENTRIC Motion, denotes the fpace by which a revolving planet approaches nearer to, or recedes farther from, the fun, or centre of attraction.

Pakacentric Solicitation of Gravity, is the fame as the vis centripeta.

PARACHUTE, a kind of large and ftrong umbrella, contrived to break a perfon's fall from an airballoon, fhould any accident happen to the balloon at a bigh elevation. This contrivance was firit thought of by Blanchard, who at different times, by means of the parachute, let fall from his balloon dogs and other animals. He ventured even to defcend in this manner himfelf; but, whether from the bad conftruction of his parachute, or from failing among trees, he had the misfortune to break orie of his legs. Citizen Garnerin, as he choofes to be called, was more fuccefsful. On the 2 Ift of October 1797 , he afcended from the garden de Mauffeux at half paft five in the evening; between the balloon and the car, in which he fat, was placed the parachute, half upened, and forming a kind of tent over the aerial traveller; and when the whole apparatus was at a confiderable beight, be feparated the parachute and car from the balloon. The parachute unfolding itfelf, was, by his weight and that of the car, drawn of courfe towards the earth. Its fall was at firf flow and vertical; but foon afterwards it exhibited a kind of balancing or vibration, and a rotation gradually increaling,
which might be compared with that of a leaf falling Paramuatan from a tree. The aeronaut, however, reached the ground unhurt.

This parachute was of cluth, and its diameter, when unfolded, about iwenty-five feet. To ule fuch inflruments with fuccefs, it is neceffary that the car he ful. pended at a confiderable dillance from the parachute, fo as that the centre of gravity of the whole mall be vertically below the centre of refiftance made by the air to the defeent of the parachate; for if the car he otherwife placed, it is evident that the parachute will incline to one fide, defcend obliquely, of cillate, and the fmalle f irregularity in its figure will caufe it to turn mund its vertical axis.

PARAGUATAN, a kind of wood which grows in Guiana, and promifes to be of great utility as a dye Ituff. We lave feen no botanical defcription of the tree; but from the report made to the Council of Trade and Mines, by D. Dominique Garcia Fernandez, inspectur of coinage, we learn that its bark, boiled in water, affords a coloured extraf which refilts the agency of acids for a lunger time than brazil or logwood; that the coluur may be revived by means of alkalies, after it has been dettroyed by combination with acids; that vinegar, lemon juice, and tartar, render this colour more brilliant, white they entirely deftroy the colours of brazil and \log wood; that the fecula of the bark of paraguatan fixes and attaches itfelf to wool, cotton, and filk; and that the colour is brighter on filk than on wool, and brighter on wrool than on cotton. The fame fecula dried is afterwards foluble in alcohol, to which it communicates a tinge fimilar to that afforded by cochineal; but it mur be confeffed, that the colour obtained from paraguatar has not the force of that of cochineal, though it is fuperior to thofe of madder, brazil woud, and logwood. From thefe facts D. Fernandez conliders the paraguatan as one of the moft valuable productions which America furnithes to Spain.

PARALLAX (fee Encycl.) is ufed, not ouly in aftronomy, but alfo in levelling, for the angle contained between the line of true level, and that of apparent level. And, in other branches of fcience, for the difference between the true and apparent places.

PARALLEL Ruler, is a mathematical inftrument, conffing of two equal rulers, either of wood or metal, connected together by two flender crofs bars or blades of equal length, moveable about the points of junction with the rulers. 'There are other forms of the infrument ; fome, for inllance, having the two blades croffing in the middle, and fixad ouly at one end of them, the other two ends lliding in grooves along the two rulers, \&c.

The ufe of this inftument is obvious. For the edge of one of the rulers being applied to any line, the other opened to any extent will be always parallel to the former ; and confequently any parallels to this may be drawn by the edge of the ruler, opened to any extent.

PARALLELS, or Places of Akms, in a fege, are deep trenches, 15 or 18 feet wide, joining the feveral attacks together; and ferving to place the guard of the trenches in, to be at hand to fupport the work. men when attacked. There are ufually three in an attack : the firf is about 600 yards from the covert-way, the fecond between 3 and 400 , and the third near or on

Paralielifn the glacis. It is faid they were firft invented or ufed Il by Vauban.
Parami- PiRALLELISM of the Earth's Axis, is that
ribo.
invariable fituation of the axis, in the progrefs of the cath thro' the amual orbit, by which it always keeps parallel to itfelf; fo that if a line be drawn parallel to its axis, while in any one pofition, the axis, in all other pofitions or parts of the orbit, will always be parallel to the fame line.

PARAMETER, a certain conftant right line in each of the three conic fections; otherwife called alfo latus rectum.

PARAMARIBO, the capital of the Duteb fettlement at Surinam, is fituated on the right fide of the beautiful riser Surinam, at about 16 or 18 miles difance from its month. It is built upon a kind of gravelly rock, which is level with the relt of the country, in the form of an oblong fquare; its length is about a mile and a half, and its breadth about half as much. All the Itreets, which are perfectly Itraight, are lined with orange, hadduck, tamarind, and lemon trees, which appear in everlafting bloom; while, at the fame time, their branches are weighed down with the richeft clulters of odoriferons fruit. Neither Itone nor brick is made ufe of here for pavement; the whole being one continued gravel, not inferior to the fineft garden walks in England, and ftrewed on the furface with fea-flells. The houles, which are moftly of two and fome of three fories bigh, are all built of fine timber, a very few excepted; moft of the foundations are of brick, and they are roofed with thin fplit boards, called 乃ingles, inftead of flates or tiles. Windows are very leldom feen in this country, glafs being inconvenient on account of the heat ; inftead of which they ufe gauze frames : fome lave only the fhuters, which are kept open from fix 0° clock in the morning until fix at night. As for chimneys, there are none in the colony; no fires being lightcd except in the kitchens, which are always built at fome dittance from the dwelling-houfe, where the victuals are dreffed upon the floor, and the fmoke let out by a hole made in the roof: thefe timber houfes are, however, very dear in Surinam, one of them having coft above L. 15,000 tterling. There is no fpring water to be met with in Paramaribo.; molt houfes have wells dug in the rock, which afford but a brackifh kind of beverage, only ufed for the negroes, cattle, \&c. and the Europeans liave refervoirs or cifterns, in which they preferve rain water for their own confumption; thofe of nicer talte let it firlt drop through a filtering. Atone into large jars or earthen pots, made by the native Indians on purpofe, which they barter at Paramaribo for other conmodities. The inbabitants of this coumtry, of every denomination, feep in hammocks, the negro flaves excepted, who moftly lie on the ground : the hammocks ufed by thofe in fuperior ftations are made of cotton, ornamented with rich fringe; thefe are alfo made by the Indiars, and fometimes worth above twenty guineas; neither bedding nor covering is neceffary, except an awning to keep of the mufquitoes. Some prople indeed lie on bedtteads; in that cafe they are furrounded, inltead of curtains, with ganze pavilions, which admit the air freely, and at the fame tinic keep off the fmallett infect. The houfes in general at Paramaribo are elegantly furnifhed with paintings, gilding, crytul chandeliers, china jars, \&ic.; the rooms are never
papered or plaftered, but beantifully wainfcotted with cedar, and Brazil, and mahogany wood.

The number of buildings in Paramaribo is computed at about $\Perp ン 2$, of which the principal is the governor's palace, whence there is a private paffage through the garden which communicates with Fort Zelandia. This houfe, and that ot the commandant, which has lately been burnt, were the only brick buildings in the colony. The town hall is an elegaat new bulding, and co. vered with tiles; here the different courts are held, and underneath are the prifons for European delinquents, the military excepted, who are confined in the citadel of Fort Zelandia. The Proteftant church, where divine worfhip is performed both in French and Low Dutch, has a fmall fpire with a clock; luelides which there is a Lutheran chapel, and two elegant Jewifh fynagogues, one German the other Portuguefe. Here is alfo a lare hefpital for the garrifon, and this manfion is never empty. The military fores are kept in the fortrefs, where the focitty foldiers are alfo lodged in barracks, with proper apartments for fome ollicers. The town of Paramaribo has a noble road for fhipping, the river before the town being above a mile in breadth, and containing fometimes above 100 veffels of burden, moored within a piftol-fhot of the fhore. Before Holland became a province of France, and thereby loft her trade, there were feldom fewer than 80 fhips at Paramaribo, loading coffee, fugar, cocoa, cotton, and indigo, for the mother country, ineluding alfo the Guinea men that brings flaves from Africa, and the North American and Leeward Itland veffels, which bring flour, beef, pork, fpirits herrings, and mackarel falted, fpermaceti candles, horles, and lumber; for which they receive chiefly mulafles to be dittilled into rum. This town is not fortified, but is bounded by the river on the fouthealt; by a large favannah on the welt; by an inpenetrable wood on the north-eatt ; and is protected by Fort Zelandia on the eaft. 'l'his citadel is only feparated from the town by a large efplanade, where the troope parade occafionally. The fort is a regular pentagon, with one gate fronting Paramaribo, and two baltions which command the river ; it is very fmall but flrong, being made of rock or hewn ftones, furrounded by a broad folle well fupplied with water, befides fome outworks. On the ealt fide fronting the river, is a battery of 21 pieces of camnon. On one of the battions is a bell, which is ftruck with a hammer by the centinel, who is directed by an hour-glafs. On the other is planted a large enfign-ftaff, upon which a flag is hoifted upon the approach of fhips of war, or on public rejoicing days. The walls are fix feet thick, with embrafures, but no parapet.

Paramaribu is a very lively place, the freets being generally crowded with planters, failors, foldiers, Jews, Indians, and Negrues, while the river is covered with canoes, barges, \&̌c. conitantly paffing and repafiag like the wherries on the Thames, often accompanied with bands of mulic; the fhipping alfo in the road adorned with their different flags, guns hring, \&c, not to mention the many groupes of boys and girls playing in the water, altogether form a pleafing appearance; and fuch gaiety and variety of objects ferve, in fome meafure, to compenfate for the many inconveniences of the climate. Their carriages and drefs are truly magnificent; tilk embroidery, Genoa velvets ${ }_{1}$ diamunds, gold and filver

P A R

lace, being daily worn, and even the mafers of trading hips appear with buttuns and buckles of folid gold. They are equaily expenfive at their tables, where every thing that can be called delicate is produced at any price, and ferved op in plate and china of the neweft fafrion, and molt exquilite workmanhhip. But nothing difplays the luyury of the inhabitants of Surinam more than the nomber of Caves by whom they are attended, often twenty or thirty in one family. White fervants are feldom to be met with in this colony.
The current money are ftamped cards of diferent value, from five flillings to fifty pounds: gold and fitver is fo fearce, that the exchange premium for fecie is often above io per cent. A bafe Dantzic coin called a bit, value fomething lefs than fixpence, is alfo current in Surinam. Englifh and Portuguefe coin ate fometimes met with, but mofly ofed as ornaments by the Mulatto, ©amboe, Quaderoon, and Negro girls. The Negro flaves never receive any paper money; for as they cannot read, they do not underftand its value; befides, in their hands, it would be liable to many accidents, from fire or children, and particularly from the rats, when it becomes a little greafy.

This town is well fupplied with provifions, viz. butchers ineat, fowls, finh, and venifon. Vegetables in particular the country abounds with; befides the lusuries peculiar to this climate, they import whatever Europe, Africa, and Afia can affurd. Provifions, however, are exceffively dea: in general, efpecially thofe imported, which are mofly fold by the Jews and mafers of hips. The firft enjoy extraordinary privileges in this colony; the latter ereet temporary warehoufes for the purpofe of trade, during the time their hips are loading with the productions of the climate. Wheat flour is fold from four-pence to one fhilling per pound; butter, two fhillings; butcher's meat never under one thilling, and often at one fhilling and fixpence; ducks and fowls from three to four fbillings a couple. A fingle turkey has fometines coft oue guinea and a half; eggs are fold at the rate of five, and European potatoes twelve, for fixpence. Wine three fiillings a bottle. Jamaica rom a crown a gallon. Fifh and vegetables are cheap, and fruit almoft for nothing.

PARIS (Francis), a man more famous after his death than during his life, by the miracles which were faid to be performed at his tomb. He is generally known by the name of Abbé Paris; and his pretended miracles, with others of like manufacture, have furnifhed deittical writers, and Mr Hume in particular, with a kind of argument againt the reality of the miracles of which we have an account in the Gofpel. It is merely that we may ftate his pretentions fairly, that we have introduced him to the notice of our readers; for in every other refpect he is wholly unworthy of their regard. He was the fon of a counfellor in Parliament, and had the profpect, if he had chofen it, of fucceeding to his father's appointment ; but he chofe rather to become an eceleliattic, and he became a very zealous one. He gave up all his poffeflions to his brother, refufed preferment intended for him by the cardinal de Noailles, devoted himfelf entirely to retirement, and made ftockings for his own fupport, and for the affittance of the poor. He died perhaps in confequence of his rigorous mode of life, May 1. 1727, at the age of only 37. His brother raifed a monument to him in the Suppl. Vol. II. Part I.
fmall churcliyard of St Medard, to which the poor and the pious foon began to flock; and after it time it was reported, that in confequence of their prayers at that tomb, fome fick perfons liad received cores As Paris had been a rigorous Janfenit, this was a fine opportunity for that fect to gain credit to their caufe ; the mirackes were therefore multiplied, and a variety of perfons affected the moft fingular convulfions.

The minds of the people becoming inflamed by the? extravagancies, the court found it neceffary to f? it : p the churchyard, which was done on the antio! Jatounry 1732. On this occafion, fome prufate wit wrote upon the wall of the phace,

Depar le Roy, defenfe a Dicu, De faire miracles en ce lien.

The convulfions were continued, for allitle while, in private houfes, but by degrees the matter fublided, and the A bbé Paris was forgoten.
The diftinction between miracles, exlibited to ferve a party, and attefted only hy thofe who are zealous in its fupport, and miracles performed in the fight of unbelievers, who, in fuite of their decp-rooted prejudices, were converted by them, is too ftriking to be overlooked by any, but thofe who are defirous of drawing a falfe and impious parallel; yet has Mr. Hume dared to reprefent the miracles performed at the tomb of this faint as out vying in number, nature, and evidence, the miracles of Chrit and his apoftles-with what truth, the following obfervations will thew:
$1 /$, It was often objected by the enemies of the faint, and the objection was never confuted by his friends, that the fromations at his fepulche, like animal maguetifm more lately, proluced more difcafes than they cured. Such, furcly, was not the nature of our Saviour's miracles.
$2 d^{l} y$, Though the crowds of lick and infirm perfons who flocked to the tounb for relief were, by all accounts, innumerable; yet all the cures, of which the zealous hiftorian of the Miracles could procure vouchers, amounted only to nine! Now, were thoufands, and ten thoufands of difeafed perfons to apply to fome circumforaneous quack, in full affurance of his extraordinary abilitics and fkill in phyfic, could it furprife any perfon, if the dittempers of eight or nine of them Chould take a favourable turn while they were under a courfe of his ufelefs medicines?

3 dly , We do not read that of thofe aine who were cured by the dead Abbé, the greater purt were Jefuits and enemies to the Janfenifts; whereas the greater part of our Saviour's miracies were performed upon unconverted Jews, mind one of them uryn the fervant of the high prieft, who was thinfting for his blood.
$4^{\text {thl }}$ y, The cures reported to have been performed at the grave of Paris were all fuch as might lave been accomplifhed by natural means. Thus, a Spaniard who had loft one cye, and was diftreffed with an inflammation in the other, had the inflamed eye gradually cured, but not the loft eye reftured. Another perion having pricked his cye with an awl, loft the fight of it in confequence of the aqueous humour dropping out ; but his fight was reftored rebilfl he was paying his devotions to the Abbé- and fo it would have been while he was corling the Abbé, had he continued his execrations for a fufficient length of time.

1 t
5thly,

Parie.
Parie.

P A R [330] P A R

Paris, 5 hh/y, None of the cures faid to have been performParkhurt. ed were inflantaneous. All the worhippers at the tomb
perfilted for days, feveral of them for wieks, and fome for months, daily imploring the intercefion of the A bbé before they received relief from their complaints.

Gobly, Moft of the devotees had heen ufing medicines before they applied to the faint, and continued to ufe thens during the whole time of their application; whilf it is confefled that the diftempers of others had abated before they determined to folicit his help.

7thly, Some of the cures attefted were incomplete, and only of a temporary duration. Thus, the Spaniard was relieved only from the mof inconficerable part of his complaint, and that too but for a very fhort period; for foon after his return home he relapfed iuto his former malady, as was fully attelted by certificates and letters from Madrid. All this has been completely proved by the Archbifhop of Sens; who in his Paforal Inlruction, publined at the time the miracles were making a noife, has,

8thly, Clearly detected the deceit and little artifices by which thofe pretended miracles were fo lung fuppurted. To that work we refer our readers; requelting them, after they lave read it, to compare the evidence for the miracles of Paris with the evidence which is the article Miracle, Eucych. we have fated for the seality of the Gofpel miracles, and to judge for themfelves with the impartiality of philofophers.

Paris wrote a few very indifferent books of annotations on the Epiftles to the Romans, to the Galatians, and the Hebrews; but few have ever read them, nor would they have refcued the author from oblivion, without the aid of his lying wonders.

PARKHURST (the Rev. John), was the fecond fon of John Parkhurft, Efq; of Cateßby in Northamptonfhire. His mother was Ricarda Dormer, daughter of Judge Dormer. He was born in June 1728, was educated at the fchool of Rugby in Warwickfhire, and was afterwards of Clare haill, Cambridge; B.'A. $17+8$, M. A. 175^{2}; and many years fellow of his college.

Being a younger brother, he was intended for the church; but not long after his entering into holy orders his elder brother died. This event made him the heir of a very confiderable eftate; though, as his father was fill living, it was fome time before he came into the foll poffeflion of it; and when be did come into the poffeffion of it, the acquifition of fortune produced no change on his manuars or his purfuits. He continued to cultivate the fudies becoming a elergyman ; and from his family connections, as well as from his learning and piety, he certainly had a good right to look forward to pref.rment in his profeffion ; but betaking himfelf to retirement, and to a life of clofe and intenfe lludy, he fonght for no preferment ; and, according to the author of the biographical fketch of him publithed in the Gentleman's Magazine, he lived not in an agre when merit was urged forward. Yet, in the capacity of a curate, hut without any falary, he long did the cuty, with exemplary diligenee and zeal, in his own chapel at Catefby, which, atter the demolition of the church of the numery there, ferved as a parifh-church, of which alfo he was the patron.

When, feveral years after, it fell to his lot to excrcife the right of prefentation, he was fo unfafhonable as to
confider church-patronage as a truft rather than a pro. Paskhurn perty; and, accordingly, refifting the influence of inte. reft, favour, and affection, prefented $t 0^{\circ}$ the vicarage of Epfom, in Surrey, the Rev. Jonathan Boucher, who Atill holds it. This gentleman was then known to him ouly by character; but having ditingnifhed himfelf in America, during the revolution, for his loyalty, and by teaching the unfophifticated doctrines of the church of England to a fet of rebellious fchifmatics at the peril of his like, Mr Pakkurt thought, and juitly thought, that he could not prefent to tlie vacant living a man who had given better proofs of his having a due fenfe of the duties of his office.

In the year 1754, Mr Parkhurft married Sufanna Myfter, daughter, and, we believe, heirels of John Myfter, Efq; of Epfom. It was thus that be became patron of the living which he beftowed on Mr Boucher. This lady died in 1759, leaving him a daughter and two fons; both the fons are now dead. In the year 1761, he married again Mïlicent Northey, daughter of Thomas Northey, Efq; by whom he had one daughter, now married to the Rev. Jofeph Thomas.

In the year 1753, he began his career of authormip, by publifhing, in 8vo, "A friendly addrefs to the Rev. Mr John Wefley, in relation to a principal Doctrine maintained by him and his Affiltanss." This work we have not feen; but though we have no doubt of its value, we may fafely lay that it was of very little importance, when compared with his next publication, which was "An Hebrew and Englifh Lexicon, without Points; to which is added, a methodical Hebrew Grammar, without Points, adapte! to the ufe of Learn. ers, 1762," 4to. "Co attempt a vindication of ail the etymological and philcfoplical difquifitions which are fcattered through this dictionary, would be very fruitlefs; but it is not perhaps too much to fay, that we have nothing of the kind equal to it in the Englifh language. He continued, however, to correct and improve it; and in 1778 another edition of it came out much enlarged, and a third in 1792.

His philulegical ftudies were not confined to the Hebrew language: for he publifhed a Greek and Englifs. Lexicon to the New Teltament; to which is prefixed, a plain and cafy Greek Grammar, 1769 , 4to ; a fecond edition, 1794: and at his death there was in the prefs a new edition of both thefe lexicons; in a large $8 \mathrm{vo}_{\text {, }}$ with his laft corrections; for he continned to revife, correct, add to, and improve, thefe works, till within a few weeks of his death. As, from thei: nature, there eannot be fuppofed to be any thing in dictionaries that is particularly attractive and alluring, this continued increafing demand for thefe two feems to be a fufficient proof of their merit.

He publifhed, "The Divinity and Preexiftence of our Lord and Saviour Jefus Chrill, demonitrated from. Scripture ; in Anfwer to the firft Section of Dr Prieltley's Introduction to the Hiftory of early Opinions. concerning Jefus Chrilt; together with Strictures on fome other Parts of the Work, and a Potffcript relating to a late Publication of Mr Gilbert Wakefield, 1787," 8vo. This work was very generally regarded. as completely performing all that its title-page promifed; and accordingly the whole edition was foon fold off. The brief, evafive, and very unfatisfactory notice

Parthurn. taken of this able pamphlet by Dr Priefley, in " A Letter to Dr Horne," \&e, thewed only that he was unable to anfwer it.

Mr Parkhurfl was a man of very extroordinary independency of mind and firmnefs of principle. In carly life, along with many other men of diftingnifhed learning, it was alfo objected to him, that he was an Hutchinfomian; and on this account alone, in common with them, it has been faid that he was neglected and fhumed.

Th:re is net, in the hitory of the tines, fagsthe biographer already quoted. a circumblance more dificult to be accounted for than the unmerited, but increafing, difcountenance finewn to thufe perfons to whom Hutchinfonianifm was then oljjê̂ted. Methodifts, Pd pitts, and fectaries of any and of every name, all flood a better chance of being noticed and elleemed than Hutchinfonians. Had it even heen proved that the few peculiar tenets by which they were diftinguifhed from other Chrillians were erroncous, the oppufition they experienced might have been deemed bard meafure, hecaufe even their opponents allowed their principles to be inoffentive, and themfeles to be learned.

Is this a fair fate of the cafe? We think not. The early Hutchinfonians had inbibed all the pecmliar notions of their matter, and mantained them with a degree of acrimony which would have difgraced any caufe. Being in general very little aequainted with the higher mathematics, as Mr Hutchinforn himfelf feems likewife to have been, they cenfured dogmaticelly works which, without that knowledge, they could not fully underfland: whilft they maintained, with equal dogmatifm, as matters of fact, hypothefes, which a moderate fhare of mathematical fcience would have fhewn them to be impoffitile. Had they fopt here, no harm would have been done; they might have enjoyed their favourite notions in peace: but unfortunately they aecufed of Atheifm, Deifm, or Socinianifin, all who the ught not exactly as they thought, both in natural philofophy and in theologr. Becaufe Newton and Clarke had demonftrated that the motions of the planets cannot be the effect of the impulfion of any material fluid, Hutchinfon, with fome of his followers, affirmed, that chefe two iibutrious men had entered into a ferious defign to overturn the Chritian religion, and eftablifin in England the wormip of the Heathen Jupiter, or the Stoical anima mundi. Becaufe the bifhops Pearfon, Bull, and others, who had uniformly been confidered as the ableft defenders of the Catholic faith, thought not exactly as Hutchinfon thought of the filiation of the Son of God, they were condemned by the pupils of his fchool as Arians, or at leaf Semi-arians; and the writer of this fketch has heard a living Hutchinfonian pronounce the fame cenfure, and for the fame reafon, on the prefent illuftrious Bifhop of Rochefter, and the no lefs illuttrious Whitaker.

That men, who thus condemned all that before them had been deemed great and good in pliyfical fcience and Chriftian theology, fhould meet with fome
difeountenance while they continued of fitch a firit, Parkhurf. needs not. furely excite much wonder but that the difcountenance is incteating, we belice not to be truce. The Hutchinfonizus, as toon as they became lefs vigkent againfl thofe who diflered from them, had their thare of preterment, in proportion to their number, with others; and we doubt aot they will continue to have it, while they allow that a man may be no heretic, thourgh he believe not Mr Itutchinfon to lave been infallible. The late excelkent Bihop Horne was an avowed Hutchinfonian, though not an outrageous one like Julius Bate; and we have been told, and have reafon to beliere, that the Bihop of St A faph is likewife a moderate favourer of the fame fyltem. 'There may be others on the epifcopal beuch; but perhaps two out of twenty-fix is the full propertions of Hutchiutonian divines of eminence in England. It is true that Mr Parkhuill was a man of great learning and great worth; but before we attribute his want of preferment in the church to his Hutchinfonianifm, it is incumbent upon us to fay why Mr Whitaker, who is no Hutchinfonian, is Aill nothing more than the rector of Ruan-1, any horne.

Mr Parkhurlt, however, was not, if his biographer deferves credit, a thorough paced Hutchinfonian; for though lie continued to read Hutchinfon's writings as long as he read at all, he was ewer ready to allow, that he was oftentimes a coufufed and bad writer, and fomer times unbecomingly violent. To have been deterred from reading the works of an anthor, who, with all his faults, certainly throws out many ufeful hints, for fear of heing thonghe a Hutchinfonian, would have betrayed a pufillanimity of which Mr Parkhurf was incaw pable. What he helicved he was not afraid to profefs and never profefled to believe any thing which he did not very fincerely believe. An eancil lover of truth, he fonght it where only it is to be found-in the Scriptures (A). The ftudy of thefe was at once the bufinefs and the pleafure of his life; trom his carlieft to lis lateft y cars he was an hard fludent: and land the daily occupations of every 27 hours of his life been portioned out, as it is faid thofe of king Alired were, into three equal parts, there is reafon to believe that a deficiency would rarely have been found in the eight hours allutted to fiudy. What the fruits have been ot a life fo conducted, few theologians, it is prefumed, need to be informed, it being hardly within the fcupe of a fuppofition, that any man will now fit down to the fudy of the Scriptures without availing himfelf of the affitance to be ottained from his learned labours. Thefe labours ceafed at Eyfom in Surrey, where this great and good man died, on March the 21 It, 1797. Belides the works which we have mentioned, there is in the Geutleman's Magazine, for Auguft 1797, a curious letter of his on the corfulion of 'Iongues at Babel.

Mir Parkhurtts character ma'y be collected with tolerable accuracy even from this imperfect fketeh of his life. His notions of church patronage do him honour; and as a farther inftance of the high fenfe he entertain-
'1' 2
ed
(A) This is vague language, which is the fource of much ufelefs controverfy, and therefore ought to be avnided. If by truth, in this paffage, be meant religious truth, we admit the affertion in the only fenfe in which we think it can have been made. If the author means all truth, he writes nonfenfe; for the Seriptures treat not of geometry or algebra, where truth is certainly to be found; and we think that they have a higher object than even mechanics and aftronomy.

P A R [3.32] P A R

Parkh.rf, ed of Arict juftice, and the tteady refulution with which Pleafant Fiowers which our Englif, Ayre will permit Parkinfon, Parkinfor - he practifed it on all occafions, an incident which oecurred between hien and one of his tmants, within thefe ten jears, may here be mentioned. 'This man falling behind hond in the payment of his rent, which was L. 500 per aanum, it was reprefented to his landlord that it was owing to his being over-rented. Thas being believed to be the eafe, a new valuation was made; and it was then agreed that, for the future, the rent fhould not be more than L 450. Jufly inferring, moreover, that if the farm was then ton dear, it mult neceflarily have been alzuays too dear, unaked, and of his own accord, he immediately fruck off L .50 from the commeneement of the leafe; and inftantly refunded aill that he had received mote than L. 450 per annum.
$\mathrm{Mr}^{\text { }}$ Parkhurf was in his perfon rather below the middle fize, but remarkably upright, and firm in his gait. He was all his life of a fickly habit: and his leading fo remarkably ftudious and fedentary a life (it having, for many years, been his couttant practice to rife at five, and, in winter, to light his own fire) to the very verge of David's limits of the life of man, is a confolatory proof to men of fimilar hahits, how much, under many difaduantages, may till be effected by itrict temperance and a careful reginen. He alfo gave lefs of his time to the ordinary interruptions of life than is common. In an hofpitable, friendly, and pleafant neighbourhood, he vifited little; alleging, that fuch a courfe of life neither fuited his temper, his bealth, nor his fludies. Yet he was of fociable manners; and his converfation always infrustive, often delightiful: for his fores of know ledge were fo large, that he too las often been called a walking library. He belonged to no clulss ; le frequented no public places; and there are few men who, towards the clofe of life, may not, on a retrofpect, reflect with fhame and forrow, how inuch of their precious time has thus been thrown away, or perhaps worfe than thruwn away.

Like many other men of infirm and fickly frames, Mr Parkhurft was alfo irritable, and quick, warm, and earneft, in his refentments, though never unforgiving. But whether it be or be not a matter of reproach to poffefs a mind fo conifituted, it certainly is much to any man's credit to counteract and fubdue it by an at. tention to the injunctions of religion. This Mr Parklurll effectually did: and few men have paffed through a long life more at peace with his neighbours, more refpected by mea of learning, more beloved by his fritnds, or more honsured by liis fanily.
Wiog. Dia. PARKINSON (Jolnu). Of this ingeniuus Englifh botanith, one of the firft and moft induftrious cultivators of that fcience amnng us, the memorials that remain are very feanty. He was born in 1567 , was bred in apothecary, and refided in London. He rofe to fuch reputation in his profeflion as to be appointed apothecary to King James I.; and, on the publication of his T'heatre of Plants, he obtained from the unfortunate fucceffor of that prince the title of Botanicus Regis primarius. The time of his death cannot be exactly afcertained; but, as his Herbal was publifhed in 1640, and it appears that he was living at that time, he muft have attained his 73 d year.

Parkinfon's firlt publication was, his 1. Paradifi in Sole Paradifus terregris, or, A Garden of all Sorts of

Pleafant Fowers which our Englina Ayre will permit Parkinfon,
to be nurfed up: with a Kitehen-garden of all manner Parfuns. of Herbes, Roots, and Fruits, for Meat or Saufe, \&cc. \&e. Cullected by John Parkinfon apothecary, of London, 1629 , folio, $6: 2$ pages. In this work the plants are arranged without any exact order: nearly 1000 plants are feparately deferibed, of which 780 are figured on 129 tahles, which appear to have been cut ex: prefsly for this work. Parkinfon was, it is conceived, the firf Englifh author who feparately deferibul and figured the fubjects of the flower-garden; and this book is therefore a valuable curiofity, as cxhibiting a complete view of the extent of the Englifh garden at the beginning of the $17^{\text {th }}$ century. It may, perhaps, be neceflary to inform the reader, that Paradifus in Sole, is meant to exprefs the author's name, Park in fun.. 2. In 16 0 he publifhed his Theatrum Botanicum; or 'Theatre of Plants, or an Herbal of a large extent : containing therein, a more ample and exact Hiftory and declaration of the Phyfical Herbs and Plants than are in other Authors, \&e. \&e. London, folio, 1746 pages - This work had been the labonr of the author's life; and he tells us that, owing to " the difaftrous times," and other impediments, the printing of it was long retarded. Dr Pulteney is of opinion that, allowing for the defects common to the age, Parkinfon will appear "more of an original author than Gerard or Johnfon, indepen. dent. of the advantages he might derive from being pofterior to them. His theatre was carried on through a long feries of years, and he profited by the works of forme late authors, which Johnfon, though they were equally in his power, had neglected to ufe. Parkinfon's defciptions, in many inflances, appear to be new. He is more particular in pointing out the places of growth. Johnfon had deferibed about 2850 plants, Parkinfon has near 38 co . Thefe aecumulations rendered the Theatrum Bolanicum the moft copious book on the fubjeet in the Englifh language; and it may be prefumed that it gained equally the approbation of medical people, and of all thofe who were curious and inquifitive in this kind of knowledge."

PARSONS (James), an excellent phyfician and po- Eiog. Die. lite fchular, was born at Barnftaple, in Devonfire, in March 1705. I-is father, who was the youngell of nine fous of Colonel Parfons, and nearly related to the baronet of that name, being appointed barrack mafter at Bolton in Lreland, removed with his family into that kingdom foon after the birth of his then only fon James, who received at Dublin the early part of his education, and, by the affitance of proper mallers, laid a confiderable foundation of claffical and other ufeful learning, which enabled him to become tutor to Lord Kington. Turning his attention to the Itudy of medicine, he went afterwards to Paris, where (to ufe his own wourds) " he followed the molt eminent profeffors in the feveral fchools, as Aftruc, Dubois, Lemery, and others; attended the anatomical lectures of the moft famous [Hunaud and De Cat] ; and chemicals at the King's Garden at St Come. He followed the phyficians in both hofpitals of the Hotel Dieu and La Charité, and the chemical lectures and demonftrations of Lemery and Bouldoc; and in botany Juffieu. Having finimed thefe ftudies, his profeffors gave him honourable atteltations of his having followed them with dili-

P A R [333$] \quad \mathrm{P} A \mathrm{R}$

gence and indutry, which intitled him to take the degrees of doctor and profeftor of the art of medicine, in any univerfity in the dominions of Irance. Intending to return to England, he judged it umbeceftary to take degrees in Paris, unlefs he had refolved to refide there; and as it was more expenfive, he therefore went to the univentry of Rheims, in Champaign, where, by virtue of his atteftations, he was immediately idmitted to three examinations, as if he lad finflhed his fludies in that academy; and there was honoured with his de. grees June is. 1736 , In the July folluwing he came to London, and was foon employed by Dr Jimes Dougrlas to affift him in his anatomical works, where in fome time he began to practife. He was elected a member of the Royal Society in 1740 ; and, after due examination, was admitted a licentiate of the college of phyficians April 1. 1751 ; paying college fees and bond ftamps of different denominations to the amount of L. $41: 2: 8$, fubject alfo to quarterage of L. 2 per annum. In 1755 he paid a farther fuma of 7 , which, with the quarterage money already paid, made up the fum of L. 16 , in lieu of all future payments." On his arrival in London, by the recommendation of his Paris friends, he was introduced to the acquaintance of Dr Mead, Sir Hans Slone, and Dr James Douglas. This great anatomift made ufe of his affitance, not only in his anatomical preparations, but alfo in his reprefentations of morbid and other appearances; a lift of feveral of which was in the hands of his friend Dr Maty, who had prepared an eloge on Dr Parfons, which was never ufed, but which, by tite favour of Mrs Parfons, Mr Nichols has preferved at large. Though Dr Parfons cultivated the feveral branches of the piofeffron of phyfic, he was principally employed in the obftetrical line. In 1738 , by the interelt of his friend Dr Donglas, te was appointed phyfician to the public intirmary in St Giles's. In 1739 he married Mifs Elizabeth Reynolds, by whom he had two fons and a daughter, who all died young. Dr Parfons refided for many years in Red Lion Square, where he frequently enioyed the company and converfation of Dr Stukely, Bifhop Littieton, Mr Henry Baker, Dr Knight, and many other of the moft diffinguifhed members of the Royal and Autiquarian Societies, and that of Arts, Manufactures, and Commerce; giving weekly an elegrant diuner to a large but felect party. He enjoyed alfo the literary comefpondence of D'Argenville, Buffon, Le Cat, Beccaria, Amb. Betrand, Valltravers, Afcanios, Turbervilie Needham, Dr Garden, and others of the molt dittinguithed rank in fcience. As a practitioner, he was judicious, careful, honeft, and remarkably humane to the poor; as a friend, obliging and communicative; chearful and decent in converfation, fevere and frict in his morals, and attentive to fill with propriety all the various duties of life. In 1769, finding his health impaired, he propofed to retire from bufi$n \in f s$ and from London; and with that view difpofed of a confiderable number of his books and foffils, and went to Briftol. But he returned foon after to his old honfe, arioldied in it after a weets's illnefs, on the $4^{\text {th }}$ of April, 1770. By his laft will, dated in October 1766, he gave his whole property to Mrs Parfons; and in cafe of her death before him, to Mifs Mary Reynolds lier only fifter, " in recompence fur her affectionate attention to him and to his wife, for a long
courfe of years, in fick 2efs and in health." It was his Parfons. particular requell, that he flould not be buried till fome change thould appear in his corpfe; a requeft which occalioned him to be kept unburied in days, and even then farce the flighteft alteration was perceivable. He was buried at Hendon, in a vault which he had caufed to be buit on the ground purehafed on the death of his fon James, where lis tomb had a very commendatory infeription.

It would carry us beyond our ufual limits to enter into an enumeration of the many curious articles at various times conmunieated to the public by Dr Parions, which may be feen in the Anecdutes of Bowyer. We fhall therefore clofe this article with an extrad from Dr Maty's eulogium : " The furpriling varicty of branches which Dr Parfons embraced, and the feveral living as well as dead languages he had a knowledge of, qualified him abundantly for the place of affitant fecretary for foreign correfpondences, which the council of the Royal Society befowed upon him about the year 1750 . He acquitted himlelf to the utmoft of his power of the functions of this place, till a few years before his death, when lie religned in favour of his friend, who now gratefully pays this laft tribute to his menory. Dr Parfons joined to his academical honours thofe which the Royal College of Phyfieians of Loun don bellowed upon him, by adinitting lim, after due examination, licentiate, on the firl day of Λ pril 175 r . The diffufive pirit of our friend was only equalled by his defire of information. To both thefe principles he owed the intimacies which he formed with fome of the greateft men of his time. The names of Folkes, Hales, Mead, Stukely, Necdhan, Baker, Culinfon, and Carden, may be mentioned on this necafion, and many more might be added. Weekly meetings were formed, where the earlieft intelligence was received and communicated of any difeovery both here and abroad; and new trials were made to bring to the teft of experience the reality or ufefulnefs of thefe difcoveries. Here it was that the microfeopical animals found ia feveral-infufions were firt produced; the propagation of feveral infects by fection afcertained; the conftancy of Nature amidit the fe wonderful changes eltablinted. His Remains of Japhet, being Hittorical Enquiries into the Affinity and Origiu of the Emropean Languages, are a moft laborious performance, temding to prove the antiquity of the furt imbabitants of thefe iflands as being originally defcended from Gomer and Magog, above 1000 years befure Chill, their primitive and ttill fulufifting langunge, and its affinity with fome others. It cannot be denied but that there is much ingennity, as well as true learuing, in this work, which helps conviction, and often fupplies the want of it. Dut we cannot help thinking that our friend's warm feclings now and then millead his judgment, and that fome at leat of his conjectures, relting upon partial traditions, and poetical feraps of Irinh filids and Welfin baros, are lefs fatisfactory than his tables of affinity between the feveral northern languages, as deduced from one common fock. Literature, however, is much obliged to him for having in this, as well as in many of his other works, opened a new field of obfervations and difcoveries. In enumerating our learned friend's differtations, we find ourfelves at a lofs whether we flould follow the order of fubjects or of tirce; neither is it eafy to account

Jusfone account for their furpriing varisty and quick fuccerfion. The truth is, that his eagernefs after knowledge was fuch, as to embrace almoth with equal focility all its branches, and with equal zeal to afeertain the maxit of inventions, and aferibe to their refpective, and fometiines unknown, authors, the glory of the difcovery. Many operations, which the ancients have tranfmitted to us, liave been thought fabulous, merely from our ignorance of the art hy which they were performed. T'hus the burning of the fhips of the Romans at a confiderable diltance, during the fiege of Syracufe, by A rehimedes, would perhaps fill continue to be exploded, lad not the celebrated M. Buffon in France fhewn the poffibility of it, by prefenting and defribing a model of a \{peculum, or rather allemblage of mirrors, by which he could fet fire at the diflance of feveral humdred feet. In the contriving, indeed, though not in the executing of fuch an apparatus, he had in fome meafure been foreflalled by a writer now very little known or read. This 1)r Parfons proved in a very fatisfactory manner; and he had the pleafure to find the French philofpher did not refufe to the Jefnit his fhare in the invention, and was nut at all offended by the likerty he had taken. Another French difenvery, I mean a new kind of painting fathered upon the an. cients, was reduced to its real value, in a paper which fhewed our anthor was poffeffed of a good talte for the fine arts: and Iam informed that his ikill in mufic was by no means inferior, and that his favourite annfement was the flute. Richly, it appears from thefe performances, did our author merit the honour of being a member of the Antiquarian Society, which long ago had affociated hin to its labours. To another fociety, founded upon the great principles of humanity, patriotifm, and natural emulation, he undoubtedly was greatly ufeful (A). He affited at molt of their general meetings and coumittees, and was for many years chairnan to that of agriculture; always equally ready to point out and to promote ufeful improvements, and to oppofe the interctled views of fraud and ignorance, fo infeparable from very extentive affociations. No fooner was this fociety (E) formed, than Dr Parfons became a member of it. Intimately convinced of the noblenefs of its views, thourg from his fration in life Jittle concerned in its fuceefs, he grudged weither attendance nor expence. Neither ambitious of taking the kead, nor fond of oppofition, he joined in any meafure he thought right; and fubmitted eheerfully to the fentiments of the majority, though againlt his own private opinion. The jult ideas be had of the dignity of our profeffion, as well as of the common liaks which ought to unite all its members, notwithftanding the differences of country, religion, or places of education, marle lim bear impatiently the fhackles laid upon a great number of refpectable practitioners: he withed, fondly wifhed, to fee thefe bruken; not with a view of empty honour and dangerous power, but as the only means of ferving mankind more effectually, checking the progrefs of defigning men and illiterate practitioners, and diffufing
throngh the whole body a fpirit of emulation. Thangh by frument difappointments he forcfaw, as uell as we, the litte chance of a fpeed. redrefs. he nubly perfiked in the attempt; and had he lived to the final event, would undonbtedly, like Cato, lith have preferred the conquered caufe to that fupported by the gods. After having tried to retire from butinefs and from London, for the fake of his health, and having difpofed of moft of his broks with that view, he found it incontifent with his happinefs to forfake all the advantages which a long refidence in the capital, and the many connections he had formed, had rentered labitual to him. He therefore returned to his old houfe, and dieas in it, after a thort illnefs, April 4: 1770. The ftyle of our friend's compofition was fuffecierily ciear in defeription, tho' in argument not fo clofe as could have been withed. Full of his ideas, he did not aluays fo difpofe and connect them together, as to produce in the minds of his readers that conviction which was in his own. He too much defpifed thofe additional graces which command attention when joined to learning, obfervation, and found reafoning. Let us hope that his example and fpirit will animate all his colleagues: and that thofe prachitioners who are in the fame circumlanees will be induced to juin their brethren, fire to find amongt them thofe great blefings of life, ficedom, cquality, information, and friendihip. As long as thefe great prineiples flall fubfift in this fociety, and I trult they will outlaft the longef liver, there is no doubt but the members will meet with the reward honeft men are ambitious of, the approbation of their confcience, the efteen of the virtuous, the remembrance of polterity."

PARODICAL Degrees, in an equation, a term that has been fornetimes ufed to denote the feveral regular terms in a quadratic, cubic, bequadratic, \&e. equation, when the indices of the powers aticend or dsfcend ordely in an arithmetical progreffion. Thus, x^{3} $+m x^{-}+n x=p$ is a cuhic cquation where no term is wanting, but having all its parodie degrees; the indiets of the terms regularly oefcending thus, 3, 2, 1, o.

PARTY Arches, in architecture, are aiches built between feparate tenures, where the propety is intermixed, and apartments over each other do not belung to the fame ellate.

PARTI Walls, are partitions of brick made between buildings in feparate oceupations, for preventing the fpread of fire. Thefe are made thicker than the external wails; and their thicknefs in Lomonon is regulated by act of Parliament of the 1415 of Creorge III.

PASSIGRAPHY, the art of writing on any fubject fo as to be underthood by all nations (See Unizerful Chakacieks in this Sufplement). In France, where every thing is admired that is new, and every vagary of the imagination of a pretended philolopher thought prasticable, a propofal has lately been made to introduce one univerfal language into the world, confrueted by a few metaphyficians on the laws of human thought. And to this language, in its written form, is to be given the name of pafligraphy. Such readers as think this idle
(A) The Society for the Encouragement of Arts, Manufactures, and Commerce. He likewife was afociated to the Economical Society at Berne, Dec. 26.1763.
(в) A Medical Society inftituted by Dr Fothergill, and other refpectable phyficians, licentiates, in vindication of their privileges; where, it fhould feem, this eulogy was intended to be pronounced. the cafe with us), will find fome ingenious thoughts on the hiftory of a philofophical language, in the 2 d volume of Nicholfon's Journal of Natural Pbilofopby, Esc.

PATH of the vertex, a term fiequently ufed by Mr Flamiteed in his Duetrine of the Sphere, denoting a circle, deferibed by any point of the earth's furface as the earth turns round its axis. This point is conlidered as vertica! to the carth's centre; and is the fame with what is called the vertex or zenith in the Ptolomaic projection.

PEARL. Fish, is commonly confidered as an afcidia (fec Mytilus, Encyel.) ; but this is denied by a late author, who feems to have paid great attention to the pearl-fithery at Ccylon. It has never, he fays, been accurately defcribed. It does not refemble the afcidia of Limneus; and as he thiaks it may form a new genus, lie gives the following accomnt of it :
"The fifh is fattened to the upper and lower fhells by two white flat pieces of mufcular fubilance, which have been called ears, and extend about two inches from the thick part of the body, growing gradually thinner. The extremity of each ear lies loofe, and is forrounded by a double brown fringed line. Thefe lie almoft the third part of an inch from the outer part of the flell, and are continually moved by the animal. Next to thefe, above and below, are fituated two other double fringed moveahle fubitanees, like the bronchiz of a fifh. 'Thefe cars and fringes are joined to a cylindrical piece of flefh of the dize of a man's thumb, which is harder and of a more mufcular nature than the reft of the body. It lies about the centre of the fhells, and is firmly attachcd to the middle of each. This, in fact, is that part of the pearl-fin which ferves to open and fhut the fhells. Where this column is faltened, we find on the flefl deep imprelfions, and on the flell variuus nodes of rotind or oblong forms, like imperfect pearls. Between this part and the hinge (cardo) lies the principal body of the aninal, feparated fiom the rett, and fhaped like a bag. The mouth is near the hinge of the fhell, enveloped in a veil, and has a double flap or lip on each fide; from thence we obferve the throat (acophagus) defcending like a thread to the fomach. Clufe to the mouth there is a curved brownifh tongoe, half an inch in length, with an obtufe point ; on the concave fide of this delieends a furrow, which the animal opens and fluts, and probably ufes to convey food to its mouth. Near its middle are two bloifh fpots, which feem to he the eyes. In a pretty deep hole, near the hate of the tongue, lies the beard (byfius), fattened by two flemy roots, and confifting of almoft 100 fibres, eacli an inch long, of a dark green colour, with a metallic lultre; they are undivided, parallel, and niattened. In general, the byfus is more than three quarters of an inch without the cleft (rima); but if the animal is diftnrbed, it contracts it confiderably. The top of each of thefe threads terminates in a circular gland or head, like the flizma of many plants. With this by/us they falten themfelves to rocks, corals, and other folid bodies; by it the young pearl-fifn cling to the old ones, and with it the animal procures its food, by extending and contracting it at pleafure. Small thell filh, on which they partly live, are often found clinging to the former. The flomach lies clofe to the root of the beard, and has, on its lower fide, a protracted obtafe puint. Above the ftomach
are two fmall red bodies, like lungs; and from the foo Prath, mach goes a long channel or gut, which takes a circuit $\underbrace{\text { Pedomerce. }}$ round the mufeular column above-mentioned, and ends in the anus, which lies oppolite to the mouth, and is covered with a fmall thin leaf, like a flap. Though the natives pretend to dilkinguifl the fexes by the appearance of the thell, catling the flat ones males, and thofe which are thick, concave, and vaulted, females, our author, on a clufe inffection, could not perceive any vifible fexual difference."

The pearls are only in the fofter part of the animal, and never in the firm mufeular column above-mentioned. They are found, in general, near the earth, and on both fides of the mouth. From the appearance of the fhell a judgment may be formed, with greater or lefs probability, whether it contains pearls or not. Thofe which have a thick calcareous cruft upon them, to which firpula (fea tubes) Tubuli mariar irregulariter intorti, Criflagali Cibamar luzuras, Lepas tintinabulim, Madreporee, Millipore, Cellipore, Gorronta, Spongie, and other Zoophytes, are faftened, have arrived at their full growth, and commonly contain the bell pearls; but thofe that appear fmooth, contain cither none, or fmall ones only.

In the article (Emych.) intitled, Manner of Fifhing for Pe.qels in the Eaft Indies, we have moft unaccountably faid, that "the beft divers will keep under water near balf an bour, and the reft not lefs than a quarter!" This is a very great miltake; for M. Le Beck affures. us, that the time during which a diver is able to remain under water feldomexceeds two inimetes; and that, even after that fhort period, he difcharges, on emerging from the fea, a quantity of water, and fometimes a little blood, from his mouth and nofe. We have mentioned the danger which the divers run of becoming a prey to monitrous fifhes. Thefe filhes are flarks; of which fuch a dread is juftly entertained, that the molt expert divers will not, on any account, defeend, till the conjurer has performed his ceremnnies of enchantment. Thefe confilt in a number of prayers, learned by heart, that nobody, probably not rven the conjurer himfelf, undertands, which he, ftanding on the Shore, continues muttering and grumbling from fun-rife until the boats retorn. During this period, he is obliged to abltain from fuod and lleep, otherwife his prayers would have no avail: he is, however, allowed to drink; which privilege he indulges in a high degice, and is.frequently fo giddy, as to be rendered very unfit for devotion. Some of the conjurers accompany the divers in their boats; which pleales them very much, as they have their protectors near at hand.

PFDOMETER (fee Encycl.), is the name given. by Mr Lewin Thugivell to du inltrument, which is rather an improved perambulator than the inftrument which we have noticed by the wame of Pedometer. The chief improvement made by him on the perambulator. (fce that article, Encycl.) is in the fize of the wheel, of which the circumference meafures $16 \frac{1}{2}$ feet, or one pole, adapted to Gunter's concife method of arithmetic, and divided into 25 equal parts, correfponding to the links of his chain fur land-meafuring. There is likewife a contrivance in Mr Thugwell's pedometer, for compelling the attention of the traveller to the inftru. ment at the end of every mile. It is very ingenious, and abundantly fimple ; but we bardly think it of fuff

P E G

 ciont importance to fill the fyace which a complete deferintion of it would oscupy in this work. It is fully deferibed in the Letters and Papers of the Baths and W efl of Eirylund Socicty, for the Eiucurtsement of Agricul. ture; and likewife in the 6 th volume of the Repertory of Atits an:l Mamufacturcs.1PEGUE, the ancient capital of the kingdom of the fame name (fee Ptov, Encycl.), appears to have been a guadrangle, each fide meafuring about a mile and a half. It was furrounded by a ditch and wall; which, before the latter tumbled down, and the former was filled up, mut have furnifled no contemptible defence. The breailth of the ditcli appears to be about 60 yards ; its depth, where not clioked up, about ten or twelve feet ; and there is till in it water enough to impede an ealtern fiege. The wall has been at lealt 25 feet high, and its breadth at the bafe not lefs than 40 . It is compofed of brick, badly semented together with clay mortar, and has had on it fmall equiuiftant bations, about 300 yards afunder.

Nothing can exhibit a more ftriking picture of defolation than the infide of this wall. We have elfewhere given an account of the almoft inceffant wars between the kings of Pegue and Birma or Barma. In the year 1757, the Birman fovereign carried the city of Pegue by affault, razed every dwelling to the ground, and difperfed, or led into captivity, all the inhabitants. The pasodas, which are very numerous, were the only buildings that efeaped the fury of the conqueror; and of thefe the great pagoda of Shoemadoo has alone been attended to, and repaired.

This extratordinary edifice is built on a double terace, one raifed upon another. The luwer and greater terrace is abont ten feet above the natural level of the ground. It is quadrangular. The upper and leffer terrace is of a like hape, raifed about 20 feet above the lower terrace, or 30 above the level of the country. Thefe terraces are afcended by flights of fone fleps, troken and neglecied. On each fide are dwellings of the Rabaans or priefts, raifed on timbers four or five feet from the ground. Their houfes confift only of a lingle hall. The wooden pillars that fupport them are turned with neatnefs. The roof is of tile, and the fides of fheathing-boards. There are a number of bare benches in every houfe, on which the Rabaans fleep. They appear to have no furniture.

Shoemadoo is a pyramid, compofed of brick and plafter, with ine fhell mortar, without excavation or aperture of any fort: octagonal at the bafe, and fpiral at the top. Six feet from the ground there is a wide ledge, which furrounds the bafe of the building; on the plane of which are 57 fmall fpires, of equal fize, and equidittant. One of them meafured 27 feet in height, and 40 in circumference at the hottom. On a higher ledge there is another row, confiling of 53 fpires, of fimilar fhape and meafurement. A great variety of mouldings encireles the building; and ornaments, fomewhat refembling the fleur de lys, furround what may be called the bafe of the fpire. Circular mouldings likewife gird this part to a confiderable height; above ishich there are ornaments in ftucco, not unlike the leaves of a Corinthian capital; and the whole is crowned by a tee, or umbrella of open iron-work, from which sifes an iron rod with a gilded pendant.

The extreme height of the building, from the level
$336 \quad$ P E G
of the country, is 361 feet ; and above the interior terrace, 331 feet. On the fontli ealt angle of the upper ter race there are two handform faloons, or keouns, lately erecied. The roof is compofed of different fages, fupported by pillars. Captain Sjomes, from whofe me. moir in the Afratic Relearches this account is taken, judged the length wi cach faloon to be about 60 reet, and the breadth 30 . The ceiling of one of then was already embellifhed with gold leaf, and the pillars lac. quered; the other, when he fas it, was not completed. They are made entirely of wood. The carving on the outfide is very curious. He faw feveral unfinifhed figures, intended to be fised on diterent parts of the building; fome of them not ill mapen, and many exceedingly grotefque. Splendid images of Gaudma (the Birman object of adoration) were preparing, which he undertood were defigned to occupy the infide of thefe keouns.

At each angle of the interior terrace is a pyramidical paguda, 67 feet in height, refembling, in miniature, the great pagoda. In front of the one in the fouth-welt corner are four gigantic reprefentations in mafonry of Palloo, or the man deflroyer, half heaft, half human, feated on their hams, each with a large club on the right fhoulder.

Nearly in the centre of the ealt face of the area are two human firgures in flucco beneath a gilded umbrella. One ftanding, reprefents a man with a book before him, and a pen in his hand. He is called Thagiamee, the recorder of mortal merits and mortal mifdeeds. The other, a femalc figure kneeling, is Mizba Sumdere, the protectrefs of the univerfe, as long as the univerfe is doomed to laft: but when the time of general diffolu. tion arrives, by her hand the world is to be overwheloned, and dettroyed everlaftingly.

On the north firle of the great pagoda are three large bells, of good workmanthip, fufpended near the ground between pillars. Several deers horns are ftrewed around. Thofe who come to pay their devotions firl take up one of the horns, and ftrike the bell three times, giving an alternate ftroke to the ground. This act is in announce to the fuirit of Gaudma the approach of a fuppliant. There are feveral low benches near the bottom of the pagoda, on which the perfon who comes to pray places his offering ; which generally confifts of boiled rice, a plate of fweetmeats, or cocoa-nut fried in oil. When it is given, the devotee cares not what becomes of it. The crows and dogs commonly eat it up in the piefence of the donor, who never attempts to prevent or moleft the animals.

There are many fnall pagodas on the areas of toth terraces, which are neglected, and fuffered to fall into decay. Numberlefs images of Gaudma lie indiferiminately feattered. A pious Birman who purchafes an idol, firlt procures the ceremony of confecration to be performed by the Rabaans, then takes his purchafe to whatever facred building is moft convenient, and there places it either in the fhelter of a keoun, or on the open ground before the temple: nor does he ever after feem to have any anxiety about its prefersation, but leaves the divinity to hift for-iffelf.

From the upper ledge that furrounds the bafe of Shomadoo, the profpect of the conntry is extenfive and picturefque ; but it is a profpeet of Nature in her rudeft fate. There are few inhabitants, and fearcely

P E G [337] P E L

Pegue. any cultivation. The hills of Martaban rife to the ealt ward: and the Sitang river, winding along the plains, gives here and there an interrupted view of its waters. To the north-north weft, above 40 miles, are the Galladzet hills, whence the Pegus river takes its rife; hills remarkable only for the noifome effects of their atmofphere. In every other direction the eye looks over a boundlefs plain, chequered by a wild intermixture of wood and water.
The prefent king of the Birmans has entirely altered the fytem of his predeceffors. He has turned his attention to the population and improvement, rather than the extenfion, of his dominions; and feems more defirous to conciliate his new fubjects hy mildnefs, than to rule them through terror. He has abrogated feveral fevere penal laws impored upon the Taliens or l'eguers: juftice is now diftributed impartially ; and the only diftinction at prefent between a Birman and Talien confifts in the exclufion of the latter from all public offices of truft and power.

No act of the Birman government is more likely to reconcile the Taliens to the Birman yoke than the reftoration of their ancient place of abode, and the prefervation and embelliihment of the pagoda of Shoemadoo. So fenfible was the king of this, as well as of the advantages that muft accrue to the flate from an increafe of culture and population, that fome years ago he iffued orders to rebuild Pegue, encouraged new fettlers by liheral grants, and invited the fcattered families of former inhabitants to return and repeople their deferted city.

Pegue, in its renovated ftate, feems to be built on the plan of the former city. It is a fquare, each fide meafiring about half a mile. It is fenced round by a flockade, from so to 12 feet high. There is one main Areet running eaft and weft, which is interfected at right angles by two fimaller flreets, not yet finihhed. At each extremity of the principal Itreet there is a gate in the flockade, which is fhut early in the evening. After that hour, entrance during the night is contined to a wicket. Each of there gates is defended by a forry piece of ordnance, and a few mufqueteers, who never iont centinels, and are ufually afleep. There are alfo two other gates on the north and fouth fides of the itnekade.

The houfes of the inhabitants of Pegue are far from commodious, agreeably to European notions of accommodation ; but they are at leall as much fo as the houfes of other Indian towns. There are no brick buildiugs in Pegue, except fuch as belong to the king, or are dedicated to Guadma. The king has prohibited the ufe of brick or ftone in private buildings, from the apprehenlion, that if people got leave to build brick houfes, they might erect brick fortifications, dangerous to the fecurity of the flate. The houfes, therefore, are all made of mats or fheathing-beards, fupported on bamhoos or pofts. Being compofed of fuch combullible materials, the inhabitants are under continual dread of fire, againft which they take every precaution. The roofs are lightly covered; and at cach door flands a long bamboo, with a hook at the end, to pull down the thatch : alfo another pole, with a grating of fplit bainboo at the extremity, about three feet fquare, to fupprefs flame by prefure. A hnof every houfe has earthen
Suppl. Vol.II. Part I.
pots of water on the roof, And there is a particular Primast clals of people, whofe bufuefs it is to prevent and ex. tinguifh fires.
PEISHCAR, in Bengal, principal in office.
PEISHCUSH, a fine, tribute, or prefent.
PELL (Dr John), an eninent Englifh mathenatician, defcended from an ancient family in Lincoinfirlo. was horn at Southwick in Suffex, March 1. 1610, where his father was minifter. He reccived his grammar education at the free fchool at Stenning in that county. At the age of 13 he was fent to Trinity college in Cambridge, being then as good a fcholar as moft malters of arts in that univerfity ; but though he was cminently fkilled in the Greek and Hebrew languages, he never offered himfelf a candidate at the election of feholars or fellows of his college. His perfon was handfome; and being of a flong couftitution, ufing little or no recreations, he profecuted his ftudies with the more application and intenfenefs.

In 1629 he drew up the "Defeription and Ufe of the Quadrant, writen for the Ufe of a Friend," in two books ; the original manufcript of which is fill extant among his papers in the Royal Society. And the fame year he held a correfpondence with Mr Eriggs on the fubject of logarithms.

In 1630, he wrote Modus Jupputandi Ephemerides Afronomicas, Ec. ad. an. 1630 accommodutus; and, A Key to unlock the meaning of Johannes Trithemius, in his Difcourfe on Steganography: which Key he imparted to Mr Samuel Hartlib and Mr Jacob Homedx. The farne year he took the degree of Mafter of Arts at Cambridge. And the year following he was incorporated in the Univerfity of Oxford. June the 7 th, he wrote A Letter to Mr Edmond Wingate on Logarithms : and, Oct. 5.153 I , Commentationes in Cofmografhiam Alledii.

In 1632 he married Ithanaria, fecond daughter of Mr Henry Reginolles of London, by whom he had four fons and four daughters -March 6. 1634, he finifhed his "Altronomical History of Obfervations of Heaven. ly Motions and Appearances;" and April the 1oth, his Ecliptica Prognoflica, or Fnreknower of the Eclipfes, Sce. In if 34 he tranflated "The Everlafting Tables of Heavenly Motions," grounded upon the Obfervations of all Times, and agreeing with them all, by Philip Lanfberg, of Ghent in Flanders. And June the 12 th, the fame year, he committed to writing "'the Manner of Deducing his Aftronomical Tahles out of the Tables and Axioms of Philip Lanferg."-March the gth, 1625 , he wrote, "A Letter of Remarks on Gellibrand's Mathematical Difcourfe on the Variation of the Magnetic Needle." And the 3d of June following, another ou the fame fubject.

His eminence in mathematical knowledge was now fo great, that he was thought worthy of a Profeffor's chair in that feience; and, upon the vacancy of one at Amflerdam in 5639 , Sir William Bofwell, the Englifi Refident with the States General, ufed his intereft, that he might fucceed in that Profeflorfhip. It was not filled up, however, till 1672, when Pell was chofen to it ; and he read with great applaufe public lectures upon Diuphantus. In 1644 he printed at Amfterdam, in two pages 4 to, "A Refutation of Longomoutanus's Difcourfe," De Vera Circuli Menfura.
$\mathrm{U} u$
In

P E L

Pell. In 1646, on the invitation of the Prince of Orange, he removed to the new college at Breda, as Profeffor of Mathematics, with a falary of 1000 guilders a year. His Idea Arathefios, which he had addrefted to Mr Hartlib, who in $563 y$ lad fent it to Des Cartes and Merfenne, was printerl 16 io at London, in 12 mo , in Enghifh, with the title of An Idea of Mathematics, at the end of Mr John Durie's Reformed Library-keeper. It is alfo printed by Mr Hook, in his Philofophical Collections, N° 5. p. 127.; and is efteemed our author's principal work.

In 165^{2} Pell returned to England; and in 1654 he was fent by the Protector Cromwell agent to the Proteftant Cantons in Switzerland; where he continued till June 23. $\mathbf{1 6 5 9}$, when he fet out for England, where he arrived about the time of Cromwell's death. His negociations abroad gave afterwards a general fatisfaction, as it appeared he had done no fmall fervice to the intereft of King Charles II. and of the church of England; fo that he was encouraged to enter into holy orders: and in the year 1661 he was inftituted to the rectory of Fobbing in Eflex, given him by the king. In December that year, he brought into the upper houfe of convocation the kalendar reformed by him, affifted by Sancroft, afterwards archbifhop of Canterbury. In 1673 he was prefented by Sheldon, bifhop of London, to the rectory of Laingdon in Effex ; and npon the promotion of that bifhop to the fee of Canterbury foon aficr, became one of his domeftic chaplains. He was then doctor of divinity, and expected to be made a dean ; but his improvement in the philofuphical and mathematical fciences was fo much the bent of his genius, that he did not much purfue his private advantage. The truth is, he wos a helplefs man, as to wordly affairs; and his tenants and relations impofed upon lim, cozened him of the profits of his parfonage, and kept him fo indigent, that he wanted neceflaries, even mik and paper, to his dying day. He was for fome time confined to the King's bench prifon for debt ; but in Mareh 1682, was invited by Dr Whitler to live in the college of phyficians. Here he continued till June following; when he was obliged, by his ill ftate of health, to remove to the houfe of a grand-child of his in St Margaret's church-yard, Weftminfter. But he died at the houfe of Mr Cothorne, reader of the church of St Giles's in the Fields, December the $t 2 t h$, 1685 , in the $74^{\text {th }}$ year of his age, and was interred at the expence of Dr Bufhhy, mafter of Weftminfter fchool, and Mr Sharp, rector of St Giles's, in the rector's vault under that church.- Dr Pell publifted fome other things not yet mentioned; a lift of which is as follows, viz.

1. An Exercitation concerning Eatter ; 1644, in 4 to, 2. A Table of 10,000 iquare numbers, \&c.; 1672, folio 3. An Inaugural Oration at his entering upon the Profefforfhip at Breda. 4. He made great alterations and additions to Rhonius's Algebra, printed at London 1668, 4to, under the title of An Introduction to Algebra, tranflated out of the High Dutch into Englifh by Thomas Branker, much altered and augmented by D. P. (Dr Pell). Alfo a Table of Odd Numbers, lefs tlan 100,000 , thewing thofe that are in. compofite, \&c. fupputated by the fame Thomas Bran. ker. 5. His Controverfy with Longomontanus con.
cerning the Quadrature of the Circle; Amiterdam, 1646, 4to.

He likewife wrote a Demonftration of the 2 d and 1oth books of Euclid; which piece was in MS. in the library of Lord Brereton in Chefhire: as alfo Archimedes's Arenarius, and the greatelt part of Diophantus's fix books of Arithnetic ; of which author he was preparing, Auguft 1644 , a new edition, in which he intended to correct the tranflation, and make new illuftrations. He defigned likewife to publifh an edition of Apollonius; but laid it afide, in May 1645, at the defire of Golius, who was tngaged in an edition of that author from an Arabic manufcript, given him at Aleppo 18 years before. Letters of Dr Pell to Sir Charles Cavendih, in the Royal Society.

Some of his manufcripts he left at Brereton in Chefhire, where he refided fome years, being the feat of William Lord Brereton, who had been his pupil at Breda. A great many others came into the hands of Dr Pufby; which Mr Hook was defired to ufe his endeavours to obtain for the Society. But they continued buried under duft, and mixed with the papers and pamphlets of Dr Bufby, in four large boxes, till 1755 ; when Dr Birch, fecretary to the Royal Society, prócured them for that body, from the truftecs of Dr Bufby. The collection contains, not only Pell's mathematical papers, letters to him, and copies of thofe from him, \&c. but alfo feveral manufcripts of Walter Warner, the mathematician and philofopher, who lived in the reigns of James I. and Charles I.

Dr Pell invented the method of ranging the feveral fteps of an algebraical calculus, in a proper order, in fo many diftinct lines, with the number affixed to each ttep, and a fhert defcription of the operation or procefs in the line. He alfo invented the character \div for divifinn, for involution, 74 for evolution*.

* Hutton's

PELLETIER (Bertrand), was born at Bayonne Mitbematiin 176 s , and very foon began to difplay an infatiable cal Diafiso thirft of fcience. It frequently happens, however, that ${ }^{\text {nary. }}$ young men, fincerely defirous of inftruction, have no means or place where they can be affifed in the developement of their natural talents, no mafter who may point out the direct road to fcience, and that order and method, without which the efforts of the individual too often lead him from the object of his purfuit, inftead of bringing him nearer to it. This was not the cale with young Pelletier. He fonnd every advantage in his father's houfe, where he received the firft elements of the art of which he was afterwards the ornament ; and his fubfequent progrefs was made under Darcet, who having remarked in him that fagacity which may be called the inftinet of fcience, admitted him among the pupils attached to the chemical laboratory of the college of France. Five years of conftant application and ftudy under fuch a mafter, who was himfelf formed by nature, perfected by experience, and affectionately difpo. fed towards his pupil, afforded this young man a ftock of knowledge very unufual at his age. He foon gave a couvincing proof of this, by publifhing, at the age of 21 , a let of very excellent obfervations on the arfenical acid. Macquer, by mixing nitre with the oxide of arfenic, had difcovered in the refidue of this operation a falt foluble in water, fufceptible of cryftallization in tetrahedral prifms, which he denominated the neutral arfenical opinion that no acid could decompofe it ; but Pelletier fhewed, that the fulphuric acid diflilled from it does difengage the acid of arfenic. He fhewed the true caufe why the neutral arfenical falt is not decompofable in cloled velfels; and particularly the order of affinity by which the falt itfelf is furmed in the diftillation of the nitrate of potafh, and the white oxide of arfenic. He explains in what refpects this falt differs from what Macquer called the liver of arfenic. Pcilletier bad been anticipated in this work by Scheele, by Bergman, by the academicians of Dijon, and by Berthollet; but he poffefled at leaft the merit, in the firft effay of his powers, of having clearly developed all the phenomena of this operation, by retaining and even determining the quantity of gas it was capable of affording. After the fame principles it was that he decompofer the arfenicoammoniacal falt, by fhewing how, in the decompolition of this laft, the pure arfenical acid is obtained in the form of a deliquefcent glafs. In this work we may ob. ferve the fagacity with which he was enabled to develope all the phenomena of thefe compolitions and decompofitions, by tracing thofe delicate threads of fcientific relation which connect the feries of facts, and are imperceptible to ordinary minds.

Encouraged by the fuccefs of thefe firf works, which he prefented with the fenfibility of grateful attachment to his inftruetor, he communicated his obfervations on the cryftallization of fulphur, cinnabar, and the deliquefcent falts; the examination of zeolites, particularly the falle zeolite of Frihourg in Brifgaw, which he found to be merely an ore of zinc ; obfervations on the dephlogitticated or oxygenated muriatic acid, relative to the absorption of oxygen ; on the formation of ethers, particularly the nuriatic and the acetous; and feveral memoirs on the operation of phofphorus made in the large way ; its converfion into phofphoric acid, and its combination with fulphur and moft metallic fubftances.

It was by his operations on that moft aftonifhing production of chemiftry, phofphorus, that he burned himfelf fo dangeroufly as nearly to have loft his life, After the cure of his wound, which confined him to his bed for fix months, he immediately began the analyfis of the various plumbagos of France, England, Germany, Spain, and America, and found means to give novelty and intereft to his work, even after the publication of Scheele on the fame fubject. The analy fis of the car. bonet of barytes led him to make experiments on animals; which prove that this earth is a true poifon, whether it be adminiftered in the form of the native carbonat of barytes, or whether it be taken from the decompofition of the fulphat, even though again combined with another acid.

Chemifts have given the name of תrontian to a newly difcovered earth, from the name of the place where it was frilt found. Pelletier analysed it, and difcovered it in the fulphat of barytes. He likewife analyfed the verditer of England, of which painters and paper-hangers make fo much ufe. He difcovered a procefs for preparing it in the large way, by treating with lime the precipitate obtained from the decompofition of nitrat of copper by lime. By his procefs, verditer is afforded equal in beauty to that which cones from England. He was likewife one of the firft chemifts who fhewed the poflibility of refining bell metal, and feparating the
whing his inft experiments were onarle at Paris ; after Penduma, them in the large way. The following year he was received a member of the Acarlemy of Sciences at Paris, and fortly afterwards went to La Fere, with Borda and General Daboville, to affift in experiments upon a new gunpowder. Being obliged, in order to render his experiments more decifive, to pars great part of the day in the open air during a cold and hmmid feafon, his health, which was naturally delicate, became confidera. bly impaired. He began to recover his health, when he again became the victim of his zeal for the fcience he fo fuccefsfully cultivated. He had neally perifhed by refpiring the oxygenated muriatic acid gas. A violent attack of convulfive althma, which returned during feve. ral days, was the firlt confequence of this unhappy accident. The diforder then feemed to abate; but it was incurable. The affiftance of art was infufficient to fave him ; and he died in Paris, on the 21 It of July 1797, of a pulmonary confumption, in the flower of lis age.

PENDULUM (See Encycl.). Befides the effects of heat and cold on the length of the pendulum rod, and of courfe on its ifochronifm, it may certainly he worth while, in the conftruction of clocks intended to meafure time with the utmolt pulfible exactnefs, to take into confideration the refiftance of the air, which, by its unequal denfity, varying the weight of the pendulum, muft in a fmall degree accelerate or retard its motion, The celebrated David Rittenhoufe, who paid particular attention to this fubject, eltimates the extreme difference of velocity, arifing from tbis caufe, at half a fecond a day; and he ohferves, that a remedy dependent on the barometer will not be ftricty accurate, as the weight of the entire column of air does not precifely correfpond with the denfity of its bafe. He propofes, therefore, as a very fimple and eafy remedy, that the pendulum Thall, as ufual, conditt of an inflexible rod carrying the ball beneath, and continued ahove the centre of fulpenfion to an equal (or an unequal) diftance upwards. At this extremity is to be fixed another ball of the fame dimenfions (or greater or lefs, according as the continuation is fhorter or longer), but made as light as poffi. ble. The ofcillations of this upper tall will be accelerated by its buoyancy by the fame quantity as thofe of the lower would be retarded; and thus, by a proper adjultment, the two effects might be made to balance and correct cach other.

Our author made a compound pendulam on thefe principles, of about one foot in its whole length. This pendulum, on many trials, made in the air 57 vibrations in a minute. On inmerfing the whole in water, it made 59 vibrations in the fane time; fhewing evidently, that its returns were quicker in fo denfe a medium as water than in the air. (This is contrary to what takes place with the common pendulum). When the lower bob or pendulum only was plunged in water, it made no more than 44 vibrations in a minute.

PENNAN'T (Thomas, Efq.), fo well known in the republic of letters as a writer of travels and of natural hiftory, was an ancient Briton hy birth, having drawn his firt breath in Flinthire, in 1726 . His family has been fettled in that county for many centuries; we learn from himfelf that he received the rudiments of his edu. cation at Wrexham, whence he was removed to Fulham. Soon after this he was fent to Oxford; and ha$\mathrm{U} \mathrm{u}_{2}$
ving

Peniant, ring made a confiderable proficiency in the claffics, he applied himfelf within the walls of that univerfity to attain a knowldge of jurifprudence; but we do not find that he cver entered himflif of any of the inns of court, or followed the law as a profeffiun.
The ruling paffions of mankind are excited, and the future current of their lives frequently directed, by triviat circurnfances. One of the greatef painters of our age was attracted with an irrefilitibe impulfe towards his art by the perufal of a tratife on it ; and we have the anthurity of the fubject of this menoir for affersing, that a prefent of Willughby's Oraithology, at an early period, firft gave him a turn for natural hiftory, which lias never once abandoned him through the courfe of a very long life.
Mr P'ennant commenced his travels with great propriety at home, where he made himfelf acquainted with the manners, productions, and curiofities, of his native country, before he fallied forth to infpeet thofe of other nations. He then repaired to the continent; and not o:ly acquired conliderable additional knowledge rela. tive to his favourite itudies, but became acquainted, and eftablifhed a correfpondence, with fome of the greateft men of the age.
On his return he married, and had two children, but did not come into the family fortune until he was thirtyfeven years of age, at which time he was fettled at Downing.

Having lof his wife, he appears to have fet out once more for the continent, and to have furmed an aequaintance with Voltaire, Buffon, Haller, Pallas, \&c. He had by this time acquired confiderable reputation as a fcientific man, having cominenced his career as an au-
thor fo early as rij50. His Britifh Zoology* eltablif1ed his reputation as a naturalift; and this received a freft accefion of celebrity in confequence of his acguaintance with Linnæus, and his intercourfe by keters with all the celebrated naturalits in Europe.

Early in life he had undertaken a moft interefting tour to Cornwall; and he now entertained an ardent dehire to furvey the works of nature in the northern extremities of the ifland. He accordingly fet out for Scotland, and in 1771 favoured the public with an entThree voi's tertaining account of his Tour \dagger, which was fo well re410. ceived as to pafs through feveral editions. Not content with the main land of Great Britain, he was ambitions to furvey the iflands in the vicinity, and accordingly penetrated to the Hebrides, and vifited Man.

It is not to be fuppofed that he would leave his own country unexplured; on the contrary, he minutcly deferibed all its wonders. He did not fail on this occafion to prefent the world with the refult of his enquiries, for in 1778 he commenced the putlication of his $\$$ Two vol Welh Tourg.
410. In four years after this (1782) appeared the account \ddagger One vol. of the Journey Fiom Chefter to London \ddagger, in which he 410. refutes the vulgar opinion that it is uninterefting ; and in two years more his Arctic Zoology, an admirable york, greatly prized both here and in other countries.

In 1790 appeared a quarto volume, fimply entitled Of London; in which he obferres that this work is compofed from obfervations, originally made without any view of publication. "Let me requell (fays he in the preface) the good inhabitants of London and Weft*ninfer not to be offended at my having fluffed their

40] P E N

Iliad into a nutfhell ; the account of the city of Lon. Pennant, don and liberties of Weftminter into a quarto von lume. I have condenfed into it all I could; omitted nothing that fuggefted iteff; nor amplified any thing to make it a guinea book. In a word, it is done in my own manner, from which I am growing too old to depart.
" I feel within myfelf a certain monitor that warns me (ddds he) to hang up my pen in time, before its powers are weakened, and rendered vifibly impaired. I wait not for the admonition of friends. I have the Archbihop of Grenada in my eye; and fear the imbecility of human nature might produce in long worn age the fane treatment of my kind advifers as poor Gil Blas had from his mott reverend patron. My literary bequefts to future times, and more ferious concerns, mult occupy the remnant of my days. This clofes my public labours."

Notwitliftanding his parting addrefs, the example of the Archbithop of Grenada, and the concluding fentence of "Valete \mathbb{E}^{\prime} Plaudite," we find Mr Pennant adventuring once more in the ocean of literature, at a late period of his life, and trying his fortune again with all the eagernefs of a young author.

He accordingly publifined the Natural Hiftory of the parifhes of Holy well and Downing*, within the pre-*O:e volo. cincts of tbe latter of which he had refided about half 4 to. a century.

He alio prefented the public, a very fhort time before his death, with a fplendid work, confifting of 2 vols. 4to. entitled The View of Hindooftan; in the preface to which he candidly ftates his mutives for this new attempt. "I had nlany folicitations from private friends (fays he), and a few wifhes from perfons unknown, delivered in the public prints, to commit to the prefs a part, in the form in which the pofthumous volumes might hereafter make their appearance. I might have pleaded the imprudence of the attempt at my time of life, of begiuning fo arduous an undertaking in my 71 it year.
"I happily, till very lately, had fcarcely any admonition of the advanced feafon. I plunged intu the fea of trouble, and with ny papers in one hand, made my way through the waves with the other, and brought them fecure to land. This, alas ! is finite buatting. I mult fubmit to the judgment of the public, aud learas from thence how far I am to be cenfured for fo grievous an offence againft the maxim of Ariftotle, who fixes the decline of human abilities to the 49th year.
"I ought to fhudder, when I confider the wear and tear of 22 years; and feel flocked at the remark of the elegant Delanty, who obferves, ' that it is generally agreed among wife men, that few attempts, at leaft in a leamed way, have ever been wifely undertaken and bappily executed after that period!'
"I cannot defend the wifdom: yet from the good fortune of $m y$ life I will attempt the execution."

Thefe valuable volumes are drawn up by Mr Pennant in the manner of his introduction to the Arctic Zoology. The plates, 23 in number, are admirably engraved, and one (the Napaul pheafant) is beautifully coloured.

In addition to the lift of literary labours already enumerated, is a letter on an earthquake felt at Downing, in Flinthire, in 2753 ; another inferted in the fame

P E N

publication*, in 1756, on coralloid bodies (xяgaגaoivess) collected by him : his Synopfis of Quadrupeds, publifhed in 1771; a pamphlet on the Militia; a paper on the Turkey : and a volume of Mifcellanies.

Mr Pennant attained academical honours of all kinds, having had the degree of LL. D. conferred on him by the univerfity in which he was educated, he was a Fel. low of the Royal Society, and a member of the Suciety of Antiquaries, a Fellow of the Royal Society of Upfal in Sweden, a member of the American Philofophical Society, an honorary member of the Auglo Linnean Society, \&c.

The ample fortune left him by his father enabled Mr Pennant to keep an hofpitable table, and alfo to prefent the profits of feveral of his works to public inftitutions, particularly the Welfh charity-fchool in Gray's-inn-lane. He encouraged feveral engravers by lhis patronage, and was not a little ferviceable to the adivancement of the fine arts.

In 1776 he married a fecond time ; on which occafon he became united to Mifs Moltyn, fifter of his neighbour, the late Sir Roger Moftyn, in Flint fhire. The latter part of his life was chearful, and lie fcarcely felt the approaches of old age. He died at his feat at Downing in his 72 d year.

He has left feveral works behind him in MS. under the title of Outlines of the Globe; and as a proof that it will be a very voluminous and interefting publication, it is only neceffary to obferve, that the View of Hindooftan compofed the xivth and x vth volumes.

Mr Pennant poffeffed a well-compacted frame of body, an open and intelligent afpect, an active and chearful difpofition, and a vivacity which rendered him always entertaining, as well in converfation as in writing. Though not without a fhare of irrafcibility, his heart was kind and benevolent. He was examplary in the relations of domeftic life, and fenfibly felt for the diftreffes of his poor neighbours, whofe relief in feafons of hardfhip he promoted with great zeal and liberality, His candour and freedom from ordinary prejudices, are fufficiently difplayed in his writings; and Scotland was forward to confcis, that he was the firft traveller from this fide the Tweed, who had vifited the country with no unfriendly fpirit, and had fairly prefented it under its favourable as well as its lefs pleafing afpects. As a writer, his flyle is lively and expreflive, but not perfectly correct. His principles of arrangement in zoology are judicious, and his defcriptions charactereftic. If in fome of his later works a little vanity appears, and a propenfity to think that important to the world which was fo to himfelf, it may readily be pardoned to one who has afforded fuch copious and valuable entertain. ment to the public. His name will live with honour in the literary hittory of his country, and his memory will be cherifhed with refpect and affection by his furviving friends.

PENNATULA (See Encycl.) A fpecies of this late XLI-animal, hitherto undeferibed, was difcovered by La Martiniere near Nootka. Its budy is of a cartilaginous fubftance, and a cylindrical form; its head, armed with two little homs of the fame fubitance, prefents a fpherical figure flatted at its interior extremity. This part is covered with fmall papillie, fome of which are vifible at D, and which ferve the purpofe of fmall mouths, by means of which this animal fucks the blood of fifter,
making its way as far as poffible into the fefh : the ex. tremity of its body, which always projects from the fifh, appears like the feathers of a pen; thefe feather-like fublances ferve as excretury veffels : for on making a night preffure on the animal, from the greater part of thefe cartilaginous barbs iffued fmall drops of a very limpid liquor : at the bafe of thefe barbs, and beneath the body, are placed two large cartilaginous thrcads, of which our author conld not imagine the ufe, for they are not univerfally met with in each individual. The circulation of its blood is readily obferved, it forms a complete revolution about once in a minute. It is probable that this animal is only able to make its way into the bodies of different fifh when it is very young; and when it has once buried itfelf there, laving abundanee of nourifhment, its head increafes confiderably, and the two horns with which it is furnifhed ncceffarily form an obftacle to its regrefs, which is a remarkable inftance of the forefight of Nature, fince it is dettined to be nourifhed at the expence of another. The pennatula, of which we have given from Martiniere a figure, was found by him at the depth of more than an incle and an half in the body of a diadon.

PEPUSCH (Johu Chrifopher), one of the greateft theoretic muficians of modern times, as we are told, was born at Berlin about 1667 ; and became fo carly a proficient on the harpfichord, that at the age of 14 he was fent for to court, and appointed to teach the prince, father of the late King of I'ruffia. About 1700, he came over to England, and was retained as a performer at Drury Lane: it is fuppofed that he affifted in compofing the operas which were performed there. While he was thus employed, he forbore not to profecute hisprivate ftudies; and thefe led him to enquire into the mufic of the ancients, and the perufal of the Greels au. thors upon that fubject. The abilities of Pepufch, as a practical compofer, were not likely to become a fuurce of wealth to him : his mufic was correct, but it wanted variety of modulation. Belides, Handel had got porfeflion of the public ear, in the opinion of whofe fuperior merit he readily acquiefced; and chofe a tract for himfelf, in which he was almuft fure to meet with no obitruction. He became a teacher of inulios, not the practice of any particular intrument, but mufic in the abfolute fenfe of the word, that is to fay, the principies. of hamony and the fcience of practical compolition ; and this, not to cliildren or novices, but in very niany inftances to profeflors of mulic themfelves.
ln 1713, he was admitted to the degree of Ductor in Mulic at Oxford, and continued to profecute his. Audiestwith great affiduity. In 1724, he accepted an offer from Dr Berkeley to accompany him to the Burmudas, and to fettle as profeffor of nufic in his intend. ed college there; but the flip in which they failed being wrecked, he returned to London, and married Francefca Margarita de l'Epine. This perfon was a native of Tufcany, and a celebrated finger, who performed in fome of the firt of the Italian operas that were reprefented in England. She came hither with one Greber, a German, and from this connection became diltinguifhed by the invidious appellation of Greber's Peg. Afterwards the commenced a new commetion with Daniel Earl of Nottingham, wbuhad defend. ed the orthodox notion of the Trinity againlt the hetetic Whifton; and to this conacetion Ruwe, in imitation of

Horace's
p'purch, Herace's, ". Ne fit ancillx tibi amor pudori," thus alRerculfin. ludes:

Did not bafe Greber's Peg inflame The fober Earl of Nottingham, Of fober lire defcended?

- That, carelefs of his foul and fame, To play-houfes he nightly came, And left church undefended.
She continted to fing on the stage till ahout 1718 ; when having, at a modeft computation, acquired above ten thoufand guineas, the retired from the theatre, and afterwards married Dr Pepufch. She was remarkably tall, and remarkably fwarthy; and, in general, fo deftitute of perfonal charms, that Pepufch feldom called her by any other name than Hecate, to which fhe is faid to have anfwered very readily.

The change in Pepurch's circumftances by Margarita's fortune was no interruption to his ftudies: le loved mufic, and he purfized the knowledge of it with ardour. At the inftance of Gay and Rich, he undertook to compofe, or rather to correct, the mufic for the Beggar's Opera. His reputation was now at a great Height. He had perufed with great attention thofe feveral ancient treatifes on Harmonics, publifhed by Meibomius, and that of Ptolemy by Dr Wallis; and the difficulties which occurred to him on the perufal, were in a great meafore removed by his friend De Moivre the mathematician, who affiled him in making calculations for demontrating thofe principles on which the harmonic fcience is founded. In confequence of thefe ftudies, he was elteemed, in matters of theory, one of the beft mulicians of his time. In 1737, he was chofen organift of the Charter-houfe, and retired, with his wife, to that venerable manfion. The wife died in 1740 , before which he loft a fon, his only child ; fo that he had no fource of delight left, but the profecution of his itudies, and the teaching of a few favourite pupils, who attended him at his apartments. Here he d:ew up that account of the ancient genera which was read before the Royal Society, and is publifhed in the Philofophical Tranfactions for October, November, and December, 1746 ; and, foon after the publication of that account, he was chofen a Fellow of the Royal Society.

He died the 20th of July, 1752, aged 85; and was buried in the chapel of the Charter-houfe, where a tablet

PERCUSSION, Force of Percussion, is the name by which mechanicians diftinguifh that faculty of producing motion, or making other fenfible mechanical impreffions on bodies, by means of the ftroke of a body in motion. It is nearly the fame with impulfe; only, it would feem that the very fcrupulous and refined effect to limit the attention to the immediate caufe of the motion, or other effect produced; to the fomething that is different, both from the force fuppofed to be inherent in the moving body (a hammer for example), and the fubfequent motion and penetration of the nail which is driven by it. We may venture to fay that it is need. lefs to attempt any inveftigation of this object. It is hid, with all other caufes of all other effects in the univerfe, in impenetrable darkuefs. If we reflect on the conftitution of our own mind, fo far as we can know it by experience and obfervation, and on the manner in which
we draw conclufions, we muft fee that the knowledge Percuftisn. of the efficient caufe of any effect is unattainalle; for were the intervening fomething pointed out to us, and clearly conceived by us, we mould find it jutt as neceffary to find out why and how this fomething is cone nected with each of the events which we obferve it invariably to connect.

But a knowledge of the force of percuffion, in as far as it may or may not be diftinguifhable from other forces, is not unattainable. We can learn as much, and no more, concerning this, as concerning any other force ; and we can contemplate that circumflance which, in our opinion, is common to it with all other forces, and may perhaps difcover other circumftances in which it differs from them. But in all this difquifition, it is plain that it is only events, which we conceive to be the characterittic effects of the caufe, that we contemplate.

Percuffion, confidered as an effect, characteriftic of a particular faculty of moving bodies, became an object of anxious refearch, almolt as foon as philofophers began to thirik of motion and moving forces at all. The ancients (as has been obferved in the article Impulsions, Suppl.) contented themfelves with very vague fpeculations on the fubject. Galileo was the firft who confiw dered it as a meafurable thing, the object of mathematical difcuffion ; being encouraged by his precious difcovery of the laws of accelerated motion, and the very refined meafure which thefe gave him of the power of gravity. It was a meafure of the heavinefs, not of the weight, of the body; and this was meafured by its acceleration, and not by its preflure. Encouraged by this, he hoped to find fome fuch meafure of the force of percuffion, which he faw fo intimately connected with motion; whereas its connection with preffure was far from being obvious. He thereforctried to convert the terms; and as he had found a meafure of the preflure of gravity in the acceleration of motion, he endeavoured to tind in preflure a meafure of the force of purcuffion arifing from this acceleration. He endeavoured to find the number of pounds, whofe preffure is equal to the blow of a given hody, moving with a given velocity. The velocity was known to him with great precifion, by means of the height from which the ball mult fall in order to acquire it. It feems pretty clear that percuffion may be meafured in this way; for a body falling from a height will pierce an uniformly tenacious body to a certain degree, and no further; and experiment fhews that this degree of penetration is very precife and coutant. The fame body, being merely laid on the tenacious body, will penetrate to a fmall depth by its weight. Laying more weight on it, will make it penetrate deeper; and a certain weight will make it penetrate as deep as the fall did, and no deeper. Thus, percuffion feems very eafily meafurable by weight, or by any preffure limilar to that of weight. It appears that Galileo made experiments with this view, and that he was difappointed, and obliged to acquiefce in the opinion of Ariftotle, that percuffion and weight are incomparable. He propufes, therefore, another experiment, namely, to drop a body iuto the fcale of a balance from greater and greater beights, till at laft the blow on the feale raifes a weight that lies on the other fcale. This offers itfelf fo plaufibly, that we are perfuaded that Galileo tried it : but as he makes no men-

P E R [343] P E R

:uffion. tion of the rcfults, we prefume that they were unfatisfactory.

Neither of thefe experiments could give us a meafure of the force of percuffion, if this force be any thing different from the forces which are excited or brought into action by percuffion, in the manner deferibed in the article Impulsion, Suppl. When the ball comes into phyfical contact with the fale, it begins to comprefs it. This compreffion begins to fretch the Atrings by which the fcale is fupported. 'Thefe pull at the arm of the balance, and cause it to prefs the centre-pin a little harder on its fupport, and to bend the balance a little, and canie it to pull at the cords which fupport the other fcale. That fcale is pulled upwards, diminifhing a little its preflure on the ground, and preffing it harder to the incumbent weight. Thefe forces are excited in fucceffion from the one fale to the other, and a fmall moment of time elapfes. The re-action of the fale diminifhes, but does not inflantaneoufly annihilate, the velocity of the falling ball. It therefore compreffes the fcale ftill more, Atretches the threads, prefles the fulcrum, and bends the balance ftill more (becaufe the weight in the other fcale keeps it down). The velocity of the falling ball is rapidly diminithed; the balance is more hent, and pislls more ftrongly upwards at the threads of the other fcale; and thus preffes that fcale more ftrongly againft the incumbent weight, gradually communicating more and more motion to it, removing it farther from the ground, till, at laft, the motion becomes fenfible, or fo confiderable as to difengage fome delicate catch as a fignal. The experiment is now finifhed; and the mechanician fondly thinks that, at this inftant, the preffure excited by the percuflinn, between the oppofite fcale and the under fide of the incumbent weight, is juft equal, or but a very little fuperior, to the preffure of the incumbent weight : and, fince the arms of the balance are equal, and therefore the preffures on the two fcales are equal, he imagines that that weight exerts a preffure equal to the percuflion of the falling ball.

But all this is mifconception, and alfo falfe reafoning. It is not percuffon that we are meafuring, but the preffures excited by percuffion, on the two fcales. And thefe preflures are the forces of elafticity or expanfivenefs, belonging to, or inherent in, the particles of the - balls and the fcales; forces which are brought into action by the approach of thofe hodies to each other. This reafoning is alfo erroneous; and we fhould be miftaken if we think that the preffure actually exerted is equal to that of the weight in the oppofite feale. It is greater than the mere preflure of that weight. The re-action of the oppofitc fcale on its load was precifely equal to that weight before the ball was dropped from the hand; and, had the hall been equal to that weight, and fimply laid into the feale on which it falls, it would bave made no change on the matual preffures of the fcale and the other weight ; it would only have relieved the ground from the preffure of that weight, and would have brought it on the threads which fupport its fale. The preflure of this fcale upwards nuft be increafed, before it can flart the weight fenfibly from the ground. How much it muft be increafed depends on the fpringinefs of the fcales, cord, and beam. By a proper adjuftment of thefe particulars, the apparatus will give us alnsoft any meafure of percuffion that we choofe. For
this reafon, the improvemepts made on it by Gravefande Percurion. are of no value. The fame reafoning, nearly, may be applied to the meafurements of the force of percuffion by means of the penetration of foft bodies.

Galileo mentions nunther very curious experiment, by which he thought that he had obtained a jult meafure of percuffion. A veffel, filled with water, was fufpended on the arm of a balance, with another veffel hanging from it, a great way below. All was exactly balanced by a weight in the oppofite fale. By means of a fuitable contrivance, a hole was opened in the bottom of the upper veffel, without difurbing the equilibrium. As foon as the water iffued, and while it was falling through the air, that end of the balance rofe; but when the water flruck the lower veffel, the equilibrium was reftored, and continued during the whole time of the efflux. Hence Galileo concluded, that the force of the Atroke was equal to the weight of the falling water. But we apprehend that the obfervations made on this in the article Impulsion, Suppl. will convince the reader that this conclufion is far from being legitimate. Befides, the ftroke, in any one inftant, is made by thofe particles only which ftrike in that inftant, while the whole vein of water between the veffels is neither acting by its weight on the upper veffel, nor by its ftroke no the lower; and we fhould concleade from the experiment, that the force of percuffion is infinitely greater than the weight of the flriking body. Indeed this is the inference made by Galileo. But if we have recourfe to the experiments and reafonings of Daniel Bernoulli, in the article Resistance of Fluids, Encycl. we fhall find that the feeming impulfe on the lower veffel is really a mof complicated pure preffure, and of moft uncertain determination. The experiment is valuable, and gives room for curious reflections. We have repeated it, in a great variety of forms, and with great changes of impulfe, and fometimes in fuch a matlner that no impulfe whatever can obtain, while at the fame time a quantity of water was filling ${ }_{2}$ unfupported by either veflel. In all the trials the equilibrium remained undifturbed. We were obliged to conclude, therefore, that the experiment afforded no meafure of percuffion. Indeed we were of this opinion before making the trial, for the reafons jult now given.

We cannot fay that the fublequent labours of plilofophers have added much to our knowledge of this matter. Mr Leibnitz had contrived his whimical doctrine of living and dead forces. The action of gravity, or of a fpring, is a vis viva, when it actually produces motion in the body on which it acts: but when a fone lies on a table, and preffes on it, this prefure is a vis nicrtua. Its exertion is made, and in the fame inftant deftroyed, by an oppofite vis mortua. Each of thefe exertions would have produced a beginning of motion (fomething different from any, of the fmallelt local motion); and the fum of all would, after a certain time, have amounted to a fenfible motion and velocity. There feems no difinct conception to accompany, or that can accompany, this language. And, as a proof that Leibnitz had no diftinct conceptions of the matter, he has, recourfe to this very experiment of Galileo in fupport of his geuefis of a fenfible motion from the continual exertions of the vis mortua; and he concludes that the force of percuffion is infinitely, or incomparably, greater than pref. fure, becaufe it is the fum total of an infuity of indivi-

Perctifion. dual exertions of qis morfua. Nothing but the autliori-- ty which Leibnitz has acquired on the continent, by the zealous efforts of his partizans, could excufe our taking up any time in confidering this unintelligible difcourfe. Surely, if there is fuch a thing as a wis viva, it exifts in the moving water, and its impulfions are not continual exertions of a vis morfua. Nor is it poffible to conceive continual impulfe, nor a beginning of metion that is not mution, \&ic. \&c. It is paradoxical (and Leibnitz loved to raife the wonder of his followers by paradoxes) to fay that percuffion is infinitely greater than preffure, when we fee that preffure can do every thing that can be done by percuffion. Nay, Euler, by far the molt able fupporter of the doetrines of Leibnitz about the force of bodies in motion, actually compares thefe two forces; and, in his Commentary on Robins's Artillery, demonflrates, in his way, that when a mufket ball, moving with the velocity of 1700 feet per fecond, penetrates five inches into a block of elm, the force of its perculfion is 107,760 times its weight. John Bernoulli refricts the infinite magnitude of percuffion to the cafe-of perfectly hard bodies; and, for this reafon alone, fays, that there can be none fuch in the univerfe. But, as this jultly celebrated mathematician fcouts with fcorn the notion of attractions and repultions, he mult allow, that an ultimate atom of matter is unchangeable in its form; which we take to be fynonymous with faving that it is perfectly hard. What mult be the refult of one atom in motion hitting another at reft? Here mult be an inftantaneous production of a finite velocity, and an infinite percuffion. A doctrine which reduces its abcttors to fuch fubterfuges, and engrages the mind in fuch puzzling contemplations, cannot (to fay the belt of it) be fyled an explanation of the laws of Nature. The whole language on the fubject is full of paradoxes and obfcurities. In order to reconcile this infinite magnitude of percuffion with the obferved finite magnitude of its effects, they fay that the preflure, or inftantaneous effort, has the fame relation to the force of percuffion that an element has to its integral ; and in maintaining this affertion, they continually confider this integral under the exprefs denomination of a fum total, robbing Leibnitz's great difcovery of the infinitefimal calculus of every fuperiority that it poffeffed over Wallis's Arithmetic of infinites, and really employing all the erroneous practices of the method of indivifibles. We look upon the Itrange things which have been inculcated, with pertinacious zeal, in this doctrine of percuffion and vires viva, as the molt remarkable example of the errors into which the unguarded ufe of Cavalerius's Indivifibles, and of the Leibnitzian notion of the infinitefrmal calculus, have led eminent mathematicians. It is not true that the preffure, aud the ultimate force of percuffion, have this relation; nor has the preffine and the refulting motion, which is miftaker for the meafure of this ultimate force, any mathenatical relation whatever. The relation is purely phytical ; it is the relation of pure caufe and effect: and all that we know of it is their conflant conjunction. The relation of fuxion and fluent is not a mathematical or meafurable relation, but a connection in thought; which is fufficient for making the one an indication of the other, and the meafures of the proportions of the one a mean for obtaining a meafure of the proportions of the other. In this point of viem,
the relation of preffurc to motion, as the meafure of the Percuftion, force of perenfion, refembies that of fluxion and fuent, but is not the fanse.

Much has been faid by the partizans of Mr Leibnitz about the incomparablenefs of preflure and percuffion, and many experimental proofs have been adduced of the incomparable fuperiority of the latter. Bullinger fays, that the prefture of many tons will not caufe a fpike to penetrate a block of hard oak half fo far as it may be driven by a weak man with one blow of a mallct; and that a moderate blow with a fuall hammer will Chiver to powder a diamond, which would carry a mountain without being hurt by its preffure. Nay, even Mr Camus, of the Academy of Paris, a flaunch Carte. fian, and an eminent mechanician, fays that he beat a leaden bullet quite flat with a hammer of ne pound weight, without much force; and that he found that 200 pounds weight would not have flattened it more than this blow : and he concludes from thence, that the force of the blow exceeded 200 pounds. Thefe, to be fure, are remarkable facts, and juttify a more minute confideration of a power of producing certain effects, which is fo frequently and fo ufetully employed. But, at the fame time, thefe are all very vague expreffions, and they do not authorife any precife conclufions from them. Mr Camus faying "s whthout much force," makes his pound weight, and his 200 pound weight, of no ufe for determining the force of the blow. He would have given more precife and applicable data for his decifion, had he told us from what height the hammer fhould fall in order to flatten the builet to this degree. But even then we hould not bave obtained any notion of the force in actual exertion during the flattening of the bullet ; for the blow which could flatten the bullet in a longer or a fhorter time, would unqueftionably have been lefs or greater.

All the parodoxes, obfcurities, and puzzling difficulties, in this fubject difappear, if we leave out of our confideration that unintelligible force, which is fuppofed to preferve a body in motion or at' reft ; and if we confider both of thefe ftates of bady as conditions which will continue, unlefs fome adequate caufe operate a change ; and if we farther grant, that fuch caufes do really exifl in the univerfe, however unknown their nature may be by us; and, laftly, if we acknowledge, that the phenomena of clafticity, expanfiveners, cohefron, gravity, magnetifm, electricity, are indications of the agency of fuch caufes, and that their actual exertions, and the motions and chances confequent on thete exertions, are fo invariably connected with particular budies, that they always accompany their appearance in certain mutual relations of difance and poffition:-if we proceed thus, all the phenomena of collition will be explained by the fe caufes alone, without fuppoling the exiftence and argency of a caufe diftinct from them all, and incomparable with them, called the force of percussion:

For it has been fufficiently demonfrated iu the article Impulsion (Suppl.), that that property of tangible coherent matter, which we call perfea elaficity, operates as a preffure during a certain fmall portion of time on both bodies, diminifhing more and more the motion of the one, and augmenting that of the other, as the compreffion of one or both increafes, till at laft they feparate with fenfible velocities. In fome very fimple or per-

P E i $\quad[345] \quad$ P E R

Percufion fpicuous cafes, we know what this preffure is in every inftant of the action. We cau tell how many pounds weight, at reft, will exert the fame preffure. We can tell the whole duration of this preflure, and the fpace along which it is exerted; and, in fuch a cale, we can fay with precifion what motion will be generated by this continued and varied preffure on the body which was at relt, and what diminution will be made in the motion of the other. All this can he done in the cafe Plate XLi. of a ball A (fig. 1.), nowing like a pendulum with a finall velocity, and Atriking a flender clattic hoop B, alfo fufpended like a pendulum. We can afcertain by experiment, before the collifion, what preffure is neecflary for comprefling it one inch, one half, onefourth, \&c. Knowing this, and the weight of the hoop, and the weight and velocity of the ball, we can tell every circumitance of the collifion-how long the compreffion continues - what is the greatell compreffion - how far the bodies have moved while they were acting on each other-and what will be the final motion of each:-in flort, every thing that affords any mark or meafure of a force of perculfion. And we know that all this is produced by a force, familiarly known to us by the name of elafticity. Which of all thefe circumftances fhall be called the precuffion, or the force of perculfion ? Is it the ultimate or greatelt preffure occationed by the compreffion? This cannot be, becaufe this alone will not be proportional to the final change of motion, which is generally taken as a meafure of the percuffion when a change of motion is its only oblerved effect.

We know that another perfectly elallic body, of the fame weight, and fruck by the fame blow, and acquiring the fame final velocity by the ftroke, may not have fuftained the tenth part of the preflure, in any one inftant of the collifion, if it has only been much more comprelfible. The greateft mutual preffure in the collifion of a billiard ball is perhaps 1000 times greater than it is in a fimilar collifion of a foot ball of the fame weight.

We alfo know what degree of compreffion will break this hoop, and what preffure will produce this conpreffion. Therefore, chould the fracture of the bady be confidered as the mark and meafure of the percuffion, we know what blow will juft produce it, and be exhaufted by fo doing. In hort, we know every mark and meafure of percuffion which this hoop can exhibit.

We can increafe the ftrength of this hoop till it be comes a Solid difk; and we fee clearly, that in all thefe forms the mode of acting is the fame. We fee clearly that it is the fame when, inflead of the folid difk, it is an elaltic ball; therefore every thing that can indicate or meafure the percuffion of an elaftic ball, is explained without the operation of a peculiar force of percuflion. even when the ball is fhivered to pieces by the blow.

Nor is the cafe materially different when the bodies are foft, or imperfectly elaftic. When the ftruck body is uniformly tenacio is, it oppofes a uniform refiftance to penetration, and its motion will be uniformly accelerated by the action of its own tenacity during the whole time of mutual action, except a trifling variation occafioned by the mere motion of the internal parts, independent of their tenacity. If we knew the weight neceffary for merely penetrating this mafs, and the weight and velocity of the penetrating body, we can Suffl. Vol. II. PartI.
tell how long it mult be refilted by this force before Percuffion. its initial velocity will be annihilated, and therefore how far it will penetrate. We have tried this with deal, birch, willow, and other foft woods of uniform texture, and with nails having the body fomewhat Alenderer than the end, that there inight not be an irre. gularity occafioned by a friction on the fides of the nail, continually increafng as the penetration advanced. We made the hammer fall from a confiderable height, and hit the nail with great accuracy in the direction of its length, by fixing it to the end of a long lath, moveahle round an axis. The refults correfponded with the calculation with all the precifion that could be defired.

But it does not refult from ail this agreement, that the force, excrtion, or effeet, of a hlow with a hammer is equal to the preffure of any number of pounds whatever. They are things that cannot be compared; and yet the force operating in the penetration by a blow is no way different from preffure. It is a phyfical bluader to compare the area of the curve, whofe abfciffa is the depth of penetration, and the ordinates are as the refiltances, with any preffure whatever. This area exprefles the fquare of a velocity, and its llips , bounded by parallel ordinates indefinitely near each other, are as the decrements of this fquare of a velocity, occafioned by a preflure, acting almult uniformly along a very fmall fpace, or during a very fmall time. It is an abfurdity therefore to fum up thefe flips as fo many preffures, and to confider the fum total as capable of exprcting any weight whatever. Such a parallogifm is peculiar to Leibnitz's way of conceiving his infinitefimal method, and it could hive no place in the genuine method of fluxions. It is this mifconception that has made Mr Leibnitz and his followers fuppofe that a body, accelerated by gravity, retains iti it a fum total of all the preflures of gravity accumulated during its fall, and now forming a vis vivia. Suppofing that it requires a preffure of twenty pounds to prefs a fix pound fhot flowly through a mafs of uniformly refifting clay; this preffure would carry it from the top to the bottom of a mountain of fuch clay. Yet this ball, if difcharged horizontally from a cannon, would penetrate only a few yards, even though the clay fhould refift by tenacity only, independent of the motion lolt by giving motion to its internal parts. In this experiment the utmult preffure exerted during the motion of the ball did not mueh exceed the preffure of twenty pounds. In this comparifon, therefore, percuffion, fo far from appearing infinitely greater than preflure, would appear much lefs. But there is ferhaps nooody that refilts pene. tration with perfect uniformity, even though uniformly tenacious. When the ball has penetrated to fome depth, the particles which are betore it cannot be fo eafily difplaced, even although they had no tenacity, becaufe the particles adjoining are more hemmed in by thofe beyond them. We have always obferved, that a ball impelled by gunpowder through water rifes toward the furface (having entered horizontally through the fide of the veffel at fome depth), and this fo much the more rapidly as it entered nearer to the furface. The reafon is plain. The particles which mull be difplaced before the ball, efcape more eafily upwards than in any other direction. It is for this reafon chiefty that a greater weight laid on the head of a nail will caufe it fint deeper into the wood; and thus a great weight appears X x

P E R

P E R

Percuftion to be commenfurable with a great force of percuffion. Alfo while a bullet is flattening more and more under s. hammer during the progrefs of a blow, it is fpreading under the hammer; mose particles are refifting at once, and they find more difliculy in effecting their efcape, being harder fqueezed between the hammer and the anvil. The fame increafed refiltance mult obtain while it is flattening more and more under the quiet proffure of a weight ; and thus, too, a great weight zeppears to be commenfurable with a greater blow.

After all, however, a blow given by a falling body mult cxcite a preffure greater than its mere weight can do, and this in any degrec. Thus, fuppofe AB (fig. 2.) to reprefent a fpiral fpring in its natural unconftrained dimenfions, ftanding upright on a table. Let $a b$ be the abfiffa of a line $a d b k$, whofe ordinates $c d, g h, i k, \& \cdot c$ are as the elaftic readion of the fpring when it is comprefed into the lengths $c b, g b, i b, \& c$. Suppofe that, when it is comprefied into the form CD, it will juft fupport the weight of a ball lying on C . Then $c d$ will be a reaction equal to the weight of the ball, and the rectangle a $d f$ will exprefs the fquare of the velocity which this ball would acquire by falling freely through $a c$. If therefore the ball be gently laid on the top of the fpring at A, and then let go, it will defeend, compreffing the fpring. It will not itop when the fpring has aequired the furin CD , which enahled it to carry the weight of the ball gently laid on it. For in this lituation it has acquired a velecity of which the fquare is reprefented by the figure a $d f$. (See Dysamics, Suppl. n" 95.). It will comprefs the fpring into the length $g l$, fuch that the area $c g b d$ is equal to the area a d f. If the ball, initead of being gently laid on A, be dropped from M, it will comprefs the fyriag into fuch a length $i b$, that the area $a i k$ is equal to the rect. angie $m \subset d n$; and, if the furing cannot bear fo great compreffion, it will be broken by this very moderate fall.

Thus we fee that a blow may do things which a confiderable preffure cannot accomplifh. The accounts which are given of thefe remarkable effects of porcuffion, with the view of inpreffing notions of its great efficacy, are generally in very indchinite terms, and often without mentioning circumflances which are acceffiry to the effect. It would be very unfair to conclude an almoft infinite power of percuffion, from obferving, that a particle of fand, dropped into a thick clafs botle which has not been annealed, will fhiver it to fieces. When Mr Bultinger fays that a moderate blow will break a diamond which could carry a mountain, hemot onfy fars a thing of which he cannot demonftrate the truth, and which, in all probalility, is not true; but he omits noticing a circumflance which he was mechanician enough to know would have a confiderable fhare in the eflect. We mean the rapidity with which the excited preffure increafes to its maximum in the cafe of a blow. In the experiment in queftion, this laappens in lefs than the millionth part of a fecond, if the relocity of the hammer las been fuch as a man would generate in it by a very moderate exertion. For the hlow which will drive a good lath nail to the head in a fiece of foft deal with an ordinary carpenter's hammer, muft be accounted moderate. This we have learned by experiment to be above 25 feet per fecond. The connecting forces exerted between the particles of the diamond may not have time fufficient for their excitation
in the remote parts, fo as to flare the derangement Percuffion among thein all, in fueh a manner that it may be fo moderate in each as not to amount to a difuniun in any part of the diamond. We fee many inflances of this in the abrupt handling of bodies of tender and friable texture. It is partly owing to this that a ball difeharged from a pittol will go through a fleet of paper ftanding on edge without throwing it down, which it would ceitainly do if thrown at it by the hand. The connecting forces, having time to act in this latt cafe, drag the other parts of the paper along with them, and their union is preferved. Alfo, when a great weight is laid on the diamond, it is gradually dimpled by it ; and thus incluing many parts together in the dimple, it obliges them to actin concert, and the derangement of each is thus diminifhed.

We flatter ourfelves that the preceding obfervations and reflections will contribute fomewhat towards removing the paradoxes and myfteries which difcredit, in fome degree, our meelhanical fcience. If we will not pertinacioufly conjure up ideal phantoms, which, perhaps, cannot exift, but content ourfelves with the ftudy of that tangible matter which the Author of Nature has prefented to our view, we fhall have abundant employment, and fhall perceive a beautiful liarmony thro' the whole of natural operations; and we thall gradually difcover more and more of thofe mutual adaptations which enable an atom of matter, although of the fame precife nature wherever it is found, to act fuch an unipteakable variety of parts, according to the diverfity of its fituations and the feene on which it is placed. If a mind be " not captivated by the harmony of fuch fweet founds," we may pronounce it, "dark as Erebus, and not to be trulled."
PERFECT Number, is one that is equal to the fum of all its aliquet parts when added together. Encl. lib. 7 , def. 22. As the number 6 , which is $=$ $1+2+3$, the fum of all its aliquot parts; alfo 28 , for $28=1+2+4+7+14$, the fum of all its aliquot parts. It is proved by Euclid, in the laft prop. of bouk the gtle, that if the common geometrical feries of number's $1,2,4,8,16,32$, \&e. be continued to fuch a number of terms, as that the fum of the faid feries of terms fhall be a prime number, then the product of this fum by the laft terni of the feries will be a perfect number.

PERGUNNA, in Bengal, the fubdivition of a diftrict.

PERKINJSM, the proper name of what we muft think an impofition attempted to be put upon the world by Dr Perkins of North America.
Though the phenomena of electricity had been long familiar to the philofuphers of Europe, it is well known that a philofophical theory of thefe phenomena was firit forined by a tranfatlantic philofopher. In like manner, though the difcovery of Galvani, under the name of animal elearicity (fee Galvanism in this Supplement), had occupied the attention of many of the firit phyticians and philofophers of the old world, it was referved for a phyfician of the new, to apply it to the cure of a number of difeafes. Every philofopher of America, however, has nat the fagacity of the Philadelphian fage; nor mult Dr Perkins or his admirers be furprifed, if we treat not incomprehenfible myfticifm with the refpect duc to a theory founded on fats.

P E R $[347] \quad$ P E R

Porkinim. We are told by the fon (1) of this rival of Franklin, that before the news of Gulvani's difcovery had reached Anserica, he had obferved feveral phenomena pointing out the influence of metals in cafes of pain. 'The firlt remarkable incident that prefented itfelf to his notice was the fudden contraction of a mufcle when he was performing a chirurgical operation. 'This, he obferved, regularly took place whenever the point of the metallic inftrument was put in contact with the inufele. Struck with the novelty of the appearance (Is Mr Perkins fure that the appearance was new?), he was induced to try the points of wood and other fubfances; and no contraction taking place on thefe experiments, he thence inferred that the phenomena could be afcribed only to the influence of the metal. About the fame time, he obferved that, in one or two cafes (and if his jractice had been great he might have obferved that in a thoufand cafes), a ceffation of pain had enfued when a knife or lancet was applied to feparate the gum from a tooth previous to extracting it; and in the fame year he difcovered, that momentary eafe was given, in a few inftances, by the accidental application of a metallic inflrument to inflamed and painful tumors previons to any incifion.

Thefe are the judicious reafonings and affertions of a dutiful child, who, having probably heard of Leibnitz's clains to fome of Newton's difcoveries, was determined to put in a fimilar claim for his father, to a flare, at lealt, of the difcovery made by the celebrated profeffor at Bolugna. He has not, however, copied with fervility the conduct of the Leibnitziaus. We do not remember an inftance where any of them attempted to clevate the fame or the merits of their malter above the fame and merits of Newton; but, according to our author, the purfuits of Galvani and his European pupils link into infignificance, wheh compared with thofe of the tranfatlantic phyfician.

This is evident; for when the phyfiologitts of Europe were engaged in experimenting on the denuded nerves and mufcles of the imaller animals, with a view to afcertain the agency of this incomprehenfible property in them, Dr Perkins was profecuting a feries of experiments, which confilted in applying externally, to parts affected with difeafe, metals, and compounds of metals of every defeription which occurred to him, and conAructed into various forms and lizes. The refult proved, that on drawing lightly over the parts affected certain inflruments, termed tractors, which he formed from metallic fubftances into pointed thapes, he could remore noft of thofe topical difeafes of the human body, where an extra degree of nervous energy or vital heat was profent ; unlefs fuoh difeafe was fituated in forne of the internal vifcera, too remote from the part where the in. ftruments could be applied.

The difeafes which have been found molt fufceptible of the influence of the tractors are, rheumatifm, fome souiy affections, pleurify, opthalmias, eryfipelas, violent fpafmodic convulfions, as epileptic fits and the locked jaw, the pain and fwelling attending contufions, inflammatory tumors, the pains from a recent fprain, the painful effects of a burn or fcald, pains in the head,
teeth, and indeed moft kinds of painful topical affec. Perkinifn, tions, excepting where the olganic Atructure of the part is deftroyed, as in wounds, uleers, \&c. and excepting alfo where oils or fome other non-conducting fubfances are prefent.

But we have other teftimonies than thofe of Di Perkins and his fon for the influence of the tractors. Mr Meigs, profeffor of natural philofophy at Newhaven, in a letter on Dr Perkins's difcovery, conceives the prizciples of metallic irritability as fo little underftood, that he will not pretend to explain low the tractors produce their effects; but feems fatisficd in linding that the effects are produced. After thating an experiment on his own child, eight years of age, very dangeroully ill with a peripncumonic complaint, and to which the tractors gave almoft inltantaneous relief, he fays, "I. have ufed the tractors with fuceefs in feveral other cafes in my own family; and although, like Naaman the Syfian, I cannot tell why the waters of Jordan fhould be better than Abana and Pharpar, rivers of Danafcus; yet, fince experience has proved them fo, no reafoning can change the opinion. Indeed, the caufes of all common facts are, we think, perfectly well known to us; and it is very probable, fifty or an hundred years hence, we fhall as well know why the metallic tractors fhould in a few minutes remove violent pains, as we now know why cantharides and opium will produce oppofite effects : viz. we fhall know but very little about either, excepting facts."

Mr Woodward, profeffor of natural philofophy at Dartmourh, in a letter alfo on the fame fibject, has fated a number of fuceefsful experiments in pains of the head, face, teeth, and in one cafe of a fprain.

Dr Vaughan, a member of the Philadelphia medical fociety, has lately publifhed an ingenious tract on Galvanifm, the object of which is to account for the in. fluence of the tractors in removing difeafes. After a citation of nuncrous experiments made on the nerves and mulicits of animals, he obferves, "If we only take an impartial view of the operations of Nature herfelf, and attend diligently to the analytical invefigations of the aforementioned experimentalits on this fublime fubject, I think the feeptic mult admit that the principle of nervous energy is a modification of clectricity. As fenfation is dependant on this energy, a plea. furable fenlation, or what may be temed a natural or healthy degree thereof; then certainly pain, or fuperfenfation, can only depend on an accumalation of the electric fluid, or extra degree of energy in the part affected. On this principle the problem adnits of eafy lolution; namely, that the inetals, being fufceptible of this fluid, conduct the extra degree of energy to parts where it is diminifhed, or out of the fyftm aleogether, reftoring the native law of electric equilibrium."

We truft we are not feeptics; and yet we feel not ourfelves inclined to admit any part of this theory. We have feen no proof that nervous energy is a modification of electricity; and we think that we have ourfelves proved, that galvanifm and elcaricity are in many refpects different; but we fhall not be much furprifed if we foon fee a demonflation by fome American or German

X $\times 2$
philofopher,
(A) See a pamphlet, entitled The Infuence of Metallic Tractors on the Human Body, \&.c. by Benjamin Douglas Perkins, A. M. fon to the difcoverer; or a very good abridgenent of it in the firt vohume of the Philofophical Magazine.

P E R

Perkinifm. philofopher, that the foul of man is a compofition of filver and zinc. One of thefe fages has lately difcovered, that the fymptoms of putrefadion do not contitute an infallible evidence of death, but that the application of metals will in all cafes afcertain it beyond the poffibility of doubt! A proper application certainly will; for when the Perkinilt is doubtful whether his patient be deat or alive, he has only to apply the muzzle of a loaded pittol to his temple, and blow out his brains; after which he may fafely fwear that the man is dead.

From the Pbilofophical Magazine, we learn that Profeffor Schumacher at Copenhagen made experiments with tractors of brafs and iron on ten patients in Frederick's hofpital at Copenhagen. He tried alfo tractors of ebony and ivory, which are faid to have cured a pain in the knee; with others of filver and zinc; and fome of copper and lead. By the two laft, pains in the knee, arm, and face, are faid to have been mitigated. According to M. Klingberg's experiments, this remedy was of ufe in malum ifchiaticum; and according to thofe of M. Steffens, in malum ifchiaticum and negrim. According to M. Bang, the pains in fome cafes were increafed, and in others allayed. According to M. Blech, the tractors were of ufe in bemicrania and gouty pains in the head; and, according to M. Hahn, in rheumatic pains in both houlders. The principal document in the Danifh collection relating to Perkinifm, appears to be a letter of Profeffor A bilgaard, in whofe opinion Perkins's tractors will never acquire much value in medicine, and fcarcely even have the merit of being a palliative; but, in a phyfical point of view, he thinks they deferve the attention of phyficians, and particularly of phyfiologifts. Mankind (he fays) hitherto have paid too little attention to the influence which electricity has on the human body ; otherwife they would know that the effects produced on it by our beds is no matter of indifference. If the feather beds and hair mattrefles, \&c. are perfectly dry, the perfon who fleeps on them is in an infulated fate; but the contrary is the cafe if they are moilt. He three times removed a pain in the knee, by flicking the tractors, one on each fide of the knee, fo deep through the ftockings that the points touched the 隹in. He semoved a heumatic pain in the head from a lady by the fame means. M. Kafn, by the tractors, relieved, in others, gouty pains of the head and megrim :- and in bimfelf, a rheumatic pain of the back, which, according to his fenfations, was like a conftriction in the celhilar tiflue. M. Hethutdr, from his experiments, confiders the effect of the tractors as indefinite and relative as that of other remedies. He, however, faw relief given by them in the ftrangury in a cafe of fyphilis. M. Bang alfo, at Soroe, freed a man from a violent gouty pain in the thigh, by drawing the tractors 200 times over the affected fart. M. Jacobfen likewife found benefit derived from thefe tractors feveral times in the common hofpital at Copenhagen. M. Tode tried them alfo in rleeumatic pains, toothe-ache, and inflammation of the eyes; and oblicred that they neither did good nor harm.

On fome of the attefted cures mentioned in Mr Perkins's pamphlet, an able writer in the Monthly Review has made remarks fo very pertinent, that we cannot refufe ourfelves the pleafure of tranferibing them.
"At page 54 of the pamphlet, we ineet (fays the
reviewer) with a frong proof of the confidence placed Perkinifm. in this remedy by feveral tranfatlantic philofophers. Dr Willard, it feems, applied a red hot piece of iron to a wart on his finger, and burnt himfelf very feverely, in order that he might be relieved by the tractors; which are faid to have given him eafe in two fucceflive experiments. The author adds, ' many have fubinitted to fimilar meafures, in order to experience the effects. I once formed one of five, who burned ourfelves fo that blitters were raifed, to make the experiment ; we all obtained relief in a few minutes.'
"This zeal for knowledgre is truly edifying; efpecially as the tractors are generoully prelented to the publie at only five guineas a pair ; and it is clear that one pair would fuffice to cure all the burns and fealds of a large parifh. Why are not fuch luculent experiments repeated here? If Mr Perkius, or any admirer of the difcovery, would fubmit to have a red hot poker run into fome part of his body not neceffary to life (into that part where bonour's lodged, according to. Builer, for example), in any public coffee huufe within the bills of mortality, and would afterward heal the wound in prefence of the company, in ten ininutss, or in half as many hours, by means of the tractors, the moft ftonyhearted infidel could not refift fuch a demonftration. Why trifle with internal inflammations, when fuch an outward and vifible lign might be afforded?
" Mr Perkins has taken fome pains, in the firf part of his pamphlet, to fhew that the operation of his rods is not derived from animal magnetim. In our opinion, this is an unneceflary piece of trouble in England, where there is a conftant fucceffion of fimilar pretenfions. The virgula divinatoria, and the baguette of the juggler, are the genuine prototypes of this myltery. We were, indeed, rejoiced, on Dr Perkins's acconnt, to find that the Connecticut Society had only denounced him as a Mefmerill : we trembled left he fould have been put into the inquifitorial hands of the old women as a white witch."

This may be thought too ludicrous a treatment of a difcovery which profeffes to benefit mankind; but to have treated this difcovery with ferioufnefs, would have degraded the profeffion of a fcientific critic. As if the very cures pretended to have been performed did not of themfelves throw fufficient ridicule over the difcovery, Mr Perkins informs us, " that in fome inftances the metallic influence, when excited by different perfons, produces different effects. Experiments made to afcertain the point, proved that there were perfons who might ufe the tractors for any length of time, in difeafes which were fuitable for the operation, and produee no perceptible effect; when by placing them in the hands of another perfon, who hould perform the operation precifely in the fame manner as before, the pain or inflammation would be removed directly." Hence he endeavours to prove that the influence of the tractors is Galvanic, by an argument as abfurd as the pretended fact on which it is founded.
"On the application (fays be) of zinc and filver to the tongue, the fenfation of tafte is very flight to fome, while with others it is very flrong:-when the experiment is applied to the fenfe of fight, fome are hardly fenfible of it, while others obferve a ftrong flafh." But, not to mention that neither ebony nor ivory can form part of the excitatory are in Galvanifm, though we

P E R

Yerkinifm. have feen them both employed fuccefsfu!ly as tractors by a Danifh Perkinif, it is enough to oblerve, that the dif. ferent effects of the Galvanic metals un different perfons depend upon the difference of itructure of the organs of fenfation in the patients; whereas the different effects of the metallic tractors refult, according to this account, from the difference of ftructure in the organs of fenfe of the various operators! Nay, what is till more extraordinary, if any thing can be mure extraordinary than this, is, that the value of the tractors depends, not upon the materials of which they are made, or the jkill of the manifacturer, but upon fome irconceivable virtue conveyed by Mr Perhins to the perfon of him by whom they are fold. 'This we learn from a pamphlet pub.' lifhed by Charles Cunningham Longworthy, furgeon in Bath; whin informs us, that he fells tractors by commiffon from Mr Perkins the original manufacturer in London.

After this article was fent to the prefs, and thus much of it printed, we received, from a friend in LonNon, a copy of Mr Perkins's lalt publication on the fubject * ; in which he endeavours to repel the objections urged by Dr Haygarth and others againk the influence of the metallic tractors. Harl we nut been previoufly convinced of the fality of Perkinifin, the perufal of this pamphlet would have removed from our minds every doultt ; for we will venture to fay, that it is not in the power of Dr Haygarth, and the whole faculty united, to bring more complete proof than Mr Perkins has here brought, that what he calls his father's difcozery has no claim to rank otherwife than with the difcovery of Mefmer. See Animal MAGNE. rism, Encycl.

He gives indeed 250 cafes, which are attefted to have been fuccefsfully treated by the tractors; but at leaft an equal number of cafes were attefted to have been fuccefsfully treated by Mefmer and his partifans; and fix times that number of curts were faid to have been miraculoully performed at the tomb of the Abbé Paris (See Paris in this Suppl.) We would willingly allow, however, that thefe atteftations ought to draw the attention of men of feience to the fubject, did not the author himfelf betray a want of confidence in the tractors, by his own arguments in their favour, and by his caution to the public againtt counterfeits. He feems indeed to confider their fanative influence as refulting entirely from his patent.

Dr Haygarth having faid that he performed cures of the fame kind with thofe of which Mr Perkins boalts, by the proper application of tractors made of zoood; and having added, that "if any perfon would repeat thefe experiments, it hould be done with due folem. nity," in order to work upon the imagination; our author replies, by putting the following queltion; "Is there a fingle poffeffor of the patent metallic tractors in England, who has frequently ufed them, and will fay that this fraud is neceffary to inake them perform cures?" Inftead of anfwering for the Englifh poffeffors of thefe valuable inftruments, we beg leave, in our turn, to afh, If there be a fingle expert chemilt in Great Britain who can uuderitand this queftion in any other fenfe than as implying that the virtue of the tractors refides in the patent? This, however, appears ftill more palpable in the caution to the public.
" Among the various artifices (fays Mr Perkins)
which have been empluyed by certain interefted perfons, Perkinifm, J have to mention the mean attempt to circulate falfe $\mathrm{t}^{\text {'eroufe. }}$ tradors, and from the failure of thefe to throw difcredit upon the difeovery. 'I'hree inftances of this kind have occurred lately. Complaints having been made to me that my tractors would not cure the difeafes for which they are recommended, I was led to make inquiry refpecting the cafcs alluded to ; and conceiving thein fit fubjects for the trafors, I called on the patients to apply them myfelf. In borb inilances (it was juit now in three inflances) I found they had been ufing counterfit tractors. H.ad not this been difeovered, the merit of the fatent tractors mult have fuffered extremely!"

This is very extraordinary. The ebarager or fame of any thing may indeed be injured by a counterfeit; but we believe this is the frit intlance of the merit or demerit of one inanimate fubitance being increafed or diminithed by another at a diftance from it, -of the hardnefs of iteel, for inllance, being diminilhed by the fuftnefs of leal! But we beg Mir Perkins's pardon. The merit of his tractors confits in their putting money inco his pocket; and that merit might certainly be injured by the ufe of counterfeils. Hence, with great propriety, he iaforns the public, that every genuine fot is ttamped with the words Perkins's patent tracTORs, accompanied with a receipt for the five guineas, numbered and figned in the handwriting of the patentee. Wrom thefe facts we infer (and he mult acknowledge the inference to be jull), that the vitue of the tractais refides in the patent, reflricting the making of them to Benjamin Douglas Perkins, and not to the metal of which they are made. This is indeed molt obvious; for he cannot be fuch a ftranger to the Itate of chemical fcience in this country, as to foppofe that his tractors may nut be analyfed intu their component principles, and, of courfe, thai others may not be made poffelling all their virtues except fuch as refult from the patent.

We fhall conclude this article in the words of the reviewer already quoted: "To trace the relations and dependencies of projects fimilar to that of Dr Pcrkins, would now be a work of more labuur than uthity. The fund of public credulity is an inexhauftible refource for thofe who can refolve to levy contributions on it. In vain is the fpirit of quackery exorcifed in one form; it rifes again immediately, "with twenty ghatly murders on its head, to puih us from our flools.' We, who have contemplated the progrefs of real knowledge during a long courfe of years, have feen many bubbles like this glitter for a moment, and then difappear for ever. People may talk of Mefmerifm, or Perkinifm, but we confider all fuch varieties as belonging to the old and extenfive clafs of Charlatanifm."

PEROUSE (John Francis Galoup de la), the celebrated, though unfortunate, French navigator, was born at Albi in 1741. Of the rank or condition of his father, M. Milet-Murean has given us no information in that meagre eulogy of Peroufe which he has inferted in the introduction to his laft voyage. It appears, however, that he intended to make his fon a feaman, and fent him, at a very early period of life, to the marine fchool, where the young man became enthuliallically fond of his profeftion, and laudably ambitious to emu. late the fame of the molt celebrated navigators.

Wernulc.
Being appointed a mididhipman on the reth of November 175°, he behaved, we are told, with great bravery in that flation, and was fevertly wounded in the cugagement between the admirals Hawke and Connans, on the 20th of November 1759. The Formidable, in which he ferved, was taken, after a vigorous refiftance; and it is probable that Peroufe reaped fome advantage from his acquaintance with Britin officers.

Out the if of October 1764 he was promoted to the rank of lieutenant; and defpifing a life of eafe and idlenefs, he contrived to be employed in fix different flips of war during the peace that fubfifted between Great Britain and France. In 1767 he was promoted to the rank of what, in our navy, is called mafter and commander. In 1779 he commanded the Amazone, belonging to the fquadron of Vice-admiral Count d'Etaing; and when that officer engaged Admiral Byron, the poft of La Peroufe was to carry his Admiral's orders to the whole of the line. He afterwards took the floop Ariel, and contrihuted to the capture of the Experiment-exploits which his eulogif feems to confider as inftances of very uncommon heroifm ; but he foon after performed a greater.

Being, on the 4th of April 1780, appointed captain of the frigate Afrea, and being on a cruife with the Hermione, thefe two frigates attacked fix Englifh veffels of war, of from 28 to 14 guns each, and took two of them. The French certainly reaped more laurels about that period than they have been accullomed to do in naval wars with Great Britain : but as we have completely forgotten the particulars of this fight, we fufpect that it was not altogether fo very brilliant a bufiuefs as M. Milet-Mureau is pleafed to reprefent it.

In the year 1782 , La Peroule was difpatched with the Sceptre of 74 guns, and two frigates of 36 guns each, having fone troops and field pieces on board, to deftroy the Engliih fettlements in Hudfon's Bay. This talk was eafily accomplifhed; for when he had fur. mounted the difficultics of mavigation in a frozen fea, he found nothing on thore to oppofe the fmalleft force. Having deftroyed the fettlements, he learned that fome of the Englifh had fled at his approach into the woods; and his eulogift.confiders it (fueh are the difpolitions of French republicans) as a mort wonderful inftance of humanity, that be left to thefe unfortunate men provifions to preferve them from perihing by hunger, and arms tu protect then from the fury of the favares! Peroufe, we dare anfiver for him, was confcious of nothing heroic or extraordinary in this aet of bencficence, which he certainly could not have omitted, without incurring both infamy and guilt.

In the year 1785 , he was appointed to the command of a voyage roind the world; which was unfortunately deftined to be his laft. Of this voyage, as far as it was accomplihed, there is a full account in the hands of every French and Englifh reader ; and from that account it appears, that Pcroufe was admirably qualified to difcharge fuch a truit. He feems to have been an experienced and fiilful feaman; a man of confiderable mathematical and phy fical fcience, uncorrupted by that philofophifm which difyraced many of his attendants; and capable of the ntmoft perfeverance in every laudable purfuit. To thefe qualities he mited a proper combination of caution and cotrage, with a difpofition truly benevolent to the various tribes of favages whom
le vilited. The uifatters which occurred on the voy. Perpetdiages wereall, except the laft, of which nothing is known, occafoned by the difobedience of his officers, or their neglecting tu follow his advice.
burgh. dated from Botany Bay, February the 7 th, 1788 ; and lince that period, 10 account of him has been received which is intitled to the finalleft conlidence. M. MiletMureau has indeed given us, at fome length, the childifh conjectures of the Society of Natural Hifory refpecting his fate, which, in language equally childim, were delivered at the bar of the National Affembly; and he has added the ridiculous decree which that body of legifative feiolilts paffed in confequence of fo extraordinary a fpeech. We will not difgrace our pages, or infult the memory of Peroule, by contrihuting to the circulation of nonfenfe, which, we are perfuaded, would have made him blufh for his country.

PERPENDICULAR, in guniery, is a fmall inftrument, ured for finding the centre line of a piece in the operation of pointing it to a given object.

PERS: AN or Persic, in architecture, a name com. mon to all ftatues of men, ferving inftead of columns to fupport entablatures.

PERWANNAH, in the language of Bengal, an order of government, or a letter from a perfon in authority.

PETERSBURGH (St), the capital of Ruffia, is a city, of which a pretty full hiftorical detail has been given in the Encyclopadia. It is introduced here merely on account of its police, which, according to the anonymous author of the-life of Catharine II. has a very fimple and competent organization, and deferves to be adopted in other great capitals. Excepting the governor, whofe office naturally extends to all objects of public welfare, the head police mater is the proper chief of the whole fyltem of police. His office takes in the great compafs of this departinent, but confined to the general objects of public fecurity and order. He is not here, as in fome large towns, the fornidable copartner of family lecrets, and the invilible witnefs of the actions of the private man. Under the head po-lice-mater is the police-office, where fit a police-matter, two prefidents, the one fur criminal, the other for civil cafes, and two confulters, chofen from the burgher clafs. To this is committed the care to maintain decorum, good order, and morals : alfo it is its buliaels to fee to the ohfervance of the laws, that the crders iffied by go. vernment, and the decifions of the courts of juftice, are put in force. The attainment of thefe purpofes is effected by the following mechanifin:

The refidence is divided into ten departments. Each of thefe has a prefident, appointed to watch over the laws, the fecurity, and the order of his diftrict. The duties and rights of this office are not lefs extenfive than important. A prefident mult have exaet knowledge of the inhabitants of his department, over which a fort of parental authority is committed to him ; he is the cenfor morum of his department ; his houfe muft not be bolted or barred by uight or day, but huut be a place of refuge, contilually open to all that are in danger or diftrefs; he himfelf may not quit the town for the fpace of two hours, without committing the difcharge of his office to fome uther perfon. The police-commando (conftables), and the watchmen of Lis department, are

P E T

[.35 I

P E T
up in mytery; fo likewife may whole focicties be lefs indifferent to it, if they carefully conceal the object of their connection, or their very cxiltence, from the cye of the public. The police watches here, with laudable attention, over fecret focieties of all kinds; and frequently as the fanatical fipirit of religious or political fectaries, or the enthufiafm of pretended myftagogues, have attempted to nefle here, they have never been able to proceed, or only for a very fhort time. Animal magnetifm, Martinifm, Rofycrutianifin, and by whatever other name the conceits of diftempered imaginations may be called, have always been attended with the fame bad fuccefs on this flage.

From this fketch it will be readily imagincd, that the number of impoftors and difturbers of the puiblic peace can be but fmall. Quarrels and affrays in the ftreets or in the cabaks but feldom bappen. The perfon attacked calls the neareft watchman; and in a moment both the aggreffor and the aggrieved are taken into cuftody, and led to the next ficja (police-watch-houfe), where the caufe of their quarrel is inquired into, and the a ${ }^{\prime}$ greffor is punifhed. For matters of fome defrijptions, there is a peculiar tribunal, under the denomination of the oral court, which, on account of its lingularity, deferves to be briefly noticed.

In each quarter of the town are one or more judges
In each quarter of the town are one or more judges
of the oral court, who are clofen from the clafs of burghers, and with whom are affociated a few jurats. This court fits daily in the forenoon, and procceds orally in all the differences that come beforc it. It, however, keeps a day-book, in which are entered all the caufes and decifions of the collt, and which mult be
every week laid before the magiffrate. When a charge every week laid before the magiftrate. When a charge is bronght, the conert declares it orally to the prefident of the quarter: whercupon the accufed muft not delay his appearance hefore the police longer than one day
after he has received the fummons. Every caufe muit his appearance hefore the police longer than one day
after he has received the fummons. Every caufe muit be determined in one day, or, if the examinations requireraore time in collecting, in three days. The oral court
communicates the decifion to the prefident of the cularraore time in collecting, in three days. The oral court
communicates the decifion to the prefident of the guarter by means of his day book, in order to its ratilication. If either party is not fatistied with the fentcuce,
he may appeal to the court as appointed in the regula. tion. If either party is not fatisfied with the fentcuce,
he may appeal to the court as appointed in the regulations.

This is a very favourable account of the police of St: Peteriburgh; but it is differently reprefented in Buasjotin's Travels of two Frenchmen throusth R_{4} / J_{2}, in in 1790-1792. According to him, the police of the
capital of that empire is far from being oit the mool recapital of that empire is far from being wn the moll re-〔pectable footing. Thére happen, indeed, but fuw accidents in the night; yet fometimes murders are com-. mitted, and efpecially thefts; for which, according to our author, it is esceedingly rare to obtain jultice. When a perfon has been alfaffinated in fome place of bad repute, the police-officer is cngaged to fecrecy by means of a few rubles ; fo that the affair is foon hamed up, unlefs the decealed belongci to fome powerful family, whofe interelt makes it neceflary that iuquiries fhould be inftituted. When two perfons quarrel, either in the flreet or in a public houfe, he who pays the in.
quirer is always in the right: the inferior pulice-oficers in the flreet or in a public houfe, he who pays the in.
quirer is always in the right: the inferior police-officers are never proof againft money; and the poor individual, whether he be in the right or wrong, is almofl fure of a beating.
PET IVER (James), a famous Englifh botanif, was
lice-office.
Each departnent is again divided into three, four, or five fubdivifions, called quarters, of which, in the whole refidence, are 42. Each of thefe has a quarter-infpec-
tor, in fubordination to whom is a quarter-lieutenant. refidence, are 42. Each of thefe has a quarter-infpec-
tor, in fubordination to whom is a quarter.lieutenant. The duty of thefe police-officers is in harmony with The duty of thefe police-oflicers is in harmony with
that of the prefident, only that their aetivity is confinied to a fmaller circle. They fettle low affairs and lied to a fmaller circle. They fettle low affairs and
flight altercations on the fpot, and keep a watchful eye on all that paffes.
. The number of the nightly watch in the city amounts to 500. They have their flations affigned thein in watch-loufes at the corners of flreets; and, befides their proper deftination, are to affilt in the taking up of of. proper deftination, are to affilt in the taking up of of. commanders flall require. Befides thefe, for the execution of the police orders, and to act as patroles, there is alfo a commando of 120 men, who, in cafes of emergency, are fupported by a company of kofaks, or a regiment of huflars.

This machine, confifting of fo many fubordinate parts, preferves in its orderly courfe that fecurity and peace which excite the admiration of all foreigners. The activity of every individual member is unobferved in the operation of the whole; and by fucl a diftribution alone is the attaiument of fo complicated an aim practi-cable.-All the quarter-infpectors of a department repair every morning, at feven o'clock, to their infpector's houfe, to lay before him the report of all that has happened in their quarters during the laft 24 hours; and at eight w'elock', all the infpectors bring together thefe fevcral reports into the police office, whereupon they firt and imnediately take into examiaation the cafes of perfons taken into cultudy during the night. On urgent occalions, the police-uffice alfenbles at all hours.
This organization, and the extraordinary vigilance of the police, which is found competent to the bulinefs of a numerous and reitlefs people, render all fecret inquifitions unneceflary. The police has knowledge of all perfons in the refidence; travellers who come and go are fubject to certain formalities, which render it extremely difficult to conceal the ir place of aboue, or their departure from the city. To this end, every houfeholder and innkeeper is obliged to dechare to the police who lodges with him, or what Atrangers have put up at his houfe. If a ftranger or lodgrer itays out all night, the landlurd mant inform the police of it at latelt on the third day of his abfence from his houfe. 'The cautionary rules, in regard to travellers quitting the town, are till more ftrict. Thefe muft publifh in the newfpapers their name, their quality, and their place of abode, three feveral times, and produce the newflpapers containing the advertifement, as a credential in the government from which they then received their palfport; withont which, it is next to impoffible to get out of the empire. This regulation not only fecures the creditor of the perfon about to depart, but alfo enables the police to keep a clofer infpection over all fufpected inhabitants.

If individuals may he fufpected by the government, becaufe their means of fupport, the company they keep, and their whole courfe of action, are clofely wrapped commanders flall require. Belides thefe, for the exe.

Peterf. under his orders; and he- -s attended on all affairs of his office by two ferjeants. Complaints againft unjuft behaviour in the prefident may be brought to the po.

Petiver,
Phatianus. $\underbrace{\text { Phafianua. }}$
contemporary with Plukenet ; but the exact time of his birth is not known, nor is much intelligence concerning him at prefent to be obtained. His profeffion was that of an apothecary, to which ine was apprenticed under Mr Feltham, then apotheary to St Bartholomew's hofpital *. When he entered into bufinefs for himfelf, he lettled in Aiderfgate freet, and there continned for the remainder of his life. He obtained confiderable bufinef, and after a time became apothecary to the charter-houfe. After the Tradescants, he appears to have been the only perfon, except Mr Courten and Sir Hans Sloane, who made any confiderable collection is natural hilfory, previous to thofe of the prefent day. He engaged the captains and furgeons of fhips to bring him home fpecinnens, and enabled them to felect proper objects, by printed directions which he dittribused among them. By thefe means his collection becare io valuable, that fome time before his death Sir Hans Sloane offered him L. 4000 for it. After his death, it was purchafed by the fame collector. His mufeum extended his fame both at home and abroad. He was elected into the Royal Society; and becoming acquainted with Ray, affificd him in arrangiug the fecond volume of his Hittory of Plants. He died April 20. 1718 ; and mucl honour was fhewn to him at his funeral, by the attendance of Sir Hans Sloane, and other eminent men, as pall bearers, Sc. By future botanifts, his name was given to a plant. See PetiveR1A, Encyel.

He gave the world feveral publications on various fubjects of natural biffory: 1. Mu/ci Petiveriani Centuria decem, 1692-i753,8vo. 2. Gaxophylacii Nature at Artis, Decades decem, folio, 1702, with 100 plates. 3. A Catalogue of Mr Ray's Englifh Herbal, illuftrated with figures, folio, 1713 , and continued in 1715 . 4. Many fmall publications, which may be found enumerated in Dr Pultney's book. 5. Many papers in the Philofophical Tranfactions, and a material article in the third volume of Ray's work, entitled, Planta Rariares Chinenfes Madrafpalana, et Africanc, a \mathfrak{f} acobo Petivero ad opus Confummandum Collata, \&c. Many of his fnallor tracts having become very fcarce, his works were collected and publithed, exclufive of his papers in the Tranfactions, in 2 vols fulio, and one 8 ro, in the year 176

PHASIANUS (See Encycl.) A fpecies of this genus of birds, formerly not dectibed, was fent from Batavia to England by Lord Macartney, or fome of his attendants, when they were on their voyage to China. The fpecies to which it feemed to be molt nearly al-
lied, in point of general habit or appearance, was the Phefianus, phafianus curvirnfris, or Impeyan pheafant ; an Eaf Indian bird, deferibed and figured both in Mr Latham's Ornithology, and in the Mufeum Leverianum. From that bird, however, it differs very confiderably. The tail of the latter being in a mutilated flate, it was fearce poffible to determine, with abfolute precifion, whet her it fhould be referred to that fubdivifion of pheafants which contains thofe with long or cunciform tails, or thofe with rounded ones, as in the Impeyan pheafant. The general colour of this moft tegant bird was black, with a glofs of blue, or what, in the language of natural hiflory, may be termed chalybean biack, or black accompanied by a fteel blue luftre. The lower part of the back was of a peculiarly rich colour, which, ac. cording to the different directions of the light, appeared either of a dcep ferruginous or of the brighteft fiery orange red. This beautiful colour paffed in the manner of a broad zone round the whole body; but on the abdomen was of a much more obfcure appearance than on the back, as well as fomewhat broken or irregular, efpecially on the fides. The throat was furnifhed with a large, and fomewhat angular, pair of wattles, uniting with the bare fpaces on the cheeks. The feathers on the top of the head, which was of a lengthened form, ran a little backward, fo as to give the appearance of an indiftinct occipital creft. The beak was remarkable for a more lengthened and curved afpect than in any other bird of this genus, except the Impeyan pheafant. The feathers on the neck, back, and breaft, were rounded, and of the fame fhell like or fcaly habit as thofe of the turkcy. The legs very ftout, and were armed with a pair of extremely lliong, large, and Tharp fpurs. Both legs and beak were of a pale colour. Whether this bird be really new or not to the ornithologifts of Europe, it may at lealt be affirmed with fafety, that it had never been properly defcribed; aor can the character of any fpecies, hitherto introduced into the books of any fyllematic naturalift, be confidered as a juft or competent \{pecific character of the prefent bird. It may be called the fire-backed pheafunt; and its effential cliaracter may be delineated in the following terms: Black pheafant with a fteel-blue glofs; the fides of the body rufous; the lower part of the back fiery ferruginnus; the tail rounded; the two middie feathers pale yellow brown.-Sir Georgc Staunton's Account of in Eimbofly to Cbina, \&c.

PIHILOSOPHIST', a lover of fophiltry or falfe reafoning, in contradiftinction to \not /hilofopher, who is a lover of found reafoning, true fcience, and practical wifdom.

Critical PHILOSOPHY.

CRitical PHILOSOPHY, is the appeilation given to a fyttem of fcience, of which the founder is I_{m-} manuel Kant, regius profeffor of logic and metaphyfics in the univerfity of Koenigfberg. Of his fyttem, which is very generally admired in Germany, we pronifed, in our profpeetus, to gratify our fpeculative readers with a fhort view; and that promife we are enabled to fulfil, by the lind communication of an illuftrious foreigner, who, after acting a confpicuous part on the theatre of the world, and friving in vain to ftem the torrent of
democratic innovation, is now living an exile from his wretched country, and celtivating the feiences and the arts of peace.
" To explain (fays he) the philofoply of Kant in all obrcurity its details, would require a long and a painful fudy, of its lanwithout producing any real advantage to the reader. guage. The language of the author is equally obfcure, and his reafonings equally fubtle, with thofe of the commentators of Ariftotle in the igth century.
The truth of this affertion will be denied by none,
who have endeavoured to make themfelves malters of the works of Willich and Nitfols on the critical philofophy ; and the fuurce of this ublcurity feems to be fufficiently nbvious. Befides employing a valt number of words of his own invention, derived from the Greek language, Kant ufes expreffions, which have long been familiar to metaphy ficians, in a fenfe differcut from that in which they are generatly reseived; and heace alarge portion of tine is requifite to enable the moft fagacions mind to afcertain with precifion the import of his phrafeolngy.

The difficul:y of comprehending this philofophy has contributed, we believe, mure than any thing elfe, to bring it into vogue, and to raife the fame of its author. Men are athamed, after fo linborious and fatiguing a ftudy, to acknowledge that all their habour has heen thrown away; and vanity prompts almolt tery man to raife the importance of that branch of feience which is me deritood but by a few, and in which he is confcious that his own attainments lave been great. "We acknowledge, however, that in the fy ttem of Kant there is difplayed much genius, combination, and fy ftematic arrangement ; but this only affords one of the many reafons which it prefents, for our regretting that the author has not directed his mind to more ufeful refearches, and that he has wafted the ftrength of his genius in rendering uncertain the molt comfortable truths, and in giving the appearance of novelty to opinions for the molt part taught long before his day.

The following analyfis, we believe, will fufficiently enable any one, at all converfant with metaphyfical fcience, to form a judgment of this celebrated fy tem; and our correfpondent, on whofe word the reader may rely, affures us, that, in detailing the principles of Kant, he has taken fpecial care to exhihit them with the utmoft poffible exactnefs, having feveral times preferred the obfcurity of the author's reafonings and language, to the danger of a falfe, though more perficuus, interpretation.
" Kant divides all our knowledge into that which is a priori, and that which is a pofleriori. Knowledge a priori is conferred upon us by our nature. Knowledge a pofferiori is derived from our fenfations, or from experience; and is b:" our author denominated empyric. One would at firt be induced, by this account of the origin of human knowledge, to believe that Kant intended to revive the fyltem of innate idens; but we very quickly difcover that fuch is not his lyftem. He confiders all our knowledge as acquired. He maintains, that experience is the occafional caufe or produltice of all our knowledge; and that without it we could not have a fingle idea. Our ideas a priori, he fays, are produced zuith experience, and could not be produced without it ; but they are not produced $b y$ it, or do not proceed from it. They exift in the mind; they are the forms of the mind. They are diftinguifhed from other ideas by two marks, which are eafily difcerned; i.e. Suppl. Vol. II. Part I.
they appear univerfal and nereflary; or, in other words, they adinit of no exception, and their converfe is impof. fible. Ideas which we derive from experience have ao fuch characters. We can fuppofe, that what we have feen, or felt, or heard once, we may fee, or feel, or hear again ; but we do not perceive any impofibility in its being otherwife. For inftance, a houfe is on fire in my view: I am certain of this fact; but it affords me no general or neceffary knowledge. It is altorether a pofice riori; the materials are furnithed by the indivisual impreffion which I hove received; and that impreffion might have heen very different.
"But if I take twice two fmall balls, and learn to call twice :wo four, 1 fhall be immediately convinced, that any two hodies whatever, when added to any two other bodics, will conflantly make the fum of bodics four. Experience has ivdced afforded the the opportunity of aequiring this knowledge; but it has not given it to me; for how could experience prove to me that this truth ©hall never vary ? Experience muft always be iimited; and therefore cannot teach us that which is neceffary and univerfal. It is not experience which difcovers to us, that we fhall always have the furface of the whole pyramid by multiplying its tafe by the third part of its height ; or that two parallel lines, extended in infinitum, fhall never meet.
"All the truths of pure mathematics are, in the lan. guage of Kant, a priori. Thus, that a flraight line is the fhorteft of all poffible lines between two fixed points; that the three angles of a triangle are always equal to two right angles; that we have the fame fum, whether we add 5 to 7 or 7 to 5 ; and that we have the fame remainder when we fubtract 5 from 10 as when we fub. tract 10 from 15 -are fo many propofitions, which are true a priori.
"Pure knowledge a priori, is that which is abfolutely Pure kuowwithont any mixture of experience. Two and two men tedge a primake four men, is a truth, of which the knowledge is ori.
a priori; but it is not pure knowledge, becaufe the truth is particular. The ideas of fublfince, and of caufe and effett, are a priori; and when they are feparated from the objects to which they refer (we fuppofe from this or that particular ubject), they form, in the language of Kant, woid ideus (A) It is our knowledge a priori, i. e. that knowled ge which precedes experience as to its origin, which renders experience poffible ($\overline{\text { }}$). Our faculty of knowledge has an effect on our ideas of fenfation analogons to that of a veffel, which gives its own form to the liquor with which it is filled. Thus, in all our knowledge a pofleriori, there is fumcthing a priori derived from our faculty of knowledge. All the operations of our minds ; all the impreffions which our external and internal fenfes receive and retain, are brought into effect by the conditions, the forms, which exitt in us by the pure ideas a prion i, which alone render all our other knowledge certain.
"Time and Space are the two effential forms of the Time and Yy mind: fime
(A) In the language of Lock abfrag ideas.
(B) In our correfpondent's manufcript, this fentence runs thus: "It is our knowledge a priori, or that knowledge which entirely precedes experience as to its origin, which experience renders poffible "" but here muft be fome miftake, either by the tranflator or by the amanuenfis. Kant's philofophy is abundantly obfcure and paradoxical; but it furcly never entered into his head to reprefent the effect as prior in its origin to the very caufe which alone renders it poffible. The context, too, feems to us to agree better with the meaning of the fentence as we have printed it in the text.
mind : the former for impreffions received by the internal fenfe; the fecond for thofe received by our external fenfes. Time is neceffary in all the immediate (perhaps intuitive) perceptions of objects; and fpace in all exter-nal perceptions.
Extenfioo.

7
Impenerra. bility, \&c.

10
Analycic judgment:。

11 Synthetic judgmente. fenfations. Ii extenfion were known to us only by ex. perience, it would then be poffible to conceive that there might be feniible objects without fpace.
" It is by means of the form Space that we are enabled, a priori, to attribute to external objects impenetrability, clivifibility, molility, \&c.; and it is by means of the form time that we attribute to any thing duration, fucceffion, finultuneity, permanence, \&c.
"i Arithmetic is derived from the form of our internal fenfe, and geometry from that of our external.
"Our undertanding collects the ideas received by the imprefions made on our organs of fenfe, confers on thefe ideas unity by a particular force (we fuppofe energy) a priori; and thereby forms the reprefentation of each object. Thus, a man is fucceffively flruck with the impreffions of all the parts which form a particular garden. His underflanding unites thefe impreflions, or the ideas refulting from thens ; and in the unity produced by that unifying act, it acquires the idea of the garden. If the objects which produce the impreffions afford alfo the matter of the ideas (c), then the ideas are empyric; but if the objects only unfold the forms of the thought, the ideas are a priori. .The act of the underftanding whichunitesthe perceptions of the various parts of an object into the perception of one whole, is the fame with that which unites the attribute with its fubject.
"Judgments are divided into two fpecies; analytic and fyntbetic. An analytic judgment is that in which the attribute is the mere developement of the fubject, and is found by the fimple analy fis of the perception; as bodies are extended; a triangle bas three ficles.
"A fynthetical judgment is that where the attribute is connected with the fubject by a caufe (or bafis) taken from the faculty of knowledge, whicb renders this connection neceffary : as, a body is beavy; avood is combufible; the three angles of a triangle are equal to two rigbt angles. There are lynthefes a priori and a pofteriori; and the former being formed by experience, we have the fure means of avoiding deception.
" It is a problem, however, of the utmoft import. ance, to difcover how fynthetic judgments a priori are poffible. How comes it, for example, that we can affirm that all the radii of a circle are equal, and that t wo parallel lines will never meet? It is by lludying the forms of our mind that we difcuver the poffibility of making thefe affirmations. In all objects there are things which muft neceffarily be thought (be fupplied by thought) ; as, for example, that there is a fubfance, an accident, a caufe, and certain effecs.
Forms of "The forms of the undertitanding are, quantity, quathe under- lity, relation, modality.
Aanding.
"Quantity, Kant difinguifhes into gencral, parlicalar, and individual; quality, into afirmation, negation, inf. nite ; relation, into categoric, bypotbetic, and disjuncive; and modality, into problematic, certain, and neceffary.

He adds allo to thefe properties of the four principal forms of the underftanding, a table of categories or fundamental ideas a priori.
"Quantity, gives unity, flurality, totality. Quality, Categoric gives reality, negalion, limitation. Relation, gives inlerence, fubfance, caufe, dependence, commusity, reciprocity, Modality, gives pofibility, impolfibility, exiflence, nothing, teceflty, accident. Thefe caterories can only be applied to experience. When, in the confideration of an object, we abttract all that regards ferfation, there remain only the pure ideas of the underflanding, or the caterories, by which a thing is conctived as a thing.
" Pure reafon is the faculty of tracing our knowledge a priori, to fubject it to principles, to trace it from its neceflary conditions, till it be entirely without condition, and in complete unity. This pure reafon has certain fundamental rules, after which the neceflary connection of our ideas is taken for the determination of the objects in themfelves;-an illufion which we cannot avoid, even when we are acquainted with it. We can conclude from what we know to what we do not know; and we give an objcaive reality to thefe conclutions from an appearance which leads; us on.
" The writings of Kant are multifarious; hut it is in his work entitled the Critique of Pure Reafon that he has chiefly expounded his fyftem. This work is a treatife on a pretended fcience, of which Kant's fcholars confider him as the founder, and which has for its objects the natural forces, the limits of our reafon, as the fource of our pure knowledge a priori, the principles of all trutb. Kant does not propofe to give even an expofition of thefe hranches of knowledge, but merely to examine their origin; not to extend them, but to prevent the bad ufe of them, and to guard us againft error. He denominates this fcience tran/cendental criticifm; becaufe he calls all knowledge, of which the ohject is not furnifhed by the fenfes, and which concerns the kind and origin of our ideas, tranfeendental knozuledge. The Criticifm of Pure Reafon, which gives only the fundamental ideas and maxims a priari, without explaining the ideas which are derived from them, can lead (fays Kant) to a complete fyftem of pure knowledge, which ought to be denominated tranjcendental thilofoply, of which it (the Criticifm, \&c.) prefents the architeZonic plan, i.e. the plan regular and well difpofed.
"The work entitled The Critique of Pure Reafon, is divided into feveral parts or fections, under the ridiculous titles of AEfhefic tranfcendental; of tranfcendental logic; of the pure ideas of the underflanding; of the tranfiendental judgment; of the paralogitym of pure reafon; of the ideal tranjcentental; of the criticififn of Jpeculative theologies; of the difcipline of pure reafon, \&c.
" But to proceed with our abftract of the fyftem. We know objects only by the manner in which they affect us ; and as the impreffions which they make upon us are only certain apfaritions or phenonicna, it is im are in pofible for us to know what an objeci is in itfelf. In confequence of this affertion, fome have fuppofed that Kant is an idealij2 like Berkeley and fo many others, who have thought that fenfations are only appearances,
(c) This is wonderful jargon ; but the reader will reflect that it is not ours.
and that there is no truth but in our reafon ; but fuch is not the opinion of Kant (D). According to him, our underftanding, when it confiders the apparitions or phenomena, acknowledges the exifence of the objects in thenfelves, inafmuch as they ferve for the bafes of thofe apparitions; though we know nothing of their reality, and though we can have no certitude but in experience.
"When we apply the forms of our underthanding, fuch as ungity, totality, fubflance, cufurlity, exiflance, to certain ideas which have no object in fouce and time, we make a fallacious and arbitrary application. All thefe forms can bear only on fenfible objects, and not on the world of itingrs in iffelf, of which we can think, but which we can never :now. Beyond things fenfible we can only have opinions or a belief of our reafon.
" The motives to conlider a propofition as true, are either objetive, i. e. taken from an external object, io that each man flaill be obliged to acknowled oe them ; and then there is a truth covident and fufceptible of demongration, and it may be faid that we are convinced: or the motives are fubjegive, i. e. they exit only in the mind of him who judges, and he is perfintided.
" Truth, then, confilts in the agrement of our notions with the otjeats, in fuch a mannter as that all men are obliged to form the fame judgment; belief confitts in holding a thing for true in a fuljective manner, in confequence of a perfuafion which is entirely perfonal, and has not its balis in an object fubmitted to experience.
"There is a belief of doarine, of which Kant gives, as an example, this affertion - 'there are inlabitants in the planets.' We mult acknowledge (he adds) that the ordinary mode of teaching the exiflence of God belongs to the belief of doarine, and that it is the fame with the immortality of the foul. The belief of doarine (he continues) has in itfelf fomething flaggering ; but it is not the fame with moral belief. In moral belicf there is fumething neceffury; it is (fays he), that I fhould obey the law of morality in all its parts. The end is Arongly eftablifhed; and I can perceive only one condition, by means of which this end may be in accord with all the other ends, i.e. that there is a God. I am certain that no man knows any other condition which can conduet to the fame unity of end under the noral law; which law is a law of oty reafon. I will confequently believe certainly the exifence of God, and a fulure life; becaufe this perfuafion renders immoveable my moral principles-principles which I cannot reject without rendering myfelf contemptible in my own eyes. I wifh for happinefs, hut I do not wih for it without morality ; and as it depends on nuture, I cannot with it with this condition, except by believing that nature depends
on a Being who caufes this connection between morality and happinefs. This fuppofition is founded on the want (or neceffity) of my reaion, and not on my duty.
"We have, however, no certainty (fays Kant) in our knowledge of God, becaufe certainty canot exift except when it is founded on an object of experience. I'he philofopher acknowldges, that furc reafon is too weak to prove the exillence of a being beyond the reach of our fenfes. The neceffity of belicving in God is therefore only fubjegive, although neceffary and general for all thofe beings who conform tu their duty. This is not knowlege, but only a beliff of reafon, which fupplics the place of a knowledge which is impoffible (E).
" The proors of natural theology (fays our philofopher, taken from the order and beanty of the univerfe, \&ic. are proofs ooly in appearance. They refolve themfelves into a hias of our reafon to fuppofe an Infinite Intelligence as the author of all that is polfible; tut from this bias it does not follow that there really is fuch an Author. To fay, that whatever exills muft have a caufe, is indeed a maxim a priori; but it is a maxim applicable only to experience, for one knows not how to fubjeat to the laws of our perceptions that which is abfolutely independent of them. It is as if we were to fay, that whatever exits in experience mult have an experience; but the world, taken as a whole, is without experience as well as its caufe. It is much better to draw the proof of the exittence of God from morality, than to weaken it by fuch reafoning. This proof is relative. It is impoffible to know that God exitts; but we can comprehend how it is poffible to at morally on the fuppofition of the exittence (although incomprehenfible) of an intelligent Creator-an exiftence which practical reason forces theoretical reofais to adopt. This proof not only perfuades, but even acis on the conviction, in proportion as the motives of our actions are conformable to the law of morality.
" Religion ought to be the means of virtue and not its object. Man has not in hinfelf the idea of religion as he has that of virtue. The latter has its primeiple in the mind ; it exifts in itfelf, and not as the neans of happinefs ; and it may be taught without the idea of a God, for the pure law of morality is a f riori.
"He who does good by inclination does oot act Morality. morally. The converie of the principle of morality is to make perfonal lappinefs the batis (F) of the will. There are compafionate minds which feel an internal pleafure in conmunicating joy around then, and who thus enjoy the fatisfaction of others; but their actions, however juft, however goord, have no moral merit, and may be compared to other inclinations ; to that of Yy 2 honour
(D) We mult requeft the reader to ohferve that this is the language of our correfpondent. We have fhewn elfewhere, that Berkeley did not deny the reality of fenfations; and we hope to hew by and bye, that Kant is as much an idealift as he was, if this be a fair view of the Critical Philofophy.
(E) We have here again taken the liberty to alter the language of our correfpondent. He makes Kant fay, "It is not this knowledge, but a belief of reafon, \&c.;" hut this is furely not the author's meaning. Frum the context, it is apparent that Kant means to fay, that we have not, and cannot have, what can be properily called a knowledge of the exitence of God, but only fuch a belief of his exiftence as fupplies the place of this impoffible knowledge.
(F) This is a very abfurd plerafe. We fuppofe Kant's meaning to be, that the principles of bim whofe actions and volitions are influenced by the profpee of perfonal happinefs, are the reverfe of the pure principles of morality.
honour (for example), which, whilft it meets with that which is jut and ufeiul, is worthy of praife and encouragement, but not of any ligh degree of eiteem. According to Kant, we ought not even to dig gool, either for the pleafure we feel in doing it, or in order to be happy or to render others happy ; for any one of thefe additions (perhaps motives) wouid be empyric, and injure the purity of our morals. A reatonable being cught to deffre to be exempted from all inclinations, and never to do his duty but fur his duty's fike.
" We ought to act after the maxims derived a priori from the faculty of knowledge, which carr; with then the idea of neeeflity, and are independent of all experience; after the maxims which, it is to be wifhed, could be erected into general laws for all beings en- this fynen If this be a correct view of the object and the refults of the critical philofuphy, and the character of him from whom we received it pernits us not to doubt of its being nearly correct, we confefs ourfelves unable to difcover any motive which thould induce our countigmen, in their refearches after truth, to prefer the dark lantern of Kant to the luminous torch of Bacon. The metaphylical reader will perceive, that, in this abAract, there is littie which is new excest the plafalology; and that what is uew is neither unitelligible or untenable.

The diflinction between knowledge a friari and knowledge a poftriori, is as old as fpeculation itfelf; and the mode in which Kant illuftrates that diftinction differs not from the illuftrations of Aritutle on the fame fubject. The Stagyrite talked of general forns, or formal caufes, in the mind, as well as the profeflor it Koenigherg; and he or his difciples (for we quote from memory) compared them to the form of the ftatue in the rough block of martle. As that form is brought into the view of the ipectator by the chiffel of the ftatuary, fo, faid the peripatetics, are the general forms in the nind brought into the view of confcioufnefs by feufation and experience.

Such was the doctrine of Aritotle and his difciples, and fuch feetns to be the doctrine of Kant and his followers; but it is either a falfe doctrine, or, if it be true, a doctrine foolithly exprefed. A bluck of martle is capable of being cut into any form that the fatuary pleafes; into the form of a man, a hurfe, an ox, an afs, a fifh, or a ferperit. Not one of thele forms therefore can be inherent in it, or effential to it, in oppufition to the reft; and a general form, including all the animals under it, is inconceivable and impoffible. In like manner, the human mind is capaible of having the ideas of a circle, a triangle, a fquare, of black, white, red, of four, fweet, bitter, of the odour of a rofe, and the ftench of a dunghill, of proportion, of mufical founds, and of a thoufand other things. None of thefe ideas therefore can be effential to the mind in oppofition to the reft ; ard cvery man, who is not an abiulute Atrarger to the operations of his own intellect, knows well that he cannot thiuk of a thoufaid things at unce; or, to ufe the language of philofophers, have in his mind a general idea, comprehending ulider it a thoofand things fo dif. cordant as colours and founds, figures, and imells. If therefore Kant mereans to affim, with Piato, that, previous to all experience, iliere are aflually in the mind general forms, or general ideus, to which fenfation, or experience, gives au opputuaity of coning into view,
he affirms what all men of reflexion know to be falfe. If he means only to affirm, what feems to lave been the neeaning of Ariftotle, that particulde f.nfations give oceafion to the intellect to form general ideas, he ex. prefies himfelf indeed very flrangcly; but his doctrine on this fulject differs not effentially from that of Locke and Reid, and many other eniinent metaphyficiaus of modern times. Of abftraction and general idas we have given our own opinion elfewhere (Sce Nie raphysics, Encyrl. Part I. Chap. iv.), and thall not here refume the fubjec.

But when Kant fays that his ideas a pricri are uri- Inpropere verfal and neceffary, and that their converif is imponfible, ufe of he feems by the word idea to mean what more accurate ${ }^{\text {terms }}$; writers ceprefs by the term propofition. There are indeed two kinds of propulitions, of which both may be true, though the one bind expreffes neceffary and unio verfal truths, and the other fuch truths as are contiugent and particular. (See Metaphysics, Encyil. Part I. Chapter vii.) Propofitions directly contrary to thofe which exprefs particular and contingent truths may be eafily conceived; whilf fuch as are contrary to neceflary and univerfal truths are inconceive. able and impoffible; but we doubt whether any idea, in the proper fenfe of the word, has a contrary or, as he expreffes it, a converfe. Notbing is not contrary to fubfunte, nor black cuntrary to whbitt, nor jour contrary to fuetet, nor an incb contrary to an ell. Nothing is the negation of fubftance, and black the negation of white ; four is different from fweet, and an inch is lefs than an ell; but between thefe different ideas we perceive no contradiction.
That Kant ufes the term idea inftead of propofition, or forme word of fimilar import, is farther eviderit from lis inftances of the boule on fire, and the manner in which we learn that any two budies added to any two other bodies will conflantly make the fum of four- bodies. If it be his will to ufe the terms a priori and a pafleriori in the fenfe in which other metaphyficians ufe the terins neceffary and concingent, we can make no other objection to his diftinction between thefe two propofitions, but that it is expreffed in very improper language. The houfe might certainly be on fire or not on fire; but twice two bodies muf always make the fum of four bodics, and cannot ponibly make any other fum.
The truth of this laft propofition (he fays) we callnot have learned from experience, becaufe experience, being always limited, cannut poffibly teach us what is necefiary and univerfal. But this is egregious trifiii.g. The experience employed here is not limited. A child uriqueflionably learns the import of the terms of numeration, as he learns the import of all other ternis, by experience. By putting two little halls to two little buils, he learns to call the fum four balls. After two or three leffons of this kind with different bodies, his own reflection fuggefts to him, that the furn four has roo dependance upon the fhape or confitence of the bocies, but merely upon the individuality of each or their rumerical difference; and individuality, or aumerical difierence, is as complutely exemplified in two bodies of any kind as in two thoufand.
All the truths of pure mathematics (fays Kant) are With ite a priori. If he means that they are all neceffary, and confethat the contrary of any one of them is inconceivable, quences, be affirms nothing but what is true, and has been known
to all mathematicians thefe two thoufand years. But, if he means that they ate innate truths, not difooved by induction or idcal meafurement, his meaning is deminuftrably falfe. (See Induction in this Suppliment.) When he fays, that it is not experience which difeovers to us that we ftall always have the furface of the pyramid, by multiplying its bafe by the third part of its height, he is right, if by oxperience he means the actual meafurement of all poffible pyramids; but furcly he c:amot mean that the truth of this meafurement is innate in ile mind, for it is in fact not a true but a falfe meafurement (c). The bafe of a prramid multiplied by the third part of its height gives, not the furface, but the folid contents of the pyramid; and he who underttands the propolition on which this truth is immediately built, knows perfectly that Enclid proved it by a feries of iceal n:eafurements of thofe particulars in which all pyramids neceffarily agree.

Kant feems often to confound fenfation with experience; and if by experience he neaus fenfation, when he fays that fure knowledge, a priori, is that which is abfolutely without any mixture of experience, he talks nouleníe ; fur the moft foiritual notions which men can form are derived from the operations of the miad on ideas of fenfation. To the retk of the paragraph, refpecting pure knowledge, we have harcily any objection io make. Locke, the great enemy of innate ideas, taught, before Kaut was born, that our knowlodge depends upon our organization and the faculties of our minds, as much as upon impreffions made on the fenfes abeatra; that if our organs of feafe were different from what they are, the tafte of fugar might be bitter, and that of wormwood fweet ; and that if we had not memory, and could not modify and arrange our ideas, all progiefs in knowiedge would be imponible.
When our author talks of time and Spase as the two effential forms of the mind, we are not fure that we underftand him. We have thewn elfewhere, that a confcious intelligence may be conceived which has no jueas either of fpace or of time (fee Metaphysics, Encycl. 1° 182, \&ic. and 209, \&ic.) ; and he who can affirm, that if extenfun were known to us only by ex. porience, it would be porfble to conceive fenfible objects quitbout fpue, has never attended to the force of what philofophers call the affocistion: of ideas of the mind. But what is here meant by fenfible ubjects? Are they ohjects of touch, tafte, or fmell? Objects of touch cannot indeed be conceived without fpace; but what extent of fpace is furgefted by the tafte of fugar or the odour of a rofe?

When Kant talks of the form fpace emabling us to attribute to exterual objects impenctralility, mojility, \&c. he talks at random; and another man may, with as nuch propicty, and perhaps more truth, affirm the converfe of his propofitions, and fay, that it is the inspenetrability and mobility, \&c. of external ubjects that tmable us to form the idea called fpace, and the fuccelfion of fome ubiecto, compared with the permanence of
others, that enables us to form the notion or mode called time.

On the two or three next paragraphs it is not worth while to detain the reader with many remarks. They abound with the fame uneouth and obfeure phrafeotogy, and the fanc idle diftinctions between ideas "priori and a poleriori. In 11 . he affirms, that the three following propolitions (a boriy is beavy, wood is comluf-Bad logic. tille, and the thrce angles of a triangle are equal to two right angles) are all neceffary judgiments. In one fenfe this affirmation is true, and in austhe: it is falfe. We cannot, without lpeaking unintelligibiy, give the name body to any fubflance which is not heavy; and we are not acquainted with any kind of wooll which is not combuftible; but furejy it is not imponfible to consccive a fubfance extended and divifible, and yet not heavy, to which the name body might be given without abfurdity, or to conceive wood as incombuttible as the mineral calicil afbeflos. 'I'hat the three anglcs, however, of a plane triangle can be cither more or lifs than equal to two right angles, is obvioufly impoffible, and muit be perceived to be fo by every intelligence from the Supreme dowa to the human. The three propufitions, therefure, a:e not of the fame kind, and fhould not have been clafled under the fane genus of neceffary fynthetic judgments.
lof the critique of pure reafon, Kant feems to teach, that all demondrative fcience moft proceed from general prineiples to paticular truths. Hence his forms of the underftanding, and his categories, which, according to one of his pupils*, "lie in our underftanding as.* D. Wit pure notions a priori, or the foundation of allour know- licl. ledge. They are nectlity forms, radical notions, of which all our knowledge maf? be compounded." But this is directly contrary to the progrefs of the human mind, which, as we have hewn in the article Induction, already referred to, pruceeds, in the acquitition of every kind of knowledge, from particular truths to general principles. This tranfernduial plilofoplyy of Kant's, therefore, inverts the order of nature, and is as litile calculated to promote the progrefs of fcience as the fylogitic fyftem of Ariftotle, which was likewife built on categories or general forns. His trunfeendental aflberic, which, according to Dr Willich, is the knowledge a priori of the raies of fulf,tion, fectins to be a contradictory exprefion, as it implies that a man may know the laws of fenfation, without paying the fmalleft attention to the organs of fenic.

That we know objects only by the mamer in which they affict us, and not as they are in themfelves, is a truth adnitted, we believe, by all philufophers, and ccrtainly by Locke and Reid; Lut when Fant fays that we know nothing of the realisy of the objects which affect our fenfes, he feems to be fingularly paradoxical. Berkeley himfelf, the moft ingenions idealift perhaps that ever wrute, coutends itrenuotaly for the exittence of a caufe of our ferbations ditinct from cur own minds; and becaufe he thinks inent natter a caufe inadequate
(G) This may look like cavalling, as the blunder may be either Kant's or our correfpondent's, though neither of them can be fuppofed ignorant of the method of meafuring the furface of a pyramid. We affure the reader, however, that we do not mean to cavil. We admit that both Kant and our correfpondent know perfectly well. how to meafure the furface of a pyramid; but had that knowledge been innate in their minds, we cannot conceive the poftibility of.their falling into the blunder. The blunder, therefore, though the offspring of mere ina advertence, feems to be a complete confutation of the doctrine.

Critical PHILOSOPHY.

inadequate to this effect, he concludes, that every fenfation of which we are confcious is a proof of the immediate agency of the Deity. But Kant, as we hall perceive by and bye, makes the exillence of God and of matter equally problematical. Indeed he fays expreisly, that beyoud things fenfille we can only have opinions or belief; but things fenfible, as every one knows, are nothing more than the qualities of objects.

It fhould feem that the greater number of wonders which Kant lias fund in our primitive knowledge and in the faculties of our mind, the greater number of proofs ought he to have found of the exittence and attributes of one Firlt Caufe : but fo far is this from being the cafe, that we have feen him refting the evidence of this moft important of all truths, either upon the moral fenfe, which our paffions and appetites fo eafily alter, or upon the intuitive perception of ab/raat moral reditude; a perception which thoufands, as virtuous and as profound as he, have confidered as impof fible. Our philofopher's proof of a God is nothing more than his perfuation that happinefs is connected with virtue by a being upon whom nature depends; and he fays exprefsly, that this proof carries conviction to the mind in proportion as the motives of a man's actions are conformable to the law of morality. This being the cafe, the reader cannot be much furprifed, when he is informed that feveral of Kant's difciples on the continent have avowed themfelves Atheifts or Spinuzifts. We have elfewhere (fee Illuminati, n ${ }^{\circ} 37$.) mentioned one of thofe gentlemen who was lately difmiffed from his profefforial chair in the univerfity of Jena, for making God nothing more than an abfract idea, derived from our relations with the moral world. His lucceffor, a Kantift likewife, when it was told in his prefence, that, during one of the naffacres in Paris, David the Painter fat with his pencil in his hand, enjoying the fufferings of the unfortunate wretches, and trying to paint the expreffions of their agonies, exclaim-ed-" What force of character! What fublinity of foul!" That this wretch mult be an Atheit, likewife, follows of courfe from Kant's principles; for it is not conceivable that he perceives any connection between happinefs and virtue.

That Kant is an atheift himfelf, we have not learned, though his dociriue leads thus naturally to atheifm, and though in his work called Tugend Lehre, page 180, he makes the following flrange obfervation upon oaths: "As it would be abfurd to fiwear that God exitts, it is ttill a queftion to be determined, whether an oath would be poffible and obligatory if one were to make it thus-I frevar on the fupfofition that Gode exifs. It is extremely probable (fays he), that all fincere oaths, taken with refleciion, have been taken it no other fenfe!"

It is not our intention to plunge deeper into this mire of atheifm, or to enter into a formal confutation
of the deteltable doctrines which have been dragged from its hottom. Enuugh has been faid elfewhere to conviuce the theoretical reafon of the found minds of vur countrymen of the exiltence of one ominpotent, in. finitely wife, and perfectly good Beine, the author and upholder of all things (See Encycl. Meraphysics, Part III. Chap. vi. and Theology, Part I. Sect. 1.) It may not, however, be altogether ufelefs to point out to the reader how completely Kant confutes himfelf, even in the fhort abitract that we have given of his fyttem.

Among his categories, or fundamental ideas, whiclı Kant conarc neceffarily formed in the mind, he exprefsly reckonsfutes him. caufe and efere: but in various articles of this work, it teif. has been proved beyoad the poffibility of contadiction, that no fenfible object is the true metaphyjical caufe of any one event in nature : and indeed Kant himfelf is at much pains to thew that his categories or idcas a priori are not ideas of fenfation. , There mult therefore, upon his own principles, be cauite which are not the objects of fonfe or experience; and by tracing thefe caufes backward, if there be a fucceffion of them, we mult arrive at one felf-exitlent caufe, by a demontration as complete as that by which Euclid proves the equality of the three angles of a plane triangle to two right angles. We have no other evidence for the truth of geometrical axioms than the laws of human thought, which compel us to perceive the impoffibility of fuch propofitiona being falfe. According to our philofopher, we have the very fame evidence for the reality of caufes and effect; which are not the objects of fenfe. The confequence is obvious.

Kant's political opinions are faid to be tolerably mo. His nirraderate, though he betrays, what we muft think, an ab lity is ex furd confidence in the unlimited perfecibility of the hu. mian mind. On his morality our valued correfipondent has beftowed a much larger fhare of his approbation than we can allow it of ours. Kant feems to contend, that the actions of men fhould be directed to no en l whatever; for he exprefsly condemris, as an end of action, the purfuit either of our uwu happinefs or of the happinefs of others, whether temporal or eternal ; but actions performed for no purpofe are furely indications of the very effence of folly. Such actions are indeed impuffible to beings endued with reafon, paffions, and appetites; for if there be that beauty in abttract virtue, for which Kant and the Stoics contend, it cannot be but that the virtuous naan mult feel an internal pleafure when he performs a virtuous action, or reflects upon his paft condus. He who makes his temporal interelt the fole rule of his conduct, has indeed no pretenfions to the character of a virtuons man; but as the morality of the golpel has always appeared to us fufficiently pure and dilinterefted, we think a man may, without deviating into vice, have refpect unto " the recompence of future reward."

P H O

Phofpho. Phosphorus (See Chemistry Index, Supple-
rus. rus. ment,) has lately been employed as a medicinc by Alphonfus Leroi, profeffor at the Medical School of Paris. Its effects, in a variety of cafes, are thus defcribed in the Bulletin de ha Societé Pbilomatique, 1798.

P H O
r. Phofphorus adminiftered internally in confump- Phofphotive difeafes appears to give a certain degree of activity to life, and to revive the patients, without raifing their pulfe in the fame proportion. The author relates feveral inflances that uccurred to him in the courfe of his

P H O

Phoinho- practice ; one of which is as follows: Being called to at tend a woman, at the point of death, who was quite worn out by a confumptive diforder, with which fie had been afflicted for three years, in compliance with the earnett defire of her hufband, who requefted him to give her fome medicine, he compoled one of a portion of fyrup diluted with water, in which a fow ftecks of phofiphorws had been kept. Next day the woman found herfenf much better. She was revived for a few days; and did not die till about a fortnight after.
2. Ho himfelf, as he acknowledges, was fo imprndent as to taketwo or three grains of folid phofphomes combined unly with treacle, and expericnced the molt dreadfill fymptoms. At firft be felt a burning beat in the uhole region of the flomach. That organ feemed to be filled with gas which efcaped by the mouth. Being dreadfully tormented, he tricd to vomit, but in wain; and found relicf only loy drinking cold water from tiene to tine. His uncafy fenfations were at length al. layed: but next morning he feemed io be endowed with an aftonifhing mufeular force, and to be urged, with an almoft irrefillible impulfe to try its energy. The effect of this medicine at length ceafed, adds tite author, à la fuite d'un priafifme violent.
3. In many cafes the anthor employed, and fill employs, phoffhorus internally, with great henefit, to reftore and revive young perfons exlaufted by excefles. He divides the phofphorus into very fmall particles, by fhaking it in a glafs filled with boiling water. He continues to fhake the bottle, plunging it into cold water, and thus obtains a kind of precipitate of phofphorus, exccedingly fine, which he bruifes nowly with a little oil and fugar, or afterwards employs as liquid clectuary, by diluting the whole in the yoke of an egg. By means of this medicine be has effected aftonining cures, and reftored the ftrength of his patients in a very fhort time.
4. Inmalignant fevers the ufe of phofphorus intermally, to check the progrefs of gangrene, has fucceeded beyond expectation. The author relates feveral inflances.
5. Pelletier told him, that having left, through negligence, fome phofphorus in a copper bafon, that metal was oxidated, and remained fufpended in the water. Having thoightlefsly thrown out the water in a fmall court in which ducks were kept, thefe animals drank of it, and all died. Mais le male (fays the author) couvrit toutes fes femelles jufque au dernier inffant de fa vie. An obfervation which accords with the effect experienced by the author.
6. The author relates a fact which proves the aftonifhing divifibility of phofphorus. Having adminiftered to a patient fome pills, in the compofition of which there was not more than a quarter of a grain of phofphorus, and having had occafion aftewwards to open the body, he found all the internal parts luminous; and even the hands of the perfon who had performed the operation, though wahed and well dried, retained a phofphoric fplendor for a long time after.
7. The phofphoric acid, cmployed as lemonade, has been ferviceable to the author in the cure of a great number of difeafes.
8. Leroi affures us that he oxidated iron with phofphorus, and obtained, by the common means, a white oxide, almoft irreducible, which he: thinks may be em. ployed with advantage in the arts, and particularly in
painting wi h oil, and in enamel, inftead of the white Fhoffhe oxide of kead. 'This white oxide of iron occafoned violont retchings to the author, who ventured to place a very finall particle of it on his tongue. He does not hefitate, therefore, to confuder this oxide as a terrible poifun. He was nnt able to reduce it but by fixed alkali and the glafs of phofphorus.
9. The author afferts that, by means of phofphorus, he decompored and feparated from their bafes the fulphuric, untiatic, and nituic acids; that by help of the phofphoric acid he traufinuted earths; and that with calcarems earth he can make, at pleafure, confiderahle quantities of magnefia. He declares, that to his labours on phofphorms be is indebted for procefies by which he eflects the diffipation (opere ia frite) of rubies, the fulion of emeralds, and the vitrification of mercury.

We agree with the editor of the refpectable Mifeellany ", from which we have immediately taken this aricles that won fractions will do well $\mathbf{t o}$ ule their pazal Ma wonted caution in t.e application of fo powerful a re- gol. iio medy. Indeed we confider it as fo very hazarduus a remedy, that we had refulved to make no mention of it, till we found it tranferibed into various juarnals, both foreign and doneftic, and thence began to fufpert that we might be accufed of culpable negligence, were we to H fis umoticed what had attracted the attention of fo many of our fellow-labourers in the field of fcience.

Phosphorus, in aftronomy, is the moming llar, or the planet Venus, when the rifes before the fun. The Latins call it Lucifir, the French Etcile de berger, and the Greeks Pbofphorus.

PHOTOMETER, an apparatus for meafuring the intenfity of light, and likewife the tranfarency of the medium through which it paffes. Infruments for this purpofe have been invented by Count Rumford, M. de Sauffure, that eminent mathematician and philofopher Mr John Lenlie, and wthers. We mall content ourfelves with defcribing in this place the photometer of Count Rumford, and the inftrument to which Sauffure gives the name of diapbanometer. Mr Leflie's is indeed the funpleft inftrument of the kind of which we have anywhere met with a oefeription; but it meafures only the momentary intenfities of light; and he who wifhes to be informed of its confruction, will find that information in the third volume of Nicholfon's Philofophical Journal.

Count Rumford, when making the experiments which we have noticed in the article Lamp (Sufpl), was led, ftep by !tep, to the conflruction of a very accurate photometer, in which the hadows, intlead of being thrown upon a paper fpread out upon the wainfeot, or fide of the room (See page 64 of this volume), are projected upon the infide of the back part of a wooden box $7 \frac{8}{3}$ inches wide, $10 \frac{x}{2}$ inches longr, and $3 \frac{1}{3}$ inches deep, in the clear. The light is adnitted into it through two borizontal tubes in the front, placed fo as to form an angle of 60°; their axes meeting at the centre of the field of the inftrument. In the middle of the frout of the box, between thefe two tubes, is an opening thro' which is viewed the field of the photometer (See fig. Plate XLI: 1.). This field is formed of a piece of white paper, which is not faftened immediately upon the inlide of the back of the box, but is pafted upon a fmall pane of very fine ground glafs; and this glafs, thus covered,

P H O

Photome- is let down into a groove, made to recive it, in the ter. back of the bor. The whole infile of the box, except the field of the inttrunent, is painted of a deep black dead colour. To the under parts of the box is fitted a ball and fucket, by which it is attached to a fland which fupports it ; and the top or lid of it is fitted with hinges, in order that the lon may be laid quite open, as often as it is neceflary to alter any part of the machinery it contains.

The Cuunt had found it very inconvenient to com. pare two thadows projected by the fane cylinder, as thefe"were either neceffarily too far from each other to be conipared with certainty, or, when they were nearer, were in part hid from the eye by the cylinder. To remedy this inconvenience, he nuw makes ufe of two cyliiders, which are placed perpendicularly in the bottom of the box jutt defcribed, in a line parallel to the back part of it, diftunt from this back $2 \frac{2}{T O}$ inches, and from each other 3 inches, meafuring from the centres of the cylinders; when the two lights made ufe of in the experiment are properly placeú, thefe two cylinders project four fhadows upon the white paper upon the infide of the back part of the box, or the fild of the inftrument ; two of which fhadows are in cuntact, precifely in the middle of that field, and it is thefe two alone that are to be attended to To prevent the attention being diftracted by the prefence of unneceffary objects, the two outfide fhadows are made to difappear; which is done by rendering the field of the inftrument fo narrow, that they fall without it, upon a blackened furface, upon which they are not vifible. If the cylinders be each $\frac{1}{T_{0} 0}$ of an inch in diameter, and $2 \frac{2}{80}$ inches in beight, it will be quite fufficient that the field be $2 \frac{7}{7}-$ inches wide; and as an unneceffary beight of the field is not only ufefefs, but difadvantagreous, as a large furface of white paper not covered by the Thadows produces too flrong a glare of light, the field ought not to be more than 3^{3} of an incth higher than the tops of the cylinders. That its dinenfions, however, may be occafionally augmented, the covered glafs fhould be made $5^{\frac{1}{2}}$ inches lorig, and as wide as the box is deep, viz. $3 \frac{1}{7}$ inches; fince the field of the iuftrument can be reduced to its proper fize by a fereen of thack pafteboard, interpofed before the anterior furface of this covered glafs, and refting immediately upon it. A hole in this paftebuard, in the form of an oblung fquare, $1 \frac{7}{10}$ inch wide, and two inches high, determines the dimenfions, and forms the boundaries of the field. This fereen fhould be large cnough to cover the whole infide of the back of the hox, and it may be fixed in its place by means of grooves in the fides of the box, into which it may be made to enter. The pultion of the opening above meationed is determined by the height of the cylinders; the top of it being $\boldsymbol{r}^{\frac{3}{3}}$ of an inch higher than the tops of the cylinders; and as the beight of it is only two inches, white the height of the cylinders is 22^{2} in inches, it is evident that the fliadows of the lower parts of the cylinders do not euter the field. No inconvenience arifes from that circuaiflance; on the contrary, feveral advantages are derived from that arrangement.

That the lights may be placed with facility and precifion, a fine black live is drawn through the middle of the field, from the top to the bottom of it, and another (horizontal) line at right angies to it, at the height of the top of the cylinders. When the tops of the tha
dows touch this laft-mentioned line, the lights are at a ptotinne. proper height: and farther, when the two fhadows are in contact with each other in the middle of the field, the lights are thell in their proper directions.

We have faid that the cylinders, by which the thadows are projected, are placed perpendicularly in the bottom of the box; but as the diameters of the fhatow's of thefe cylinders vary in fome degree, in proportion as the lights are broader or narrower, and as they are brought nearer to or removed fatther from the phostometer, in order to be able in all cafes to bring thefe fladows to be of the fame diameter, which is very adiantageous, in order to judge with greater facility and certainty when they are of the fame denfity, the Count renders the cylinders moveable about their axes, and adds to each a vertical wing ${ }_{2}^{\frac{1}{2}} \frac{1}{6}$ of an inch wide, $\frac{1}{8}$ of an inch thick, and of equal height with the cylinder itfelf, and firmly fixed to it from the tup to the bottom. This wing commonly lies in the middle of the fhadow of the cylinder, and as long as it remains in that fituation it has no effect ohatever; but when it is necelfary that the diameter of ote of the thadows be increafed, the correfponding cylinder is moved about its axis, till the wing juft defcriber, emerging out of the fhadow, and intercepting a portion of light, brings the fhadow projected upon the field of the inftrument to be of the width or diameter required. In this operation it is always neceffary to turn the cylinder outwards, or in fuch a manner that the augmentation of the width of the fhadow may take place on that fide of it which is oppofite to the Thadow correfponding to the other light. The neceflity for that precaution will appear evident to any one who has a jult idea of the inflrument in queftion, and of the manner of making ufe of it. They are turned likewife without opening the box, by taking hold of the ends of their axes, which project below its bottom.

As it is abfolutely neceffary that the cylinders fhould conftantly remain precifely perpendicular to the bottom of the bex, or parallel to each other, i : will be beft to conftruct them of brafs; and, inftead of fixing them immediately to the bottom of the lox (which, being of wood, may warp), to fix them to a frong thick piece of well-hammered plate brafs; which plate of brafs may be afterwards faftened to the bottom of the box by mear.s of one frong ferew. Int this manner two of the Count's befl inftruments are conftructed; and, in order to lecure the cy linders ftill more firmly in their vertical politions, they are furnihed $w i t h$ broad flat rings, or piojuctions, where they reft upon the brafs plate ; which rings are $\frac{8}{\mathrm{~T}}$ of an inch thick, and equal in diameter to the projection of the wing of the cylinder, to the bottum of which they afford a firm fupport. Thefe cylinders ate likewife forcibly puthed, or rather pulled, againft the brafs plate upon which they refl, by neans of compreffed fpiral fprings placed between the under fide of that plate and the lower ends of the cylinders. Of whatever material the cylinders be conftructed, and whatever be their forms or dimenfions, it is abiolutely neceflary that they, as well as every other part of the photometer, except the field, fhould be well painted of a deep hlack dead colour.

In order to move the lights to and from the photometer with greater eafe and precifion, the obferver fhould provide two long and narrow, but very ftrong and fleady, tables; in the middle of each of which

P. H O

Hontonc- there is a ftraight groove, in which a niding carriage, upon which the light is placed, is drawn along by means of a cord which is fattened to it before and behind, and which, paffing over pulleys at each end of the table, goes round a cylinder; which cylinder is furrifhed with a winch, and is fo placed, near the end of the tahle adjoining the photoneter, that the obferver can turn it about, without taking his eye from the field of the inftrument.

Many advantages are derived from this arrangement: Firft, the obferver can move the lights as he finds neceffary, without the help of an affittant, and even without removing his eye from the fhadows; fecondly, each light is always precifely in the line of direction in which it ought to be, in order that the fladows may be in contact in the middle of the vertical plane of the pho. tometer ; and, thirdly, the nidiag motion of the lights being perfealy fort and gentle, that motion produces little or no effect upon the lights themfelves, either to increafe or diminifi their brilliancy.

Thefe tables mult be placed at an angle of 60 degrees from each other, and in fuch a fituation, with refpect to the photometer, that lines drawn through their middles, in the direction of their lengths, meet in a point exactly under the middle of the vertical plane or field of the photometer, and from that point the diftan. ces of the lights are meafured: the fides of the tables being divided into Englihh inches, and a vernier, fhewing tenths of inches, being fixed to each of the fiding carriages upon which the lights are placed, and which are fo contrived that they may be raifed or lowered at pleafure ; fo that the lights may be always in a horizontal line with the tops of the cylinders of the photometer.

In order that the two long and narrow tables or platforms, juft defcribed, may remain immoveable in their proper pufitions, they are both firmly fixed to the ftand which fupports the photometer; and in order that the motion of the carriages which carry the lights may be as foft and gentle as poffible, they are made to flide upon parallel brafs wires, 9 inches afunder, about tron $^{\prime}$ of an inch in diameter, and well polifhed, which are ftretched out upon the tables from one end to the other.

The fructure of the apparatus will be clearly underftood by a bare infpection of Plate XLI. where fig. 1. is a plan of the infide of the box, and the adjoining parts of the photometer. Fig. 2. Plan of the two tables helonging to the photometer. Fig. 3. The box of the photometer on its ftand. Fig. 4. Elevation of the photometer, with one of the tables and carriages.

Having fufficiently explained all the effential parts of this photometer, it remains for us to give fome account of the precautions neceffary to be obferved in ufing it. And, firft, with refpect to the diflance at which lights, whofe intenfities are to be compared, fhould be placed from the field of the inftrument, the ingenious and accurate inventor found, that when the weakeft of the lights in queftion is about as ftrong as a common wax candle, that light inay moft advantageoully be placed from 30 to 36 inches from the centre of the field; and when it is weaker or ftronger, proportionally nearer or farther off. When the lights are too near, the fhadows will not be well defined; and when they are too far off, thes will be too weak.

It will greatly facilitate the calculations neceffary in drawing conclufions from experiments of this kind, if Suppl. Vol. II. Part I.
fome iteady light, of a proper degree of Atrength for Phoo niethat purpofe, be affumed as a flandard by which all ier. others nay be compared. Our author found a good Argand's lamp much preferable for this purpofe to any other lamp or candle whatever. As it appears, he fays, from a number of experiments, that the quantity of light emitted by a lamp, which burns in the fame mamer with a clear flame, and without fmoke, is in all cafes as the quantity of oil confumed, there is much reafon to fuppofe, that, if the Argand's lamp be fo adjufted as always to confume a given quantity of oil in a given time, it may then be depended on as a juft ftandard of light.
In order to alrridge the calculations neceffary in thefe inquiries, it will always be advantageous to place the ftandard-lamp at the diftance of 100 inches from the photometer, and to affume the intenfity of its light at its fource equal to urity; in this cafe (calling this ftandard light A, the intenfity of the lighlit at its fource $=x=1$, and the diftance of the lamp from the field of the photometer $=m=100$), the intenfity of the illumination at the field of the pbotometer $\left(=\frac{x}{m^{2}}\right)$ (See Lamp, p. 67. of this volume) will be expreffed by the fraction $\frac{1}{100^{2}}=$ ro $\frac{1}{0.0}$; and the relative intenfity of any other light which is compared with it, may be found by the following proportion: Calling this light B, putting $y=$ its intenfity at its fource, and $n=$ its diflance from the field of the photometer, expreffed in Englifh inches, as it is $\frac{y}{n^{2}}=\frac{x}{m^{2}}$, as was newn in the article $L_{A M P}$ referred to ; or, inftead of $\frac{x}{m^{2}}$, writing its
 ly y is to I as n^{2} is to 10000 ; or the intenfity of the light B at its fource, is to the intenfity of the ttandard light A at its fource, as the fquare of the diftance of the light B from the middle of the field of the inllut ment, expreffed in inches, is to 10000 ; and hellee it is

$$
y=\frac{n^{2}}{10000}
$$

Or, if the light of the fun, or that of the moon, he compared with the light of a given lamp or candle C , the refult of fuch comparifon may beft be exprefled in words, by faying, that the light of the celeftial huminary in queftion, at the furface of the earth, or, which is the fame thing, at the field of the photometer, is equal to the light of the given lamp or candle, at the diffance found by the experiment ; or, putting $a=$ the intenlity of the light of this lamp C at its fource, and $p=$ its diflance, in inches, from the field, when the thadows correfponding to this light, and that correfponding to the celeftial luminary in queftion, are found to be of equal denfities, and putting $z=$ the intenfity of the rays of the luminary at the furface of the earth, the refult of the experiment may be expreffed thus, $z=\frac{a}{p^{2}}$;
or the real value of a being determined by a particular or the real value of a being determined by a particular experiment, made exprefsly for that purpofe with the ftandard-lamp, that value may be written inftead of it. When the flandard-lamp itfelf is made ufe of, inftead of the lamp C, then the value of A will be 1 .

The Count's firft attempts with his photometer were to determine how far it might be poffible to afcertain,

P H O [362$] \quad \mathrm{P}$ H O

Fhome- by direst experiments, the certainty of the affumed law ter. of the dimiaution of the intenfity of the light emitted by luminous bodies; narnely, that the intenfity of the light is cuerywhere as the fquares of the ditanees from the luminous hody inverfely. As it is ubvious that this law can liokd groud only when the light is propagated through perfectly tranfparent faces, fo that its intenfit; is weakened merely by the divergency of its rays, ine inftituted a fet of experiments to afcertain the tranfpatency of the air and other mediums.

With this view, two equal wax candles, well trimmed, and which were found, by a previous experiment, to burn with exactly the fame degree of brightnefs, were placed logether, on one lide, before the photometer, and their united light was counterbalanced by the light of an Argand's lamp, well trimmed, and burning very equally, placed on the other fide over againft them. The lamp was placed at the diftance of 100 inches from the field of the photometer, and it was found that the two burning candles (which were plaeed as near together as poffible, withont their flames affecting eaeh other by the currents of air they produced) were juft able to counterbalance the light of the lamp at the fied of the photometer, when they were placed at the dillance of 60,8 inches from that field. One of the candles being now taken away and extinguifhed, the other was brought nearer to the field of the inftrument, till its light was found to be juft able, fingly, to counterbalance the light of the lamp; and this was found to happen when it had arrived at the diftance of 43,4 inches. In this experiment, as the candles burnt with equal brightnefs, it is evident that the intenfities of their united and fingle light 6 were as 2 to 1 , and in that proportion ought, according to the affumed theo. ry, the fquares of the diftanees, 60,8 and 43,4 to be; and, in fact, $50,8^{2}=360,6,64$ is to $\overline{43,4^{2}}=1883,56$ as 2 is to 1 very nearly.

Again, in another experiment, the diftances were, With two candles $=54$ inches. \quad Square $=2916$ With one candle $=38,6 \quad$ - $\quad=1489,96$ Upon another trial,
With two eandles $=54,6$ inches. Square $=2981,16$ With one candle $=39,7 \quad-\quad=1576,09$ And, in the fourth experiment,
With two candkes $=58,4$ inches. Square $=3410,56$ With one candle $=4^{2,2} \quad-\quad=1780,84$

And, taking the mean of the refults of thefe four experiments,

Squares of the Diftances
With swo Las dier. With one Candle. In the Experiment $\mathrm{N}^{\circ} 1.3696,64$ - 1883,56 $\mathrm{N}^{0} 2.2916$ - $14 \times 9,96$ $\mathrm{N}^{0} 3.2981,16$ - 1576,09 $\mathrm{N}^{\circ} 4 \cdot 3410,56-1780,84$

4) 13004,36
 4) 6730,45

Means 3251,09 and 1632,61 which again are very nearly as 2 to 1 .

With regard to thefe experiments, it may be obferved, that were the refiftance of the air to light, or the diminution of the light from the imperfect tranfpareney of air, fenfible within the limits of the inconnderable diftances at which the candles were placed from the photometer, in that cafe the diftance of the
two equal lights united ought to be, to the diftance of Photon one of them tingle in a ratio lefs than that of the fquare ront of 2 to the fquare root of 1. . For if the intenfity of a light enitted by a luminous body, in a fpace void of all refiflance, be diminifhed in the proportion of the fquares of the diftances, it mutt of neceffity he diminifhed in at till higher ratio when the light paffes thro' a refifting medium, or one which is not perfectly tranfparent ; and from the difference of thofe ratios, namely, that of the fquares of the diltances, and that other ligher ratio found by the experiment, the refiltance of the medium might he afeertained. This he took much pains to do with refpećt to air, hut did not fucceed; the tranfpareney of air being fo great, that the diminution which light fuffers in paflang through a few inches, or even through feveral feet of it, is not fenfible.

Having found, upon repeated trials, that the light of a lamp, properly trimmed, is incomparably more equal than that of a candle, whofe wick, continually growing longer, renders its light extremely fluctuating, he fubftituted lamps to candles in thefe experiments, and made fuch other variations in the manner of conducting them as he thought bid fair to lead to a difeovery of the refiftanee of the air to light, were it poffible to render that refiftance fenfible within the confined limits of his machinery. But the refults of them, fo far from affording means for afcertaining the refiftance of the air to light, do not even indieate any refiftance at all ; on the contrary, it might almof be inferred, from fome of them, that the intenfity of the light emitted by a luminous body in air is diminihed in a ratio lefs than that of the fquares of the diftances; but as fueh a conclufion would involve an evident abfurdity, namely, that light moving in air, its abfolute quantity, inftead of being diminifhen, actually goes on to increafe, that conclufion ean by no means be admitted.

Why not? Theories muft give place to facts; and if this fact can be fairly afcertained, inttead of rejecting the conclufion, we ought certainly to rectify our notions of light, the nature of which we believe no man fully comprehends. Who ean take it upon him to fay, that the fubfance of light is not latent in the atmofphere, as heat or caloric is now acknowledged to be latent, and that the agency of the former is not ealled forth by the paflage of a ray through a portion of air, as the agency of the latter is known to he excited by the combination of oxygen with any combuftible fubftance? See Chemistry, no 293, Sufpl.

The ingenious anthor's experiments all confpired to Shew that the reffitance of the air to light is too inconfiderable to be perceptible, and that the affumed law of the diminution of the intenfity of light may be depended upun with fafety. He admits, however, that means may be found for rendering the air's reliftanee to light apparent ; and he feems to have thought of the very means which occurred for this purpofe to M. de Sauffure.

That eminent plilofopher, wishing to alcertain the tranfpareney of the atmofphere, by meafuring the diftanees at which determined objects ceafe to be vifible, perceived at once that his end would be attained, if he fhould find objects of which the difappearance might be accurately determined. Accordingly, after many trials, lie found that the moment of difappearance can be obferved with much greater accuracy when a black
object
rotome object is placed on a white ground, than when a white object is placed on a black ground; that the accuracy was ttill greater when the obfervation was made in the fun than in the fhade; and that even a ltill greater degree of accuracy was obtained, when the white fpace furrounding a black circle, was itfelf furrounded by a circle or ground of a dark colour. This lat circumftance was particularly remarkable, and an oblervation quite new.

If a circle totally black, of about two lines in diameter, be faftened on the middle of a large fheet of paper or pafteboard, and if this paper or paflehoard be placed in fuch a manner as to be expofed fully to the light of the fun, if you then approach it at the diftance of three or four feet, and afterwards gradually recede from it, keeping your eye conftantly directed towards the black circle, it will appear always to decreafe in fize the farther you retire from it, and at the diftance of 33 or 34 feet will have the appearance of a point. If you continue fill to recede, you will fee it again enlarge itfelf; and it will feem to form a kind of cloud, the darknefs of which decreafes more and more accord. ing as the circumference becomes enlarged. The cloud will appear ftill to increafe in fize the farther you remove from it ; but at length it will totally difappear. The moment of the difappearance, however, cannot he accurately afcertained; and the more experiments were repeated the more were the refults different.
M. de Sauflure, having reflected for a long time on the means of remedying this inconveniency, faw clearly, that, as long as this cloud took place, no accuracy could be obtained; and he difcovered that it appeared in confeqtence of the contraft formed by the white parts which were at the greatett difance from the black circle. He thence concluded, that if the ground was left white near this circle, and the parts of the pallebuard at the greatef diftance from it were covered with a dark colour, the cloud would no longer be vifible, or at leaft almoft totally difappear.

This conjecture was confirmed by experiment. M. de Saufliure left a white fpace around the black circle equal in breadsh to its diameter, by placing a circle of black pater a line in diameter on the middle of a white circle three lines in diameter, fo that the black circle was only furrounded by a white ring a line in breadth. The whole was patted upon a green ground. A green colour was chofen, becaufe it was dark enough to make the cloud difappear, and the eafieft to be procured.

The black circle, furrounded in this manner with white on a green ground, difappeared at a much lels diftance than when it was on a white ground of a large fize.

If a perfectly black circle, a line in diameter, te palted on the middle of a white ground expofed to the open light, it may be ohferved at the diltance of from 44 to 45 feet; but if this circle be furrounded by a white ring a line in breadtl, while the refl of the ground is green, all figlit of it is luft at the diftance of only $15 \frac{1}{2}$ feet.

According to thefe principles, M. de Sauflure delineated feveral black circles, the diameters of which in. creafed in a geometrical progreffion, the exponent of which was $\frac{3}{2}$. His fmalleft circle was $\frac{5}{5}$ or 0.2 of a line in diameter; the fecund 0.3 ; the third 0.45 ; and fo on to the fixteenth, which was 87.527 , or about 7 inches $3^{\frac{1}{2}}$ lines. Each of thefe circles was furrounded
by a white ring, the breadth of which was equal to the Photomediameter of the circle, and the whole was pafted on ter. a green ground.
M. de Saufure, for his experiments, felected a ftraight road or plain of about 1200 or 1500 feet in circuniference, which towards the north was bounded by trees or an afcent. Thofe who repeat them, however, muit pay attention to the following remarks: When a petfon retires backwards, keeping his cye conftantly fixed on the palteboard, the eye becomes fatigued, and foom ceafes to perceive the circle; as foon therefore as it ceafes to be diftinguifhable, you muft fuffer your eyes to refl; not, however, by fhutting them, for they would when again opened be dazzled by the light, but by turning them gradually to fome lefs illuminated object in the horizon. When you have done this for about half a minute, and again directed your eyes to the palteboard, the circle will be again vifible, and you muft continue to recede till it difappear once more. You muft then let your eycs reft a fecond time in order to look at the circle again, and continue in this manner till the circle becomes actually invifible.

If you wifh to find an accurate expreffion for the want of tranfparency, you mult emplay a number of circles, the diameters of which increafe according to a certain progreffion ; and a comparifon of the diftances at which they difappear will give the law according to which the tranfparency of the atmofphere decreafes at different diftances. If you wifh to compare the tranfparency of the atmofpliere on two days, or in two different places, two circles will be fufficient for the experiment.

According to thefe principles, M. de Sauffure caufed to be prepared a piece of white linen cloth eight feet fquare. In the middle of this fquare he fewed a porfeet circle, two feet in diameter, of beautiful black wool; around this circle he left a white ring two feet in breadtli, and the reft of the fquare was covered with pale green. In the like manner, and of the fame ma. terials, he ptepared another fquare; which was, however, equal to only $\frac{5}{T} 5$ of the fize of the former, fo that each fide of it was 8 inches; the black circle in the middle was two inches in diameter, and the white fpace around the circle was two inches alfo.

If two fquares of this kind be fufpended verticaliy and parallel to each other, fo that they may be both il luminated in an equal degree by the fun ; and if the atmofphere, at the moment when the experiment is made, be perfectly tranfparent, the circle of the large fquare, which is twelve times the fize of the other, mult be feen at twelve times the diftance. In M. de Sauflure's cxperiments the fmall circle difappeared at the diftance of 314 feet, and the large one at the diftance of 3583 feet, whereas it fhould have difappeared at the dittance of 3768. The atmofphere, therefore, was not perfectly tranfparent. This arofe from the thin vapours which at that time were floating in it. M. de Sauflure, as we have obferved, calls his inftrument a diaphanometcr; but as it anfwers one of the purpufes of a photometer, we trult our readers will rot confider this account of it as a digreffion.
To return to Count Rumford. From a number of experiments made with his plotometer, the found that, by paffing through a pane of tine, clear, well polithed glafs, fuch as is commonly made ufe of in the con?ruction of lookingrglafes, light lofes,1973 of its whole

Phyfing- quantity, i. e. of the quantity which impinged on the nomy. glafs; that when light is made to pafs through two panes of fuch glafs ftanding parallel, but not touching eachother, the lofs is , $318+4$ of the whole; and that in pafling through a very thin, clear, colourlefs pane of window-glafs, the lofs is only, 1263 . Fence be infers that this apparatus might be very ufefully employed by the optician, to determine the degree of tranfparency of glals, and direct his chuice in the provilion of that important article of his trade. The lol's of light when reflected from the very beft plain glafs mirror, the anthor afcertained, by five experiments, to be $\frac{d}{}$ of the whole which fell upon the mirror.

PHYSIOGNOMI is a fcience, if it be entitled to that name, on which we may be thought to have faid enough in the Encyclopedia. Since that period we have been favoured with a hhort view of a new fyftem hy D_{R} Gall of Vienna, who calls it the Craniognomic fyftem, becaufe he infers the powers and difpofitions of the mind from the exterior form of the cranium.

Having obferved that the brain is the material organ of the action of the mind, and that it increafes in direct propartion to the faculties of animals, he endeavours to prove that the faculties are difing and independent on each other; that each has its proper material organ ; and that the expanfion of the organ is in proportion to the ftrength of the faculty. This, which is the foundation of his fyftem, looks very like materialifm; and affords one of many proofs that might be brought of the readinefs of the German philofophers to teach feiences which they have never learned. Let us attend, however, to the reafoning by which he endeavours to fupport this foundation.
"The internal faculties do not always exif in the fame propurtion to each other. There are fome men who have a great deal of genius without having a memory, who have courage without circumfpection, and who poffefs a metaphyfical fpirit without being good obfervers. Befides, the phenomena of dreaming, of fomnambulifm, of delirium, \&c. prove to us that the internal faculties do not always act together; that there is often a very great activity of one, while the reft are not fenfible. Thus in old age, and fometimes in difeafe (fuch, for example, as madnefs), feveral faculties are loft, while others fubfin; befides a continued employment of the fame faculty fenfibly diminifhes its energy: if we employ another, we find it has all the force of which it is fufceptible: and if we return to the former faculty, it is obferved that it has refumed its ufual vigour. It is thus that, when fatigued with reading an abflract philofophical work, we proceed with pleafure to a poetical one, and tben refume with the fame attention our former occupation. All thefe phenomena prove, continues our author, that the faculties are dittinct and independent on each other; and we are inclined to believe that the cafe is the fame with their *Pbil.Mag. material organs *."
vol. xiv.
Have Dr Gall and his friend Dr Bojanus, the author of this view, never paid attention to their own confcioufnefs? or do they fuppofe that the tellimony of confcioufuefs is not to be regarded? 'To us nothing can be more evident than that the fame individual being fees, and hears, and reafons, and remembers, and conceives, fometimes foher truths, and fometimes paradoxical abfurdities. If they think otherwife, it would
be extremely kind in them to explain the procefs by Phyang. which the ibirty-two dijlinct and independent faiulties, which operate in the cranium of Dr Gall, came to unite in the compofition of this fyltem of feience; to compare their different operations together; or indeed to know, each, that his one-and-thirty brothers have any exiftence! 'To us fuch a union in fyftem-building, aniong dilinet and independent heings, in the fame cranium, appears juft as impoflible as a mutual confcivufnets among fo many men, diftant, each from the others, a thoufand miles; and it would be as eafy to perfuade us that Dr Gall is privy to the thoughts of the Emperor of China, as that a collection of independent faculties, refiding in his k ull, know what each other is doing.

If we examine the reafoning upon which this abfurd theory is built, nothing will appear lefs conclufive. Granting that there may be a great deal of gemus without memory, that there may be courage without circumipection; a metaphyfical fpirit without a talent for obfervation; and that, in old age and madnels, feveral faculties may fee n to be loft, while others remain in full vigour -may not all this refult from the perfection or imperfection of the material organs in the brain? If one portion of the brain be the organ of genius, and anotber the organ of memory, and if the former of thefe organs be in a flate of high perfection when compared with the other--it is obvious that the man, whofe brain is fo conftituted, muft appear to puffefs a great deal of genius with little memory, though his efforts of genius and memory be the efforts of one individual being. A man with his left hand, aided by a lever in the proportion of three to one, will raife a much greater weight than he could raife with his right hand, aided by a lever equally divided; but it would be very ridiculous, from this fact, to infer, that the mulcular ftrength of his left arm is greater than that of his right.

His next principle is, that "the expanfion of the organs contained in the cranium is in the direct ratio of the force of their corresponding faculties. This principle the fays), dictated by analogy, reits on this axiom, that throughout all nature the faculties are always found to be proportioned to their relative organs." This feems to be reafoning in a circle; and it takes'for granted what we have proved to be falle. The mind does not confilt of fo many diftinct and independent faculties; and if it did, the affertion which is here ftyled an axion would authorife us only to infer the frength of the faculty from the fize of the organ, and by wo means the fize of the organ from the frength of the faculty.

But how does our author know, that throughout all nature the faculties are always found to be proportioned to their organs? Why, he does not know it; for be admits, that " exercife has a great influence on the force of the faculties; and that an organ moderately expanded, but often exercifed, can give a faculty fuperior to that which accompanies a very extenfive organ never put in action." If this be true, there feems to be an end of the fyltem; for its object is to afcertain, from the external appearance of the cranium; the internal powers and difpofitions of the mind. Now, the external appearance or conformation of the cranium depends on that of the brain. "Obfervation (fays the author of the View) has proved to Dr Gall, that we cannot judge of the ftrength of the faculties, but by

Piano the developenent of the fifarate crgans zubich form di-
find ominences in the crunium; and that a cranium perfealy round, of whatever fize it may be, is never a proof of many or of great faculties." But if it be true that an organ moderately expanded, but often excreifed, indicates a faculty fuperior to that which accompanies a very extenfive organ never put in action, it follows incontrovertibly, that no man, however well acquainted with the organic flructure of the brain, can iufer with certainty, from the eminences of the cranitum, what faculties or difpofitions predominate in the mind. Nay it follows, that a cranium perfectly round (if there be fuch a cranium) may contain many and great facultics; for if the moderately expanded organs be moit exersifed, their faculties will acquire ftrength, whils the preflure on the fkull is equally balanced on all fides.

Pi 4NO forte, otherwife called Firte Piano, a well known mufical inflrument, of which we need make no apology for confidering the peculiarities with fome attention. If we look on mufic from no higher point of view than as the laborum dulce lenimen, the innocent, the foothing, the cheering fweetener of toil, we muft acknowledge that it is far from being the meanef of thofe enjoyments with which the Bountiful Father of Men has embellifhed this fcene of our exiftence. But there is a fcience in mufic, independent of that artificial half mathematical ductrine which we have contrived to unite with it, and which really enables us to improve pure mufical pleafure. Hence in the Englifh univerfities degrees are conferred in mufic.

The voice is the original mufical inftrument, and all others are but imitations. The voice of man cbeys the impulfe of the heart with wonderful promptitude, and ftill more wonderful accuracy. A very coarfe ear is hurt by an error in itstone, amounting to what is called a comma. A very limited voice can execute melodies extending to 12 notes, or an octave and a fifth. The motion of the glottis between thefe extremes does not amount to ${ }_{T}^{1}$, th of an inch. This muft therefore be divided, by the moft ordinary finger, into more than a thoufand parts; and this mult be done in an inflant, and repeated with rapidity, without ever miftaking one of thefe divifions; and this is done everywhere, and without any feeming effort or thought. The mechanifm of the human organ for effecting this with eafe and precifion is very remarkable, and feems to prove that the Author of our being meant to give us this pleafure.

When, in the cultivation of this fruit of our own fuil, the moderns difcovered the heauties of harmony or confonance, and inftruments of fixed founds were employed, by means of which thefe beauties could be exhibited in their utmoll richnefs and variety; and parti cularly when the organ, that " magic world of found," was invented, the immenfe advantages of the ingenious fpeculations of the ancient Greeks about the divifion of the monochord were now perceived, and mufic became a deep intellectual fudy. It fell into the hands of men of letters, and, for a long while, counterpoint occupied all their attention. Inflruments of fixed founds were now made, not only with pipes, but with ftrings, bells, rings, and every thing that could make a noife in tune.
But all thefe infruments were far inferior to the voice, the fpontaneous gift of Nature, in promptitude, and in the power of obeying every call of fenti-
ment, every degree, as well as every kind of emotion, with which the heart was agitated. The pleafures of harmony, though great, were monotunous, and conld not exprefs the momentary variations of fentiment, which are as fleeting as the ligit and fhade of a profpect while the dappled clouds fail acrofs the fky. The violio, and a finall number of the fimple wind inftruments, were found to be the only ones which could fully exprefs thofe momentary gradations of fentiment that give mu. fic its pathos, and enable it to thrill the very foul.

Attempts were made to remove this defect of the harmonic inftruments, and the swell was added to the organ. The cffect was great, and encouraged the artiffs to attempt limilar inprovemeats on other inftruments of the fanie kind. 'lhis was firft done in the fame way as in the organ. The harpfichord was flut up, like the fwell organ, and was opened by means of pedals when the performer wihed toenforce the found. But the effect was far inferior to that of the fivell organ; for this was (at leaft in all great urgans) a real addition of another propenly felecical found. But the effect of the pedal on the larpfechord could not be mifaken; it was jult dike opening the dour of a room where mulic was performing. Other methads were tried with better effect. Uuifons were added to each note, which were brought on either by means of pedals or by another fet of keys.

This method fucceeded perfectly well, and the power of the harpfichord was greatly iniproved. Dut fill it was imperfect, becaufe it was only the more confiderable changes of force which could be exhibited, and this only in one or two degrees. Other artills, therefore, attempted to confruct the inftrument, fo that the jacks (the moveable upright pieces which carry the quills) can be made to approach nearer to the wires, fo that the quills fhall give them a ftronger twang. The mechanifin was fuch, that a very confiderable motion of the pedal produced but a molt minute motion of the quill; fo that the performer was not reftricted to the utmoft precifion in the degree of preflure. Some of thofe infruments, when fiefh from the hand of the artiit, gave full fatisfaction. But, though made in the moft accurate manner, at in enormons expence, they very foon become unfit for the purpofe. The hundredth part of an inch, more or lefs, in the place of the quill, will make a great odds in the force of the found. Nor does the fame change of diflance produce an equal alteration of found on different quills. Other inftrument makers have therefore tried haked or prepared lather (buffalo hide) in place of quills; and it is found much more uniform, in the tone which it produces, and alifo Iemains longer in the fame Itate; but the tone is not fo powerful, nor in general fo much relifhed.

But all thefe contrivances, both in the organ and harpfichord, were Alill very deficient. Whatever change they could produce in the flrength of the found, was produced through the whole inilrument, or at leaft through two or three octaves. But the captivating expreffion of mufic frequently refults from the momentary fwelling or foftening of a fingle phrafe, or a fingle note, in one of the parts. Hence arife the unrivalled powers of the harp, and the acknowledged fuperiority of the theurbo, the lute, and even the guitar, over all keyed. infruments, notwithflanding their great limitations in harmony and in practicable melodies. Thefe inftruments fpeak, while the harpfichord only plays.

Piñ
Foiti.

Piana Firte.

Many attempts have been made to enable the performer to produce, by the intervention of the key, all the gralations of ftrength, and even the varicties of found, which the finger can bring forth by the different manner of pinching, brufthing, or, as it were, careffing the ftring; but we have no diftinct account of any attempt that las fucceeded. Such a thing would quickly fpread over Europe. The compilcr of the article Luthier, in the Encyclopedie Methodique, fays a great deal about a harpfichord litted with prepared buffalo leather inftead of crow quills; and afferts exprefsly, that, by the mere preflure on the key, without the affiftance of pedals or ftops of any kind, the leather is made to act with greater or lefs force on the ftring. But he gives no acconnt by which we can comprehend how this is brought ahout ; and indeed he writes in terms which fhew plainly that he has not feen the inftrument, and is merely puffing fomething that he does not underfand.

The attempt has been made with more fuccels on keyed inftruments, when the flrings are not pinched, but are rubbed by a wheel or band, in the manner of the vielle (hurdygurdy), or fruck with a plectrum, like the dulcimer. The celestina (deferibed by Merfennus by the name of ARCHiviola) is of this kind. A fine band of horfe hair or filk, filled with rofin, is extended under the ftrings, and drawn fmoothly along by a wheel. - ily a particular mechanióm of the keys, this band is made to prefs or rub on any fling tranfverfely, as the ftrings of a violin are touched by the bow. The preffure on the key regulates the flength of the tone. This inftrument is not without confiderable beauties, and will execute foft cantalile mutic in cafy modulation, with great expreffion and juftnefs. But the artifts have not yet heen able to give it either clearnefs or brilliansy of tone, nor fufficient force for concert mufic, nor that promptitude of touch that is indifenfibly neceffary for figurative mulic or quick movements.

The fame improvements have been made on the pulfatile inflruments; and indeed they are here the molt obvious and eafy. When the key is employed mercly as the means of caufing a plectrum to give a blow to the ftring, the performer will hardly fail to give that degree of force which he feels proper for his intended expreflion. Accordingly, many inftruments of this kind have been made in Germany, where the artilts have long been eminent for mechanical knacks. But all their inftruments of the dulcimer kind are feeble and fpiritlefs, and none of them have been brought into general ufe, if we except the clavichord. This is indeed an inftrument of feeble, and not the moft pleafing found; but is well fitted for giving every momentary gradation of ftength by the preflure of the finger. It is therefore a good inftrument for forming the mufical tafte by chamber practice, and was much ufed by compofitors in their ftudies. It is alfo an ingenious, though feemingly an ohvious and fimple contrivance, and is capable of much more force, and even brilliancy of found, than has generally becu given to it.

The confluction is thortly this. The inner end of the key is furninhed with an upright piece, which terminates in an edge of brafs, fomewhat like the end of a narrow blunt chifel, whofe line of direction is athwart the fluings. When the key is preffed down, this edge Arikes the ftring, and forces it out of the flraight line in which it is ftretched between its pins. Thus the
fring is insken or jogged into vibration, in the fame manuer as we obferve a tight rope fet a vibrating by a fudden jerk given to any part of it. The ftring, thus agitated, gives a found, which will continue for fome little time if the key be held down. As the tone depends on the length of the vibrating fring, as well as on its tenfion, it is of inportance that the troke be made on the precife point of the ftring which terminates the proper leugth. The ftring does not give the note correfponding to its whole length, but that which is produced by the part between the edge and the pin. And becaufe the parts of the ftring on each fide of the edge are equally thrown into vibration, the fhorter portion of it muft be wrapped up in a lift of cloth, to prevent it from difturbiug the ear by its fonorous vihrations. This, however, greatly diminifhes the fweetnefs of the found given by the other part.
The clavichord gives a fretful wafpih kind of found, not at all fuited to tender expreffion. If the bridge (for the end of the key is really a brilge during the found) were placed at an exact third of the length of the ftring, and if both parts were free, and if the flroke be of a proper Atrength, the ftring would found its twelftl2 with great fiwectnefs, and with much more foree and brilliancy than it does by the prefent conflruction, and the clavichord would be a charming infrument for a leffion and for private ftudy. We fay this from experience of the power of one conftructed under the direction of the great mathematician Euler, who was alio an excellent judge of mufic and mufical compofition. The tones of the upper part of that inftrument had a fort of pipe or'vocal found, and were fuperior in clearnefs and fweetnefs to any ftringed inftrument we ever heard. But as this conflruction required every Atring to be one half fonger than a harpfichord wire of the fame pitch, and as this would have made the inftruncmt of a mof inconvenient fize, the baffes were made fhorter, by placing the bridge at one-fixth of the length, and loading the fhorter portion of the ftring with wire twifted round it. But although this was executed by a moft dexterous artift, the tones were far inferior to thofe of the trebles, and the inflrument was like the junction of a very fine one and a very bad one, and made but hohbling mufic. This was probably owing to the impoffibility of connecting the metal wire and its covering with fufficient clofenefs and folidity. An upright clavichord, where the length would be no inconvenience, would be indeed a capital inflrument for mulical fludy. It is worthy of remark, that Mr Euler tried other divifions of the fring by the bridge. When it is truck precifely in the middle, it fhould found its octave ; when it is flruck at onefourth, it flould give the double octave, \&c. But the maker found that thefe divifions give very indifferent, and even uncertain tones; fometimes not founding at all, and fometimes founding beautifully. Our readers will find this well explained in a future article of this Supplenent, (Trumpet, Marine). They may pleafe to reflect on the very different tone of the violin as it is bowed on different parts of the ftring, and on the very difierent tones of the fort and back unifons, and particularly of the Cornet ftop of the harplichord. The harpfichords of Rucker are noted fo: the grand fulnefs of their tone ; thofe of Haffe of Drefden for their mellow fweetnefs, and thofe of Kirkmann of London fins their unequalled brilliancy. Thefe makers differed greatly in the placing of their quills.

P I A [367] I A

Piano Forte.

But the Englin Piano Forte, by its fuperior force of tone, its adequate fweetnefs, and the great variety of voice of which our artifts have made it fufceptible, has withdrawn all farther attention from the clavichord, fo that it is no longer probable that the learned contribution of the great Euler to public anufement will be followed up. The Piano-forte currefponds to its name with great precifion : For, without any other attention or effort than what fentiment fpontaneouly diftates, and what we practife (without knowing it) on the harpfichord, where it is ineffectual, we make the Pianofurte give every gradation of Arength to the found of the ftring, and give it every expreffion that an inftrument, purely pulfatile, is capable of. It is alfo fufceptible of a very confiderable variety of tone by the cloth. ing of the mallets, which may be acute or obtufe, hard or foft. And we fee, by the effect of what are called the grand Piano fortes, that they arefully equal to the harpfichord in fulnefe or body of tone. Nuthing feems to be wanting to it but that fliding, or (as the French call it) carefing touch of the ftring, by which a delicate finger, guided by fine tafte, caufes the harp or lute to melt the heart, and excite its fineft emotions. We truft that the ingenuity of our Britifh artifts will accomplifh even this, and make this national inftrument rival even the violin of Italy.

We call it a national infrument, not doubting but that this is a recommendation to a Britifh heart, and .becaufe we are very well affured that it is an Englith contrivance ; the invention of a moft excellent man and celebrated poet, Mr William Mafon. His Caractacus and Elfrida may convince any perfon who is a judge of mufic, that he had a mind exquifitely fenfible of all its charms; and we cannot be furprifed that it was one of his chief delights. No man enjoyed the pleafures of mufie with more rapture; and he ofed to fay, that his Speedieft recruit from the fatigue of a long walk was to fit down for a few minutes to the harpfichord. He had feen feveral of the German attempts to make keyed dulcimers, which were, in fome meafure, fufceptible of the forte and piano: But they were all on one principle, and required a particular touch of the inger, of difficult aequifition, and which fooiled it for harplichord practice. We have alfo feen of thofe indruments, fome of very old date, and others of moderu improve. ment. Some had very agreeable tones; but all were deficient in delicaey and juftuefs. The performer was by no means certain of producing the very ftrenyth of found that lie intended. And, as Mr Mafun obferved, they all required an artificial peculiarity of fingering; without which, either the intended frength of tone was not brought out, or the tone was deftroyed by repeated rattling of the mallet on the wire.

Mr Mafon removed all thufe imperfections by detaching the mallet entirely from the key, and giving them a connection quite momentary. The fletch in Plate XL. will give the reader a clear view of Mr Mafon's general principle, by which the Englifh piano forte is dillinguifhed from all others. The parts are reprefented in their flate of inaction. The key ABK turns, as ufual, on the round edge of the bar B , and a pin b, driven into the bar, keeps it in its place. The dot F reprefents a fection of the fring. ED is the mallet, having a hinge of vellum, by which it is attached to the upper furface of the bar E. At the other end is the head D, of wood, covered with fome fulds of pre.
pared leather. The mallet lies in the pofition reprefented in the figure, its lower end refting on a cufhionbar K, which lies horizontally under the whole row of mallets. The key AR has a pin C, tipt with a bit of the foftent cork or buck $\mathrm{n}_{\mathrm{i}}^{\mathrm{in}}$. This reaches to within $\frac{1}{\text { i }}$ th of an inch of the fhank of the mallet, but mult not touch it. The diftance E_{e} is about $\frac{1}{3} \mathrm{~d}$ or $\frac{1}{2}$ th of the length of the fhank. When the end A of the key is preffed down on the fluffing (two or three thicknoffes of the moft elallic woollen lia) it raifes the mallet, by means of the pin C , to the horizontal pofition E d, within $\frac{1}{8}$ th or rivth of an inch of the wire F; hut it cannot be fo much preffed down as to make the mallet touch the wire. At the fame time that the key raifes the mallet by means of the pia C, it alfo lifts off the damper G (a bit of fpunge) from the wire. This damper is fixid on the cud of a little wooden pin $\mathrm{G} g$, connected with the lever $g \mathrm{H}$, which tas a vellum hinge at H . This motion of the danper is caufed by the pin I, which is fixed into the key near t o R. Thefe pieces are fo adjutted, that the firt touch of the key lifts the damper, and, immediately after, the pin C acts on the fhank of the mallet. As it aets fo near to its centre of motion, it caufes the hcad D to move brikly through a confiderable arch $\mathrm{D} d$. Being made extremely moveable, and very light, it is thus tofed beyond the horizontal pofi. tion $\mathbf{E} d$, and it ftrikes the wire \mathbf{F}, which is now at liberty to vibrate up and down, by the previous removal of the damper G. Having made its ftroke, the mallet falls down again, and refts on the foft fubltance on the pin C. It is of effential importance that this mallet be extremely light. Were it heavy, it would have fo much force, after rebounding from the wire, that it would rebound again from the pin C , and again frike the wire. For it will be recollected, that the key is, at this time, down, and the pin C raifed as high as poffible, fo that there is very little room for this rebound. Leffen:ng the momentum of the mallet by making it very light, making the cultion on the top of the pin C very fort, and great precifion in the fhape and figure of all the parts, are the only fecurities againnt the difagreeable rattling which thefe rebounds would occalion. In refpect to the fulidity and precifion of workmanfhip, the Britilh inftruments are unrivalled, and vall numbers of them are fent to all parts of the contivent.

As the blow of fo light a mallet cannot bring much found from a wire, it has always becu found neceeffary to have two ftrings fur each note. Another circumflance contributes to enfeeble the found. The mechanifm necellary for producing it makes it almo? inspoffible to give any confiderable extent to the belly or found board of the infrument. There is feldom any more of it than what occupics the fpace between thic tuning pins and the bridgre. This is the more to be regretted, becaufe the baffes are comaonly covered flrings, that they may be of a moderate length. The bafs notes are alfo of brafs, which has a confiderably lower tone than a fleel wire of the fame diameter and tenfion. Yot even this fubllitution for ftect in the bafs ftrings is not enough. The highof of them are much too flack, and the loweft ones munt be luaded, to compenfate for want of length. This greatly dinininines the fulnefs, and ftill more the mellownefs and diftinctnefs of the tone, and frequently makes the very lowe notes hardly appreciablc. This inequality of tone abort

Piann
Fortc.

Pignents, the middle of the inftrument is fomewhat diminifhed by conftructing the inflrument with two bridges; one for the fteel, and the other for the brafs wires. But fill the bafs notes are very much inferior to the treble. It would furely be worth while to conftruct fome piano fortes, of full fize, with naked baffes. If thefe were made with all the other adrantages of the grand piano forte, they would furpafs all other inftruments for the regulating power of their thorough bafs. We wifi that the arifts would alfo try, to conftruet them with the mechanifm of mallets, \&c. above the found board. This would allow to it the full extent of the infliument, and greatly improve the tone. It does not feem impofible, nor (we think) very difficult.
For directions how to tune this pleafing inftrument, fee Temperament in this Supplement.

PIGMENTS, or Paines, are furnifhed by both the mineral and vegetable kingdoms, The former are the moft durable, and are generally prepared from the Oxides of metals (fee Chemistry. Index in this Suppl. and Colour-Making, Eacycl.); but Fourcroy thinks that chemiftry furnifhes a method of fixing vegetable colours completely. From a number of experiments, which we need not detail, as they will be noticed in the article Vegetable Substancrs; he draws the following conclufions:

1. That oxygen, when combined with vegetable fubftances, changes their colour.
2. That diferent proportions of this principle produce different fhades in coloured vegetable matter.
3. 'that thefe fhades pafs, by a fort of degradation, from the darkeft colours to the lighteft ; and that the extreme poiut of the latter may be confidered as a com. plete deprivation of colour.
4. That in many vegetable fubftances this degradation does not take place, as M. Berthollet has obferved.
5. That many red, violet, purple, chefnut, and blue vegetable colours, are produced by different proportions of oxygen ; but that none of thele are completely faturated with this principle.
6. That the complete faturation here fpoken of generally produces yellow colours, which are the leaft changeatle of all.
7. That vegetable fubflances coloured by oxygen, not only change their colour according to the proportion of oxygen they bave imbibed, but that they alfo change their nature in the fame proportion, and approach more to a refinous flate as they become nearer to a yellow colour.

Laftly, that the caufe of the changeability of the red, brown, and violet culours, procured from vegetables, is fuch as has been ftated above; that there ex. ifts a method of fixing them, or rendering them perinanent, by impregnating them with a certain quantity of oxygen, by means of the oxygenated muriatic acid; imitating, by this procefs, the method purfued by nature, who never forms fixed and permanent colours, except in fubftances which lave been long expofed to the open air.

PITCH. See Encycl.-The beft black pitch is made of the refufe of rolin and turpentiue, fuch as will not pafs through the fraw filter, and the cuttings a. round the incilion on the tree. Thefe materials are put into a boiler fix or feven feet in circumference, and eight or ten high. Fuel is lairl around the top, and the materials as they melt flow through a channel cut in the fire-place into a tub half filled with water. It is at that time very red, and almoft liquid. T'o give this a proper confiftence, it is put in a cauldron placed in a furnace, and boiled down in the fame manner as rofin, but it requires moch lefs precaution and double the time. It is then poured into moulds of earth, and forms the beft kind of black pitch. See Rosin and Turpentine in this Supppl.

Bastard PI'TCH, is a mixture of colophony, black pitch, and tar boiled down together, and caft in moulds.
PLAGUE (fee Medicine-Index, Encycl.), is a difeafe which has been lately afferted by Dr Mofeley to be not contagious. In fupport of this opinion, he quotes many paffages from medical writers, ancient and modern; but he feems to place the greateft confidence (as is indeed natural) in his own obfervations on peftilential fevers in the Weft Indies, and on what is faid of the plague in Berthier's account of Buonaparte's expedition into Syria.
"At the time of our entry into Syria (fays this Frenchman), all the townswere infected by the plague; a malady which ignorance and barbarity render fo fatal in the Eaft. Thofe who are affected by it give tbemfelves up for dead; they are immediately abandoned by every body (A), and are left to die, when they might have been faved by medicine and attention.
"Citizen Degentetes, principal phyfician to the ar$m y$, difplayed a courage and character which entitle him to the national gratitude. When our foldiers were attaked by the leaft fever, it was fuppofed that they had caught the plague, and thefe maladies were confounded. The fever hofpitals were abandoned by the officers of health and their attendants. Citizen Degenettes repaired in perfon to the hofpitals, vifited all the patients, felt the glandular fwellings, dreffed them, declared and maintained that the diftemper was not the plague, but a malignant fever with glandular fwellings, which might eafily be cured by attention, and keeping the patient's mind eafy."

Degenette's views in making this diftinction were highly commendable; but certainly, fays. Dr Mofeley, this fever was the plague. The phyfician, however, carried his courage fo far, as to make two incifions, and to iloculate the fuppurated matter from one of thefe buboes above his brealt and under his arm-pits, but was not affected with the malady. He thus eafed the minds of the foldiers, the firft fep to a cure; and, by his affiduity and conftant attendance in the hofpitals, a number of men attacked with the plague were cured. His cxample was followed by other officers of health.

The lives of a number of men Citizen Degenettes
(A) This can hardly be true. Every one knows that Mahometans are fatalifts in the fricteft fenfe of the word; and Mr Browne, whofe knowledge of Syria and its inhabitants muft be at leaft equal to that of Berthier, affures us, that, far from abandoning his friend in the plague, "the Moflem, awe-ftruck, and refigned to the unalterable decrees of fate, hangs over the couch of his expiring relative."

P L A [369] P L A

Piaguc. was thus inftrumental of faving. He difmiffed thofe who had been ill with the fever and buboes, without the leat contagion being communicated to the ariny.
"There are (fays Dr Mofeley) annual or feafonal diforders, more or lefs fevere, in all countries; but the plague, and other great depopulating epidemics, do not always obey the feafons of the year. Like comets, their courfe is eccentric. They have their revolutions; but from whence they come, or whither they go after they have made their revolutions, no mortal can tell.
"' $\overrightarrow{\text { o }}$ look for the caufe of an epidemic in the prefent ftate of the air, or weather, when it makes its appearance, is a very narrow contracted method of fcrutiny. The caufe of peftilential epidemics cannot be confuned, and local. It mult lie in the atmofphere, which furrounds, and is in contact with every part of us; and in which we are immerfed, as bodies in fluids.
"Thefe difeafes not appearing in villages and thinly inhabited places, and generally attacking only great towns and cities, may be, that the atmotphere, which I conceive to be the univerfal propagator of peftilence, wants a commixture, or union, with fome compounded and peculiar air, fuch as is generated in populous communities, to releafe its imprifoned virulence, and give it force. Like the divided feminal principles of many plants, concealed in winds and rains until they find fuitable materials and foil to unite their feparated atons, they then aflume vilible forms in their own proper vegetation.
"Difeafes originating in the atmofphere feize fome, and pafs by others; and act exclulively on bodies graduated to receive their imprefions; otherwife whole nations would be deftroyed. In fome conftitutions of the budy the accefs is eafy, in fume difficult, and in others inpoffible.
"The air of confined places may be fo vitiated as to be unfit for the purpofes of the healthy exittence of any perfon. Hence gaol, hofpital, and thip fevers. But, as thefe dittempers are the offspring of a local caufe, that local caufe, and not the diftempered people, communi. cate the difeafe.
"Plagues and peftilences, the produce of the great atmofphere, are conveyed in the fame manner, by the body being irs contact with the caule; and not by its being in contact with the effect. If peftilences were propigated by contagion, from infected perfuns, the infection muft iffue from their breath or excrements, or from the exhalations of the bodies of the difeafed. The infection, if it were not in the atmofphere, would be confined within very narrow limits; have a determinate fuhere of action; and none but phyficians and attendants on the fick would fuffer; and thefe mult fuffer; and the caufe and the effects would be palpable to our fenfes. Upon this ground the precaution of quarantine would be rational. But who then would vifit and attend the fiek, or could live in hofpitals, prifons, and lazarettos?"

From thefe reafonings and facts, the author is convinced, that the bubo and carbuncle, of which we hear fo much in Turkey, and read fo much in our own hifzory of plagues, arife from heating food and improper treatment ; that they contain no infection; and confequently that they are not the natural depolit of the morbific virus feparated from the contagion.

He is equally confident that no peftilential or pandenic fever was ever imported or exported; and hence

Suppl. Vol. II. Part I.
he confiders the fumizating of hip.letters, and flutting up the crews and paffengers of veffel, on their arrival from foreign places, feveral weeks, for fear they fiould give difeafes to others which they have not themfelves, as an irnorant barbarous cuftom. Whence was the im. portation of the plague at Naples in 1656 ; by which 20,000 people died in one day? Can any perfon, for a moment refletting, believe, that the great plague of London in 1665 , which imagination traced from the Levant to Holland, and from Holland to England, was caufed by opening a bag of cotton in the city, or in Long Acre; or a package of hemp in St Giles's parifh ? Quarantine, always expenfive to commerce, and often ruinous to individuals, is a reflection on the good fenfe of countries.

That Dr Mofeley is a man of learning, and a lively writer, is known to every one who has looked into his works, and is not himfelf a ftranger to letters. On this accomnt, and ftill more on account of the opportunities which he has poficfed of making accurate obfervations on various kinds of peitilential difeafes, we have detailed at fome length his notions of the plague; but as it does not appear that he ever faw the difeafe which is known by the nanse of the plague, jullice requires that we give fome account of it from a man who had the belt poffible opportunities of obtaining correct information on the fubject.
"The facts that appear to be chiefly afcertained relative to the plague (fays Mr Browne), are, 1. That the infection is nut received but by actual contact. In this particular, it would feem lefs formidable than feveral other diforders. 2. That it is communicated by certain fubitances, by uthers not; as by a woollen cloth, or rope of hemp, but not by a piece of ivory, wood, or rope made of the date tree; nor by any thing that has been completcly immerfed in water. It would appear from the report of the Kahirines *, that no animal but man is affected with this diforder; though, it is faid, a cat paffing from an infected houfe has carried the contayion. 3. That perfons have often remained together bich Mr ${ }^{\circ}$ Brown uniin the fame houfe, and entirely under the fame circum-formly calls ftances, of whom one has teen attacked and died, and the Kabira. others never felt the fmallelt incorvenience. 4. That a perfon may be affected any number of times. 5 . That it is more fatal to the young than the old. 6. That no climate appears to be exempt from it; yet, 7 . That the extremes of heat and cold buth appear to be adverfe to it. In Conitantinople it is often, but far from being always, terminated by the cold of wioter, and in Kahira by the heat of funmer; both circumftances being, as may be conjectured, the cffect of indifpulition for ahforption in the fkin, unlefs it be fuppuled that in the latter cafe it may be attributed to the change the air undergoes from the increafe of the Nile.
"I'he firft fymptoms are faid to be thirt ; 2. CephaJalgia; 3. A fiff and uneafy fenfation, with rednefs and tumor about the eyes; 4 . Watering of the eyes; 5. White puftules on the tongue. The more advanced fymptoms of buhoes, fotor of the breath, \&c. \&cc. are well known; and I have nothing authentic to add to them. Not uncommonly, all thefe have fuccedfively Shewn themfelves, yct the patient has recuvered; in which cafe, where fuppuration has had place, the 有in always remains difcoloured, commonly of a purple hue. Many who have been bleeded in an early ttage of the 3. 1 diforder.

P L A [370] P L A

Plague. diforder, have recovered without any fatal fymptoms but whether from that or any ofler caule, does not ap pear certain (B). The fanie operation is reported to have been commonly fatal in a lute Aase. It is faid that embroca:ing the bubces cominually with oil has fonetimes wrousht a cure ; but this remedy is fo difficult and dangerons for the operator, that it would ap. pear experiments muft yet be very defective."

They are not, perhaps, fo defective as Mr Browne fuppulis. In the hofpital of St Anthony at Smyrna, it has been the practice for many years pait to rub over with warm olive oil the bodies of perfons infected by the plague; and that practice bas been attended with wondertul fuccefs. It was firll fuggetled by M: Baldwin the Englifh conful ; and from him adopted by P. Luigi di parid, who for upwards oi 27 years has expofed himfelf to infection by his unremitting attendance on thofe who are labouring under this dreadful diftrefs. This excellent man, whofe philanthropy equals that even of "Marfeilles' good bifhop," declares, that during the long period nentioned, he has found no remeey comparable t" that of rubbing olive oil, with the ftrongeft friction, into the whole body of the infected perfon. When the body is thus rubbed, the pores being opersed, imbibe the oil, and a profufe perfiration takes place, ty which the poifonous infection is again threwn ont. 'This operation muth be performed the firft day of the infection; and if orly a weak perfpiration enfues, it muft be repeated till it is obferved that every particle of infection is removed, and that the whole body of the patient is covered with a profule fweat. Neither the petient's thirt nor bed clothes muft be changed till the perfpiration has entirely ceafed. The operation muft be perfurmed in a very clofe apartment; and at every feafon of the year there muft be kept in it a fire-pan, over which f:otar and juniper muft be thrown from time to tine, that the vapour which thence arifes may promote the perfpiration. The whole body of the paticnt, the eyes alone excepted, muft in this manner be anointed, or rather rubbed over, with the greateft sare.

This practice of the pious monk is mentioned by Mr Howard in his work on Lazarettos; but a more Sat isfactory account of it is given by Count Leopold von Berchold, who adds the following remarks by way of illuftration: 1. The operation of rubling in the oil
muft be performed by means of a fponge, and fo fpeediIy as not to laft more than ahout three minutes. 2. The interval between the firft and the fecond rubbing, if a fecond be neceffary, mufl be determined by circumitances, as the fecond muft not be performed till the firft perfiration is over, and this will depend on the conItitution of the patient. If any fweat remains upon the fkin, it nult be wiped off with a warm cloth before the fecond rubbing takes place. This arong friction with oil inay be continued for feveral days fucceffively, until a favourable change is remarked in the difeafe; after which the rubbing may be performed in a more gentle manner. The quantity of oil requifite each time cannot be determined with accuracy; but, in general, a pound may be fufficient. The pureft and frefheft oil is the beft for this operation : it mult not be hot, but on1y lukewarm. The breaft and privities mult be rubbed foftly. In a cold climate fuch as ours, thofe parts only into which the oil is rubbed moft be expofed naked. The other parts mutt be covered with warm clothing. In this manner each part of the body muft be rubbed with nil in fucceffion, as quickly as poffible, and be then inflautly covered. If the patient has boils or buboes, they muft be rubbed over gently with the oil till they can be brought to fuppurate by means of emollient plafters. The perfons who attend the patients to rub in the oil mult take the precaution to rub themfelves over in the like manner, before they engage in the operation. They mult, if poffible, avoid the breath of the patient, and not be under any apprehenfions of catching the infection.
P. Luigi then fays: "In order to prevent the patients from lofing their Alength, I preferibed for them, during four or five days, foup made of vermicelli boiled in vinegar withont falt. I gave them lix or feven times a-day a fmall 〔poonful of preferved four cherries; preferved not with honey, but with fugar, as the former might have occafoned a diarrhœa. When convinced that the patients were getting better, 1 ufually gave them the bifth morning a cup of gond Mocha coffee, with a piece of toafted bifcuit (lifcotro) prepared with fugar; and I doubled the latter according to the flrength and improvement of my patients."

In the courfe of five years, during which friction with oil was employed. in the buipital at Smyrna, of 250 p rfons attacked by the plague the greater part
(в) Dr Moftey, we think, has afigned a very fufficient reafon why bleeding fhould generally prove effectual, if recourfe be had to it at the commencement of the difeafe. "In the common order of peftilential fevers (fays he), they conmence with coldnefs and thivering; fumply demonftating, that fomething unufual has been in contact with the flinin, agonizing cutaneous fenfibility. Sicknefs at the flomach, and an immoveable prefure about the precordia, follow. Thefe demonfrate, that the blood cannot pervade the extremities of the body, and that the quantity which onght to dilate through the whole machine is confined to the larger organs, and is crowding and diftending the heart and central veffels.
"The reflraining power of the remoter blood veffels being deftroyed, the thinner parts of the blood efcape their boundaries; heice arifes yellownefs in the kin in fome climates; in others, the extravafated groffer parts of the blood flagnate, forming black lodgements, bubo, anthrax, and exanthernata.
"The object in thefe fevers is, to decide the conteft between the folids and the fuids; and this appears to me to be only practicable, when fpontaneous fweats do not happily appear, or cannot be raifed by a cooling regimen; and by draining the vital parts, by bleeding and purging, before the fluids have burft their confines, and diffolved their bond of union with the folids. The next ftep is to regain the loft energy of the furface of the body, by exciting perfpiration; and then of the whole fyttem, by tonics.
"When thefe things are not done in the firl hours of attack, in peftilential fevers, and the confiet is not extingui h_{0} d at once, atteinpting to extort fwears from the body, by heating alexapharmacs, will do mifchief; ard bark, wine, ftimulants, and cordials, may be calied on, like undertakers, to perform an ufelefs ceremony."

P I. A

Planetary. were cured; and this would have been the cafe with
hours, -Planets. the rett had they not neglected the operation, or had it not been employed tou late after their nervous fyttem
had been weakened by the difeale fu as to render them iucurable. Immenfe numbers of people have been preferved from the effects of this malady by the above means; and of all thofe who have anointed themfelves with oil, and rubbed it well into their bodies, not one has been attacked by the plague, even though they approached perfons already infected, provided they abitain. ed from leavy and indigettible food.

Thus we fee, if this account may be depended on, that oil rubbed into the fkin acts as a preventative, as well ds a cure. When the operation is performed to prevent infection, and it is fuccefsfully performed with that view at Smyrna, as often as the plague makes its appearance in the city, as it is not done for the purpole of promoting perfpiration, it is not requifite that it thould be performed with the fame lpeed as when for curing the diforder; nor is it neceffary to abtain from feih and to ufe foups; but it will be proper to ufe only fowls or veal for ten or twelve days, boiled or roatted, without any addition or feafoning (condimento). In the laft place, it will be neceffary to guard againft fat and indigeftible fuod, and fuch liquors as might put in motion or inflame the mafs of the blood.

This important difcovery deferves the ferious confideration of all medical men; for if olive oil has been found efficacious in curing or preferving againft one fpecies of infection, it is not abfurd to fuppofe that the fame or other kinds of oil might be productive of much benefit in other malignant infections difeafes. We hope toon to hear of fome trial being made with it in this country. Would it be of any fervice in the yellow fever, fo prevalent in the weitern world? See the PbiloSophical Magazine, Vol. II.

PLANETARY hours, are twelftl parts of the artificial day and night ; being each double in length (1) the hour ufed in civil cumputation in Europe. They are ftill ufed by the Jews as they were among their forefathers; and hence are called Fervifh hours. 'The reafon of their being called planetary hours, is, that according to the allrologers, a new planet comes to predominate every hour, and that the day takes its deno. mination from that which predominates the firt hour of it; as Monday from the moon, Sce.

PLANET'S have been fufficiently defcribed in the articles Astronomy in the Encyclopadia and this Supplement. The word is introduced here merely to notice the difcovery of two new planets fince thofe articles were written. The firft was difcovered in January 18or, by Piazzi of Palermo; and the other, if it be indeed a planet, on the 281 h of March 1802, by Mr Olbars an aftronomer of Bremen. Of the exiftence of Piazzi's planet there is no doubt, as it has been obterved by almof all the eminent aftronomers of Europe. Its orbit is between tbat of Mars and Jupiter, and its appearance like that of a flar of the feventh or eighth magnitude. It has been called Funo, Hera, and Ceres Ferdinandea. The laft of thefe names feems to be generally adopted; and it was impofed by the difcoverer in allufion to Sicily, and the monarch who reigus over that country. Dr Herfehel does not think the ttar of Olbars intitled to the rank of a planet; and hither. to we believe it has received no name. Cires Ferdinan.
dearevolves in four years; and the following are the elements found by bruckhardt and Gaufs, and admitted by L,alande
Inclination
Node
Aphelion Paffage of the Aph.
 Eccentricity Semi-axis Revolution

PLANTS, organifed bodies, of which a full account has been given in the Encycl. under the title Botany, Plants, Sexes, Eoc. The cilablihment of the fexual fyften in vegetables, and the acknowledged analogy between vegetable and animal bodies, has luggetted a method of improving plants, as animals are confeffedly im. proved, by what is called crof/rig she breed. This thought ineurred firlt, we believe, to Andrew Knight. Efq; and in the Pranfactions of the Ruyal Suciety for 1799, we lave an account of fume very curious experiments made by him, with the view of afectaining whether the improvement which he had conceived be actually practicable. Thofe were chiefly made on the garden pea, of which he had a kind growing in his yard; which having been long cultivated in the fame fuil, had ceafed to be productive, and did not appear to recover the whole of its former vigour when removed to a foil of a fomewhat different quality. On this his firft experiment in $17^{8} 7$ was made. Having opened a dozen of its inmature bloffoms, he deltroyed the male parts, taking great care not to injure the female ones : and a few days afterwards, when the bluffoms appeared mature, he introduced the farina of a very large and luxuriant grey pea into one half of the bloffoms, leaving the other half as they were. The pods of each grew equally well; but he foun perceived that of thofe into whofe blutloms the farina had not been introduced, the feed remained nearly as they were before the bloffom expanded, and in that tlate they withered. Thofe in the other pods attained maturity, but were not in any fenfible degree different from thofe afforded by other plants of the fame varicty; owing, he imagines, to the external covering of the leed (as he had found in other plants) being furnihed entirely by the female. In the fucceeding foring, the difference, however, became extremcly ubvious; for the plants front then arofe with exceffive luxuriance, and the colour of their leaves and ftems clearly indicated that they had all exchanged their whitencfs for the colour of the inale parent: the feeds produced in autumn were dark grey. By introducing the farina of another white variety (or in fome inftances by fimple culture), he found this colour was eafily difcharged, and a numerous variety of new kinds produced; many of which were in fize and every other refpest much fuperior to the original white kind, and grew with exceflive luxuriance, fome of them attaining the height of more than twelve feet.

The diffimilarity he obferved in the offspring, afforded by different kinds of farina in thefe experiments, pointed out to him an tafy method of afcertaining whether fuperfoctation (the exiftence of which has been admitted among animals) could alfo take place in the vegetable world. For as the offspring of a white pea is always white, undefs the farina of a coloured kind be

P L A [372] P LA

Plants introduced into the bloffom, and as the colour of the grey one is always transferred to its offspring, though the female be white, it readily occurred to Mr Knight, that if the farina of buth were mingled or applied at the fame noment, the off pring of each could be eafily diftinguifled.

His firl experiment was not altogether fuccefsful ; for the offipring of five puds (the whole which efcaped the birds) received their colour from the coloured male. There was, however, a Arong refemblance to the other male in the growth and charaker of more than one of the plants; and the feeds of feveral in the autumn very clofely refembled it in every thing but colour. In this experiment he ufed the farina of a white pea, which poffeffed the remarkable property of ftrivelling exceffively when ripe; and in the fecond ycar lie obtained white feeds from the grey ones above mentioned, perfectly funilar to it. He is therefore Arongly diffofed to believe that the feeds were here of common paren. tage ; but doth not conceive himfelf to be in poffeffion of facts fufficient to enable him to fpeak with deciiion on this queftion. We have no right to form a decided opinion on this part of the fubject, having paid to it very little attention; but at prefent we are inclined to think differently from the author. We admit, indeed, that if the female afford the firt organized atom, and the male act only as a fimulus, it is by no means im. puffible that the explotion of two veficles of farina, at the fame moment (taken from different plants), may afford feeds of common parentage ; but whether the female or the male affords the firf organized atom, is the queftion which to us appears not yet decided.

Another fpecies, however, of fuperfatation, in which one feed appears to have been the offspring of two males, has oceurred to Mr Knight fo often, as to remove, he fays, all poffibility of doubt as to its exift. tace. In 1797, the year after he had feen the refult of the laft mentioned experiment, having prepared a great many white bloffoms, he introduced the farina of a white and that of a grey nearly at the fame moment into each; and as in the laft year the eharacter of the coloured male had prevailed, he ufed its farina more Sparingly than that of the white one; and now almoft every pod affurded plants of different colours. The majority, however, were white ; but the characters of the two kinds were not fufficiently diflinet to allow him to judge with precition whether any of the feeds were produced of common parentage or not. In the year 179^{8} he was more fortunate; having prepared blof. Sums of the little early frame pea, he introduced its own farina, and immediately afterwards that of a very large and late grey kind, and fowed the feeds thus obtained in the end of funmer. Many of them retained the colour and character of the finall carly pea, not in the flighteft degree altered, and bloffomed before they were eighteen inches high; whilf others (taken from the fame pods), whofe colour was changed, grew to the height of more than four feet, and were killed by the froft before any bloffoms appeared.

It is evident, that in thefe inflances fuperfortation took place; and it is equally evident that the feeds were not all of common parentage. Should fubfequent experience evince, that a fingle plant may be the offfpring of two males, the analogy between animal and vegetahle nature may induce fome curious conjectures
relative to the procefs of gencration in the animal world.-It cercainly may; but either we do not perfectly undertand the author's meaning, or this experiment is not conclufive. There were here feeds of dif. ferent colours produced by the fariua of different males, uperating on the fome female plant ; and there are well attefted inftances of twin children being born of diffe. rent colours, in confequence of the coition of different males, a negro and a white man, with the fame woman. Had Mr Kinght difcovered, not that the fame pod, but that the fame individual pea, was the offspring of two males, his difcovery would indeed have led to fome eurious conjectures refpecting animal generation. But to proceed with his experiments.

By introducing the farina of the largeft and moft loxuriant kinds into the bloffoms of the moft diminutive, and by referving this procefs, he found that the powers of the male and female, in thcir effects on the offspring, are exactly equal. The vigour of the growth, the fize of the feeds produeed, and the feafon of maturity, were the fame, though the one was a very early and the other a late variety. He had in this experiment a ftriking inftance of the fimulative effects of croffing the breeds; for the fmalleft variety, whofe height rarely exceeded two feet, was increafed to fix: feet; whilt the height of the large and luxuriant kind was very little diminifhed. By this procefs it is evident, that any number of new varieties may be obtained; and it is highly probable, tlat many of thefe will be found better calculated to correct the defects of dif. ferent foils and fituations than any we have at prefent.

The fiwcefs of Mr Kuight's experiments on the pea induced him to make fimilar experiments on wheat; but thefe did not anfwer his expectations. The varieties indeed which be obtained, efcaped the blights of 1795 and 1796 ; but their qualities were not otherwife good, nor were they permanent. His experiments on the apple, the improvement of which was the firft object of his attention, have, as far as he eould judge froin the cultivated appearance of trees which had not borne fruit when he wrote his memoir, been fully equal to his hopes. The plants which he obtained from his efforts to unite the good qualities of two kinds of apple, feem to poffefs the- greateft health and luxariance of growth, as well as the mof promifing appearance in other refpects. In fome of thefe the character of the male appears to prevail; in others that of the female ; and in others both appear blended, or neither is diftinguifhable. Thefe variations, which were often obfervable in the feeds taken from a fingle apple, evidently arife from the want of permanence in the eharacter of this fruit, when raifed from feed. Many experiments of the fame kind were tried on other plats; but it is fufficient to fay, that all tended to evince, that improved varieties of every fruit and of efculent plants may be obtained by this procefs, and that Nature intended that a fexual intercourfe fhould take place between neigh. bouring plants of the fame fpecies. For the nutrition of plants, fee Vegetable Substances in this Suppl.

PLATinUM, or Platina (See Chemistry, Suppl. Part I. Chap. iii. Sect. 3.), is a metal, of whieh every chemint regrets the difficulty of making it malleable. Of the different proceffes adopted to aceomplifh this end, we have reefon to believe that of Mr Richard Knight the moft fuccefsful; and, with the Spirit

Plants, Platinum.

P O L

 his own words : nothing hetween it and the bran.PORCELAIN, a kind of earthen or ftone ware, of
"To a given quantity of crude platinum, I add (fays he) 15 times its weight of nitro-muriatic acid (compofed of equal parts of nitric and muriatic acids) in a tuhulated glafs retort, with a tubulated receiver adapted to it. It is then boiled, by means of an Argand's lamp, till the acid has affumed a deep faffron colour: it is then poured off; and if any platina remains undiffolved, more acid is added, and it is again boiled until the whole is taken up. The liquor, being fuffered to reft till quite clear, is again decanted : a folution of fal-ammoniac is then added, by little and little, till it no longer gives a cloudinefs. By this means the platina is thrown down in the form of a lemon-coloured precipitate, which having fublided, the liquor is poured off, and the precipitate repeatedly wathed with diftilled water till it ceafes to give an acid talte (too much water is injurious, the precipitate being in a certain degree foluble in that liquid) ; the water is then poured off, and the precipitate evaporated to drynefs."

Thus far our author's method, as he candidly obferves himfelf, differs not from that which has been followed by many otbers; but the remainder of the procefs is his own. "A ftrong, hollow, inverted cone of crucible earth being procured, with a correfponding ftopper to fit it, made of the fame materials, the point of the latter is cut off about three-fourths from the bafe. The platina, now in the ftate of a light yellow powder, is preffed tight into the cone, and, a cover being fixed flightly on, it is placed in an air furnace, and the fire raifed gradually to a ftrong white heat. (The furnace ufed by Mr Knight is portable, with a chamber for the fire only eight inches in diameter.) In the mean time the conical ftopper, fixed in a pair of iron tongs fuitable for the purpofe, is brought to a red, or to a bright red, heat. The cover being then removed from the cone, the tongs with the heated ftopper is introduced through a hole in the cover of the furnace, and preffed at firft gently on the pla. tina, at this time in a flate nearly as foft as dough, till it at length acquires a more folid confiltence. It is then repeatedly ftruck with the Itopper, as hard as the nature' of the materials will admit, till it appears to receive no farther impreffion. The cone is then removed from the furnace ; and being ftruck lightly with a hanmer, the platina falls out in a metallic button, from which ftate it may be drawn, by repeatedly heating and gently hammering, into a bar fit for flatting, drawing into wire, planifhing, \&c.
"Befides the comparative facility of this procefs, it has the farther advantage of rendering the platina much purer than when red hot iron is obliged to be had recourfe to ; for platina, when of a white heat, has a ttrong alfinity for iron, and, with whatever care it may have been previounly feparated from that metal, will be found to have taken up a portion of it, when it is empluyed of a red heat, to ferve to unite the particles of the platita."

PLATONIC Bodies, fee Rfgilar Bodies, Suppl.
PLUVIAMETER, a machine for meafuring the quantity of rain that falls, otherwife called Ombrome. TER; which fee, Encycl.

POLLARDS, the name of a coarfe kind of wheaten flour. When the flour of wheat is feparated into three
degrees of finencls, the third is the pollards. There is Portelain. the manufacture of which a full account is given in the Encyclopadia from Groficr and Reaumur. It may be proper, however, to add here, from Sir George Staunton, that one of the principal ingredients in the Chinefe porcelain called pe-tun-tfe, is a fpecies of fue granite, or compound of quartz, feldfpath, and mica, in which the quartz bears the larget proportion. "It appears (fays Sir George) from feveral experiments, that pe-tun-tfe is the fame as the growan-ftone of the Cornifh miners. 'I'he micaceous part in fome of this granite from both countries, often contains fome particles of iron ; in which cafe it will not anfwer the potter's purpofe. This material can be calcined and ground much finer by the improved mills of England, than by the very imperfeet machinery of the Chinefe, and at a cheaper rate, than the prepared peotun-tfe of their own country, notwithftanding the cheapnefs of labour there. The kao-lin, or principal matter mixed with the pertun$t f e$, is the growan clay 'allo of the Cornifh miniers.' I he whajfhe of the Chinefc is the Englif foap rock; and the jhe kan is afferted to be gypfum.
"The manufacture of porcelain is faid to be precarious, from the want of fome precife method of afcertaining and regulating the heat within the furnaces, in confequence of which, their whole contents are baked fometimes into one folid and ufelefs mafs." If this be fo, Wedgewood's thermometer would be a prefent highly valuable to the Chinefe potter, if that arrogant and conceited people would condefcend to be taught by a native of Europe.

POSITION, CENTRE OF, is a point of any body, or fyftem of hodies, fo felected, that we can eftimate with propricty the fitnation and motion of the body or fyftem by the fituation and motion of this point. It is very plain that, in all our attempts to accurate difcuffion of mechanical queftions, efpecially in the prefent extended fenfe of the word mechanifm, fuch a felection. is ueceffary. Even in common converfation, we frequently find it neceffary to afcertain the diftance of objects with a certain precifion, and we then perceive that we mut make fome fuch felection. We conceive the diftance to be mentioned, neither with refpeet to the nearelt nor the remoteft point of the object, bit as a fort of average diftance; and we conceive the point fo afcertained to be fomewhere about the middle of the object. 'The more we reflect on this, we find it the more neceffary to attend to many circumftances which we had overluoked. Were it the queftion, to decide in what precife part of a country parifh the church foould be placed, we tind that the geometrical middle is not atways the molt proper. We mult confider the populoufnefs of the different quarters of the parifi, and felect a point fuch, that the diflances of the inhabitants on each fide, in every direction, fhall be as cqually balanocd as poffible.

In mechanical difcuffions, the point by whofe pofition and diftance we eltimate the pofition and diftance of the whole, nuft be fo felected, that its pofition and difance, eftimated in any direction whatever, thall be the average of the pofitions and diftances of every partio cle of the affenblage, eftimatio! in that direction.

This will te the cati, if the point be fo feleeted that, when a plane is made to pais through it in any direc.

$\because \quad 0 \quad S$

Paition. lion nubuever, and perpendiculars are drawn to this planc from every purticle in the body or fyitem, the fum of all the perpendiculars on one fide of this plane is equal to the furn of all the perpendiculars on the other fide. If there he diach a point in a body, the pofition aud motion of this point is the average of the politions and motions of all the particles.
Place XL
For if P (lig. 1.) be a point fo fituated, and if QR be a plane (perpendicular to the paper.) at any diftance from it, the diftance P_{p} of the point from this plane is the average of the diftances of all the particles from it. For let the plane APB be paffed through P, parallel to QR. The diftance CS of any particle C from the plane $Q R$ is equal to $D S-D C$, or to $P p-D C$. And the difance GT of any particle G, lying on the other fide of $A P B$, is equal to $\mathrm{HT}+\mathrm{GH}$, or to $\mathrm{P} p+\mathrm{GH}$. Let n he the number of particles on that fide of $A B$ which is neareft to $Q R$, and let o be the number of thofe on the remote lide of AB , and let m be the numher of particles in the whole body, and therefore equal to $n+o$. It is evident that the fum of the diftances of all the particles fuch as C , is n times $\mathrm{P} p$, after deducting all the diftances, fuch as DC . Alfo the fum of all the diftances of the particles, fuch as G , is o times $\mathrm{P} p$, together with the fum of all the diftances, fuch as GH . Therefore the fum of buth fets is $\overline{n+} 0 \times \mathrm{P} p+$ fum of GH-fum of DC, or $m \times P p+$ fum of GH fum of DC. But the furn of GH, wanting the fum of DC, is nothing, by the fuppofed property of the joint F . Therefore $m \times \mathrm{P} p$ is the fun of all the diflances, and $P p$ is the m th part of this fum, or the average diftance.

Now fuppofe that the body has changed both its jlace and its polition with refpect to the plane QR, and that P (fig. 2.) is ftill the fame point of the body, and αP_{β} a plane parallel to $Q R$. Make $p \pi$ equal to $p \mathrm{P}$ of fig. 1. It is plain that $\mathrm{P} p$ is ftill the average diftance, and that $n \times P \rho$ is the fum of all the prefent diftances of the particles from $Q R$, and that $m \times \rightarrow p$ is the fum of all the former diftances. Therefore $n \times \mathrm{P}_{x}$ is the fum of all the changes of diflance, or the whole quantity of motion eftimated in the direction *P. P* is the m th part of this fum, and is therefore the average mution in this direction. The point P has therefore been properly felected; and its pofition, and diftance, and motion, in refpect of any plane, is a proper reprefentation of the fituation and motion of the whole.

It follows from the preceding difcuffion, that if any particle C (fig. 1.) moves from C to N , in the line CS, the centre of the whole will be transferred from P to Q , fo that PQ is the m th part of CN^{\prime}; for the fum of all the diftances has been diminifhed by the quantity CN , and therefore the average diftance mult be diminithed by the mth part of CN , or PQ is $=\frac{\mathrm{CN}}{m}$.

But it may be doubted whether there is in every body a point, and but one point, fueh that if a plane pals through it, in any direction whatever, the fum of ald the ditances of the particles on one fide of this plane is equal to the fum of all the distances on the other.

It is eafy to fhew that fuch a point may be found, with refpect to a plane parallel to QR. For if the fum of all the diftances UC exceed the fum of all the difances $G H$, we have only to pafs the plane AB a little acarer to OR, but ftill parallel to it. This will dimi-

374 〕
 P 0 S

wihn the fum of the lines DC, and increafe the fum of Puffition the lines GH. We may do this till the fums are equal.

In like manner we can do this with refpect to a plane LM (alfo perpendicular to the paper), perpendicular to the plane AB. The point wanted is fomewhere in the plane $A B$, and fomewhere in the plane LM. Therefure it is fonewhere in the line in which thefe two planes interfect each other. The line paffes through the point P of the paper where the two lines AB and LM cut each other. Thefe two lines reprefent planes, but are, in fact, only the interfection of thofe planes with the plane of the paper. Part of the body mult be conceived as being above the paper, and part of it behind or betow the paper. The plane of the paper therefore divides the body into two parts. It may be fo fituated, therefore, that the fum of all the diftances from it to the particles $l_{\text {ying }}$ above it thall be equal to the fum of all the diftanecs of thofe which are below it. Therefore the fituation of the point P is now determined, namely, at the common interfection of three planes perpendicular to each other. It is evident that this point alone can have the condition required in refpect to thefe thrce planes.

But it fill remains to be determined whether the fame condition will hold true for the point thus found, in refpect to any other plane paffing through it ; that is, whether the fum of all the perpendiculars on one fide of t this fourth plane is equal to the fum of all the perpendiculars on the other fide. Therefore

Let AGHB (fig. '3.), AXYB, and CDFE, be three planes interfecting each other perpendicularly in the point C ; and let CIKL be any other plane, interfecting the firit in the line CI , and the fecond in the line CL. Let P be any particle of matter in the body or fyttem. Draw PM, PO, PR, perpendicular to the firit, three planes refpectively, and let PR, when produced, meet the oblique plane in V ; draw MN, ON, perpendicular to CB. They will meet in one point N . Then PMNO is a rectangular parallelogram. Alfo draw MQ perpendicular to CE, and therefore parallel to AB, and meeting CI in S. Draw SV; alfo draw ST perpendicular to VP. It is evident that SV is parallel to CL,sand that STRQ and STPM are rectangles.

All the perpendiculars, fuch as PR , on one fide of the plane CDFE, being equal to all thofe on the other lide, they may be confidered as compenfating each other ; the one being conlidered as pufitive or additive quantities, the other are negative or fubtractive. There is no difference between their fums, and the fum of buth iets may be called o or nothing. The fame mult be affirmed of all the perpendiculars PM, and of all the perpendiculars PO.

Every line, fuch as R'F, or its equal QS, is in a certain invariable ratio to its correfponding QC , or its equal PO. Therefore the pofitive lines RT are compenfated by the negative, and the fum total is nothing.

Every line, fuch as TV, is in a certain invariable ratio to its correfponding ST, or its equal PM, and therefore their fum-total is nothing

Thercfore the fum of all the.lines PV is nothing ; but each is in an invariable ratio to a correfponding perpendicular from P on the oblique plane CIKL. Therefure the fum of all the pofitive perpendiculars on this plane is equal to the fun of all the negative perpendiculars, and the propofition is demonftrated, viz. that

P O S $\left[\begin{array}{lll}375\end{array}\right] \quad \mathrm{P}$ O

Poficion in every body, or fyftem of bodies, therc is a point fuch, that if a plane be pafled thruugh it in any direction zubatever, the fum of all the perpendiculars on one fide of the plane is equal to the fum of all the perpendiculars on the other tide.
The point P, thus felected, may, with great propriety, he called the centre of rosition of the body or fyitem.

If A and B (fig. 4.) be the centres of pofition of two bodies, whofe quantities of matter (or numbers of equal particles) are a and b, the centre C lies in the Atraight line joining A and B , and $\mathrm{AC}: \mathrm{CB}=b: a$, or its diftance from the centres of each are inverfely as their quantities of matter. For let $\alpha \mathrm{C} \beta$ be any plane paffing through C . Draw $\mathrm{A}_{\alpha}, \mathrm{B}_{\beta}$, perpendicular to this plane. Then we have $a \times A{ }_{a}=b \times \mathrm{B} \beta$, and $\mathrm{A} \alpha: \mathrm{B}_{\beta}=b: a$, and, by finilarity of triangles, CA : $\mathrm{CB}=b: a$.

If a third body D , whofe quantity of matter is c, be added, the common centre of pofition E of the three bodies is in the ftraight line DC, joining the centre D of the third body with the centre C of the other two, and $\mathrm{DE}: \mathrm{EC}=a+b: d$. For, paffing the plane E \times through E , and drawing the, perpendiculars D \&, $\mathrm{C} x$, the fum of the perpendiculars from D is $d \times \mathrm{D} \delta$; and the fum of the perpendiculars from A and B is $\overline{a+b} \times \mathrm{C} \times$, and we have $d \times \mathrm{D} \delta=\overline{a+b} \times \mathrm{C} \times$; and therefore $\mathrm{DE}: \mathrm{EC}=a+b: d$.

In like manner, if a fourth body be added, the common centre is in the line juining the fourth with the centre of the other three, and its difance from this centre and from the fourth is inverfely as the quantities of matter ; and fo on for any number of bodies.

If all the particles of any fyitem be moving uniformly, in ftraight lines, in any directions, and with any velocitics whatever, the centre of the fyfem is either movisig unifurmly in a ftraight line, or is at reft

For let m be the number of particles in the fyftem. Suppofe any particle to move uniformly in any direction. It is evident, from the reafoning in a former paragraph, that the motion of the common centre is the m th part of this motion, and is in the farne direction. The fame mult be faid of every particle. Therefore the motion of the centre is the motion which is compounded of the m th part of the motion of each particle. And becaufe each of thefe was fuppofed to be uniform and rectilineal, the motion compounded of them all is alfo uniform and rectilineal ; or it may happen that they will fo compenfate each other that there will be no diagonal, and the common centre will remain at reft.

Cor. 1. If the centres of any number of bodies nove uniformly in ftraight lines, whatever may have been the motions of each particle of each body, by rotation or otherwife, the motion of the common centre will be uniform and rectilineal.

Cor. 2. The quantity of motion of fuch a fyftem is the fum of the quantities of motion of each body, reduced to the direction of the centre's motion. And it is had by multiplying the quantity of matter in the fyftem by the velocity of the centre.

The velocity of the centre is had by reducing the motion of each particle to the direction of the centre's motion, and then dividing the fum of thofe reduced motions by the quantity of matter in the fyftem.

By the felection of this point, we render the inveli-
gation of the motions and actions of bodies incompa- Pofition. rably more fimple and eafy, freeing our difcuffions from numberlefs intricate complications of motion, which would frequently make our progrefs almoft impoffible.

Position, in arithmetic, called alfo Falfe Pofition, or Suppofition, or Rule of. Falfe, is a rule fo called, becaule it confirts in calculating by falfe numbers fuppofed or taken at random, accurding to the procefs defcribed in any queftion or problem propofed, as if they were the true numbers, and then from the refults, compared with that given in the queftion, the true numbers are found.

Thus, take or affume any number at pleafure for the number fought, and proceed with it as if it were the true number, that is, perform the fane operations with it as, in the queftion, are deferibed to be performed with the number required : then if the refult of thofe operations be the fame with that mentioned or given in the queftion, the fuppofed number is the fame as the true one that was required; but if it be not, make this proportion, viz. as your refult is to that in the queftions. fo is your fuppofed falfe number to the true one required.

Example. What number is that, to which if we add $\frac{3}{2}, \frac{1}{3}, \frac{1}{4}$, and $\frac{1}{6}$ of itfelf, the fum will be 240 ?

Suppofe 99

$$
\begin{aligned}
& 49.5=\frac{7}{7} \\
& 33 .=\frac{i}{T} \\
& 24.75=\frac{1}{4} \\
& \frac{16.5}{222.75}=\frac{1}{6}
\end{aligned}
$$

Then, as $222.75: 240:: 09: 106.6=$ Anfwer. .

$$
\begin{aligned}
53 \cdot \dot{3} & =\frac{7}{2} \\
35 \cdot 5 & =\frac{1}{7} \\
26 . \dot{6} & =\frac{1}{4} \\
17 \cdot 7 & =\frac{1}{6} \\
270 . & =\text { proof. }
\end{aligned}
$$

This is fingle pofition.
Sometimes it is neceflary to make two different flip. pofitions or aflumptions, when the fame operations mult be performed with each as in the fingle rule. If neither of the fuppofed numbers folve the queftion, find the differences between the refults and the given number; multiply each of thefe differences into the other's pofition ; and if the errors in both fuppofitions be of the fame kind, i.e. if both fuppofitions be either lefs or greater than the given number, divide the differences of the products by the differences of the errors. If the errors be not of the fame kind, i.e. if the one be greater and the other lefs than the given number, divide the fum of the preducts by the fum of the errors. The quetient, in either cafe, will be the anfwer.

Example. Three partners, A, B, and C, bought a fugar-work which coft them L. 2000 ; of which A paid a certain fum unknown; B paid as much as A , and. L. 50 over ; C paid as much as them both, and L. is. over: What fum did each pay ?
(1.) Suppofe A paid L. 500

C——550
C $\quad 1075$
2125
2000
$325=$ error of excefs.
(2.) Sup.

Puttery. (2.) Suppofe A paid L. 400

125.	450 875
400 2d pufition.	1725
-	2000

50000

This is called double pofition.
POTTERY is an art of very confiderable importance; and in addition to what has been faid on it in the Encyclopadia, the following reflections, by that eminent chemift Vauquelin, will probably be acceptable to many of our readers.

Four things (fays he) may occafion difference in the qualities of eartben-ware: $1 / \ell$. The nature or compofition of the matter; 2 d , The mode of preparation; 3 d , The dimenfions given to the veffels; $\psi^{t h}$, The baking to which they are fubjected. By compofition of the matter, the author underftands the nature and proportions of the elements of which it is formed. Thefe element:, in the greater part of earthen ware, either valuable or common, are filex, argil, lime, and fometimes a little oxide of iron. Hence it is evident that it is not fo much by the diverfity of the elements that good earthen ware differs from bad, as by the proportion in which they are united. Silex or quartz makes always two thirds at leaft of earthen-ware ; argil or pure clay, from a fifth to a third; lime, from 5 to 20 parts in the hundred; and iron from 0 to 12 or 85 parts in the hundred. Silex gives bardnefs, infufibility, and unalterability; argil makes the pafte pliable, and renders it fit to be kneaded, monlded, and turned at pleafure. It poffeffes at the fame time the property of being partially fufed by the heat which unites its parts with thofe of the filex; but it muft not be too abundant, as it would render the earthen-ware too fufible and too brittle to be ufed over the fire.

Hitherto it has not been proved by experience that lime is neceflary in the compofition of pottery: and if traces of it are conftantly found in that fubftance, it is becaufe it is always mixed with the other earths, from which the wafhings and other manipulations have not been able to feparate it. When this earth, however, does not exceed five or fix parts in a hundred, it appears that it is not hurtful to the quality of the pottery; but if more abundant, it renders it too fufible.

The oxide of iron, befrides the inconvenience of communicating a red or brown colour, according to the degree of baking, to the veffels in which it forms a part, has the property of rendering them fufible, and even in a greater degree than line.

As fome kinds of pottery are deftined to melt very
penetrating fubilances, fuch as falts, metallic oxides, glafs, iec. they require a fine hind of pafte, which is obtained only by reducing the earths employed to very minute particles. Oihers dellined for melting metals, and fubitances not very penetrating, and which mult. be able to fnpport, without breaking, a fudden traniftion from great heat to great cold, require for their fabrication a mixture of calcined argil with raw argil. By thefe means you obtain pottery, the coarfe palte of which refembles briche, or finall grained pudding-ftene, and which can endure fudden changes of temperature.

The baking of pottery is alfo an object of great importance. The heat muft be capable of expelling humidity, and agglutinating the parts which enter into the compofition of the pafte, but not frong enough to produce fufion; which, if too far advanced, gives to pottery a homogenuoufnefs that renders it britule. The fame effect takes place in regard to the fine pottery, becaufe the very minute divifion given to the earths re. duces them nearly to the fame flate as if this matter had been fufed. This is the reafon why porcelain ftrongly baked is more or lefs brittle, and cannot eafily endure alternations of temperature. Hence coarfe porce. lain, in the compofition of which a certain quantity of calcined argil is employed, porcelain retorts, crucibles, tubes, and common pottery, the palte of which is coarle, are much lefs brittle than difhes and faucers formed of the fame fubftance, ground with more labour.

The general and refpective dimenfions of the different parts of veffels of earthen-ware have alfo confiderable influence on their capability to fland the fire.

In fome cafes the glazing or covering, efpecially when too thick, and of a nature different from the body of the pottery, alfo renders them liable to break. Thus, in making fome kinds of pottery, it is always effential, $\mathrm{I} f$, To follow the beft proportion in the principles; $2 d$, To give to the particles of the pafte, by grinding, a minutenefs fuited to the purpufe for which it is intended, and to all the parts the fame dimenfions as far as poffible; 3^{d}, To carry the baking to the higheft degree that the inatter can bear without being fufed; $4^{t h}$, To apply the glazing in thin layers, the fufibility of which ought to approach as near as poflible to that of the matter, in order that it inay be more intimately united.
C. Vauquelin, being perfuaded that the quality of good pottery depends chiefly on ufing proper proportions of the earthy matters, thought it might be of importance, to thofe engaged in this branch of mantsfacture, to make known the analy fis of different natural clays employed for this purpofe, and of pottery produced by fome of them, in order that, when a new earth is difcovered, it may be known by a fimple analyfis whether it will be proper for the fame object, and to what kind of pottery already known it bears the greateft refemblance.

> Heflian Argil of Porcelain Wedgwood's Crucibles. Drenx.

- Silex	$69.43 \cdot 5$	61	64.2
Argil ${ }^{\text {b }}$	$21^{\circ} 5 \cdot 33^{\circ}$	- 23	25
Lime	- 35	6	6
Oxide of iron	8 . 1	0.5	0.2
Water .	. 18		6.2

Raw kaolin 100 parts. -Silex 74, argil $\mathbf{6} \cdot 5$, lime 2, water 7 . A hundred parts of this earth gave eight of alum, after being treated wich the fulphuic acid.

Wafhed kaolin 100 parts.-- Silex 55, argil 27, lime 2, iron 0.5 , water 14 . This kaolin, treated with the fulphuric acid, gave ahout 45 or 50 per cent. of alum.

Petuitzé.--Silex. 74, argil $14^{\circ} 5$, lime $5 \cdot 5$. Infor 6 . A hundred perts of this fubtance, treated with the fulphuric acid, gave feven or tight parts of alum. But this q :antity does not cqual the fors luftained.

Porcelain of retorts. - Silex 64 , argil $2 x \cdot 3$, lime $4.5=$, i:on $0 \cdot 50$, lots $=977$. Treated with the fulphuric acid, this porcelain gave no alum.

There is a kind of earthen veffels, called Alcarrezes, ufce in Spain for conling the water intended to be drunk. Thefe veffels confift of 60 parts of calcareouz carth, mixed with ahonina and a little nxve of iron, and $3{ }^{6 \frac{1}{5}}$ of fliceons earth, alfo mixed with alumin and the fance oxide. The quantity of iron may be eftime. ted at almult one hundiedth part of the whole. This earth is frift kneaded into a tongh pafle. being for that purpofe previounly diluted with water: formed into a cake of about fix inches in thicknefs, and left in that ftate till it begin to crack. It is then kneaded with the fect, the workman gradually adding to it a quantity of feafale, in the proportion of feven pounds to a hundred and fifty; after which it is applied to the lath, and baked in any kind of furnace ufed by potters. The alcarrezes, bowever, are only about half as much baked as the better kinds of common earthen ware; and being exceedingly porous, water oozes through them on all fides. Hence the air, which comes in contaet with it by making it evaporate, carries off the caloric contained in the water in the veffel, which is thus rendered remarkably cool.

POULES, or Foulques, one of the principal nations which inhabit the banks of the Senegal. They poffers an extent of more than fixty leagues along the river, and exact heavy cuftoms from the Senegal traders with the interior of the country. They are not fo black as the other negroes, but of a copper colour, much inclining to red. It is remarkable, however, that their children who are fent to Senegal, and relide there for fome years, become much blacker. The females are very handfome, and the whites of Senegal generally take care to procure fome of them. But they are of a bad difpofition, and utterly incapable of attachment. When a man las a miltrefs of this nation, he mult watch her conduct very narrowly, and even chaftife her, that the may not be guilty of infidclity to him whom the honours with her favours. The dread of the baftinado will, in fuch cafe, effect what attention and complaifance can never bring about.

Although the Poules inhabit one of the fineft fpots in Africa, they are neverthclefs a wretched people; they are bafe, crucl, thievifh, and fanatic in the extreme. They are commanded by a chief of tbeir religion, which is a contemptible mixture of Mahometanifm and idolatry. This chief is called the Almamy; he is always chofen from among the Tamofirs, who are twelve in number. The Tampfirs are the interpreters of the law, and are the mof learned, or rather the moft fanatical among them. The Almamy has the power of life and death over his fubjects; yet he may be depofed by an affembly of Tampfirs: it is therefore his intereft
Suppl. Vol. II. Part I.
to kcep on good terms with them. The payment of cuf. Printing toms is made to the Almamy, and is afterwards di$\cdot \underbrace{\square-\quad}$ fuibuted among the Tampfirs; and ahthough a part belongs to the furmer, he neverthelefs requircs a leparate prefent for himele.

PRINTING. (Sie that aticle, Enycl. and 'T'ypographe in this Suppliment.) We Mall here only de\{cribe a Prenting Prefs, for the invention of which a patent was granted, in 1790 to Mr William Nicholion of Ňw North-l? reet, Red Lion Syuare, London. This machine, with fome night varicties, is adapted for printing on gaper, limu, cotion, recu!len, and other articles, in a more neat, cheap, and aceusate method, the author thinks, than the printing prefes now in wis.

The invention confils in three particulars, $1 /$, The manner of preparing and placing the types, engraving, or earvings, from which the impreffion is to be made; $2 d l y$, In aoplying the ink or colouring matter to types or engravings; and. $3^{c} / l y$, In taking of the impreffi in.
$1 /$, Mr Nichollon makes his moulds, punches, and matrices, for calting letters, in the fame manner, and with the fame materials, as other letter fonnders do, excepting that, in?tead o! leaving a fpace in the mould for the Item of one Intter only, he leaves fnaces for two, three, or more letters, to be cait at one pouring of the metar; and at the lower extremity of each of thofe fpaces (whicla communicate by a common groove at top) he places a matrix, or piece of copper, with the letter punched upon its face in the Ifinal way. And moreover, he bringe the ftem of his letters to a due form and finifh, not only by rubbing it upon a fome, and fcraping it when arranged in the finifhing-flick, bur likewife by fcraping it, on one or more fides, in a finiihingAtick whofe hollowed patt is lefs deep at the inner than the outer fide. He calls that fide of the groove which is neareft the face of the difpoled letter, the outer fide; and the purpofe accomplifhed by this method of feraping is, that of rendering the tail of the letter gradually fmaller the more remote it is, or farther from the face. Such letters may be firmly impofed upon a cy. lindrical furface, in the fame manner as common letters are impofed upon a flaz flone.

2dly, He applies the ink or colouring matter to the types, forms, or plates, by caufing the furface of a cylinder, fmeared or wetted with the colouring matter, to roll over the furfaces of the faid forms or pletes, or by caufing the forms or plates apply themfelves fucceffively to the furface of the cy linder. The furface of this colouring cylinder is covered with leather, or with woollen, linen, or cotton cloth. When the colour to be ufed is thin, as in calico printing, and in almoft every cale, the covering is fupported by a firm elaftic fluffing, confilting of hair, or wool, or woollen cloth wrapped one or more folds round the cylinder. When the covering conifift of woollen cloth, the ftuffing mutt be defended by leather, or oilkin, to prevent its imbibing too much colour. and by that meens loting its elatticity. It is abfolutely neceffary that the colouring matter be evenly diftributed over the furface of the cylunder: and for this purpofe, when the colour is thuck and Itiff, as in letter-prefs printing, he applies two, urree, or more fmall cylinders, calld diftributing-rollers, lungitudinally againft the colouring cylinders, fo that they may be turned by the motion of the latter; and the effect of this application is, that every lump or mafs of colour

Priminn. which may be redundant, or irregularly placed upon the face of the colouring cylinder, will te prefled, forcad, and part!y taken up, and carried by the fmall iollers to the other parts of the colouring cylinder ; fo that this laft will very fpecdily accuuire and preferve an even face of colour. But if the colouring matter be thinster, he does not apply more than one or two of thefe diftributing-rollers; and, if it be very thin, he applies an even blunt edge of metal, or wood, or a ftraighit bruh, or both of thefe laft, ayainf the colouring cylinder, for the purpofe of reudering its colour uniform. When he applies colour to an engraved plate, or cylinder, or through the interflices of a perforated pattern, as in the menufacturing of fome kinds of paper hangings, he ufes a cylinder entirely covered with hair or Lriftles in the manner of a brumb.
sally, He performs all his impreffions, even in letterprefs printing, by the action of a cylinder or cylindrical jurface. The contruction of this machine, and the manner of ufing it, will be intelligihle to every reader who flall attentively conlider Hlate XL; where fig. ${ }^{1}$. reprefents a printing-prefs, more efpecially applicable to the printing of books. A and E are two cylinders, running or turning in a tlrong frame of wood, or metal, or both. 'I he cylinder A is faced with woollen cloth, and is capable of being preffed with more or lefs force upon Hi, by means of the lever M. HI is a long table, which is ciapable of moving endwife, backwards and forwards, upon the rollers E and K . The roller A acts upon this table by means of a cog-whecl, or by ftraps, fo as to draw ir backwards and forwards by the motion of its handle L. The table is kept in the fame line by grooves on its Edes, which contain the cylinder A. D is a chafe, containing letter fet up and impofect. B is a box, containing a colouring-roller, with its dfftributing.rollers CC ; it is fupported by the arm N. O is a cylinder faced with leather, and lying acrofs an inkblock; this cylinder is fixed by the middle to a bended lever moveable on the joint Q.

The action. When \mathcal{D}, or the letter, is drawn beneath the cylinder B, it receives ink; and when it has paffed into the pofition R , a workman places or turns down a tympan with paper upon it (this tympan differs in no refpect from the ufual one, except that its hinge opens fidewife) ; it then proceeds to pafs under the cylinder A, which preffes it fucceffively through its whole fu:face. On the other Ede, at S , the workman takes off the paper, and leaves the tympan up. This motion canfes the cylinder B to revolve continually, and confe. quently renders its inked furface very uniform, by the astion of its diltributing-rollers CC; and, when the table has paffed to its extreme diflance in the direction now fouken ef, the arm G touches the lever P, and raifes the cylinder O off the ink block, by which means it dabs againft one of the diftributing-rolless, and gives it a fmall quantity of ink. 'f he returning motion of the table earries the letter again under the roller B, which again inks it, and the procefs of printing another fheet goes on as before.

Fig. 2. is another printing-prefs. In this, \bar{B} is the inking-roller; A is a cylinder, having the letter impofed upon its furface; and \mathbf{E} is a cylinder, having its uniferm furface coverect with woollen cloth: thefe three cylinders are connected, either by cogs or Itraps at the edges of each. The machine is uniformly turned in
one direftion by the handle L. The workman applies priuting. a fheet of paper to the furface of E , where it is retained, either by poirts in the ufual manner, or by the apparatus to be defcribed in treating of fig. 4. The paper pa!? fion; after which the workman takes it off, and applies. another fict: ; and in the mean time the letter on the furface of A paffes round againt the ferface of B, and receives ink during the rotation of B. The dittributingrollers CC do their office as in the machine fig. I.; and once in every revolution the tail F, affixed to B, raifes the inking-piece G, fo as to caufe it to touch one of the ditributing-rollers, and fupply it with ink. In this way therfore the repeated printing of fheet after fleet gocs on.

Fig. 3. is a printing-prefe, more particularly adapted to print cottons, filks, paper-hangings, or other articles which run of a confiderable length. A is a cylinder covered with woollen cluth, or other foft fubilance. The web or piece of cotton, or other groods, is pafled round this cylinder, from the carrying-roller F to the receiving-rollers GH ; which are conne己ted by a piece of linen, woollen, or hair-cloth, in the manner of a jack-towcl fewed round them; the rotation of this towel carries away the priuted fuff or goods, and depofits them at I. KL is a moveable box, containing three rollers, which move againlt each other in rota. tion. The lowelt roller C revolves in a mafs of colour, contained in a trough or veffel in the hottom part of the box KL; the turface of this colour is reprefented by the line MN. The next roller B is ftufficd and covered as defcribed in feetion 2. The preffure of B againft C prevents the cylinder B from receiving too much colour. D is a cut or carved cylinder, which receives colour, during the rotation, from the roller B, and impreffez it upon the web as it paffes round the cylinder A; in this way the conftant and effectual action of the machine is fufficiently obvious. It mult be obferved, that the cylinders $A D B$ and G are conneeted together by cog wheels, fraps, or other well-known equivalent contrivances; fo that the handle P drives the whole, without their neceffarily depending on any adhelion or friction at their furfaces. The preffure of B againft D is governed by an arjuftment of the axis of D, whofe fochets are capable of a fmall motion; and the prefiue of D againit A is governed hy the polfition of the whole box KL. When it is required to print more than one colour upon a piece, Mr Nicholfor caufes it to pafs two or more times through the machire ; or, in thofe cafes where the materials are liable to change their dimenfions, he applies, at one and the fame time, two or more fuch boses as KL, with their refpective cylinders, fo that the pattern cylinder of each may make its impreffion upon the web or mate. rial to be printed on.

Fig. 4. is a printing-prefs, chiefly of ufe for books and papers. $1,2,3,4$, repreferits a long table, with ledges on each fide; fo that the two cylinders A and B can run backwards and forwards without any fide thake. In one of thefe ledges is placed a Arip or plate of metal cut into teeth, which lock into correfpondent teeth in each cylinder; by which means the two cylinders roll along, without the poffibility of changing the relative pofitions of their furfaces at any determinate part of the table. This may allo be effected by flraps,
4.) of exactly the fame kind as that upon the cylinder, Driment. and which, by the action of a pin duly placed in the furface of the cylinder A, takes the paper from the cylinder in precifely the fame manner as that cylinder originally took it up in the compartment numbered i (fig 4.)

Figs. 5,6 , and 7, wiprefent a finpler apparatus for accomplifhing the fame purpofe. If $\mathrm{A} a \mathrm{~B} b$ (fig. 7.) be fuppofed to reprefent a thick plate of inctal of a circular furm, with two pinc, A and B, proceeding fidewife or perpendicularly latt of its plane, and diametrically oppofite to each other, and G another pin prnceeding in the direction of that plane, then it is obvinus that any force applied to the pin Λ, fo as to peefs it into the pofition a (by turving the plate on ite axis or eentre X), will at the fame time caufe the pin G to acquire the pofition g : and, on the other hand, when B is at l, or the dutted reprefentation of the fide-pin, if any preffure be applied to reftore its original pofition at 3 , the pin g will return back to G . Now the figures 5 and 6 exhibit an apparatus of this kind, applied to the cylinder A; and that cylinder, by rolling over the pius P and p, properly fixed in the table to re-act upon the apparatus, will caufe its prominent part G either to apply to the cylinder and claip the paper, or to rife up and let it go. The coinpartment numbered 3 (fig. 4.) muft of courfe have an apparatus of the fame kind to be acted upon by pins from A, in order that it may take the paper from that cylinder.

There is one other circumftance belonging to this machine which remains to be explained. When the carriage E (fig. 4.) gnes out in the direction of the numbers 1, 2, 3. 4 . both rollers, A and B , prefs the form of letter in their paffage; but in their return back again the roller A, having no paper upon it. would itfelf become foiled, by taking a faint impreffion from the letter, if it were not prevented from touching it: the manner of effecting this may be underfood from fig. 12. The apparatus there reprefented is fixed upon the outfice of the carriage \mathbf{E}, near the lower corner, in the vicinity of the roller A; the whole of this projects fidewife beyond the ledge of the table, except the frall truck or wheel B. The irregularly-triangular piece, which is haded by the flroke of the pen, carries this wheel, and alfo a catch moveable on the axis or pin E. The whole piece is noveable on the pin A, which connects it to the carriage. $C D$, or the part which is fhaded by dotting, is a detent, which ferves to hald the piece down in a celtain pofition. It may be ubferved, that both the detent and the triangular piece are fusnithed each with a claw, which holds in one direction, but trips or yields in the other, like the jacks of a barpfichord, or refembling certain pieces ufed in clock and watch making, as is cleally reprefented in the figure. Thefe claws overhang the fide of the table, and thcir tffect is as follows: There is a pin C (fig. 4) between the compartments of the table tumbered 2 and 3 , but which is marked F in fig. 12 , wherc GFi reprefents the table. In the outward run of the carriage thefe claws ftrike that pin, but with no other offeet than that they yield for an inflant, and as inftantly refume their original podition by the action of their refpective flender back-fprisgs. When the carriage returns, the claw of the detent indeed Arikes the pin, but with as little effee as before, becaufe its derangement is inftantly removed by the action of the back ipring of the detent itfelf;

Printing, but, when the claw of the triangular piece takes the Prints. pin, the whole piece is made to revolve on its axis or end of the wheel B is forced down, fo as to lift that piece at carriage, and the detent, catching on the covered. Therents the former pulition from being reruns upon the trbek B (and ita correfpondent truck on the opponte fide) inftead of the cylincler A, which is too much raifed to take the letter, and foil itfelf; but as foon as the end of the carriage has paffed clear of the letter, another pin R (lig. 4.) takes the claw of the detent, and draws it off the triangular piece; at which initant the cylinder A fubtides to its uliual place, and performs its functions as before. This laft pin R does not affect the claw of the triangular piece, becaufe it is placed too low; and the elaw of the detent is made the longeft, on purpofe that it may ftrike this pin.

Fig. 8. reprefents an infrument for printing floorcloths, paper-hangings, and the like, with fiff paint and a brufh. D is a copper or metallic cylinder fixed in a frame A, like a garden roller; its carved part is thin, and is cut through in various places, according to the defired pattern. A ftrong axis paffes through the cylinder, and its extremities are firmly attached to the france A. To this axis is fixed a veffel or box of the fame kind, and anfwering the fame purpofe as the box \mathfrak{K}, in tig. 3. It carries a cylinder P , which revolves in the eolour; another cylinder E, which revolves in contact with P ; and a third cylinder B , whofe exterior furface is covered with hair, after the manner of a brufh, and revolves in contack with E. This cylinder B is adjufted by its axis, in fuch a manner that its brufh part fweeps in the perforated pats of the metallic cylinder D. The circle C reprefents a cog-wheel, fixed coneentric to the cylinder D , and revolving with it ; this wheel takes another wheel concentric to, and fixed to, B ; hence the action is as follows: When the metallic cylinder is wheeled or rolled along any furface, its cog. wheel C drives the brufh B in the contrary direction; and this brufh cylinder, being connected by cogs or otherwife with E and P, caufes thofe alfo to revolve and fupply it with colour. As the fueceffive openings of the eylinder, D , therefore, come in contact with the ground, the feveral parts of the brufh will traverfe the uncovered part of that ground, and paint the pattern upon it. The wheel G, being kept lightly on the ground, ferves to determine the line of contact, that it Chall be the part oppolite to B , and no other.

PRINTS (fee Encycl.) are valuable on many accounts; but they are liable to be forled by fmoke, vapour, and the excrements of infects. Different methods have, of courfe, been practifed to clean them. Some have propofed fimple wafhing with clear water, or a ley made of the afhes of reeds, and then expofing the prints to the dew. Uthers have cleaned prints with aqua forlis (fulphuric acid) ; but both thefe methods are attended with a degree of rifk at leaft equal to their advantager. The fullowing method of cleaning prints is reconmended in the fecond volume of Nieholfon's Jounal of Natural Philofophy, \&ce. as at once fafc and efficaciuss:
"Provide a certain quantity of the common muria. tic acid, for example three ounces, in a glafs bottle, with a ground Itopper, of fueh a capacity that it may be only hälf full. Half an ounce of minium muft then
be added; immediately after which the fopper is to be put in, and the bottle fet in a cold and dark place. The heat, which foon becomes perceptible, hew-s the beginning of the new combination. The minium abandons the greateft part of its oxygen with which the fluid remains inpregnater, at the fanse time that it acquires a fine golden yell W , and emits the deteftable fmell of oxygenated muriatic acid. It contains a fmall portion of muriat of lead; but this is not at all noxious in the fubfequent procefs. It is alfo neceflary to be obferved, that the bottle muft be ftrong, and the ftopper not too firmly fixed, otherwiic the active elaffic vapour might burft it. The method of ufing this prepared acid is as follows:
"Provide a fufficiently large plate of glafs, upon which one or more prints may be feparately furead out. Near the edges let there be raifed a border of foft white wax half an inch high, adhering well to the glafs and flat at top. In this kind of trough the print is to be placed in a bath of frefh urine, or water containing a fmall quantity of ox-gall, and kept in this fituation for three or four hours. The fluid is then to be decanced off, and pure warm water poured on; which muft be changed every three or four hours until it paffes limpid and elear. The impurities are fometimes of a relinous nature, and refift the action of pure water. When this is the cafe, the wafhed print mutt be left to dry, and alcohol is then to be poured on and left for a time. After the print is thus cleaned, and all the moifture draincd off, the muriatic acid prepared with minium is to be poured on in fufficient quantity to cover the print; immediately after which another plate of glafs is to be laid in contact with the rim of wax, in order to prevent the inconvenient exhalation of the oxygenated acid. In this fituation the yelloweft print will be feen to recover its original whitenefs in a very fhort time. One or two hours are fufficient to produce the defired effect ; but the print will receive no injury if it be left in the acid for a wbole night. Nothing more is neceffary to complete the work than to decant off the remaining acid, and wain away every trace of acidity by repeated affufions of pure water. The print being then left to dry (in the fun if poffible) will be found white, clear, firm, and in no refpeet camaged either in the texture of the paper or the tone and appearance of the imprefion."

The judicious editor of the Journal fubjoins the following note, to which collectors of priats will do well to pay atiention: "As I have not repeated this procefs, I cannot eftimate how far the prelence of the lead may weaken the corrofive action of the acid on the paper ; but 1 hould be difpofed to recommend a previous dilution of the acid with water. Whoever ufes this procefs will of courfe make himfelf matter of the proportion of water required to dilute the acid, by making, his firft trials with an old print of no value.

PRISM, in geometry, is a body or a solid, whofe two ends are any plane figures which are parallel, equal, and fimilar; and its fides, connecting thofe ends, are parallelograms. The definition of this figure in the Encyclopadia we muft, in candour, acknowledge to be unaccountably indiftinet, if not unintelligiole.

PIKISMOID, is a folid or body, fomewhat refembling a prifm, but that its ends are any diffimilar parallel plane ligures of the fame number of fides; the up-

$\mathrm{P} R \mathrm{I} \quad[38 \mathrm{I}] \quad \mathrm{P} R$ I

right fides being trapezoids. - If the ends of the orifmoid be bounded by diffimilar curves, it is fometimes called a cylindruid.

PRISON is faid, in the Encyclopadia, to be only a place of fafe cuftody, not a place of punifhment. Such was, no doubt, the original intention of Englifh prifons; but now temporary confinement is, in England as well as elfewhere, inflicted as a punifhment for certain crimes. Perhaps it would be expedient to fubltitute this punifhment more ficquently than is yet done in Great Britain, for tranfportation and death; proportioning the length of the continement, as well as its clofenefs, to the heinoulnefs of the crime. In no country, we believe, is this more accurately done, or to bet. ter purpofe, than in Pennfylvania; and furely in no country has imprifonment been more abufud than in Venice under the old goverument.

By the laws of Pennlylvania, punifhment by imprifomment is impofed, not only as an expiation of palt offences, and an cxample to the guilty part of fociety, but alfo for another importart purpofe-the reformation of the criminal's morals. The regulations of the gaol are calculated to promute this effect as foon as poffible; fo that the building deferves the name of a penitentiary boufe more than that of a gaol (fee Philadelphia, Encyel). As foon as a criminal is committed to the pifon, he is made to wafh; his hair is thom ; and, if not decently clothed, he is furnifhed with clean apparel. He is then thrown into a folitary cell, about nine feet long and four wide, where he remains debarred from the light of every living being except his gaoler, whofe duty is to attend to his bare neceffities, but who is forbidden on any account to hold converfation with him. If a prifoner be at all refractory, or if the offence for which he is committed be of a very atrocious nature, he is then confined to a cell fecluded even from the light of heaven. 'The treatment of each prifoner, during his confinement, is varied according to his crime and his fubfequent repentance. Solitary confinement in a dark cell is looked upon as the fevereft ufage; next, folitary confirement in a cell with the ad miffion of light ; next, folitary confinement in a cell, where the prifoner is allowed to du fome fort of work; and, lallly, labour in company with others. The longeft period of confinement is for a rape, which is not to be lefs than ten years, nor more than twenty-one; for high' treaton it is not to exceed twelve, nor fall thort of fix years.

Tine prifoners are obliged to bathe twice every week, proper conveniences for that purpofe being provided within the walls of the prifon, and alfo to change their linen, with which they are regularly fupplied. Thofe in folitary confinement are kept upon bread and water; but thofe who labour are allowed broth, porridge, puddings, and the like. Meat is difpenfed only in fmall quantities, twice in the week; and on no pretence whatever is any other beverage than water fuffered to be brought into the prifon. Thofe who labour are em. ployed in the trade to which they have been accuttom. ed; and for thofe acquainted with no particular trade, fome kind of work is devifed which they can perform. One room is fet apart for fhoemakers, another for tailors, a third for carpenters, and fo on. In the yards are ftone-cutters, fmiths, nailers, \&c. In a word, this prifon has all the advantages of the rafping houfe of

Amfterdam, without any of its enormons defects. Sce Prifon. Correction-Houfe in this Suppl.

The prifon of Venice is of a very different defcription, and is worthy of noticc here only as a curiofty in the annals of tyiany, which has, we hope, paffed away with the government which contrived it. DI $\mathrm{M}^{\boldsymbol{N}}$ ofeley, in confequence of his being an Englifh phyfician (a character then highly refpected in Venice), was permitted, on the 1 oth of September 1787 , to vift the common prilon, bur was abiolutely refuled adnittance into the Solto Piombi, where the fate prifoners were kept. As the Doctor helieves that no foreigner befides himfelf ever witneffed the feenes, even in the common prifon, which he velates, we fhall give his relation in his own words.
"I wae conducted (fays he) through the prifon by one of its inferior dependants. We had a torch with us. We crept along narrow paflages as dark as pitch. In fome of them two people could fearcely pafs each other. ' 7 the celis are made of mafly marble; the architecture of the celebrated Sanfovini.
" The cells are not only dark, and black as ink, but being furrounded and confined with huge walls, the fmaliest breath of air can fearcely find circulation in them. They are about nine feet fquare on the floor, arched at the top, and between fix and feven feet high in the highelt part. There is to each cell a round hole of eight inches diameter, through which the prifoner's daily allowance of twelve ounces of bread and a pot of water is delivered. There is a fmall iron door to the cell. The furniture of the cell is a little ftraw and a finall tub: nothing elle. The ftraw is renewed and the tuo emptied through the iron door occationally.
"The diet is ingeniounly contrived for the perdura* tion of punifhment. Animal food, or a cordial mutritious regimen, in fuch a fituation, would bring on difeafe, and defeat the end of this Venetian juftice. Neither can the foul, if fo inclined, fteal away, wrapt up in nlumbering delufion, or fink to reit, from the admonition of her fad exiftence, by the gaoler's daily return.
"I faw one man who had been in a cell thirty years; two who had been twelve years; and feveral who had been eight and aine years in their refpective cells.
"By my taper's light I could difcover the prifoners horrid countenances. They were all nakcd. The man who had been there thirty years, in face and body was covered with long hair. He had loft the arrangement of words and order of language. When I fpoke to him, he made an unintelligible roife, and expreffed fcar and furprife; and, like fome wild animals in deferts, which have fuffered by the treaclery of the human race, or have an infinctive abhorrence of it, he would have fled like lightning from me if he could.
"One whofe faculties was not fo obliterated; who Atill recollected the difference between day and night; whofe eyes and ears, though long clofed with a filent blank, till languihed to perform their natural func-tions-implored, in the moft piercing manner, that I would prevail on the gaoler to murder him, or to give him fome influment to deftroy himfelf. I told him I had no power to ferve him in this requeit. He tben entreated I would ufe ray endeavours with the inquifitors to get him hanged, or drowned in the Canal' Or-

P R O

l'rifpo II
fano. But even in this I conld nat ferve him: death was a favour I had not intereft enough to procure for him.
"This kindnefs of death, however, was, during my Aay in Venice, granted to one man, who had been 'from the cheerful ways of man cut off' thirteen years.
"Before he left his dungeon I had fome converfation with him; this was fix days previous to his execution. His tranfport at the profpect of death was furprifing. He longed for the happy moment. No faint sver exhihited more fervour in anticipating the joys of a future ftate, than this man did at the thoughts of being releafed from life, during the four days mockery of his trial.
" It is in the Canal' Orfano where veffels from Turkey and the Levant perform quarantine. This place is the watery grave of many who have committed political or perfonal offences againft the fate or fenate, and of many who have commitred no offences at all. They are carried out of the city in the middle of the night, tied up in a fack with a large fone faftened to it, and thrown into the watcr. Fifhermen are proliibited, on forfeiture of their lives, againft fifhing in this diftric. The pretence is the plague. This is the fecret hiftory of people being loft in Venice.
"The government, with age, grew feeble; was afraid of the difeuftion of legal procefs and of public execu. tions; and navigated this rotten Bucentaur of the A. driatic by fpies, prifons, affaffination, and the Canal' Orfano."

This is indeed a frightful narrative, and, we doubt not, true as well as frightful; but when, from the tate uf the Venetian prifors, the anthor infinuates that Foward was not actuated by genuine benevolence, and infers, or wifhes his reader to infer, that the propofal of that celebrated philanthropift for fubftituting folitary confinement, in many cafes, for capital punifment, mult have refulted from his not taking into confidera. tion the mind of the criminal -the infinuation, to fay the leaft of it, is ungenerous, and the conclufion is at war with the premifes. That tbere was fomething romantic and fuperfluous in Howard's wanderings, we ieadily admit; but it feems impoffible to doubt of the eality of his benevolence; and though the horrid prifon of Venice, into which, as the Doctor affures us, M1• Howard never entered, was calculated to injure the body without improving the mind of the criminal, it r.oes not follow but that folitary confinement, under fuch regulations as at Fhiladelphia, is the beft means that liave yet been thought of for obtaining the object neareft Hownd's heart, the reformation of the morals of the criminal.

PROCYON, in aftronomy, a fixed tar of the fecond magnitude, in Canis Minor, or the łittle Dog.

PROS'l'HAPHERESIS, in aftronomy, the difference between the true and mean motion, or between the true and meas place, of a planet, or between the true and equated anomaly; called alfo equation of the orbit, or equation of the centre, or timply the equation; and it, is equal to the angle formed at the planet, and fubtended by the eccentricity of its orbit.

PIRO CRACTING, or I'ROTRACTION, in furveying, the act of plotting or laying down the dimenfions taken in the field, by means of a protracter, Sxc. Pro. tracting makes onc part of furveying.

Prorkactiarg. Pin, a fine painted pin or needle, fit. Praractted into a handle, ufed to prick off degrees and minutes frem the limb of the protractor

PRUNING. Under shis itde (Encyct.) it is ob ferved, that when larre branches of trees bearing flonefruit arc taken off, the trecs aie fubject to gum and decay. For this a remedy has been invented by Thomas Slip Dyot Buckinall, Efq; of Conduit.Areet, which, notwithftanding many objections made to it at firft, experience has proved to be fucceffrful, and for the difcovery of which the Society for the Encouragement of Arts, acc. voted the filver medal to the difcoverer. It is as follows :

Cut every branch which flould be taken away clofe to the place of its feparation from the trmok; linooth it well with a knife; and then with a painter's brufl finear the wound over with what Mr Bucknall calls medicated tur. This medicated tar is compofed of one quarter of an ounce of corrofive fublimate, reduced to fine powder by beating with a wooden hammer, and then put into a three pint earthen pipkin, with about a glafs full of gin or other fpirit, Airred well together, and the fublimate thus diffolved. The pipkin is then filled by degrees with vegetable or common tar, and conftantly ltirred, till the mixtore be blended together as intimately as poffible; and this quantity will at any time be fufficient for two hundred trees. To prevent danger, let the corrofive fublimate ke mixed with the tar as quickly as poffible after it is purchated; for, being of a very poifonous nature to all animals, it f:ould not he fiffered in lie about a boufc, for fear of mifchief to fome part of the family.

By the application of this compofition, Mr Buck. nall can, without the fmalleft danger, ufe the pruning huok on all kinds of trees much more frecly than we have recommended its ufe in the articlercferred to. "I give no attention (fays he) to fruit branches, and wondbranches; but beg, once for all, that no branch fhall ever be fhortened, unlels for the figure of the tree, and then cooftantly taken off clofe to the feparation, by which means the wound foon heals. The more the range of the branches fhoots circularly, a little inclining upwards, the more equally will the fap be diftributed, and the better will the tree bear; for, from that circumftance, the fap is more evenly impelled to every paxt. Do not let the ranges of branches be too near each other; for remember all the fruit and the leaves fhould have their full fhare of the fun; and where it fuits let the middle of the tree be free from wood, fo that no branch fhall ever crofs another, but all the ex. treme ends point outwards."

PULO, the name of feveral iflands of Afra, in the Indian Ocean; the principal of which alone, according to Dr Brookes, is inhabited. This is the inand

Pulo-Condore, which, being vifited by Lord Macartney as he failed to China, is thus deferibed by Sir George Staunton. "It has the advantage of convenient anchoring places in either monfonn. Ithe fquadron accordingly ttopped on the 17 th of May, in a fpacious bay on the cattero fide of the ifland; and came to anchor at the entrance of its fouthern extremity, as the watcr fouled there to five fathoms and a half occafioned by a bark which fretches acrofs two-thirds of the entrance. It was found afterwards, that beyond the bank there is a fafe pallage to the inver part of the

P U L $[383] \quad \mathrm{P} \quad \mathrm{U}$

Pulo. bay, the north of which is feltertd by a fmall ifland lying to the eaftward. The whole of the bay is furmed by four fmall iflands, which approach fo nearly to eäch other, as to appear, from feveral points, to join. 'They all feem to be the rude fragments of prinitive mountains, feparated from the great continent in the lapfe of time. The primcipal ifland is eleven or twelve miles in length, and about three in breadth. It is in the form of a crefcent, and confifts of a ridge of peaked bills. Its latitude, as calculated from a mericional oblervation, is $8^{\circ} 4^{\circ}$ north from the equator; and its longitude, according to a good chronometer, is $105^{\circ} 55^{\prime}$ eaft from Greenwich.
" The Englifh had a fettlement on Condore until the beginning of the prefent century, when fome Malay foldiers in their pay, in refentment for fome unjullitiable treatment, murdered their fuperiore, with the exception of a very few who efcaped off the ifland, where no Europeans have fince refided. At the bottom of the bay was a village fituated clofe to a fine fandy brach, with a long range of cocoa-nut trees before it, and it was defended from the north eaft fea by a reef of coral rocks, within which was good anchorage for fmall vefsels, and an ealy landing for boats. A party went on fhore froin Lord Macartney's fquadron, with the precaution, howerer, of being armed, as large canoea were efpied within the reef, which inight have been Malay pirates. Several of the inhabitants came to the beach, and with the appearance of much urbanity of manners welcomed them on fhore, and conducted them to the houfe of their chief. It was a neat bamboo cabin, larger than the reft. 'the floor was elevated a few fect above the ground, and ftrewed with mats, on which were affembled as many men as the place could hold. It was apparently on the occafion of fome fettival, or pleafurable meeting. There was in one of the apartments an altar decorated with inages, and the partitions hung with figures of monfrous deities; but the countenances and deportment of the people conveyed no idca of religious awe, and no perfon was feen in the pofture of prayer or adoration. A few fpears ftood againft the wall with their points downwards, toge her with fome matchlocks and a fivivel gun. The drefs of thofe people was compofed chiefly of blue cotton worn lonfely about them; and their flat faces and little eyes denoted a Chinefe origin or relationi. Several long tlips of paper, hanging from the ceiling, were covered with colamns of Chinefe writing. One of the miffionaries, who was of the party, could not, however, in any degree, underftand their converfation; but when the words were written, they inflantly became imelligible to hiin. Though their colloquial language was altogether different from what is fpoken in China, yet the charagers were all Chinefe; and the fact was clearly afeertained on this occation, that thofe characters have an equal advantage with A rabic numbers, of which the figures convey the fame meaning wherever known; whereas the letters of ot her languages denute nut things but elementary founds, which combined varioufly together, form words, or more complicated founds, conveying different ideas in different languages, though the form of their alphabet be the fame.
"The inhabitants of Pulo Cundore were, it feems, Coclin-Chinefe, with their defcendants, who fled from their own country, in confequence of their attachment
to one of its fovereigns, dethroned by feveral of his own fubjects. It was propofed to purchafe provifions here; and the people promifed to have the fpecified quantity ready, if poffible, the next day, when it was interded, if the weather fhould be favourable, to land the invalids. The next morning was fair in the beginning; and a party of pleafure was made from the Hindoftan to a fmall ifand clofe to Pulo Condore. They were fearcely arrived upon it when the weather began to lower ; and the boat fet off on its return, in order to reach the fhip before the impending ftorm fhould begin.
"With difficulty it reached the fhip; anel as foon as the weather became fair, meffengers were difpatched on Shere to receive and pay for the provilions promifed. When they arrived at the village, they wete aftonifhed to find it abandoned. The houfes were left open, and none of the effects, except fonie arms, that had on the firlt vifit been perceived within then, or even of the ponilry feeding about the dours, were taken away. In the principal cabin a paper was found, in the Chinefe language, of which the diteral tranflation purported, as nearly as it could be made, 'that the prople of the ifland were few in number, and very poor, yet honeft, and incapable of doing nifchief; but felt much terror at the arrival of fuch great fhips and powerful perfons, efpecially as not being able to latisfy their wants in regard to the quantity of cattle and other provilions, of which the poor inhabitants of Pulo Condore had fearcely any to fapply, and confequently could not give the expected fatisfaction. They therefore, through dread and apprehenfion, refolved to fly to prcferve their lives. That they fupplicate ths great pcople to have pity on them; that they left all they had behind them, and only requefted that their cabins might not be burnt; and conclude by proltrating themfelves to the great people a hundred times.'
"The writers of this letter had probably received ill treatment fiom other ftrangers. It was deter mined that they fhould not continue to think ill of all who came to vifit them. On their return they were perhans as much , furprifed to find their houfes f:llentire, as their vilitors lad been who found they were deferted. Nuthing was difturbed; and a fmall prefunt, likely to be acceptable. to the chicf, was left for him in the principal dwelting, wilh a Chinefe letter, figuifying, that 'the fhips and: people were Englifh, who called merely for refrefoment, and on fair terms of purchafe, without any ill iatentiun ; being a civilized nation, endowed with prisciples of humanity, which did not allow the to plander or injure others who happened to be weaker or fewer than themfelves."

Puso Lingen, another of this clufter, is likewife a confiderable iffand, remarkable for a mountain in its. centre, terminating in a fork like Parnaîus; but to which the unpoetical feamen beftow the name of affes ears. Every day profented new iflands to the riew, difplaying a valt varicty in furm, fize, and colour. Some ifolated, and fome collected in clufters. Many were clothed with verdure; fome had tall trees growing on them; others were mere rocks, the refort of in. numerable birds, and whitened with their dung.

PUNCTUATION, in grammar, is an art with which we have faid, in the Encyclopedia, that the an. cients were entirely unacquainted. Candour obliges us

Punsuu- to confefs that this was fait rafhly. A learned writer, in tion.

- Quir ri. mus \ddagger crio dum et conJon monAtravit. Sni-
das de Tbra(y macho. + Cicero Orat. § 33 . \ddagger Rhet. lib. in. c. ${ }^{\circ}$ § Bern. Orbis erud. Literat. tab. jo. edit. 1659.
* Cic. de

Orat. 1. iii. \$26.ibid. 7. Orat pro Murana, $\$ 25$. + Sen. Epif. the Monthly Magazine for September 1593, who fubferibes J. Warburtois, has proved, we think completely, that the art is not wholly modern; and we fhall lay his proofs, in his own words, before our readers.
"Some foccies of paufes and divifions of fentences in fpesking and writing mult have been coeval with the knorledge of communicating ideas by found or by fymbols. Suidas * fays, that the period and the colon were difcovered and explained by Thrafymacus, about 3^{80} years before the Chriltian æra. Cicero \dagger fays, that Thrafymacus was the firlt who fudied oratorical numhers, which entirely confifted in the artificial ftructure of periods and colons. It appears from a pafiage in Arifotle \ddagger, that punctuation was known in his time. The learned Dr Edward Bernard \oint refers the knowledge of pointing to the time of that philofopher, and fays, that it confitted in the different pofitions of one fingle point. At the bottom of a letter, thus, (A.), it was equivalent to a comma ; in the middle (A^{\cdot}) it was equal to a colon; at the top (A^{\prime}) it denoted a period, or the conclufion of a fentence.
"This mode was eafly practifed in Greek manufcripts, while they were written in capitals. But when the fmall letters were adopted, that is, about the gth century, this diftinction could not be obferved; a change was therefore made in the feheme of punctuation. Unciales literas bodierno ufu dicimus eas in vetuflis corlicibus, qua prifiam formam fervant, ac foluta funt, nec mutuo colligantur. Hujus modi litere unciales obfervantur in libris ownibus ad nonum ufgue faculum.-Montf. Palæog. Recens. p. xii.
"According to Cicero, the ancient Romans, as well as the Greeks, made ufe of points. He mentions them under the appellation of librariorum nota; and in feveral parts of his works he fpeaks of 'interpunge claufula in oralionibus,' of 'claiffula atque interpunta verborum,' of 'interpunaiones verboram,' \&c. *.
"Seneca, who died A. D. 65, exprefsly fays, that Latin writers, in his time, had been ufed to punctuation. 'Nost, cum fcribimus interpungere confucvinus.' Muretus and Lipfius imagined that thefe words alluded to the infertion of a point after each word: but they cetainly were mittaken; for they muft neceffarily refer to marks of punctuation in the divifion of fentences, becaufe in the paffage in which thefe words occur, Seneca is fpeaking of one C. Haterius, who made no paufes in his orations.
" According to Suetonius, in his Illuft. Gram. Valerius Probus procured copies of many old books, and employed himfelf in corrceting, pointing, and illuftraing tbem; devoting his time to this and no other part of grammar. Mutta exemplaria contruta emendare, ac diflinguere et adnotare curavit; foli buic, nec ulli praterea, grammatices parti deditus.
" It appears from hence, that in the time of Probus, or about the year 68, Latin manufcripts had not been ufually pointed, and that grammaians made it their befinefs to fupply this deficiency.
"Quintilian, who wrote his celebrated treatife on Pustur. Oratory about the year 88 , fpeaks of commas, colons, and periods; but it mult be obienven, that by theie terms he means claufes, numbers, and complete lenten. ces, and not the marks of punctuation \ddagger.
! 2uint.
"IElius Donatus \oint publifed a treatife on Grammar. ix. c. 4 . in the $4^{\text {th }}$ century, in which he explains the difinizio, A.D. 340. the niedia rijlinctio, and the fubdifindio; that is, the ufe of a fingle point in the various politions already mentioned.
"Jerom *, who had been the pupil of Donatus, in * Hieron. his Latin Verfion of the Scripturej, made wie of cer- Pr.sf. in E. tain diftinations or divitions, which he calls cola and etiam. Pref. commata. It has, however, been thought prohable, in Jofuam. that thefe divifions were not made by the addition of \&ec. tom. iiio. any points or flops; but were formed by writing, in 8.26 . one line, as many words as conitituted a claufe, equivalent to what we diftinguifh by a comma or a cclon. Thefe divifions were colled $\tau \pi \times 0$ or $p \pi \mu \alpha \tau$; and liad the appearance of fhort irregular verfes in poetry. There are fome Greek manufcriots itill extant which are writteu in this manner \dagger."

Mr Warburton fays, that the beft treatife upon punc. Wontf. tuation that he has feen, was publifhed fome years lince Grateg. by an anonymous author, and dedicated to Sir Clifton iii. c. 4. Wintringham, Bart. With that treatife we are not acquainted; but we do not think that the art of punctuation can be taught by rules. The only way to acquire it is to oblerve attentively how the moft perfpicuous writers difpofe of their periods, colons, femicolons, and commas. This will make us acquainted with the importance of each ; and then every writer, who knows his own meaning, mult be capable of pointing bis own pages more correctly than any other man.

PYRAMIDOID, is fometimes ufed for the parabolic fpincle, or the folid formed by the rotation of a femiparabola about its bafe or greateft ordinate. See Parabolic Spindle.

PyRITES. See Mineralogy in this Suppicment. - In the third volume of Mir Nicholfon's Philofophical Journal, we have a method of making artificial pyrites, which we fhall give in the words of the author.
" I impregnated water (fays he) pery ftrongly with carbonic acid, and introducing fome iron falings, I continued the impregnation for a day or two; and afterwards allowed the water to fand in a well. corked botte for fome days, till the acid had taken up as much iron as poffible. I then poured it into an aerating apparatus; threw up the hepatic gas from fulphuret of pota!h and fulphuric acid; and after having agitated the water till it had got a good dofe of the gas, 1 poured the water into a large bafon: this was in the evening, and next morning when I laoked at it, I found it covered with a pretty thick film of a moft beautiful variegated pyrites. I had fo little of it, that the only proof I had of its being this fubatance was, that it was igoited on .ts being placed on a hot poker."

QUADRATURE, in geometry (fee that article, and likewife Fruxions, Encycl.), has employed the time and ingenuity of fome of the moft eminent mathematicians both of ancient and of modern times. Dr Halley's method of computing the ratio of the diameter of the circle to its circumicrence, was confidered by himfelf, and other learned mathematicians, as the cafieft the problem adnuits of. And although, in the courfe of a century, much eafier methods have been difeovered, ftill a celcbrated mathenatician of our own times has expreffed an opinion, that no other aliquot part of the circumference of a circle can be fo eafily computed by means, of its tangent as that which was chofen by Dr Halley, viz. the arch of 30 degrees. Without taking upon him to deternine whether this opinion be jull or not, the Rev. John Hellins has fhewn how the feries by which Dr Halley computed the ratio of the diameter to the circumference of the circle may be transformed into others of fwifter convergency, and which, on account of the fucceffive powers of io which oscur in them, admit of an eafy fummation. We fhall give the menmir in the author's own words.
"r. The propofed transformation is obtained by means of different forms in which the fluents of fome fluxions may be expreffed; and to proceed with greater clearnefs, "I will here (fays Mr Hellins) fet down the fluxion in a general form, and its fluent, in the two fe. ries which are ufed in the following particular inflance, and may be applied with advantage in fimilar cafes.
" 2. The fluent of $\frac{x^{m-1} x}{1-x^{n}}$ is $=\frac{x^{m}}{m}+\frac{x^{m+n}}{m+n}+\frac{x^{m+2 n}}{n+2 n}$ $+\frac{x^{m+3 n}}{m+3^{n}}$, \&c. which feries, being of the fimpleft form which the fluent feems to admit, was firft difcovered, and probably is the moft generally ufeful. But it has alfo heen found, that the fluent of the fame fluxion may be expreffed in feries of other forms, which, though lefs fimple than that above written, yet have their particular advantages. Amongt thofe uther forms of feries which the fluent admits of, that which fuits my prefent purpofe is $\frac{x^{m}}{m \cdot 1-x^{n}}-\frac{n x^{m+n}}{m \cdot m+n \cdot 1-\left.x^{n}\right|^{2}}+$

$$
n .2 n \cdot x^{m+2 n}
$$ ก. 2 u. $2 n . x^{m+3}$

$\overline{m \cdot m+n \cdot m+2 n . x-x^{n} \|^{3}}-\overline{m+n m+2 n \cdot m+3^{n .1-x^{n} \|^{4}}}$ + \&c. which, to fay nothing of other methods, may eafily be inveftigated by the rule given in p. 64. of the third edition of Emerfon's Fluxions; or its equality with the former feries may be proved by algebra.
" 3 . On account of the fign - before x^{n}, in the laft feries, it may be proper to remark, that its convergency, by a geometrical progreffion, will not ceafe till $\frac{x^{n}}{1-x^{n}}$ becomes $=\mathrm{t}$, or x becomes $={ }^{n} \sqrt{\frac{1}{2}}$; and that when x is a fmall quantity, and n a large number, this feries will converge almoft as fwiftly as the former. For inflance, if x be $=\sqrt{\mathrm{T}}$, and $n=8$, which are the values in the followiug cafe, the former feries will converge by the quantity $x^{n}=\sqrt{\frac{1}{\mid}}{ }^{8},=\frac{1}{8}$, and this feries by the
quantity $\frac{x^{n}}{1-x^{n}}=\frac{\frac{1}{\delta^{\prime}}}{1-\frac{1}{8} r}=x^{\prime} ;$ where the difference in convergency will he but little, and the divifions by So eafier than thofe by 81 .
" 4 . With refpect to the indices m and n, as they are here luppofed to be affirmative whole numbers, and will be fo in the ufe I am about to make of them, the reader need not be detained with any obfervations on the cafes in which thefe fluents will fail, when the indices have contary figns.
" 5. It may be proper further to remark, that by putting $\frac{x^{n}}{1-x^{n}}=\approx$, and calling the firft, fecond, third, Sc. terms of the feries $\frac{x^{m}}{m \cdot 1-x^{n}}-\frac{n x^{m t_{\Delta}}}{\left.m \cdot m+n \cdot 1-x^{n}\right]^{3}}$ $+\frac{n \cdot 2 n x^{m}+z_{n}}{m \cdot m+n \cdot m+2 n .1-\left.n\right|^{5}}+$ \&c. A, B, C, \&c. refpectively, the feries will be exprefled in the concife and elegant notation of Sir Ifaac Newton, viz. $\frac{x^{m}}{n m_{0}-x^{n}}-\frac{n \approx \mathrm{~A}}{m+n}+\frac{2 n \approx \mathrm{~B}}{m+2 n}-\frac{3^{n} \approx \mathrm{C}}{m+3 n}+8 \mathrm{c}$. which is well adapted to arithmerizal calculation.
"6. I come now to the transformation propofed, which will appear very eafy, as foon as the common feries, expreffing the length of an arch in terms of its tangent, is properly arranged.
" If the radius of a circle be 1 , and the tangent of an arch of it be called t, it is well known that the lengtl of that arch will be $=t-\frac{t^{\prime}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\frac{t^{9}}{9}-\frac{t^{15}}{t 1}+\& c$. Now, if the affirmative terms of this feries be written in one line, and the negative ones in another, the arch will be

$$
=\left\{\begin{array}{c}
t+\frac{t^{5}}{5}+\frac{t^{9}}{9}+\frac{t^{13}}{13}+\frac{t^{17}}{17}+\& \mathrm{cc} \\
-\frac{t^{3}}{3}-\frac{t^{7}}{7}-\frac{t^{\prime 2}}{11}-\frac{t^{15}}{15}-\frac{t^{19}}{19}-\& \mathrm{cc} .
\end{array}\right.
$$

And if, again, the firt, third, fifth, \&c. term of eack of thefe feries be written in one line, and the fecond, fourth, fixth, \&c. in another, the fame arch will be expreffed thus:

All which feries are evidently of the firl form in article 2. and therefore their values may be expreffed in the fecond form there given, or more neatly the Newtonian notation mentioned in art. 5. In each of thefe feries the value of n is 8 :

3 C
And

Quadra-
ture.
$\xrightarrow{\text { Qind the value of } m \text {, }}$
And the value of $m,\left\{\begin{array}{l}\text { in the fecond feries, is } 5 ; \\ \text { in the third feries, is } 3 ;\end{array}\right.$ $\left\{\begin{array}{l}\text { iin the third feries, is } 3 \text {; } \\ \text { in the fuurth feries, is } 7 \text {. }\end{array}\right.$
" If now we take $t=\sqrt{ } \frac{1}{3}$, the tangent of 30°, which was chofen by Dr Halley, we fhall have the arch at 30°

Six times this quantity will be $=$ the femicircumfe. rence when radius is 1 , and $=$ the whole circumference when the diameter is 1 . If therefore we multiply the Liaft feries by 6 , and write $\sqrt{12}$ for $\frac{6}{\sqrt{3}}$, and exprefs their value in the form given in art. 5. we fhall have the circumference of a circle whofe diameter is 1 ,

$$
=\left\{\begin{array}{l}
+\left\{\begin{array}{l}
\frac{81 \sqrt{12}}{80}-\frac{8 \mathrm{~A}}{9.80}+\frac{16 \mathrm{~B}}{17.80}-\frac{24 \mathrm{C}}{25.80}+\frac{32 \mathrm{D}}{33.80}, \& \mathrm{c} \\
\frac{81 \sqrt{12}}{5.9 .80}-\frac{8 \mathrm{~A}}{13.80}+\frac{16 \mathrm{~B}}{21.80}-\frac{24 \mathrm{C}}{29.80}+\frac{32 \mathrm{D}}{37.80}, \& \mathrm{cc} \\
\frac{81 \sqrt{12}}{3.3 .80}-\frac{8 \mathrm{~A}}{16 \mathrm{~B}}+\frac{16 \mathrm{~B}}{19.80}-\frac{24 \mathrm{C}}{27.80}+\frac{32 \mathrm{D}}{35.80}, \& \mathrm{c} \\
\frac{81 \sqrt{12}}{7.27 .80}-\frac{8 \mathrm{~A}}{15.80}+\frac{16 \mathrm{~B}}{23.80}-\frac{24 \mathrm{C}}{31.80}+\frac{32 \mathrm{D}}{39.80}, \& \mathrm{c}
\end{array}\right.
\end{array}\right.
$$

" 7 . All thefe new feries, it is evident, converge fomewhat fwifter than by the powers of 80 . For in the firt feries, which has the floweft convergency, the coefficients $\frac{8}{8}, \frac{1}{8} \frac{6}{7}, \frac{2}{2} \frac{4}{5}, \&$ c. are each of them lefs than 1 ; fo that its convergency is fomewhat fwifter than by the powers of 80 .
" 8 . But another advantage of thefe new feries is, that the numerator and denominator of every term except the firft, in each of them is divifible by 8: in confequence of which the arithmetical operation by them is much facilitated, the divifion by 80 being exchanged for a divifion by 10 , which is no more than renroving the decimal point. Thefe feries, then, when the factors which are common to both numerators and denominators are expunged, will ftand as below (each of which ftill converging fomewhat quicker than by the powers of 8 c), and we fhall have the circumference of a circle whole diameter is 1 ,

$$
=\left\{\begin{array}{l}
+\left\{\begin{array}{l}
\frac{8: \sqrt{ } 12}{80}-\frac{A}{9.10}+\frac{2 \mathrm{~B}}{17.10}-\frac{3 \mathrm{C}}{25.10}+\frac{4 \mathrm{D}}{33.10}, \& \mathrm{c} . \\
\frac{9 \sqrt{12}}{400}-\frac{A}{13.10}+\frac{2 \mathrm{~B}}{21.10}-\frac{3 \mathrm{C}}{29.10}+\frac{4 \mathrm{D}}{37.10}, \& c . \\
-\left\{\begin{array}{l}
\frac{9 \sqrt{12}}{80}-\frac{A}{17.10}+\frac{213}{19.10}-\frac{3 \mathrm{C}}{27.10}+\frac{14 \mathrm{D}}{35.10}, \& \mathrm{c} . \\
\frac{3 \sqrt{12}}{7.80}-\frac{A}{15.10}+\frac{2 B}{23.10}-\frac{3 \mathrm{C}}{31.10}+\frac{4 D}{39.10}, \& c .
\end{array}\right.
\end{array} .\right.
\end{array}\right.
$$

"By which feries the arithmetical computation will be much more eafy than by the original feries."

2vadrature Lines, or Lines of $Q^{\text {unadrature, are two }}$ lines often placed on Gunter's fector. They are marked with the letter Q, and the tigures $5,6,7,8,9$, 10 ; of which Q denotes the fide of a £quare, and the figures denote the fides of polygons of $5,6,7$, \& $\mathbf{1}$. fides. Alfo S denotes the femidiameter of a circle, and 90 a line equal to the quadrant or 90° in circumference.

QUADRIPARTITION, is the dividing by 4 , or into four equal parts. Hence quadripartite, \&c. the $4^{\text {th }}$ part, or fomething parted into four.
QUADRUPLE, is four fuld, or fometling taken four times, or multiplied by 4 ; and fo is the converfe of quadripartition.

QUART, a meafure of eapacity, being the quarter or $4^{\text {th }}$ part of fome other meafure. The Einglif quart is the 4 th part of the gallon, and contains two pints. The Roman quart, or quartarius, was the 4 th part of their congins. The French, befides their quart or pot of two pints, have various other quarts, diftinguifhed by the whole of which they are quarters; as quart de muid, and quart de loiffeau.

QUAR CILE, an afpect of the planets when they are at the diftance of three figns or 90° from each other; and is denoted by the claracter \square..

QUELPAERT, an inand lying in the mouth of the channel of Japan, and fubject to the king of Corea (See that article Encycl.) Till the lait voyage of La Peroufe, this ifland was known to Europeans only by the wreck of the Dutch flip Sparrow-hawk in 1635 . On the 21 if of May 1787, the French Commodore made this ifland, and determined the fouth point of it to be in Lat. $33^{\circ} 14^{\prime}$ north, and in Lon. $124^{\circ} 15^{\prime}$ eaft frons Paris. He ran along the whole fouth-eaft fide, at fix leagues diftance, and fays that it is fcarcely poffible to find an illand which affords a finer afpect ; a peak of about a thoufand toifes, which is vifible at the ditance of eighteen or twenty leagues, occupies the middle of the ifland, of which it is doubtlefs the refervoir ; the land gradually flopes towards the fea, whence the habitations appear as an amphitheatre. The foil feemed to be cultivated to a very great height. By the affiftance of glaffes was perceived the divifion of fields; they were ${ }^{i}$ very much parcelled out, which is the ftrongett proof of a great population. 'The very varied gradation of colours, from the different flates of cultivation, rendered the view of this ifland ftill inore agreeable. Unfortunately, it belongs to a people who are prohibited from all comnunication with ftrangers, and who detain in ीlavery thofe who have the misfortune to be flipwrecked on thefe coatts. Some of the Dutclimen of the fhip Sparrow-hawk, after a captivity of eighteen years there, during which they received many battinadocs, found means to take away a bark, and to crofs to Japan, from which they arrived at Batavia, and afterwards at Amiterdam.

QUEUE d'aronde, or Swallow's Tail, in fortification, is a detached or outwork, whofe fides fpread or open towards the campaign, or draw narrower and clofer towards the gorge. Of this kind are either fingle or double tenailles, and fome horn-works, whofe fides are not parallel, but are narrow at the gorge, and open at the head, like the figure of a fwallow's tail. On the contrary, when the fides are lefs than the gorge, the work is called contre queue d'aronde.

Queve

Durua d'aronde, in carpentry, a method of jointing, called alfo dove-tuiling.

QUINTAL, the weight of a hundred ponnds, in moft countries : but in England it is the hundred weight, or 112 pounds. Quintal was alfo formerly ufed for a weight of lead, iron, or other common metal,
ufually equal to a hundred pounds, at 6 feore to the Quintile. hundred.

QUINTILE, in aftronomy, an afpect of the planets when they are diftant the 5 th part of the zodiac, or 72 degrees; and is marked thus, C , or O .

Rachitis.

RACHITIS, Rickets (See Medicine. Index, Ency/c.), is a difeafe fo formidable to children that we believe no parent will think the following abftract of Bonhomme's memoir on the nature and treatment of it too long even for this Supplement.

The change which the bones undergo in this diforder, has long been attributed to the action of an acid on their fubftance; but this fuppofition was grounded on mere conjecture and remote analogy. Bonhomme holds the fame opinion on better grounds; and the principal notions which conftitute the bafts of his memoir are the following :

1. According to him, the nature of the rachitic diforder arifes, on the one hand, from the developement of an acid approaching in its properties to the vegetable acids, particularly the oxalic; and, on the other, from the defect of phofphoric acid, of which the combination with the animal calcareous earth forms the natural bafis of the bones, and gives them their folidity. Whence it follows, that the indication refulting from this propofition, if once adopted, would be, that the treatment of rachitis mult depend on two principal points, namely. to prevent the developement of the oxalic acid, and to re-eflablifh the combination of the phofphoric acid with the bafis of the bones to which they owe their folidity.
2. The author proves, by experiments and obfervations, in the firft place, that alkaline lotions of the parts affected with rachitis contribute to their cure; next, that the calcareous phofphate taken internally is really tranfmitted by the lymphatic paffages, and contributes to offification ; and, laitly, that the internal ufe of calcareous phofphate, whether alone or combined with the phofphate of foda, powerfully contributes to reflore the natural proportions in the fubftance of the bones, and accelerate the cure of rachitis.

With regard to the author's endeavours to prove that the calcareous acid is wanting in the bones of thofe who are'difordered with rachitis, and that the developement of oxalic acid contributes to the difeafe, we muft not conceal that his memoir contains views rather than abfolute proofs of thefe two pofitions, He declares, himfelf, he was not provided with the neceffary means to eftablifh an exact and complete analyfis. He therefore prefents his ideas, in this refpect, merely as conjec. tures approaching to the truth.

The effect of the action of acids upon bones was before known ; that is to fay, that when deprived of calcareous phofphate, and reduced to the gelatinous parenchyma which forms one of their elements, they lofe
their confiftence, and become flexible. Hence it was Rachitis already conjectured by various phyficians, that the ra. chitis was the effect of a peculiar acid.

A difpotition to afcefcence in the firft paflages is obfervable in all infants. The odour which characterizes this acefeence is often manifeft in their breath, and even their perfpiration. The bile corrects this difpofition; but in general the bile is wanting in rachitic infants. It does not colour their excrements, and the acids accordingly are developed in a very decided manner. They difturb the circulation, and attack and foften the bones. As it is by defect of animalization that thefe acids develope themfelves, it follows that their character is analagous to the fermentefcible vegetable acids, and more or lefs to the oxalic acid; and that, on the contrary, the animal acid or phofphoric acid ceafes to be formed, and to unite with the animal calcareous earth; whence they are deprived of the principle of their folidity. This is the theory of Citizen Bonhomme.

In order to eftablifh this doctrine upon precife experiments, it was requifite to analyfe rachitic bones comparatively with thufe of healthy individuals of the fame age ; and as it is known that the urine of rachitic fubjects depofites a great quantity of a fubflance of fparing folubility and earthy appearauce, it would have been advantageous to have joined a complete analyfis of this urine and its fediment. Citizen Bunhomme, not being provided with the means fufficient to make thefe analyfes, and being befides of opinion that fuch rachitic bones as are deftroyed by this malady exift in a progreffive thate of change, which might render their analyfis fcarcely fufceptitle of comparifon, limited himfelf to a collection of fome of the molt remarkable phenomena of the urine, of the aged, the adult, and infants in the healthy Atate, of infants in the rachitic \&tate, and of patients after the perfect cure of this diforder. From thefe obfervations he has deduced feveral important refults.

It is known, that when the urine contains difengaged phofphoric acid, as happens to aged individuals, and in fome peculiar circumftances of the fyftem, if lime water be poured in, there is a fpeedy depofition of calcareous phofphate. It is alfo known, that when a folution of the nitrate of mercury is poured to the frefh urine of adults, a rofe-coloured precipitate is formed, which is a phofphate of mercury produced by the decompofition of the phofplates contained in the urine. Thefe two proofs are therefore extremely proper to afcertain the prefence of pholphoric acid, whether free or combined, Ce 2
in

R A C

Rach tio: in a fluid which in its natural flate contains a remarkable proportion. Befides this principle, the uine depofits more or lefs of fediment, either gelatimons or of an earthy appearance; and, latly, by evapuration, a an. ponaceous and faline extract, in greater or lefs abundance, is chatained by evaporation. By means of thefe four methods of exaninativis, the author has afcurtained the following facts:

1. In the bealthy flate, the fediment natually depofited by urine is alnolt totally gelatinous in the intant and the adult, and in the aged individual it is furcharged with an abundant fediment of an earthy appearance fimilar to the earth of bones, which confequently is calcareous phofphate. 2. The quantity of hrown faponaceous faline extract afforded by evaporation is greater in proportion to the age. 3. The prefence of difengaged phofphoric acid, as thewn by lime water, is none in the urine of infants, fcarcely perceptible in that of adults, but very remarkable in that of old men. For two ounces of this laft urine afforded by this means ten grains of phofphate of lime. 4. The decompolition of the phofphates by nitrate of mercury is not feell in the urine of infants; an abundant precepitate of a light rofe-colour is produced in this way from the urine of adults; and in that of old men this precipitate is always of a grey colour, and very, abundant. Hence Citizen Bonlomme concludes, that the phofphoric acid, whether at liberty or combined, does exit in the urine of healthy individuals in proportion to the deftruction of the folids by age, and that it increafes with the age.

With regard to the urine of rachitic fubjects, the moft remarkable facts are, 1. The abundant and apparently earthy fediment it depofits (fpontaneounly) is different from that of old men, by its colour, which is grey, and does not refemble pholphate of lime, and alfo by its much greater quantity. For a pound of this urine let fall two gros, whereas the fame quantity of the urine of old men depofited only 45 grains. 2. The extract left by evaporation is likewife much more confiderable than in other urine. It is one third more in quantity than the extract afforded even by the urine of aged perfons.

From thefe two firf obfervations it follows, that the folids in rachitic fubjects arc deftroyed with much more rapidity than even in old men; and that they afford a march more abundant portion of waite to the urive.
3. The light depofition occafioned by lime water in the urine of rachitic fubjects is very fnall in quantity, brown, gelatinous when trefh, and pulverulent when dry. It does not at all refemble calcareous phofphate. 4. The depofition formed by the folution of mercurial nitrate is not abundant, neither of a rofe colour as in the urine of adults, nor grey like that of old men. It is always white, and confequently has no external refemblance to the phofphate of mercury. The author affirms that it refentles a mercurial oxalate. Lafly, the urine of the fame rachitic fuljeets, when cured, exhihits again all the characters obferved in the urine of healthy children. We fhall not add to the reflections of the author. In effect, though thefe firt obfervations are curious, they are incomplete. We offer them to phyficians fimply as the clements of an inveltigation which it is of importance to cortinue and hring to perfection. We fhall therefore proceed to the curative and experimental parts of the memoir."

R A C

One of the facte which it was of the utmofl import- Rachiti, ance to eftablifh, was the tranfition of the calcareous phofphate from the inteftinal paflages, into thufe of circulation and fecretion. Füurcroy had already well afcertained that the ferum of milk contains the falt naturally. Vauquelin had proved its exittence, as well as that of pure foda, in the feminal floid; but was it poffible that it could pafs unaltered from the fomach and inteftines into the veffels which contain the blood and lymph? Could it by this means apply itfelf to the bones? This was to be afertained by experiments; and the following are the experiments made by Bonhomme for that purpofe. We give them in a tranflation of his own words.
"I caufed (fays he) feveral young fowls of the fame incubation to be fed in different manners. Some received the ufual food without any mixture ; others received daily a certain quantity of calcareous phofphate mixed in the fame pafte as formed the fupport of the others ; and, lafly, one of them was fed with variations in the ufe of the mixture; the calcareous plof phate was fometimes given and fometimes fufpended. When thefe fowls, after two months, had acquired their ordinary growth, I examined and carefully compared the flate of their bones. The, progrefs of the offification in the epiphyfes was various according to the nature of the food the animal had received. The bones of the laf fowl, which had received the phnfphate only from time to time, were rather more advanced than the bones of thofe which had been fed without mixture. The bones of thofe fowls which had been habitually fed with the mixture were evidently more folid, and their cpiphyfes were much lefs perceptible. Simple infpection was fufficient to fhew thefe differences when the bones were mixed together.
"I lad fed leveral young fowls of the fame incubation according to another plan. Some were fed on a fimple pafte, without mixture; for others it was mixed with pulverifed madder-root; and a third compofition was made of this laft pafte and calcareous phofphate. This was alfo given habitually to other fowls. When after two months I examined the progrefs of offilication in the bones of thefe different animals, I eafily perceived the red traces of the madder in the oflified parts of all thofe which had ufed it ; but 1 ubferved, that the offification was not mure advanced by the fimple mixture of this root than by the ordinary food: on the contrary, the hones of thofe fowls which had fwallowed the phofphate mixed with madder were much more folid than the others. The red colour ferved admirably to diftinguif the extremities of the long bones from their epiphyfes. After an exact comparifon, there could be no doubt of the efficacy of calcareous phofphate in favour of the progrefs of offification. The virtue of the madder feemed confined to that of giving colour to the offified parts."

From thefe experiments, it was natural to make the trial of calcareous phofplate in addition to the remedies made ufe of in the treatment of rachitic fubjects. Here follows what the author himfelf fays of two remarkable inflances in which the calcareous phofphate was adminittered with fuccefs :
"The daughter of Mr Ranchon watch-maker, aged two years and a haif, walked with a feeble and tottering pace, and the extremities of all her bones prefented epiphyfes

R A C

Rachiti* very prominent. In this lituation the exhibited the appearance of imperfect rachitis, or the firlt period of this diforder. Alkaline lotions, which I immediately advifed, were attended with a good effect. Her fleep became more firm ; and as the firlt paffiges were in a grood fate, I gave, without internal preparation, one - Acruple of a mixture of equal parts of pholphate of lime and phofphate of foda twice a day. In the courfe of three weeks her legs were perfectly reltored; and this amiable infont has ever fince lad the fatisfaction to run with fpirit and agility.
"A fenale infant, of the name of Boiard, aged four years, had experienced from warth the moft decided fymptoms ot rachitis. The protuberance of the epiphyfes and tumefaction of the abdomen firlt indicated the difeafe. The inspollibility of fupporting latefelf and walking at the whal age confirmed thefe unfortunate fymptoms. By degrees the glands of the neek and of the mefentary became fwelled ; the teeth were blackened, became carious, and were not replaced. This fituation because fill more afticting hy cifes al. moft periodical at an interval of three or four weeks. At thefe aflicting periods, a fever of confiderable ftrength, cardialgia, and even convultions, particularly in the night, were obferved. The termination of each - paroxyfm was announced or afcertained by abundant flools, and the evacuation of urine ftrongly clarged with an earthy fediment. The imprudent exhibition of a purge at the beginning of one of thefe crifes had nearly deprived the patient of her life. In this thate it was that I beheld her for the firft time in the month of January 1791. The alkaline lotion was the only remedy the mother adopted in the firft inftance, and it produced a remarkable effect. After eight days the infant was fo much better as to be able to fupport herfelf. The remedy was then laid alide, and eight days ofterwards the child was incapable of ftanding without fupport. The ule of the alkaline folution heing renewed, was attenderl with the fame fuccefs, and its difcontinuance was again followed by the complete return of all the fymptoms. In the firit days of March, the other remedies I had advifed were exhibited. The conflipation which had always exited became lefs, and the following crifis was effected without pain. And at length the convellions, the pains, and the crifes difappeared; but the impoffibility of walking fill remained. At this time, namely, on the fecond of May, I gave the child the phofphate of foda and calcareons choiphate mixed together, in the dofe of half a dram twice a-day. At the end of the month fhe was able to ftand upright, leaning againft a chair, and the fwellings began to diminifh. She continued for a long time afterwards to take the mixture of the phofphates. I likewife gave her occafionally one grain of the extract of bile, prepared with fpirit of wine; and at length in the month of July I had the pleafure to fee the patient run and play in the middle of the flrect with the other children of her own age, \&c."

The author gives other inftances of this medicine being adminitered with complete fuccefs to rachitic children, and one in which it was attended with the beft effects in a cafe of incurvated fpine. Thefe it is needkets to infert, becanle we truft that none of our lefs learned readers will have recourfe to the medicine without the advice of a phylician; and to him an enumera-

389] R A J
tion of cafes could ferve nin purpofe. It may be pro. Rachitic, per, however, as alkaline lotions and their bencficial ef. fects are mentioned, to give here the author's account of the lotion which he ufed.
"In ordinary cates of rachitis, particularly at the commencement of the diforder, it is of advantage to ule a fimple folution of potath to wafh the parts affected. 'i'his folution is made by difolving from half an ounce to an ounce of purified put-ah in a pound of dittilled or very pure fpring.water. When it is to be ufed, the fkin muit frift be rubbed with a dry cloth, or a piece of fine flannel. After this precaution, the difeafed extremities are to be wafhed carefully with the warm folution, and at length wiped, fo as to leave no trace of moifture. This practice and wafhing mult be repeated at lealt twice a-day. I can affirm, from repeated trials, that it will foom be attended with fuccefs."

In a note on this praffage, M. Halle, who analyfed the memoir at the defire of the Socicty of Medicine at Paris, juitly coferves, that as pure potals, or the vegetable alkahi, is a mot powerful caultic, it cannot be ufed in thefe proportions; adding, that he found oneeighth part of the falt here indicated to form tooflrong a lotion for the Akin of an infant. M. Bunhoame, upon enquiry being made, informed him that the potafs which he ufed was that of the fhops, which is very far from buing pure; and Mr Nicholfon conjectures that it was the common falt of tartar of our thops. This, we think, extremely probable, efpecially as M. Bonhomme affures us that even a lixivium of wood-afhes, fuch as is ufed for wafhing firac linen, may anfwer the purpofe extremely well.

For a fuller account of this interefting memoir our readers are referred to the 1, th volune of the Annals de Cbimie, or to the firft volume of Nicholfon's Pbilojo. pbical Journal.

RAJA, the ray fifl. Sce Encyrlop,edlia, where it is faid that the oxyrinchus or fharp noied ray, is fuppofed to be the los of the ancients; but if there be any truth in the following narrative, which we coufefs has much the air of fiction, this is probably a miltake. It is the narrative of Vaillant, and we fhall give it in his own words.
"In the latitude of $10^{\circ} 1 y^{\prime}$ north, and loagitude 3.55°, an enormous flat fifh of the ray genus (fays he), came and fwam round our veffel. It differed from the com. mon ray, however, in the thape of its head, which, inftead of being pointed, formed a crefcellt, and from the extremities of the femicircle iffued two arms as it were, which the failors called homs. They were two feet wide at the bafe, and only five inches at the extrensity. This monfter they told me was called the fea-decil.
"A few hours after, we faw two others with this, one of which was fo extremely large, that it was computed by the crew to be fifty or fixty feet wide. Each fwam feparately, and was furrounded by thofe fmall fifh which ufually precede the thark, and which are therefore called by feamen pilot.fifb. Laftly, all three carricd on each of their horns a white fifh, about the fize of a man's arm, and half a yard long, which ap. peared to be flationed there on duty.
"You would have faid they were two fentinels placed to keep watch for the fafety of the animal, to iaform him of any approaching danger, and to guide his movements. If he approached too near the vellel, they quitted their pofts, and, fwimming briflily before, led
him away. If he rofe too higli above the water, they paffed backward and forward over his back till he had defcended deeper. If, on the contrary, he fwam too low, they difappeared, and we faw no more of them, becaufe, no doubt, they were paffing underneath, as in the preceding intlance they had paffed above him. Accordingly we found him reafcend towards the furface, and then the two fentinels reaffumed their pofts, each on his horn."

Thefe mancurres continued three days; and to give our author the better opportunity of obferving them, the fhip mott fortunately was becalmed the whole time. He was naturally very defirous of catching one of thetn that he might examine it at leifure; and, by bribing the feamen with a dozen of bottles of wine, he accomplifhed his object. One of the fifh was ftruck with twelve or fifteen harpoons ; feveral halfers were paffed round his body, and le was hoilted on board.
"This (fays our author) was the leaft of the three, being only eight-and-twenty feet in its extreme breadth, and one-ancitiventy in length from the extremity of the horns to that of the tail. The tail, which was thick in proportion to the body, was twenty-tzoo inches long. The mouth, placed exactly like that of the ray, was wide enough to fwallow a man with eafe. The flin was white under the belly, and brown on the back, like that of the ray. We reckoned the animal to weigh not lefs, certainly, than a ton."

We think it was fortunate that they chanced to frike the fmalleft fifh; for an addition of eight or ten ton weight, which the largeft ray muft have weighed, as certainly as the fmalleft weighed one ton, might have been very inconvenient on board a fhip already loaded. We do not remember to have anywhere met with a defcription of this ray before, and we think it fhould be confidered as a new fpecies; but we fhall not give it a name till its exiftence be better afcertained, when we fubmit to the pupils of Linuxus, whether it may not be proper to give it the ancient name bos.

RAJAH (See Encycl.) We learn from Sir Charles Roufe Boughton's Difertation concerning the Landed Property of Bengal, that this title is conferred upon Hindoos by the Emperor, and frequently given out of courtefy to the greater zemindars. It would appear therefore that the Rajals can never be independent of the Mogul but by a fucceffful rebellion.

RAYEL ul-mulk, in the language of Bengal, the ufage of the country, the common law

RATIO (See Encyl.) has been defined by Euclid, in the sth book of his Elements, in terms to which mamy mathenaticians have ohjected; and his definition of proportion, which is fo ultimately connected with it, is ftill more objectionable. The Rev. Abraham Robertfon of Oxford, in a fmall tract publifhed in 1789 , demonfrates the truth of the two definitions in queition in feven propofitions, of which the fubftance is as follows. He firft lays down thefe four definitions:
"r. Ratio is the relation which one magnitude has, to another, of the fame kind, with refpect to quartity.
" 2 . If the firt of four magnitudes be exactly as great when compared to the fecond, as the third is when compared to the fourth, the firft is faid to have to the fecond the fame ratio that the third has to the fourth.
" 3 . If the firft of four magnitudes be greater, when compared to the fecond, than the third is when com-
pared to the fourth, the firft is faid to have to the fecond a greater ratio than the third has to the fourth.
" $4 \cdot$ If the firft of four magnitudes be lefs, when com. pared to the fecond, than the third is when compared to the fourth, the firt is faid to have to the fecond a lefs ratio than the third has to the fourth."

He then demonifrates, by reafoning ftritily geometrical, the following propofitions:

Prop. I. If the firlt of four magnitudes have to the fecond the fane ratio which the third lias to the fourth; then, if the firt be equal to the fecond, the third is equal to the fourth; if greater, greater; if lefs, lefs.

Prop. 2. If the firtt of four magnitudes be to the fecond as the third to the fourth, and if any equimultiples whatever of the firtt and third be taken, and alfo any equimultiples of the fecond and fourth; the multiple of the firlt will be to the multiple of the fecond as the multiple of the third to the multiple of the fourth.

Prop. 3. If the firlt of four magnitudes be to the fecond as the third to the fourth, and if any like aliquot. parts whatever be taken of the firtt and third, and any like aliquot parts whatever of the fecond and fourth, the part of the firft will be to the part of the fecond as the part of the third to the part of the fourth.

Prop. 4. If the firft of four magnitudes be to the fecond as the third to the fourth, and if any equimultiples whatever be taken of the firft and third, and any whatever of the fecond and fourth; if the multiple of the firft be equal to the multiple of the fecond, the multiple of the third will be equal to the multiple of the fourth; if greater, greater ; if lefs, lefs.

Prop. 5. If the firtt of four magnitudes be to the fecond as the third is to a magnitude lefs than the fourth, then it is poffible to take certain equimultiples of the firft and third, and certain equimultiples of the fecond and fourth, fuch, that the multiple of the firf fhall be greater than the multiple of the fecond, but the multiple of the third not greater than the multiple of the fourth.

Prop. 6. If the firft of four magnitudes be to the fecond as the third is to a magnitude greater than the fourth, then certain equimultiples can be taken of the firll and third, and certain equimultiples of the fecond and fourth, fuch, that the inultiple of the firt fhall be lefs than the multiple of the fecond, but the multiple of the third not lefs than the multiple of the fourth.

Prop. 7. If any equimultiples whatever be taken of the firt and third of four magnitudes, and any equimultiples whatever of the fecond and fourth; and if when the multiple of the firit is lefs than that of the fecond, the multiple of the third is alfo lefs than that of the fourth ; or if when the multiple of the firft is equal to that of the fecond, the multiple of the third is alfo equal to that of the fourth; or if when the multiple of the firt is greater than that of the fecond, the multiple of the third is alfo greater than that of the fourth: then, the firft of the four magnitudes fhall be to the fecond as the third to the fourth.

RATIONAL, in arithmetic, \&c. the quality of numbers, fractions, quantities, \&c. when they ean be expreffed by common numbers; in contradiftinction to irrational or furd ones, which cannot be expreffed in common numbers.

RAYNAL (William Thomas), commonly called the Abbé Raynal, was educated among the Jefuits, and had become one of the order. The learning of that Society is univerfally

R. A Y [39:] R A Y

Raynal. univerfally known as well as the happy talents whicl its fuperiors poffeffed, of afflguing to each member his proper employment. Raynal, however, after having acquired among them a tatte for literature and fcience, lad probably become refractory, for he was expelled from the order; and the caufe of his expullion, according to the Abbé Barruel, was his impicty.

With the real caufe of his expultion M. Barruel is furely much better acquainted than we can pretend to be; but we have a flrung fulpicion that his impieties had not then reached farther than to call in queftion the fupreme authority of the church; for our author limenfelf affures us, that he did not utter his atrocious declarations againt Chritianity till he had ceafed to be a menter of the order of Jefuits. He then affociated himfelf with Voltaire, D'Alembert, and Diderot, and was by them employed to furnilh the theological articles for the Encyclogédie. But though his religious opinions were certainly lax, and his marral principles very exceptionable, he could nut even then bee what, in a Proteflant country, would he deemed a man remarkable for impiety; for he employed the Abbé I'yon, whom M. Barruel calls an odd metaphyficien, but an inoffenfive and upright man, to write the articles which he was engaged to furnifh. In the conducting of this tranfaction, he hewed, incleed, that he poffeffed not a proper fenfe of hononr ; for he paid poor Yyon with twenty-five louis d'ores for writing theological articles, for which he received himfelf fix times that fum. This trick was difcovered, Raynal was difgraced, and com-, pelled to pay up the balance to Abbé Yvon; but tho' he had thus nlewn limfelf to be without honour, it is difficult to believe that he had yet pruceeded fo far as to blafpheme Chritt, fince he had employed a Chrittian divine to fupply his place in the Encyclopédie.

His firft work of eminence, and that indeed upon which his fame is chiefly built, is his "Political and Philofophical Hiflory of the Eurupean Settlements in the Ealt and Weft Indies." That this hittory is written in an animated fyle, and that it contains many jult reflections, buth political and philofophical, is known to all Europe; for it has been tranfated into every European language. Its beauties, however, are deformed by many fentiments that are irreligious, and by fome that are impure. It was followed, we think, in 1780 , by a fmall tract entitled "The Revolution of America;" in which the author pleads the caufe of the revolted colonits with a degree of zeal, cenfures the condut of the Britilh government with a keennefs of af. perity, and difplays a knowledge of the principles and intrigues of the different factious which at that periord divided the Englifh nation, that furely was not natural to the impartial pen of a philofophic fureigner. Hence he has been fuppofed to have been incited to the undertaking, and to have been furnifhed with part of his materials, by that defperate faction which uniformly oppofed the meafures of Lurd North, and fecretly fomented, the rebellion in America. Be this as it may, he propagated, both in this tract and in his hiftory, a number of licentious opinions refpecting government and religion, of which be lived to regret the confequences.
A profecution was inflituted againt him by the French government on account of his hillory of the Eaft and Weft-Indies; but it was conducted with fo little feverity
that he had fufficient time to retire to the doninions of the King of Pruffia, who afforded him the protection he folicited, although his Majelty's claracter was treated by the author in his book with no great degree of veneration. Raynalalfoexperienced the kindnefs of the Emprefs of Ruftia; and it is not a, little remarkable of this fingular perfonage, that although he was always fevere in difouffing the characters of princes, yet the mot defpotic among thefe heaped upon him many marks of favour and generofity. The Abbé alfo received a very unulual mark of refyect from a Britift Houfe of Commons. It was once intimated to the fpeaker that Rayratl was a fpectator in the gallery. The bufnefs was immediately fufpended, and the ftranger condu ied to a more convenient and honourable lituation. How dif-. ferent was the conduct of 1)r Johalon, who, when a friend advanced to him with our author, faying, "Will you give me leave, Doctur, to introduce to you the Abbé Raynal?" turned on his hecl, and vociferated, "No, Sir!" We are far from withing to vindicate the rudenefs of the fage; but it was perhaps as proper as the politenefs of the Houfe of Commons.

The great trait of Raynal's character was a love of liherty, which, in his earlier writings, he did not properly defure; but when he lived to fee fome of the confequences of this, in the progrefs of the French Revolution, he made one glorious effort to retrieve his errors. In the month of May 179 I , he addreffed to the conftituent affembly one of the moft eloquent, ar. gumentative, and impreffive letters that ever was written on any fubjed; a letter which, if the majority of them had not been intoxicated with their newly acquired confequence, mult have given fome check to tlicir mad career. After complimenting them upon what they had done, he proceeds thus: "I have long dared to fpeak to kings of their duty; fuffer me now to fpeak to the people of their errors, and to their reprefentatives of the dangers which threaten us. I am, lown to you, deeply afficted at the crimes which plange this empire into mourning. Is it true that I am to look back with horror at myfelf for being one of thofe who, hy feeling a noble indignation aygainft arbitrary power, may perhaps have furnithed arms to licentioufnefs? Do then religion, the laws, the royal authority, and public order, demand back from philofophy and reafon the ties which united them to the grand fociety of the French nation, as if, by expofing abufes, and teaching the rights of the people and the duties of princes, our criminal effurts had broken thole ties? ljut, no!never have the bold conceptions of philofophy been reprefented by us as the ftrict rule for acts of legiflation.
"You cannot juftly attribute to us what could only be the refult of a falfe interpretation of our principles. Alas! now that 1 ftand on the brink of the grave; now that I am about to quit this immenfe family, whofe happinefs I have ardently defired, what do I fee around me? Retigious troubles, civil diffenfions, contternation on the one hand, tyranny and audacity on the uther ; a government the flave of popular tyranny; the fanctuary of the laws furrounded by unruly men, who alter. nately dictate or defpife thofe laws; foldiers without difcipline; leaders without authority; miniters without means; a king, the firft friend of his people, plunged into bitternefs, infulted, menaced, itripped of all authority ; and the public power no longer exifting but

11 E A

Rayral, in clubs, in which ignorant and rude men dare to de$\underbrace{\text { Reaping. cide all political queftions." }}$

He then proceeds to prove, which he does very completely, that it was not the bufnefs of the affembly to abolifh every ancient intlitution ; that the genins of the French people is fuch, that they never can be happy or profpertus but under a well regulated monarchical governmeut; and that, if they wifhed not the nation to fall under the worit kind of defpotifm - the defpo. tifm of a low faction, they muft increafe the power of the king. "Alas! (continues he) what are iny fufferings, when in the heart of the capital, in the centre of knowledge, I fee this mifguided people welcome, with a ferocious joy, the moft criminal propofitions, fmile at the recital of murder, and celebrate their crimes as conquefts."

He had then feen comparatively but little; but he lived to fee more--to fee his countrymen celehrate, as virtues, crimes, compared with which the atrucities of 1790 appear almoft as harmlefs. Being ttripped of all his property, which was large, by the robbers of the revolution, he died in poverty in March 1796, and in the $84^{\text {th }}$ year of his age.

Befides the works which we have already mentioned, he wrote "A Hittory of the Parliament of England," and a "Hiftory of the Stadholuerate;" but thefe are both of them more remarkable for a fpecious fyle and loftinefs of iuvention than for ufeful obfervation or folid argument. He wrote likewife "The Hiftory of the Divorce of Catharine of Arragon by Henry the Eighth," which is not fo much a recital of, and commentary upon, the fact from which he takes the title, as it is an able picture of univerfal Europe at that period, of the views, interefts, and powcr, of all the different potentates. At the time of his death he was preparing a new edition of all his works; in which were to be made many alterations; and he is faid to have left among his manuferipts a "Hitory of the Revocation of the Edict of Nantes," in four volumes ; but it is alfo very certain, that, during the fanguinary reign of Robefpierre, he burnt a great part of his papers.

REAPING, the well-known operation of cutting corn either by the fickle or by the fcythe. Reaping by the fickle is by much the moft common practice, and that which, we believe, prevails univerfally in Scotland; yet the other method, where it is practicable, is certainly the leaft laborious, and by much the moft experitious. To the fcythe, as an inftrument of reaping, many objections are urged.

It is faid that it flakes the car, fo that many of the grains are loft; that it lets the corn fall, after cutting it, in a confufed and feattered flate, fo that either much of it is loft, or a great deal of time is confumed in gathering it together ; that it can only be made ufe of in land which is very even and free from ftones; that it does not leave fufficient length of ftubble in the ground to lay the corn on when cut ; that it mixes bad weeds with the corn, the feeds of which are fown the next year; and, laftly, that the ufe of the fcythe is prejudicial to the health of the reaper.

Thefe objections, however, are either of no weight, or they are made by thofe who are not acquainteu
with the feythes which have been adapted to this pur. Roaploge pofe, and with the proper manner of ufing them. With a good feythe, properly managed, the corn, after heing cut, remains at furft upright, and then falls very gently upon the rake fixed to the feg the, without any flake or jolt ; or at lealt with lefs than that which it receives when reaped with a fickle. With refpect to the lofs of grain, that proceeds chiefly from the corn being two dry ; confaquently it fhould be reaped only upon proper days, and proper times of the day, which is mach more eatily done with the feythe than with the fickle, becaufe the work is fo much thorter. The ftalks, kept together by the rake, may be laid upon the grourd, or rather againft the corn not yet, cut, in fo regular and collected a fate, that thofe who gather and tie the fleaves, whether they are women or children, have nothing but their own megligence to accufe if any thing is left behind. When land is properly ploughed and harrowed, it is fufficiently even ; and in fuch as is flony, the only precaution neceflary is to keep the fcythe a little higher in ufing it, that it may not ftrike againft the ftones. If the llubble left in the ground be flort, the ftraw which is cut off will be the longer ; and the latter is certainly of more value than the former, which only ferves to incommode the cattle which afterwards go to feed in the field.

Thefe confiderations, and others of a like nature, induced the patriotic fociety of Milan to fend, fome years ago, to thofe parts in which feythes are made ufe of for reaping; and having procured a model of a fcythe from Silctia, they caufed one to be made of a proper fize. It was firt tried upon corn, and afterwards upon millet ; and although the firft fcythe was not accurately made, and the reaper lad never before made ufe of fuch an inftrument, yet it was found that nearly half the whual time was faved, and that the labour and fatigue were much diminifhed ; the corn alfo was cut without receiving any fhock that could be hurtful to it, and fell in an even and regular flate, fo that it was afterwards eafily bound up in compact fheares. They were aterwards prefented with a feythe fomewhat different from the Silefian, which is very geneally ufed in Auftria.
Thefe inftruments are fo fimple, that the figure of one of them renders the defeription of either almot unneceffary. In fig. 1 . is fhewn the ${ }^{\circ}$ Silefian fogthe tried by the Society; the difference between that and the Auftrian one we fhall mention in our defcription. The firft, or Silefian fcythe, differs very little from the fcythe we commonly ufe for mowing grafs, except that the blade is rather fmaller; to it are added four teeth of wood, parallel to the blade, fixed and fecured in a proper manner, and intended to keep the corn together after being cut, fo that inltead of its falling in a confured Hate, the reaper may lay it down in a regular and compact one. The fecond, or Auftriar feythe, is fimilar to the former, except that the blade is larger; confequently the wooden teeth, of which there are five, are longer ; the handle is alfo more flat, and rather crooked.

In the f irft, the handle $a b$ (fee fig. I.) is two Milanefe braffes (A), and nine incles and a half in length; the

Plate XLII.
(A) One hundred Milanefe lrafes are equal to fifty-eight Englifh yards and a half.

Rexping. the blace $b c$ is one brafs three inches and a half; the cothification. piece of wood in which the teeth are fixed, one brafs one inch and a half. In the ficond, the handle is two
braffes, and feven incles long: the blade, one brafs eleven iaches; the pie ee in which the tecth are fixed, ele. ven iuches and a quarter. The propartions of the other parts may be conceived from the figure.
'The difference in the conftruction of thefe two feythes makes it requilite to ufe them in a different manner; but that will be better acquired in practice than by precept. Such of our comntrymen as are accuttomed to the ufe of the common feythe will very foon find out the moft convenient and advantageous mamer of ufing thefe new kinds of lieythe, and of laying down the corn properly when cut.

It fhould, however, be ohferwed, ehat in mowing grafs the feet are kept almonit parallul to each other, whereas in reaping corn they thould be kept upon a line, one behind the other, thrulling the right foot forward, and drawing the left towards it. This is mecetfary, becaufe when grafs is mowed it is left to fall juit where it is cut ; but when corn is cut, it is to be carried and laid in a proper manner againft that which is not yet cut, and which is at the left hand of the reaper ; and if the feet were kept parallel to each other, the reaper would be obliged to extend and turn his body in a very inconvenient manner.

After having made public thefe obfervations, the fo. ciety made farther experiments upon the fubject; in which it was found, that when, on account of very wet weather, the ftaiks of the corn are bent down, the wooden teeth of the forementioned fcythes are apt to lay hold of fome ears, to the ftalks of which the iron does not reash, and confequently not being cut below, they are puiled fo that the grain is fcattered. This happens chiefly when the reapers, not being yet fufficiently accuftomed to that kind of feythe, do not know how to adapt it to particular circumilances.

To remedy this inconvenience, it occurred to an in. genious blackimith to add to the common feythe a gatherer or collector made of cloth, as may be feen at fig. 2, where $a b c$ is a common fcythe; $c d m l o f n e$ is the gatherer; which at $c d e$ is compofed of a thin plate of iron, having at its extremity a hollow for receiving the point of the blade. At ed are holes for fewing in the cloth, which is coarle, light, and of low price; it is alfo tixed to two thick iron wires, of which the upper one is continucd to f, where it terminates in a hole ii the handle; the other is fixed to the back of the blade. The manner of fixing this gatherer to the blade of the feythe will be better underitood by referring to fig. 3. which reprefents one of the irons which, by means of a fcrew, are faftened to the back of the feythe. Thefe irons proceed from, and make part of, the up. right irons $m n, l o$, which ferve to keep the gatherer extended.

This is a very fimple and cheap contrivance; but an attempt was made to render it fill more fimple, by fubftituting for the gatherer two iron hoops, which are Thewn in fig. 2. by the dotted lines $b s, k i$, with a crofs piece β which connects them. Experience, however, has thewn, that the gatherer is in general preferable to thefe hoops, as it does not leave an ear of corn behind.

RECTIFICATION of ether, a proceff for de-
Suppl. Vol. II. Part I.
priving ether of its fulphureons acid (See ChemestryIndex in this Suppl.) It has been ufnal to add an alkali for this purpofe; but Dize has found it much more advantagcons to add a fubtance which might af-

Requifica. ford the requilite quantity of oxygen to convert the fulphureous into the fulphuric acid; in which thate it is not difpofed to rife and ceme over. Various metallic oxides were tried, among which the black oxide of manganefe proved the bert and the cleeapert. His procefs is as follows:

The fulphureous acid contained in unrectified ether being neutralized with oside of manganefe, the fluid is decanted into a pewter veflel of the capacisy of lifty ounces, which is placed on a water bath. 'l'o this ved. fel a head and worm are adapted, the latter of which pafles through a refrigeratory conftantly fupplied with water in a flream from below, which caufes the heated water to flow off above. The dittllation is then per. formed by raifing the bath to a temperature of 360 ($1: 33^{\circ}$ Fahreuheit, if the decimal thermometer be here meant). The rectification by this treatment ufually requires a day to complete it. The llavour of the ether is of the beft kind, and the product about one fixth more than in the ufual method with retort and recciver. Dizé has practifed this method with fuccefs for three years. - Fournal de Pbyjque, April, 1795.

Rectification, in geometry, is the finding of a right line equal to a curve. The rectification of curves is a branch of the higher geometry, a branch in which the ufe of the inverfe method of fluxions is efpecially ufeful.

Turkey-RED, Levant-Red, and Alrianople-Red, the names indifferently given to that beautiful red dye which diftinguifhes the cotton manufactured in the Ottoman empire, and at Afracan in the dominions of Ruffia. We have two accounts of the procefs of communicating this dye to the fuffs; one by Profeffor Pallas as he faw it practifed at Allracan; the other in the 92d number of the Annales de Cbimie by Citizen Fe. lix. As every thing relating to ufeful manufactures is of general importance, we fhall give pretty copious c:tracts from both papers.

- tecording to Dr Pallas, the dye-fuffs employed at Aftracan art, madder, fumach, gall nuts, aluin, an inferior kind of foda, and fifh-oil. 'The procefs of dyeing is as fullows:

The roots of the madder, when frefh gathered, are placed above each other in a ftore, or in a pit dug in vifcous earth which has been ftrongly heated. Earth is then thrown over the madder, and it muft fweat until the fove or pit becomes cold; when the routs, the fecond or third day, are taken from it, and cither furead out or liung up to dry. When it is thoroughly dried in the fun, the madder is ground to a very fure pouvder, as are likewife the round leaves of the fumach (ribus cotinus). The fifh oil is boiled from the entrails of the fturgeon and other large fifhes; and the proof of its being proper for dyeing is, that when mixed with a lixivium of foda, it mult immediately a finme a wiaky ap. pearance. Should that not be the cafe, it canot be uled by the dyers.

The cotton to be dyed red is firt wafhed excceding. ly clean in running water; and when the weather is clear, hung up on poles to dry. If it does not dry thefore the evening, it is taken into the houfe, on account

Iin,
TurheyRed.

R E D
 $\left[\begin{array}{ll}394\end{array}\right]$
 R E D

Furkey- of the folline dews fo remarkable in the country around Red. Aftracan, and again expufed to the air next morning. When it is thoroughty dry it is laid in a tub, and fifhoil is poured over it till it is entirely covered. In this ftate it mult ftand all night; but in the morning it is hung up on poles, and left there the whole day; and this procefs is repeated for a week, fo that the cotton lies feven nights in oil, and is expofed feven days to the atmofphere, that it may imbibe the oil, and free itfelf from all air. 'Ihe yarn is then again carried to a ftream, cleaned as much as poffible, and hung up on poles to dry.

After this preparation a mordant is made of three materials, which muf give the grounds of the red colour. The pulverifed leaves of the fumach are firlt boiled in copper kettles; and when their colouring matter has been fufficiently extracted, fome powdered galls are added, with which the liquor muft be again boiled; and by thefe means it acquires a dark dirty colour. After it has been fufficiently boiled the fire is taken from under the kettle, and alum put into the flill hot liquor, where it is foon diffolved. The proportion of thefe three ingredients cannot be afcertained, as the dyers vary that proportion at pleafure. The powder of the fumach leaves is meafured into the kettle with laddles; the water is poured in according to a grauge, on which marks are made to fhew how high the water imuft ftand in the kettle to foak fix, eight, ten, Exc. puds of cotton yarn. The galls and alum are added in the quantity of five pounds to each pud of cotton. In a word, the whole mordant muft be fufficiently yelluw, ftrong, and of an aftringent tafte.

As foon as the alum is diffolved, no time mult be loft in order that the mordant may not be fuffered to cool. The yarn is then put into hollow blocks of wood fhaped like a mortar, into each of which fuch a quantity of the mordant has been poured as may be fifficient to moiften the yarn without any of it being left. As foon as the workman throws the mordant into the mortar, he puts a quantity of the yarn into it, and preffes it down with his hand till it becomes uniformly moiftened, and the whole cotton yarn has ftruck. By this it acquires only a pale yellow colour, which, however, is durable. It is then hung up on poles in the fun to dry ; again wafhed in the ftream, and afterwards dried once more.

The next part of the procefs is to prepare the madder dye. The madder, ground to a fine powder, is fpread out in large troughs, and into each trough is poured a large cupful of fheep's blood, which is the kind that can be procured with the greateft facility by the dyers. The madder mut be ftrongly mixed in it by means of the hand, and then ftand fome hours in order to be thoroughly foaked by it. The liquor themaffumes a dark red appearance, and the madder in boiling y ields more dye.

A fter this procefs water is made hot in large kettles, fixed in brickwork; and as foon as it is warm, the prepared red dye is put into it, in the proportion of a pound to every pound of cotton. The dye is then fuf. fered to buil ftrongly ; and when it is enough, which may be tried on cotton threads, the fire is removed from under the kettle, and the prepared cotton is depofited near it. The dyer places himfelf on the edge of the brickwork that inclofes the kettle; dips the cot-
ton yarn, piece by picce, into the dye; turns it round backwards and forwards; preffes it a little with his hands; and lays each piece, one after the other, in pails flanding ready for the purpofe. As foon als all the cotton has received the firt tint, it is hung up to dry; as the red, however, is fill too dull, the yarn, which las been already dyed once, and become dry, is put once more into the dyeing-kettle, and mutt be left there to feethe for three hours over a itrong fire; by which it acquires that beautiful dark red colour whicl is fo much elteemed in the Turky yarn. The yarn is now taken from the dye with ficks; the fuperiluous dye which adheres to it is thaken off ; the hanks are put in order, and hung up, one after another, to dry. When it is thoroughly dry, it is wathed in the pure fream, and again dried.

In the laft place, the above-mentioned foda is diffolved with boiling water in tubs clettined for that purpofe, and it is uftral at Aftracan to allow 20 pounds of foda to 40 pounds of cotton, or half the weight. Large earth. en jars, which are made in Perfia of very ftrong clay, a yard and a half in height, almoft five fpans wide in the belly, and ending in a neck a fpan and a half in diameter, inclofed by means of cement in brickwork over a fire-place, in fueli a manner that the neeks only appear, are filled with the dyed cotton yarn. The ley of diffolved foda, which is blackilh and very harp, is then poured over it till the jars be filled; and fume clean rags are preffed into their mouths, that the uppermoft 太kains of yarn may rot lie uncovered. A tire is then made in the firs place beluw, and continued for 24. hours; and in the mean time the feam which arifes from the jars is feen collected among the rags in red drops. By this boiling the dye is ftill more heighten. ed, and is made to Itrike completely; every thing fuperfluous is removed, and all the fat matter which ftil adheres to the yarn is wafned out. Nothing more is then neceffary for completing the dye of the yarn but to rinfe it well feveral times in running water, and then to dry it.
Cotton clotl is dyed with madder at Aftracan in the fame manner; but many purfue a fraudulent procefs, by dyeing with red wood, and then fell their cloth as that which has been dyed in the proper manner.
The procefles followed in the Grecian manufatories ia the Levant, as defcribed by M. Felix, varies in fome particulars from this. The firlt procefs is that of cleaning the cotton: for which purpofe three leys are employed; one of fuda, another of ahes, and a third of lime. The cotton is thrown into a tub, and moiltened with the liquor of the three leys in equal quantities : it is then boiled in pure water, and wafhed in running water.

The fecond bath given to the cotton is compoled of foda and fheep's dung diffolved in water. To facilitate the folution, the foda and dung are pounded in a mor. tar. The proportions of thefe ingredients employed, are one occa of dung, fix of foda, and forty of water; each occa being equal to about fifty ounces. When the ingredients are well mixed, the liquor expreffed from them is ftrained; and being poured into a tub, fix occas of olive oil are added to it, and the whole is well ftirred till it becomes of a whitifh colour like milk. The cotton is then befprinkled with this water; and when the kains are thoroughly moiftened, they are

R F D

Turkej- wrong, preffed, and expofed to dry. The fame both ked. liquor which renders the cotton more or lefs fit for re- criving the dye. Each bath is given with the fane liquor, and ought to contimue five or fix hours. It is to be obferved that the cotton, after each bath, muit be dried without being wahed, as it ought not to be rinfed till after the laft bath. The cotton is then as white as if it had been bleached in the felds.

It may be fuppofed that the dung is of no utility fur fixing the coluurs; but this fuppofition would be rath; fur, as M. Felix obferves, it is well known that this fubftance contains a great quantity of volatile alkali in a difengaged ftate, which has the property of giving a rofy hue to the red. It is therefore probable that it is to this ingredient that the red dyes of the Levant are indebred for their fplendour and vivacity. This much, at any rate, is certain, that the Morocco leather of the Levant is prepared with dogs dung; becaufe it has been found that this dung is proper for leeightening the colour of the lack.

The procefs of galling, which follows the bath of dung, is performed by immerfing the cotton in a bath of warm water, in which five occas of pulverifed gallnuts have been boiled. This operation renders the cotton more fit for being faturated with the colour, and gives to the dye more body and ftrength. After the galling comes aluming, which is performed twice, with an interval of two days, and which confilts in dipping the cotton into a bath of water in which five occas of alum have been infufed, mixed with five occas of water alkalifed by a ley of foda. The aluming muft be performed with care, as it is this operation which makes the colouring particles combine beft with the cotton, and which fecures them in part from the deftructive action of the air. When the fecond aluming is finifhed, the cotton is wrung ; it is then preffed, and put to foak in running water, after being inclofed in a bag of thin cloth.

The worknen then proceed to the dyeing. To compofe the colours, they put in a kettle five occas of water, and 35 occas of a root which the Greeks call alizari, or painting colour, and which in Europe is known under the name of madder. The madder, after being pulverifed, is moittened with one occa of ox or fheep's blood. The blood frengthens the colour, and the dofe is increafed or leffened according to the fhade of colour required. An equal heat is maintained below the kettle, but not too violent; and when the liquor ferments, and begins to grow warm, the fkains are then gradually immerfed before the liquor becomes too hot. They are then tied with packthread to fmall rods placed croffivife above the kettle for that purpofe; and when the liquor boils well, and in an uniform manner, the rods from which the fkains were fufpended are removed, and the cotton is fufiered to fall into the kettle, where it muft remain till two thirds of the water is evaporated: When one-third only of the liquor remains, the cotton is taken out and wafhed in pure water.

The dye is afterwards brought to perfection by means of a bath alkalifed with foda. This manipula. tion is the mofl difficult and the nooft delicate of the whole, becaufe it is that which gives the colour its tone. The cotton is thrown into this new bath, and made to boil over a fteady fire till the colour affumes.

395] \quad E F
the requised tint. The whole art confins in catching Tukeythe proper degrec: a careful workman, therefore, mult watch whith the utmont attention for the noment when it is neceflary to take out the cotton; and he will ra. Rew " 1 Reflé.. r. ther burn his hand than mifs that opportunity.

It appears that this bath, which the Greeks think of fo much importance, might be fupplied by a ley of foap; and it is probable that faponaceous water would give the colour inore brighenefs and purity:
M. Felix feems doubtful whether the ali-zari of the Greeks be the fame plant with the European madder. If it be, its fuperiority muft arife from the mode in which it is cultivated, and the method employed to dry it. The ali-zari is not collected thll the fifth or fixth year of its growth, when it has accquircd its full ftrength; and as it is the woody part of the roots which affords the greatef quantity of colouring particles, this mult give it an obvious fuperiority over madder, which is collected before it has arrived at inaturit). The mode of deficcation contributes allo, in the opinion of our author, to improve the quality of the ali-zari. The Levantines dry it in the open air ; and this operation is eafy in a country where great drynefs prevails in the atmofphere, white in our damp climates we are obliges to dry the madder by foves. Hence it happens that the fmoke, which mixes itfelf with the cold air, and penetrates the routs, impregnates them with fuliginous particles, which alter the colouring fubtance ; an accident which does not take place when the madier is dried without the affilance of fire.

For the philufophical principles of thefe proceffes of dyeing, fee Animal and Vegetable Subst.ances in this Supplement.

REDINTEGRATION, is the taking or finding the integral or fluent again from the fluxion. Sce Fluxions, Encycl.

REFLECTOR FOR a light-house, is compofed of a number of fquare plane glafs mirrors, fimilar to thofe with which Archimedes is faid to have fet fire to the Roman fleet at the fiege of Syracufe (See Burning, Encycl.) Each of thefe mirrors is about an inc! fquare ; and they are all difpofed clofe to each other in the concave of a parabolic fegment, formed of Atucco or any other proper bed. Stucen has been found to anfwer the purpöfe belt ; and is accordingly employed in all the reflectors of the light-houfes crected by Mr Thomas Smith tinplate worker, Edinburgh, at the expence, and by the authority, of government. This ingenious and modeft man fecms to lave conceived the idea of illuminating light-boufes by means of lamps and reflectors in. ftead of coal-fires, without knowing that fomething of the fame kind had been long ufed in France; he has therefore all the merit of an inventor, and what he invented he has carried to a high degree of perfection.
His parabolic moulds are from three to five or fix feet in diameter; and in the centre or apex of each is placed a long fhallow lamp of tin-plate, filled with whale oil. In each lamp are fix cotton wicks, almof contiguous to each other, which are fo difpofed as to burn without trimning for about fix hours. The light of thefe is reflected from each mirror fpread over the concave furface, and is thus multiplied, as it were, by the number of mirrors. The fucco moulding is covered on the back with tin-plate, from which a tube, innediately over the lamp, proceeds to the roof of the

R E F

Reflector, light room, and ferves as a funnel, through which the Reflexity.
fmoke efcapes without fully ing the faces of the mirrors.

The light-room is a cupola or lantern of from eight to twelve fides, compofed entirely of glafs, fixed in calt-iron frames or fathes, and roofed with copper. On circular benches paffing round the infide of this lantern, at about cighteen inches from the glafs frames, are placed the refictors with their lamps, fo as that the concare furfaces of two or three of the reflecturs front every point of the compafs, and throw a blaze of ligbt in all directions. In thie roof immediately over the centre of the room is a hole, through which pafs all the funuels already mentioned, and which ferves likewife to admit frefh air to the lamps. This light room is firmly fixed on the top of a round teser fo as to be immoveable by the weather ; and the number of the reflectors, and the height of the tower, are lefs or greater according as it is the intention that the light fhould be feen at a lefs or a greater diftance.

A man judging from mere theory would be very apt to condemn light-houfes of this kind; becaufe the firmeft building fhakes in a vioient form, and becaufe fuch fhaking, he might think, would fometimes throw the whole rays of light into the air, and thus miffead the bewildered feaman. This opinion, we know, was anually entertained of them by one of the profoundef philofophers and moft fcientific mechanicians of the age. Experience, however, has convinced him, as well as the public at large, that fuch apprehenfions are groundlefs, and that light-houfes with lamps and reflectors are, in every point of view, preferable to thofe witl, fires buining in the open air. They are fupported at much lefs expence; their light is more brilliant, and feen at a greater diftance, whilft it can never be obfcured by fmoke, or beaten down on the lee-fide by a violent gutt of wind; and what is perhaps of ftill greater importance, the reflectors with their lamps may be fo varioully placed, that, as Mr Smith obferves, one light-houfe cannot be miftaken for another. If we add to all this, that the lamps do not ftand in need of trimming fo often as open fires require fuel, and that the light man is never expofed either to cold or to wet by attending to his duty, we muft be convinced that light-houfes with refiectors are much lefs liable to be neglected in flormy weather than thofe with open fires, and that this circumftance alone would be enough to give the former a preference, almof incalculable, over the latter.

It has been propofed to make the concave furface of the parabola one fpeculum of metal, inflead of covering it over with a multitude of plain glafs mirrors ; or to diminifh the fize of each mirror, if they are to be retained in preference to the metallic fpeculum. To every man who has but dipped into the fcience of optics, it mult be obvious, that cither of thefe alterations would he wrong. The brighteft metal does not reflect fuch a quantity of light as well foliated clear glafs; and were the fize of the mirrors to be diminifled, the number of joinings would be increafed, in each of which fome light is lof, not mercly in the fean, but from its being almoft impollible to foliate glafs perfectly at its cdge.

REFLEXITY, a word employed by Mr Brougham to denote a property of light which caufes the different rays to be acted upon by bodies, and to begin to be refracted, reflected, inflected, and deflected, at different diftanccs. This property follows the fame law that
the other optical properties of light follow: the red ray Refra niono having molt reflexity, and the violet leatt (See Philofo. phical Tranfisions, 1797, p. 360.) Mr Broughain has denoted this property by the three words, refrangity, reflcity, and fexity; but as the power is the fame there is no occation for different names. Some philofophers have refufed to admit this as a new property; we have not verified it by experiment.

REFRACTION of Altitude, is the arc or portion of a vertical circle, by which the altitude of a ftar is increafed by the refraction of light.

Refraction of Affenfion and Defcenfion, is an arc of the equator, by which the afcenfion and defcenfion of a thar, whether right or oblique, is incteafed or diminifhed by the refraction.

Refraction of Declination, is an arc of a circle of declination, by which the declination of a far is increafed or diminithed by refraction.

Refraction of Latitude, is an arc of a circle of latitude, by which the latitude of a far is increafed or diminifhed by the refraction.

Refraction of Longitude, is an are of the ecliptic, by which the longitude of a ftar is increafed or diminifhed by means of the refraction.

Terreflizial Refraction, is that by which terreftrial objects appear to be raifed higher than they really are, in obferving their altitudes. The quantity of this refraction is eflimated by Dr Mafkelyne at one tenth; by Le (iendre at one.fourteenth; by De Lambre at one-eleventh; and by others at a twelfth of the diftance of the object obferved, expreffed in degrees of a great circle. But it is obvious that there can be no fixed quantity of this refraction, fince it depends upon the ftate of the atmofphere, which is extremely variable. Hence fome very fingular effects of it are related, of which the following is worthy of notice. It is taken from the Philofophical Tranfactions of London 1798 ; being an extract of a letter, dated Haftings, Auguft I. 1797.
"On Wednefday, July 26, about five o'clock in the afternoon, while I was fitting in my dining room at this place, which is fituated upon the Parade, clofe to the fea fhore, nearly fronting the fouth, my attention was excited by a number of people running dewn to the fea-fide. Upon enquiring the reafon, I was informed that the coall of France was plainly to be diftinguifted by the naked eye. I immediately went down to the fhore, and was furprifed to find that, even without the affiftance of a telefcope, I could very plainly fee the cliffs on the oppofite coaft; which, at the neareft part, are between 40 and 50 miles diftant, and are not to be difcerned, from that low fituation, by the aid of the beft glafies. They appeared to be only a few miles off, and feemed to extend for fome leagues along the coatt. I purfued my walk along the fhore ealtward, clofe to the water's edge, converfing with the failors and fifhermen upon the fubject. They at firft could not be perfuaded of the reality of the appearance; but they foon became fo thoroughly convinced, by the cliffs gradually appearing more elevated, and approaching nearer, as it were, that they pointed out and named to me the different places they had been accuftomed to vifit ; fuch as the Bay, the Old Head or Man, the Windmill, \&c. at Boulogne ; St Vallery, and other places on the coaft of Picardy; which they afterwards confirmed when they

Regis they viewed them through their telefcopes. Their obfervations were, that the places appeared as ne:n as if they were failing, at a fmall ditance, into the harhours."

The writer of this extract was W. Latham, Efq; F. R. S. and A. S. who adds, that the day was extrencly hot, that it was high water at Hadings about two o'clock P. M. and that not a bieath of wind was ftirring the whole day.

REGIS (Peter Sylvain), a French philofopher, and great propagator of Cartelianifin, was horn in. Agenois 1632. He culivated the languages and philofophy under the Jefuits at Cahors, and afterwards divinity in the univerlity of that town, being defigned for the church. lefe made fo uncommon a progrefs, that at the end of four years he was offered a doctor's degree without the ufual charges; but he did not think it became him to accept of it till he had tudied alfo in the Sorbome at Paris. Ile went thither, but was foon difguited with theology; and as the philofophy of Des Cartes began at that time to make a noife through the lectures of Rohault, he conceived a talte for it, and gave himfelf up entirely to it . He frequented thefe lectures; and becoming an adept, went to Tonlonfe in 1665 , and read lectures in it himfelf. Having fine parts, a clear and fluent manner, and a happy way of making himfelf underftood, he drew all forts of people; the magiftrates, the learned, the ecclefiaftics, and the very women, who now all affected to abjure the ancient philofophy. In 1680 he returned to Paris; when the concourfe about him was fuch, that the fticklers for Peripateticifm began to be alarmed. They applied to the A rchhithop of Paris, who thought it expedient, in the name of the king, to put a fop to the lectures; which accordingly were difcontinued for feveral months. The whole life of Regis was fpent in propagating the new philofophy. In 1690 he publifned a formal fytem of it, containing logic, metaphyfics, phyfics, and morals, in 3 vols 4 to, and written in French. It was reprinted the year after at Amflerdam, with the addition of a difcourle upon ancient and modern philofophy. He wrote afterwards feveral pieces in defence of his fyftem ; in which he had difputes with M. Huet, Du Hamel, Malebranche, and others. His works, though abounding with ingenuity and learning, have been difregarded, in confequence of the great difcoveries and advancement in philofophic knowledge that have been fince made. He died in 1707. He had been chofen member of the academy of fciences
nitude, in the conftellation Leo; called alfo, from its fituation, Cor Leonis, or the Lion's Meart; by the A. rabs, Alluzbor ; and by the Chaldeans, Kalbeleced, or Karbeleceid; from an opinion of its infuencing the affairs of the heavens.

REID (Thomas, D. D.), fo well known to the public by his moral and metaphy fical writings, was the fon of the Rev. Lewis Reid, minilter of the parifh of Sirachan, in the county of Kincardine, North Britain. His mother was the danghter of David Gregory, Effy ; of Kinardie, of whom fome account has been given in this Supplenent, and lifter to Davil, James, and Charles Grcgories, who were at the fanc time profeffors of aftronomy, or mathematics, in the univerfities of Oxford, Edinburgh, and it Andrews.

He was born at the parfonage-houfe of Strachan in April 1710 , and received the rudimente of his education at the parifl fchool of Kincardineooniel. At that period the parachial fehools of Scotland were very fuperior to what they are now; and joung men went from them to the univerfity well furnithed with philological learning. The progrefs of young Reid muft have been rapid; for he was removed from ichool to the Marifchal Cullege, Aberdecn, when not more than twelve years of age ; and we bave never heard that he was admitted into the univerfity before he was qualified to profit hy the leetures of the profefors. On the contrary, he foon difplayed the genius of his mother's family, and fhone confpicuoas among the ftudents of mathenatics in a college where that fcience las been at all times cultivated with ardour and fuccefs.

After the ufual courfe of four years employed in the Itudy of Latin, Greek, Mathematics, and Philofophy, he probably took his degree of M. A. which at that periud, and for a long time fuhfequent to it, was the univerfal practice in the univerfity of Aberdeen, and then commenced the ftudy of theology. In due time he was licenfed to preach the gofpel accurding to the forms of the church of Scotland; but continned to refide for fome years in Aberdeen, cultivating his favourite fcience, mathematics.

The mathematical chair in Marifchal College was then filled by Mr John Stuart, a man of great eminence in his profeffion ; but who, like many other profound mathematicians, was not happy in his mode of communicating fcience, at leat to the duller part of his pupils. Mr Reid occafionally read lectures for the profefor; and a friend of our's, by no means dull, has often been heard to exprefs great fatisfaction that Mr Stuart was kept a whole winter from the fehools, when he was a fludent, and that the clafs was taught by Mr Reid. "Had it not been for this circumfance (faid he) I mould never have underftood more of mathematics than the firt fix books of Euclid's clements; but Mr Reid had the faculty of making every thing intelligible to the fudents which he clearly apprehended himfelf."

He could not, however, fpend his life in the Itudy of nathematics, and in reading barren lectures for other men. He had been educated for the church; and it was in the church only that he had the profpect of gaining a livelihood. He was accordingly prefented, we know not in what year, to the church of Neav Macbar in Aberdeenfhire, at the time when the good people of Scotland were very far from being reconciled to the rights of patronage ; and the confequence was. that

R E I

It was during his profefforflip in the univerfity of

Reid. that his fetternent met with much popular oppolition. Eren a little riot took place in the church at his ordimation; but he foon gained the affections of his nock by his, good fenfe, his acknowledged worth, and his unwearied attention to all their wants, which he was ever ready to relieve to the utmont extent of his abilities. So deeply rooted indeed was their regard for him at lait, that, though it is now almoft half a century fince his relation to the parifh of New Machar ceafed, his memory continues to be revered in that parifin even at the prefent day; and the following ancedote evinces that it is not revered without reafon.

A man who, from being in deeent circumftances, and a member of the kirk Ceffion (See Presbyterians, Erncyct.), when Dr Reid was minifter, had become, in his old age, poor and infirm, obferved to the then minitter of the pari:h, that if he were able to go to Glafgow, and make his cafe known to his old friend and paftor, lee was fure that he would get fomething done for him This obfervation was reported to the Doctor, who inftantly recollected the man, though, in all probability, be had not thought of him for thirty years; and he fetthed upon him an annual penfion of ten pounds, which was punctually paid as long as they both lived. The pride of fcience had not from the mind of this great man cradicated the amiable fympathies of humanity, nor had his philofophic fame made him overlook the unafpiring duties of the Chriftian paftor.

In the year 1751, about the ieginning of the feffion or annual tcrm, one of the profeffors of philofophy in King's College, Aberdeen, died; and lis death being unexpected, prefented to the other members of that learned londy fume difficulty in carrying on the ufual courfe of education for that year. At this our readers will not be furprifed, when they reflect on the modeon which fcience was taught in that univerfity; for he who could with propriety be placed in the vacant chair, mult have been qualificd, without much previous preparation, to read lectures on Logle, Ontology, Paeumatics, Morals, Politics, Mathematics, and Natural Philosophy (See Gerard, in this Suppl.) In fuch a place as Aberdeen, it is hardly to be fuppofed that there was a fingle man unemployed, fo completely matter of all thefe branches of fcience, as to take up the clafs where it was dropt by the deceafed profeffor, and carry it fuccefsfully through that fcience, whatever it might be, in which, at his death, he chanced to be lecturing. It occurred, however, to the principal, and fome of the profeffors, that the miniter of New Machar was fully equal to the tafk; and the late Dr John Gregory, then profeffor of medicine, and the Rev. Dr Macleod, the prefent fubprincipal of King's College, were deputed to vifit Mr Reid, and requelt his immediate acceptance of the vacant profefforhip. He yieldid to the requeft not without fome hefitation, and was admitted profefior of philofophy on the 22d of No. vember.

He was now in the very fituation for which Nature fcemed to have intended him. He lad not only an opportunity, but it was his duty to cultivate the fcience to which his attachment was fo ftrong; and the duties of his office made him turn his attention more clofely than he had hitherto done to another fcience, in which he was defined to make a more confpicuous figure than he ever made even in his favourite mathematics.

Aberdeen that he wrote his "Effay on Qunntity," which was puhlifhed in the 45 th volume of the Philofo. phical Tranfactions, and is perhaps the fiueft fpecimen of metaphyfical inathenatics, if we may ufe fuch an expreffion, that is extant in our own or in any other language (Sue Quantiry, Encyl.). It was during the lame period that- he publifined his "Inquiry into the Human Miad on the Principles of Common Senfe ;" a work of unqueftionable merit, which has contibuted more than any other work whatever to give a rational turn to metaphylical fpeculations. It was about this period that the degree of D. D. was conferred upou him by his mother-college.
The well-earned fame of Dr Reid attracted the attention of the univerfity of Glafgow to him as the fitteft perfon to fucceed the celebrated Dr Adam Smith; and he was admitted profeffor of moral philofophy in that univerfity on the 1 th of June 1764. There his attention was not diftracted by a multitude of fciences, which it was his duty to teach; and he had leifure to improve his metaphyfical fytten, though he continued through life to amufe limfelf occalionally with mathematical fpeculations.

In the year 1773 appeared, in Lord Kames's "Sketches of the Hitory of Man, a brief Account of Aritotle's Logic ; with remarks by Dr Reid." It would feem that he had entered upon this talk rather reluctantly, and merely in compliance with the fulicitaw tions of his friend, the author of the Sketches. "In attempting (fays he) to give fome account of the analytics, and of the topics of Arifotle, ingenuity requires me to confefs, that though I have often purpofed to read the whole with care, and to underftand what is intelligible, yet my courage and patience always failed before I had done. Why fhould I throw away fo much time and painful attention upon a thing of folittle ufe? If I had lived in thofe ages when the knowledge of Ariftotle's Organon intitled a man to the highett rank in philofophy, ambition might have induced me to employ upon it fome years of painful ftudy ; and lefs, I conceive, would not be fufficient. Such reflections as thefe always got the better of my refolution, when the firlt ardour began to coul. All I can fay is, that I have read fome parts of the different books with care, fome flightly, and fome perlaps not all. I have glanced over the whole often; and when any thing attracted my attention, have dipped into it till my appetite was fatisficd."
Notwithftanding this modeft acknowledgment, we are not fure that any one of Dr Reid's publications does hing greater honour than his very perfpicuous view of this ftupendous fyitem. Having ourfelves occafionally looked into the writings of Ariltotle, we fhould not hefitate to fay, that it is by much the beft analyfis of thefe writings that we have any where met with, even though we could not corroborate our own opinion by that of other men much more converfant than we are with the oracular language of the Stagyrite. But when it is known that the late Dr Doig of Stirling, to whom Greek was as familiar as his mother tongue, and an equally learned Doctor of Oxford, who has been reading Aritutle cver fince he was fourteen years of age, agreed in opinion, that a more accurate view of his logic could not be given in the fame compafs than had

R E I

been given by Dr Reid, we may furely affirm, with fome degree of confidence, that this finall work adds much to the fame of our celebrated countryman.

I'hough Dr Reid's health continued grood, and his mental faculties unimpaired, till a very fhort time before his death, he ceafed for fome years to read lectures from his profeffional chair, employing that time in preparations for eternity, and in fitting his lectures for the prefs. Thefe were publithed in two volumes 4 to: the firft in $1: 85$, under the title of "Effays on the Intellectual Powers of Man," dedicated to his friends Dr Gregory and Profeffor Stewart, both of the univerfity of Edinburgh; and the fecond in 1783 , under the title of "Effays on the Active Powers of Man," without any dedication or preface. He continued to enjoy the fame acquired by this work, as well as the affection of his friends and the reverence of the public, for eight years, dying at Glafgow in the end of September, or the beginning of Octuber 179^{6}, in the 87 th year of his age. He had been married, and he left behind him one daughter.

To do jutice to the biography of fuch a man as this, we fhould here attempt to draw his intellectual character, and to appreciate the merits of his works; but to perform this tank in a manner at all worthy of him, or we hope of ourfelves, would require more room than our limits permit us to allot to any article of the kind ; and our readers will be pleafed to learn, that they may contidently expect an account of his life, with a critique on his works, by a man better qualified to do juftice to both, than the writer of this flowt dieteh pretends to be. His works are in the hands of the fpeculative public; and by that public will be duly valued, as long as found fenfe thall be preferred to impious jargon. How long that may be, God only knows; but if any thing can guard the winds of our youth againft that fopniftry of which the object is to attribute real agency to material Huids, and to reprefent the elective attractions of chemiftry as perfectly fimilar to human volitions, it will be the unbiaffed ftudy of Dr Reid’s "Effays on the Intellecitual and Active Powers of Man.". They will there find metaphyfics divefted of myftery, and the profoundeft fpectilations rendered intelligible by the conftant ufe of words in one determined fenfe. We think, indeed, that in this confifts the Dochor's chief merit ; for, except when treating of our notions of power, he feems not to have added inuch to what certainly may be found in the writings of Loeke.

Let not our readers fuppofe, that by this obfervation we with to detract in the friallell degree from our author's fame, or to leffen him by comparifun with the Englifh philofopher. If on mere topies of fpeculative feience, he appears to us to have thought as Locke thought, it is on the other hand eertain, that the greater part of Lucke's doctrinesmay be gleaned from the logical and metaphyfical writings of Bacon, Hobbes, and Des Cartes. Nor need this furprife any one; for he who reflects a moment on the fubject, mult perceive that fueh a coincidence of thought in metaphyfical fcience is among men of eminence almofl inevitable. Of mind and its powers - the fubject of that feience-we neither know, nor can know dny thing, but by patiently attending to the operations of our own minds, when we fee, hear, feel, think, reafoin, and will, \&ce: and it is obvious, that every man who is canable of fuch patient
attention, and does not habour under the bids of fome prejudiee, mult view thefe uperations in the fiame way. The great fuperiority of Dr Reis over his predeceffors, in this department of fcience, appears to have been this, that he apprehended the operations of his own mind with a clearnefs, which gave to his laguage a precition and perfpicnity which the language of Locke certainly dues not poffefs.

In thee Eflay on the Human Underitanding, the term idea fometimes fignifies a material fubstance, fometimes the qualities of that fubftance, fometines the concep. tion of thefe qualities, fometimes the power or faculty of the mind by which we conceive a thing, fometimes a perception of fenfe, and fometimes an intellectual notion. Hence the ambiguity of terms which runs thro' the whole of that immortal work, has furnifhed botle the author's friends and his enemies with an opportu. nity of attributing to him pernicious doctrines, which we are perfuaded he did not maintain, and which, we think, a patient analy fis of the effay mult convince every man that he did not maintain. From this ambiguity the writings of Dr Reid are perfeetly free. His doetrines, whether well or ill-founded, can never be inifunderftood by him who is defirous to underitand them; and he who knows how much peripicuity of tyle depends upon aceuracy of thinking, will not deem us enemies to his fame for having faid that his chief merit confiits in the precifion of his language.

He has been much cenfured by fome, and much ap. plancled by others, for introducing the phrafe common Senfe intu fipeculative philufophy, as the proper name of that faculty of the inind by which we apprehend firt truths: but he is on this account entitled neither to praife nor to cenfure. He adopted the phrafe from others: and has proved, by the moft unexceptionable authosities, both ancient and modern, that it may with great propricty be ufed as he has uled it. Whether the adopting of it into works of fcience was neceffary, is another queftion, on which we have given our opinion elfewhere; it is fufficient in this place to vindieate his ufe of it, efpecially ia his latter works, from ambiguity.

Candour obliges us to acknowledge, that he has advanced fome doctrines which we camot admit as true. Though not in general partial to Locke, he has adopted his notions relpecting our power of abllraction with hardly any other variation than the fubitituting of the term conceptions for Lucke's favourite phrale ideas. He has likewife endeavoured tu prove, that we may diftinctly conceive what cannot poffibly exitt. Thefe miftakes, for fuch they appear to us, we have pointed out eliewhere (See Meraphysics, Part I. Chapt. iii. and iv. Encycl.) ; but they are infinitely mure than counterba. lanced by his clear, accurate, and fatisfactory difquilitions on our notions of active power. Had Dr Reid never written a fentence but the effay which treats of this delicate and important fubjeet, he would have been entitled to a place in the very firft rank of ufeful metaphyficians; for, previous to the appearance of his works, we had nothing written directly on porucr hut contradictory and unintellinible jargon. We reconmend the ferious perufal of this effay, the firt in his fecond volume, to fuch of our readers as fancy that they diftinctly conceive the powers of chemical agents, and that intelligence and volition may refult from any mechanieal and notion.
REISKE (Jolin James), a moft profound fcholar and fagacious critic, was born in 1705 at a fmall town of the duchy of Anhalt. After ftrugrling with fome difficuletis in his feliool educuation, in which, however, he, by perfe verance, obtained confidcrable adrantages, he went, in 1733 , to Leiplic; where he continued, for the faice of fudy, five ysars. Here he accomplifhed himfelf is Arabic, and tranflated and publified a book from that language. In order to profecute his ftudy of A rabic with greater effect, be travelled on foot, and with many difficulties, to Leydeu. Here he was employed in arranging the Arabic manulcripts, for which, however, he received a very fcanty compenfation; and here alfo he tranflated from the German and French, into Latin, various eflays fet him by Dorville, whom he had vifited in his journey, and who afterwards inferted thefe papers in the Mifcellanea Critica. Dorville was fo well pleafed with his fkill and diligence, that he employed him in more important concerns. At his defire, Reilke tranflated the whole of the Chariton from the Greek, and the Geography of Abulfeda from the Arabic, into Latin. At Leyden he continued for the fpace of eight years; where a florm of jealoufy and ca. lumny, excited againf him by the younger Burman, finally induced him to change his refidence. This was principally owing to the freedom he ufed with refpect to the edition of Petronius, edited by the younger Burman at Leyden ; howcver, before he quitted it, he took the degree of doctor of phyfic, which was given him in a manner which did him the highef honour. He then vifited different parts of Germany, till be at length fettled at Leipfic a fecond time. Here, for twelve years, notwithtanding he was made profeffor of Arabic, he experienced all the incouvenicnces of poverty, and was obliged to undergo a great deal of drudgery for bookfellers, and the editurs of periodical publications, to procure a fubfiftence; at this perisa, in particular, the Aga Eruditorum were greatly indebted to him. Amidt all thefe hardfhips, however, he found opportunity to write, and to publifh, his Animadverfones in AxGores Gracos, in five volumes; a work of extraordinary learn. ing and merit. In 1758, by the death of Haltaufius, he obtained a fituation at once honourable and lucrative, which placed him above want, and enabled him to follow his favourite purfuits at eafe. He was made rector of the academy at Leipfic, in which office be continued till the time of his death. In 1764, he married Erneftina Chriftina Muller, a woman of wonderful attainments, whofe knowledge was hardly inferior to his own, and particularly in Greek literature. She affifted him in all his literary labours, ind efpecially in his immortal work of the "Edition of the Greck Ora. tors." Thus, in the manner motl grateful to himielf, Reife confumed the remainder of his life, which continued till 1774, when he dicd poffiefled of the higheft reputation. The number of works which he fiperin. tended and publifhed is very great ; but it will be fufficient to name thofe which are mort fought after and efteemed. Thefe are, the "Remarks upon Greek Authors," before mentioned. An "Elition of the Greck Orators," in 12 vols 8 vo, which was finifhed by his widow. "Dionyfius Halicarnalfenfis," in 7 vols. "Plutarch's Works," in 9 vols. "Theocritus, \&c. \&c."

This John James Reifke mult not be confoundel with Yobn Reike, rector of the college of Wulfenbuttel, who was alfo a learned man, and publifhed varions works *:

REMONST'RANT'S, in church hitory, a title given to the Arminians (See thit article, Encycl)) by reafon of the remonitrance which, in 1610 , they made to the States of Fiulland, againit the fentence of the fymod of Dort, which condemned them as lieretics. Epiccupius and Grotius were at the head of the Remonfrants, whofe principles were firt openly patronifed in England by Archbifhop Laud. In Hollind, the patrons of Calvinifm prefented an addrefs in oppofition to the remonftance of the Arminians, and called it a counter-remunftrance. Hence the Dutch Calvinills were termed Counter Remonfrants. Much controverfy was carried on by thefe rival fects, which, on the fide of the Calviuifts, was extrentely illiheral.

REMORA, or Sucking Fish, a fpecies of Eche. Neis (See Encycl.), M. Vaillant found, upon different parts of his enormous ray (See Raja in this Suppl.) about twenty fmall fucking fifh, or remoras, faltened fo firmly that they did not drop off when he was hoifted on board. Some naturalifts have faid, that the head of the fucking fith is wifcous on the lower part, and furnifleed with rough points fimilar to the teeth of a file; and, according to them, it is by means of thefe two qualities, its ronghnefs and vifcofity, that it is enabled to adhere to other fifh.
"Figure to yourfelf (fays one of them) a row of nineteen flarp edged and dentated lamin x, placed crofs-
wife, and ifluing immediately from the rim of the lower nineteen flarp. edged and dentated laminx, placed crofs-
wife, and ifluing immediately from the rim of the lower jaw, and you will have a jult idea of the part with which the remora makes itfelf fatt."
This defeription (fays Vaillant) is exact as far as.relates to the figure and number of the dentated lamine;
but it phaces them on the lower part of the head, lates to the figure and number of the dentated lamine;
but it phaces them on the lower part of the head, whereas they are, in reality, on the upper. Accurdingly, when the remora fixes itfelf, it is obliged to turn upon its back, with its helly upward. If the two white fifh, however, that-polted themfelves on the arms of the ray, and ferved hime as piluts,
be of the remora fpecies, as he is inclined to think, the felves on the arms of the ray, and ferved him as piluts,
be of the remora fpecies, as he is inclined to think, the lamine hy. which that variety adheres to other fiflees munt be cin the lower part of the body, fuce the cwo muft be cin the lower part of the body, fuce the two
piluts continued in their natural pofition, and bad no occation to turn over to fix themfelves at their poft.

REPETEND, in arithmetic, denotes that part of an infinite decimal fraction, which is continually repeated ad infinitum. Thus in the numbers $2 \cdot 121313$, $\$ \mathrm{C}$, the figures 13 are the repetend, and marked thus 13.

REPUBLICANS, the name given hy Vaillant, with fome propriety, to a kind of birds which were obferved in South Africa, both by him and Paterfon, to inlabit apparently the fame enormous neft. Cutting
one of thefe nefts in pieces with a hatchet, he perceiinhabit apparently the fame enomous neft. Cuting
one of thefe nefts in pieces with a hatchet, he perceived that the principal and fundamental piece confifted of a mafs of throng coarfe grafs (called by the Huttenof a mafs of itrong coarfe grafs (called by the Hotten-
tots Boflomen's grafs), without any mixture, but fo -compact and firmly knit together as to be impenetrable to the rain. This mucleus is the commencement of the
fructure; and each bird builds and applies to it its parto the rain. This melens is the commencement of the
ftructure; and each bird builds and applies to it its particular neft. But thefe cells are formed only beneath and around the mafs; the upper furface remains void, without, however, being ufclefs; for, as it has a pro- $\begin{array}{r}\text { jecting }\end{array}$ without, however, being ufclefs; for, as it has a pro- $\begin{array}{r}\text { jecting }\end{array}$

 to adhere to orker

- Bror. Dict. new

edit.

jecting rim, and is a little inclined, it ferves to lel the water run off, and preferves each dwelling from the rain. Figure to yourfelf a huge irregular mafs, the funmit forming a kind of roof, and all the other parts of the furface completely covered with cells fqueezed one againft another, and you will have a tolerably accurate idea of thele fingular edifices.

Each cell is three or four inches in diameter, which is fufficient for the bird. But as they are all in contact with one another through the greater part of the furface of the mafs, they appear to the eye to form but one building, and are dittinguiflable from each other only by a little external aperture, which ferves as an entrance to the neft ; and even this is fometimes common to three different nefts, one of which is fituated at the bottom, and the other two at the fides.
The neft which he examined contained 320 inhahited cells, which, fuppofing a male and fenale to each, announce a fociety of 6_{40} individuals. Such a calculation, however, would not be exact; for whenever our author fired at a flock of thefe birds, he always killed four times as many females as males. "For the reit (fays he), thefe birds have nothing very remarkable in their plumage. It is an uniform brown grey, diverfified by a few black fpots on the fides, and a large patch of the fame colour on the throat. The male is a little larger than the female ; in other refpects chey exactly refemble each other."

RESIDUAL analysis, a calculus propofed by the inventor, Mr Landen, as a fubititute for the method of fuxions. The object of this fubfitution was to avcill introducing the idea of motion, and of quantities infinitely or indefinitely fmall, into mathematical inveftigation. The refidual analyfis accordingly proceeds, by taking the difference of the fame function of a variable quantity in two different tlates of that quantity, and exprefling the relation of this difference to the difference between the two ftates of the faid variable quantity itfelf. This relation being fift expreffed generally, is then confidered in the cafe when the difference of the two flates of the variable quantity is $=0$; and by that means it is evident, that the fame thing is done as when the fluxion of a function of a variable quantity is affigned by the ordinary methods.
The evolution of the functions, confidered in this very general view, requires the affittance of a new theorem, difcovered by Mr Landen, and remarkahle for its fimplicity, as well as its great extent. It is, that If x and v are any two variable quantities, $\frac{x^{\frac{m}{n}}-v^{\frac{m}{n}}}{x-v}$

$$
\begin{aligned}
=x^{\frac{m}{n}-i} \times \frac{x+\frac{v}{x}+\frac{v^{2}}{x^{2}}+\frac{v^{3}}{x^{3}}+\cdots(m)}{\frac{m^{m}}{n}} \frac{\frac{3 m}{n}}{\frac{\frac{3}{n}}{n}} \\
1+\left(\frac{v}{x}\right)^{2}+\binom{v}{x}+\left(\frac{v}{x}\right)^{2} \cdots(n)
\end{aligned}
$$

where m and n are any integer numbers.
This theorem is the balis of the calculus; and from the expreffions $x^{\frac{m}{n}}-v^{\frac{m}{n}}$, and $x-v$ having the form of
SUPPL. VoL. II. Part II.

401] $\quad \Gamma \quad T$

what algebraits call refideals, the in renions inventor gave Refunar to his whole method the name of the erfictuat amalyfis. Revivife.

The firlt account of this method was publillicel by Mr Landen in 1758, under thet title of a J Jifcourfore con-
crivificscerning the Refidual Aralyis. The tillt butk of the Refidual Analyfis itfelf was publifhed in 1-64; and contained an explanation of the principles of the netv calculus, with its application to feveral of the mott comfiderable problems belonging to the direct method of fluxions. The fecond book wals intended to give the folution of many of the moft difficult problems that belong to the inverfe inethod of fuxions, or to the integral calculus ; but it lias never been publinhed: a circumftance which every one, who has taken the trouble to fludy the lirft part of the work, will very much regret.

If we eftimate the ralue of the refidual analy fis from the genius, profound knowledye, and extentive views required to the difcovery of it, it will rank high among works of invention : but if, on the other hand, we ellimate its value by its real practical utility, as an inftrument of inveftigation, we muft rate it innch lower. When compared with the fluxionary calculus, which it was intended to fuperfede, its principles, though in appearance more rigorous, are much lefs cafly apprehended, much lefs luminous, and lefs direct in their application : and therefore, as a mcans of extending the bounds of mathematical fcience, it muft ever be regard. ed as vaftly inferior to the latter (A.)

RETICULA, or Reticule, in altronony, a contrivance for méafuring very nicely the quautity of eclipfes, \&c. This inftrument, introduced fome years fince by the Paris Academy of Sciences, is a littlc frame. confifting of 13 line filken threads, parallel to, and equidiftart from, each other, placed in the focus of object glaffes of telefcopes; that is, in the place where the image of the luminary is painted in its full extent. Confequently the diameter of the fun or moon is thus feen divided into 12 equal parts or digits: fo that, to find the quantity of the eclipfe, there is nothing to do but to number the parte that are dark, or that are luminous. As a fquare reticule is only proper for the diameter of the luminary, not for the circumference of it, it is fometimes made circular, by drawing fix concentric equidiftant circles, which reprefents the phafes of the eclipfe perfectly. But it is evident that the reticule, whether fquare or circular, ought to be perfectly equal to the diameter or circumference of the fun or flar, fuch as it appears in the focus of the glafs; otherwife the divifion cannot be juft. Now this is no eafy matter to effect, becaufe the apparent diameter of the fun and moon differs in each cclipfe; nay, that of the moon differs from itfelf in the progrefs of the fame eclipfe. Another imperfection in the reticule is, that its magnitude is determined by that of the image in the fucus; and of confequence it will only fit one certain magnitude. Sce Micrometer, Encycl.

REVETEMENT, in fortification, a frong wall built on the outfide of the rampart and parapet, to fupport the earth, and prevent its rolling into the ditch.

REVIVIFICATION, in phyfiology, the recalling 3 E
tu
(A) For this view of the Refidual Analyfis, we are obliged to Mr Playfair profeffor of Mathematics in the Uni-

R E V

Revivifica- to life of animals apparently dead. There are many tion, kinds of infects which may be revivified, after all the French powers of animation have been fufpended for a coufiRevolution, derable time. Common flies, fmall beetles, fpiders, $\underbrace{1745^{\circ}}$ moths, bưss, \&ec. after being drowned in fpirit of wine, and continuing apparently dead for more than a quarter of an hour, have been rellored to life merely by being thrown among woud afhes nightly warm.

While Dr Franklin refited in France, he received from America a quantity of Madeira wine which had been bottled in Virginia. In fome of the bottles he found a few dead fles, which he expofed to the warm fun, it being then the month of July ; and in lefs than three hours thefe apparently dead animals recovered life which had been fo long fufpended. At firft they appeared as if convulfed ; they then raiied themfelves on their legs, wathed their eyes with their fore feet, dreffed their wings with thofe behind, and began in a little time io fly atout.

But the moft extraordinary inftance of revivification that we ever heard of, is the following : In the warmer parts of France there is an infect very deftrective to sye, which feems to begin its operations at the root of the plant, and gradually to proceed upwards to the ear. If the plant be completely dried while the infect is in the root or Atem, the animal is irrecoverably killed; but after it has reached the grain, the cafe is very different. There have been inflances, which are noticed in the Academy of Sciences, of thefe infects being brought to life in a quarter of an hour, by a little warm water, after the grains, in which they were lodged, had been kept dry for 30 years.

What is the metaphyfician to think of thefe phenomena, or what conclufion is he to draw from them with refpect to the mind or fentient principle? If he be a fober man, he will draw no conclufion; and for this very good reafon, that of the fentient principle of in fects, and indeed of every animal but man, he knows nothing. He is confcious that it is the fame individual being, which, in himfelf, thinks, and wills, and feels; he knows, that part of his thought is not in one place and part of it in another ; and therefore he rationally conclodes that this thinking being is not matter, whilft experience teaches him that it quits the material fyftem as foon as that fyftem becomes completely unfit to difcharge its functions, and that when it has once taken its flight, it cannot be recalled. Experience teaches him, on the other hand, that the fentient principle of thefe infects does not quit the material fyftem as foon as that fyftem feems unfit for its functions; and hence he ought to infer, that the minds of men and of infects (if we may ufe fuch language), though probably both immaterial are very different fubfances; and that the bond which unites the material and immaterial parts of an infeet, is certainly different from that which unites the mind and body of man. This is the only inference which can be legitimatcly drawn from thefe phenomona; and he who makes them the bafis of materialifin, munt 216 have his judgment warped by fome paffion or prejudice.
revolution of Prance. We fommerly prefented to our readers a concife fatement of the com- mencement and progrefs of this extraordinary event (See Revolution, Encycl.). The fingularity of its nature, and the important place which it muft hereafter occupy in the moral and political hiftory of mankind,
require that we thould now refume and cortinue the French detail of its wide wafting career. We left the fubject Revolution towards the commencement of the year 1795, at the clofe of that wonderful campaign, during which the armies of the Republic had exerted themfelves with fuch unparalleled fuccefs in every direction. On the one fide they had croffed the Pyrennees, and fraken the Spanill monarchy to its centre; while on the other they had driven the united forces of Auftria, Pruffia, and Britain, from the walls of Landrecies acrofs the Rhine, at all points from Hageneau to the fea, and liad finally clofed their efiorts by the conquest of Elolland. At that period, though a prolongation of hoftilities was threatened, we fcarcely expected that Europe was fo foun to witnefs, or we to record, a fucceffora of military enterprifes of a fill more romantic and extraordinary nature, the fcene of which was even to extend into barbarous countries, where the opinions and the quarrels of the European nations had hitherto remained unknown.

The canplaign of 1794 , however, was not imme-Diminifhe diately followed by any important military exertions. The Britifh troops were recalled home, Pruffia had been gradually withdrawing from the coalition, and the Auttrian armies remained upon the defenfive. Neither was the French government in a fituation which conld enable it to renew its enterprifes with vigour, or to give much trouble to the allies. The Convention Atill exifted; but it was no longer that terrible affembly which, under Robefpierre and his affociates, had, in the flort period of fifteen months, reduced two thirds of France under its dominion, and fent forth armies which the combined ftrength of the reft of Europe feemed unable to refift. While its authority remained almoft concentrated in one man, and while the fear of foreign invafion, and the new born enthufiafm for freedom, induced the people to fubmit to every meafure of government, however oppreflive or arbitrary, the power of the Convention, and the number of its armies, were unbounded. The dreadful price, however, which they had paid for liberty, and the facility with which they faw it might be loft, had now diminifhed the political zeal of all claffes of citizens. The removal of the foreign armies had difpelled the dread of invafion, and the death of Robcfpierre, by diffolving the unity of its effurts, and fuffering it to fall into contending factions, had greatly weakened the authority of the Convention, and diminifhed its efficiency as a government.

The fall of Rohefpierre had been accomplifhed by two feparate confpiracies. At the head of one of thefe were, Barrere, Billaud Varennes, and Collot d'Herbois, who had been members of the Committee of public fafety. The other confpiracy confifted of members of the Convention who did not belong to the committees, and had no immediate fhare in the adminiftration. Among theef, Tallien, Bourdon de l'Oife, and Lecointre of Verfailles, were confpicuous. After the deftruction of their mutual tyrant, a conteft for power took place be. tween thefe parties. The popularity of Robefpierre had once been fo confiderable, and all men had fubmittad fo tamely to his dominion, that both parties accounted it neceflary, in their fpeeches and writings, to And dil juftify to the nation the fhare they had taken in ac-credito complifhing his ruin. It was eafy to be eloquent npon the Jac fuch a top . it was ealy to beloquent upon bins, the diferedit of the members of the committec, and of the

French the more violent Jacobins, who had been the immediate Revolution, influments for carrying into effes his fanguinary mea$\underbrace{1795}$ fures. They neverthelefs retained poffeffion, for fome time, of a conliderable portion of power. The current of public opinion, hewever, ran fo itrongly againtt then, and the reftoration to their feats in the Convention of the feventy one imprifoned members of the Girondift party, added fo much to the flrength of their antago. nifts, that they gradually lof their influence, and were threatened to be brougttit to trial for their conduct.

As early as Augult :ラリ4, Lecointre of Verfailles had denounced the members of the old committee of fafety ; but his accufation at that time produced little eftect. Towards the end of that year, however, their approaching fall became evident. On the 26th of December the Consention urdered, on the mution of Clatuzel, that the commitiecs Cousld immediately report upon the conduct of the reprefentatives denomeed by Lecointre and all France. Accordingly, on the following day, Merlin of Douay reported, ju the name of the committees, that there was no caufe for inquiry inte the conduct of Vouland, Amar, and David; but that there was room for examining the conduct of Barrere, Billaud Varenaes, Collot d'Herloois, and Vadier.

In confequence of this report, a committee of twentyone members was appointed to make the enquiry. On the 2 d of March this year (1795), Saladin prefented the report of the commifion ; in which thefe four deputies were accufed of having participated, as members of the governing committee, in the tyrany and atrocious meafures of Robeípierre. Their trial commenced before the Convention on the 22d of March ; but previous to that period, Vadier had made his efeape. The others remained, and refted their defence upon this ground, that although members of the committee of fafety, they had no power to refill Rohefpierre, and that they were not more culpable in having acquiefeed in his tyranny than the other members of the Convention, who liad all been overpowered for the time by the knowlecige that inftant deffruction awaited every man who thould dare to oppole his meafures. Except in the cafe of the eruties committed hy Collot d'Herbois at Lyons, this defence was probably by no means deflitute of foundation. It had mach weight with the nation at large; in whofe eyes it tended, not to exculpate the three perfons now accufed, but to criminate and degrade the character of the whole Convention.

Carnot, Lindet, Cambon, Duhem, and the other members of what was now called the Fucolin party, defended their leaders with confiderable ability, and with much veliemence. Nor was the party lefs active without doors than within the hall of the Convention. For fome time they had drawn their friends to the capital from all quarters of the country; and in the morning fitting of the firlt of April, they commenced their operations by an open infurrection. An immenfe multitude having affembled in the fuburbs, proceeded to the hall of the Convention. A real or factitious fcarcity exifted at the time. Taking advantage of this circumftance, they pretended they were going to petition for bread; and this pretence drew numbers along with them who had no thare in their detigns.

Boiffy d'Anglas, a confpicuous member of the moderate party, was addreffing the Convention upon the means of removing the prefent fearcity when the in-
furgents arrived, drove the centinels from their pofs, French and fuddenly filled the hall. They tumultuounly de-Revolution, manded "Bread, and the Conftitution." The Jacobin $\underbrace{1795}$ party funported the infurgents ; and onc of thee multitude, in a veheonent harangue, exclaimed, "We are men ot the 14 the of July, of the toth of Aurgult, and of the 3 ift of May." He demanded, that the Coirvention thould change its late meafures, that the people Ahould no longer be the victims of mercantile rapacity, and that the acculed patriots thould not be facrificed to the praffons of their antagonifts. The Convention ordered the tocfin to be romg, and the people of Paris to be called to arms Gencral Pichegru was in l'dins at the time; ank, upon the motion of Barras, he was appointed to the command of the military force.

The citizens of Paris, who remembered with horror Which is the domination of Rohefpierre and 10 adserents, and queiled by now faw themflves menaced with its return, infantly Hehegru. called each other to arms, and aftembled, hy fix in the evening, for the protection of the Convention, to the amount of 20,000 men. Tiil that time the affembly had remained under no fmall difquistude, furrounded by the infurgents, and liftening to the addrates of theit orators, and the fpeeches of the Jacohin minority in their favour. The majority was now refcued from this fate of conflraint; and, on the motion of Dumont, without proceeding farther in the trial, it was decreed that Barrere, Collot d'Herbois, and Billaud Varennes, mould immediately be tranfported to Guiana.

During the following day the infurgents were com. Vior pletely fubdued; and the majority of the Convention, the Contaking advantage of their vietory, decreed the arreft vention. and confinement, in the caftle of Ham in Picardy, of feveral of the moft obnoxious of their antagromits. Among thefe were Leonard Bourdon, Duhem, Chanes, Choudieu, Ruamps, Fouffedoire, Huguet, Beyle, Lecointre, Cambon, Thuriot Maignet, Heutz, Craffous, and Levaffeur. By departing from the punifament of death, and adopting that of banifhment on this occafion, the Convention expected to diminifh the ferocity of the contending factions in the flare, by rendering the refult of a political defcat lefs fatal than formerly. The defign was gond; but in attempting to accomplifa it, they eftablifhed the pernicious precedent of inflicting punithment without a tiial, which could feareely fail to prove highly dangerous, if nor ultimately fatal, to all their profpects of a free and jutt government.

The Convention now followed up its victory with Proporal ${ }^{223}$ the popular meafure of preparing for its own diffolu-for a new tion, by endeavouring to frame a fixed conflitution for ronftitu. the Republic. The conititution which had been de- ${ }^{\text {tion. }}$ creed in 1793, under the aufpices of Robefpierre, was confidered as impracticable, and a committee was appointed to report upon the meafures which ought now to be adopted. It contifted of Sieyes, Cambaceres, Merlin of Douay, Thibaudeau, Mathieu, Le Sage of Eure and Loire, and Latouche. On the Pgth of April, Cambaceres reported, that it was the opinion of this committee that a commiffion fhould be appointed to frame an entirely new conftitution. The Convention accordingly appointed the following perfons to this im. portant office, Le Sage, Louvet, Boify d'Anglas, Creuze, Latouclie, Bertier, Daunow, Baudin, Durand, Maillane, Languinais, La Reveillere Lepaux, and Thíbaudeau. All other citizens of every defcription were

French at the fame time invited to communicate projects upon Qevolution, the fubject, and the committee was required to order the belt conceived of thefe to be printed.

The Convention farther gratified the feelings of the great majority of the nation, by bringing to trial Fouquier Jencille the prefident, ard fifteen judges and jurors of the late revolutionary tribunal. They were convieted on the 8th of May, and executed on the following day, amidit the execrations of a multitude of fpectators.

In the mean time, though defeated on the it and 2d of A pril, the Jacobins by no means confidered them-
felves as fubdued. Oit the contrary, they were preparing a new and more extentive infurrection, which ihould not, like the former, be confined to the capital. They fixed upon the 20th of May as the day of revolt. Thuriot, and Robefpierre's financier Cambon, had found means to efcape from the caltle of Ham in Pi cardy, and to come to Paris. They concealed themfelves in the fuburb St Antoine, and from thence gave counfel to their party, and urged them to action. The fearcity of bread had increafed, and advantage was again taken of this circumftance. For fome days the walls were covered in various places of Paris with printed acculations againft the Convention of withholding bread from the people, and attempts were made to excite the truops in the city to join the difaffested party. On the evening of the inth, a paper was openly diftributed in the different fections, explaining the object of the approaching infurrection. It declared infurrection to he the molt facred duty of the prople, and called ujon the citizens of Paris to proceed in a mafs to the Convention, to demand from it bread and the eftablifhment of Robefpierre's conilitution, together with a new election of national reprefentatives.

On the morning of the 2oth, the tocfin was rung, and drums beat to arms in the fuburb St Antuine, which had always been the quarter of the city in which the Jacobins polfefted the greatell ftength. Upon this alarm the Convention affembled; but although the intended infurrection was no fecret, and though the committee of public and general fafety now made a report, in which they confened their previous knowledge of it, yet it does uot appear that any vigorous meafures of precaution had been taken; for it was only at the inftant when the infurgents were actually approaching that General Huche was appointed to command the armed force, and was fent forth to affemble the military and the citizens for the defence of the Convention. In the mean tinu, the multitude furrounded the hall. 'They foon ove" powered the guards, and burf into the midll of the affembly. In all the turbulent days of the revolution, the wromen of Paris have never failed to act a confpicuous part. On this occalion they greatly augmented the crowd by their numbers, and the tumult by their cries of "Bread, and the conftitution of 1793." which was the rallying exclamation of the party. After forme fruitlefs efforts to refore tranquillity, Vernier the prelident, an old man, refigned the chair to Boiffy d'Anglas, who remained in it with much firmnefs during the day. The whole ftrength of the infurgents had not arrived at once; for the firft party that approached, although they forced their way into the hall, were foon repulfed by the aid of a few foldiers and citizens, who came to the affiftance of the Convention. A hort interval of tranquillity was thus
obtained; but the attack was fpeedily rencwed with double fury by arned men, who fubdued all opprion Revech and entered the hall with cockades, on which was written the infeription, "Brearl, and the conftitution of Revolution, Revolutio
1795. " Wh , Breal, and the comitution of 225 1793." While things were in this fate, a citizen of who murthe party of the Convention rachly tore off the hat of der fome of one of the infurgents, and was immediately affaulted the Conwith fwords by the multitude. He fled towards the vention, prefident's chair, and was killed at the fide of it by a it froni ito mufket fhot. Ferand, one of the members, having at-hall. tempied to refene him, was alfo attacked. He efcaped into one of the paffages, where he was alfo killed, and his head was brought into the Convention upon a pike. The greater number of the members now gradually departed, and left the hall in poffeffion of the infurgents, who acted with fome regularity, and propofed a variety of laws favourable to their party, which were inftantly decreed. Duroi, Duquefnoi, Bourbotte, and Goujon, were the members who ftood moft openly forward on this occafion, and appeared as chiefs of the infurrection. But their triumph only lafted a few hours. Towards the evening a large body of citizens joined the military, and marched to the aid of the Convention. Having overcome the infurgents, they entered the hall in great force, and reftored the powers of the majority. The decrees that had been forced upon them were repealed as fpeedily as they had been enacted, and the deputies who had propofed or fupported them were arrelled.

The citizens of Paris, and even the members of the Convention, appear now to have fancied their victory complete; for they adopted no adequate meafures to prevent a new difturbance. But the Jacobins did not fo ealily give up their own caufe. On the following day they once more affemhled in the fuburbs, and in the aftermoon they returned to the attack. '「hey took poffefion of the Caroufal without oppofition, and pointed fome picces of cannon agraint the hall of the Convention. This aflembly was now unprotected, and attempted not to fubdue, but to flatter, the infurgents. A Meannels deputation of the members was fent forth to fraternife of the Cono with them, and to carry forth two decrees paffed at vention. that inflant, which ordained that bread frould abound, and that Robefpierre's conttitntion of 1793 flonuld iminediately be put in force. The infurgents, in return, fent a deputation to the Convention, to exprefs their fatisfaction with the decrees, to demand the releafe of the imprifoned patriots, and the punifhment of thofe who preferred money to affiguats. The Convention pretended to agree to all their demands, and the prefident was ordered to give to the deputation the fraternal embrace.

The 22d, which was the third day of the infurrection, appears to have been paffed by both parties in a ftrange degree of inaction. The Convention proceeded in its ordinary bufinefs; and the Jacobins, at their head quarters in the fuburb St Antoine, were occupied in confultations and preparations for new movements. But on the following day the citizens affembled at their fections, and haftened from thence to the Thuilleries to defend the Convention. Confiderable bodies of the military were alfo collected, and the affembly at laft refolved to act upon the offenfive. A decree was pafter, declaring, that if the fuburb St Antoine did not inftantly furreader its arms and cannon, together with

French the murderer of Ferand, it fhould be confidered as in a Revolution, ftate of rebellion. The conventional generals were at
1295.

227 Its vickory over the Ja. cobins; the fame time ordered to reduce it by force. The infurgents now found themfelves unegual to the conteft, and were compelled to furrender without conditions by he inhabitants of the fuburh, who dreaded the deftruction of their property by military operations. Several foldiers being found among the prifoners, were put to death ; and fix nembers of the Convention were tried and condemned on this occafion by a military commiffion. Three of thele perifhed by felf.flaughter, and three were executed. The majority of the Convention, elated by their victory, ordered back Collot D'Herbois, Billaud Varennes, and Barrere, to take their trial; but the two former had failed before the arrival of the courier. Barrere only remained, and he was brought back and imprifoned.

In the mean time, the Jacobins in the fouth were not lefs active than their brethren at Paris. On the 20th of May they formed a vigorous infurrection at Toulon. They feized the gates and mounted them with cannon; they liberated fuch of their affociates as bad been imprifoned, and detained the fleet which was about to fail. Having begun their operations in this fuccefsful manner, they marched from Toulon towards Marfeilles. Their force amounted to three thoufand men and twelve pieces of cannon. They were encountered on their way, however, and defeated by Generals Charton and Pactod. Three hundred of them were carried prifoners to Marfeilles, and '「oulon was fpeedily retaken.

The party of the Mountain, as it had been called, or of the violent Jacohins, who wifhed to revive the reign of terror and the meafures of Robefpierre, was now reduced very low both in the Convention and out of it. Thofe who adhered to it were even in many places, and more efpecially in the fouth, expofed to very violent perfecution. Affociations were formed, called Companies of Jefus and of the Sun, for the purpofe of avenging the crimes committed hy them during the period of their power. At Lyons feveral of them were maffacred in prifon, and many of them in all places perifhed by affaffination. On confidering the inercilefs character of the government of Robefpierre and his af. fneiates, and the perfecution which was fuffered under it, not merely by the nobles and the rich, but by every man who was difinguifhed by integrity, talents, or literature, it may appear furprifing that it thould have obtained admirers, or that any number of individuals should have been found willing to hazard their lives to procure its reftoration. Accordingly, from the period of the fall of its leader, the party had gradually been forfaken by its adherents; and the more clofely its conduct was confidered, it loft ground the more rapidIy in the eftimation of the public. After the unfuccefsful infurrections of the 20th of May, it was treated with the utmoft contempt, and its unpopularity was ex. treme. Still, however, a party remained. It was fnsall, their nuinbers by fuperior enterprife and activity. They confilted of outrageous republicans, whofe heated imaginations beheld royalty and ariftocracy in every propo- fal for fober and regular government. In the conduct of Robefpierre, they remembered only the energy of his meafures, by which France was enabled to triumph over
the combined efforts of the kings of Europe; and over. French looked the atrocities by which he had brought difgrace Revo utions upon their eaufe, and rendered lis party odious to their own countrymen, as well as to the neighbouring nations. Amidft the univerfal odium, lowever, the Jacobins did not defpair of rifing once more iuto power; and it is not a little fingular, that we mutt date the rcvival of their Arength from the period of the unfuccefsful infurrections which we have juft recorded, and which feemed to have extinguilhed their hopes for ever.

The unpopularity under which the Jacolins laboured foon began to affect the Convention itfelf. The tame fubmiffion of that body to the government of Robefpierre was now remembered. It was recollected, that the majority of its members had been the inftruments of his power, and had applauded, or at leaft acquiefced in, his crimes. As the prefs was now free, and the reins of government unfteadily held, their conduet was reprefented to the public in the moft odious colours. A celebrated fong, Lee Reveil du Puple, hecame extremely popular, as the means of marking diflike both to the Convention and to the Jacobins; and their conduet was canvaffed with the utmoft bitternefs in a great variety of publications, but more efpecially in a journal that at this time attracted much notice, and which was conducted by Freron, who had himfelf been a Jacobin, but had now abondoned his party.

In this ftate of things, the majority of the Cunven- And terrt. tion fpeedily began to repent of their late victory over fy the Cousthe Jacubins. In the firft efforts of their zeal, they ventios.
had taken meafures for the immediate formation and eftablifhment of a fettled conftitution to fuperfede their own authority ; but they now regretted their rafhnefs, when they perceived, frum the temper the nation was in, that the men, the moft avowedly hoftile to their character and meafures, would without doubt be e'ceted as their fucceffors. They, and their friends, had arifeu to great diftinction and wealth under the revolutionary government ; and they now began to dread, not only the lofs of power, but alfo a fevere inveftigation of their conduct. Thefe confiderations foon produced their natural effects. The decrees for forming and putting in force the conftitution could nut deceutly be recalled: but the majority of the Convention fet about devining means for rendering them of little importance, fo far as they themfelves were concerned.
On the 23 d of June, Boifly D'Anglas prefented the New curr report of the committee that had bien appointed to fiturion, prepare the plan of a conftitution. It began, like confiling the former conftitutions, with a declaration of the rights of man; and in addition to this, confifted of fourteen chapters, upon the following fubjects:--i he extent of the territorial poffefions of the Kepublic, the political ftate of citizens, the primary aftemblies, the electoral affemblies, the legifature, the executive power, the municipal bodies, the judicial authority, the public force, public inftruction, the finances, foreign treaties, the mode of revifing the conftitution, and, laftly, an enactment, that no rank or fuperiority flould exit among citizens, excepting what might arife from the exercife of puhlic functions.

The primary affemblies were to poffels the right of electing the members of the electoral aftemblies, and alfo the juftices of the peace. The electoral affemblies were to nominate the judges and the leginators of the

French ftate. The legifature was divided into two affemblies; fere'uninn, the one of which confifed of 250 members, and was 1795.

231 rwo Coun. cils and an called the Conuril of the Ancients, as none but married men and widuwers above 40 years of age could be members of it. The other affembly or council confilted of 500 menibers, and puffefted the exclufive privilege of propofing the lavs; the Council of Ancients being only intitled to reject or approve, without power to alter the decrees prefented to it. 'To this rule there was one exception, which was afterwards employed as the means of overturning the whule fabric of the contlitution; the Council of the Ancients might decree the removal of the legiflature from its ordinary place of litting. To this decree the approbation of the Council of Five Hundred was not neceffary; and when once enacted, it could not be confidered even by the Council of Ancients itfelf. One-third of the members of the two Councils was to be elected annually. A member might he once re.elected but he could not be elected a third time till an interval of two years had elapled.

The excoutive power was intrufted to five perfons of forty years of age at leaft, to be ltyled the Executive
them the profpect of one day getting quit of it. But at Paris, and in the neighbouring departments, where the lubject was more accurately invenigated, the public difapprobation of the Convention difplayed itielf with great vehemence.

I here was indeed fomething extremely aukward in the decree about the reelection of tworthirds of the Convention. That body might, if neceflary, have continued its own exitence for come time longer, or it might have difmiffed one third of its number by ballot or otherwife, and allowed a new election only to that extent : but a compulfory clection was an abfurdity fo new, and fo obvious, that it gave their antagonills every advantage againt them. Accordingly, at the meetings of the fections of Paris, the laws for the re-election were rejected with contempt, and their abfurdity de. monftrated with much acrimony. In confequence of the debates which took place at thefe meetings, the minds of men were gradually inflamed, and it tecame obvious that a political convallion approached. On the one fide, the Convention took care to publifh daily the approbation of the decrees, along with the conftitution, by the majority of the primary affemblies, by molt of which the two had been confounded and ac. cepted in the grofs. Its committees alfo called in the aid of the troops of the line for its protection. On the other hand, the language of the fections became every day more violent. The whole Convertion was reprefented as a band of tyrants and of murderers, the affociates of all the cruelty of Robefpierre and the Mountain party. It was even propied to bring to trial every individual member of the affembly before a new revolutionary tribunal, and to punifh lim accord. ing to his demerits.

For fome time much anxiety prevailed on both fides. Numerous deputations were repeatedly fent from the fections to the Consention to remonftrate againf the obnoxious decrees. But the eagrernefs with which thefe remonltrances were made, ferved only to convince more firongly the members of the Convention of the danger to themfelves as individuals which would attend a relig. nation of their power, and contirmed the refolution they had taken to retain it. The deputies of the festions having obtained infection of the records of the convention, afferted, that the national majority, if rightly numbered, had rejected the decrees, as every affembly that voted in oppolition to them was only numbered as one vote, however numerous its members might be; which enabled the primary affemblies of remote diftricts to outvote the more populous fections of Paris and other great towns. Whereas it was faid, that if the individual voters were comited, it would be found that the decrees were difapproved of by a confiderable majority. All this was difregarded by the Convention, and the fections prepared to decije the difpute by arms. The firft ftep taken by them, however, was ill concerted. A notion was propagated, that as foon as the primary affemblies or fections had chofen the electors who were to choofe the members of the new legiflature, the national fovereignty became vefted in thefe clectors, and that they had a right to affume the government in their various diftricts. Accordingly, about 100 of the electors of Paris affembled in the hall of the French theatre in the fuburh St Germain, previous to the day of meeting appointed by the Convention. Having chofent

French Revoluction, 1795.

Direciory. Its members were elected by the two Comncils; the Council of Fire Hundred electing ten times the number of candidates that might be neceflary to till up the vacancies, and the Council of Two Hundred and Fifty nominating the directurs from this lift of candidates. One nember of the Directory was to go out anmally; fo that the whule might be changed every five years. The Executive Directory had no vote in the enaktment of laws; but it fuperintended their cxecution, regulated the coining of money, and difpofed of the armed force. Foreign treaties made by it were not binding till ratified by the leginative body, nor could it make war without the authority of a decree of the two affemblies. The public functionaries were to receive falaries, and to appear drefled in an appropriated habit.

Each article of this conflitution was feparately difcuffed; and on the 23 d of Augult the whole was declared to be complete, and ordained to be tranfmitted to the primary affemblies for their approbation. Previous to this refolution, however (that is, on the 22 d of the fame month), the majority of the Convention hisd brought furward the grand meafure by which they meant to provide for their own fafety, and the fafety of their friends and adlerents, againt the change which the public opinion had undergone concerning them. They decreed, that at the approaehing general election, the electoral bodies fould be bound to cloofe twothirds of the new legiflature from among the members of the prefent convention; and they afterwards decreed, that, in default of the election of two thirds of the Convention, the Convention fhould fill up the vacancies themfelves.
233

The con-

 vention fer ters the frecdom of election.Thefe decrees were tranfinitted, along with the Confitution, to the primary aflemblies, to be accepted or rejected by them. Many of the primary affemblies underftood, that they could not accept of the conflitution without accepting along with it the law for the reelection of the two-thirds. The point had, in all probability, been purpofely left under a certain degree of ambiguity ; and as the people were now weary of this Convention, they acquiefced in any conditions that gave

R E V

French De Nivernois (formerly the Duke de Nivernois) their Revilution, prefident, they began their debates. The Convethtion was alarmed, and inftantly fent a body of the military to difmifs the mesting as illegal. This was eatily accomplifhed, as the citizens had not been unanimous with regard to it, and no meafures were taken for its protection.

Notwithtanding this firft advantage on the fide of the Convention, the fections regarded its power with contempt, and inagined themflese fecure of ultimate fuccels. In every political conteit that had hitherto occurred fince the coinmencement of the revolution, the immenle population of the capital hal given a decifwe fuperioriry to the faction whofe fide it efpoufed. The citizens alfo ugarded with indiference the armed force with which the Convention had furrounded itfelf, from a notion, which they fondly entertained, that the
the fift blow. For this purpofe they fent General Menou to the fection of Le Pelletier to difperfe the citizens, ${ }^{\text {R }}$ whofe greatelk force was affembled there. But this of-

Freach ficer dilliking the fervice which he was employed to perform, intead of procceding to action, began to negociate with the leaders of the fections, and fpent the evening of this day in fruitlefs conferences. The fections on their fide appointed General Danican, who had diltinguifhed hinfelf in the war againlt the Royalifts in La Vendee, to act as their military leader. It would appear, however, that this officer, from the moment that he aflumed the command, began to defpair of the cause of the fections. He found them totally deftitute of cannon, whereas the Convention was furrounded by regular troops and a numerous antillery. This inequality in puint of weapons appears to lave lecen confidered by him as a fuftivient reafon for avoidingry an engagement. Occupied in vifiting and arrancing the different pofts, he was unacquainted with the dilaffection of the conventional generals. He thereture thought he had done much when lie had prevented bloodaed for another day, and thus the favouable moment for attack was loft. Whether the fertions would have been fuccefsful had they been inftantly led to battle on this important occafion, cannot now be known. Though the fuperior oflicers of the Convention were unfaithful, yet the fubalterns and the troops in general might have flood firm, confirmed as they were by the perfuafion of their Jacobin auxiliaries. Even in this cafe, however, the fate of a battle might have at leaft been doubtful. The battalions of Patis were very numerous, their contempt of danger was great, and their ardour unbcunded. 'The mere puffefion of cannon might mot in a conteft againft fuch men have afforded fecurity to the Convention. Bat the firft moments of popular enthufiafm were fuffered to pafs away, and that diftuft and difenfion, which delay never fails to introduce among great and irregular afticmblages of men, foon began to render the conduct of the fections undecided and weak.

The conventional committees, during the night of the 12 th Vendemaire (October $4^{\text {th }}$), difmifed Generals Menou, Raffet, and fome others, from theirftations, and gave the command of the troops to Barras. He immediately collected around him a variety of able oficers, among whom we find the names of Generals Brune and Bonaparte. With their affiftance he began to provide for a moft vigorous defence. 'Troops with cannon were fationed in all the avenues leadiar to the Thaileries. In cafe any of thefe pofts fhould be forced, malked hatteries were planted in more retired fituations. Nor was this all; meafures were taken for conveying the public magazines of provifious and military tores to St Cloud, whither the Convention prepared to retreat if they fhould fuffer a defeat at Paris.

On the $13^{\text {th }}$ Vendemaire (October 5 th), from which the infurrection was afterwards named, both parties remained for many hours upon the defendive. At latt, about three o'clock in the afternoon, General Danican made advances to an accommodation by a letter to the committee of public fafety; in which he fated, that the only caufe on account of which the citizens had taken arms was the dread of a maffacre being intended by the armed terrorifts who furrounded the Convention, and that if thefe men were removed, tranquillity would immediately be re-eflablifbed. A civil meffage was returaed;

$R \mathrm{E} V \mathrm{R} \quad$ [403$]$ E

French turned; but the Jacobin party in the Convention, being P.cvolutions, now more confident of victory, and wifhing to ftrengthen

ITys.
2.36

Subducs the citizens of t'ants. themfelves, by the defeat and pumifment of their antagonifts, it was refolved that the difpute fhould be decided by arms. It is nut correctly known how the conteft commenced, but the armed Jacobins are molt generally underfood to have begun the attack. The citizens on the fouthern dide of the river attempted to reach the Conrention by the Quay de Voltaire, but were fpeedily repulfed by the conventional cannon; but on the northern fide of the river, near the Convention, the combat was extremely obftinate. The cannon were repeatedly feized by the citizens, and repeatedly retaken by the troops and the armed Jacobins. It was not till after a contef of four hours that the fections were repulfed and driven to the polt of St Roch. This poft was alfo taken after great flaughter, and the fections were driven to their head quarters at the fection of Le Pelletier. After a fhort interval they were purfued thither by the troops of the Convention, who by midnight were maters of the whole city.

This infurrection was afcribed by the victorious party to the exertions of the Royalifts. It is no doubt trut, that by this time Royalty was become lefs unpopular even among the rabble of Irance than the extreme of Republicanifm, as it had appeared in the conduct of the Mountain party. It is alfo proballe, that the Royalifts mingled in a conteft that had the overthrow of the prefent Convention for its object ; but the infurgents in general feen neither to have avowed nor entertained any farther view than the difarming of the Jacobins, and the obtaining an immediate election of new reprefentatives. The failure of the attempt had the effect of placing the Mountain party once more at the head of the fate. This party at firt thought of adjourning the new conftitution, and of renewing all the terrors of the revolntionary government. This project, however, was oppofed in the Convention with fo much vehemence and ability by Thibaudeau, that it was renounced. Indeed it was become unneceffary to the fafety or afcendency of the men who propofed it, as the decrees for the re-election of two-thirds of the Convention enabled them to retain the full poffeffion of their power. A few members of the moderate party, fuch as Boiffy D'Anglas, Languinais, and Le Sage, were elected by almot every place in France, though they could only fit for one place. Hence the Consention itfelf had the re-election of nearly two-thirds of its own members; and the Mountain party, which now commanded the majority, was thus enabled to fill the new legillature with its own leaders.

On the 27 th of October the Convention terminated its fittings, and was fueceeded by the new legiflature as appointed by the Conftitution. By its latt decrees, a general amnefly was granted for all revolutionary crimes and proceedings. From this amnelly, however, were excepted the emigrants, the tranfported priefts, and all perfons concerned in the laft infurrection; fo that in fact it was merely a pardon granted by the Mountain party to its own friends for all the exceffes they had committed. 'The members of the Convention, who had heen imprifoned in the cattle of Ham fince the Jacobin infurrection in May, were now fet at liberty. The members of the revolutionary committees, and other agents of Robefpierre in Paris and the departments,
were all difmifed from their prifons, and advanced to French the moft impurtant offices under the new goveinment. Revoletion,

As foon as the new legiflature had divided itfelf into $\underbrace{1795}$ two councils, it proceded to the elecion of an Executive Dirctury. Were the genius of the French nation for intrifue inftantly difplayed itfelf. The Cusmeil of Five Mundred was bound to prefent to the Council of 'I'wo Ilundred and I'ifty a lift of ten times the number of candidates neceflary for the office. It fullilled this ${ }^{239}$ duty in the following manner. The majority of the cil of Five Council of Five Hundred made out a lift, confifting of Hundrec: the five following perfons, upon whom they wifhed the outwits che clection ultimate'y to fall: Sieyes, 'Larras, Rewbell, Ancients. L. Reveillere Lepaux, and Letourneur de la Manche. To complete the lift, they added the names of $45 \mathrm{ob}-$ fcure perions, country jultices, farmers, and even peafants. Thus there was nothing left to the Council of Ancients but the mere form of an election; and from the want of other qualified candidates, they were under the neceflity of nominating to the office of directors the five perfons at the head of the lift prefented by the Council of Five Hundred. The crafty Sieyes, however, who had been the advifer of all parties, but the oftenfible agent of none, did not yet think fit to venture upon the poffeffion of power. He had difapproved of the conititution which was now put in force, and lad even framed one of his own in oppofition to it, which, however, was rejected by the Convention. The moft remarkable circumflance in his plan of government was a national jury, upon which he propofed to confer the power of difmiffing from their offices, without a caufe being affigned, any of the public functionarics whom they might account dangerous to the flate. Sieyes having refufed to accept the office of director, Carnot was elected in his Itead. But on this occafion the Council of Ancients was treated with a little, and but a little, more decency than formerly ; as the name of Cambaceres, a man of confiderable eminence, appeared along with that of Carnot in the lift of candidates voted by the Council of Five Hundred.

The republican government that was now attempeed ${ }^{2}{ }^{240}$ to be eftablifhed promifed little tranquillity to the na-vernmene tion. This great misfortune attended it, that the chief nnt popuoffices in the flate were intrufted to men who were dif. lar. liked by the people. The members of the Executive Directory, with the exception of Reveillere Lepaux, had always belonged to the Mountain or molt violent Jacobin party. As they now owed their power to that party, they employed its members in almoft every official department. The government was therefore necef. farily unpopular. Things might have been gradually altered, indeed, by fucceffive elections, which would in time bring other men into power: But by the forms of the conftitution, the executive power was more permanent than the legiflative body, without poffeffing any influeuce over it. Hence it was to be feared that a contelt for power might fpeedily occur between a directory nominated by the Jacobin party and the new legiflators appointed by the people, in which the Conflitution might fuffer fhipwreck ; an event which actually occurred.

While the poffeflion of power continued to fluctuate in the manner we have already flated, between the Moderate and the Jacobin or Mountain parties, the armies of the ftate were fuffered to languifh; but upon the
credis

R E V

[409
$1 \mathrm{E} \quad \mathrm{V}$

French credit of its former military fuccefs, the Republic was Kevolurionatreated with refpect by fome of the neighbouring
\qquad
241
reatmen: of the Rejublic by foreig ${ }^{2}$ powers. powers. On the 10 th of April, a treaty of peace with Pruffia, which had been negociated by the committees through the midium of Barlielemi the French refident at Bafle, was prefented to the Convention for ratilication. By this treaty, it was Hjpulated, that the French troops fhould inmed:ately evacuate the Prufidn territu. ry on the right bank of the Rhine, but fhould retain the territury belonging to that power on the lift bank till a general peace. Prifoners of wal were to be mutually reftored, and the commerce of the two countries was to be placed on its ancient footing. Meafures were alfo to be taken to remove the theatre war from the north of Germany by treaties between lirance and thofe princes for whom the hing of Prulfia might interpufe.

Daring the fame month of April, the French Re. public was acknuwledged by the king of Sweden; and Baron Stael his ambaffador was received at Paris with great folemnity. In the montl of May a fecond treaty with Pruffa was concluded. It ehiefly regarded the line of neutrality. It is worthy of remark, that thefe treaties contained fecret articles which were to be revealed only to a felect committee. By authorifing this mode of procedure, the Convention fufficiently demonftrated its refolution, that no form of popular government to be adopted in France fhould stand in the way of the national aggrandifement. The Swifs cantons now followed the example of Sweden, and acknow. ledged the French Republic. A treaty of peace with Spain was alfo concluded at Bafle on the 22d of July. France, on this occafion, relinquifhed all the conquelts the had made in the territory of that country, and reflored the ancient frontier. She received in return all the Spanifh part of the ifland of St Domingo. The Dutch Republic was included in this treaty; and France agreed to accept of the king of Spain's mediation in favour of Portugal and the Italian princes.

On the gth of June, the Dauphin, fon of the unfortunate Lonis XVI. died in the prifon of the Temple, where he had been confined, along with his filler, fince the executions of his father, mother, and aunt. His death, which was probably produced by difeafes arifing from long confinement, if not by more unjultifiable means, excited in the French nation fuch a degree of intereft in favour of his family, that the Convention found it neceffary tu liherate his fitter from imprifonment. The committee of public fafety propofed to the Emperor to exchange this princefs for the members of the Convention whum Dumourier had delivered up to Auftria, along with two ambaffadors, Semonville and Maret, who had been feized on their way to 'Turkey. 'This propofal was accepted, and the exchange tool place at Bafe in Switzerland.
avaliupe. On the fide of Britain the war maintained its former ority of character. The Britifh retained their luperiurity by ritain.

Sea, and were unfortunate in their efforts on the continent. On the I th of March the Britifh fleet in the Mediterranean, under Admiral Hotham, engaged the French ficet, and took two fail of the line, the Ca -Ira and the Cenfeur ; but as the French flect, four days before the engagement, had captured the Berwick, a Britifh thip of the line, when detached from the fleet, and as the Illuftrious, another Britifh Thip of the line,
was fo feverely injured in the ac!ion that she run affore french and was loff at Avenza, the fubftantial lofs on hoth Resolution, fides was nearly equal. On the 23d of Jume another Britilh heet under Lord Bridport attaelied the French off Port L'Orient, and took three Mips of the line, the reft of the fleet elapaing iisto that port.

This evident fuperiority of the Brition fleet in every contell, inducer the gosernment to take a vantare of the command which it hard of the fea, to give afliftance to the French Royalitls in the wellern depart. ments. Thele Royahals, hithoto umafled by foreign powers, had, by repeated defeats, been reduced very low. The Convention had at latl willered thom a treaty, which was accepted and ligned at Nates on the 3^{d} of March, on the one live by depatics from the Convention, and on the other by Charette, Sopmean, and uther chicts of the infurgents of La Vembé, and by Cormartin, as reprefenting the party called Chouraris or Night Onls. Stuftet, another chicf, hehl out for fome weeks longer; but at lall, on the 2 eth of April, he too was under the neceflity of fubmitting by treaty to tive Republic.

In a flourt time, however, the hopes of the Royalifts Expedition were revived by the countenance of the Britint queern - 1 , Quibe. ment, and thefe treaties were ill obfirved. In the ie ron bay. ginning of June the Britim expedition was ready to fail for the French coaft. The troops to be employed confifted of emigrants in the pay of Great Britain, and many of them had been prifoners of war, who now agreed to juin the royal caufe. The command during the voyage, and the felection of the place of landing, were intrufted to the Count D'Hervilly. The conimand on Chore was given to Puilaye, who had been employed under the Girondits in the military fervice of the Republic, but had now vecome a royalit. The Count de Sombrenil was afterwards fent to join them with a fmall reinforcement.

On the 25 th of June the expedition arrived in the Bay of Quiberon, and on the 27 th $25=0$ emigrants made good their landing, after difpertiug a finall party of republican troops. The ennigrant army foon after dittributed itfelf into cantonments along the flure, and gave arms to the inhabitants of the country, who appared to receive them with joy. It was foon found, however, that the Chouans, thought well qualitied for a defultory warfare, could not be of much ufe to regular troops. They had little fubordination. They were eatily difperfe3, and never fought uniefs every adwantage was on cheir fide. When it was fonnd that their uniteady aid could not be depended on, a refolution was taken to withdraw the emigrant army within the peninfula of Quiberon. The fort of that name was ta. ken on the 3 d of July. Its garrifon conlifted of tive or fix hundred men, and it was now occupied by the emigrauts. A republican army, in the mean time, under General Hoche, advanced, and attacked all the polts that had been left without the peninfula. Thefe were fpeedily taken. The emigrants and Chouans efcaped into the boats of the Britifh fleet, or fled under the cannon of the fort of Quiberon. The republicans then began to conftruct formidable works on the heights of St Barbe, at the entrance of the peninfula. 'Po prevent their operatious, a fally was made from the fort on the $7^{\text {th }}$ of July ; but without fuccefs. On the 15 th, another fally was attempted in greater force. The
whole

French whole troops in the peninfula amounted to abont Revolution, 12,000 , including Chouans. Out of thefe a detach1795. ment of 5000 was fent to attack the heights of St Barbe. The republicans were entrenched in three camps. The two firt of thefe were celily taken, and the detachment preffed eagerly forward to attack the third. But here a nafised battery opened upon them with grape fhot. A creadful carnage enfued; and very few of the detachment could huve efeaped, had not the fire of the Britif fhips foon compelled the republicans to defilt from the purfuit.

It now became coovious that the expedition mult ultimately fail. Defertion became extremely common among the emigrants. Thofe men in particular who had been prifoners of war, and received their liberty on condition of joining the expedition, feized every opportunity of going over to their countrymen; and a correfpondence feems even to have been eflablified between the republicans and the difcoatented troops in the fort of Quiberon. On the evening of the 20th of July, the weather was extremely tempeftuous, which produced a fatal fecurity in the emigrant army. Sufpicious patroles were remarked; but as they repeated the watchword for the night, they were allowed to pafs. The republican troops were conducted in filence along an unguarded quarter of the fhore, till they, were enabled to furprife one of the pofts of the garrifon, where they found the artillery men faft afleep. Their mateles were feized, and the lanthorn intended to give the alarm to the Britin, flect was extinguined. The fort was fpeedily in coufulion. Some regiments threw away their arms, and went over to the republicans; others even maffacred their own officers. A confiderable number, however, maintained a violent conflict for fume time before they firrendered. Puifaye efcaped on board the flet. The Count de Sombrevil was taken; and this accomplihed young man was foon after put to death, along with the other emigrant offecrs and all the Chouans that were found in the fort. The bifhop of Dol was alfo put to death, with his clergy who accompanied him; but many of the private foldiers of the emigrant army made their peace with the republicans, by pretending they had theen compelled to engage in the expedition.

The Britifh feet, with tranfports and tronps, fill huvered upon the French coaft, and made an unfuccefsful attempt upon the ifland of Noirmowier. In confequence of the feafon of the year, however, it returned home in December, after evacuatiny a imall ifland called L'Ife Dieu, which the tronps had for fome time occupied.
succeffes of On the fide of Germany the fortrefs of Luxembung the French furrendered on the $7^{\text {th }}$ of June, after having been in a in Germa. ftate of blockade fince the preeeding campaign. The

French were now in poffeffion of the whole left bank of the Rline exeepting the city of Mentz, which they attacked in vain, becaufe the Auftrians could at all times throw fuccours into it from Fort Caffel on the oppofite bank of the river. Finding the capture of Mentz impoffible in thefe circumftances, the French refolved to crofs the Rhine to inveft the city on all fides. The enterprife, however, was delayed for fome time, till the refult of the Britifh expedition to Quibcron fhould appear. In the month of Augun, General Jourdan forced the paffage of the Rhine at Duffeldorf,
at the head of what was called the army of the Sambre Fren h and Meufe. Afier driving before him three Auftrian Revolution, pofts upon the Laln, he croffed the Mcin, and completely invelted Mentz and Caffel. Pichegru, in the mean time, croffed the river, with the army of the Rhine and Mufille, near Manheim, of which city he immediately tuok poifeffion. But the Frencla generals foom found their forces inadequate to the undertaking ceive a in which they were engaged. A confiderable detacliment check.
of Pichegru's army, after driving the Auftrians under General Wurmfer from a poft of fome importance, begatu to plunder, and went into confufion. The Aufrians beiug informed of this circumftance, returned to the charge, and defeated the French. General Clairfait alfo, having violated the line of neutrality, canie upon the rear of Jourdan's army, and took a confiderable part of his artillery. Both the French generals now retreated. Jourdan was rapidly purfued by Clairfait till be returned to Duffeldorf, where he maintained his ground. Pichegru recroffed the Rhine near Manheim, leaving a garrifon of 8000 men in that city. The Auftrians advanced in all directions. Manhein was taken after a vigorous fiege. The French were driven from the neighbourhood of Mentz. The Palatinate became the theatre of war, and the Auftrians feized the country called the Hundfruck, fouth of the Rhine as far as Landau and Treves. After various engagements, in which little more ground was lof or won, the two parties entered into an armifice for three months.
On the 28th of Auguft a treaty of peace was con. Treaties ${ }^{243}$ cluded between the French Republic and the Land- weth Gergrave of Heffe Caffel, on condition that he fhould lend man prinno more troops to Great Britain for the profecution of ${ }^{\text {ces. }}$ the war. It is not a little fingular, that peace was concluded with the Elector of Hanover at this period upon fimilar terms. 'The Duke of Wirtemberg, and fome other princes of the empire, alfo began to treat; but the negociations were broken of in confequence of the reverfe of furtune now experienced by the French.
The Direciory, however, refolved to continue the war with vigour, and valt preparations for the approaching campaign we:e made during the wiater. The Mountain party being once more poffelfed of power, its members exerted thenfelves with their ufual energy. Such, however, was the turbulent character of thefe men, that they could not lung fubmit peaceably to any government, and fron became weary of that Directory whom they themfelves had eflablified. They held clubs in all quarters, and were dontinually dillurbing the public tranquillity. For fome time the government fupported them. The Parifians, after the $\mathrm{g}^{\text {th }}$ October, no lunger dared to avow openly their diflike to the Jacobins; but they were underitood to exprefs this fentiment by wearing green filk cravats, and by applauding with much vehemence at the public fpectacles the air called Le Reveil du Peuple. The Directackes thic air called Le Reveil -euple The Dice- Kidiculous tory now prohibited, by an edict, as tokens of royalifm, conduad of the wearing of green cravats, or the performing at any the Direcof the theatres the air now mentioned, though the fentiments it contained were entirely republican. The Directory alfo ordered in its fead, that the Marfeillois hyinn, and other popular fongs, thould be performed every evening at all the theatres. The Parifians fhewed their difapprobation of the Directory by maintaining a profound filence during the performance of thefe

R E V

Frencir fong3, which had never failed till that period to excite Revolution, burfls of applaufe. The Directory foon became atha-
med of this ridiculous contelt, and in a few weeks recalled their ediet. Indeed they found it impoffible to give countenance for any long period to the refllefs and innovating fpirit of the Jacobins, who continually wifhed and attempted to return to revolutionary, that is, to violent meafures againtt their antagonifts. In the fouth, in particular, the prefeut fupremacy of the Jacobins produced very pernicious effects. Freron, who had deferted them after the death of Robspierse, and became one of their moft violent adverfaries, thought fit to return to their party before the 5 th October, and was fent to Toulon with full powers of adminiftration. Here he difmiffed the municipality that had been elected by the people, reltored the Jacobin clubs, and proceeded to imprifon all fufpected perfons, as in the days of Robefpierre. Thefe meafures produced a violent reaction on the part of the enemies of the Jacobins. Affaffinations became frequent, and many perfons began to leave the country. The Directory was alarmed by the many complaints againft the Jacobins or terrorifts that came from all quarters, and refolved to aim at popnlarity by deferting a fet of men who could not be prevailed upon to act with moderation. Freron was recalled from Toulon, and more manageable men were fought out to replace the more violent Jacobins, who were in general difmified from the fervice of government.

The Directory proceeded farther, and acknowledged, by a public refolution, that its confidence had been abufed. The miniter of police was ordered to remove from Paris the members of former revolutionary tribunals, and others who now acted as leaders of the Jacobins, or anarchifts as they were called. A body of troops, amounting to 10,000 men, called the legion of police, that had acted againft the Parifians on the 5 th October, and was now devated to the Jacobins, was ordered by the Directory, with the authority of the legiflature, to join the armies on the frontiers. Thefe men refufed to obey the order; but they were reduced to fubmiffion by fome troops that had been brought to the neighbourhood to provide againft fuch an event. The more violent Jacobins were enraged, but not intimidated, by thefe meafures, and began to organize a plot for the overthrow of the Directory and of the majority of the councils, who had now deferted them. They were not prepared for action, however, before the month of May, and by that time their deligns were difcovered and counteracted. On the reth of that month the guards were increafed, and bodies of cavalry flationed around the Luxembourg and the Thuilleries. The Directory at the fame time informed the Council of Five Hundred, by a meffage, that a dreadful confpiracy was prepared to burtt forth on the following morning. At the found of the morning bell, which is every day rung, the confpirators were to proceed in fmall parties of three or four men to the houfes of fuch perfons as they had marked out for deftruction. After mflfinating thofe perfons, the whole parties were to unite, and to act againft the Directory, whofe guard they apprehended they could eaflly overpower. The confpirators had appointed a new Directory and a new legiflature, to confift of the moft violent of their own party. Among the leaders of this confpiracy, whowere

$411]$
 R E V

now arrefted by order of the Directory, wan Drovet French the poltmatter of Varenues, whon we formerly men-Rerolution, tioned as having arrefted the unfortunate Louis XVI. $\underbrace{1796 .}$ when attempting to efcape to the frontiers. Along with him were Babeuf, Antonclle, Pelletier, Gaudet, Julien, General Roffignol, Germain, D'Arthe, Laignelot, and Amar, who had been a member of the committee of general fafety along with Robefpierre. Va. dier and Robert Lindet were alfa engaged in the conlpiracy, but they made their efcape. Drouet alfo efeaped by the connivance of the Directory, as was generally underftood; but the reft of the confpirators were removed for trial to the high national court at Vendome, where they were condumned. At the period of their removal thither, a new attempt was made by their party for their refcue. About 600 men entered the camp at Grenelle near Paris, and endeavoured to prevail with the foldiers to join them in an infurrection. This attempt was altogether unficcefsful. A few of the infurgents were killed, and the refl fled.

Thefe defeats of the Jacobins, and the diferedit un- Maderat der which they were again brought, encouraged the party. moderate party in the two leginative councils to attempt to repeal the laft decrees of the Convention, which had at once granted them an amnefty, and confirmed all the laws which, by confifeating the property of emigrants, excluded their relations from the fucceffion. The difcuffion lafted many days; but the refult was, that the law with regrard to emigrants remained on the former footing; and the only point which the moderate party were yet able to carry was a modification of the decree to this extent, that thofe terrorifts were declared incapable of holding public offices who owed their fafety to the ammelty.

The ftate of the finances now hegan to occupy the Diftreffed French government in a very ferious manner. During fate of the the government of Robefpierre, while the credit of the finances. affignats was preferved by the influence of terror, or by the fale of the church lands, and the property of emigrants, little attention was beftowed upon this fubject. When money was wanted, more affignats were fabricated; and as few or no taxes were demanded from the people, no enquiry was made about the public expenditure. But when the boundlefs extravagance of the agents of government had loaded the circulation with alfignats till they became of little or no value, it became a very difficult queltion how the public fervice was hereafter to be fupported. A new paper currency, called reforipfs, was firft adopted. Thefe were orders on the treafury for calh, payable at certain periods. But their credit foon palfed away, as the treafury had no means of fulfilling its engagements. The Directory complained very bitterly, in a meffage to the Councils, of its diltreffes, and of the want of funds to carry on the approaching campaign. In confequence of this meflage, a law was palfed, on the 25 th of March, authorifing the fale of the remainder of the national domains for the price that had been fised upon them at an early period of the revolution, amounting to about twenty-two years purchafe. A new paper currency, called mandats, was to be received in payment. But the credit of government was now gone. 'the mandats inftantly loft in all private tranfactions one-fonrth of their value, and they foon fill Alll lower. This, however, produced a great demand for national pro-

R E V

French perty, which was thus about to be fold far below its Resolution, value. To prevent this effect, the legillature broke its $\underbrace{17,6 .}$ engagements, and ciecreed, that one fourth of cvery purchafe fouvid be paid, not in mandats, but in call. This decree put a ftop buth to the fale of national property and to the circulation of mandats.

Recourfe was next had to tasation ; but this was attended with nuch difficulty. By the war, and the vio- Renns of had been in a great meafure ruined. Indutrious men, hellourin img late of agriculture who poffefed any capital, had therefore turned their attention to the cultivation of land. Many circumflances led to this. By the enigration of the nohles, and the confifeation of the church lands, the farmers were left with no landlord but the goverument ; which, being fupported by afiguats, paid little attention to any other fource of revenue. Hence they paid no rent, and fpeedily rofe into opulence. The revolutionary government, which kept the iuhabitants of the towns under dreadful boudage, was fcarcely felt by the inhabitants of the country, who thus enjoyed the adrantage of exciting no fufpicion in the rulers, and of paying neither rent nor taxes. The law which declared afiignats to be a legal tender of payment, was a great fource of profit to the cultivators of the foil. They contrived to fell the produce of their farms only to fuch as offered them ready fpecie; while, at the fame time, they paid their sents, where the landlord had not emigrated, in affignats, which they obtained at a trifling price. Hence it ufually happened, that while the tenant enjoyed af. fluence, his miferable landlord was reduced to the neceffity of felling his moveables to buy a portion of the grain that grew upon his own eftate, or was tempted to fell the eftate itfelf at an undervalue, to obtain the means of emigration. By thefe and other circumftances, the whole induftry of the French nation came to be directed towards agriculture. Their country was accordingly well cultivated; bnt as the riches of agricultural nations are not eafily fubjected to taxation, the French Directory now found it impofible to carry on the fehemes of ambition and of cunqueft, which they had already formed, without relying for refources upon the plunder of the neighbouring ftates, which fpeedily rendered their armies odious in all thofe quatters of Europe to which they penetrated.

Amidtt their preparations for the approaching campaign, the Directory attempted to increafe their own reputation at home, by eftablifhing what is called the National Injlitute ; which is a fucicty of men of Istters, under the protection of the guvernment *. Into this hody were collected the moft celebrated literary characters in the nation that had efcaped the fury of the Mountain Party. Among thefe were La Place, Lalande, Fourcroy, Bertholkt, Volney, Dulomiet, and othere, well known throughout Europe. The firft public meeting of the Lnflitute was held, with great fplendour, on the 4 th of April, in the hall of the Louvre, called the FHall of Antiques. The ambaffadors of Spain, Pruffa, Sweden, Denmark, Holland, America, Tufcany, Genoa, and Gencya, were prefent. The members of the Directory attended in their robes, and their prefident made a fpeech of inftallation, declaring the determination of the executive power to proteet and encourage literature and the arts. Dufaulx, the prefident of tire Inflitute, replied, in a fpeech in which he declared the refolution
of the members to labour to give luftre to the republi. French can government by their taleats and productions. Fif. Revolution, tcen hundred fpectators applanded the fpeeches with enthufiarm, and vainly imagined that all the evils of the revolution were terminated, and that their country was now entering uppn a career of unexampled glory and profperity.

At this period the Britifh tovernment made an ap-025 proach towards a negociation with France. On the 8 th of the Briof March Mr Wiekham, the minitter plenipotentiary to tifh govensthe Swifs Cantons, tranfmitted to Barthelemy, anibaf- ment fador from the French Kepublic to the Helvetic body, a note containing three queftions: Whether Fiance would be difpofed to fend minitters to a congrefs to negociate peace with his Britannic Majefty and his a!lies? Whether France would be difpofed to communicate the general grounds on which the would be willing to conclude peace, that his Majefty and his allies might confider them in concert? and, lattly, Whether lirance would defire to communicate any other mode of accom. plifhing a peace? The note concluded with a promife to tranfmit to the Britifh court whatever anfwer fhould be returned; but declared, that Mr Wickham was nut authorifed to enter into any difcuffion upon thefe fubjects.

256
On the 26 th of the fame month Barthelemy return- Infilently ed an anfwer in name of the French Directory. This rejected by anfwer began by complaining of infincerity in the pro. the Ditecpofal made by the Britifh court, feeing its ambaffador tory. was not authorifed to negociate, and that a congrefs was propofed, which mult render negociation endlets. It proceeded to flate the ardent defire of the Directory for peace; but afferted, that it could liften to no propofal for giving up any territory that had been declared by the conftitutional act to form a part of the Republic (alluding to the A.utrian Netherlands); declaring, however, that other countries occupied by the French arinies, and poltical or commercial interelts, might becone the fubject of negociation. Upon thefe points the Directory declared its readinefs to receive reafonable propofals.

To this anfiver no reply was fent ; but the Britifh court publithed a note, of which copies were prefented to the foreign minifters refiding at London; and in it the fpirit of the Directors anfiwer was compla:ned of, and alfo the refufal even to negociate about the retention of foreign territory, under pretence of an internal regulation. It was added, with truth, that while fuch difpolitions were perfifted in, nothing was left but to profecute a war equally juft and neceflary; but that, when more pacific fentiments fhould be manifefled, his Majefty would Le ready to concur with his allies in taking meafures for eftabl fhing a juft, honourable, and permanent peace.

The French Directory had fucceeded, during the winter, in reducing the weftern departments into fubjection. The enigrant expedition from England had induced the royalits once more to try the fortune of war ; but, after varions defeats, their leaders, Charette and Stoflet, were taken, and put to death on the 29th of March, and the infurgents were fuppreffed in all quarters. The French goverument being thus left without an 257 enemy at home, was enabled to make great efforts on mies. the frontiers. The military forče of the Republic was divided into three armies. On the Lower Rhine, the army of the Sambre and Meufe was chiefly flationed about

Duffel.

R E V [4I3] R E V

French Dafellorf and Coblentz, and was commanded by JourRevolution, dan. Moreau commanded the army of the Rhine and 1-gб. Mofelle, in the room of General Pichegra, who had been difmiffed from his command. This army was ftationed on the Upper Rhine, and from Landauto ' Preves. The third and laft army was ftationed on the coaft of Italy, from Nice towards Genoa, and now reccived lonaparte as its commander. The name and the actions of this man mult hereafter fill fo large a fpace in the detail of this eventful period, that it is neceflary to pay lome attention to his perfonal hiltory.
who hadappeared in arms muder the eclebrated Pabli in defence of the independence of his mative indad, was the father of Napolone Bonaparte. Napulone was born at Ajaceio in 1767; and by the intereft of M. de Marboenf, the French govemor of the illud, he was placed for his education at the celebrated military academy of France (Ecole Militaire), which has produced to nany accomplithed men. At a very early period of life he prefented hinafelf as candidate for a commiffon in the artillery, and was fuccersful, being the 12 th on the litt out of 36 victorious candidates. In confequence of this event he ferved two or three years in the French army as a lieutenant in the regiment of I.a Fere. Bonaparte having rifen to the rank of Captain of artillery, returned to Corfica after the revolution, and was there elected liemtemant-colonel of a corps of Corfican national guards. Here he formed a connection, which had nearly proved fatal to him, with General Paoli, the friend of his father. IIe refented the treatment which Pali received from Robefpierre's government, and entered fo far into his interefts as to write the remonfrance, which was tranfmitted by the municipality to the Convention, againtt the decree which declared the general an enemy to the Republic. In confequence of this, a warrant was at one time iffued for his arreft by the commiffioners of the Convention. He made his peace, however, on this occation ; and refolved to aclhere to the interelts of France, in oppolition to Great Britain, which at this period formed the delign of taking poffeffion of Corfica. He embarked with the other members of his family for France, and arrived there at the time when Lord Hood was in poffefton of Toulon. Salicetti, a deputy from Corfica to the Convention, introduced him to Barras, who was now fuperintending the fiege of Tonlon. Here Bonaparte was advanced to the rank of general of artillery; and, under Dugommier, directed the attack of the various fortified poits around the city. He was afterwards em. ployed for a fhort time againft the royalifts in the weft of France; and we have already mentioned, that he was at the capital, and affifted Barras in the contelt between the Convention and the Parifians on the 5 th Octuber. Hence he was regarded with diflike by the moderate party, and reprefented as an unprincipled adventurer, brought forward to fupport the terrorift faction. He had mauy enemies, therefore, at the commencement of lis career, and his character was treated with much freedom. The feandal of the times went fo far as to affert, that he owed his prefent preferment, not fo much to any talents he had yet had an opportunity to difplay, as to his marriage with Madame Beaucharnois, a beautiful French woman whom Barras had taken under his protection.

The French army of Italy amounted at this time to ' French 56,030 men. Bon tparte at his arrival found it ill Revolution, equipped, and the troops mutimous for want of pay and 1796. necelfaries. He addreffed then, however, in the true 259 flyle of military enterprife, "If we are to be vanquifh- Iokes the ed, we have alicady too mich ; and if we conquer, we command Thall want nothing ;" and ordered thern to prepare for of the anny immediate action. His opponents, however, anticipated him in the attack. The Auftrisus cinployed in the defence of Italy, under Coneral Beanlicn, are faid to have more than equalled the French in numbers. To thefe were united the King of Surdinia's army, under Count Colli, of 60,000 regrular troops, befides the militia of the country, which was now cmbodicd, and a faall body of Neapolitan cavalry, amounting to about 2500 men. Gencral Beaulieu began the campaign, on the $9^{\text {th }}$ of April, by attacking a poft called Voltri, which the French poffifed, within fix leagues of Genoa. They defended themfilves till the evening, and then retreated to Savons. Next, morning Beaulien, at the heal of 15,000 men, preffing upon the centre of the French army, was compleicly fuccefsful till one o'clock afternoon, whe: he reached a redonbt at Montennote, which was the lath of their entrenchments. This redoubt contained 1;00 French. Their commander, Rampon, prevailed with them, in a moment of enthufiafir, to fwear that they would not furrender ; and the confequence was, that they arreited the progrefs of Bcaulieu for the remainder of the day. During the night, Bonaparte ftationed his right wing under La Harpe, a Swifs exile, in the rear of the redoubt of Montenotte, which fill held out, while he himfelf, with Maffena, Berthier, and Salicetti, advanced by Altara, to take the Auftrians on their flank and rear. Beauliet, in the mean time, hat received powerful reinforcements, and on the morning of the 1 ith renewed the attack on the French under La Harpe; but Maffena foon advancing upon the flank of the Aultrians and Sardinians, they gave way on all fides. Two of their ${ }^{260}$ generals, Roccavina and Argentan, were wounded. They fis. loil 2500 prifoners, and were purfued beyond Cairo, of which the French took poffeffion on the following day.

On the $13^{\text {th }}$ at day.break, the defiles of Milefino, were forced by the French General Augereau; and, by a fudden movement, Geueral Provera, a kuight of the order of Maria Therefa, at the head of 1500 Auf. trian grenadiers, was forrounded; a circumftance which proved not a little embarraming to the French army. For this refolute officer, inttead of furrendering, infantly withdrew to a ruined caftle on the top of the mountain, and there entrenched himfelf. Augereau brought up his artillery, and fpent many hours in attempting to diflodge him. At lall he divided histroops into four columus, and endeavoured to carry Provera's entrenchments by form. The French lon two generals, Banel and Quenin, and Joubert was wounded in this attempt, which proved unfucce [sful. Provera paf. fed the night in the midt of the French army, which had been prevented by his obftinate refiftance from coming to battle. On the $\mathrm{r}^{\text {th }}$ the hoftile armies faced each other, but a divifion of the French troops was ftill occupied in blockading General Provera. The Auftrians attempted to foree the centre of the French, but without fuccefs. Maffena, in the mean time, turned the left flank of their left wing near the village of

R E V [414$]$ R E V

French Dego; while La Harpe, with his divifion in three qevilusion, clofecolumns, turned the right flank of the fame wing. :796. One column kept in awe the centre of the Auftrians, a fecond attacked the flank of their left wing, while the third column gained its rear. Thus was the left wing of the combined army completely furrounded and thrown into confufion. Eight thoufand men were, on this occafion, taken prifoners, and General Provera at laft alfo furrendered.

Thefe vionories were not gained over a timid or an inactive adverfary. On the morning after his fatal defeat at Millefinoo, Beaulieu made one of thofe fpirited efforts which often retrieve and alter the fortune of war. At the head of 7000 chofen Autrian troops he attacked, at day-break, the village of Dego, where the French repofed in fecurity after their fuccefs. He took the village; hut the French having rallied under General Maffiena, fpent the greater part of the day in attempting to retake it. They were thrice repulfed, and one of their Generals, Cauffe, was killed. Towards evening, however, Bonaparte in perfon having brought up reinforcements, the poft was retaken, and the Auftrians retired with the lofs of 1400 made prifoners.

Bonaparte had now thrown himfelf between the Auftrian and Sardinian armies. By the poffeffion of the ftrong poft of Dego, his right was fecured againft the efforts of Beaulieu, while he was enabled to act with the mafs of his force againt the Piedmontefe troops. His enterprifes in this quarter were facilitated by the excrtions of Augereau, who had opened a communication with the valley of the Tanaro, where Serrurier's divilion was approaching the town of Ceva, near which the Piedmontefe had an entrenched camp defended by 8000 men.

On the 16 th Augereau attacked the redoubts which corered this camp, and took mott of them ; which in. duced the Piedmontefe to evacuate it during the night, and on the 17 th Ceva was entered by Serrurier. Count Colli now retrcated to cover Turin; making choice, however, of the Atrongeft pofts, and fighting in them all. He was able, on the 20th, to repulfe Serrurier ; but on the 22d Bonaparte, ftill preffing on the Piedmontefe general, defeated him near Mondovi, and entered that place. The retreating army next endeavoured to make a ftand, with its head quarters at Foffano, and its wings at Coni and Cherafco. On the 2 sth Maffena advanced againt Cherafco, which was fpeedily evacuated. Foffano furrendered to Serrurier, and Alba

261
Armiltice with sardinia fueceeded by to Augereau.

Previous to thefe laft movemente, however, Count Colli, on the 23 d of A pril, had written to Bonaparte, requefting an armiltice, to allow the King of Sardinia an opportunity of negociating a peace. The French army was now within 26 miles of Turin; and that prince faw himfelf fuddenly reduced to the neceffity of flanding a fiege in his capital, or of accepting fuch terms as the conqueror might think fit to impore. Bonaparte granted an armittice, on condition that the three fortreffes of Coni, Ceva, and Tortona, hould be delivered

Sardiuia were humiliating and fevere. He gave up to French Fronce for ever the duchy of Savoy, and the counties Revilution, of Nice, Jenda, and Bretueil. He gave an amnefty to $\underbrace{17960}$ all his fubjects that were profecuted for political opinions. He agreed that the French troops fhould have free accefs to Italy through his territory; and, in addition to the fortrefies furrendered by the arniftice, he gave up thofe of Exiles, Sufa, Brunette, Affiette, Chateau Dauphin, and Alexandria, to be poffeffed by the French during the war; and they were authorifed to levy military contributions in the territury occupied by them. He agreed to erect no fortreffes on the fide of France, to demolifh the fortreffes of Brunette and Sufa, and to difarow his difreipectful conduct towards the laft French ambaffador.

In the mean time the French army advanced towards the Po. Beaulieu was deceived by the arcicle in the armiftice; which ftipulated, that the French fould be allowed to crofs that river at Valentia, and made all his preparations for refiftance in that quarter. Bonaparte laboured, by feveral evolutions, to confirm this error ; and while the Auftrian general waited for him near Valentia, in various well fortified pofitions, he advanced haftily into Lombardy, and had proceeded fixty miles down the river to Placentia, where he arrived on the 7 th of May, before the direction of his march was difcovered. He immediately feized whatever boats or other craft he could find, and affected his paffage without difficulty, there being only a fmall party of Auftrian cavalry accidentally on the oppofite bank, and they fled at his approacl. Beaulieu in the meanwhile had fent, when toos late, a body of 6000 infantry and 2000 cavalry, to prevent if poffible the French from paffing the river; but Bonaparte, now on the fame fide of the river with themfelves, met and defeated them on the 8 th at the village of Fombio. Another body of 5000 Imperialifts, advancing to the affifance of thote at Fom. Armitice bio, was met at Codogno, and repulfed by General La wuke of Harpe; but this officer was killed on the occafion. On Parna. the 9 th Bonaparte granted an armiftice to the Duke of Parma, on condition of his paying a contribution of 2,000,000 of French money, and delivering 10,000 quintals of wheat, 5,000 quintals of oats, and 2,000 oxen, for the ufe of the army. This prince alfo agreed to deliver up 20 of his beft paintings, to be chofen by the French. This laf flipulation was no fooner known in France, than many men of letters and artifts remonfrated againft it as both impolitic and ufelefs. They contended, that it would render the French Republic odious to all Italy, without producing any advantage to compenfate this evil, as the progrefs of the arts could not be promoted hy removing their beft productions from the fcenes in which they originated. But the Directory was too much occupicd by views of national aggrandifement to liften to confiderations of this kind, and fimilar ftipulations were ordered to be inferted in every future treaty; by which means the moft valuable curiofitics of Italy were gradually transferred to the French capital.

Beaulien, now driven from the Po, cruffed the Adda at Lodi, Pizzighitone, and Cremona. He left fome troops, however, to defend the approaches to Lodi. The advanced guard of the French attacked thefe on the roth, and drove them into the town; which was entered in fuch clofe purfuit, shat the Imperialifts, on lea-

French ving it, had not leifure to break down the bridge over Revolution, the Adda. At the other end of the bridge the Impe$\underbrace{17 y 6}$. rial army was drawn up, and thirty pieces of cannon defended the paflage. The French generals, after a confultation, agreed that it could not be forced. But Bonaparte having demanded of his grenadiers if they were willing to make the attempt, they applauded the propofal, and he formed them into a clofe column. 'Taking advantage of a clouod of fmoke which iffued from the hoftile artillery, they ruihed along the bridge, whicb was about 100 yards in length, and were at the middle of it before they were difcovered. Here a general difcharge from the Auftrians deftroyed 700 men. The French column hefitated, and the carnage became terrible ; hut Mafena, Berthier, Dallemagne, Cervoni, Lafnefs, Dupat, and other officers, fying to the head of the column, urged on the foldiers, and preffing forward, broke into the ranks of the Imperial army, which immediately gave way, and fled in all directions. This exploit has been much celebrated. The intrepidity of the troops by whom it was accomplifhed is unqueftionable ; but how far the leader who urged them to fuch an enterprife is entitled to apprubation may well be doubted. He had pafled the Po with fearcely the lofs of a man. The Adda is a very inferior Itream, which bas fords both above and below the town of Ludi. The river was ackually eroffed at one of thefe by Augereau with the cavalry, during the attack upon the bridge. With the delay of one day therefore the paffage might have been effected without dificulty by the whole army, and there was no adequate motive to jultify the lavih expenditure of blood which was here made; for the French army no longer preffed forward in purfuit of Beaulien, but, after the furrender of Pizzighitone and Cremona on the τ th, returned upon Pavia and Milan on its left (A). Thefe places opened their gates without refiftance, though the citadel of Milan held out for a fhort time.

It would feem that, in the original plan of Bonaparte's campaign, the utmolt expected from his efforts was to gain fuch an afcendancy in Italy as might induce the priaces and ftates of that country to delert the coalition againlt France, which all of them affifted with money and provifions, if not with troops. 'To accomplifh this object, though he fent Maflena in purfuit of Beaulieu as far as Verona, yet he himfelf now turned afide iato Modena and the territories of the Pope. He took Ferrara, Bolugna, and Urbino ; and at latt granted an armiftice to his holinefs and the Duke of Modena, on the ufual conditions of large contributions of money, paintings, and curiofities. From the Pope he farther exacted the ceffion of the legations of Holugna and Ferrara, and poffeffion of the citadel of Ancona. His march into the Roman territory fo alarmed the Nrapolitan cabinet, that it now folicited peace; and Bonaparte grantéd an armiftice, without attempting to add to it the humiliating conditions to which the other Italian flates were fubjected. From the territories of the Pope, Bonaparte haltily advanced with a body of troops to Leghorn, in the neutral ftate of Tufcany, under pretence of driving out the Englifh, whofe property there
he confifcated. By thefe meafures the taki affigned to Fre chat Bonaparte was completed by the time the campaign Revolution, upon the Rhine was begun. Mantua was ftill indeed $\underbrace{1796 .}$ in the hands of the Imperialifts, but it was blockaded, 266 and all Italy was now fubmiffive to France.

Suceefice of
Todiminifh, if poflible, the efforts of the French on the French the fide of Italy, the Imperialills thought it neceffary in Germa. to renew the conteft in Germany. An intimation was therefore fent to General Jourdan, that the armiftice would terminate and hollilitics commence on the 3 it of May. At this time General Wartenfeben oppofed Jourdan; and the Archduke Charles commanded the army in the Hundfruck, which covered Mentz and Manheim, and was ftationed againt Moreau on the Upper Rhinc. The French began their operations with a very artful fratagem, intended to draw the whole Auftrian force to the Lower Rhine, that Morean night. have an opportunity of fuddenly penetrating into Swabia, and confequently of carrying the war towards the hereditary territories of Auftria. For this purpofe Moreau remained quiet, while Jourdan began to act vigorounly. On the 3 ut of May his left wing, under Kleber, iffued from the lines of Duffeldorf, on the right bank of the Rhine, and, advancing towards the Sieg, defeated the Imperialifts. Thereafter they were driven fucceflively from the frong pofitions of Ukareth and. Altenkirchen, and retreated acroís the Lalin, Jourdan, in the mean time, having advanced with his centre and right wing, forced the Auftrian polts on the Nahe, croffed the Rhine, formed the blockade of the fortrefs of Ehrenbreitftein, and haftened forward as if about to form the bloci: ade or fiege of Mentz. By thefe movements the Archduke found hinfelf in the hazardous fituation of having Moresu in his front, while Jourdan, with a victorious arry y, commanded his rear. He therefore haftily croffed the river, leaving the fortreffes of Mentz and Manheim to keep Moreau in check. Having joined the retreating army, he encommered Jourdau's advanced guard, which he compelled to retise af. ter an üftinate conflict. Jourdan did not hazard a general engagement, but withdrew to his former pofition, the Archduke preflug hard upon him, till he raited the bluckade of Elirenbreitftein, and croffed the Khine ia its neighbourhood, till Kleber, on the 2oth of June, entered the lines of Duffeliorf, from which he had fit out.

Thefe movements were forefeen. For the inftant that the Archduke withdrew from the Palatinate to drive Jourdan down the Rhine, Moreau alcended rapidly towards strafourgh; fo that thefe hoftile armies feemed to be fying from each other with all poffible fpeed. On the 24th of Junc, Moreau effected the paffage of the river oppofite to fort Kehl. This was an enterprife of coniderable difficulty ; for a fudden fwell, by covering a part of the iflands with which the riverabounds, had prevented the Auftrians from being taken by furprife, as was originally intended. 'The entrench. ments on fuch iflands as were oceupied by tronps were fpeedily carried by the bayonet, and 2600 French landed on the oppofite fhore, but without cavalry or artil. lery. Here they were expofed to the attacks of the Auftrian
(A) We think this conduct eannot be accounted for, but by the fuppofition of a very improper correfpondence. between Bonaparte and the Aultrian officers.

R E V [416] R E V

Fireneh Aufriai horfe from the camp of Wiltedt, and to the Revolution, fire of the cannon of the fort. They maintained their ${ }^{17 \%} 6$. ground, however, and even acted on the offenfive, till the boats, which had been fent back, returned with a reisforcement. The whole redoubts and the fort were th:en inflantly raken by form, or with the affitance of fuch cannon as had been fornd in the firt redoutits at which the I veach arrived, and the Imperialifts ficd towards Offenburugh.
The departure of the Archduke to the Lower Rhine in purfuit of Jourdan, and the larye detachments which lad recently been fent towards Italy to oppofe Bonaparte, now emabled Moreau to enter Swabia with a great fuperiority of force. The ftrong military pofitions, however, which the country affords, prefented to him coilfiderable difficultics. On the 26 th of June he drove the Auftrians from their camp of Wiltedr ; and on the $27^{\text {th }}$ he adranced with his army, in three columns, againt another camp of 15,000 men in front of Offenburgh. General Wurmfur fent a flrong reinforcement from Manhcin to the affiftance of thefe troops; but having encountered two of the French columns on its way, the reinforcement was defeated, and the camp at Offulurgh was evacuated during the night. The Auftrians made an wbltinate ftand at Renchen, near Philpf(burgh, on the 2gth, but were at laft compelled to retire with the lufs of 1200 men taken prifoners, and feveral pieces of cannon. On the $2 d$ of July a divition of the French army, under General Laroche, fucceeded in feizing the mountain Knubis, which is the higheft point of the ridge of mountains called the Black Foreft. On the $3^{\text {d }}$, after an obftinate conflict, the Auftrians were driven from the pals of Friedenitadt ; in confequence of which they lolt all communication with the emigrant troops under the Prince of Condć, and other 1 mperial troups flationed on the Rhine towards Switzerland. On the 6th, the left wing of the French, under Defaix, encountered the Imperialits at Raltadt, where the Auftrians, who had received fome reinforcements from the Lower Rhine, made a very determined refiflance; but were at laft compelled to give way, and to retire to Ettingen.

The Archduke Charles now arrived in perfon with his arny from the Lower Rhine, where he had left Wartenfleben, but with inferior force, to oppofe Jourdan. The Frencll, uader this general, had inflautly refumed the offenfive upon the departure of the Archduke. Kleber advanced from the lines of Duffeldorf, as formerly; while the centre and right wing croffed the Rhine near Coblentz. The potts of Ukareth and Altenkirchen were forced, and on the gth e.f July the whole of Jourdan's arnyy croffed the Lahn. On the ioth, Wartenfleben was defeated near this river, after great flaughter on both fides, with the lofs of 500 'prifoners; and the French on the 12 th entered Franckfort. The fituation of the hoftile armies was now become extremely important. The two Imperial armies were at no great diftance from each other, and were placed in the centre between the armies of Moreau and Jourdan. Could the Archduke, who was commander in chief, have refifted one of thefe armies for a flort time, at any flrong pofition, by a detachment of his troops, while he precipitated himfelf with the mafs of his force upon the other, is is probable that any farther invafion of Germany might have been preveuted. But the activity of
the French generals, whofe progrefs could nowhere be Fench refited by partial efforts, prevented the polibility of Revolurin, executing fuch a plan. He was therefore under the neceffity of, making his final exertion for the prefent fafety of Germany againf Morean at Ettingen, on the 9th of July, without having formed any junction with Wartenfleben. The battle wols moll oblinately fought. The French were four times repulfed in their attempts to force the heights of Roltenfolhe; and it was not till they had experienced a dreadfu! llanghter that they at laft carricd the field by the bayonet.

The lofs of the bat:le of Ettingen compelled the two Imperial armies to retire caftward. After phating ftrong garrifons in Mentz, Manhein, and Fhilipßug, the Archduke retreated through Swabia towards Ulm, where his magazines were placed. At every Itrong pofition, however, he made an obftinate ftand ; thus cudeavouring to render the progrefs of the French under Moreau as tardy as puffibe. Wattenfleben, with the other Imperial army, retired through Franconia, refilting Jourdan in the fame manner. Many bloody battles were fought. of which it is here unneceflary to give a minute defcription. It is fuficiont to remark, that the French were long fucceffful in them all. They gradually preffed forward till Moreau's army compelled the Archduke to crofs the Neckar, and afterwards the Danube, leaving the whole circle of Swabia in the rear of the French. Wartenfleben was in like manner driven through Afchaffenburgh, Wurtzburg, Schweinfurt, and found it neceffary to crofs the Rednitz, on the 6th of Auguft, at Bamberg, to avoid the preffure of Jourdan's army in his rear. This army continued to advance till its right wing, under Bernadotte, was pofted at Neumarck, with his advanced pofts at Teining, while the body of the army had driven Wartemfeben beyond the Nab, and had reached Amberg on the 22d of Auguit.

267

Excepting a part of the mountains of Tyrol, three Alarm ${ }^{267}$ Frenclı armies, under Jourdan, Mureau, and Bunaparte, thronghout now occupied the whole country reaching from the frontiers of Rohemia to the Adriatic Sea. The alarm throughout Germany was eatreme. The Duke of Wirtemberg obtained peace from the French on condition of paying $7,000,000$ of French money. The circle of Swabia did the fame, on engaging tos pay $12,000,000$ of hivres, and to detiver 8,40 honfes 5,000 oxen, 100,050 quintals of wheat, 50,000 quintals of rye, 100,000 facks of oats, 100,000 pairs of fhoes, and a large quantity of hay. The Margrave of Daden ot taincd peace on fimilar terms. The elector of Bavaria and the circle of Franconia negociated, and offered large payments; and even the diet of Ratifon fent a deputation to treat with the French generals for neutrality. The King of Pruflia now entered into a new treaty with the French; the conditions of which were concealed, but its nature appeased in the advantage which he took of the progrefs of their arms to take poffition of certain territories in Germany, and particularly of the fububs of Nurcmberg, under pretence of fome antiquated title. Spain alfo entered into a treaty offenfive and defenfive with France, which was afterwards followed up by a declaration of war again Britain.

The danger of the houfe of Auftria was now very ${ }^{265}$ great ; and had Bonaparte, inftead of being cetained in the houre Italy, by events of which we thall immediately take no. of Aufria. tice,

R E V

Frerich tice, been able to crofs the Tyrol by Infpruck, and to Both partics fuffered great lofs, but more cfpecially the Pree sh Revolution, eeach the banks of the Danube, there is little doubt that the Emperor mult have fuhmitted to fuch conditions as the French thought fit to impofe. Deferted in all quarters by the members of the coalition, he ftill, however, retained an ally in Great Britain, whofe riches, liberally beftowed in the form of a loan, extricated him from the prefent difficulties. Having the command of abundance of money, he was enabled to fend one army after another to oppofe Bonaparte in Italy, while he rectuited his armies in Gemany by extenfive levies, and hy taking into his pay the troops of thote ftates that made peace with France.

The Arctiduke, having received fowerful reinforcef ments, refolved to make a Itand, on the It th of Auguf, againft Moreau at Umenlitim. A fevere battle was fought during feventeen hours, and one of the wings of the Auftrian army, under Coneral Ricfe, even fucceeded in occupying four leagues of territury in the rear of the Frenchany; but the Archduke having received intelligence, in the mean time, that Wartenfleben could not maintain his ground againdl Jourdan, he thought it neceflary to continue his retreat, and to adopt new meafures. On the 17 th of A ugut he left General I.a Tour, with a part of his numerous army, to oppoie Moreau, and having croffed the Danube at Neuburg and Ingolitadt, he marched to Wartenfleben's affiltance to fall upon Jourdan with united forces. On the 23 d he attacked Bernadotte at Teining, and forced bim to setire towards Nuremberg. The Archduke was thus upon the right of Jourdan, while Wartenfleben was ftationed on his front. The French general, finding his pofition dangerous, began to retreat on the $24 t \mathrm{~h}$. From the ftate of the finances, the French armies, at the commencement of this campaign, had been extremely ill equipped and ill paid. Hence the two armies of Moreau and Jourdan plundered, without decency or mercy, every place into which they entered. In Jourdan's army, more efpecially, the want of difcipline was extreme (A). Hence, when they began to retreat, loaded as they were with fpoil, they fuffered not lefs from the enraged inhabitants of the countries through which they paffed, than from the military efforts of the hoftile army. The Archduke having joined Wartenfleben, was enabled to fend of Nauendorf with reinforcements to La Tour, who ofpofed Moreau, and, in the mean time, he continued in perfon to purfue Jourdan towards Wuttzhurg. Here the French made a ftand, on the $3^{\text {d }}$ of September, and a general engagement took place.

Sufrl. Vol. Il. Part II.

French, who retreated during the night. Jourdan now kevoution, fled by Fuldaw to Wetzlaer. Having crofted the 1796. Lahn, where he made fome refiftance, he defeended along the banks of the Rhine, till his army, on the t 7 th , reached Coblentz and Duffeldorf, from which it had originally departed.

The fituation of Morean' * army was now uncom- Critical fis monly dangercus. He maintained his profition, how-ruators of ever, till the 10 th of Sep:ember: but he was undeci. Aloreau. ded in his movements, and was obviouny at a lofs how he ought to proceed. He attempted, without fuccefs, 10 withdraw the Archduke from the purfuit of Jourdan, ly detaching a part of his tomps towards Nuremberg: Many attacks were made upon him, but all of them without fuceefs ; and the linperial generals as lafl gave way to him wher ver he turned. Finding at laft that Jourdan's defeat was irretrievable, and that Bonaparte did not arrive fron Italy, lie refolved to retreat. He had recruficd the Lech to prepare for this event ; but now fuddenly paffing it again, as if determined to advance farther into Anttria, he drove back General La Tour as far as Landiberg. Having thus obtained free-Hinfkilful dom for his future movements, he fet ont in full retreat, retecat. proceeding between the Danube at UIm and the lake of Conftance. La Tour, however, foon prefled upon his rear. He found the paffes of the Black Foreft occupied by large bodies of Auftrians and armed peafants, while Generals Nanendorf and Petrarfch harafted his right flank with 24,000 men. Once more therefore he turned upon La Tour, at Biberach, on the 3 d of October, with great impetuofity, and laving defeated him, took no lefs than 5000 prifoners; whom he was able to carry to France. He now continued his retreat ; his right wing, under General Defaix, keeping Nauendorf and Perrarfch in check, while the refl of the army cleared the paflages in front till he arrived at what is called the Valley of Hell (Val d'Enfer), a narrow defile, running for fome leagues between lofty mountains, and in fome places only a few fathoms in breadth. The centre of his army, advancing in a mais, forced this pallane, while the wings refitted the 1 m perial troops under La Tour and Naveriderf. After this defperate effort he reached Fribourg on the 1 ith of October, and was foon compelied by the Archduke Charles, who had now arrived from the purfuit of Jourdan, to evacuate all his pofitions on the Swabian lide of the Rhine, with the exception of Kchl, and a temporary fortification erected at Huningen, called a 3 G bridge
(A) It would be improper to interrupt our military detail with the following information refpecting the morals of Jourdan's army at this time; which, however, it is of importance for our reader's to know. We have it from a German Count, who faw with his own eyes a conliderable extent of the march and countermareh of the French through Franconia.

Almoft every officer in Jourdan's army had a miftrefs; and fuch of them as by plunder could fupport the expence, gave balls, acted plays, and exhibited every fpecies of gaiety when the army was not in actual motion. In all this there was nothing wonderful. The ladies, however, were not unfrequently pregnant ; and as nurfing would keep them from thefe affemblies, where their company could not be difpenfed with by the foldiers uf liberty, they drowned their new-born infants-lbey drowned them publicly! Our correfpondent (the Count) favs two of the little victims, and he heard, from unqueftionable authority, of feveral more. At a place within fix miles of Nuremberg, a Pruffian parifh-minifter, who was alfo a fort of juttice, endeavoured to fave one imnocent, and was thrown into the river and fired at by the French, when his parifhioners endeavoured to fave him. He had the happinefs, however, to fave the child, and was allowed to keep it, the mother never enquiring after it !

French bridge-head (tote de pont), though there was no bridge Ecvolution, at that place.

The Imperial truops, in the mean time, had taken advantage of the defencelefs flate of the French frontier to crofs the Rhine at Manheim, and to advance in various detachnents to Weiffemburg, Seltz, Hagenau, and almoft to the gates of Strabburgh, lerying contributions and taking hoflages wherever they came. Thefe detachments being now recalled, the Archduke refolved to terminate the campaign by the capture of Kehl, and of the fortifieation at Huningen. But this proved no eafy tafk. is the communication with the French fide of the river was open at buth places, the divifions of Morean's army did duty at thein by turns. A great part of the winter was fpent in fruitlefs attempts, on the part of the Auflians, fometimes to take them by florm, and fometines to reduce them by the forms of regular fiege. Different fallies were made by the French, and immenfe numbers of men were loft on buth fides By the fword, and by the feverity of the feafon. It was not till the roth of January that the French agreed to evacuate Kehl, and the fortification at Huningen was not given up till the fucceeding month.
During the invafion of Germany that has been now mentioned, and the reverfes that were fuffered ly the French armies there, Bonaparte Atill continued to gain viciories in ltaly. The fuccefs and the wonderful fortune of this man, require that we fhould give fome account of the arts by which he was enabled, fo unex-

272
Reflection on the lif ferent orders of batile.
pectedy, to triumph over the mott experienced military commanders of the age in which he lived. In the military art three orders of hattle, or forms of drawing up an army, have been chiefly adopted by thofe nations whofe force has principally confifted of foot foldiers. The fiift form or mode conlifts of arranging the troops in a deep line; that is, with froin 16 to 30 men placed clofe behind each other. This is the moft ancient and the fimplett order of battlc. It was carried to perfection by the Greeks, winder the name of the Phalanx; and, when the foldiers were armed with the long fpear, it was extremely formidable. It left little to the fikill of the general, except the choice of the ground where he was to fight, and made all to depend upon the fteadinefs of the troops. It was attended with thele difadvantages, however, that an army thns drawn up commanded very little territory, and that if its ranks hap. pened to be broken by unequal ground, or an uncommon effort of the enemy at a. particular quarier, its parts could not eafily be re-united, and it infallibly went into confufion. In modern times, this order of battle cannot be adopted with fuccefs on account of the facility with which it is broken by artillery, and the flaughter to which it expofes the troops from every kind of fire arms. The fecond, or modern order of battle, confifts in forming a front of an immenfe extent, with only two or three men in depth, and ofually fupporting thefe by another, and perhaps a third equally flender line, at a confiderable diftance in the rear. Troops thus drawn up derive the greateft poffible benefit from their own fire arms, and fuffer the leaft lofs from thofe of the enemy. They provide for their own fuhfiftence by covering an immenfe tract of country. Their battles are not fanguinary, as they are feldom very clofely engaged; and in eafe of a defeat, little lofs is fuffered, becanfe they can fcatter themfelves over a wide fpace, as the rear pro-
tects the advanced body; and as the troops in a long French line can feldom all he engaged at once, they are fup. Revolutions, ported by each other in a retreat. This order of battle, however, is eafily broken; and the moment the flank of an army is turned, it is under the neceflity of retreating, as troops cannot fpeedily be brought from other quarters to face the enemy there. The laft order of battle confifts of dividing an army into columns of a narrow frout and very great depth, and of flationing the columns at forne diftance from each other, with a fecond fet of columns oppofite to the intervals between the firt. This arrangement is fuperior to the phalanx, in this refpect, that it does not expofe an army to diforder by inequalities of ground, by the turning of its flank, or even by the defeat of one of its parts. The celebrated Epaminondas won the battles of Leuctra and Mantinea, hy forming a part of his troops, on each of thefe occalions, into a ftrong column, which, by its great depth, and the mechanical weight of its fhock, hroke through the Spartan plalanx. The Romans are known to have owed their military fuccefs, in a great meafure, to the arrangement of their legion. It was drawn up upon the principle now 'mentioned; and tho' the coluinns were only 16 men in depth, it was confeffedly fuperior to the phalanx. In modern times, however, this order of battle is attended with great difficulties. It mult reduce an army to embarraffiment with regard to provifions from the fmallnefs of territory which is thus occupied, and it expofes the troops in an engagement to dreadful detruction from the powerful mififile weapons which are now employed. In every enterprife they muft inftantly carry their point or be undone, as the fire of a few guns from a fingle battery or redoubt would exterminate them by thoufands. With all its imperfections, however, this laft order of battle has at times been employed by enterprifing men. It was the favourite arrangement of Guftavus Adolphus; and his troops were drawn up according to it at the battle of Lutz.fn, where he himfelf was killed, while lis army was vietorious. The celebrated Marquis of Montrofe alfo ufed it on more than one occafion, andadopted by it was now adopted in all important cafes by Bonaparte. Sonaparte. Trufing to its fuccefs, he pufhed his columns into the midf of the Auflitian army at Millefimo, and failly captured one of its wiugs. He ventured farther to throw himfelf into the centre, between the Auftrian and Sardinian armies, and to vanquifh the onc, by acting againft it with his whole troops while feparated from the other. Being carelefs about the fhedding of blood, he never hefitated to expofe his whole army to utier ruin in cafe of a failure. The fuccefs of his battles, by enabling him to lay almoft all Italy under contribution, gave him the means of maintaining the moft teady and levere difcipline over a well paid army. Filled with high notions of military glory, which he is faid to have derived from the writings of Plutarch, he laboured to inflame, with the fame fpirit, the minds of his foldiers by proclamations, expreffed in a very different fyle from the formal and more modeft language of modern times. "Soldiers (faid he, when he firft entered Lombardy), you have His pomrufhed like a torrent from the fummit of the Appeeclamation. nines, you have driven back and difperfed all who oppofed your march. Your fathers, your mothers, your wives, your fifters, your fweethearts, rejoice in your fuccefs, and boaft with pride of being related to you.

R E V

Prench But remains there nothing more for you to effect? Shall Evevolution pofterity reproach us with having found a Capua in 1746. Lombardy? But I already fee you rufhing to arms; an unmanly repofe fatigues you, and the days loft to glory are loft to your felicity. But let the people be tranquil; we are the friends of all mations, and more particuliarly of the defcendants of the Brutufes, the Scipios, and the illuftrious perfonages whom we have chofen as models. To reftore the Capitol, to replace with honour the Itatues of the heroes who rendered it re. nowned, and to roufe the Roman people, becume torpid by fo many ages of navery, fuch will be the fruit of your victories; they will form an epoch to pofterity, and you will have the immortal glory of renovating the fairelt portion of Europe. The French nation, free and refpected by all the world, will give to Europe a glorious peace. You will then return to your homes and your fellow-citizens; who, when pointing to you, will fay, He was of the army of Italy."

At the commencement of the French invafion of Gerinany, Marfhal Wurmfer was fent into Italy to replace Beaulieu, who was removed from his command. On his arrival, he collected the wrecks of the Auftrian army, and prepared, till he fhould receive reinforcements, to confine the French within as narrov limits as poffible, by lines drawn from the lake of Garda to the river Adige. At the end of June, however, thefe lines were attacked and carried by Maffena's divifion, which induced Wurmfer to avoid farther exertion till he fhould receive an increafe of force. In the mean time Bonaparte was not a little difurbed by partial infurrections of the Italians. Soon after his arrival in Lombardy, the inhabitants of Milan and of Pavia lad rifen in concert againft his troops; but they were reduced to fubjection with little bloodfhed. In the beginning of July, farther infurrections broke out in the Romagna. The infurgents eftablifhed their head quarters at Lugo, and repulfed a party of French cavalry that was fent againit them. It was not till Augereau had overcome them, on the 6th, in a battle in which he lof 200 men, that they could be fubdued. The flaughter of thefe unhappy people was very great. Their town was given up to pillage, and all found in arms deftroyed.

The firt part of the month of July was fpent by Bonaparte in commencing the fiege of Mantua in regular form ; and towards the clofe of that month he expected its capture. In this, however, he had ill-calculated the immenfe military efforts which Auftria, aided by the money of Britain, was capable of making. Twenty thoufand troops had been fent from the Rhine, and other reinfurcements were marching towards Italy from all quarters; fo that Bonaparte, inltead of being able to take Mantua, had fpeedily to defend himfelf againt the force of a fuperior army to his own, that approached to raife the fiege, and even threatened to drive him out of Italy. Wurmfer's army defcended from the Tyrol in two divifions. One half of it proceeded along the ealt lide of the lake of Garda, and the other came by the weft to cut off the retreat of the Jirench, who were thus enclofed by the Auftrians. On the 2gth of July, at three o'clock in the morning, Maffena was driven from the ftrong poft of La Corona, on the ealt of the lake, while, at the fame time, 15,000 Auftrians drove the French from Salo, and afterwards from Brefcia, with sll the magazines and hofpitals of Bonaparte's army.

$419] \quad \mathrm{E}$ V

There was a fatal error, however, in the general plan French of operations that had been formed by the imperialits. Revilutints Their army united was an overmatch for the French; but they had voluntarily divided it into two parts, pla. cing Bonaparte between them. The error was intlantly difeerned, and taken advantage of by their antagonitt. On the night of the 3 cth, he fuddenly raired the fiege of Mantna, and leaving a finall body of troops to keep in check the Imperialiits on that fide, he marched rapidly weftward, and on the firft of Auguft retook Brefcia, with the magazines and hofpitals. Having the mafs of his army united, Bonaparte furpaffed his antagonifts in numbers wherever he encountered thern. He prepared to attack the Imperialits on the 3 d at Salo, Lonado, and Caftiglione, but was anticipated by them. Having formed a large body of his troops into clofe co. lumns, the Auftriaus, who were not yet aware of the nature of his mode of fighting, extended their line to furround them; a movement which enabled the columns to penetrate the Imperial army in all directions, and throw it into complete diforder. The French took 4000 prifoners, and 20 pieces of cannon. The Imperial troons He is 298 were here fo completely defeated, that a confiderablefeated divifion of them having in vain attempterl to retreat by Salo, which they found occupied by the French, wandered about in fearch of a road by which to efcape ; and lasing next day come to Jonado, they fummoned it to furrender, upon the fuppofition that the greater part of the Freuch army had gone eaftward to encounter Wurmfer. This was actually the cafe; but it fo hap. pened, that Bonaparte was in perfon at Lonado with only 1200 men. He was fufficiently perplexed by this accident; but having ordered the meffenger to be brought into his prefence, he threatened to deflroy the whole divifion for having dared to infult the French army, by fummoning its commander in chief to furrender. The ftratagem was fuccefsful. The Imperial officers imagined that the whole army was in the place, and immediately, with their troops, laid down their arms, to the number of 4000 men.
Such is the account of this tranfaction, which we lave from the partial pen of the panegyrif of Bonaparte, who writes the hiftory of his campaigns in Italy; but we believe that the General has himfelf affigned the true realon of his fuccefs on this occation, and others, where fuccefs could not be reafonably expected. In one of his intercepted letters, Bonaparte informs his correfpondent, that the Auftrian armies in Italy colt him more money than his own; and indeed it is not within the compafs of fuppofition, that a body of veteran foldiers could have been intimidated to lay down their arms by fo vain-glorious a threat as this, had not their officers been corrupted by French gold and' French principles. The ftratagem night have its effect upon the common foldiers, but it could not poffibly impofe upon their leaders, or upon the meffenger who fummoned Lonado to furrender.

On the 5th and 6th, Bonaparte attacked Marfhal Wurmfer, and drove him from Pefchiera and the river Mincio. On the $;$ th, the Auftrians were compelled to quit Verona, and to retire once more to the mountains of 'Tyrol. The conteft, which had lafted more than Again defix days, coft the Imperialifts more than 20,000 men, feated. upwards of 15,000 of whom were made prifoners. A part of the Emperor's troops had beon levied in Gal.

R E V
 [420]
 R E V

French licia, the part of Poland which, in the partition of that Revolation, cuuntry, had been allotted to Auftria. Thefe men fei1:96. zed the monent of defeat to quit a fervice which they difliked, and to go oser to the French ; a circumflance which greatly fwolled the lift of prifoners.

It was now neceliary for the French to conmence the fiege of Mantua ancw. 'lhe garrifon in their abfence had dellro ed their works, and carried into the place 140 pieces of heavy cannon which they had left behind them, and procured a confiderable quantity of provifions. The blockade was renewed; but the French, by the lofs of their artillery, were unable to proceed to a regular fiege; and by the beginning of the month of September, Marfhal Wurmfer, having received new reinforcements, was again enabled to attempt the relief of the place. Bonaparte having information of his intended approach, left fufficient troops to keep up the blockade, while he advanced northward with his army; and on the $4^{\text {th }}$ uf September drove the Auftrians frum the paffes of St Marco and the city of Roveredo to the
280 pals of Calliano, where they made their principal ftand His mafter-Hcre a battle enfued, in which the French took no lefs ly conduct after a chird Upon fuffering this defeat, Marfhal Wurmfer adopted a meafure which cannot be fufficiently approved of. Inflead of retiring before the conqueror, who might have driven him to Infpruck, and arrived at a critical moment at the Danube, where Moreau, after much hefitation, had orily commenced his retreat, he fuddenly threw himfelf with his vanquifhed army into Baffano, upon the flank and rear of Bonaparte, and then advanced by hatty marches towards Mantua. He attempted to make a ftand at Baflano on the 8th, but was defeated, and 5000 of his men were taken prifeners. He had ftill a confiderahle body of troops however. With thefe he puthed forward ; and having fought different fcattered divifions of the French at Cerea, Caftellano,

280
He enters
Mantua. and Due Caftello, he effected the paffage of the Adige at Purto Legnano, entered Mantua with the wreck of his army, amounting to about 4050 infantry and 4500 ca valry. In this enterprife the Imperialifts loft altogether 20,000 men ; but the effect of it was, that it fised Bonaparte in Italy, where he was obliged to remain watching and keeping under blockade the numerous garrifun of Mantua. He hoped that its numbers would foon reduce it by fanine to the neceffity of a capitulation; but in this he was deceived, as the flefh of the horfes, carried into it by Wurmfer, afforded fubfiftence to the troops during a very long periud.

In the mean time, the fame which their countryman Bonaparte gained by thefe vietories, produced in the
28 C Corficans a detire to change the Britih government for Corfica re- that of France. They accordingly difplayed fo muvolts from tinous a fpirit, that the Britifh Viceroy thought fit to Britain, and unites wihFrauce evacuate the iffand, which was no longer of any value to his government after all Italy had, in a great meafure, fubmitted to the French. The Imperial fubjects in Italy alfo, along with the inhabitant of Bologna, Ferrara, and Modena, who were completely corrupted by the falle philo「ophy of the age, began now to republicanife themfetves under the patronage of the French general. They fent deputies to a corvention, levied troops, and abolifted all orders of nobility.

The Einperor fuon fent into the field a new army to attempt the relief of Mantua. In the beginning of

November this army advanced under the command of French, Field Marfhal Alvinzi, who advanced towards Vizenza on the eaft, feconded by General Daviduvith, whu defeended with anuther divition from ' 'yrul. Alvinzi had already crofled the Piava, when he was met by the French, and compelled to repals that river. But Da- partia ${ }^{282}$ vidovich, in the miean time, after feveral engragenients, ceffes of the having fucceeded in driving the French down the Auftrans Adige towards Verona, Bonaparte was under the neceffity of concentrating his forces. He now adopted his ufual expedient of keeping one divifon of the hollile army in check, while he contended with the mals of his forees againft the other. He lelt Vaubuis with fome troops to detain Davidovich, while he advanced in perfon againtt Alvinzi, who was nuw haftening towarus Verona. He was met, on his way, by the Aultrians at the village of Arcule. To fenze this village, which could not be fpeedily turned on account of a canal, the French were under the neceffity of paffing a narrow bridge in the face of the fire of the Auftrians. They made the attempt withuut fuccefs. Their ufficers rulhed to the head of the column, and in vain attempted to rally the troops. Generals Verdier, Bon, Verne, and Lafnes, were carried off the field. A ugereau advanced with a ftandard to the extremity of the bridge, but nobody followed him. At laft Bonaparte, who in the mean time lad fent Guieux with 2000 men to turn the village at two miles diftance, haftened to the bridge of Arcole. Seizing a ftandard, he advanced at the head of the grenadiers, crying, "Fullow your general." They accordingly followed him to within 30 yards of the bridge, when they were intimidated by the terrible fire of the Auftrians; and their leader found it neceffary to retire. Attempting to mount his horle to rally the column, leit the Auftrians fhould advance to the purfuit, he was thrown into a murafs, while ftill under the fire of the truops in the village ; but here he again efcaped, as the Aultrians did not attempt to follow up their advantage.

The village of Arcole was taken towards the evening by Guieux, and afterwards evacuated by the French. On the following day (the it th of November) an obftinate conflict enfued in its neighbourhood, at which nothing lecilive was accomplithed. On the 17 th the They 283 Auftrians, having preffed impetuoully forward upon the defeated. centre of the French army, jvere taken by furprife upon their flank by the left wing of the French, which had been Itationed fur that purpofe in ambufcade. Their left wing, however, maintained its ground till Bunaparte fent ruund a party of horfe with twenty-five trumpeters to their rear, who, by the noife they made, induced the Auftrians to believe themfelves furrounded, and to fly on all lides in cunfufion.

Iiere again appear evidences of treachery among the Auftrian officers, thuugh the battle of Arcole was the moit fevere which the French had yet fought in Italy, and extremely fatal to their officers, as well as to a multitude of their troops. During its continuance, Davidovich had fucceeded in defeating Vaubois, who was oppored to him and Rivoli, and the blockade of Mantua was actually uncovered for a time. But Bona. parte now returned, after having driven Alvinzi acrols the Brenta, and the pofitions of Rivoli and La Corona were rctaken, and Davidovich repulfed into Tyrol. General Wurmfer, however, ftill held out in Mantua during

R E V
 R E V

Fretch dnring the remaining part of the year; and the only cd an invafion of Ireland; hut the plan was ill con. Freneh Revelution, fruit hitherto derived from fo many victories was, that

179\% the French mation was led to look towards Bonaparte as its only invincible commander, upon whom all its hopes of conquele were to depend.

During thete military tranfactions, Great Britain liad

284
Neguciacion between Br tain and France.

285
Suddenly broke off by the Di rectory.
entered into a negociation with France. In confequence of paffourts obtained from the Directo:y, L. ord Malmeibury arrived in Paris, and began the negociation with De la Croix the miniter fur forcign affairs. 'Iho' the Directury could not decently refufe to negociate, yet they were unwilling feriouly to conclude a peace with Britain. On the other hand, the Britifh minifty lave fince declared that, as individuals, they actually difapproved of a peace at this time, but that they thourht it neceffary both to negociate, and even to conclude a treaty, if proper terms could be ohtained. In judging thus, they were certainly right; for the country at large, not feeing the danger of peace, was very defiruus of it, whilit a defperate faction was confartly afcribing the continuance of the war to the criminal obltinacy of the Britifh government. The negociation which was now fet on foot opened the eyes of all but thofe who wifhed to Cell their country to French regicides. Lord Malmefbury propofed, that the principle of mutnal reftitutions fhould be agreed upois as the batis of the treaty. After much ufelefs altercation; and many notes had paffed upon this fubject, and alfo upon the queftion, how far Lord Malmefoury could negociate for the allies of Great Britain, from whom he had received no official powers, the Directory at laft agreed to the general principle of mutual re?titutions, and required that the objects of thefe fhould be fpecjfied. Accordingly, the Britifh ambaffador propofed, in two memorials, that France fhould relinguifh the Auftrian Netherlands, and offered to give up the French foreign fettlements in return. An offer was alfo made to reflore a great part of the Dutch foreign poffeflions, on condition that the Stadtholder's ancient authority fould be acknowledged in that country. The Direc. tory now required Lord Malmefbury to prefent the ultimatum of his conditions within twenty four hours. On his complaining of this demand, he was informed, on the 1 gth of December, that the Directory would agree to no conditions contrary to the French conftitution; and it was added, that his farther refidence at Paris was unneceffary!

During this year, Great Britain retained her ufual fuperiority by fea. A Britifh fquadron, under Admiral Elphinfton, had taken poffeffion of the Dutch fettlement at the Cape of Good Hope, on the 1 fith of September 1795. This fettlement the Dutch witherl eageily to recover; and for this purpofe they advanced money to enable the French to fit out a fquadron to co-operate with them in an attack upon it. The French government took the money, but the fquadron was never equipped. The Dutch themfelves this year fent a fquadron of feven thips of war, under Admiral Lucas, to attempt to reconyuer the Cape; but being no match for the Britifh fquadron, and being likewife caught between two fires, without the poffibility of efcaping, the Dutch fleet, without firing a gun, was delivered up to the Britifh admiral.

Notwithtanding the fuperiority of Great Britain by fea, the French, towards the clofe of this year, attempt.
certed, and, of courfe, unfuccefstul. The whole con- Reve ion, duet of it was intrulked to one man, General Hoche, $\underbrace{17 y 0 .}$ and no focond was prepared to occupy his place in cafe of any accident. 'The difalfected faction with whom Unfuccefsthe French meant to comperate was not warned of ful artempe their approach, and the flect was fent towards a guarter by the of the country where the people were little difpofed, Ireland. or, at leaft, by no means prepared to receive them. Eighteen thips of the line, thirteen frigates, twelve floops, and fome tranfports, having 25,020 land force * on hoard, were employed in this expedition. When ahout to fail, it was detained for fume time by a muti. ny which arofe in confequence of the coliflenent of about 1,200 gralley haves. 'Ihe fleet failed on the 10 th of December; but a flip of the line was luft in going uut of Breft, and fome of the rell were damaged. The frigate in which the commander in chief had embarked was feparated from the fleet in a gale of wind; and the confequence was, that when the greater part of the fleet arrived at Bantry Bay, on the welt coatt of Ire. land, nubody had inftructions how to proceed. The troops and their officers withed to land, but the admiral, Buwet, refufed to comply with their requell. Having remained feveral days upon the coaft, he failed for France, and arrived at Breft with a part of the fleet on the 3 It of Deumber. General Hoche did not reach Bantry Bay till it was too late, and therefore could not land. The fleet fiffered great loffes in its return. Orie thip of the line and two frigates foundered at fea, a frigate was taken by the Britif, and a ihip of the line, after an engagement with two Britifh hips, was run afthore to prevent her being captured.

At the commencement of the year 1797, the Archduke Charles was till occupied in the reduction of Kehl, and of the French furtifications oppolte to Hu ningen. Moreau fill commanded the army that oppofed the Archduke; but General Hoche, after his return from the expedition to Ireland, was appointed to fucceed Jourdan on the L,ower Rhine. Bonaparte was ttill engaged in the bluckade of Mantua, while the A uítrian government was making vall efforts to rectuit the army of Alvinzi after its defeat at Arcule, and to en. able that General 10 make a laft and defperate effort for the relief of Mantua. The young men of Vienna were urged to give their affifance on this important occafiun, and 6000 of them marched into Italy as volunteers. Alvinzi's army amounted now to wearly 50,000 men; and he commenced his operations on the 8 th of January, by fkirmihing along the whole of the French line from below Purto Legnago upwards, to La Co- the Aurona near the Lake Garda. He continued for fome days to alarm the French at all points, and thus to conceal the plan of his future effurts. On the toth Bonaparte was ftill at Bolugna, on the other fide of Mantua, taking precautions againft the efcape of Wurmfer by that quarter, which, from an intercepted letter, he had learned was in contemplation. Being now informed of the approach of the Auftian army, he haftened to Mantua, and from thence to Verona, which was the centre of the line of his army that oppofed Alvinzi. He arrived at Verona on the morning of the 12 th; but as the Auftrians continued to make their at. tacks upon all quartersat once, he was unable to pene. trate the defign of their leader. At laft, on the $33^{\text {th }}$,
\qquad
\qquad

Fronch the efforts of the Auftrians began to aflume a more forRe, \rightarrow,tion, midable afpect on the lower part of his line near Porto 1797.

298
They divide their arnay; Legnago; but on the evening of the fame day he received intelligence, that the upper extremity of his line, where Joubert commanded, "had heen attacked by fuch an immenfe fuperiority of numbers, that there could be no doubt that the greatelt number of the Imperial troops was concentrated there. The polt of La Coro. na had even been forced, and Joubert compelled to withdraw to Rivoli, which he alfo abandoned.

The Auftrians ftill perfilted in their unfortunate plan of dividing their army, that they might have two chances of fuccefs. Ten thoufand chofen troops, among whom were the Vienna volunteers, were deftined under General Provera to penetrate to Mantua by Porto Legnago, at the lower extremity of the French line; while Alvinzi in perfon advanced with the mals of the army againft Joubert at its other extremity. On the $13^{\text {th }}$ all went well; Joubert was compelled to retreat ; and he was fo fituated, that the eafy capture of his whole divifion on the following day appeared a very probable event.

Bonaparte, in the mean time, having learned the ftate of affairs, left Verona in the evening of the 13 th, having firt ordered the whole centre of his army under Maffena to follow him to the neighbourhood of Rivoli with all poffible fpeed. Here he fpent the night with his officers in arranging the order of battle for next day, and in occupying proper pofitions. At day-break of the 14th the attack was begron by Joubert's divifion, to the no fmall furprife of the Imperialits, who were not aware of the arrival of Bonaparte with reinforcements. The battle, however, was long and obftinate. 'The fuperiority of numbers on the fide of the Autrians enabled them to defeat all the efforts of the French to turn their divifions. They at laft fucceeded in driving back upon the centre the two wings of the French army in confiderable diforder. Alvinzi now attacked the centre, which farcely maintained its pofition ; and the Auftrian wings advancing on both lides, completely furrounded the French army. The victory feemed already won; and it is faid that Alvinzi difpatched a courier to Vienna to announce the approaching capture of Bonaparte and his army. Bonaparte indeed confidered his own fituation as very alarming; and is faid to have meditated his efcape acrofs the Auftrian right wing. From the nature of his order of battle, his troops had rather been concentrated than fcattered by the repulfe they had reeeived, and it was therefore fill in his power to make a defperate effort. Having formed three ftrong columns, he fent them againft the Allftrian right wing. They fucceeded in penetrating it at different points; and it fled in fuch confufion, that having encountered a party of French that had not ar-
rived in time to join the body of the army, 4000 Auf. French triaus laid jown their arms in a panic, and furrendered Revolutions themfelves prifoners of war. Night put an end to any farther conteft ; but Bonaparts, contidering this quarter of his line as no longer in danger, departed to oppofe And arede. General I'rovera, leaving Jonbert to profecute the vic-feated. tory now gained. This fervice he performed with great fuccefs. A detachnent under General Murat having marched all the night of the $14^{\text {th }}$ after the battle, feized Montebaldo in the rear of the pofition at Corona, to which a confiderable divifion of the Autrians had retreated, while Joubert, next morning, attacked them in front. Finding themfelves furrounded, they foon fell into confufion. Six thoufand men were made prifoners, many were drowned in attempting to crofs the Adige, and the remainder fled to T'yrol.

During this fanguinary conteft on the upper part of the Adige, General Provera had forced his paffage a. crofs the lower part of that river at Angiara near Porto Legnago, and compelled the French General Guieux to retire to Ronco. Augereau collected all the troops in the neighbourhood, and marched to attack Provera; but as he haftened towards Mantua, Augereau could only come up with his rear; of which, after an engage. ment, he took 2000 prifoners. On the 15 th, however, General Provera arrived in the vicinity of Mantua. The city, which ftands in a lake, was blockaded at the two points, by which it has accefs to the main-land called St George and La Favorite. Alvinzi was to have form. ed his junction with Provera at the poft of St George. Receiving no intelligence of him, General Provera fummoned the French commander here to furrender; and on his refufal, endeavoured to carry the pofition by affault. Having failed in this attempt, he turned his attention towards the poit of La Favorite, which he attacked on the morning of the 16 th : while Wurmfer, who had perceived his arrival, advanced with the troops of the garrifon againft the fame point. But by this time Bonaparte had arrived with reinforcements. General Wurmfer was repulfed (b); and Provera being completely furrounded by the French, was under the neceífity of furrendering himfelf with his troops prifoners of war. The refult of all thefe battles at Rivoli and Mantua was the capture of 23,000 prifoners and 60 pieces of cannon ; and thus four Imperial armies had perifhed in Italy in the attempt to preferve Mantua. The capture of this city, however, was now inevitable, in confequence of famine. It furrendered by capitulation on Mantua the $2 d$ of February. Bonoparte on this occafion en-furrenders: deavoured to acquire the reputation of humanity. To allow the French emigrants in the garrifon to efcape, he confented to an article in the capitulation that General Wurmfer fhould be allowed to felect and carry out of the garrifon 700 men, who were not to be examined
(в) Marfhal Wurmfer had before this time begun to fufpect that his plans were betrayed to the enemy. When he refolved to make his laft fally to co-operate with Alvinzi, he kept his plan to himfelf; and in the morning of that day on which the army was to march out, he gave to each of the generals commanding the divifions (which we think were feven) his orders in a fealed packet. The troops marched at the hour fixed on, in fo many divifions; and they were inftantly attacked at all points by the enemy. Upon this the old General laid to a Britifh officer of high rank, who was with him in the fortrefs, We are betrayed, make your efcape by any means that you can. This anecdote was communicated to us through a channel which leaves no doubt of its truth in our own minds; but not being authorifed to give the names of our informers, we thought it not right to infert it in the sext. Its truth or fallehood may be eafly afcertained.

REV [423$] \quad$ R E V

French mined nor confidered as prifoners ; and the General Revolution, himfelf was allowed to depart unconditionally.
$\underbrace{1797}$
292

In the meanwhile, the Pope, who of all the European princes had the beft reafon for difliking the Erench caufe, uncautioufly perfevered in hoftility, in the hope that fome one of the Imperial armies might fucceed in driving Bonaparte from Italy. Having recovered from the panic which induced hin to folicit an armiftice when the French firt entered Lombardy, he had avoid. ed concluding a treaty of peace, and attempted to enter into a clofe alliance with the court of Vienna. He procured officers to be fent from thence to take the command of his troops, and flattered himfelf with the vain hope of being able to make an important diverfion in favour of the Imperial troops.

As the Emperor and the French were both preparing with all poffible fpeed to renew their bloody conteft on the frontiers of Germany, it was of importance to Bonaparte to leave all Ltaly in feace on his rear. On the ift of Fehruary he fent a divifion of his troops under General Victor, along with what was called the Lombard Legion, confifting of Italians, to enter the territory of the Pope ; and upon the furrender of Mantua Bonaparte followed in perfon. The troops of his Holinefs made feeble refiltance. The new raifed Lombard legion was made to try its valour againlt them on the river Senis on the 2d. After floming their entrencl. ments, it took their cannon and 1000 of themfelves prifoners. Urbino, Ancona, and Loretto, fucceffively fell an ealy prey to the French. From the chapel at Loretto the papal General Colli had carried molt of the treafure ; but the French lill found gold and filver articles worth $1,000,000$ of livres, and the image of the virgin was conveyed as a curiofity to Paris. Bonaparte now proceeded through Macerata to Tolentino. He was here met by a meffenger from the Pope with offers of peace, and concluded a treaty with his Holinefs, on the 19th. By this treaty the conditions of the armifice were contirmed; and in addition to the payments then flipulated, the Pope promifed to pay $15,=00,200$ of livres, and to deliver 8 zo cavalry horles, with as many draught horfes and oxen. He alfo engaged to pay 300,000 livres to the family of the French envoy Baf. feville, who had heen murdered at Rome, and to apologife by his minilter at Paris for that event.

The French had been fo unfuccefsful in their late irruption into Germany, through Swabia and Franconia, that they now refolved to make their principal effort from Italy under Bonaparte. For this purpofe, the Directory detached great bodies of the veteran troops that had fought under Moreau as fecretly as poffible through Savoy into Italy. The court of Vienna, however, was aware of the approaching danger, and gave the command on the fide of Italy to the Archduke Charles, who of all their military leaders had alone of late been fuccefsful againit the French. He brought along with him his beft troops from the Rhine, and numerous levies were endeavoured to be made in all the hereditary ftates for his farther fupport. The war was now about to be carried into new territories, on which the houfe of Autria had fcarcely hitherto beheld a foe. Itwasneceffary that Bonaparte fhould once more attenipt to fcale the fummit of the Alps. This immenfe chain of mountains, which takes its rife in the vicinity of Toulon, at firft ftrctches northward under the names of

Piedmont and Savoy. It then runs towards the eall, French forming the countries of Switzerland, Tyrol, Carinthia, Revolution, and Carniola. The three laft of thefe, pafting along
1797. the head of the Adriatic, form the frontier in this quarter of the hereditary flates of Aultria. Between the momtains and the fea lies the level and fertile tract of territory which belonged to Venice. It is croffed ly many large flreams, which are fed by the melting fnows of the Alps, and whore nature is this, that they arc greatef in fummer, and that their waters diminifh during the frofts of winter.

The council of war at Vienna now committed an im-Blunder of portant error in the plan of defence which it adopted. the Coure Inftead of making a ftand in the defiles of the moun. of Vienna. tains, the Archduke was fent down into the plain to defend the paffages of the rivers. War is effentially an offenfive art. Whatever the general purpole of hoftility may be, it is always conducted with molt fuccefs when the detail of its operations is fo managed as to aflume the form of enterprife and of vigorous attack. This arifes not from any thing in the nature of the art of war, but from the immutable conflitution of the human character. The ftrength of inen who are fixed without motion in a particular fpot, is fubdued by the deprelfing paffion of fear, and by the defpair of accomplithing any important object; whereas, when urged to action and to enterprife, their energy is increafed by hope, and hy that prefumption of their own fuperiority which all men readily entertain. Hence we have fo few inftances in hiftory of nations fuccefsfully defended by rivers or extenfive fortified lines; whereas mountainous countries have ufually fet hounds to the progrefs of armies. In fuch fituations, the defending party can always aet upon the offenfive. He tinds his adverfaries divided, by their fituation, into fmall parties. He hopes to vanquifh them in detail, and he acquircs Atrength and courage from the profpect of fuccefs.

While Bonaparte was advancing into the territory of the Pope, the Aultrian army was arranging itfelf along the eaftern bank of the Piava. The French were on the oppofite bank, and Bonaparte hattened to join them after he had concluded his treaty with the Pope. The heginning of March was fpent in preparations; but at lalt the troops advanced, that the point of refiftance might be difcovered. Having. croffed the Progrefs of Piava on the 12 th of March, the Aulkrians-retired, Nkir. the Ficnch mifhing for fome days till they had crufled the Taglia- army. mentu, where they made a ftand with their whole furce. Early on the 17 th the French army arrived at Valvafone, on the oppofite bank; and after fome helitation, refolved to force the paflage of the river. To have accomplifhed this object very fpeedily would have been difficult, had not a recent frolt diminifhed the ftream, by which means the French were enabled to crofs it in the face of the enemy in columns at various points. The army of Bonaparte was now in three divifions. Joubert, with the left wing, advanced along the courfe of the Adige into Tyrol, and was ordered to crols over from thence, and to defcend along the valley of the river Drave, which is beyond the highell chain of what the Romans called the Noric Alps. Maffena, with the centre, after croffing the '「agliamento, advanced into the defiles of thefe mountains; while the right divifion, which was attended by Bonaparte in perfon, proceeded along the coalt of the Adriatic.

R E V

 prifoners, and croffed the Alps; and though the country ftill prefented fome dificulties, there was no fortified place capable of refiling his progrefs towarils 'Vienna. He did not, however, confider his own fituation as deftitute of hazard, and feized the prefent monient of unbounded fuccefs to make propofals of peace. On the 3 it of March he fent a letter to the Archduke, in which he depricated the ufelefs prolongation of the war, and intreated him to interpofe his good offices to put a ftop to its farther ravages. But this prince, who feems to have doubted his own influence at the court of Vienna, returned a cold anfwer, flating, that it belonged not to him to invefligate the principles on which the war was carried on, and that he had no powers to ne. gociate.299

Partial fuc

 ceffes of the Auftrians.After forcing the paflage of the Tagliamento on the 17th, the French had ealily defeated the Autrians on the oppofite bank, and compelled them everywhere to retreat. The other rivers were cailly paffed; and on the 19th, the town of Gradifa, on the river Lifonzo, furrendered to the right wing of the army, and its garriton, anmunting to 3000 micll, were made pri foners of war. On the 2 at G oritz was entered by the fane divilion, who found there the mincipal Auttrian magazines and hofpitals. Triefte was entered on the 23d; and the French fent off in waggons, from the quickfilver mines of Ydria, materials worth $z, 000,000$ of livers. In the mean time, the Auftrians, in their hafty retreat, entangled themfelves and their baggage among the mountains. On the 24 th, a large body of them was hemmed in between Maffene, who had reached Tarvis, and a part of the French right wing under Guieux. Reinforeements, however, having found means to reach them from the Archduke's head quarters at Clagenfurt, they hazarded an engagement on the following day, but were defeated, with the lofs of 5000 taken prifoners, and 402 waggons loaded with baggage. The French left wing under Joubert, Baraguay D' bitlliers, and Delmas, was equally fuccefsful. On the banks of the Lavis, after an obftinate engagement, 4000 Auftians were taken; and thereafter at Clauzen they were again defeated, with the lofs of 1500 taken prifoners. Having entered Brixen, this divifion turned eaftward, and defeended the valley of the Drave towards Clagenfurt, the capital of Carinthia, where it was met by General Maffena; the Archduke, after a flight contef, having evacuated the place, and advanced far ther towards the capital of the empire, which was now ferionlly menaced, and in which great conflernation prevailed. in 15 days Bonaparte had taken 20,000

The Autrian chiefs made a laft effort, by railing the - peafants of the Tyrol in a mals to embarrafs the rear of the French. 'They accordingly gained forne fucceffes under General Landohn, and drove out the French troops that had been left at Butzen and Brixen. The inhabitants of the Venetian thates alfo role againft the troops that remained in their country; and being joined by ten regiments of Sclavonians, whichhad been in the pay of the government of Venice, they put the French to death wherever they were found, without excepting the fick in the hoipitals, of whom 500 were maffacred at Verona. A party of Imperialifts alfo drove the French garrifon out of Triefte, and thus attempted to furround the invading army. Bonaparte, however,
knew that the court of Vienna mu f beiat lean as nuch Freach embarraffed as himfelf. His army amonited to 95,000 Revolution men. It had hitherto proved irrefillib!e; and the Auftrians knew, that to furround was not to conquer it. He therefore perfitted in advancing. On thee $2 d$ of April he fuccecded in forcing the thong defites letween Freifach and Newmatk, after a lifoony batte, in which he took 600 prifoners. On the 4 th, his advanced gaard reached Hunfinark, where the Anfians were again defeated; and his army oecupied Kintenfeld, Mlurau, and Judenbourg. 'Thife advantages com. I he Aurpelled the Auftrian cabinet to treat for peace, as there frian cabi was no longer any point at which the Arciduke's army could hope to make a ftand till it came to the iround. tains in the vicinity of Vienna. Meafures were taken for removing the public weafure and uffects into Hungary, while Generals Bellegarde and Morveld were fent to requeft from Bonaparte a fufpention of hotthties. On being fuffered to take poffeffon of Grat\% and I,coben, within little more timn 50 miles of Vienna, he confented, on the 7 th of April, to an armillice, which was only to endure till the night of the 131 h , but was afterwards renewed for a longer period. It was followed on the 19 th by a preliminary treaty, figned at Leoben ; by which it was agreed that the Autrian Netherlands fhould belong to France, and that the new republic in Lombardy fhould contiune under the name of the Cifalpine Repullic, and thould include the Milancle, the duchy of Mantua, and the territories of Modena, Ferrar, and Bulogna. 'There is realon to fufpect that fomething holtile to the independence of Venice was here alfo ftipulated. Bonaparte agreed to Unjur 301 withdraw without delay into. Italy, on receiving fub-and criel fiftence for his army during its march; and it was re-conduct of folved, that all farther difputes Thould be afterwards Bonaiarte. fettled by a definitive treaty of pace. On his returu he accufed the Venetian goverument of connivance at the infurrection which had taken place againit the French in his abfence; and having feized thecir city and whole territory, he difolved that ancient and fingular, but now feeble, arillocracy.

While Bondparte was advancing towards Vienna, the French armies on the Rhine had begun to prefs upon the Auftrians, to prevent farther reinforcements from being fent againft him from that quarter. The AuAtrians offered an armittice; but as the French demand. ed the fortrefs of Ehrenbreitltein as the price of it, both parties prepared for action. The left wing of the army of Generd Hoche advanced rapidly from Duffeldorl, while the centre and right wing croffed the R hime near Coblentz. 'The Auitrians under General Wer-succefies of neeht retreated to the Lalin, where they waited the ar- the French rival of the French. Here a violent contedt enfued on on the the 18 th of April, in which 4000 Aultrians were tas ${ }^{\text {Rhine. }}$ ken prifoners. The French took poffeftion of Wetzlaer, and drove their antagonifts to the gates of Francfort. In the mean time, General Moreau, on the Upper Rhine, forced the paffage of the river near Strafburg, and attacked the village of Diertheim, of which he at laft retained poffeffion, after having been more than once driven out, and the village nearly deftroyed. The following day, however, the Autrians renewed the attack, and forced the French for fome time to give way ; but powerful reinforcements having cruffed the

1 E V

$425] \quad \mathrm{K} \mathrm{E} \mathrm{V}$

Frenh river, the French were at laft enabled to renew the evilution, battle with fuch vigour, that they touk Fort Kehl, to. gether with 9000 prifoners. The Imperialits in this quarter were now purfued towards the Damube; when all military operations were fuddenly arrefted by meffengers fent through Germany by the Arehduke Charles and Bonaparte, ammouncing that peace was concladed. Thefe neffengers found the army of Huche violently attacking Francfort on the Maine, which General Wernecht was endeavouring to defend. The news was diffufed in an inflant through buth armics; and the contending troops, throwing afde their weapono, congratulated each of her upon the event.

France now held a very elevated rauk, and a formidable character, amrur the nations of Europe. Spain, Italy, and Holland, were held in dependence; while her vituorious armies had compelled the laft contiuen. tal member of the coalition to accept of peace from an army that approached his capital. Had the Auftrian officers been faithful, and the court of Viema leis felfifh, fubfequent events have indred thewn that the affairs of the Eniperur were not yet defparate, and that Bonaparte was not that invincible hero which his rapid fuccefles gave fome reafon to fuppofe him. After the perufal of his letters from Egypt, his victories lofe much of their brilliancy; nor does any action, or all the actions of his life, difplay fuch military fkill, as the retreat of Moreau through Swabia, when preffed on the rear by a victorious army, and furrounded on all hands by an incenfed populace. But lionaparte had been fuccefsful; the Archduke knew not whom to truft: there is reafon to believe that his plans were continual. ly thwarted by a corrupt council at home; and the court of Vienna was lribed to make a peace. Of all the enemies of the French revolution, Britain alone remained in hoffility. From her command of the ocean, . fle was enabled indeed to retain the feeble flate of Portugal, attached to her caufe; but on land, fuch was the terrible energy of France, that, with this exception, which feemed only to exilt by tolerance, the Britifh trading veffels were excluded, by her influence, from all approach to the continent, from the Eibe to the Adriatic ; and the Britih government was once more induced, in thefe circumftances, to try the effect of a new negociation. All thefe external advantages, however, were fpeedily lof by the French nation; and it feemed the unhappy defliny of this people to be conftantly deprived of the fruits of all their fufferings, and their courage, by the turbulence of their domeftic factions, and the profligacy and unprincipled conduct of their rulers. and though deferted of late by fume of the more violent fpirits, who wcre termed Anarchifls, it was ftill confidered as the head of the Mountain party. By the victory obtained over the fections of Paris on the 5th of October, all oppofition had been fet at defiance for a time; but the nation at large had never been reconciled to thefe men. The period now arrived when a third of the leginative body was to be changed. On the $1^{\text {th }}$ of May, Letourneur went out of the Directory by lot. On the 20th, the new third took their Suppl. Vol. II. Part II.
feats in the Councils, a thiri of their predecuffors having evacuated their feats by lot; and on the following ${ }^{R}$ day, Barthelemi, the ambaniador to Switzerland, was chofen to facceed Letourneur in the Directory. The election of the members of the new third had alniout entirely fallen upun men who were underfood to be hoftile to the Dircetory. Many Gencrals out of einployment were chofen ; fuch as Pichegru, Jourdan, and Willot, and many reprefentatives of the families of the ancient nobility who had not emigrated (anong whon was the Prince of Comi) were now elched into the legillature. The moserate or opofition party in the two Councils now poffeffed a complete majority. Carnot and Barthelemi were undertlood to be favomatie to them in the Dircelory ; the furmer having inade bis peace with the m , and the latter being eftallified by themfelves. "Whe cifect of this change in the Hate of the Councils fpeedily appeared in their adopting every meafure that conld embarafs the Diretory, or calt odium upon the Mountain party, and alter the liste of things which it had eftablifhed.

On the $14^{\text {th }}$ of June, Gilbert Defmolieres brought forward a report from a committee "pom the flate of the finances; in which he exhibited and repoloted in the flrongeit terms the prodigality of the Dirciory, and the profufion and rapacity of its ageats. Oa the 18th the fame committee propofed a new plan of tinance, the object of which was to deprive the Directory of any fhare in the adininiftration of the public money. In the mean time, on the 17 th of the fame month, Camille Jourdan liad prefented a long repoit on the fubject of religion; in which he endeavonicd to demonitrate the impropriety of prohibiting the public difplay of its ceremonies, and the injultice of the perfecution which its minilters had undergone for refufing to take oaths prefcribed by the legillature. This report was afterwards, on the 15 th of July, followed up in the Council of Five Hundred, by a decree, repealing all the laws againft refractory priefts, or which affimilated them to emigrants. On the fullowing day, another decree, requiring frum them a doclaration of fidelity to the conflitution, could oniy be carried by a majority of 210 again 204 . A propufal was now brought forward in the Cunncil of Five Hundred by find meabrought forward in the counch Emery, a new member, to repeal the laws which con-Councils. fifcated the property of emigrants, and to allow their relations to fucceed to them as if they had died at the period of their emigration. Thofe who had fled into foreign countries from Toulon and other places, during the reign of terror, were alfo encouraged to return, 3.ad allowed to expect that their names would be erazed from the litt of emigrants. The conduct of the Directory towards fortign powers was attacked on different occafions; and Dumoullard propofed the appointment of a committee to enquire into the external relations of the republic. This was a delicate fubject ; as it involved the character of the armies and their leaders, and as it might fubvert the interefts of the Directory with fome of their friends of the Mountain party. The Venetian republic, though a neutral ftate, had been overturned by Bonaparte on account of a popular infurrection, for which the government apologifed. Little account had been given of the immenfe fums of money that had been levied in Italy. The armies in the preceding year had entered Germany in the character of

3 H
plunderers ;

Frarch
2 volation,
1:47.

French plunderers; which had diffufted all thofe in that comnRevoluti in ery who had once been friendly to their caule, and 199.- Ionerell for their arrival. The Directory, at the fame time, inftead of encouraging the progrefs of revolution, which the Jacohims eagerly defited, had furdenly made peace with tive Gomman princes, upon receiving pecuniary contioutions, which were lelt to be exacted ac. codiling to the ancient laws of the different Itates (which exempt the nobles and the clergy) and thus fell hea. velt upon thofe very perfons who had cherifhed the new repuhlican principles.

The difeuffion of thefe fubjects brought the majority of the Directory and of the Councils into a flate of complete holtility. Both parties refolved to violate the conftitution, under the pretence of preferving it. The one wifhed to change the Directury before the time preferibed by law, and the other to deprive of their feats a great number of the new legillators elected by the people. Juarras was the moft oinoxions of the directors; and an attempt was made to deprive him of his office, upun the footing that he was lefs than 40 years of age. But his colleagues afferted that he was born i:1 the year 3755 ; and as no proof to the contrary could be broushe, this abottive attempt fetved only Etill farther to irritate the contending parties, and they hegan to prepare for more efiretual meafures. Had not force been fpeedily ufed on the fide of the
fron of the army of General Hoche had adranced with. Eiena in a few leagues of Paris; whereas, by the conftitution, Revolutin the Diectery incurred the penalty of ten years impri- $\underbrace{1797 .}$ fonment if it authorifed troops to approach nearer to the refidence of the leginative body than twelve leagues, without its own confent. An explanation of this event was immediately demanded. The Directory denied that they had ordered the march, and afcribed it to a miftake of the officer by whom it was conducted. Their explanation was treated with contenpt, and much angry debate took place in the Coutucils concerning it ; the Directory all the while conducting themfelves with much feeming moderation, and cven fubmiffivenefs. In the mean time their antagonitts acted a very undecided part. They The 309 long hoped to gain Lareveillere Laux to their fide ; tory vido in which eale they would have had a majority in the rious. Directory. This vain expectation rendered their conduct indecifive. At length the majority of the Directory procured an addrefs of adherence from the fuburb St Antoine, which in all the tempeftuous days of the revolution had been the rallying point of the Mountain party. Encouraged by this addrefs, they proceeded to immediate action. General Augereau had been fent from Icaly under pretence of prefenting fome Auftrian ftandards to the Directory, and he was employed as their tool upon this occalion. They commanded the garrifon of Paris, and they lad managed to bring over to their party the foldiers compofing the guard of the two councils. Before rlay.bieak, on the morning of the $4^{\text {th }}$, Augereau furrounded the Thnilleries with a divifion of the troops. The guard of the Councils refufed to refift, and their commander, Ramel, was taken prifoher. Having entered the hall, he found Pichegru and other twelve of the chiefs of the oppofite party fitting in confultation, and immediately fent them prifoners to the Temple. Some other obnoxious menbers of the Councils werealfo put under arrell. The director Carnot had made his efeape on the preceding evening, but Bartielemi remained, and was imprifoned.

All this was accomplifhed without noife, and in an inftant. Many members of the Councils, when they canie to the lall at the ulual hour were furprifed to find ahat ftals were put upon the doors, and that they could not obtain admittance. They were invited, however, to go to the Surgeons Hull and the theatre of the Odeon, where they were told the Directory had appointed the Councils to affemble. At thefe places, about forty of the Council of Ancients, and double that number of the other Counci, affembled about noon, and fent to demand from the Directury an account of the proceedings of the morning. They received an anfwer, declaring, that what had been done was neceffary to the falvation of the Republic, and congratulating the Councils on their efriape from the machinations of royal-pretende ifts. Being fill at a lofs how to act, the Councilconfpiras of Five Hundred appointed a committee of four members (of whom Sieyes was one) to report upon the meafures to be adopted. On the following day Boullay de la Meurth prefented a report from this committer, in which he announced, that a valt royalift confpiracy, whofe centre was in the bofom of the Councils, had been formed to overturn the conftitution, but that it ha'd been bafled by the wifdom and activity of the Directory. The report concluded, by propoling the im mediate tranfortation of the confpirtiors without a
atiah

R E V
French trial. Accordingly, thefe degraded reprefentative boRevolution, bies proceeded, after fome debate, on hearing the names ง74:-
ence various documents intended to prove the exiltthefe was a paper, faid to be written by M d'Antraigues, and found by Bonaparte at Venice ; in which a detail was given of a correfpondence between General Pichegru and the Prince of Condé in the year 1795. The correfyondence itfelf was alfo, at the fame time, faid to be found by General Moreau among papers taken by him at the late paflage of the Rhine. It flated, that Pichegru had offered to the Prince of Condé to crofs the Rhine with his army, and having joined the Autrians under General Wurmfer, and the emigrants under the Prince of Condé, to return with the united arnies and march to Paris, where they were to re-ettalifh royalty. The Prinoe is faid to have refufed to accept of the offer, from jealoufy of the participation of the Auftrians in the honour of the tranfattion. He therefore infitted that it thould be couducted without their aid ; but Pichegru theught the attempt too hazardous in this form, and, being foon after removed from his command, the project failed. At the time of its publication, the genuinenefs of this correfpondence, and alfo of the paper found by Bonaparte, was denied; and nothing has appeared fince to induce an unprejudiced man to think otherwife at prefent. Moreau, who was certainly involved in this coulpiracy, if real, has been intrufted fince that period with the command of the armies of the republic; and though defeated by Marfhal Suwarrow, he is fo far from being now confidered as a royalift, that the revolutionary government feems inclined to intruft to his military fkill and fidelity its laft efforts for the continuance of its exiftence.

From the violation of the reprefentative government that has been now flated, it became obvious to furrounding nations, that France had paffed under the dominion of a fmall faction at variance with the majority of the people. The Directory was all powerful. Its members, however, feem very foon to have become giddy by the elevated mature of their fituation, and to thave adopted a notion that there was no project of am-
bition or rapacity in which they might not venture to engage. During their conten with the Councils, they ${ }^{\text {R }}$ had protrakited the negociations with Lord Malmefbury at Lifle, and had fuffercd thofe to relax which had been entered into between Bonaparte and the Inperial ambaffadors at Campo Formio near Udine. Great Britain had offered to confent to peace, on condition of being allowed to retain the Dutch fettlement of the Cape of Good Hope, and the Spanifh illand of Trinidad, which had been taken in the month of Eelruary this year. The Directory now recalled their former negociators Letourneur and Maret, and fent two others, Treilhard and Bonnier, in their ftead; who imnediately demanded whether Lourd Mumefbury liad full power to rellore all the fettlements taken from France and her allies during the war? Upun his Lordfhip's declining to anfwer fuch a quellion, hecaufe it implied an enquiry. not into his powers, which were in the ufual form, but into his inftructions, which would preclude all uegociation, he was required to return home to procure more ample powers. The negociations with the Emperor, however, were no:v fpeedily brought to a conclufion. On the 17 th of October, a definitive treaty was figned Nether By the Treaty of Netherlands to France, the Milanefe to the Cifalpine Camy', rcpublic, and his territories in the Brifgaw to the Duke of Modena, as an indemnification fur the lofs of his duchy in Italy. The Emperor alfo confented that the French fhould poffet's the Venetian inands in the Levant of Corfu, Zante, Cephalonia, Santa Maura, Cerigo, and uthers. On the other hand, the Freach Republic confented that the Emperor Mould poffefs in full fovereignty the city of Venice, and its whole other territory, from the extremity of Dalmatia round the Adriatic as far as the Adige and the lalie Garda. The Cifalpine Republic was to poffefs the remaining territory of Venice in this quarter, along with the city and duchy of Mantua, and the ecclelialtical ftates of Ferrara and Bulogna.

Upon whatever principles the war might have hitherto been conducted, the terms of this treaty fuficiently demonitrated to all Europe, that its iefer flates had no better reafon to expeet fecurity from the houfe of AuAtria than from that of the new republic. This truth would have been fill mure evident, had the articles of a convention, which was figned by thefe parties at the fame period at Campo Formio, been publifhed to the world. Feating, however, to alarm tou much the Germanic body, thefe articles were kept fecret, and the parties agreed to prevail with the German princes, at a congrefs to be opened at Raftadt, to confent, in confequence of an apparently fair negociation, to what Franee and Aultria had determined fhould take place. By the fecret convertion or treaty nuw alluded to, it was Ripulated, that the Rhine, including the fortrefs of Mentz, hould be the boundary of the French Republic; that the princes, whofe territories were alienated by this agreement, thould be indemnified by the fecularization of church lands in Germany; that the Stadtholder of Holland fhould be indemnitied for the lofs of his eftates in that country, by receiving German territory; that the Emperor flionld receive the Archbihopric of Saltzburg, and the part of the circle of Bavaria fituated between that archbiflopric, the rivers Inn and Saltz, and the Tyrol; that the Imperial troops fhould immediately withdraw to the confines of the hereditary fates be-

R E V

French yond Ulm ; and if the Germanic body fhould refufe Revolution peace on the above terms, it was Atipulated, that the $\underbrace{1 ; 97 .}$ Emperor hould fupply to it no more troops than his contingent as a coellate anoounted to, and that even thefe fhould wot be cmployed in any fortified place.

Thefe ireatics were immediately begun to be put in execution. The Aultrians left the Rhine, which enabled the French to furround the fortreffes of Mentz and Ehrenbreitfein. Of the former, they fpeedily abtained poffeflion; but the latter coll them a very tedi. ous bluckade, before the garrifon, confitting of truops of the Pulatinate, would agree to furrender. The Imperial troups, at the fame time, entered Venice; the French having evacuated that ciry after carrying off or deltroying its whole navy. The Cifalpine Republic was eflablihed, and Bonaparte left Italy ; leaving, however, an army of 25,000 men to garrifon Mantua, republic in dependence upon France. Genoa was, at the fame time, brought under a fimilar dependence by means of popular conmotion, inftigated by the Frencb, and a revolution in its government which touk place at
this period. And thus the French Directory, without the excufe of hoflility, as in the cafes of Hollarid and Spain, began a fyftem of interference in the affairs of weaker neighbouring flates, which was fpeedily carried to an height that once more alarmed all Europe. Thefe men even attenpted, at this time, to compel the flates of North America to purchafe with money their forbearance from war. 'I'his was done through a eircuitous channel, and in the form of an intrigue, by private perfons, who were inftructed to inform the American minilters at Paris, that a large loan on the part of America would be the beft means of fecuring peace; and it was hinted, that it would be rendered more acceptable if aecompanied with a private prefent of L. 50,000 fterling to the members of the Directory. This laft propufal was indeed denied by the Freneh minifter Tallyrand, who had given his countenance to this crooked negociation : but the general impreffion produced by the tranfactions could not be removed; and its effect was to injure very deeply the character of the French government in the opinion of thofe diftant nations that were otherwife difpofed to regard it in the moft favourable light. Nor was its refpectability increafed by a law which the two Councils, at the defire of the Directory, thought fit to enact, declaring the hhips of all seutral ftates bound for Britain, or returning from thence, liable to capture. This law was not lets impolitic than unjuft. It placed the whole carrying trade of the weftern world in the hands of the Britifh, and thus emriched the very people whom it was in. tended to injure.

For at this period Dritain had acquired over the 314 ocean a degree of uncontrouled dominion that was alInvation of together unexampled in former times. During the whole
Wales Wales.
year the French fleet lay blockaded in its owns ports, and no enterprife was attempted by fea, excepting in one folitary but fingular iuftance. We have already mentioned that a number of galley flaves were fent as foldiers with Hoche in his attempt upon Ireland. On the failure of that expedition, the Directory were at a lofs how to difpofe of thefe men. They could not now with propriety be fent back to purifhnent, the troops would not ferve along with them in the army; and as the
new laws of France allow no remifion of crimes, they French conld not receive a pardon, nor was it fafe to let loofe Revolution, upou the country 1400 crimiuals. In this dilemma, the Directory refolved to throw them into England. Accordingly, they were fent in two frigates and fome fmall veffels to the coart of Wales, and there landed with mulkets and ammunition, but without artillery. In the evening of the very day on which they landed, the 23 d of February, they furrendered themfelves prifoners of war to a party of militia, yeomanry, cavalry, colliers, and others, under the command of Lord Cawdor. The Directory boafted that, by this enterprife, they had demonAtrated the poffibility of landing troops on the Britifh coalt in fpite of the vigilance of the navy; but this affertion was ill fupported by the fate of the two figates accompanying the expedition ; both were captured in attempted to return to Bre!t.

Though the French navy remained in port, and con- 315 fequently fafe during the reft of the year, their allies, vialory of the Spaniards and Dutel, fuffered feverely. On the Sir John 14th of February, a Britihh flect of 15 fail of the line, the spavisis under the command of Sir John Jervis, engaged the fleet sparila: Spanif fleet, amounting to 27 fail of the line, off Cape St Vincent. In this action, the Spanifl force, if it be eltimated by the number of men, the number of guns, and the weight of metal, was more than double that of the Britih; but by the ikilful mancenves of its heroic commander, the Britifh fleet twice croffed through the line of the Spaniards, and fucceeded in cutting off a part of their fleet from the reft. Four fhips of the line were taken, and the Spanifh admiral's own fhip efcaped with difficulty. The fleet had heen on its way to Breft to join the French fleet there ; but in confequence of this action, it returned to Cadiz, where it was blockaded by the Britifh.
For his gallant conduct in this engagement, which, when every circumflance is taken into conlideration, is perhaps unparalleled in the annals of naval war, Sir John Jervis was immediately ereated Earl St Vincent, and received the thanks of both houfes of the Britifh Parliament.
'I'lee Dutch were fill more unfortunate. The Texel, And of Adwithin which their fleet lay, was blockaded during the miral Dunwhole fummer by Admiral Duncan, The Frinch in- can over tended, by means of the Dutch fleet, to make another the Dutch. atternpt upon Irelaud. Troops were accordingly em. barked, under the command of General Daendels; but a refolution having at laft been adopted of hazarding an engagement with the Britifh, the Dutch admiral De Winter, in oppofition to his own remonftrances, was ordered to put to fea. The Britifh admiral had by this time left his Ilation near the Texel, aud gone to Yarmouth to refit. On receiving intelligence, however, that the Dutch had failed, he inftantly proceeded in quelt of them. Cn the is th of October the Britifh flett, amounting to 16 fail of the line and 3 frigates, came in fight of the Dutch fleet, which in force was nearly equal, within about nine miles of Camperdown in Holland. Admiral Duncan immediately run his fleet through the Dutch line, and, though on a lee fhore, began the engagement between them and their own coalt. A moft bloody and obftinate conflict enfued, which lafted nearly three hours. By that time, it is faid that almoft the whole Duteh fleet had ftruck. The flips could not all be approached and feized, how-
ever,

R E

French ever, on account of the flalliwnefs of the water upon Revolution, the coaft, to which the fleets were now very near
:7yS. Eight fhips of the line, with two of 56 guns, and one ot 47, were taken, befides a frigate, which was afterwards loft near the Britifh coall, and one of the thips of 56 guns foundered at fea. Admiral de Winter was taken with his thip, and alfo the Vice-adniral Rentjies.

Similar honours wese conferred upon Adniral Duncan as upon Sir John Jervis, and buth admials had each a penfion of L. 2000 per annum conferred upon him for life, with the full approbation, we may venture to fay, of every well affected man in the kingdum.
579.

The iuternal hitury of France now ceafed to be very interefting. Political frectom could not be faid to after fo many of the reprefentatives chofen by the people had been driven from the legifature, and the departments reduced to the neechity of electing mean more acceptable to their prelent rulers. Public fpirit there- fore rapidly declined. The ligh notions of the freedonn and felicity it was about to enjoy, which bad once been fo eagerly cherifhed by a great part of the nation, now gave way to a growing indifference about political queftions, and the future deftiny of the republic ; for the people at large found themfelves little interefled in a governnent which exifted independent of their will, which confifted of a narrow circle of perfons, and whofe conduct was furely not lefs crooked, iniriguing, and unprincipled, than that of the ancient royalty, and its attending court, from which they had efcaped; whillt its ferocious cruelty, and total difregard even of the forms of juftice, were infnitely greater. But though the Directory was all-powerful, yet its power was limited by the pefent flate of things, which denied it the poffefion of an abundant revenue. It had not yet been found poffible to re-eftablih a fyftem of productive taxation. The legiflative comncils, indeed, who now complied with every wifh of the Directory, voted abundance of taxes; but thefe were fcantily paid ; partly on account of the total lofs of the national commerce, and partly becaufe the people were nut difpofed to make great exertions in this way for the fupport of government. By the conflitution, they ftill poffefed the election of the judges aud other magittrates; the country was filled with veteran foldiers, who at different times had returned from the armies after the lapfe of Meafure of the ufual period of ferrice. The Directory, kept in the Direc- awe by thefe circumiltances, turned its attention abroad, cury. and found means to eftablifh an extenfive patronage, by dividing among its adherents the plunder of neighbouring Atates, in whofe welfare the people of France were little interelled. The Girondift party had formerly propofed to propagate their principles by eftablining a number of petty republics in the vicinity of France. The Directory now adopted the fame project ; that, under the pretence of diffufing liberty, they might obtain new fources of revenue and of power, hy the dominion which they meant to exercife over thefe new governments. Hollard and the Cifilpine republic were already placed in dependence upon them; and Rome and Switzerland readily afforded them opportunities for extending their plan.
Embafy so After the treaty with the Emperor had been concluRome. ded at Campo Formio, Jofeph Bonaparte, brother of the General, had entered Rome as ambaflador from the Erench Republic. The Pope, now deprived of all hope

429]
 R E V

of forcign aid, and accuftomed to humiliations, had fub- Freneh mitted to every demand made by him for reducing the Revourion, number of his troops, and fetting at liberty perfons im. $\underbrace{1798}$ prifoned on account of political opinions. But an event \int_{320} Loon accurred to afford the Directory a pretence for infurrecaccomplifhing the ruin of this decayed government. tion in that Qn the 26 th of December 1597, three perfons had ${ }^{\text {city }}$ waited upon the French amballador, and folicited the protection of his government to a revolution which a party at Reme meant to accomplinh. He rejected their propofals, and diffauded them from the attempt; but did not, as was certainly his duty, communicate thefe propufals to the papal government, to which he was fent on a friendly embalfy. On the fullowing day, however, a tumult took place, in which the Freneh cockade was worn by about 100 infurgents. They wsre fpecdily difperfed, but two of the Pope's dragoons were killed. The ambaffador, who probably knew the difpofition of the Directory tuwards the Pope, feenis to bave refolved that his ov:n perfonal conduct fould be blanielefs on the occafion. He therefore went on the 2 Sth of December to the fecretary of flate, and prefented a litt of the perfons under his protection who were entitled to wear the French cockade, confenting that all others adopting it fhonld be punilhed. He al. fo agreed to furrender tix of the infurgents who had takent refuge in his palace. 'lowards the evening of this day, however, the popular tumult becane more ferious, particularly in the courts and neighbourhood of the French minifter's palace. The Pope appears to have been perfonally unacquainted with the flate of affairs: but the governor of the city fent parties of cavalry and infantry to difperfe the infurgents. About twenty perfons, having a Frenchman at their head, had, in the mean time, rufhed into the palace, and demanded aid towards accomplifhing a revolution. A number of French officers, and others who were with the ambaffador, propofed to drive the whole infurgents by force from the jurifdiction of the palace. This was certanly a falutary advice, and fuch as could nut have been rejected by the ambaffudor, had not his defigns been hoftile to the eftabliffed goverument. Rejected, however, it was; for, pretending to believe that his authority would be fufficient to accomplith the nbject in a peaceable mauner, he went out into the count to addrefs the multitude. He was prevented from doing fo by a difcharge of mufquetry from the military, who were firing within the jurifdiction of the palace. He interposed with his friends between the military and the infurgents; and while a part of the French officers in his train drove back the infurgents with their fabres, the ambaflador advanced towards the foldiers, and demanded why they prefumed to violate his jurifdiction? as if the jurifdiction of a foreign ambaflador were a legal afylum for mien in open rebellion againtt the government of the ftate. It is not, therefore, furprifing, that no attention was paid to this arrogant and abfurd demand; and the nature of the ground being fuch, that the troops could fire over his head upon the multitude in the rear, they made a fecond difcharge, which killed feveral of the infurgents. Upon this the ambaffador advanced clofe upon the foldiers, to prevail with them to depart ; but they remained in a menacing attitude, and prepared for another difcharge. Eager to prevent this, the French General Duphot, who was with the ambaro

R E V [430] R E V

rench ambafidor, and was next day to have married his fifter, Revolution, minhed into the ranks of the military, intreating them 1798.
. 21 A French peneral kilied.
to defift. Here a petty officer of the Pope's troops difcharged his muket into the body of Duphot. Upon this, the ambaffador and his other friends found it neceffary to make their efcape through a bye-way into the palace. The Spanin minitter hearing of this cvent, fent to the fecretary of ftate to protef againft this violation of the privileges of ambaffadors But the government, equally alarmed and perplexed by the fear of a revolution, and of French vengcance, remained during many hours totally inactive. All this while the palace of the French ambaffador remained clofely befet by the military, who occupied the whole of its jurifdiction, and all its courts and paffages. He at laft fent to demand paffourts, to enable him to leave the territories of the Pope. They were granted; but with many proteft dtions of the innocence of the government, and its regret on account of this unfortunate occurrence.

Jofeph Bonaparte retired to Florence, and from thence to Paris. The Pope folicited the protection of the courts of Vienna, Naples, Tufcany, and Spain; but they all ftood aloof from his misfortunes : and this government, which had once poffeffed the moft uncontrouled domi. nion over the minds of men, now fell without a ftruggle. General Berthier, at the head of a body of French and Cifalpine troops, encountered no oppofition in his march to Rome, where he overturned the government of the Pope, and proclaimed the fovercignty of the Roman people, with circumflances of wanton infult; which convey a fliking example of French humanity and French delicacy.
" That the head of the church might be made to
feel with more poignancy his humiliating fituation, the French day chofen for planting the tree of liberty on the Ca - Revolution, fitol was the anniverfary of his election to the fovereignty. Whilft he was, according to cultom, in the Siftine chapel celcbrating his acceffion to the papal chair, and recciving the congratulations of the cardinals, Citizen Haller, the cominiffoner-general, and Cervoni, who then commanded the French troops within the city, gratified themfelves in a peculiar triumph uver this unfortunate potentate. During that ceremony they both entered the chapel, and Haller announced to the fove. reign Pontiff on his throne, that his reign was at an end.
"The poor old man feemed thocked at the abrupt. Cruel treat* nefs of this unexpected notice, but foon recovered him- ment of the felf with becoming fortitude; and when General Cer- Pope. voni, adding ridicule to oppreffion, prefented him the national cockade, he rejected it with a dignity that thewed he was ftill fuperior to his misfortunes. At the fame time that his Holinefs received this notice of the diffolution of his power, his Swifs guards were difmiffed, and republican foldiers put in their place."

He was himfelf removed to the territory of Tufcany, where he refided in much obfcurity, till his enemies, diriven from Rome in their turn, thought fit to carry him fill farther from his capital, to end his days beyond the Alps.

In the mean time, the Roman flates were converted Roman re. into a republic after the French model ; excepting that public. the ancient appellations of confuls, fenators, and tribunes, were adopted, inftead of the new names of a Direfory and two Councils (D). But this oftentatious grant of freedom was rendered completely illufory, by a condin
(D) The character of a nation, like that of an individual, will not perlaps admit of a fudden and total change. This remark is exemplified in the French ; who, even when they affect to aflume the ftern manners of Republicans, cannot diveft themfelves of their frivolous and fantaftical turn, and of that fondnefs for pomp and how by which they were always diftinguifhed. The following account of the re-eftablifhnent of the Roman Republic, by an author of refpectability who witneffed the folemn farce, will amply confirm the truth of our affertion.
"That the regenerated Roman people might be conftitutionally confirmed in their newly-acquired rights, a day was fet apart folemuly to renomice their old goverument, and fwear fidelity to the new. For the celebration of this folemnity, which took place on the zoth of March, an altar was erected, in the middle of the piazza of St Peter's, with three ftatues upon it, reprefenting the French, Cifalpine, and Roman Republics. Behind the altar was a large tent, covered and decorated with filk of the Roman colours, furmounted with a red cap, 10 receive the deputies from the departments who had been fummoned to affilt. Before the altar was placed an open orcheftra, filled with the fame band that had hefore been employed to celebrate the funeral honours of Duphot. At the foot of the bridge of St Angelo, in the piazza di Ponte, was erected a triumphal arch, upon the general defign of that of Conftantine, in the Campo Vacino, on the top of which was alfo placed three coloffal fligures, reprefenting the three republics. As a fubftitute for bas-reliefs, it was painted in compartments in chiara foura, reprefenting the moft diftinguifhed actions of Bonaparte in Italy. Before this arch was another orcheftra.
"The ceremony in the piazza began by the marching in of the Roman legion, which was drawn up clofe to the colonnade, forming a femicircular line ; then came French infantry, and then cavalry, one regiment after unother alternately, drawn up in feparate detachments round the piazza. When all was thus in order, the confuls made their entrance, on foot, from the Vatican palace, where they had robed themfelves, preceded by a company of national troops and a band of mufic; and if the weather had permitted, a proceffion of citizens, felected and dreffed in gala for the occafion, from the age of five years to fifty, were to have walked two and two carrying olive branches; but an exceffively heavy rain prevented this part of the ceremony.
"Before the high altar, on which were placed the ftatues, there was another fmaller one with fire upon it. Over this fire the confuls, fletching out their hands, fwore eternal hatred to monarchies, and fidelity to the repurlic; and at the conclufion, one of them committed to the flames a feroll of paper he held in his hand, conthising a reprefentation of all the infignia of royalty, as a crown, a fceptre, a tiara, \&c.; after which the Trench troups fired a round of mufketry ; and, at a fignal given, the Roman legion raifed their hats in the air upon the points of their bayonets, as demonfration of attachment to the new government : but there was:no thouting-

R E. V [43I] R E V

Fereh tion annexed to it, that for ten years the French GeneRevolution, ral thould polfefs a negative upon all laws and public 1798. acts. At firf, however, the conquerors tuok care to place the government in the hands of the moft refpect. able perfons in the fate favourable to democracy. But thefe men finding that they were merely to be employed as tnols to plunder their fellow-citizens, for the emolument of their northern mafters, fuon renounced their odious dignities, and were fucceeded by men of more compliant characters, and lefs fcrupulous integrity. The whole public property was feized by the invaders, and contributions were levied without end. The property of the cardinals and others who fled was confifcated, and thufe members of the facred college who remained were thrown into prifons, from which they could only efcape by purchafing their freedom at a high price.

When this was done, and Generals and Commiffaries had glutted themfelves with wealth, quarrelled about a juft divifion of the fooil, mutinied, and difperfed, other unpaid, unclothed, unprovifioned armies from the north, with new appoint ments, fucceeded; and when at length, even by thefe confitutional means, nothing more was to be obtained, and artifice had exhaufted every refource, the mafk was put under the feet that had been long held in the hand; iiberty was declared dangerous to * the fafety of the republic, the conftituted authorities intary law managing the affairs of the fate, and milhplace. Thus at once the mockery of confular dignity was put an end to, the fenators fent home to take care of their families, and the tribunes to blend with the people whom they before reprefented. This new and preferable fyttem began its operations with nothing lefs important for the general welfare, than feizing the whole annual revenue of every eftate productive of more than ten thouland crowns; two-thirds of every eftate that produced more than five, but lefs than ten; and one-lialf of every inferior annual income.

Even the degenerated Romans could not have fubmitted to all this, or at lealt would not have afifted in furging their own chains, had not the fame means been employed to eradicate from their minds every moral and religious principle, which had been formerly employed For the fame purpofe in Paris. In order that the fpirit of equality might be more extenlively diffufed, a con-
ftitutional democratic club was inftituted, and held in the hall of the Duke d'Altemp's palace. Here the Revolution, new-born fons of freedom harangued each other on the ${ }^{1798}$. bleffings of emancipation; talked loudly and boldly a- $\underbrace{}_{326}$ gaint all conllituted authority; and even their own Mett:ods confuls, when hardly invefted with their robes, became emply d the fubjects of cenfure and abufe. The Englifh were the corrupe held as partioularly odious, and a contlant theme of im- ycuth. precation ; and this farce was fo ridiculonfly carricd on, that a twopenny fubfcription was fet on foot to reduce what they were pleafed to call the prond Carthage of the North.

If this foolin. fociety had lad no other object in view than fouting for each other's amufement, bew. ing to and kiffing a buft of Brutus which was placed before the roftrum (a ceremony couitantly practifed bifore the evening's debate), it would have been of little confequence to any but the idle, who preferred that mode of fpending their time ; but it had other objects of a very different tendency, more baneful, and more deftructive to the peace and morals of focity - that of intoxicating young minds with heterogeneous pinciples they could not underitand, in order to fuperfede the firt laws of nature in all the focial duties; for there were not wanting men who knew how to direct the folly and enthufiaim of thofe who did not know how to direct themfelves. Here they were taught, that their duty to the Republic ought ever to be paramount to every other obligation; that the illuftrious Brutis, whofe but they had before them, and whofe patriosic virtue and juftice ought never to be loft fight of, furnithed then with the ftrongelt and moft heroic example of the fubordination of the deareft ties of humanity io the public good; and that, however dear parental afo fection might be, yet, when put in competition with the general welfare of fociety, there ought not to be a moment's hefitation which was to be preferred.

This fort of reafoning mighlit perhaps have done no. harm to the fpeculative clofet metaphyfician, who might have had neither father, nor mother, nor brother, nor fifter, nor a chance of ever being thrown in the wayto reduce his theory to practice; but with a people who knew of no other ties but fuch as depended on their religion and their natural feelings, without having heen previounly educated to diferiminate, how far their reafon might be deluded by fophittry, or upon what
no voluntary figns of approbation; nor do I believe that there ever was a flow, in which the penple were intended to act fo principal a part, where fo decided a tacit difapprobation whas given as on this occafion.
"After the ceremony was concluded, the French officers, with the confuls and deputics from the departments, Alined together in the papal palace on Monte Cavallo, and in the evening gave a magnificent ball to the exnobles. and others, their partizans, which was numeroully attended, yet with an exception to the houfes Borghefe, Suntatroce, Altemp, and Cefatini : I believe not one diftinguifhed family was prefent from defire or inclination: but it was now no longer time to accumulate additional caufes for oppreffion : and he who hoped to fave a remnant of his property, avoided giving occafion for perfonal refentment. At night the dome of St Peter's was illuminated, with the fame fplendour as was cuftomary on the anniverfary of St Peter's day. This was the fecond time of its illumination fince the arrival of the French, having been before difplayed on the evening of the folemn fete to honour the manes of Duphot, which, though not quite fo opportune, was done to gratify the officers that were to leave Rome on the morrow.
"The day arter this federation, the Frencl publifhed the Roman confitution in form, which was only a repetition of the one given to the unfortunate Venetians, confifting of 372 articles, and which I think unnecedary to tranfcribe, as it would only be giving what we have already had frum time to time in tranflations made from their own.". - Iappa's Journal of the mof remarkable occurrentes thul book flace in Rome, upan the Subverfion of Ecclefiaitical Government in 1798 .

R E V

French caufes the perinanent grood of fuciety depended, it had Rev luion, the moft direct tendency to generate the worit paffions, $\underbrace{1 ; 2 \mathrm{~S} .}$ and to annimate the beil.

Young men were thus initiated to lofe all refpect for their parents and relations, and even encouraged to lodge information againtt them, with the hopeful profpeet of being conlidered as deferving well, of what they were pleafed to denominate, the republic; and by thus weakening or deftroying the bonds of affection, the way was made fmooth and eafy to the deftruction of every thing like what, in a tate of civilization, is called character; doubtlefs, in order to prepare them the better to become the faithful agents of thofe whom they were thus educated to ferve.

The moit remarkable curiofities of this celebrated cily had already been conveyed to Paris; and as national vanity had now given place to avarice in the minds of the Directory, the remaining monuments of ancient or of modern art, with which Rome abounded, were fold by public auction. Advertifements (E) were fent through Europe, offering paffports to the natives of countries at war with France, if they fhould wifh to become purchafers; and thus the wealthier inhabitants of the Roman territory not only faw themfelves fubjected to fevere exactions, but they beheld with cruel mor-- tification thofe ohjects now given up as a prey to vulgar fpeculation, and difperfed over the world, which had folong rendered their city the refort of all nations.

Such was the progreffive conduct of the Great Na tion towards an injured and oppreffed people, whofe happinefs and deareft interefts were its firlt care, and to whom freedom and liberty had been reflored, that they might know how to appreciate the virtue of their benefactors, and the ineftimable blelfings of independence.

More fanguinary fcenes were, in the meanwhile, ta-
king place in Switzerland. That country had remain. ed neutral during the conteft in which France had lately been engagrd; and had thus protected the weakeit portion of her frontier, while the reft of it was affailed by the combined forces of Europe. The merit of this fervice was now forgotten, and the Directory refolved to render Switzerland one of their tributary flates. Ambitions nations lave in all ages found it an eafy matter to devife apologies for invading the territory of their neighbours. The wealthier branches of the Siviss confederacy were in general governed by hereditary ariflocracies. Some of the cantons had no government within themfelves, but were the fubjects of neighbouring cantons. In confequence of this circumftance, and of the contending privileges of different orders of men, popular infurrections were more frequent in Switzerland than in any country in Europe, thcugh none was more equitably governed. When an infurrection took place in one canton, its government was frequently under the neceffity of foliciting the aid of the government of an adjoining canton, or even of the neighbouring monarehs
of France or Sardinia, to enalle it to fubdue its orsn Fierch rehcllious fubjects. A dangerous precedent was thus Revo'ution, eflablithed; and as the Freneh kiness had formerly interfered in favour of the rulers. the republican Direc. tory now interfered in favour of the fubjects. The canton of Berne was fovereign of the territory called the Pays de Praud. In this diftrict difcontents had always exifted; and an infurrection, under the countenance of the French Directory, broke out towards the end of the year :797. The og seernment of Berne faw the dangerous nature of its own fituation; and on the 5 th of January iffued a proclamation, commanding the inhabitants of the Pays de Vaud to affemble in amms, to renew their oath of allegiance, and to reform every abule that might appear to exift in their government. A commiffion was at the fame time appointed by the Scnate or Sovereign Council at Berne to examine all complaints, and to redrefs all grievences. The proceedings of this commifion, however, did not keep pace with the popular impatience; and the infurgents began to feize the flrong places in their country. The government of Berne now refolved to reduce them by force, and fent troops againft them ; but their commander Weifs appears to have acted with much helitation, if not with treachery, In the mean time, a body of French approached under General Menard. He fent an aid de camp with two huffars, with a meflage to General Weifs. On the return of the meffengers, an accidental alfray took place, in which one of the huffars was killed. This was magnified into an atrocious breach of the law of nations. The French advanced; and by the end of January obtained poffeffion of the whole Pays de Vaud. Still, however, the government of Berne attempted to preferve peace, while it endeavoured to prepare for war. The foldiers who had killed the French huffar were delivered up, negociations were begun, and a truce entered into with General Brune, who fneceeded Menard in the enmmand of ale French troops in the Pays de Vaud. As internal com. motions were breaking out in all quarters, an attempt was made to quiet the minds of the people, that they might be induced to unite againtt the threatened invafron. Fifty two deputies from the different diftriets undecide were allowed to fit in the Supreme Comacil of Berne, conduct of and a fimilar meafure was adopted by the cantons of the magiZurich, Lucerne, Fribourg, Soleure, and Schaff haufen. Eerne. An army of 20,000 men was at the fame time aftembled, and entruited to the command of M. d'Eilach, formerly field marfhal in the French fervice. But difaffection greatly prevailed in this army, and the people could not be brought to any tolerable degree of union. The French knew all this, and demanded a total change of government. M. d'Erlach, dreading the increafing tendency to defertion among his troops, requefted leave to diffolve the armiftice. It was granted by the govern* ment, and immediately recalled. But the French now refufed to negrociate ; and on the 2 d of Mareh, General Schawenberg, at the head of $13,000 \mathrm{men}$, entered Soleure.
(A) A copy of an advertifement, iffued on this occafion by what was called The Adminifration of Finances and Gontributions of the French Republic in Italy, is to be found in Nicbolfon's Fournal of Philofophy, Chemifry, and the Arts, for May 1798. The advertifement is dated at Rome, 28th Feb. 1798. A copy of it was fent by Hubert, the agent of the French adminiftrators, to Mr Trevor the Britifh miniter at Turin, and by him was tranfmitted to England.

R E V

Fiench Soleure. Friburg was afterwards reduced by Erune, Revrlution, and the Swifs army retreated. The government of $17 \% 8$.

330 Coniterms tion of the governnient, and capitulation
of Berne. Berne was in conflernation, and decreed what was called the landflhurm, or rifing of the people ; which, in cafes of emergency, was authoriled by their ancient cuftoms. The people accordingly affernhled; and their firlt act was to diffolve the government, and to offer to difmirs the arny, on condition that the French troups fhould proceed no farther. This offer was refufect, unlefs a French garrifon fhould he received into Berne, and the invaders continued to advaince. The regular troops under M. d'Eriach were reduced by defertion to 14, 000 . The riling of the people had indeed fupplied him with numbers, but there was no time for arranging them. On the 5 th of March he was attacked, and driven from the pofts of Newenbeg and Favenbrun. He rallied his troops, however, at Uteren, where they made a fland for fome time. They renewed the conteft at Grauholtz without fuccels, and were driven from thence about four miles farther to the gates of their capital. Here the Swifs army made a laft and bloody cffurt. Being completely routed, they murdered many of their officers in defpair, and among others their commander M. d'Erlach. The flaughter on both fides is laid to have been nearly equal ; but the French fucceeded in obtaining poffeffon of Berne by capitulation on the evening of the day on which thefe battles were fought. Upon the capture of this city, the other more wealthy and populous fates fubmitted to the French; but the poorer cantons, who had leat to lofe, made a terrible effurt in defence of their fmall poffeffions, and the independence of their country. They even at firt compelled Schawenberg to retire with the lofs of joco men; but were at laft overpowered by the fuperior numbers and military fkill of the French army. Switzerland was treated as a conquered country. Its public magazines were Ceized by the French, heavy contributions were levied, and a new conflitution, in imitation of that of France, was impofed.
While the Directory continued to encroach upon the independence of other nations, they were not likely to refpect the freedom of their countrymen at home. In the month of April, a third of the legitiature was changed. Francis de Neufchateau went out of the Directory by ballot, and Treilhard was chofen in his ftead. The Directory had made great efforts to infiuence the elections in favour of their friends, but with little fuccefs. They prepared therefore to preferve the legifature in fubjection to them by a new violation of the conflitution. On the 2 d of May they complained to the Council of Five Hundered of the plots of anarchifts and rogalifs; by which they alleged that the elections had in many places been made to fall on men hoflile to the Republic. On the 7 th a committee made a report upon this meflage, and propoled that the proceedings of many electoral affemblics thould be totaily or partially annulled, according to the characters of the perfons they had chofen. Gcneval Jourdan, and fome others, ventured to oppofe this plan as utterly inconfintent with the ficedom of electicn, and as proseeding npon alleged intrigues of confpirators againt the Republic, white no conipiracy had been proved to exift. But the majority agreed to the propofal of the committee, and arbitrarily annulled the whole elecions in fix or feven departments, befides the particular clec. tions of a great number of individuals.

Suppl. Vol. II. Part 1 I.

433] R E V
The Dirceory now carried into effect the med fatal Frerch of all their projects, that of fending a powerful army to Revoltion, the eaft to feize upon Egypt, and from thence to attack the empire which Britain has acquired in Judia. The treat y with Aultria had no fooner been figned at plan-an Campo Furmio, than the Directory excited the expec- expecition tation of France and of all Europe, hy londly prockim- and lucis. ing their determination to invade Great Britain. They fent troops into their own weflern departments, cailcd them the Army of England, and appointed Bonaparte their commander in chief. This whicer, in the mean time, had refided during the winter at Paris. Here he feems to have endeavoured to guard againt the jealoufy of government, and the envy of individuals, by paffing his time in retirement, and affuning the character of a man of letters. He procured himfelf to be elecled a member of the National Inflitute; but fo feldom did he appear abroad, that when he altended fome of its public fittings his perfon was altoucther unknown to the fpectators. Greedy of rinow, but aware that it ultimately depends upon the labours and the approbation of the learned, he nover failed, when called into military fervice, to remind this order of men of his alliance with them, by adding to his name at all proclamations and difpatches the defignation of Mcomlor of the National Inflitute.

Whether the expedition to Egypt was now fuggefed by Bonaparie himfelf, or whicther it was not a fnare by which the prefent rulers of France impofed upon the vanity of an enterprifing, young man, to cwable them to get quit of him and his veteran army, is not known. It is very pufible, however, that Bunaparte night neither be the devifer nor the meonfcions victim of this plan; but that he might account himfelf more fafe abroad, upon the molt liazardous expedition, than expofed at home to the malice of a government that had become jealous of his reputation, and was by no means fcrupuluns in its condnct.

The projected invalion of Egypt was conducted with preparamueh fecrecy. The world was amufed with tales of fions for it monftrous rafts to be conftucked to consey the army of conduced Eugland over into Britain. To favour the deception, wrech f. Bonaparte made a joumey to the wellern coat. In the mean time, the fleet was preparing at T ulon, and troops afleunbling in its neighbourhood. When all was in readinefs. Bonapate embarked with $40,=50$ of the truops that had fought in Italy. O: the gth of June he arrived at the inand of Mchea, and contrived to quarrel with the Grandarater, becaufe be wfufed to admit Co large a fiect all at unce inion his poris to water. The French General immediately landed his trocps in differcnt quarters, and endeavoured to reduce the inand. The knights were divided into factions. Many of them, as is now well known, were of the order of ILLumisati, and of courfe prepared to att the part of traitors. After muking a very fecble revitance, the Grandenaller conqueft of propofed a capitulation; and thus was treacheroufly Malta. furrendered, in a few days, a fortrefs which, if defented by faithful noops, might have licld out fur as many weeks againt all the furcee of the French Republic. Bonepate, after leaving a garrion of 4000 luch in the inlatd, failed on the 2 ift of Juse fur Alexaadria.

In the mean time, Rear aimiral Nelfon. who, in the ${ }^{3.36}$ Ataion of Commodne, had figualized him:ful in a very Ne.fon fuils high degree under Loud St Vincent, had benu difpatch. in quef of co in quelt of him from the Britifh Rect, which flill Ponaparte. 3 I blockaled

R E V [434 1 \quad R E V

French blockaded Caliz. Not knowing the object of the Revolut.on, French expedition, the Britifh Admiral failed firlt to ${ }^{1} 748$. Naples; and having there been informed of the attack upon Malta, he directed his courfe to that ifland. By the time he arrived there, however, Bonaparte had departed. Conjecturing now that Alexandria might be the deftination of the French troops, he failed thither ; but they had not been feen in that quarter, and he therefore went eagerly in fearch of them to other parts of the Mediterranean Bonaparte, in the mean while, inftead of tteering in a direct line for Alexandria; had proceeded nowly with his immenfe train of nearly 400 tranfports, along the coaft of Greece, till he arrived at the eaftern extremity of the inland of Candia. Here he fuddenly turned fouthward; and in confequence of his circuitous courfe, did not arrive at the coatt of Egypt till Admiral Nelfon's fleet had left it. He landed his troops; and on the 5 th of July took hy ftorm the city of Alexandria. The inhabitants defended themfelves very defperately, bat without Kkill ; and for fome time a fcene of barbarous pillage and maffacre enfued. The tranfports that had convered the army were now placed within the inner harbour of Alexandria, and the fhips of war under Admiral Brueys caft anchór in a line clofe along the fhore of what proved to them the fatal Bay
of the line was burned by her own commander ; a frigate was burned in the fame manner, to prevent her being taken. The French Admiral's hip L'Orient took fire, and blew up during the action, and only a fmall number of her crew of 1000 men efcaped deftruction. Two French hips of the line and two frigates were faved by a timely flight (F).

No naval engagement has in modern times produced Confcquen. fuch important confequences as this. The unexampled ces of his military efforts made by France had gradually difolved victory. the combination which the priaces of Europe formed againt her. By the train of victories which Bonaparte had gained, the houfe of Aultria, her mott power. ful rival, had been humbled and intimidated. The whole continent looked towards the new Republic with confternation; and when the Directory feized upon Rome and Switzerland, none were found hardy enough to interpofe in their favour. The current of affairs was now almoft inftantaneoufly altered. Europe beheld Bonaparte, with his invincible army, exiled from its fhores, and fhut up in a barbarous country, from which the triumphant navy of Britain might for ever prevent his return. The enemies of France cuuld not beforehand have conceived the poffibility of the event which was now realifed; and the hope was naturally excited of being able to form a new and more efficient coalition againtt a government which had fo grofsly abufed the temporary profperity it had enjoyed. The northern powers began to litten to the propofals made to them by Great Britain for commencing hoftilities anew, and the Italian fates prepared to make another effort for independence. The court of Naples in particular openly avowed its joy on account of the recent deftruction of the French fleet. 'i'he king himfelf put to fea to meet Adminal Nelfon on his retmon from the Nile. Illuminations took place in the capital, and vigorous preparations were inade for war. The Grand Signior, who had poffeffed of late little authority in Egypt, and might perhaps have been induced to relinquilh his claims on that province rather than engage his decaying empire in war, now entered into clofe alliance with Britain, and engaged in hoftilities againft the French. Tippo Sultan had ftipulated for the aid of a French army againft the Britifh in India; but Bonaparte, on taking poffeffion of Suez and the other Egyptian ports on the Red Sea, found no mipping there fit to tranlport his army to the Indian peninfula. Inftead of proceeding therefore upon any fplendid feheme of farther conqueft, he was conipelled to remain in his prefent fituation, and to contend for exiftence againft the whole force of the Ottoman empire.

The French at this time did not venture to fend forth Rebellion anry large fleet upon the ocean; but wherever their in Ireland fmaller fquadrons appeared, the fort une of Britain overpowered them there no lefs than it had done in the Mediterranean. Trney had long promifed aid to the difaffected party in Ireland ; but weary of fruitlefs expec. tation, the lrifh had during this fummer bruken out into rebellion, without waiting the arrival of the troops whom the Birestory had engaged to fend to their affritance. While the rebellion was at its height, and although the inturgents for fonre time occupied the fea port of Wexford, the French did not arrive. After-

R E V [.435] J E V

French wards, however, when the rebellion had been totally Revolution, fubdued, they attempted to clude the vigilance of the $\underbrace{1798}$

341 Feebly fup porse? by the Dirce tory. Britifh fleet, and to land men in fmall parties. On the $22 d$ of Auguft, General Humbert came aflure at Killala, at the head of about ico men. Even this fnall party might have been dangerous liad it arrived a month earlier; and it actually produced very ferions alarm. It confilled of men felected with great care, and capable of enduring much fatiguc. They were joined by a few of the molt refolute of the difcontented Irifh in the neighbourhood, and fpeedily defeated General Lake, who advanced againft them with a fuperior force, taking from him tix pieses of cannon. They next marched in different directions, for the purpofe of railing the people, and maintained their ground in the country during three weeks. Finding, however, that he was not feconded by additional troups from France, that the rebellion in Ireland had been frilly fubdued, and that 25,000 men under Lord Comwallis were clofing round him, Humbert difmifited his Irifh afociates; and four days thereafter, having encountered one of the Britifh columns in his march, he laid down his arms. Now, when it was too late, the Directory was very active in fending troops towards Ireland; but all their efforts were defeated by the fupcriority of the Britifl navy. On the 12 th of October, Sir John Borlafe Warren took La Hoche, a mip of 84 guns, and four frigates, attempting to reach Ireland with nearly 3000 men on board. The other fhips belonging to the French fquadron, which conveyed 5000 men in all, contrived to make their efcape by failing round by the north of the ifland. On the zoth of the fame month another frigate bound for Ireland was taken; and the French finding that the fea was completely occupied by the Britifi ficet, were at laft compelled to defift from their enterprife.

Ever fince the treaty of Campo Formio had been concluded, a congrefs of minitters from the French Directory, and from the German princes, had been negociating at Raftadt a treaty bet ween France and the empire. As thefe negociations terminated in nothing, and were tedious and uninterefling during their progrefs, it is unneceflary to enter into a detail of the tteps by which they were conducted. The intended refult of them had been previouly arranged between the Emperor and the Directory in the fecret convertion of Campo Formiu, which has been already mentioned. That the articles of $t / / s$ convemion might be concealed, the French minifters at Raftadt formerly brought forward their propofals in fucceffion for the difcuffion of the German deputies. The French demanded that the Rhine fhould be the boundary of their Republic. The Germans refifted this. References were made to the diet of Ratifone, and long difcuffions and negociations took place among the different priaces. When it was found that little was to be expected from the protection of Aufria, the German deputics at Raftadt were inflructed to ofier one half of the territory demanded. This offer was refufed, and new negociations tonk place. The other half was at laf yielded up, and a long difcuffion commenced alout the dehts due by the ceded territory, which the French refufed to pay. The tolls upon the river, and upon the rivers flowing into the Rhine, alfo gave rife to much altercation. It was even a matter of no fmall difficulty, after all, to de-
ternine the precife Unundary of France; whether her territory fhould extend to the left bank, the right bank, or the thalweg, that is, the middle of the navigable chamel of the river. It became alfo a quction how thofe princes ought to be indemnified who loft their ievenues or territoriss by the new acquifitions of France; and it was at length agreed that they fould receive portions of the ecilefiaftical eftates in Germany. Thefe difcuffions, condl: Eted with endefs furnality
and jurocraftination, ftill occupied the congrefs at RaThefe difcufions, condl:Eted with endiefs formality
and procraftivation, ftill oecupied the congrefs at Rafladt : but it now became gradually more probable chat had : but it now became gradually more probahle that 344
no treaty would be concluded at that place. At fria l'reparabegan to flrengthen her arnies in all quarters. Rufia, "inms for that had hitherto avoided any active interferenct in the "ar ont the conteft, place 3 a large body of treops in Britif pasy; and fent them towards the Gorman fromtiows. 'I he king and fent them towards the Gcimau frentiows. The king
of Naples avowedly and ragerly prepared for war. This impaticit monarch, refolving to attack without delay
the Frencl troops who occupicd the Roman territory, impaticnt monarch, refolving to attack without delay
the Frencl troops who occupice the Roman territory, procured General Mack and other offecers from the court of Vienna to affurae the comvand of Kis army.
Without waiting, however, till Aullia Rould comcourt of Vienna to affume the comrand of ris army.
Without waiting, however, till Auliaia fould commence the attack, he raflly hegan the war alone and unaided, excepting by the Britinh fleet, and thus drew
upon himfelf the whole force of the French Republic. unaided, excepting by the Britinh fleet, and thus drew
upon himfelf the whole force of the French Republic. The Directory did not fufpect fuch imprudent conduct on the part of this prince ; and accordingly, when General Mack eutered the Roman teritoly, at the head of ral Mack eatered the Roman territoly, at the head of
45,000 men, the French troops in that quaiter were altogether unequal to the conteft. A French ambaffador thill refided at Naples when this event tork place, dor war was not deciared. When the French Goneral Championet complaired of the attack made upon his pofts under thefe circuinflances, he was informed in a poits under theie circuinftances, he was informed in a refolved to take pofiefion of the Roman territors, having never acknowledgcd its exiftence as a Repullic;
he therefore required the French quietly to depart into ving never acknowledgcd its exiftence as a Repullic;
he therefore required the French quietly to depart into the Cifalpine Itates; declaring, that any act of liofllity on their part, or their entrance into the territory of Tufcany, would be regarded as a declaration of war. Championet finding himfelf unable to rcfift the force
 left howeer, a garrifon in the calle of St Augelo and tol tats left, however, a garrifon in the calte of St Angelo, and tithe of of
endeavoured to concentrate whatever troops he could feficn of left, however, a garrifon in the calle of St Angelo, and thite for
endeavoured to concentrate whatever troops he could feflien of hattily colle $e \mathrm{t}$ in the northern extremity of the Roman R mes. Hate. Towards the end of November; General Mack entered Rome without oppofition.

When thefe evenits cante to be known at Paris, war was immediately declared againt the kings of Naples,
and alfo againtl the king of Sardinia. This laft prince was immediately declared agsintt the king of Naples,
and alfo againtl the king of Sardinia. This laft prince had made no attack upon France; but he was accufed by the Directory, in their meflage to the Cunncils, of by the Directory, in their meflage to the Culncils, of
difafrecion to the Repulic, and of arijuing to join the king of Naples in lis hoftile efforts. I his accufation
could not well be falfe. From the periud of Bonaparking of Naples in lis hoftile efforts. I his accufation
could not well be falfe. From the periud of Bonaparte's fuccefsful irruption into Italy, the king of Sardinis had felt himfelf placed in the moft humiliating circum. flances; his moft important fortrefles were occupied by the French; they levied in his country what conby the French; they levied in his country what con-
tributions they thought fit ; and when they recently required him to reccive a garrifọn into his capital, he 346 found himfelf unable to relitu the demand. Liven now, Hard fate found himfelf unable 10 relift the demand. Liven now, Fard fate
when they performed the ufelefs cetermony of declaringo of ine king war, he could make no effort in his own defence, and of Sardinia.

IVPreir Revolution, 179 s.
\qquad

\qquad
quietly

French quietly gave them a formal relignation n writing of Revolution, his whole continental dominions, confenting to retire to $\underbrace{179 \text { s. the ifland of Sardinia. }}$

In tlre mesn time, the contefl with Na_{i} ! 'es was foon decided. 'I'he French on their retreat were much ha. raffed by the people of the country. The Neapolitan troops regarded them with fuch animofity, that they fearedy obferwed the modern rules of war towards the prifonets who fell into their liands. Even their laaders feemed in this refpect to have forgotten the practice of nations; for when General Bouchard, by order of General Mack, fummoned the callle of St Anselo to fur. render, he declared, that he would confider the prifoners of war and the ficts in the hofpitals as hoftarges for the conduct of the garrifon; and that for every gem that fhould be fired from the callle, a man fould be put to deatli. It cannot well be imagined that the Neapolitan offieers would lave acted in this vehement manner, had they not expucted countenance and fup-

347
Naplescon quered by the French port from the immeliate co-operation of Auftian troops. In their hopes from this quarter, however, they were completely diappuinted. Mindful of her recent calamities, and attentive only to her own aggran. difement, Auftria feems fitl to have expected more from negociation than from war, and the territory of Naples foon fell into the hands of the French. Such indeed was the terror of the French name in Italy, or fuch was the difaffection or cowardice of the Neapolitan troops themfelves, that they were beaten by one-fourth of their number in different engagements, at Terni, Porto Fermo, Civita Caltellana, Otricoli, and Calvi. At the commencement of the coatelt: a hody of Nea. politans, with the affiftance of the Britifl fleet, had been landed at Leghorn, for the purpofe of taking the French in the rear: hut they, difregarding this attempt on the part of fuch an enemy, prefied on towards Naples. By degrees, Ceneral Mack's army heing reduced by the refult of the battles which it fought, and by defertion, to $12,000 \mathrm{micn}$, he found it neceffiry to advife the king and royal fanily of Naples to take refuge on hoard the Britith fleet. They did fo; and arriveo at Palerme, in Sicily, on the 27 th of December, in the Britifh Admiral Loord Nelfon's thip. General Mack, in the mean time, requefled an armillice, to affori an opportunity for making peace; but this was refufed. Being driven from Capua, which is the talt military port of any ftrength in the Neapolitan territory, and liis life being in no fmall danger from the difaffection of his own trooys, he at laft found it neceffary to feek for fafety, by furrendering himfelf, alung with the officers of his Itaff, to the French General. The governor of Naples, in the mean time, offered to the French a contribution in money, if the commander in chicf would confent to avoid entering that city. The offer was accepted, and the invarling army remained at Capua. General Serrurier, on the $28 \mathrm{th}^{2}$ of December, at the head of a column of French troops, expelled the Neapulitans from Leghorn, and took poffeffion of that place. So far as the efforts of regular armies are to be confidered, the war might now therefore be regarded as brought to a termination; but the French had fpeedily a new and unurual enemy to contend againft.

From the mildnefs of the climate, and the fertility of the foil, human life can be fuftained in the fouthern parts of Italy with fewer eflurts of induftry than in al-
moft any other country in Europe. Hence arifes a French general propenfity to idlenefs, which is inereafed by the Kevolution, numerous charitahle inititutions to which the Roman 1799. Catholic religion grives rife. Is the city of Naples there 34^{8} had long exited a body of perfons under the denomina. Ithe Lazzation of Lazzaroni or Deggars, amounting to the inere- rini rife adible number of from thirty to forty thoufand men, french. who did nothing, and fublitted necrely by charity, or by fuch fhifts as ocealionally occurred to them. One of the fe frequently was the menacing the fate with an infurrection, in cafe their wants were not iuftantly fup. plied; which ufually drew from a feeble adminiftration very libera! diftributions of money and provifions. On the prefent oceafion they demonftrated abundance of loyalty ; lut the king had thought fit to avoid entrufting his fafety to fuch defenders. During the confufion which fullowed the flight of the eourt and the ayproach of the French army, the Lazzaronibecame mutinous. They heard that the Frencl abolifhed, whereever they came, all thofe monafteries and other religions eftablifhments which are the great fources of public clarity. The Lazzaroni, therefore, conceived the mott violent hatred agrind them, and againit all who were fufpected of favouring opinions hoflile to royal government. In the beginning of Jamary they began to fhew fymptoms of difcontent, and in a few days broke out into open infurrection. The members of the government left by the king, overcome by habitual terror of the Lazzaroni, confulted merely their own perfonal fafety, and made no effort to preferve the public tranquillity. Prince Militorni had gained confiderable applaufe on account of his vigorous defence of Capua againt the French. 'The Lazzaroni therefore clected him their commander in chief; but he attempted in vain to reltrain their violence and love of plunder. They declared hoftility againf the French and all the advilers of the armitice. They broke open the prifons, and put to death all thofe who were confined on account of political offences zigainft the royal government. They next fpread themfelves over the city in 343 fearch if thofe perfons whom they confidered as fa-rager. vourable to the iavaders, and committed murder and robbery in all quarters, conchiding by burning the houfes of thore accounted difaffected. An attempt was made by a confiderable body of the inhabitants, who thought themfelves in the greateft danger, to refilt their fury, by fortifying the Consent of the Celeftins, and retining thither; but the Lazzarmi, after encountering the fire of canmon and of muntetry, fucceeded in forming the place, and deftroyed all who had taken refuge there. 'Tlseir power and their fury were now equally boundlefs, and the city became in many quarters a feene of maffacre and pillage. Prinee Militorni, therefore, went to Capua, and requefted Championet to refcue Naples from utter ruin by vecupying it with his arny. For this purpole it was arranged, that a column of Freach troops fhould feeretly advance by a circuitous march, and fuddenly enter the city from the oppofite quarter. Before this plan could be filly executed, the Lazzaroni had adopted the daring refolution of attacking the French within the fortifications of Capua. Accordingly two-thirds of them marched out upon this enterprife, and fpent the igth and 20 th of January in attempting to take Capua by affanlt. Multitudes of thefe men lere perithed by the artillery of the place; for the

French,

R E V

French French, to favour the eapture of Naples by the party Revolution, that had been fent eaftward for that purpofe, avoided 1799. making any fally, and remained upun the defentive. The Lazzaroni at Capua, however, having leamed on the 21 fl that a French column had marched to Naples, and approached the gates, fuddenly returnerl to the afiit ance of their brethern in the capital. 'Ihey were clufely purfued by the Freach; but they had keifure, neverthelefs, to barricade the ftreets, and to form themfelves into parties for the defence of different quarters. A dreadful and fanguinary conteft now enfued, which latted from the morning of the 22 d to the evening of the 23 d of January. The Lazzaroni, with fome peafants who had joined them, difputed obtinately every fpot of ground; and by the energy which they difplayed, caft a levere reproach upon the feehle and unflilful government, which had not been able to direct. in a better manner the courage of fuch men. At length; after haviug been gradually driven from flreet to freet, the Lazzaroni rallied for the lalt time at one of the gates of the city, where they were nearly exterminated. The inhabitants rejoiced on account of their own efcape from immediate ruin; and while the French armies found themfelves become odious in all the other countries which they had entered, they here found themfelves, from the peculiar circumblanees of the cafe, received with unfeigned welcome, in a city which holds the third place in population and fplendour among the capitals of Europe.
'This may be regarded as the laft trimmph enjoyed by the Directory. The coufequences of their conduct were now gathering faft around them. They were defervedly unpopular at home; not only from the viola. tions they had offered to the conftitution of their country, but alfo from the mamer in which they conducted public aftairs in detail. They fut no bounds to their profution, or to the exactions with which their agents vexed the conquered countries. Championnet, athamed of the extortions of which the Commilfaries of the Directory were guilty, attempted in Italy to reftrain them; and the contequence was, that, upon the complaint of the commiffary ' C'aypoult, he was deprived of his command, and thrown into prifon. Scherer, the miniter of war, was appointed his fucceffor. Uukter him asacity olloequlement of the public ftores, was carried to it, he Direc leight. The menbers of the armies were fiffered to decline, that the Directory, the commiffaries, and the generals, might become rich. Thus the ttate was left totally unprepared againft the form which was now rapidly gathering from alroad. Still, however, France was feared by the reighbouring nations, to whom the prefent fate of her internal affairs was obfeurely kuown. Though an army of 45,000 Ruffians hat advanced io the aid of Aultria, yet that Cabinct hefitated to declare war. Pruffa was eagerly folicited by Britain to take up arms againft France, and large pecuniary aid was
offered; but Sicyes, the Directory's ambaffador at Ber- French lin, artfully contrived to defeat this negociation, and to Revolution counteract the unpopularity of his country in Germa- $\underbrace{1799 .}$ ny, by publifning the fecret convention at Campo Formio, which we have already mentioned. This treaty demondrated fo elearly to the German princes the utter unconcern with which their independence and their interelts were regarded by the head of the empire, that no Ready co-operation with Auftria could henceforth be expected from them. The greater number of them, therefore, refolved to maintain their neutrality under the protection of I'ruflia.

On the $2 d$ of Janary, the French miniters at Rafadt prefented a note to the congrefs, in which they intimated, that the entrance of Rulfian troups into Germany, if not refilled, would be regarded by them as a declaration of war. Some negociation trok place in confequence of this note, but no fatisfactory anfiver was returned. On the 26 th of that mouth, the ftrong fortrefs of Ehrenbreitfein furrendered, after having remained under blockade fince the conclution of the treaty of Campo Formio. By the poffcfion of this place, and of Mentz and Duffeldorf, France was now rendered very formidable on the Rhine. As the poffeffed alfo the Atrong country of Sivitzerland, and all the fortified places of Italy, the was well prepared, not only for defence, but for active nperation; for it is now known, that the conferences of Raftadt were purpofely protracted, by orders from the Directory, till the French armies fhould be ready to take the field with advantage agrainft an enemy whofe conduct betrayed the muft culpable tardinefs. At this time Jourdan commanded War reon the Upper libine from Mentz to Huningen; Maf-newed on fena occupied with an army the eatern frontier of Swit. the khane. zerland towards the Grifon conntry ; Scherer was con:mander in chief in Italy; Moreau ated as geneml of a divifion under hin ; and Macdonald commanded the troops that occupied the territory of Rome and Naples. But thefe armies that kept in fubjection, and were now to defend fo many conntries, feareely amounted to 170,000 men in all, and were far outnumbered by the armies which Aultria alone, without the aid of Ruffin, could bring into the fiell. The Directory, however, confiding in the unity of its own plans, in the undecided politics of the court of Vienna, and in the confe. quent flow movements of the Imperial ar:nies, was ciger to renew the war; and the two Conncils, on the $13^{\text {th }}$ of March, declared Irance to be at war with the Emperne of Germany and the Grand Duke of Thileany. The war, however, had already been begual. On the ift of Marcls Jourdan croffed the Rhine at Strafburgh, and ocutuicd feveral ftrong politions in Swabia. Manheim was taken, and Philipfburg fummoned to furrender by Bernadotie (G), while St Cyr entered Situtgard. On the $4^{\text {th }}$ of March the Auflitians croffoci the Lech, under the command of the Archduke Charles, to oppofe this army. Malfeina alvaneed into the territory
(G) This fummons was conceived in very extraorlinary terms, and cannot be accounted for but upon the fuppolition that Bernadotte believed the Aultrian oficers infected with French principles. He calls upun the commander of the fortrefs to furrender without refifance, and thus violate the trult repofed in him by his fovercign. He tells him, that a difcharge of his duty would produce the defection of his officers and men. He warns him of the folly and danger of leading troops to action againf their zuill; and, lafly, he threatens him with evengrance if. he fhould dare to irfifl!

French of the Grifons; and furpriting a Arong body of AufRevoiution, trians, took them all prifoners, together with their Ge -
\qquad
353
Aird in
Switzery
land. neral Auffenburgh, and the whole of his flaff, after a defperate reffifance under the walls of Coire. The reduction of the Grifons was the confequenee of this victory.

But in order to complete the plan of the French, which was to effect a junction with their two armies, that of Maffena in Swizzerland with that of Jourdan in Germany, it was neceffary to carry the important poit of Feldkireh, which was oceupied by the Auftrian General Hotze, whofe line extended from the frontiers of the Grifons, to the north eaft by the Vorelberg, to the eaftern extremity of the Lake Conflance. Vigoroufy repulfell in his firt attack, Maffena renewed it, five different times, with frefh forces, and inereafed impetuofity. But all could not avail againft the feady bravery of the Auftrians, who drove back the affailants with immenfe naughter. The French, however, being in poffeflion of the Grifons, the invafion of the Engadine, and the county of Bormio, hy a divifion of the army of Italy eantoned in the Valteline, under the orders of General Cafabianca, was facilitated. The Auftrians, too weak in that quarter to refifl them, retreated into the Tyrol, whither they were purfued by the French, who foreed fome of the defiles by which the entrance of that country was defended, and extended their defructive incurfions as far as Glurenz and Nauders.

Meanwhile the van-guard of the main army of the Imperialifts pufhed forward to meet the enemy. On the 20th of March it was attacked by Jourdan, who drove in the outpotts; but on the following day that general was himfelf attacked in the centre of his army, driven from his pofition, and compelled to retire during the night to Stockach. Both parties now prepared for a decifive engagement. On the $24^{\text {th }}$, the Archduke encamped before Stockach, with his right wing towards Nellenburgh, and his left near Wallenwcis. On the 2 sth at day-break, the French army began the attack. They directed their chief efforts againt the right wing of the Auftrians commanded by General Meerfeldt. The battle was long and obitinate. From five o'clock in the morning till palt one of the afternoon, its termination remained extreinely doubtful. The French fucceeded in their attempt againt General Meerfeldt. His pofition was foreed, and he retreated into a wood between Liptingen and Stockach. Here he renewed the combat
354
The French withont fueeefs. He was gradually driven to the exThe Fernch without fueeefs. Hod, though it is a German mile in ed in Swa- breadth. The left wing of the Auftrians, however, bia,
to Weiller near Dutlingea; and finding his army alto. Fiem gether unequal to offenfive operations, he fent back one Revolur on part of it to cover Lelil and Strafourgh, while he withdrew with the other towards Switzerland. This event cumpelled Maffena, who was prelling upon Tyrol and the Engadise, to return to the defence of Switzerland. He was immodiately intrutled with the chief command of the troops in this quarter, in the room of Jourdan, who was removed. The Aimtrians continued to advance in every dircetion, ard inmediately occupier the whole of the right, or German fide of the Rhine, from the lake of Conilance to Mentz.

In ltaly the fuecefs of the Auftrians was equally con- and in fpieuons, notwithfanding the treachery of the Freach inaly. in attacking them before the expiration of the truce. The attempt of the latter to force the advanced polls of the former, on the 26 th of March, at Santa Lucia and Buffelango, was rendered abortive; and at Legnago, the Auflian general, Kray, obtained a complete victory, and compclled them to feek protection under the walls of Mantua. On the 5 th of April, the Auftrians again attacked them in their pofition at Memiruolo, which lies on the road from Mantua to Pefchiera, and compelied them, after an obftinate conflict, once more to retreat. 'The lofs of the French in thefe different aetions was undloubtedly great ; but it is probahly overrated at 30,000 men killed, wounded, and taken.

The fuecefs of the Auftrians, however, was not cheaply puichafed. Scherer, who commanded the French army, gained over them, at firf, fome advantages, which, had he known how to improve them, might have given a different tum to the tide of affairs. One divifion of his army had actually forced the Auf. trian pofts on the 26 th of Mareh, and taken 4000 prifoners; but the other divifion being. repulfed, he withdrew his troops fiom their advanced polition, and thus relinquifhed the advantage which he had gained. Even on the 5th of April, Morean's divifion performed prodigies of valour, and took, it has been faid, 3000 prifuners; but froms the injudicious difpoftions which had been made by Scherer, that general was not fup. ported, and the victory of the Auftrians was eomplete. Kıay now quickly drove the French from the Mantuan, and compelled them, after having fuftained new loffes, to relinquifh their ftrong holds.on the Mincio and the Adige, and to retreat to the Adda.

On the banks of this river, rendered remarkahle for the dear bought victories which Bonaparte thad obtained at the bridge of Lodi, the French gencral Moreau, Moreau to whom the Directory had given the ehief command fortifies his of their army, prepared to make a vigorous defence. camp. The military talents of this man had been rendered unqueftionable by his celebrated retreat through a holtile country, and before a victorious army ably commanded. On the prefent oceation he did not belie his former character. Nothing that could give courage or confidence to his troops was neglected. Entrenehments were thrown up wherever the river was confidered as paffable; and a fituation, remarkably frong by Nature, was itrengthened by every means which art could fupply.

Before this perind, a confiderable body of Ruffians had joined the Imperialifts; and the chief command of the allied army was now affumed by Field Marhal Suwarrow Rimnilki. This celebrated leader, whofe character

R E V [4.39] R E V

French rater every democrate lahours to mifreprefent, had enevolutinn, tered into the army at the age of twelve, and rifen from the ranks to the fation which he now holds, of Generalifimo of the Rulliau armies. Poffeffed of ftrong natural talents, he had likewife the benetit of an excellent education, and is faid, by thofe who are perfonally known to him, as well as acquainted with the flate of literature in Ruffia, to be one of the beft claffical fcholars of all the natives of that great empire. He had Atudied, in early life, mathematics and natural philoloply, as branches of foience abfolutely neeeffary to the man whofe higheft ambition is to become a great commander ; and his knowledge of the learned, as well as of the fothionable languages, has emabled him to avail himfelf of all that has been written either by the ancients or the moderns on the art of war. This art has indeed been his chief fudy from his youth; it has been at once his bufinefs and his amufement.

Poffefted with his countrymen, in general, of the moft undanated courage, and formed by Nature to endure the greateft fatigue, it is nut furprifing, that with all thefe advantages Suwarrow thould have long ago acquired the character of one of the ableft generals of his time. It is indeed true, that, till the opening of the campaign of 1799, he had dittinguifhed himfelf only againft the Turks, whum we are too apt to defpife, and againt the Poles when divided among themfelves; but let it be remembered, that the cuthufiaftic courage of thofe fame Turks had found employment for the talents of fome of the ableft generals in Europe, a Laudolin and a Cobourg; and that the Polifh armies which Suwarrow fubdued were united by the ftrongeft of all ties-the knowledge that they muft conquer or perim. All this was fo well known to Frederic the Great, that he held the military talents of the Ruffin hero in the higheft efteem ; and the attention of all Europe was now turned towards the quarter where thofe talents were to be cxerted in the fupport of fucial order, and of every thing which ennobles man. His operations in Italy did not difappoint the highelt expectations which had been formed of them. At an age conliderably above fixty, he began a campaign not lefs remarkable for its activity than any which had gone before it lince the commencement of the Freach revclution. We are by no means prepared, however, to do jultice to the various military efforts which were now made, or to explain clearly the means employed to infure fuccefs. If the work eatitled the Hifory of Suwarrow's Campaigns be deferving of credit, the fuperiority of that commander over his rivals and opponents feems to have at all times conlifted principally in the promptitude with which he formed his plans, and the rapidity with which he carried them into execution. It is likewife faid to be a maxim of his, always to commence the attack when he fees a battle inevitable, from the perfuation that the ardour of the attacking army more than counterbalances the advantage of ground, if that advantage be not very great. Such was certainly the priaciple upon which he acted
the upper part of the river, where the French had thought fuch an enterprife unlikely or impofible. A party of the combined army was thus enabled, on the following morning, after croming the river, to turn the French fortifications, and to attack their flank and rear, while the reft of the army forced the paffage of the river at different points. The French fought ohitinate- And de. $1 y$, but were fpeedily driven from all their pofitions, and feats him compelled to retire to Pavia, leaving 6000 men on the with great field; while upwards of 5000 prifoners, including $4^{\text {flaughter. }}$ generals, fell into the lands of the allies, together with 80 pieces of camon.

The advantage thus ohtained over the French, in confequence of the addrefs with which the Adda was croffed, is faid to have gained for Suwarrow more eftimation from his antagonits than they had originally been difpofed to grant to any military officer coming from Ruffia, and who had never before had perfonal experience of the mode in which war is conducted in the fouth of Europe. But this is probably affectation. The French had furely no caule to defpife Rullian ge. nerels, fince they could not but know that Laudohn was bern in Rullia, that he lad his military education there, and that he had rifen to a high rank in the army before he entered into the fervice of the Emprefs Queen Maia Therefa. "ndeed it is evident, that while their orators were declaming againft Suwarrow and his $\}$ uffrans as mercilefs barbarians, they were fecretly trembling at his prowefs and refources, which they could not but remember had more than once faved the armies of the Prince of Cobourg in the Turkin war.

Moreau now eflablifhed the wreck of the French army, amounting to about $12, \cos$ men, upon the Po, between Aleflandria and Valentia. On the inth of May he compelled a body of Auftrians to retire, though they had already paffed the river, and took a great number of them prifoners. On the following day, 7000 Ruffiaus croffed the Po at Balignano, and advanced on Pecetto. Moreau immediately fell upon them with his army. They maintained a long and defperate conflict; but being at lait thrown into confufion, and refuling to lay down their arms, about 2000 of them were drowned in recroffing the river, and the French, with difficulty, took a fmall number of them prifoners. But Suwarrow foon advanced, and terminated this active, but petty warfare, which was all that the French could now maintain. Moreau was under the neceffity of retiring with his troops to occupy the Bochetta, and other paffes which lead to the Genoefe territory; and the conbined army commenced wigoroufly, and at once, the fiegse of all the fortreffes in the part of Italy which is now occupied. Pefchicra, Mantua, Ferrara, Tortona, Aleffandria, and the citadels of Turin and Milan, were all attacked. The French were driven from the Engadine by Bellegarde ; Maffeua, clofely preffed in Switzerland by the Archduke Charles, was compelled to. retreat to the neighbourhood of Zurich, and almoll all Piedmont lad rifen in infurrection againtt the French ; fo that in every quarter their affairs feemed defperate. Few or no reinforcements arrived from the interior, and their generals were left to act upon the defenfive, and to. detain the enemy at a diftance from the frontiers of France as long as poffible. One effort of offenfive war only remained, and, after Come delay, it was made with much vigour.

Macdonald:

French Macdonald was itill with a confiderable French army Revoluath, in the fouthern parts of Italy, and occupied the temi-
$\underbrace{179 \%}$
360 Macimnald a d_{Ml})remene cert meafures for attacki:ng the allies. tomies of Ronie and Naples. N゙oattempt was made on the part of the combined powers to cut of his retreat ; probalbly from the convition that fuch an enterprife could not be accomplifhed with. fuccefs in the momatainous comntries of Tufcany and Genoa, through which it would be in his power to pafs. Aware of this circumflance, he was in no hafte to remove, though the combined army now occupied almoft the whole territory between him and Prance. He gradually concentrated his forces, however, and drew near to the fcene of action. His army amounted to 30,000 men; and lie was ardered hy the Directory to evacuate the new born republics of Rome and Naples, and to form a jurction, if pofihble, with the army of Moreau. The prefent fituation of the allies, however, tempted Macdonald to hazard an action by limfelf. Níarmal Suwarrow had extended his forces over Lombardy and part of Picdmont, in order to afford protection to the well difpofed iuhabitants of thefe countries; and Macdonald and Moreau had concerted between them a plan for dividing their antagonifts, and vanquifhing them, as the Prench generals had often vanquified their enemies in detail. It was only by Macdonald, however, that any important blow could be ftruck; but it was necaffary that Moreau fhould draw upon himfelf a great part of the Aullro-Ruffian forces, that the remainder might be more completely expofed to his colleague's attack. For this purpofe he had recourfe to a flratagem.

Towards the end of A pril, the French fleet, amountince to 16 fhips of the line, had ventured out of Breft harbour. Ireland was fuppofed to be the place of its dellination; and the Britiff fleet was flationed in the fituations moft likely to prevent its arrival there. The French, however, intending to form a junction with

361 Junction of of Cadiz, failed fouthward. When they approached the French Cadiz, a ftorm arofe, which prevented any attempt on ane' Spanifh their part to enter the harbour, and any effort on the
flects. flects.
part of the Britifh admiral, Lord Keith, to bring them
to an engagement. On the 4 th and 5 th of May, therefore, they paffed the Strait of Gibraltar, and tteered for Toulon. Lord Keith kept his ftation near Cadi\% till the gih of May, and then entered the Mediterranean in queft of the French fleet. The Spaniards inmediately put to fea, and went into the Mediterranean alfo. The French fleet entered Toulon, and afterwards went out in ب̧ueft of the Spanifh fleet. They failed towards Geroa, and afterwards to Carthagena, where they met their allies. 'The two lleets being now united once mure, paffed Gibraltar, and failed romed to Bre't, where they arrived in fafety, without being overtaken by the Britifh.

Morean, in the mean time, took advantare of the arrival of the French and Spanifh Squadrons in the vicinity of Genoa, to fpread a report that they had
brought him a powarful reinforcement of troops, in the French hope of withlrawing from Macdonald the attention of Revolution, Suwarrow. 'Ilhis lut oflicer was himfelf at T'urin. His advanced troops poffeflicd the pafies of Sufa, Pignerol, and the Col d'Aflictte; while, at the lower extremity of the vait track of country over which his army was 33^{362} feattered, General Hohenzollern was polted at Modena ceffie, of with a conliderable force, and Gencral Ott was at Reg-Macdogio with 10,000 men. On the 12 th of June, Macdo-nald. nald began his operations. His advanced divifions attacked Hohenzollern at Modena on that day, defeat. ed him, and took 2000 of his men prifoners. The French, at the fame time, attacked General Ott ; and, after obliging him to retreat, they entered Parma on the $14^{\text {th }}$ of Junc. On the 17 th, General Ott was arain attaeked, and compelled to retire upon Caftel Sc Giovanni. - Dut here the progrefs of Macdonald was arrefted.

Suwarrow had been informed of his approach and alarming fucceffes; and with that prefence of mind, and that promptitude of energy, which fo ftrongly mark the whole of his conduct, he fuddenly left Turin on the $15^{\text {th }}$ of June, at the head of 20,000 men; and having marched feventeen leagues in eiglit-and-forty hours, came up with Macdonald's army on the banks of the Tidune. The Ruffian Generals Rofenberg and Foer-fler-commanded the right and the centre; the left wing was commanded by the Auftrian General Melas; the Ruffian General Prince Procration commanded the advanced guard, and Prince Lichteuftein the referve. A defperate action now conmenced, which, contefled with equal obftinacy on both fides, was fought during three fucceffive days. At length victory, flill faithful to the flandard of Suwarrow, declared for the allies, ylem The French, driven on the if day from the Tidone to fcated by the Trebbia, were there ultimately defeated on the 19 th, Suwarrow. after a caruage on both fides, fuch as fome of the oldeft officers in the army declaredtitat they had never before feen. The Ruffians and French repeatedly turned each others line, and were mutually repullicd. Suwarrow, who appeared in perfon wherever the fire was heavieft, and his troops moft cloffly preffed, is faid to have had feven horfes killed under him, and to have Atript himfelf to the fhirt on the 19 th, running on foot from rank to rank, to urge the troops forward by his prefence and example (н). With all thefe exertions of heroifm, however, and greater have feldom been made, the iffue of the conteft continued doubtful, till the gallant Kray, in direct difobedience to the permicions urders of the Au. lic Council at Vienna, arrived at the head of a large detachment from the auny befieging Mantua, and, on the 19 th, decided the fate of the day.

The French fled during the night ; and on the morning of the 20 h, Surarrow purfued them with his army in two columns. It feldom happers that German troops can overtake the French in a march. The Ruf. fians nuw did fo, however; and at Zena, the rear guard of the French, being furromed, luid down their arms. The
(n) We had this information from an officer of high rank, now refoding in Weimar, who was prefent in the action: and who added, that the Coflacs, as foon as they faw their uld commander in his girl, ruthed upon the enemy with an impetuofity which nothing could withftand. The fory is by no means ineredible ; for Suwarow, who defpifes coftume, is known to have fought repeatedly in his fluirt againft. the Turks; and he would be as hot on the Trebbia as ever he was on the Danube.

R E V [441] R R V

${ }^{665}$
Bonaparte's unfuc ceffful at$t a: k$ of Acre.

French The reft of the French army found fafety in the paffes Revelutio 1799.
${ }^{6} 4+$ Mutual complaints of Suwarrow and the Aulic Council. of the Appennines and the Genoefe territory, after having loft on this occalion, in killed, wounded, and prifoners, not lefs than 17,000 men.

Moreau, in the mean time, had attacked the Atsftrians under General Bellegarde in the vicinity of Alexandria. Though fuperior to him in numbers, they were completely beaten; but Suwarrow having returned with intinite rapidity after his victory over Macdonald, the temporary advantage gained by Morean hecane of no importance. Suwarrow complained loudly of the conduct of the Aulic Councilonthis vecafion; whilethey, in return, imputed their difafter under Bellegarde to his unkilful diftribution of the whole troops, which had expofed an inmenfe army to great danger from the en- terprifes of an handful of men. It is not our butinefs to decide between them. The inftructions of the Council to Kray not to co-operate with the commander in chief of the conbined army, feem to us in the highelt degree abfurd, if not treacherous; and we have heard a general officer, whofe name, were we at liberty to give it, would do honour to thefe pages, fay, that the diftribution of the troops, of which that council complained, was the moft mafterly thing that has been done during the war. Be this as it may, a diftruft and mutual mifunderttanding thus commenced, or, at leaft, made its firft open appearance, which gave good reafon to fufpect that little cordiality of eo-operation would long exit between thefe allies. They continued, however, for fome time to enjoy uninterrupted profperity under the command of Suwarrow. The fieges of the different Italian fortreffes were very clofely preffed. They all furrendered in fueceffion; and the period appeared faft approaching when it would be in the power of the allied armies to enter the ancient territory of France.

If we turn our eyes to a different quarter, we fhall find the French as much humbled at this time in Paleftine by Britifh valour, as they were in Italy by the united armies of Ruffia and Auftria. The hero of France, the conqueror of Italy, the boafted legiflator of Eurnpe, after having defeated the Marmalukes, taken poffeffion of Alexandria and Cairo, and profeffed himfelf a Mahometan in Egrypt, led an army into Paleftine with the avowed purpofe, it has been faid, to take poffeffion of Jerufalens, and by rebuilding the temple, and reftoring the Jews, to give the lie to the prophecies of the Divine founder of the Chritian religion. At the head of a chofen band, exceeding 12,000 in number, and poffeffed of a ttaff eminent for military fhill and experience, he arrived at the fmall town of Acre, lituated on the fea-coaft, 28 miles fouth of Tyre, and 37 north of Jerufalem. To this town, which was wretehedly fortified, and defended only by a fmall garrifon of Mulfelmans, he laid fiege in form ; and the governor would have furrendered unconditionally, had he not been, we fay not perfuaded, Lut decoyed, by an Englifh naval officer, to make a vigorous refiftance. We need not add, that the naval officer was $\mathrm{S}_{\text {ir }}$ Sidney Smith , or that the befieging general was Bonaparte.

The command of the garrifon being entrufted to Sir Sidney Smith, who was not to be bribed by French gold, or corrupted by French philofophy, the hero who, by the aid of thefe allies, had fo quickly routed armies, and conquered ftates in Italy, was detained before the town of Acre fixty-nine days; hough

Suppl. Vol. II. Part II.
the number of the allies who defended that town ex. ceeded not 2500 men!. Foiled in eleven different attempts to carry it by affault, one of which was made during the truce which he himfelf had folicited to bury the dead, he was ultimately ohliged to retreat, leaving eight of his generals, eigrlty-five of his officers, and one balf of his army behind him. The fuperiority of the Britifh over the Corfican hero was, during this fiege, more fully difplayed in conduct than even in courage. The true magninimity evinced by the former; lis temperate replices to the andacious calumnies and atrocions falfehoods of his adverfary; and the moderation and humanity which characterifed his difpatches, and invariably marked his behaviou to thole whom the fortune of war fubjected to his power-give additional luftre to the brilliant victory which his valour, his cnerry, and his perfeverance, fo effentially contributed to fecure.

But while we pay a tribute of juftice to the merits of our gallant countryman, we mult not omit to notice the high deferts of the brave, the loyal, the virtuous Philipeaux, his gallant comrade, the partner of his toils, and the partaker of his glory. The gitll of this French officer as an engineer was molt fuccefofully difplayed in the defence of Acre ; and, indecd, his exertions on that memorable occafion fo far furpaffed his ftrength, that he actually perifhed through fatigue.

The defcat of Bonaparte at Acre, which effectually ftopped his deftructive career, will be confidered as important indeed, when it is known that his arts of intrigue had fo far fucceeded as to prevail on the nume. rous tribe of the Drufes to join his ftandard with finty thoufand men immediately after the reduction of that town. Had this junction been effected, it was intend. cd to proceed to Conftantinople, and, after plundering the city, to lay it in afhes! It is fearcely pofinble to calculate the dreadful confequences of fuch an event on the political ftate of Europe. If fervices are to be eftimated in proportion to their effects, we know of none, during the prefent war, fertile as it has been in brilliant atchievements, that deferves a higher reward than the defeat of Bonaparte at Acre.

During thefe reverfes abroad, France had begun to fuffer much interual agitation, and the Directory found itfelf in a very difficult lituation. The clections, as ufual, were unfavourable to them; and amidit the contempt with which they now began to be regarded, it was no longer poffible to lecure a majority in the Councils, by unconftitutionally annulling the elections of their political opponents. They demanded money, and were anfwered by reproaches, on account of their profufion, and the rapacity of their agents. The royalifts in the fouth and the weft began to form infurrections. They were fubdued with much diffeculty, on account of the abfence of the troops. The people had totally loft that enthufiafm which, in the earlier periods of the revolution, induced them to fubmit to fo many evils, and to make the moft violent efforts without murmuring. They beheld the renewal of the war with regret, and were unwilling to affit by their exertions so rettore power and fplendour to the faction which had trampled upon their freedom.

A nidit all thefe difficulties, an event occurred which, for a time, gave the Directory the hope of beitg once more able to roufe the dormant energies of their comntrymen. After the defeat of Jourdan, a detachment
from

Franch Revolution,
$R \quad$ E V \quad [
French from the army of the Arcliduke Charies hasd occupicd Revelution: RaRladt, where the Congrefs fill fat. On the 28th of $\underbrace{1799 .}$ delay, although the evening approached. They were detained ahout an hour at the gate of the town, in con-
fequence of general orders which had been received by detained ahout an hour at the gate of the town, in con-
fequence of general orders which had been received by April an order was fent by an Imperial officer to the Fiench minitters, requiring then to quit Railtadt in 24 lours. They demanded a patiport from Colonel Barbafcy, who haj fent theorder; but this he could not grant, none having that power but the commander in chief. They deelared themfleses determined to depart without own advantage.
the miliary to fufer none to pafs. In coafeqnence of
an explanation, however, and of the interpofition of futthe miliary to fufer none to pafs. In coafequence of
an explanation, lowever, and of the interpofition of futperior officers, they were allowed to depart. The three
minifters, Bunnicr, Roberiot, and Jean Debry, were in perior officers, they weee allowed to depart. The three
minifters, Bunnicr, Roberjot, and Jean Debry, were in carriages. The witc of Roberjot, and the wife and daughters of Jean Debry, were along with them; and they were attended by the minifters of the Cifalpine
republic. When they had advanced to a very fhort they were attended by the minifters of the Cifalpine
republic. When they had advanced to a very fhort ditance from Raltadt, they were met by ahout 50 huflars of the regiment of Szeckler, who made the carriages to halt, and advancing to the firt of them, containing Jean Debry, demanded his name. He told then lis name, and added that he was a French minilter returuing to France. On receiving this anfwer, they immediately tore him from his carriage, wounded him in feveral places with their fibres, and calt him into a diteh, on the fuppofition that he was killed. They reated in the fame manner the two other ambafladors, Bonnier and Roherjot, whom they murdered upon the fipt. They offred no perfonal violence, however, to the reft of the company, who were allowed to return to Ralladt ; but they robbed the carriages of whatever effects they contained; and the papers of the ambaffadors were conveyed to the Auftrian commander. After the departure of the foldicrs, and the returin of the carriages to Raftadt, Jean Debry wandered about the woods all night, and returned alfo to Raitadt on the following day. IHe clained the papers belonging to the legation from the Auffrian comnander, but they were refufed to be reflured.

During the whole of the long period that the Congrefs had fat, Rafladt and its vicinity had been occupied by French troops, and it was only a few days fince the Autrians had obtained poffefion of it . This event therefore caft, at leatt, a fevere reproach upon the difcijpline of the Auttrian amy. It did more; it made every honeft man regret, that troops, engaged in the fupport of a good caufe, flould think to pronote that caule by the murder even of the greated villains. The Turned ly Arcinduke Challes made hafie to difclaim all knowledge the Direc. of it in a letter to Mafena; but the French. Directory, tory to its regarding it as a fortunate occurrence, from its teindency to approach; but they foon came to a compromife. Treilhard was removed from the Directory, under the pretence that he had held an office in the flate within lefs than a year previous to his nomination. Merlin and Reveillere were compelled to refign, to avoid an impeachment with which they were threatened; but Barras flill contrived to retain his itation. Moulins, Gohier, and Ducos, men little known, and by no means leaders of the contending parties, were appointed Directors. The power was undertood to he divided, and that neither paity greatly predominated. An attempt was made to revive public fpirit, by encouraging anew the inltitution of clubs, which had been fuppreffed by the Dirctiory. The violent Jacobins were the firf to take advantage of this licence. They refumed their ancient Ayle, their propofals for violent meafures, and their practice of denouncing the nembers and the meafures of goverument. But the Directory beconning alarmed by their intemperance, obtained leave from the Councils to fupprefo their meetings before they were able to interelt the public in their favour.

Confiderable effurts were now made ty the French Wa:libe efgovernment to recruit their armies; but the deranged furts of the Itate of the finances, which the votes of the Councils Diequry. could not immediately remedy, prevented the poffibility of their gaining a fuperiority during the prefent campaign. The dificulty was alfo increafed by the neceflity of refilting immenfe armies in different quarters at the fame time, France being affailed at once on the fide of Holland, Swizzeiland, and Italy. Such, however, were the exertions of the Directory, that they fetmed not dettitute of the hope of being able fpeedily to affunk, un the frontier, a formidable, and even menacing polture. In the begimning of Auguit, their Italian army announted to 45,000 men. The different bodies of troops of which it cunfilled had been drawn together, and concentrated nearly in the fame pofitions which Bonaparte had occupied befure his battles of Montenotte and Millefimo. The command of the Joibits whole was given to Joubert, a young man, who had anfumes the been much diltinguifhed under Bonaparte; and who, command in the Atyle of gafconade employed by that general, in ltail. affured his government of victory, declaring, that he and Suwarrow thould not both furvive the firft battle. In this boalting declaration be feems to have been in carneft ;

R E V [$4431 \quad$ il 10 V

Frenel earneft ; fur, on taking the command, he prevailed with Revolution, Moreau to remain in the army as a volunceer till the ${ }^{1759}$. firft battle frould be fought. The allies had now taken Turin, Alcffandria, Milan, Pefchiera, and Ferrara, with a rapidity which would lead one to fuppofe that fome new mode had been invented of materially abrid-
37° Succeilies the athe ging the duration of fieges. The ftrong citadel of Turin opened its gates, to the altonilhment of Europe, after a hombardment of only three days; the citalel of Aleffandria furrendered to the Auttrian General Bellegarcle, on the $22 d$ of July, after a fiege of fevech chays ; and the ftill more important fortrefs of Mantua liurrendered to the brave General Kray, on the 29th of the fame month, after a fiege of only fourteen clays. The garrifon of Aleflandria amounted to 2400 mell ; that of Mantua to 13,002 . The former were detained prifoners of war, and the latter were allowed to return to France on their parole; a parole which the commanders of the allied armies could not teafonabiy expect to be kept. This has given rife to a fufpicion, that the fortrefs was voluntarily furrendered to the AuItrians, in order that the Directory might recruit its armies with the garrifon.
The allies next began tó befiege Tortona, and Joubert refolved to attempt its relief. He hoped to ac. complith this object, and to gain fome advantage over their army, before General Kray could arrive to the affiftance of Suwarrow with the troops that had been occupied in the fiege of Mantua. On the I $\mathrm{S}^{\text {th }}$ h of Auguft the French drove in the whole of the Aufrian poits, and took poffeffion of Novi. Here they encamped on a long and teep, but not high, ridge of hills, with their centre at Novi, their right towards Se:avalle, and their left towards Bafaluzzo. Qia the 14th they remained quiet; and on the 15 th they were attacked by Suwarrow, whofe army was now reinforced by the arrival of General Kray from Nantua. The right wing of the allied army was commanded by Kray, its left by Melas, and its centre was occupied by the Ruffa:ns, under Prince Pongrazion (Pracration) and Suwarrow in perfon, The attack began at 5 o'clock in the morning, and was continued during many hours. Soon after the commencement of the battle, while the French commander in chief, Joubert, was urging his troops forward to a charge with the bayonet, he received a mufquet thot in his body, and, falling from his horfe, immediately expired. Moreau inftantly refumed the command. After an obftinate contett, the allied army gave way, and was compelled to fall back in all quarters. The attack, however, was repeatedly renewed, and much blood was thed. From the obllinate manner in which they fought, the Ruflians, in particular, fuffered very feverely. They made three unfuccefsful efforts againtt the centre of the French army, and on each occafion thofe immediately engaged were rather dellroyed than repulled. The laft attiack along the whole line was made at three in the afternoon. The French remained unbroken; and the day mult have terminated in the defeat of the allies, had not Ge neral Melas fucceeded in turning the right flank of the French line. Their right wing was thus thrown into confution. Melas purfued his advantage till he obtain. ed poffeffion of Novi, and the whole French army made a rapid retreat under the direction of Moreau.

According to the accouats given by the Auftrians,
the French loft in this battle 40 oio killed and an equal French number taken priluners. They acknowledgell their Revolution, own lofs in killed to be equal to that of the Frencl?, $17 \% \%$ but the lofs fultained by the Ruffians was never pulalifhed. The general refult of the battle was the twial ruin of the French affairs in this quarter. 'Ille allics retained their decided fuperiority; anel tleere was no enterprife which, on the prefent theatre of the war, they might not have ventured to undertake. Tlie French renounced all hope of defending Genoa, and prepared to evacuate that city and its territory. The Directory expected an immediate invafion of the fouth of France, and addrelfed a proclamation to the people, urging them to act with tirmnefs and encrgy amidit the calamities with which the country was now menaced. But thefe apprehenfiuns were unneceflary. The court Unacco 374 of Vienna had other objects in view that were lefs dan- table congerous to their enemy. 'I hey neither invaded Genoa duet of ths nor France, but quietly procecded in the fiege of Tor- ${ }^{-1 i e s .}$ tona. The vanquilhed army was furprifed to find itfelf unmolefted after fuch a defeat; and in a few days ventured to fend back parties to inveltigate the movements of the allies. The new Commander Championnet, who had fucceeded Joubert, found to his no finall aftonifhment that they lad rather retreated than advanced ; and he immediately occupied the fame pofitions which his army had held before the battle of Novi.

Intead of purfuing the advantages they had gained in Italy, the Aulic counsil, or council of war at Vienna, now perfuaded suwarrow to leave that country with his Ruffians, and to fet out for Switzerland to drive the French from thence. In the early part of the campaign, the Archduke Charles had lucceeded, after various attacks, in driving the French from the eatlern part of switzerland beyond Zurich, of which lalt city he retained poffeffion. The Dircetory, however, had fert their new levies chiefly towards this quarter ; fo that in the middle of the month of Augult Maffena's army amounted to 70,000 men. The Archduke was now fo far from being able to purfue the advantages he had gained, that of late the French had refumed the offenfive, amd threatened to endanger his pofition. Their right wing under Lecourbe had even fucceeded in taking pofiefion of Mount St Gothard, which is the great pals that leads from the centre and eaftern part of Switzerland into lialy. The cabinet of Vienna probably wifhed to throw the feverell duties of the war upon their northern atfociates. The veterau Susar-Suwarruw row had never, durin!- his long military career, fuffered leaves 1 taa fingle defeat. Hi:s prefumption of fuccefs was there.ly and fore ligh ; and he perhaps fett himfelf not a lithe flat- marches to tered by the requelt to undertake an enterprife in which land. the Autriars had friled thougla led by their oft fand. the Auttriars had failed, though led by their mott furtunate commander. It is indeed certain that he confidered himfelf as called out of Italy too foon. Though conficient of being properly fupported, he agreed to proceed with his troops from Piedmont to Switzerland, where another Ruffian army had lately arrived. Delays however were thrown in his way. Tortona did not fall quite fo foon as was expected ; and when he was ready to march, the Auftrian commander in Italy refufed to fupply hin with mules for the tranfport of his bargage. Unable to reply to the indignant expoftulations of the Ruffian hero, this man defeended to a pitiful fallichood, by affuring hind that he would find a

R E V

French fufficient number of mules at Bellinzone, where, whien Revolution, he arrived, not one was to be had. He had now no other refource but to difmount the cavairy, and employ their horfes to drag along the baggage. Under all thefe difficulties, he arrived, by forced marches, on the confines of Switzerland, on the day appointed by him and the Archduke; but the Auftrian cabinet had, in the mean time, taken a nep which made all his exertions ulelefs.

Thinking it degrading to a Prince of the Imperial houfe, who had fo long held the highef military rank, to ferve under the Ruffian General, and not having the confidence to require the moft experienced leader in Europe to receive the orders of a man fo roung as the Archiuke, they fent that prince with his army to attack the French, who, in a fmall body, had entered into Swabia. He began accordingly to draw off his troops in the beginning of September, before Suwarrow was in readinefs to leave Italy. The number which he took with him has been differently eftimated, the loweft computation flating it at 48,000 , and the higheft at 60,000 . The former is the mofl probable; fince it is well known that 20,000 would have heen fully adequate to the purpofe for which he marched. The army which he left behind him is more perfectly afcertained: it confifted of 21,003 Ruffians, 18,900 Aufirians, Bavarians, and other auxiliaries, forming a total of 39,900 men.

Upon what principle of military tactics the Aulic council could fuppofe that a filful and intrepid commander like Maffen, with a force nearly double that of the allies, would remain in a flate of inactivity, it is not eafy to conceive. He perceived at once the advantage which might be derived from this unaccountable movement of the Archduke. The French troops in Swabia were therefore ordered to advance rapidly, and to threaten the rear of the Archduke's army. As the repulfe of thefe troops and the invafion of France towards Alface, Formed a part of the Auftrian commander's plan of operations, he marched againft them with his army. The French made as much refiftance as the fmallnefs of their force would permit. The Archduke however, gradually drove them towards the Rline. The better to carry on their plan of deception, they made a feirous Aland in the neighbourhood of Manieim, and were defeated with the lofs of 1800 men. The Auftrians en. tered Manheim, and feemed ready to crofs the Phine in this quarter.

All this while Switzerland was left completely expofed to the enterprifes of Maffena. General Hotze, with the Autrians, occupied the right wing of the allied army there. The newly arrived Ruffian army was ftationed in the centre at Zurich uncier the command of General Korakof; and the left, conlining chiefly of Bavarians and other troops of the empire, was commanded by Nauendorf. Maffena remained quiet till he leanned that the Archduke had entered Manheim, and that Suwarrow, having taken Tortona, was on his 377 march towards Switzerland by Nount St Goihard.

This lat pofition was defended by Lecuurbe; and Maffena refolved, in the mean time, to anticipate the arrival of Suwarrow. On the $24^{t h}$ of September, hasving drawn the attention of the R :fians to another quarter by a falle attack, he fuddenly croffed the Limmat, a river which divided the two armies near the con-
vent of Far, which is three leagues difant from Zu. Ficnch rich. A part of the French troops engaged the Auf. Revolution, trians, while the greater part of the army marched a- $\underbrace{1 ; 99}$ gainft the Ruffians at Zurich. The Autrian General Hotze was killed in the commencement of the action. General Petrarch, who fucceeded him in the command, contrived to avoid a total rout, and retired during the night with the lofs of about 4000 men . The conten with the Ruffians was fingularly obitinate. In a mountainous country, to which they were ilrangers, and contending againft the mof fkilful military leaders that the \{outh of Europe had been able to producc, they laboured under every difadrantage. They could not be put to Hight however; and even when different divifions of them were furrounded, they refufed to lay down their arms, and were flughtered upon the fpot. By the retreat of the Autrians on the evening of the 25 th, they found themfelves on the 26 th nearly furrounded in Zurich. They now began to retreat alfo; and we are only furprifed at the ability of the Ruffian General in effecting his retreat in fuch good order, and with fuch little lofs; for if the official accounts deferve credit, his lofs in killed, wounded, and taken, did not exceed 3000 men. He was obliged, however, to abandun his baggage and cannon to the enemy.

Du•ing thefe operations, Suwarrow was advancing Suwar on the fide of Italy with an army rated, in fome ac-row's counts, at 18,000 , in others at only 15,000 ; and for- march. cing the French from their ftrong pofitions on Mount St Gothard, defcended, on the very day on which Maffena made his general attack, into the valley of Urferen; and driving Lecourbe before him, with conlider. able flaughter, advanced as far as Altorf. He even penetrated on the next day into the canton of Glaris, and took 1000 of the French prifoners; while the Ruffian General Rofemberg was equally fuccefsful in the canton of Schwitz, where General Auffenberg had effected a junction with him; and General Linken defeated and took another corps of French, confiting of, 1300 men.

Maffena, however, now turned upon the Field-mar- His admithal with the greater part of his army; and, by hem-rable corming him in on all fides, expected to have made bim, duct. and the Grand Duke Conftantine, prifoners. Suwarrow, however, defended himfelf againft every attack with unexampled vigour and addrefs. A fingle pafs among the mountains was all that remained unoccupied by the French. . He difcovered this circumftance, and efcaped, though clofely purfued. He loft his cannon, baggage, and provifions, among the dreadful mountains and precipices with which that country abounds. He made his way, hewever, ealtward through the Grifon country, and at length arrived at Ceire with about. 6000 men in great diftrefs.

Nothing could exceed the indignation of this old warror when he difcovered the manner in which affairs had been conducted, the hazardous fate in which the Ruflizns had been abandoned by the Archduke, and the confequent ruin which they had encountered. He confidered himfelf and his countrymen as treacheroully His indigexpofed to defruction ; he loudly complained of the the court Commander of the allied forces in Switzerland; pub- of Vienna. licly taxed the Council of Vienna with felfiftnefs and injuftice; and refufed all farther co-operation with the Auftian army. He fent an account of the whole tranf. action

R E V [445] R E V

French action to St Peterfiburgh in a letter, of which the comicvolution, pofition would do honour to the lineft writer of the age, $1: 9 y$. $\underbrace{1.99}$
$3^{3 \text { So }}$ and withdrew with his troons to the neighbourhood of Auglburg to wait for farther orders.

In the mean time, Great Britain prepared (0) invade Hollend with an army of 40,000 men, contilling of Britifh troops and Rufian auxiliaries. The firit divifion under Ceneral Sir Ralph Abereromby, failed in the month of Augutt, under the prosection of a fleet commanded by Admiral Lord I)uncan. Bad weather prevented a lauding from being attempted till the 27 th. On the morning of that day the troops landed without oppofition upon the shore of Helder Point in north Holland, at the entrance to the Zuyder Sea. They had not been expected in this quarter, and the troops in the ueighbourhood were confequently few. The Britih, however, had no fomer begun to move forward, than they were attacked by a confiderable body of infantry, cavalry, and artillery, who had been haftily affembled from the neareft towns. The Dutch troops maintained the contell with much obllinacy; but they were gradually fatigued by the feady oppofition they encuuntered, and retired to the diftance of two leagues. In the night they evacuated the fort of Helder, of which the Britith took poffeffion on the morning of the $28 t h$. A detachment from the Britig fleet, commanded by Vice Admiral Mitchell, now entered the Zuyder.Sea
38 r by the ftrait of the Texel, to attack the Dutch fleet tiring for faftey to any of the ports, or to the fhallow water with which that fea abounds, furrendered the whole fleet on the 3oth of Auguft without firing a gun, under pretence that his feamen were mutinous, and would not fight.

Had the expedition terminated here, it might have been regarded as extremely fortunate, and as eftablinhing the power of the Britifh navy without a rival. But it was refolved to follow up this firlt fuecefs by an effort on land to reltore the authority of the Stadtholder, and the ancient government of the United Provinces. Many circumftances were hoftile to this enterprife. The whole army had not been fent at once from Britain. As no more than the firt divifion had arrived, the troops could only reft upon the ground they had gained till reinforcements thould be fent. The terror ariling from the firft appearance of an invading army was thus allowed to pals away, the enemics of the prefent Dutch government were difcouraged, and leifure was afforded to adopt effectual meafures of defence. The place where the landing was effected was well chofen for an attack upon the Dutch fleet; but for an invafion, with a view to the refturation of the Stadtholder, it was the wort that could have been felected. North Holland, at the extremity of which it was made, is a narrow peninfula, everywhere interfected by canals and ditches, of about 40 miles in length. Here the invaders might be detained, and even fuccefsfully refited, by a force greatly inferior to their own. This alfo is the quarter of the country the molt unfavourable to the caufe of the Stadtholder. In Zealand, where his eftates_ are fituated, and in Rotterdam, which is full of Scotchmen and of families of Scottifh extraction, his friends are numerous and powerful ; but in Amferdam, and in North Holland, which is under its influence, his enemies abound, and the refuftance to his power has been very great du-
ring every period of the Dutch hitory. When to all French this it is a dded, that the rainy feafon was approaching, Revolution, and that a winter campaign in Holland is almof impoffible, it will not appear furprifing that this expedition was attended with little ultimate fuccefs. It is faid that, amidf the preffure of the many difficulties which furrounded them, the French Directory lefitated much about undertaking the defence of Holland; but the place, and the time of landing the invading army, at once brought them to a determination. General Brune was fent thither, with whatever troops could he haftily collected, to fupport the Dutch Ceneral Daendels.

General Abercronby, in the mean time, remained Progrefs of upen the defenfive at Schager Brug, waiting for rein. ${ }^{\text {the inva- }}$ forcements. His inacivity encouraged the enemy on ders. the roth of September to venture an attack upon his pofition. They advanced in three columns, two of which confifted of Dutch and one of French troops. They were repulfed, however, in all quarters, and retired to Alkmaer. On the 13 th the Duke of York arrived with additiunal troops, and affuned the chief command. 'The Ruffian auxiliaries having alfo arrived, offenfive operations were immediately refolved upon. On the igth the army advanced. Gencral Abercromby commanded the left, which proceeded along the fhore of the Zuyder Sea againft Hoorne. The centre columns were commanded by Generals Dundas and Pultney; and the right wing, confifting of Ruffans, was commanded by their own General D’Hernan. In confequence of fome ftrange mifunderftanding, the Ruffians advanced to the attack foon after three o'clock in the morning, which was fome hours previous to the. movement of the reft of the army. They were fuccefsful in their firt efforts, and obtained poffetlion of the village of Bergen; but preffing eagerly forward, and heing unfupported by the other columns, they were. nearly furrounded. Their commander was taken prifoner; and though the Britifh came in time to protect their retreat, they loft at leaft 3000 men. This failure on the right obliged the Britifh Commander in Chief to recal his troops from the whole advanced pultions they had gained, though General Abercromby had actually taken Hoorne with its garrifon, and although General Pultney's column had carried hy affault the principal pofition of the Dotch army called Ourds Ciarfpel.

The feverity of the weather prevented another attack till the 2 d of October, when, after an engargement that lafted from fix in the moming till the fame hour in the evening, the Britim army fucceeded in driving the united Dutch and French troops from Alkmaer and the villages in its neighbourhood. The contell was chiefly conducted among the fand hills in the vicinity of the ocean; and the battle was maintained with fueh obftinacy, that the fatigue of the troops, together with the dificult nature of the country, prevented the Britifh from gaining any great advantage in the purfuit. The retreating army immediately occupied a new pofition bet ween Baverwyck and Wyck op-zee. The Duke ofYork once more attacked them on the 6th ; and after an obfinate and bloody engagement, which was main. tained till night, he remained in poffeffion of the field of battle. But this was the laft fuccefs of the inva. Stopped by ders. Finding himfelf unable to make farther progrefs, and the in in confequence of the increafing numbers of the enemy, ciemency the impracticable nature of the country, and the badnefs for weac

Yeee ch of the weather, which, during the whole of this year, Revolu:ion, was unufually feverc, the Duke of liork retired to 3,yy. Sclager Brng, and there waited for orders from Englatid to return home. He was, in the mean time, clately preffed by the United Dutch and Frencl furces, fo that his embarkation mull have been attended with much hazard. He therefure entered into a convention with the French and Dutch generals; by which it was agreed, that they thould no farther molen him in his retreat, and that, in return, he thould not injure the country by brcal:ing down any of the dykes which protect it againt the fea, and that Great Britain thurld reftore to France and Holland 8000 prifoners of war, taken previous to the prefent campaign.

In confequence of thefe events, the affairs of France now began to affume a lefs unfavourable afpect They were indeed driven to the extremities of Italy, Champinnet was defeated in every effurt which he there made againf the Auftrians during the reft of the year, and Ancona, which was the laft place of any firength polfeffed by the French, alfo furrendered on the 13 th of Norember to General Frulich; but they retained the Genoefe territory, and Switzerland and Holland continued under their power. The new coalition againft them feemed once more ready to diffolve. From the commencement of the French Revolutior, a fpirit of feltiflnefs had mingled with all the efforts made by the continental powers of Europe againf it, and had ren- derid them fruitlefs. To prevent the aggrandifement of Auftria, Pruffia had early withdrawn, and ftill ftood aloof. Spain and Holland were retained under the influence of France by the efforts of her arms, and by the univerfal diffufion of her wild principles among the people. Even the Britifh cabinet, which of all the European powers has remained moft true to the original purpofe of the war, fometimes forgot that object. Thus, when invading Hulland, the Dutch were informed, by a proclamation, that their ancient govermment was to be reftored; but no offer was made to reftore their diftant poffeffions. Of all the coalefced powers, however, Auftria purfued her feparate interefts with the keatt difguife. With much facility fhe relinquinhed the Netherlands, and fuffered the principal bulvarks of Germany, Mentz, and Ehrenbreittlein, to fall into the hauds of the French, upon obtaining in exchange the Venctian territories, which Bonaparte had con. quered, and thought himfelf authorifed to fell. During the prefent campaign, the whole conquefts made by the united efforts of the Auftrian and Ruffian forces were feized by Auftria in her own namse, and none of the princes of Italy obtained leave to refume the government of their own territories. This conduct on the part of the allies gave every advantage to the French. They broke off the negociations at Lifle, under the pretence of defending the Dutch and Spaninh fettements which the Britifh goverument refufed to relinquilh. 'They foumd it tafy to alarm the King of Pruffit, by difplaying the unbounded ambition of the houfe of Aultria; and the Emperor of Ruffia, having publicly declared to the menbers of the German empire, that the purpofe for which he had taken up arns was not to difmenber France, hut to refore peace to Eurupe, became jealous of the Court of Vienna, when he faiv it purfue a conduct fo very different. This jealoufy was encreafed by the misfortunes of the Rufliar
troops; and all cincumfances feemed now to promife French that the new coalition would fipeedily be deferted by its Revolutiun, nothern auxiliary.
While alfans were in this flate, an cvent occurred which exlibited the French Revolution under a new Bonaparte afpect. When Bonaparte lound himfelf compelled to vanquiftes retreat baftud and difgraced, from the ruins of Acre, the 'furks he learned that a Turkifls army was ready to invade in Egypt. Egypt by fea. He returned, therefore, with his ufual celerity, by way of Sucz, acrofs the dcfart of Arabia Petrea, which divides Syria from that country, and was in the neiglbourhood of the Pyramids on the 1 th of July, when an army of 18,000 Turks landed from 100 ships at Abuukii. They took this fort by aftalt, and gave no quarter to the French. garrifon of 500 men that it contained. On the 1 sth, Bemaparte began to march down the country againft them. On the 2 sth he came in fight of them, at fix o'clock in the moming.

It is not wonderful that thofe barbarians aforded him an advantage which had fo often been prefented by the armies of Auftria. They had divided their force into two parts, which were encamped on the oppofite fides of a beautiful plane. He had now formed a confiderable body of cavalry, by obtaining for his men fleet horfes from Arabia. Thefe advanced rapidly into the centre of the Turkifh army, and cut off the communication between its different parts. His infantry then attacked the right, which was the weakett divifion of the 'Turks. They being fpeedily panic ftruck, attempted to fly to their fhips, and every man was drovned in the fea. The left divifion of the Turks was next attacked. It made a more obftinate refiftance, but was foon alfo put to flight. Sume calt themfelves into the fea, and periflod in attempting to reach the boats of their fleet; the reft twok refnge in the fort of Aboukir. The news of this battle reached France towards the end of September, and resived the memory of Bonaparte's victories, contrafted with the reverfes which the Republican armics had lately experienced. On the roth of October a difpatch was received from him by the Directory, and read to the Councils, giving an account of the capture of the fort of Aboukir, with the whole remains of the Turkifh army. On the 14th of the fame month a meflage from the Directory announ-with his ced, to the aftonifhment of all men, that Bonaparte, principal along with his principal officers, had juft arrived in France, and that they left the army in Egypt in a profperous ftate. This latt part of the meffage was foon afterwards proved, by the intercepted letters of Neleber, and the other generals left behind, to be a fcandalous falfehood. In one of thefe letters, Pouffielgue fays, " Every victory carries of fome of our beft troops, and their lofs cannot be repaired. A defeat would annihilate us all ; and bowever brave the army may be, it cannot long avert that fatal event."

Bonaparte, however, was received at Paris with diflinction, though nobody could tell why he had deferted his army and come thither. The parties in the government were equally balanced; and both the Jacobins, and what were called the Moderates, folicited his affittance The Jacobins: flill poffeffed a majority in the Conncil of Five Hundred; but in the other Council their antagoniits were fuperior. The Director Sieyes was underttood to be of the party of the Moderates; and the Jacobins had of late unfuccerffully attempted fed between his groing out of the Council of Five Hundred and his election to the office of director. Neither party was fatisked with the exifting authoritics: but none of the ufual indications of approaching hoftilities appeared. The Jacobins were far from. fufpecting that Sieyes had a plot ripe for exceution, which was to overwhelm them in an inftant. They were even in fome meafure laid afleep by an artful fcene of fellivity, in which the whole menbers of the Councils were induced to engage, on the Gth of November, under pretence of doing honour to the arrival of Bonaparte. On the morning of the gth, one of the committees of the Council of Ancients, called the committee of Infpectors of the Hall, prefented a report; in which they afferted that the country was in danger, and propofed to adjourn the fitting of the legiflature to St Cloud, a village about fix miles from Paris. We have already mention. ed, that the conflitution entrulfed to the Council of Ancients the power of fixing the relidence of the legiflative hodies, and that this Council could in no other cafe affume the initiative, or propole any law ; their powers of legiflation being otherwife limited to the unconditional approbation or difapprobation of the decrees paffed by the Conncil of Five Hundred. The Council of Ancients now fuddenly decreed, that both Councils thould meet next day at St Cloud. As the Council of Five Hundred had no conflitutional right to difpute the authority of this decrce, and as the ruling party in it was completely taken by furprife, its membere lilently fubmitted, and both Councils aflembled on the roth of November at the place appointed.

The Council of Five Hundred exhibited a fcene of much agitation. 'They received a letter from Legarde, fecretary to the Direstory, fating, that four of its members had fent refignations of their offices, and that the fifth (Barras) was in cullody by order of General Bonaparte, who had been appointed commander of their guard by the Council of Ancients. While the Council were deliberating, Bonaparte entered the hall, attended by about twenty officers and grenadiers. He advanced towards the chair, where lis brother Lucien Bonaparte fat as prefident. Great confufion enfued; he was called a Cromwell, a Ceefar, an ufurper. the members began to prefs upon him, and his countryman A rena attempted to fab him with a dagger. He was refcued by his military eforst. Lucien Lonaparte then left the chair, and cait afide the badge of oftice which lie wore as a member of the Council. 'The confution did not diminish; but in a mort time a party of armed men rufhed into the hall, and carried off Lucion lionaparte. A tumulthous debate now hegan ; ial which it was propofed that Bonaparte fhould be declared an outlaw. 'Ihe duhate was foon terminated, however. The dours of the hall were once more burll opon. Military mulic was heard; and a body of troops proceeding into the hall in full array, the members were compelled to difperfe. The Council of Ancients, in the mean time, fetting afide the conllitution, paffed a varitty of de. crees. They abolifhed the Directory, and appointed in its flead an Executive Commifion; to confit of Bonaparte, Sieyes, and Roger Ducus, mnder the appella. tion of Cunfuls. They adjourned the fittings of the leginative bodies till the 20 th of Fcbruary, and appoint-
ed two committees, confifting of twent y-one mombers, felected from each of the two councils, to ast as legriflators in the mean timic. They alfo expelled a great num-

Fretich Revole t:os!, 1797. ber of members from their feats in the councils

Moft of the members of the Council of live Hundred returncel to Paris, after having been driven from their hall by the military; but a part of them remained at st Clond, and, on the evening of the fame day, confirmed all the decrees of the Council of Ancients. The new government entered upon its functions at Paris on the following day. That city remained tranquil, and the public funds an rofe upon the occafion. On the 17 th of November the confuls decreed the tranfurtation of a great number of the leading Jacobins and zealous republicans to Guiana, and ordered many others to be imprifoned; but thefe decrees were fpeedily recalled, and aflairs went on as quietly as if nothing mufual had occurred.

While Bonaparte was thus obtaining boundlefs per- Motions of fonal aggrandifement in Europe, the African expedition TippooSulin which he had been engaged was utterly unfuccefsful tan in lnin all its objects. The circumflances which led to it, dia. fo far as concerned foreign nations, now came to light, and were fortly thefe: Tippoo Sultan, the fon and fucceffor of the celebrated Hyder Ally, and fovereign of the Myfore country, which forms a part of the peninfula of India, had been compelled to conclude a treaty of peace in the year 1702 with the Britifingovernor general, Lord Cornwallis, under the walls of Seringapatam his capital. By this trenty he refigned to the invaders a part of his territory, and agreed tes pay a large fum of money. He was, moreover, under the humiliating neceflity of confenting that two of his fons fhould be delivered as hollages, to remain with the Britifh till the pecuniary payments could be completeci.

A war thus concluded could not hecome the found.. tion of much cordial amity between the partics. Tip, poo had inherited from lis father a deep fontiment ot hootility againtt the growing power of Britain in Indit. Though he fubmitted on the occafien now mentiousd to the neceflity of his circumflawees, yet he only waited a more fortunate opportunity to endeavour to recover what he had loft; and even, if poltible, to accumpiifia the favourite object of all his cuterprifes, the co:nhtetc expulfion of the Britifh from India. At a former period, almoft the whole of the native princes of this vait continent had entercd into a combination against the power of Britain; but their defigns had been defeated by the talents and exertions of Warren llaitings, Eif. The alcendency of the Britifh goverament in this quarter was now fo great, that no fuch combination could agrain be formed, and Tippoos felt that its power coudd waly lee fhaken by the aid of an European army. France was the only comatry from which he could hope 10 obtain an adequate furce. By the events of the revolution, however, and by the preflure of the war at home, the ruler. of France had been provented from attending to diftant views and interefts. Their fettlements in India had been feized by the Bistifh, and they had ceefed to retain any poffefions beycrd the Cape of Gond liope,
 the year 1797, Tippoo refolved to endeavour to renew his interhis intercourfe with the French by means of thele inands. cout te weth One Repaud, who liad once been a l戈tenant in the French navy, and had refided for force time at Strin-

1 L V [448] E V

Fren:th gapatam, had minks Tippoo into a belief that the Revoution, French had a great force at the Mauricius, which could
12% immediately be fent to his aid in cafe of a war. He therefore fitted out a flip, of which he gave the command to Kipaud, and fent two perfons in it as his minifers, with powers to negociate with the Fiench leaders at the Mauritins. But, at the fanse time, to avoid exciting the fufpiciuns of the Britifh government in his neightounhood, he directed his meffengers to allunse the character of merchants, to act in that capacity in public, and to conduct their political neguciations with fecrecy. They arrived at the Mas itius towards the clefe of the year 1797, and opened their propofals to Malartic the governur, for an alliance between Tippoo and the French nation, with the view of ubtaining the aid of an Enrnpean army. They were received with great joy, and veffels were inflantly difpatched to France to communicate their propofals to the Directory.

In the mean time, Malartic the governor of the Mauritius, from folly, from treachery, or from a defire to involve Tippoo, at all hazards, in a quarrel with the Britifh, took a ftep which ultimately was in a great meafure the means of defeating the plans, and accom- plifhing the ruin of that prince. On the zoth of January $\mathrm{r} 79^{8}$, he publifhed and dilatributed a proclamation, in which he recited the whole private propofals of Tippoo, and invited all French citizens to enlift in his fervice. Copies of this proclanation were fpeedily conveyed ty different veffels, touching at the Mauritins, to the continent of India, to Britain, and to all quarters of the world. Accordingly, as early as the 18th of June 179^{8}, the fecet conmmittee of the Court of Directors of the Eaft India Company in Lundon wrote to their govermor general in India, requiring him, in confequence of this proclamation, to watch the conduct of Tippoo, and even to engage in hottilities, if the meafure fhonld appear neceffary. Before that period, however, the goverument in India had been alarmed, by the fame means, and was making preparations for war. This, however, was no eafy matter. It is the nature of European power, in thefe countries, gradually to decline. The nature of the climate, the view of returning home, and the diftance from the feat of government, \{peedily introduce a relaxation of the efforts and the vigilance by which dominion was originally acquired. The troops require to be continually renewed by levies from the parent country; and if this precaution is neglected for a very Gort-time, or negligently at tended to, they becone unable to protect the extenfive territories fuch as Britain now poffefied in India. When Lord Mornington, the governor-general, enquired into the tate of the Britifh army at Madras, and whether he might hazard an offenfive war againt 'Cippoo; he was infurmed that three, if not fix months would be neceffary to affemble the fcattered divifions of the army, and to prepare them to defend their own territory. It was added, that fuch was the feeble ftate of the Britifh forces in that quarter, that it might even be unfafe to excite fufpicion in Tippuo by military preparations, as the might, in that cafe, ruin them by a fudden attack. Lord Mornington, however, refolven to ensounter every hazard, and ordered immediate and active preparations in every quarter.

In the mean while, Tippoo did not truft for fuccefs to the aid of France alone. He endeavoured to bring
an attack upon the Dritifh and their allica, or fuhjects Freech in India, from the north weft, by inviting Zemanm Revolution, Shah to invade the country. This prince is at the head of a formidable kingdon, made up of provinces torn from both Perfia and India. It was founded about fixty years ago by Almed Khaun Abdalla, an Afflan chicf, who followed Nadir shah un his invafion of In dia in 1739. He himinflf afterwards invaded India no lefs shan teven times; and, in panticular, he overthrew, with dreadful flaughter, the united forces of the Mah. ratta empire, in the year 1761, on the plains of Paniput. He was fucceeded, in 1773, by his fon Timmur Shah, who died, and was fucceeded by his own fon, the prefent prince. The dominions of Zemaun Shah extend from the left bank of the river Indus, on the feacoaft, as far northward as the latitude of Cathmeer ; and from caft to wett they are 6,50 Englifh miles in length, comprehending the provinces of Cabal, Candahar, Peißere, Ghizni, Gaur, Sigitan, and Korafun. He ufually keeps in pay an army of 150,000 horfe, belides infantry to garrifon his fortrefles. In expectation of direct aid from France, by Bonaparte's expedition to Egypt, and of an important divelifon to be made by Zemam Shah, Tippoo endeavoured to remain quiet, and to temporife with the Jritifh.

Since the firft victories of Lawrence and of Clive, the native princes of India have been cager to introduce the European art of war among their fubjects. For this purpofe they retain European adventurers to command and difcipline a part of their troops, and even endeavour to form a guard for their perfons of European foldiers. The Nizam, a prince in alliance with the Britifh, though in a great meafure under their influence, had long retained around his perfon a confiderable body of French, and of troops under their management. Thefe, under the command of one Perou, now poffeffed great influence at Hydrahad, the capital of the Nizan. It was of much importance that thefe Mould be removed out of the way, to enable the Britin to obtain the aid of this prince as an ally in the approaching conteft with Tippoo. Lord Mornington procured this ubject to be accomplifined with fo much fuccefs, that, on the 22d of October 1798 , the French corps under Perou was furrounded and difarmed without bloodhhed, and a Britin force was fubllituted as a guard to the Nizam in its ftead. The military preparations being in a conliderable flate of forwardnefs, Lord Mornington next warned Tippoo Sultan, in a letter dated the 8th of Nuvember 1798, of his having a knowledge of his hoftile defigns and connection with the French. He alfo propofed to fend an ambaffador to treat about the means of reftoring a good underflanding between the flates. Tippoo avoided returning an anfwer till the 18th of December, and then merely denied the accufation, and refufed to receive the ambalfador. On the $9^{\text {th }}$ of January 1799, the Britifh governor again urged in writing that the ambaffidor fhould be received. No anfwer was returned for a month; and, in the mean time, an army of 5000 men haviug arrived from England, orders were iffued to Ge-General neral Harris to advance at the head of the Madras ar-Harris ad my againit the kingdom of Myfore. Tippoo now of vances afered to receive the ambaflador, providing he came without an attendance; but this conceffion was not accounted fufficient, and the army advanced. An army

K E V

French from Bombay was, at the fame inflant, advancing on Revolution, the oppofite fide of his dominions. A part of l'ip179%. poo's forces encountered this army and were defeated; and within a few days thereafter, on tbe z7th of March, the reft of his army was defeated by General Harris. When an European army in India is tolerably mumerous, the detail of its military operations againft the natives is by no means interefling; for the iuhabitants of thefe enfeebling and fertile regions can never be made, by any kind or degree of difcipline, to poffefs that mo. ral energy which enables men to encounter danger with coolnefs and felf-command. They can ruth on death uuder the influence of rage or defpair, but they cannot meet the hazard of it with calmnefs and recollection. It is fufficient to remark that, on the $7^{\text {th }}$ of April, General Harris fat down before Seringapatam. On the 9 th Tippoo fent a letter to this officer: alleging his own adherence to treaties, and enquiring into the caufe of the war. He was anfwered by a reference to Lord Mornington's letters. On the 20th he made another attempt to negociate, by writing to General Harris, requefting him to nominate commiffioners to treat of a peace. In anfiver to this propofal, certain articles were fent to him as the only conditions that would be granted. By thefe he was required to furrender half his dominions, to pay a large fum of money, to admit relident ambaffadors from the Britifh and their allies, to renounce all connection with the French, and to give hoftages for the fulfilment of thefe ftipulations.

On the 28th of April Tippoo again wrote to General Harris, requefting leave to treat by anbaffadors; but his propofal was refufed, upon the footing that he was already in poffeffion of the only terms of peace which would be granted. Could Seringapatam have held out for little more than a fortnight longer, the invading army mult have retreated. The rainy feafon was about to commence; and, by fonse ftrange eflect of negligence or treachery, provifions were fo deticient in the camp, that it was only by reducing the troops to half allowance that they could be made to laft till the 15th of May. On the 30 th of April, the befiegers began to batter the walls of Seringapatam; and a breach being made, the city was taken by allault ou the 4 th of May. One o'clock afternoon had been chofen for this purpofe, as the hotteft hour of the day, and confeyuently the time when it would be leaft expected. Tippoo was in his palace; but on being informed of the attack, he haftened to the breach, and tell undiftinguifhed in the conflict. His treafures, and the flunder of the city, which was immenfe, went to emrich the conquering army, after deducting a thare for the Britiht government and Eatt India Company. His kingciom immediately fubmitted. The part of it which formed the ancient kingdom of Myfore was beftowed upon a defcendant of the former race of its kings, whom Ifyder Ally had deprived of the fovereignty; the additional territories that had been conquered by Hyder Ally were divided between the Britigh and their allies, the Nizam and the Mahrattas. The family of Tippoo were either taken in the capital, or voluntarily furrendered themfelves to the conquerors. They were removed from that part of the country, and alluwed a contiverable persiou.
In the mean time, Zemann Shah had aetually invaded India from the north.weft. He advanced to the Suppl. Vol. If. Part II.
vicinity of Delhi, fpreading terror and sefolation whereever he came. Had the French army in Egypt been Revilution, able to detach a budy of 15,000 men to the altifance of Tippoo, while all ludia was in the fate of alarm maturally produced by the approach of this northern in. vafion, it is extremely probable that the Bitifl forcis might fpeedily have found themfelves deferted by ewery ally, and funk under an uneçual conteth. But the actual refult was very different. Satisfied with the phuade: lie had obtaned, Zemaun Shah foon withdrew; and the French army being detained in Egypt by the war with the Turks, and by the want of reffels at Suex wherewith to reach India, Tippoo was left to contend, unaffited, againt the whole power of Britain, and of its allies in the eatt. By the conquett and divifion of his immenre teritory, the Britifh power was left withont a rival in power of that quarter of the world, ard raifed to fuch a ftate of Britain in impofing fuperiority, that if affairs are otily preferved in India. their prefent fituation, by periodicai fupplies of European troops, no native prince, or even combination of princes, can henceforth briag it inso danger. Thus, notwithftanding the vaft military efforts made by the people of France during this revolutionary war, yet all foreigners who trutted to their aid were ruined by placing confidence in them. In Italy, Gerinany, Switzerland, and Holland, the rapacity of the conmifaries of the French government foon rendered odious and intolerable the prefence of thofe armics whofe arrival had been eagerly defired. In Ireland and in India, the promite and the hope of affillance which they were never able to beltow, only ferved to produce premature holtility, and to increale and eftablifh the power of the Britilh government.

But to return to the domeftic hiftory of France, which has now become only an hiltory of the ufurpation of Bonaparte.

In the middle of the month of December, tlie Cun. fuls, with their legiflative committees, produced to the fution of public their plan of a new conftitution, which they pre France. fented to the primary affemblies, and which is faid to have been accepted by them without oppofition, like all the former coultitutions. It is a very lingular production, and neither admits of reprelentative government, nor indeed of any other form of political freedom. Eighty men, who elect their own fucceffors, poifefs, under the appellation of a Confervative Senate, the power of nominating the whole legiflaturs aid executive rulers of the fate; but cannot themfelves told any office in either of thefe departments. The foveteignty is concentrated in one man, who, under the title of Chief Conful, holds his power for ten years, and may be reelected. The whole executive authority is entrutted to hini, and he enjoys the exclutive privilege of propoting new laws. He is affitted by two other confuls, who join at his deliberations, but cannot controul his will. The legifiative power is entrufted to two affemblies: the one, confilting of 100 members, called a Tribunate ; and the other, of a Se:iotie, of 300 members. When a law is propofed by the Chief Conful, the Tribunate may debate about it, but have no vote in its enactment. The Senate votes for or againit its enactment, but camnet debate about it. Neither the Confuls, nur the members of the leginative bodies, nor of the confervative fenate, are refpunfible for their conduct. The miniters of ftate, however, who are appointed by

R E V

'French the Chief Conful, are refponfible for the meafures they Revolution, adopt.

The people in the primary affemblies elect one tenth of their number as candidates for inferior offices; per. fons thus chofen, elect one-tenth of themfelves as cardidates for higher offices; and thefe again elect a tenth of themfelves as candidates for all the higheft offices of the Itate. Out of this laft tenth the Confervative Senate muft nominate the confuls, legillators, and members of their own hody. But this lafl regulation is to have no effect till the ninth year of the repullic. In the inean time, the fame committees that framed the conffitution, appointed alfo the whole perfons who were to exercife the govermment. Bonaparte was appointed Chief Conful, and Cambaceres and Lebrun fecond and third Confuls. Sieyes, with his ufval caution, avoiled taking any active thare in the management of public affairs, and was appointed, or appointed himfelf, a member of hisown Confervative Senate; the whole being regarded as produced by him. As a gratuity for his fervices, the Chief Conful and his legiflators prefented to him an eftate beionging to the nation, called Crofne, in 395 the department of Seine and Oifne.

Abfolute power of
Bonaparte.
Thus, after all their fanguinary fruggles for freedom, did the fon of a Corfiean drive from their ftations the reprefentatives of the French nation, and affume quiet poffefion of the government of that country, with a power more abfolute than ever belonged to its aneient monarchs. The eftablithed privileges of the clergy, the nobles, and the parliaments, always reftrained, in fome degree, the defpotifm of the kings of France; thefe being now deftroyed, the will of Bonaparte could meet with no controul.

One of the firft meafures of his government was to tranfmit to the allied powers, then at war with France, propofals for negociating peace; but in thefe propofals , it was eafy to difcover that a general peace was not the object of his wifhes. He was, indeed, under the neceffity of making fome kind of pacific overtures, that he might keep the promife by which he had bribed the people to fubmit tamely to his ufurpation; but he addreffied each of the belligerent powers fiparately, with the obvious view of diffolving the coalition; and he repealed not the decrees of the Convention, which declared war againtt all the goveruments of Europe. Deviating from the forms long eftablifhed for tranfacting bufinefs between independent flates, he addreffed the Britifh government, not, as ufual, through the medium of the minifter for foreign affairs, but in a letter directed immediately to the King; to that letter he pretixed a motto, which proved his own adherence to the revolutionary decrees that were the chief caufe of the rupture with England ; and it is difficult to believe that he did not actually mean to infult the monareh whom he fo addrefled.

He certaiuly did not expect a propofal made in fuch a manner to be liftened to, or that the King would deign to anfwer a letter which began with proclaiming liberty, equality, and the fovercionty of the peofle. Befides this revolutionary jargon, the lefter contained nothing more than the two fimple queftions-"Whether the war, which had, for eight years, ravaged the four quarters of the giobe, was to be eternal ?" and "whether there were no means for Britain and France of coming to a grod underflanding ?" His Majefty's mi-

450] R E V

nitters weuld have been perfectly juftified had they re. French turned, to the former of thefe queltions, the laconic an- Revolution, fwer, No; and to the letter, $\mathcal{T}_{\text {es }}$: but they contefeend- $\underbrace{1799 .}$ ed to aflign the reafons which prevented the King from 397 liftening to overtures coming, in fo quettionable a hape, Reject dody from fo novel an authority.

Thofe reafons were unanfwerable; for they refted on patt experience of the bad faith of the revolutionary rulers of France ; on the inftability of the confular go. remment ; and on the obligation of treaties, by which his Majelly was hound not to abandon his allies by concluding a feparate peace.

That the revolutionary rulers of France had been remarkable for bad faith, was completely proved in both houfes of parliament, by an enumeration of the treaties which Bonaparte himfelf, when commanding the armies of the republie, had firt entered into with foreign ftates, and then violated. That the confular government was then unilable, will be queftioned by no man, who, reflecting on the means by which it was formed, adverts to the circumflance of the letter to the King being written on the very day on which the Confuls were inAtalled in their office, and long before it could be known that the primary affemblies would accept the confitution which had been dictated to them. That conttitution had, indeed, deviated to far from all republican forms, as to excite difcontent even among its own creatures; and, in the firft meeting of the tribunate, one of the members, obvioully comparing the new with the old government, takked of the idol of fourseen days, which, he obferved, might as readily be overthrown as the idol of fourteen ages. That the Firft Conful was fincere in wifhing to reftore peace to Europe, will hardly be fuppofed by him who calls to mind, that the French minitter, in his reply to Lord Grenville, took not the fmalleft notice of the allies, although he had been affured by his Lordhip, that his Majefty could not treat without them. It is likewife worthy of remark, that in the laft official paper on the fubject, the fame minifter propofed, not any fpecific terms of peace, but merely an immediate fulpenfion of hoftilities bet ween the two nations, and the naming of plenipotentiaries, who thould repair to fome convenient place, and apply themfelves, with all poffible difpatch, to the effecting of a good underftanding between, the French republic and England! Had that propofal been agreed to, the ports of France, which were then blocked up by the Britifh fleet, would have been opened for the importation of naval flores; the negociation might have been protracted from day to day; and when the Conful had conquered the Auftrians in 1taly and on the Rhine, he might have fuldenly broken it off, and direted the whole foree of the republic againt the Britifh empire.

All this was forefeen by thofe who at that period fo ably guided the helm of thate, and the infidious overture was with dignity rejectéd.

A fimilar overture had been made to the court of And the Vienua, aud treated in the fame manner ; but early in court of this year, the Emperor of Ruflia withdrew from the Vienna. coalition. He had been highly and juflly offended by the conduct of Auftria during the laft campaign : he is faid to have demanded Malta of the Britifh court as foon as it fhould furrender to the combined forces of Ruffia and England, and to have received, with the utmoft indignation, the refufal which was given to fo unreafonable

R E V [45T] R E V

French reafonable a demand; but fuch was his caprice, that Revolution, the motives which induced him to abandon his allies
\qquad
399 1) fection of the Em. jesar of Ruflia. may have been much mone trifling than either of thefe. Whatever they were, he iffued the molt peremptory orders to Suwarrow to retire with the army under his comenand into Poland ; and with thefe orders the old man reluctantly complied about the middle of January. The Emperor contmued, indeed, to exprels the utmolt abhorrence of the Erench revolution, and of the principles whence it had fprung; but his warlike operations were now at an end ; and the Confuls heard, with indifference, of his prohibiting the importation of French books into the Ruflian empire.
lu the mean time, Bonaparte fucceeded in fupprefling an infurrection, more formidable, if credit be due to the papers which were faid to be found in the pof. fetlion of the chief infurgents, than any that had yet been raifed in behalf of the houfe of Bunrbon; and lee. ing thus relieved from the ansiety infeparable from a civil war, he found leifure to turn his attention to his foreign enemies.

On the $7^{t h}$ of March be fent a meffage to the legiflative budy, in which, after mifreprefenting, in the groffelt manner, the conduct and views of the court of London, he affured them, that in the midit of battles and triumphs, he would invoke peace, and fwear to light only for the happinefs of France, and the repole of the world! This meffage was followed immediately by two decrees : the one calling, in the name of honour, upon every foldier who was abfent on leave from the armies in Italy and on the Rhine, or who, on account of his age, had retired from the fervice, to join his regriment before the 5 th of April, if atle to ferve another campaign; and the other, appuinting a frefl army of referve, confitting of 60,000 men, to be affembled at Dijon, and to be placed under the command of the Firt Conful in perfon.

Amid thefe warlike preparations, which were carried on with vigour, the government did not neglect the ad. minittration of juftice, or the internal economy of the ftate. Hitherto the feveral departments, into which the conftituent affembly had divided the kingdom of France, were under the controul of what were called central adminiflrations; but they were now fubjected to the government of magitrates fyled praficis, who were nominated to their office by the Chief Conful. In every department there was appointed one prefect, with, three or four fub prefects, accurding to the population; and one of the offices of the council of profecture was to decide on the remonftrances of the citizens againft their quota of taxation. A reformation was likewife introduced into the civil and criminal courts of juttice, of much greater importance to the inhabitants of France than the inftitution of prefects. The judges were to be no longer chofen by the people for a limited time, but to be appointed, with decent falaries, by the Chief Conful; nor were they to be liable to fuch interruptions as formerly in the difcharge of their duty. The grood effects of this reformation were quickly feen in the more prompt and equal adminiftration of juftice, and in the lefs frequent employment of the guillotine.

The campaign was now ready to be opened both in Italy and or the Rhine. The only territory of any importance which, in Italy, remained in the poffeffion of France, was that of the Genoefe republic ; and the
army which they had to defend it was greatly reduced French in umbers lince the preceding year, and, for want of Resuluton, clothes, provilions, and pay, was in a ftate little flort $\underbrace{1500 .}$ of mutiny. It was the great ubject of the Auftrians to get porefron of Genoa, with all its dependencies; while the Genoefe, who bebeld in the French only the deftroyers of their commeree and their confequence, were difpoled to lend every aid to meafures calculated to drive them effectually from their country.

The command of the French atmy in Genoa was gi- Meffua ven to Meffina; who, having received from the Confuls extraordinary powers, dilpliyed, in that command, all the athilities of a confummate general. Carrying with him trom Lyons and Marfeilles a fupply of troops, and, by a proper diftribution of rewards and puathments, reducing to order and ofedience thofe whom he found ready to defert their landards, he was foon at the head of a force able, not mily to overawe the ialiabitants, but to llop the progrefs of the Aultrians. After many battle and ikirmifhes, however, he was at latt ubliged to retire into the city, where famine would have comptlled him to furrender immediately, had he been immediately blockaded by the army under the command of the Imperial General Melas.

The appearance of the British fleet, on the 5 th of April, was the fignal for that general to attack the place. The communication between Genoa and France by fea was now eut off; but a few days pieceding the arrival of Lord Keith, a quantity of wheat, and other provifions, had entered the port, and refcued the inhabitants and the army from the laft preffure of famine. The Auftrians fuon inade themfelves malters of the furrounding country; but Meffena, in hopes of receiving fuccour from France, obftinately refufed to give up the city. Although redued to act on the derenfive, he blocked up neglected no opportunity of making fallies on the ene-in Genoa. my, fometimes with confiderable flaughter on both fides: but he is faid to have tarnifhed the laurels which his bravery would have gained, by exhibiting his prifoners to the contempt of the citizens. An engagement of this kind, in which be luf three of his beft commanders, terminated all further operations on his part; and General Melas, having nothing more to appreliend from the arny cooped up in Genoa, left General D'Ot to continue the blockade, and turned his own forces againft Sauciet, who commanded a feparate divition of the French army.

404
On the 7 th of May was fought, between Ceva and Sauche: deSt Lorenzo, a decifive battle, in which the French were feated.
totally defeated, with the lufs of 19 pieces of cannon, and 1200 prifoners, among whom were 357 officers, one of whom was a general of divition. Soun after this action, Satuchet was compelled to abandon the ftrong polition of Col di 'renda, leaving behind him fuur pieces of cannon and. 200 prifoners; and advancing towards Niece, he was driven from poft to poft, till at laft he was obliged to take fhelter behind the Var, laving Melas in poffeffion of the whole department of the Maritime Alps.

The opening of the campaign on the Rhine was not The camfo favourable to the Auftrians. For reafons, which we paign openpretend not to know, the Archduke Charles had been ed on the directed by the court of Viemna to refign the command khine. of the army to General Kray, who had fo much diftin: guifhed himfelf in Italy during the campaign 1799.

French The military talents of Kray were unģueftionable; and Revoiution, he had gained fuflicient evidence of his integrity and 1 sco. zeal for the camfe, both when ferving under Suwarrow, and when alling irdepencent of him; but, unfortunately, he was a ftanger to the army which he now commanded, and he was not fo noble as fome of the other generals! Our attachment to democracy will not be fufpected; but the principles of mo denwectate have been more abfurd than the prejudices of part of the Germans in behalf of notiliy. Becaufe one of the generals ferving under Kray was more noble than his commander, he had the folly and infelence to declare, that he would obey no order of which he was nut himfelf convinced of the propriety (A) ; whillt many of the inferior officers, who hed rifa from the ranks, and were deeply tinetured with the principles of Jacubinifm, refufed to fight againf thofe whofe object it was to level nobility with the dutt.

That an army, thus commanded, wonld make effect tual heall againit the French veterans, led on by the grallant Murean, could not reafonably be expected; and the reader will not be furprifed, that the Hungarian foldiers, though they had given repeated proofs of their bravery, made no reliflance to the enemy, when they faw themfelves ready to be facrificed to the diffentions ing of the campaign, orders from the Aulic council how to difpofe of the forees under his command ; and being unfupported by the generals under him, he had no other aiternative than to obey thefe orders, whether he approzed of them or not. Similar inftructions had been fent by the Conful to Moreau, containing a dezailed plan of operations which he was commanded to execute; but he fipiritedly refufed to fight in fuch fetters.

Confcious, it may be prefumed, that his own know. berlge of the art of war was at leaft equal to that of Bonaparte, while his experience of the country was infinitely greater, he difpatched a courier to Paris to inform the Confuls, that if the orders which he had received were to be rigidly followed, he muft beg leave to refign his command, and take a feoondary rank. His refignation was accompanied with the plan of operations which he had formed for himfelf; and the Firlt Conful, intantly perceiving its propriety, continued him in the command, with inftructions to carry on the war according to his own judgment.
tions, fexcral offers were heard to fay, that the foldiers whem they conmanded avould not fight! With fuch a fpirit in the army, offerifive operations were no longer praciicable; but Ulm, as it commanded both fides of the Dauube, was of fo much irportance, that the gallant veteran, having ftrongly entienched himfelf, refol ftand at red, if poflible, to inaintain his pufition.

Moran, who penetrated into his defigns, determined to attempt the paffarge of the Danube, and by cutting him off from his magazines at Donavert, to force him to a general astion. Accordingly he ordered Lecombe, who commanated one of the wings of his army, to advance, and take pofieffion of a bridge between Donaveit and Diilingcu. This was accomplifhed with'difficulty ; for the Auftrians, perceiving, when too late, that all was at Aake, difputed every inch of ground with the French general. During the interval of marching to the Danube and croffing it, Kray, who perceived the intentions of his enemy, had fent confiderable reinforcements to the left bank to oppofe the paffage. In confequence of this, a battle took place at the celebrated potition of Hochitet, near Blenheim, which ended in favour of the Frerch, who took 4050 prifoners, without counting the killed and wounded.

Kray, who faw the danger of his polition, affembled his forces, and leaving a Itrong garrifon in Uhm, marched againft the French ; and pafing by Hochitet, crof. fed the Danube at Newburg, with the feeming inten. tion of forcing his enemy to abandon the ground whieh he occupied on the left bank of the river near Ulm. The French army received his attack at Newburg; and the engagement, which commenced early in the day, was continued, with the moft determined bravery on , buth fides, till night; when the Auftrians, obliged to golltadt. retreat, fell back on Lugolfladt.

This battle decided the fate of Germany. The French became matters of the electorate Bavaria, and of various teritories of lefs extent; and as they approached the hereditary dominions of the Emperor, the Jacobins, not only of the capital, but of the whole of Upper Autria, behaved with fuch audacity, that the count could not but perceive that no dependence was to be placed on armies compufed of fuch men. The Inmperial family, and the Dritifh ambaffador, were publicly infulted in the theatre; whillt a hired rabble vociferated "Pcace! Peace!"

This fpirit was not romed by the ill fuccefs of Kray alone; for the affairs of Auftria were now more defperate in Italy than even on the Danube. About the fame period that the campaign opened on the Rhine, the army of referve, which had been for fome time forming at Dijon, began its march. The French gavermment had given official notice, that this army was already compoled of more than 50,000 men; that it was receiving reinforcements every day; and that it was prepared to march either to the right or left, as the chance of war, or the plans of government, fhould render the one route or the uther neceflary. This aceount was not generally credited. Thofe who withed well to the caufe of the allies, were unwilling to allow fuch vi-
(A) This man afterwards boatted of his difobedience at Vienna: "Je ne voulois pas ette commandé par un ropourier," faid he. "Non! (replied the gentlenan to whom he fake) vous aimiez mieux etre battu par un roourier."

R E V

French gour to the French government ; while the Jacobins of Italy and the empire, that the army of referve amunnted to little more than 6000 men.

On the sth of May, the Firf Conful left Paris to take upon hinfelf the command of this army ; and after receiving the troops cantoned at Dijon, he paffed on towards Genos. Kemaining a fho:t time in the Pays de Vaud, he joined the army of referve at the foot of de firlt Conful, eroffes the ther the rafh coufidence of Bonaparte, or the thonght. lefs fecurity of General Mclas, ought, on this oecation, to excite the greatelt afonifhment ; for it is certain, that a proper difpofition of a very fmall portion of the Auftrian furces among the paffes of the Alps, would have crufhed at once the army, and all the prond profpeets, of the Conlul.

Roufed at length from his dreams of falety, by the news of an invafion, of which he had been often warn. ed, and which he would even yet fearcely believe, Mclas flew to Turin, reealling, by hafty marches, the inain body of his army, to deferd the Po, and prevent the enemy from getting poffeffion of the capital. It was natural for him to fuppofe that Turin would be the firt place of importance attacked by the French; and the Conful gave countenance to that fuppofition, by feeming to menaee the paffage of the Po. He had formed, however, a different plan of operations; and while the Auftian commander was preparing to difpute with him the paffage of the river, he fuddenly turried to the left, and, croffing the Scffia and the Teffino, entered Milan on the $2 d$ of June.
Whild Bonaparte marched to Milan, General Lannes, with the adranced guard, filed off towards Pavia. The. French ariny, though :ftrong in numbers, had nei-

$453] \quad \mathrm{E} V$

ther magazines, artillery, nor fores of any kind; and Fienrin learning that Pavia was the great depot of the Auftrian Revoluti.n. army, the Conful was deternined to inake himfelf maf. $180 c$. ter of it. This was eafily accomplified; and Lames 414 found in the place upwards of 200 picees of artillery, Takes 8 a. 8000 mukets, 2000 barrels of gunjuwder, and an im. bia; menfe guantity of all kinds of provilions.

The religious profefioms of Bonaparte had, at all times, been accommodated to the principles or prejudices of thofe whom he wified to attach to his calle. In Egypt he had kept the feltival of Mohammed, and declared himfelf fent by the Moft High to enforce oledience to the laws of the prophet ; and, with equal fincerity, he now lung Te Deum in the cathedral chorch of Milan, for the happy deliverance of Italy from beretics and infidels! He then proceeded to thic formation And reof a provifionary conftitution for the Cifalpine republic ; frores the whicl, in a fuw days, was re-organized as a free and in rifalf e e dependent ftate.

Whiltt the Conful was difplaying histalents as a con-ftitution-monger, one of his generals, with a detathment of the army, croffed the Po at Stradella, and, cut. ting off the communication between Creneral Melas and the country of Piedmont, made himielf mafter of the Auftrian magazines at Piaeenza, Cremena, and various other depots on the banks of the river.

It was at this time that Bonaparte, by means of in- Genoa furtercepted letters, was firft informed of the capitulation rendered to of Genoa. Maffena had done every thing in the power the al ics. of valour and perfeverance to defend the place; but after he had feen 15,000 of the inhabitants perifi by hunger, he was obliged, on the 5 th of June, to furrender to the Britifh and Auftrian commanders. Confifidering his utter inability to hold out longer, the terms which he ohtained were favourable. The right wing of his army, to the number of Biro men, were to march into France by the road of Niee, and the remainder was to be tranfported by fea, at the expence of Britain, to Antibes; no man was to be held refpontitle for having exercifed any public function under the government of the Ligurian republic; and all officers made prifoners from the beginning of the campaign, were to return to France on their parole, and not to ferve till regularly exchanged.

The furrender of Genoa left the Aunrian army, by which it had been invelted, at liberty to co-operate with. the commander in chief; and General D'Ott marched, with thirty battalions, to oppofe the progrefs of the French in Fiedmont. He was met, on the oth of June, at The ${ }^{17}$ a place called Montebello, hy a large detachment of the trian liers - Fiench army under the command of the Generals Lan- ral Doit nes and Victor. The battle raged long with great fu. Mumedery, and the village of Catteggio, which at its commence-lellu. ment was in the poffeflion of the Auftrians, was taken and retaken feveral times; but at lait victory declared for the French, and General D'Ott retired with great lofs.

Unable to flop the progrels of the Freneb by partial detachments, Melas, who was now blockaded in Piedmont, affembled the whole of his forces between Aleffaudria and Tortoua, in order, by one Aroke, cither to cruth the enemy, or at laft open to himfelf a way to the Auftrian divifions on the Mincio. This prodnced, on the 14 th of June, the memorable battle of Marengo ; of which we fhall attentipt no detail, becaule we could

R E T [454$]$ E V

French could give none for the truth of which we would Revolution, choofe to be anfwerahle. The French accounts, which 1500. go. are faithfully copied by our own Jacobinical writers of periodical hiftory, reprefent the army under the command of Mchas as more numerous than that of the Conful; while they attribute the fuccefs of the latter wholly to the condurt and intrepility of its leader. The fact, however, we believe to be far otherwife; for we think it might be proved, by comparing together the different bulleteins of the army of referve, that from the beginning the French had a decided fuperiority. Be this as it may, the Auftrians were, for nine hours, victorions; and the fate of the battle was at laft turned, not by any uncommon exertions of the Conful, but partly by the provident conduct of Dellaix, and ftill more by the fituation of the Auftrian commander, whofe faculties feem wholly to have forfaken him in the latter part of the day. When he was in this ftate, one falfe movement, which weakened his centre, afforded an opportunity to Deffaix to make a vigorous and fuccefsful charge with a body of cavalry that had not yet been engaged; and General Zach, who was about to take the command of the army from Melas, worn out with age and fatigue, unfortunately falling, at that critical moment, into the hands of the enemy, the French remained malkers of the field of hattle.

The fpirit of the Autrians, however, was not broken. They had lolt indecd $9: 00$ men, with fome of their beit generals; but the lofs of the French was confefedly greater, amounting by their own account to at leatt i 2,000 men. The Autrians, enraged at having had the victory fo wrefted out of their hands, were eager to renew the contelt on the following day; but, inftead of feconding the ardour of his troups, General Melas concluded a capitulation, unparalleled, we will venture to affirm, in the anmals of war; a capitulation by which lie voluntarily furrendered into the hands of

419 les confequences.

420 the enemy nearly all the fruits of one of the molt glorious and fuccefsful campaigns recorded in hiftory. We with not to throw any undue afperfion on the character of the Aultrian commander. His behaviour at the battle of Novi renders his bravery unquetionable; and we are affured, by letters from Germany, that his integrity has never been fufpected; but thofe letters reprefent him as qualified, not to command a great army, but only to execute the orders of a fuperior mind. It may have been in confequence of fome previous general inftructions from the Aulic Council that he figned fuch a capitulation; or the fortreffes which be furrendered may have been deftitute of provifions, and of courfe incapable of fuftaining a fiege. On the former fuppofition, the Aulic Council mutt be confidered as decided enemies to the caufe in which the allies were embarked; on the latter, General Melas was the leaft provident commander that was ever perhaps entrulted with the defence of a country.

Be this as it may, he gave up to the Frencla the whole of Piedmont and Genoa; and, concluding an armiftice which was to laft till an anfwer agreeing to the conditions could return from the court of Vienna, he retired with his army into the territory of Mantua, Tulcany, and Ancona.

The gallant Kray wifhed to take advantage of this armiftice in Italy to fop the progrefs of the troops under Moreau; but the French general would not liften
to his overture, till he received intructions from Paris, French in contequence, as was fuppofed, of the arrival of Count ${ }^{\text {Revolution, }}$ St Julien with propofals of peace from the Imperial Cabinet. The armiftice was then concluded in Germany as well as in laly, leaving for the line of demar And Gcrcation the potts occupied at the time by the refpective matry. armies; but if the French adhered to the letter of thefe treaties, they almoft infantly violated the firit of buth. They reinforced their army in ltaly in direct contradiction in what was obvionlly the meaning of their tipulations with Melas; they filled the conquered countries with their licentious hordes; they levied enormous contributions, and even railed troops in tates of which they had formally proclaimed the independence: and their armies in Germany fublifted on the plunder of the neighbouring countries.

Whilit France was thus everywhere victorious in Europe, her troops were fuffering hardfhips and difgrace in Africa. They complained loudly of being deferted hy state of their chief; and Kleber, on whom the command de the war in volved, declared, in the impious jargon of the Jacobins, Egypt. that the fame univerfe fhould not contain him and Bomaparte. He felt it expedient, however, to continue the negociations into which that general had entered with the Grand Vifier for the evacuation of Egypt ; and after many letters had paffed between them, a convention was conchuded on the 24 th of January 1800 , to which Sir Sydney Smith acceded on the part of Great Britain. By that convention the French army was to be collected with its arms, baggage, and effect:, at Alexandria, Rofetta, and Abonkir, and thence be tranfported into France, as well in its own vefiels as in fuch as Thould be furnifhed to it by the Sublime Porte.

To the caufe of the allies it is olvious that acthing could have happened apparently more injurious than the evacuation of Egypt on fuch conditions as this, which would have furnifhed the Conful with fixteen or eighteen thoufand veteran troops to be employed by lime either in Italy or on the Rhine. How the gallant Commodore came to overlook this circumftance, or indeed how he came to act as a Britih Plenipotentiary, we pretend not to know. That he exceeded any powers with which he could reafonably conceive bimfelf velled, was completely proved in the Houle of Commons by the war-minitter Mr Dundas; who juftly obferved, that the powers of Sir Sidney and his brother as plenipotentiaries, had ceafed upon the arrival of Lord Elgin in that capacity at Conftantinople; and that, as a Britifh officer, he had no right to accede to fuch a convention while be held only a fubordinate command under Viceadmiral Lord Keith.

In December 1799, miniters had reafon to believe that a negociation would be entered into by General Kleber and the Grand Vifier for the evacuation of E gypt by the French troops. As fuch a negociation was defirable, they fent inflructions, not to Sir Sidney Smith, hut to Lord Keith, to accede to it ; on the exprefs condition, however, that Kleher and his forces fhould not be fent back to France to fight againt the Aullrians, but fhould be detained as prifoners of war till regularly exchauged. Thefe inftructions reached the noble admiral in February 1800, when he immediately apprifed General Kleber of them ; affuring him, at the fame time, that he would permit no hips to fail with French troops, in confequence of any partial ca-
pitulation,

$\begin{array}{llllll}R & \text { E } & \text { [} 455 & \text { 1 }\end{array}$

French pitulation, or of paffports from fuch as had no right to evo'u'on, grant them.

This conduct, which was perfectly fair on the part of Britain, and of which the contrary might have heen juftly complained of by the court of Vienna, produced a violent ontery, not only in France but even in England, among thofe who, from the commencement of the war, had uniformly pleaded the caufe of the cmenies of their conntry. Government, it was faid, had booken faith both with its allies and with its enemies; yet kleber himfelf accufed the cabinet of St James's of no fuch crime. He talked, indeed, of Lord Keith's infolence, and called nopon his foldiers to anfwer it by their victories; but folittle did he drean of trachery on the part of Britain, that in his ketter to the dircetory. he fpoke of his convention as made with the Grand Vilier alone. Accordingly, on the $20 t h$ of March, he attacked the Turks in the neighbourhoot of Cairo; and though the Janizaries difplayed fomething of their wonted bravery, they were forced to yield to the fuperiority of European tactics, when the 'lurks fled in all directions, leaviug upwards of 8000 dead and wounded on the field of battle.

This vistory reflored to the French the poffeflion of Cairo, which they had abandoned in confequence of the convention ; but they were ftill much haraffed by fome of the Beys, who during the battle had paffed the rear of the army, and maffacred fuch of the Copts as favoured their caufe. Kleber, therefore, agrain propofed to evacuate Egypt on the terms agreed to by the Grand Vifter and Sir Sidney Smith ; and the court of London having authorifed Lord leith to accede to thofe terms, a fufpenfion of hoftilities took place, and the Turks were about to be freed from enemies whom they were unable to expel, when the French commander was fuddenly affaffinated.

This was a ferious misfortune, as well to the allies as to the French in Egypt; for Kleber appears to have been the moft honourable, as well as the ablcti, commander of the republicans in that part of the world. By whom, or at whofe inflance, he was murclered, is not certainly known ; but, at Conftantinople, fufpicion attached ftrongly to his fucceffor Menou, who had thwarted all his meafures; who refolutely oppofed the evacuation of Egypt on any terms ; and who, having embraced the Mahommedan faith, prefixed Aldullab Bey to his name. He no fooner fucceeded to the command of the army, than he broke off the negociation which was almoft concluded by his predeceffor; and in. formed the Englifh Commodore, on the 1oth of June, that he could enter into no treaty without inftructions from the Confuls, who, as he truly obferved, then governed the French nation.

In the mean time, meafures were taken by the Britifh government to drive him from that country, which. he would not leave by capitulation. Early in the campaign, a body of $12,000 \mathrm{mon}$ had been put under the command of Lieutenant-greneral Sir James Pulteney, to act in the Mediterranean in fuch a manner as might moit annoy the enemy, and divide their force. The defign was fplendid; but it was completely difconcerted by the fatal iflue of the battle of Marengo. 'The force under Sir James, however, might fill be employed with advantage to the common caufe ; and as there was reafon to believe that France and Spain had formed the
plan of marching an army into Portugal, the lientenant. French general was directed to reconnoitre Ferrol, and make Revolicion, an attempt upon the place, thould he deem fuccefs pro- $\underbrace{1 \text { Sou. }}$ bable, with little lofs of men and of rime. He landed $4 / 4$ his troops on the 25 th of Auguit, and got poffeftion of Sir James the heights which overlooked the town; but finding it Pulectey better fortified, and occupied by a tronger garrifon, at Ferrot than he had expected, he judged fuccefs unattainable, without fuch a lols of men as would render the army incapable of carrying into effect the objects of its future dellination. He lherefore reinibarked, on the morming of the 27 th, without having fummoned the garrifon, thrown a fhell into the town, or fired a fhot againt the tamparts.
Sir Ralph Abereromby had been fent to fuperfede Sir Ralph Sir James Pulteney, and take upon himfelf the com-Abercrommand of the arny acting in the Mediterranean. Ha- by ving carried reinforcements with him, befides a train of artillery from Gibraltar, he touched at Minorca and Malta, whence he proceeded towards the coall of Egypt. Meeting, however, with unexpected delays on the coalt of Afra Minor, the forces, under the joint command of Lord Keith and him, did not arrive at Alexandria till the if of March 1801 . On the following day the fleet made fail for the Bay of Aboukir, where it anchored. The fea running high, no difembarkation could be attempted till the 7 th, when, at 10426 n'elock A. M. the firtt divifion made good its landing Lards in in the face of the French, who, to the number of 4020 Egypt: men, were pofted fo advantagroutly, that, in the opinion of an eye-witnefs *, they might have reffited the * Mr Baldworld. Our limits permit us not to dwell on the maf-win. Ste terly plan of the commander in chief, or on the cool in- his Polititical trepidity of General Moore in carrying it into execu-refutive to tion. Suffice it to fay, that hy 2000 l3ritifh troops the Egyft. enemy were driven from their polition with the lofs of fome field pieces, which were immediately turned againft them ; and that the difembarkation was continued during that and the following day.

On the 12 th the whole army moved forwards, and coming in fight of the inain body of the French, attacked them on the $13^{\text {th }}$, when, after an obftinate conteft, and confiderable lofs on both fides, victory dectared for the gallant Abercromby. The blow was followed Fights the up with vigour ; and on the 2 It a ftill more decifive battle of battle was fought, with a fimilar event, at the diftance Alcandria of abnut four miles from Alexandria. It commenced early in the morning, and was continued long; victory leaning fometimes to one fide and fometimes to the other; but at laft the French gave way in all directions. The heroifm difplayed in this brilliant action raifed the military claracter of the Britifh nation as high as its naval characeer ; and the magnanimons conduct of the commander in chief, who, that the ardour of his troops might not be danped, concealed, for two hours, the 428 bitter anguifh of a mortal wound, has feldom been In which. equalled, and can hardly be furpaffed. The lofs on our he is morfide, in killed, wounded, and miffing, was upwards of tally I 500, among whom were feveral gallant officers befides wounded. the general. The lofs of the French was computed at 4000.

As thefe two battles may be faid to have decided the fate of Egypt, we Thall return to Europe, where events had taken place of as great importance as any which had occurred during the war. The northern.

R.E V [456] R E V

431
The new miniftry

Freach fowers, long envious of the naval fuperiority of BriFivoluenn,tain, and influenced by the Emperor Palul, who feemed 1 S00.

429
Ther.ooth raconfec.e1dey.

430
The refig. nation of the miniilr now to be leagued with the Conful of France, had revived the amed neutrality fird formed by Catharine II. during the American war; and clamed the right of treading to the ports of France, without having their veilels learched by the Englith cruifers. That confederacy the Britif minilters had determined to break, when, to the furprife of the whole nation, and the deep regret of the better part of it, they fuddenly retired from office.

Oi a ineafure fo little expected, various caufes have been affigned; but that which was in a manner avowed in parliament, was a difference in the cabinet refpecting Catholic emancipation. With much addrefs the minjftry had accomplifhed a legiflative union between Great Britain and Ireland (Sce Ireland, in this Suppl.) ; and it has been faid, but certainly not proved, that the Lord Lieutenant had been authorifed, to huld out to the Irith Catholics a repeal of the $t f f a c t$, as an inducement to them to comply with the meafure. Such a bribe as this, clandettinely offered, is very unlike the fpirit as well of Mr Pitt as of the Marquis Cornwallis; and we do not believe that the offer was ever made. There feems, however, to be no doubt but that the minifer propofed the meafure in the cabinet after the union ; that the king, with that confcientious regard which he has uniformly difplayed to the conftitution, put his negative upon it ; and that in confequence Mr Pitt and lis friends immediately gave in their refignation.

Their places were fupplied by men who had generally fupported their mealures during the war ; and it has even been fuppofed that thofe who retired from office recommended their fucceffors. Mr. Addington, then fpeaker of the Houle of Commons, was appointed firft lord commifioner of the treafury and chancellor of the exchequer; Lord Eldon, lord high chancellor; the Earl of St Vincent, firf lord commiffioner of the admiralty ; Lord Hawkeftury and Lord Pelham, fecretaries of fate for the foreign and home departments; and the Hon. Colonel Yorke, fecretary at war. The ald miniftry was diffolved on the 11 th of February ; but, owing to a fevere illnefs of his Majelty, it was the middle of March before any of the new minifters, except Lord St Vincent and Lord Hawkefbury, entered upon their offices; and during that period of difmay, Mr Pitt and his friends guided the helm of tate.

The new miniters began their career with pledging shemfelves to leave nothing unattempted to bring about al fafe and honourable peace with the French republic; but in the mean time they proceeded with vigour to carry into effect the warlike plans of their predeceffors.

The northern confederacy had by this time adopted meafures the moft hoftile. A Danifh army under the command of Charles Prince of Heffe took poffeffion of the free and imperial city of Hamburgh, for the exprefs purpofe of hurting the Britifh commerce; and the King of Pruffia, with that unaccountable policy which lias marked the whole of his couduct, ordered a large army into the electorate of Hanover. To chaftife this infolence and diffolve the confederacy, an armament was fitted ont in the Britinh ports, confifing of feventcen fail of the line, four frigates, four floops, and fome bomb veffels. This fleet, under the command of Admiral Sir Hyde Parker, Vice-Admiral Lord Nel-
fon, and Rear-Admiral (now Sir Thomas) Graves, French failed from Yarmouth on the 12 th of March; and Rcvolutica pafling the Sound, appeared on the $30 t h$ before Copenhagen. The Danes feencd undifmayed; for neither the town nor their fleet could be annoyed, but by the Britifh adniral's conducting their force through a channel of fuch intricate navigation, that, thirty years before, it was thought lardly fafe to attempt it with a fingle thip oppofed to no enemy. Lord Nelfon, however, having founded the channel, undertook to pilot through it a large divifion of the fleet, of which he requelled and obtained the command from Sir Hyde Parker, with Rear-Admiral Graves commanding inmediately under him.

As the fecond rates were thought to draw too much water for fuch a navigation, the twelve thips felected troys the for the attack carried each from 74 to 50 guns, Danifh which were added four frigates, four floops, two fire-at Copenmips, and feven bombs. The force oppofed to this ar-hagen. mament was tremendous, conliting of fix fail of the line; eleven floating batteries, mounting each from 26 twentyfour pounders to 18 eighteen pounders; one bombfhip, and feveral fchooner veffels in the line. Thefe were fupported by the Crown Itlands, mounting eightyeight cannon; by four fail of the line, moored in the harbour's mouth; and by fome batteries on the Ifland of Ainak. This furce Lord Nelfon attacked on the 2d of April; and after an oblitinate action for four hours, filenced the batteries, and took, Lurnt, or funk feventeen fail, among which were feven fail of the line. On both fides the carnage was great, the Britifh having 943 men, including officers, killed and wounded; whilft the lofs of the Danes was at lealt double that number.

The refult of this brilliant action, to which nothing The reful 434 will be found fuperior in the annals of naval war, was a of this ac fufpenfion of holtilities, and, on the part of Denmark, ${ }^{\text {tion, }}$ of the treaty of armed neutrality, for fourteen weeks.

As foon as the difabled Thips were repaired, the Britifh fleet failed for Carlfcrona, off which it appeared on the rgth of April. The admiral immediately acquainted the governor with what had been tranfacted at Copenhagen, requetting from his Swedifh majefty an explicit anfwer whether he meant to adhere to or abandon the hottile meafures which he had taken in conjunction with the court of Peterfburgh. The anfwer returned was extremely equivocal ; but intelligence being received of the fudden death of the Emperor Paul And of th on the 23 d of March ; and Lord Nelfon, who had fuc- death of Emper ceeded Sir Hyde Parker in the command of the Britifh Paul. fleet, writing in more decided terms than his predeceffor, the court of Stockholm followed the example of that of Copenhagen. The young Emperor Alexander foon afterwards, actuated by a fenfe of juftice, reftored the Britifh property which his father had confifcated; relinquifhed his ill founded claims to the ifland of Malta, which by this time had furrendered to the Britifh forces; Surrende: and agreed to a fearch of neutral fhips bound to the of Matta ports of a nation at war with another. It was indeed to fuch a fearch only by fhips employed entirely in the fervice of government that his Imperial Majelty thus agreed; but this is perhaps all that the Britith government could reafonably afk; and the grating of it put an end to the northern confederacy.

At the figning of the armiltice between the Auftrian and French generals in 1800, the Republican troops

R E V [457] R E V

French were matters of Germany almoft to the banks of the evolution, Inn, and of Italy almoft to the confines of Venice. The fpirit of the Emperor, however, was not yet broken, and he refufed to abandon his allies by confirming the preliminaries of peace to which Count St Julian, exceeding his powers, had agreed at Paris. General Kray having retired from the fervice, the command of his army was given to the Archduke Joln, and the Emperor in perfon repaired to it with him; but they foon found it incapable of acting offenfively againit Moreau, and another armitice was agreed to, including Italy as well as the empire. The conduct of the Emperor was, on this occafion moft honourable. He wifhed to comprehend Great Britain in any treaty of peace to be negotiated between himfelf and the Conful; and the Cabinet of St James's had agreed to fend a plenipotentiary to a congrefs to be held for that purpofe, at any place agreed upon by the courts of Vienna and Paris. The Conful however would not admit a Britifh plenipotentiary unlefs a naval armitice fhould be previoully agreed to between France and England; and becaufe the court of London rejected a propofal unpreeedented, and in itfelf fo very unreafonable that even he who made it did not expect it to be agreed to, Moreau received orders to recommence hoftilities.

The Auftrian army was now under the command of Generals, whofe names had fcarcely reached beyond their own country, and who foon thewed that they had little experience in the art of war. While Moreau was meditating the plan of his winter campaign, the right wing of his army was attacked by the Autrians with fuch fpirit and fuccefs, as feemed to reduce him to the neceffity of acting on the defenfive ; and he would have been completely ruined, had Klenau made a temperate ufe of his victory. This, however, he did not ; for, elated with his good fortune, he quitted his Atrong pofition on the Inn, and attacking his vigilant and able antagonift near the village of Hoheulinden, was completely defeated, with the lofs of 80 pieces of cannon, 200 caiffons, and, if any credit be due to the French official papers, no lefs than 10,000 prifoners, belides an inmenfe number left dead on the field of battle.

Moreau, without fuffering the Auftrian commander to rally his feattered forces, marched directly to the Iun, which he croffed on the 9 th of December 1802 ; and driving his enemies before him, ftruck the court of Vienna with terror and difmay. Prince Charles was furdenly recalled to the command of the army ; and after making one fruitlefs effort to retrieve the affairs, not only of Autria, but of Europe, he propofed an armif. tice, which on the $27^{\text {th }}$ of December the French 'general was glad to accept, on condition that peace fhould, without farther delay, follow this third ceflation of hoftilities. Could the A rchduke have depended on his army, weakened as it was, this armiltice would probably not have taken place; for the pofition held by Moreau was tremendous. He had plunged himfelf into the very heart of Auftria, leaving behind him, on his right, the Tyrol, filled with troops to the amount of 30,000 ; befides the divifions of Klenau, Simbfehen, and Rifkenfield, with the legion of Bohemia, forming more than 50,000 , on his left. But the fpirit of the Auftrians was broken, and the principles of too many of their officers were corrupted.

This armiftice was followed hy a treaty of peace eonSuppl. Vol. II. Part II.
cluded at Luneville on the 9 th of February 1831, be. French, tween the Emperor in his own name and in the name of ${ }^{\text {Rcvolution, }}$ the Germanic body, and the Firt Conful of the French republic in the name of the French people. The terms of this peace differed little from thole of the treaty of Campo Formio; only, the Emperor bound himfelf to'ween Au cede to the Duke of Modena, as an indemnity for the thria and countries which that prince had loft in Italy, the Brifgau, and to find in the Germanic empire indemnities to all thofe princes who, by the fate of war, had been de prived of their dominions; while the Grand Duke of Tufcany was to renounce, for himfelf and his fucceffors, the Grand Dukedom, and that part of the Ifle of Elbé which depends on it, in full fovereignty to the infant Duke of Parma, obtaining a full and complete indemnity in the empire! On the jullice or injullice of fuch a treaty we make no remarks: the facts will fpeak for themfelves to every one of our readers.

On the 28th of March a treaty of peace was likewife Between ${ }^{440}$ concluded between the King of the two Sicilies and the France and French republic; in which his Sicilian Majefly bound Naples; himfelf to fhut all the ports of Naples ánd Sicily againft Turkifh and Englifh fhips, as well merchantmen as thips of war, till the conclulion of a definitive treaty of peace between thofe two powers and the French republic, and
likewife between England and the powers of the north. He renounced likewife, for himielf and his fucceffors, Porto Longano in the Ine of Elbe, and every thing belonging to it in that ifland; together with the flates of the Prefides in Tufcany, which, with the Principality of Piombino, he ceded to the French government, to be by it diffofed of at its pleafure. In both thefe treaties the French plenipotentiaries took upon themfelves to act fur the Batavian, Helvetic, Ligurian, and Ci falpine republics, as if thefe flates were provinces of France.

Great Britain was now left to carry on the war without a fingle ally but the Turks in Egypt and the Portuguefe in Europe; and thefe, inftead of being able to lend her aid, contributed only to diminifh her force by dividing it. At the inttigation of France, Spain had And beattacked Portugal, and conquered fome of her provin-tween ces; but on the 6th of June a treaty of peace was S_{p} ain and concluded between thofe two puwers; by which the king of Spain reftored all his conquelts except the fortrefs of Olivenza with its territory and imhahitants from the Guardiana, which was henceforth to be the boundary on that lide between the two kingdoms. On the other hand, the Prince Regent of Portugal and Algarva engaged to thut the ports of his whole territories againit the fhips of Great Britain, and to make good to his Catholic Majelty all damages or injury which his fubjects might have fuflained, during the war, from the Britifh navy or the fubjects of the ()neen of Portugal, and for which indemnification could rightfully, be claimed.

The Conful having made peace with all his other enemies, menaced the kingdom of Great Britain with invafion; and the people, or at lealt part of them, were weak enough to be alarmed at his empty threats. T'o banifh this panic from the public mind, Lord Nelfon was fent to deftroy the fhipping and harbour of Boulogne. His fuccefs was not equal to the goodnefs of his caufe; but, on the 4 th of Augult, he made fuch an impreffion on the enemy, as put an end to their 3 M dreams

R E V

French dreams of invafion, and thewed the inhabitants of BriRevolution, tain that they were abler to annoy the I'rench coaft, 1Sor. than the Conful and his myrmidons were to annoy their's. It was feen, too, about this time, that the fpirit of the Britith navy was not attached exclufively to the hero of the Nile; for in the month of July rear-admiral Sir James Saumarez, came up with a fquadron of Freneh and Spanifh flipe of war hound for Cadiz; and though their force was fuperiur to his own, he took one of therm, and two others were burnt.

Early in this fummer negotiations had been entered into between the Britith and French courts for the reAtoration of peace to Europe. The diffelution of the northern confederacy had flewn the ambitious Conful that he could not annihilate the Englifh trade, and that of courle all the treaties which he had made for the ex. clution of our thips from the ports of neutral powers were of no validity. His heart, however, was fet upon the retention of Egypt, which every maxim of juflice as well as of found policy impelled the cabinet of St James's to wreft from his gripe. The negotiation was therefore protracted from day to day, till intelligence arrived at London and Paris of the complete conquell of that country.

On the death of Sir Ralph Abercromby, the command of the Britifh forces devolved upon General Hutchinfon, who foon thewed that he was not unworthy to fucceed fo great a man, and who, as he was probably acquainted with the plan of operations formed by his deceafed friend, feems to have been actuated by the fare fpirit. Marching with the main body of the army towards Alexandria, which was occupied by Menou, he fent Colonel Spencer with a divifion of the Britifh forces, aided by a body of Turks, to attack Roder. The furrender of Cairo followed, on the 22 d of June, on terms favourable to the befieged; and Menou, accepting of the fame terms for Alexandria, the allies became mafters of the whole of Egypt, from which the French army, with its baggage, was to be tranfported, in fhips of the allied powers, to the neareft French ports in the Mediterranean. The intelligence of thefe events forwarded the negociation for peace between Great Britain and France; and on the ift of October, the preliminary articles were figned at London by Lord Hawkefbury on the part of his Britannic Majefty, and M. Otto on that of the French Republic. By this treaty Great Britain agreed to the reltoration of all the eonquefts the lad made during the war; the illand of Trinidad and the Dutch poffeffions in Ceylon excepted: 'The French Republic agreed to the reftitution of nothing! The Cape of Good Hope, though reftored to the Batavian Republic, was to remain a free port to the other contracting parties, who were to enjoy there tle fame advantages of trade with the Duteh themfelves. The infand of Nlalta was to be reftored to the Knights of the order of St John of Jerufalem ; its independence was to be guaranteed by Great Britain, Aultria, Ruf. fia, Prulia, and France; and it was to be evacuated by the Britifh forees as foon as it fhould be taken poffef. fion of by the Knights, and garrifoned by 2000 Nea. politan troops. Egypt was to be reflored to the Ottoman Porte ; and the territory of Portugal was to be maintained is its integrity, with the exception of the fortreffes and its dependencies, ceded by the Prince Re. gent to the King of Spain. .The French were to eva-
cuate the kingdom of Naples, and the Roman Nates- French the Britifh, Porto Ferrajo, and all the ports and ifands Revolution, that they occupied in the Mediterranean and Adriatic. The republic of the Seven Iflands was recognifed by France; the fifhery on the banks of Newfoundland was eftablifhed on its former footing; and, finally, plenipotentiaries were to repair to Amiens, and there proceed to the formation of a definitive treaty in concert with the allies of the contracting parties.

That treaty was concluded on the 22d of March Treaty of 1802 by the plenipotentiary of his Britannic Majefly Amieut. on the one part, and the plenipotentiaries of the Catholic King and the French and Batavian Republics on the other; but it differs in fome particulars, as well from the letter as from the fpirit of the preliminaries agreed on and fubferibed by Lord Hawkefbury and M. Otto: The territorial poffefions of the Queen of Portugal were not maintained in their integrity; for the boundaries of Freneh and Portugutfe Guiana are, by the feventh article of the definitive treaty, fixed by the river Arowary; the free navigation of which gives to France the abfolute command of all her faithful Majefty's dominions in that part of the world. The French troops were indeed to be withdrawn from the kingdom of Naples and the Roman fates; but during the interval which paffed from the figning of the preliminaries to the conclution of the definitive treaty, the firft Conful took poffeffion of the ifland of Elba; and having got himfelf elected prelident of the Italian republic, which he had lately formed, he has fecured a pretext for pouring French troops into Italy whenever his ambition may impel him to fuch a meafure. In the view of abftract juftice, fuch deviations from the fpirit of the preliminaries, agreed to at London by the accredited minifter of the French Republic, would have been a fufficient reafon for breaking off the treaty; but the Bri-french tihh government, lludying immediate expediency and volution the temper of the people, directed the Marquis Corn- completed. wallis to fign it. Thus was the French revolution completed, and the republic acknowledged by all Europe.

We cannot, however, difmifs the momentous fubject Errors in ${ }^{446}$ without correcting fome errors into which we fell in the the former account of the rife and progrefs of this revolution which part of the was publifhed in the Encyclopedia. We do not contider article corthefe errors as difgraceful to ourfelves; for in the midft of commotions which have convulfed all Europe, it is hardly poffible to arrive at the truth. When time fhall have cooled the paffions of men, and annihilated the parties which now divide the nation, the calm voice of 'I'ruth may be everywhere heard; but when the article referred to was written, the ears of every man was funned with the clamour of faction.

So fenfible of this are the editors of the only impartial periodical hiftory * which we have, that they venture * Old Arenot to publifh their volumes till feveral years have elap-nual Regifo fed from the era of the tranfactions which thefe volumes ${ }^{\text {ter }}$ record; whilf their rivals-the panders of factionfeize the earlieft opportunities of obtruding their partial ftatements and falfe reafonings on the public mind.

It cannot be fuppofed that one or two men, fuperintending the publication of a work fo extenfive, and? treating of fubjects fo various, as ours, have leifure or opportunity to examine with much attention the correfpondence of ambaffadors, or to expifcate truth from the contradictory publications of the day. We are
therefore

R E V

French therefore obliged to draw our materials from fuch works Revolution as profefs to give a fummary, but impartial, detail of what is acting on the theatre of the world; and by thefe works we have often been milled. For the firt error, however, which we fhall notiee in our former account of the rife of the revolution, we cannot plead even this excufe. We ought to have known, that the Freach clergy and Freneh nobleffe were not exempted from the payment of taxes; and, of courle, we ought not to have affigned fuch excmption as one of the caufes of the Revolution. See that article, Encycl.n 8 . and 9.

By a writer, to whofe patriotic exertions this country is deeply indebted, it las becu proved, with a force of argument which precludes all poffibility of reply, that the exemption from tases fo loudly complained of was very triffing, that it was not confined to the nohility and clergy, and that it did not extend over the whole kingdom of France. "The ringtiomer, which may be confidered as an impoof merely territorial, was paid alike by the nobility and the tiers-etat. A grreat part of the clergy was indeed exempted; but their contributions, under a different form, confituted an ample equivalent. The duties upon the different articles of confumption were of courle paid by all the confumers, except that in the pays d'eiat, fuch as Artois and Brit. tany ; the two firft orders were exempted from paying the tax upon liquors. But thefe exemptions cannot be deemed very important, when it is known, that in the province of Artois they did not exceed 800 guineas annually, even including the exemptions enjoyed by the privileged members of the tiers-etat." The Britifh of. ficers ferving on hoard hips of war are exempted from the taxes paid by the other members of the flate on wine; and we believe no good fubject has ever murmured at that exemption. The French nobility were subject to the pole-tax.
"Of the teilles, the impolt from which it has been falfely afferted that the nobility and clergy enjoyed a total exemption, there were two fpecies; the one per. fonal, the other real. In oue part of the kingdom, the right of exemption was annesed to the property; in the other, to the quality of the proprietor. In the firft cafe, the privilege was enjoyed by every clafs of perfons, by the tenauts as well as the proprictor of a fief; whift the gentleman, whofe eftate was holden by a different tenure, was obliged to pay the tax. In thofe provinces where the other cultum obtained, the exemption was confined to a certain extent of property, and to that only while it continued in the actual oceupation of the privileged perfon; but as it very feldom happened that the French nobility kept any land in their own hands, and as the tax payable by the farmers was of courle deducted from the rent, the teilles was, in this cafe, ultimately paid by the landlord. The fame ohlervations apply, with fill greater force, to the clergy, who always let their eflates."

In a word, it appears from a formal declaration made by M. Necker to the Contituent Affembly, that all the pecuniary exemptions enjoyed by the privileged claffes did not exceed L. 292,000; that the exemptions appertaining to the privileged perfons of the tiers-etat amounted to one half of that fum; and the droits de controle, or duty impoled upon public deeds, and the ligh capitation tax (proportioned to their rank), paid by the nobility and clergy, made ample amends to the
revenue for the partial exemptions which they eajoyed from ohier taxes. So far, indeed, were the diers-etat from murmuring at the exemptions of the privileged orders, that, previous tu the illumirifion of the 18 th century, they difplayed, at every convention of the fates. general, the grateft anxiety to maintain the rights of the nobility and clergy ; and humbly fupplicated their fovereign to fuffer no invafion thereof, but to refpect their franchifes and immunities*.

We mult likewife acknowlulge, that in $n^{\circ} 1 \mathrm{I}$. of our ford's Letter article Revolurion, we have drawn a very overchar- of the Eart god picture of the miferies and opprefifon of the French of Lande, 2d ed. peafats under the old government. It is indeed true 44^{8} that they were obliged to ferve in the militia, the efa. Second blinment of which was conducted in France nearly on error. the fame principles as it is in England. The men were called out by ballot only for a few days in the year during peace, when they received regular pay; but if a militid fomms the left conflitutional defence of a ftate, this furely ought not to have been confidered as a grievance, efpecially fince married men were exempted from the fervice. The nobility, too, were exempted from the rifk of being drawn, for the beft of all reafons-beeaufe moft of them had commiffions in the regulars, and becaufe fuch as lad not were engraged in profeffions, which rendered it impoffible for them to ferve in the militia. In France, as eliewhere, the peafants would no doubt be averfe from this fervice, and might look perlaps with an anxious eye to the fuppofed immunities of their privileged fuperiors; but if mirth, good humour, and focial cafe, may be confidered as fymptoms of felicity and coutent, thefe men furely were not miferable; for thefe fymptoms never ap. peared in any people fo ftrong as among the French peafants. They were indeed liable to be called out by the iutendants of the provinces to work a certain number of days every year on the public roads; but to this fpecies of oppreflion, if fuch it muft be called, the Scotch peafants are liable, and were dith more fo than at prefent, during that period when our parliamentary orators declare that the inhabitants of Britain enjoyed as much freedom as is conliftent with the puhlic tranquillity. It ought to be remembered, too, that Louis XVI. whof highelt gratification feems to have confifted in contributing to the eafe and welfare of his fub. jects, thought he faw the necelfity of abolinhing the cuftom of the corvié, and had made confiderable advances towards the accomplifiment of that ohject fome years before the commencement of the revolution.

That the French monarch was defuotic ; that no The Frencif man in the kingdom was fafe; that nothing was un. monarch known to the jealous inquifition of the police; and that not defpos every man was liable, when he lealt expected it, to be feized by lettres de cachet, and hat up in the gloomy chambers of the Baftile-has long been common language in England, and language which we mult confefs that we have adopted (Revolution, n° 12.) without due limitations. The French government was certainly not fo free as that of Britain ; but ke who underftood it better than we do, and whofe writings betray no attachment to arbitrary power, exprefsly diftinguifhea hetween it and defpotim. "If (fays Montefquieu) France has, for two or three centuries paft, inceffantly augmented her power, fuch augmentation mult not be \dagger De $l^{\prime} E f$ afcribed to fortune, but to the excellence of ber laws \dagger." Loix, liv.

R E V

French This, furely, is not the language of a man who thought Revolution. limfelf governed by an arbitrary tyrant whofe caprice is the law ; nor will it be faid to be the language of one who was either afraid to fpeak the truth or not mafter

450
No change of the old condtitution wifled by the peoule ct France. of his fuhject.
The inflructions of all the different orders to their reprefentatives, before the fatal mecting of the States General under the unfortunate Lonis, are drawn up in language fimilar to that of this illuftrious magitrate, and furnifh a complete proof that they knew themfelves to be fafe under the government of their monarehs. "The conftitution of the fate (fay the elergy) refults from the fundamental litus, by which the refpective righes of the king and of the naiton are iffertained, and from which not the fimallett deviation can be made. The frit of thefe laws is, that tlie government of France is purely monarchical. The nation mult preferve inviolate the form of its government, which it acknowledges to be a pure monareby regulated by the laws; and fuch it will have it to remain."

On the-28th of November 1788, in a general commitice of the nobles aftembled at Verfailles, the Prinee of Conti delivered a note to the prelident, which w'as fanctioned by the concurrence of mott of the other princes of the blood, and was fuppofed to fpeak the general fenie of the nobility ; in which it was infitted, that the profoription of all Nerb srstams wata neceffary to infure the ftability of the throne, of the larus, and of order: and that the conititution, with the ancient forms, thould be preferved entirc. In their inftructions to their reprefemtatives, they infift that it thall be exprefsly and folemmly proclaimed, that the conftitution of the French em:pire is fuch, that its government is, and mult remain, monarchical; that the king, as fupreme chicf of the French, is only fubordinate to the fundamental law of the kingdom, according to which the conftituion muft be eflablithed on the facred and immutable principles of monarchy, tempered by the laws; and this forn of gevernment eannot be replaced by any other corflitution.
"Let our deputies (fays the third eftate), before they attend to any other object, affit in giving to Fiance a truly monarchical conftitution, which inuft invariably fix the rigbts of the $k i n g$ and of the nation. 1.et it be declared, that the monarchical is the only iurm of government admiffible in France; and that in the king alone, as chief of the nation, is vefted the power of governing according to the laws.". Is this the lan. guage of men groaning under the iron rod of defpotifm, or wihing to reduce the power of the crown?

Even after the power of the cruwn was almof annihilated, and the urder of nobiliiy done away, fos far were thefe innovations from being acceptahle to the enlughtened part of the French nation, that in many departments of the kingdom they excited open infurrecrinns, whilf the members of all the provincial parlia. ments oppofed them with unanfwerable argumerits furnifhed by the law. The chamber of vacation of the parliament of Touloufe, in particular, protefted agrainf the

* See the prote? at largs in Bertrand's Memorrs, vol. iii. c. 13. proceedings of the States General, becaufe the deputies, who were empowered only to put an end to the ruinous tate of the finances, could not change the confitution of the fate withont violating their inftructions, and the faith fiworn to their conftituents *.

That letires de cachet were liable to abuife, and that
oceafionally they were grofsly abufed, is certain. The Frerch ufe of them ought therefore to have been either annul- Revoutions led, nr, which would have been infinitely better, fub jected to fueh rules as ftoould prevent all danger from Leteres d them to the real liberties of the people; for the govern- cachet. ment would be of no ufe whatever which mould poffers no puwer capable of being abufed by defpotifm. Yet after all the noife that has been made about letteres de cacbet, it is but juftice to obferve, that in the towers of the Battile, when it was taken by the mob, were found no more than feven prifoners; of whom four were ennfined for forgery ; one was confined at the requeft of his family on charges of the moft ferious nature; and two were fo deralged that they were fent next day, by thofe philanthropifts who had taken them out of eomfortable chambers, to the mad houfe! That the chambers of the Baftile were as comfortable as the chambers of a prifon could be, we are affured by M. Bertrande de Moleville, whe ean be under no indueement to deceive the Britift public, and whofe opportunities of difeovering the truth were fuch as no man will eall in queftion.

In our account of the opening of the States General, Bland we have expreffed too much deference to the eharacter Necker. of M. Neeker. To that man's irrefulute, if not treacherous, conduct, may, with truth, be attributed all the fubfequent miferies of France. It was about the mode of verifying their powers that the three orders of the flate firtt differed; but that mede fhould have been defined by the miniftry in the letters fent to the different hailiwieks for the convention of the Itates. Even this umiffion might lave been repaired after the arrival of the deputies at Verfailles; for none of them fhould have been admitted into the hall of the flates, far lefs fhould the king lave met them there, till the Conncil had been fatisfied of their being duly elected. Had either of thefe eautions been obferved, the tiersetat never could have got the afcendant over the other two orders, and the butinefs of the nation would have been conducted as formerly in three different chambers. M. Neeker's rejection of Mirabeau's advances thewed him to be very ill qualified to conduct the helm of affairs at fuch a erifis ; and his ahfenting himfelf from the royal fefion, a meafure which he had advifed, hetrayed the utmoft ingratitude to his graeious mafler.

In our account of the royal feffion, we were led into a mitake, which calls loudly for eorrection. The eireumfanees of that feffion were very different from what they appeared to us when we wrote $n^{\circ} 24$, and 25 . of the article Revolution. The royal feffion was pro- Royal claimed in confequence of the violent ufurpations of the Royal tierselat, and the irreconeileable differences which fub. filted between that body and the two higher orders; and fo far is it from being true that the prefident and nembers of the third flate found their hall unexpegedly furrounded by a detaehment of guards, that their fittings were only fufpended, for the beft of all reafons, with thofe of the other orders. Tn be convinced of this, we need but to attend to the following proclamation which was made by the heralds, on the 20th of June, between feven and eight o'cloek in the morning, in the ftreets and erofs-ways of Verfailles:
"June 20th. (By order of the King.) The King having refolved to hold a royal fitting in the States General, on Monday next the 22 d of June, the preparations to be made in the three halls uied by the affem-

R E V [461] R E V

French blies of the orders, make it neceffary that thofe affemevelution. plies hould be fnfpended until after the faid fitting. His Majefly will give notice, by another proclamation, of the hour of his going to the Aflembly of the States on Nonday."
M. Bailly, the prefident of the tiers-efat, had been made acquainted with the object of this proclamation, by a private letter which was fent to him by the Marquis de Brezé at feven o'clock in the morning; and to which he replied, "that having received no orders from the King, and the affembly having been a:mounced for eight o'clock, he thould attend where his duty called him."

He repaired, accompanied by a great number of the members of the tiers-etat, to the door of the hall of the States, demanded admiffion; and on being refufed by the officer on guard, according to his orders, with which he acquainted him, he declared that he protefted againf fuch orders, and that he fhould give a report of them to the Affenibly. To do this he hal not far to go, as three-fourths of the deputies of the tiers-etat were already collected round hin, or in the avenue leading to the palace. There it was that, furrounded by an immenfe crowd of peoplc, they declaimed in the moft violent manner againft this pretended act of defpotifm. "The National Affembly is to be"difolved (faid they), and the country to be plunged into the horrors of a civil war. Want reigns every where; every where the people fee famine faring them in the face. This we were about to put an cml to, by rending the veil which covers the manouvres of the monopolifts, the engroffers, and the whole tribe of mifcreants. The Louifes XI. and XIII. the Richeliens, the Mazarins, the Briennes, attacked with their defpotifm only individuals or fmall bodies; but here it is the whole nation that is made the fport of the whims of a defpotic miniftry. "Let us meet upon the Place d'Armes (faid one of thofe orators) ; there we fhall recal fome of the nobleft days of our hiftory, the National Afemblies of the field of Moy." "Let us affemble in the gallery of the palace (faid another) ; there we fhall prefent a new fight, ly f peaking the language of liberty, in that corropt hall, where a litte while fince the head of hin who fhould have uttered that facrect word would have been devoted to the executioner. - " No, no (faid a third), let us go to Marli, and hold our fitting on the Terrace:-let the King hear us; he will come from his palace, and will have nothing more to do than to place himfelf in the midit of his people to hold the royal fitting."

At the conclufion of thefe declamations, the fole object of which was to alarm and exafperate the people, the Affembly decided upon transferring their fitting to the Tennis court, in the freet called Rue du Vicux Virfailles. There M. Bailly read the letter which he had received from M. de Brezé, and his anfiver to it ; which he had fcarcely done, when a fecond letter from M. de Brezć was put into lis hands, the contents of which were as follows :
" It was by the King's pofitive order, Sir, that I did myfelf the honour of writing to you this morning, to acquaint you that, his Majelly purpofing to hold a royal fitting on Monday, and fome preparations being requifite in the three halls of the affemblies of the or. ders, it was his intention that no perfon fhould be ad.
mitted into them, and that the fittings flould be fufo pended till after that to be held hy his Majelty."

French In this there was furely no marked difrepect to the reprefentatives of the people; but fuch notions were countenanced by MI. Necker, who appears indeed, on this occafion, to have been in clofe compact with the leaders of the mob. The popular violence that was employed to compel the majority of tle clergy to join the tiers-etat is well known; and we have, in Dertrand's Annals of the Revolution, what amounts to evidence almoft legal, and quite fufficient to enforce conviGion, that Necker directed that violencc.

In our account of the commotions which were excited in Patis on the firf difmifion of that miniter and his banithment from the kiugdom, we have been led by our democratic journalitts to give circulation to a grofs calumny publifed by them againft the Prince de Lambefe. (See Revolution, $n^{\text {c }}$ 36. and 37.) The truth, which is fo much difguifed in thefe two numbers, is as follows:
"A detachment of the Royal Allemand, fent to dif. Cunouet of perfe the mob which was patrolling the freets in pro. the Pance ceffion with the bufts of Necker and the infamous Or- velicicatefle leans, received a volley from the French guards as they were paffing their quarters on the Chauffée d'Antin, Aopped to return it, and continued their march without quickening their pace. There were fome foldiers killed and wounded on both fides, but fewer of the regiment of Royal Allemand than on that of the Frencis guards.
" The detachment marched to the place Louis XV. and there found a body of diagoons who liad been difperfing the proceffion. The two bufts were broken to pieces; and the populace in their fright taking refuge in the garden of the Thuilleries, the Prince de Lainbefe purfued them thither, at the head of the detachment of Royal Allemand, according to the orders which he received. This fmall troop coming up to the head of the Pont-tournant (or iurning bridge), at the extremity of the garden, found a kind of barricade, haftily formed by chairs heaped upon one another: while they were removing this obfacle, they received a fhower of thones, broken clairs, and bottles, from the two terraces, between which the Pince de Lambefc drew up his troop, keeping contantly at their head. Sume guns and piftuls were difcharged at them, which did no. hurt ; but feveral of the troopers were much Ernifed by the things that had been thrown at thein, and an officer: was fevercly wounded by a Itone.
"The Prince de Lambcic, kecping at fix paces fromthe bridge, cpuofed only a feady front to the aggreffions of the populace. Secing that this poft beconic untenable, and that it was impoffible for him day longer to reftrain his troopers from repelling force by force, he gave the order for retreating out of the garden. At the fame inflant a cry was heard from all fides of, turn the bridge, turn the lridge; and fome perions, in confequence, ran and began to do it. The Prince de Lambefe, jultly fearing that a moft bloody catnage would be the inevitable confequence of it, ordered forme piltols to be fired ia the air towards the bridge, to awe thofe who were Ariving to turn it. As the report of this. volley did not deter them, he rode up himfelf, and with. his fabre fruck one of thofe who were working hardef. 'l'he man ran off; and the Prince paffing the bridge

Feench with his detachment into the Place Louis XV. drew Revolution. up near the Statue, and being foun joined by the Swifs regiment of Chateauvieux, tork his poll with this force near the Gardemeuble, where he renained fome time, having placed the infantry before him. At ten at night part of the troops were difniffed to their quarters, and the relt fent to Verfailles." Thefe facts being all judicially confirmed, pruve how much the Prince de Lambefe's conduct was calumniated by thofe journaliils

456
True account of the taking of the Baftile, whofe detail we rafhly adopted.
In our acconnt of the taking of the Baftile, milied by our treacherons guides, the journalits, we have greatly magnified the military fikill and prowefs of the affailants. That celebrated fortrefs was defended by a garrifon confiting of no more than 114 men, of whom 8_{2} were invalids. It was attacked by $30,0=0$ men and women, armed with mukkets and pikes, and furnifhed with a train of artillery which they had found at the Hotel cles Invalids, given up to them by the timidity of the governor. Even this multitude would have been quickly repulfed from the Baftile, if the governor of that flate-prifon, whu had received no orders from the court, had been lefs reluctant to thed the blood of his rebellious countrymen; for the Parifian mob had then difplayed nothing of determined courage. A few difcharges of mufquetry, and one of canifter thot from a fingle eannon, had thrown them into confufion, and made them fkulk behind the walls, when the ill-timed humanity of the governor made him enter into a treaty with the rebels, ttipulating only that the garrifon hould not be maffacred. How the Itipulation was obferved with refpect to the governor himelf, we have faithfully related; but we were mitaken when we faid that the "French guards fucceeded in procuring the fiftety of the garrifon." The guards, with the utmof difliculty, faved indeed fome of them, but moft of the invalds remaining in the courts of the caltle were put to dath in the moft mercilefs manner.
457
And of the Our account of the murder of M. de Fleffelles (n° murder of 40.) appears likewife to be very incorrect. This man
M. de Flef- was prefident of the affembly of Electors at Paris (Sce

Revolution, $n^{\circ} 45$.), and had not quitied the Hotel de Ville, where their rebellious meetings were held, during the whole time of thefe dreadful commotions. He had even figned all their at rocious refolutions, but became fuddenly fufpected from the confternation which he manifefted at the fight of fo many horrms, and cfpecially at the cruel and treacherous murder of the governor of the Baftile. The confequence was, that he was treacheroufly murdered himfelf by one of the villains compofing that affembly in which he pretided. " The electors (fays M. Bertrand de Motleville) hoped to extenuate the horror of this affaffination, by cauling it to be confidered as a natural and almuft lawfial vengeance for a treachery, the proof of which they pretended to have. In fact, they declared, that when M. de Launay, the governor of the Baftile, was arrefted, a letter had been found in his pocket frum M. de Fleffelles, containing this expreffion: 'I am amufing the Parifians with cockades and promifes; hold out till night, and you will receive a reinforcement.' But this fuppofed letter, which, had it exifted, they would not have failed to preferve very carefully, was never feen by any body; and I heard M. Bailly himfelf fay, in a vifit he paid me when he left the mayoralty, that he had
no knowledge of it, and that it was not in his power French to refer to any une who had told him that he had read it."

In our account of the earlier tranfactions of the Re- $t_{m b}^{4}$ tion volution, we onntted to mention a very extraordinary and cawar. infance of ambition to which the Duke of Ollears was incited by Count Mirabeau, but which that unsatural monfter wanted courage to carry into effect. During the commotions which prevailed in the capital on the difmiffal of M. Necker from the minitry, Orleans was perfuaded by Mirabeau to offer his fervices as mediator between the king and his rebellious fubjects; but to ftipulate, at the fame time, for his appointment to the high office of lieutenant-general of the kingdon as neceflary to give his mediation due weight with the re. bels. The real object of the profligate Count, in this dangerous propofal, and which he did not deign even to conceal, was to pave the way for the infanous Duke ftepping into the throne of his relation and virtuons fovereign. He even went fo far as to compofe the fpeech with which Orleans was to arldrefs the king on the occafion; but that coward, when he arrived at the palace, was fo embarraffed by the confeioufuefs of his own wieked defigns, that intlead of afking the office of lientenant general, he only requefted permiffion to retire into England!! A requelt which was inftantly granted.

This brought upon him the contempt and indignation of Mirabeau; but ftill there was a party defirons of placing him on the throne. This we think evident from an atrocious fact mentioned in all the journals, and confirmed by M. Bertrand. "When the king, on his furt vifit to Paris (See no 44.) hat arrived at the Cbamp Eiffees, three or four guns were fired at once. It was never known whenee they proceeded; but it is certain that an unfortunate woman in the erowd, who was in the direction of his Majefty's carriage, was fhot at the time, and fell dead on the fpot." As the King's carriage held at the time exactly four perfons, M. Bertrand very naturally concludes that thefe four fhots, fired at gace in its direction, had been ordered anc. paid for; and we are unwilling to believe that at that period of the revolution there was any party difpofed to pay for the inurder of the fovereign but the Duke of Orleans and his infamons adherents. That he was cqual to this wickednefs cannot be doubted, when it is known that legal evidence was afterwards produced that he, with fome other members of the Affembly, fecretly directed the infurrection of the 5 th of Octoher, and promoted the outrages of that and the fucceeding day by the dillribution of money and bread *.

* Bertrand's

We have faid $\left(n^{\circ} 48\right.$.), the origin of the report of a Annuls, train of gunpowder being laid by M. de Meminay, to vol. ii. blow into the air a number of patriots, has never been well explained. It was proved judicially, that at the M. Mem. period when the fealt was given by M. Memmay to the mas vindiinhabitants of Vefoul, he was fetting vines in a flony cated. foil, where he was often obliged to blow up the greater rocks. Some foldiers running through, and ferreting every where in the houfe and ont-houfes, unfortunately touk a candle to the dark corner where the barrel of gunpowder was lodged, and fet it on fire, in trying to fee if it contained wine. Thefe facts, reported and attefted in a memorial drawn up by M. Courvoifier, fo completely juftified M. de Memmay, that the Affem.

$\left.\begin{array}{lllll}\mathrm{R} & \mathrm{E} & \mathrm{V} & 463\end{array}\right] \quad \mathrm{R}$ E V

rrench bly could not avoid teftifying his innocence by a decree evolution. iffised the $4^{\text {th }}$ of June.

In in 70 we have faid that the National Affembly, after its removal from Verfailles to Paris, wias in tolerable fecurity; but M. Bertrand has proved, by cvidence the molt incontrovertible, that it did not think itfelf fecure; and that if the minitters had been capable of employing events to their own advantage, the powers of that facious body mut have been recalled by its own conftituents. The horrible outrages committed on the 5th and 6th of OCtuber had thocked all France. The wanton conififation of the property of the church, had demonftrated to every man of found judgment, that under the new order of things no property could be fecure : and by the defertion of its more virnous and moderate members, the Affembly bad becunse a rump affembly. It was therefore much alarmed when the intermediate commifion of the flates of Cambrefis entered, on the gth of November, into a refolution, in which, condidering - " that certain decrees of the Nationat Affembly are paving the way for the rum of the kingdom, and the annihilation of religion; that if they have been able to place one fpecies of property at the difpufal of the nation, men of all kinds of property may expect the fame fate; they declare from this moment, the power of the deputies of Cambrefis to the National Affembly to be null and revoked." Had M. Necker and his colleagues hadaddrefs to get fimilar refolutions entered into at the fame time by the electors of all the bailiwicks of the kingdom, the Affembly muft have been diffolved, and France, even then, might have been faved; but thofe minifters were themfelves nothing more than the humble and docile agents of the Affermbly.

There is no part of our former narrative more incorrect, or more likely to millead the public, than our account of the red-book $\left(\mathrm{n}^{\circ} 75\right)$. It is fuch, however, as was then current, without any addition or aggravation by us. The villains (k) who, in direct contradiction to their own folemn promife, as well as to every principle of honour, made part of that book public, had the impudence to affirm, that by the fuppreffion of tbe fuperfluous penfions regiftered ir it, a faving woutd be made to the public of neur a fifth in the bulk of the expences of every year. M. Bertrand, taking for granted the accuracy of their Itatements, for the exaggeration of which, however, he urges arguments more than planfible, proves, if arithmetical calculation affords proof, that by the fuppreflion of fuch penfions as even thry called fuperfluous, the faving in the bulk of the annual expences could nut poffibly have amounted to more than the two bundredib part! It was not therefore without reafon that M. Neeker, in anfwer to their publication, faid, "I know not whether the books of the finances of any fovereign in Europe can fhew a fimilar total."

Our account of the mutiny of the foldiers at Nancy ($\mathrm{n}^{\circ} 83$.) is very inaccurate. Far from being excited by the officers that mutiny was the natural confequence of the abfurd decrees of the Affembly; which having declared all men equal, and made it criminal to punifh
difobedient foldiers in that fummary way, without which nu armed force can be commanded, had com-

French $\underbrace{\text { Evolution, }}$ pletely diforganifed the army, and fubltituted for martial law patriotic exhortations, legiflative decrees, and the novel jurifdiction of municipalities. The foldiers knew their own ftrengrh, of whieh indeed they were continually informed by the friends of the revolution; and while they thook off the authority of their military commanders, they langhed at the impotent decrees of the Affembly. At Nancy they had iniprifoned two general otficers, and committed other outrages of the moft ferious nature. It was the duty of the Marquis de Bouille, as governor of the province, to reduce the infurgents by force, if force thould be found neceffary ; but he lad accomplifhed his object without fhedding blood, and was congratulating the two liberated generals, and fome of the principal inhabitants, upon fo happy a termination of the affair, when the populace, and many foldiers who had not followed their colours, fired upon the troops under his command, and killed fifty or fixty men. The troops immediately returned the fire; and a great number of the rebellious mob and mutinous garrifon were of courfe put to the fword. That fuch able and firm conduct in Bouillé excited indignation among the Jacobins of Paris, is rery proba. ble; but even the king himfelf did not exprefs higher. approbation of it than the National Affembly, who were daly fenfible that it faved themfelves from deftruction, which, had be failed in his enterprife, would have been inevitable. Three months afterwards, in. deed, when the fabrication of counter-revolutionary plots became part of the daily bufinels of this enlight. ened Affembly, fome cenfures were thrown by the Jacobins upon the Marquis's conduct on this oceafion ; and thofe cenfures were loudly applauded.

We have likewife been led, by our fallacious guides, to accufe this gallant officer ($0^{\circ} \mathrm{yt}$.) of having laid open the country to the inroads of foreign armies; and we have given an incorrect account of the king's flight from Paris. There is no evidence whatever for the truth of the charge againft the Marquis de Bouillé, and it is directly contrary to his general character. He was indeed a royalift, and would doubtlefs have cooperated with the Prince of Conde and the other emigrants in reftoring the king to his lawful anthority; but he was likewife a Frenchman and a patriot in the beft fenfe of the word; and he would have died in de. fence of the rights and independence of his country. He certainly meaut tu protect the king in his journey from Paris to Montmedi, where it was to terminate; and he had ftationed troops of dragoons on the road for that purpofe; but the unfortunate Lonis had delayed his journey a day longer than was agreed upon; and even when be fet out, neglected to fend conriers before him to warn the troops of his approach. He thes travelled unprotected; and the confequence was fuch as we have related. Yet the gallant Bouillé, the' this journey was undertaken contrary to his advice, declared himfelf the author of it, in that letter in which he threatened the Affembly with vengeance of all Eu-
rope
(к) Thefe were the Marquis de Montcalm.Gozon, Baron Felix de Wimpfen, de Menou, Freteau L. M. de Lepeaux, the Abbé Expilly, Camus, Goupil de Prefeln, Gautier de Biauzat, Treilhard, Champeaux-Palafuc, and Cottin.

R E V

French rope if they Thould dare to touch a hair of the heads of $\underbrace{\text { Revorution. the royal family. }}$

In $n^{\circ} 90$. we have mofl unaccomatably faid, that the Erronenus king was permitted to continue his journey to St Cloud. account in This is directly contrary to truth. The prefident, af10,0 cor- ter hearing his complaint againtt thofe who had prereetes.

1 rented it, replied indeed in a fpeech, containing fome expredions of gratitude and affection, mixed with reflections on the refractory priefts; but the Affembly determined nothing refpecting the propriety of the journey. They did not even fufier a fingle motion to be made on the fioject; and threatened with imprifonment one of the members who propofed to take it into confideration! The king was thereforeobliged to abandon this excurfion, though it was firft undertaken from religious motives; and it was then that he feriounly thought of attempting to elude the vigilance of his rebellious guards, and of taking up his refidence at Montniedi. Treaty nf In no 9^{6}. we have publifhed, with doubts indeed of Pravia for-its authenticity, what was called the treaty of Pavia gery. and the convention at Pilnitz. The terms in which we introduced that feandalous fabrication to the notice of our readers, and the principles which we have uniformly avowed through the whole of this voluminous work, furnif, we hope, fufficient evidence that we could have no intention to deceive the public. 'Truth, however, demands of us to acknowledge, in the moft explicit terms, that the pretended treaty of Pavia is not only a forgery, but a bungling forgery, defective in fome of the moft ufual diplomatic forms; and that the conferences at Pilnitz between the Eimperor, the King of Pruffia, and the Count d'Artois, related to objects very different from a partition of the French territories.

Sc early as the month of May 1791, a plan had been digefted by the Emperor, the King of Pruffia, and the King of Spain, with the concurrence of Louis XVI. for liberating that unfortmate Monarch from the confinement in which he waskept in his own capital. The means to be employed were a coalition among the principal powers on the continent to lead armies in every quarter to the burders of France. During the alarm which fo menacing ain appearance could not but excite in that kingdom, a declaration by the houfe of Bourbon, complaining of the cruel and iniquitous treatment of its head, was to be cireulated through France, and to be immediately followed by the manifetto of the combined powers. 'This, it was prefumed, would furnifh a fuffieient reafon, even to the National Affembly, for the king's going to the frontiers, and placing himfelf at the head of the army; but if it fhould not, petitions were to be procured from the army and the provinces, requelting his prefence, as the only means left of preventing a eivil as well as foreign war. Had this meafure, which was partly fuggetted by Mirabeau and partly by Muntmorin and Calonne, been fteadily purfued, there can be little doubt but it would have proved completely fuccefsful. It was defeated, however, by the king's ill concerted attempt to efcape to Montmedi, and by a very imprudent and degrading letter which he was afterwards perfuaded to fend to every fo-
466 reign power.

Real convention at Pilnitz.

At Pilnitz, where the Einperor and the King of Pruffia met, on the 25 th of Auguf, to fettle between themfeives fome interelts too delicate to be adjufted by the ufual diplomatic modes, an agreement was entered
into by them to fupport the caule of the French princes, to liberate the king, and to fave, if poffible, the mo. narchy. They delivered, accordingly, to the Count d'Artois the following declaration:
"His Majeity the Emperor, and his Majefty the King of Pruilia, laving heard the defires and the reprefentations of Monlieur and his Royal Highnefs the Count d'Artois, declare, conjointly, that they confider the fituation in which lris Majefly the King of France is at prefent placed, as a matter which concerns the intereft of every fovereign of Europe.-They hope that that intereft will not fail to be acknowledged by the powers whofe affitance is required; and that cunfequemly they will not refufe to employ, in conjunction svith their Majelties, the moft efficacious means, according to their abilities, to put the King of France in a fituation to ellablifh, in perfect liberty, the foundations of a monarchical government, equally agreeable to the rights of fovereigns and the welfare of the French: then, and in that cafe, their Majefties are determined to act promptly and by mutual confent, with the forces neceffaity to obtain the end propofed by all of them. In the mean time they will give orders for their troops to be ready for actual fervice.

" Pilnitz, Auguf 27. 179r.

"Signed by the Emperor and the King of Pruffia."
Such was the agreement entered into at Pilnitz, which was fo grofsly mifreprefented by the French Jacobins, and by their zealous partizans in tbis country. Had not Louis XVI. accepted the conftitution fimply and unconditionally, the confequence of this convention might have been the faving of the French monarchy, and the prefervation of peace in Europe; but that acceptance, fo little looked for by the ligh contracting powers, completely thwarted their meafures for a time; and before their armies were put in motion, the monarchy was overturned, and the monarch a prifoner.

In our account of the origin of the war between Great Britain and France ($n^{\circ} 147,148$.), we have proved, by evidence whieh to ourfelves appears irrefiftible that the Freneh regicides were the aggrefors, and that war with the Britifl miniftry did all that could be done, confiftently with the independence of their own country, to maintain the relations of amity between the two nations. That we have interpreted fairly that decree of the Convention by which this kingdom was forced into the war, is rendered incontrovercible by a fubfequent decree on the 15 th of December, by which their generals were ordered to regulate their conduct in the countries which their armies then occupitd, or might afterwards occupy. In the preamble to this decree, they exprefsly declared, that their principles would not permit them in acknozuledge any of the inflitutions militating againg the fóvertignty of the people; and the various articles exhihit a complete fyllem of demolition. They infilt on the immediate fuppreffron of all exifling authorities, the abolition of rank and privilege of every defcription, and the fuppreffion of all exifling impofls. Nay, thefe friends to freedom even deelare, that they will treat as enemies a wobole nation (un peuple entier) which fhall prefume to reject liberty and equality, or enter into a treaty with a prince or privileged cafls!

It is worthy of remark, that the very day on which this decree, containing a fyftematic plan for diforganizing all lawful governments, paffed the Afembly, the

Trench provihonal executive council wrote to their agent, ChauRevolution
regulated government ; and they employed, in quelling the troubles that had favoured their ufurpation, thofe very legions, that fame army, which they had ufed to excite them.
"This was not the eafe in France: there, the revolution, or rather the firf of thole it expericneed, and of which the others were the inevitable conlequence, was not, whatever be fuppofed, the refult of a confpiracy, or preconcerted plan, to overturn the throne, or to place an ufurper upon it. It was unexpectedly engendered by a commixture of weaknefs, ignorance, negligenee, and numberlefs errors in the govermment. The States General, however imprudent their convocation may have been, would have produced only uleful reforms, if they had found the limits of their power marked out by a hand fufficiently firm to have kept them within that extent. It was, however, but too crident that, even before their opening, they were dreaded, and that confequently they might attempt whatever they pleafed. From that time, under the name of Clubs, various affociations and faclions fprang up; fome more violent than otlers, but all tending to the fubvertion of the exifting governrent, without agrecing upon the form of that which was to be fubitituted: and at that juncture alfo the projects of the faction, whofe views were to have the Duke of Orleans appointed lieutenantgeneral of the kingdom, began to appear.
" This faction, or more properly this confpiracy, was indeed of the fame nature as thofe that had produced all former revolutions, and miglit have been at tended with the fame confequences, had the Duke of Orleans been poffeffed of that energy of claracter, that bravery and daring fpirit, requifite in the leader of a party. The people had already declared in his favour, and he might very eafily have corrupted and brought over a great part of the army, had he been equal to the command of it : but, on the very firlt occafion of perfonal rifk, he difcovered fuch cowardice and meannefs, that he defeated his own confpiracy, and convin. ced all thofe who had entered into it, that it was impoffible to continue the revolution, either in his favour or in conjunction with him. The enthufafm the people had felt fur him ended with the effurts of thofe who had excited it.
" Mr Necker, whom the multitude had afieciated with him in their homage, Atll preferved for fome time his adorers, and that little cabal which was for ever exalting him to the 隹es. But as he was inferior even to the Duke of Orleans in military talents and difpofitions, he was as little celculated to lee the leader of a revolution, or of a great confpiracy: for which reafon his panegyrifts then confined thenifelves in their pamphlets and placards, with which the eapital was orer. run, to infinuating that the only means of faving the ftate was to declare Mr Necker Digator ; or at leait to confer upon him, under fome title more confiftent witi the monarchy, the authority and powers attached to that republican office. In fact, if after his difmiffion, in the month of July 1789, he had dared to make this a condition of his return to the miniftry, it is more than probable that the king would have been under the neceility of agreeing to it, and perhaps of re-eftablifhing in his perfon the office of mayor of the palace. At that moment he might have demanded any thing: eight days later, he might have been refufed every thing ;

Fier.ch Revolution
on the part of France, and to proclaim her deteftation of the idea of a war with England! Yet the fame provilional council, in their comments on the itth article of this decree, thus exprefs themfelves: "Theright of natural defence, the duty of fecuring the prefervation of our liberty, and the fuccefs of our arms, the univerfal intereft of reftoring to Europe a peace, which pe cannot oltain lut by the annihilation of the despots and their futellites, every thing impofes on us the ohligation of exerciting all the rigours of zuar, and the rizhls of conquef, towards a people fo fond of their clains, io obftinately wedded to their degradation, as to refufe to be reftored to their richets, and who are the accomplices, not only of their azun defpots, but even of all the crowned ufurpers, who divide among themfelves the dominion of the earth and its inhabitants" That Britain is one of thole countries which the Affenibly thought their armies might afterwards occupy, and that the great majority of Britons were a prople to. wards whom their principles obliged them to exercife all the rigours of war, and the rights of conquelt, is evident from the following extract of a letter, written on the 3 tft of December 159^{2}, by Monge, a member of the council, and minifter of the marine to the fea-ports. "The King and his parliament meán to make war upon us. Will the Englifh refublicans fiefer it ? Already thefe free men fhew their difcontent, and the repugnanee which they have to bear arms againft their brothers the French. Well! we will fy to their fuccour. We will make a defeent on the ifland; we will lodge there 50,000 caps of likerty; we will plant there the facred tree; and we will flretch out our arms to our kepublican brethren. The tyranny of their government will be deflroyed."

As thefe two decrees of November and December 1792 have never been repealed, and as their ubject is fo plainly avowed in the commentaries of the exccutive council, and in this letter of the minilter of marine, they would alone fufficiently anthorife us to adopt as our own the following reflections of M. Bertrand de - Introduc- Moleville*. With thefe, as they give a concife but of to the perfpicuous view of the rife and progrefs of that revoInnats of 'e Fiench
evoluticn. lution, or, to fpeak more correctly, that feries of revolutions which has for feven long years oppreffed, not France alone, but all Europe, we fhall conclude this long article. iertrand's "Popular infurrections, and an army (fays this able rew of the and ufeful writer), have hitherto been the ufual means,
ife and rogrefs of furrections being of the mofl ignorant and unthinking clafs of the peuple, were always fomented by a certain number of factious men, devoted to, and dependent upon, fome ambitious chief, daring, hrave, of military talents, fole and abfolute conductor of every flep of the revolt, and mafter of all the means of the infurrection. In the hands of this ehief, the foldiers, or people armed, were but machines, which he fet in motion or reftrained accurding to his pleafure, and of which he always made ufe to put an end to revolutionary diforders and crimes, as foon as the object of the revolution was gained. So Cæfar and Cromwell, after they had ufurped the fupreme power, loft no time in fecuring 'it to themfelves, by placing it on the bafis of a wife and well.

Suppl. Vol. II. Part II.

R E V

French and very foon after, he was relluced to fneak out of the Revolution-kingdom, in order to efcape the effects of the general contempt and cenfure which he had brought upon himfelf.
" General La Fayette, who then commanded the Pa. rifian National Guard, gathered the wrecks of all this popularity, and might bave turned them to the greateft advantage, if he had poffefled 'that refolute character and heroic judgment' of which Cardinal de Retz fpeaks, and 'which ferves to dittinguifh what is truly honourable and ufeful from what is only extraordinary, and what is extraordinary from what is impoffible.' With the genius, talents, and ambition of Croinwell, he might have gone as great a length; with a lefs criminal ambition, he might at leatt have made himfelf malter of the revolution, and have directed it at his pleafure : in a word, he might have fecured the triumph of whatever party he fhould have declared himfelf the leader. But as unfit for fupporting the character of Monk as that of Cromwell, he foon betrayed the fecret of his incapacity to all the world, and was diftinguifhed in the crowd of conflitutional ringleaders only by his three-coluured plume, his epaulets, white horfe, and famous faying -- Infurrection is the moll facred of duties when oppreffion $i_{\text {s }}$ at its height.,
"The revolution, at the period when the faction that had begua it for the Duke of Orleans became fenfible that lee was too much a coward to be the leader of it, and when La Fayette difcovered his inability to conduct it, was too far adranced to recede or to fop; and it continued its progrefs, but in a line that no other revolutiun had taken, viz. without a military chief, without the intervention of the army, and to gain triuniphs, not for any ambitious confpirator, but for political and moral innovations of the noft dangerous nature ; the moof fuited to miflead the multitude, incapable of comprehending them, and to let loofe all the paffions. The more violent combined to deftroy every thing; and their fatal cualition gave birth to Jacobinifm, that terrible moufter till then unknown, and till now not fufficiently unmaiked. This monfter took upon itfelf alone to carry on the revolution; it directed, it executed, all the operations of ir , all the explotions, all the outrages: it every where appointed the mof active leaders, and, as inftruments, employed the profligates of every country. Its power far furpafled that which has been attributed to the inquifition, and other fiery tribunals, by thofe who lave fpoken of them with the greatelt exaggeration. Its centre was at Paris; and its rays, formed by particular clubs in every town, in every little borough, overfpread the whole furface of the kingdon. The conftant correfpondence kept up between thofe clubs and that of the capital ; or, to ufe their own expreflion, des Sociátes populaires afflities avec la Societté mere-' between the affiliated popular Societies and the parent Society,' was as fecret and as fpeedy as that of free-mafons. In a word, the Jacobin clubs had prevailed in cauling themfelves to be louked up to as the real national reprefentation. Under that pretence they cenfured all the authorities in the noft imperious manuer; and whenever their denunciations, petitions, or addreffes, failed to produce an immediate effect, they gained their point by having recourfe to infurrection, affafination, and fire. Whhile Jacobinifm thus fubjected all France to its controul, an immenfe

466]
 R E V

number of emiffaries propagated its doctrines among French foreign nations, and prepared new conquefts for it. Revoluion.
"The National Affembly, the capital, indeed we 'may fay all France; was divided into three very diftinct parties. The molt confiderable in number, but unhappily the weakeft through a deficiency of plan and refolution, was the party puiely Royal : it was adverfe to every kind of Revolution, and was folely defirous of fome improvements, with the reform of abufes and pecuniary privileges :-the moft able, and moit intriguing, was the Cunltitutional party, or that which was defirous of giving France a new monarchical conftitution, but modified after the manner of the Englifh, or even the American, by a houfe of reprefentatives. The third party was the moft dangerous of all, by its daring fpirit, by its power, and by the number of profelytes it daily aequired in all quarters of the kingdom: it comprifed the Democrats of every defcription, from the Jacubin clubs, calling themfelves Friends of the Confitution, to the anarchs and robbers.
" The Denucratic party, which at firf was only auxiliary to the Conftitutional one, in the end annibilated it, and became itfelf fubdivided into feveral other parties, whofe fatal itruggles produced the fubfequent revolutions, and may ftill produce many more. But in principle, the Conftitutionalifts and the Democrats formed two dillinct, though confederate, factions; both were defirous of a revolution, and employed all the ufual means of accomplifhing it, exeept troops, which could be of no ule to them, for neither of them had a leader to put at the head of the arniy. But as it was equally of importance to both that the king fhould be deprived of the power of making ufe of it againlt them, they laboured in concert to diforganife it; and the complete fuccefs of that mancuvre was but too fully proved by the fatal iflue of the departure of the royal family for Montmedi. The revolution then took a more $\mathrm{C}{ }^{469}$ daring and rapid Atride, which was concluded by the cinn of pretended conllitution act of 1791 . The incoherence 1791 comof its principles, and the defects of its inftitutions, pre- filfes revolu. fent a faithful picture of the difunion of its authors, tion. and of the oppofite interefts by which they were fwayed. It was, properly fpeaking, a compact between the faction of the Conititutionalills and that of the Democrats, in which they mutually made conceffions and facrifices.
"Be that as it may, this abfurd conftitution, the everlafting fource of remorfe or forrow to all who bore part in it, might have been got over without a fhock, and led back to the old principles of monarehical government, if the Affembly who framed it had not feparated before they witnefled the execution of it; if, in impoling on the king the obligation to maintain it, they had not deprived him of the power and the means; and above all, if the certain confequence of the new mode of procceding at the elections had not been to fecure, in the fecond Affembly, a confiderable majority of the Democratic againft the Conftitutional party.
"The fecond Affembly was alfo divided by three factions, the weakeft of which was the one that wifhed to maintain the conftitution. The other two were for a new revolution and a republic; but they differed in this, that the former, compofed of the Briffotins and Gironditts, was for éffecting it gradually, by beginning with divelting the king of popularity, and allowing the

R E V [467] R E V

French public mind time to wean itfelf from its natural attachRevolution ment to monarchy; and the latter, whiell was the leaft numerous, was cager to have the republie eftablifhed as foon as poffible. Thefe two factions, having the fame object in view, though taking different roads, were neceffarily auxiliaries to each other; and the pamphlets, excitations to commotion, and revolutionary meafures of both, equally tended to overthrow the conititution of 179 I .
"Thofe different factions, almoft entirely compofed of advocates, fulicitors, apoftate priefts, doctors, and a few literary men, having no military chief capable of taking the command of the army, dreaded the troups, who had fworn allegiance to the conftitution, and ohedience to the king, and who morcover might be influenced by their offeers, among whom there ftill remained fume royalitts. The fureft way to get rid of all uneafinefs on this fubject, was to employ the army in defending the frontiers. For this purpofe a foreign war was neceffary, to which it was known that the king and his couneil were equally averfe. No more was wanting to determine the attack which was directed, almoft at the fame time, againft all the minitters, in order to compel them to retire, and to put the king under the neceflity of appointing others more difpofed to feeond the views of the parties. Unhappily this attempt was attended with all the fuceefs they had promifed themfelves; and one of the firft acts of the new miniftry was to deelare war againft the Emperor. At the fame time, the emigration that had been provoked, and which was almoft everywhere applauded, even by the loweft clafs of people, robbed France of the flower of the royal party, and left the king, deprived of his beft defenders, expofed to the fufpicions and infults that fprang from innumerable calumnies, for which the difatters at the beginning of the war furnifled but too many opportunities.
" In this manner was prepared and accelerated the new revolution, which was accomplifhed on the 10 th of Auguft 1792, by the depofition and imprifonment of the king, and by the moft flagrant violation of the conftitutiun of 1791 . The latter, however, was not entirely abandoned on that day ; for the project of the Girondifts, who had laid the plot of that horrible confpiracy, was then only to deelare the king's depofition, in order to place the prince royal upon the throne, under the guidance of a regency compofed of their own ereatures; but they were hurried away much farther than they meant to go, by the violence with which the moft furions of the Jacobins, who took the lead in the infurrection, conducted all their enterprifes. The prince royal, inftead of being crowned, was fhut up in the Temple; and if France at that moment was not declared a republic, it was lefs owing to any remaining refpect for the conftitution, than to the fear the legiflative body was in of raifing the army againft it, and alfo the majority of the nation, who would naturally be angry to fee a conftitution which feemed to be rendered fecure and ftable by fo many oaths, thus preeipitately overthrown, without their having been cunfulted.
" It was on thefe confiderations that the opinion was adopted, that a National Cunvention fhould be convoked, to determine the fate of rovalty. Prompt in feiziog all the means that might enfure the fuceefs of this feeond revolution, the Aftembly, under pretence
of giving every pofible latitude to the freedom of elec. French tions, deereed, that all its members fhould be eligible $\underbrace{\text { Revolutior: }}$ for the National Convention.
"From that moment the Girondits daily loft ground, and the moft flaming members of the Democratic party, fupported by the club of Jacobins, by the new Commune of Paris, and by the Tribunes, made themfelves mafters of every dehate. It was of the utmoft inport. ance to them to rule the enfaing elections; and this was feeured to them by the horrible conflernation which the maffaces of the 2d of September ftruck through. out the kingdom. The terror of being affafinated, or at lealt eruelly treated, drove from all the Primary Af. femblies, not only the royalifts and conititutionalifts, but moderate men of all parties. Of courfe, thofe affemblies became entirely compofed of the weakeft men and the greateit villains exifting in France; and from among the moft frantic of them were chofen thofe members of the Convention who were not taken from the leginative hody. Aceordingly, this third Affembly, in the firft quarter of an hour of their firt fitting, were heard fhouting their votes for the abolition of royalty, and proclaiming the republic, upon the motion of a member who had formerly been a player.
"Such an npening lout too plainly fhewed what was to be expected from that horde of plunderers which compofed the majority of the National Convention, and of whom Robefpierre, Danton, Marat, and the other ringleaders, formed their party. That of the Brifotins and Giroudifts ttill exifted, and was the only one really republican. Thefe femi-wretches, glutted with the horrors already committed, feemed defirous of arrefting the torrent of them, and laboured to introduce into the Affembly the calm and moderation that were necellary to give the new republie a wife and fulid organization. But the fuperiority of their knowled.ge, talents, and eloquence, which their opponents could not difpute, had no power over tigers thinting for blood, who neither attended to nor fuffered motions but of the blackeft tendency. No doubt they had occation for $\mathrm{T}^{47 \mathrm{I}}$ atrocities upon atrocities to prepare the terror-Atruck revolution. nation to alluw them to commit, in its name, the moft exeerable of all, the murder of the unfortunate Louis XVI.: and that martyrdom was neceflary to bring about a third revolution, already brewing in the brain of Robefpierre. Fear had greatly contributed to the tivo former: but this was effected by terror alone; without popular tumults, or the intervention of the armies; which, now drawn by their conquets beyond the frontiers, never heard any thing of the revolutiuns at home, till they werc aecompiihed, and abrays obered the prevailing faction, by whom they were paid.
"By the decree of ferocity difcovered by the members of the Convention in pafing fentence upon the king, and in the debates relative to the conflitution of 1793, Robefpierre was enabled to mark which of the deputies were likely to fecond his views, and which of them it was his part to facrifice.
"The people could not but with tranfport receive a conftitution which feemed to realife the chimera of its fovereignty, but which would only have given a kind of coaftruction to anarchy, if the execution of this new code had not been fufpended under the pretext. belonging in common to all acts of defpotifm and tyranny, of the furereme lare of the fafety of the fate. This fufpen$3 \mathrm{~N}_{2}$

R E V

French fion was effected, by eftablihing the Provifionary GoRevolution. vernment, which, under the title of Revolutionary Go vernment, concentrated all the powers in the National Convention until there fhould be an end to the war and all inteltine troubles.
"Although the faction, at the head of which Robefpierre was, had a decided majority in the affembly, and might confequently have confidered themfelves as really and exclufively exereifing the fovereign power, he was a demagogue of too defpotic a nature to ftomach even the appearance of fharing the empire with fo many co-fovereigas. He greatly reduced their number, by caufing all the powers invefted in the National Affembly by the decrees that had eftablifned the revolutionary government, to be transferred to a committee, to which he got himfelf appointed, and where he was fure of the fole rule, by obtaining for colleagues men lefs daring than himfelf, though equally wicked ; fueh as Couthon, St Juft, Barrere, and others like them. This committee, who had the affurance to ftyle themfelves the Committee of Public Safety, very foon feized upon both the legiflative and executive jowers, and exercifed them with the molt fanguinary tyranny ever yet heard of. The minitters were merely their clerks; and the fubjugated Alfembly, without murmur or objec. tion, pafted all the revolutionary laws which were propofed, or rather dictated, by them. One of their noft horrible aid decifive conceptions was that of thofe Revolutionary tribunals which covered France with feaffolds, where thoufands of victims of every rank, age, and fex, were daily facrificed; fo that no clafs of men could be free from that ftupifying and general terror which Robefpierre found it neceflary to fpread, in order to eftablifh and make his power known. He foon himfelf dragged fome members of his own party, fuch as Danton, Camille des Moulins, and others, whofe energy and popularity had offended him, before one of thofe tribunals, where he had them condemned to death. By the fame means he got rid of the chief leaders among the Briffotines and Girondifts; while he caufed all the moderate republican party, who were ftill members of the Affembly, except thofe who had time and addrefs to efcape, to befent to prifo:, in order to be fentenced 472 and executed on the firlt occafion.
The fourth "In this manner ended the third revolution, in which revolution the penple, frozen with terror, did not dare to take a produces part. Inftead of an army of foldiers, Robefpierre employed an army of executioners and affaffins, fet up as revolutionary judges; and the guillotine, friking or menacing all heads indiferiminarely, made France, from one end to the other, fubmit to him, by the means of terror or of death. Thus was this nation, formerly fo proud, even to idolatry, of its kings, feen to expiate, by rivers of blond, the crime of laving fuffered his to he fpilt who was the moft virtnons of all their mo. narchs.
"In the room of that famous Baftile, whofe celebrated capture and demolition had fet only feven pri. foners at liherty, two of whom had been long in a ftate of lunacy, the colleges, the feminaries, and all the religions houfes of the kingrlom, were converted into fo many ftate prifons, into which were inceffantly crowded, from time to time, the victims devoted to feed the ever-working guillotines, which were never fuffered to ftand ftill fur a day, becaufc they were at once the chief

468 J R E V

refource of fupplies for the government, and the inftru-
French ment of its ferocity. "The guillotine coins money for Revolution. the republic,' was faid in the tribune by one of Robefpierre's vileft agents*. In fact, according to the ju-* Barrers. rifprudence of the Revolutionary Tribunals, the rich of every clafs, being declared fufpected perfons, received fentence of death, for no other reafon than that of giving the confifcation of their property a fhow of judid cial form.
"Still blood flowed too flowly to fatisfy Rohefpierre; his aim was but partly attained by the profeription of the nobles, the prielts, and the wealthy. He fancied, not only an arillocracy of talents and knowledge, but of the virtues, none of which would his trufty orators and journalifts admit, fave that horrid patriotifm which was eftimated according to the enormity of the crimes committed in favour of the revolution. His plan was to reduce the French people to a mere plantation of flaves, too ignorant, too ftupid, or too pufillanimous, to conceive the idea of breaking the chains with which he would have loaded them in the name of liberty; and he might have fucceeded in it, had not his ambition, as impatient as it was jealous, ton foon unveiled the intention of reforting to the guillotine to ftrike off the fhackles with which an afiembly of reprefentatives of the nation fettered, or might fetter, his power. He was about to give this decifive blow, which he had concerted with the Cominune of Paris, the Revolutionary Tribunal, the Club of Jacobins, and the principal officers of the National Guard, when the members of the Convention, who were marked out to be the firft facrificed, anticipated him at a moment when he leaft expected it, by attacking himfelf in the Affembly, with energy fufficient to roufe all the fections of the capital againlt him and againft the Jacobins. 'The parties came to blows, and victory remained uncertain for feveral hours; but at length declared againft Robefpierre. In the fpace of a day, that execrable moniter was dragged from the higheft pitch of power ever attained by any tyrant, to the very feaffold that was fill reeking with the blood of his laft victims. His principal accomplices in the Committee of Public Safety, in the Commune, in the National Guard, in the Revolutionary Tribunal. and many of his agents in the provinces, met the fame fate. The Revolutionary 'Tribunals were fuppreffed, and the prifons thrown open to all whom they had caft into them.
"This fourth revolution, in which the faction then The conf 473 efteemed the moderate party overthrew the terrorifts, cution of. and feized the fupreme power, was no lefs complete'1995. than thofe which had preceded it, and produced the conftitution of 1795 . All France received as a great bleffing a conftitution that delivered them from the revolutionary government and its infernal policy. Befides, it had, in fpite of great defects, the merit of coming nearer than the two preceding ones, to the principles of ordet, of juftice, and real liberty; the violation of which had, for five years before, been the fnurce of fo many dif. allers and fo many crimes. The royalifts, confidering. it as a ftep towards monarchy, were unfortunately fo imprudent as to triumph in it ; and their joy, as premature as indifcreet, alarmed the Affembly to fuch a degree, that they palfed the famous law, ordaining the Primary Affemblies to return two thirds of the members of the Convention to the legillative body, which

RE V
 R E V

French was to fueceed that affembly. It was thus that the Revolution fpirit of the Convention continued, for the firft year, to be difplayed in the two councils.
"In the year following, the bias of the public mind, perhaps too hastily turned towards royalty, hewed itfell in the elections of the members for the new third, fo clearly as to alarm the regicides who compofed the Directory, and the Conventionality, who fill inade a third of the legillative body; nor did they lope a momont in devifing means for their defence. That which appeared the furelt to them was, to publish notices of plots among the royalifts, and annex one or more denunciations, in terms fo vague as to leave room for mmplacating, when necelfary, all their adverfaries; while by the help of this impofture they procured dome fecret information, artfully fabricated, and ever eafily obtained through threats or rewards by thole who have at command the guillotine and the public treafure.
"This mafked battery was ready to be opened before the members of the new third took their feats. 'Inhere at fief confined themselves to the fecuring of a conftant majority in the two councils in favour of the moderate opinions; but in a little time every fitting was marked by the repeal of dome revolutionary law, or by forme decree tending to reftrain the executive authority within the limits fixed by the conftitution.
were execrated by the public under the title of Trium. virate; and, if requifite, they would have been Supported by more than 30,000 armed citizens, who, with Picherrus and Villot at their head, would foo have difperfed, and perhaps brought over, the feeble detachmints of troops of the line which the Directory had at their command. The leginative body, relying too much upon its popularity, did not fufficiently confider, that the people, whole impetuolity is commonly decilive when allowed to take advantage in attack, are always feeble on the defensive, and totally unable to withlland every affault made previous to an infurrection, for it is always eafy to prevent their affembling. It was on this principle that the Directory founded their operatins, and the 5 th of September two well proves how jutty. That day reduced the legiflative body, by the mot degrading fubjugation, to a nacre difgutting acaricature of nation isprefentation; it inverted the Dire-

French Revolution.

```
~
```


[^5]\qquad

\qquad
\qquad

\qquad

\square
\qquad
\qquad

Chriftizonifty in France. Fra
\qquad

\qquad
\qquad

\qquad

 i- -
\qquad
\qquad -

R E V

French beral toleration, and feems, by his concordate with the $\underbrace{\text { Revolution. Pope, to have retained to himfelf an authority over the }}$ church little fhort of that which was alfumed by Henry VIII. of England, when he broke off all correfpondence with the court of Rome.

Thefe meafures were fo popular, that when he reftored peace to the republic, he was fuddenly chofen Conful for life; and it was even propefed by fome of his creatures to convert the republic into an empire, and create him the firg Emperor of the Gauls. This propofal, however, was fupported by no party. The royalits could not give their vote for elevating a foreigner to a higher rank than was ever held by that augult family, for the fupport of which they had hazarded their lives and fortunes. The genuine democrat fubmitted with reluctance to the power of a Conful, and abhorred the very found of the words Emperor and empire. Even the moderate conftitutionalift, who thinks it his duty to fupport every government which happens to be eftablifhed, was afhamed to relinquim fo openly the principles which had induced him to rebel againft Louis

477
Bonaparte
Cinful for life. XVI. Bonaparte was therefure not made an Emperor, but a Conful for life, with more than Imperial power; and was authorifed to nominate his fucceffor, in the event of his dying without male iffue.

If this latt revolution operate not as a warning to all the nations of Europe, fhewing them the extreme danger of fudden and violent innovations in the government of a great flate; if it convince them not that the fovereignty of the people is, in fuch a flate, the parent of individual defpotifm; and that the principles of democracy, however plaufible they may appear in a political effay, cannot be carried into practice-we muft conclude that thefe nations are incapable of learning wifdum from experience. In the 17 th century the confitution of Great Britain was overturned, and a virtuous monarch murdered, to make way for a republic, which foon gave place to the military defpotifin of a private Englifh gentleman. In the fucceeding century a crew of lawyers and philofophifts, who, under the denomination of the flates general, had been called together to devife fome remedy for the diforder into which the finances of France had fallen, fuatched the fceptre from the hands of their mild Covereign, who was foon afterwards brought to the block. In France, as in England, the monarchy was fucceeded by a democrati. cal government, exceeding in tyranny and cruelty all

Confequen. Emperors, that the world has yet feen. There, too, ces of vio the democracy gave place to the military defpotifm of lent innovations. a private gentleman; but that gentleman is not a native, but a foreign adventurer, of a family never heard
of beyond the limits of the little ifle of Corfica till after the commencement of the revolution, which involved all Europe in its vortex. If the confular government continue, the reign of equality is indeed at an end; but the furrounding nations have more to dread from con: fular ambition, than they had to dread from the ambition of Louis XIV. when he was at the fummit of his glory and his arrogance. Many circumfances confpired to reftrain his Majefty's ambition within certain 1imits; but the ambition of him who has no fon to fucceed hion, and who is placed in fuch a fituation, that events may fall out which will prefent to him no perfonal fafety but in foreign war, is obviounly under no
reifraint. All this might have been prevented had the Rhabdolo. coalefced powers, at the beginning of the conteft, act. ed confcientiouny on the principles fo ably enforced by that illuftrious fatefman Mr liurke ; but the King of Pruffia's jealoufy of the Houfe of Auftria made him abandon the caufe, and, for the fake of humbling his rival, facrifice Enrope to the ambition of France.

RHABDOLOGY, or Rabdology, in arithmetic, a name given by Napier to a method of performing fome of the more difficult operations of numbers by means of certain fquare little rods. Upon thele are in. fcribed the fimple numbers; then by Bifting them ac. curding to certain rules, thofe operations are performed by fimply adding or fubtracting the numbers as they ftand upon the rods. See Napier's Rabiologia, printed in 1617 . See alfo the article Napifr's Bones.

RHOMB SOLid, confilts of two equal and riglit cones joined together at their bafes.

RICE (fee that article, and Oryza, Encycl.) is ftrongly recommended, in a late publication, as the beft corrective of $/$ prit flour, of which there is a great quantity in Scotland every year, and of courfe a great deal of unpleatant and unwholcfome bread. The gentleman, who writes the fhort paper alluded to, directs ten pounds of flour and one pound of ground rice, with the ufual quantity of yeft, to be placed, for about two hours, hefore a fire, and then formed into bread in the common way. This addition of rice, befides correcting the bad qualities of the damaged flour, adds, he fay's, much to its nutrinent : and he is undoubtedly right ; for the flour of rice, though very nutritious, is fo dry, that it is difficult to make bread of it by it Celf. See Bread of Rice in this Suppl.

As rice is a favourite fubilitute for bread in years of fearcity, it may not be difagreeable to our readers to know the inethod of cultivating the plant in thofe couna tries where it is the principal food of the inhabitants. We have the following full and perfpicuous account of the Chinefe practice by Sir George Staunton.
"Much of the low grounds in the middle and fouthern provinces of the empire are appropriated to the culture of that grain. It conftitutes, in fact, the prin. cipal part of the food of all thofe inhabitants, who are not fo indigent as to be furced to fuhfift on other and cheaper kinds of grain. A great proportion of the furface of the country is well adapted for the production of rice, which, from the time the feed is committed to the foil till the plant approaclses to maturity, requires to be immerfed in a fheet of water. Many and great rivers run through the feveral provinces of China, the low grounds bordering on thofe rivers are annually inundated, by which means is brought upon their furface a rich mud or mucilage that fertilizes the foil, in the fame manner as Egypt receives its fecundative quality from the overfluwing of the Nile. The periodical rains which fall near the fources of the Yellow and the Kiang rivers, not very far difant from thufe of the Ganges and the Burampooter, among the mountains bounding India to the north, and China to the weft, often fwell thofe rivers to a prodigions height, though not a drop of rain fhould have fallen on the plains through which they afterwards flow.
"After the mud has lain fome days upon the plains in China, preparations are made for planting them with rice. For this purpofe, a fmall fpot of ground is in-

Rice. clofed by a bank of clay; the earth is ploughed up; and an upright harrow, with a row of wooden pins in the lower end, is drawn lightly over it by a buffalu. The grain, which had previoully been fleeped in dung diluted with animal water, is then fown very thickly on it. A thin theet of water is immediately brought over it, either by channels leading to the fpot from a fource above it, or when below it by means of a chain pump, of which the ufe is as familiar as that of a hoe to every Chinefe hufbandman. In a few days the fhoots appear above the water. In that interval, the remainder of the ground intended for cultivation, if fiiff, is ploughed, the lumps broken by hoes, and the furface levelled by the harrow. As foon as the fhoots have attained the height of fix or feven inches, they are plucked up by the roots, the tops of the blades cut off, and each root is planted feparately, fometimes in fmall furrows turned with the plough, and fometimes in holes made in rows by a drilling ftick for that purpofe. The roots are about half a foot afunder. Water is brought over them a fecond time. For the convenience of irrigation, and to regulate its proportion, the rice lields are fubdivided by narrow ridges of clay, into fmall inclofures. Through a channel, in each ridge, the water is conveyed at will to every fubdivition of the field. As the rice approaches to maturity, the water, by evaporation and abforption, difappears entirely; and the crop, when ripe, covers dry ground. The firt crop or harvelt, in the fouthern provinces particularly, happens towards the end of May or beginning of June. The inftrument for reaping is a fmall lickle, dentated like a faw, and crooked. Neither carts nor cattle are ufed to carry the fheaves off from the fpot where they were reaped; but they are placed regularly in frames, two of which, fufpended at the extremities of a bamboo pole, are carried acrofs the fhoulders of a man, to the place intended for difengaging the grain from the ftems which had fupported it. This operation is performed, not only by a flail, as is cuftomary in Europe, or by cattle treading the corn in the manner of other Orier:talifts, but fometimes alfo by ftriking it agaiut a plank fet upon its edge, or beating it againlt the lide of a large tub fcolloped for that purpole; the back and fides being much higher than the front, to prevent the grain from being difperfed. After being winnowed, it is carried to the granary.
"To remove the fkin or hufk of rice, a large Atrong earthen veffel, or hollow ftone, in form fomewhat like that which is ufed elfewhere for filtering water, is fixed firmly in the ground; and the grain, placed in it, is ftruck with a conical fone fixed to the extremity of a lever, and cleared, fometimes indeed imperfectly, from the hulk. The ltone is worked frequently by a perfon treading upon the end of the lever. The fame object is attained alfo by paffing the grain between two flat ftones of a circular form, the upper of which turns round upon the other, but at fuch a ditance frum it as nut to break the intermediate grain. The operation is performed on a large fcale in mills turned by water; the axis of the wheel carrying feveral arms, which, by ftriking upon the ends of levers, raife them in the fame manner as is done by trading on them.. Sumetimes twenty of thefe levers are worked at once. The ftraw from which the grain has been difengaged is cut chiefly
into chaff, to ferve as provender for the very few cattle employed in Chinefe hufbandry.
"The labour of the firlt crop being finifhed, the ground is immediately prepared for the reception of frefh feeds. The firft operation undertaken is that of pulling up the Eubble, cullecting it into fmall heaps, which are burnt, and the afnes feattered upon the field. The former proceffes are afterwards reneived. The fecond crop is generally ripe late in October ur carly in November. The grain is treated as before; but the ftubble is no longer burnt. It is turned under with the plough, and left to putrefy in the earth. This, with the dline brought upon the ground by inundation, are the unly manures ufually employed in the culture of rice."

RIDEAU, in fortification, a fmall elevation of earth, extending itfelf lengthwife on a plain; ferving to cover a camp, or give an advantage to a poft.

Rideau is fometimes alfo ufed for a trench, the earth of which is thrown up on its fide, to ferve as a parapet for covering the men.

RIDLEY (Dr Glofter), was of the fame family with D. Nicolas Ridley, Bithop of London, and martyr to the Reformation. (See Ridley, Encycl.) He was born at fea, in 1702, on board the Gloucefter Ealt Indiaman ; to which circumftance he was indebted for his Chriftian name. He received his education at Winchefter fchuol, and thence was elected to a fellowhip at New college, Oxford, where he proceeded B. C. L. April 29. 1729. In thofe two feminaries he cultiadted an early acquaintance with the mufes, and laid the foundation of thofe elegant and folid acquirements for which he was afterwards fo eminently diftinguifhed as a ${ }_{5}$ poet, an hiftorian, and a divine. During a vacancy in 1728, he joined with four friends. viz. Mr Thomas Fletcher (afterwards Bihop of Kildare), Mr (afterwards Drj Eyre, Mr Murrifon, and Mr Jennens, in writing a tragedy called "The Fruitlefs Redrefs," cach undertaking an act on a plan previoufly concerted. When they delivered in their leveral proportions at their neeting in the winter, few readers would have known that the whole was not the production of a fingle hand. This tragedy, which was offered to Mr Wilks, but never acted, is itill in MS. with another called "Jugrurtha." Dr Ridley in his youth was much addicted to theatrical performances. Midhurf, in Suffex, was the place where they were exhibited; and the company of gentlemen actors to which he belonged confifted chiefly of his coadjutors in the tragedy already mentioned. He is faid to have porformed the claracters of Mare Antony, Jaffier, Horatio, and Moncfes, with diftinguilhed applanie; a circumftance that will be readily believed by thofe who are no il rangers to his judicious and graceful manner of fpeaking in the pulpit.

For great part of his life he had no other preferment than the fmall college living of Weftoi in Norfolk, and the donative of Poplar in Middlefex, where he refided. To thefe his college added, fome years after, the donative of Romford in Eflix. "Between thefe two places the curricle of his life had (as he expreffed it) rolled for fome time almoot perpetually upon poftchaife witecls, and left him not time for even the proper ftudies of economy, or the neceffary ones of his profeftion." Yet in this obfcure fituation the remained in poffeffion of,

Rideau, Ridley.
and content wi:h, doneftic happinefs; and was honour. ed with the intimate friendhip of fome who were nut lefs diftinguifhed for icarning than for worth.

In 1740 and 1741 he preached "Eight Sermons at Lady Moyer's Lecture," which were publifined in $17+2$, 8 vo. In 175^{6} he declined an offer of going to Ireland as firlt claplain to the Duke of Bedford; in retura for which he was to have had the choice of promotion, cither at Chrith-church. Canterbury, Weftmulter, or Windfor. His modefty inducing him to leave the choice of thefe to his patron, the confequence was, that he obtained none of them. In 1763, he publifted the "Life of Bifhop Ridley," in 4to, by fubicription, and cleared by it as much as brought him 8001 . in the public fuads. In the latter part of his life he had the misfortune to lofe both his fons, each of them a youth of abilities. The elder, James, was author of "The Tales of the Genii," and fome other literary perform. ances. Thomas, the younger, was fent by the Eaft India Company as a writer to Madras, where he was no fooner fettled than he died of the fmall-pox. In 1765, Dr Ridley publithed his " Review of Philips's Life of Cardinal Pole; and in 1768 , in reward for his labours in this controverfy, and in another which "The Confeffional" produced, he was prefented by ArchbiThop Secker tua golden prebend in the cathedral church of Salifbury (an option), the only reward he received from the great during a long, ufeful, and laborious life, devoted to the duties of his function. At length, worn out with infirmities, he departed this life in 177 A , leaving a widow and four daughters. His epitaph, which was written by Bifhop Lowth with his ufual elegance, informs us, that for his merits the univerfity of Oxford conferred upon him the degree of D . D. by diploma, which is the higheft literary honour which that learned body has to beftow.

RIENZI (Nicolas Gabrini de), one of the moft ex. traordinary men of the ifth century, was born at Rome, we know not in what year. His father, Laivrence Gabrini, was a mcan vintner, or, as uthers fay, a miller, and his mother a laundrefs. Thefe perfons, however, found the means of giving their fon a liberal education; and to a good natural underitanding he joined an uncommon affiduity, and made great proficiency in ancient literature. Every thing which he read he compared with fimilar paffages that occurred within his own obfervation; whence he made reflections, by which he regulated his conduct. To this he added a great knowledge in the laws and cuitoms of nations. He had a vaft memory : he retained much of Cicero, Valerius Maximus, Livy, the two Senecas, and Cæfar's Commentaries efpecially, which he read continually, and often quoted by application to the events of his own times. 'i'his fund of learning proved the batis and foundation of his rife. The defire he had to diftinguifh himfelf in the knowledge of monumental hiftory, drew him to another fort of fcience, in which few men at that time exerted themfelves. He paffed whole days among the inferiptions which are to be found at Rome, and acquired foon tbe reputation of a great antiquary. Having hence formed within himfelf the moft exalted notions of the juftice, liberty, and ancient gramdeur of the old Romans, words he was perpetually repeating to the people, he at length perfuaded not only himfelf, but the giddy mob his followers, that he fhould
one day become the reftorer of the Roman repubiis. Fis advantageous flature, his countenance, atid that air of importance which he well knew how to aflune, deeply imprinted all that he faid in the minds of his audience.

Nor was it only by the populdee that he was admired; he alfo found means to intinuate himfelf into the favour of thofe who partwok of the adminiltration. Rienzi's talents procured him to be nominated one of the deputies fent by the Romans to Pope Clement VI. who refided at Avignon. The intention of this depatation was to make his Holinefs fenfible, how prejudicial his abfence was, as well to himfelf as to the iatereit of Rome. At his firft audience, our hero charmed the court of Avignon by his eloquence and the fprightlinefs of his converfation. Encouraged by fuccefs, he one day took the liberty to tell the Pope, that the grandees of Rome were avowed robbers, public thieves, infantous adulterers, and illuftrious profigates; who, by their example, authorifed the moft horrid crimes. To them he attributed the defolation of Rome; of which he drew fo lively a picture, that the Holy Father was moved, and exceedingly incenfed againft the Roman nobility. Cardinal Colonna, in other refpects a luver of real merit, could not help confidering thete reproaches as reflecting upon fome of his family; and therefore found means of difgracing Rienzi, fo that he fell into extreme mifery, vexation, and ficknefs, which, joined with indigence, brought him to an hofpital. Nfverthelefs, the fame band that threw him down, raifed him up again. The cardinal, who was all compaffion, caufed him to appear before the Pope, in affurance of his being a good man, and a great partizan for juftice and equity. The Pope approved of him more than ever; and to give him prouts of his efteem and confidence, made him apoftolic notary, and fent him back loaded with favours.

Being returned to Rome, he began to execute tbe functious of his office; and by affability, candour, afüduity, and impartiality, in the adminitration of juftice, he arrived at a fuperior degree of popularity; which he fill improved by continued invectives againft the viees of the great, whom he took care to render as odious as puffible ; till at laft, for fome ill timed freedoms of fpeech, he was nut only feverely reprimanded, but difplaced. From this time it was his conttant endes. vour to infpire the people with a fondnefs for their ancient liberties; to which purpofe he caufed to be hung up in the moft public places emblematic pictures, ex. preflive of the former fiplendour and prefent decline of Rume. To thefe he added frequent harangues and predictions upon the fanme fubject. In this manner he procceded till one party looked on him only as a mad. man, while others carefled him as their protector. At Jength he ventured to open limfelf to fuch as he believed mal-contents. At firft he took them feparately; afterwards, when he thought he had firmly attached a fufficient number to his intereft, he affembled them together, and reprefented to tbem the deplorable fate of the city, over-run with debaucheries, and the incapacities of their governors to correct or amend them. As a neceflary foundation for the enterprife, lie gave them an infight into the immenie revenues of the apoftolic chamber: He demonftrated, that the Pope could, only at the rate of fourpence, raife a hundred thoufand flo-

R I E

[
Rienzi. rins by firing, as much by falt, and as much more by the cuftoms and other duties. As for the reft, faid hic, I would not have you imagine that it is without the Pope's confent I lay lands on the revenues. Alas ! how many others in this city plunder the effects of the church contrary to his will!

By this artful lie, he fo animated his auditors, that they declared they would make no fcruple of fecuring thefe treafures for whatever end might be moft convenient; and that they were devoted to the will of him their chief. Having obtained fo much, to fecure his adhesents from a revolt, he tendered them a paper, fuperferibed, " an oath to procure the good eftablifhment ;" and made them fubfribe and fwear to it before he difmiffed them. By what means he prevailed on the Pope's vicar to give a tacit fanction to his project, is not certainly known ; that he did procure that fanction, and that it was looked on as a mafterpiece of policy, is generally admitted. "The 20th of May, being Whitfunday, he fixed upon to fanctify in fome fort his en. terprife ; and pretended, that all he acted was by particular infpiration of the Holy Gholt. About nine, he came out of the church bare-headed, accompanied by the Pope's vicar, furrounded by an hundren armed men. A vaft crowd follovied hin with fhouts and acclamations." The gentlemen confpiraturs carried three ftandards before him, on which were wrought devices, infinuating, that his defign was to re-eftablif liberty, juftice, and peace. In this manner he proceeded direaly to the Capitol, where he mounted the roftrum; and, with more boldnefs and energy than cever, expasiated on the niferies to which the Romans were redused : at the fame time telling them, without hefitation, " that the happy hour of their deliverence was at leng l_{1} come, and that he was to be their deliyerer, regardlefs of the dangers he was expofed to for the fervice of the Huly Tather and the people's fafety." After which, he ordered the laws of what he called the good eitablifhment to be read: "affured that the Romans would refolve to obferve thefe laws, he engaged in a fhort time to re-eftablifh them in their ancient grandeur."

The laws of the good ettablithment promifed plenty and.fecurity, which were greatly wanted; and the humiliation of the nobility, who were deemed common oppreflors. Such laws could not fail of being agreeable to a people who found in then thefe double advantages ; wherefore, "enraptured with the pleafing ideas of a liberty to which they were at prefent ftrangers, and the hope of gain, they came moft zealoully into the fanaticifm of Rienzi. They refumed the pretended authority of the Romans; they declared him fovereign of Roine; and granted him the power of life and death, of rewards and punifhments, of enacting and repealing the laws, of treating with foreign powers; in a word, they gave him the full and fupreme authority over all the extenfive territories of the Romans.

Rienzi, arrived at the fummit of his wifhes, kept at a great diftance his artifice: he pretended to be very unwilling to accept of their' offers, but upon two conditions; the firft, that they fhould nominate the Pope's vicar (the Bilhop of Orvieto) his copartner ; the fecond, that the Pope's confent fhould be granted him, which (he told them) he flattered himfelf he fhould obtain. "On the other hand, he hazarded nothing in thus making his court to the Holy Father; and, on

[^6]the other, he well knew, that the Binhop of Orvieto Rienzi would carry a title only, and no authority. The people granted his requeft, but paid all the honours to him: he poffeffed the authority without reftriction; the gond Bifhop appeared a mere fhadow and veil to his enterprifes. Rienzi was feated in his triumphal chariot, like an idol, to triumph with the greater fplendour. He difmifed the people replete with joy anl hope. He feized upon the palace, where he continued afte be had turned out the fenate; and, the fame day, le began to dictate his laws in the Capitol." This clection, though not very pleafing to the Pope, was ratitied by hini ; neverthele! ${ }_{3}$, Rienzi meditated the obtaining of a title, exclulive of the papal prerogative. Well verfed in the Roman hitory, he was no ftranger to the extent of the tribunitial authority; and as he owed his elevation to the people, he chofe to have the title of their magiftrate. He ansed it, and it was conferred on him and his copartner, with the addition of deliverers of their country. Our adventurer's behaviour in his elevation was at firt fuch as commanded elleem and refpect, not only from the Romans, but from all the neighbouring ftates. But it is difficult for a perfon of mean birth, elevated at once, by the caprice of fortune, to the molt exalted ftation, to move rightly in a fphere wherein he mult breathe an air he has been unaccuftomed to. Rienzi afcended by degrees the fummit of his fortune. Riches foftened, power dazzled, the pomp of his caval. cades animated, and formed in his mind ideas adequate to thofe of princes born to empire. Hence luxury invaded his table, and tyranny took poffeffon of his heart. The Pope conceived his defigns to be contrary to the interefts of the holy fee ; and the nobles, whofe power it had been his conitant endeavours to deprefs, cunfpired againt him: they fucceeded; and Rienzi was forced to quit an authority he had poffeffed little, more than fix montl2s. It was to a precipitate flight that he was indebted, at this juncture, for his life; and to different difguiles for his fubfequent prefervation.

Having made an ineffectual eftort at Rome, and " not knowing where to find a new refource to carry on his delirgns he took a moft bold ftep, conformable to that rafhncfs which had fo often alfilled him in his former exploits. He determined to go to Prague, to Charles king of the Romans, whom the year before he had fummoned to his tribunal," and who, he forefaw, would detiver him up to a Pope highly incenfed againtt him. He was accurdingly foon after fent to Avignon, and there thrown into a prifon, where he contimed three years. The divitions and diturbances in Italy, occafioned by the number of petty tyrants that had eftablifhed themfelves in the ecclefialtical territories, and even at Rome, occafoned his enlargement. Innocent VI. who fucceeded Clement in the papacy, fenfible that the Romans fill entertained an affection for our hero, and believing that his chaftifement would teach him to act with more moderation than he had formerly done, as well as that "gratitude would oblige him, for the remainder of his life, to preferve an inviolable attachment to the holy fee (by whofe favour he fhould be re-eftablifhed)," thought him a proper inftrument to affift his defign of reducing thofe other tyrants; and therefore, not only gave him his liberty, but alfo appointed him guvernor and fenator of Rume. He met with many obftacles to the affumption of this newly-
granted

Ring, granted authority ; all which, by cunning and refoluRoherval. tion, he at length overcame. But giving way to his lian tines. paffions, which were immoderately warm, and inclined him to cruelty, he excited fo general a refentment againft him that he was murdered October 8. 1354.
"Such was the end of Nicolas Rienzi, one of the molt renowned men of the age; who, after forming a confpiracy full of extravagance, and executiofs it in the light of almoft the whole world, with fuch fuccefs that he became fovereign of Rome; after caufing plenty, juftice, and liberty; to flourifh among the Romans; after protecting potemtates, and terrifying fovercign princes; after being arbiter of crowned heads; after reeftablifhing the ancient majefly and power of the Roman republie, and filling all Europe with his fame during the feven months of his firft reign; after having compelled his mafters themfelves to confirm him in the authority he had ufurped againft their interefts-fell at length at the end of his fecund, which lafted not four months, a facrifice to the nobility whofe ruin he had vowed, and to thofe valt projects which his death pre-- Biog. Dig, vented hinı from putting into execution *."
new edit. If the reader perceive any thing fimilar at prefent to the rife of this wonderful man to fovereign authority, he may perhaps confole himfelf with the hope that the modern conful will in all probability fall like the modern tribune. Both rofe by difplays of the moft daring courage; the affociates of both were priefts, who in the actual exercife of government were cyphers; both promifed liberty and plenty to the people whom they ruled with abfolute fway; and both have trampled upon the order of nobility.

RING, in aftronomy and navigation, an inftrumient ufed for taking the fun's altitude, \&c. It is ufually of brafs, about nine inches diameter, fufpended by a little fwivel, at the diflance of 45°, from the point of which is a perforation, which is the centre of a quadrant of 90° divided in the inner concave furface. To ufe it, let it be held up by the fwivel, and turned round to the fun, till his rays, falling through the hole, make a fpot among the degrees, which marks the altitude required. This inftrument is preferred before the aftrolabe, becaufe the divifions are here larger than on that inftrument.

ROBERVALLJAN lines, a name given to certain lines ufed for the transformation of figures; thus called from their inventor Roberval, an eminent French mathematician, who died in 1675 , aged 75 years. Thefe lines bound fpaces that are infinitely extended in length, which are neverthelefs equal to other fpaces that are terminated on all fides.

The Abbot Gallois, in the Memoirs of the Royal Academy, anno 1693, obferves, that the method of transforming figures, explained at the latter end of Roberval's Treatife of Indivifibles, was the fame with that afterwards publifhed by James Gregory, in his Geometria Univerfalis, and alfo by Barrow in his Leqiones Geometrice; and that, by a letter of Torricelli, it appears that Roberval was the inventor of this manner of transforming figures, by means of certain lines, which Torricelli therefore called Robervallian lines. He adds, that it is highly probable that J. Gregory firf learned the method in the journey he made to Padua in 1668 , the method itfelf having been known in Italy from the
year 1646, though the book was not publifhed till the year 1692.

This account bas been, we think, completely refuted by David Gregory in his vindication of his uncle, publifhed in the Philofophical Tranfactions of 1694. The Abbot, however, rejoined in the Memoirs of tbe French A cademy of 1703 ; and it is but fair to obferve, that Dr Hutton, fpeaking of the controverfy, expreffes himfelf as if he thought it undecided.

ROCKET (fee Encycl. vol. xvi. p. 316.) is alfo a weapon of war much employed in the countries of Hindoftan, combining with the miffile power of the javelin the impulfe of gun-powder. From the force and irregularity of its motion, the rocket is not eafily avoided, and, when thrown in numbers, it often makes very confiderable havock in an army. It confilts of a tube of iron, about eight incles long, and an inch and a half in diameter, clofed at one end : it is filled in the fame way as an ordinary Nk -rocket, and fixed to a piece of flout bamboo, from three to tive feet long, the head of which is armed with a heavy iron fpike. At the extremity of the tube, which points towards the Thaft of the weapon, is the match; and the man who ufes it, placing the butt end of the bamhoo upon his foot, points the fiked and in the direction of the object to which he means to throw it, and fetting fire to the fuze, pitches it from him, when it flies with great velocity; and, on ftriking the ground by a bounding horizontal motion, acts with an almoft certain effect in fracturing the legs of the enemy. When a fhower of rockets falls among a body of cavalry, it feldom fails to throw them into confufion.

RODNEY (Lord). In our fhort fsetch of the life of that gallant officer (Encycl.), we mentioned with regret our not having heard of any monument being erected to lis honour ia his native conntry. We have fince learned that there is a pillar upon the Brythen in Shropfhire, which was erected to his memory long before the publication of our article.

Having this great man again under our notice, we infert with pleafure the following extract of a letter, which we received from an obliging correfpondent foon after the publication of the volume which contains ous biographical fketch of the Admiral:"Whatever were Rodney's merits as a naval commander (fays our correfpondent), there is a more brilliant part of his character which you have entirely neglected. Prior to his fuccefs againft the Spanifh Admiral Don Langara, the Englih, who had the misfortune to become prifoners of war to the Spaniards, were treated with the greateft inhumanity, and it required more than a common frength of conftitution to exift for any length of time in a Spanifh prifon. When the Spanifh admiral fell into the hands of Rodney, he, his officers and feamen, expected to mect with the fame treatment they had always inficted, and which they would have in flicted on Rodney, his officers, and feamen, had the Spaniards been the victors; but, to their furprife, they found in Admiral Roduey (and, of courfe, in all that were under his command) a man who fympathifed in their misfortune, who minittered to their neceffities, and by a humane and polite behaviour to his prifoners, made an impreffion on the minds of the Spaniards, which could not but have its effect in mitigating the fufferings of

R O E [475] R O E

Roebuck. the Englifh in Spanifh prifons: but he did not ftop here: he took an upportunity, when their minds were expanded by gratitude (and in a fate to receive the full force of fuch a reprefentation), to reprefent to them the miferable condition of his countrymen who were prifoners in Spain, and obtained a promife (which, I believe, was punctually performed), that Englihinen, when prifoners in Spain, thould be made as comfortable as their fituation would admit of. This was a piece of fervice to his country which furely merits to be record. ed, and which will exalt him as much in the opinion of good men as the mott brilliant difplay of courage, which is a quality as frequently difcovered in the favage as in the cultivated mind."

ROEBUCK (John, M. D.), was born at. Shefficld in Yorkfhire in the year 1718 . His father was a confiderable manufacturer and expurter of Sheffield goods, who by his abilities and induttry had acquired a competent fortune. John, his eldeft fon, the fubject of this memoir, was intended by his father for carrying on his own lucrative bufnefs at Sheffield; but was, from his early youth, irrefiftibly attached to other purfuits, more calculated to gratify, his ambition, and give fuller play to his powers. Notwithftanding this difappointment in his favourite object, his father had liberality enough to encourage his rifing genius, and to give him all the advantages of a regular education.

After he had gone through the ufual courfe of the grammar fchool at Sheffield, both his father and mother being ftrict diffenters, they placed their fon for fome years under the tuition of the late Dr Doddridge, who was at that time mafter of an academy at Northampton, and had juftly acquired high reputation among the differters, both as a divine and as an inftructor of youth. Under the Doctor's care Mr Roebuck made great proficiency, and laid the fomenation of that claff. cal tafte and knowledge for which he was afterwards eminently diftinguifhed. It would appear that Dr Doddridge had been much pleafed with the ardour and enthufiafm, in the purfuit of knowledge, difcovered by his pupil; for Mr Rocbuck, in an after period of his life, ufed frequently to mention the fulbjects of converfation and inquiries of various kinds, in which the Doctor had engaged him. It was during his refidence at this academy that he contracted an intimate acquaintance with his fellow-ftudents, Mr Jeremiah Dyfon, afterwards much known in the political world, and Mr Mark Akenfide, fterwards Dr Akenfide, which terminated only with their lives.

From the academy at Northampton he was fent to the univerfity of Edinburgh, where he applied to the ftudy of medicine, and particularly to that of chemiltry, which about that time began to attract fome attention in Scotland. While he refided there he diftinguifhed himfelf much among his fellow- Atudents, in their literary focieties and converfations, by great logical and metaphyfical acutenefs, and by great ingenuity and refource in argumentation. The late fagacious Dr Potterfield, to whom he had been introduced, obferved and encouraged his rifing genius, and was greatly inftrumental in promoting his improvement. There, too, he formed an intimate acquaintance with Mr Hume, Mr Robertfon, afterwards Dr Robertfon, Mr Pringle, afterwards Lord Alemoor, and feveral other perfons of literary eminence; a circumftance which produced in his mind a
partiality ever afterwards in favour of Scotland, and Ruebuck. contributed not a little to his making choice of it for the chief field of his future exertions and indultry.

After Mr Rochuck had gone through a regular courfe of medical education at Edinburgh, being now determined to follow the practice of phylic, he next fpent fome time at the univeflity of Leyden, then in high reputation as the finf fchool of medicine in Europe. There, after the ufual relidence and courfe of trials, lie obtained a degree in medicine ; and his diploma, dated 2ift February 1743, has affixed to it the re\{pectable names of Mufchenbroek, OAterdyk, Van Royen, Albinus, Gaubius, \&c. He left Leyden, after having vifited fome part of the north of Germany, about the end of the year.

Soon after his return from the continent, fome circumftances induced Dr Rocbuck to Cettle as a pliyfi-cian-at lBimingham. Before that time, Birningham had begun to make a rapid progrefs in arts, manufactures, and population ; and by the death of an aged phyfician, an opening was prefented to him, which afforded an immediate profpeet of encouragement in that line. His education, talents, and interefting manners, were well calculated to promote his fuccefs as a phyfi. cian. He accordingly met there, at a period more early than he expected, with great encouragement ; and was foon diftinguifhed, in that town and the country adjacent, for his fkill, integrity, and charitable compaf. fron, in the difcharge of the duties of his profeffion.

It appeared, however, foon after his refidence was fixed at Birmingham, that his Itudies and induftry were turned to various objects befides thofe of his profeffion. Strongly attached to the rifing fcience of chemiftry, he conceived high views of extending its ufefulnefs, and of rendering it fubfervient to the improvement of arts and manufactures. With this view he fitted up a fnıall laboratory in his own houfe, in which be fpent every moment of his time which he could lpare from the duties of his profeffion. There, in the true \{pirit of his great mafter Lord Bacon, of whofe philofophy he was an ardent admirer, he carried on various chemical procefies of great importance, and laid the foundation of his future projects on well-tried and well-digelled experiments.

The firft efforts of his genius and induftry, thus di. rected, led hin to the difcovery of certain improved methods of refining gold and filver, and particularly to an ingenious method of collecting the fnaller particles of thefe precions metals, which had been formerly lolt in the practical operations of many of the manufacturers. By other chemical pruceffes, carried on about the fame time in his little laboratory, he difoovered alfo improved methods of making fublimate hartfhorn, and fundry other articles of equal importance. After having received full fatisfaction from the experiments upon which fuch difcoveries and improvement were founded, he next digefted a plan for rendering them beneficial to himeelf, and ufeful to the public. A great part of his time being ftill employed in the duties of his profeffion, he found it neceffary to connect himfelf with fome perion in whom he could repofe confidence, and who might be, in other refpects, qualified to give him fupport and affiftance in carrying on his intended eftablifhments. With this view, he chofe as his affociate Mr Samuel Garbet of Birmingham ; a gentleman well qualified, by his abilities, activity, and enterprifing 〔pi-

Roebuck. rit, for bearing his part in their future undertakings. The firf project was the eftablifhment of an extenfive laboratory at Birmingham, for the purpofes above mentioned; which, conducted by Dr Rnebuck's chemical knowledge, and Mr Garbet's able and judicious manargement, was productive-of many advantages to the manufacturers of that place, and of fuch enolument to themfelves, as contributed greatly to the holdnefs of their future projects. That laboratory has, ever fince that time, continued at Birmingham, and is Itill con. ducted by Mr Garbet. Dr Rucbuck, long before his death, had given up his intereft in it.

About this time, in $17+7$, the Doctor married Mirs Ann Roe of Sheffield, a lady of a great and generous ipirit, whofe temper and difpofition equally fitted her for enjoying the profperous circumfances of their early life, and for bearing her equal thare of thofe anxieties and difappointments in butinefs which fladed, but did not obfcure, the later period of their lives.

Dr Rocbuck's unremitted perfeverance in his chemical ftudies, together with the fuccefs that attended them, led him, flep by Ikep, to other refearches of great public and private benctit.

The extenfive ufe of the vitriolic (fulphuric) acid in -hemittry, and the profpest of its application to fome of the mechanic arts, had produced a great demand for that article, and turned the attention of chemifts to various methods of obiaining it. The late Dr Ward had obtained a patent for making it ; and though the fuhftances from which it might be obtained, as well as certain methods of obtaining it, had been known to others, and particularly pointed out by Lemery the Elder, and by Glauber, yet Dr Ward was the firf, it is believed, who ettablifhed a profitable manufacture upon the difcovery. Much, however, was wanting to render the acid of univerfal ufe in chemiftry, and of extenfive utility in the arts, where great quantities of it were required. The price of it was high, arifing from the great expence of the glafs veffels, which were made ufe of by Dr Ward in procuring it, and the frequent accidents to which they were liable in the procels.

Dr Roebuck had been for fome time engaged in making experiments with a view to reduce the price, and at length difcovered a method of preparing it, by fubftituting, in place of the grlafs veffels formerly ufed, lead ones of a great fize; which fuhftitution, together with fundry other improvemellts in different parts of the procefs, completely effected his end.

After the neceffary preparations had been made, Mcffrs Roebuck and Garbet eftablifhed a manufacture of the oil of vitriol at Preftonpans, in Scotland, in the year 1749. This eftablifhment not a little alarmed Dr Ward, who attempted to defeat their plan, by taking out a patent for Scotland, in addition to the one he liad formerly obtained. In this attempt he failed. Dr Rotbuck's difcovery was found not to come within the fpecification of Dr Ward's patent.
The Preftompans company, convinced that patents are of little avail in preferving the property of new inventions or difcoveries, in conducting their virriol works refolved to have recourfe to the more effectual methods of concealment and fecrecy. By that method they were enabled to preferve the advantages of their ingenuity * and induftry for a long period of years, and not only ferved the public at a much cheaper rate than had ever
been done formerly, but, it is believed, they realized, in Roehucis that manufa fure, a greater annual profit from a fmaller: capital t.asis had heen done in any fimilar undertaking. The vitriol work is fill carried on at Preftonpans; but long before Dr Roebuck's death, he was obliged to withdras his capital from it.

About this time Dr Roebuck was urged, by fome of his friends, to leave Birmingham, and to fettle as a phyfician in London, where his abilities might have had a more extenfive field of exertion. He had been early honoured with the acquaintance of the late Marquis of Rockingham, who, as a lover of arts; had frequeutly engaged him in chemical experiments at Rockinghamhoufe. It was there, alfo, he became acquainted with the late Sir George Saville, and with feveral other perfons of rank and influence. His old friend and fehoolfellow Mr Dyfon, too, by this time, had acquired confiderable mame and influence, and preffed him much to take that ftep. Under fuch patronage, and with the energy of fuch talents as D_{r} R Roebuck poffeffed, there could be little doubt of his foon arriving at an eminent rank as a phylician in London. But the clremical concerns, with which he was at that time deeply occupied, holding out to him a profpect of a richer harveft, determined him to give up the practice of mediciue altogether, and to fix his refidence for the greateft part of the year in Scotland.

The fuccefs of the eftablifhment at Preftonpans, which had far exceeded their expectation, enabled the Doctor and his partner Mr Garbet to plan and execute other works of ftill greater benefit and public uti. lity. In the profecution of his chemical fudies and experiments, Dr Roebuck had been led to beftow great attention on the procefles of fmelting iron-ftone, and had made fome difcoveries, by which that operation might be greatly facilitated, particularly by ufing pitcoal in place of charcoal. Mr Wiltiam Caddell of Cockenzie, in the neighbourhood of Preftonpans, a gentleman earneflly intent upon promoting manufactures in Scotland, had, for feveral years, laboured, withont much fuccefo, in eftablithing a manufacture of iron; a circumftance which may have probably contributed to turn Dr Rurbuck's attention more particularly to that fubject. As the capital which he and his partner Mr Gaibet could appropriate for carrying on the iron manufacture was not equal to fuch an undertaking, and chiefly depended upon the profits of their other works, their firft intention was to attempt a fmall eftablifonent of that kind in the vicinity of their vitriol works at Preftoupans. But the flattering profpects of fuecefs, ariling from a courfe of experiments which Dr Roebuck had lately made, encouraged them to extend their plan, and to project a very extenfive manufactory of iron. A fufficient capital was foon procured, through the confidence which many of their friends repofed in their abilities and integrity. In fact, the eftablifhment which they made, or rather the capital wliich gave it exiltence, was the united capital of a band of relations and friends, whe truited to Dr Roehuck and Mr Garbet the management of a great part of their fortune. When all previous matters had been concerted refpecting their intended eftablifhment, the chief exertions of chemical and mechanical fkill, neceffary in the exccution, were expected from Dr Roebuck. It fell to his fhare alfo to fix upon the beft and mof favourite fitua-
achuck, tion for ereeting their intended works. With that view $\underbrace{\text { Dr Roebuck examined many different places in Scot- }- \text { - }}$ land, particularly thofe on both fides of the Frith of Forth; and after a careful and minute combarifon of their advantages and difadvantages, he at length made choice of a fpot on the banks of the river Carron as the moft advantageous fituation for the eftablifhment of the iron manufacture. There he fomd they could eatily command abundance of water for the neceffary machinery ; and in the neighbourhood of it, as well as everywhere both along the north and fouth coafts of the Frith, were to he found inexhauftible quarries of ironftone, limettone, and coal. From Carron, alfo, they could eafily tranfport thẹir manufactures to different countries by fea. The communication with Glafgow at that time by land cartiage, which opened up to them a ready way to the American market, was fhort and eafy.

Many other things, that need not be here enumerated, fell to Dr Roebuck's fhare in preparing and providing for the introduction of this new manufacture into Scotland, particularly with refpect to the planning and erection of the furnaces and machinery. To infure fuccefs in that department, nothing was omitted which ability, induftry, and experience could fuggeft. With this view, he called to his afliftance Mr Smeaton, then by far the firf engineer in England. It was from him he received plans and drawings of the water-wheels and blowing apparatus, which, notwithlanding all the mechanical improvenients which have been made funce, renain unrivalled in any of the other iron-works erected in Britain. This was the firft introduction of Mr Smeaton into Scotland, and was the occalion of varions other difplays of the fkill and experience of that celebrated engineer in that part of the ifland. With the fame view, and to the fame effect, in a future period of his operations, he employed Mr James Watt, then of Glafgow, and had the merit of rendering that inventive genius, in the mechanical arts, better known both in this country and in England.

The neceffary preparations for the eftablifment of the iron works at Carron were finifhed in the end of the year 1759 ; and on the 1 it Jausary 1760 the lirft furnace was blown; and in a thurt time afterwards a fecond was erected.

No period of Dr Roebuck's life required from him more vigorous and laborious exertions than that of the eftablifhment of the Carron works, and the firt trials of the furnaces and machinery. His family and friends remember well the ardour and interell which he difoovered; the iuceffant labour and watchfulaefs which he exerted on that occalion. Every thing was mutried, the furnaces, the machinery, the materials, the workmen; the novelty of the undertaking in that erountry, its extent and difficulty, and the great Itake at ifue, were circumflances that mult have occafoned much feriuus thought and anxiety to the partner, nipon the credit. of whofe knowledge and experience the work had been undertaken. But the Doctor had great powers and great refources ; and the firft trial gave fufficient indications of future fuccefs.

For fome time after the eltablifhment of the Catron works, Dr Roebuck continued to give his attention and affiftance in the general management and fuperintendauce of them, and with him all meafures of future ope-
rations were concerted. During this period, fome al Rutbuck. terations of great importance were fuggefted by hiin, and carricd into eflect. By carefully otferving the progrefs of fmelting in the furnaces, at firlt worked by bellows, befides their heing fubject to various accidents, the Ductor difcovered the neecffity of rendering the blat buth ftronger and more equable ; and propofing, as a problem to Mr Sneaton, the beft method of afect: ing that end, that colebrated engincer foon gave the plan of a blatt by three or four cylinders, which was afterwards tried, and fuccecded even beyond expectation.

When the bufnefs at Carron funk by degrees into a matter of ordinary detail, and afforded lefs fope for the Doctor's peculiar talents, he was unfortunately tempted to engage in a new and different undertaking ; from the failure of which he fulfered a reverfe of fortune, was deprived of the advantages refulting from lhis other works, and during the remainder of his life became fubjected to much anxiety and difappointment.

The eftablifhment of the Carron works, and the in. tereft Dr Roebuck had in their fuccefs, had naturally turned his attention to the late of coal in the neighbourhood of that place, and to the means of procuring the extraordinary fupplies of it which the iron-works might in future require. With the view, therefore, of increafing the quantity of coal worked in that neighbourhood, by an adventure which he thought would alfo tum ont to his own emolument, he was induced to become leffee of the Duke of Hamilton's extenfive coal and falt works at Borrow ltounnefs. 'The coal there was reprefented to exift in great abundance, and underftood to be of fuperior quality ; and as Dr Roebuck had inade himfelf acquainted with the mont improved methods of working coal in England, and then not. practifed in Scotland, he had little doubt of this adven. ture turning out beneficial and highly lucrative. In this, however, he was cruelly difappuinted. The opeuing of the principal ftratun of coal required much longer time, and much greater expence, than had been calculated; and, alter it was opened, the perpetual fucceffion of difficulties and obftacles whieh occurred in the working and raifing of the coal, was fuch as has been feldum experienced in any work of that kind. I he refult was, that after many years of labour and induftry, there were funk in the coal and falt works at burrowftounats, not only his own, and the conliderable fortune brought him by his wife, but the regular profits of his more fuccefsful works; and along therewith, what diftreffed him above every thing, freat fums of money borrowed from his relations and friends, which he was never able to repay; not to mention that, fiom the faine calue, he was, during the lalt twenty years of his life, fubjected to a conitant fucceffion of hopes and difappoinments, to a courfe of labour and drudgery iil fuited to his talle and turn of mind, to the inktome and tcaling bufinefs of managing and thudying the humours of working colliers. But all thefe dimiculties his unconquerable and perfevering finit would have owercome, if the never-ceating demands of his conl worko after having exhaufted the prolit:, had not alfo compelled him to withdraw his capital from all his different works in fucceffion; from the retining work at Bir. mingham, the vitriol work at Prellonpans, the iron. works at Carron, as well as to part with his interelt in the project of impruving the Iteam-engire, in which he
$\mathrm{R} \mathrm{O} \underset{\mathrm{O}}{\mathrm{O}} \underset{\text { Watt, the original in- }}{ }$
Kochuck. had become a partner with Mr Watt, the original inventor, and from which he had reafon to hope for future emolument.

It would be painful to mention the unhappy confequences of this ruinous adventure to his family and to himfelf. It cut off for ever the flattering profpect which they had of an independent fortune, fuited to their education and rank is life. It made many cruel encroachments upon the time and occupations of a man whofe mind was equally fitted to enjoy the high attainments of fcience, and the elegant amufements of tafte. As the price of fo many facrifices, he was only enabled to draw from his colliery, and that by the indulgence of his creditors, a moderate annual maintenance for himfelf and family during his life. At his death, his widow was left without any provifion whatever for her immediate or future fupport, and without the fmalleft advantage from the extraordinary exertions and meritorious induftry of her hufband.

Dr Roebuck had, fome.years before his death, been attacked by a complaint that required a dangerous chirurgical operation. That operation he fupported with his ufual fpirit and refolution. In a fhort time he was reftored to a confiderable fhare of his former health and activity ; but the effects of it never entirely left him, and feveral flighter returns of the complaint gradually impaired his conftitution. He ttill, however, continued, till within a few weeks of his death, to vifit his works, and to give direction to his clerks and overfeers. He was conlined to his bed only a few days; and died on the 17 th July 1594 , retaining to the laft all his faculties, his fpirit and good humour, as well as the great intereft which he took, з9 a man of feience and reflection, in the uncommon events which the prefent age has exhibited.

From a man fo deeply and fo couftantly engaged in whe detail of aetive bulinefs, many literary compolitions were not to be expected. Dr Ruebuck left behind him many works, but few writings. The great object which he kept invariably in view was to promote arts and manufactures, rather than to eftablifh theories or hypothefes. The few effays which he left, enable us to judge of what might have been expected from his talents, knowledge, and boldnefs of invention, had not the active undertakings in which, from an early period of life, he was engaged, and the fatigruing details of bufinefs, occupied the time for Itudy and inveltigation. A comparifon of the heat of London and Edinburgh, read in the Royal Society of London June 29, 1775; experiments on ignited bodies, read there 16th Feb. 1776; obfervations on the ripening and filling of corn, read in the Royal Socicty of Edinburgh 5th June :784-are all the writings of his, two political pamphlets excepted, which have been publighed. The publication of the effay on ignited bodies was occafioned by a report of fome experiments made by the Comte de Buffon, from which the Comte had inferred, that matter is heavier when hot than when cold. Dr Roebuck's ex periments, made with great accuracy bcfore a committee of the Royal Society at London, feem to refute that notion.

It is the works and eftablifhments projected and executed by Dr Roebuck, with the immediate and more remote effects of them upon the induftry, arts, and manufacturers of Scotland, which urge a juft claim to the sefpect and gratitude of his country. This tribute is
more due from the dif pecie . the fuperit apt to be uverlooked by the buly or the fuperficial, and to fail in obtaining its due reward. The circumitances of Dr Roebuck were, in this refpect, peculiarly hard: for though, moft certainly, the projector and author of new eftablifhments highly ufeful to his country, and every day becoming more fo, he was, by a train of unfortunate events, obliged to break off his connection with them, at an unfealonable time, when much was yet wanting to their complete fuccefs : and thus he left otbers in the poffeffion, not only of the lucrative advantages now derived from them, but even in fome meafure of the general merit of the undertaking, to a confiderable part of which he had the moll undoubted claim.

The eftablifhment of the laboratory at Birmingham in the year 1747, the fir!t public exhibition of Dr Roebuck's chemical talents, was, at that particular period, and in the ftate of the arts and manufactures at that time, highly beneficial, and fubfervient to their future pragrefs: and the continuance and fuccefs of it, in that place, is a proof of the advantages which many of the manufacturers receive from it. Much had already been done, and many improvements made in arts and manufactures, chiefly by the fuggeitions of that ingenuity and experience which, in the detail of bufinefs, might be expected from the practical artift. Dr Roebuck was qualified to proceed a ftep farther; to direct experience by principles, and to regulate the mechanical operation of the artift by the lights of fcience. The effects of that eftablifhment extended, in a particular manner, to all that variety of manufactures in which gold and filver were required, to the preparing of materials, the fimplifying of the firf fteps, to the faving of expence and labour, and to the turning to fome account what had been formerly loft to the manufacturer. It is well known that, while Dr Roebuck refided at Birmingham, fuch was the opinion formed of his chemical knowledge and experience by the principal manufacturers, that they ufually confulted him on any new trial or effort in improve their feveral manufactures; and when lie left that place, they finccrely regretted the lofs of that eafy and unreferved communication they had with him on the fubjects of their feveral departments.

On account of fimilar circumftances, the benefit to the public, fion the eftablifhment of the vitriol works at Preltonpans, in the extention and improvement of many of the arts, cannot now be exactly afcertained. The vitriolic acid is one of the moft active agents in chemiltiy, and every difcovery which renders it cheap and accellible to the chemift muft be greatly fubfervient to the progrefs of that fcience. By the eftablifhment at Preftonpans, the price of that valuable acid was reduced from fixteen to four pence per pound. It is to Dr Roebuck, therefore, that chemifts are indebted for being in poffelion of a cheap acid, to which they can have recourfe in fo many proceffes.

But Dr Roebuck's object in the profecution of that fcheme, was not fo much to facilitate the chemift's labour, as to render that acid, in a much higher degree than it had formerly been, fubfervient to many of the practical arts. By rendering the vitriolic acid cheap, great ufe came to be made of it in preparing the muria. tic acid, and Glauber's falts from common falts. Its

R O E

Rnebuck. ufe has been farther extended to many metallic procef fes; and it has lately been employed in feparating filver from the clippings of plated copper, the ufe of which is very extenfive.

The project and etlablifhment, however, of the ironworks at Carron, the mott extenfive eltablifhment of that kind hitherto in Britain, mult be confidered as Dr Roebuck's principal work. 'The great and increaling demand for iron in the progreffive flate of arts, manufactures, and commerce in Britain, and the great fums of money fent eve:y year to the north of Europe for that article, turned the attention of chemifts and artifts to the means of promoting the manufadure of iron, with the view of reducing the importation of it. No perfon has a better founded claim to merit, in this particular, than Dr Roebuck. 'The fmelting of iron by pitcoal, it is indeed believed, had been attempted in Britain in the beginning of the latt century. In the reign of James I. feveral patents feem to have been granted for making hammered iron by pitcoal, particularly to the Hon. Dud Dudley and Simon Starlevant. It does not appear, however, that any progrefs had been made in the manufacture in confequence of thefe patents. In later times trials have been made by fo many different perfons, and in fo many different places in England, nearly about the fame time, that it may" be difficult to fay where and by whom the firft attempt was made, particularly as the difcoverers of fuch procefles withed to conceal the knowledge they had gained as long as they could. But Dr Roebuck was certainly among the firlt who, by means of pitcoal, attempted to refine crude or pig iron, and to make bar iron of it, inftead of doing it by charcoal, according to the former practice: And he was, without all quetion, the perfon who introduced that method into Scotland, and firf eftablifhed an extenfive manufacture of it. It is not meant to afcribe to him the fole merit of the eftablifhment at Carron. No man was ever more ready than he was to do juftice to the abilities and fpirit of his friends and partners Meffrs Garbet, Caddell, \&c. who firft embarked with him in that great undertaking. But ftill it may be faid with truth, that the original project of the ironworks at Carron, the chemical knowledge and experience on which they were founded, the complicated calculations which were previoully requircd, the choice of the fituation, the general conduct and direction of the buildings and machinery, the fuggeftion of many occafional improvements, together with the removal of many unforefeen obftacles and difficulties, which occurred in the infant tate of that eftablifhment, were, in a great meafure, the work and labour of Dr Roebuck, Nor can it, with the leaft Maduw of jullice, detract from his merit, that a larger capital, and greater expence than was at firlt calculated, have been found neceffary to bring the works at Carron to their prefent flate of perfection; or, that great alterations and improvements have taken place, during the courfe of forty years, in a great and progreffive eftablifhment. In all works of that kind, the expence exceeds the calculation. The undertakers even of the lateft iron-works which have been erected, notwithftanding all the advantages obtained from recent experience, will be ready to acknowledge, that, in thefe refpects, there is little room to blame the original projector of the firft eftablifhment
of that kind in Scotland. But the beft, and moft i_{h}. Rob ik. fallible proof of Dr Roehuck's mevit, and of the found principles on which thefe works were eftablithed, is the prefent profperous fate of that ellablifment, the great perfection of many branches of their manufactures, and particularly the many extenfive and fourifhing ironworks which have fince been erected upon the model of Carron in different parts of Scotland, at Cleugh, Clyde, Muirkirk, and Devon. It cannot be denied that all thefe works have fprung from the eftablifhment at Carron, and are ultimately founded upon the knowledge and experience which lave been obtained from them; for fome of the partners, or overfcers of thefe new works, and many of the worlimen, have been, at one time or another, connected with that of Carron. Hence, then, it is oiving to the projector and promoter of the eftablifhment at Carron, that Scotland iv, at this moment, benefited to the amount of many hundred thouland pounds, in working up the raw materials of that manufacture found in the country itfcif, and which, previous to that eftablifhment, was of no value whatever. Such are the prefent, but fcarcely any idea can be formed of the future, advantages to this country, which may be derived from the exteufion of the irom manufacture. A bout $60,=0=$ tons. of iron have been anmually imported into Great Britain fur mure than twenty years paft; and though there lias been for fome time about 20,000 tons of bar iron made in Britain hy pitcoal, yet the forcign imported iron has fuffered little or no diminution in quantity. This great confumption of iron, no doubt, is owing to the various improvements of late years, and the general exterfiun throughout all Europe of commerce and the arts. 'The manufacture of iron muft therefore continue to increafe ; and Scotland, abounding everywhere in ironllone, pitcoal, and in command of water for machinery, has the profpect of obtaining the largeft fhare of it.

To the eftablifhment of the Carron works, and to the confequences of that eftablifhment, may be aferibed alfo the exiftence of other public works in Scotland of great importance and utility. The opening of a communication by water betivixt the Forth and the Clyde had long been projected, and frequently the fubject of converfation in Scotland, but nothing in fact had been attempted. The eftablifhment of the iron-works at Carron foon called foith fufficient intereft and enterprife to bring about the execution of this grand defign. Some of the partners of the Carron company, forefeeing the advantages they would derive from fuch a communication, propofed, at their own expence, to executc a fmall canal; and, after taking the preparatory fteps, actually applied to Parliament to obiain authority for that purpofe. But the project of the fmall canal not mecting with the approbation of fome noblemen and gentlemen in that part of Scotland, they oppoled the bill, and obliged themfelves to execute a greater canal, which has now been many years finifhed, and is found to be of the greateft advantage to the trade and commerce of Scotland. The merit of this undertaking is not meant to be afcribed to Dr Roebuck, excepting in fo far as it neceffarily arofe from the eftablifhment of the Carron company, of which he was the uriginal projector; and it may reafonably be doubted whether, without that eftablifment, it would have yet taken.

$R \quad$ O E [480] R O E

Roebuck. place. Several other canals have fince that time been executed in different parts of Scotland, and other very important ones are at prefent projected.

The different eftablifiments which Dr Roebuck made at Borrowfounnefs in carrying on the coal and falt works there, though ultimately of no advantage to himfelf, were attended, during the courfe of thirty years, with the moft benefieial effects upon the trade, populaLiun, and induftry of that part of Scotland. They were the means alfo of adding very confiderably to the public revenue. Previous to the time thefe works fell under Dr Roebuck's management, they produced no ad. vantage either to the proprietor, to the adventurers, or to the public. But by his mode of conducting them upun a more extenfive plan, by opening up new feams of cual, and of better quality, he was enabled to export a very confiderable quantity, to increafe the quantity of falt, and of courfe the revenue arifing from thefe articles. In thefe works, and in the management of a - large farm, Dr Roebuck gave employment to near a thoufand perfons at Borrowfounnefs and in the neighbourhood.

Nor was it fulely by the different eftablifhments which he projected and executed, but by many other things neceffarily comneeted with them, that Dr Roebuek's labours were beneficial to Scotland. Along with them he may be faid to have introduced a fpirit of enterprife and induftry, before that time little known in Scotland, which foon pervaded many other departments of labour, and gave birth to many other ufeful projects. He brought. from England, then much farther advanced in arts and induftry, many ingenious and indutrious workmen, at great expence, who, by their inftructions and example, communicated and diffufed nill and knowledge to others. At all times Dr Roebuck held out liberal encouragemenf' to rifing genius and induftrious merit ; and fpared no expence in making trials of improvements and difcoveries which were connected with the different projects and works which he was carryiug on.

Such was the active and ufeful life of Dr Roebuck, a man of no common calt, who united, in a very high degree, a great number of folid and brilliant talents, which, even feparately, fall to the lot of but few individuals. Diftinguifhed by an ardent and inventive mind, delighting in purfuit and inveftigation, always afpiring at fomething beyond the prefent ftate of fcience and art, and eagerly preffing furward to fomething better or more perfect, he thus united energies the molt powerful with the moft unwearied and perfevering induftry. To that peculiarity of imagination, fo fitted for fcientitic furfuit, which readily combines and unites, which fteadily preferves its combinations before the eye of the nind, and quickly difeovers relations, refults, and confequences, was added, in his character, great promptitude and firmnefs in decifion. Strongly and early impreffed with the great inportance of applying chemical and phyfical knowledge to the ufefularts, to the melioration of civil life, he never loft fight of that favourite view, and difcuvered great boldnefs and refource in the means and expedients which he adopted to promote it. He was certainly matter of the beft philofophy of chemintry known in the earlier parts of his life; and though in exery ftage of that fcience he marked and underftood the progrefs of the difcoveries, yet his numerous avoca-
tions did not permit him to follow them out by experi. mental proeefles of his own. Upon that, and indeed almoft upon every fubject, his mind readily grafped the moft ufeful and fubitantial points, and enabled him to throw out fuclı hints and hypothefes as marked him the man of genius.

During the courfe of a regular education, both at Edinhurgh and at Leyden, Dr Roebuck fudied the claffic authors with great attention, particularly the hiftorical and political parts of their works. Upon thefe fubjects he had read much, felected with judgment, and was well acquainted with the facts and philofophy of ancient governments. This tafte he carried with him, and improved in every period of his life, and in every fituation. It abundantly rewarded him for the earneftnefs and diligence with which it had been acquired. It became his favourite refource, and indeed one of the chief enjoyments of his life. Poffefling the happy talent of turning his mind from ferious and fatiguing, to elegant and recreating purfuits, it was no uncommon thing with him to return from the laboratory or the coalpit, and draw relaxation or relief from fome one or other of the various ftores of claffical learning.

No man was better acquainted with the hiftory of his country than Dr Rocbuck, or more admired and revered the conftitution of its government. By temper and education he was a Whig, and at all times entered with great warmth into the political difputes and controverfies which agitated parties in the different periods of his life. If the natural warmth of his temper, and his enthufiafm on the fe fubjects, led him, on fume occafions, beyond the bounds of candid argumentation, his quick fenfe of decorum, and his perfect habits of good manners, produced an imnediate atonement, and reftored the rights of elegant and pulifhed converfation.

The general acquaintance which Dr Roebuck had acquired with natural and experimental philofophy, together with his claffical and political knowledge, rendered him an agreeable companion to the learned almoft of every department, and procured him the attachment and friendfhip of many of the firit literary characters in Britain. With his friend Dr Black he lived till his death in clofe habits of intimacy; and he often acknowledged, with much franknefs, the advantages which be derived in his various purfuits, from a free and unreferved communication with that eminent chemit.

The amiable difpufitions of fenfibility, humanity, and generofity, which Atrongly marked his character in the general intercourfe of fociety, were peculiarly preferved and exercifed in the bofom of his family, and in the circle of his friends. In the various relations of hufband, father, friend, or mafter, and in the difcharge of the refpective duties arifing from them, it would not be eafy to do juftice to his character, or to determine in which of them he moft excelled; nor muft it be forgot, for it reflected much honour on his benevolent heart, that his workmen not only found him at all times a kind and indulgent maller; but many of them, when their circumlances required it, a 凤iilful and compaffionate phyfician, who clicerfully vifited the humbleft receffes of poverty, and who attached them to his fervice by multiplied acts of generofity and kindnefs.

ROEMER (Olaus), a noted Danith aftronomer and mathematician, was born at Arhufan in Jutland, 1644 ; and at 18 years of age was fent to the univerfity

$\mathrm{R} O \mathrm{~L}$
 [4S1 个
 $R \quad 0 \mathrm{~L}$

Roemer, of Copenhagen. He applied afiduoufly to the Atudy of the mathenatics and aftronony, and became fo expert in thofe feiences, that when Picard was fent hy I.ouis the XIV. in 1671, to make obfervations in the north, he was greatly furprifed and pleafed with him. He engaged him to return with him to France, and had him prefented to the king, who honoured hin with the dauphin as a pupil in mathematics, and fettled a penfion upon him. He was joined with Picard and Caffini, in making aftronomical obfervations; and in 1672 he was adinitted a member of the Academy of Sciences.

During the ten years he refided at Paris, he gained great reputation by his difenveries; yet it is faid he complained afterwards, that his coadjutors ran away with the houour of many things which belonged to him. IFere it was that Roemer. firft of any one, found out the velocity with which light moves, by means of the eclipfes of Jupiter's fatellites. He had obferved for many years, that when Jupiter was at his greateft diftance from the earth where he could be obferved, the emerfions of his frtt fatellite happened contantly 15 or 16 minutes later than the calculation gave them. Hence he concluded, that the light reftected by Jupiter touk up this time in running over the excefs of diftance ; and confequently that it took up 16 or 18 minutes in run11ing over the diameter of the carth's orbit, and 8 or 9 in coming from the fun to us, provided its velocity was uearly uniform. This difcovery had at lirft many oppofers; but it was afterwards confirmed by Dr Bradley in the moft ingenious and beautiful manner.

In 1681 Roemer was recalled to his native country by Chriftian the Yth King of Deninark, who made him profeffor of aftronomy at Copenhagen. The king employed him affo in reforming the coin and the architecture, in regulating the weights and meafures, and in meafuring and laying out the high roads throughout the kingdom ; offices which he difcharged with the greateft credit and fatisfaction. In confequence he was honoured by the king with the appointinent of chancellor of the exchequer and other dignities. Finally, he became counfellor of flate, and burgomatter of Copenhagen, under Frederic the IV. the fucceffor of Chriftian. Roemer was preparing to publint the refult of his obfervations, when he died the 19 th of September 1710 , at 66 years of age : but this lofs was fupplied by Hurrebos, his difciple, then profeffor of aftronomy at Copenhagen, who publifhed, in $4 t 0,1753$, various obfervations of Roemer, with his method of ohferving, under the title of Bafis A/fronomic. - Iie had alfo printed various altronomical obfervations and pieces, in feveral volumes of the Memoirs of the Royal Academy of Sciences at Paris, of the intlitution of i6n6, particularly vol. 1. and 10. of that collection.

ROLLOCK (Robert), the frift principal of the college of Edinburgh, was the fon of David Rollock of Pouboufe, or, as it is now written, Pozvis, in the ncighbourhood of Stirling. He was born in 1555; and learned the rudiments of the Latin tongue under one Mr Thomas Buchanan, who kept, fays Archbiflop Spotifwood, a fanous fohool at that time, and was, according to Dr Mackenzic, whe of the mofteminent grammarians in Scotland. Where Mr Buchanan kept Gis fchool, neither of thefe authors has informed us.
Froun fchool Mr Rullock was fent, we know not in
Suppl. Vol. II. Part II.
what year, to the univerfity of St Andrews, and ad. Rollock, mitted a ftudent in St Salvator's college. His pro. grefs in the fciences, which were then taught, was fo great and fo rapid, that he had no fooner taken his degree of M. A. then he was chofen a profeffor of philo. iophy, and imnediately began to read leclures in St Salvator's college. 'This nuit have been at at very early period of life; for he quitted St Andrews in the year 1583, when, according to Mackenzie, he had tanght philufophy for fome time in that univerfity.

Not long before this period, the magitrates of Edinburgh having petitioned the king to ereet a univerlity in that city, he granted then a charter under the great feal, allowing then all the privileges of a univerlity: and the college being built in 1,58 , they made choice of Mr Rollock to be their principal and profefor of divinity.

At what time he was admitted into holy orders, by whom he was ordained, or indeed whether he ever was ordained, has been the fubjeet of fome acrimonious controverfy; but it is a controverfy which we fhall not revive; for, confidering the manner in which orders were then conferred in Scotland, the quettion in debate is of very little importance. It is certain that he became famous in the univerfity, and among his countrymen in general, for his lectures in theology, and for the perfuative power of his preaching; for Calderwood affures us, that, in 1589, he and Mr Robert Bruce, another popular orator, made the Earl of Bothwel fo fenfible of his finful and ritious courfes, that, upon the geth of November, his lordthip humbled himfelf upon his knees in the eatt church in the forenoon, and in the high chureh in the afternoon, confefling before the people, with tears in his eyes, his diffolute and licentious life, and promiling to prove, for the future, another min.
In the year 1593 , Principal Rollock and others were appointed by the llates of parliament to confer with the popiin lords; and in the next year he was one of thofe who, by the appointment of the general aflembly of the church, met at Edinburgh in the month of May, and prefented to his majelly a paper, entitled, The dangers which, througls the impunity of Exconmunicated papists, traffickers with the spaniards, and other enemies of the religion and eflate, are imminent to the true religion profefled cuithin this realin, bis Mujeffy's perfon, crown, cnd literty of this our native country. His zeal againt Papits was indeed ardent; and he feems tu have adopted that judaical doctrine, which was embraced in fome degree by all the reformers, that it is the duty of the civil magiftrate to punifh idolatry with death.

In the year 1595 he was nominated one of the commiffioners for the vifitation of colleges. Thefe commilhoners were empowered to vifit all the colleges in the kingdom, to inquire into the doctrine and life of the feveral malters, the difcipline ufed by them, the ftate of their rents and living, and to make their report to the nest affembly.

In 159 , the factions behaviour of fome of the miniters having drawn upon them the juft refentment of the king, our principal was employed, on account of his moderation, to foften that rcfentment, and to turn his majetty's wrath againtt the Papifs! In the year 1597, he was chofen moderator of the Gencral Affem$3^{\text {P }}$
hly

Rollock. bly-the higheft dignity in the Scottih church; and he had the influence to get fome great abufes redreffed. Being one of fourteen miniters appointed by this affembly to take care of the affairs of the church, the firlt thing which he did was to procure an act of the legiflature, refloring to the prelates their feats in parliament. He had here occaliun for all his addrefs; fur he had to reconcile to this meafure, not only fuch of the minitlers as abhorred all kinds of fubordination in the church, but likewife many of the lay lo:ds, who were not delighted with the profpect of fuch affociates in parliament as the Seotch prelates were at that period (A).

Though he fpent the greater part of his life in conducting the affairs of the church, we have the authority of Spottifwood fur faying, that he would have preferred retirement and fludy. To the buftle of public life, efpecially at that period of faction and fanaticifm, his feeble conftitution was not equal ; and his inclination would have confined him to his college and his library. He was dreadfully aflicted with the ilone; the torments of which he long bore with the fortitude and refignation of a Chrittian. Ife died at Edinburgh on the 28 th of Fcbruary 1598, in the 43^{d} year of his age; having exhorted his brethrcu, with his dying-hreath, to carry themfilves more dutifully to their gracious fovereign.

- His works are, I. A Commentary on the Firik Book of Theodore Beza's Queftions. 2. A Commentary on St Paul's Epillle to the Ephefians, 4to, Edinburgh, 1590. 3. A Commentary on the Prophet Danicl, 4 to, Edinburgh, 1591. 4. A Logical Analyfis of St Paul's Epittle to the Romans, 8vo, Edinburgh, 1 594. 5. Some Quettions and Anfwers concerning the Covenant of Grace and the Sacraments, 8vo, Edinburgh, ${ }^{1} 596$. 6. A Treatife of Effectual Calling, \&vo, Edinhurgh, 1597. 7. A Commentary on the Epitles of St Paul to the Theffalonians and Philemon, 8 vo , Geneva, 1597. 8. A Commentary upon Fifteen Select Pfalms, 8vo, Geneva, 1593. 9. A Commentary on the Gofpel of St John, with a harmony of the Four Evangelifts upon the Death, Refurrection, and Afcenfion of Jefus Clirift, 8vo, Geneva, 1599. 10. Certain Sermons on Several Places of St Paul's Epifles, 8ro, Edinburgh, 1598. 11. A Commentary upoa the LipiRle to the Coloflians, 8vo, publifhed at Geneva, 1602. 12. A Logical Analyfis of the Epifle to the Hebrews, 8 vo , Edinburgh, 1605. 13. A Logical Analyfis of the Epifte to the Galatians, 8 vo , London, 1602. 14. A Commentary upon the Two Firf Chapters of the Firf Epiftle of St Peter, 8vo, London, 1003. 15 and 16. A Treatife of Juftification, and another of Excommurication, both in $8 v 0$, London, 1604. All thefe works, except the
fermons, are in Latin. That Pincipal Rolluck was held in ligh eftimation in the college over which he prefided, is made at leaft probable by the following epitapl:

Te Rolloce, extincto, Urbs mafla, Academia majá sf; Et lotra exquiis Scotia max/la tuis.
 Uno in te nubis dederat Deus omnia, in uno Te Deus eripuit omnia que dederit.

ROSES Otter (or effential cil) of. In the Encyclopedia, under the word Roses, we have given one receift for making this very high-priced perfume; and we flall here give another ; which, whether it be as effectual or not, is at lealt finpler and lefs expenfive. It is by an officer who was in the country where the Otter is prepared, and who affifted in making it himfelf; and is as follows :
"Take a very large glazcd earthen or tone jar, or a large clean wooden cafk; fill it with the leaves of the Howers of rofes, very well picked, and freed from all feeds and ftalks; pour on them as much pure fpring water as will cover then, and fet the veffel in the fun, in the morning at fun-rife, and let it fand till the evening, then take it into the houfe for the night ; expofe it, in this manner, for fix or feven fucceffive days, and, at the end of the third or fourth day, a number of particles, of a fine yellow oily matter, will float on the furface, which, in two or three days more, will gather into a fcun, which is the otter of rofes. This is taken up by fome cotton, ticd to the end of a piece of ftick, and fqueezed with the finger and thumb into a fimall phial, which is immediately well ftopped; and this is repeated for fome fucceffive evenings, or while any of this fine effential oil rifes to the furface of the water."
Dr Donald Monro, who communicated this receipt to the Royal Socisty of Edinburgh, fays, that he has been informed, that fome few drops of this effential oil have more than once been collected by dittillation in London, in the fame manner as the effential oils of other plants.

ROTA Aristotelica, or Arifolle's IWbeel, denotes a celebrated problem in mechanics, concerning the motion or rotation of a wheel about its axis; fo called be caufe firt noticed by Ariftotle.

The difficulty is this. While a circle makes a revolution on its centre, advancing at the fame time in a right line along a plane, it defcribes, on that plane, a right line which is equal to its circumference. Now if this circle, which may be called the deferent, carry with it another fmaller circle, concentric with it, like the nave of a coach wheel; then this little circle, or nave, will defcribe a line in the time of the revolution, which fhall be equal to that of the large whech or circumference
(A) The conflitution of the Scotch church was, at this period, a flrangc fyftem of inconfiftency and contradiction. It was, in fact, prefoyterian ; for ecclefraftical difcipline was adminiftered then, as at prefent, by kirkfeffions, prefbyteries, and general affemblies; and there was nut a reformed bifhop in tbe kingdom. Whether provincial fynods were then in ufe, the writer of this note does not at prefent recollect. The king, however, who was meditating the reftoration of epifcopacy, conferred the eftates, or part of the eftates, belonging to the different fees, upon the mofl eninent parochial minitters, and dignified them with the title of bifhops; though it does not appear that they had any jurifdiction over their brethren; and though they were certainly not ex officio fo much as tnoderators of the prelbyteries within the bounds of which their churches were fituated. Thefe were the men for whom Mr Rollock exerted himfelf to obtain feats in the parliament.

- Rota, cimference itfelf; becaufe its ceure ailvances in a right Rownity line as fat as that of the wheel does, Leing in reality
the fame with it.

The folution given by Ariftotle, is no more than a good explication of the diffieulty.

Galileo, whe next attempted it, has recourfe to an infinite number of infinitely little vacuities in the right line deferibed by the two circles; and imagines that the little circles never applies its circumference to thofe vaeuities; but in reality only applies it to a line equal to its own circumference; thongh it appears to loave applied it to a much larget. But all this is nothing to the purpofe.

Tacquet will have it, that the little circle, making its rotation more flowly than the great nue, does on that account deferibe a line lunger than its own circomference; yet without applying any point of its circumfe. rence to more than one point of jus hafe. But this is no more fatisfactory than the former.

After the fruitlefs attempts of fo many grest men, M Durtons de Meyran, a French gentlenan, had the good fortune to hit upon a folution, which he leut to the Academy of Sciences: where, being examined by Meffrs de Louville and Soulman, appointed for that purpofe, they made their report that it was fatisfactury. The folution is to this effect:

The wheel of a coach is only acted on, or drawn in a right line; its rotation or circular motion ariles purcly from the refiftance of the ground upon which it is applied. Now this refiftance is equal to the force which draws the wheel in the right line, inafmuch as it defeats that direction ; of confequence the caufes of the two motions, the one right and the other circular, are equal. And hence the wheel defcribes a right line on the ground equal to its cireumference.

As for the nave of the wheel, the cafe is otherwife. It is drawn in a right line by the fame force as the wheel; but it only turus round becaule the wheel does fo, and can only turn in the fame tire with it. Hence it follows, that its circular velocity is lefs than that of the wheel, in the ratio of the two circumferences; and therefore its circular motion is leif than the rectilinear one. Since then it neceffarily deferibes a right line equal to that of the wheel, it can only do it partly by fliding and partly by revolving, the fliding part being more or lefs as the nave ittelf is fmaller or larger.-Hutton's Didionary.

ROWNING (John), an ingenious Englith mathematician and philufopher, was fellow of Magdalen College, Cambridge, and afterwards Rector of Anderby in Lincolnfhire, in the gift of that Society. He was a conftant attendant at the meetings of the Spalding Society, and was a man of a great philofophical habit and turn of mind, though of a eheerful and companionable difpofition. He had a good genius for mechanical contrivances in particular. In 1738 he printed at Cambridge, A Compendious Syftem of Natural Philofophy, in 2 vols 8 vo; a very ingenious work, whieh has gone through feveral editions. He had allo two pieces inferted in the Philofophieal Tranfactions, viz. 1. A Defcription of a Barumeter, wherein the Scale of Variation may be increafed at pleafure; vol. $x \times x$ viii. p. 39. And, 2. Directions for making a Machine for finding the Roots of Equations univerfally, with the Mamer of ufing it ; vol. 1x. p. $240 .--\mathrm{Mr}$ Rowning
died at his lo lgings in C ney theet, near I incolu's. Inn Fields, the latter end of November 1771, at 72 years of arre.

Though a very ingenions and pleafant man, he had but an unpromiling and forbidding appedrance: he was tall, flooping in the fhoulders, and of a fallow, downlooking comitenance.

ROY Royan, in Bengal, the chief office in the revenue department, next to the Dewan under the native government.

RUTHERTORD (John, M. D), one of the il. fintrions founders of the medical fehoul in the unisertity of Edlaburgh, was the fon of the Rev. Mo Ruiliere ford minifter of Yarlow, ia the comnty of Sclkiok, Nurth Britain. He was bom on the oft Augralt 1605, and received the radiments of his education at the parifh fehoul of Selkirk. where, from his future proticieney, there is every reafon to believe that he made a rapid progrefs in the knowledge of the Latin and Greek lantuages.

After the death of his father, he went to Edinhurerh in 1708 or 1710 , where, in the miverfity, he applied hïnfelf to the fludy of clafieal literature, mathematics, and natural philufophy. The celcbrated Dr Pitcairn was thew fo highly refpected for his medical fkill, that it is not improbable but that a latable defire of obtaining a portion of fimilar fame may have turned the attention of young Rutherford to the ftudy of medicine. Be that as it may, he engaged himfelf apprentice to Mr Alexander Neßit, at that time an eminent furgeon in Ediaburgh, with whom he remained till 1716, when he went to Londun. There he attemded fome hofpitals, and the lecunres read on anatotay by De Douglas, on furgery by André, and on materia medica by Strother.

After a year's refidence in London, he returned to Edinburgh; and having fettled his affurs in that city, he went to Leyden, which, from the lectures of Boerhaave, was then the moll celebrated medical fehool in Europe. In 1719 he went into Frathee, and was at the end of July in that year admitted to the degree of M. D. in the univerfity of Rheims. He pafted the following winter in Paris, chiefly for the fakc of Winflows private demonftratiuns in anatomy; and in 1720 he returned to Britain.

In 1721 he fettled as a phyfician in Edinburgh; and foon afterwards Drs Rutherford, Sinclair, Plummer, and Innes, purchafed a laburatory, where they prepared compound medicines. This was an art then but little known in Scutland; and as a commereial fpeculation, the laboratory mult therefore have proved very advantageous to the partners. But they had higher objects in view than commerce. They demos Atrated, as far is they were then known, the operatiuns of chemiftry to a numerous audience; and foon afterwards, by the advice of their old malter Boerhaave, they extended their lectures to the other branches of phyfie. In 1725 they were appointed joint profeflors in the univerfity; where, we believe, each, for fome time, read lectures in every department of medical fcience, anatomy excepted, and carried forward their claffes in rotation. The anatomical lectures were read by the elder Monro, who had been fettled a year or two before them in Edinburgh, and whofe eminence in that department is known to all Europe.

R U T [484] R U T

Ruther- On the death of Dr lnnes, a particular branch of ford medical feience was alle tted to each of the other three profeffors. Dr Plummer was appointed profeffor of chemilly and materia medica, Dr Sinclair of the inflitutes of phefie, and 1)r Rutherford of the practice : and thus was a regular medical fehoul ettablifhed in Edinburgh by Monro, Plummer, Sinclair, and Rutherford. The lectures on the inflitutes and practice of piylic were then, and for many jears atterwards, delivered in Latin; aind fuch was Dr Rutherford's command of that language, that on every thing comected with medicine, he talked in it more fluenty than in the language of his country.

Whether it was any improvement in the mode of medical education in Edinburgh to change the language of the lectures from Latin to Englith, is perhaps more than queftionable. We have now difperfed over the country a number of illiterate men, practifing as furgeons, and even as phyficians, who never could have Enafted of having gone through a regular courfe of medical inflruction, liad the lectures continued to be delivered in the language in which they were begun. Fo. reimers, too, would not have been under the neceffity of learning a new language, before they could enter on the fudies, for the cultivation of which they came to Scotland; and though the medical claffes might not have been fo crowded perhaps as at prefent, the individuals compofing them would have been at leaft as reipectahle. Whether Dr Rutherford reafoned in this way we know not ; but he continued to lecture in Latin as long as he filled the practical chair.

About the year 174^{8} he introduced a very great improvement in the courfe of medical education. Senlible that abitract lectures on the fymptoms and the mode of tieating various difeafes, of which the fludents
know little but the namcs, could fcarcely be of any be. Ruther. nefit, he had for fome time encouraged his pupils to bring patients to him on Saturday, when he inquired into the nature of their difeafes, and preferibed for them in the prefence of the clafs. 'This gave rife to the courfe of clinical lectures; the utility of which was fo obvinus, that it was enacted, by a decree of the fenate of the univerfity, that no man flould be admitted to an examination for his doctor's degree, who had not attended thofe lectures; to which an excellent hofpital, then lately erected (fee Edinburgh, in the Ency. clopredia), gave the profeflors every opportanity of do. ing ample juftice. To men who mean to live by the practice of phyfic, and have no inordinate ambition to raife their fame by fanciful theories, this is perhaps the moft valuable courfe of lectures that is given in Ediaburgh; and if fo, Dr Ruiherford mult be confidered as one of the greateft benefactors of the medical fehool.

T'o untried theories in phyfic he was indeed no friend; and we have heard a favourite and very able pupil of his, who knew him well, and refpected him highly, affirm that, to his knowledge, Dr' Rutherford retained his profeffornip longer than he otherwife would have chofen to do; merely that he might keep out a fpeculatilt, whom he knew to be afpiring to the practical chair. Finding at lafk in the late Dr John Gregory (fee Gre. Gory, Encycl.) a fucceffor entirely to his mind, he refigned to him in 1765 , alter having taught medicine in its different departments for upwards of forty years. He lived, after this periorl, loved by his friends, and revered by many eminent phyficians, who had heen his pupils, till 1779, when he died in Edinburgh, where he had fpent the greater part of his life, in the 8ath year of his age.

S.

Saccharo.
meter.

$\xrightarrow{-}$

SACCHAROMETER, the name given, by MrRichardfon of Hull, to an inftrument invented by him for afeertaining the value of worts, and the frength of different kinds of malt liquors. In plain Englifh, the name fignifics a méafurer of freeetnefs; and therefore, if etymology were to be attended to, the inftrument thould be employed merely as a meafurer of the fivectnefs of worts. It is in fact beft adapted for this purpofe, being merely an hydrometer contrived to afcertain the Specific gràvity of worts, or rather to compare the weight of worts with that of equal quantities of the water employed in the brewery where the initrument is ufed.

The principle which fuggefted the invention of the inftrument to Mr Richardfon is as follows: The menfruum or water, employed by the brewer, becomes heavier or more denfe by the addition of fuch parts of the materials as have been diffolved or extracted by,
and thence incorporated with it: the operation of boil- Saccharoing, and its fubfequent cooling, fill adds to the denfity of it by evaporation; fo that when it is fubmitted to the action of fermentation, it is more denfe than at any other period.

Is pafling through this operation of nature, a remarkable alteration takes place. The fluid no fooner begins to ferment than its denfity begius to diminifin; and as the fermentation is more or lefs perfect, the fermentable matter, whole acceffion has been traced by the increafe of denfity, becomes more orlefs attenuated; and in lien of every particle thus attemuted, a fpirituous particle, of lefs denfity than water, is produced: fo that when the liquor is again in a ftate of quietude, it is fo much fpecifically lighter than it was before, as the action of fermentation has been capable of attenuating the component parts of its acquired denfity ; and, indeed, were it practicable to attenuate the whole, the
liquor

S A H $\quad\left[\begin{array}{lll}485 & 1 & \text { S A I }\end{array}\right.$

iagita, liquor would become lighter or Icfs denfe than water; becaufe the quancity of fpirit produced from, and occupying the place of the fermentable matter, would dimimilh the denfity of the water in a degree bearing funse proportion to that in which the latter had increafed it.

From thefe facts, the reader, who is acquainted with hydroftatical prineiples, will be able to conflenct a faccharometer for himfelf. Brewers who are ilrangers to thefe priaciples, we mult refer to Mr Richardfon's book for details, which our limits pernit us not to give.

SAGITTA, in aftronomy, the Arrow or Dart; a conflellation of the northern hemifphere near the eagle, and one of the 48 old alterifms.
SAHARA, or, as it is fometimes written, ZaARA, the Great. Defert, is a valt ocean of fand in the interiur parts of A frica, which, with the leffer deferts of Burnou, Bilma, Barca, Sort, \&cc. is equal in extent to abouc one half of Europe. If the fand be confidered as the ocean, the Sahara has its gulphs and bays, as alfo its iflands, or OASEs, fertile in groves and paltures, and in many inftances containing a great population, fubject to order and regular government.
The great body, or weftern divifion of this ocean, comprized between Fezzan and the Atlantic, is no lefs than 50 caravan journeys acrofs, from north to fouth; or from 750 to 800 G . miles; and double that extent in length: without duubt the largett defert in the world. This divifios contains but a feanty portion of jllands (or oafes), and thofe alfo of fmall extent : but the cattern divifion has many, and fome of them very large. Fezzan, Gadamis, Taboo, Ghanat, Agadez, Augela, Berdoa, are amongh the principal ones: befides which, there are a vaft number of fmall ones. In effer, this is the part of Afriea alluded to by Strabo, when he fays from Cneius Pifo, that Africa may be compared to a leopard's flkin.

From the belt inquiries that Mr Park could make when a kind of captive among the Moors at Ludamar, the Weftern Defert, he fays, may be pronounced alinolt deftitute of inhabitants; except where the feanty vegetation, which appears in certain fpots, affords pafturage for the flucks of a few miferable Arabs, who wander from one well to another. 'In other places, where the fupply of water and palturage is more abundant, finall parties of the Moors have taken up their refidence. Here they live, in independent poverty, fucure from the tyranmical govermment of Barbary. But the greater part of the delert, being totally delliute of water, is feldon wified by any hunan being; nulefs where the trading caravans trace out their toiliome and daugerous route acrofs it. In fome parts of this extenfive wathe, the ground is covered nith low Itunted thrubs, which ferve as land-narks for the caravans, and furninh the camels with a feanty forage. In other parts, the dif. confolate wanderer, wherever he turns, fees nothing around him hut a valt interminable expaufe of fand and Aky; a gloomy and barren void, where the eye tinds no particular object to reft upon, and the mind is filled with painful apprehentions of perilhing with thirlt. Surrounded by this dreary folitude, the traveller fees the dead bodies of birds, that the violence of the srind has brought from happier regions; and, as he ruminates on the fearful length of his remaining paffage, liftens with horror to the voice of the driving blat; the only found that interrupts the awful repofe of the defert.

The few wild animals which inhabit thefe melancholy regions, are the antelope and the oftrich; their fwiftefes of foot emabling then to reach the dinant wateringplaces. On the tikirs of the defert, where the water is more plentiful, are found lions, panthers, elephants, and wild boars.

Of domeftic animals, the only une that can endure the fatigue of eroffing the defert is the eanel. It is thercfore the only bealt of burden employed by the trading caravans which traverfe, in different directions. from Barbary to Nigitia. The fleth of this ufful and docile creature, though to our author's talte it was dry and unfavoury, is preferred by the Moors to all others. The milk of the female, he fays, is in univerfal chteen, and is indeed plcafant and nutritive.

That the defert has a dip towards the eaft as well as the fouth, feems to be proved by the courfe of the Ni ger. Moreover, the lighelt points of North Afriat, that is to fay, the mountains of Mandinga and Atlas, are fituated very far to the weft. The defert, for the moft part, abounds with falt. But we hear of falt mines only in the part contiguous to Nigritia, from whence falt is drawn for the ufe of thofe countries, as well as of the Moorilh flates adjuining ; there heing no falt in the Negro eountries fouth of the Niget. There are falt lakes alfo in the eaftern part of the defert.

SAI, a large town on the banks of the Niger, or at leaft very near to that river, which Mr Park fays firongly excited his curivfity. It is completely furrounded by two very deep trenches, at about two hundred yards diflant from the walls. On the top of the trenches are a number of fquare towers; and the whole has the ap. pearance of a regular fortification. Inquiring into the origin of this extraordinary entrenchment, our author learned from two of the town's prople the following partieulars; which, if true, fnrnith a noournful picture of the enormities of Afriean wars :
About. fifteen years before our traveller vifited $\mathrm{Sa}_{\mathrm{i}} \mathrm{F}_{\text {, }}$ whon the King of Bambarra defolated Maniana, the Dooty of Sai had two fons flain in battle, fighting in the king's caufe. He had a third fon living; and when the king demanded a further reinforcement of men, and this youth among the reft, the Dooty refufed to fend him. This conduet fo euraged the king, that wher he returued from Maniana, about the begiuning of the rainy feafon, and found the Dooty protected by the inhabitants, he fat down belore Sai with his amy, and furrounded the town with the trenches which had attracted our author's notice. After a liege of two months, the town's people beeame involved in all the horrors of famine; and whith the kiag's army tere feafting in their trinches, they faw with p'eante the miferable intabitants of iszi devour the leaves and buri: of the Bentang tree that food in the widule of the town. Finding, however, that the befieged wouht fooner perilh than furrender, the king had reeuuric to treachery. He promifed, that if they would open the gates, no perfon floould be put to death, nor fulfer any iujury, but the Dooiy alone. The poor old ma: dictermined to facrifice himfelf, for the fake of his fellowcitizens, and immediately waiked over to the liing's army, where he was puc to death. His fon, in attempting to efcape, was caught and maflacred in the trenches; and the reft of the town's people were carried away captives, and fuld as faves to the different Negro-

Sahar.s,
Sai.

Saint, traders. Sai is placed by Major Rennel in 4^{n} N. Lat. Sait-M1 es and $3^{\circ} 7^{\prime} \mathrm{W}$. Long.

SALNT Catherive, a Portuguefe inand in the South Sea, not far diftant from the coaft of Brazil. It was vifited by La Peronfe, who afeertained it to lie between $27^{\circ} 19^{\prime}$ to $0^{\prime \prime}$, and $27^{\circ} 49^{\prime}$ N. Lat. and its nolt northerly poiut to be in $\left.49^{\circ} 4\right)^{\prime}$ longitule wet from Paris. Its breadth from calt to welt is only two leagaes; and it is feparated from the main land by a chanmel only 200 tories uroad. On the p,int which Itretches furthelt i.nto this chanmel is fituated the city of Notra Semora del 1). Atero, the eapital of the government, and the piace of relidence of the govemor. It contains at inot 3000 fouls, and about 400 houfes. Ifs appearance is exceedi:agly pleafant. According to Frezier's account, this illand ferved, in 1712 , as a retreat to vagabonds, who made their efcape from different parts of the Brazils; who were only nominal fubjects of Portural, and who acknowledged no authonity whatever. The country is fo fertile, that they were able to fubfit withont any fuccour from the neighbouring colonies: and they were fo dellitute of moncy, that they could neither tempt the cupidity of the governor-general of the Brazils, nor infpire him with any defire of fubduing them. The fhips that touched at the inland gave them in exchange for their provifions nothing but clothes and thirts, of which they were in the utmot want. It was not till about $17+\supset$ that the court of Lifon eftablifhed a regular government in the ifland of St Catherine, and the parts of the continent adjacent. This government extends fixty leagues north and fouth from the river San Eraneifco to Rio Grande; its population being about 20,000 fouls; but there are fo great a number of childiren in the different families, that probably it will foon be much more confiderable. The foil is exceedingly fertile, and produces all forts of fruit, vegetables, and corn, almolt fpontableonfly. It is covered with trees of everlafting green; but they are fo interwoven with briars and creeping plants, that it is impetible to get through the forelts otherwife than by opening a path with a hatehet. Danger is befides to be apprehended from fakes, whofe bite is mortal. The habitations, both on the ifland and continent, are all clofe to the fea iide. The woods that furround them are delightfully fragrant, owing to the great number of orange trees and other odoriferoustrees and fhmbs that they contain. Bnt, notwithftanding all the fe advantages, the country is very poor, and totally deftitute of mannfactured cominodities, fo that the peafants, are almolt naked, or elfe covered with rags. Their foil, which is very fit for the cultivation of fugar, remains unproductive for the want of flaves, whom they are not rich enough to purchafe. The whale fifhery is very fuccefsful; but it is the property of the erown, and is farmed by a company at Lifbon, whici has three confiderable eltablifhmente upon the coalt. Every jear they kill about 400 whales; the produce of whieh, as well oil as fpermaceti, is fent to Lifoon by the way of Rio Janeiro. The iuhabitants are idle fpectators of this fifhery, from which they derive not the fmalleft advantage. La Peroufe gives a very amiable picture, however, of their hofpitality to ftrangers.

SALT. See Chemistry-Indix, in this Suppl.

Salr-Mines of Vielicza, near Cracow in Poland, are very extraordinary caverns; for a defcription of which
we referred, in the article Salt (Encycl.) to Mri. Mur. Silo.M ney niard in the Fournal de l'byigue for the year 1786. Surpert. Sonve of our readers have complained of this, and requefted an aecount of them in the Sufplement. With this requeft we thall conuly, by giving them Mr. Wraxall's defeription of thefe caverns*.

* Mercirs
"After being let down (fass he) by a rope to the "f lie C.ourn, depth of 23° feet, our conducturs led us through galle- f) Befin, ries, which, for loftineis and Ureadth, leemed rather to Warlsu, refomble the avenues to fome fubterianean palace, than and Vienna. pafliges cut in a mine. They were pelfectly dry in every part, and terminated intwo ch pels compofed entirely of falt, hewn out of the folid mafs. 'The images which atdorn the aitars, as well as the pillars and ormaments, were all of the fame tranfparent materials; the points and fpars of which, reflecting the rays of light from the lamps which the guides beld in their hands, produced an cffect equally novel and beautiful. Defeending lower inzo the earth by means of ladders, I found myfelf in an immenfe hall or eavern of falt, many hundred fect in leight, length, and dimenlions, the floor and fides of which were cut with exact regularity. A thoufand perfons might dine in it without inconvenience, and the eve in vain attempted to trace or define its limits. Nothing could be more fublime than this vat fubterranean apartment, illuminated by flambeaux, which f.: n ly difoover its prodigious magnitude, and leave the imagination at liberty is enlarge it indefinite. ly. After remaining about two hours and a half under ground, 1 was drawn up again in three minutes with the greateft facility."

SALTPETRE (fee Nitre, Chemistry-Index, in this Suppl.) is an article of fo much inportance, and fometimes fo difficult to be had, that it is wonderful more attention is not beftowed in endeavouring to dif. cover fome eafy method to increafe the quantity. Such a method has been long practifed by the farmers of Appenzell in Switzerland. In fo hilly a country, molt houfes and ftables are built on fopes, one fide of the edifice retting on the hill, and the other being fupported by two Itrong poits, elevated two or three feet above the grond ; fo that the air has a fice current under the building. Immediately under the ftable a pit is dug, ufually occupsing both in breadth and length the whole fpaee of ground covered by the building : and inftead of the clayey earth which is dug out, the pit is filled up with f.ridy foil. This is the whole procefs, and all the reft is done by Nature. The animal water, whieh is eontinually oozing through the planks of the floor, having drenched the earth contained in the pit for the \{pace of two or three years, the latter is emptied, and the faltpetre is refined and prepared in the ufual manner.

That mamer, however, is not the beft; and the French chemifts, during the inceffant wars occafioned by the revolucion, have, for the fake of fupplying their armies with gunpowder, turned their attention to the befl method of refining faltpetre. The following are directions given for this purpofe by Chaptal, Champy, and Bonjour.

The crude faltpetre is to be beaten fmall with mal. lets, in order that the water may more eafily attack every part of the mafs. The faltpetre is then to be put into tubs, five or fix hundred pounds in each tub. ' C wenty per cent. of water is to be poured into each tub,

S A I,

mefere and the mixture well Atirrect. It muft be left to mace.
ceafes to angment. Six or feven hours are fufficient for this firft operation, and the waier acquires the denfity of between 25 and 35 degrees. Sp. gr. 1.21, and 1.30 fr, afcertained by Baumé's hydrometer. Siee Hydrometer, Suppl.

The firlt water mult then be poured off, and a fecond portion of water muft be poured on the fame faltpetre, amounting to 10 per cent.; after which the nix. ture mult be ftirred up, fuffered to macerate for one hour, and the Aluid drawn or poured off.
Pive fer cent. of water muit then be proured on the faltpetre ; and after ftirring the whole, the fluid mult be immediately drawn off.

When the water is drained from the faltpetre, the falt mult be thrown into a boiler contaning 50 per cont. of builing water. When the folution is made, it will mark between 66 and 68 degrees of the hydrometer. (Sp. gro. 1.848, and 1.898 .)

The fulution is to be poured into a proper veffel, where it depofits by cooling about two-thirds of the fultpetre originally taken. The precipitation begins in about half an hour, and terminates in between four and fix hours. But as it is of importance to obtain the faltpetre in fimall needles, becaufe in this form it is more eafily dried, it is neceffary to agitate the fluid during the whole time of the cryfallization. A fight motion is communicated to this liquid maifs by a kind of rake; in confequence of which the crytals are depofited in very flender needles.

In proportion as the cry fals fall down, they are fcraped to the borders of the velfel, whence they are taken with a fkimmer, and thrown to drain in bafkets placed on trefiels, in fuch a manner that the water which pafies through may either fall into the cryftallizing veficl, or be received in bafons placed underneath.

The faltpetre is afterwards put into wooden vefficls in the form of a mill hopper or inverted pyramid with a double bottom. The upper bottom is placed two inches abore the lower on wooden ledges, and has many finall perforations throush which water may pafs to the lower botom, which likewife affords a paffage by one fingle aperture. A refervoir is placed beneath. The cryfallized faltpetre is wafhed in thefe veffels with 5 ; per cent. of water; which water is afterwards employed in the folution of faltpetre in fubfequent operations.
The faltpetre, after fufficient draining, and being dried by expofure to the air upon tables for feveral hours, may then be employed in the manufacture of gunpuwder.
But when it is required to ufe the faltpetre in the fpeedy and immediate manufacture of gunpowder, it mult be dried much more ftrongly. This may be effected in a flove, or more fimply liy heating it in a fiat metallic veffel. For this purpofe the faltpetre is to be put into the veflel to the depth of five or fix inches, and heated to 40 or 50 degrees of the thermometer (or about 135° of Falrenheit). The falt petre is to be ftirred for two or three hours, and dried fo much that, when Arongly preffed in the hand, it fhall acquire no confiftence, nor adhere together, but refemble a very fine dry fand. This degree of drynefs is not required when the powder is made by pounding.

S A N

From thefe circumfances, we find that two faline li. Saltpetre, quids remain after the operations; (1) the water from $\underbrace{\text { Sand rase. }}$ the wafhing; and (2) that from the crythallizing veffels.
We have alreally remarked, that the wafling of the faltpetre is performed in threc fuccefive operations, in which, upon the whole, the quantity of fluid made ufe of amounts to 35 per cent. of the weight of the crude faltpetre. Thefe wafhings are eilablifhed on the principle, that cold water difolves the muriats of foda, and the carthy nitrats and muriats, together with the colouring princip.e, but feurcely atacks the mitrat of putafh.

The water of thefe three wathings therefore contains the muriat of foda, the earthy falts, the colouring principle, and a fmall quantity of nitrat of potafh; the amount of which is in proportion to that of the muriat of foda, which determines its folation.

The water of the cryttallizing voficls contains a portion of the muriais of foda, and of the tarthy talts which efcaped the operation of wafing, and a quantity of nitrat ut putarh, which is more condiderable than that of the fnimer folution.

The waters made ufe of at the end of the operation, to whiten and wafl the ery itals depufted in the pyramidal veffel, costain nothing but a fmall quantity of nitrat of potafh.

Thefe waters are therefore very different in their nature. The water of the wafhings is really a mother water. It mult be collected in veffels, and treated with potafh by the known proceffes. It muft be evaporated to 66 degrees (or $1.84^{8} \mathrm{rp} . \mathrm{gr}$.), taking out the muriat of foda as it falls. This folmion is to be faturated with 2 or 3 per cent. of potaifh, then fuffered to fettle, decanted, and poured into eryftllizing veffels, where 20 per cent. of water is to be added to kcep the whole of the muriar of foda fufpended.

The waters which are thus obtained by treatnent. of the mother water may be mixed with the water of the firft eryitallization. From thefe the marine falt may be feparated by timple evaporation; and the nitrat of potaf?, which they hold in folution, may be afterwards obtained by cooling.

The fmall quantity of water made ufe of to waft and whiten the relined falipetre, contains nothing but the nitrat of potah: it may therefore be ufed in the folution of the falpetre when taken from the tuls.

From this defciption it follows, that a manufactory for the fpeedy rafining of faltpetre ought to be provided with (i) mallets or rammers for pounding the falt petre ; (2) tubs fer: wafhing; (3) a boiler for folution; (4) a cryllallizing veffel of copper or lead, in which the falteptre is to be obtained by cooling ; (5) bafkets to drain the cryftals ; (6) a woodell cafe or hopper for the laft wafhing and draininge the faltpetre; (7) icales and weights for weighing; (8) hydrometers and thermometers, to afcertain denfities and temperatures; (9) rakes to agitate the liquor in the cry Aallizing veffel ; (10) fkimmers to take out the cryitals, and to convey them to the bafkets; (II) Syphons or hand-pumps to empty the boilers.

The number and dimenfions of thefe feveral articles muft vary according to the quantity of faltpetre in . tended to be refined.

Gum-SANDARAC, is faid, in the Encyclopedia,

S A N [488] - S A N

Sanarae, to be produced from a fpecies of juniper. This was wringing them well each time. Let them dry, and sanderg. smanders. long the common opinion ; but M. Schoutboe has lately proved (a) it to be a mitake. The juniferus communis, from which many have derived this gum, does not grow in Africa: and Sandarac feems to belong ex-c- ifively to that part of the world. The grum fandarac of our flops is brought from the fouthern provinces of the kingdon of Morocco. About fix or feven hundred quintals of it are exported every year from Santa Cruz, Mogador, and Saffy. In the language of the country it is called el grafir. The tree which produces it is a Tliuia, found alfo by M. Vahl in the king dom of Tunis. It was made known feveral years ago by Dr Shaw, who named it Cypreffus fructu quadrivalvi, Equifiti inflar articulatis; but nether of thefe learned men was acquainted with the economical ufe of this tree; probably becaufe, being not common in the northern part of Basbary, the inhabitants find little advantage in collecling the refin which exudes from it.
M. Schounoe, who faw the fpeeies of thuia in queftion, fays that it does not rife to more than the height of twenty or thirty feet at mof, and that the diameter of its trmak does not exceed ten or twelve inches. It dillinguifhes itfelf, on the firft view, from the two other fpecies of the fame genus, cultivated in gardens, by having a very dittinct runk, and the figure of a real tree; whereas in the latter the branches rife from the root, which gives them the appearance raiher of buthes. Its branches alfo are more aticulated and brittle. Its flowers, which are not very apparent, fhew themfelves in April; and the fruit, which are of a fpherical form, ripen in Scptember. When a branch of this tree is held to the light, it appears to be interiperfed with a multitude of tranfparent veficles which contain the refin. When thefe veficles burf in the fummer monthe, a refinous juice exudes from the trunk and branches, as is'the cafe in other coniferous trees. This refin is the fandarac, which is collected by the inhabitants of the country, and carried to the ports, from which it is tranfported to Europe. It is employed in making fome kinds of fealing-wax, and in different forts of varnifh. In 1793 a hundred weight of it colt in Morocco from 13 to $13 \frac{1}{2}$ piaftres, which make from about L. 3,56 . to 1.. 3, 7s. 6d. Aterling. The duty on exportation was about 7 s. 6 d . tlerling per quintal.

Sandarac, to be good, muft be of a bright-yellow colour, pure and $\operatorname{traniparent.~It~is~an~article~very~dif-~}$ ficult to be adulterated. Care, however, mult be taken, that the Moors do not mix with it too much fand. lt is probable that a tree of the fame kind produces the gum Iandarac of Sentgal, which is exported in pretty confiderable quantities.

SANDERS-red (fee Pterocarpus, Encycl.) is ufed as a dye-ftuIT, but generally in a manner which is very difadrantageous. In Crell's Chemical Annals are given, by Mr Vogler, the following directions for dyeing with this wood.
I. Into a folution of tin made with aquafortis (nitric acid), and mixed with three times as much falt water, put clean wafhed wool, filk, linen, and cotton. After fix hours, take them out, and wafh them carefully in three different quantities of clean cold water,
then put balf the quantity of each article into the fpirituons tincture of red fanders, hereafter deferibed in no6. keting them foak therein, without heat, from half an hour to an hour. 'Io afcertain the fuperiority of his different proceffes, the other half of each article muft be boiled in the tincture of fanders mixed with water, defcriled in $n^{\circ} 7$. a bare quarter of an hour. After being taken out, wrung, and dried in the thade, all of them will be dyed throughout of a fine rich poppy- colour:
2. Take three drams of powdered alum, and diffolve it in twelve ounces of clean hot water. Into this folu. tion, while yet warm, put fume well-wahed wool, filk, limen, and cotton. After fufiering them to remain therein for the fpace of twelve hours, take them out, wafh them well in three quantities of clean cold water (wringing them each time), and dry them. Then iteep the half of cach article in the cold fpirituous tincture of fanders ($n^{\prime \prime} 6$.), trom half an hour to an hour ; and boil the other halt of each in the diluted tincture of fanders ($n^{2} 7$) for the fpace of fix or feven minutes. Af ter being taken out, wrung, and dried in the thade, they $w \cdot l$ be found to have acquired a very beautiful and rieh fcarlet colour.
3. Diffolve three drams of blue vitriol, or vitriol of copper, in twelve ounces of bot water. Steep in this folution, for twelve hours, wool, filk, linen, or cotton ; and having fufficiently wathed the ftuff in clean cold water, immerfe the one half of it in the fpirituous tincture of fanders ($\mathrm{n}^{\circ} 6$.), from half an hour to an hour; and boil the other halt of each for lix or feven minutes in the diluted tincture, nu η. Being then taken out, wrung, and dried in the flade, as before, they will have acquired a beautiful, rich, bright, crimfon colour.
4. Steep wool, tilk: linien, and cotton, which has been well wathed, during twelve hours, in a folution of three drams of white vitriol, or vitriol of zinc, in twelve ounces of hot water. Aiter being taken ont, well wafhed in clean cold water, and dried, immerfe one half of each in the cold fpirituous tincture of fanders ($n^{\circ} 6$.) and boil the other half in the diluted tincture ($110^{\circ} 7$.) as before. When takev out, wrung, and dried, they will be of a tine, rich, deep crimfon colour.
5. Diffulse three drams of common green vitriol, or vitriol of iron, in twelve onnces of hot water: fteep well-wafhed wool, filk, linen, and cotton, in the folistion, for the fpace of tuelve hours. When taken out, wafhed feveral times in clean cold water, and dried, treat them, as in $n^{\circ} 4$. and they will be gencrally found to be of a fiue, rich, deep violet coluur; thongh, on repeating his experiments, our author fometimes found the colour a darls brownifh red.

The tincture in which the ftuffs are to be died muit be prepared in the fullowing manner.
6. 'Take half an ounce of red landers wond, beat or ground to powder, as it is fold at the colour flops or druggills. Having put it into a large glafs bottle, pour upon it twelve onnces of malt fpirit or common brandy; then cork the bottle, and fet it in a moderately-warm place. In the fpace of 48 hours, the fpirit will have extracted all the colouring matter from the red fanders, and thereby acquired a bright red colour. The buttle
(A) In a Danifh Journal, intitled, The Phyical, Mfcdical, and Economical Lilrary, Part III. 1799 .

S A N

$489]$
on the Downs, is the fouth-fouth welt. Thefe fands Sanfan!ing occupy the fpace that was formerly a large traet of low ground belonging to Godiwyn Earl of Kent, father of Saracioc: King Harold; and which being afterward given to the monatery of St Auruftin at Canterbury, the abbot neglecting to keep in repair the wall that defended it from the fea, the whole tract was drowned, according to Salmon, in the year 1100 , leaving thefe lands, upun which fo many thips have fince been wrecked.

SANSANDING, a town in Africa, fituated near the banks of the Niger, in Lai. $14^{\prime} 2 t^{\prime} \mathrm{N}$. and $2^{\circ} 23^{\prime}$ W. Long. It is inhabited by Moors and Negroes to the number of from eight to ten thoufand. The Ne groes are kind, hofpitable, and credulous; the Moors are at Sanfanding, as every where elfe in the interior pa"ts of Africa, fanatical, bigottid, and cruel.

SAP, or Sapp, in building, as to fap a wall, \&c. is to dig out the ground from beneath it, fo as to bring it down all at once for want of fapport.

SAPHAN, in zoology. See Mus, Fincycl. p. 457.
SAPHIES, a kind of charms, corlifing of fome ferap of writing, which the credulous Negives helieve capable of protecting them from all evil. '1he writers of faphies are generally Moors, who fell feraps of the Koran for this purpofe to a people who believe not either in the Koran or the prophet. Accordingly, any piece of writing may be fold as a faplicic ; and Mr Park found the Negroes difpofed to place greater confidence in the faphies of a Chriftian than in thole of a Moor. The manuer in which thefe charms are fuppotice to operate, will be learned from the following Itory :

Mr Park being at Kunlikorru, a confiderable town near the Niger, and a great market of falt, his landiord, hearing that he was a Chriflian, ummediately thought of procuring a laphie. For this purpofe he brought out his exalla, or writirg board, alluring me (fays our author) that he would drefs me a fupper of rice if I would write hin a faphie to protect him from wicked men. The propofal was of too geat confequence to me to be refufed; I therefore wrote the board full, from top to buttom, on both fides; and my landlord, to be certain of having the whole force of the charm, wafhed the writing frum the board into a calaball with a little water; and having faid a few prayers over it, drank this powerfel drauglit; after which, letl a fingle word hould efcape, he licked the board mutil it was quite dry. A faphic writer was a man of too great confequence to be long concealed : the important information was carried to the Duoty, who fent his fon with half a thect of writing-paper, defring me to write him a naphula fapbie (a charm to procure wealth). He brought me, as a prefent, fome nieal and filk; and when I had finithed the faphie, and read it to him with an audible voice, be feemed highiy fatisfied with his bargain, and promifed to bring me in the morning fome milk for my breakfatl. Our author contrived to turn this abfurd fupertition to his own advantage, by writing faphies for his fubliftence when his money was exhaufted.

SARACOLETS, a negro nation occupying the lands tituated bet ween the rivers of Senegaland Gambia. They are a laborious people, cultivate their lands with care, are plentifully fupplied with all the neceffaries of life, and inhabit handfome and well-built villages; their houfes, of a circular form, are for the molt part terra. 3 Q ced;

S A V

I

Saracsets ced ; the others are covered with reeds as at Sencgal; they are inclofed with a nur! wall a foot thick, and the villages are fiurrounded with one of fione and earth of couble that folidity. 'There are fevcral gates, which are guarded at right for fear of a furprife. This nation is remarkably brave, and it is very uncommon to Fnd a Saracolet flave. They always defend themfelves with advantage againf their affailants. Such Saracolets as are expofed to fale may be fafely purclafed, for (exceptirg when they are at war with the Poules) none are to be met with but fuch as have been condemned by the laws for fome miflemeanour; in fuch cafe, thefe wretches could not efcape flavery even by taking rc. fige in their own country; for they would be reftored to their ma?ers, or would be put to death, if the convoy Kould have failed. The ieligions principles of this people are nearly allied to Mahometanifm, and Aill more co natural religion. They acknowledge one Goo; and believe that thofe who theal, or are guilty of any crime, are eternally punifhed. They admit a plurality of wives, and believe their fouls to be immortal like their own. They think lightly of adoltery; for as they allow themfelves feveral wives, they are not fo unjult as to punith women who diftribute their favours among feveral gathents; a nutitual exehange is then permitted, one woman may te bartered for another, unlets the be fiec, or a naiive of the country. In this laft eafe, the Frerch cuftom prevails; it is winked at, althongh the laws are particulaly fevere againit the violation of the mon facred of all property. This nation lies near that of the Poules. (Sce that article, Suppl.) lts extent mo rhe countiy in unknown; all that we know is, that it i is goverued by four powerful pinces, all bearing the name of Fouquet. 'i he teaft confiderable, according to the tellimony of the Saracolets, is that of "1nago, who can affemlile thirty thoufand horfe, and whofe tubjects occupy a territory two hundred leagues in extent, as well on the Senegal as on the track that reaches beyond the Felou; a rock which, according to the fane report, forms catarachs, from whence proceed the Senegal and the river Gambia, equally contiderable.

SAROS, in chronology, a period of 223 lunar month:- The eiymology of the word is faid to be Chaldean, fignifying reltitation, or return of eclipfes; that is, conjunctions of the fun and moon in neaily the tame place of the ectiptic. 'The Saros was a cycle like to that of Meto.

SARRASIN or Sarrazin, in fortification, a kind of port-cullis, otherwife calied a herfe, which is hung with ropes over the gate of a town or fo:trefs, to be let fall in cafe of a furprife.

SAVILLE (Sir Henry), a very lcarned Englimman, the feeond fon of Henry Saville, Efq; was bonn 2t Eradley, near Halifax, in Yorkhire, Nuvember the 3cth, 5549. He was enterd of Merton college, Oxford, in 1561 , where he took the degrees in arts, and was chofen fellow. When he proceeded matter of arts in 1570 , he read for that degree on the Almaget of Itolemy, which procuted him the reputation of a man eminently filled in mathematies and the Greek language ; in the former of which he voluntarily read a public lecture in the univerffy for fome time.

1. 1578 he travelled into France and other countries; where, diligently improving himfelf in all ufeful learning, in langrages, and the knowledge of the world, he
became a moit accomplimed gentleman. At his return, he was made tutor in the Greek tongue to Queen Eli. zaberh, who had a great elleem and liking for him.

In 158; he was made warcen of Merton College, which he governed fix-and thurty years with great honour, and improved it by all the means in his power. In 1596 he was chofen provolt of Eton College; which he filled with many learned men.-- James 1 . upon his accet!en to the crown of England, expreffed a great regard for him, and would have preferred him either in church or ttate; but Saville declined it, and only accepted the ceremony of knighthood from the king at Windfor in 1604 . His only fon Henry dying about that time, he thenceforth devoted his fortune to the pro. moting of learning. Among other things, in ifog, he founded, in the Univerfity of Oxford, two leetures, or profeflorflips, one in geometry, the other in altronomy; which he endowed with a falary of 1601 . a-year each, betedes a legacy of $6 e o l$. to purcliafe more lands for the fame ufe. He alfo furnithed a library with mathematieal books, near the mathematical ichool, for the ufe of his profeffors; and gave icol. to the mathematical cheft of his own appointing: adding afterwards a legacy of 4ol. a-year to the fanse chef, to the univerfity, and to his profeffors jointly. lile likewide gave $12=1$. towards the new building of the fchools, befides feveral rare manufcripts and printed books to the Bodleian library; and a good quantity of Greek types to the printing prefs at Oxford.

After a life thus fpent in the encouragement and promotion of fcience and literature in general, he died at Eton College the 19th of Febrnary 1622 , in the 7.3 d year of his age, and was buried in the chapel there. On this occation, the univerfity of Oxford pard him the greatelt honours, by having a public fpeech and verfes made in his praife, which were publified foon after in 4to, under the title of Ulima Linea Savilii.

As to the charafter of Saville, the highett encomiums are bellowed on him by all the learned of his time: by Cafaubon, Mercerus, Meibomius, Jofeph Scaliger, and efpecially the learned Bifhop Montague; who, in his Diatribe upon Selden's Hittory of I'ythes, Ityles lin, "that magazine of learning, whofe memory thall be honousable amonglt, not only the learned, but the righteous for ever."

Several noble inllances of his munificence to the republic of letters have alreedy been mentioned; in the account of his publications many more, and even greater, will sppear. Thefe are,

1. Four Books of the Hillories of Cornelius Tacitus, and the Life of Agrieola; with Notes upon them, in folio, dedicated to Quten Elizabeth, 1581.-2. A View of certain Miliary Matters, or Commentaries concerning Roman Warfare, 1596.-3. Rerum Anglscarum Screptores poft Bedam, Exe. 1599. 'This is a collection of the belk writers of our linglifh hatory; to which he added chronological tables at the end, from Julius Cæfar to William the Conqueror.-4. The Works of Sc Chryfottom, in Greek, in 8 vols folio, 1613 . This is a very fine edition, and compofed with great coft and labour. In the preface he fays, "that having limfelf vifited, about 12 years before, all the public and private libraries in Britain, and copied out thence whatever he thought ufeful to this defign, he then fent fome learned men into France, Germany, Italy, not already, and to collate the others with the beft manufcripts." At the fame time, he makes his acknowledgments to feveral eminent men for their affitance; as Thuanus, Valferus, Schottus, Cafaubon, Ducæus, Gruter, Hoefchelius, \&e. In the 8th volume are inferted Sir Henry Saville's own notes, with thofe of other learned men. The whole charge of this edition, including the feveral fums paid to learned men, at home and abroad, employed in finding out, tranferibing, and collating the beft manuferipts, is faid to have anounted to no lefs than L. 8000 . Several editions of this work were afterwards publifhed at Paris.-5. In 1618 he publifhed a Latin work, written by Thomas Dradwardin, archbifhop of Canterbury, againft Pelagius, intitled, De Caufa Dei contra Pelagium, et de virtute caufa. rum; to which he prefixed the life of Bradwardin.6. In 1621 he publifhed a collection of his own Ma. thematical Lectures on Euclid's Elements, in 4to.-7. Oratio coram E/izalethar Regina Oxonice babita, anno 1592. Printed at Osford in 1458 , in 4to. 8. He tranfla. ted into Latin King James's A pology for the Oath of Allegiance. He alfo left feveral manufcripts behind him, written by order of King James; all which are in the Bodleian librayy. He wrote notes likewife upon the margin of many bools in his library, particularly Eufebius's Eccleliaftical Hiftory ; which were afterwards ufed by Valeflus, in his edition of that work in 1659.- Four of his letters to Camden are publifhed hy Smith, among Camden's Letters, 16 gt , 4to.

SAUSSURE (Horace Benedict de) was born at Geneva in 174 C . His father, an intelligent farmer, to whom we are indebted for fome memoirs relating to rural economy, refided at Conches, a place fituated on the banks of the Arve, at the diflance of half a league from Geneva; and this country life, added to an active education, expanded no doubt in young De Sauffure that phyfical ftrength fo neceffary to the naturalift who devotes himfelf to travel. He repaired datily to town to enjoy the advantage of public inftuction; and as he lived at the bottom of Saleve, a mountain which he has fince rendered celebrated, he amufed himfelf frequently with afcending its fleep and rugged fides. Being thus furrounded hy the phenomena of nature, and at the fame time aided by ftudy, he conceived a tafte for matural hiftory, and avoided the error both of the learned, who form theories without laving been out of their clofets, and of thofe farmers who, living too ncar to Nature, are incapable of admiring her beautics.

His earlieft palfion was botany: a variegated foil, abundant in plants of dificrent linds, invites the inhabitant of the banks of the Leman to cultivate that agree. able fcience. This tafte produced an irtimacy between De Saufure and the great Haller. He paid him a vifit in the year 1764 , during his retreat to Bex; and he relates in his travels how much he admired that aflonifhing man, who excelled in every part of the natural fciences. De Sanflure was induced allo to Itudy the vegetable kingdom, by his connection with Ch. Bonnet, who had married his aunt, and who foon let a jutt vaJue on the rifing talents of his nephew. Bonnet (Sce his life in this Suppl.) was then employed on the leaves of plants. De Sauffure ftudied thefe organs of vegetables alfo, and he publifhed the refult ot his refearehes, under the title of Obfervations on the Bark of Leaves.

This finall work, which appeared fuon after the year suflure. 1760, contains new obfervations on the epidermis of leaves, and in particular on the miliary glands by which they are covered.

About that period, the place of profeffor of phitofoplyy falling vacant, it was conferred upon De Saufure, who was then only twenty-one years of age. Experience proves, that if premature rewards cxtinguifh the zeal of thofe who labour increly for themfelves, they, on the contrary, ftrengthen it in thofe who labour only for truth. At that time the two profeffors of philuf()phy at Geneva taught phyfucs and logic alternately. De Sauffure difcharged this double tafk with equal fuccefs. He gave to his courfe of logic a practical, and, as one may fay, experimental turn; and his method of teaching, which began by fudying the fenfos to arrive at the general laws of the underilanding, amounced als ready an able obferver of nature.
Phyfics, however, were the part for which he had the greateft tafte, and which conducted him to the Audy of chemiftry and mineralogy. He then began his travels through the mountains; not now to examine their vegetable productions, but to Itudy the mountains thenfelves, either in the flones of which they are compofed, or the difpofition of their mafles. Geology, a ficience which was then fearcely in exiftence, added charms to his numerous excurfions through the Alps; and it was then that the talents of the great philofor pher were really difplayed. During the firf fifteen or twenty years of his profefforfhip, he cmployed himfelf by turns in difcharging the duties of his office, and in traverling the different mountains in the neighbourhood of Gencva. He even extended his excurfions on one fide as far as the banks of the Rline, and on the other to Piedmont. At the fame time he undertook a journey to Auvergne to examine there the extinguithed volcanoes, and another to Paris, England, and Hulland. After that he vifited Italy, and even Sicily. Thefe were not mere journeys for the purpofe of reaching any particular place; he undertook them only with a view of fludying nature; never travelled but furrounded by every infrument that could be of ufe to him, and never fet out until he had drawn up a plan of the experiments and obfervations he intended to make. He often fays in his works that he had found this method cxceedingly ufeful.

In the year 1779 he publifhed the firft volume of his Travels through the Alps; which contaius a minute defcription of the environs of Geneva, and an excurfon as far as Chamouni, a village at the bottom of Mont Blanc. Philofophers will read there with pleafare the defeription of his Magnetometer. The more lie examined mountains, the mose was lie feulible of the importance of mincralogy. 'To fludy it with advantage, he learned the German language ; and it may be feet, in the laft volumes of his 'tiavels, how much new mineralogical knowledge he lad acquired.

Aminll his numerous excurfons through the Alps, and at the time of the political troubles of Geneva in 1782, he found means to make his beautiful experiments on hygrometry, which he publihed in 1783, under the title of L:/fays on Hygrometry. This work, the beft that evor cane foom his pen, citablithed fully his reputation as a philofophcr. We are indebted to him alfo for the invention ui a new hygrometer. Deluc
$3 \mathbf{Q}^{2}$
had

Sauflure. had already invented his whalebone lyygrometer; and on that account there arofe between him and De SaufFure a fort of contcft, which degenerated into a pretty violent difpute.

In the year 1;86 De Sauffure refigned the profeffor's chair, which he liad filled for about twenty-five years, to his pupil and fellow-labourer Pictet, who difcharged with reputation the duties of an office rendered inore difficult by fucceeding fo eminent a philofopher.

When De Sauffure was invited by the fate to take a fhare in the public education, he made it one of the fubjects of his meditations, and prefented the plan of a reform in the education of Geneva: the tendency of which was, to make young people early acquainted with the natural fciences and mathematics. He even wifhed that their phyfical education fhould not be neglected, and with that view propofed gymnattic exercifes. This plan, which excited much attention in a city where every one is convinced of the importance of education, found admirers and partifans; but the poverty of its pecuniary refources was an obftacle to every important innovation. It was befides feared that, by altering eftablifhed forms, they might lofe the fubtance, and that things might be changed for the worfe. The Genevefe were attached to their old fyftem of education; and they had reafon to be fo, bccaufe it had not only proved the means of diffufing knowledge generally a. mongt them, but had called forth the talents of feveral eminent mathematicians (A) and philooophers (B).

But De Sauflure's attention was not confined to public education alone. He fuperintended himfelf the education of his two fons and a daughter, who have fhewn themfelves worthy of fuch an inftructor. His daughter to the charms of her fex unites an extenfive knowledge of the natural fciences ; and his eldeft fon has already made himfelf known by his phyfical and chemical labours.

The fecond volume of his Travels was publifhed in 1786. It contains a defcription of the Alps around Mont Blanc, which the author confiders as a mineralogif, a geologiit, and a philofopher. He gives alfo fome interefting experiments un electricity, and a defeription of his electrometer, one of the moft perfect that we have. We are indebted to him alfo for feveral inftruments of meafurement, fuch as his cyanometer, deftined to meafure the degree of tbe bluenels of the heavens, which varies according to the elevation of the obferver; his diaphanometer (fee Pнотоmeter in this Supplement), and his anemoneter, which, by means of a kind of balance, meafures the force of the wind.

Some years after the pubiication of the fecond volume of his Travels, De Sauffure was admitted as a foreign aflociate of the Academy of Sciences of Paris; and Geneva could then boall of having two of its citizens in that clafs, which confitted only of feven members. De Sauffure not only did honour to his country ; be-loved and ferved it. He was the founder of the Society of Arts, to which Geneva is indebted for the ligh ftate of profperity it has attained within the lart
thirty years. He prefided over that fociety till the laft moment of his life; and one of his fondeft wifhes was the prefervation of this ufeful eftabliflment.

In confequence of M. de Sauffure's fatiguing labours in the Council of T'wo Hundred, of which he was a member, and afterwards in the National Affembly, his health began to be deranged, and in 1794 he was almoft deprived of the total ufe of his limbs by a ftroke of the palfy. However painful his condition then might be, his mind fill preferved its astivity; and after that accident he revifed the two lat volumes of his Travels, which appeared in 1796. They contain an account of his excurfions to the mountains of Piedmont and Switzerland, and in particular of his journey to the fummit of Mont Blanc. Thefe volumes, inftead of exhibiting any marks of his malady, prefent an enormous mafs of new facts and obfervations of the utmoft importance to phyfics.

He rendered alfo an important fervice to that fcience by publining the Agenda, which terminate his fourth volume, and in which that great man, furviving himfelf, condicts the young naturalif through the middle of mountains, and teaches him the method of obferving them with advantage. Thele Agenda are a proof of lis genius, and of the ftrength of mind which he retained amidth his fufferings. It was allo during his illnefs that he directed the experiments made on the lieight of the bed of the Arve, and that he publifhed Ob fervations on the Fufibility of Stones by the Blow-pipe, which were inferted in the Fournal de Pbyfique.
Having gone for the fake of lis health to the baths of Plombiers, he fill obferved the mountains at a diftance, and caufed to be brought to him feccimens of the ftrata which he perceived in the fleepeft rucks. He had announced that he would conclude his travels with fome ideas on the primitive flate of the earth ; but the. more he acquired new facts, and the more he meditated. on the fubject, the more uncertain did his opinions be. come in regard to thofe grand revolutions which preceded the prefent epoch. In general he was a Neptunian ; that is to fay, afcribed all the revolutions of our globe to water. He admitted the poflibility of the mountains having been thrown up by elaftic fluids difengaged from the cavities of the earth.
Though the fate of his health began gradually to become worfe, he ftill entertained hopes of recovery; and the French government having appointed him prufeffor of philufophy at the Special School of Paris, he did not defpair of being one day able to fill that office: but his ftrength was exhaufted, a general languor fucceeded the vigour he had always enjoyed, his flow and embarraffed pronunciation no longer correfponded with the vivacity of his mind, and formed a melancholy contraft with the plealantnels by which he had been formerly diftinguifhed. It was a painful fpectacle to fee this great man reduced thus to imbecility at an age when meditation is beneficial, and when he might have evjoyed the fruits of his reputation and labours.

In vain did he try, for the re-eftablifhment of his. health, all the remedies which medicine, enlightened by

[^7]

[^8]

S C A

ways red dye ; and when pronounced hort, it becomes deep red.

Concerning the origin of the name farlet, which was in ufe fo early as the sith century, our author has many conjectures, which we need not tranfcribe, as he feems not quite fatisfied with any of them hinfelf. The following reflections upon the comparative excelience of the ancient aud modern fearlet, together with the progrets of the art of dyeing that colour, are worthy of notice:
"Of the preparation and goodnefs of the ancient fearlet we certainly know nothing ; but as we find in many old pieces of tapetty of the 11 th century, and perhaps earlier, a red which has continned remarkably beautiful even to the prefent time, it cancot at any rate be denied, that our ancetars extulled their fcarlet not without reafon. We can, however, venture to affert, that the fearlet prepared at ps.fent is far fuperior, owing principally to the cffects of a folution of tin. This invention may be reckoned ameng!t the moft important improvements of the art of dyeing, and deferses a particular relation.
"The tincture of cochineal alone yields a purple co. lour, not very pieafant, which mas be heightened to the moft beautiful fcarlet by a folution of tiu in aquaregia (nitro muriatic acid). This difoovery was made as fallows: Cornelius Drebbel, who was torn at Alkmaar, and died at London in 163 , having placed in his window an extract of cochineal, made with borling water, for the purpofe of filling a thermometer, fome aqua-regia dropped into it from a phial, broken by accident, which food above it, and converted the purple dye into a moft beautiful dark red. After fome conjectures and experiments, he difcovered that the tin by which the window-frame was divided into fquares had been diffolved by the aqua-regia, and was the eaufe of this change. He communicated his oblervation 10 Kuffelar, that excellent dyer at Leyden, who was afterwards his fon in-law. The later brought the difcovery to perfection, and cmployed it fome years alone in his dye-houfe, which gave rife to the name of Kuffelar's colour. In the courfe of time the fecret became known to an inhabitant of Dienim, called Gulich, and alfo to another perfon of the name of Van der Vecht, who taught it to the brothers Gobelins in France. Giles Gobelin, a dyer at Paris, in the time of Francis I. had found out an improvenent of the then ufual fcarlet dye; and as he hed remarked that the water of the rivulet Bievre, in the fuburbs St Marceau, was excellent for his art, he erected on it a large dye-houfe; which, out of ridicule, was called Folic Gobelins, Gobelia's Folly. About this period, a Flemifh painter, whom fome name Peter Koek, and others Kloek, and who had travelled a long tine in the Eaft, eftablinhed, and continued to his death in 1650 , a manufactory for dyeing fcarlet cloth by an improved method. Thiough the means of Colbert, one of the Gobelins learncd the procefs ufed for preparing the German farlet dye from one Gluck, whom fome confider as the above-mentioned Gulich, and otbers as Kloek; and the larifian fcarlet dye foon rofe into fo great repute, that the populace imagined that Gobelin had acquired his art from the devil. It is well known that Louis XIV. by the. advice of Colbert, purchafed Gobelin's building from:

S C O

Sheme his fucceflors in the year 1667, and transformed it into ll ficolymus. Cobelins, and which he affigned for the ule of firlt rate artits, particularly painters, jewellers, weavers of tapeltry, and others. After that time the rivulet was no longer called Bievre, Lut Gobelins. About the year 1643 , a lleming, named Kepler, eftablimed the firt dige Loule for fcarlet in England, at the village of Bow, rot far from London ; and on that account the colour was called, at firf, by the Englifh, the Boau-dye. In the year 1657 , another Fleming, named Brewer, inviled to England by King Chasles II. with the promife of a large faldry, brought this art there to great perfection."

SCHEME, a draught or reprefentation of any geometrical or aftronomical figure, or problem by lines fentible to the eye; or of the celeltial bodies in their proper places for any moment; otherwife called a dia. gram.

SCIAGRAPHY, or Sciography, the profle or vertical feetion of a building; ufed to thew the infide of it.

Sciagraphy, in aftronomy, \&c. is a term uled by fome authers for the art of finding the hour of the day or night, by the fhadow of the fun, moon, ftars, \&c.

SCIOPIIIC, or Scioptric Ball, a fphere or globe of wood, with a circular hole or perforation, where a lens is placed. It is fo fitted, that, like the eye of an animal, it may be turned round every way, to be ufed in making experiments of the darkened roons.

SCOLYMUS (fee that article Encycl.) is, by Pliny and Theophratus, reckoned to belong to the genus of the thifles. The former fays, that like moft others of the fame kind, the feeds were covered by a fort of wool (pappis). It had a high Rem, furrounded with leaves which were prickly, but which ceafed to fting when the plant withered. I: flowered the whole fummer through, and had often flowers and ripe feed at the fame time; which is the cafe alfo with our artichoke plants. The calyx of the folymus was not prickly; the root was thick, black, and fwect, and contained a milky juice. It was caten both raw and cooked; and 'I'heophraftus obferves, as fomething very remarkable, that when the plant was in flower, or, as orhers explain the words, when it had finilhed blowing, it was molt palatable. What renders this circumftance fingular is, that moft milky roots ufed for food lofe their milk, and become unfit to be caten as foon as they have blown. This is the cafe with the goat's beard, which is eatable only the firlt year.

Profefor Beckmann has, with much labour and erudition, cndeavoured to afcertain what is really the plant which was known to the ancients by the name of foly. mus. He feems to have proved fufficiently, that it was not the cactus, the carduus, or the cinara; but he has not been able to come to any other conclufion. "Were I appointed or condemned (lays he) to form a new Latin dictionary, I thould explain the article folymus in the following manner: Planta compofita, capitata. Caulis longus, obfitus foliis Jpinofis. Radix carnofa, laciefcens, vígra, dulcis, edudis. Calix Squamis inermibus, difco carnofo, ante efforefcentiom eduli: Semina patpofa. Turiorees edules. 'Ithis defcription, fhort as it is, contains every thing that the ancients have faid in onder to characterife that plant."

SCONCES, fmall forts, built for the defence of Econect, fome pafi, river, or other place. Some feonces are made Scotdies. regular, of four, five, or fix baftions; others are of fmaller dimenfions, fit for paffes or rivers; and others for the field.

SCO'TALES, were meetings held formerly in England for the purpofe of drinking ale, of which the expence was defrayed by joint contribution. 'Thus the tenants of South Malling in Suffex, which belonged to the Archbihop of Canterbury, were, at the keering of a court, to entertain the Lord or his baileff with a drinking, or an ale; and the ftated quotas towards the charge were, that a man fould pay three-pence halfpenny for himfelf and his wife, and a widow and a cottager three half pence. In the manor of Ferring, in the fame county, and under the fame jurifdiction, it was the cuftom for the tenants named to make a fcotale of fix. teen pence halfpenny, and to allow out of each fixpence three halfpence for the bailiff.

Common \{cotales in taverns, at which the clergy werc not to be prefent, are noticed in feveral ecclefialtical canons. They were not to be publifhed in the church by the clergy or the laity; and a meeting of more than ten perfons of the fame parih or vicinage was a fcotale that was generally prohibited. There were alfo common drinkinge, which were denominated leetale, bride-ale, clerk-ale, and church-ale. To a leet-ale probably all the refidents in a manorial diftrict were contributors; and the expence of a bride-ale was defrayed by the relations and friends of a happy pair, who were not in circumfances to bear the charges of a wedding dinner. This cuftom prevails occafionally in fome diftricts of Scolland even at this day, under the denomination of a penny bride-ale, and was very common fify or fixty years ago. The clerk's-ale was in the Eatter holidays, and was the method taken to enable clerks of parifhes to collect more readily their dues.

Mr Warton, in his Hiftory of Englih Poetry, has inferted the following extract from an old indenture, which thews elearly the defign of a cluerch-ale. "The parifioners of Elve\{lone and Okebrook, in Derby?hire, agree jointly to brew four ales, and every ale of one quarter of malt, betwixt this and the feaft of St John the Baptilt next coming ; and that every inhabitant of the faid town of Okebrook fhall be at the feveral ales. And every lufband and his wife fhall pay two pence, every cottager one-penny; and all the inhabitants of Elvelton fhall have and receive all the profits and advantages coming of the faid ales, to the ufe and belooof of the faid church of Elveflon."

The give-ales were the legacies of individuals; and from that circumflance entirely gratuitous. 'They feem to have been very numerons, and were genetally left to the poor; though, from the largenefs of the quantity of ale enjoined to be brewed, it mult have been fometimes intended that others were to partake of them. Thefe bequens were likewife, not unfrequently, made to the light or altar of a faint, with dieetions for fing. ing maffes at the ohit, trenthal, or anniverfary of the teftator. Hence, though fcotales were generally kept in houfes of public refort, the give-ales were fometimes difpenfed in the church, and ofren in the churchyard; by which means "Godde's houfe (as Sumuer fays in his Treatife on Gavelkind) was made a tavern of gluttons." Such certainly would be Chalk church, if in it
was kept the give-ale of William May of that parih; for he ordered his wife to " make in bread fix buthels of whent, and in itrink ten bullets of mault, and in checie twenty-pence, to give to poor people for the health of his foull ; and he ordered that, after the deceale of his wifi, his executors and feoffees fhould continue the cuftom for evermore."

SCOIVRING OF stuffs, is an art much more generally practifed than underilood. It fuppofes, fays Chaptal, ift, a knowledge of the different fubtlances capable of faining any kind of cloth; 2d, of the fub. flances to which recourle mult be had, in order to make thofe depolited un the fluff to difappear ; $3^{\text {d }}$, a knowledge of the effects produced on colours by thofe reagents, which it may be neceffary to employ to deitroy ftains; 4 th, a kuowledge of the manner in which the cloth is effected by thofe re agents; 5 th, of the art of relloring a colour changed or faded. Of thofe bodies which occalion fpots on different kinds of cloth, fome are eafily difinguifhed by their appearance, fuch as grealy fubitances; but others have more complex effects, fuch as acids, alkalies, perfpired matter, fruits, urine, \&cc. Acids redden black, fawn, violet, and pucecolour, and every fhade communicated with orchillaweed, iron, attringents, and every blue except indigo and pruffian blue. They render the yellows paler, exeept that of arnatto, which they change into orange.
Alkalies change to violet the reds produced by Brazil.wood, logwood, and cochineal. They render the greens on woollen clath yellowifl, make yellow brownifh, and change the yellow produced by arnatto to aurora. Perfpired matter produces the fame effects as alkalies.

When the fpots are produced by firmple borlies on fiuff, it is cafy to remove them by the means already known. Grcafy fubllances are removed by alkalies, foaps, the yolk of eggs, fat carths; oxides of irnn, by the nitric and oxalic acids; acids by alkalics, and reciprocally. Stains of fruit on white ftulfs may be removed by the fulphureous acid, and atill better by the oxigenated muriatic acid. But when the fputs are of a complex kind, it will be neceffary to employ feveral means in fuccefion. Thus, to deltroy the llain of coom from carriage-whecls, after the greafe has been diffolved, the oxide of iron may be removed by the oxalic acid.

As colours are often changed by re-agents, it will be neceffary, in order to reflore them, that the feowrer fhould poffefs a thorough knowledge of the att of dyeing, and haw to mendify the means according to circum. ftances. This becomes the more dificult, when it is neceffary to reproduce a colonr fimilar to that of the reft of the fuff, to apply that colour only in one place, and often to reflure the mordant by which it was lixed, and which has been deftroyed, or even the firft tint which gave the colour its intenfity. It mey he readily conceived that the means to be employed mult depenid on the nature of the colour and the ingredients by which it was produced; for it is known that the fame colour may be obtained from very different bodies. Thus, after an alkall las been employed to defroy an acid fpot on browns, violcts, hlues, poppies, \&c. the yellow fpot which remains may be made to difappear by a folution of tin; a folmtion of fulphat of iron reflores the colour to brown Duffs which have been galled; acids reftore to
their former fylendour yellows which bave heen render- Seow-irs, ed dufky or brown by alkalies; blacks produced by Scyils logwood become red by acids; alkalies change thefe red fpots to yellow, and a little of the all ringent principle makes them again become black. A folution of one part of indligo in four pats of fulphuric acid, diluted with a fufficient guantity of water, may be employed with fuccefs to revive the blue colour of cotton or wool which has been changed. Scarlet may be revived by means of cochineal and a folution of the muriat of tin, \&c.

The choice of re-agents is not a matter of indiffe. rence. Vegetable acids are preferahle; the fulphureous acid, however, may be employed for ftains occafioned by fruit; it does not change the blue of filk nor colours produced by aftringents; it does not degrade the yellow of cotton. Ammonia fucceeds better than fixed alkalies in remoring fyots produced by acids. It is employed in vapour ; its action is fpeedy, and feldom alter; the colour.

The means of removing greafy fpots are well known. This effect is produced by alkalies, fullers earth, volatile oils diffolved in alcohol, a heat proper for volatilizing greafe, \&c. Spots oceainoned by ink, ruft, or ironmould of any kind, and all thofe produced by the yetlow oxide of iron, are removed by the oxalic acid: the colour may be reltored by alkalies, or a folution of the muriat of tin. Thefe fpots may be removed alfn by the oxygenated muriatic acid, when they are on white duffs or paper.

The action of alkalies, and that of perfpired matter, are the fame: their fpots may be effaced by acids, or even by a weak folution of the muriat of tin. When thefe frots arife fron. feveral muknown caufes, in order to deflroy them, recourfe muft be had to pulychreft compolitions. The following may he confidered as one of the mott efficacious: Diffolve white frap in alcohol, and mix this folution with the yolks of from four to fix eggs ; add gradually effence of turpentine; and incorperate with the whole fome fullers carth, in fuch a manner as to form balls of a fuitable confiftence. Msiiten the fpot; and having rubbed it with there balls, the fpot will he removed hy wafling the ftuff. All fpots, except iron-mould and ink, may be removed in this manner.

Wafling deftroys the luftre, and leaves a tarnined place difagreeable to the eye; bue the luitie may be refored hy drawing over the wafhel place, and in the direction of the pile, a brulh moifened in water, im. pregrated with a little gum. You may then apply" flect of paper, or a piece of cloth, and a confiderable weisht, under which the cloth mult be left to diy.

SCYLLA. Under this title we gave, in the Enrgho -clopecdia, an account of Scylla and Charybdis, which. though taken from a work which we thong't grood authrity, appeas to be far foom correct. Thefe piacee, fis lamous in the poems of Homer and Virgit, were examined with minnte attention by that accurate obfer: ver of nature the Abbe Spallanzani; who thus deferibes Scylla.
"It is a lofty rock, difant twelve miles from Mefina, which rifes almoll perpendicularly from the tia on the flore of Calabria, and beyonal which is the fmall city of the fame name. Though there was fearecly any wiod, I began to hear, two miles before I came to the

S C Y

Scylla. rock, a murmur and noife like a confufed barking of dogs, and on a nearer approach readily difcorered the caute. 'This rock, in its iower parts, contains a mumber of caverns, one of the largett of which is called by the people there Dragara. The waves, when in the leaft agitated, ruthing into thefe caverns, break, dafh, throw up frotly bubbles, and thas occation thefe various and multiphed fonmeds. I then perceived with how nuch, truth and reic:nblance of nature Homer and Virgil, in their perfonifications of Scylla, bad pourtrayed this feene, by deferibing the moniter they drew as lurking in the darknefs of a valt cavern, furrounded by ravenous barking maltiffs, together with wolves, to increafe the hurror.
" Such is the fituation and appearance of Scylla; let us now confider the danger it occalions to matiners. Though the tide is almoft imperceptible in the open parts of the Mediterranean, it is very Atrong in the ftrait of Meffina, in confequence of the narrownefs of the channel, and is regulated, as in other places, by the periodical elevations and depreflion of the water. Where the flow or current is accompanied by a wind blowing the fame way, veffels have nothing to fear, fince they either do not enter the ftrait, both the wind and the ftream oppoling them, but calt anchur at the entrance; or, if both are favourable, enter on full fail, and pals through with fuch rapidity that they feem to fly over the water. But when the current runs from fouth to north, and the north wind blows hard at the fame time, the fhip which expected ealily to pafs the ftrait with the wind in its ftern, on its entering the channel is refifted by the oppolite current, and, impelled by two forces in contrary directions, is at length dafhed on the rock of Scylla, or driven on the neighbouring fands; unlefs the pilot fhall apply for the fuccour necellary for his prefervation. For, to give affiftance in cafe of fuch accidents, 24 of the ftrongelt, holdeft, and molt experienced failors, well aequainted with the place, are flationed night and day along the fhore of Meflina; who, at the report of guns fired as fignals of diftrefs from any veffel, haften to its affiltance, and tow it with one of their light buats. The current, where it is ftrongeft, does not extend over the whole itrait, but winds thro' it in intricate meanders, with the courfe of which thefe men are perfectly acquainted, and are thus able to guide the fhip in fuch a manner as to avoid it. Should the pilot, however, confiding in his uwn fkill, contemn or neglect this affiftance, however great his ability or experience, he would run the moft imminent rifk of being fhipwrecked. In this agitation and conflict of the waters, forced one way by the current, and driven in a contrary direction by the wind, it is ufelefs to throw the line to difcover the depth of the bottum, the violence of the current frequently carrying the lead almoit on the furface of the water. The itrongelt cables, though fome feet in circumference, break like fimall cords. Should two or three anchors be thrown out, the bottom is fo rocky that they either take no hold; or, if they flould, are foon loofened by the violence of the waves. Every expedient afforded by the art of navigation, though it might fucceed in faving a fhip in other parts of the Mediterranean, or even the tremendous ocean, is ulelefs here. The only means of avoid. ing being dafhed againft the rocks, or driven upon the fands in the midft of this furious contelt of the winds
and waves, is to have recourfe to the fill and comrage of thele Meffinefe feamen."

Charybdis is fituated within the ftrait, in that part of the fea which lies between a projection of land named Punta Secca, and ancther projection on which ftands the tower called Lanterno, or the light.houfe, a light being placed at its top to guide veffels which may enter the harbour by night. Every writer, who has hitherto deferibed Charybdis, has fuppoied it to be d whirlpool; but this is a miftake, as Spallanzani has completely prowed, by afcertaining what it really is.
"Chargldis is diftant from the thore of Me lina about 750 feet, and is called by the people of the countiy $C a$ lofaro, not from the agitation of the waves, as Come have fuppofed, but from $x \times n o s$ and $\$ \alpha \rho_{0} s$; that is, the beautiful tower, from the light-houfe erected near it for the guidance of veffels. The phenomenon of the Calo. faro is obfervahle when the current is defcending; for when the current fets in from the north, the pilots call it the defonding rema, or current ; and when it runs from the fouth, the afcuding rema. The current afcends or defcends at the rifing or fetting of the moon, and continues for fix hours. In the interval between each afcent or defcent, there is a calm which lafts at leait a quarter of an hour, but not longer than an hour. Afterwards, at the rifing or fetting of the moon, the current enters from the north, making various angles of incidence with the fhore, and at length reaches the Calofaro. This delay fnmetimes continues two hours; fometimes it immediately falls into the Calofaro; and then experience has taught that it is a certain token of bad weather."

When our author obferved Charybdis from the fhore, it appeared like a group of tumultous waters; which group, as he approached, became more extentive and more agitated. He was carried to the edge, where he ftupped fone time to make the requilite obfervations : and was then convinced, beyond the fladow of a doubt, that what he faw was by no means a vortex or whirlpool.

Hydrologits teach us, that by a whirlpool in a run= ning water we are to underfland that circular courfe which it takes in certain circumftances; and that this courfe or ievolution generates in the middle of a hollow inverted cone, of a greater oi lefs depth, the internal fides of which have a fpiral motion. But Spallanzani perceived nothing of this kind in the Calofaro. Its revolving motion was circumferibed to a circle of at moft 1 co feet in diameter ; within which linuts there was no incurvation of any kind, nor vertiginous inotion, but an inceffant undulation of agitated waters, which rofe, fell, beat, and dathed on each othcr. Yet thefe irregular motions were fo far placid, that nuthing was to be feared in paffing over the fpot, which he did; though their little bark rocked very much from the continual agitation, fo that they were obliged conftantly to make ufe of their oars to prevent its being driven uut of the Calufaro. Our author threw fubltances of different kinds into the ftream. Such as were fuecifically heavier than the water funk, and appeared no more; thofe which were lighter remained on the furface, but were fonn driven out of the revolving circle by the agitation of the water.

Though from thefe obfervations he was convinced that there was no gulph under the Calofaro, as other-

S E A

wife there would have been a whirlpool, which would have carried down into it the floating fubftances; he determined to found the bottom with "e plummet, and found its greatefl depth did not exceed 500 feet. He was likewife informed, to his no fmall furprife, that beyond the Calofaro, towards the middle of the frait, the depth was double.

When the current and the wind are contrary to each other, and both in their greateft violence, efrecially when the fcilocco, or fouth wind, blows, the fwelling and dafhing of the waves within the Calofaro is much Aronger, more impetuons, and more extenfive. It then contains three or four fmall whirlpools, or even more, according to the greatnefs of its extent and violence. If at this time fmall veffels are driven into the Calofaro by the current or the wind, they are feen to whirt round, rock, and plunge, but are never drawn down into the vortex. They only fink when filled with water, by the waves beating over them. When veffels of a larger fize are forced into it, whatever wind they have they cannot extricate themfelves; their fails arc ufelefs; and after having heen for fome time toffed about by the waves, if they are not affifted by the piluts of the country, who know how to bring them out of the courfe of the current, they are furioufly driven upon the neighbouring fhore of the Lanterna, where they are wrecked, and the greater part of their crews perifh in the waves.

- From thefe facts, the claffical reader will perceive that the ancient defcriptions of Charyhdis are by no means fo accurate as thofe of Scylla. The faying, however, which became proverbial among the ancients, viz. that "he who endeavours to avoid Charybdis, dafhes upon Scylla," is, in a great meafure, true. If a thip be extricated from the fury of Charybdis, and carried by a ftong foutherly wind along the ftrait towards the northern entrance, it will indeed pafs out fafely; but thould it meet with a wind in a nearly oppofite direction, it would become the fport of both thefe winds, and, unable to advance or recede, be driven in a middle courfe between their two directions, that is to fay, full upon the rock of Scylla, if it be not inımediately affinted by the pilots. It is likewife obferved, that in there hurricanes a land wind frequently rifes, which defcends from a narrow pafs in Calabria, and increafes the force with which the fhip is impelled tuwards the rock.

SEA-sickness is a diforder which has been but little treated of, notwithtanding the frequency of its occurrence, and the irkfumenefs and diftrefs to which the patient is fubjected during its continuance. It has been found to be very beneficial in feveral difeafes, among which the principal are afthmatic and pulmonary complaints ; and there are very few intances of its being attended with fatal confequences. The fea-ficknefs feems to be a fpafmodic affection of the ftomach, produced by the alternate preflure and recefs of the contents of that vifcus againft its lower internal furface, according as the rife and fall of the flip oppofes or recedes from the action of gravity.

The feas in which this diforder attacks the paffenger with the greateft violence, are thofe where the waves have long uninterrupted freedom of action; of courfe, bay, galphs, and channels, may be navigated with leis inconvenience, as the waves, nceting with more frequent refiflance, and the repercuffion being confiderably flongSu'ppr., Vos. 1I. Part II.
er, the veffel does not experience that gentle unifurm vacillation which fickens the fomach, and renders the head giddy. By the fame argumerit, a perfon feels lefs inconvenience from the diforder on the wide ocean in a fmall veffel, on which the flightelt motion of the waves makes a flrong imprefion. He is likewife lef ${ }_{3}$ expofed to it in a very large veffel, as in a flip of the line, or a large merchantman deeply laden; as the waves, in this cafe, fcarcely affect the veffel. It is ia fhips of the middling fize, and which carry but a light cargo, that the paffenger fuffers moft from the fea ficknefs. It has been obferved, that this diforder affee. 3 people in years lefs than young perfons; thofe of a dark lefs than thofe of a fair complection, and that it feldom attacks infants. The duration is not limited to any fixcd period of time; with fome it lafts only a few days, with others weeks, montlis, and even during the whole courfe of the voyage. 'is he fooner it takes place after embarkation, the greater probability is there of its continuance. It does not always ceafe immediately on landing, but has bcea known, in fome cafes, to continue for a confiderable time. Even the oldelt and moft fkilful feamen have experienced a telapfe, etpecial. ly if they have quitted the fea.fervice for a long term of years.

There have been many modes iecommended for mitigating, if not entirely preventing, this diforder; among which the following feem the moll efficacious:
r. Not to go on board immediately after eating ; and, when on board, not to eat in any great quantity at any one meal.
2. To take Arong exercife, with as little intermiffion as conveniently can be done; for inftence, to afitt at the pumps, or any other active employment, as indolent and flothful paffengers always fuffer molt from the diforder.
3. To keep much upon deck, even in flormy and rainy weather, as the fea breeze is lefs liable to affect the ftomach than the flagnated air of the cabin, which is frequently rendered infectious for want of fufficient circulation.
4. Not to watch the motion of the waves, efpecially when Atrongly agitated with tempelt.
5. To avoid carefully all employments which harals the mind, as reading, fudy, meditation, and gaming : and, on the other hand, to feek every opportunity of mirth and mental relaxation.
6. To drink occafionally carlonic acicis, as the froth of Arong fermented heer, or wine mixed with Seltze: water, and fermented with pounded fugar, or a glafs of Champaign.
7. It will be found of great fervice to take the acid of fulphur dulcified, dropped upon lump fugar, or in pepperment water ; or ten drops of fulphureous ether.
With regard to eating, it is advifiole to be very fparing, at leaft not to eat much at one meal. The proper diet is bread and frefh meat, which fhould be eaten cold with pepeer. All fweet fasoured food fhould be carfully avoided; and the paffenger fhould refrain from fat, but efpecially from all meat that is in the leat degree tainted. Even the odour of flowers is very, pernicious; for which reafon it is not expedient to cxamine marine productions, as thefe generally liave a naufeating fmell. The funes of vinegar may be inhaled with great bencfit. The drink fhould confifl of

Sea-fick- tart wines, lemonade, or Seltzer water, but never of
nets, Sector.
common water. The paffenger, would do well to drink little and often. As experience has proved, than an accidental diarrhoea has frequently relieved the patient from the fea-ficknefs, it will be prudent to follow the clue of nature, and take a gentle laxative, or, if circumftances will permit, a clytter of falt-water and Venice foap, which is the more neceffary, as fea faring people are liable to obitructions. It will further be found ufeful to apply to the pit of the forrach a tonic anodyne antifpafmodic emplattrum, fpread upon leather, and covered with linen.

Where the above preventives have not been employed, or have not fucceeded in fecuring the paffenger from the fea-ficknefs, he may, however, experience confiderable relief from the following remedies:

If fymptoms of vomiting appear, they may frequently oe remedied by the patient proftrating himfelf in a horizontal pofition, upon the back or belly, and ly. ing perfectly ftill. We would recommend likewife a gentle compreffion of the abdomen. But if the fits of vomiting are too violent to be repreffed, in that cafe, it is beft to promote them by a ftrong dofe of falt water; an expedient, however, which muft not be too often repeated, as it tends ftll more to weaken the fomach. When the emetic takes effect, let the patient bend his body, advancing his knees towards his brealt, and fupport his head agaioft a firm and folid refting-place. He mult be particularly careful to untie his garters and cravat, as this precaution will fecure him from the rifk of a rupture, and from the ill effects of the blood rufhing violently towards the head and breait.

After the vomiting has fubfided, its return may be guarded againtt by preferving a tiate of repofe, and even keeping the eyes fhut for a confiderable time. Let the patient choofe a cool, ventilated place, remembering to keep himfelf warm and well clothed, as perfpiration is highly falutary. But he muft not indulge in too long fleep during the day-time, as this induces torpidnefs. In the morning he fhould conftantly take a gargle of fugar diffolved in vinegar. Let him eat often, but faringly; and if he can content himfelf with a difh of chocolate, coffee, or ftrong tea, he will reap ftill greater benefit. He fhould never drink water in its pure elementary ftate, but mix it with brandy, yinegar, or wine. In the morning, inftead of brandy, he may take a glafs of wine, with an infufion of orange peel, gentian root, or peruvian bark (quinquina). A glafs of punch taken occafionally will prove of very effential fervice, as it promutes perfpiration.

Perfons in the habit of fnoking, will find a pleafant and falutary companion in the pise; butt thofe who are not accuftomed to it will be fufferers by taking to the practice.

In conclufion, it is proper to add, that warm clothing, flannel Mirts, trowfers, caps, \&ic. are efficacious temedies againft exceffive expectoration, and all other fymptoms of this terrible diforder.

SECTOR OF A SPhere, is the folid generated by the revolution of the fector of a circle about one of its radii ; the other radius defcribing the furface of a cone, and the circular arc a circular porion of the furface of the fphere of the fame radius. So that the fpherical fector confitts of a right cone, and of a fegment of the fohere having the fane common bafe with the cone.

And lience the folid content of it will be found by multiplying the bafe or fpherical furface by the radius of the fphere, -1 taking a third part of the produce.

Sector of an elliffe, or of in byperbolu, \&cc. is a part refembling the circular fector, being contained by three lincs, two of which are radii, or lines drawn from the centre of the figure to the curve, and the intercepted arc or part of that curve.

SEEDS, Preservation of, in a ftate fit for vegetation, is a matter of great and general importance, becaufe, if it can be accomplifhed, it will enable us to rear many ufeful plants in one country which are there unknown, being indigenous only in others at a great diftance from it. There is a letter on this fubject in the 16th volume of the Tranfagion of the Society of Arts, \&c. from which we fhall extract what is fit for our purpofe.
"Many years ago (fays the author), having obferved fome feeds which had got accidentally amongit raifins, and that they were fuch as are generally attended with difficulty to raife in England after coming in the ufual way from abroad, I fowed them in pots, within a framing; and as all of them grew, I commifioned my fons, who were then abroad, to pack up all forts of feeds they could procure in abforbent paper, and fend forne of them furrounded by raiins, and others by brown moift fugar; concluding that the former feeds had been preferved by a peculiarly favourable ftate of moifture thus afforded them. It occurred, likewife, that as many of our common feeds, fuch as clover, charlock, \&x. would lie dormant for ages within the earth, well preferved for vegetation whenever they might happen to be thrown to the furface, and expofed to the atmofphere, fo thefe forcign feeds might be equally preferved, for many months at leatt, by the kindly covering and genial moifture that either raifins or fugar afforded them : and this conjecture was really fulfilled, as not one in twenty of them failed to vegetate, when thofe of the farme kinds, that I ordered to be fent lapped in common parcels, and forwarded with them, would not grow at all. I obferved, upon examining them all before they were committed to the earth, that there was a prevailing drynefs in the latter, and that the former looked frefh and healthy, and were not in the lealt infeited by infects, as was the cafe with the othars. It has been tried repeatedly to convey feeds (of many plants difficult to raife) clofed up in bottles, but without fuccefs; fome greater proportion of air, as well as a proper fate of molfure, perhaps, being neceffary. I hould alfo obferve, that no difference was made in the package of the feeds, refpec. ing their being kept in hufks, pods, \&c. fo as to give thofe in raifins or fugar any advantage over the others, all being fent equally guarded by their natural teguments."

SEGALIEN, the name given by Europeans to a large ifland, feparated by a narrow channel from the coalt of Chioefe Tartary, and called by the natives Tchoka, and by the Chinefe $0 k u$ - $\mathfrak{F e f f}$. It lies between the 46 th and $54^{\text {th }}$ degrees of north latitude, but its breadth from eaft to weft is not known. Indeed bardly any thing about it was known till the year 1787, that M. La Peroufe penetrated alnoft to the bottom of the channel which feparates it from the continent, and which grew fo very, hallow as he advanced northward
egatien．tlast，in all probability，the ifland will foon become a peninftila．The Freach frigates came to anchor in dif－ ferent bays on the coalt of Segalien；and the fineft of thefe bays，to which the Commodore gave the name of Baic d＇Efaing，is fituated in $48^{\circ} 59^{\prime} \mathrm{N}$ ．Lat．and 140° 3^{2} Lon．Ealt from Paris．

La Peroufe，and M．Rollin the furgeon of his hip， both deferibe the natises of this ifland as a worthy and intelligent people．Of the prefents which were made to them，they leemed to fet a value only on fuch as were ufeful．Iron and Atuffs prevailed over every thing； they underforod metals as well as their gucits，and for omament preferred dilver to copper，and copper to iron． They make ufe of looms，which，though fmall，are very complete inftuments；and by means of fpindles they prepare thread of the hair of animals，of the bark of the willow，and the great nettle，from which they make their fluffs．They are of a moderate fize，〔quat， and itrong built，with the mufeles of their bodies very exactly defined ：their common height is five feet，and the greatelt does not exceed five feet four inches ：but men of this fize are very uncommon anong them． They have all a large head，and a broad and more rounded face than Europeans；their cuuntenance is aui－ mated and agrecable，though，upon the whole，it is deftitute of that regularity and grace which we efteem fo effential to beauty ：they have large cheeks，a fhort nofe rounded at its extremity，with very broad noftrils ： their eyes are lively，of a moderate fize，for the moft part black，though fome have blue ones among them： their eyebrows are bufhy，their mouth of the common fize，their voice is frong，their lips are rather thick， and of a dull red ：M．Rollin remarked，that in feveral the upper lip was tattoed，and tinged of a blue colour ： thefe，as well as their eyes，are capable of every variety of expreffion ：their teeth are white，even，and of the ulual number；their chin is rounded and a little advan－ cing：their ears are fmall；they bore and wear in them glafs ornaments or filver rings．

The women are not fo large as the men，and are of a more rounded and delicate figure，though there is but little difference between the features of their faces． Their upper lip is tattoed all over of a blue colour，and they wear their hair long and flowing：their drefs hard－ ly differs from that of the men；the colour of the flin in both fexes is tawny，and that of their nails，which they fuffer to grow to a great length，is a flade darker than that of Europeans．Thefe iflanders are very hairy， and have long beards，which gives，efpecially to the old men，a grave and venerable air：thefe laft appear to be held in much refpeet by the younger part of the in－ habitants．The hair of their head is black，fmooth， and moderately ftrong；in fome it is of a chefnut co－ lour ：they all wear it round，about fix inches long be－ hind，and cut into a brufh on the top of their head and over the temples．

Their clothing confifts of a kind of furtout which wraps over before，where it is faftened by little buttons， ftrings，and a girdle placed above the haunches．This furtout is made of nkin or quilted nankeen，a kind of ftuff that they make of willow bark；it generally reaches to the calf of the leg，and fometimes even lower，which for the moft part renders the ufe of drawers unnecef． fary：fome of them wear feal Rkin boots，the feet of which，in form and workmanfhip，refembles the Chinefe
thoe；but the greater number of them go bare footed Sryrizen． and bare－headed：a few indeed wear a bandage of bear． Rin round the head；but this is rather as an ornament than a defence againt the weather．

Like the lower claffes of the Chinefe，they all wear a girdle，to which they lang their knife as a defence againft the bears，and feveral little pockets，into which they put their fint and Ateel，their pipe，and their boox of tobacco；for they make a gencral practice of fmu． king．

Their huts are fufficient to defend them againft the rain and other inclemencies of the air，hut are very frall in proportion to the number of the inlabitants which they contain．The rouf is formed of two incli－ ned planes，which are from ten to twelve feet high at their junction，and three or four on the lides：the breadth of the roof is about lifteen feet，and its length eighteen：thefe cabins are conftructed of frame work， flrongly put together，the fides being filled up with the bark of trees，and the top thatclaed with dry grafs in the fame manner as our cottares are．

On the infde of thefe houfes is a fquare of earth rat－ fed about tis inches above the ground，and fupported ou the fides by frong planking；on this they make the fire ：along the lides of the apartment are benches twelve or fifteen inches high，which they cover with mais，on which they fleep．

The utenfils that they employ in cooking their food confift of an iron pot，fhells，veffels made of wood and birch bark，of various thapes and workmanhlip；and， like the Chinefe，they take up their food with little fticks：they have generally two meals in the day，one at noen，and the other in the evening．

The habitations in the louth part of the illand are much better built and furnifhed，having for the moft part planked floors：our author faw in them fome vef－ fels of Japan porcelain，on which the owners appeared to fet great value，probably becauf they are not to be procured but with great trouble and at confiderable ex－ pence．They cultivate no kind of vegetable，living only on dried and fmoked fifh，and what little game they take by hunting．

Each family has its own canoe，and implements for fifhing and hunting．Their arms are bows，javelins， and a kind of fpontoon，which they ufe principally in bear－hunting．By the dide of their houfes are the ma－ gazines，in which they lay up the provifion which they have prepared and collected during funimer for their winter fubfifterice．It confifts of dried fith，and a con－ fiderable quantity of garlic and wild celery，angelica，a bulbous root which they call ape，better known under the name of the yellow lily of Famtfchatka，and fifh oil，which they preferve in the fomachs of bears，and other large animals．Thefe magazines are made of planks，ftrongly and clofely put together，raifed above the ground on ftakes about four feet high．

Dogs are the only domeftic animals belonging to the natives of Tchoka；they are of a middling lize，with thaggy hair，pricked ears，and a Tharp long muzzle； their cry is loud and not favage．

Thefe people，who áre of a very mild and unfufpect－ ing difpolition，appear to have commercial intercourfe with the Chinefe by means of the Mantchou Tartars， with the Ruffians to the north of their ifland，and the Japanefe to the fouth ：but the articles of trade are of

Segments, no great confequence, cunfaing only of a few furs and $\underbrace{\text { Sego. whale vil. This filh is caught only on the fouthern }}$ coalt of the illand. Their mode of extracting the sil is by no means cconomical; they drag the whate on fhore on a foping ground, and fuffering it to putrify, receive in a trench, at the foot of the flope, the vil, which feparates fontancoufly.

The ifland is well wooded, and mountainous towards the centre, but is flat and level along the coaft, the foil of which appears admirably adapted to agriculture : vegetation is extremely virorous he:e: foretts of pine, willow, oak, and bireh, cuver nearly the whole furface. The fea abounds with fifh, as well as the rivers and hrooks, which fwarm with falmon and trout of au excelknt quality. The wcather is, in general, foggy and mild. All the inhabitants have an air of health and freagth, which they retain even to extreme old age; nor did our author obferve amung them any inftance of defective organization, or the leaft trace of coutagious or eruptive difurders.

SEGMENTS, line of, are two particular lines, fo called on Gunte.'s fector. They lie between the lines of fines and fuperlicies, and are numbered with $5,6,7$, d, 9,10 . They reprefent the diameter of a circle, fo ciaided into 102 parts, as that a right line drawn 1 hrongh thofe parts, and perpendicular to the diameter, thall cut the circle into two fegments, the greater of which fhall have the fane proportion to the whole circle, as the parts cut off have to 100 .

SEGO, the capital of the kingdom of Bambarra in Africa, is fituated on the banks of the Niger, in 14° 4^{\prime} N. Latt, and $2^{\circ} 1^{\prime}$ W. Long. It confits, properly fpeaking, of four diftinct towns; two on the nurthern bank of the Niger, called Sego Korro, and Sego Boo; and two on the fouthera bank, called Sego Soo Korro, and Sego See Fiorro. They are all furrounded with high mud-walls; the houfes are built of clay, of a fquare form, with flat roofs; fome of them have two fiories, and many of them are white-walhed. Befides thefe luildings, Moorith mofques are feen in every quarter; and the flreets, though narrow, are broad enough for every ufeful purpofe in a country where wheel-carriages are cutirely unknown. Mr Park informs us, that from the deft inquiries that he could make, he has reafon to inelieve that Sego contains altogether about thirty thoufand inhabitans. The King of Bambarra contlantly relides at Sego. See Korro. He employs a great many flaves in eonseying people over the river; and the money they receive (though the fare is only ten kowrie thells for each individual) furnithes a confiderable revenue to the king in the courfe of a ycar. 'The canoes are of a fingular coultruction, each of them being formed of the trunks of two large trees, rendered concave, and joined together, not fide by lide, but endwife ; the jumetion being exactly acrofs the middle of the canve: they are therefore very long, and difproportionably narrow, and have neither decks nor matls; they are, however, very roomy; for our author obferved in one of then four horfes, and feveral people, croffing over the river. The view of this extenfive city; the numerous canoes upon the river; the crowled populatian, and the cultivated fate of the furrounding country, formed altorether a profpect of civilization and magnificence which he little expeeted to find in the bofom of Africa.

He met not, however, in Sego with that loofitality
which he had experienced in fome other A frican towns. The Moors, who abound in it, and whofe bigotry renders them the implacable encmics of every white man fufpected of being a Cbriftian, contrived to perfuade the king that it was for no good purpofe he liad come juts) the territorics of Bambarra. He was therefore ordered to take up his refidence at a village a little diflant, without being adnitted into the royal prefence. Even there, fo ftrong was the prejudice that laid been excited againt him, no perfon would admit hin into his houfe. About funfet, however, as he was preparing to pafs the night in the top of a tree, that he might not be in danger of being torn to picecs by wild bealts, a poor Negro woman conducted him to her hut, dreffed a tine fifh for his fupper, and furnifhed him with a mat to fleep on. She then called to the female part of her family, who had flood gazing on him all the while with fixed aftonifhnent, to refume their tafk of fpinning cotton; in which they continued to employ themfelves great part of the night. They lightened their labour by fongs; one of which was compofed extempore, for our author was himfelf the fubject of it. It was fung by one of the young women, the reft joining in a fort of chorus. The air was fweet and plaintive, and the words, literally trannated, were thefe: "The winds roared, and the rains fell.-The poor white man, faint and weary, came and fat under our tree.-He has no mother to bring him milk; no wife to grind his cúrn.-Chorus. Let us pity the white man; no mother has he, \&cc. \&c. "Trifling (fays Mr Park) as this recital may appear to the reader, to a perfon in my fituation the circumftance was affecting in the highelt degree."

Having remained three days in this village, he was difmiffed on the fourth, after receiving from the king 5000 kowries, to enable him to purchafe provifions in the coutfe of his journey. Though this fum anounted only to one pound fterling, fo cheap are the neceffaries of life in Bambarra, that it was fufficient to purchafe provifions for himfclf, and corn for his horfe, for fifty days.

SELL, in building, is of two kinds, viz. Ground Sell, which denotes the loweft piece of timber in a wooden building, and that upon which the whole fuperftructure is raifed; and Sell of a Window, or of a Door, which is the buttum piece in the frame of them, upon which they reit.

SENN, a kind of itinerant eowkeeper in Switzerland, particularly in the canton of Appenzell. Thefe men do not grow fo much hay themfelves as they require for thicir cattle during the winter feafon, and fome of them have no grafs lands at all. To fupply this defictieney, they employ agents throughout the canton, who are to inform them where good hay may be obtained, which farmers made it in favourable weather, \&c. and then the Senn, or the great cowkeeper, who is in want of fodder, makes his agreements for the winter with the weaithier farmers, to whom he fucceffively drives his cattle as foon as they return from grafs. Thus the itinerant Senn, with his cows, often vifits five different places during the winter feafon. He who fells the hay, furnifhes the Senn not only with ftabling for his beafts, but boards and lodges him as well as his whole family. In return, the Senn, befides paying the itipulated price for the hay, allows to his holt as much milk, whey, and zieger (a bind of lean cheefe) as may
his cows. In the middle of April, when Nature revives, the Senn again iffues forth with his lierd to the meadows and fertile Alps, which he rents for the fummer. Thus the life of thefe men is a conttant migration, afording the molt pleating variety, and blefling them with health, content, and checrfulnefs; but they had not been then curfed with French fraternity.
Fine cattle are the pride of the cowkeeper who inhabits the Alps:-but, not fatisfied with their natural beauty, he will likevife pleafe his vanity. He adorns his beft cows with large bells fufpended from broad thongs; and the expence in fuch bells is carried even to a luxurious excefs. Every Senn has an harmonious fet of at lealt two or three bells, climing in with the famous ranz des vaches (A). The inhabitants of the Tyrol bring a number of fuch bells; of all fizes, to cvery fair kept in the eanton of Appenzell. They are fixed to a broad Arap, neatly pinked, cut out, and embroidered; which is fattened round the cow's neek by means of a large buckle. A bell of the largeft fize meafures upwards of a foot in diameter, is of an uniform width at top, fwells out in the middle, and tapers towards the end. It cofts from forty to fifty gilders ; and the whole peal of bells, including the thongs, will fometimes be worth between 140 and 150 gilders, while the whole apparel of the Senn himfelf, when beft attired, does not amount to the price of twenty gilders. The finett black cow is adorned with the larget bell, and thofe next in appearance have two finaller. Thefe ornaments, however, are not worn on every day, but only on folemn occafions, viz. when, in the fpring, they are driven up the Alps, or removed from one patture to another; or when they defcend in the autumn, or travel in the winter to the different farms, where their owner has contracted for hay. On fuch days, the Senn, even in the depth of winter, appears dreffed in a fine white fhirt, of which the fleeves are rolled up above the elbow; neatly embroidered red braces keep up his yellow linen trowfers, which reach down to the fhoes; a fmall leather cap, or hat, covers his head; and a new milk bowl, of wood Reilfully carved, hangs actors the left fhoulder. Thus arrayed, the Senn precedes finging the ranz des vaches, and followed by three or four fine goats; next comes the handfomelt cow with the great bell ; then the two other cows with fmaller bells; and thefe are fucceeded by the rell of the cattle walk. ing one after another, and having in their rear the bull with a one legged milking fool hanging on his horas ; the proceflion is clofed by a traineau, or fledge, on which are placed the implements for the dairy. It is furprifing to fee how proud and pleafed the cows flalk forth when ornamented with their bells. Who would imagine that even there animals are fenfille of their rank, nay, touched with vanity and jealoufy! If the leading cow, who hitherto bore the largelt bell, be deprived of her henours, the very plainly manifetts her grief at the dif $f_{\text {race, }}$ by luwing inceffantly, abitaining
from food, and growing lean. The happy rival, on whon the diftinguilhing hadge of fuperiority has de. volved, experiences her marked vengeance, and is butted, wounded, and perfecuted by her in the mott furious manner; until the former cither recovers her bell, or is entirely removed from the herd. However fingular this phenomenon may appear, it is placed beyond all doubt by the concurring teltinony of centuries.
The cows, when difperfed on the Alps, are brought together by the voice of the Semu, who is then faid to allure them (locken). How well the catte diftinguifh the note of their keeper appears from the circumftance of their hattening to him, though at a great diftance, whenever he begins to hum the ranz des raches. He furnifhes that cow which is wont to itray farthelt with a fmall bell, and knows by her arrival that all the reft are aftembled.
SERRISHTEHDAR, in Bengal, keeper of records or accounts.
SEVEN Stars, a common denomination given to the clufter of ftars in the neck of the fign. Tanrus, the bull, properly called the Pleiades. They are fo called from their number Seven which appear to the naked eye, though fome eyes can difcover only fix of them; but by the help of telefcopes there appears to be a great multitude of them.
SESAWUL, in Bengal, an officer dcputed occafionally to enforce the due payment of the revenue.
SHADOWS (Coloured), a curious optical phenomenon, which was obferved, a confiderable number of years ago, by Profeffor Scherffer of Vienna, aind more lately by Cnunt Rumford. The Count made the difcovery when profecuting his experiments upon light; of which the reader will find fume account under the titles Lamp and Photometer in this Suppl. "Defirous (fays he) of comparing the intenfity of the light of a clear blue y by day with tlat of a common waxcandle, I darkened iny room, and letting the day light from the noth, coming through a hole near the tup of the window fhutter, fall at an angle of about 70° upon a fheet of very fine white paper, I placed a burning wax caudle in fuch a pofition that its rays fell upon the fame paper, and, as near as I conld guefs, in the line of reflection of the rays of day-light from without; when, interpofing a cylinder of wood, about half an inch in diameter, before the centre of the paper, and at the diflance of about two inches from its furface, I was much furprifed to find that the two fhadows projected by the cylinder upon the paper, inftead of being merely faades without colour, as 1 expected; the one of then, that which, correfponding with the bean of day-light, was illuminated by the candle, was yellow; while the other, correfponding to the light of the candle, and confequently illuminated by the light of the heavens, was of the molt beautiful blue that it is poffible to imagine. This appearance, whicl was not only unes:pected, but was really in itfelf in the highell degree ftriking and beautiful,
(A) This famous paforal fong is never fung by the cowherds with words to it : all the tones of it are fimple, and montly formed within the throat. Hence the tune produces very little or no motion of the jawboncs, and its founds do not refemble thofe which commonly iffue from the human throat, but rather feem to be the tones of fome wind inftrument : particularly as fcarcely any breathing is perceived, and as the cowherds fometimes fing. for minutes together without fetching breath.

S II A $[50:]$ S H A

Shafora, benutiful, 1 found upon repeated triala, and after vary. Shagreen. ing the experiment in every way l could think of, to be fo perfectly permanent, that it is abfolutely impoifible to produce two Maduws at the fame time, from the fame body, the one anfwering to a beam of day light, and the other to the light of a candle or lamp, without thefe fladows being coluured, the one yelluw, and the other blue.
" If the candle be brought nearer to the paper, the blue Madow will become of a deeper hue, and the ycllow fhadow will gradually grow fainter; hut if it be removed farther off, the yellow fladow will beeome of a deeper colunr, and the blue fadow will become fainter; and the candle remaining fationary in the fame place, the fame varieties in the Itrength of the tints of the coloured fhadows may he produced merely by opening the window-fhutter a little more or lefs, and rendering the illumination of the paper, by the light from without, Atronger or weaker. By either of thefe means, the coloured hadows may be made to pafs through all the gradations of thade, from the drepeft to the lighteft, and vice verfa; and it is not a little amufng to fee fladows thus glowing with all the brilliancy of the pureft and moft intenfe pifmatic colours, then paffing fuddenly through all she varieties of thade, preferving in all the moft perfect purity of tint, growing ftronger and fain. ter, and vaniming and returning, at command."

With refpeef to the canfes of the colours of thefe shadows, there is no doubt (fays the Count) but they arife from the different qualities of the light by which they are illuminated : but how they are produced, does nut appear to him fo evident. With the utmolt deference to this amiable and very ingenious philofopher, we think all the phenomena of coloured fhadow's which

- Phil he enumerates *, have been, or may be accounted for by Profeffor Scherffers theory; of which the reader will find, we lope, a perfpicnous view under Accidenial Colours in this Supplement.

SHAGREEN, or Chagrin, in commerce, a kind of grained leather ; of the procefs of preparing which, we gave the belt account that we conld then find in the Encyclopedia. 'That account, however, as we learn from Prufeflior Pallas, is very defective. He fays, indecd, that no accurate account of it has ever heen publifhed in Europe previous to his own; of which we thall now lay an abridgment before our readers.
"All kinds of horfes or affes $\mathbb{1 k}$ in, which have been dreffed in fuch a manner as to appear grained, are, by the Tartars, called fauwer, by the Perfians fogre, and by the Turks fagri, from which the Europeans have made fluagreen or chagrin. The Tartars who refide at Aftracan, with a few of the Amenians of that city, are the only people in the Ruffian empire acquainted with the art of making fhagreen. Thofe who follow this occupation not only gain confiderable profit by the fale of their production to the Tartars of Cuban, Aftracan, and Cafan, who ornament with it their Turkey leather bouts, flippers, and other articles made of leather, but they derive confiderable advantage from the great fale of horfes hides, which have undergone no other procefs than that of being feraped clean, and of which feveral thoufands are amually exported, at the rate of from 75 to 85 roubles per hundred to Perfia, where there is a fcarcity of fuch hides, and from which the greater part of the fhagreen manufactured in that
coumtry is prepared. The hind part only of the hille, thageen, however, which is cut out in the form of a crefeent about a Ruffian ell and a half in length acrofs the loins, and a fhort ell in breadth along the back, can properly be employed for thagreen. 'The remaining part, as is proved by experience, is improper for that purpore, and is therefore rejected.
" The preparation of the lkins, after teing cut into the above form, is as follows:- They are depofited in a tub filled with pure water, and luffered to remain there for feveral days, till they are thoroughly foaked, and the hair has dropped oft. They are thon taken from the tub, one by one, extended on boasds placed in an oblique direction againft a wall, the comers of them, which reach beyond the edges of the board, being made faft, and the lair with the epidermis is then fcraped off with a blunt iron fcraper called urak. The fkins thus cleaned are again put in pure water to faak. When all the fkins lave ondergone this part of the procefs, they are taken from the water a fecond time, fpread out one after the other as before, and the fleth fide is feraped with the fame bind of inftument. They are carefully cleaned alfo on the hair tide, fo that nothing remains hut the pure fibrous tifue, which ferves for making parchment, confifting of coats of white medullary fibres, and which has a refemblance to a fwine's bladder foftened in water.
"After this preparation, the workmen take a certain kind of frames called palzi, made of a ftraight and a femicircular picce of wood, having nearly the fame form as the fkins. On thefe the flins are extended in as fmooth and even a manner as poffible by means of cords; and during the operation of exterding them, they arefeveral times befprinkled with water, that no part of them may be dry, and occafion an unequal ten. fion. After they have been all extended on the frames, they are again moiltened, and carried into the houfe, where the frames are depolited clofe to each other on the floor with the flef fide of the fkin next the ground. The upper fide is then thickly beftrewed with the black exceedingly finooth and hard feeds of a kind of goofe foot (chenoforium album), which the Tartars call alabuta, and which grows in abundance, to about the height of a man, near the gardens and farms on the fouth fide of the Volga ; and that they may make a ftrong impreffion on the fkins, a piece of felt is fpread over them, and the feeds are trod down with the feet, by which means they are deeply imprinted into the fuift fins. The frames, without farking the feeds, are then carried out into the open air, and placed in a reclining pofition againtt a wall to dry, the fide covered with the feeds being next the wall, in order that it may be fheltered from the fun. In this fate the fins mult be left fereral days to dry in the fun, until no appearance of moitture is obferved in them, when they are fit to be taken from the frames. When the imprefled feeds are beat off from the hair lide, it appeais full of indentations or inequalities, and has acquired that impreffion which is to produce the grain of the fhagreen, after the fkins have been fubjected to the laft fmoothing or feraping, and have been dipped in a ley, which will be mentioned hereafter, before they receive the dye.
"The operation of fmoothing is performed on an inclined bench or board, which is furnifhed with an iron hook, and is covered with thick felt of theep's wool,

Shagreen. on which the dry fkin may gently reft. The fkin is fufpended in the middle of the bench or board to its iron llook, by means of one of the holes made in the edge of the flin for extending it in its frame as before meutioned; and a cord, having at its extremity a fone or a weight, is attached to each end of the fkin, to keep it in its pofition while under the hands of the workman. It is then fubjected to the oprevation of fmoothing and feraping by means of two different inftrmments. The firf ufed for this purpofe, called by the fartars toliar, is a piece of fharp iron bent like a hook, with which the furface of the flagreen is pretty clofely feraped to remove all the projecting inequalities. This operation, on account of the corneous hardnefs of the dry fikin, is attended with fome difficulty ; and great cantion is at the fame time required that too much of the impreffion of the alabuta feed be not deftroyed, which might be the cafe if the iron were kept too flarp. As the iron, lonwever, is pretty blunt, which occafions inequalitics on the fhagreen, this ineonvenience muft afterwards be remedied by means of a fharp feraping iron or urak, by which the furface acquires a per.fect uniformity, and only faint impreffions of the alabuta feed then remain, and fuch as the workman wifhes. After all thefe operations, the fhagreen is again put into water, partly to make it pliable, and partly to raife the grain. As the feeds occafion indentations in the furface of the finin, the intermediate fpaces, by the operations of fmoothing and fcraping, lofe fome part of their projecting fubftance; but the points which have been depreffed, and which have loft none of their fubflance, now fwell up above the fcraped parts, and thus form the grain of the fhagreen. To produce this effeet, the fkins are left to foak in water for 24 hours; after which they are immerfed feveral times in a flong warm ley, obtained, by boiling, from a flrong alkaline earth named fchora, which is found in great abundance in the neigh. bourhood of Aftracall. When the fkins have been tdken from this ley, they are piled up, while warm, on each other, and fuffered to remain in that flate feveral hours; by which means they fwell, and become foft. They are then left 24 hours in a moderately Arong pickle of eommon falt, which readers them exceedingly white and beautiful, and fit for receiving any colour. The colour mont ufual for thefe fiins is a fea.green; but old experienced workmen can dye them blur, red, or black, and even make white fhagreen.
"For the green colour nothing is neceffary hut filings of copper and fal ammoniac. Sal ammoniae is diffolved in water till the water is conipletely faturated; and the Shagreen fkins, fill moif, after being taken from the pickle, are wafhed over with the folution on the ungrained flefh fide, and when'well moillened a thick lay. er of copper filings is Arewed uver them : the Akins are then folded double, fo that the fide covered with the filings is innermolt. Each fkin is then rolled up in a piece of felt; the rolls are all ranged together in proper order, and they are preffed down in an uniform manner by fome heavy bodies placed over them, under which they remain 24 hours. During that period, the folution of fal ammoniac diffolves a quantity of the cupreous particles fufficient to penetrate the Kkin , and to give it a fea-green colour. If the firft application be: not fufficient, the procefs is repeated in the fame mane. ner; after which the fkins are fpread out and dried.
"For the blue dye, indigo is ufed. About two Shagreen. pounds of it, reduced to a fine powder, are put into a kettle; cold water is poured over it, and the mixture is tirred round till the colour begins to be diffolved. Five pounds of pounded alakar, which is a kind of barilla or crude foda, prepared by the Armenians and Calmues, is then diffolved in it, with two pounds of lime and a pound of pure honey, and the whole is kept feveral days in the fun, and during that time frequently thirred round. The fkins intended to be dyed blue muft be moiftened only in the natrous ley fobora, but not in the falt brine. When fill moilt, they are folded up and fhewed together at the edge, the flefh fide being innermofl, and the thagreened hair fide outwards; after which they are dipped three times in the remains of an exhaufted kettle of the fame dye, thie fuperfluous dye being each time expreffed; and after this procefs they are dipped in the frefh dye prepared as above, which nult not be expreffed. The fkins are then hung up in the fhade to dry; after which they are cleaned and paired at the edges.
"For black fhagreen, gall-nuts and vitriol are employed in the following manner :-The fkins, moifl from the pickle, are thickly beftrewed with finely pulverifed gall-nuts. 'They are then folded together, and laid over each other for 24 hours. A new ley, of bitter faline earth or fchora, is in the mean time prepared, and poured hot into fmall troughs. In this ley each fkin is feveral times dipped; after which they are again beftrewed with pounded gall-nuts, and placed in heaps for a certain period, that the galls may thoroughly penctrate them, and they are dried and beat, to free them from the duft of the galls. When this is done, they are rubbed over, on the thagreen fide, with melted theep's tallow, and expofed a little in the fun, that they nay. imbibe the greafe. The fhagreen-makers are accuflomed alfo to roll up each fkin feparately, and to prefs or fqueeze it with their hands againft fome hard fubttance, in order to promote the abforption of the taliow. The fuperfluous particles are removed by means of a blunt wooden feraper (urac) : and when this procefs is finith. ed, and the fkins have lain fome time, a fufficient quantity of vitriol of iron is diffolved in water, with which the fhagreen is moifened on both fides, and by this operation it acquires a beautiful black dye. It is then dreffed at the edges, and in other places where there are any blemifhes.
"To obtain white fhagreen, the 成ins mult firft be moiftened on the fhagrcen fide with a Itrong folution of alum. When the thin has imbibed this liquor, it is daubed over an both fides with a pafte made of four, which is fuffered to dry. The pafte is then wathed off with alum-water, and the flin is placed in the fun till it is completely dry.. As foon as it is dry, it is gently befmeared with pure melted theep's tallow, which it is fuffered to imbibe in the fun; and to promote the cffeet, it: is preffed and worked with-the hands. The Ikins are then faftened in fucceffion to the before mentioned bench, where warm water is poured over them, and the fuperfluous fat is fcraped off with a blunt wooden inftrument. In the laft operation the warm water is of great fervice. In this manner fhagreen perfectly white is obtained, and nothing remains but to pare the edges and drefs it.
"But this white fhagreen is not intended fo much

S H A

Shagren, for remaining in that ftate, as for recciving a dark red Sharp. dye; becaufe, by the above previous procefs, the co-
lour becomes much more perfect. The fkins dellined for a red colour muft not be imnerfed firt in ley of bitter falt eartl ((cilora), and then in piekle, but after they lave been whitened, mull beleft to foak in the pickle for 24 hours. The dye is prepared from cochineal, which the Tartars call kirmitz. About a pound of the dried herb tychagann, which grows in great abundanee in the neighbourhood of Atracan, and is a kind of foda plant or kali (Jalfola erisoides (a), is builed a full hour in a kettle contaiaing about four common pailfuls of water; by which means the water aequires a greenifh eolour. The herb is then taken out, and about lialf a pound of pounded cochineal is put into the kettle, and the liquor is left to boil a full hour, eare being taken to flir it that it may not run over. About 15 or 20 drams of a fubftance which the dyers call lizter (orchilla) is added, and when the liquor has been boiled for fome time longer, the kettle is removed from the fire. The fkins taken from the pickle are then placed over each other in troughs, and the dye-liquor is poured over them four different times, and rubbed into them with the hands, that the colour may be equally imbibed and difufed. The liquor each time is expreffed ; after which they are fit for being dried. Skins prepared in this manner are fold at a much dearer rate than any of the other kinds."

SHARP (Abraham), an eminent mathematician, mechanift, and aftronomer, was defcended from an ancient family at Little Horton, near Bradford, in the Weft Riding of Yorkfine, where he was born about the year 165 I . At a proper age he was put apprentiee to a merchant at Manchefter; but his genius led him :of frongly to the fudy of mathematics, both theoretical and practical, that he foon became uneafy in that fituation of life. By the mutual confent, therefore, of his mafter and himfelf, though not altogether with that of his father, he quitted the bufinefs of a merchant. Upon this he remnved to Liverpool, where he gave himfelf up wholly to the fudy of mathematies, aftronomy, \&e.; and where, for a fubfiftence, he opened a ichool, and taught writing and accounts, \&c.

He had not been long at Liverpool when he accideritally fell in company with a merchant or tradefman vifiting that town from London, in whofe houfe it feems the aftronomer Mr Flamkeed then lodged. With the view therefore of becoming acquainted with this eminent man, Mr Sharp engaged himfelf with the merchant as a book-keeper. In confequence he foon contracted an intimate acquaintance and friendhip with Mr Flam!teed, by whofe intereft and recommendation he obtained a more profitable employment in the dockyard at Chatham; where he continued till his friend and patron, knowing his great merit in aftronomy and mechanics, ealled bion to his affifanee, in eontriving, adapting, and fitting up the affronomical apparatus in the Royal Obfervatury at Greenwich, which had been lately built, namely, about the year 1676 . He was
prineipally employed in the conftruction of the mural arch; which in the compals of 14 months he finified fo greatly to the fatisfaction of Mr Flamfteed, that he fpeaks of him in terms of the highet praife. According to Mr Smeaton, this was the firll good and valid inftrment of the kind; and Mr Sharp the firt artift who cut accurate and delicate divifions upon aftronomical inftruments. At the time this indlrument was conftructed, Mr Flamfteed was 30 and Mr Sharp 25 years of age.

Thefe two friends continued logether for fome time, making obfervations on the meridional zenith diftanees of the fixed ftars, fun, moon, and planets, with the times of their tranfits over the meridian ; alfo the diameters of the fun and moon, and their celipfes, with thofe of Jupiter's fatellites, the variation of the compafs, \&c.

Mr Sharp affifted Mr Flamfteed alfo in making a catalogue of near 3000 fixed flars, with their longitudes and magnitudes, their right afeenfions and polar diftanees, with the variations of the fame while they change their longitude by one degree.

But from the fatigue of continually obferving the ftars at night, in a cold thin air, joined to a weakly conftitution, he was reduced to a bad fate of health; for the recovery of which he defired leave to retire to his houle at Horton; where, as foon as he found himfelf on the recovery, he began to fit up an obfervatory of his own; having firft made an elegant and curious engine for turning all kinds of work in wood or brafs, with a maundril for turning irregular figures, as ovals, roles, wreathed pillars, \&ec. Befide thefe, he made himfelf molt of the tools ufed by joiners, clockmakers, opticians, mathematical inftrument makers, \&c. 'The limbs or arcs of his large equatorial inftrument, fextant, quadrant, \&c. he graduated with the nicelt accuracy, by diagonal divifions into degrees and minutes. The telefcopes he made ufe of were all of his own making, and the lenfes ground, figured, and adjufted with his own liands.

It was at this time that he affifted Mr Flamiteed in caleulating moft of the tables in the fecond volume of his Hifloria Caleflis, as appears by their letters, to be feen in the hands of Mr Sharp's friends at Horton. Likewife the eurious drawings of the charts of all the conftellations vifible in our hemifphere, with the till more excellent drawings of the planifpheres both of the northern and fouthern conttellations. And though thefe drawings of the conftellations were fent to be engraved at Amfterdam by a marfterly hand, yet the originals far exceeded the engravings in point of beauty and elegance: thefe were publifhed by Mr Flamiteed, and both copies may be feen at Horton.

The mathematician, fays Dr Hutton, meets with fomething extraordinary in Sharp's elaborate treatife of Geometry Improved (in 4 to, 1717 , figned A. S. Philomath): ift, by a large and aceurate table of fegments of cireles, its conftruction and various ufes in the folution of feveral difficult problems, with compendious tables
(A) The beautiful red Turkey leather is dyed with cochineal prepared in the fame manner. Profeflor Gmelin junior, in the fecond part of his Travels through Ruffia, explains the herb tfchagann by artemifia annua, having doubtlefs been deceived by the appearance the plant acquires after it has been dried. Befides, this artemifia is found only in the middle of Siberia, and never on the well fide of the Irtifch.

Sharp.
for finding a true proportional part ; and their ule in thefe or any other tables exemplified in making loga. rithms, or their natural numbers, to 60 places of figures; there being a table of them for all primes to 1100 , true to 61 figures. 2d, His concife treatife of Polye dra, or folid bodies of many bafes, buth the regular ones and others: to which are added twelve new ones, with various methods of forming them, and their exact dimenfions in furds, or fpecies, and in numbers ; illuftrated with a variety of copperplates, neatly engraved by his own hands. Alfo the models of thefe polyedra he cut out in boxwood with amazing neatnefs and accuracy. Indeed few or none of the mathematical inftrument makers could exceed him in exactly graduating or neatly engraving any mathematical or aftronomical inftrument, as may be feen in the equatorial inftrument above mentioned, or in his fextant, quadrants, and dials of various forts; alfo in a curious arnillary fphere, which, befide the common properties, has moveable circles, Sc. for exhibiting and refolving all fpherical triangles; alfo his double fector, with many other inftruments, all contrived, graduated, and finifhed, in a moft elegant manner, by himfelf. In fhort, he poffeffed at once a remarkably clear liead for contriving, and an extraordinary hand for executing, any thing, not only in mechanics, but likewife in drawing, writing, and making the moft exact and beautiful fchemes or figures in all his calculations and geometrical conftructions.

The quadrature of the circle was undertaken by him for his own private amufement in the year 1699, deduced from two different feries, by which the truth of it was proved to 72 places of figures; as may be feen in the introduction to Sherwin's Tables of Logarithms; that is, if the diameter of a circle be 1 , the circumference will be found equal to 3.141592653589793238 $4626+338327950288+197169399.751058209749+45$ $9^{23} 307816405, \& c$. In the fame book of Sherwin's may alfo be feen his ingenious improvements on the making of logarithms, and the conftructing of the natural fines, tangents, and fecants.

He alfo calculated the natural and logarithmic fines, tangents, and fecants, to every fecoud in the firft minute of the quadrant; the laborious inveltigation of which may probably be feen in the archives of the Royal Society, as they were prefented to Mr Patrick Murduch for that purpore; exhibiting his very neat and accurate manner of writing and arranging his figures, not to be equalled perhaps by the beft perman now living.

Mr Sharp kept up a correfpondence by letters with moft of the eminent mathematicians and aftronomers of his time, as Mr Flamfteed, Sir Ifaac Newton, Dr Halley, Dr Wallis, Mr Hodgfon, Mr Sherwin, \&x. the anfwers to which letters are all written upon the backs, or empty ffaces, of the letters he received, in a murthand of his own contrivance. From a great variety of letters (of which a large chettful remain with his friends) from thefe and many other celebrated mathematicians, it is evident that Mr Sharp fpared nether pains nor time to promote real feience. Indeed, being one of the moft accurate and indefatigable computers that ever exifted, he was for many years the common refource for Mr Flamiteed, Sir Jonas Moore, Dr Halley, and others, in all forts of troublefome and delicate calculations.

Mr Sharp contiused all his life a bachelor, and fpent Suppl. Vol. II. Part II.
his time as reclufe as a hermit. He was of a middle ftature, but very thin, bcing of a weakly conftitution. He was remarkably feeble the laft three or four years before he died, which was on the 18 th of July $17 t^{2}$, in the 9 if year of his age.

In lis retirement at Little Horton, he employed four or five rooms or apartnents in his houfe for different purpofes, into which none of his family could poffibly enter at any time withont his permiffion. He was feldom vifited by any perfons, except two gentlemen of Bradford, the one a mathomatician, and the othor an ingenions apotliecary ; thefe were admitted, when he chofe to be feen by them, by the fignal of rubbing a ftone againt a certain part of the uutfide wall of the houfe. He duly attended the diffenting chapel at Bradford, of which he was a nember, every Sunday; at which time he took care to he provided with plenty of halfpence, which he very charitably fuffered to be taken fingly out of his land, held behind him during his walk to the chapel, by a number of poor people who followed him, without his ever looking back, or afking a fingle queftion.

Mr Sharp was very irregular as to his meals, and remarkably fparing in lis diet; which lie freguently took in the following manner. A little fquare lole, fomething like a window, made a communication between the room where he was ufually employed in calculations, and another chamber or room in the houfe where a fervant could enter; and before this hole he had contrived a fliding board: the fervant always placed his victuals in this hole, without fpeaking or making any the leaft noife; and when he had a little leifure, he vifited his cupboard to fee what it afforded to fatisfy his hunger or thinft. But it often happened, that the breakfaft, dinner, and fupper, have remained nutouclied by him, when the fervant has gone to remove what was left fo deeply engaged had he been in calculations.

SHARPS in flour, the finer part of what we have denominated Pollards. See that article, Suppl.

SHASTAH, the fame as Shaster; which fee, Encycl.

SHEA, the name of a tree, from the fruit of which the Negroes, in the interior parts of Africa between the tropics, prepare a kind of vegetable butter. Thefe trees are not planted by the natives, but are found growing naturally in the woods; and in clearing wood land for cultivation, every tree is cut down but the Shea. 'The tree itfelf wery much refombles the American oak; and the fiuit, from the kernel of which being firt dried in the fun the butter is prepared, by boiling the kernel in water, has fomewhat the appearance of a Spanith olive. The kernel is enveloped in a fwect pulp, under a thin green rind ; and the butter produced from it, befides the advantage of its keeping the whole year without falt, is whiter, lirmer, and, Mr Park fays, to lis palate, of a richer flavour than the beft butter which he ever tafted made from cows milk. The growth and preparation of this commodity, leem to be among the firft objects of African indurtry in this and the neighbouring ftates; and it conftitutes a main article of their inland commerce. In forne places they dry the fruit in kilns, containing each about half a cart load of fruit, under which is kept up a clear woud fire. Our author, who faw the fruit in one of thefe bilas, was informed, that in three days the fruit 3 S
would

Sharp
Stiea

Sheave, would be ready for pounding and boiling; and that the $\underbrace{\text { Shebbeare, butter thus manufactured is preferable to that which }}$ is prepared froun fruit dried in the fun; efpecially in the rainy feafon, when the procecfs by infolation is always tedious, and oftentimes ineffectual. Might it not be worth whilt, if practicahle, to cultivate Shea-trees in fome of our Wert India illands?
SHEAVE, in mechanics, a iolid cylindrical wheel, fixed in a claunel, and nuveable about in axis, as beiug ufed to raife or increafe the mechanical powers apphied to remove any bedy.
SHEBREARE (John) was born at Bideford, a confiderable fea port and curporation town in Devonthire, in the year 1709. His father was an attorney; but having fimall pratitice and little fortune, he carried on alfo the butinefs of a corm-facur. He had four children, two fons and two daughters. Of the fons, Jolin, the fubject of our prefent memoir, was the eldetl. The cther fon was callect Riclard, and entircly the reverfe of his brother in difpofition; he was bred to the fea, and died young.
John receivel the ruJiments of his education at the free granmar fchool of Exeter, then conducted by the learned Mr Zachary Mudge (author of an E®ay for a new Verfion of the Pfalms, and a volume of excellent Sermons), aftcrwards Rector of St Andrew in Plymouth. It has oftentimes been remarked, that the future life of a man may be nearly gueffed at from bis puerile character. Thus Shebbeare, while a fchoolboy, gave the flrongeft indications of his future eminnence in mifanthropy and literature, by the remarkable tenacioufnefs of his memory, and the readinefs of his wit, and no lefs fo by the malignity of lis difpofition; being univerfally coiffidered as a lad of furprifing genius, while at the fame time he was as generally defpited for his malicious and ungrateful temper. This may eafily be believed, when it is faid, that he formed not one connection, either at fchool or afterwards, with any perfon in the way of friendhip, except with a young barber of an abandoned sharacter, but whofe foul was perfectly congenial to that of Shebbeare's.

Such is the account of Shebbeare's boyih years which we lare in the $14^{\text {th }}$ volume of the European Magazine. It is probably much exaggerated ; for Shebbeare eontinued throngh life a flaunch Tory, if not a Jacokite; and it is well known that many wf our journatifts corfider themfelves as at liberty to give what claracters they pleafe of fuch men.

In the fifteenth or fixteenth year of his age, young Shebbeare was bourd apprentice to a very eminent and worthy furgeon in lis native town ; in which fituation he aequiried a confiderable flare of medical know. ledge. His genius for tampoon appeared at this eurly period, and he could nor forbear from exercifiting it on his matter. No one indeed could give him the flighteft offence with impunity ; for which reafon almot every perfon avoided his acquaintance, as we would avoid the carefliny of an adder. The clicif mat k s, liowever, of the arrows of lis wit were the gentlemen of the corporation: one or other, and fometimes all of them, were almoft couffantly expofed in a libel upon the public poofs and corners of the flecets. But thongly the wifer part of them only laugled at thefe hamberis trifes, yet fome were more irritable, and many a profecution was commenced againft, but not one could fix itfelf upon him,
fo artfully had he contrived to conceal himfelf.
He Shcol.care was alfo feveral times fummoned to appear at the feffions, for daring to fpeak and write irreverently of the worfhipful magiftrates; but the laugh was alivays on the fide of Shebbeare, nor could they ever come at his back, fo clofely had he litted on his armuur, with the whip of authority.

When he was out of his time he fet up trade for himfelf, and then thewed a tafte for chemiftry; and foon after he married a very agreeable and amiable young woman, of no fortune, but of a genteel family. Whether his infuperable propentity to fatire deprived him of friends and of bufinefs, ur that he fpent too much in chemieal experiments, we know not; but failing at Bideford, he removed, about the year 1736 , to Briflol, where he entered into partnerfhip with a chemit, and never afterwards fet his foot in his native town.

In the year 1739 he attracted the attention of the public, by an epitaph to the memory of Thomas Cofter, Efq. member for Briftol; in which, it has been truly obferved, that he has contrived to raife emotions of pity, grief, and indignation, to a very high degree. The nest year he publifhed a pamphlet on the Briftol waters; from which period there is a chafm in our author's life we are unable to fill up. In this interval may probably be placed his failure in bufinefs, and his effort to obtain a higher fituation in his profeffion. It is certain that in the year 1752 he was at Paris, and there he obtained the degree, if he obtained it at all, which gave him the addition to his name which accumpanied him during the reft of his life, that of Ductor. Until this time he appears to have lived in obfcurity; but at an age when vigorons exertion ufually fubfides, he feems to lave refolved to place himfelf in a confpichous fituation, whatever hazard might attend it, and commenced a public writer with a degree of celerity and virulence for which it would be difficult to find a parallel even in the moft temperate times. To read over his works now, when the paffions they then raifed have fubfided, we feel furprife at the effect they produced; and it is within the memory of many yet living, that their influence was very confiderable. In the year 17;4, he began his career with The Marriage Act, a political novel ; in which he treated the leginature with fuch freedom, that it occafioned his being taken into cu!tndy, from whence, however, he was foon releafed.

The performances, however, moft celebrated, were a feries of Letters to the People of England, which were written in a ftyle vigorous and energetic, though flovenly and carelefs, well calculated to make an im. preffion on conmon readers; and were accordingly read with avidity, and circulated with diligence. 'They had a very confiderable effeet on the minds of the people, and galled the miniltry, who feem to have been at firft too eager to punifh the author. On the publication of the Third Letter, we find warrants, dated $4^{t h}$ and 8th of March, 1756, iffued by Lord Hol. derneffe, to take up both Scott the publifher and the author. 'This profecution, however, feems to have been dropt, and the culprit proceeded for fome time unmolefted, "having declared (fays one of his anfwerers) that he would write himfelf into a poft or into the pillory; in the laft of which he at length fucceeded." On the $12 t^{2}$ of January 1758 , a general warrant was figned by Lord Holderneffe, to fearch for the author,
printer,

S H E [507$] \quad$ S I F

Shelbeare. printer, and publifhers of a wicked, andicious, and treafunable libel, entitled, ". A Sixth Letter to the People of England, on the progrees of national ruin ; in which is fhewn that the prefent grandeur of France and calamities of this nation are owirg to the influence of Hanover on the councils of England;" and them having found, to feize and apprchend, together with their books and papers.

At this juncture government fiem to have been effectually roufed; for having received information that a feventh letter was printing, by virtue of another warrant, date1 January 23, all the cupies were feized and enticly fuppreffed. In Edfter Term an information was filed againft him by Mr Pratt, then attorney general, afterwards Lord Cumden ; in which it is now worthy of remark, that ther crown ufficer, in his appli cation to the court, in exprefs terms admitted a point, fince much difputed, that of the jury's right to determine both the law and the fact in matters of libel. "What I urge (fays the advocate) tu the court, is only to fhew there is reafonable ground for conlifering this publication as a libel, and for putting it in a way of trial, and therefure it is I pray to have the rule made abfolute; for I admit, and your lordihip well knows, that the jury in matter of libel are judres of the law as well as the fact, and lave an unduubted right to confider whether, upon the whole, the paniphlet in queftion be, or be not, a falfe, malicious, aind feandalous libel." On the 17 th of June, the intormation was tried, when our author was found guilty ; and on the 28 th November he received fentence, by which he was fined five pounds, ordered to fand in the pillory December 5, at Charing Crofs, to be confined three years, and to give fecurity for his good behaviour for feven years, himfelf in 500 l . and two others in 2501 . each.

On the day appointed, that part of the fentence which doomed him to the pillory was put in execution, amidft a prodigious concourfe of people affembled on the occafion. The under fheriff, at that time, happened fo be Mr Beardmore, who had fometimes been affitted by the Doctor in writing the Monitor, a paper in its principles of the fame tendency with the writings of the culprit, who confequently might expect every in. dulgence from the ufficer to whom the execution of his fentence was committed. The manner in which it was conducted may be learned from the affidavits on which afterwards the under heriff's conduct became the fubject of animadverfon in the court of King's Bench, and which affert, "that the defendant only flood upon the platfurm of the pillory, unconfined, and at his eafe, attended by a fervant in livery (which fervant and livery were hired for the occafion only) holding an um. brella over head all the time : but his head, hands, neck, and arms, were not at all confined, or put into the holes of the pillory; only that he fometimes put his hands upon the holes of the pillory in order to refl himielf." For this neglect of duty, Beardmore was fined 501 . and fuffered two months imprifonment.

Some time before he was tried for the obnoxious publication already mentioned, the Duchefs of Queenfbury, as heir of Lord Clarendon, obtained an injunction in the Court of Chancery to fop the publication of the continuation of that nobleman's hiftory; a copy of which had got into the hands of Francis Gwyn, Efq. between whom and the Doctor there had been an
agrecment to publifith it and equally divide the profis. si, bis rese. The care and expences attending the ufhering this work into the world were to be ulolly. Dr Shicbbeare's, who performed his part of the agreement, and caufed it to be handfumely printed in quarto, with a Tory preface, containing frequent reflictions on, and allufons to recent events, and to living characters, which gave it the ap;earance rather of a temporaiy pamphlet than of a woik calculaterl for pofterity. On the injunction being obtained, Dr Shebbeare was under the neceffity of arolying (1) the aid of law to recover the money expended by him in printing, amountince to more than 5 col . Of that fum more then half had been watted on his ficle in the conts of law and equity. And come years afterwarls, fpeaking of the fituation of his affurs, he fajs, " lt may be eali'y imagined, that my circumilances were not inaproved by three years impriforment. I had no club of partizans to maintain me duri.ng that time, to difcharse my debts, nor even the line, which I was obli red to pay after a thre years confinement fur a lingle offence. Notwithitanding the difficulties which inesitably arofe from thefe particulars, and allowigh an infolvent act was paffed foun after his Mijefty's acceftion to the throne, and my circumflances might have apologited for my taking that opportunity which it offered ; I neverthelefs declined from availing myfelf of that occafion to evade the payment of my debts. I proferred the latour of endeavouring to pay them, and the rifk of being again imprifoned if I did not fucceed. But, than k Heaven, I am in no danger of a fecond imprifonment on that accousat." During his confinement, he declares he never received as prefents more than twenty guines from all the world.

While he was confined in the King's Bench, he folicited fubferiptions for the firft volume of a Hiftory of England, from the Revolution to the then prefent time. But at the perfuafion of his friends he was induced to alter his defign, and receipts were iffued fur a firt volume of the Hiftory of England, and of the Conftitution thercuf from its origin. That volume he wrote, and liad tranferibed. "But as it was impracticable (to ufe his own words), whillt I was in confinement, to procure that varicty of books, or to apply to manufeript authorities, for all that was requifite to the completing of this firf volume, I fuund on being releafed from my imprifonment, and on application to the former only, that the volume which I had written was incorreet, infufficient, and erroncous, in too many parliculars, to adinit of its being publihed, without injuflice to m_{3} fubferibers, and reprehenfons on myfelf. Into this difpleafing fituation I had been mifled by relying on the anthorities of modern hiftorians, who pretend tu cite the authors from whence their materials are taken, many of whom appear never to have fecu them, but implicitly to have copied one another, and all of them manifeftly defective; not only in the authorities they fhould have fought, but in their omifions and mifreprefentations of thofe whom they had confulted : mure efpecially refpecting thofe parts of the old German codes, on which our contitution is erected, and without which it cannot be properly explained or underfood. Such being the real lituation of things, I perceived that more time than I could expect to live would be neceffarily required fur fo extenfive a work as

Sheberare, the whole hiltory I had propofed; and that a fingle volume, or even a few volumes of an hiftory incomplete, would by no means anfwer either the intention of my fubfribers, or my own: I determined therefore to change iny plan, and to include in one volume that which might require no others to complete this new defign.
"In confequence of this alteration, I refolved to exert my beft abilities, not only to trace the conflitution of England from its origin in the woods of Germany, as M. de Montefquie!s expreffes it, but from the firtt principles of human nature, from which the formation of all kinds of government is derived. With this view, I have attempted an analyzation of the mental and corporeal faculties, in order to fhew in what manwer they reciprocally influence each other in the various actions of man, not only as an individual, but as a gregarious being, impelled by nature to affociate in communities. From hence I have attempted to delineate in what manner legiflature fprang and proceeded from its fource, through that variety of meanders which it hath formed in its current, both before and fince the introduction of one common fign, whereby to exprefs the intrinfic value, not only of all the productions of nature and of art, but even of the human faculties, as they are now eftimated; to compare the conflitutions of thofe different flates which liave been, and are the moft celebrated in ancient and noodern hiftory, with each other, and with that of England; and then to desive fome reafonable grounds for the determination of that which feems to be the molt confentaneous with the primogenial inftitutes of nature, and the happinefs of human kind. In coufequence of this intent, the mamers that fucceffively arofe and prevailed in fuch ftates, the benefits and mifchiefs which enfued from them, are delineated, in order to explain on what foundation the welfare of national communities may moft probably be eftablifhed."

This plan, thus delineated, he at times employed himfelf in filling up; but on being rudely attacked for not jerforming his proinife with his fubferibers, he, in 1774 , obferved-" From the inevitable obligations, not only of fupporting my own family, but thofe alfo whom as fon and brother it was my duty to fuftain for forty years, and which, refpecting the claims of the latter, flill continues; it will be eatily difeerned that many an avocation muft have proceeded from thefe circumitances, as well as from a fenfe of gratitude to his majefty, in defence of whofe government I have thought it my duty occafonally to exert my bell abilities." He adds, however, that he did not intend to die until what he had propofed was fuiflied; a promife which the event has fhewn he was unable to perform.

In prifon he was detaired during the whole time of the fentence, and with fome degree of rigour ; for when his life was in danger from an ill fate of health, and he applied to the court of King's Bench for permiffion to be carried into the rules a few hours in a day, tho' Lord Mansfield acceded to the petition, yet the prayer of it was denied and defeated by Judge Fofter. At the expiration of the time of his fentence, a new reign had commenced ; and fiortly afterwards, during the adminiftration of Mr Grenville, a penfion was granted him by the crown. This he obtained by the perfonal ap. plication of Sir John Philips to the King, who, on that
occafion, was plcafed to fpeak of him in very favour. Shebbeare, able terms, which he promifed undeviatingly to endeavour to deferve by allegiance and gratitude.

From the time of that cvent we find Dr Shebbeare a uniform defender of the meafures of Government, and the mark againft whom every oppofer of adminittration confidered himfelf at liberty to throw out the groffelt abufe. Even the friends of power were often adverfe to him. Dr Smollet introduced him in no very refpectful light, under the name of Ferret, in the novel of Sir Launcelot Greaves, and Mr Hogarth made him one of the group in the third election print.

Scarce a periodical publication was without fome abufe of him, which he feems to have in general had the good fenfe to neglect. In the year 1774, howcver, he departed from his general practice, and defended himelf from fome attacks at that time made upon him. In this pamphlet he reprefented the conduct and character of King William in fuch a light as to excite the indignation of every Whig in the kingdom: he treated him in print with as great feverity as Johnfon ufed to do in converfation.

Early in life he appears to have written a comedy, which in 1766 he made an effort to get reprefented at Covent Garden. In 1763 he wrote the Review of Books in the Political Regifter for three months, and was often engaged to write for particular perfons, with whom he frequently quarrelled when he came to be paid. This was the cale with Sir Robert Fletcher, and we think of others. His pen feems to have been conftantly employed, and he wrote with great rapidity, what certainly can now be read with little fatisfaction, and mult foon be forgotten. Though penfioned by government, he can fearce be faid to have renounced his opinions; for in the pamphlet already mentioned, his abufe of the Revolution is as grofs as in that for which he fuffered the pillory. His violence defeated his own purpofe, and made thofe who agreed in party with him revolt from the virulence with whieh he treated his adverfaries. During the latter years of his life he feems to have written but little. He was a ftrenuous fupporter of the miniftry during the American war, having publifhed, in 1775, An Anfwer to the printed Specch of Edmund Burke, Efq; Spoken in the Houle of Commons, A pril 19, 1774. In which his knowledge in polity, legiflature, human kind, hiftory, commerce, and finance, is candidly examined ; his arguments re fairly refuted ; the condnct of adminiftration is fully defended; and his oratoric talents are clearly expofed to view. - And An Effay on the Origin, Progrefs, and Eflablifhment of National Society; in which the principles of Government, the definitions of phyfical, moral, civil, and religious Liberty contained in Dr Price's Obfervations, \&ic. are fairly examined, and fully refuted; together with a juftification of the Leginature in reducing America to obedience by force. To which is added, an Appendix on the Excellent and Admirable in Mr Burke's fecond printed Speech of the 22 d of March 1775 , both 8 vo.

His publications, ratirical, political, and medical, amount to thirty four, befides a novel, entitled Lydia, or Filial Piety; in which religious hypocrify and blutering courage are very properly chaftifed. He died on the th of Augult 1788, leaving, among thofe who knew him beft, the character of a benevolent man ; a character

S H I [509]

Sheers character which, from the manner in which he fpeaks of his connections, he probably deferved.

SHEERS, aboard a thip, an engine ufed to hoift or difplace the lower matts of a Thip.

SHEIBON, a diftrict in Africa, lying to the fouthealt of the kingdom of Dar-Fur (Sec Soudan in this volume), where musch gold is found both in doft and in fmall pieces., The natives, who are idolaters and favages, collect the duft in quills of the oftrich and vulture, and in that condition fell it to the merchants. They have a ceremony on difcovering a large piece of gold, of killing a fheep on it before they remove it. The people, who are all black, have fome form of marriage, $i . \dot{e}$. of an agreement between man and woman to cohabit. Women of full age wear a piece of plaited grafs on their parts. The younger and unmarried are quite naked. The flaves, which are brought in great numbers from this quarter, are fome prifoners of war among themfelves (for their wars are frequent), and fome feduced by treachery, and fold. But it is faid to be a common practice for a father in time of fearcity to fell his children.

At Sheibon are fome Mahommedans, who live among the idolaters, and wear clothing: it is not faid whether Arabs or not. Mr Browne, from whofe travels we have taken this account of Sheibon, does not give its latitude or longitude.

SHILLUK, a town in Africa on the banks of the Balr-el-abiad, or true Nilc. The houfes are built of clay, and the iuhabitants, who are idolaters, have no other cluthing than bands of long grafs, which they pafs round the wait and between the thighs. They are all black; both fexes are accuftomed to thave their heads. The people of Shilluk have the dominion of the river, and take toll of all paffengers, in tuch articles of traffick as pafsamong them. The name Shilluk is not Arabic, and its meaning is unknown. - When afked concerning their name or country, the people reply Shilluk. When employed in tranfporting Mahommedans acrofs the ferry, they occafionally exhibit the importance which their fituation gives them. After the Muflim has placed himfelf in the boat, they will atk hin, "Who is the mafler of that river?" 'the other replies, as is ufual, "Ullah or Rubbani"- God is the mafter of it. "No (anfwers the Shilhuk), you muft fay that fuch a one (maming his chief) is the mafter of it, or you hall not pafs." They are reprefented as fhewing hofpitality to fuch as come among them in a peaceable manner, and as never betraying thofe to whom they have once accorded protection. The particulars of their workhip have not been deferibed. In Mr Browne's map, Shilluck is placed in about $13^{\circ} \mathrm{N}$. Lat. and $32^{\circ} 25^{\prime}$ E. Long.

SHIP. See that articie, and Shipbullding (Encycl.), and likewife FloAting Bodies (Suppl.) In the Trarfactions of tbe Rayal Society of London for 179^{8}, Mr Atwood has completed his difquifition on the Stalility of Ships; but as the memoir cannot be abridged, we mutt refer the feientific naval architect to the original for much ufeful information.

A fmall work has lately been publifhed by Charles Gore, Efq: of Weimar in Saxony, upon the refperive V elocity of Floating Bodies varying in Form. It contains merely the refults of two feries "of experiments: from the firft of which feries, it feems to appear that
the form beft calculated for velocity is a long paralle! body, terminating at each end in a parabolic cuneus, and having the extreme breadth in the centre. Alro, that making the cuncus more obtule than is neceffary to break with fairnefs the curve line into the ftraight, creates a confiderable degree of impediment. And Mr Gore is inclined to think, that the length of thips, which has already been extended with fuecefs, to four times the breadtl, is capable, with advantage, of ftill further extenfion, perhaps to five, and, in fome cafes, even to fix times.

The fecond fet of experiments was inftituted to afcertain the refpective degrees of flability, or power of refifting the preffure of the wind, in carrying fail, on bodies of different forms. The bodies ufed in the experiments had their fpecific capacities and weights precifely equal, but their forms different ; and from the refults, it appears that the form of a midhip body, beit adapted for ftability only, is a flat bottom, with perpendicular fides; and that the next beft adapted is a femicircle. But as there exills much difficulty in conflructing the former with fufficient flrength, befides its being ill adapted to heavy feas, as, by the fudden defcent in pitching, the bottom will frike the water nearly at right angles, and fuftain thereby a tremendous thock. And as the latter feems to be too inclinable to tranfverfe ofcillation, or rolling, and alfo to be deficient in capacity formany fervices, our author is of opinion, that a midrhip body, of a compounded form, is moft appli. cable to general purpofes.

On account of the few documents before lis, we are unable to fpeak critically concerning this tract. To benefit naval architecture, we are of opinion, that the method of experiment is more fure and expeditious than that of calculation: yet conclufions from experiments muft he drawn with great caution. It is by no means certain that a refult obtained for a body of a given bulk will obtain for fimilar bodies which differ in dimentions.

We fhall conclude this flort article with a fatement of the principles upon which Patrick Miller, Efq; of Dalfwinton (Scotland), propofes to conftruct flips and veffels which cannot founder.

The veffel is to be kept afoat, without the a.d of its fides, folely by the buoyaney of its bottom, which is flat ; the bottom never being fo deeply immerfed as to bring the upper furface thereof on a level with the wa. ter; fuch veffls not being conftructed for the purpofe of carrying cargoes, but for that of carrying paffengers, with the neceffary tores and provilions; and as thete veffels are not kept afloat by the aid of their fides, but by the buoyancy of their buttom, as above defcribed, they cannot fink, and therefore pumps are mot required, nor are they in any refpect neceffary for the frefervation of fuch veffels. The faid veffel is put in motion, during calms, and againft light winds, by means of wheels. Thefe wheels project beyond the fides of the veffel, and are wrought by mears of captans: the number and the dimentions of the wheels depend upin the length of the veffel. Thefe wheels are built with eight arms, which confift entirely of plank. Sliders are ufed to work and to keep the veficl to windward when under fail. Thefe fliders are placed in the centre of the veffel, from flem to ttern; they are made of plank, and the number and dimenfons mult depend on the length of the veffel; and they are raifed and let

Ship. down, either by the hand, or b: means of a purchale, according to the fize of the veflel. Veffels of this confruction draw water, in proportion to their dimenfions, as follews: a vellel of forty feet in length, and from thirted to nineteen feet in breadth, will draw fiom thirteea to fixtecer inches of water. One of fifty feet in length, and from teventeen to twenty-four feet in breadth, will draw from lifteen to eighteen inches of water. Oae fixty feet luns, and from twenty to twentyeight feet broad, will drate from eighteen to twen:yone iuches of water. One feventy feet long, and from twenty-thee to thirty two feet bruad, wili draw from twenty one to trents-four inches of water. One eighty fect long, and from twelity. feven to thirty-feven feet broad, will draw from twenty four to trenty feven inches of water. Ore ninery feet long, and from thirty to forty two feet broad, will daw from twenty feven to thirty inches of water. One of one hundred feet in leng th, and from thirty-three to forty feven feet in breadth, will draw from thirty to thirty-three inches of water.

As, from the principle u!pon which this veffel is conftructed, fhe cannot ink, the invention mult prove a means of faving many lives; and as it will give more room and height between the decks than any veffel of the fane dimenfions of another conftruction, it thuft add greatly to the comfort and acenmmodation of perfons at fea of all deferiptions. It is expected that, from thefe advantages, a n!ore general and friendly intercourfe amongft nations will take plaee, whieh will have the effect to diffule knowledge, and to remove natinnal prejudices, thereby promoting the general welfare of anankisd. At prefent (fays Mr Miller), it would be altogether improper to give any defeription of thips of greater dimentions, left it thould be converted to a purpofe very different from that intended by the inventor.

SHIFWRECK, a well-known difalter, by which numbers of lives are yearly loft. In that valuable niffcellany entitled, The Pbilofophical Magazine, we have an account of means for preventing that lufs, when the Ship is in danger within two or three hundred fathoms of the fhore; and as the anonymous author (a Frenchman) fays that he has by experiment afcertained the effieacy of thefe means, we fhall ftate them to our readers.

The only certain means of faving the crew of a veflel in fueh a ftate is, to ettablifh a rope of communication from the fhore to the hip. But how is this to be dore? The author fays, by fixing the end of the rope to a bomb or cannon ball, and extending the rope afterwards, in a zig.zag direction, before the mortar or cannon, or fufpending it on a piece of wood raifed feveral feet. A rope, fo placed, will not break (he fays) by the greateft velocity which ean be given to the bomb or ball; and thus the end of it can be fent afmore by a difcharge of artillery. Heprefers the bomb to the camon ball, for reafons which he does not alfign. He propoles, however, other means to effiect lis benevolent purpofe.
"It ought to be remembered (fays he), that a veftel is never ealt away, or perifnes on the cont, but becaufe it is driven thither againft the will of the captain, and by the viclence of the waves and the wind, which almoft alway: blows from the fea towards the thore, withunt whieh there would be no danger to be apprehencied: confequently, in thefe cireumftances, the wind comes always from the fea, either directly or obliquely, and blows towards the fhore.
". 1/f, A common pajer kite, therefore, launched from the veffel and driven lay the wind to the fhore, would be fufficient to fave a crew consifting of 1500 feamen, if fuch wreve the sumber of a thin of war. This kite would ccomey to the more a flrong pack. thecad, to the end of which might be afined a coid, to be drawn on huard by micans of the ftring of the kite; and with this cord a rope, or as any as ihould be neceffary, might be conveg di to the flipi.
" $2 d$, A fmall halloon, of lix or feven fect in dia. meter, and naifed by ratcfied air, would be alfor an excellent means for the like purpore : being driven by the wind from the veflel to the frore, it would carry thither a ftring eapable of drawing a cord witl: which feveral roves might be afterwards conveyed to the veffel. Had not the difcovery of Moutgolfier produced any other benefit, it would be entilled on this account to he confiderea as of great importanice.
" 3%. A fky-rocket, of a large diameter, would be of equal fervicc. It would alio carry, trom the veffel to the thore, a ftring capable of drawing a rope after it.
"Laply, A furth plan for faving the crew of a fhipwreeked vifel, is that of throwing from the veflel into the fea an empty cafk with a cord attached to it. The wind and the waves would drive the eafk to the fhore, and affurd the means of eftahlifhing that rope of communication already mentioned."

SILLA, a large town on the Niger, which bounded Mr Park's travels eaftward. He gives no defeription of the place, which he had not fpirits or health to furvey; but fills a page of his work with the reafons which determined him to proceed no farther. "When I arrived (fays he), I was fuffered to remain till it was quite dark, under a tree, furrounded by hundreds of people. But their language was very different from the other parts of Bambarra; and I was informed that, in thy progrefs eaft ward, the Bambarra tongue was but little underflond, and that when 1 reached Jenné, 1 fhould find that the majority of the inhabitants fpoke a different language, ealled Jenzé Kunmo by the Negroes, and Kalam Soudan by the Moors.
"With a great deal of entreaty, the Dooty allowed me to come into his balloon, to avoid the rain; hut the place was very damp, and I had a fmart paroxy fm of fever during the night. Worn down by fickuts, exhantted with hunger and fatigue, half naked, and with. ont any article of value, by which I might procure provifions, clothes, or lodging, I began to velect felioufly on my fituation. I was now convinced, by painful experience, that the obftacles to my farther progrefs were infurmontable. The tropieal rains were already fet in with al? their violence; the rice grounds and fwamps were everywhere ovelflowed; and in a few days more, travelling of every kind, unlefs hy water, would be completely obflueted. The kowries which remained of the king of Bambarra's prefent were not fufficient to enable me to hire a canoe for any great diftance; and I had but little hopes of fublilting by charity, in a eountry where the Moors have fuch influence. But above all, I perceived that I was advancing more and nore witlsin the power of thofe mereilefs fanatics; and from my reception both at Segn and Sansanding (fee thefe articles, Suppl.), I was apprehenlive that, in attempting to reach even Jenné (unlefs under the protection of fome man of confequence amongtt them, which I had

S I W

Sillon no means of obtaining), I fhould facrifice my life to no purpole; for my difcoveries would perifh with me. The profpect either way was gloomy. In returning to the Gainbia, a jouruey on foot of niany hundred miles prefonted iffelf to iny contenulation, through regions and countries unknown. Neverthelefs, this fecmicd to be the only alternative ; for I faw inevitable deftruction in attempting-to prucced to the caltward. With this corsviction on my inind, 1 hope my readers w:al ackuowledge that I did right in going no larther. I had made every effort to exreute ny mifion h is fullef extent which prudence could jultily. Hiad there been the mon diftant profpect of a moedfful termination, nether the unavoibable hardfiops of the journev, nor the dangers of a fecond caprivity, fhould have forced me to defif. 'This, lowever, neceflity cumpelled me to do: and whatever may be the opinion of my general readers on this point, it affords me inexpreflible fatisfiction, that my honourable employers have been pleafed, fince my return, to exprefs their full approbation of iny conduct " He would be a very unreafonable man, indeed, who could on this pnint think differently from Mr l'aris's employers. Silla is placed in the new map of Africa in about $14^{\circ} 4^{\prime} \mathrm{N}$. Lat, and $1^{\circ} 24^{\prime} \mathrm{V}$. Long.

SILLON, in fortification, an elevation of earth, made in the middle of the moat, to fortify it, when too broad. It is more ufually called the envelope.

SIMANCAS, a village on the eallern limit of the kingdom of Leon in Spain, two leagues below Valladolid, on the river Gifnerga. It is mentioned by Dr Robertfon in the introduction to his Hiltury of America, and is remarkable for the archives or regilter office of the kingdums of Leon and Caflile, kept in the cafte there. This collection was begun when the kings retided often at Valladolid; in which city to this day is the chancery or civil and military tribunal for almof all Spain to the north of the Tagus. It was thought convenient to have thofe papers kept in the neighbourhood of that court; and this cafle was particularly fit for that purpufe, as it is all built of fone. Surne years ago there were two large halls in this office filled with papers reating to the firf futtlement of the Spaniards in South America. There was alfo in the room called the ancient royal patronuge a box containing treaties with Eugland, in which are many letters and treaties between the kings of England and Spain from about the yar 1400 down to 1600 . There was alfo in the fame archives a $\begin{aligned} & \text { Itrong box, with five locks, which, it is faid, }\end{aligned}$ has nut been opened face the time of Philip II. and it is conjectured that it contains the procefs againft Philip's fon Prince Charles. But it fcems fome of the flate papers have been removed to Madrid.

SITUS, in algebra and genmetry, denotes the fituation of lines, furfaces, \&ec. Wo: tius delivers fome things in geometry, which are not deduced from the common analyfis, particularly matters depending on the fitus of lines and figures. Leibuitz has even founder a particular kind of analy is upon it, called calculus fitus.

SIWA, a town in Eigypt, to the weltward of Alex. andria, built on a fmall fertile fput or Oafis, which is furrounded on all fides by defert land. A large proportion of this fpace is filled with date trees; but there are alfo pomegranates, figs, and olives, apricots, and plantains; and the gardens are remarkably flourifhitig. They cultivate a confiderable quantity of rice, which,
however, is of a reddifl hue, and different from that of the Delta. The remainder of the cultivable land fur. nifhes wheat enough for the combunption of the inhabitants. Water, both falt and frefh, abounds: but the fprings which farnifh the lateer are mott of them tepid; and fach is che uature of the water, air, and other circomfances, that ftangers are often affected with agues and nalignane fevers.

The grateft curiofity abont Siwa is a ruin of undoubted antiquity, which, acculing to Mr Browne, refembles tor exactly thofe of the Uppor Egyut, to leave a doube that it was erected and abomed by the fame intelligent race of men. The figures of Ifis and Anubis are confpicuous anong the fculptures; and the propurtions are thufe of the E_{b} yptian temples, thongh in miniatare. What of it remams is a fingle apartment, built of mafly flones, of the laine kemd as thofe of which the promids contit; and covered migianll; with fix large and folid hlocks, that reach from one wall to the other. The leagth is 32 feet m the cliar, the height about 18, the widh 15. A gate, lituated at one ex. tremity, forms the priucipal entrance; and two doors, alto near that extremity, open oppolite tis each other. The other end is quit ruinons; Lut, judging from circumfances, it may be imagined that the beilaing has never been much larger than it now is. There is no appearance of any other edifice hoving been attached to it, and the lefs fo as there are remains of feulpture on the exterior of the walls. In the interior are three rows of emblematical figures, apparently defigned to reprefent a proceffion; and the face between them is filled with hieroglyphic characters, properly fo called. The people of Siwa have no tradition concerning this edifice, nor attribute to it any quaiity, but that of con. cealing treafures, and being the haunt of demous. It has, however, been fuppofed, with fume degree of probability, that Siwa is the Siropum of Pliny, and that this building was coeval with the famous cemple of Jupiter Ammon, and a dependency on it. This may be fo; but neither the natives of Siwa, nor the various tribes of Arabs who frequent that place, know any thing of the ruius of that temple, about which Mr Browne made every poffible enquiry. "It may (as he oblerves) fill furvive the lapfe of ages, yet remain unknown to the Arabs, who traverfe the wide expanfe of the defert ; but fuch a circumftance is farcely probable. It may be completely overwhelined in the fand; but this is hardly within the compars of belief."

The complexion of the people of Siwa is generally darker than that of the Egyptians. 'Their dialect is alfo different. They are not in the habitual ufe either of coffee or tobaccu. Their fect is that of Malik. The drefs of the lower clafs is very fimple, they being almoll naked: among thofe whofe coftume was difeernible, it approaches nearer to that ot the Arabs of the defert than of the Egyptians or Muors. Their clothing confilts of a fhirt of white cotton, with large fleeves, and reaching to the feet; a red Tunifine cap, without a turban; and fhues of the fame colour. In warm weather they commonly caft on the fhoulder a blue and white cloth, called in Egypt melayé and in winter they are defended from the cold by an ibbram or blanket. The lift of their houfehold furniture is very fhort; fone earthen ware made by themfelves, and a few mats, form the chief part of it, none but the richer order being;

S L I

Skirminh, being polfeffed of copper utentils. They occafionally $\underbrace{\text { Sliding. }}$ purchafe a few flaves from the Murzouk caravan. The remainder of their wants is fupplied froni Cairo or A. lexandria, whether their dates are tranfported, both in a dry ftate and beaten into mafh, which, when good, in fome degree refembles a fwect meat. They eat no large quautity of animal food; and brdad of the kind known to us is uncominon. Flat cakes, without leaven, kneadcd , and then half baked, form part of their nourifhment. The remainder confifts of thin heets of pafte, fried in the oil of the palm tree, rice, milk, dates, ice. They drink in great quantities the liquor extracted from the date-tree, which they term date-iree zuater, though it have often, in the flate they diank it, the power of inebriating. Their domeftic animals are, the Aairy theep and goat of Egypt, the afs, and a very fmall number of oxen and camels. The women are veiled, as in Egypt. After the rains, the ground in the neighbourhood of Siwa is covered with falt for nuany weeks. Siwa is fituated in $29^{\circ} 12^{\prime} \mathrm{N}$. Lat. and $44^{\circ} 54^{\prime} \mathrm{E}$. Long.

SKIRMISH Bay, the name given by Lieutenant Broughton to a bay in an inand, which was difcovered by him in latitude $43^{\circ} 48^{\prime}$ fouth, and in longitude 183° eaft. The Chatham armed tender, which Mr Broughton commanded, under Captain Vancouver in his voyage of difcovery, worked up into the bay, and came to anchor alout a mile from the fhore. The Lieutenant, the mafter, and one of the mates, landed, and found the people fo extremcly inhofpitable, that they were obliged to fire upon them in their own defence. The land, whether ifland or continent, is of coniiderable magnitude ; the part which they faw extended nearly 40 miles from eat to weft; and the appearance of the country, according to the defeription given, is very promifing. In many refpects, the natives refernble thofe of New Zealand; from which country they are diftant about 100 leagues: but their k kins were deftitute of any marks, and they lad the appearance of being cleanly in their perfons. Their dreffes were of feal, or jeabear fiin, and fome had fine woven mats faftened round the waift. "They feemed a cheerful race, our converfation (fays Mr Broughton) frequently exciting-violent burfts of laughter anongft them. On our firft landing their furprife and exelamations can hardly be imagined ; they pointed to the fun, and then to us, as if to ank, whether we bad come from thenee :" Their arms were fpears, clubs, and a fmall weapon refenbling the New Zealand patoo.

SLiDinG-rule (fee that article, as likewife Gau-ging-Rod, Geometry, and Logakitmaic Lines, Encycl.) is introduced here, for the fake of a new, and (except in working direct proportions) a more com. modious method than the common, of applying the flider. This method, which is propofed by the Rev. W. Pearfon of Lincoln, is as follows :

Invert the flider B on any common niding rule, whereby the numerical figures will aicend on it, and on the fixed lise A , in contrary directions: now, as the diftance from unity to any multiplier, on Gunter's line, will invariably extend from any multiplicand to their product, it follows, that if any particular number on the inverted flider B be placed oppofite to any other given number on A, the product of thofe numbers will fand on the flider B, againft unity on A; for, in any

512 § $\quad \mathrm{S}$ O

pofition of the inverted fider, the diftance from unity to the multiplier on A, inftead of being carried forward on B , as when the nider is in a direct pofition, is brought baek thereby to unity again ; fo that unity (or ten on fingle lines where the flider is too fhort for the operation) is invariably the index for the product of any two coincident numbers throughout the lines.

In divifion, by the fame procefs, if the dividend on B be put to the index, or unity on A, the divifion and quotient will coincide on the two oppofite lines: fo that when one is given, and fought for on either line, the other is feen on its oppofite line at the fame time.

The next operation which offers itfelf here is reciprocal propnotion, which can be effected by no other method than by inverting the fider, but which is rendered as eafy by this application, as direct proportion is in the common way; for if any antecedcint number on B inverted be fet to its confequent on A, any other antecedent on \mathbf{B}, in the fame pofition, will fland againft its confequent on A, fo as that the terms may be in a reciprocal ratio. In fquaring any number, it will appear from what has been already faid, that if the number to be \{quared be placed on B, inverted againft the fame on \mathbf{A}, the fquare will fland on \mathbf{B}, againft mity on A. Therefore, to extract the fquare root of any number, let that number on B fland againt unity on A; and then wherever the coincident numbers are both of the fame value, that point indicates the root. If two dividing lines of the fame value do not exactly coincide, the coincident point will be at the middle of the fpace contained between thofe two which are neareft a coincidence; and as there is only one fuch poim, there can be no mitake in readily afertaining it. The finding of a mean proportional between any tivo numbers is extremely eafy at one operation; fur if one of the numbers on B inverted be fet on the other on A, the coincident point of two firnilatr numbers hews either of thofe to be the mean, or fquare root of their product, according to the preceding procefs. Thus have we a fhort and eafy method of multiplying, dividing, working reeiprocal proportion, fquaring and extracting the fquare root, at one pofition of the inverted nider, whereby the eye is directed to only one point of view for the refult, after the flider is fixed: whereas, by the cummon method of extracting the fquare root by A and \mathbf{B} direct, the flider requires to be moved backwards and furwards by adjutment, the eye moving al. ternately to two points, till fimilar numbers fand, one on B againft unity on A, and the other on A againit the fquare number on B; which fquare number, in the cafe of finding a mean proportional, mutt be found by a previous operation. Hence, fur mure convenience in the extrachion of roots, and meafuring of folids, an additional line called D has been added to the rule, which renders it mure coniplex, and eonfequently feldom underftood by an artificer.

SNOW. See that article (Encycl.), where we have endeavoured to account for fluw's contributing to the prefervation and growth of vegetables. It mult be confeffed, however, that if fnow poffeffed only the property of preferving vegetables, and of preventing them from perifhing by the feverity of the eold, it is not at all probable that the ancient philofophers would have confidered it as depofiting on the earth nitrous falts, as they might have afcertained, by a very fimple experi-
ment, that it contains mone of that falt; for they did not afcribe the fame property to rain-water, but they remarked that foow burnt the fkin in the manner of acids, as well as other hodies immerfed in it. Being induced to conclude that there was nitre in the air, it was natural that they fould aferibe to this nitre the burning qualities of fnow, and confequently its influcuce on vegetation.

Such reflections induced Morveau, alias Citizen Guyton, to employ J. H. Haffenfraty to inquire into the caule of the difference of the effects of fnow and rainwater on various fubfances. Haffenfratz found that the fe differences are oceafioned by the oxygenation of the fnow ; and that thefe effects are to be afcribed to a particular combination of oxygen in this congealed water. He put $10=0$ grammes of Snow in a jar, and 1000 grammes of dittilled water in another. He poured into each of the jars an equal quantity of the fame folution of turnfole. He placed both the jars in a warm temperature ; and after the flow melted, he remurked that the dye was redder in the fnow water than in the diftilled water. He repeated this experiment, and with the fame refult. He put into a jar 1000 grammes of diltilled water, and into another 1000 grammes of fuow. Into each of the jars he put 6.5 grammes of very pure and clean fulphat of iron. In the firft, there was precipitated 0.150 grammes of the oxide of iron, and 0.010 grammes in the other. As the oxide of iron was precipitated from a folution of the fulphat by oxygen, it thence follows, that the fnow contained more oxygen than the diftilled water; and it follows, from the firlt experiment, that this quantity of oxygen was confiderable enough to redden the tincture of turnfole.

It is fully demonftrated by thefe two experiments, that fnow is oxygenated water, and that it muft confequently have on vegetation an action different from that of common ice. The experiments of Dr Ingenhoufs on the germination of feeds have taught us, that the prefence and contact of oxygen are abfolutely neceffary for the plant to expand. They have thewn alfo, that the more abundant the oxygen is, the more rapidly will the feeds grow. Moft plants fuffered to attain to their perfect maturity fhed on the earth a part of their feed. Thefe feeds, thus abandoned and expofed to the action of cold, are preferred by the fnow which covers them, at the fame time that they find in the water it produces by melting, a portion of oxygen that has a powerful action on the principle of germination, and determines the feeds that would have perifhed to grow, to expand, and to augment the number of the plants that cover the furface of the earth.

A very confiderable number of the plants which are employed in Europe for the nourifhment of men, are fown in the months of September, Oetsber, and Novemher. The feeds of fexeral of thefe germinate before the cold commences its action upon them, and changes the principle of their life. The fnow which covers the reft, aeling on the germ by its oxygenation, obliges them to expand, and to increafe the number of ufeful plants which the farmer and gardener commit to the earth, and confequently to multiply their productions.

Here, then, we have three effects of frow upon ve. getation, all very different, which contribute each feparately to increafe, every year, the number of our plants:

Suppz. Vol. II. Part II.
to give them more vigour, and confequently in multiply our crops. Thefe effects are: 1. To prevent the plants from being attacked by the cold, and from theing changed or perifhing by its force. 2. To furnith vegetables with centinual moifture, which luetps them to procure thofe fubltances neceffary for their nutrition, and to preferve them in a ftrong healthy ftate. 3. To caufe a greater number of feeds to germinate, and confequently to increafe the number of our plants.

SOAP. Sec Chemistry-Incicx, Suppl.
SOLDERING. Under this title, in the Encyda. padia, we have given directions for foldering filver, brafs, and iron: but theic are other metals which mult fometimes be foldered; and the following account of different folders, taken from the Pbilofopbical Nagazine, may be ufeful to many of our readers.
"When lead, tin, and bifmuth, are mixed in a certain proportion, they produce a metal exceedingly fll. fible, which is known by the name of foft folder; but which, from its fingular properties, may be applicd with adyantage to many other ufeful purpofes. Newton, and after him Kraft and Mufchenbrock, obferved, that five parts of bifnuth, three of tia, and two of leard, alfo five parts of bitmuth, four of tin, and one part of lead, melted with a heat of 220 degrees of Fahrenheit; and they found that various mixtures of this kind were fufible by a heat not much greater than that of boiling water. At a later period, V. Rofe, a German naturalift, difcovered, that a mixture of four parts of bifmuth. t wo of tin, and two of lead, as Kunkel recommended for foldering tin ; and D'Areet, among the French, that a mixture of eiglit parts of bifmuth, three of tin, and five of lead ; or eight of bifmuth, four of tim, and four of lead ; or eight of bifmuth, two of tin, and fix of lead; alfo fixtcen of bifmuth, feven of tin, and nine of lead-all melted, or at leaft became foft, in boiling water.
"According to the experiments made by Profeffor Gmelin, refpecting the fulion of thefe three metals, a mixture, confifting of two parts of bifnuthe one part of tin, and one of lead, which is the fane as Rofe propofed, gave a metal that was fufed in boiling water. A mixture of Gix or more parts of bifmuth, fix of tin, and three of lead, or one part of bifmuth, two parts of tin, and two of lead, gave, according to klein, the folder ufed by the tin button makers. The fame workmen ufe alfo for foldering, accurding to Klein, a mixture of four parts of bifmuth, three parts of tin, and five parts of lead. Among the many foft folders employed by the tin-men, a misture of one part of bifmuth, two parts of tin, and one part of lead, is, according to Klein, very much empoyed. Refpecting this kind of folder, the experiments of Profeflor Grmelin give the following refult : One part of bifmuth, two parts of tin, and one part of lead, melt in boiling water. According to Klein, the tin-men employ for foldering a mixture of one part of bifmuth, twenty four parts of tin, and four parts of lead. Eight parts of bifmuth, three of tin, and five of lead, gave a metal exceedingly like tin in its colour and brightnefs, but very brittle; in water beginning to boil, it became not only foft, but was completely fufed. This imitation, however, may be better accomplifhed by the mixture of Profeffor Lightenberg, which condifts of five parts of bifmuth,

Sulif.
socie ingo

S O U

So'dering, three of tin, and two of lead. This metal is very like Soudan.

5I4] S O U
generally both frequent and violent, fuddenly inveft the Soudan. face of the country, till then dry and fteril, with a delightful verdure. Except where the rocky nature of the foil alfolutely impedes vegetation, wood is found in great quantity; nor are the natives affiduous completely to clear the ground, even where it is defigned for the cultivation of grain. As foon as the rains begin, the proprictor, and all the affiltants that he can collect, go oyt to the field; and having made boles at about two feet diftance from each other, with a kind of hoe, over all the ground he occupies, the dokn, a kind of millet, is thrown into them, and covered with the foot, for their hufbandry requires not many intruments. The time for fowing the wheat is nearly the fame. The doln remains fcarcely two months before it is ripe; the wheat about three.

The animals in Scudan, both wild and tame, are the fame as in other parts of Africa in the fame latitude. Though the Furians breed horfes, and purchafe very fine ones in Dongola, and from the Arabs to the ealt of the Nile, the afs is more ufed for riding; and an Egyptian afs (for the affes of Dar-Fur are diminutive and indocile like thofe of Britain) fetches from the value of one to that of three flaves. The villages of this country, like thofe of Abyfinia, are infefted with hyenas; and in the unfrequented parts of the country are the elephant, the rhinoceros, the lion, the leopard, and w all the other quadrupeds of Africa. The Arabs often eat the flefh of the lion and the leopard; and fometimes they fo completely tame thofe animals, as to carry them loofe into the market place. Our author tamed two lions, of which one acquired moft of the habits of a dog. He fatiated himfelf twice a week with the offal of the butchers, and then commonly flept for feveral hours fucceffively. When food was given them, they buth grew ferocious towards each other, and towards any one who approached them. Except at that time, though both were males, he never faw them difagree, nor fhew any lign of ferocity towards the human race. Even lambs pafied them unmolefted.

Among the birds, the vilture perenopterus, or whiteheaded vulture, is moft worthy of notice. It is of furprifing flrength, and is faid by the natives to be very, lung-lived, fed fides penes autiores. "I have lodged (fays Mr Browne) a complete charge of large fhot, at about 50 yards diltance, in the body of this bird : it feemed to have no effect on him, as he flew to a confiderable diftance, and continued walking afterwards. I then difcharged the fecond barrel, which was loaded with ball : this broke his wing; but on my advancing to feize him, he fought with great fury with the other. There are many thoufands of them in the inhabited diAtrict. They divide the field with the hyena : what carrion the latter leaves at night, the former come in crowds to feed on in the day. Near the extremity of each wing is a horny fubfance, not unlike the fuur of an old cock. It is ttrong and fharp, and a formidable intrument of attack. Sume fluid exudcs from this bird that fmells like mulk; but from what part of him I am uncertain." The ferpents found in Soudan are the fame as in Egypt ; but the natives have not the art of charming them like the Egyptians. The locuft of Arabia is very common, and is frequently roafted and eaten, particularly by the flaves.

In Dar-Fur there feems to be a fearcity of metals;

Soudan. but in its neighbourhood to the fouth and weft all kinds are to be found. The copper brought by the merchants from the territories of certain idulatrous tribes bordering on Fur, is of the fineit quality, in coluur refembling that of China, and appears to contain a portion of zinc, being of the fame pale hue. Iron is found in abundance; but they have not yet learned the art of converting it into fteel. Silver, lead, and tin, our author never heard mentioned in Soudan, but as coming from Egypt ; but of gold, in the countries to the cait and weit, the fupply is abundant. Alabafter, and various kinds of marble, are found within the limits uf Fur, as is folfil Salt within a certain diftrict; and there is a fufficient fupply of nitre, of which, however, no ufe is made.

The reftraint under which Mr Browne was kept in this inhofpitable country, prevented him from making a full catalogue of its vegetable productions. Of the trees which fhade our forelts or adorn our gardens in Europe, very few exit in Dar. Fur. The characteriftic marks of thofe fpecies which moft abound there, are their Tharp thorns, and the folid and unperifhable quality of their fubftance. They feem to be much the fame as thofe which Bruce found in Abyflinia. There is a fmall tree called enneb, to the fruit of which they have given the name of grapes. It bears leaves of light green hue; and the fruit, which is of a purple colour, is attached, not in huriches, but fingly to the fmaller branches, and interfperfed among the leaves. 'I'he internal ftructure of the fruit is not very unlike the grape, which it alfo refembles in lize : but the pulp is of a red bue, and the tafte is ftrongly aftringent. The watermelon (cucurlita citrullus) grows wild over almotl all the cultivable lands, and ripens as the corn is removed. In this flate it does not attain a large fize. The infide is of a pale hue, and has little flavour. As it ripens, the camels, affes, \&cc. are turned to feed on it, and it is faid to fatten them. The feeds, as they grow blackifh, are collected to make a kind of tar, kutran. Thofe plants of the melon which receive artificial cul. ture grow to a large fize, and are of exquifite flavour. Tobacco is produced in abundance; and our author Speaks of cochincal as found in Dar. Fur, or fome of the neighbouring countries.

The harvelt is conducted in a very fimple manner. The women and flaves of the proprietor are employed to break off the ears with their hands, leaving the ftraw ftanding, which is afterwards applied to buildings and various other afeful purpofes. They then accumulate them in bafkets, and carry them away on their heads. When thrafhed, which is aukwardly and incompletcly performed, they expofe the grain to the fuutill it become quite dry ; after this a hole in the eartb is prepared, the bottom and fides of which are covered with chaff to exclude the vermin. This cavity or magazine is filled with grain, which is then covered with chaft, and afterwards with earth. In this way the maize is preferved talerably well. In uling it for food, they grind it, and boil it in the form of polenta, which is eaten either with frefh or four milk, or itill more frequently with a fauce made of dried meat pounded in a mortar, and boiled with onions, \&c. The Furians ufe little butter; with the Egyptians and Arabs it is an article in great requeft. There is alfo another fauce which the poorer people ufe and lighly relifh; it is
compofed of an herb called cowel or cazel, of a tafte in part acefcent and in part bitter, and generally difagree. able to ftrangers.

The magitracy of one, which feems tacitly, if it he not exprefsly favoured by the difpenfation of Mohammed, as in moft other countrics profefling that religion, prevails in Dar-Fur. The monarch indeed can do nothing contrary to the Kuran, but he may do more than the laws eflablifhed thereon will authorife; and as there is no council to controul or even to affift him, his power may well be termed defpotic. He lpeaks in public of the foil and its productions as his perfonal property, and of the people as little elfe than his flaves.

His puwer in the provinces is delegated to officers, who poffefs an authority equally arbitrary. In thofe dittricts, which have always, or for a long time, formed an integral part of the empire, thefe officers are gene. rally called Meleks. In fuch as have been lately conquered, or, perhaps more properly, have heen annexed to the dominion of the Sultan under certain flipulations, the chief is fuffered to retain the titk of Sultan, yet is tributary to and receives his appointment from the Sultan of Fur.

Defpotic and arbitrary as he is, the Sultan here does not feem wholly inattentive to that impurtant object, agriculture. Neverthelefs, it inay be citeemed rather a blind compliance with ancient cultom, than individual public fpirit, in which has originated a practice adopted by him, in it felf fufficiently laudable, fince other of his regulations by no means conduce to the fame end. At the beginning of the-Harif, or wet feafon, which is alfo the moment for fowing the corn, the king goes out with his Meleks and the reft of his train; and while the people are employed in turning up the ground and fowing the feed, he dfo makes feveral holes with his own hand. . The fame cuftom, it is faid, obtains in Bornou and other countries in this part of Africa. It calls to the mind a practice of the Egyptian kings mentioned by Herodotus.

The population of Dar-Fur is not large. An army of 2000 men was fpoken of, when Mr Browne was in the country, as a great one; and he dues not think that the number of fouls within the erpire can much exceed 200,000 . The troops of this country are not famed for fkill, courarre, or perfeverance. In their campaigns, much reliance is placed on the Arats who accompany them, and who are propenly tributarics rather, than fubjects of the fultan. One energy of barbarifm they indced poflefs in common with other favages, that of being able to endure hunger and thirft ; but in this particular they have no advantage over their neighbours. In their perfons the Furians are not remarkable for cleanlinels. Though ubferving as Mahommedans all the fuperllitious formalities of prayer, their hair is rarely combed, or their bodics completely wafhed. The hair of the pubes and axille it is ufual to exterininate ; but they know not the ufe of foap; fo that with them polifhing the fikin with unguents holds the place of perfect ablutions and real purity. A kind of farinaccous pafte is however preparcd, which being applied with butter to the $f \mathrm{kin}$, and rubbed contimally till it become dry, not only improves its appearance, but removes from it accidental furcles, and ftill more the effect of continued tranfiration, which, as there are no baths in the country, is a confideration of fome import-

Souda:.
Soudat!. ance. The female daves are dextcrous in the applica. tion of it ; and to undergo this operation is one of the retinements of African fenfuality.

Nuthing refembling current coin is found in Soudan, unlefs it be certain fmall tin rings, the value of which is in fome degree arbitrary. The Auftrian dollars, and other filver coins brouglit from Egypt, are all fold as ornaments for the women.

The difpofition of the Furians is cheerful ; and tbat gravity and referve which the precepts of Mahommedifin is Spire, and the practice of the greater number of its profeflors conntenances and even requires, feems by no means as yet to fit eafy on them. A government perfectly defpotic, and not ill adminiftered, as far as rebates to the manners of the people, yet forms no adequate reftraint to their violent paffions. Prone to inebriation, but unprovided with materials or ingenuity to prepare any other fermented liquor than buza, with this alone their convivial exceffes are committed. But though the Sultan publifhed an ordnance (March 1795), forbidding the nfe of that liquor under pain of death, the plurality, though lefs publicly than before, fill indulge themfelves in it. A company often fits from funrife to fur-fet, Hrinking and converfing, till a fingle man fometimes carries off near tivo gallons of that liguor. The buza has, however, a diuretic and diapboretic tendency, which precludes any danger from thefe exceffes. In this country dancing is practifed by the men as well as the women, and they often dance promifcuoully.

The vices of thieving, lying, and cheating, in bargains, with all others nearly or remotely allied to them, as often happen among a people under the fame circumftances, are here almoft univerfal. No property, whether confiderable or trifling, is fafe out of the fight of the owner, nor indeed fcarcely in it, unlefs he be Atronger than the thief. In buying and felling, the parent glories in deceiving the fon, and the fon the parent; and God and the Prophet are hourly invocated, to give colour to the moft palpable frauds and falfehoods.

The privilege of polygamy, which, as is well known, belongs to their religion, the people of Soudan pufh to the extreme. By their law, they are allowed four free women, and as many flaves as they can maintain ; but the Furians take both free women and flaves without limitation. The Sultan has more than a huadred free women, and many of the Meleks have from twenty to thirty. In their indulgence with women, they pay little regard to reftraint or decency. 'The form of the houfes fecures no great fecrecy to what is carried on within them; yet even the concealment which is thus offered is not always fought. The fhade of a tree, or long grafs, is the fole temple required for the farrifices to the Cy prian goddefs. In the courfe of licentious indulgence, father and dasighter, fon and mother, are fometimes mingled; and the relations of brother and fifter are exchanged for clofer intercourfe.

- Ahout a Previoufly to the eftablifhment of Inamism * and kingsentury and hip, the people of Fur feem to lave formed wandering a half ago. tribes; in which ftate many of the neighbouring nations to this day remain. In their perfons they differ from the negroes of the coaft of Guinea. Their hair is generally fhort and woully, though fome are feen with it of the length of eight or ten inches, which they cfteem a beauty. Their complexion is for the moit part per-
fectly black. The Arabs, who are numerous within Soutzn, the empirc, retain their diftinction of feature, colour, Souffrete. and language. They moft commonly intermarry with each other. The flaves, which are brought from the country they call Fertit (land of idolaters), perfectly refemble thofe of Guinea, and their linguage is peculiar to themfelves.

The revenues of the crown confift of a duty on all merchandife imported, which, in many inftances, amounts to near a tenth; of a tax on all flaves exported to Egypt ; of all forfeitures for mifdemeanors ; of a tenth on all merchandife, efpecially flaves, brought from every quarter but Egypt, and when flaves are procured by force, this tenth is raifed to a fifth; of a tribute paid by the Arabs, who breed oxen, horfes, camels, theep; of a certain quantity of corn paid annually by every village; befides many valuable prefents, which muft be paid by the principal people, hoth at faterl times and on particular occafions. Add to all this, that the king is chief merchant in the country; and not only difpatches with every caravan to Egypt a great quantity of his own merchandife, but alfo employs his flaves and dependents to trade with the goods of Egypt on his own account, in the countries adjacent to Sou. dan.

The commodities brought by the caravans from E . gypt are, i. Amber beads. 2. Tin, in fmall bars. 3. Coral beads. 4. Cornelian beads. 5. Falfe cornelian beads. 6. Beads of Venice. 7. Agrate. 8. Rings, filver and brafs, for the ancles and wrifts. 9. Carpets, fmall. 10. Blue cotton cloths of Egyptian fabric. 11. White cotton ditto. 12. Indian manlins and cot. tons. 13. Blue and white cloths of Egypt, called Melayes. 14. Sword-blades, flrait (German), from Cairo. 15. Small looking. glaffes. 16. Copper face-pieces, or defenfive armour for the horfes heads. 17. Fire arms. 18. Kohhel for the eyes. 19. Rhea, a kind of mols from European Turkey, for food and a fcent. 20. She, a fpecies of abfynthium, for its odour, and as a remedy : both the laft fell to advantage. 21. Coffee. 22. Mahleb, Krumphille, Symbille, Sandal, nutmegs, 23. Dufr, the fhell of a kind of fifh in the Red Sea, ufed for a perfume. 2^{2}. Silk unwrought. 25. Wire, brafs, and iron. 26. Coarfe glals heads, made at Jerufalem, called berfb and munjur. 27. Copper culinary utenfils, for which the demand is fmall. 28. Old copper for melting and reworking. 29. Small red caps of Barbary. 30. Thread linens of Egypt-fmall confumption. 31. Light French cloths, made into benifhes. 32. Silks of Scio, made up. 33. Silk and cotton pieces of Aleppo, Damafous, \&c. 34. Shoes of red leather. 35. Elack pepper. 36. Writing paper (papier des trois lunes), a confiderable article. 37. Soap of Syria.

The goods tranfported to Egypt are, 1. Slaves, male and female. 2. Camels. 3. Ivory. 4. Horns of the rhinoceros. 5. Teeth of the hippopotamus, 6. Oftrich feathers. 7. Whips of the hippopotamus's hide. 8. Gum. 9. Pimento. 10. Tamarinds, made into round cakes. I1. Leather facks for water (ray) and dry articles (geraub). 12. Peroquets in abundance, and fome monkeys and Guinea fowls. 13. Copper, white, in fmall quantity.

SOUFFRIERE, a fmall town, fitnated at the bot. tom of a hay, towards the leeward extremity of the ifland of St Lucia. There is nothing in the town itfelf which

S O U

Souffiere, could have entitled it to notice in this work; but the sound. ground about it is very remarkable. It has been de-
feribed by different authors; and our readers will probably not be ill pleafed with the following defcription of this wonderful fpot by Dr Rullo.
"Souffriere (fays he) is furrounded by hills covered with trees, the dectivities of which, and every part capable of produce, are cultivated, and afford good fugarcane. Thlis place has its marfhes, but not fo exterfive, or formols to windward as thofe about Carenage.
"The extremity of the fouth fide of Souffiere Bay runs into two fleep hills of a conical figure, which are nearly perpendicular: they are reckoned the highett on the illand, and are known by the name of the Sugar Loaf Hills. From their height and Itraitnefs it is impoffible to afcend them: we were told it was once attempted by two negroes, bit they never returned. They are covered with trees and fhrubs, and are the fhelter of goats, feveral of which fometimes defcend, and are thot by the natives.
" After yon pafs the hills to windward of Souffriere, a fine clear and level country prefents itfelf. Erom the back of the sugar Lioaf Hills, and all along the feacoaft, to the diflance, we fuppoie, of from fiftecn to twenty miles, this fiat or level cxtends : it is all cultivated and divided into rich eftates, affording fugrar cane equal to any in our iflands. This beautiful fpot is interfected by many rivers of very clear water, and thefe are conducted by art to the purpofe of fugar making. The rains in this part are lefs frequent than on any other part of the ifland; however, they have often a proportion more than fufficient. The wind here blows from the fea, or nearly fo.
"We cannot finifh this defcription without taking notice of a volcano in the neighbourhood of Soufiriere. You pafs over one or two fmall bills to the fouthward of the town, and before any mark of the place is perceived you are fensible of the fmell of fulphur. The firft thing you difcern is a rivulet of black running water, fending forth freams as if nearly boiling. From the profpect of this you foon spen on the voleano, which appears in a hellow, furrounded clofe on every fide by hills. There are only two openings ; the one we entered, and another almolt oppolite to it on the north lide. In the hollow there are many pits of a black and thick boiling matter, which feems to work with great force. Lava is flowly thrown out; and in the centre of the hollow there is a large mafs of it, forming a kind of hill. This we afcended; but were foon obliged to return from the exceffise heat. The lava is a fulphur mixed with a calcareous earth and fore faline body. We found fmall quantities of alum in a perfect ftatc. In the opening, at the north fide of the hollow, there is a rivulet of very good water. On flirring the bottom, over which this water runs, we were furprifed with feeling it very hot ; and on placing a tumbier filled with fome of the water clofe to the botiom of the rivulet, it foon became fo hot as not to be touched. The liquid which runs from the pits is frongly impregnated with fulphur, and refembles a good deal the preparation fold in the hops', known by the name of aqua fulphurata, or gas fulphuris."

SOUND-board, the principal part of an organ, and that which makes the whole machine play. This foundgoard, or fummer, is a refervoir into which the wind,

517] S P A

drawn in by the bellows, is conducted by a port-vent, and thence diftributed into the pipes placed over the holes of its upper part. The wind enters them by values, which upen by preffing upon the llops or keys, after drawing the regiters, which prevent the air from going into any of the other pipes bedides thofe it is required in.

Socind-Board denotes alfo a thin broad board placed over the head of a public fpeaker, to enlarge and extend or flrengthen his voice.

Sound boards, in theatres, are found by experience to be of no fervice; their diftance from the fpeaker being too great to be imprefled with fufficient force. But found-buards immediately over a pulpit have often a guod effect, when the cale is made of a juft thicknefs, and according to certain principles.

Sound-Pofl, is a poft placed withirfide of a siolin, \&e. as a prop tetween the back and the belly of the inftrument, and nearly under the bridge.

SOIVAL, in the language of Bengal, a quettion or requeft.

SPALLANZANI (Lazarus), was born at Scandiano, in the euchy of Moderia, on the roth of January 17:9. He was fon of Jean Nicholas Spal mani, an elleemed jurifernfult, and of Lucia Zugliani. He commenced his ftudies in his own country, and at the age of fifteen years went to Reggio de Modena in order to continue them. 'I he Jefmats, who inftructed him in the belles lettres, and the Dominicans, who heard of his progrels, were each defirous of attaching him to them ; but his pafion for extending his knowledge led him to Bologna, where his relation Laura Baffi, a woman jnflly celebrated for her genius, her eloquence, and her fkill in natural philofophy and the mathematics, was one of the mott iliuftrious profeffors of the Inflitute and of Haly. Uuder the direction of this enlightened guide, he learned to prefer the ttudy of Nature to that of her commentators, and to judge of the value of the commentary by its refemblance to the original. He inftantly availed himfelf of the wiflom of that lady's counfels, and was not long tefore he experienced the happy effects of it. How agreeable it is to fee him in 17.65 painting his gratitude for his influctor, to whom he dedicated a Latin differtation at that time, in which he mentions the applaufes that Laura Baffi received at Modena, when fie entered the auditory of her pupil, then become profeflor. The tafte of Spallanzani for philofophy was not exclufive; he already thought, like all great men, that the ftudy of antiquity and the belles letires was requifite to give to ideas that clearsefs, to expreffons that accuracy, and to reafonings that connection, withour which the fineft thoughts become barren. He fludied his own language with care, and perfeeted himfelf in the Latin tongue; but above all, he. attached himfelf to the Greek and the French. Homer, Demofthenes, St Batil, were his favourite authors. Spallanzani applied himesf to jurifprodence at the in. ftance of a father whom he tenderly loved: he was upon the point of receiving the digrce of doctor of civil law, when Anthony Vallifneri, profeffor of natural hiftory at Padua, 'perfuaded lim to renounce this voca. tion, by promifing to obtain the confent of his father, who was fenfibly touched by lis fon's devotion to his. will, and who thereby left him at liberty to follow his own inclinations. From that moment he gave himfelf.

S P A [518]

Spallan- up with more ardour than ever to the fudy of mathezani. matics, continuiug that alfo of the living and dead lan-
guages.

Spallanzani was prefently known all over Italy, and his own country was the furt to do homage to his talents. The univerfity of Reggio, in i754, chofe him to be profeffor in logic, metaphyfics, and Greek. He taught there for ten years; and during that period confecrated all the time he could fpare from his leffons to the obfervation of Nature. Now and then an accidental difcovery would increafe his paffion for natural hiftory, which always augmented by new fucceffes. His obfervations upon the animalculx of infufions fixed the attention of Haller and of Bonnet ; the latter of whom affilted him in his glorious career, and thenceforth diftinguifhed him as one of the learned interpreters of Nature.

In 1760 Spallanzani was called to the univerfity of Modena; and although his intereft would have made him accept the advantageous offers of the univerfity of Coimbra, of Parma, and of Cefena; yet his patriotifin and his attachment to his family confined his fervices to his own country. The fame confiderations engaged him to refufe the propofitions made him by the acadeny of Peterfburg fome years after. He remained at Modena till the year 1768 , and he faw raifed by his care a generation of men conftituting at this time the glory of Italy. Among them may be counted Venturi, profeffor of natural philofophy at Modena; Belloni, bithop of Carpi; Lucchefini, ambaffador of the late king of Pruffia; and the poet Angelo Mazzo of Parma.

During his refidence at Modena, Spallanzani publifhed, in 1765 , Saggio di Offervazioni Microfcopiche concernente il Syllema di Nedbam e Buffon. He therein eftablifhes the animality of what had been called, but not generally affented to as, microfcopic animalcule, by the moft ingenious, and at the fame time folid, experiments. He fent this work to Bonnet, who formed his opinion of the author accordingly, and who lived to fee the accomplifhment of the prophecy he drew from it. From that moment the mof intimate acquaintance was formed between them, and it lafted during their lives, of which it conftituted the chief happinefs. In the fame year Spallanzani publifhed a differtation truly original: De Lapidibus ab Aqua refolientibus. In that work he proves, by fatisfactory experiments, contrary to the commonly received opinion, that the ducks and drakes (as they are called) are not produced by the elafticity of the water, but by the natural effect of the change of direction which the fone experiences in its movement, after the water has been fruck by it, and that it has been carried over the bend or hollow of the cup formed by the concuffion.

In 1768 be prepared the philofophers for the furprifing difcoveries he was about to offer them throughout his life, in publiming his Prodromo di un Opera da Inzprimerfi fopra le Riproduzioni Animali. He therein lays down the plan of a work which he was anxious to get up on this important fubject ; but this fimple profpectus contains more real knowledge than all the books which had appeared, becaufe it taught the method that ought to be followed in this dark refearch, and contained many unexpected facts; fuch as the pre-exiftence of tadpoles at the fecundation, in many fpecies of
toads and frogs; the reproduction of the head cut off from fuails, which he had already communicated to Bonnet in 1766 , and which was difputed for fome time, in fpite of the repeated confirmation of this phe. nemenon by Heriffant and Lavoifier. He demonftrated it again afterwards in the Memorie della Societa Ita. liana; as alfo the renewal of the tail, the limbs, and even the jaws, taken from the aquatic falamander. Thefe facts continue to aftonifh even at this day, when they are thought of, notwithfanding every one has had the opportunity of familiarifing himfelf with them: and we hardly know which we ought moft to admire, the expertnefs of Spallanzani in affording fuch decifive proofs, or his boldnefs in fearching after them, and feizing thein. We have to regret, that the project of his great undertaking is not realized ; but various circumttances prevented him from giving way to the folicitations of his friends for its accomplifhment. Perhaps he defpaired of throwing upon every part of it all the light which at firt he thought he might be able; and found it prudent to mature his ideas by new meditations: this may probably have been as powerful a caufe as that other calls and occupations, perpetually accumulating, fhould not have allowed him to purfue it as he had intended. He has always laid Nature open to full view; and the thinnelt veil darkened her till he fucceeded in removing it altogether.

The phyfiology of Haller that Spallanzani ftudied, fixed his attention upon the circulation of the blood, in which he difcovered feveral remarkable phenonsena. He publifhed, in 1768, a fmall tract: Dell' Azione del Cuore ne' I'afs Sanguigni nuovi Offervazioni, and he reprinted it in 1773, with three new differtations, $D e^{\prime}$ Fenomeni della Circolazione offervata nel' Giro univerfali
 De' Moti del Sangue, indepondente del Azione del Cuore é del Pulfure delle Arterie This work, but little known, contains a feries of obfervations and experiments, of the mot ingenious and delicate nature, upon a fubject of which the furface only is known. It merits the attention of thufe who are interefted in the progrefs of phyfiology.

When the univerfity of Padua was reeftablifhed upon a larger fcale, the Emprefs Maria Therefa directed the Count de Firmian to invite him to fill a chair, as profeffor of natural hiftory; his great reputation rendered him eligible for this diftinction, folicited by many celebrated men, and he merited it by his fuccefs, and by the crowd of Atudents who thronged to his leffons. Only great men make excellent mafters, becaufe their ideas are the moft perfpicuous, the moft extenfive, and beit connected.

Spallauzani united a valt extent of knowledge to a fine genius; a method fimple, but rigorous in its nature; and he connected what he knew to principles firmly eftablithed. His ardent love of truth made him difcufs, with the utmolt care, the theories which prevailed ; to found their folidity, and difcover their weak fides. The great art which he had acquired, of interpreting Nature by herfelf, diffufed fuch a light over his leffons, as made every thing perfpicuous that was capable of affording inttruction. An eloquence at once plain and lively animated his difcourfe ; the purity and elegance of his ftyle charmed all who heard it: in thort, it was known that he always occupied himfelf about
the
fallan.
zani.

S P A [519] S P A

Spallan- the means of rendering his leffons ufeful, which he prepared a year beforehand. They became always new and engaging, by his new obfervations, and by the enlarged views that his meditations prefented to him. The learned perfons who attended his lectures were pleafed to become his fcholars, in order to know better what they already knew, and to learn that which other. wife they would perhaps never have known.

In arriving at the univerfity, Spallanzani took the Contemplation de la Nature of Bonnet for the text of his leffons: he filled up the vacancies in it, he unfolded the ideas, and eonfirmed the theories by his experiments. He believed, with reafon, that the book which infpired him with the love of natural hiftory by reading it, was the moft proper to give birth to it in the minds of his difciples.

He tranilated it into Italian, and enriched it with notes; be added a preface to it, wherein he pointed out the fubjects of the vegetable and animal economy, which in an efpecial mamer deferved the attention of his pupils; and fometimes pointing out to them the means of fucceeding in their refearches. It was thus he at firft devoted himfelf to the pleafing employment of inftructor of his countrymen, and that he became the model of thofe who were deffrous of inftructing ufefully. He publifhed the firf volume of his tranflation in 1769 , and the fecond in 1770.

The connection of Spallanzani with Bonnet had an influence upon his genius, which bent to the fevere method of the philofopher of Geneva. He prided himfelf in being his pupil, and he unceafingly meditated upon his admirable writings; and thus it was that he became defirous of feeking in Nature for the proofs of Bonnet's opinion upon the generation of orgarizied bodies, and that this eharming fubject fixed his attention for a long time.

He publifhed, in 1776, the two firf volumes of his Opufcoli di Fifica Animale e Vegelabile: they are the explanation of a part of the microfcopic oblervations which had already appeared.

If the art to ohferve he the moft difficult, it is neverthelefs the moft neceffary of all the arts; but it fuppofes every quality, every talert : and further, though each believes himfelf more or lefs confummate therein, yet it is obvious, that only great men have exereifed it in a diftinguifhed manner. Genius alone. fixes the objects worthy of regard; that alone directs the fenfes to the obfeurities which it is necefiary to diffipate ; it watches over them to prevent error; it animates them to follow by the fcent, as it were, that which they have but a diltant viex of : it takes of the veil which covers what we are looking after; it fupports the patience which waits the moment for gratifying the fight in the midtt of obtacles multiplying one upon another: in Thort, it is genius that concentrates the attention upon - an object, which communicates that energy to him for imagining, that fagacity for difcovering, that promptnefs for perceiving, without which we fee only one fide of truth, when we do not happen to let it efeape alto. gether. But this is not all; for after Nature lass been read with precition, it is neceffary to interpret her with fidelity; to analyfe by the thought the phenomena ana. tomifed by the fenfes; to confider of the fpecies by obferving the individual, and to anticipate the general propofitions by confidering the unconnected facts. Here
prudence and circumfpection will not always fecure us Spallanagainft error, if an ardent love for the truth does not affay obfervations and their confequences in its crucible, and thereby reduce every thing to fcoris which is not truth.

Such was Spallanzani in all his refearches; fuch we fee him in all his writings. Occupied by the great phenomenon of generation, he examined the opinion of Needham to demonftrate its want of foundation. The latter, not fatisfied with the microfcopic obfervations of Spallanzani, which weakened the imagined vegetative foree to put the matter in motion, challenged the profeffor of Reggio to a reperufal of what he had written; but he proved to the other, that we in common practi e: always fee that which has been well obferved, but that we never again fee that which we have been contented with inagining we faw.

Spallanzani has received much praife for the polite. nefs with which he carried on this controverfy, and for the fevere \log ic with which he demonftrates to Needham the caufes of his error; and proves, that the animalculæ of infufions are produced by germs; that there are fome of them which defy, like certain eggs and feeds, the molt exceffive cold, as well as the heat of boiling water. On this oceafion, he treats on the influence of cold upon animals, and proves that the lethargic numbnefs of fome, during winter, does not depend upon the impreffion the blood may receive from it ; fince a frog, deprived of his blood, becomes lethargic when he is reduced to the fame cold flate by an immerfion in ice, and fwims as before when reftored to warmth. In the fame manner he fhews that odours, various liquors, the vacuum, act upon animalcule as upon'other animals; that they are oviparous, viviparous, and hermaphrodite. Thus, in running over thefe diflant regions of Nature with this illuftrious traveller, we are always meeting with new facts, profound remarks, precious details, and fome curious anecdotes; in fhort, an univerfal hiftory of thofe beings which are the mof numerous of the globe, although thei exiftence is feareely fufpected, and whofe organization is in many refpects different from that of known animals.

The fecond volume of this work is a new royage in. to the moll unknown parts: a fublime pencil had already painted it, but the picture was not done after Nature. Spallanzani here gives a liftory of the fpermatic animalculx, which the eluquent hitorian above alluded to always confounds with the animalculx of infufions. We cannot but admire the modetl diffidence of this new demmatrator, fruggling againtt his own opinion and the autherity of Buffon; and he appears to-admit, with repugnamee, the refults of his multiplied, and in a thouland ways varicd, obfervations, which expofe the fecblenefs of the fy.tem of organie moleculæ.

Spallanzani afterwards defcribes the volvox and the now-moving animalculx (rotifere and tarcligrade), thofe coloffufes of the micrufcopic world, fo fingular by their figure and organization, but more fingular still by their faculty of refuming life, after a total fufpence of all the apparent acts of it during many years.

We will not here fpeak of the experiments of Spal. lanzani on the death of animals in clofe veffels, becaufe he took up the fubject again, and enlarged and exemplified it by the new lights of chemiftry ; but this collection

Spallan- lection he concludes with another on the hiftory of ve'2 all. getable mould growing on the furface of liquors and
moilt fubtances, the feeds of which be fhews to fleat in the air ; and he temanks, that thefe microfcopic champignons or nubhroons diftinguilh themfelves from other plants by their tendency to grow in all directions, without conforming to the almott univerfal law of perpendicularity of flatk to the ground.

Spallanzani was placed at the head of the univerfity's cabinet of natural hiftory, but he was little inore than titular depofitary of a treafure which no longer exifted. He laid the foundations, however, for its renewal, and by his care it is become one of the moft precious and ufeful. He enriched it through his repeated travels by land and fea, in Europe, in Afia, acrofs the Apennines, the Alps, the Krapacks, at the bottom of mines, on the top of volcanoes, at the mouth of craters : fupported by his ardent paffion in the midft of perils, he preferved the fang froid of the philufopher to contemplate thefe wonders, and the piercing eye of an obferver to ftudy them. It is thus that he always diftinguifhed the proper objects for improving fcience by favouring inftruction ; it is thus that he filled this depofitary with treafures, that-all the gold in the world could not have obtained, becaufe gold never fupplies the genius and the difcernment of the enlightened naturalift.

In 1779 Spallanzani ran over Switzerland and the Grifons; he then went to Geneva, where he fpent a month with his friends, who admired him the more in his converfations after having admired him in his writings. He then returned to Pavia, and publifhed, in 1780, two new volumes of his Di/Jerlazione di Fifica Animale e I'egetabile. He therein reveals the fecrets of the interpretation of two very obfeure phenomena, con. cerning the vegetable and animal economy.

Some experiments made by Spallanzani upon dizef. tion, for his leffous, engaged him to fludy this dark operation: he repeated Keaunur's experiments upon the gallinaceous birds; and he oblerved that the trituration, which is in this cafe an aid to digeltion, could not, however, be a very powerful means. He faw that the gizzard of thofe birds which pulverife the fones of fruit to pieces, as if done with needles or other fharppointed inflruments, did not digeit the powder to formed : that it was neceffary it hould undergo a new operation in the ftomach, before it could become fit chyle for affording the elements of the blood and other humours. He eftablifhed the point, that the digeftion was performed in the fomach of numerous animals by the powerful action of a juice which diffolves the ali. ments; and to render his demonftration the more convincing, he had the courage to make feveral experiments on himfelf which might have proved fatal, and had the addrefs to complete his proofs hy artificial digettions, made in glaftes upon the table, by mixing the chewed aliments with the gaftric juice of animals, which he knew how to extract from their fomachs. But this book, fo original by the multitude of experiments and curious oblervations which it contains, is ftill more worthy of attention by the philofophic fpirit which deteeted it.

This fubject is one of the molt difficult in phyfiology : the obferver is always compelled to act and to look with darknefs around him; he is obliged to manage the animal with care, to avoid the derangement of
his operations: and when he has laborinnly completed his experimenta, it is neceffary that he fhould well diftinguifh the confequences, fometimes erroncons, which may be drawn from thofe of ,bfervation, which never deceive when they are immediate. Spallanzani, in this work, is truly a fine fpectacle; fornpuloufly analyfing the facts in order to difcover their canfes with certainty ; inventing happy refenrees for furmounting the ohflacles which renew themfelves; comparing Nature with his experinents, to judge of them; catching hold in his obfervations of every thing that is effential in them: neafuring their folidity by the atngmentation or diminution of fuppofed caufes; draving the belt founded conclufions, and rejecting the moft plautible hypothefes; modeftly expofing the errors of thofe who have gone before him, and employing analogy with that wife cir. cumfpection which infpires confidence in an inflrument at unce fo dangerous and fo ufeful. But let it be known, Spallanzani had a capacity in particular for difcovering the truth, while the greater part of obferva. tors fearcely ever attain it ; and then, after having deferibed around them a circuitons trace, he runs upon it by a ftraight line, and poffeles himfelf of it fo as that it cannot efcape him.

This work put John Hunter out of humour ; and he publifhed, in $17^{8} 5$, Some Objervations upon Disefion, wherein he threw out fome bitter farcafms againtt Spallanzani; who took ample revenge by publifhing this work in Italian, and addreffing to Caldani, in 1788 , Una Lettera Apologetica in Rifpofta alle Offervazione d:l Signor Giovanni Hunter. He expofes, with moderation, but with an irrefitible logic, the overfights of the Englim phyfiologitt, and points out his errors in a man. ner which left him no hope of a reply.

The fecond volume treats of the generation of animals and plants. Spallanzani proves, by experiments as fatisfactory as they are furprifing, the pre-exiltence of germs to fecundation ; he fuews the exiltence of tar. poles in the femates of five different fpecies of frogs, in toads, and in falanmanders, before their fecundation : he recounts the fuccefs of fome artificial fecundations upon the tadpoles of thofe five fpecies, and even upon a quadruped. He in the fame manner thews the feed in the flowers, before the emiffion of their farina; and by a fubtle anatomy of which one can hardly form an idea, he exhibits to the eye in the flower of the fportium junceam, the filiqu.s, its feeds, with their lubes, and the embryo plant; he purfues them in their expanion before and after fecundation, and leaves not a doube but that the feeds and the pericarpia exilled long before the blofoming of the buds, and confequently a lung time before they conld have been fecundated. He has repeated thefe obfervations upon various fpecies of plants with the fame refults ; in fort, he has raifed the individuals of plants with female flowers which have borne fecundated feeds, although they were out of the reach even of fufpicion of a communication with the farina of the male fowers. Such is the feries of furprifing phenomena Spallanzani adds to the hiftory of Nature.

According to cuftom, he availed himfelf of the academical vacation of 17^{81}, to make a journey, the $u b$ ject of which was to add to the cabinet of Pavia. He fet out in the month of July for Marfeilles, where he commenced a new hiftory of the fea, which had prefented him with a crowd of sovel and curious facts up-

Spallan. on numerous genera of the inhabitants of the ocean. zani. He went likewife to Finale, to Genoa, to Maffa, and to Carrara, to obferve the quarries of marble fo famous with the ftatuaries; he returned to Spezzia, and thence brought to Pavia an immenfe harvelt of filhes, cruftaceous and teftaceous, which he depofited in that cabinet of which his voyages and travels had rendered him fo worthy to be the guardian. He vifited, in the fame view, and with the fame fuccefs, the coafts of 1 ftria in 17^{92}; the Apennine Mountains in 1783, where he noticed the terrible hurricanes, and the furprifing vapours which rendered that year fo famous in meteorology. The cabinet of Pavia thus every year faw its riches increafe; and in the fame proportion it became the object of Atrangers admiration ; but every one admired itill more the immenfe labour of Spallanzani, who had collected every part of it.

The Emperor Jofeph knew this when he came into Lombardy: he defred to have a coaverfation with Spallanzani; and his majefty expreffed his approbation by prefenting him with his medal in gold.

The univerfity of Padua offered to Spallanzani, in 1785 , the chair of natural hiftory, which the death of Anthony Vallifneri had left vacant, promifing him more confiderable advantages than thofe which he enjoyed at Pavia; but the archduke doubled his penfion, and al. lowed hin to accompany to Conftantinople the Chevalier Zuliani, who had juft been nominated ambaffador from the republic of Venice.

He left this city the 2 sft of Auguft; and during his voyage made feveral obfervations upon the marine productions he met with in thofe climates, as well as upon the meteorological events of every day, among which lie had the advantage of beholding a fpecies of waterfpout. He touched at feveral iflands in the Archipelago; which he examined, and went athore at Troy to vifit the places fung by the poet whom he preferred to all others; and in treading upon that ground foanciently famous, he made fume geological obfervations truly original. One may judge befure hand of the intereft we fhall feel in reading the Voyage of Spallanzani, by fome memoirs which have appeared in the Memoric della Societa Italiana upon the water-fpouts at fea, the itroke of the torpedo, divers marine productions, and the inland of Cytherea, where he difcovered a mountain compofed of various fpecies of foffils. Spallanzani arrived at Conftantinople the 1 ith of Octuber, and remained there eleven months : he muft have been greatly out of his element in that country of ignorance and fuperftition, if he had not had Nature to ftudy, and Zuliani to hear him. The phyfical and moral phenomena of this country, quite new to him, fixed his at. tention; he ftrayed over the borders of the two feas, and climbed up the neighbouring hills; he vifited the ifland of Chalki, where he made known to the Turks a mine of copper, the exiftence of which they never fo much as fufpected. He went to the Principi illand, a few miles diftant from Conftantinople, where he difcovered an iron mine equally unthought of by the Turks. He returned to Europe loaded with fpoils from the Ealt, compofed of the creatures of the three kingdoms, peculiar to thofe regions: after having been ufeful to the Orientals, who were incapable of appreciating his merit, or rather of imagining the could have

Suppl. Vol. II. Patt II.
any, he fet out on his return for Italy the 1 Gth of Aurguit, 1786 .

A voyage by fea was in every refpect the molt fafe and the molt commodious; but Spallanzani conlidered the dangers and the inconveniences of the road as nothing when employed in any benchicial purfuit; he braved all the perils of thofe defert regions, whare there is no police, no fecurity. When he arrived at Buchareft, he was retained there during nine dajs by the celebrated and unhappy Mauroceni, hufpodar of Wallachia. This prince, the friend of feience, received him with dillinction, prefented him with many of the rarities of his country, furnimed him with horfes for tra. velling, and alfo gave him an efcort of thirty troopers throughout the whole extent of his dominions. Spal. lanzani paffed by Hermanftadt in Tranfylvania, and arrived at Vienna the $7^{\text {th }}$ of December, after having viewed the numerous mines of Tranfylvania, of Hungary, and of Germany, which lay in the neighbourlood of his route. Spallanzani remained five days in this capital of Auftria; he had two very long audiences with the Emperor Jofeph I1.; was well received by the higheft nobility in, that metrupolis, and vilited by the men of letters. At length arrived at Pavia; the ftudents came to meet hion cout of the grates of the city, and accompanied him home, manifefting their joy all the way by repeated fhouts. Their great delire to hear him, drew him almoft immediately to the auditory, where they forced him to afcend the chair from which he had been accuftomed to deliver his lectures to them. Spallanzani, affected by this fcene, teftified with eloquence his gratitude and attachment;-friendly wihes, cries of joy, clapping of hands, recommenced with more force, and he was obliged to requeft them to deffit, and allow him to take in his houfe that repofe which was more neceffary than ever. He had in the courfe of this year above 500 Itndents.

Spallanzani had acquired glory enough to merit the attacks of envy; but his difcoveries were too new, too original, too folid to be difputed; envy it felf was there. fore forced to admire him: but that unworthy paffion, being tired out by the increafing reputation of that great man, watched the moment to prove that it had not forgotten him. Envy ard maliguity then called in queftion his uprightnefs in the adminiftration of the cabinet of Pavia; the whole of which was the fruit of his own labours : but the darts aimed at lis honour only made it thine with new luftre. The integrity of Spailanzani appeared even more pure after the juridical examination of the tribunals. But let us ftop here; Spal. lanzani had the fortitude to forget this event which had torn his heart to pieces; the great part of his enemies acknowledged their miftake, abjured their hatred, and did not defpair of regaining his friendfhip.

The cabinet of Pavia was always the object of Spallanzani's thoughts; amidft the numerous rarities which he had placed there, he only faw thofe that were wanting. Struck with its deficiency in volcanic matters, which had neither feries nor order, and confequently excited little intereft, being a mute article with refpect to inflruction (although Italy was the theatre where the fires of volcanoes had for fo many ages exercifed their defolating powers), he teok the refolution, with which his talents, his courage, and his zeal, infpired 3 U him.
zanl.

Spallan- him. He was defirous to inftruct his pupils, his nazani. tion, himfelf, concerning the phenomena fo ftriking, and yet fo little known, and to collect the documents of their hiftory in the places where they have always been the terror of thofe who furrounded them, and where they have been ufelefsly the fubject of the obfervations of the philofopher. He therefore prepared himfelf for this great enterprife by deep ftudies. He fet out for Naples, in the fummer of 1788 , and afcended mount Vefuvius; he looked attentively into its crater, examined and made notes in his books, and cmbarked for the Lipari iflands. He diffected, as it were, the uninhabited volcanoes, with the exactnefs of a naturalilt anatomifing a butterfly, and the intrepidity of a warrior defying the moft imminent dangers. It was then that he had the boldnefs to walk over that fulphurous cruft, cleft with chinks, trembling, fmoking, burning, and fometimes treacheroully covering the hearth of the volcano. He paffed into Sicily, where he climbed up to Etna, and coafted its immenfe crater. His suriofity not being exhaufted, he would collect around him, and have in his mind, all the fingular pheromena that Sicily contained ; he examined the flones and the mountains, and difcovered many new marine animals; be approached Scylla and Charybdis, and in a boat croffed the frothy billows of thofe deadly rocks, celebrated for fo many fhipwrecks, and fo often fung by the poets; but in the very midft of their frightful waves, he difcovered the caufe of their fury (See Scylla, Suppl.) It was thus that, at the age of 60 , he picked up thofe numberlefs anecdotes which fill his voyages in the two Sicilies; and that he compared the defcription which Homer, Pindar, Virgil, Diodorus Siculus, and Strabo, have given of thefe ever famous places, with that which he made himfelf. In this manner he fhewred the connection of ancient literature with natural hiftory.

We find in the voyages of Spallanzani a new volcanology. He therein teaches the way to meafure the inteafity of the fire of volcanoes, to glance at the caufes, to touch almoft, in the analyfis which he makes of the lava, that particular gas which, refembling a powerful lever, tears from the bowels of the earth, and raifes up to the top of Etna, thofe torrents of fone in fufion which it difgorges; to furvey the nature of thofe pu-mice-ftones, which he has fince explained in his artificial pumice-ftones. He concludes this charming work with fome interelting inquiries into the nature of fwallows, their mild difpofitions, rapid flight; fuggefting that an advantage might be drawin from them in the way of aerial poit ; their migrations determined by the temperature of the air, and the birth of infects it occafions: in fhort, he difculfes the famous problem of their remaining benumbed during winter; and proves, that artificial cold, much greater than that ever naturally felt in our climates, does not render thefe birds lethargic. He next fpeaks of a fpecies of owl, hitherto very ill defcribed; and, laftly, of eels and their generation, which is a problem ftill in fome meafure to be folved; but he carries it on by his inquiries to that flep which alone remains tu be made for obtaining a complete folution ; or to get over it eafily by a fmall number of obfervations in thofe times and places pointed out, but which the academical occupations of Spallanzani forced him to give up to others.

Spallanzani followed the progrefs of the French che- Spalian. miftry with much fatisfaction, uor was lie lung before he adopted it; it was calculated for a juft conception like his, delighting to give an account of evety phenomenon he obferved. The folidity of principles in this new doctrine, the precifion in its way of proceeding, the elegance of its intcrpretation, the generality of its confequences, prefently replaced in his mind the hefita. tions and the obfcurities of the ancient chemiftry; and his heart anticipated with pleafure the triumphs that it was about to oltain.

In 1791, Spallanzani putlifhed a letter addreffed to Profeffor Fortis, upon the Pennet Hydrofcope. He there relates the experiments which he had directed to be made for afcertaining the degree of confidence which might be allowed to the fingular talents of this man ; but he ingenwoufly confeffes, that he is not decided upon the reality of the phenomenon.

Spallanzani has often difcovered that which might lave been deemed impoffible. In 1795 he made a dif. covery of this nature, which he publifhed in his Lettere fopra il fa/petto d'un nuovo fenfo nei Pippiffelli. We therein learn that the bats, if blinded, act in every refpect with the fame precifion as thofe which have their eyes ; that they in the fame manner avoid the moft trifling obflacles, and that they know where to fix themfelves on ceafing their flight. Thefe extraordinary experiments were confirmed by feveral natural philofophers, and gave occafion to fufpect a new fenfe in thefe hirds, becaufe Spallanzani thought he had evinced by the way of exclufion, that the other fenfes could not fupply the deficiency of that light which he had deprived them of ; but the anatomical details of Profeffor Jurine, upon the organ of hearing in this fingular bird, made him incline afterwards towards the idea, that the fenfe of hearing might in this cafe fupply that of fight, as in all thofe where the bats are in the dark.

Spallanzani concluded his literary career for thepublic, by a letter addreffed to the celebrated Giobert; Sopra la piante cbiufe ne'vafo dentro l'aqua el'aria, efo pole a l' innmediata lume folare e a l'ombra. It is a mis. fortune for this part of the fcience, that his death has deprived us of the difcoveries he was about to make in it.

Thefe numerous works, priuted and applauded, did not however contain all the feries of Spallanzani's labours. He had been occupied a confiderable time upon the phenomena of refpiration; their refemblances and differences in a great number of fpecies of animals; and he was bufily employed in reducing to order his refearches upon this fubject, which will aftonifh by the multitude of unforefeen and unexpected facts. He has left a precious collection of experiments and new obfervations upon animal reproductions, upon fponges, the nature of which he determines, and upon a thoufand interefting phenomena which he knew how to draw out of obfcurity. He had almoft finifhed his. voyage to Conftantinople, and had amaffed confiderable materials for a Hiftory of the Sea, when an end was put to his life and his labours.

On the 4 th of February 1799 , he was feized with a retention of urine, the fame night was unquiet, and in the morning he loit all powers of reafon, which he never recovered but.during very fhort intervals. His intimate friends, Tourdes, a French phyfician, and the celebrated Profeffor Scarpa, did every thing which

$S \quad P \quad E$

Specics, jectacle
could be expected from genius, experience, and friendthip, to fave him; but he died the 17 th, after having
edified thofe around hin by his piety. This lamentable event overwhelmed all his family in forrow, occationed the tears to flow from all his friends, filled his difciples with a deep aflliction, ard exeited the regret of a natimn proud of having given hins birth.

The reader cannot but have perceived in this fletch the ftrain of panegyric, rather than the calm narrative of impartial biography. It is, in fact, an abridged tranflation of an eloge by a cilizen philufopher of Geneva, who has adopted the calendar, and probalaly the principles of republican France. Some abatement therefare will naturally he made by cuery briton of the praifes bellowed upon the piety" of Spallanzani ; but after proper allowance of this kind, trath will proclaim him a very great man. Accordingly, France, Germany, England, all were eager to avail themfelves of his works by means of tranfations. He was admitted into the academies and learned focietics of Lundon, Stockholm, Gottingen, Holland, Lyons, Bologia, T'urin, l’adua, Mantua, and Geneva. He was a correfpondent of the academy of \{ciences of Paris and of Montpelier : and received from the great Frederic himfelf the diploma of member of the academy of Berlin.

SPECIES, in algebra, are the-letters, fymbols, marks, or charaeters, which reprefent the quantities in any operation or equation.
Species, in optics, the image painted on the retina by the rays of light reflected from the feveral points of the furface of an object, reccived in by the pupil, and collected in their palfage through the cryftalline, \&.c.

SPECTACLES (See Encycl.) are certainly the moft valuable of all optical inftruments, thougb there is not the fame fcience and meehanical ingenuity difplayed in the making of them as in the conftruction of microfcopes and telcifopes. A man, efpecially if accuftomed to fpend his time among books, would be mueh to be pitied, when his fight begins to fail, could he not, in a great meafure, reftore it by the aid of fpectacles; but there are fome men whofe light cannot be aided by the ufe either of convex or concave glaffes. The following method adopted by one of thofe to aid his fight is certainly worthy of notice :

When about fixty years of age, this man had almoll entirely lof his fight, feeing nothing but a kind of thick mift, while little black fpecks which appeared to float in the air. He knew not any of his friends, he could not even diflinguifh a man from a woman, nor could he walk in the itreets without being led. Glaffes were of no ufe to him ; the bet print, feen through the beft fpectacles, feemed to him like a daubed paper. Wearied with this melancholy flate, he thought of the following expedient.

He procured fome fpectacles with very large rings ; and, taking out the glaffes, fubllituted in each circle a conic tube of black Spanifh copper. Looking through the large end of the cone he could read the fmalleft print placed at its other extremity. Thefe tubes were of different lengths, and the openings at the end were alfo of different fizes; the fmaller the aperture the better could he diltinguigh the fmalleft letters; the larger the aperture the more words or lines it commanded; and confequently the lefs occafion was there for moving the head and the hand in reading. Sometimes he ufed one
$523] \quad \mathrm{P} \quad \mathrm{P}$
cye, fometimes the other, alternately relieving cach, for spenre. the rays of the two cys could not unite upon the fame $\underbrace{-}$ object when thus feparated by two opaque tubes. The thinner thefe tutes, the lefs troublefous are they. They mult be totally blackened within fo as to prevent all thining, and they fhould be made to lengthen or contract, and enlarge or reduce the aperture at plafure.

When he placed convex glaffes in thefe tubes, the letters indeed appeared larger, but not fo clear and di. ftinct as through the empty tube: he alfo found the tubes more convenient when not fixed in the fpectacle rings; for when they hung loofely they could be raifed or lowered with the hand, and one or buth might be ufed as oceafion reouired. It is almotl needlefs to add, that the material of the tui)es is of no importance, and that they may be made of iron or tin as well as of copper, provided the infides of them be fufficiently blackened. See La Nourelle Bigarure for Fcbruary 1754, or Montbly Magazive for April 1799.

SPECTRE of the Broken, a curious phenomenois obferved on the fummit of the Broken, one of the Har $\&$ mountains in Hanover. We have the following account of it by M. Haue. "After having been here (fays he) for the thirtieth time, and having procured information refpecting the abovementioned atnofpheric phenomenon, I was at length, on the 23d of May 1797, fo fortunate as to have the pleafure of feeing it ; and perhaps my defcription may afford fatisfaction to others who vifit the Broken through curiofity. The fun rofe about four o'clock, and, the atmofphere being quite ferene towards the eaft, his rays could pais without any obftruction over the Heinrichmöhe. In the fouth-weft, however, towards Achtermannfhöhe, a britk weft wind carried before it thin tranfparent vapours, which were not yet condenfed into thick heavy clouds.
"A About a quarter paft four I went towards the inn, and looked round to fee whether the atmofphere would permit me to have a free profpect to the fouth-weft; when I obferved, at a very great diftance towards Achtermannfhöhe, a human figure of a monftrous lize. A violent gult of wind having almoft carried away my hat, I clapped my hand to it by moving my arm towards my head, and the coloffal figure did the fame.
"The pleafure which 1 felt on this difeovery can hardly be defcribed; for I had already walked many a weary ftep in the hopes of feeing this thadowy imagr, without being able to gratify my curiolity. I inmediately made another movement by lending my body, and the coluffal figure before me repeated it. I was defirous of doing the fame thing once more-but my coloffus had vanifhed. I remained in the fame pofition, waiting to fee whether it would return ; and in a few minutes it again made its appearance on the Achter. mannhöhe. I paid my refpects to it a fecond time, and it did the fame to me. I then called the landlord of the Broken; and having both taken the fame pofition which I had taken alone, we looked towards the Achtermannfhöhe, but faw nothing. We had not, however, ftood long, when two fuch coloffal figures were formed over the above eminenee, which repeated our compliments by bending their bodies as we did; after which they vanifhed. We retained our pofition; kept our eyes fixed on the fame foot, and in a little the two figures again ftood before us, and were joined by a third. Every movement that we made by bending our

3 U 2
bodies

S P E

Spoculum. brikes thefe figures imitated - but with this difference,- that the phenomenon was lunatimes weak and faint, fomerises ftrong and well defined. Having thus had an opportunity of difcovering the whele fecret of this phenomenon, I can give the following information to fuck of my readers is may be defirous of feeing it themfelves. When the rifing fun, and according to analogy the cafe will be the fame at the fetting fun, throws his rays over the Broken upon the body of a man Itanding oppolite to fine light clouds floating around or hovering patt him, he needs only fix his eyes ftedfatlly upon them, and, in tll probability, he will fee the fingular fpectacle of his own thadow extending to the length of five or fix hundred feet, at the diflance of about two miles before him."

If our memory does not deceive us, there is in one of the volumes of the Manchefler Tranfations an ace count of a limilar plenomenon obferved by Dr Ferrier, on a hill fomewhere in England.

SPECULUM for reflecting telefcopes. Under this title (Encycl.) we have given the compofition of the inixt metal of which it has been found by expericnce that the beft fpeculums are made; we have likewife given, under the fame tith, fome directions for cafting fipeculuns: but owing to a circumftance in which the public can take no intereft, we neglected to give directions for griuding and polifhing them, and omitted fome pther circumitances, which, though not fo important as thefe, are certaialy worthy of notice. Thefe omifions it is the obicet of this article to fupply.

When the metal is taken out of the flafks (See no 3 . of the article referred to), which it fhould be as foon as it has become folid, and while it is yet red-hot, care nouft be takeu to keep the face downwards to prevent it from friking. Holding it in that pofition by the git, force out the fand from the hole in the middle of the mirror with a piece of wood or iron, and place the fecculum in an iron pot, with a large quantity of hot afhes or fmall coals, fo as to hury the fpeculum in them a fufficient depth. If the fand is not forced out of the hole in the manner above directed, the metal, by finking as it cools, will embrace the fand in the middle of the fpeculum fo tight, as to caufe it to crack before it becomes entirely cold. And if the metal is not taken put of the fand, and put in a pot with hot afhes or coals to anneal it, the moifture from the fand will always break the metal. Let the fueculum remain in the afhes till the whole is become quite cold. The git may be eafly taken off by marking it round with a cominon fine half round file, and giving it then a gentle blow. The metal is then to be rough ground and figured.

It may be proper, however, before we proceed to deferibe that procefs, to give an account of another compofition for the fpeculum of a reflecting telefcope, which has been employed with great fuccefs, by Rochon director of the marine obfervatory at Bref. Of this compofition the principal ingredient is platinum ; which, in grains, muft be purified in a flrong fire by means of nitre and the falt of glafs, or that flux which in the Englifk glafs-houfes is called by the workmen fandifer. 'To the platinum, when purified, add the eighth part of the metal employed in the compofition of common fpecula; for tin without red copper would not produce a good effect. This mixture is then to be expufed to the moft violent heat, which muft be fill excited by
the oxygen gas that difengages itfelf from nitre when Sfeculum thrown into the fire. One melting would be infufficient : five or fix are requifite to bring the mixture to perfection. It is neceffary that the metal fhould be in a fate of complete fufion at the moment when it is poured into the mould. By this procefs. I have been enabled (faya our author) to conffruct a telefcope with platinum, which magnifies the diameters of objects five hundred times, with a degree of clearnefs and dittinct. nefs requifite for the nicelt obfervations. The large fpeculum of platinum weighs fourteen pounds: it is eight inches in diameter, and its focus is fix feet. Though the high price of platinum will, in all probability, for ever prevent it from coming into general ufe for the rpeculuns of telefcopes, we thought it proper to notice this difcovery, and flall now proceed to the grinding of the fecculum.

For the accomplifhing of this object, a very complicated procefs is recommended in Smith's Optics, and one not much more fimpler by M: Mudge in the 67th volume of the Pbilofopbical Tranfacions; but according to Mr Edwards, whofe fpeculums are confeffedly the beft, neither of thefe is neceffary. Befides a common grinditone, all the tools that he made ufe of are a rough grinder, which ferves alfo as a poliher, and a bed of hones. When the fpeculum was cold, he ground its furface bright on a common grindfone, previouly brought to the form of the gage; and then took it to the rough grinder.

This tool is compofed of a mixture of lead and tin, or of pewter, and is made of an elliptical form, of fuch dimentions, that the fhorteft diameter of the ellipfe is equal to the diameter of the mirror or fpeculum, and the longeft diameter is to the fhorteft in the proportion of ten to uine. This rough grinder may be fixed upon a block of wood, in order to raife it higher from the benclı; and as the metal is ground upon it with fine emery, Mr Mudge, with whom; in this particular, Mr Edwards agrees, directs a hole or pit to be made in the middle of it as a lodgement for the emery, and deep grooves to be cut out acrofs its furface with a graver tor the fame purpofe. By means of a handle, fixed ou the back of the metal with foft cement, the fpeculum can be whirled round upon this grinder fo rapidly, that a common labourer has been known to give a piece of metai, four inches in diameter, fo good a face and figure as to fit it for the hones in the face of two hours. The emery, however fine, will break up the metal very much ; but that is remedied by the fuhfequent procefles of houing and polifhing.

When the metal is brought to a true figure, it mult be taken to a convex tool, formed of fome fones from a place called Edgedon in Shrophire, fituated between Ludlow and Bifhop's caftle. The common blue hones, ufed by many opticians for this purpofe, will fcarcely touch the metal of Mr Edwards's Ppeculums; but where they mull be employed for want of the others, as little water fhould be ufed as poffible when the metal is put upon them; becaufe it is found by experience that they cut better when but barely wet, than when drenched with water. The fones, however, from Edgedon are greatly preferable; for they cut the metal more eafily, and baving a very fine grain, they bring it to a fmonth face. Thefe fones are directed by Mr Mudge to be cemented in fimall pieces upon a thick round piece of marble,

S P E

than if no fuch fquares lad been made. Mr Mudge Speculum directs the polifher to be ftrewed over with very fine putty; but Mr Edwards prefers Colcothar of vitriol. (See that article, Encycl.) Putty (fays he) gives me. tals a white luftre, or, as workmen call it, a filver hue; but good colcothar of vitriol will polifh with a very finc and high black luftre, fo as to give the metal finifhed with it the complection of polifhed Ateel. 'To know if the colcothar of vitriol is good, put fome of it into your mouth, and if you find it diffolves away it is good; but if you find it hard, and crunch between your teeth, then it is bad, and not well burned. Good colcothar of vitriol is of a deep red, or of a deep purple colour ; and is foft and oily when rubbed between the fingers; bad colcothar of vitriol is of a light red colour, and feels harfh and gritty. The colcothar of vitriol mould be levigated between two furfaces of polifhed Iteel, and wronght with a little water ; when it is worked dry, you may add a little more water, to carry it lower down to what degree you pleafe. When the colcothar of vitriol has been wrought dry three or four times, it will acquire a black colour, and will be low enough, or fuf. ficiently fine, to give an exquifite luftre. This levigated colcothar of vitriol muft be put into a fmall phial, and kept with fome water upon it. When it is to be ufed, every part of the pitch-polifher mult be firlt brufhed over with a fine camel's hair brufh, which has been dipped in pure water, and rubbed gently over a piece of dry clean foap. The wafhed colcothar of vitriol is then to be put upon the polifher ; and Mr Edwards directs a large quantity of it to be put on at once, fo as to faturate the pitch, and form a fine coating. If a fecond or third application of this powder be found neceffary, it muft be ufed very faringly, or the polinh will be deftroyed which has been already attained. When the metal is nearly polifhed, there will always appear fome black mud upon its furface, as well as upon the tool. Part of this mult be wiped away with fome very foft wafh leather : but if the whole of it be taken away, the polifhing will not be fo well corr pleted.

With refpect to the parabolic figure to be given to the mirror, Mr Edwards uffures us, that a very little experience in thefe matters will enable any one to give it with certainty, by polifhing the fpeculam in the common manner, only with crofs trokes in every direction, upon an elliptical tool of the proper dimenfions.

SPINDLE, in grometry, a folid body generated by the revolution of fome curve line abont its bafe or double ordinate; in oppofition to a conoid, which is generated by the rotation of the curve about its axis or abfeifs, perpendieular to its ordinate. The fpindle is denominated circular, elliptic, hyperbolic, or parabolic, \&c. according to the figure of its generating curve.

Spindle, in mechanics, fometimes denotes the axis of a wheel, or roller, \&c. and its ends are the pivots.

SPINNING machine. The amcient Greeks were not, like the modern philufophers, unwilling to acknowledge their obligations to Providence for all the comfort and enjoyments of life, nor felt pride in deriving every thing from their own talents. They were even difpofed to think that thofe very talents were infpired. Their firt inftructors, the poets, gave to A. pollo the honour of that power of invention and imagination by which they inftructed and charmed their admiring hearers. The prophetefs dictated her oracles,

S P i [526] S P I

Sonning the poet fung his enraptured ftrain only when infpired. $\underbrace{\text { Machine. The happy thought of twining a thread, and working }}$ it into a blanket, when viewed by that ingenious and acutely fenlible people in all its importance, as the protector of the human race from the feverity of the weather, feemed a prefent from heaven, as the infpiration of a divinity ; and the diftaff and the loom were Minerva's lirft title to a feat among the great gods on Olympus.

We are much inclined to be of the fame opinion. When we obferve, that in all the countries which have been difcovered by the uavigators of the three laft centuries, the diftaff and fpindle, and the needke, have been found, we own ourfelves much difpofed to think that they are the refults of inftinct. Our inftincts are not all fimple and blind, like that which directs the newborn animal to the breaft of its nother without knowing why. We have inftincts of intellect as well as of appetite ; and the logic of common converfation is an example of many fuch. We doubt not but that the noble-minded inhabitants of Pelew would have worfhipped as a divinity an Englifh maiden with her fpinning wheel and fly. Surely he who fhould carry them this homely but ingeniuus machine, and a potter's wheel, would do them more fervice than if he taught then all the fcience of a Newton, with all the philofophy of the 1 8th century into the bargain. We do not know, except perhaps the fteam engine, any mechanical invention that has made fuch amazing addition to the activity and induftry and opulence of this highly favoured illand, as the invention of Mr Arkwright for fpinning by water, where dead matter is made to perform all that the niceft finger can do when directed by the neverceafing attention of the intelligent eye. Minerva has the undifputed honours of the diftaff and fpindle. We know not to what benefactor we uwe the fly-wheel. Mr Arkwright has the honour of combining them both, and infpiring them with his own fpirit: for we may truly fay of the contrivance which pervades the wonderful machinery of a cotton mill,

Totofque infufa per artus

Mens agitat nolion at mayno fe corpore mifct.
To give an intelligible and accurate defcription of a cotton mill would be abundant employment for a volume. Our limits admit of nothing like this; but as we are certain that many of our readers have viewed a cotton mill with wonder, but not with intelligence, nor with leifure to trace the fteps by which the wool from the bag ultimately affumes the form of a very fine thread. Bewildered by fuch a complication of machinery, all in rapid motion, very few, we imagine, are able to recolleet with diftinctnefs and intelligence the effential part of the procefs by which the form of the cotton is fo wonderfully changed. Such readers will not think a page or two mifemployed, if they are thereby able to underftand this particular, to which all the reft of the procefs is fubfervient.

We pafs over the operation of carding, by which all the clots and inequalities of the cotton wool are removed, and the whole is reduced to an uniform thin fleece, about 20 inches broad. This is gradually detached from the finifhing card, and, if allowed to hang down from it, would pile up on the floor as long as the mill
continues to work; but it is guided off from the card, very tenderly, in a horizontal direction, by laying its detached end over a roller, which is nuwly turned round by the machine. Another roller lies above the feece, preffing it down by its weight. By this prelfure, a gentle hold is taken of the flecee, and thetefore the flow n.ntion of the rollers draws it gently from the card at the fame rate as it is difengiged by the comb; but bet ween the card and the rollers a fet of finnoth pins are placed in two rows, leadiog from the card to the rol. lers, and gradually approaching each other as we approach the rollers. By thefe pins the broad fleece is hemnred in on both fides, and gradually contracled to a thick roll: and in this flate pafles between the rollers, and is compreffed into a pretty firm flat riband about two inches broad, which falls off from the rollers, and piles up in deep tinplate cans fet below to receive it.

It is upon this ftripe or riband of cutton woul that the operation of fpinning begins. The general effect of the fpinning procefs is to draw out this maflive roll, and to iwift it as it is drawn out. Dut this is not to be done by the fingers, pulling out as many cotton fibres at once as are neceffary for compofing a thread of the intended finenefs, and continuing this manipulation regularly acrofs the whole end of the riband, and thus, as it were, nibbling the whole of it away. The fingers muft be directed, for this purpofe, by an attentive eye. But in performing this by machinery, the whole riband muit be drawn out together, and twifted as it is drawn. This requires great art, and very delicate management. It cannot be done at once; that is, the cotton roll cannot firft be ftretched or drawn out to the length that is ultimately produced from a tenth of an inch of the rolls. and then be twifted. There is not cohefion enough fur this purpofe; we fhould only break off a bit of the roll, and could make no farther ufe of it. The fibres of cotton are very little implicated among each other in the roll, becaufe the operation of carding has laid them almolt parallel in the roll; and thongh compreffed a little by its contraction from a feece of 20 inches to \exists riband of only 2 , and afterwards comprefted between the difeharging rollers of the carding machine, yet they cohere fo niglitly, that a few fibres may be drawn out without bringing many others along with them. For thefe reafons, the whole thicknefs and breadth of two or three inches of the riband is flretched to a very minute quantity, and then a very flight degree of twift is given it, viz. about three turns in the inch; fo that it fhall now compofe an extremely fuft and fpongy cylinder, which cannot be called a thread or cord, becaufe it has foarcely any firmnefs, and is merely rounder and much flenderer than befure, being ftretched to about thrice its former leugth. It is now called flab, or roove.

Although it be Aill extremely tender, and will not carry a weight of two ounces, it is much more cohefive than before, becaufe the twift given to it makes all the longitudinal fibres liind each other together, and com: prefs thofe which lie athwart ; therefore it will require more force to pull a fibre from among the reft, but ftill not nearly enough to break it. In drawing out a fingle fibre, others are drawn out along with it; and if we take hold of the whole affemblage, in two places, about an inch or two inches afunder, we fhall find that we may draw it to near twice its length without any

[^9] $-$
innins- rifk of its feparating in any intermediate part, or becoming much fmaller in one part than another. It feems to yield equably over all.

Such is the flate of the flab or roove of the firt formation. It is ufually called the preparation ; and the operation of fpinning is confidered as not yet begun. This preparation is the moft tedious, and requires more attendance and hand labour than any fubfequent part of the procefs. For the ftripes or ribands from which it is made are fo light and bulky, that a few yards only can be piled up in the cans fet to receive them. A perfon mult therefore attend each thread of nab, to join frefh ftripes as they are expended. It is alfo the moft important in the manufacture; for as every inch of the nab meets with precifely the fame drawing and the fame twilting in the fubfequent parts of the procefs, therefore every inequality and fault in the flab (indeed in the flaece as it quits the finifhing card) will continue through the whole manufacture. The fpinning of cotton yarn now divides into two branches. The firf, performed by what are called jennies, perfectly refembles the ancient fpinning with the diftaff and fpindle; the other, called fpinning of twifh, is an imitation of the fpiuning with the fly-wheel. They differ in the fame manner as the fpinning with the old wool or cottonwheel differs from the fpinning with the flax-wheel. Mr Arkwright's chief invention, the fubttitution of machinery for the immediate work of the luman finger, is feen only in the manufacture of twitt. We fhall therefore confine our attention to this.

The relt of the procefs is little more than a repetition of that gone through in making the firit flab or roove. It is formed on bobins. Thefe are fet on the back part of the drawing frame; and the end of the nab is bronght forwards toward the attending workman. As it comes forward, it is ftretched or drawn to about $\frac{4}{3}$ of its former length, or lengthened $\frac{7}{3}$; and is then twifted about twice as much as before, and in this fate wound up on another bobin. In fome mills two rooves, after laving been properly drawn, are brought together through one-hole, and twifted into one ; but we believe that, in the greater number of mills, this is deferred to the fecond drawing. It is on. ly after the firf drawing that the produce of the operation gets the name of plab; before this it is called prefaration, or roove, or by fome other name. The nab is fill a very feeble, foft, and delicate jarn, and will not carry much more weight than it did before in the form of roove. The perfection of the ultimate thread or yarn depends on this extreme foftnefs; for it is this only which makes it fufceptible of an equable ftrctelsing; all the fibres yielding and feparating alike.

The next operation is the fciond drazuing, which no way differs from the firf, except in the different proportions of the lengthening, and the proportion between the lengthening and the fubfequent twift. On thefe points we cannct give any very diftinct information. It is different in different mills, and with different fpecies of cotton wool, as may be eafily ima. gined. The immediate mechanifin or manipulation mult be fliilfully accommodated to the nature of that friction which the fibres of cotton exert on each other, enabling one of them to pull others along with it. This is greatly aided by the contorted curled form of a cotion fibre, and a confiderable degree of elafticity which
it poflefles. In this refpect it greatly refembles woollen Spinningfibres, and differs exceedingly from thofe of Hax : and Machinc. it is for this reafon that it is fcarcely porfible to fpin flax in this way: its fibres become lank, and take any frape by the flighteft compreffion, efpecially when damp in the flightert degree. But befides this, the furface of a cotton fibre has a harfhnefs or roughnefs, which greatly augments their mutual friction. This is probably the reafon why it is fo umfit for tents and other dreflings for wounds, and is refufed by the furgeon even in the meaneft hofpitals. But this harfhnefs and its elaficity fit it admirally for the manufacture of yarn. Even the flortnefs of the fibre is favourable : and the manufacture would hardly be poflible if the fibre were thrice as long as it generally is. 'If it be juit fo long that in the finifhed thread a fibre will rather break than come out from among the rell, it is plain that no additional lengtli can make the yarn any ftrong. er with the fame degrec of compreffion by twining. A longer fibre will indeed give the fame firmnefs of adherence with a fmaller compreffion. This would be an advantage in any other yarn; but in cotton yarn the compreffion is already as fliglit as can be allowed; were it lefs, it would become woolly and rough by the fmalleft ulage, and is already too nuch difpoled to tcazle out. It can hardly be ufed as fewing thread. Now fuppofe the fibres much longer; fome of them may chance to be ftretched along the flab through their whole length. If the flab is pulled in oppofitc directions, by pinching it at each end of fuch fibres, it is plain that it will not ftretch till this fibre be broken or drawn out ; and that while it is in its extended ftate, it is acting on the other fibres in a very unequable manner, according to their pofitions, and renders the whole apt to feparate more irregularly. This is one great otftacle to the fpiuning of flax by fimilar machinery ; and it las hitherto prevented (we believe) the working up of any thing but the foorts or tow, which is feparated from the long fine flax in the operation of hatcheling.

A third, and fomctimes even a fourth, drawing is given to the flab formed on the hobins of this fecond operation. The flab produced is now a flender, but ftill extremely foft cord, finiceptible of confiderable extenfion, without rifk of feparation, and witheut the fmalleft clance of breaking a fingle fibre in the attempt. In one or more of the preparatory drawings now defcribed, two, and fometimes three flabs of a former drawing: are united before the twift is given them. The practice is different in different mills. It is plain, that unlefs great care be taken to preferve the flab extremely foft and compreffible during the whole procefs, the fubfequent drasing becomes more precarious, and we run a rifk of at laft making a bad and loofe thread inftead of a uniform and fimple yarn. Such a thread will have very little lateral connection, and will not bear much handling withont feparating into frands. The perfection of the yarn depends on having the laft flab as free of all appearance of ftrands as poffible.

The laft operation is the fpirning this nab. This hardly differs from the foregoing drawings in any thing but the twift that is given it after the laft ftretching in its length. This is much greater than any of the preceding, being intended to give the yarn hardnefs and firmnefs, fo that it will now break rather than ftretch: any more.

EpinsingMachine.

The reader, moderately acquainted with mechanics, cannat but perceive that each of the operations now defcribed, by which the roove is changed into the foft flab, and each of thefe into one flenderer and fomewhat firmer, by alternately teazling out and twining the foft cord, is a fublitute for a fingle pull of the finger and thumb of the fpinfter, which the accommodates precifely to the peculiar condition of the lock of wool which fle touches at the moment. She can follow this thro' all its irregularities; and perhaps no two fucceeding plucks are alike. But when we cannot give this momentary attention to every minute portion, we mult be careful to introduce the roove in a flate of perfect unifornity; and then every inch being treated in the fame manner, the final refult will be equable - the yarn will be uniform.

We are now to defrribe the mechanifm by which all this is effected. But we do not mean to defreribe a cotton mill; we only mean to defcribe what comes into immediate contact with the thread; and in fo doing, to confine ourfelves to what is neceffary for making the reader perceive its ability to perform the required tafl. We fee many cafes where individuals can apply this knowledge to ufeful purpofes. More than this would, we think, be improper, in a national point of view.

Let ABC reprefent the fection of a roller, whofe pivot D does not turn in a pivat hole, but in the bottom of a long narrow notch DE, cut in an iron frandard. $a b c$ is the fection of another iron roller, whofe pivot d is in the fame notches at each end, while the roller itfelf lies or refts on the roller ABC below it. The furfaces of thefe rollers are fluted lengthwife like a column; only the flutings are very fnall and tharp, like deep ftrokes of engraving very clofe together. It is plain, that if the roller $A B C$ be made to turn flowly round its axis by machinery, in the direction $A B C$ (as expreffed by the dart), the roughnefs of the flatings will take hold of the fimilar roughnefs of the upper roller $a b c$, and carry it round alfo in the direction of the dart, while its pivots are engaged in the notches DE , which they cannot quit. If there. fore we introduce the end F of the cotton fring or riband, formed by the carding machine, it will be pulled in by this motion, and will be delivered out on the other fide at H , confidcrably compreffed by the weight of the upper roller, which is of iron, and is alfo preffed down by a lever which refts on its pivots, or other proper places, and is loaded with a weight. There is nothing to hinder this motion of the riband thus compreffed between the rollers, and it will therefore be drawn thro' from the cans. The compreffed part at H would hang down, and be piled up on the floor as it is drawn thro'; but it is not permitted to hang down in this manner, but is brought to another pair of fharp flated iron rol. lers K and L . Suppofing this pair of rollers to be of the fame diameter, and to turn round in the fame time, and in the fame direction with the rollers $\mathrm{ABC}, a b c$; it is plain that K and L drag in the compreiled riband at I, and would deliver it on the other lide at M, fill more comprefled. But the roller K is made (by the wheelwork) to turn round more fwiftly than ABC . The difference of velocity at the furface of the rollers is, however, very fnuall, feldom exceeding one part in 32 or 15 . But the confequence of this difference is, that the Ikein of cotton HI will be lengthened in the
fame proportion; for the upper rollers preffing on the Spinningunder ones with a confiderable force, their fharp flutings Machine. take good hold of the cotton between them; and fince K and L take up the cotton fafter than ABC , and $a b c$ deliver it out, it moft either be forcibly pulled through between the firft rollers, ur it muft be ftretched a little by the fibres flipping among each wther, or it muft break. When the extenfion is fo very moderate as we have juit now faid, the only effect of it is merely to begin to draw the fibres (which at prefent are lying in every poffible direction) into a more favourable pofition for the fublequent extenfions.

The fibres being thus drawn together into a more favourable pofition, the cotton is introduced between a third pair of rollers O, P, conftracted in the fame way, but fo moved by the wheelwork that the furface of O moves nearly or fully twice as faft as the furface of K . The roller P being alfo well loaded, they take a firm hold of the cotton, and the part between K and O is nearly or fully doubled in its length, and now requires a little twining to make it roundift, and to confolidate it a little.

It is therefore led noping downwards into a hole or eye in the upper pivot of the firtt fly, called a jack. This turrs round an upright axis or Spindle; the lower end of which has a pulley on it to give it motion by means of a band or belt, which paffes round a drum that is turned by the machinery. This jack is of a very ingenious and complicated conftruction. It is a fubftitute for the fly of the common fpinning wheel. If made precifely in the form of that fl , the thread, being fo vety bulky and fpongy, and unable to bear clofe packing on the bobin, would fwag out by the whirling of the fly, and would never cuil up. The bobin therefore is made to lie horizontally ; and this occafions the complication, by the difficulty of giving it a motion round a horizontal axis, in order to coil up the twited roove. Mr Arkwight has accomplifhed this in a very ingenious manner; the effential circumftances of which we fhall here briefly defcribe. - A is a roller of hard wood, having its furface cut into fharp flutes longitudinally. On the axis, which projects through the fide of the general frame, there is a pulley P', connected by a band with another pulley Q, turning with the horizontal axis QR. This axis is made to turn by a contrivance which is different in every different cotton mill. 'The fimpleft of all is to place above the pulley C (which is turned by the great band of the machinery, and thos gives motion to the jack) a thin circular dife D , loofe upon the axis, fo as to turn round on it without obftraction. If this dife exceed the pnlley in breadth about one-tenth of an inch, the broad belt which turns the pulley will alfo turn it ; but as its diameter is greater than that of the pulley, it will turn fonewhat flower, and will therefure have a relative motion with refpect to the axis $Q R$. This can be employed, in order to give that axis a very flow motion, fuch as one turn of it for 20 or 30 of the jack. This we leave to the ingennity of the reader. The bobin B, on which the roove is to be coiled up, lies on this roller, its pivots paffing through upright llits in the fides of the general frame. It lies on A, and is moved round by it, in the fame manner as the uppermofl of a pair of drawing rollers lies on the under one, and receives motion from it. It is evident that the fluted furfaces of A , by turning nowly ronnd, and

5 T A

Spinning. carrying the weight of the bobin, compreffes a little the cotton that is between them ; and its flutings, being fharp, take a flight hold of it, and caufe it to turn round alfo, and thus coil up the rouve, pulling it in through the hole E in the upper pivot (whieh refembles the fore pivot or cye of a fpiming wheel fly) in io gentle a manner as to yield whenever the motion of the bobin is too great for the fpeed with which the cotton fkein is difeharged by the rollers O and P. $-N$. B. The axis QR below, alfo gives motion to a guide within the jaek, which leads the roove gradually from one end of the bobin to the other, and baek again, fo as to coil it with regularity till the bobin is full. The whole of this internal mechanifm of the jack is commonly fhut up in a tin eylinder. This is particuiarly neceffary when the whirling motion mut be rapid, as in the fecond and third drawings. If open, the jaeks would meet with much refitanee from the air, which would load the mill with a great deal of ufelefs work.

The reader is defired now to return to the beginning of the procefs, and so confider it attentively in its different flages. We apprehend that the defcription is fufficiently perfpicunus to make him perceive the efficaey of the mechanifm to execute all that is wanted, and prepare a ilab that is uniform, foft, and fill very extenfible ; in fhort, fit for undergoing the laft treatment, by which it is made a fine and firm yarn.

As this part of the procefs differs from each of the former, merely by the degree of t witt that is given to the yarn, and as this is giveu by means of a fly not materially different from that of the fpinning wheel for flax, we do not think it at all neceffary to fay any thing more about it.

The intelligent reader is furely fenfible that the yarn produced in this way mutt be exceedingly uniform. The uniformity really produeed even exceeds all expectation ; for even although there be fome fmall inequalities in the earded fleeee, yet if thefe are not matted clots, which the eard could not equalié, and only confoll of a little more thicknefs of cotton in fome places than in others, when fuch a piece' of the ftripe comes to the fret roller, it will be rather more 1 tretehed by the feeond, and again by the bobin, after the firft very flight twining. That this may be done with greater eertainty, the weights of the firft ronving rollers are made very fmall, fo that the middle part of the fkein ean be drawn through, while the outer parts remain faft held.

We are informed that a pound of the finef Bourbon cotton has been fpun into a yarn extending a few yards heyond 119 miles.

Elater SPRING, in phyfics, denotes a natural faculty, or endeavour, of certain bodies to return to their firft ftate, after having been violently put out of the lame by compreffing, or bending them, or the like. This faculty is ufually called by philofophers elaffic force, or elafficity.
T. SQUARE, or Tee SQuark, an inftrument ufed in drawing, fo called from its refemblance to the capital letter T'.
STAPELIA, a genus of plants belonging to the clafs pentandria, in the Linnxan arrangement, and to the order digynia. The generic characters are the following: The calyx is monophyllous, quinquefid, acute, fmall, and permanent. The corolla is monopetalous, Supfl. Vol. II, Part 1I.
flat, large, and divided, deeper than the middle, into Sta; elia. five parts, with broad, flat, pointed laciniz. The nethariurn is fmall, Itar-fhaped, flat, quinquefid, with linear lacinia; and embraeing with ics ragged points the feedforming parts. A nother inall itar, which is alfo flat and quinquefid, covers the feminiferous parts with its entire acute lacinia. The flamina are fire in number; the filamcnts are ereef, flat, and broad; and the antbere are linear, on each lide united to the lide of the fisanient. The pifillum has two germina, which are oval and flat on the infide. There are no jlyles; and the figmata are obfolete. The feed-veffel coultills of thu oblong, awl-fhaped, unilocuar and univalved follicles. The jeeds are numerous, imbricated, compreffed, and crowned with a puppus or down.
This fingular tribe of plants is peculiar to the fandy deferts of Afriea and Arabia. They are exiremely fucculent. From this peculiarity of thacture, the power of retaining water to buppott and noutith them. they are enabled to live during the prevalent drought: of thofe arid regions. On this account the ftapelia has been compared to the camel; and we are told that, by a very apt funilitude, it has been denominated "the camel of the vegetable kingdon." We nutt confers ourfelves quite at a lols to tee the propricty or aptitude of this comparifon. In many parts of the animal and vegetable economy there is doubtlefs a very ohvious and ftriking analogy: but this analogy has been often carried too far; much farther than fair experiment and accurate obfervation will in any degree fupport. It is perhaps owing to this inaccuracy in obferving the peculiarity of ftructure and diverity of functions, that a refemblance is fuppofed to exift, as in the puefent cafe; where in reality there is none. The camel is provided with a bag or fifth fomach, in addition to the four with which ruminant auimals are furnifhed. This firth flomach is deffined as a refervoir to contain water; and it is fufficiently capacions to receive a quantity of that neceffary fluid, equal to the wants of the animal, for many days; and this water, as long as it remains in the fifth fomach, is faid to be periectly pure and unchanged. The fapelia, and other fucculent plante, have no fuch refervoir. The water is equally, or nearly fo, diffuied through the whole plant. Every veffel and every cell is fully diftended. But befides, this water, whether it be received by the roots, or ablorbed from the atmolj, here, has probably undergone a complete change, and beconic, after it has been a fhert tine within the plant, a fluid poffeffed of very different qualities.

The peculiar economy in the flapelia, and other facculent plants, feems to exilt in the abforbent and exhalant fyflems. The power of abforption is as mueh increafed as the power of the exhalant or perfipiratory veffels is diminifihed. In thefe plants, a fmall quanticy of nourifhment is required. There is no folid part to be formed, no large fruit to be produced. They generally have very fimall leaves, often are cnt:rely naked; fo that taking the whole plant, a fimall furface only is expofed to the action of light and heat, and confequently a much fmaller proportion of water is decompofed than in plants which are much branched and furnifhed with leaves.

Two fpecies of flapelia only were known at the begioning of the century. The unfortunate Forkál, the
eight inches high : the hurs made by ftamping the holes are on the inlide. This grater is fupported upon three feet AAA, made of flat iron bars, feven feet high, ftrongly rivetted to the grater ; the hottom of each foot is bent horizontally, and has a hole in it which re. ceives a [crew, as at A, fig. 4. A little below the upper end of the three feet is fixed a crofs piece 13 (fig. 1. and 4.), divided into three branches, and rivetted to the feet. This crofs piece not only ferves to keep the feet at a proper diftance from each other, and to prevent their bending ; but the centre of it havirg a hole cut in it, ferves to fupport an axis or fpindle of iron, to be prefently defcribed.

The upper end of this cylindrical grater has a diver. ging horder of iron C (fig. 1. 4. and 7.), about ten inches in diameter at the top, and five inches in height.

Within this cylindrical grater is placed a fecond grater (fig. 2. and 3.), in the form of a cone, the point of which is cut off. The latter is made of thick plate iron, and the burs of the holes are on the outfide; it is fixed, with the broad end at the bottom, as in fig. 4 . At the upper end of the cone is rivetted a fmall triangle, or crofs piece of iron, confifting of three branches D (fig. 2.), in the middle of which is made a quarehole, to receive an axis or fpindle; to give more re. fiftance to this part of the cone, it is frengthened by means of a eap of iron E, which is fixed to the grater by means of rivets, and has alfo a fquare hole made in it, to let the axis pafs through.

Fig. 3. reprefents the fame cone feen in front; the bafe F has alfo a crofs piece of three branches, rivetted to a hoop of iron, which is fixed to the inner furface of the cone; the centre of this crofs piece has alfo a fquare hole for the paffage of the axis.

Fig. 5. is a \{pindle or axis itielf; it is a §quare bar of iron about if inches long, and more than half an inch thick; round at the bottom, and alfo towards the top, where it fits into the crofs piece I, fig. 7. and B, fiy. 1. and $4 . ;$ in thefe pieces it turns round, and by them it is kept in its place. It mult be fquare at its upper extremity, that it may have a handle, about nine inches long, fixed to it, by ineans of which the conical grater is turned round. At G. (fig. 5.), a fmall hole is made through the axis, to receive a pin H , by means of which the conical grater is kept at its proper height within the cylindrical one.

Fig. 6. is a bird's eye view, in which the mill is reprefented placed in an oval tub, like a bathing tub. I is the forementioned triangular iron crofs, fixed with fcrews to the fide of the tub; the centre of it has a round hole, for the axis of the mill to move in when it is ufed.

Fig. 7. reprefents the mill in the oval tub; it is placed at one end of $i t$, that the other end may be left free for any operation to be performed in it which may be neceffary. A part of the tub is cut off, that the infide of it, and the manner of fixing the mill, may be feen. That the bottom of the tub may not be worn by the fcrews which pais through the feet of the mill, a deal board, about an inch thick, and properly fhaped, is placed under the mill.

When we wifh to make ufe of this mill, it is to be fixed by the feet, in the manner already defcribed; it is alfo fixed at the top, by means of the crofs piece I, fig. 6. and 7. The tub is then to have water poured

S T A

Guarch.

 filled with potatoes, properly wafhed and cut ; the lanndle L is to be turned round, and the potatues, after being ground between the two graters, go out gradually at the lower part, being affifted by the motion produced in the water by the action of the mill.It is not ueceffary, in the conftruction of fuch a mill, to be very particular with refpect to its proportions; but, in order to make known thofe which experience has proved to be good ones, a fcale is given with the figures, to which recourfe may be had. With a mill of this fize, 100 pounds of potatoes may be ground in the fpace of two hours.

We are perfuaded that this mill will anfiwer perfectly well for grinding horie-chefnuts; and we hope, that .where they can be had they will be ufed in preference to potatoes. We flall, however, give M. Beaume's neethod of extracting flarch from the ground potatues, not only becaute it will be acceptable to thofe who have not horfe-chefnuts, but alfo becaufe thofe. who have may, by following it, be able, perhaps, to make ftarch of them, without encroaching upon Lord WilLiam Murray's patent.

In order to prepare frarch from potatocs, fays M. Beaumé, any quantity of thefe roots may be taken, and Soaked in a tub of water for about an loour; they are afterwards to have their fibres and Thoots taken off, and then to be rubbed with a pretty frong brufh, that the earth, whieh is apt to lodge in the inequalities of their furface, may be entirely removed; as this is dune, they are to be wafhed, and thrown into another tub full of clean water. When the quantity which we mean to make ufe of has been thus treated, thofe which are too farge are to be cut into pieces about the fize of eggs, and thrown.into the mill ; that being already fixed in the oval tub, with the proper quantity of water; the handle is then turned round, and as the potatoes are grated they pars out at the bottom of the mill The pulp which collects about the mill muth be taken off from time to time' with a wooden fpoon, and put afide in water.

When all the potatoes are ground, the whole of the pulp is to be collected in a tub, and mixed up with a yreat quantity of clean water. At the fame time, another tub, very clean, is to be prepared, on the brim of which are to be placed too wooden rails, to fupport a hair fieve, which muft not be too tine. The pulp and water are to be thrown into the fieve; the flour pafles thoough with the water, and frefh quantities of water are fuccefively to be poured on the remaining pulp, till the water runs through as clear as it is poured in. In this way we are to proceed til! all the potatues that were ground are ufed.

The pulp is commonly thrown away as ufelefs; but it Chould be boiled in water, and ufed as food for animals; for it is very nourihing, and is about $\frac{7}{8}$ ths of the whole quantity of potatoes ufed.

To return from this fhort digrefiran, ithe liquor which has paffed through the ficve is turbid, and of a brownifh colour, on account of the extractive matter which is diffolved in it; it depofits, in the fpace of five or fix hours, the flour which was fufpended in it. When all the flouv is fettled to the bottom, the liquor is to be poured off and thrown away, being ufelefs; 2 great quantity of very clan water is then to be pour.
ed upon the flour remaining at the bottom of the tul), which is to be firred up in the water, that it may be wafhed, and the whole is to fland quiet till the day following. The flour will then be found to have fet. thed at the bottom of the tub; the waser is again to be poured off as ufelefs, the flour wafhed in a freth quantity of pure water, and the mixture pafled through a filk fieve pretty fine, which will retain any fmall quartity of pulp which may have paffed through the hair fieve. The whole muft once more be fufiered to fand quiet till the flour is entirely fethed; if the water above it is perfeclly clear and colourlefs, the flour has been fufficiently wafhed; but if the water has any fenfible appearance either of colour or of tafle, the fluur muft be again wafined, as it is abfolutely neceffary that none of the extractive mater be fuffered to remain.

When the flour is fufficiently wafhed, it may be taken out of the tub with a wooden fpoon; it is to be placed upon wicker frames covered with paper, and dried, properly defended from duit. When it is thoroughly dry, it is to be paffed through a filk fieve, that if any clutted lumps fhould have been formed they may be divided. It is to be kept in glafs veffels ftopped with paper ouly. See Vegetable Substinces, Suppl.
N. B. Almolt all the flour of potatoes that is to be bought contains a fmall quantity of fand, which is perccived between the teeth; it is owing to the potatnes not baving been properly wafled; for the fand which lodges in the knobs and wrinkles of thefe roots, is nut always eafy to get out.

STARLiNGS, or Sterlings, the name given to the flrong pieces of timber which were driven into the bed of the river to protect the piles, on the top of which were laid the flat beams upon which were built the bafes of the Rone piers that fupport the arches of London bridge. In general, Atarlings are large piles placed on the outfide of the foundation of the piers of bridges, to break the force of the water, and to protect the ttone work from injury by floating ice. They are otherwife called Jetres, which fee in this Supplement: and their place is often fupplied by large ttones thrown at random round the piers of bridges, as may be feen at Stirling hrilge when the river is low; and as was done by Mr Smeatou's direction round the piers of the centre arch of London bridge, when it was thought in danger of being undermined ty the current. See Smeaton, Encycl.
STATIONARY, in aftronmy, the fate of a planet when, to an obferver on the earth, it appears for fome time to fland ftill, or renain imnoveable in the fame place in the beavens. For as the planets, to fuch an obferver, have fometimes a progreffive motion, and fumetimes a retrograde one, there mufl be fume point between the two where they muft appear ftationary.
STEAM, Steam- Engine. The few following corrections of thefe articles in the Encycl. were communicated by the author.
Page 745. col. 1.-It was not at the York Building waterworks in London that the boiler burt, but in the country in an engine erected by Dr Defaguilliers. See his Experimental Philofophy, Vol. II. p. 489.
Page 746. col 2.-The condenfation requires more cold water than is here allowed, as will appear by and bye; and we alfo fufpect that the rapidity is overrated with which a great volume of feam is condenfed

Steam. by the cold furface of a veffel. We are well informed that Mr Watt was much difappointed in his expectations.from a conftruction in which this mode of condenfation was adoptcal. The condenfer employed by Mir Cartwright (fee Phil. Mag.) was one of the very firt reought of and tried for this purpofe, and was given up, as well as all others on the fame principle; and the immediate contact of colcl water was preferred as incomparably more effective. The great fuperiority of the capacity of water for lieat is now well known. It is true, that when we employ an extenfive cold furface of the condenfer, this fulface is kept cold by the water wound it ; and therefore we itill avail ourfelves of this great avidity of water for heat. But this water muft act through the intervention of the veffel ; and the fubflance of the veflel does not convey heat to the furrounding water in au inflant.

Page 749. col. 2.-Nu diflinct experiment fhews fo great an expanfion of water, when converted into fleam at the temperature 212°; and under the preflure of the air Mr Watt never fuund it more than 1800 times rarer than water.

Page 753. col. 1.-The heat expended in boiling off a cubic foot of water is about fix times as much as would bring it to a boiling leat from the medium tem. perature (55) in this climate.

Page 75°. col. 2.-The quantity of water neceffary for injection may be deternined on principle, at leaft for an engine having a feparate condenfer. Every cubic foot of common fleam produces about an inch of watcr when condenfed, and contains about as much latent heat as would raife 11 co inches of water one degree. This fteam muft not only he condenfed, but muft be cooled to the temperature of the hot well ; therefore as many inches of cold water mult be employed as will require all this heat to raife it to the temperature of the hot well. Therefore let x be the cubic feet of fteam, or capacity of the cylinder, and let y be the inches of cold water expended in condenfing it. Let a be the difference between 212° and the temperature of the hot well, and b the difference between the temperature of the well and the injection ciftern. Ite bave $y b=x \times \overline{1100+a}$, or $y=\frac{\overline{1100+a} \times x}{b}$.

Thus, if the teimperature of the hot well be 100° (and it thould never be higher, if we would have a tolerable vacuum in the cylinder), and that of the injection ciftern be 50°, we have $a=112$, and $b=5 \mathrm{c}$, and $y=\frac{1212}{50} x,=24,24 x$, or $24 \frac{1}{4} x$; that is, every foot of the capacity of the cylinder, or every inch of water evaporated from the boiler, requires more than 24 inches of water to condenfe the fleam. A wine pint for every inch of water boiled off, or every cubic foot of capacity of the cylinder, may be kept in mind, as a large allowance. Or, more exaclly, if the engine be in good order, and the injection water as low as 50°, and the hot well not above 100°, we may allow 25 gallons of injection for one gallon of water boiled off. This greatly exceeds the quantity neentioned in the cafe of a good Newcomen's engine, the cylinder of which contained almoft 30 cuhic feet of flean. And this circumRance flews the fuperiority of the engine with a feparate condenfer. The injection of Newcomen's engine
had been adjufted by experience, fo as to make the bef compenfition for the unavoidable walte in the cylinder. We prefume that this macline was not loaded above eight pounds per inch, more likely with feven; whereas Watt's eugine, working in the condition now defcribed, bears a load not much below twelve, making at lealt twilve ftrokes per minute.

This is not a matter of mere curiofity; it affords a very cxact rule for judging of the good working order of the engine. We can meafure with accuracy the was ter almitted into the boiler during an hour, without allowing its furface to rife or fall, and the water employed for injection. If the laft be below the propurtion now given (adapted to the temperatures 50° and 100°), we are certain that fteam is wafted by leaks, or by condenfation in fome improper place. The rule is not Atrictly conformable to the latent heat of Iteans which balances the atmofphere, 1100° being fomewhat too great a value. It is accommodated to the actual performance of Watt's engines, when in their beft working condition.

It is evident that it is of great importance to have the temperature of the hot well as low as poffible; becaufe there always remains a ftcam in the cylinder, of the fame, or rather higher temperature, poffefling an elafticity which balances part of the preflure on the other fide of the pifton, and thus diminithes the power of the engine. This is clearly feen by the barometer, which Mr Watt applies to many of his heft engines, and is a moft ufeful addition for the proprietor. It Shews him, in every moment, the flate of the vacuum; and the real power of his engine, and tells him when there are leaks by which air gets in.

Page 762 cols. I. 2. -Mr Watt's firft experiment was not exactly as here related, but much more analogous to the prefent form of his engine. The condenfer was a cylinder of tinplate, fitted with a pifton, which was drawn up from the bottom to the top, before the eduction cock was opened. Without this previous rarefaction in the condenfer, there was no inducement for the fleam to take this courfe, unlefs it were made much ftronger than that of ordinary boiling water.

The defeription of the firt form of the engine is alfo faulty, by the omiffion of a valve immediately below the eduction fipe. This valve is thut along with the valve I, to prevent the fleam, which fhould then go into the lower part of the cylinder, from alfo going down into the condenfer. छThis is net abfolutely neceffary, but its advantage is evident.

Page 766. col. 1.-This form of the engine was very early put in practice by Mr Watt-about the year 1775. The fmall engine at Mr Boalton's works at Suho was erected in 1776 ; and the ergine at Shadwell waterworks, one of the beft yet erected, had been working fome time when we faw it in 1778 . We mention this, becaufe we have been told that Mr Hornhlower puts in fome claim to priority in this invention. We do not think that Mr Hornblower erected any of his engines before 1782; and as Mr Hornblower was, we believe, working with Bonlton and Watt before that time, we think it fully more probable that he has in this refpect profited by the inftruction of fuch intelligent cmployers. We may alfo obferve, that Mr Watt employed the fame contrivance which we have defribed. with much approbation in p. 772. Encycl. for keeping

S T E.

the collar ronnd the pilton rods feam and air tight. He found them effectual, but that they required more attention for keeping them in fit condition than the ufual mode of packing. He made a fimilar packing for the pifton, and with a fimitar refolt.

Page 763 . cols. 1. 2. -Mr Boulton eftimates the performance of the engines in the following manner. Seeing that the great expence of the engine is the cothfumption of fuel, he makes this the Itandard of computation, and eflimates the performance by the work which he engages to perform by the confumption of one huflel of good Newcaltle coal, London meafure, or con. taining $8_{4} \mathrm{lbs}$. without regard to the time in which this buhbel is expended. This depends on the fize of the engine.
'The burning one buthel of coal will,

1. Raife 30 million pounds one foot high.
2. It will grind and drefs is buthels of wheat.
3. It will flit and draw into nail rods 5 cwt of iron.
4. It will drive 1000 cotton fpindles, with all the preparation machinery, with the proper velocit y.
5. It Is equivalent to the work of ten horics.

The general performance of the douhle troke expanfive engines is fomewhat beyond this; and their performance in cotton fpiuning, or as compared with horfe work, is much under-rated. The firlt eftimation is without ambiguity. Suppofe the engine of fuch a fize as to confume a buthel of coals per hour. This will be found equivalent to raifing 97 wine hogtheads of water ten feet high in a minute, which ten fout draught horfes cannot do for a quarter of an hour together. They can raife 60 in that time, and work at this rate eight or perhaps ten hours from day to day.

Mr Watt finds that, with the moft judicioufly conftructed furnaces, it requires eight feet of furface of the boiler to be expofed to the action of fire and flame to boil off a cubic foot of water in an hour, and that a bufhel of coals fo applied will boil off from eight to twelve cubic feet.

Boulton and Watt now make fteam-engines equiva. Ient in power to one or two horfes. The cylinder and whole machinery does not occupy more room than a fine lady's working table, ftanding in a fquare of about $2 \frac{1}{2}$ feet, and about 5 feet high.

STEEL (fee that article Encycl. and Chemistry, no 114. Suppl.) is compofed of iron and carbon. In addition to the old proofs which we had of this fact, it occurred to Morveau, alias Guyton, to attempt to convert foft iron into fteel, hy ufing the diamond in. llead of charcoal in the procels of cementation. This expenfive experiment, which was fuggetted by M. Clonet, was made, by incloling within a fmall crucible of very foft iron a diamond, and thutting up the crucitle by a ftopper well adjufted. This crucible of iron, with its contents, was placed, without the addition of any furrounding matter, in a very fmall Heffian crucible, and the latter in a fecond crucible of the fame earth; but the fpace between the two latter crucibles was filled with filiceous fand, free from all ferruginous particles. In the laft place, the large crucible wasluted with earth arifing from pounded crucibles and unbaked clay, and the whole was expofed about an hour to a three blaft forge fire. When the whole was tooled, the iron was found in the interior Heffan crucible converted into a
folid ingot of caft fecel. Thus the diamond difappeared by the affinity which iron exercifed on it by the help of the high temperature to which they were both expofed, in the fame manner as a metal difappears in the alloy of another metal. The diamond therefore furnifhed here the fame principle as carbon, fince the product of the union has the fame properties.

The converinu into feel could not be doubted. The ingot having been poliflued on a lapidary's wheel, a drop of wak nitrous acid immediately produced a dark-grey fpot, abfolutely like that exhibited on Englifh caft fteel, and on caft fteel produced by the procefs of M. Clouet. Thofe who have often tried fteel by this kind of proof, lones ago pointed out by Rinmann, had occafinn to remark, that the fpot of ealt Atecl, tho' very fenfible, is, however, lefs black than that of steel made by cementation, which depends perhaps on the different degree of oxydation of the carbon which they lave taken in.

The procels of M. Clowet here mentioned, for producing caft fteel, confifs in nothins more than throwing a quantity of glafs into the mais of iron and charcoal during the formation of the former into fteel. The fime chemilt las afcertained that iron, during its converfion into iteel, anforbs $c .2013$ of its weight of carbon; and that the affinty of iron for carbon is fo ftrong, that, at a white heat, it is capable of decompofing carbonic acid gas. 'This he proved by the following experiment.

If fix parts of iron be nixed with four parts of a mixture compofed of equal quantities of carbonat of lime and clay, and kept in a crucible at a white heat for an hour or longer, according to the quantity, the iron will be converted into Iteel. The decompofition of carbonic acid is evidently the confequence of a compound affinity; part of the iron combining with the carbon, and another part with the oxygen of the carbonic acid gas. Accordingly the conmmiffioners, who were appointed to examine the procefs, remark, that a quantity of oxide of iron was always mixed with the melted earthy fublance, which was feparated from the fteel.

STEEVENS (Croorge), the mont fuccefsful of all the editors and commentators of Shakefpeare, was born 1735. Of his parents we know nothing, but that they feem to have been in circumblances which may be deemed alluent. George received the rudiments of his claifical education at Kinglton-upon- Thames, under the tuition of I)r Woodefon and his affiftants; aod had for a companion at that fchool Gibbon the hiftorian. From Kingllon he went to Eton, whence, after fome years, he was admitted a fellow-commoner of King's College, Cambridge; but with the courfe of lis Atudies in the univerfity we are not acquainted. If we might hazard a conjecture, from the manner in which he employed his riper years, we fhould fuppofe that he had little relifh for thofe mathematical fpeculations which in Cambridge lead to academical honours. After he left the univerfity, he accepted a commiflion in the Effer militia on its firft eftablifhment : and he fpent the batter years of his life at Hampltead in almoft total feclufion from the world; feldom mixing with fociety but in the fhops of bookfellers, in the Shakefpeare Gallery, or in the morning converfations of Sir Joleph Banks. He died January 1800 .

S T E [534] S T E

Steevens. This is a very meagre account of the incidents which mult have taken place in the life of a man fo confpicuous in the republic of letters; but we have had no opportunity of improving it. His character, as drawn in the Monthly Magazine, believing it to be juit, we fhall adopt, as it will fupply in fome degree the defects of vur narrative.

Though Mr Steevens is known rather as a commentator than as an original writer; yet, when the works which he illuftrated, the learning, fagacity, tafte, and general knowledge which he brought to the tank, and the fuccefs which crowned his labours, are confidered, it would be an act of inju!tice to refufe bim a place among the firf literary characters of the age. Adorned by a verfatility of talents, he was indeed eminent both by his yen and his pencil. With the one there was nothing which he could not compofe, and with the other there was nothing which he could not imitate fo clofely, as to leave a doubt which was the original and which the copy. But his chief excellence lay in his critical knowledge of an author's text ; and the beft fpecimen of his great abilities is his edition of Shakefpeare, in which he has left every competitor far behind him. He had, in fhort, fudied the age of Shakefpeare, and had employed his perfevering induftry in becoming acquainted with the writings, manners, and laws of that period, as well as the provincial peculiarities, whether af language or cuftom, which prevailed in different parts of the kingdom, but more particularly in thofe where Shakefpeare paffed the early years of his life This fore of knowledge he was continually increafing, by the acquifition of the rare and obfolete publications of a former age, which he fpared no expence to obtain; while his critical fagacity and acute obfervation were employed inceffantly in calling forth the hidden meanings of the great dramatic bard, from their covert, and confequently enlarging the difplay of his beauries. This advantage is evident from his laft edition of Shakefpeare, which contains fo large a portion of new, interefting, and accumulated illuftration. In the preparation of it for the prefs, he gave an initance of editorial activity and perfeverance which is without example. To this work he devoted folely, and exclusively of all other attentions, a period of 18 months; and during that time he left his houle every morning at one o'clock with the Hamptead patrole, and proceeded, without any confideration of the weather or the feafon, to his friend Mr Iface Read's chambers, in Barnard's Inn, where he was allowed to admir himfelf, and found a room prepared to receive him, with a fheet of the Shakefpeare letter prefs ready for correction. There was every book which he might wifh to confult ; and to Mr Read he could apply, on any doubt or fudden fuggeftion, as to a man whofe kuowledge of Englifh literature was perhaps equal to his own. This noctursal toil greatly accelerated the printing of the work; as while the printers flept the editor was awake; and thus, in lefs than twenty months, he completed his laft fplendid edition of Shakefpeare, in fifteen large octavo volumes; an almot incredible labour, which proved the aftonifhing energy and perfevering powers of his mind.

That Mr Steevens contented himfelf with being a commentator, arole probably from the habits of his life, and his devotion to the name, with which his own will defcend to the latelt potterity. It is probable
that many of his jeux d'efprit might be collected: Steevene, there is a poem of his in Dodlley's Annual Regifter, under the title of The Frantic Lover, which is Cupcrior to any fimilar production in the Englifh language. Mr Steevens was a claffical fcholar of the firft order. He was equally acquainted with the belles lettres of Europe. He had fludied hiftory, ancient and modern, but particularly that of his own country. He poffeffed a ftrong original genius, and an abundant wit ; his imagination was of every colour, and his femtiments were enlivened with the moft brilliant expreffions. His collom quial powers furpaffed thofe of other men. In argument be was uncommonly eloquent: and his eloquence was cqually logical and animated. His defcriptions were fo true to nature, his figures were fo finely fketch. ed, of fuch curious felection, and fo happily grouped, that he might be confidered as a fpeaking Hogarth. He would frequently, in his fportive and almoft boyifh bumours, condefcend to a degree of ribaldry but little above O'Keefe-with him, however, it loft all its coarfenefs, and affumed the air of claffical vivacity. He was indeed too apt to catch the ridiculous, both in characters and things, and indulge an indifcreet animation wherever he found it. He fcattered his wit and his humour, his gibes and his jeers, too freely around him, and they were not loft for want of gathering.

Mr Steevens poffeffed a very handfome fortune, which he managed with difcretion, and was enabled by it to gratify his withes, which he did without any regard to expence, in forming his diftinguifhed collections of claf. fical learning, literary antiquity, and the arts connected with it. His generofity alfo was equal to his fortune ; and though be was not feen to give eleemofynary fixpences to flurdy beggars or fweepers of the croffings, few perfons diluributed bank-notes with more liberality; and fome of his acts of pecuniary kindnefs might be named, which could only proceed from a mind adorned with the noblett fentiments of humanity. He poffeffed all the grece of exterior accomplifhment, acquired at a period when civility and politenefs were characteriftics of a gentlcman.

He has bequeathed his valuable Shakefpeare, illuftrated with near 1500 prints, to Lord Spencer; his Hogarth perfect, with the exception of one or two pieces, to Mr Windham ; and his corrected copy of Shake. fpeare, with 200 guineas, to his friend Mr Read.

STEREOMETER, an ittfoment lately invented in France for meafaring the volume of a body, however irregular, without plunging it in any liquid. If the capacity of a veffel, or, which is the fame thing, the volume of air contained in that veffel, be meafured, when the veffel contains air only, and alfo when the veffel contains a body whofe volume is required to be known, the volume of air afcertained by the firft meafurement, deducting the volume afcertained by the fecond, will be the volume of the body itfelf. Again, if it be admitted as a law, that the volume of any mafs of air be inverfely as the preffure to which it is fubjected, the temperature being fuppofed conftant, it will be ealy to deduce, from the mathem tical relations of quantity, the whole bulk, provided the difference between the two bulks under two known preffures be obtained by experiment.

Let it be fuppofed, for example, that the firft preffure is double the fecond, or, which follows as a confe-
quence,

S T E [535] S T E

quence, that the fecond volume of the air be double the firft, and that the difference be fifty cubic inches, it is evident that the firl volume of the air will likewife be fifty enbic inches. The flereometer is intended to af. certain this difference at two known prefluers.

The inftrument is a kind of funnel AB (fig. 1.), conpofed of a capfule A, in which the budy is placed, and a tub B as uniform in the bore as can be procured. The upper edge of the capfule is ground with emery, in order that it may be hemetically clofed with a glafs cover M nighlely greafed. A double feale is patted on the tube, having two fets of graduations; one to indicate the length, and the other the capacities, as determined by experiment.

When this inltrument is ufed, it muft be plunged in a veffel of mercury with the tube very upright, until the mercury rifes within and without to a point C of the frale. See fig. 2.

The capfule is then clufed with the cover, which being greafed will prevent all commanication between the external air and that contained within the capfule and tube.

In this fituation of the inftrument, in which the mer. cury flands at the fame height within and without the tube, the internal air is comproffed by the weight of the atmofphere, which is known and expreffed by the length of the mercury in the tube of the common barometer.

The iuftrument is then to be elevated, taking care to keep the tube conflantly in the vertical pofition. It is reprefented in this fituation, fig. 2 . Pecond pofition. The mercury defecnds in the tube, but not to the level of the external furface, and a column DE of mereury remains fufpended in the tube, the height of which is known by the feale. The interior air is therefore lefs compreffed than before, the increafe of its volume being equal to the whole capacity of the tube from C to D , which is indieated by the fecond fcale.

It is known therefore that the prefures are in proportion to the barometrical column, and to the fanme column diminifhed by the fubtraction of DE. And the bulks of the air in thefe two flates are inverfely in the fame proportion ; and again the difference between thefe bull:s is the abfolute quantity left void in the tube by the fall of the mercury ; from which daty, by an cafy analytical procefs, the following rule is deduced: Multiply the number which expreffes the lefs prefure by that which denotes the augmentation of capacity, and divide the product by the number which denotes the difference of the preffures. The quotient will be the bulk of the air when fubject to the greater preffure.

To render this more eafy by an example, fuppofe the height of the mercury in the barometer to be 78 centimetres, and the inlltument being empty to be plunged in the mercury to the point C. It is then covered, and raifed until the fmall colum of mercury DE is fulpended, for example, at the height of fix centimetres. The internal air, which was the firt comprefled by a force reprefented hy $; 8$ centimetres, is now compreffed only by a force reprefented by $78-6$, or 72 centimetres.

Suppofe it to be obferved, at the fame time, by means of the graduations of the fecond fcale, that the capacity of the part $C D$ of the tube which the mer-
cury has quitted is two cubie centimetres. Then by Stcreome. the rule $\frac{72}{6} \times 2$ give 24 cubical centimetres, which is ter, the volume of the air inclucled in the inftrument when Stewartthe mercury rofe as high as C in the tube.

Denhani.
Denhant.
The body of which the volume is to be afcertained muft then be placed in the capfule, and the operation repeated. Suppofe, in this cafe, the column of mercury fufpended to be eight centimetres, when the capacity of the part CD) of the tube is equal to two centimetres cube. Then the greateft preflure being denotect by 78 centimetres, as before, the leaf will be 70 centimetres, the difference of the preftures being 8 , and the difference of the rolumes two eubical, centiretres. Hence $\frac{70}{8} \times 2$ gives the bulk of the ineluded air under the greateft preffure 17,5 cubic centimetres. If therefore 17,5 centimetres be taken from 24 centimetres, or the capacity of the inftrument when empty, the difference 6,5 cubic centimetres will exprefs the volume of the body which was introduced. And if the abfolute weight of the body be multiplied by its bulk in centimetres, and divided by the abfolute weight of one cubic centimetre of diftilled water, the quotient will exprefs the fpecific gravity of the body in the common form of the tables where diftilled water is taken as unity, or the term of comparifon.

After this defcription and explanation of the ufe of his inftrument, the author proceeds with the candour and acutenefs of a philofopher to afcertain the limits of error in the refults; an object feldom fufficiently atteuded to in the inveftigation of natural phenomena. From his refults it appears, that with the dimenfions he has affumed, and the method preferibed fur operating, the errors may affect the fecond figure. He likewile gives the formulæ by means of which the intrument itfelf may be made to fupply the want of a barometer in afeertaining the greateft prefure. He likewife adverts to the errors which may be produced by change of temperature. To prevent thefe as much as poffible, the actual form of the influmment and arrangements of its auxiliary parts are fettled, as in fig. 3. by which means the approach of the hand near the veffel and its tube is avoided. In this figure the vertical pofition of the tube is fecured by the fufpention of the veffel, and a perforation in the table through which the tube paffes. The table itfelf fupports the capfule in its firit pofition, namely, that at which the cover is required to be put on.
Mr Nicholfon, from whofe Journal this abilract is immediately taken, fuppofes, with great probability, that the author of the invention liad not finifled his medita. tions on the fubject, when the memoir giving an account of it was publifhed. If he had, lays the ingenious journalit, it is likely, that he would have determined his preflures, as well as the meafures of bulks by weight. For it may be eafily underflood, that if the whole inftrument were fet to its pofitions by fufpending it to one arm of a balance at H (fig. 3.), the quantity of counterpoife, when in equilibrio, might be applied to determine the preffures to a degree of accuracy much greater than can be obtained by linear meafurement.

STEWART-Denham (Sir James) was born at E. dinburgh on the 10 th of Oltober, O.S. in the year 1713. His father was Sir James Stewart of Goodtrees, Bart. Solicitor-general for Scotland; and his mo-
atervart- ther was Anne, daughter of Sir Hugh Dalrymple of $\underbrace{\text { Derhan. North Berwick, Bart. prefident of the college of juf- }}$ tice.

The firft rudiments of his education he received at the grammer: fehoul of North. Berwick, which at the time of his father's death he quitted at the age of fourreen, with the reputation of being a good fchular, but without any extraordinary advancement in knowledge.

It is remarkable, that many men who have been fingularly ufeful to fociety have not fhewn early fymptoms of the greatnefs of their intellectual powers. A g^{\bullet} - t undertlanding muft be the offspring of happy organization in a healthy body, with co operation of time, of circumftance, and of inftitution, without heing forced into prematurity by exceffive cultivation. This holds with refpect to the growth and perfection of every creature; and the truth appears remarkable with refpect to our own fpecies, becaufe we are apt to miftake the flimfy attainments of artificial education for the Ateady and permanent foundations of progreffive knowledge.

From the fchool of Norrh.Berwick Sir James was fent to the univerlity of Edinburgh, where be continued until the year 1735 , when he paffed advocate before the court of Seffion, and immediately afterwards went abroad to vifit foreign countrics. He was then in the 23 j ycar of his age, had made himfelf well acquainted with the Ronaan law aud hiftory, and the municipal law of Scotland. He had likewife maturely ftudied the elements of jurifprudence; was verfed in the general, as well as the particular, politics of Europe; and was beat upon applying his knowledge to the inveltigation of the flate of men and of manners in other nations, with a view to promote the benefit of his own, and to confirm himfelf in the love of a free conftitution of government, by contemplating the baneful effects of unlimited monarchy in Germany, Italy, and Spain, and of extravagant attachment to a king and nobility, to war, and to pernicious fplendour in France.

He travelled firt, however, into Holland, with a view to fludy the conflitution of the empire before he fhould vifit Germany, and to attend fome of the lectures of the moft eminent profeffors at Utrecht and Leyden, on public law and politics. From thence he palfed into Germany, refided about a year in France, travelled thru' fome part of Spain, where he had a fever, that obliged hin, for his perfect recovery from its effects, to go by the advice of his friends to the fea-coaft of the lovely province of Valentia ; therice returning, he croffed the Alps, and by Turin made the tour of Italy, where chiefly at Rome and Florence he relided till the beginning of the year 1740; when, having fpent five years on his travels, he returned to Scotland, and married the Lady Frances Wemyfs, eldeft daughter of the Earl of Wemy fs, about two years after his return.

A few months after his marriage the repiefentation of the county of Mid-Lothian became vacant, by the member being made a i,ord of trade and plantation. The candidates were the late member and Sir John Baird of Newbyth. On the day of election Mr Dundas of Arnifton, one of the fenators of the college of juftice, was chofen prefes of the meeting; and fome how or other omitted to caufe the name of Sir James Stewart to be called on the roll of freeholders. For this illegal ufe of his temporary power, Sir James commenced a fuit againft the prefident; and refuning the
gown as an advocate, pleaded his uwn caufe winh great chergy and cloquence, and with the aplaufe of the bench, the bar, and the public. This called Lord Ar. nifton from the bench to plead in his own defence at the har ; and Sir James could not have been oppoied to an antagonit better qualified to call forth all his powers; for that judge is talked of at this day in Lidinburgh as the profuundef lawyer and the ablefit pleater that ever graced the Scuttifh bench or the Seuttifh bar.

With the iffue of this conteft we are not aequainted; but it drew upon Sir James Stewart very general attention, and convinced the public, that hat he continued at the bar, he mult have rifen rapidly to the head of his profeffion. On his travels, however, he had contracted friendhips with Lord Maifchal, and other eminent men, attached to the pretenfions of the royal family of Stuart, and had received flattering attentions from the Pretender to the Britifh throne; the impreffion ariling from which, added to the irritations of his controverfy with the powerful party in Scotland attached to the court, led him, unadvifediy, into connections with the movers of the rebellion in 1745 .

As lie was by far the ableft man of their party, the Jacobites engaged him to write the Prince Regent's manifetto, and to affit in his councils. Infurmation having been given of his participation in thefe affairs, he thought it prudent, on the abortion of this unhappy attempt, to leave Britain; and by the zeal, it is faid, of Arnifton, he was excepted afterwards from the bill of indemnity, and rendered an exile from his country.

He chofe France for his refidence during the ten firt years of his baniflhment, and was chietly at Angoulefme, where be fuperintended the education of his fon; from thence he went to T'ubingen in Swabia, for the benefit of its univerfity, in profecution of the fame dutiful and laudable defign ; but in the end of the war 2756, having been fufpected by the court of Verfailles of communicating intelligence to the court of London, he was feized at Spa, and kept fome time in confinement; from which being liberated, after the acceffion of the prefent king of Great Britain, he came, by toleration, to England, and refided at London, where he put the lant hand to his Syitem of Pointical Economy, the copy-right of which lee fold to Andrew Millar; and being permitted to dedicate this work to the king, he applied fur a noli profequi, which, after fome malicious objections, he obtained, and had the comfort of returning to his family eftate in Scotland.

Having nothing profeffional to do during his long refidence in France, the active mind of Sir James was occupied in Itudy. His book on the Frinciples of Political Economy contains moft of the fruits of it. He tirned himfelf, in the intervals of leifure, to confider the refources of France, that he might the better compile that part of his great work which was to treat of revenue and experditure. It was by tudying the language of the finances, without which nobody can afk a proper queftion concerning them, fo as to be undertlood, that he attained his great purpofe.

As foon as he could afk queftions properly, he applied in familiar converfation to the intendants and their fubfitutes in the provinces where he refided, whom he found extremely defirous to learn the fate of the Britifh finances, under the branches of the land-tax, cuftoms, excife, and other inland duties. This led him to compare

S T E

Grewarte compare the flate of the two nations. The information he gave was an equivalent for the information he recei.ved; curiofity balanced curiofity, each was fatisficd and inflructed. The department of the intendants in France was confined to the taxes which compofed the recelles senerales, namely, the taille, the capitation, and the tuvenrieths, or rigntiemes. All the intendants had been Maities des Requetes, bred at Paris, and could not fail to have much knowledge of the general fermes and other branches of the revenue. He carefully noted down at all times the anfwers he got; and when he came to refide at Paris, he obtained more ample information, both from the gentlemen of the revenue, and from perfons of the parliament of Paris, who to the number of 25 had been for 15 months exiled in the province where he had fo long refided at Angoulefme.

With thefe advantages, witli much ttudy and attention to arrangement, he was enabled to compofe the fixth cliapter of the fourth part of the fourth book of his Syflem of Political Economy; a portion of that great work well worthy the attention of thofe whan wifh to know the flate of France in refpect of revenue uader the old govermment.

Although Sir James Stewart's leifure, during the firft ten years of his exile, was chiefly employed in focial intercourfe with the mofl learned, elegant, and polifhed characters in France, who delighted in the converfation and friendfinip of a man who poffeffed at once immenfe information, on almoft cvery fubjeet, important or agterable to fociety, and the talent of clearly and beautifully expreffing his fentiments in fowing and animated converfation; yet he did not allow the pleafures of the circle and of the table to blunt the fine feelings of a man of genius and fcience. The labour of collecting materials for his great political work was oppreffive, and he relieved himfelf with various enquiries, fuited to the exalted ambition of his cultivated underfanding, while he turned the charms of converfation to the permanent delight of his affociates and of pofterity. The motto of Apelles, "Nulla dies fine linea," was the emblem of his employment ; and it is amazing what may be done by daily attention for improvement, without appearing to abfract any extraor. dinary time from the common offices and rational pleafures of fociety.

In the beginning of the year 1755, Sir James wrote his Apology; or Defence of Sir Ifaac Newton's Chronology; which at that time he intended to publifh, but was prevented by other engagements. It was communicated to feveral perfons of eminence in France and Germany in M3. and produced, in the month of December that year in the "Mercure de France," an an. fwer from M. Defhoulieres, to which Sir James foon after replied.

The great Newton, applying aftronomical and ftatiftical principles to the ancient chronology of Greece, had chaftifed the vanity of nations, and arrefted the progrefs of infidelity in delineating the hiftory of the world. Loft in the confufion of exceffive pretenfions to an an. tiquity beyond all meafure, and difgutted by the fuperftitious aids that were affumed to fupport thefe preten. fions among ancient nations, the revivers of learning in Europe, during the laft and the preceding century, turmoiled themfelves with controverfies between the comparative merits of the ancients and moderns; and Surpl. Voz. II. Part II.
the abettors of the latter, entrenching themfelves behind the falfrhoods of the ancients, on the fcope of

Stewart. their remote hiftory, gave the lie to all antiquity, and in defpair plunged themfelves into the ocean of fcepticifm.

Happy had it been for fociety if this fecpticifm had confined itfelf to the hiftory of ancient nations in general ; but the fame fpirit, taking difgut at the horrors of Chritian ambition and bigotry, and contemplatiag with derifion the ridiculous legends of modern miracles, gave the lie to all religions fripture of the Jews and Chriftians, and attempted to banifh divine intelligence, the fuperintending providence of Deity, and the true dignity of the human fpecies, from the face of the earth!

It was a noble undertaking, therefore, in Sir James, to attempt to difperfe this mitt of error, by difpaffiunately and fcientifically explaining and fopporting the chronology of Sir lfaac Newton. He has done it with great precifion and effect; and it is a book well worth the perufal of thofe who wifh to read ancient hiftory with improvement, or to prevent themfelves fiom being bewildered in the mazes of mudern conjecture. It was printed in $4^{\text {to }}$ at Franclefort on the Maine, for Jotn Bernard Eichemberg the Elder, in 1757.

In the year 1758, and the following, the Britilh Houfe of Commons took up the confideration of a fatute to regulate a general uniformity of weights and meafures throughout the united kingdoms, which liad been fo often unfuccefsfully attempted.

This called the attention of Sir James, not only to the invefligation of the particular fubject that engaged that of the Houfe of Commons, but to devife a method of rendering an uniformity of weights and meafures univerfal. He thought the caufe of former difappoint. ments in this ufeful purfuit had been the mitaken notion that one or other of our prefent meafures thould be adopted for the new flandard. After the plan hard been relinquifhed by the parliament of England, he digefted his notes and ubfervations on this important difquilition into the form of an epiftolary differtation, which he tranfmitted to his friend Lord Barrington, and refolved, if there had been a congrefs affembled, as was once propofed, to adjult the preliminaries of the general peace in 1763 , to have laid his plan before the minifters of the different nations, who were to prepare that falutary pacification of the contending powers.

This epiftulary differtation Sir James afterwards reduced at Coltnefs, in the year 1777, into a form more proper for the public eye, and fent a corrected copy to a friend, referving another for the prefs, which was printed 1790 for stockdale in Piccadilly.

In this tract the author fhews, from the ineffectual attempts that have been made to alter partially, by innovation, the flandards of meafures or weights, that the effectual plan to be adopted, is to depart entirely frum every meafure what foever now known, and to take, ad libitum, fome new mafs inftead of our pound. fome new length inftead of our ell, fome new fpace inftead of our acre, and fome new folid inftead of our gallon and bufhel.

For this purpofe Sir James propofes as the unit a mafs to be verified with the greateft poffible accuracy, equal in weight to ten thoufand Troy grains. The pendulum, as it fwings at London, to beat feconds of 3 Y
timc,

S T E

Seewart. time, he propofes to be the meafure of length; and after having laid down his fundamental principles, he propofes an ingenious plan for rendering their adoption univerfal through the whole world.

Having obtained his pardon, Sir James Stewart retired to Coltnefs, in the county of Lanark, the paternal eftatc of his family, where he turned his attention to the improvement of his neighbourlood by public works and police, and drew the firt good plan for a turnpike bill, fuited to the circunltances of Scotland, which has been fince generally adopted. He repaired his houfe, planted, improved, and decorated his eftate, and in focial intercourfe rendered limfelf the delight of his neighbourhood and country.
Never was there a man who, with fo much knowledgc, and fo much energy of expreffion in converfation, rendered himfelf more delightful to his company, or was more regretted by his acquaintance when he died. Nor was the active mind of Sir James unemployed for the general benefit of his country during his retreat. He was engaged by the directors of the Eaft India Company of England to digeft a cod for the regulation of the current coin of Bengal; the plan for which important regulation he printed, and received from the court of directors a handfome diamond ring, as a mark of their approbation.

He prepared for the prefs, but never publifhed, an antidote to the Sypleme de law Nature by Mirabeau, wherein the parallelogifms and foolifh reafoning of that infidel work are examined, detected, and confuted. It is written in French; and were the work of Mirabeau worth refutation, might be printed with much advantage to Sir James's reputation as a controverfial writer.

This great and good man died in November ${ }^{1780}$, and was buried at Cunbufnethan, in Lanarkfhire, on the 28th of the fame month ; the Duke of Hamilton and his neighbours performing the laft offices to the remains of their highly valued friend, and bedewing his athes with their tears.

For this fhort fectch of the principle events in the
life of Sir James Stcwart-Denham, we are indebted to his nepliew the Earl of Buchan, who, juftly proad of his relation to fuch a man, cannot be fuppofed to view all his projects, or even all his reafonings, with the cool impartiality of ftrangers. His plan, for inftance, of a univerfal itandard of weights and meafures for the weole zuorll, thongh certainly a grand conception, we cannot help confidering as romantic and impracticable. The author indecd was fenfible, that time would be requifite for its execution; and fo large a portion of time, that, compared with it, a thoufand years are but as one day, when compared with the ordinary life of man : but fchemes of this magnitude are not for creatures fo blind and weak as we are, who, when we watder to a diffance beyond the limits of our narrow fphere, with the ambitious view of benefiting pofterity, are al. mof certain to injure ourfelves, without a probability of ferving thofe for whom we dream that we are exerting our abilities. Sir James's Political Ecconomy, however, is a very great work, which has not received half the praifes to which it is entitled, and which, we fufpect, provoked the envy of another great writer on \mathfrak{f} milar fubjects, who exerted himfelf privately to leffen its fame. The defence of Newton's chronology is likewife very valuable, though we certainly do not think that part of the fyftem invulnerable, in which the great aftronomer attempts to prove, that Ofiris, Sefofris, and Sefac, are three names of the fame Egyptain king. This, however, is a very trifing millake; and the modern fciolilt, who can lay hold of it to reject the whole, has certainly never read, or, if he has read, does not underftand the defence of the fyltem by Sir James Stewart.

SUBCONTRARY position, in geometry, is when two equiangular triangles are fo placed, as to have one common angle at the vertex, and yet their bales not parallel ; confequently the angles at the bates are equal, but on the contrary fides.

SUBDUCTION, in arithmetic, the fame as Sub. tragion.

Animal and Vegetable SUBSTANCES.

THE reader will recollect, that the article Chemistry, in this Supplement, was divided into four parts; of which only the firft three, comprehending the elements of the fcience, were given under the word Chemistry. The fourtb part, which was entitled an examination of bodies as they are prefented to us by nature in the mineral, vegetable, and animal kingdoms, naturally fubdivides itfelf into three parts, comprehending refpectively, 1. Minerals; 2. Vegetables; 3. Animals.

The firt of thefe fubdivifions, which has been deftinguifhed by the name of Mineralogy, we have treated of already in a former part of this volume. As the other two fubdirifions have not hitherto received any appropriate name, we have fatisfied ourfelves with the word Substance, by which chemills have agreed to denote the objects which belong to thefe dubdivifions. This
name, it mult be acknowledged, is not unexceptionable;: but we did not confider ourfelves as ai liberty to invent a new one.
The prefent artigle, then, feems to divide itfelf into two parts: the firtt part comprehending vegetable ; the niviiion of fecond animal fubftances. But there are certain ani-it. mal and vegetable fubftances diftinguifhed from all others by being ufed as articles of clothing. It is ufual to tinge thefe of various colours, by combining with them different colouring matters for which they have an affinity. This procefs, well known by the name of dyeing, is purely chemical; and as it belongs exclufively to animal and vegetable fubftances, it comes na-. turally to be examined here. We thall therefore add a third part, in which we fhall give a view of the prefent flate of dyeing, as far, at leaft, as is confiftent with the nature of a fupplementary article.

Parix

Part I. Of Vegetable Substances.

the manner in which they are combined, to detect the procelfes by which they arc formed, and to afcertain the chomical changes to which plants, after they have ceafed to vegetate, are fubject. Hence it is crident, that a chemical inveltigation of plants comprehends three particulars :
t. An account of the fubfances of which plants are compofed.
2. An account of the vegetation of plants, as far as it can be illuitrated by chemilhy.
3. An account of the clanges which plants undergo after they ecafe to vegetate.

We therefore divide this part into three chapters, affigning a chapter to each of thefe particulars.

Chap. I. Ofthe Ingredients of Plants.

The fubitances hitherto found in the vegetable kingdom, all of them at leaft which have been examined with any degree of accuracy, may be reduced to the following heads:

1. Sugar,	1o. Camphor,
2. Starch,	11. Refins,
3. Gluten,	12. Cautchouc,
4. Albumen,	13. Wax,
5. Gum,	14. Wood,
6. Jelly,	15. Acids,
7. Extract,	16. Alkalics,
8. Tan,	17. Earths,
9. Oils,	18. Metals.

Thefe fhall form the fubject of the following fections:

Sect. I. of Sugar.

Sugar, which at prefent forms fo important an article in our food, feems to luave been known at a very 4 early period to the inhabitants of India and China. But Eurnpe probably owes it acquaintance with it to the conquetts of Alexander the Great. For ages after its introdnction into the weft, it was ufed only as a medicine; but its confumption gradually increafed, and during the time of the Crufades the Venetians, who brought it from the eaft, and diftributed it to the northern parts of Europe, carried on a luerative commerce with fugar. It was not till after the difoovery of fimerica, and the extenfive cultivation of fugar in the Welt Indies, that its ufe in Europe, as an article of food, became gencral *.

Sugar is obtained from the arundo faccharifera, or Sugar canc. The juice of this plant is preffed out and

Vegetables, of flants, as they are alfo called, are two well known to lequire any definition. 'Iheir number is prodigious, and their variety, regularity, and beauty, are wonderful. But it is not our intention in this place either to enumerate, to deferibe, or to claffify plants. Thefe tafks belong to the botanilt, and have been fuceefsfully aceomplifhed by the zeal, the lingular addrefs, and the indefatigable labour of Linnaxus and his fullowers.

It is the bufinefs of the chemif to analyfe vegetables, to difeover the fubltances of which they are compofed, to examine the nature of the fe fubstances, to inveltigate Sugar has a very ilrong fweet tafte; when pure it has no fmell ; its colour is white, and when cryllallized it is fomewhat tranfparent. Tt has often a confiderable degree of hardnefs; but it is always fo brittle that it can be reduced without difficulty to a very fine powder. It is not altered by expufure to the atmofphere.

It is exceedingly foluble in water. At the tempera- Solubility ture of 4°, water, according to Mr Wenzel, diffolves in water. its own weight of fugar. The folvent power of water increafes with its temperature; when nearly at the boiling point, it is capable of diffolving any quantity of fugar whatever. Water thus faturated with fugar is known by the nanse of Syrup.

Syrup is thick, ropy, and very adhefive; when fpread thin upon paper, it foon dries, and forms a kind of varnifh, which is eafily removed by water. Its fpecific caloric, according to the experiments of Dr Crawford, is 1.086. When fyrup is fufficiently concentra-Its cryitals. ted, the fugar which it containg precipitates in cryftals. The primitive form of thefe cryftals ista four-fided prifm, whofe bafe is a rhomb, the length of which is to its breadth as 10 to 7 ; and whofe height is a mean proportion between the length and breadtli of the bafe. The cryftals are ufually four or fix-fided prifms, terminated by two-fided, and fometimes by three-fided fummits \dagger.

Sugar is foluble in alcolol, but not in fo large a proportion as in water. According to Wenzel, four parts of boiling alcohol diffolve one of fugar \wp. It unites readily with oils, and renders them mifeible with wa- Solu ter. A moderate quantity of it prevents, or at leaftin alcohol. retards, the coagulation of milk; hut Scheele difcovered §me. that a very large quantity of fugar caufes milk to coa- i .27 fl . gulate $\|$.
|| Scbecto ii.
Sugar abforbs muriatic acid gas flowly, and affumes s2. Dijon a brown colvur and vesy flrong fmell \ddagger.

Sulphuric acid, when concentrated, readily decom-ii Prifllg', pofes lugar; water is formed and perhaps alfo acetous 10 acid; while charcoal is evolved in great abundance, and Action of gives the mixture a black colour, and a confiderable acids. degree of confiftency. The charcoal may be eafily feparated by dilution and filtration. When heat is applied, the fulphuric acid is rapidly converted into fulphurous acid.
\dagger Gillot.
Ann. de
Clim. xviii.
31%
\qquad in alcohol. Enc. When fugar is mixed with potafs, the mixture ac-of potars. quires a bitter and aftringent tafte, and is infoluble in alcohol, though each of the ingredients is very foluble in that liquid. When the alkali is faturated with fulphu$3 \mathrm{Y}^{Y}$

Chap. I.
Sugar. ric acid, and precipitated by means of alcohol, the fiveet

* Cruick. Funk, Ro:\% gone no diccompofition from the action of the potals, fuank, Ro:lo , but had combined with it in the Itate of furar ${ }^{*}$ potals, on Diaketes, but had combined with it in the Itate of lugar*.
15 ${ }^{42}$ 2. Lime boild with fugar protuces nearly the fame efof lime. Sect as potars; when an alkali is adled to the com. \dagger 1bid. pound, a fubitance precipitates in white flakes. This chalk compofe, ay Leonardi informs us, a kind of ce-
ment \ddagger.
Rett.CLim. Sugar, when thrown upon a hot iron, melts, fwells, i. 271. becomes hrownifa black, emits air bubbles, and exhales a peculiar finell, known in French by the name of ca-
Of beat. romel. At a red heat it inftantly burfts into flames with a kind of explofion. The colour of the flame is 14 white with blue edges.
Difilitation When fugar is diltilled in a retort, there comes over of 11. a fuid which, at firlt, fcarcely differs from pure water; by and bye it is mixed with pyronucous acid, afterwards fome empyreumatic oil makes its appearance; and a bulky charcoal remains in the retort. This charcoal very frequently contains lime, becaufe lime is ufed in refining fugar; but if the fugar, before being fubmit. ted to diftillation, be diffolved in water, and made to cryftallize hy evaporation in a temperature fearcely higher than that of the atmofphere, no lime whatever, nor any thing elfe, except pure charcoal, will be found in the retort. During the diftillation, there comes over
* Scopoli
and M_{a},-
veazu, Enc.
wera, Enc.
Metcb. Chim.
. 2 . fromit: Water, pyromucous acid, oil, charcoal, carbonic
i. 269. - acid, carbonated hydrogen gas. The quantity of oil is inconfiderable; by far the mott abundant product is pyromucous acid. Sugar indeed is very readily converted into pyromucous acid; for it makes its appearance always whenerer fyrup is raifed to the boiling temperature. Hence the fmell of caromel, which fyrup at that temperature emits. Hence alfo the reafon that, when we attempt to cryftllize fyrup by heat, there always remains behind a quantity of incryftallizible matter, known by the name of molafes; whereas if the fyrup be cryftallized without artificial heat, every particle of \dagger Morveau. fugar may be obtained from it in a cryltalline form \dagger.
Enc. Metb. Hence we fee the importance of properly regulating Cbim, i. the fire during the cryftallization of fugar, and the im266. menfe faving that would refult from conducting the

Ite cormpo. It follows from thefe facts, and from various other fition. a con fiderable quantity of carbonic acid, and carbonated hydrogen gas*. Sugar therefore is decompofed by the action of heat ; and the following compounds are formed fromit: Water, pyromucous acid, oil, claarcoal, carbonic
in

t

 time uninjured though expofed to the air. Starch dues not diffolve in cold water, but very foon How acted falls to powder. It combines with boiling water, and win by forms with it a thick patte. Linen dipt into this patte, water, and afterwardsdried fuddenly, acquires, as is well known, a great degree of fliffuefs. When this palte is left expofed to damp air it foon lofes its conliftency, acquires an acid tafte, and its furface is covered with mould.When a quantity of wheat flour is formed into a Method of pafte, and water poured upon it till it runs off colour. ${ }^{\text {obtaiming }}$ lefs, this water foon depofits a very fine whitifh powder ; which, when properly wathed and dried, is known by the name of farch. When firft prepared, it is of a grey colour ; but the farchmakers render it white by dreeping it in water flightly acidulated. The acid feems to diffolve and carry off the impurities.
Starch was well known to the ancients. Pliny in $-+L i b$. xviii. forms us, that the method of obtaining it was firft in-c. 7 . vented by the inhabitants of the ifland of Chio \dagger.
ented by the inhabitants of the ifland of Chiot. Is
Starcl has a fine white colour, and is ufually concre- $\begin{aligned} & \text { ries }\end{aligned}$. ted in longifh maffes; it has fcarcely any fmell, and very ted in longifh maffes; it has fearcely any fmell, and very
little tafte. When kept dry, it continues for a long
food. It is found moft abundantly in the juice of the fugar cane, but many other plants alfo contain it. The juice of the acer faccharinum, or fugar maple, contains fo much of it, that in North America fugar is often plants con. extracted from that tree*. Sugar is alfo found in the * ${ }^{*}$ Ruffe. roots of carrot, parfnip, beet, icc. Mir Achard has Tranf. Plj: lately pointed out a method of increafing the quau- ${ }^{\text {tad }}$, ii. ot. tity of fugar in beet fo much, that, according to his own account, it is at prefent cultivated in large quantitics in Pruflia, and fugar extracted from it with advantage \dagger. Parmentier has alfo afcertained that the $f A n n_{0}$ de grains of wheat, barley, \&c. and all the other fimilar cibim. xxaiis feeds which are ufed as food, contain at firt a large ${ }^{103 .}$ quantity of fugar, which gradually difappears as they approach to a ftate of maturity. This is the cafe alfo with peas and bearis, and all leguminous feeds, and is one reafon why the flavour of young peas is fo much fuperior to that of old ones.

> Sect. II. of Starch. of
\qquad -
\qquad
\qquad $=$ -
 Starch is fo far from diffolving in alcohol, even when Alcuhol, affifted by heat, that it does not even fall to powder.

When flarch is thrown into any of the mineral acids, at firlt no appareat change is vifible. But if an attempt Acids ${ }^{2 x}$ is made to break the larger pieces while in acids to pourder, they refitt it, and feel exceedingly tough and adhelive. Sulphuric acid difolves it flowly, and at the fame time a fmell of fuphurous acid is emitted, and fuch a quantity of charcual is evolved, that the difh containing the misture may be inverted without fpilling any of it. Indeed if the quantity of flarch be fufficient, the misture becomes perfectly folid. 'The charcoal may be feparated by dilution and filtration. In muriatic acid ftarch diffolves atill more flowly. The folution refembles mucilage of gum arabic, and ftill retains the peculiar odour of muriatic acid. When allowed to ftand for fome time, the folution gradually feparates into two parts; a perfectly tranfparent flraw-co. loured liquid below, and a thick, muddy, oily, or rather mucilaginous fubitance, above. When water is poured in, the muriatic fmell inftantly difappcars, and a ftrong fmell is exhaled, precifely fimilar to that which is felt in corn-
milis. Anmonia occafions a flight precipitate, but, too finall to be examined.

Nitric acid ditolves farch more rapidly than the other two acids; it acquires a green collur, and 'enits nitrous gas. The folution is never complete, nor do any cryitals of oxalic acid appear unlefs heat be applied. In this refpeet harch differs from fugar, which yields oxalic acid with nitrie acid, even at the temperature of the atmofphere. When heat is applied to the fulution of farch in nitric acid, both oxalic and malic acid is fornoch, but the undiffolved fubllance Hill remains. When feparated by filtration, and afterwards eduleorated, this fubftance lias the appearance of a thick oil, not unlike tallow; but it diffolves readily in alcohol. When diftilled, it yields acetous acid, and an oil having the fmell and the confiftence of tallow*.
When tharch is thrown upon a hot iron, it melts, blackens, froths, fwells, and burns with a bright flame like fugar, emitting, at the fame time, a great deal of finoke; but it does not explude, nor has it the caromel fimell which diftinguifhes burning fugar. When dillilled, it yields water impregnated with an acid, fuppofed to be the pyronucous, and mixed with a little cmpyreumatic oil. The charcoal which remains is eatily diffipated when fet on fire in the open air ; a proof that it contains very little earth.

Barley grain confifts almoft entirely of tharch, not however in a flate of perfect purity. In the procefs of malting, which is nothing elfe than caufing the barley to begin to vegetate, a great part of the farch is converted into fugar. During this procefs oxygen gas is ahforbed, and carbonic acid gas is emitted. Water, too, is abfolutely neceflary ; hence it is probable, that it is decompofed, and its hydrogen retained + . Starch, then, feems to be converted into fugar by dininifhing the proportion of its carbon, and encreafing that of its hydrogen and oxygen. Its diftillation thews us that it contains no other ingredieuts than thefe three.
Starch is contained in a great variety of vegetable fubftances; molt commonly in their fecds or bulbous roots; but fometimes alfo in other parts. Mr Parmen. tier, whofe experiments have greatly contributed towards an accurate knowledge of farch, has given us the following lift of the plants from the roots of which it may be extracted.

Arctium		Iinperatoria oftrintheum,
Atropa	adonna,	Hyofcyamus niger,
Polygon	biftorta,	Rumex oltufifolius,
Bryonia		- acutus,
Colchicu	tumnal	,
Spirea fil	endula,	Arum maculatum,
Ranuncu	bulbofus,	Orchis mafcula,
Scrophul	nodofa,	Iris pfendacorus,
Sambucu		- fcetidifima, Orohus tuberofus,
Orchis m		Bunium bulbocatanum.
It is. fo	alfo nearly pure	in the following feeds :
Oats,	Chefnut,	Acorn,
Rice,	Horfechefnut,	And alfo in
Maiz,	Peas,	Salop,
Millet,	Beans,	Sago.
	Sect. III. Of	Of Glugen.
hen	heat flour is	ramed in the

frribed in the laft fection, in order to obtain flarch

Albumen. from it, the fubtance which runains, after every thing haś been wafthed away which cold water can feparate, Glutect, is called ghluten. It was difeovered by Beccaria anı Ira-howobtain. lian philufopher, to whom we are indebted for the firfed. analy fis of wheat flourt.

\author{

+ Colles.
}

Gluten, when thus oitained, is of a grey colour, ex- $\begin{gathered}\text { Acad. x. } 1 . \\ 26\end{gathered}$ ceedingly tenacions, ductile, and claftic, and may be ex-Its propertended to twenty tines its original iength. When very ties. thin, it is of a whitifn colous, and has a good deal of refemblance to animal tendon or nembrane. In this itate it adheres very tellacioufy to other bodies, and has often been ufed to cement together broken piects of porcelain. Its fmell is agrecable. It las fearce any tafle, and does not lofe its tenacity in the mouth.

When expofed to the air, it gradually dries; and, Ation of when completely dry, it is pretty hard, lorittle, fightly air, traulparent, of a dark brown colour, and has forme refemblance to glue. It breaks like a piece of glafs, and the cilges of the fraciure refemble in finoothnets thofe of bruken glafs; that is to fay, it breaks with a vitreous fracture.

When expofed to the air, and kept moilt, it foon putrifies; but when dry, it may be kept any length of 28 time without alteration. It is infolutile in water ; tho' Water, it imbibes and retains a certain quantity of it with great obftinacy. To this water it owes its elaflicity and tenacity. When boiled in water, it lofes both théfe properties. It is foluble in alcohol, as Mr Vauquelin informs us \ddagger; and precipitated again, as Mr Fourcroy \ddagger Ann de has obferved, by pouring into the alcohol two parts of ${ }_{27} 78$. water§.
Gluten is foluble in the three mineral acids. When 135 . nitric acid is poured on it, and heat applied, there is a ${ }^{29}$ quantity of azotic gas emitted, as Berthollet difcovered; Acids, and, by continuing the heat, a quantity of oxalic acid is formed ||.

Alkalies diffolve gluten when they are affited by Bid. vi. heat. The folution is never perfeclly tranfparent. A. ${ }_{30}$ cids precipitate the gluten from alkalies, but it is defti- Allalies, tute of its elafticity q.

When moilt gluten is fuddenly dried, its fwells ama ${ }^{\text {Heat. }}{ }^{31}$ zingly. Dry gluten, when expofed to heat, cracks, , Heat. fwells, melts, blackens, exhales a fetid odour, and burns precifely like feathers ar born. When difilled, there comes over water impregnated with ammonia and an empyreumatic oil; the charcoal which remains is with 32 difficulty reduced to athes. From thefe phenumena, it fition. is evident that gluten is compofed of carbon, hydro- fition. gen, azot, and oxygen : perhaps allo it contains a little lime. In what manner thefe fubtances are combined is unknown.
The only veretable fubitance which has been hither Sublances. to found to contain it abundantly, is wheat flour. Vaur- it. quelin alfo found it in the fruit of the caftra filluloris*, stid. and Fourcroy in the bark of a fpecies of quinquina from \dagger Jbid, viii. St Domingot. It probably exifts in many other plants.

Sect. IV. Of Albunen.

IF the water in which wheat flour has been wafled in order to obtain flarch and gluten, according to the directions laid down in the two laft. fections, be filtrated, and afterwards boiled, a fubflance precipitates in white flakes; to which Mr Fourcroy, who firft pointed

Jelly. it out, has given the same of albumen (A), on account of
$\ddagger A n n . d e$ Cbim. iii. 259.

34 Properties of albunien.

5 Fourcroy,

Ibid. 257°
|| Xbid. its refemblance to the white of an egg. \ddagger.

It is evident, from the method of obtaining it, that albumen, in its natural thate, is foluble in water, aid that heat prccipitates it from that fluid in a concrete ftate. While diffolved in watcr, it has farcely any tafte; but it has the property of changing vegetable blues, efpecially that which is obtaned fion the fowers of the mallow (malra fyluefris), into a green sf. When allowed to remain diffolved in water, it pusrifies with. out becoming pervionally acidll.

After it has been precipitated from water in a coincrete ftate by losiling, it is no longer foluble in water as before. Alcohol allis precipitates it from water pre. cifely in the fance Rate as when it is precipitated by heat.

When concrete albumen is iried it becomes fomewhat tranfpasent, and very like ghee. In that date it is foluble in alkalics, efpecially ammonia *.

When ditilled it gives out carbonat of ammonia, a red fetid oil, and carbonated hydrogen gas; and a fpongy charcoal remains behind t. From this, it is evident that albumen, like ghten, is compofed of carbon, azot, hydrogen, and oxygen ; but the proportions and combinations of thefe fubitances are altogether unknown.

Mr Foncroy found albumen in the exprefled jaice of feuryy grafs, cretfes, cablage, and almoft all crucifurm plants. He found it, too, in a great many young and fucculent phants; bit never a particle in thofe parts of vegetables which contain an acid. He obferved allo that the quantity decreafed conftantly with the age of the plant.

$$
\text { Sect. V. Of } \check{f} \text { ellz. }
$$

If we prefs out the juice of ripe blackberries, currants, and many other fruits, and allow it to remain for fome time in a fitate of reft, it partly coagulates into a tremulous foft fubitance, well known by the name of jelly. If we pour off the uncoagulated part, and wafk the coagulum with a fmall quantity of water, we obtain jelly approaching to a fate of purity.
In this ftate it is nearly colourlefs, unlefs tinged by the peculiar colouring matter of the fruit ; it has a pleafant taite, and a tremulous confiftency. It is farcedy foluble in cold water, but very foluble in hot water, and, when the folution cools, it again coagulates into 'the form of a jelly t. When long boiled, it lofes the property of gelatinifing by cooling, and becomes analagous to mucilage \ddagger. This is the reafon that in making currant jelly, or any other jelly, when the quantity of fugar added is not fufficient to abforb all the
watery parts of the fruit, and confequently it is necef. 'fary' to concentrate the liquid by long boiling, the mix. ture often lofes the property of coagulating, and the jully, of courfe, is fpoiled. $\$$.

Jelly combines readily with alkalies; nitric acid con'verts it into oxalic acid, without feparating any azotic 'gas $\|$. When'dried it becomes tranfarent of. When ditt:uct it affords a great deal of pyromucous acid, a finall quantity of oil, and fearcely any ammonia \dagger.

Jully exills in all acill fruits, as uranges, lemons, tibid. vio goufeberies, 太ic. and no albumen is ever found in thofe ${ }^{2 \$ 6}$. parts of vegetables which rontain an acied. This circumfance has induced Fourcroy to fuppofe that jelly is albumen combined with an acid *: but this conjecture has not been verified by experiment; nor indeed is it probable that it ever fhall; as albumen evidently contains a quantity of azot, and jelly fcarcely any. 'Ilic products of jelly by diltillation shew that it approaches nearer than any other vegetable fubitance to the nature of fugrar.

> Sect. VI. of Gun.

There is a thick tranfparent taltelefs fluid which fometimes exfudes from certain fpecies of trees. It is very adhefive, and gradually hardens without loling its tranfparency; but eafily foftens again when moiftened with water. This exfudation is known by the name of gun. The gum molt commonly ufed is that which exludes from different fpecies of the mimofo, particularly the niolicat. It is known by the name of gum arabic. Gung likewife ex fudes abundantly from the prunas avium or common wild cherry tree of this country.

Gum is ufually obtained in fmall pieces like tears, moderattly hard, and fomewhat brittle while cold, fo that it can be reduced by pounding to a fine powder. Its colour is ufually yellowith, and it is not deftitute of luftre. It has no fmell ; its tafte is infipid.

Gum undergoes no change from being expoled to the atmofphere; but the liglit of the fun makes it af. fume a white colour. Water difolves it in large quan- A\&tion of tities. The folution which is known by the name of water. mucilage (B), is thick and adhefive: it is oftemufed as a pafte, and to. give ftiffnefs and luftre to linen. When fpread out thin it foon dries, and has the appearance of a varnih; but it readily attracts moifure, and becomes glutinous. Water wafhes it away entirely. When mucilage is evaporated the gum is obtained unaltered.

Gum is infoluble in alcohol. When alcohol is pour- Alcot.on ed into mucilage, the gum immediately precipitates; becaufe the affinity between water and alcohol is greater than that between water and gum.

The action of alkalies and carths upon gum has not

```
O2.
```

It Itid. vin
2 Sa .
261. - _-____
(A) The exitence of albumen in vegctables was known to Scheele. He mentions it particularly in his paper on Milk, firit publifhed in the year 1780 . See Scheele's Works, I1. 55. Dijon edition.
(в) Hermftadt ufes this word in a different fenfe. He makes a diftinction between oum and mucilage. The folution of gum in water is tranfparent and crutinous, and can be drawn out into threads; whereas that of mucilage is opalee, does not feel glutinous, but flippery, and cannot be drawn into threads. Gum may be feparated from mucilage by the following procefs:

Let the gum which is fuppofed to be mixed with mucilage, previouny reduced to a dry mafs, be diffolved in as fmall a quantity of water as poffible, and into the folution drop at intervals diluted fulphuric acid. The nuscilage coagulates wbile the gum remains diffolved. When no more coagulation takes place, let the mixture remain at reit for fome time, and the mucilage will precipitate to the bottont, and affume the confiftence of jelly. Decant off the liquid part, and evajorate the mucilage to drynefs by a gentle heat tiil it acquires the conliftence of horn. ITTed. and Ploy. Four. iii. 376 .

Extras. been exanmined. Accds do not precipitate it from mucilage \ddagger. The concentrated mineral acids deftroy it. Concentrated fulphuric acid decompufes it; water is formed, and perhaps alfo acetous acid; while charcoal is precipitaied. Nitric acid converts it into oxalic acid; Id. Ans, ux y-muriatic acid, on the cuntrary, intor citric acid *. CLim. vi. . When gum is expofed to heat it fuftens and fwells, at laft, when nearly reduced to charcual, emits a low hlue flame. This flame appears fooner if a flaming lubltance be held jult above the gum. After the gum is confumed, there remains a fuall quantity of white athes, compofed chiefly of the carbonats of lime and potafs.
When gum is diftilled in a retort, the products are water inpregnated with a confiderable quantity of pyromucots acid, a little empy reumatic oil, carbonic acid gas, and carbonated lyydrogen gas. When the pyramancous acid obtained by this procefs is faturated with lime, a quantity of anmonia is difengaged with which that acid had becnemmbinct. The charcoal which remained in the iveturt leaves behind it, after incineration, a little lime, and phofphat of lime j.

Thefe experiments thew us that gum is compofed of hydrogen, carbun, exygen, azot, time, and phuiphorus; hut the proportions and combinations of thefe fubftances are unknown to us. Mr Cruickfhank las rendered it probable that the quantity of carbon is greater, and the quantity of oxyen lefs, in gum than in fugar $\|$.

Gum, or mucilage, exitts molt abundantly in young plants, and gradually difappears as they arrive at perfection. It forms a great proportion of the leaves and roots of many eatable plants.

Sect. Vil. Of Extr.sct.

The word extruas was at firt applied to all thofe fubtances which were extracted from plants by means of water, and coaiequently included gum, jully, and feseral other bodies. Dut of late it has been contined, by thofe chemites who have paid attention to the ufe of language, tu a fubflance which exifts in many plants, and which may be obtained by infuling fuffron in water for fome time, filtrating the iufution, and cwaporating it to drynefs. The retiduum, after evaporation, is cxtraf nearly pure g. It pofiffics the toliuwing properties:

Water diffolves it in confiderable quantities, efpecially hot water. Alcohol allo diffulves it with fac:lity. This property of being foluble both in water and alcohol has induced fume chemits to give exerat the name of foap. It is infoluble in fulphuric ether. Thefe three propertics are fufficicut to dillinguith it from every other vegetable fubilance *.
When the fulution of extract in water is expofed for fome time in the open air, the extraet precipitates, and is now no longer fuluble in water. This change is fuppofed to proceed from the addition of a quantity of oxycen which it imbibes from the atmofphere f.

Whea oxy-muriatic acid is poured into a watery folution of extract, that fubltaice precipitates in yellow flakes. Thefe fakes are infoluble in water; they are infuluble alfo in alcohal at the temperature of 97°; but that liquid diffolves them at the temperature of 120°. They are foluble alfo in alkalies, and in boiling-hot water they melt into a yellow mafo \ddagger.

Extract is fuluble in acids. Heat fuftens but does not melt it \wp.

It is found in a great variety of plants: but as no drat Ann. method of obtaining it perfectly pure has hitherto been viit. difcovered, the extracts of different plants differ fomewhat from each other buth in their culour and fmell.

Sect. Vili. of Tan.

If́ a quantity of nut galls, coarfely powdered, be Prepar kept for fome time infufed in culd water, if the watertion of tan. ie filtered, and a folution of nuriat of tin be dropt into it, a copions white precipitate falls to the bottom. This precipiate is to be carefully wathed and diffufed (for it will not diffulve) thro' a large quantity of water, and this water is to be taturated with fulphurated hydrogen gas fo completely that it will not abfurb any more. By this treatment the white precipitate will graduallydifappear, and a brown precipitate will take its place. This brown precipitate mult be feparated by fileration ; and the water, which has now acquired the coluur and the tafte of the infufion of nut galls, nuit be evaporated to dryncfs. A fubtance remains behind, known by the uame of tan or tamine.
It was firft difcovered by Seguin, who pointed out fone of its properties, and the method of detecting it in plants $\|$. The above method of obtaining it in a $\|$ Nicbot itate of purity was contrived by Mr Proutt. Tan exilts ${ }^{\text {fon }}$'s Jour in the fulution of nut galls combined with gallic acid. 271. The oxyd of tin has a lltrong affinity for it. When muriat of tin is poured in, the tan combines with the uxide, and the compound, being infoluble, falls to the bottom. Sulphur has a ftronger affinity for the oxide than tan has. Hence when fulphurated hydrogen gas is thrown upon this compound, the fulphur leaves the gas and combines with the tin; and the compound, being infolubte, falls to the hottom: The hydrogen gas efcapes, and nothing remains in the water except the tan.

45
Tan is a brittle fubftance, of a browu colour. It Its properbreaks with a vitreous fracture, and does not attract ties. moifure frum the air. Its talte is exceedingly aftringent. It is very foluble in water. The fulution is of a deep brown culour, a very aftringent and bitter tafte, and has the odour which dittinguifhes a folution of nut galis. It froths, when agitated, like a fulution of foap; but does not feel unctuons. Acids precipitate the tan from this folution.

Tan is fill mure fuluble in alcohol than in water.
When the folution of tan is poured into a folution of the brown fulphat of iron, a deep blue coloured precipitate immediately appears, confiliting of the tan combined with the oxide. Ihis precipitate, when dried, affumes a black culour. It is decompored by acids. The green fulphat of iron is not altcred by tan.
When too great a proportion of brown fulphat of iron is poured into a folution of tan, the fulphuric acid, fet at liberty by the combination of the irun and tan, inSufficient to rediffolve the precipitate as it appears; but the precipitate may eafily be obtained by cautioufly faturating this excefs of acid with potafs. When the experiment is performed in this manner, all the rcd fulphat of iron which remains in the folution undecompufed is converted into green fulphat. Mr Prouft, to whom we are indebted foralmoft every thing yet known concerning the properties of tan, fuppoles that this change is
$\underbrace{\text { Canyfor. produced by the tio abforbing oxygen from the iron. }}$ are infufficient to prove that it is. The fame change takea place if red oxide be mixed witl a confiderable excefs of fulphuric acid, and diluted with water.

Tan combines readily with oxygen. When oxy-muriatic acid is poured upon it, its colour deepens, and it

* Prouf,

Ann. de
Chim. xsv. Tan exifts in al.noft all thofe vegetable fulntances 225.
pitates, and affumes the form of plumofe, or feather-like cryftals \ddagger.
Camphor is not acted on by alkalies, either pure or in the flate of carbonats. Pure alkalies indeed feem to diffolve a little camphor; but the quantity is to fmall to be perceptible by any other quality than its odour $\&$. Neither is it acted upon by any of the neu- ς Bozilon, tral falts which have hitherto been tried.

Acids diffolve camphor, but it is precipitated again, unaltered, by alkalies, and even by water. The folution of camphor in fulphuric acid is red; that in the nitric acid is yellow. This laft folution has obtained the ahfurd name of oil of camplor. When nitric acid is diftilled repeatedly off camphor, it converts it into camphoric acid.
Muriatic, fulphurous, and fluoric acids, in the ftate of gas, diffolve camphor. When water is addeel, the camphor appears unaltered in flakes, which fwim on the furface of the water \oint.

When heat is applied to camphor it is volatilized. If the heat be fudden and flrong, the camphor melts before it evaporates. It catches flame very readily, and emits a great deal of fmoke as it burns, but it leaves no refiduum. It is fo inflammable that it continues to burn even on the furface of water. When camphor is fet on fire in a large glafs globe filled with oxygen gas, and containing a little water, it burns with a very bright flame, and produces a great deal of heat. The inner furface of the glafs is foon covered with a black powder, which has all the properties of charcoal, a quantity of carbonic acid gas is evolved, the water in the globe acquires a ftrong fmell, and is impregnated with carbonic acid and camphoric acid $\|$.

If two parts of alumina and one of camphor be formed into a pafte wih water, and diftilled in a glafs retort, there comes over into the receiver (which fhould contain a little water, and communicate with a puenmatic apparatus) a volatile vil of a golden yellow colour, a little camphoric acid which diffolves in the water, and a quantity of carbonic acid gas, and carbonated hydrogen gas, which nay be collected by means of a pneumatic apparatus. There remains in the retort a fubftance of a deep black colour, compofed of alumina and charcoal. By this procefs, from 122.284 parts of camphor, Mr Bonillon la Grange, to whom we are indebted for the whole of the analy fis of camphor, obtained 45.856 parts of volatile cil, and 30.571 parts of charcoal. The propartion of the other products was not afcertained *.

From this analy fis, Mr Bunillon la Grange concludes ${ }^{15} \%$ that camphor is compofed of volatile oil, aud charcoal or carbon, combined together. We learn from his cxperiments, that the ultimate ingredients of camphor are carbon and hydrogen; and that the proportion of carbon is much greater than in oils.

Camphor exifts in a great many plants. Neumann, Geoffroy, and Cartheufer, extracted it from the roots plant, conaof zedoary, thyme, fage, \&c. and rendered it probable that it is contained in almof all the labiated plants. It has been fuppofed to exift in thefe plants combined with volatile oil. Prouft has fhewn how it may be extracted, in conliderable quantity, from many volatile oils + .

Camphor, which was unksown to the ancient Greeks ${ }^{\dagger}$ Ann. do and Romans, was iutroduced into Europe by the Ara- 179 . bians.

Refing. bians. 庣tius is the firt perfon who mentions it. It feems, however, to have been very carly known to the eaftern nations.

It is much ufed in medicine. It is a powerful fitmulant ; it is confidered as peculiarly efficacious in difeafes of the urinary organs; it is often ferviceable in mania, and procures fleep when every other medicine fails.

Sect. XI. Of Resins.

There is a yellowifh white coloured fubfance which often exfudes from the Abies Montana, or common Scotchs fir, and likewife from other fir trees. It is fomewhat tranfparent, is hard and brittle, of a difagreeable tafte, and may be collected in confiderable quantities. This fublance is known by the name of refin; and the fame name is alfo applied to all fubflances which poffefs nearly the fame properties with it. Refin may be dittinguifhed from every other fubftance by the following properties:

It is more or lefs concrete, and has an acrid and hot tafte.

It is totally infoluble in water. By this property it may eafily be feparated from gum, if they happen to be mixed together.

It is fotuble in alcohol, and in fulphuric ether *. By the firf of thefe properties we may feparate it from gum, and by the laft from extract; for extract is infoluble in fulphuric ether. When thefe folutions are evaporated the refin is obtained unaltered. If the fo. lution be fpread thin upon any body, it foon dries by the evaporation of the alcohol; the refin remains behind, and covers the body with a fmooth fhining tranfparent coat, which cannot be wafhed off by water. This procefs is called varni/hing.

Refin is foluble alio in volatile oils; and thefe folutions are often ufed likewife in varnifhing.

Refin is fcarcely acted upon by acids. Alkalies combine with it, but the combination is not eafily ef. feeted.

When refin is heated it readily melts; and if the heat be increafed it is volatilized, and burns with a white flame and firong finell. When difilled it yields much volatile oil, but fearcely any acid.

When volatile oils are expofed for fome time to the action of the atmolphere they acquire confiftency, and affume the properties of refins. During this change :hey abforb a quantity of oxygen from the air. Wellrum put 30 grains of oil of turpentine into 40 cubic inches of oxy-muriatic acid gas. Heat was evolved, the oil gradually evaporated, and affumed the form of yellow refin \dagger. Thefe facts render it probable that refin is merely volatile oil combined with a quantity of oxygen.
To know whether any vegetable fulfance contains refin, we have only to pour fome fulphuric ether upon it in powder, and expofe the infution to the light. If any relin be prefent the ether will affume a brown co-
si The number of refins is confideralle. They differ umber of from each other chiefly in colour, talle, fmell, and confiftency. Whether thefe refins be really different combinations, or, as is mof likely, owe thefe differences to foreign ingredients, either combined with the refin, or mechanically mixed with it, is not at prefent known.
Suppl. Vol. II. Part II.

To deferibe each reîn \{eparately would be to little putrpofe, as fearcely any thing is known of them except their general properties as refins. The following is a lift of the principal. The reader will find an account of the manner of obtaining them, and of their ufes, by confulting the name of each in the Encyciopadia.

1. Cummon refin,
2. Turpentine,
3. Pitch,
4. Galipot,
5. Elemi,
6. Maftic,
7. Sandarac,
8. Guiacum,
9. Labdanum,
10. Dragon's blood,
11. Copaiba.

There are three vegetable fubfances which have Balams. been denominated balfams by fome of the later French writers. They appear to confift of refin, or volatile oil combined with benzoic acid. Thefe fubflances are, benzoin, balfam of Toln, and forax. For an account of them we refer to the Encyclopadia.
Many vegetahle fubtances occur in medicine which roum ${ }^{53}$ reconfift chiefly of a mixture of gum and refin. Thefi fina fubftances, of courfe, have a number of the properties both of gums and refins. For this reafon they have bcen denominated gum refins. The following are the nool important of thefe fubltances:

$$
\begin{array}{ll}
\text { Olibanum, } & \text { Aloes, } \\
\text { Galbanum, } & \text { Myrrh, } \\
\text { Scammony, } & \text { Ammon } \\
\text { Affafotida, } & \text { Opium. }
\end{array}
$$

For an account of thens we refer to the Encyclopedia.

Sect. XII. Of Caoutchouc.

About the beginaing of the 18 th century a fub- Dificoery ftance, called caoutchout, was brought as a curiofity of canutfrom America. It was foft, wonderfully ehallic, and chouc. very combulfible. The pieces of it that came to Europe were ufually in the flape of bottles, birds, \&c. This fubftance is very much ufed in rubling out the marks made upon paper by a black lead pencil ; and therefore in this country it is often called Indimin rub. ber. Nothing was known of its production, except that it was obtained from a tree, till the French acadennicians went to South America in 1735 to meafure a degree of the meridian. Mr de la Condamise feut an account of it to the French Academy in the year 1736. He told then, that there grew in the province of Ef: meraldas, in Brazil, a tree, called by the natives Hhevé; that from this tree there flowed a milky jnice, which, when infpiffated, was caoutchouc. Dun Pedro Maldonado, who accompanied the Frencla acalemicians, found the fame tree on the banks of the Mararnon ; but he died fuon after, and his papers were never publithed. Mr Frefnau, after a very laborious fearch, difcovered the fame tree in Cayenne. His account of it was read to the French Academy in 1751.

It is now known that there are at leaft two trees in P! ints conSouth America from which canteloue may be obtain- tining it. ed, the Hxesea Canutchouc and the Jatropha Elatica; and it is excecdingly probable that it is exiracted alfo from other fpecies of Hævea and Jatropha. Sevcral trees likewife which grow in the Eaft Indies yield caoutchouc ; the principal of thefe are, the Ficus Indica, * Afatic the Artocarpus Ir.tegrifclia, and the Urccoln Elaftica; Refiarcher, a plant difcovered by. Mr Howifon, and firft deferibed ${ }^{\text {v. }} 66_{7}$. and named by Dr Roxburgh *.

When any of thefe plants is punctured, there exfudes from it a milky jnice, which, when expofed to the air, gradually lets fall a concrete fubtance, which is caoutchouc.

If o:y-muriatic acid be poured into the milky juice, the caontchouc precipitates inmediately, and, at the fame time, the acid lofes its peculiar odour. This ren. ders it probable that the formation of the caoutchouc

- Forrcroy, Ann. de Cbim. xi.

229.

\dagger 1bid
56
Properties
of canutchouc. juwing to its bafis abforbing oxygen *. If the milky juice be confined in a glafs veffl containing common air, it gradually abforbs oxgen, and a pellicle of caoutchouc appears on its furface \dagger.
Cawutchouc was no fooner known than it drew the attention of philofophers. Its fingular properties promifed that it would be exceedingly uffefl in the arts, provided any method could be fallen upon to mould it into the varivus infruments for which it feemed peculiarly adapted. Meffrs de la Condimine and Frefuau had mentioned fome of its properties; but Macquer was the firft perfon who undertook to examine it with attention. His experiments were publifhed in the memoirs of the French Academy for the year 1768. They threw a good deal of light on the fubject ; but Macquer fell into fome miftakes, which were poiated out by Mr Berniard, who publinhed an admirable paper on caoutchouc in the 17 th volume of the Yournal de Pbyfique. To this paper we are indebted for the greater number of facts at prefent known refpecting caoutchouc. Mr Groffart and Mr Fourcroy have likewife added confiderably to our knowledge of this fingular fubftance; both of their treatifes have been publifhed in the 1 Ith volume of the Annales de Cbemie.

Caoutchouc, when pure, is of a white colour (c), and \ddagger Fourcroy, witbout either tafte or f mell \ddagger. The blackifh colour

$$
i k i d 232 .
$$ employed in drying it after it has been fyread upon moulds. The ufual way is to fpread a thin coat of the milky juice upon the mould, and then to dry it by expofing it to fmoke; afterwards another coat is fpread on, which is dried in the fame way. Thus the caoutclonuc of commerce confifts of numerous layers of pure caoutcbouc alternating with as many layers of foot.

Caoutchouc is foft and pliable like leather. It is exceedingly elaftic and adhefive; fo that it may be forcibly ftretched out much beyond its ufual length, and inftantly recover its former bulk when the force is withdrawn. It cannot be broken without very confiderable farce.

It is not altered by expofure to the air; it is perfectly infoluble in water : but if boiled for fome time its edges become fomewliat tranfparent, owing undoubtedly to the water carrying off the foot ; and fo foft, that when two of them are preffed and kept together for fome time, they adhere as clufely as if they formed one piece. By this contrivance pieces of caoutchone may be foldered together, and thus made to affume whatever flape we pleafe s.

Cautchouc is infoluble in alcohol. This property was difcovered very early, and fully confirmed by the experiments of Mr Macquer. The alcohol, however, einders it colourlefs.

Caoutchouc is foluble in ether. This property was
firt pointed out by Macquer. Berniard, on the contrary, found that caoutchouc was fcarcely foluble at all in fulphuric ether, which was the ether ufed by Macquer, and that cven nitric ether was but an imperfect folvens. The difference in the refults of thefe two chemits was very ingular ; both were remarkable for their accuracy, and both were too well acquainted with the fubject to be eafily mined. The matter was firlt cleared up by Mr Cavallo. He found that ether, when newly prepared, feldom or never diffolved caoutchouc completely; but if the precaution was tuken to wafh the ether previouly in water, it afterwards diffolved caoutchoue with facility. Mr Groflart tried this experiment, and found it accurate *. It is evident from - Ann. do this that thefe chemifts had employed ether in different Chim, xit fates. The wafhing of etber has two effects. It deprives 147. it of a little acid with which it is often impregnated, and it adds to it about one-tenth of water, which remains combined with it.

When the ether is evaporated, the caoutchouc is obtained unaltered. Caoutchouc, therefore, diffolved inether, may be employed to make inftruments of different kinds, jult as the milky juice of the havea; but this method would be a great deal too expenfive for common ufe.

Caoutchouc is foluble in volatile oils \dagger; but, in ge- ${ }^{60}$ neral, when thefe oils are evaporated, it remains forme- \dagger Berniard what glutinous, and therefore is fcarcely proper for thofe ufes to which, before its folution, it was fo admirably adapted.

It is infoluhle in alkalies \ddagger. The acids act upon it Acids and with more or lefs violence according to their nature. alkalics, Sulphuric acid decompofes it completely, charcoal pre- \ddagger-Id. cipitates, and part of the acid is converted into fulphurous acid. Nitric acid converts it into a yellow fubftance, analogous to fuberic acid. Muriatic acid does not affect it $\$$. The other acids have not been tried.

Fahroni has difcovered, that rectified petroleum dif. $\S \mathrm{Id}$ folves it, and leaves it unaltered when evaporated $\%$. I Ibid. 199 .
When expofed to heat it readily melts; but it never and xii, 156 afterwards recovers its properties, but continues always of the confiftence of tar. It burns very readily with a bright white flame, and diffutes a fetid odour. In thofe countries where it is produced, it is often ufed by way of candle.
When diftilled, it gives out ammonia I. It is evi- τ Fourerog, dent from this, and from the effect of fulphuric and Ann. de nitric acid upon it, that it is compofed of carbon, hy-Chim. xi. drogen, azot, and oxygen; but the manner in which ${ }^{232}$. tbey are combined is unknown.

When treated with nitric acid, there came over azutic gas, carbonic acid gas, pruffic acid gas; and oxalic acid was furmed *.

* $13 i d$.

It feems to exilt in a great variety of plants; but is ufually confounded with the other ingredients. It may How to rebe feparated from refins by means of alcohol. It may parate it be extracted from the different fpecies of mifletoe by from plants water, with which, in the fluid flate in whioh it exifts in thefe plants, it readily combines. When mixed with gum or extract, it may be feparated by the following prucefs: Digelt a part of the plant containing it firit in water and then in alsobol, till all the fubtances foluble
(c) Mr De Fourcroy fays, that blackih brown is the natural colour of caoutchouc. But we have feen fome pieces of it from the Eaft Indies, which had been alluwed to infpiffate in the open air: They were white, with z fight call of yellow, and had very much the appearance and feel of white fuap.

Wax. luble in thefe liquids be extracted. Dry the refiduum, and digett it in five times its weight of rectified petroleum. Exprefs the liquid part by fqueczing the fubfance in a linen cloth. Let this liquid remain feveral days to fettle, then decant off the clear liquid part, nix it with a third part of water and diftil, the caout-- Hermpladt, chuuc remains behind *. Mch and oby your. ii. 372 .

Sect. Silit. of Wax.

The upper furface of the leaves of many trees is covered with a varnifh of wax. This varnifh may he feparated and obtained in a fate of purity by the follow.
64 ing procecs.
Wax a ve- Digett the bruifed leaves, firft in water and then in eciable pro-alcohol, till every parto of them which is foluble in thefe iuction. liquid be extiacted. Then mix the refiduum with fix times its weight of a folution of pure ammonia, and, after fufficient maceration, decant of the folution, fiker it, and drop into it, while it is inceffantly flirred, diluted fulphuric acid, till more be added than is fufficient to faturate the alkali. The wax precipitates in the form of a yellow powder. It fhould be carefully wafhed with water, and then melted over a gentle fire \dagger.

Mr Tingry firit difonvered that this varnifh poffeffed 1 the properties of bees wax \ddagger. Wax then is a vegetable product. The hees extras it unaltered from the leaves of trees and other vegetable fubllances which contain it. They feem, however, to mix it wilh fome of 65 the pollen of flowers.
${ }^{65}$ Wax, when pure, is of a whitifl colour, it is deftitute of tatte, and has fcarcely any finell. Bees wax indeed has a pretty trong aromatic fmell; but this feems chiefly owing to fome fubtance with which it is mixed; for it difappears almoft completely by expofing the wax, drawn out into thin ribands, for fome time to the atmofphere. By this procefs alfo, which is called bleacking, the yellow colour of the wax difappears, and it hecomes very white. Bleached wax is nut affected
by the air $\$$.

Wax is infoluble in water and in alcohol. It com. Mr Lorgua \dagger.
Sulphuric and nitric acids decompofe wax complete; oxy-muriatic acid bleaches it inftantaneoully.
Wax combines readily with oils, and forms with them a fulftance of greater or lefs confiftency according to the quantity of oil. This compofition, which is known by the name of cerate, is mucb employed by furgeons.

When heat is applied to wax it becomes foft ; and at the temperature of 142°, if unbleached, or of 155° \ddagger Nicho\% if bleached \ddagger, it melts into a colourlefs tranfparent pead wich concretes agan, aud refumes its former ap. pearance as the temperature diminifhes. If the heat be ftill farther increafed, the wax boils and evaporates; and if a red heat be applied to the vapour, it takes fire and burns with a bright flame. It is this property which renders wax fo ufeful for making candles.

Mr Lavoifier, by means of the apparatus defcribed in the article Chemistry, Suppl. no 353 . contrived to burn wax in oxygen gas. The quantity of wax confumed was 25.9 grains. The oxygen gas employed in
confurning that quantity amounted to 66.55 grains. Confequently the fubftances confuned amounted to 88.45 grains. After the combuftion there werc found in the glafs veffel 62.58 grains of carbonic acid, and a quantity of water, which was fuppofed to amount to 25.57 grains. Thefe were the only products.

Now 62.58 grains of carbonic acid gas contain
4456 of oxy. and $15:=2$ of $\mathrm{c} \cdot \mathrm{rb}$; a alld 29.5 ; gr of of water co 'aim 21.9.) of oxy. and 3.SS of hyiru.

(6.is 21.93

Conicquently 21.9) parts of wax are compofed of 18.0 z of carbon, and 3.58 of hyirogen. And 100 parts of wax arc compofed of 82.28 carbon,
17.72 hy drugen,
100.00^{*} - Lapoifiser.
If wax be diltilled with a heat greater :! ann $212 n$, Your. de there comes wer a little water, fome febacic acti, at Phyoxaxio little very lluid and odorous oil: the oil, as the dillilla. 5%. tion advances, lecomes thicker and thicker, till at last it is of the commency of butter, and fur this reaton has been called katser of rovas. Thase remanns in the vetort a fmall quantity of coal, which is not eafily reduced to athes. When the butter of wax is repeatelly diltilled it hecomes very fluid, and affumes the propertics of $10-$ latile oil \dagger.

Sect. XIV. Of the Woodr Fibra.
170..p.53.

All trees, and molt other plants, contain a particular fubflance, well known by the name of arood. If a piece of wood be well dried, and digetted, firft in a fufficient quantity of water, and then of alcohol, to extract from it all the fubtances foluble in thefe liquids, there remains hehind only the woody filre.
This fubftance, which conftitutes the bafis of wood, Propertice is compofed of lungitudinal fibres, eafily fubdivided in- of wool. to a number of fmaller fibres. It is fomewhat tranfparent; is perfectly taftelefs; has no fmell; and is not altered by exposiure to the atmofphere.

It is infoluble in water and in alcohol ; but foluble in alkalies. The mineral acids decompofe it. When dilfilled it yieldo, in all probability, pyrulignous acid. When burnt with a fmothered fire it leaves behind it a confiderable quantity of charcoal.

It is precipitated from alkalies unaltered by acids \ddagger. Fourcray,
By nitric acid Fourcroy converted the refiduum of Ann. de quinquina, which does not feem to differ from the chim viii. woody fibre, into oxalic acid; at the fame time there ${ }^{149}$. was a litrle citric acid formed, and a very fmall quantity of malic and acetous acids. Sone a\%otic gas alfo ${ }^{1 / s \text { analyfis }}$ was difengaged. By this procefs he obtained from 100 parts of woody fibre

```
56.250 oxalic acid,
    3.905 citric acid,
    0.388 malic acid,
        0.486 acetous acid,
        0.867 azotic gas,
        8.330 carbonat of lime.
        70.226
        32.031 refiduum.
            102.257
```

There was likewife a quantity of carbonic acid gas difengaged, the weight of which was unknown. This
increafe

Acids.

- Arn. de

Cuirw, viil.
313.
increafe of weight in the produet was evidently owing to the oxygen derived from the mitric acid*.
When ditilled in a retort, 100 parts yield the fol. lowing products :
26.62 of a yellow liquid, containing alcohols and acid which had the finell of pyromueols. 6.977 of concrete oil, moitly foluble in alcohol. 22095 charcual 3.567 carbuanat of lime $\}$ in the retort.
60.159
$39^{3}+1$ gas, half carbonic acid, half carbonated hydrogen.

* Ilihi. 15 r. 100.000^{*}.

Thefe facts fhew us, that the woody fibre is compofed of osygen, carbon, hydrogen, azot, and lime. Mr Chaptal fuppofes that mucilage differs from woody fibre merely in containing lefs oxygen. We are certain at leaft that mucilage or gum is compofed of the fane ingredients; and Mr Chaptal has fhewn, that the juices of plants are partly converted into woody fibre by

+ yid. $\mathbf{x x}$ i. 285. osy-muriatic acid. which imparts to them oxygent.
Thefe juices contain beth gum and refin: after the formation of the wordy fibre the refon is flill unaltered. This gives a good deal of probability to his opinion.

Sect. XV. Of Actis.

The acids fount ready furrod in vegetables are the following:

$$
\begin{array}{ll}
\text { 3. Oxalit, } & \text { 5. Gallic, } \\
\text { 2. Tartarious, } & \text { 6. Benzoic, } \\
\text { 3. Citric, } & \text { 7. Phofphoric. } \\
\text { 4. Malic, } & \text {. }
\end{array}
$$

Sometimes alfo the fulphuric, nitric, and muriatic acids occur in vegetables, combined with alkalies or

69

Planct con-

zaining

-xalic acid.

1. Oxalic acid is eafily detected and diftinguifhed by the following properties: It decompofes all calcareous falts, and forms with lime a falt infoluble in water. It readily cryftallizes. Its crytals are quadrilateral prifms. It is totally deftroyed by heat.

Oxalic acid was firf detected in vegetables by Mr Scheele. It has been difcuvered in the following plants:

The leaves of the oxalis acetofellat.
oxalis corniculata.

+ Schecle, Crell's Your.
i. 107. Engl.

Tranl.
\ddagger Ibid. 34 .
\$ Hermpadt.
90
Tartarous
acid,

- ivauyucin,

Ann. de
Cbim. v.
92.
\dagger Hermfadt on Veget.
Acids.
|| Bindseim,
Crell, 17 ${ }^{\text {ss, }}$
St. 7. s. 42 .
T Hofman
of Weimar.
\dagger Hermfudt on $V_{\text {cgeti. }}$ Acilis.

The root of rhubarb \ddagger.
The leaves of the geranium acidums.
2. Tartarous acid is known by the following proper-
ties : When a little potafs is cautioully dropt into a folution containing it, common tartar is formed, and precipitates to the bottom. Tartarous acid does not decompore the fulphat, nitrat, or muriat of lime. Tartrite of lime is fuluble in water. Tartarous acid cryftallizes. Its crytals are long fender prifms. It is deftroyed by heat.
Tartarous acid has been found in the following vegetable fublances :
The pulp of the tamarind*.
The juice of grapes.
Mulberriest.
Rumex acetofa, forrelt.
Rhus coriaria, fumacht.
Rheum rhaponticum\|.
Agave Americanag.
The roots of triticum repens \dagger.
Leontodon taraxicumf.
3. Citric acid is diftinguimed by the following properties: It does not form tartar when potafs is added to it. With lime it forms a falt infoluble in water, which is decompoled by fulphuric, nitric, and muriatic acids. It readily cryftallizes. It is dellroyed by heat.

Citric acid has been found unmixed with other acids in the following vergetable fubflances*:
'I'he juice of oratros and lemons.
The berries of raccinium oxycoccos, cranbery.

* Schecle,

Crcll's your
ii. S. Eng.

Tran \AA
--... - vitis idæa, red abbortle berry.
Prmus padus, bircleberry.
Solatimm dulcamara, nightbade.
Rofa canina, bip.
It occurs mised with other acids in many other fruits.
4. Malic acid is known by the following properties : Malce acid,

It forms with lime a [alt foluble in wate:, which is decompofed by citric acid. It does not form tartar with potafs. It is incry fallizable. Heat deftroys it.

Malic acid has been found, by Scheele \dagger, in the fruits +1 lid
of the following plants, which contain no other acid:
Apples.
Berberis vulgaris, barberry.
Prunus oomettica, plum.
.. Spinofa, floe.
Sambucus nigra, elder.
Sorbus aucuparia, roan or fervice.
In the following fruits he found nearly an equal quan- Malic and tity of malic and citric acids \ddagger.
citric.
Ribes groffularia, groofelerry.
\ddagger bid.
-_ rubrum, currants.
Vaccinium inyrtillus, bleaberry.
Crategus aria, beam.
Piunus cerafus, cherry.
Fragaria vefca, fraweberry.
Rubus chamæmorus, cloudberries, evrochs.
-idxus, rafpberry..
Malic acit has alfo been found in the agave ameri- $\$$ Hoffman canas, and in the pulp of tamarinds $\|$. In the firt of of Wrimar, thefe it is mixed with tartarous acid; in the fecond with Wrauguclin, tartarous and citric acids.
5. Gallic acid is known by the following properties : 92.

With the brewn oxide of ion it produces a black colour. It is cryftallizable. Heat deftroys it. It has $\mathrm{Ga}^{7} 7^{74}$ acid, been found in a great number of plants, chiefly in the bark. - The following table, drawn up by Mr Biggin* ; *ictolwill ferve to thew the relative proportions of this acid fon's fossin different plants:

Cherry tree - 8 Sumacil - 14
6. Benzoic acid is diftinguifhed by its aromatic odour, Benzoic and its votality on the application of a very moderate acid, beat. It has been found hitherto only in three vegetable fubltances, to which the French chemifts have confined the term balfam. Thefe three are, benzoin, balfam of tolu, and forax. In thefe fubfances it feems to be combined with a refin, or fomething which has nearly the properties of a relin.
7. Phof.
7. Phofphoric acid is eafily diftinguithed from the former fix, for it is very fixed, and a violent heat does not deltroy it as it does the others.

Phofphoric acid has been found in different plants, but only in very fmall quantities; it is almoft confantly combined with lime. Meyer found it in the leares ne. MTett. of many trees*; 'Thuren found phofphat of lime in the $1 y / y_{1}, V_{c}$ c- Aconitus Napellust ; and Bergmann found it in all Anno de kinds of grain \ddagger.

Sect. XVI. Of Alkalies.

The only alkalies found in plants are potafs and foda. Ammonia may indeed be ohtained by diftilling. many vegetable fubltances, but it is produced during the operation. One or other of thefe alkalies is found in every plant which has hitherto been examined. The quantity indeed is ufually very fmall.
orocrtion I. Potafs is found in almoft all plants which grow at rotars in 3 diftance from the fea. It may be extracted by burning the vegetable, wafhing the athes in water, filtrating the water, and evaporating it to drynefs. It is in this manner that all the potah of commerce is procured.

The following table exhibits the quantity of athes and potafs which may be extracted from 100 parts of various plants:

In general, three times as much ahhes are obtained from fhrubs, and five times as much from herbe, as from. trees. Equal weights of the branches of trees produce more afhes than the trunk, and the leaves more than the branches. Herbs arrived at maturity produce more afhes than at any other time. Green vegetables produee more athes than dry \dagger.

The falt which is obtained from plants does not confint wholly of putafs, there are other falts mixed with it ; thefe ufually are fulphat of potafs, muriat of potafs, fulphat of lime, phofphat of lime, \&ce.; but thefe bear, in general, but a fmall proportion to the potafs. The afhes confift of potafs mixed with earths.

Some judgment may be formed of the quantity of potafs which a plant contains from the quantity of afhes which it yields: but the above table is fufficient
to fhew us, that were we to trult to that we would often be mifled.
2. Soda is found in almoft all the plants whicl grow in the fea, and in many of thofe which grow on the thore. In general, the quantity of foda which plants contain bears a muel greater proportion to their weight than the potafs does which is found in inland vegetables. 100 parts of the falfola foda, for inflance, yield 19.921 of afhes ; and thefe contain 1.92^{2} parts of foda, fome of which, however, is combined with muriatic acid*. The plants from which the greater part of the foda, or barillsa, as it is called, which is imported from Spain, is extracted, are the falfola fativa, and vermiculata.

Sect. XVII. Of Earths.

The only earths hitherto found in plants are the four following ; lime, filica, miagnefia, alumina.
r. Lime is uffually the moft abundant of the earths of plants, and the moft generally diffufed over the vege. table kingdom. Indeed, it is a very uncommon thing to find a plant entirely deftitute of lime : falfola foda is almof the only one in which we know for certain that this earth does not exilt *.
2. Silica exifts alfo in many plants, particularly graffes and equifetums. Mr Davy has afcertained, that it forms a part of the epidermis, or outermolt hark of thefe plants; and that in fome of them almolt the whole epidermis is filica.

Parts Silica,
100 parts of the epid. of bonnct-cane yielded 90

$$
\begin{array}{ll}
\text { bamboo } & 71.4 \\
\text { (arundo phragm.) } & \text { common reed } \\
& \text { ftalks of corna } \\
& 48.1 \\
\hline
\end{array}
$$

The concretions which are fometimes found in the baniboo cane have been afeertained by Mr Macie to bc compofed of pure filica.

 a.
 (Id. ibid.
3. Magnefia does not exift fo generally in the vege- Magnefizo table kingdom as the two preeeding earths. It has. been found, however, in confiderable quantities in feveral fea plants, efpecially fuci+. But the falfola fodat thibid. contains a greater proportion of magnefia than any 80 . and is plant hitherto examiued. Mr Vauquelin found that ${ }^{9+}$. 100 parts of it contained 17.929 of that earth \ddagger. $\quad t=$
4. Alumina has only, been found in very fmall quan. $\frac{82}{}$ tities in plants.

Alumina.
The following table will fhew the quantity of thefe ${ }_{\text {Prop }} \delta_{3}$. rcic
four earths which exill in feveral, vegetables.
of earth in
100 parts of oak contain of earths 1.03^{*} plants.

Beech	$0.453 \dagger$	* Hraton.
	$0.003 \dagger$	
Turkey wheat	$7.11+$	
Sunflower.	$3.72 \dagger$	\dagger Kirwar,
Vine branches	$2.85 \dagger$	Irijij Tranf.
	$2.674 \dagger$	
Willow	$2.515 \dagger$	
Elm	$1.96+$	
Afpin	$1.146 \dagger$	
Fern	$3.221 \pm$	
Wormwood	2.444 \$	§ Wright,
Funitory	-. 14.002 ${ }^{\text {d }}$	

(c) Thofe marked * are from Kircuan, Iriß Tranf. v. 164. The reft from Pertuis, Ann, de Chim. 19. 178. greater in herbs than in trees.
Bergman found all the four carths in every kind of * opufe. v. grain which he analy fed *.

Vauquelin found, that 100 parts of oat grain left 31591 of renidum. This reliduam is conyofy of 60.7 filica, 39.3 plocphat.
t Ann. de
$10.0 \dagger$.
Clim. xxix. When the whole of the avena fativa, however, falk ${ }^{15}$. and feed 2 ogether, are burnt, they leave a refiduum compofed of

$$
\begin{aligned}
& 55 \text { filica, } \\
& 15 \text { phofphat of lime, } \\
& 20 \text { potafs, }
\end{aligned}
$$

5 carbonat of lime.
\ddagger Ibis. g.
95 , and a little oxide of iron \ddagger.
This fhews us that the falk contains feveral fubltances not to be found in the grain.

Sect. XVIII. Of Meqals.

Several metallic fubflances have alfo been found in vegetables, but their quantity is exceedingly fmall ; fo fmall, indeed, that without very delicate experiments

84
Three me. tals found is plants.

* Opuff. i. 106.
+ Pbil.
Mag.v.

99. their prefence cannot even be detected.
The metals hitherto difcovered are iron, which is by far the moit common, manganefe, and gold.
Scheele firt detected manganefe in vegetables*. Prouft found it in the athes of the pine, calendula, vine, green oak, and fig-tree \dagger. M. Sage has fhewn, that gold exilts in many plants. Iron exifts in mol plants. The athes of fome fpecies of falfola contain a confiderable quantity of it.

We have now taken a furvcy of all the fubitances which have hitherto been obtained from regetables; by analyfing each of thefe, we come at laft to thufe bodies which we are at prefent obliged to confider as fimple, becaufe they have not yet been deconpofed, 85 and of which accordingly we mult fuppofe that regeSimple fub-tables are ultimately compofed. Thefe bodies amount ftances con- to 16, namely,
tained in
enable us to determine with certainty into what fub. flances they enter.
The fubflances at prefent known to chemits, which they have not been hitlierto able to decompofe, amount (omitting caloric and light) to 40. Sixteen of thefe exit in plants; the other 24 belong exclufively to the mineral kingdom: for it is a fact, that no fubflance (we inean limple fubftance) has been hitherto found in the animal kingdom which does not exit alio in vegetables.

On the contrary, all the fimple fubftances at prefent known may be found in minerals. 'This indeed ought not to furprife us, if we recollect, that the fouils of animals and vegetables, after they have undergone decompofition, are ultimately confounded with minerals, and confequently arranged under the mineral kiugdom. Befides, as vegetables draw all their food from the mineral kingdom, it would be abfurd to fuppofe that they contain fubtances which they could not have procured from minerals. It muft follow, thercfore, of necetity, that minerals contain all the fimple fublitances which exift in this globe of our's ; and that plants owe their diverfity merely to different modifications of thofe principles which they imbibe from the foil. But it is impulfible to have any precife notions about a fubject fe intricate, without confidering with fome atteution the ftructure of vegetables, the food which they imbibe, and the changes which they produce on that food. Thefe enquiries fhall form the fubject of the next chapter; in which we propofe to take a view of thofe phenomena of vegetation which are counected with chemiftry, or which may be elucidated by the application of the principles of that fcience.

Chap. II. Of Vegetation.

We have now feen the different fubflances which are contained in plants; but we have fill to examine the manner in which thefe fubftances are produced, and to endeavour to trace the different procefies which confittute vegetation. We mult warn our readers not to expect complete information in this chapter. The wonders of the vegetable kingdom are till but very imperfectly explored; many of the organs of plants are too minute for our fenfes; and fearcely a fingle procefs can be completely traced.

The multiplicity of operations continually going on Phenomein vegetables at the fame time, and the variety of diffe-ra nf rege. rent, and even oppofite fubllances, formed out of the talion very fame ingredients, and almoft in the fame place, aftonih ${ }^{\text {numerous. }}$ and confound us. The order, too, and the fkill with which every thing is conducted, are nu lefs furprifing. No two uperations claft ; there is no difeord, no irregularity, no difturbance ; every object is gained, and crery thing is ready for its intended purpofe. This is too wonderful to efcape our obfervation, and of too much importance not to claim our attention. Many philofophers, aecordingly, diltinguifhed equally by their indultry and fegacity, have dedicated a great part of their lives to the ftudy of vegetation. But hitherto their fuecefo has not been equal to their exertions. No perfon has been able to detect this agent, always fo bufy, and performing fuch wonders, or to difcover him at his work ; nor have philofophers been much more fortu-

Veyeta- nate in their attempts to afcertain the inftruments which cior. he employs in his operations. A great variety, howcrer, of curions and interefting facts, have been difcovered. Thefe we finall attempt in this chapter to collect and arrange, to point out their dependence on each other, and perhaps to deduce fuch confequences as obvioully refult from their mutual dependence. The puiction of facts, that all plants arite from jeeds. The pretended exceptio:s have difappeared, one after another, as our knowledge of vegetables increafed: and now there remains farcely a tingle objection entitled to the fmalleft regard. The late attempt of GirtanAnn, de ner * to revive the ductrine of equivocal generation, bim.xxxiv. deferves no attention whatever ; becaufe his conclufions are abfolutely incompatible with the experiments of Mr Senebier upon the very fubfance on which his theory is founded.

If we take a garden bean, we may perceive each of thefe three parts with great eafe; for this feed is of fo large a fize, that all its organs are exceedingly dilinct.

When we ftrip off the external coats of the bean, which are two, and of different degrees of thicknefs in different parts, we find that it eafily divides into two lobes, pretty nearly of the fame fize and figure. Each of thefe lobes is called a cotyledion (fig. 1. a). The cotyledons of the bean, then, are two in number.

Near that part of the lobes which is coutiguous to what is called the ege of the bean, there is a fmall round white budy (b), which comes out between the two lobes. This body is called the radicle.

Attached to the radicle, there is another fmall round body (c), which lies between the cotyledons and wholly within them, fo that it caunot be feen till they are feparated from each other. This body is called the plumula.

The appeara:lce and fhape of thefe three parts differ very much in different feeds, but there is no feed which wants them. The figure and fize of the feed depend chiefly upon the cotyledons. This is evidently the cafe with the bean, and it is fo with all other reeds. The number of cotyleduns is different in different feeds. Some feeds have only one cotyledon, as the feeds of wheat, outs, barley, and the whole tribe of grafes: fome have three; others fix, as the feeds of the garden grafs; but molt feeds, like the bean, have two cotyledons.
2. When a feed is placed in a fituation favourable to vegetation, it very foon changes its appearance. The radicle is converted into a rout, and finls into the earth; the plumula, on the other liand, rifes above the earth, and becomes the trunk or ftem. When thefe changes take place, the feed is faid to germinnic: the procefs itfelf has been called germination. Seeds do not germinate equally and indifferently in all places and feafons. Germination, therefore, is a procefs which does not depend upon the feed alone; fonething external mult alfo affect it.
3. It is a well known fact, that feeds will not germinate unlefs moifure have accefs to them \dot{q} for feeds, if
they are kept pcrfectly dry, never vegetate at all, and yet their power of vegetating is not deftroyed. There are indeed fome apparent ohjections to this; potatoes, for inftance, and other bullious bodies, germinate, tho' kept ever fo dry. But the reafon of this is, that thefe hodies (which are not feeds, though they refemble them. in fome particulars) have a fufficient quantity of water within themfelves to give a beginuing to germination. We may conclude, then, that no feed will germinate unlefs water has accel's to it. Water, then, is effential to germination. Too much water, however, is no lefs prejudicial to moft feeds than none at all. The feeds of water plants, indeed, germinate and vegetate extremely well in water ; but mult other feeds, if they are kept in water beyond a certain time, are rotted and deftroyed al:ugether.

4- It is well known alfo, that feeds will not germinate; even though lupplied with water, provided the temperature be helow a certain degree. No feed, for inftance, on which the experiment has been tried, can be made to vegetate at or below the freezing point: yet this degree of cold dues not injure the vegctating power of feeds; for many feeds will regetate, as well as ever, after having been frozen, or after having heen kept in frozen water. We may conclude, then, that a cert tain degree of heat is neceflary for the germination of feeds. And every fpecies of plants feems to have a de. gree peculiar to itfelf, at which its feeds begin to germinate ; for we find that almolt every feed las a pectuliar feafon at which it begins to germinate, and this feafon varies always according to the temperature of the air. Mr Adanfon found that feeds, when fown at the fame time in France and in Senegal, always appcared fooner above ground in the latter country, where the climate is hotter, than in France $\$$.

5. Seeds, although fupplied with moifture, and pla. Pbyfiol.Von ced in a proper temperature, will not germinate, pro-get. 124.4 vided atmorpherical air be completely excluded frons and oxythem. Mr Ray found that grains of lettuce did not gen gas. germinate in the vacuum of an air-pump, but they began to grow as foon as air was adnitted to them \dagger. Homberg made a number of experiments on the fame fubject, which were publifhed in the Mermuirs of the French Academy for the year 1693. He found, that the greater number of feeds which he tried refufed to vegetate in the vacuum of an air-pump. Some, however, did germinate; but loyle, Mufchenbroek, and Boerhaave, who made experiments on the fame fubject in fucceffion, proved beyond a doubt that no plant vegetates in the vacuum of an air-pump; and that in thofe cafes in which Homberg's feeds germinated, the vacuum was far from perfect, a quantity of air flill remaining in the receiver. It follows, therefore, that no feed willgerminate unlefs atmofpherical air, or fome air having the fame properties, have accefs to it. It is for this reafon that feeds will not germinate at a certain depth below the furface of the carth.
Mr Scheele found that beans would not germinate except oxygen gas were prefent; Mr Achard afterwards proved, that oxygen gas is abfolutely neceffary for the germination of all feeds, and that no feed will germinate in azotic gas, or hydrogen gas, or carbonic acid gas, unlefs thefe gafes contain a mixture of oxygen ga6. Thefe experimenta have been confirmed by

+ plif.
Tranf. ${ }^{\mathrm{N}} \mathrm{S}_{5} \mathrm{~S}$.
$\mathrm{H}_{\mathrm{cat}}^{97}$
* Experi-
erce furlics
V egctaux, ii \dagger M M en. Sbysicochimigue, iii 341 .
\ddagger Four. de
Pby. 1758
Decemb.
Enc. Meth.
$P^{\prime} b y$ fol ${ }^{\prime}$. I^{\prime} get. 126.

94
Phenome-
na of germination.

Mr Gough, Mr Cruickflank, and many other philofophers. It follows, therefore, that it is not the whole atmofpheric air, but merely the oxygen gas which it contains, that is neceffary for the germination of feeds. 6. Seeds do not germinate equally well when they are expofed to the light, and when they are kept in a dark place; light therefore has fome effect on germination.

Mr Ingenhourz found, that feeds always germinate fafter in the dark than when expofed to the light** His experiments were repeated by Mr Sencbier with equal fuccefs \dagger; and it was concluded, in confequence of their experiments, that light is injurious to germination. But the Abbć Bertholin, who diftinguiffed himfelf fo much by his labours to demonftrate the effect of electricity on vegetation, objected to the conclufions of thefe philofoplers, and affirmed that the differense in the germination of feeds in the fhade and in the light was owing, not to the light itfelf, but to the difference of the mnifure in the two fituations; the moifture evaporating much fafter from the feeds in the light than from thofe in the fhade; and he affirmed, that when precautions were taken to keep the feeds equally moitt, thofe in the fung germinated fooner than thofe in the fhade \ddagger. But when Mr Senebier repeated his former experiments, and employed every poflible precaution to enfure the equality of moifture in both fituatia:s, he conftantly found the feeds in the flade germinate fooner than thofe in the light \S. We may conclude, therefore, that light is injurious to germination ; and hence one reafon for covering feeds with the foil in which they are to grow.
7. Thus we have feen that feeds will not germinate cunlefs moifure, beat, and oxygen gas, be prefent; and that they do not germinate well if they are expofed to the action of light. Now, in what manner do thefe fubfances affect the feed? What are the changes which they produce?

We obferved before, that all feeds have one or more cotyledons. Thefe cotyledons contain a quantity of farinaceous matter, laid up on purpofe to fupply the embryo plant with food as foon as it begins to require it. This food, however, mult undergo fome previous preparation, before it can be applied by the plant to the formation or completion of its organs. Now all the phenomena of germination, which we can perceive, confift in the chemical changes which are produced in that food, and the confequent developement of the o:gans of the plant.

When a feed is placed in favorrable ircumftances, it gradually imbibes moifure, and very foon after emits a quantity of carbonic acid gas, even though no oxygen gas be prefent *. This feems to prove, as Mr Cruickfhank has fuppofed, that fome of the water imbibed b_{y} the feed is decompofad, that its oxygen combines with part of the carbon of the farina, and goes off in the form of carbonic acid gas, while the hydrogen remains behind, and combines with the ingredients contained in the cotyledon. The firft part of gernination, then, confirts in diminifhing the quantity of carbon, and increafing the lydrogen of the farina. If no oxygen gas be prefent, the procels ftops here, and no germination takes place.

But if oxygen gas be prefent, it is gradually abforbed and retained by the feed; and at the fame time, the
farina of the cotyledons affumes a fweet tafte refembling fugar: it is therefore converted into fugar, or fome fubbiance analogous to it *. Farina, then, is chan. ged into fugar, by diminifling its carbon, and aug. menting the proportion of its hydrogen and oxygen. This is precifely the procefs of malting, or of converting grain into malt ; during which it is well known that there is a confiderable heat evolved; fo much indeed, that in certain circumftances grain improperly kept has even taken fire. We may cocclude from this, that during the germination of feeds in the earth there is alfo an evolution of a confiderable portion of heat. This indeed might have been expected, as it ufually happens when oxygen gas is abforbed.
So far feems to be the work of chemitry alone; at leaft we have no right to conclude that any other agent interferes; fince bay, when it happens to imbibe noifture, exhihits nearly the fame proceffes. Carbonic acid gas is evolved, oxygen gas is abforbed, heat is produced fo abundantly, that the hay often takes fire : at the fame time a quantity of fugar is formed. It is owing to a partial change of the fame kind that old hay generally taftes much fweeter than mew hay. Now we lave no reafon to fuppofe that any agents peculiar to the vegetable kingdom refide in hay; as all vegetation, and all power of vegetating, are evidently defroyed.
But when the farina in the feeds of regetables is con. Which pat verted into fugar, a number of veffels make their ap. fes into the pearance in the cotyledon. The reader will have a radicle, pretty difinct notion of their diftribution, by infpecting fig. 2 . Thefe veffels may indeed be detected in many feeds before germination commences, but they become much more diftinet after it laps made fome progrefs. Branches from them have been demonftrated by Grew, Malpighi, and Hedwig, paffing into the radicle, and diftributed through every part of it. Thefe evidently carry the nourifhment prepared in the cotyledons to the radicle; for if the cotyledons be cut off even after the proceffes above defcribed are completed, germination, as Bonnet and Senebier afiertained by experiment, immediately fops. The food therefore is conveyed from the cotyledons into the radicle, the radicle increafcs in fize, alfumes the form of a root, finks down into the earth, and foon becomes capable of extracting the nourifloment neceflary for the future growth of the plant. Even at this period, after the radicle has become a perfect toot, the plant, as Senebier afcertained hy experiment, ceafes to vegetate if the cotylefons be cut off. They are fill then abfolutely neceflary for the vegetation of the plant.

The cotyledons now affume the appearance of leaves, Cotyleform and appear above the ground, forming what are called bermme feo the feminal leaves of the plant. After this the plumula gradually increafes in fize, rifes out of the earth, and expands itfelf juto branches and leaves. The feminal leaves, foon after this, decay and drop off, and the plant carries on all the procefles of vegetation without their affiftance.

Mr Eller attempted to fhew, that there is a veffel in feeds which paffes from the cotyledons to the plumula; but later anatomifts have not beeri able to perceive any fuch veffel. Even Mr Hedwig, one of the moft patient, acute, and fuccefsful philofophers that ever turned their attention to the flructure of vegetables, could

1

$?$ And convers it in. to a root. minal,
leave,

Vegeta- never difeover any fuch veffel, although he traced the
it does not appear, then, that there is any communication between the cotyledons and the plumula, it mut follow that the nourifhment paffes into the plumula from the radicle: and accordingly we fee, that the plumula does not begin to vegetate till the radicle has made -fome progrefs. Since the plant ceafes to vegetate, even after the radicle has been converted into a root, if the cotyledions be removed before the plumula is devtloped, it follows, that the radicle is infufficient of itfelf to carry on the proceffes of vegetation, and that the cotyledons filll continue to perform a part. Now we have feen already what that part is: they prepare food for the nourifment of the plant. The rout, then, is of itfelf infufficient for this purpofe. When the cotyledons affume the form of feminal leaves, it is evident that the nourifhment which was originally laid up in them for the fupport of the embryo plant is exhaulted, yet they fill continue as neceffary as ever. They mult therefore receive the nourifhment which is imbibed by the root; they muft prodnce fome changes on it, render it fuitable for the purpofes of vegetation, and then fend it back again to be tranfmitted to the plumula.

After the plumula has acquired a certain lize, which. muft be at leaft a line, if the cotyledons be cut off, the plant, as Mr Bonnet afcertained by a number of experiments, afterwards repeated with equal fuccefs by Mr Senebier, does not ceafe to vegetate, but it continues always a mere pigmy: its fize, when compared with that of a plant whofe cotyledons are allowed to remain, being only as 2 to 7^{*}. leaves, the cotyledons may be removed without injuring the plant, and they very foon decay of themfelves. It appears, then, that this now office of the cotyledons is afterwards performed by that part of the plant which is above ground.

Thus we have traced the phenomena of germination as far as they have been detected. The facts are obvious; but the manner in which they are produced is a profound fecret. We can neither explain how the food enters iuto the veffels, how it is conveyed to the different parts of the plant, how it is depofited in every organ, nor how it is employed to increafe the fize of the old parts, or to form new parts. Thefe phenomena are analogous to nothing in mechanics or clemiftry. He that attempts to explain them on the principles of thefe fciences, merely fubftitutes new meanings of wurds inftead of old ones, and gives us no affitance whatever in conceiving the proceffes themfelves. As the fubfances employed in vegetation are all material, it is evident that they poffefs the properties of matter, and that they are arranged in the plant according to thefe laws. It follows, therefore, that all the changes which take place in the plant are produced according to the known laws of mechanics and chemiftry. This cannot be difputed: but it explains nothing ; for what we want to know is the agent that brings every particle of matter to its proper place, and enables the laws of che, miftry and mechanies to act only in order to accomplifh a certain end. Who is the agent that acts according to this end? To fay that it is chemiltry or mechanics, is to pervert the ufe of words: For what are the laws of chemiftry and mechanics? Are they not certain fixed _. Suppl. Vol. II. Part II.
and unalterable properties of matter? Now, to fay that a property of matter has an end in view, or that it acts in order to accomplifh fome defign, is a downright abfurdity. There muft therefore be fome agent in all cafes of germination, which regulates and directs the mechanical and chemical proceffes, and which therefore is neither a mechanical nur chemical property.
8. When the procefs of germination is accomplifhed, the plant is complete in all its parts, and capable of vegetating in a proper foil, fur a time and with a vigour proportional to its mature.

Plants, as every body knows, are very various, and Plantscons. of courfe the ftructure of each fpecies muft have many poled of peculiarities. Trees have principally engaged the at-bark, wood, tention of anatomifts, on account of their fize and the dittinetnefs which they expected to find in their parts. We thall therefore take a tree as an inftance of the ftructure of plants; and we fhall do it the more readily, as the greater number of vegetables are provided with analogous organs, dedicated to fimilar ufes.

A tree is compofed of a root, a rraidi, and branches; the ftructure of each of which is fo limilar, that a general defeription of their component parts will be fuffi. cient. Each of them confitts of three parts, the bark', the wood, and the pith.

The bark is the outermoft part of the tree. It covers the whole plaut from the extremity of the roots to the extremity of the branches. It is ufually of a green colour: if a branch of a trce be cut acrofs, the bark is eafily diftinguifhed from the reit of the branch by this colour. If we infpect fuch a horizontal fection with attention, we fhall perceive that the bark itfelf is compofed of three diftinct bodies, which, with a little care, may be feparated from each other. The outermoft of the fe bodies is called the epideranis, the middlemof is called the parcncbynut, and the innermolt, or that next the wood, is called the cortical hayers.

105
Bat

The epidernis is a thin trawfarent membrane, which Compofed covers all the outfide of the bark. It is pretty tough. of epiderWhen infpected with a microfcope, it appears to be compofed of a number of fender fibres croffing each other, and forming a kind of network. It feems even to confit of different thin retiforns memoranes, adhering clufely tugether. This, at leaft, is the cafe with the epidermis of the birch, which Mr Dulsamel feparated into lix layers. The epidermis, when rubbed off, is reproduced. In old trees it cracks and decays, and new cpidermes are fuceeffively formed. This is the reafon that the trunks of many old trees have a rough furface.

103
Tis' parenchyma lies immediately below the epider. Parenchy. mis; it is of a deep green colour, very tender, and fuc- ma, culcnt. When viewed with a microlcope, it feems to be compofed of fibres which crofs each other in every direction, like the fibres which compure a hat. Both in it and the epidermis there are numberlefs interfices, which have been compared to fo many fimall bladders.

The cortical lavers form the innermort part of the Andos. bark; or that which is next to the wood: They con- cill lay cris fitt of feveral thin membranes, lying the one above the other; and thein number appears to increafe with the age of the plant. Each of thefe layers is compofed of longitudinal fibres, which feparate and approach each other alternately, fo as to form a kind uf netwoth. The menes of this network correfpond in each of the lay.
ers;

Vegeta. ers; and they become fmaller and fmaller in every lay-
tion.

306 Wood com. pofed of

107 and perfect The perfeg auood is browner and harder, and denfer, wood, than the alburnum, and the layers increafe in denfity the nearer they are to the centre. Sir John Hill gave to the innermoft layer of wood the name of corona, or rather he gave this name to a thin zone which, according to him, lies between the wood and the pith.

The pith occupies the centre of the wood. It is a very fpongy body, containing a prodigious number of cells, which anatomifts have compared to bladders. In young fhoots it is very fucculent ; but it becomes dry as the plant advances, and at laft in the large trunks of many trees difappears altogether.

The leaves are attached to the branches of plants by fhort footfalks. From thefe footitalks a number of fibres iffue, which ramify and communicate with each other in every part of the leaf, and form a very curious network. Thefe fibres may be obtained feparately, by keeping the leaf long in moilture. Every other part of it putrefies and falls off, or may eafily be rubbed off, and only the fibres remain, conftituting a fkeleton of the leaf. In every leaf there are two layers of thefe fibres, forming two diftinct fkeletons, which had conftituted the upper and under furface of the leaf.

The whole leaf is covered with the epidermis of the plant ; and this epidermis, as Sauflure has hewn, contains in it a great number of glands. The other parts of the bark may alfo be traced on many leaves; at leaft Sauffure has thewn, that the bark of leaves is compofed of two different layers. 'The interflices between the fibres of the leaf are filled up by a pulpy-like fubfance, to which the green colour of the leaf is owing.

Such is a fhort defcription of the moft confpicuous parts of plants. A more minute account would have been foreign to the fubject of the prefent article.
9. Plants, after they have germinated, do not remain flationary, but are contimually increafing in fize. A tree, fur inftance, every feafon, adds contiderably to its er as it approaches the wood. Thefe mefhes are filled with a green coloured cellular fubltance, which has been compared by anatomitts to a number of bladders adhering together, and communicating with each other. The wood lies immediatcly under the bark, and forms by far the greateft part of the trunk and large branches of trees. It conlills of concentric layers, the number of which increafes with the age of the part. Each of thefe layers, as Mr Du Hancl afcertained, may be feparated into feveral thinner layers, and thefe are compofed chiefly of longitudinal fiores. Hence the reafon that wood may be much more ealily fplit afunder than cut acrofs.

The roood, when we infpect it with attention, is not, through its whole extent, the fame; the part of it next the bark is much fofter and whiter, and more juicy than the reft, and has fur that reafon obtained a partiformer bulk. The root fends forth new fhoots, and the old ones become larger and thicker. The fame increment takes place in the branches and the trunk. When we examine this increafe more minutely, we find that a new layer of wood, or rather of alburnum, has been added to the tree in every part, and this addition has been made juft under the bark. We find, too, that a layer of alburnum has affumed the appearance of perfect wood. Befides this addition of vegetable fibre, a
great number of leaves have been produced; and the tree puts forth flowers, and forms feeds.

It is evident from all this, that a great deal of new matter is continually making its appearance in plants. Therefore Hence, fince it would be abfurd to fuppole that they require create new matter, it mult follow that they receive it food. by fome channel or other. Plants, then, require food as well as animals. Now, what is this food, and whence do they derive it? Thefe queltions can only be anfwered by an attentive furvey of the fubftances which are contained in vegetables, and an examination of thofe fubftances which are neceffary for thcir vegetation. If we could fucceed completely, it would throw a great deal of light upon the nature of foils and of manures, and on fome of the moft important queftions on agricul. ture. But we are far indeed at prefent from being able to examine the fubject to the bottom.
10. In the firft place, it is certain that plants will Water ne, not vegetate without water: for whenever they are de- ceffary. prived of it, they wither and die. Hence the wellknown ufc of rains and dews, and the artificial watering of ground. We may conclude, then, that water is at lealt an effential part of the foud of plants.

But many plants grow in pure water; and therefore it may be queftioned whether water is not the only food of plants. This opinion was adopted very long ago, and numerous experiments have been made in or-
der to demonftrate it. Indeed, it was the general opiago, and numerous experiments have been made in or-
der to demonftrate it. Indeed, it was the general opinion of the $17^{\text {th }}$ century ; and fome of the moft fuccefsful improvers of the phyfiology of plants, in the
18th century, have embraced it. The moft zealous adcefsful improvers of the phyfiology of plants, in the
18 th century, have embraced it. The moft zealous advocates for it were, Van Helmont, Boyle, Bonnet, Duhamel, and Tillet.

Van Helmont planted a willow which weighed five Suppofed pounds, in an earthen veffel filled with foil previoufly the whole dried in an oven, and moiltened with rain water. This plants; veffel he funk into the earth, and he watered his willow fomerimes with rain, and fometimes with diftilled water. After five years it weighed $169 \frac{1}{t} \mathrm{lbs}$, and the earth in which it was planted, when again dried, was found to have loft only two ounces of its original weight. Here, it has been faid, was an increale of 164 lb . and yet the only food of the willow was pure water ; therefore it follows that pure water is fufficient to afford nourifhment to plants. The infufficiency of this experiment to decide the queftion was firlt pointed out by Bergman in 1773^{*}. He thewed, from the experiments of Margraff, that the rain water empluyed by Van Helmont contained in it as much earth as could exif in the willow at the end of five years. For, ac-
cording to the experinents of Margraff, $: l \mathrm{lb}$. of rain exif in the willow at the end of five years. For, ac-
cording to the experiments of Margraff, slb. of rain cording to tbe experinents of Margraf,
water contains I gr. of earth \dagger. The growth of the f opuff. ii.
willuw, therefore, by no means proves that the earth 15 and 19 . willuw, therefore, by no means proves that the earth 15 .and 19. which plants contain has been formed out of water. Befides, as Mr Kirwan has remarked \ddagger, the carthen! Trimh Befides, as Mr Kirwan has remakked \ddagger, the carthen Tranf. ${ }^{\text {a }}$
veffel muft have often ablorbed moifture, from the fur- ryo. rounding eith, imprernated with whatever fubfance that earth contained; for unglazed earthen veffels, as Hales * and Tillet + have fhewn, readily tranfmit moif. *Veget. ture.

Hence it is evident that no conclufion whatever can $\begin{gathered}\dagger \text { Mem. } \\ \text { Mar. } \\ \text { g72 }\end{gathered}$ be drawn from this experiment; for all the fubftances 298. which the willow contained, except water, may have been derived from the rain water, the earth in the pot, and But with. the moifture imbibed from the furrounding foil.
\qquad
析

112
 \square

-

.

 Opufe. 92. 2.
\qquad Tran.
so. The

The experiments of Duhamel and 'Tillet are equally inconclulive; fo that it is impoffible from them to decide the queftion, Whether water be the fole nourifhmenr of plants or not? We owe the folution of this difficulty to the experiments of Mr Haffenfratz, who pointed ont the fallacy of thofe jult mentioned.

He analyfed the bulbous roots of hyacinths, in order to difcover the quantity of water, carbun, and lydrogen, which they contained; and by repeating the analyfis on a number of bulbs, le difcovered how much of thefe ingredients was contained in a given weight of the bulb. He analyfed ahio kidney beans and crefs feeds in the fame manner. Then he made a number of each of thefe vegetate in pure water, taking the precaution to weigh them beforehand, in order to afcertain the precife quantity of carbon which they contained. The plants being then placed, fome within doors, and orhers in the upen air, grew and flowered, but proxluced no feed. He afterwards dried them, collecting with care all their leaves and every other part which had dropt off during the courfe of the vegetation. On fubmitting each plant to a chemical analyfis, he found that the quantity of carbou, which it contained, was fomewhat lefs than the quantity which exited in the bulb or the feed from which the plant had fprung **

Hence it follows irrefiftibly, that plants growing in pure water do not receive any increafe of carbon; that the water merely ferves as a vehicle for the carbonaeeous matter already prefent, and diffufes it thro' the plant. Water, then, is not the fole food of plants; for all plants during vegetation receive an increafe of carbonaceous matter, without which they cannot produce perfect feeds, nor even continue to vegetate beyond a certain time; and that time feems to be limited by the quantity of carbonacenus matter contained in the buib or the feed from which they grow. For Duhamel found, that an oak which he had raifed by water from an acorn, made lefs and lefs progrefs every year. We fee, too, that thofe bulbous roots, fuch as hyacinths, tulips, \&c. which are made to grow in water, unlefs they be plauted in the earth every other year, refufe at laft to flower, and even to vegetate; efpecially if they produce new

So far, indeed, is water from being the fole food of plants, that in general only a certain proportion of it is ferviceable, too much being equally prejudicial to them as too little. Some plants, it is true, grow conftantly in water, and will not vegetate in any other fituation; but the reft are entirely deftroyed when kept immerfed in that fluid beyond a certain time. Molt plants require a certain degree of moifure, in order to vegetate well. This is one reafon why different foils are required for different plants. Rice, fur inftance, requires a very wet foil: were we to fow it in the ground on which wheat grows luxurioully, it would not fucceed; and wheat, on the contrary, would rot in the rice ground.

We fhould, therefore, in ehoofing a foil proper for
the plants which we mean to raife, confider the quantity of moilture which is bett adapted for them, and choofe our foil accordingly. Now, the drynefs ur moilture of a foil depends upon two things; the nature and propartions of the earths which compofe it, and the quatrity of rain which falls upon it. Every foil contains at leaft three earths, filica, lime, and alumina, and fometimes allio magnefia. The filica is always in the Atate of fand. Now foils retain moilture longer or thorter according to the proportions of thefe earths. Thofe which coutain the greaten quantity of fand retain it the fhortell, and thole which contain the greateft quantity of aluminaretain it lungeft. The firt is a dry, the fecond a wet foil. Lime and magnefia are intermediate between thefe two extremes: they render a fandy foil more retentive of moifture, and diminifh the wetnefs of a clayey foil. It is evident, therefore, that, by mixing together proper proportions of thefe four earths, we may form a foil of any degree of drynefs and moiture that we pleafe.

But whatever be the nature of the foil, its moifure mult depend in general upon the quantity of rain which falls. If no rain at all fell, a foil, however retentive of moifture it be, mult remain dry ; and if rain were very frequently falling, the foil mult be open indeed, if it be not conftantly wet. The proportion of the different earths in a foil, therefore, muft depend upon the quantity of rain which falls. In a rainy country, the foil ought to be open ; in a dry country, it ought to be retentive of moifture. In the firft, there ought to be a greater proportion of fand; in the fecond, of clay.
11. Alinoft all plants grow in the earth, and every Earth ne. foil contains at leatt tilica, lime, alumina, and often ceflasy; magnelia. We have feen alrefdy, that one u fe of thefe earths is to adminifter the proper quantity of water to the vegetables which grow in the foil. But as all plants contain earths as a part of their ingredients, is it not probable that earths alfo ferve as a food fur plants? It has not yet indeed been fhewn, that thofe plants which vegetate in pure water do not contain the ufual quantity of earth; but as earths are abfolutely neceffary for the perfect vegetation of plants, as they are contained in all plants, and are even found in their juices, we can fcarcely doubt that they are actually imbibed, though only in fmall quantities (D).
12. We have feen in the lalt chapter, that all plants And falts; contain various faline fubtances; and if we analyfe the moit fertile foils, and the richelt manures, we never find them detlitute of thefe fublances. Hence it is probable that different falts enter as ingredients into the food of plants. It is probable alfo, that every plant abforbs particular kinds of falts. Thus fea plants yield foda by analylis, while inland plants furnih potafs. The potafs contained in plants has indeed been fuppofed to be the produce of vegetation; but this has not been proved in a fatisfactory manner. We find potafs in the very juices of plants, even more abundantly than in the vegetable fibres themfelves. But this fubject is ftill buried in obfeurity; and indeed it is extremely dif-
(D) Mr Tennant has afeertained, that magnefia, when uncombined with earbonic acid gas, is injurious to eorn when employed as a manure; and that lime, which contains a mixture of magnefia, likewife injures corn.See Phil. Tranf. 1799, p. 2. This important fact demonftrates, that earths are not mere vehicles for conveying water to plants.
ficult to make decifive experiments, on account of the very finall quantity of putafs which moft plants cuntain.

The phofphorus, too, and the iron, and other metals which are found in plants, are no duubt abforbed by them as a part of their food. We may fuppofe alfo, that the fulphuric and muriatic acids, and perhaps even the nitric acid, when found in plants, are imbibed by them along with the reft of their aliment.

Nothing is at prefent known concerning thofe faline fuhftances which form an effential part of the fuod of plants; though it has been long remarked that certain falts are ufeful as manures.
13. Water, then, and earths, and perhaps alfo falts, form a part of the food of plants. But plants contain carlon, which cannot be derived from any of thefe fubftances; confequently fone fubtance or other befides, which contains carbon, muft conflitute a part of the fond of plauts.

Mr Gibbert mixed together the four earths, filica, alumina, lime, magnefia, in the proper proportions, to conftitute a fertile foil ; and after moiftening them with water, planted feveral vegetables in them; but nune of his plants grew well, till be moitened his artificial foil
with water from a dunghill *. Now it is certain, from

* Encyc.

Meth. Plyy
T eget. p. 275.
$+A n n . d e$
Cbinh, xiv. 56. the experiments of Haflenfratz, that this water contains carbon ; for when evaporated, it conitantly left behind it a refiduum of chascoal \dagger. We know likewife, from a great variety of experiments, that all fertile foils contain a confiderable quantity of carbonaccous matter; for all of them, when expofed to heat, are fufceptible of partial combuftion, during which a quantity of carbunic acid gas efcapes. Thus Fourcroy and Haffenfratz found, that 9216 parts of fertile foil contained 305 parts of carbon, betides 279 parts of oil; which, ffom the analy fis of Lavoilier, we may fuppofe to con. tain about 220 parts of carbon. It follows, therefore, from the experiments of thefe chemifts \ddagger, that 9216 2rs of foil contain 525 parts of carbon. But thefe 9216 parts of fuil contained 806 parts of roots of regetables which were excluded from the analyfis; confequently a fertile foil contains (exclufive of the roots of vegetables (about one-fixteenth of its weight of car119 bon.

which

 manl be ina particu3ur ftate;

But the carbon muft exit in the fuil in a particular flate of combination, otherwife it does not anfiver as fond for plants : For inflance, powdered pitcoal, mixed with earths, is not fonnd to act, at leall inmediately, as a manure; yet pitcoal coutains a very great quantity of carbon. Farther, it appears, from the experiments of Mr Haffenfratz, that fubftances employed as manures produce effects in times propurtioned to their degree of putrefaction; thofe fubflances which are moft putrid producing the moft feedy effects, and of courfe fooneft lufing their efficacy. Having manured two pieces of the fame kind of foil, the one with a mixture of dung and flraw highly putrefied, the other with the fame mixture newly made, and the flraw almoft frefh, he obferved that, during the firft year, the plants which grew on the land manured with the putrefied dung produced a mucl better crop than the other; but the fecond year (no new dung being added), the ground which had been manured with the unputrefied dung produced the beft crop; the fame thing took place the third year; after which, both feemed to be equally
exhauted *. Here it is evident that the purrefied dung Vegetaacted fooncit, and was fooneft exlaufted. It follows from this, that carbon only $\mathrm{acts}_{\mathrm{e}}$ as a manure when in a *Ann de particular fate of combination ; and this fate, what-Cbim, xiv. ever it may be, is evidently produced by putrefaction. 57° Another experiment of the fame chemit renders this truth ftill more evident. He allowed fhavings of wood to remain for about ten months in a moill place till they began to putrefy, and then fpread them over a piece of ground by way of manure. The firft two years this piece of ground produced nothing more than others which had not been manured at all : the third year is was better, the fourth year fill better, the fifth year it reached its maximum of fertility; after which it declined comfantly till the ninth, when it was quite exhaufted \dagger. Here the effect of the manure evi. + Ibid. po dently depended upon its progrefs in putrefaction. ss.

Now what is the particular fate into which carbon mult be reduced before it be fit for the food of plants? And foline This fuhject has never been examined with attention; ter. the different combinations of carbon having been in a great meafure overlooked. And yet it is evident, that it is only by an accurate examination of thefe combinations, and a thorough analy fis of manures, in order to difcuver what particular combinations of carbon exift in them, and in what the moft efficacious manures differ from the reft, that we can expect to throw complete light upon the nature and ufe of manures, one of the mof important fubjects to which the farmer can direct his attention. We know, from the experiments of Mr Haffenfrat 2 , that all thofe manures which act with eff-cacy and celerity contain carbon in fuch a fate of combination, that it is foluhle in water, and that the efficacy of the manure is proportional to the quantity of carbon fo foluble. He fuund that all efficacious manures gave a brown colour to water, and that the water fo coluured, when evaporated, left a refiduum, which confifted in a great meafure of carbon *. He obferved, . piis. p. tuo, that the foil which gives the deepeft colour to wa-s 6. ter, or which contains the greateft quantity of carbos foluble in water, is, other things being the fame, the muft fertile.

This is not, however, to be underftood without limitation ; for it is well known that if we employ exceffive quantities of manure, we injure vegetation inflead of promoting it. This is the reafon that plants will not, as Mr Duhamel found by experiment, vegetate in faturated folutions of dung \dagger.

One of the combinatiuns of carbon which is foluble ${ }_{1748}{ }^{\dagger}$. in water, and with which we are beft acquainted, is car- ${ }^{12 \mathrm{r}}$ bonic acid gas. It has been fuppofed by many philo- This fate fophers, particularly by Mr Senebier, that this gas, dif. not carbofolved in water, fupplies plants with a great part of gacid their carbon. But Mr Haffenfratz, on making the experiment, found that the plants which he raifed in water, impregnated with carbonic acid gas, differed in no refpect from thofe which grew in pure water, and did not contain a particle of carbon which had not exifted in the feeds from which they.fprung \ddagger. This experi- \dagger Ann, de ment proves, that carbonic acid gas, diffolved in water, chim. xiii. does not ferve as food for plants. It appears, however, ${ }^{320}$. from the experiments of Ruckert, that when plants growing in foil are watered daily with water impregna- 122 ted with carbonic acid gas, they vegetate fafter than Though when this watering is omitted. He planted two beans that gas in is uferulo
in pots of equal dimenfions, filled with garden mould. One of thefe was watered almolt daily with ditlilled water, the other with water, every ounce of which was impregnated with half a cubic inch of carhonic acid gas. Buth were placed in the open air, but in a litua. tion where they were fecure from rain. The bean treated with the water impregnated with carbonic acid gas appeared above ground nine days before the other, and produced 25 beans; whereas the other produced only 15. Ihe fame experiment was tried on other plants with equal fuccefs \dagger. This thews us that carbonic acid gas is fumehow or other ufeful to plants when they vegetate in mould ; but it gives us no information about its mode of acting. Some foils, we know, are capable of decompofing it; for fome foils contain the green oxide of iron: and Gadolin has proved, that fuch foils have the property of decompofing carbonic acid gas*. Indeed almoft all foils contain iroin, either in the ftate of the brown or the green oxide; and Beaumé has fhewn, that oils convert the brown oxide of iron into the green \dagger. Now dung contains a quantity of oily fubfance; and this is the cafe alfo with rich foils. One ufe of manures, therefore, may be, to reduce the brown oxide of iron to the green, that it may be capable of decompofing carbonic acid gas; and the carbon, thus precipitated, doubtlefs enters into Tome new combina. tion, in which ftate it ferves as food for plants.

Mr Humbolt has lately proved, that foils have the property of abforbing oxygen. It can fearcely be doubted that this abforption has an influence on vegetation, efpecially as watering plants with weak folutions of oxy-muriatic acid accelerates vegetation*. But we know too little of the fubject at prefent to be able to fpecify precifely what that influence is.
14. Since the only part of plants which is contigu. ous to the foil is the root, and fince the plant perifhes when the rout is pulled out of the ground, it is evident that the food of plants mult be imbibed by the roots.

When we examine the roots, we do not find them to contain any large opening. 'The paffages by which the food enters are too fmall for the naked eye. This fhews us that the food can enter plants only in a fluid ftate; and that confequently every thing which can be rendered ufeful as food for plants mult be previoufly in a ftate of folution.

It feems moft probable, that the whole, or the greateft part of the food, enters at the extremities of the roots; for Duhamel obferved, that the portion of the foil which is foonelt exhaufted, is precifely that part in which the greateft number of the extremities of roots lies \ddagger. This fhews us the reafon why the roots of plants are continually increafing in lengtl. By this means they are enabled, in fome meafure, to go in quelt of nourifhment. The extremities of the roots feem to have a peculiar ilructure adapted for the imbibing of moiture. If we cut off the extremity of a root, it never increafes any more in length: therefore its ufe as a root has been in a great meafure deftroyed. But it fends out fibres from its fides which act the part of roots, and imbibe food by their extremity. Nay, in fome cafes, when the extremity of a root is cut off, the whole decays, and a new one is formed in its place. This, as Dr Bell informs us, is the cafe with the hyacinth \dagger.

Since the food of plants mutt be in a fluid fate, and fince no plant will live if it be deprived of moifture, we may conclude that all its food is previoufly diffolved in water. As for the carbon, we know, that in all active Diffolved manures it is in fuch a ftate of combination, that it is in water. foluble in water. We know, too, that all the falts which we can fuppofe to make a part of the food of plants, are more or lefo foluble in water. Lime alfo is foluble in water, whether it be pure or in the ftate of a falt; magnefia and alumina may be rendered fo by means of carbonic acid gas; and Bergman, Macie, and Klaproth, have fhewn that even filica may be diffolved in water. We can fee, therefore, in general, though we have no precife notions of the very combinations which are inmediately imbibed by plants, that all the fubfances which form effential parts of that food may be diffolved in water.
15. Since the food of plants is imbibed by their roots Therefore in a fluid ttate, it muft exift in plants in a fluid fate; fluid. and unlefs it undergoes alterations in its compofition juft when imlibed, we may expect to find it in the plant unaltered. If there were any method of obtaining this fluid food from plants before it has been altered by them, we might analyfe it, and obtain by that means a much more aecurate knowledge of the food of plants than we can by any other method. This plan indeed muft fail, provided the food undergoes alteration jult when it is abforbed by the roots: but if we confider, that when one fpecies of tree is grafted upon another, each bears its own peculiar fruit, and produces its own peculiar fubftances, we can fcarcely avoid thinking that the great changes, at leaft which the food undergoes after abforption, are produced, not in the roots, but in other parts of the plant.

If this conclufion be jult, the food of plants, after being imbibed by the roots, mult go directly to thofe organs where it is to receive new modifications, and to be rendered fit for being aflimilated to the diferent parts of the plant. There ought therefore to be certain juices continually afcending from the roots of plants; and thefe juices, if we could get them pure and unmixed with the other juices or Huids which the plant muft contain, and which have been feereted and formed from thefe primary juices, would be, very nearly at leats, the food as it was imbiled by the plant. Now during the vegetation of plants, there actually is a juice continually afeending from their roots. This juice has been called the fas, the fuccus communis, the lymph of plants. We thall adopt the firt of thele names, becaufe it has been molt generally received.

The firt llep towards an accurate knowledge of the food, and of the changes which take place during vegctation, is an analyfis of the Cap. The fap is moli abundant during the fpring, At that fealon, if a cut be made through the hark and part of the wood of fome trees, the fap flows out very profufely. 'The trees are then faid to blocd. By this contrivance any quantity of fap we think proper may be collected. It is not probable, indeed, that by this method we obtain the afcending fap in all its purity: it is no doubt mixed with the peculiar juices of the plant ; but the lefs progrefs vegetation has made, the purer we may expect to find it; buth becaufe the peculiar juices muft be in much finaller quantit y^{\prime}, and becaufe its quantit y^{\prime}.
may he fuppofed to be greater. We fhould therefore examine the fap as early in the feafon as poftble, and at all events before the leaves have expanded.
Analyfed.
For the moft complete fet of experiments litherto made upun the fap, we are indebted to Mr Vauquelin. An account of his experiments has been publifhed in the 3 att volume of the Annales de Cbimie. He has neglected to inform as of the thate of the tree when the fap which lie analyfed was taken from it; fo that we are left in a flate of uncertainty with refuect to the purity of the fap: but from the comparifon which he has put it in our power to draw between the flate of the fap at different fucceffive periods, we may in fome meafure obviate this uncertainty.
He found that 1039 parts of the fap of the ulmus campeftris, or common elm, were compoled of
1027.567 water and volatile matter,
0.553 acetite of potafs,
1.062 vegetable matter, $0.8: 8$ carbunat of lime,
Befides fome flight traces of fulphuric and muriatic acids.
On analyfing the fame fap fomewhat later in the feafon, Mr Vauquelin found the quantity of vegetable matter a little increafed, and that of the carhonat of lime and acetite of potafs diminifhed. Still later in the feafon the vegetable matter was farther increafed, and the other two ingredients farther diminthed. The acetite of potafs, in 1039 parts of this thirll fap, amounted to
. ann. de 8.615 parts.

Cbime xssi.

 32.If thefe experiments warrant any confequence to be drawn from them, they would induce us to fuppofe that the carbonat of lime and acetite of putafs were contained in the pure afcending fap, and that part at leaft of the vegetable matter was derived from the peculiar juices altered by the fecreting organs of the plant; fur the twe falts diminifhed in quantity, and the vegetable-matter increafed as the veretation of the tree a dvanced. Now this is precifely what ought to bave taken place, on the fuppofition that the fap became more and more mixed with the peculiar juices of the tree, as we are fuppofing it to do. If thefe conclufions have any fulidity, it follows from then, that carbonat of lime and acetite of potafs are abforbed by plants as a part of their food. Now thefe falts, befure they are abfurbed, muft be dif. folved in water. But the carbonat of line may be diffolved in water by the help of carbonic acid. This fhews us how water faturated with carbonic acid may be uffeful to plants vegetating in a proper foil, while it is ufelefs to thofe that vegetate in pure water. In the pure water there is no carbonat of lime to be diffolved; and therefore carbonic acid gas cannot enter into a combination which renders it proper for becoming the food of plants. Part of the vegetable matter was precipitated from the fap by alcohol. This part feems to have been gummy. Now guns we know are produced by vegetation.
The fap of the fagns fylvatica, or beech, contained the followiug ingredients.

> Water,
> Acetite of line with excefs of acid, Acetite of potafs,
> Gallic acid,
> Tan,
> A mucous and extractive matter,
> Acetite of alumina.

Although Mr Vauquelin made two different analyies of this fap at different feafons, it is impofible to draw any fatisfactory conclufions from them, as he has not given us the proportions of the ingredients. It feems clear that the gallic acid and tan were combined together; for the fap tafted like the iufufion of oak bark. The quantity of each of thefe ingredients incteafed as vegetation advanced; for the colour of the fecund fap collected later was much deeper than that of the firlt. This fhews us that thefe ingredients were produced by vegetation, and that they did not form a part of the afcending fap. Prubably they were derived from the bark of the tree. The prefence of alumina, and the abfence of carbonic acid gas, would feem to indicate that all plants do not inbibe the very fame food.

The fap of the capinus fylveftris contains water, acetite of potafs, acetite of lime, fugar, mucilage, vegetable extract. It cannot be doubted that the fugar and the mucilage are the produce of vegetation.

The fap of the betula alba, or cominon birch, contains water, fugar, vegetable extract, acetite of lime, acetite of alumina, and acetite of potafs.

Thefe experiments are curius, and certainly add to the precifion of our notious concerning the food of plants; but they are not decifive enough to entitle us to drav conclufions. They would feem to fhew, either that acetite of potass and lime are a part of the food of plants, or at leaff fome fubftances which have the property of affuraing thefe combinations.
16. Thefe experiments lead to the conclufion that acetous acid furms a component part of the fap. Now whe ther it is not eafy to fuppofe that this fubftance is a abforbed by the roots in the ftate of acetous acid. The the roots. thing might be determined by examining the mould in which plants grow. This examination indeed has been performed; but no chemift hasever found acetous acid, at leaft in any fenfible quantity. Is it not probable, then, that the food, after it is imbibed, is fomewhat modified and altered by the routs? In what mannor this is done we cannot fay, as we know very little about the valcular fructure of the roots. We may conclude, however, that this modification is nearly the fame in moft plants: for one plant may be engrafted on another, and each continue to produce its own peculiar products; which could not be, unlefs the proper fubftances were conveyed to the digeftive organs of all. There are feveral circumetances, however, which render the modifying power of the roots fomewhat probahle. The ftrongelt of thefe is the nature of the ingredients found in the fap. It is even poffible that the roots may, by fome means or other, throw out again fome part of the food which they have imbibed as excrementitious. This has been fufpected by feveral plyyfiologills; and there are feveral circumftances which render it probable. It it well known that fome plants will not vegetate well after others; and that fome again vegetate unufually well when planted in ground where certain plants had been growing. Theie facts, without doubt, may be accounted for on other principles. If there be any excrementitious matter emitted by the roots, it is much more probable that this happens in the laft flage of vegetation. That is to fay, when the food, after digettion, is applied to the purpofes which the root requires. But the fact ought to be fupported by experiments, otherwife it cannot be admitted.
17. The
vegeta. 17. The fap, as Dr Hales has fhewn us, afcends with tion. a very confiderable forec. It iffued during the bleed-- Veg. Stut. ing feafon with fuch impetuofity from the cut end of a

10s.
${ }^{12} 0{ }^{2} 32$ inches hight *.
Bap afends Now what is the particular channel through which the fap afeends, and what is the caufe of the force with which it moves? ''hefe are queftions which have excited a great deal of the attention of thofe philofophers who have made the phytiology of vegetables their particular Itudy; but the examination of them is attended with fo many difficultes that they are very far from being decided.

It is certain that the fap fows from the roots towards the fummit of the tree. For if in the bleeding feafon a number of openings be made in the tree, the fap begins firft to flow from the lowett opening, then from the lowett but one, and fo on fuccelifively, till at laft it makes its appearance at the highelt of all. And when Duhamel and Bonnet made plants vegetate in coloured liquors, the colouring matter, which was depolited in the wood, appeared firt in the lowelt part of the tree, and gradually alcended higher and higher, till at laft it reached the top of the tree, and tinged the very leaves.

It feems certain, too, that the fap afcends through the wood, and not through the hark of the tree : for a plant continues to grow even when ftript of a great part of its bark; which could not happen if the fap afcended through the bark. When an incifion, deep enough to penetrate the bark, and even part of the wood, is carried quite round a branch, provided the wound be covered up from the external air, the branch continues to vegetate as if nothing had happened; which could not be the cafe if the fap afcended between the bark and the wood. It is well known, tuo, that in the bleeding feafon little or no fap can be goot frum a tree unlefs our incilion penetrate deeper than the bark.
${ }^{13^{2}}{ }^{1}$ tree unles our incelind if the fap afcended thro' the parenchyma of plants, jarenchy- as fome phyfiologills have fuppofed, fince there is a communication between every part of that organ, it is evident that the tree ought to bleed whenever any part of the parenchyma is wounded. But this is not the cafe. Confequently the fap does not afcend through the parenchyma. Befides, if the fuppofition were true, the fap, from the very flructure of the parenchyma, mult afcend in the fame manner as water through a fponge; and in that cafe could not poffibly poffers the force with which we know that it afeends. But if the fap is not found in the parenchyma, as is now well known to be the cafe, it mult, of neceffity, be confined in particular vefliels; for if it were not, it would uadoubtedly make its appearance there. Now what are the veffels through which the fap afcends?

Grew and Malpighi, the firl philofophers who examined the Atructure of plants, took it for granted that the woody fibres were tubes, and that the fap afcended through them. For this reafun they gave thefe fibres the name of lymphatic veffcls. But they were unable, even when affifted by the beft microfcopes, to detect any thing in thefe fibres which had the appearance of a tube; and fucceeding obfervers have been equally unfuccefsful. The conjecture therefore of Malpighi and Grew, about the nature and ufe of thefe fibres, remains totally unfupported by any proof. Duhamel has even
gone far to overturn it altogether. For he found that thefe woody fibres are diviitible into finaller fibres, and thefe again iuto ftill fmaller; and even, by the affiltance of the beft microfeopes, he could find no end of this fubdivifion * Now gianting thefe fibres to be veftels, *Pbyfinue it is fearecly poffible, after this, to fuppofe that the fap des Aibra, really moves through tubes, whofe diameters are almofl 1 i. 5%. infinitely fimall. i'here are, however, veffels in plants which may eafily be diftinguithed by the help of a fmall microfcope, and even, in nany cales, by the naked eye. Thefe were feen, and diftinctly deferibed, by Grew and Malpighi. They contilt of a fibre twitted round like a corkfcrew. If we take a finall cylinder of wood, and wrap round it a fender brais wire, fo clofely that all the rings of the wire toucla each ocher, and if, after this, we pull out the wooden cylinder altogether, the brafs wire thus twitted will give us a very good reprefentation of thefe vefels. If we take hold of the two ends of the brals wire thus twifted, and pull them, we can eafily draw out the wire to a confiderable length. In the fame manner, when we lay hold of the two extremities of thele veffels, we can draw them out to a great length. Malpighi and Grewf finding them always empty, concluded that they were intended for the circulation of the air through the plant, and thercfore gave them the name of trachees; which word is ufed to denotethe windpipe of animals. Thefe trachere are not found in the bark; but Hedwig has thewn that they are much more numerous in the wood than was fuppofed; and that they are of very different diameters; and Reichel has demonflrated that they go to the minuteft branches, and fpread through every leaf. He has fhewn, torn, that they contain fap; and Hedwig has proved that the notion which generally prevailed of their containing nothing but air, arofe from this circumflance, that the larger traches, which alone were attended to, lofe their fap as foon as they are cut; and, of courfe, unlefs they are infpected the inflant they are divided, they appear emply \dagger. Is at not probable, then, or rather is it + Fundrnut certain, from the difcoveries of that very ingenious men. Hif. phytiologitt, that the trachex are, in reality, the fap Nar. Mronfor veffels of plants? Indeed it feems eftablifhed by the Part in po experiments both of Reichel and Hedwig, that all, or ${ }_{54}$. almoft all the velfels of plants may, if we atteud only to their alructure, be denominated trachere.

But by what powers is the fap made to afeend in Why it ${ }^{133}$ thefe veffels? And not ouly to afcend, but to moveafcends. with very confiderable force; a force, as Hales has flewn, lufficient to overcome the preffure of 43 feet perpendicular of water \ddagger ?
\ddagger Vget.
Grew afcribed this phenomenon to the levity of the Stat. i. 107. fap; which, according to him, entered the plant in the Hypothere ftate of a very light rapour. But this opinion will not of Grew, bear the flighteft examination. Malpighi fuppofed Malpighi, that the fap was made to afeend by the contraction and and de la dilation of the air contained in the air veffels. But Hire. even were we to grant that the trachere are air veffels, the fap, according to this hypothefis, could only afcend when a change of temperature takes place; which is contrary to fact. And even if we were to wave every objection of that kind, the hypothefis would not account for the circulation of the fap, unlefs the fap veffels be provided with valves. Now the experiments of Hales and Duhamel fhew that no valves ean poffibly exift in them. For brancbes imbibe moifture nearly
equally by either end ; and confequently the lap moves with equal facility both upwards and downwards, which it could not do were there valves in the veffels. Befides, it is known, from many experiments, that we may convert the roots of a tree into the branches, and the branches into the roots, by covering the branches with earth, and expofing the roots to the air. Now this would be impoffible if the rap veffels were provided with valves. The fame remarks overturn the hypothefis of Mr de la Hire, which is merely that of Malpighi, expreffed with greater precifion, and with a greater parads of mechanical knowledge. Like Borelli, he plated the afeending power of the fap in the parenchyma. But his very experiments, had he attended to them with care, would have been fufficient to thew the inperfection of his theory.

The greater number of philofophers (for it is needleft to mention thole who, like Perrault, had recourfe to fermentation, nor thole who introduced the weight of the atmosphere) have ascribed the motion of the lap to capillary titration.
There exifts a certain attraction between many Solid bodies and liquids; in confequence of which, if thee fold bodies be formed into fall tubes, the liquid entors them, and rifes in them to a certain height. But this is perceptible only when the diameter of the tube is very fall. Hence the attraction has been denomimated capillary. We know that there is fuch an attraction between vegetable fibres and watery liquids. For fuch liquids will afcend through dead vegetable matter. It is highly probable, therefore, that the food of plants enters the roots, in consequence of the capillay attraction which fublifts between the flap veffels and the liquid imbibed. This feces of attraction, then, will account perfectly well for the entrance of moisture into the mouths of the fap veffels. But will it account aldo, as some have fuppofed, for the ascent of the fap, and for the great force with which it ascends?

The nature and laws of capillary attraction have been very much overlooked by philofophers. But we know enough concerning it to enable us to decide the present queftion. It confifts in a certain attrac. ion between the particles of the liquid and of the tube. It has been demonflrated, that it does not extend, or at leal that it produces no fenfible effect, at greater diflances than r of $^{\text {p }}$ th part of an inch. It has been demonftrated, that the water afcends, not by the capillary attraction of the whole tube, hut of a fender film of it ; and Clairaut has shewn that this film is fituated at the lowermof extremity of the tube (G). This film attracts the liquid with a certain force ; and if this force be greater than the cohefion between the particles of the liquid, part enters the tube, and contines to enter, till the quantity above the attracting film of the tube jut equals, by its weight, the excels of the capillary attraction between the tube and the liouicl, above the cohefion of the liquid. The quantity of water therefore in the tube is pretty nearly the meaSure of this excels; for the attracting film is probably very minute.

It has been demonfrated, that the heights to which liquids rife in capillary tubes, are inverfely as the dameter of the tube. Confequently the faller the ciameter of the tube, the greater is the height to which the liquid will rife. But the particles of water are not infinitely finall; therefore whenever the diameter of the tube is diminifhed beyond a certain fie, water cannot ascend in it, because its particles are now larger than the bore of the tube. Consequently the rife of water in capillary tubes mut have a limit: if they exceed a certain length, how final fever their bore may be, water will either not rife to the top of them, or it will not enter them at all. We have no method of afcertaining the precife height to which water would rife in a capillary tube, whole bore is jul large enough to admit a fingle particle of water. Therefore we do not know the limit of the height to which water may be railed by capillary attraction. But whenever the bore is diminified beyond a certain fize, the quantity of water which rife in it is too final to be fenfible. We can eafily afcertain the height which water cannot exceed in capillary tubes before this happens; and if any perfor calculate, he will find that this height is not nearly equal to the length of the fap veffels of many plants. But befides all this, we fee in many plants very long flap veffels, of a diameter too large for a liquid to rife in them a fingle foot by capillary attraction, and yet the Sap rife in them to very great heights.

If any perfon fays that the hap veffels of plants grabdually diminish in diameter as they afcend ; and that, in confequence of this contrivance, they act precifely as an indefinite number of capillary tubes, one ftanding upon another, the inferior ferving as a refervoir for the fuperior: we anfwer, that the lap may afcend by that means to a confiderable height ; but certainly not in any greater quantity than if the whole flap veffel had been precifely of the bore of its upper extremity. For the quantity of lap raifed mut depend upon the bore of the upper extremity, because it mull all pass through that extremity. The quantity of dap, too, on that fuppofition, molt diminish the farther we go from the root, because the bore of the fay veffels is conflantly diminifling; the afcending force mut alto diminish, because it is, in all cafes, proportional to the quantity of water raifed. Now neither of thee, as Dr Hales has demonftrated, is true.

But farther, if the hap moved only in the veffels of A 137 plants by capillary attraction, it would be fo far from ted. flowing out at the extremity of a branch, with a force fufficient to overcome the preffure of a column of water 43 feet high, that it could not flow out at all. It would be impoffible in that cafe for any fuch thing as the bleeding of trees ever to happen.

If we take a capillary tube, of fuck a bore that a liquid will rife in it fix inches, and after the liquid has rifen to its greateft height, break it fort three inches from the bottom, none of the liquid in the under half flows over. The tube, thus fhortened, continues indeed full, but not a fingle particle of liquid ever efcapcs from it. Aud how is it poffible for it to efcape ? The film,
(c) The action of all the other films, of which the tube is compufed, on the water, as far as it is measure by its effect, is nothing at all. For every particle of water in the tube (except thole attracted by the mudernolt film.) is attracted upwards and downwards by the fame number of films: it is thereforefprecifely in the fame Irate. ${ }_{23}$ if it were not attracted at all.
iegese film, at the uppere extrenity of the tube, mult certainly have as ftrong an attraction for the liquid as the film at the lower extremity. As part of the liqud is within its attracting diftance, and as there is no part of the tube above to counterbalance this attraction, it muft of neceflity attract the liquid nearelt it, and with a force fufficient to counterbalance the attraction of the undernofl film, how great foever we may fuppofe it. Of courfe no liquid can be forced up, and confequently none can flow out of the tule. Since then the fap flozes out at the upper extremity of the fap velfels of plants, we are abfolutcly certain that it does not afcend in them merely by its capillary attraction, but that there is fome other caufe.

It is imporfible therefore to account for the motion of the fap in plants by any mechanical or chemical principles whatever; aud he who afribes it to thefe principles has not formed to himfelf any clear or accurate conception of the subjec. We know indeed that heat is an agent; for Dr Walker found that the afcent of the fap is much promoted by heat, and that after it had begun to flow from feveral incilions, cold made it give over flowing from the higher orifices white it continued to flow at the lower *. But this cannot be owing to the dilating power of heat; for unlefs the fap veffels of plants were furnibed with valves (and they have no valves), dilatation would rather retard than promote the afcent of the fap. Confequently the eftect of heat can give us no affiftance in explaining the afcent of the fap can fcarcely deny that it muft take place; but by what means it is impoffible to fay. The agents cannot precifely refemble the mufcles of animals; becaufe the whole tube, however cut or maimed, fill retains its contracting power, and becaufe the contraction is performed with equal readinefs in every direction. It is evident, however, that they mufl be the fame in kind. Perhaps the particular Itructure of the veffels may lit them for their office. Does ring after ring contract its diameter? The contracting agents, whatever they are, feem to be excited to act by fome flimulus communicated to them by the fap. This capacity of being excited to action is known in phyliology by the name of irritability; and there are not wanting proofs that plants are poffefied of it. It is well known that different parts of plants move when certain fubtances act upon them. Thus the flowers of enany plants open at funrife, and clofe again at night. Linnæus has given us a lift of thefe plants. Des Fontaines has thewn that the famina and antherx of many plants exhibit diftinct mo-

[^10]tions \ddagger. Dr Smith has olferved, that the 凡anina of the barberries are thrown into motions when touched \S. Roth has afcertained that the leaves of the drofera lon- + gifolia and rotundifulia have the fance property. Mr Parr.170 Coulon, too, who has adopted the opinion that the $\{$ I'it. motion of the fop, in plants is produced by the contrac- Tranf. tion of vefiels, has even made a number of experiments ${ }^{\text {lxxviio }}$ in order to flew this contraction. But the fact io, that every one has it in his power to make a decitive experiment: Simply cutting a plant, the cuphorlia peplis for inllanes, in two places, fo as to leparate a portion of the ltem from the relt, is a complete demouftration that the veffle actually do contract. For whoever makes the experiment, will find that the milky juice of that plant flows out at both ends fo completely, that if afterwards we cut the portion of the ftem in the middle, no juice whatever appears. Now it is impofible that thefe phenonena could take place without a contraction of the veffels; for the reffels in that part of the ftem which bas been detached cannot have been more than full; and their diameter is fo fmall, that if it were to continue unaleered, the capillary attraction would be more than fulticient to retain their contents, and confequently not a drop could flow out. Since, therefore, the whole liquid efcapes, it muft be driven out forcibly, and confequently the veffels mult contract.

It feems pretty plain, too, that the veffels are excited ${ }^{139}$ to contract by various ftimuli ; the experiments of Cou -quence of lon and Sauflure render this probable, and an obferva- Atmuli. tion of Dr Smith Barton makes it pretty certain. He found that plants growing in water vegetated with much greater vigour, provided a little camphor was thrown into the water*.

* Ann. de

18. Befides the fap which afceids upwards towards Cbim, xxiii. the leaves, they contain alfo another fluid, known by ${ }^{63}$. the name of fuccus proprius, or peculiar juice. This juice Peculis differs very confiderably in different plants. It feems juice fornsto be the fap altered by fome procefs or other, and fit - ed from the ted for the various purpofes of vegetation. That it fap; flows from the leaves of the plant towards the roots, appears from this circumftance, that when we make an incifion into a plant, into what ever pofition we put it, much more of the fuccus proprius flows from that fide of the wound which is next the leaves and branches, than from the other fide: and this happens even though the leaves and branches be held undermoft \dagger. When a \dagger Bch, ligature is tied about a plant, a fiwelling appears above, $M_{\text {Mench }}$ ii. but nut helow the ligature.
The veffels containing the peculiar juice are found ${ }^{422 .}$ in all the parts of the plant. Hedwig, who has examined the veffels of plants with very great care, fecms to confider them as of the fame ftruchure with the trachex. The peculiar juice is eafly known by its colour and its confiltence. In Jonie plants it is green, in fome red, in many milky. It cannot be doulted that its motion in the veffels is performed in the fame way as that of the fap.
19. It appears, then, that the fap afcends to the In the leaves, that there it undergoes certain alterations, and leaves. is converted into the peculiar juices; which, like the blood in animals, are afterwards employed in forming the various fubltances found in plants. Now the changes which the fap undergocs in the leaves, provided we can trace them, muft throw a grut deal of light upon the nature of vegctation.

Vegeta. tion.

142
Part of the
fap perspires thro' the leaves.

* Pbil.

Tranf.
No. 233.

4 Veget.
Stat. i. 5 .
and 15 .
\ddagger Ibit. 30,
§ Ibid. 5.
|| Ibid. 27.
and 48 .
If Ibid. 22.
*. Mem.
Par. 174 .
† Ibid. 49.

143
Ite nature,

No fooner has the fap arsived at the leaves, than a great part of it is thrown off by evaporation. The quantity thus perfpired bears a very great proportion to the moifure imbihed. Mr Woodward found that a fprig of mint in 77 days imbibed 2558 grains of water, and yet its weiglat was only increafed 15 grains*: therefore it muft have given out 2543 grains. Another bianch, which weigited 127 grains, increafed in weight 128 , and it had imbibed 14190 grains. Another fprig, weighing 76 grains, growing in water mixed with earth, increafed in weight 168 grains, and had imbibed 107.3^{1} grains of water. Thefe experiments demonilrate the great quantity of matter which is conftantly leaving the plant. Dr Hales found that a cabbage tranfmitted daily a quantity of moifture equal to about half its weight ; and that a fun-flower, three feet ligh, tranfnitted in a day I lb. I 4 oz . avoirdupois \dagger. He fhewed, that the quantity of tranfpiration in the fame plant was proportional to the furface of the leaves, and that when the leaves were taken off, the tranfpiration nearly ceafedf. By thefe obfervations, he demonftrated that the leaves are the orgaas of tranfpiration. He found, too, that the tranfpiration was nearly confined to the day, very little taking place during the night $\$$; that it was much promoted by heat, and fopped by rain and froft $\|$. And Millar T, Guettard *, and Senebier, have fhewn that the tranfpiration is alfo very much promoted by funfline.

The quantity of moilture imbibed by plants depends very much upon what they tranfpire. The reafon is evident: when the veffels are once filled with fap, if none be carried off, no more can enter ; and, of courfe, the quantity which enters muft depend upon the quantity emitted.

In order to difcover the nature of the tranfpired matter, Hales placed plants in large glafs veffels, and by that means collected a quantity of it \dagger. He found that it refembled pure water in every particular, excepting only that it fometimes had the odour of the plant. He remarked, too, as Guettard and Du Hamel did after him, that when kept for fome time it putrefied, or at leaft acquired a flinking fmell. Senebier fubjected a quantity of this liquid to a chemical analy fis.

He collected 13030 grains of it from a vine during the months of May and June. After filtration he gradually evaporated the whole to drynefs. There remained behind two grains of refiduum. Thefe two grains confifted of nearly $\frac{1}{2}$ grain of carbonat of lime, IT $^{\frac{1}{5}}$ grain of fulphat of lime, $\frac{1}{2}$ grain of matter foluble in water, and having the appearance of gum, and $\frac{1}{2}$ grain of matter which was foluble in alcohol, and apparently refmous. He analyzed 6 cy 68 grains of the fame liquid, collected from the vine during the months of July and Auguft. On evaporation he obtained $2 \frac{5}{8}$ grains of refidwum, compofed of $\frac{3}{5}$ grain of carbonat of lime, $\frac{3}{4}$ grain of fulphat of lime, $\frac{8}{2}$ grain of mucilage, and $\frac{1}{2}$ grain of refin. The liquid tranfpired by the after nove Anglia afforded precifely the fame ingredients \ddagger.
Senebier atteinpted to afcertain the proportion which the liquid tranfpired bore to the quantity of moifture imbibed by the plant. But it is eafy to fee that fuch experiments are liable to too great uncertainties to be depended on. His method was as follows: He plunged the thick end of the branch on which he made the
experiment into a bottle of water, while the other end, Vegera. containing all its leaves, was thruft into a very large glafs globe. The apparatus was then expofed to the funfhine. The quantity imbibed was known exactly by the water which difappeared from the bottle, and the quantity tranfpired was judged of by the liquid which condenfed and trickled down the fides of the glafs glube. The following table exhibits the refult of his experiments :

In fome of his experiments no liquid at all was con: denfed. Hence it is evident that the quantity of matter tranfpired cannot be deduced from thefe experi. ments. The mouth of the glafs globe does not feem to have been accurately clofed; the air within it communicated with the external air: confequently the quantity conderfed muft have depended entirely upon the ftate of the external air, the heat, \&c.

The firft great change, then, which takes place upon the fap after it arrives at the leaves, is the evaporation of a great part of it: confequently what remains muft be very different in its proportions from the fap. The leaves feem to have particular organs adapted for throwing off part of the fap by tranfpiration. For the experiments of Guettard *, Duhamel \dagger, and Bonnet \ddagger, Mem. thew that it is performed chiefly by the upper furfaces Par. 1749 of leaves, and may be nearly ftopped altogether by var- $+H b y$ figue nilling the upper furface.
des Airbres,
The leaves of plants become gradually lefs and lefs \ddagger Traits des fit for this tranfpiration; for Senebier found, that when Feuilles, all other things are equal, the tranfpiration is much ${ }^{5}$. Mem. greater in May than in September *. Hence the rea* Why the fon that the leaves are renewed annually. Their organsleaves fall become gradually unfit for performing their functions, nff. and therefore it is neceffary to renew them. Thofe * Enc. Mctrees which retain their leaves during the winter were ${ }_{2 S 5}{ }_{2 S}$. found by Hales and fucceeding phytiologitts to tranfpire lefs than others. It is now well known that thefe trees alfo renew their leaves.
20. Leaves have alfo the property of abforbing carbonic acid gas from the atmofphere.
$\mathrm{I}_{4} 6$
We are indebted for this very fingular difcovery to Leaves abthe experiments of Dr Priefley, though he himfelf didforb carnot difoover the truth, and though he even refufed t obonic acid acknowledge it when it was pointed out by others. It ${ }^{\text {gas. }}$ has been long known, that when a candle has been allowed to burn out in any quantity of air, no candle can afterwards be made to burn in it. In the year 1771 Dr Prieftley made a fprig of mint vegetate for ten days in contact with a quantity of fuch air ; after which he found that a candle would burn in it perfectly well 7. . On Air, This experiment he repeated frequently, and found that iii. 251. it was always attended with the fame refult. According to the opinion at that time univerfally received, that

Vegeta. the burning of candles rendered air impure by conmutioll.

\sim

 nicating phlogifton to it, he concluded from it, that plants, while they vegetate, abforb phlugitton.Carbonic acid gas was at that time fuppofed to contain phlogiton. It was natural, therefore, to fuppofe that it would affurd nourilhment to plants, fince they had the property of abforbing pllogifton from the atmofphere. Dr Percival had publifhed a fet of experiments; by which he endeavonred to hhew that this was aenually the cafe.

Thefe experiments induced Dr Priefley, in 1776, to confider the fubject with nore attention. But as, in all the experiments which he made, the plants confined in carbonic acid gas very foon died, he concluded that carbonic acid gas was not a food, but a poifon to plants *. Mr Henry of Manchefter was led, in 1784, probably by the contrariety of thefe refults, to examine the fubject. His experiments, which were publifhed解 Manchefter Traniactions \dagger, perfectly coincided with thofe of Dr Percival. For he found, that carbonic acid gas, fo far from killing plants, conftantly promoted their growth and vigour. Meanwhile Mr Sencbier was occupied at Geneva with the fame fubject; and he publifhed the refult of his refearches in his Memoires Phyfico-chymique about the year 1780 . His experiments flewed, in the cleareft manuer, that carbonic acid gas is ufed by flants as food. The fame thing was fupported by Ingenhoufz in his fecond volume. The experiments of Sauffure the Son, publifhed in 1797, have at laft put the fubject beyond the reach of difpute. From a careful comparifon of the experiments of thefe philofophers, it will not be difficult for us to difcover the various phenomena, and to reconcile all the feeming contradictions which occur in them. The facts are as follows :

Mr Sauffure has thewn, that plants will not vegetate when totally deprived of carbonic acid gas. They vegetate indeed well enongh in air which lias been previoully deprived of carbonic acid gas; but when a quantity of lime was put into the glafs veffel which contained them, they no longer continued to grow, and the leaves in a few days fell off \ddagger. The air, when examined, was found to contain no carbonic acid gas. The reafon of this phenomenou is, that plants (as we fhall fee afterwards) have the power of forming and giving out carbonic acid in certain circumftances; and this quantity is fufficient to continue their vegetation for a certain time. But if this new formed gas be alfo withdrawn, by quicklime, for intance, which abforbs it the inftant it appears, the leaves droop, and refufe to perform their functions. Carbonic acid gas, then, applied to the leaves of plants, is effential to vegetation.

Dr Priefley, to whom we are indebted for many of the molt important facts relative to vegetation, obferved, in the year 1778 , that plants, in certain circumfances, emitted oxygen gas \|; and Ingenhoufz very foon after difcovered that this gas is enitted by the leaves of plants, and only when they are expofed to the bright light of day. His method was to plunge the leaves of different plants into veffels full of water, and then expofe them to the fun, as Bonnet, who had obferved the fame phenomenon, though he had given a wrong explanation of it, had done before him. Bubbles of oxygen gas very foon detached themfelves from the leaves, and were collected in an inverted glafs vef-
fel*. He obferved, too, that it was not a matter of Vegelaindifference what kind of water was ufed. If the water, for inflance, had been previouny boiled, little or Ingentoufa no oxygen gas efcaped from the leaves; river water afoon \bar{b} egree. forded but little gas; but pump water was the noft i. 15. \&c. productive of all \dagger.

Senebier proved, that if the water be previonly deprived of all its air by boiling, the leaves do not emit a particle of air; that thofe kinds of water which yield mot air, contain in them the greatef quantity of carbonic acid gas; that leaves do not yield any oxygen when plunged in water totally deltitute of carbonic acid gas ; that they enit it abundantly when the water, rendered unproductive by boiling, is impregnated with carbonic acid gas ; that the quantity of oxygen enitted, and even its purity, is proportional to the quantity of carbonic acid gas which the water coutains ; that water impregnated with carbonic acid gas gradually lofes the property of affording oxygen gas with leaves; and that. whenever this happens, all the carbonic acid gas has difappeared ; and on adding more carbonic acid gas the property is renewed \ddagger. Thefe experinents prove, in a \ddagger Ene. Mea moft fatisfactory manner, that the oxygen gas which tlod. Pby. the leaves of plants enit depends upon the prefence of ${ }^{\text {Feget. }} \mathbf{1 8 1}$. carbonic acid gas; that the leaves abforb carbonic acid gas, decompofe it, give out the oxygen, and retain the carbon.

We now fee why plants will not vegetate without But during carbonic acid gas. They abforb it and decompofe it; the day onbut this procels goes on only when the plants are ex. pofed to the light of day. Therefore we may conclude, that the abforption and decumpofition of carbo. nic acid gas is confined to the day, and that light is an effential agent in the decompofition. Probahly it is by its agency, or by its entering into combination with the oxygen, that this fubtlance is enabled to aflume the gafeous form, and to feparate from the carbon.

If we reafon from analogy, we fhall conclude, that during this procefs a quantity of caloric is neceffary : and that therefore no increafe of temperature takes place, but rather the contrary. This may be one rcafon why the operation takes place only during the day.

It is extremely probable that plants by this procefs acquire the greateft part of the carbonaceous matter this way which they contain ; for if we conpare the quantity of ants nay carbon contained in plants vegetating in the dark, much carwhere this procefs camut go on, with the quantity ${ }^{\text {boa. }}$ which thofe plants contain which vegetate in the ufual manner, we fhall perceive a very confpicuous difference. Chaptal found that a byfus, which was vegetating in the dark, contained only $\frac{1}{80}$ of its weight of carbouaceous matter; but the fame plant, after being made to vegetate in the light for 30 days, contained $\frac{1}{2} \frac{1}{4}$ th of its weight of carbonaceous matter *. Haffenfratz afcer- Mem. tained, that plants growing in the dark contain nuch Paro 1886 . more water, and much lefs carbon and liydrogen, than plants growing in the light. Senebier analyfed both with the fame refult. Plants growing in the dark yielded lefs hydrogen gas and oil : thèir refinous matter was to that of plants growing in the light as 2 to 5,5 , and their moitture as 13 to 6 ; they contain even one.half lefs of fixed matters.

It is evident, howerer, that this abforption and decompofition of carbonic acill gas does not depend upon 4 B 2

Vegeta- the light alone. The nature of the fap has alfo it's intion. fluence; for Haffenfratz found, that the quantity of carbon did not inereafe when plants vegetated in pure water. Here the fap feens to have wanted that part which combines with and retains the carbon; and which therefure is by far the moft important part of the food of plants. Upon the difcovery and mode of applying this fubflance, whatever it is, the improvements in agriculture mult in a great meafure depend.

If we confider the difference in the proportion of carbonaceous matter in plants vegetating in the dark and in the ufual manner, we caa fearecly avoid coneluding that the qualitity of earbonic acid gas abforbed by plants is confiderable. To form an eftimate of it , would require a fet of experinients performed in a rery different manner from any hitherto made. The ftems and branches of plants vegetating in at rich foil fould be confined within a large glafs globe, the tialide of which cuglat to have no comenunication with the external eir. A very finall itrean! of earbonie acid gas fhould be made occafionally to flow into this globe, fo as to fupply the quantity that may appear neceffary; and there flould be a contrivance to carry off and examine the air within the globe when it inereafes beyord a certain guantity. Experiments conducted in this manner would probably throw a great deal of light upon this part of vegetation, and enable us to calculate the quantity of earbosic acid decompofed, and the quantity of oxygen emitted by plants; to compare thefe with the walle of oxygen by the refyiration of animals and combution,

Iso
The de
compolition performed by the parenchyna.

+ Enc. $\mathrm{Me} e_{-}$ ${ }^{t b o d} P b_{y}$. Viget. 1 so. and to fee whether or not they balance each other.

Senebier has afcertained, that the decompofition of the carbonic aeid takes place in the parenehyma. He found, that the epidermis of a leaf would, when' feparated, give out no air, neither would the nerves in the fame eireumflanees; but upon trying the parenchyma, thus feparated from its epidermis and part of its nerves, it continued to give out oxygen as before \dagger. He remarked alfo, that every thing elfe being equal, the quantity of oxygen emitted, and confequently of earbonic acid decompofed, is proportional to the thicknefs of the leaf; and this thicknefs depends upon the quantity of parenchyma.

That the decompofition is performed by peculiar organs, is evident from an experiment of Ingenhoufz. Leaves cut into fmall pieces continued to give out oxygen as before; but leaves ponnded in a mortar loft the property entirely. In the firft itate, the peculiar ftructure remained; in the other, it was deftroyed. Certain experiments of Count Rumford, indeed, are totally incompatible with this conclufion; and they will naturally occur to the reader as an unfurmountable objection. He found, that dried leaves, black poplar, fibres of raw filk, and eveh glafs, when plunged into water, gave out oxygen gas by the light of the fun. But when Senebier repeated thefe experiments, not one of them would fucceed \downarrow; and we have attempted them with the fame bad fuccefs. The Count muft have been mided by fomething whiel he has not mentioned.

Thus we have feen, that when the fap arrives at the letves, great "part is thrown off by evaporation, and that the nature of the remainder is confiderably altered by the addition of a quantity of carbon: but thefe are
by no means all the alterations produced upon the fap vegetain the leaves.
21. Plants will not vegetate unlefs atmofpheric air or oxygen gas have aceefs to their leaves. This was rendered probable by thofe philofophers who, ahout the Leaves abend of the ath cory orycularly towards the plyyical properties of the air: But Mr Ingenhoufz was rerhaps the firlt of the modern chemills who put it beyond doubt. He found that earbonic acid gas, azot, and hydrogen gas, deflroyed plants altogether, unlefs they were mixed with atmoipheric air or oxygen gas. He found alfo, that plants grew very well in oxygen gas and in atmofpleric air *. . ${ }^{\text {Ingenhouf }}$ Thefe experiments are fufficient to thew, that oxygen ${ }^{\mathrm{i}} \cdot$ bafira. $^{\text {and }}$ gas is neceffary to vegetation. The leaves of plants feem to abforb it ; and mult probahly this abforption takes place only in the night. We know, at leatt, that in germination light is injurious to the abforption of oxygen gas; and therefore it is probable that this is the cafe alfo in vegetation.

152
22. The leaves of plants not ouly abforb carbonic And water, aeid gas and oxygen gas, but water alfo. This had been tufpected in all ages : the great effect which dew, flight Mowers, and even wetting the leaves of plants, have in recruiting their ftrength, and making thom vegetate with rigour, are fo many proofs that the leaves imbibe moitture from the atmofphere. Hales rendered this ftill more probable, by obferving, that plants increafe confiderably in weight when the atmofplere' is moilt; and Mr Bonnet put the matter beyond doubt in his Reffarcbes concerning the Ufe of the Leaves. He fhewed, that leaves continue to live for weeks when one of their furfaces is applied to water; and that they not only vegetate themfelves, but even imbibe enough of water to fulport the vegetation of a whole loranch; and the leaves belonging to iti.' He difcovered allo, that the two furfaces of leaves differ very confiderably in their power of imbibing moifture; that in trees' and thrubs, the under furface poffeffes almot the whole of the property, while the contrary holds in many of the other plants; the kidney bean for inflance.
Thefe facts prove, not only that the leaves of plants have the power of abforbing mointure, but alfo that the abforption is performed by very different organs from thofe which emit moiture'; 'for thefe' organs lie on different fides of the leaf. If we' confider that it is only during the night that the leaves of plants are moiftened with dew, we can feareely avoid concluding, that, except in particular cafes, it is during the wight that plants imbibe almoft all the moifture which they do imbibe.
23. During the night the leaves of plants emit car-And emit bonic aeid gas. This faet was firtt demonftrated by carbonic Mr Ingenhoufz \dagger, and it has been fince confirmed by every philofopher who has attended to the fubject.
Thus we have feen that the leaves of plants perform very different day they are giving out moillure, abforbing earbonie aeid gas, and emitting oxygen gas; during the night, on the contrary, they are abforbing moifture, giving cut carbonic acid gas, and abforbing oxygen gas.
The emiffion of the carbonic acid gas feems to be the confequence of the decompofition of water; either of the water which is already contained in the fap, or

 or
of
vegeta. of that which the leaves imbihe during the night ; but which of the two, it is impoffible to determine, nor is it of much conferguence. Wre may conelude that this is the cafe, becaufe it takes place during the germination of the feed, where all the circumbtances feem to be perfectly analogous. The water is decompefed, its oxygen is combined with part of the carbon which had been abforbed during the day, and the hydrogen enters into new combinations in the fap. It appears, alfo, that this deconpolition of water depends in a good meafure upon the quantity of oxygen gas abforbed; fur Dr Ingenhous\% found, that when plants are conlined in oxygen gas, they emit more carbunic acid gas than Tagentoufz, when they are confined in common air \dagger.

To deferibe in what manner thefe decompofitions take place, is impoffible; becaufe we neither know precifely the fibltances into which the fap has been converted by the operations performed during the day, nor the new fubstances formed by the operations of the night. We only fee the elementary fubtances which are added and lubsracted; wlich is far from being fuffieient to give us precife notions concerning the chemical changes and the atinitics by which thete changes are produced. We have reafon, however, to conclude, that during the day the caibon of the fap is increafed, and that during the night the hydrogen and oxygen are nicreafed; tut the precife retw fubitances formed are unknownto us. Nor let any one fuppole that the increafe of the hydrogen, and of the oxygen of the fap, is the fame thing as the addition of a quantity of water. Far from it. The fubtances into which the fap is converted have been enumerated in the lall chapter; almoft all of them condift chiefly of carbon, hydrogen, and oxyren, and yet none of them has the fnalleft refomblance to water. In water, oxygen and hydrogen are already combined together in a certain puportion ; and this combination wift be broken before thefe elementary bodies can enter into thofe triple compound with carbon, of which a great part of the vegetable products conlit. We have not the fmalle!t coneeption of the manner in which thefe triple combinations are formed, and as little of the mamer in which the bodics which compole vegetable fubtances are combined together. The combination may, for any thing we know to the contrary, be very compticated, though it conliths only of three ingredients; and analogy leads us to fup. pofe, that it actually is very complicated : for in chemiftry it may be confidered as a truth, to which at prefent few or no exceptions are known, that hodies are decompofed with a facility inverfely as the fimplicity of their compolition; that is to fay, that thofe bodies which contift of the feweft ingredients are moft difficultly decompofed, and that thofe which are formed of many jngredients are decompofed with the greateft facility.

Neither let any one fuppofe, that the abforption of carbonic acid gas, during the day, is balanced by the quantity emitted during the night, and that therefore there is no increafe of carhon: for Inrenhoufz has fhewn, that the quantity of oxygen gas emitted during the day is much greater than the carbonic acid gas emitted duriug the night; and that in favourable circum. fances, the quantity of oxygen gas in the air furround. ing plants is very much inerealed, and the carbonic acid gas diminifhed; fo much fo, that hoth Dr Prieft. ley and Dr Ingenhoufz found, that air which had been
fuoiled by a lighted candle, or by animals, was rendered as good as ewer by plants. Nuw we know, that combuttion and refpiration diminith the oxygen gas, and add cartmaic acid gas to air ; therefure vegetation, which reftores the purity of air alecred. by thete procelles, muit jncreafe the oxygen, and dinimith the carbunic acid gas of that air; confequently the fuantity of carbonic acid gas absorbed by plants during the day is greater than the quantity cinitud by them during the night, and of culurde the carbon of the fap is increafed in the leaves.

It is true, that when plants are made to vegetate for a number of days in a given quantity of air, its ingredients are not lound to be altered. Thus Haffenfratz afcertained, that the air in which young chefnuts vegetated for a number of days together, was not altered in its properties, whether the chefnuts were vegetating in water or in earth *. And Sauflure the Younger pro-* Ann. de ved, that peafe growing for ten days in water did not Chim. xiii. alter the furrounding air \dagger. But this is precifely what 25 . ought to be the cafe, and what mult take place, pro- Hidd. sxiv; vided the conclufuns which we have drawn be jult. For if plants only emit onygen gas, by abforbing and decompoling carbonic acid g as, it is evident, that unlefs carbonic acid gas be prefurs, they can emit no oxygen gas; and whenever they have decompoted all the carbonic aeid gas contamed in a given quantity of air, we have no longer any reafon to look for their emitting any" more oxygel gas; and if the quantity of carbonic acid gas emitted during the night be fmaller than that abforbed during the day, it is evident, that during the diay the plant will conitantly decompofe all the acid which had been formed during the night. Iy thefe procefles, the mutual changes of day and night compendate each uther; and they are procrented from trure than compenfating each other by the forced flate of the plant. It is probable, that when only part of a plant is made to vegetate in this forced tate, fome carbonated fap (if we may be allowed the expreftion) is lupplice by the roft of the plat, ; and that therefore the quantity of carbouic acid gas emitect during the sight may bear a nearer proportion to that cmitied in a thate of nature, than that of the ahforpion of fixed air can pulfibly do. And probably, twen when the whole plant is thus coufined, the nightly procefs goes on for a certain time at the expence of the carbon already in the fafs; for Hallenfratz found, that in thefe cales the quantity of carbon in the plant, after it had vegretated for fume time in the dark, was lefs than it had been when it began to vegetate *. This is the rea- * finn de fon that plats growing in the dak, wlen confined, Cbim. xiii abforb all the oxygen gas, and ensit an cqual quantity of earbonic acid gas: and whencerer this las happened, they die; becaule then neither the daily nor nightly proceffes can gro on.
24. Ceitain changes are alfo produced on the fap in the leaves by the action of light; and thefe changes feem to be in fome meafure indepencent, or at leaft different from the ahforption and decompofition of carbonic acid gas, in which light, as we have feen, acts an impurtant part.

155
The green colour of plants is owing entirely to their Green co. vegetating in the light; for when they vegctate in the lour of dark they are white; and when expofed to the light, plansed bro. they acquire a green colour in a very fiort time, in light. what-
\square

Vegeta 2lo:1.

* Munib. Slemois, iv. JOI.
- Enc. Me tbod. Pbif.
J'eget. 97.
$+A_{n n}$. ${ }^{2}$
Ctim. iii. 57.
\$16id. 65.
whatfoever fituation they are placed, even though planged in water, provided always that oxygen be prcient; for Mr Gough has fhewn, that light without oxygen has not the power of producing the green coluur*. In what manner this change is operated, cannot, in the prefent limited ftate of our knowledge, be afcertained. We know too little about the properties of light to be able even to conjequre with any plaufibilit y. We know indeed, that part of the lighlt is abforbed by green plants; but this will not account for the phenomenon. When dilated, it amnunts to no pore than this, that plants which have grown in the dark reflect all the rays of light ; while thore which vegetate in the light refeet the green and abforb the others. The very men. tion of this phenomenon is enough to fhew us, that we have not advanced far enough to be able to explain it.

Etiolated (ε) plants want fomething, or poffefs fome. thing peculiar ; and it is on this fomething that the phenomenon depends. But what is this fomething? The fudden appearance of the green colour is rather againft the fuppoition, that it is owing to any fpecific change in the qualities of the fap.

Senebier has obferved, that when plants are made to vegetate in the dark, their etiolation is much diminifhed by mising a little hydrogen gas with the air that furrounds them*. Ingenhoufz had already remarked, that when a little hydrogen gas is added to the air in whieh plants vegetate, even in the light, it renders their verdure deeper \dagger : and he feems to think alfo, that he has proved by experiments, that plants abforb hydrogen gas in thefe eircumftances \ddagger. Mr Humbolt has obferved that the poa annua and compreffa, plantago lanceolata, trifolium arvenfe, cheiranthus cheiri, lichen verticillatus, and Several other plants which grow in the galleries of mines, retain their green colour even in the dark, and that in theefe cafes the air around them contains a quantity of hydrogen gas. Thefe facts are fufficient to hew that there is fome connection between the green colour of plants and the actimn of hydrogen gas on them; but what that conncetion is, it is inpoffible at prefent to fay.
25. By thefe different ehanges which go on in the leases, the nature of the fap is altogether clanged. It is now converted into what is called the peculiar juice, and is fit for being affimilated to the different parts of the plant, and for being employed in the formation of thofe fecretions which are neceflary for the purpofes of the vegetable economy.
The leaves, theretore, may be confidered as the digefting organs of plants, and as equivalent in fome meafure to the ftomach and lungs of animals. The leaves confequently are not mere ornaments; they are the moft
important parts of the plant. Accordingly we find, Vegeta. that whenever we flrip a plant of its leaves, we frip it entirely of its vegetating powers till new leaves are formed. It is well known, that when the leaves of plints are deftroyed by infects they vegetate no longer, and that their fruit never make any farther progrefs in ripening, but decays and dries up. Even in germination no progrefs is made in the growth of the item till the feed leaves appear. As much food indeed is laid up in the cotyledons as advanees the plant to a certain flate, the root is prepared, and made ready to perform its functions; but the fap which it imbibes muft he firf earried to the feed leaves, and digefted there, before it be proper for forming the plumula into a flem. Accordingly if the feed leaves are cut off, the plant refufes to vegetate.

It will be very natural to ank, If this be true, how How the come the leaves themfelves to be produced? Even if no are pioduanfwer could be given to this queftion, it could not uver- ced. turn a fingle fact which has been formerly mentioned, nor affect a fingle conclufion as far as it has been fairly deduced from thefe facts. We know that the leaves exift long before they appear ; they have been traced even five years back. They are completely formed in the bud, and fairly rolled up for evolution, many munths before that fpring in which they expand. We know, too, that if we take a bud, and plant it properly, it vegetates, forms to itfelf a root, and becomes a complete plant. It will not be faid, furely, that in this cafe the bud imbibes nourifiment from the earth; for it has tu form a root before it can obtain nuurifhment in that manner ; and this rout cannot be formed without nourifhment. Is not this a demonftration that the bud contains, already laid up in itfelf, a fufficient quantity of nourifhment, not only to develope its own organs, but alio to form new ones. This we confider as a fufficient anfwer to the objection. During the fummer, the plant lays up a fufficient quantity of nourifhment in each bud, and this nouriflment is afterwards employed in developing the leaves. This is the reafon that the leaves make their appearance, and that they grow during the winter, when the plant is deprived of its organs of digeltion.

Hence we fee why the branch of a vine, if it be introduced into a hothoufe during the winter, puts furth leaves and vegetates with vigour, while every other part of the plant gives no figns of life. Hence alfo the reafon that the inoculation of plants fucceeds (F).

If a tree be deprived of its leaves, new leaves make their appearance, becaufe they are already prepared for that purpofe : but what would be the confequence if a tree were deprived of its leaves and of all its buds for
(E) Plants of a white colour, from vegetating in the dark, are called etiolated, from a French word which fignifies a far, as if they grew by flar light.
(F) Hence alfo the caufe of another well known phenomenon. The fap flows out of trees very readily in fpring before the leaves appear, but after that the bleeding ceafes altogether. It is evident that there can be fcarcely any circulation of fap before the leaves appear; for as there is no outlet, when the veffels are once full, they can admit no more. It appears, however, from the bleeding, that the routs are capable of imbibing, and the reffels of circulating the fap with vigour. Accordingly, whenever there is an outlet, they perform their functions as ufual, and the tree bleeds; that is, they fend up a quantity of fap to be digefted as ufual : but as there are no digething organs, it flows out, and the tree receives no injury, becaufe the fap that flows out would not have been imbibed at all, had it not been for the artificial opening. But when the digeflive organs appear, the tree will not bleed; becaufe thefe organs require all the fap, and it is condtantly flowing to them.

Vegeta- five years back? That plants do not vegetate without leaves, is evident from an experiment of Duhamel. Hc ftript the bark off a tree in ringlets fo as to leave five or fix rings of it at fome diftance from each other, with no bark in the intervals. Some of thefe rings had burds and leaves; thefe increafed confiderably in tize; but one ring which had none of thefe remained for years unaltered.
26. The peculiar juice thus formed in the leaves is carried by veffels intended for that ufe to all the parts of the plant, in order to be employed for the purpofes of vegetation; -to increafe the wood, the bark, the roots; to prepare the feeds, lay up nourifment for the buds, and to repair the decayed parts of the \{yflem, or form new ones.

If we had any method of obtaining this peculiar juice in a ftate of purity, the analyfis of it would throw a great deal of light upon vegetation; but this is fearce poffible, as we cannot extract it without dividing at the fame time the velfels which contain the fap. In many cafes, however, the peculiar juice may be known by its colour; and then its analyfis may be performed with an approach towards accuracy. The experiments made on fuch juices have proved, as might have been expected, that they differ very confiderably from each other, and that every plant has a juice peculiar to itfelf. Hence it follows, that the proceffes which go on in the leaves of plants mult differ at leaft in degree, and that we have no right to transfer the conclufions deduced from experiments on one fecies of plants to thofe of another fpecies. It is even probable, that the proceffes in different plants are not the fame in kind; for it is not reafonable to \{uppofe, that the phenomena of vegetation in an agaric or a boletus are precifely the fame as thofe which take place in trees and in larger vegretables, on which alone experiments have hitherto been made.

To attempt any general account of the ingredients of the peculiar juice of plants, is at prefent impoffible. We may conclude, however, from the experiments of Chaptal, that it contains the vegetable fibre of wood, either oready formed, or very nearly lo; juft as the blood in animals contains a fubftance which bears a ftrong refemblance to the mufcular fibres.

When oxy-muriatic acid was poured into the peculiar juice of the euphorbia, which in all the fpecies of that fingular genus is of a milky colour and confiftency, a very copious white precipitate fell down. This powder, when wathed and dried, had the appearance of fine ftarch, and was not altered by keeping. It was neither affected by water nor alkalies. Alcohol, affitted by heat, diffolved two thirds of it; which were again precipitated by water, and had all the properties of refin. The remaining third part poffeffed the properties of the woody fibre. Mr Chaptal tried the fame experiment on the juices of a great number of other plants, and he conftantly found that oxy-muriatic acid precipitated from them woody fibre. The feeds of plants exhibited exactly the fame phenomenon; and a greater quantity of woody fibre was obtained from them than from an equal portion of the juices of plants *. Thefe experiments are fufficient to fhew, that the proper juices of plants contain their nourifhment ready prepared, nearly in the Itate in which it exitts in the feed for the ufe of the young embryo.

The peculiar juices of plants, then, contain more carbon, hydrogen, and oxygen and lefs water, and probably lime alfo, than the fap. They are conveyed to every part of the plant; and all the fubftances whijeh we fund in plants, and even the organs themfelves, by which they perform their functions, ate formed from them. But the thickeit veil covers the whole of thele proceffes; and fo far lave philofophers hitherto been from removing this veil, that they have not even been able to approach it. All thefe operations, indeed, are evidently chemical decompofitions and combinations; but we neither know what thefe decompofitions and combinations are, nor the intruments in which they take place, nor the agents by which they are regulated.
27. Such, as far as we are acquainted with them, planes de: are the changes produced by vegetation. But plants play and de
do rot continue to vegetate for ever; fooner or laterdie. they decay, and wither, and rot, and are totally decompofed. This clange indeed does not happen to all plants at the end of the fame time. Some live only for a fingle feafon, or even for a florter period ; others live two deafons, others three, others a hundred or more; and there are fome plants which continue to vegetate for a thoufand years. But foouer or later they all cea?c to live; and then thofe very chemical and mechanical powers which had promoted vegetation combine to deflroy the remains of the plant. Now, What is the caufe of this change? Why do plants die?

This queftion can only be anfwered by examining with fome care what it is which conltitutes the life of plants; for it is evident, that if we can difcover what that is which conftitutes the life of a plant, it cannot. be difficult to difcover what conftitutes its death.

Now the phenomena of vegetable life are in general 161 vegetation. As long as a plant continues to vegetate, Phenome. we fay that it lives; when it ceafes to vegetate, we na of vege conclude that it is dead.
'The life of vegetables, however, is not fo intinately connected with the phenomena of vegetation that they cannot be feparated. Many feeds may be kept for. years without giving any fymptom of vegetation; yet. if they vegetate when put into the earth, we fay that they poflefs life : and if we would fpeak accurately, we mult fay alfo, that they poffeffed life even before they were put into the earth; for it would be abfurd to fuppofe that the feed oldained life merely by being put into the earth. In like manner, many plants decay; and give no fymptoms of vegetation during winter ; y $:$ t if they regetate when the mild temperature of fpring affects them, we confider thern as having lived ail winter. The life of plants, then, and the fhenomena of regetation, are not precifely the fane thing; for the one may be feparated from the other, and we can even fuppofe the one to exif without the other. Nay, what is more, we can, in many cafes, decide, withont hefitation, that a vegetable is not dead, even when no vegetation appears; and the proof which we have for its life is, that it remains unaltered; for we know that when a regetable is dead, it foon changes its appearance, and. falls into decay.

Thus it appears that the life of a vegetable confifts in two things. 3. In remaining unaltered, when circumflances are unfayourable to vegetation; 2 In exhibituro

Vcgeta- hibiting the phenomena of vegetation when circumananelon. ces are favourable. When neither of thefe two trings
lappens, we fay that a vegetable is dead.

The phenomena of vegetation have been enumerated above. 'They confift in the formation or expanfion of the orgars of the plant, in the taki.g in of nourilh went, in carrying it to the leaves, in digelling it, in ciftriburing it through the plant, in augmenting the oulk of the plant, in repairing decayed parts, in forming new organs when they are neceffary, in producing feeds capable of being converted into plants fimilar to the pareat. The catle of thefe phenomena, whatever it may be, is the caufe alfo of vegetable life.

All the fubtances which have been emmerated in the firft part of the article Chemistry, Suppl, together with their compounds and component parts, pofefs certain qualities in common : in confequence of which, a term has been invented which includes them all. This tern is matic. Now thefe common qualities may all ultimately be refolved into certain attractions and repulfions which thefe fubftances exert. Thefe qualities may be faid, without any impropriety, to be effential to mather ; becaufe every body to which we give the name of matter poffefles them; and if any body wcre to be deprived of thefe qualities, it could no longer be incluced under the denomination maiter. In fhort, the word matter comprehends under it certain qualities: every fibilance which poffeffes thefe qualities is called matter; and no other fuhftance except thefe can receive the name of 362 matter without altering the meaning of the word.

The attractions and repulfions of matter have been examined with care; and the changes which they produce lave been afeertained with confiderable accuracy. They have even been reduced to general principles under the name of mechaincal and chemical lazes. Whenever any change is obfersed, if that change be a cafe of a mechanical or chenical law, we fay that the agent is anater; but if the change cannot be reduced under thefe laws, or if it be incompatible with thefe laws, we mult fay, unlefs we would pervert the meaning of words altogether, that the agent is not matter.

Now it cannot be difputed that feveral of the phenomena of life in vegetables are incompatible with the laws of mechanics and chemiftry. The motion of the fap, for inflance, muft be produced by the sontraction of the veffels; and the contraction of veffels, on the application of ftimuli, is incompatible with the laws of chemiftry, becaufe no decompofition takes place; and of mechanics, becaufe a much greater force is generated than the generating body itfelf poffeffed. The evolution of the organs of vegetables, the reparation of decayed organs, the formation of new ones to fupply the place of the old, the production of feeds capable of producing new plants, the contant fimilarity of individuals of the fame fpecies-thefe, and many other well known phenomena, cannot be reduced under mechanical and chemical laws. The caufe of life, then, in plants, is a fubfance (for we can Corm no conception of an agent which is not a fubftance) which does not ait according to the laws of mechanics and chemiftry,
and which confequently is not matter. We Mall therefore, till a better name be chofen, denominate it the vegetative principle (c)

The nature of the vagetative principle can only be de- Nature of 164 cinced from the phenomena of regetation. It evidently the vegefollows a fixed plan, and its actions are directed to pro- ta ive pha mote the good of the plant. It has a power over mat. ciple. ter, and is capable of directing its attractions and icpul. fions, ins fuch a manner as to render them the inftruments of the fornation, and improverent, and prefervation of the plant. It is ceppaile alfo of generating fubftances enderwed with powers dimilar to itfelf. The plan according to which it acts, difplays the moft confummate wifdom and forefigh:, and a kiowledge of th: properties of matter inâbitcly bevond whàt man caa boaft.

Metaphyficians have thought proper to divide illwiother fubftances in to two claffes, matier and mind. It ive fole ent wed low this divifion, the vegetative primciple, as it is not wit conmaterial, muft undoubtedly be ranked urder mina. But if confcioufnefs and intelfigence be confidered as effential to mind, which is the eafe according to their definition, we cannot give the vegetative principle the name of mind, becaufe it has not been proved that it pulfeffes confcioufnefs and intelligence. It a.cts indeed according to a fixed plan, which difplays the highett degree of intelligence; but this plan may belong, not to the vegetative principle itfelf, but to the Being who forned that principle. We can conceive it to have been endowed by the Author of Nature with peculiar powers, whieh it mult always exert aceording to certain fixed lavs; and the phenomena of vegetation may be the refult of this mode of acting. This, as far as we can fee, is not impoffible. It muft be fhewn to be impoffible by every perfon who wihhes to prove that plants poffefs confcioufnefs and intelligence; for the proofs of this confcioufnefs can only be deduced froni the defign which the actions of plants manifet. Thofe philofophers who have afcribed confcioufnefs and intelligence to plants, have founded their belief priacipally on certain actions which plants perform on the application of flimuli. But thefe actions prove nothing more than what cannot be denied, that there exifts a vegetative principle, which is not material, and which has certain properties in comrron with the living principles of animals; but whether or not this vegetative principle poffeffes confcioufnefs and intelligence, is a very different queftion, and muft he decided by very different proofs. We do not fay that the heart of an animal is confcious, becaufe it continues to beat on the application of proper ftimuli for fome time after it has been Separated from the reft of the body.

The death of plants, if we can judge from the phe-Death off nomena, is owing, not to the vegetative principle lea-plants. ving them, but to the organs becoming at laft altogether unfit for performing their functions, and incapable of being repaired by any of the powers which that principle poffeffes. The clianges which vegetable fubitances undergo after death come now to be examined. They flall form the fubject of the enfuing chapter.

Снағ.
(c) Phyfiologits have ufually given it the name of living frinciple. We would have adopted that name, if it had not been too general for our purpofe.

Bread. Chaf. III. Or the Decomposition of Vegetable Substances.

Not only entire plants undergo decompofition after death, but certain regetable fubstances alfo, whenerer they are mixed torgether, and placed in proper eiremmftances, mutually decompofe each other, and new com. duces bread, that which produces wine, that which produces becr, that which produces acetous acid or vinegar, and the putrefagive fermentation, or that which produces the fpontaneous decompofition of decayed vegetables. Thefe flall be the fubject of the five following fections. In order to avoid long titles, we fhall give to the firft three fedtions the name of the new fubltances produced by the fermentation.

Sect. I. Of Bread.

[^11]riod of fociety, would have rendered them the rivals of Ariftotle or of Newton.
The method of making bread fimilar to ours was known in the Ealt at a very carly period; but neither the precife time of the difcovery, nur thic name of the perfon who publifhed it to the wor!d, las heen preferved. TVe are certain that the Jews were acquaintel with it in the time of Mofes; for in Exodus * be find \& Ch. xï. a prohibition to ufe leavened hreat duriar, the ceichra-v. 15 . tion of the paffover. It wees not appear, he, wever, to have becn known to Abraham; for we hear in his hiftory of cakes frequently, but nothing of leaven. E:gypt, both from the nature of the foil and the earls pleriod at which it was civilized, bids fairect for the difcovery of making bread. It can fearcely be doubted that the Jews learned the art from the Egyptians. The Greeks affure us that they were taught the art of making bread ly the god Pan. We learn from Homer that it was known during the Trojan war \dagger. The Ro. flisd, iso mans were ignorant of the method of making bread till ${ }^{216}$. the year 580 , after the building of Rome, or 200 years before the commencement of the Clriftian era \ddagger. Since \ddagger Plin. I. xs. that period the art has never been unknown in the fouth cap. 11 . of Europe ; but it made its way to the nortb very lowly, and even at prefent in many northern countries fermented bread is but very feldom ufed.
The only fubitance well adapted for making bread, subfiances we mean loof bread, is wheat four, which is compofed which of four ingredients; namely, gluten, ftarch, alhumen, make and a fweet mucous matter, which poffeffes wearly the properties of fugar, and which is probably a mixture of fugar and mucilage. It is to the gluten that wheat flour owes its fupcriority to every otler as the badis of bread. Indeed there are only two other fubflances at prcfent known of which good loaf bread can he made; thefe are rye and potatoes. The rye loaf is by no means fo well raifed as the wheat loaf; and potatoes will not make bread at all without particular management. Potatoes, previoufly boiled and reduced to a very fine tough pafte by a rolling pin, muft be mixed with an equal weight of potatoe Itarch. This mixture, baked in the ufual way, makes a very white, well raifed, pleafant bread. We are indebted for the procefs to Mr Permentier. Barley-meal perhaps might be fubfituted for flarch.
The baking of bread- confifts in mixing wheat flour Baking of with water, and forming it into a pafte. The average bread. proportion of thefe is two parts of watcr to three of flour. But this proportion varies conliderably, according to the age and the quality of the flour. In general, the older and the better the flour is, the greater is the quantity of water required. If the pafte, after being thus formed, be allowed to remain for fome time, its ingredients gradually act upon each other, and the patte acquires new propertics. It gets a difagreeable four tafte, and a quantity of gas (probably carbonic acid gas.) is evolved. In hort, the fafte ferments (H). Thefe changes do not take place without water; that liquid, therefore, is a neceffiry agent. Poflably it is decompofed by the action of the flarch upon it ; for when ftarch is diluted with water, it gradually becomes four. The gluten, too, is altered, either by the action of the water on it, or of the flarch; for if we examine the pafte 4 C after
(h) It was from this progefs that Van Helmont trabsferred the word fermentation into chemitry.

Bread. after it has undergone fermentation, the gluten is no longer to be found. If pate, after ttanding for a fufficient time to ferment, be baked in the ufual way, it forms a loaf full of eyes like our bread, but of a tate fo four and unpleafant that it cannot be eaten. If a fmall quantity of this old pafte, or leaven as it is called, be mixed with new made palte, the whole begins to ferment in a thort time; a quantity of gas is evolved; but the glutinous part of the flour renders the pafle fo tough, that the gas camnot efeape; it therefore caufes the palle to fwell in every direction : and if it be now baked into loaves, the imnienfe number of air bubbles imprifoned in every part renders the bread quite full of eyes, and very light. If the precife quantity of leaven riecefary to produce the fermentation, and no more, has leen ufed, the bread is fufficiently light, and has no unpleafaut tatte; but if too much leaven he employed, the bread has a bad tafte; if too little, the fermentation does not come on, and the bread is too compact and heavy. To make good bread with leaven, therefore, is very difficult.

The ancient Gauls had another method of fermenting bread. They formed their pafte in the ufual way; and inftead of leaven, mixed with it a little of the barm which collects on the furface of fermenting beer *. This mixture produced as complete and as fpeedy a fermentation as leaven ; and it had the great advantage of not being apt to fpoil the talle of the bread. About the end of the $17^{\text {thi }}$ century, the bakers in Paris began to introduce this practice into their procefles. The practice was difcovered, and exclaimed againtt ; the faculty of medicine, in 1688, declared it prejudicial to healih; and it was not till after a long tinie that the bakers fucceeded in convincing the public that bread baked with 8 arm is fuperior to bread baked with leaven. In this country the bread has for thefe many years been fermented with barm.
What is this barm which produces thefe effects? The quettion is curious and impurtant ; but we are not able to anfwer it completely. Mr Henry of Mancheller has concluded, trom a number of very interefting experiments, that the only ufeful part of barm is carbonic acid gas, and that this gas therefore is the real fermenter of paite \dagger.

That the barm of beer, in its ufual fate, contains carhonic acid gas, cannot be doubted; and that carbonic acid gas actis as a ferment, the experiments of Mr Heury prove decifively. But that the only active part of barm is carbonic acid gas, and nothing but carbonic gas, is extremely cloubtful, or rather we are certain that it is not true. It has been cuftomary with the bakers of Paris to bring their barm from Flanders and Pi cardy in a fate of drynefs. When fkimmed off the beer, it is put intu facks, and the moifure allowed to drop out; then thefe facks are fubjected to a flrong preflure, and when the barm is dry it is made up into + Enc. Mheth balls \dagger. Now, in this flate, it is not to be fuppofed art. . 1.249 - that bu bies of carbonic acid can remain entangled in the barm; they muft have been fqueezed out by the prefs, and by the fubfequent formation of the barm into balls: yet this barm, when moiftened with water, ferments the bread as well as new barm.

After the bread has fermented, and is properly raifed,
it is put into the oven previoufly heated, and allowed to remain till it be baked. The mean heat of an oven, as afectained by Mr Tillet, is $44^{80 \%}$. The bakers do Heat of the not ufe a thermometer; but they judge that the oven is $* E_{n c .}$ Matb. arrived at the proper heat when flour thrown on the 2 zt . i. 275° floor of it becomes black very foon without taking fire. We fee, from Tillet's experiment, that this happens at the heat of 448°.

When the bread is taken out of the oven, it is found Lors of ${ }^{175}$ to be lighter than when put in; as might naturally have weighe been expected, from the evaporation of moifure, which̀ fufaiied in muft have taken place at that temperature. Mr Tillet, and the other commiffioners who were appointed to examine this fubject in confequence of a petition from the bakers of Paris, found that a loaf, which weighed before it was put into the oven 4.625 lhs . after being taken out baked, weighed, at an average, only 3.8 a 3 lbs . or 0.812 lb . lefs than the pafte. Confequently 100 parts of pafte, lofe, at an average, 17.34 parts, or fomewhat more than $\frac{\alpha}{5}$ th by baking *. They found, how- " Ibid. 275 . ever, that this lofs of weight was by no means uniform, even with refpect to thofe loaves which ivere in the oven at the fame time, of the fame form, and in the fame place, and which were put in and taken out at the fame inftant. The greatef difference in thefe circumflances anounted to .2889 , or 7.5 parts in the hundred, which is about ${ }_{\mathrm{T}}^{\mathrm{T}}$ th th of the whole. This difference is very confiderable, and it is not cafy to fay to what it is owing. It is evident, that if the pafte has not all the fame degree of moitture, and if the barm be not accurately mixed through the whole, if the fermentation of the whole be not precifely the fame, that thefe diffe. rences muft take place. Now it is newlefs to obferve how difficult it is to perform all this completely. The French commiffioners found, as might indeed have been expected, that, other things being equal, the lofs of weight futtained is proportional to the extent of furface of the loaf, and to the length of time that it remains in the oven; that is to fay, the fmaller the extent of the external furface, or, which is the fame thing, the nearer the loaf approaches to a globular figure, the fmaller is the lofs of weight which it fuftains; and the longer it continues in the oven, the greater is the lofs of weight which it fuftains. Thus a loaf which weighed exacily 4 lbs . when newly taken out of the oven, being replaced as foon as weighed, luf, in ten minutes, .125 lb . of its weight, and in ten minutes more it again lolt $.062 \mathrm{lb} .+$.

```
+ Rlid. P
```

Loaves are heavieft when juft taken out of the oven; 270 . they gradually lofe part of their weight, at leaft if not kept in a damp place, or wrapt round with a wet cluth (k). Thus Mr Tillet found that a loaf of 4 lbs . after being kept for a week, wanted .3125 , or nearly r_{i} th of its original weight \ddagger.

When bread is newly taken out of the oven it has a 176 peculiar, and rather pleafant fmell, which it lofes by properries keeping; as it does allo the peculiar tafte by which new bread is diftinguihed. This thews us, that the bread undergoes chemical changes; but what thefe changes are, or what the peculiar fubflance is to which the odour of bread is owing, is not known.
(x) This is an excellent method of prefetving bread frefh, and free from mould, for a long time.

Bread differs very completcly from the flour of which it is made, for none of the ingredients of the flour can now be difcovered in it. The only chemift who has attempted an analyfis of bread is Mr Geoffroy. He found that 100 parts of bread contained the following ingredients:
24.735 water.
32.030 gelatinous matter, extracted by boiling water. 39.843 refiduum infoluble in water.

```
\(96.6=8\)
\(3.39=\) lofs.
```


100.

But this analy fis, which was publifhed in the Memoirs of the French Academy for the year 1732, was made at a time when the infant thate of the feience of chemiftry did not admit of any thing like accuracy.

Sect. II. Of Wine.

§ Fabroni,

Anm. de

CSim. xaxi. 302.

179
Fo- which water,
\Stabl, i.

There is a confiderable number of ripe fruits from which a fiweet liquor may be expreffed, having at the fane time a certain degree of acidity. Of fuch fruits we have in this country the apple, the cherry, the goofeberry, the currant, \&c. but by far the moft valuable of thefe fruits is the grape, which grows luxu. riantly in the fouthern parts of Europe. From grapes, fully ripe, may be expreffed a liquid of a fweet tafte, to which the name of mufl has been given. This liquid is compored almoft entirely of the ingredients; namely, water, fugar, jelly, mucilage, and tartarous acid partly faturated with potafs. The quantity of fugar which grapes fully ripe contain is very contiderab'e; it may be obtained in cryttals by evaporating mult to the confiftence of fyrup, ieparating the tartar which precipitates during the evaporation, and then fetting the mult afide for fome months. The cryitals of fugar are gradually formed.

When mult is put into the temperature of about 70°, the different ingredients begin to act upon each other, and what is called vinous fermentation commences. The phenonena of this fermentation are an intefline motion in the liquid, its beconing thick and muddy, a temperature equal to 72.5^{4}, and an evolution of earbonic acid gas. In a few days the fermentation ceafes, the thick part fubfides to the botton, the liquid becomes clear, it has loft much of its faccharine tatte, and affumed a new one, its ipecific gravity is diminifhed; and in thont, it has become the liquid well known under the name of wine.

Now what is the caufe of this fermentation ; what are the fubftances which mutually deconpofe each other; and what is the nature of the new fubllance formed?

Thefe changes are produced altogether by the mutual action of the fubitances contained in mult; for they take place equally well, and wine is formed equally well in clofe veffels as in the open air y.

If the mujl be evaporated to the confiftency of a thick fyrup, or to a rob, as tlee elder chemits termed it, the fermentation will not commence, though the proper temperature, and every thing elfe neceffary to produce fermentation, be prefent $\|$. But if this fyrup be again diluted with water, and placed in favourable circumfances, it will ferment. Therefore the prefence of
water is abfolutely neceffary for the exiftence of vinous fermentation.

If the juice of thofe fruits which contain but little sugar, fugar, as currants, be put into a favourable fitnation, fermentation indeed takes place, but fo flowly, that the product is not awine, hut vinegar: but if a fufficient quantity of fugar be added to thefe wery juices, wine is readily produced. No fubftance whatever can be made
to undergo vinous fermentation, and to produce wine, readily produced. No fubftance whatever can be made
to undergo vinous fernentation, and to produce wine, unlefs fugar be prefent. Sugar therefore is abfolutely neceffary for the exiftence of vinous fermentation; and we are certain that it is deconpofed during the procefs, for no fugar can be obtained from properly fermented wine.

All thofe juices of fruits which undergo the vinous an acid, fermentation, either with or without the addition of fugar, contain an acid. . We have feen already in the firft chapter that the vegetable acids are obtained chiefly from fruits. The apple, for inflance, contains malic acid ; the lemon, citric acid; the grape, tartarous acid. The Marquis de Bullion las afcertained, that mu/t will not ferment if all the tartarous acid which it contains be feparated from it *. We may conclude from this, that the prefence of a vegetable acid is abfolutely neceffary for the commencement of the vinous fermentation. This renders it probable that the effential part of barm is a vegetable acid, or fomething equivalent; for if fugar be diffolved in four tinves its weight of water, mixed with the yeall of beer, and placed in a proper temperature, it undergoes the vinous fermentation \dagger. $+\begin{gathered}\text { Bergman } \\ 182 \\ 82\end{gathered}$

All the juices of fruits which undergo the vinous And jelly fermentation contain a quantity of jelly, or mucilage; are necefor of both. Thefe two fubtances refemble each other fary. in fo many particulars, and it is fo didicult to feparate them,' that we fhall fuppofe they have the farne effect in the mixture. The prefence of thefe fubltances renders it probable that they alfo are neceflary for the vinous fermentation. Perhaps they act chiefly by their tendency to become acid.

Thus we fee, that for the production of wine a certain temperature, a certain portion of water, fugar, a vegetable acid, and, in all probability, jelly alfo, is neceffary. Mr Lavoifier found that fugar would mut ferment unlefs diffolved in at leait four times its weight of water. This feems to indicate that the particles of fugar mult be removed to a certain diflance from each other before the other ingredients can decompofe them. The evolution and feparation of carbonic acid gas in fuch quantity, fhews us that the proportion of the carLon and the oxygen of the fugar is diminilhed. It is not certain that the mucilage of the wine is decompufed fo completely as the fugar; for it has been obferved, that when the mult abounds in mucilage, the wine is apt to become four.

When wine is diftilled by means of a low heat, there comes over a quantity of alcobol, and the remainder is a folution of acetons acid. From this fact, it has been concluded that wine is compofed of acetous acid and alcohol. But that the diftillation oceafions a chemical change in the ingredients of wine is evident from this, that if we again mix the aleohol and acetous acid, we do not reproduce the wine.

Fourcroy has attempted to fhew that alcohol exited ready formed ; but his proofs are not conclulive. Fab:
\qquad

\qquad

\qquad
\qquad
\qquad

\qquad

\qquad

[^12]vine.
\qquad .

 \square
roni has frewn, that alcohol cannot be obtained from new made wine by any other method than diflillation. When wine is fatured with very dry carbonat of potafs, no alcohol makes its appearance on the furface of the mixture, yet a very fmal! quaatity of alcohol, artificially mixed with wine, may be detected by this method. It is certain, however, that alcohol exifts ready formed in old wine.

Sect. III. Of Beer.

THe method of making beer was known in the moft rernute ages; we are ignorant to whom the world is indebted for the difcovery of it. Beer is ufually made from larley.

* Collier in order to faturate it with that liquid. It ought then to be removed as fpeedily as poffible, otherwife the water diffolves, and carries off the molt valuable part of the grain. This barley is then to be laid in a heap, for twenty-four hours; heat is evolved, oxygen gas abforbed, carbunic acid gas emitted, and germination commences with the fhooting forth of the radiele. It is then fpread upon a cool fluor, dried flowly, and is afterwards known by the name of malt *.

Malt, previoufly ground to a courfe powder, is to be infufed in a fufficient quantity of pure water, of the temperature of 160°, for an hour. The infufion is then to be drawn off, and more water may be added, at a higher temperature, till all the foluble.part of the malt is extracted. This infufion is known by the name of zwort. It has a fweet tafte, and contains a quantity of facchariae, and doubtlefs alfo of gelatinous matter.

When evort is placed in the temperature of about 600 , fermentation gradually takes place in it, and the very fame phenomena appear which dittinguifh the production of wine. The fermentation of wort, then, is nothing but a particular cafe of the vinous fermentation. But wort does not ferment fo well, nor fo foun, nor does it produce nearly fo great a quantity of good fermented liquor, as when yeaft is added to it. The reafon of which is, probably, that the fermentation does not commence till an acid is generated in the wort, and before that happens part of the faccharine contents are decompofed ; whereas the yeait adds an acid, or, at lcaft, fomething equivalent to it, at once.

Wort ferments in clofe veffels, as Mr Collier afcertained by experiment, equally well as in the open air. Therefore the decompofition is produced entirely by the fubftances contained in the wort, without the addition of any thing from the air. The quantity of beer produced in clofe veffels is much greater than when the procefs takes place in the open air. The reafon of which is, that in the open air the beer gradually evaporates during the fermentation. Thus Mr Collier found that 11 quarts, $3^{\frac{\pi}{2}} \mathrm{oz}$. fermented in open veffels, loft, in 12 days, 40 oz .; whereas an equal weight, fermented in clofe veffels, loft only 8 oz . in the fame time. Yet the quality of the beer was the fame in each; for equal quantities of both, when dititled, yielded precifely the fame portion of alcohol \dagger.

During the fermentation, a quantity of carbonic acid gas is conftantly difengaged, not in a itate of purity, but containing, combined with it, a portion of the wort; and if this gas be made to pafs through water, it will depofite wort, which may be fermented in the ufial manner *.

When beer is diftilled, alcohol is obtained, and the Moncb. refiduum is an acid liquor \dagger. The theory of beer is fo obvioufly the lame with that of wine that it requires no additional explanation.

Acetous Fcrmenta. tion, Putrefacm tion. Colltior Mcem. Henry, Msinn. ii

Sect. IV. Of the Acetous Fermentation.

If wine or beer be kept at a temperature between Subna ${ }^{187}$ 70° and 90°, it gradually lofes its properties, and is con- which unverted into actous acid.
derge the
During this change, a quantity of oxygen gas is mectousterabfurbed, and the whole of the fpirituous part of the wine or beer difappears. Confequently its ingredients naturally decompofed each other.

Neither pure alcohol, nor alcohol diluted with water, are capable of undergoing this change, neither do they abforb any oxygen. This abforption, then, is made by the mucilaginous matter which always exits in thefe liquids. No acetous acid is ever produced, unlefs fome acid be prefent in the liquid. We may conclude, then, that the mucilage acquires the properties of an acid before it begins to act upon the firituous part of the beer or the wine.

As the acetous acid has been already treated of in the article Chemistry, Suppl. it is unneceffary to dwell any lunger on this fubject here.

Sect. V. Of Putrfaction.

All vegetable fubitances, both complete plants and Nature of their componeut parts feparatcly, when left entirely to putrefac. themfelves, are gradually decompofed and dellroyed, provided moifture be prefent, and the temperature be not much under 45°, nor too ligh to evaporate fuddenly all the moifture, This decompofition has ubtained the name of putrefution.
It proceeds with moft rapidity in the open air; but the contact of air is not abfulutely neceffary. Water is, in all cafes, efiential to the procefs, and therefore is moft probably decompofed.

Putrefaction is conftantly attended with a fetid odour, owing to the emiffion of certain gafeons matters, which differ according to the putrefying fubitance. Some vegetable fubttances, as gluten, and cruciform plants, emit ammonia; others, as onions, feem to emit phofphorated hydrogen gas. Carbonic acid gas, and hydrogen gas, impregnated with unknown vegetable matters, are almoit conitantly emitted in abundance. When the whole procefs is finifhed, fcarcely any thing remains but the earths, the falts, and the metals, which formed a conftituent part of the vegetable. But our chermical knowledge of vegetable compounds is by far too limited to enable us to follow this very complicated procefs with any chance of fuccefo.

Part Il. Of Animal Substances.

 umalsand trary, can remove at pleafure from one place to another, getables. is poffefled of confcionfuefs, and a hish degree of intelligence. But on approaching the contiguous extremities of the animal and regetable kingdom, thefe Atriking differences gradually difappear, the objects acquire a greater degree of refemblance, and at lait approach each other fo ncarly, that it is fearcely poffible to decide whether fome of thofe fituated on the very boundary belong to the animal or vegetable kingdom.freditly To draw a line of diftinction, then, between animals finguill- and vegetables, would be a very difficult tafk; but it is - not neceffary for us, in this place at leaf, to attempt it ; for alnof the only animals whofe bodies have been hitherto esamined with any degree of chemical açuracy, belong to the moft perfect claffes, and confequently are in no danger of beinis confounded with plants. Indeed the greater number of facts which we have to relate, apply only to the human body, and to thofe of a few domettic animals. The tafk of analyfing all animal bodies is immente, and muft be the work of ages of indefatigable indutry.
We fhall divide this Part of the article into four chapters. In the firft chapter, we flall give an account of the different ingredients hitherto found in animals, fuch of them at leait as have heen examined with any degree of aecuracy: in the fecond, we thatl treat of the different members of which animal bodies are compofed; which mult confift each of valious combinations of the ingredients defcribed in the firlt chapter: in the third, we fhall treat of thofe animal functions which may be elucidated by chemitry : and, in the fourth, of the clanges which animal bodies undergo after death.

Chap. I. Of the lngredients of Animals.

The fubfances which have been hitherto detected in the animal kingdom, and of which the different parts of animals, as far as thefe parts have been analyfed, are found to he compofed, may be arranged under the following heads:

1. Fibrina,	8. Sulphur,
2. Albumen,	9. Oils,
3. Gelatine,	10. Acids,
4. Muilag,	11. Alkalies,
5. Bafis of bile,	12. Earths,
6. Urea,	13. Metals.
7. Sugar,	

Thefe fhall form the fubjeet of the following fections:
Sect. I. Of Fibeind.
If a quantity of blood, newly drawn from an animal,
be allowed to remain at reft for fome time, a thick red Albumen. clot हradually forms i: it, and fubfidcs. Separate this $\underbrace{}_{192}$ clot from the reft of the blood, wafh it repeatedly in Fibrina 192 water till it ceafes to give out any colour or tate to how obthe liquid; the fubftance which remains after this tained. procefs is denominated fibrina. It las been long known to playficians under the name of the filrous part of the blood, but has not till lately becin accurately defacribed.
librina is of a white colour, has no tafte, and is in. Its propers foluble in water and in alcohol. It is foft and ductile, ties. luas a confiderable degree of claticity, and refembles very much the gluten of vegetables.

Pure fixed alkalies do not act upon it, unlefs they be very much concentrated, and then they decompofe it. All the acids combine with it readily, and diffolve it. Water and alkalies feparate it again ; but it has loft entirely its former propertics. With muriatic acid it forms a green coloured jelly.

When nitric acid is poured upon fibrina, azotic gas is difengaged, as Berthollet firt difcovered. The quantity of this gas is greater than can be obtained from the fame quantity of other animal fubfances by the fame procefs*. After this, prufic acid and carbonic * Fcurcroy y_{1} acid gas are exhaled. By the affitance of heat the fi- Ann. de brina is difolved; much nitrous gas is difengaged; the ${ }^{\text {Cbim. i. } 41 \text {. }}$ liquid, when concentrated, yields oxalic and inalic acids; and white frakes are depofited, contifting of an oily fub-
ftance, and of phofpat of lime \dagger.
\dagger Fourcroy.
When fibrina is diftilled, it yields a very large quantity of ammonia \ddagger.
\ddagger Fourcreg,
Thefe properties are fufficient to flew us that thig Ann.de fubtance is compofed of azot, hydrogen, and carbon ; but neither the precife proportion of thefe ingredients, nor the manner of their combination, are at prefent known.

Sect. II. of Albunefi.

194
The eggs of fowls contain two very dificent fub- Albumen ftances: a yellow oily.like matter, called the yolk; and in Eganed a colourlefs glofy vifcid Iiquid, diftinguifhed by the name of zubite. This lat is the fubftance which che. mitts have agreed to denominate allonmen (L). The white of an egg, however, is not pure alhemen. It contains, mixed with it, fone carbonat of foda, and fome fulphur; but the quantity of thefe fubftances is fo fmall that they do not much influence its properties. We fhall therefore confider it is allunen.

On the application of a heat of $165^{\circ} \$$ it coagulates, $\$$ Culten. 23 is well known, into a white folid mafs; the confift-Cuagulated ency of which, when other things are equal, depends, by bea: in fome meafure, on the time during which the heat was applied. The coagulated rrafs has precifely the fame weight that it had while nuis.

The tafte of coagulated aibumen is quite different from that of liquid albumen : its appearance, too, and
(L) This is merely the Latia term for the white of an egg. It was firf introduced into chemiftry by the phytiologits.

Alhunmen. its properties, are entirely changed; for it is no longer foluble, as before, cither in hot ur in cold water.
196
Phenomena of this coagulaton. 95. + Sctecle, ii 58.

The coagulation of albumen takes place even though air he completely exclucled; and even when air is prefent there is no abforption of it, nor does albumen in coagulating change its volume *. Ac:ds have the property of coagulating albumen, as Scheele afcertained \dagger. Alcohol alfo produces, in fome meafure, the fanne effect. Heat, then, acids and alcobol, are the agents which may be employed to coagulate albumen.

It is remarkable, that if albumen be diluted with a fufficient quantity of water, it can no longer be coagulated by any of thofe agents. Scheele mixed the white of an egg with ten times its weight of water, and then, though he even loitcd the liquid, no coagulum appeared. Acids indeed, and alcohol, even then coagulated it; but they alfo lofe their power, if the albumen be diluted with a much greater quantity of water, as has been afcertained by many experiments. Now we know, that when water is poured into albumen, not only a meclanical mixture takes place, but a chemical comhination; for the albumen is equally diftributed through every part of the liquid. Confequently its integrant particles nuuft be farther feparated from each other, and their diftance muft increafe with the quantity of water with which they are diluted. We fee, therefore, that albumen ceafes to coagulate whenever its particles are feparated from each other beyond a certain diftance. That no other change is produced, appears evident from this circumfance, that whenever the watery folution of albumen is fufficiently eoncentrated by evaporation, coagulation takes place, upon the application of the proper agents, precifely as formerly.

It does nut appear that the diftance, of the particles of albumen is changed by coagulation; for coagulated albumen occupies precife!y the fame fenfible face as li * Carratori. quid albumen *.

197 Enquiry into its caufe.

Thus two things feem certain refpecting the coagulation of albumen: 1. That its particles muft not be beyond a certain diftance; 2. That the coagulation does not produce any fenfible change in their ditance. To what, then, is the coagulation of albumen owing? We can conceive no change to take place from a fate of liquidity to that of folidity, without fome change in the figure of the particles of the body which has undergone that change : for if the figure and the ditance of the particles of bodies continue the fanne, it is impoffible to conceive any change at all to take place. Since, then, the diftance of the particles of albumen does not, as far at leaft as we can perceive, change, we muft conclude that the figure of the particles actually does change. Now fuch a change may take place three ways; 1. The figure may be changed by the addition of fome new molecules to each of the molecules of the body. 2. Some molecules may be abftra\&ed frons every integrant particle of the body. 3. Or the molecules, of which the integrant particles are compofed, may enter into new combinations, and form new integrant particles, whofe form is differcnt from that of the old integrant particles. Sume one or other of thefe three things muft take place during the coagulation of albumen.

1. Scheele and Fourcroy have afcribed the coagulation of albumen to the firt of thefe canfes, namely, to the addition of a new fubtance. According to Scheele,
caloric is the fubflance which is added. Fourcroy, on Albumen. the contrary, affirms that it is oxygen.

Schecle fupported his opinion with that wonderful ingenuity which Thone fo eminently in every thing which he did. He mixed together one part of white of egg and four parts of water, added a little pure alkali, and then dropt in as much muriatic acid as was fufficient to faturate the alkali. The albumen coagulated; but when he repeated the experiment, and uled carhonat of alkali intead of pure alkali, no coagulation enfued. In the firt cafe, fays he, there was a double decompofition: the muriatic acid feparated from a quantity of caloric with which it was combined, and united with the alkali : while, at the fame inflant, the caloric of the acid united with the albumen, and caufed it in coagulate. The fame combination conld not take place when the alkaline carbonat was ufed, hecaufe the carbonic acid gas carried off the caloric, for which it has a ftrong affinity *.

This explanation is plaufible; but it is contrary to ${ }_{\mathrm{i} .}$ Scchecle 58 . every other known fact in chemiftry, to fuppofe that caloric can combine with a fubftance without occafioning any alteration in its bulk, and cannot therefore be admitted without the mof rigid proof.

Fourcroy obferves, in fupport of his opimion, that the white of an egg is not at firlt capable of forming a hard coagulum, and that it only acquires that property by expofure to the atmofphere. It is well known that the white of a new laid egg is milky after boiling; and that if the fhell be covered over with greafe, to exclude the external air, it continues long in that ftate; whereas the white of an old egg, which has not been preferved in that manner, forms a very hard tough coagulum. Thefe facts are undoubted; and they render it exceedingly probable, that albumen acquires the property of forming a hard coagulum only by abforbing oxygen : but they by no means prove that coagulation itfelf is owing to fuch an abforption. And fince coagulation takes place without the prefence of air, and lince no air, even when it is prefent, is abforbed, this opinion cannot be maintaised without inconfiffency.
2. The only fubflance which can be fuppofed to leave albumen during coagulation, fince it does not lofe weight, is caloric. We know that in mof cafes where a fluid is converted into a folid, caloric is actually dif. engaged. It is extremely probable, then, that the fame difengagement takes place here. But the opinion has not been confirmed by any proof. Fourcroy indeed fays, that in an experiment made by him, the thermometer rofe a great number of degrees. But as no other perfon has ever been able to obferve any fuch thing, ir cannot be doubted that this philofopher has been mifled by fome circumftance or other to which he did not attend \dagger. It is ufual, in many cafes, for bodies to lofe \dagger Tbomfon', bulk when they give out caloric ; but that there are ex- Fourcreve, ceptions to this rule, is well known.
3. Even if the fecond opinion were true, it is fcarcely poffible to conceive the coagulation of albumen to take place without fome change in its integrant particles. We can fee how all the fubftances which coagulate albumen might produce fuch a change; and the infolubility of coagulated albumen in water, and its other different properties, render it more than probable that fome fuch change actually takes place. But what that change is, cannot even be conjectured.

Animal SUBSTANCES.

If the folution of tan be poured into an aqueous folution of uncoagulated albumen, it forms with it a very copious precipitate, which is infoluble in water. This precipitate is a combination of tan albumen. This property which albumen has of precipitating with tan, was difcovered by Seguin $\oint:$ it furnifhes us with a method of detecting the prefence of albumen in any liquid in which we fufpect it.

Pure alkalies and lime water alfo dilfolve albumen; at the fame time ammonia is difengaged, owing to the decompofition of part of the albumen. Acids precipitate the albumen from alkalies, but its properties are changed *.

Nitric acid, when affifted by heat, difengages azotic gas from albumen \dagger; but the quantity is not fo great as may be obtained from fibrina \ddagger. The albumen is gradually diffolved, nitrous gas is emitted, oxalic and malic acids are formed, and a thick oily matter makes Sim. i. 4 Ir . its appearance on the furface $\$$. When diftilled, it furell's An. nifhes the fame products as fibrina, only the quantity of us, ii. i7. ammonia is not fo great $\|$.

Hence it follows, that albunien is compofed of azot, hydrogen, and carbon, as well as fibrina; but the proportion of azot is not fo great in the firft fubftance as inm. i. 43 . in the fecond.

Sect III. Of Galatine.

If a piece of the frefh fkin of an animal, an ox for inftance, after the hair and every impurity is carefully feparated, be wathed repeatedly in cold water, till the liquid ceafes to be coloured, or to abitract any thing; if the !kin, thus purified, be put into a quantity of pure water, and boiled for fome time, part of it will be difolved. Let the decoction be flowly evaporated till it is reduced to a finall quantity, and then fut afide to cool. When cold, it will be found to have affumed a folid form, and to refemble precifely that trenulous fubtance well known to every body under the name of jclly. This is the fubltance called in chemitry gelatine. If the evaporation be fill farther continued, by expofing the gelly to dry air, it becomes hard, femitranfparent, breaks with a glafly fracture, and is in fhort the fub. ftance fo much employed in different arts under the nane of glue. Gelatine, then, is precifely the fame with glue; only that it mult be fuppofed always free from thofe impurities with which glue is fo often contaminated.

Gelatine is tranfparent and colourlefs; when thrown inte water, it very foon fwells, and affumes a gelatinous form, and gradually diffolves completely. By evaporating the water, it may be obtained again unaltered-in the form of jelly.

When an infufion of tan is donpt into a fulution of gelatine in water, there is infantly formed a copious white precipitate, which las all the properties of leather. This precipitate is compoled of tan and gelatine. Thefe two fubftances, therefore, when combined, form leather. Albunien and gelatine are the only animal fubflances known which liave the property of combining with tan, and forming with it an infuluble compound. They may be always eafily detected, therefore, by means of tan; and they may be readily diftinguifled from each other, as albumen alone coagulates by heat, and gelatine alone concretes into a jelly.

Gelatine is infuluble in alcohol, and is ceen precipitated from water by it ; but both acids and aikalies diffolve it. Nitric acid difengages from it a fmall yuantity of azotic gas ; diffolves it, when affifted by licat, excepting an oily matter, which appears on the furface of the folution; and converts it, partly into oxalic and
malic acids*.

* Scbecte,

When difilled, there comes over firlt water, contain- Crell's Anm, ing fome animal matter; the gelatine then fwells, be-Traun. comes black, emits a fetid odour, accompanied with acrid fumes: Some empyreunatic oil then comes over, and a very fmall quantity of carbonat of ammonia: its coaly refiduum remains behind. Thefe pisenomena thew, that gelatine is compofed of carbon, hydrogen, and azot; but the proportion of azot is evidently much fmaller than in either fibrina or albumen \dagger.

Sect. IV. Of Animal Mucilage.

No word in chemiftry is ufed with lefs accuracy than mucilage. It ferves as a common name for almoft every animal fubftance which cannot be referred to any other clafs.

None of the fubstances to which the name of animal mutilage has been given, have been examined with care ; of courfe it is unknown whether thefe fublances be the fame or different.

Whether an animal fubftance poifeffes the following Prnpertice properties, it is at prefent denominated an animal muciof mucilare by chemitts.

1. Soluble in warer.
2. Infoluble in alcohol.
3. Neither coagulable by heat, nor concreting into a gelly by evaporation.
4. Not precipitated by the folution of tan.

Moft of the fubitances called mucilage have alfo the property of abforbing exygen, and of becoming by that means infoluble in water.

The mucilaginous fubtances fhall be pointed out in the nest chapter. In the prefent tate of our knowledge, any account of them here would merely be a repetition of the properties jult inentioned.

Sect. V. Of the Basis of Bize.

Into 3^{2} parts of frefh ox bile pour one part of con- Bafis of bile centrated muriatic acid. After the mixture has ftood how obfor fome hours, pafs it through a filter, in order to fe- tained, parate a white coagulated fubfance. Pour the filtrated liquor, which has a fine green colour, into a glafs veffel, and evaporate it by a moderate heat. When it has arrived at a certain degree of concentration, a green coloured fubitance precipitates. Decant off the cliar liquid, and wafl the precipitate in a fmall quantity of

Bafis of pure water. This procipitate is the lafis of bile, or the
y Cadot and Maclurg. || Fourcroy.

| 20.4 |
| :---: | Combites with oxy. ger. refin of lile, as it is lometimes called*.

The balis of bile is of a black colour; but when fyread out upon paper or on wood, it is green: its talle is intenfely bitter \dagger.

When heated to about 122°, it melts; and if the heat be Itill farther increafed, it takes fire, and burns with rapidity. It is foluble in water, both cold and hot, and till more foluble in alcoloot; but water precipitates it from that liquid \ddagger.

It is foluble alfo in alkalies, and forms with them a eompound which has been compared to a foap. Acids, when fuffecicutly diluted, precipitate it both from wa. ter and alkalies without any change; but if they be concentrated, the precipitate is rediffolved \oint.

When diftilled, it furnifhes fome febacic\|.
From thefe properties, it is clear that the bafis of bile has a confiderable refemblance to oils; but it differs from them entirely in feveral of its properties. The addition of oxygen, with which it combines readily, alters it fomewhat, and brings it ftill nearer to the clafs of oils.

In this altered llate, the bafis of bile may be obtained by the following procefs. Pour oxy-muriatic acid cautioully into bile till that liquid lofes its green colour ; then pats it through a filter to feparate fome albumen which coagulates. Pour more oxy-muriatic acid into the filtered liquid, and allow the mixture to repofe for fome time. The oxy-muriatic acid is gradually converted into common muriatic acid; and in the mean time the balis of bile abforbs oxygen, and acquires new properties. Pour into the liquid, after it has remained a fufficient time, a little common muriatic acid, a white precipitate immerliately appears, which may be feparated from the fluid. This precipitate is the bafis of bile combined with oxygen.

It has the colour and the confiftence of tallow, but Itill retains its bitter tafte. It melts at the temperature of 104°. It diffolves readily in alcohol, and even in water, provided it be affitted by lieat. Acids precipiI Foncroy, tate it from thefe folations f.
Ann. de
Cbim. vii.
${ }^{1} 76$.
105
Urea how obtained.

Sect. VI. Of UreA.

Evaporate, by a gentle beat, a quantity of human urine voided fix or eight hours after a meal, till it be reduced to the confitence of a thick fyrup. In this ftate, when put by to cood, it concretes into a cryltalline mafs. Pour, at different times, upon this mafs four times its weight of alcohol, and apply a gentle heat ; a great part of the mafs will be diffolved, and there will remain only a number of faline fubftances. Pour the alcohol Colution into a retort, and diftil by the heat of a fand bath till the liquid, after boiling fome time, is reduced to the confiftence of a thick fyrup. The whole of the alcohol is now feparated, and what remains in the retort cryftallizes as it cools. Thefe cryftals confift

* Fourcray of the lubftance known by the name of urca*.

This fubftance was firft defcribed by Rouelle the Younger in 5773 , under the name of the faponaceous extral of urine. He mentioned feveral of its pro. perties; but very little was knowa concerning its nature till Fourcroy and Vanquelin publifhed their experiments on it in 1799. Thefe celebrated chemifts have given it the name of urca, which we have adopted.

Urea, obtained in this manner, has the form of cry ftalline plates crofling each other in different directions. Its colour is yellowilh white; it has a fetid fmell, fome- 1 p 200 what refembling that of garlic or arfenic; its tafte is ties. Atong and acrid, refembling that of ammoniacal falts; it is very vifcid and difficult to cut, and has a good deal of refemblance to thick honey \dagger. When expofed \dagger Fourcros to the open air, it very foon attracts moifture, and is and Vau. converted into a thick brown liquid. It is extremely ${ }_{\text {de Cbim. }}^{\text {quin. }}$, fuluble in water; and during its folution, a contiderable x xxii. $p . \delta 7$ degree of cold is produced \ddagger. Alcohol diffolves it with \ddagger Ibid. P. facility, but fcarcely in fo large a proportion as water. ४৪. The alcohol folution yields cry ftals much more readily on evaporation than the folution in water.

When nitric acid is dropt into a concentrated folution of urea in water, a great number of bright pearl coloured cryftals are depofited, compofed of urea and nitric acid. No other acid produces this fingular effect. The concentrated folution of urea in water is brown, but it becomes yellow when diluted with a large quantity of water. 'l'he infufion of nut-galls gives it a ycllowifh brown colour, but canfes no precipitate. Neither does the infufion of tan produce any precipitatell.

When heat is applied to urea, it very foon melts, fwells up, and evaporates, with an infupportably fetid its compo odour. When diftilled, there comes over firlt benzoic ${ }^{\text {ncnt parts }}$ acid, then carbonat of ammonia in cryftals, fome carbonated liydrogen gas, with traces of pruffic acid and oil; and there remains behind a large refiduum, compofed of charcoal, muriat of ammonia, and muriat of foda. The diftillation is accompanied with an almoft infupportably fetid alliaceous odour. Two hundred and eighty-eight parts of urea yicld by diftillation 200 parts of carbonat of ammonia, 10 parts of carbonated hydrogen gas, 7 parts of charcoal, and 63 parts of benzoic acid, muriat of foda, and muriat of ammonia. Thefe three laft ingredients Fourcroy and Vauquelin confider as foreign fubltances, feparated from the urine by the alcohol at the fame time with the urea. Hence it follows, that 100 parts of urea, when diftilled, yield
92.027 carbonat of ammonia,
4.608 carbonated hydmogen gas,
3.225 charcoal.

$$
99.860
$$

Now 200 parts of carbonat of ammonia are compofed of 86 ammonia, 90 carbonic acid gas, and 24 water. Hence it follows, that 100 parts of urea are compoled of

$$
\begin{aligned}
& 39.5 \text { oxygen, } \\
& 32.5 \text { azot, } \\
& 14.7 \text { carbon, } \\
& 13.3 \text { hydrogen. }
\end{aligned}
$$

100.0

But it can fcarcely be doubted, that the water which was found in the carbonat of ammonia exifted ready formed in the urea before the diftillation f_{i}.

When the folution of urea in water is kept in a boiling heat, and new water is added as it evapurates, the urea is gradually decompoled, a very great quantity of carbonat of ammonia is difengaged, and at the fame time actous acid is formed, and fome charcoal precipi-* Ibid. po tates*.

When a folution of urea in water is left to itfelf for ${ }^{96 .}{ }_{208}$ fome tince, it is gradually decompofed. A froth col-spontane-
lects $\begin{aligned} & \text { ous dition }\end{aligned}$

Urea. lects on its furface; air bubhles are emitted which have a ftrong difagreeahle fnell, in which ammoovia and acetous acid are dittinguifhable. The liquid contains a quantity of acetons acid. The decompofition is much more rapid if a little gelatine be added to the folution. In that cafe more am:nomid is difentaged, and the pro- of oil appears on the furface, which concretes upont
cooling; the liquid. which comes over into the refeiver. contains acetous acid, and a quantity of fulphat of ammonia remaired in the retort diffolved in the undiftilled mars. By repeated difillations, the whole of Ibis. p. the urea is converted into acetous acid and ammomiat.

When nitric acid is poured upon cryitalfized urea, a violent effervefcence takes place, the mixture frothes, affumes the form of a dark red liquid, great quantities of nitrous gas, azotic gaa, and carbonic acid gas, are difengaged. When the effervefcence is over, there remains only a concrete white matter, with fome drops of reddifh liquid. When heat is applied to this retiduun, it detonates like nitrat of ammonia. Into a folution of urea, formed by its attracting moilure from the atmoSphere, an equal quantity of nitric acid, of the fpecilic gravity 1.460 , diluted with twice its weight of water, was added; a gentle effervefcence enfued : very gentle heat was applied, which fupported the effervefcence for two days. There was difengaged the firt day a great quantity of azotic gas and carbonic acid gas ; the fecond day, carbonic acid gas, and at laft nitrous gas. At the fame time with the nitrous gas an odour was perceivable of the oxygenated pruffic acid of Berthollet. At the end of the fecond day, the matter in the retort, which was become thick, took fire, and burnt with a violent explofion. The refiduum contained traces of pruffic acid and ammonia. The receiver contained a yellowifh acid liquor, on the furface of which fome

Muriatic acid diffolves urea, but does not alter it. Oxy-muriatic acid gas is abforbed very rapidly by a diluted folution of urea; fmall whitilh flakes appear, which foon become brown, and adhere to the fides of the veffel like a concrete oil. After a confiderable quantity of oxy-muriatic acid had been abforbel, the folution, left to itfelf, continued to effervefce excceding fowly, and to emit carbonic acid and azotic gas. After this effervefeence was over, the liquid contained muor foda; and at the fame time a quantity of ammonia is difengaged, the fame fubftance is difengaged when urea is treated with barytes, lime, or even magnefia. Hence it is evident, that this appearance muft be afcribed to the muriat of ammonia, with which it is conftantly mixed. When pure folid potafs is triturated with urea, heat is produced, a great quantity of ammonia is difengaged. The mixture becomes brown, and a fubftance is depofited, having the appearance of an empyreumatic oil. One part of urea and two of potafs, diffolved in four times its weight of water, when diftilled give out a great quantity of ammoniacal water ; the refiduum con-

When muriat of foda is diffolved in a folution of urea
drops of oil fwamt. riat and carbonat of ammonia.
falkalies. Urea is diffolved very rapidly by a folution of potafs tained acetite and carbonat of potars $\|$. Suppl. VoL. II. Part II.
in water, it is obtaincd by evaporation, nnt in cubic cryftals, its ufual form, but in regular octohedrons. Muriat of ammonia, on the contrary, which cryllallizes naturally in octohedrons, is converted into culues, by diffolving and cryftallizing it in the folution of urca.

Such are the propertics of this lingular fubtlance, as far as they have been afcertained by the experinaents of Fourcroy and Vauquelin. It differs from all animal fubtances hitherts examined, in the great prepostion of azot which enters into its con [ofion, and in the facility with which it is decompofed, even by the theat of boiling water.

Sect. VII. Of Sugar.

Sugak has been already deferibed in the former part. of this article as a vegetable fubftance ; nothing therefore is neceffary here but to point out the different fates in which it is found in amimals. It lias never iadeed been found in animals in every refpect timilar to the fugar of vegetables; but there are cettain animal fublances whicl have fo many properties in cummon with fingar, that they can fearcely be arranged under any other name. Thefe fubftances are,

1. Sugar of milk,
2. Honey,
3. Sugar of diabetic urine.
t. The method of obtaining fugar of milk has been already detailed in the article Chemistry, ñ. 488. to mike. which we refer the reader. For an account of its properties, we are indebted to the obfervations of Mr Lich. tenftein.

When pure, it has a white colour, a fweetilh tafte, and no fmell. Its cryftals are femitranfparent regular parallelopipeds, terminated by four-fided pyramids. Its fpecific gravity, at the temperature of 55°, is 1.543 . At that temperature, it is foluble in feven times its weight of water ; but is perfectly infoluble in alcohol. When burnt, it emits the odour of caromel, and exhibits precifely the appearance of buruing fugar. When ditilled, it yields the fame products as fugar, only the ${ }_{\mathrm{f}}$ Scbecte, empyreumatic oil obtained has the odour of benzoic ${ }_{\mathrm{ij} .70 .}$ acid§.
2. Honey is prepared by bees, and perhaps rather Honey. belongs to the vegetable than the animal kingdom. It has a white or yellowifh colour, a foft and grained confiftence, a faccliarine and aromatic fmell; by means of alcohol, and even by water, with peculiar management, a true fugar is obtained; by diltillation it aftords an acid phlegm and an oil, and its coal is light and fpongy like that of the mucilages of plants. Nitric acid extracts the oxalic acid, which is entirely fimilar to that of fugar ; it is very foluble in water, with which it forms a fyrup, and like fugar paffes to the vinous fermentation*.

* Fourcroy.

3. The urine of perfons labouring under the difeafe known to phyficians by the name of diabetes, yiclds, when evaporated, a confiderable quantity of matter, which poffeffes the properties of fugar.

Sect. VIII. Of Oils.
213
THE oily fubftances found in animals may be arran- Fixed oifs ged under three heads: 1. Fixed oils; 2. Fat ; 3. Spermaceti.

1. The fixed oils are obtained chienly from different kinds of filh, as the whale, \&c.; and they are diftin-

4 D guifhed

Oils

 $\underbrace{\text { Oils }}$214
Properties of fat.

* Nichol.
fon's Four. nal, i. 7 I.

275 Properties of fperma. ceti,
guifhed by the name of the animal from which they are obtained, as whale oil, \&c. 'Thefe cils agree in their properties with other fixed oils; which have been already deferibed in the article Chemistry, Part It. Chap. iii. Suppl.
2. Fat, or rather tallow, is a well known animal fubftance, muck employed in the manufacture of candles and foap.

It has a white colour, often with a fharle of yellow. Whens frefh, it has no fmell, and but little tafte. While cold, it is hard and brittle: but when expofed to the heat of 92°, it melts, and affumes the appearance of oil. The fat, however, which is extracted from flent by boiling, dues not melt till it reach the temperature of 127°. Tallow and fat, in other refpects, have the properties of fixed oils. They feem to be compored of a fixed oil combined with febacic acid. When atrongly heated, with contact of air, it emits a fmoke of a penetrating fmell, which excites tears and coughing, and takes fire when fufficiently heated to be volatilized : the charcoal it affords is not abundant. If fat be diflilled on a wa-ter-bath, an infipid water, of a flight animal fmell, is obtained, which is ueither acid nor alkaline, but which foon acquires a putrid fmell, and depofits filaments of a mucilaginous nature. This phenomenon, which takes place with the water obtained by diltillation on the water bath from any animal fubstance, proves, that this fluid carries up with it a mucilaginous principle, which is the caufe of its alteration. Fat, diftilled in a retort, afford 3 phlegm, at firf aqueous, and afterwards ftrongly acid ; an oil, partly liquid, and partly concrete; and a very fmall quantity of charcoal, exceedingly difficult to incinerate, in which Crell found a fmall quantity of phofphat of lime. Thefe products have an acid and penetrating fmell, as ftrong as that of fulphurous acid. The acid is the fehacic.
3. Spermaceti, is an oily, concrete, cryftalline, femitranfparent matter, of a peculiar fmell, which is taken out of the cavity of the cranium of the cachalot; it is purified by liquefaction, and the feparation of another fluid and inconcrefcible oil, with which it is mixed. This fubftance exhibits very fingular chemical properties ; for it refembles fixed oils in fome reipects, and volatile oils in others.

When heated to the temperature of $133^{\circ} f$ it melts; and if the heat be increafed, it evaporates without much alteration. When repeatedly diftilled, thowever, it lofes its folid form, and becomes like oil. When heated in contact with air, it takes fire, and burns uniformly without any difagreeable odour: hence its ufe in making candles.

By long expofure in hot air it becomes yellow and rancid. Pure alkali combines with it, and forms a foap. Nitric and muriatic acids do not affect it, but fulphusic acid diffolves it and alters its colour.

Sect. IX. Of Acids.

The acids hitherto difcovered in the animal kingdom are the nine following.

1. Sulphuric,	4. Carbonic,	7. Formic,
2. Muriatic,	5. Benzoic,	8. Bombyc,
3. Phofphoric,	6. Sebacic,	9. Uric.

2. Muriatic,
3. Phosphoric,

The firlt eight of thefe have been already defcribed in the article Chemistry, Suppl. it is unneceffary there. fore to defcribe them here.

Few perfons are ignorant that concretions fometimes ${ }^{3}{ }^{316}$ form in the human urimary bladder, and produce that of uric very formidable difeafe known by the names of the acid. flone and the gravel. Thefe concretions are often extracted by a furgical operation : they are called urinary calculi.

The moft common of thefe calculi is of a brown colour, and very foluble in pure pntafs or foda ley.

If into an alkaline folution of one of thete calculi a quantity of acetons acid be poured, a copious brown coloured precipitate imnediately appears, which may be feparated and edulcorated in a fmall quantity of water.

This fubftance is uric acid*.

It was difcovered by Scheele in 1776, and the French chemilts afterwards called it litbic acid: but this name, in confequence chicfly of fome remarks of

- Fourcros

Ann. de 116. Dr Pearfon on its impropriety, has been lately given up, and that of uric (L) acid fubftituted in its place. We have adopted the new name, becaure we think it preferable to the old; which indeed conveyed a kind of inconfiftency to thofe who attended to the etymolo. gical meaning of the word.

Uric acid puffeffes the following properties: it cry-its ${ }^{217}$ ftallizes in thin plates; has a brown colour, and fcarce-ties. ly auy tafte. Cold water fcarcely diffolves any part of it ; but it is foluble in 360 parts of boiling water. The folution reddens regetable blues, efpecially the tincture of turnfol. A great part of the acid precipitates again as the water coots. It combines readily with alkalies and earths; but the compaund is decompofed by every other acid. Sulphuric acid, when concentrated, decompofes it entirely *. Nitric acid diffolves it readily : *Scbecle, i. the folution is of a pink colour, and has the property ${ }^{200}$ of tinging animal fubftances, the flin for inftance, of the fame colourf. When this folution is boiled, a quantity of azotic 1 Ibid and lic acid, is difengaged \ddagger. Oxy-muriatic acid converts it in a few roinutes into oxalic acid

When dittilled, about a fourth of the acid paffes over a little altered, and is found in the receiver cryftallized in plates; a few drops of thick oil make their appearfirs of the acid of concrete carbonat of ammo-xxxii. 184. nia, fome pruffiat of ammonia, fome water, and carbonic acid; and there remains in the retort charcoal, amounting to aliout $\frac{8}{8}^{2}$ th of the weight of the acid difilled $\|$.

Fourctroy,
Thefe facts are fufficient to thew us, that uric acid is ibid. xvi. compofed of carbon, azot, hydrogen. and oxygen; and ${ }^{116}$. that the proportion of the two laft ingredients is much fmaller than of the other two.

The different falts which uric acid forms with alkaline aad earthy bafes have not been examined with attention; but urat of potafs, of foda, and of lime, have been formed both by Scheele and Fourcroy; and urat
(2) From urine; becaufe this acid is always found in human uriae.
alkalics, of amnonis is not unfrequently found cryflallized in rths, and urinary calculi.

The order of the affinities of the different bafes for uric acids is entirely unknown; but it has been afcertained, that its affinity for thefe bafes is much weaker than that of any other acid. Its falts are decompufed even by pruffic and carbonic acid.

Sect. X. Of Alfalies, Eakqhs, and Metals.
(A Al thic three alkalies have been found in the animal king dom, as we thall fhew in the next chapter.
2. 'The only eartlis which have been found in animals

$$
\begin{aligned}
& \text { are, } \\
& \\
& \\
& \text { 2. Lime, Magnelia, } \\
& \text { 3. Silica. }
\end{aligned}
$$

The firf in great abundance, almoft in every large animal; the other two very rarely, and only as it were by accident.
3. The metals hitherto found in animals are,

$$
\begin{aligned}
& \text { 1. Iron, } \\
& \text { 2. Manganefe. }
\end{aligned}
$$

The firt exifts in all the larger animals in fome confiderable quantity; the fecond has farce ever been found in any quantity fo great as to admit of being weighcd.

Such are the fubftances hitherto found in animals. The timple bodies of which all of them confint are the following:

1. Azot, 6. Phofphorus, II. Magnefia,
2. Carbon,
3. Muriatic acid,
4. Silica,
5. Hydrogen,
6. Potafs,
7. Oxygen,
8. Soda,
9. Iron,
10. Manganefe.
11. Lime,
12. Sulphur,

Of thefe, magnetia and filica may in a great meafure be confidered as foreign bodies; for they are only found in exceedingly minute quantities, and the lall not unlefs in eafes of difeafe. The principal elementary ingredients are the firft fix : animal fabllances may be confidered as in a great meafure compofed of them. 'The firft four conttitute almolt entirely the foft parts, and the other two form the bafis of the hard parts. But we will be able to judge of this much better, after we have taken a view of the various parts of animals as they exift ready formed in the body. This thall be the fubjeet of the next chapter.

Chap. II. Of the Parts of Animals.

The different fubftances which compofe the bodies of animals have been defcribed with fufficient minutenefs in the article Anatomy, Encycl. to which we beg leave to refer the reader. Any repetition in this place would be improper. Thefe fubfances are the following :

1. Bones and fhells,
2. Cartilages,
3. Múcles,
4. Skin,
5. Tendons,
6. Brain and nerves,
7. Ligaments,
8. Horns and nails,
9. Membranes,
10. Hair and feathers.

Befides thefe fubftarices which conftitute the folid part of the bodies of animals, there are a number of
fluids, the molt important of which is the blood, which pervades every part of the fyftem in all the larger aninals: The reft are known by the name of fieretions, becaufe they are formed or fecreted, as the anatomitts term it, from the blood. The principal animal fecretions are the following:
r. Milk,
2. Saliva,
3. Pancreatic juice,
4. Bile and biliary cal. culi,
5. Tears,
6. Mucus of the nofe,
7. Sinovia,
8. Semen,
9. I.iquur of the amnios, 10. Urine and urinary cal. culi.

Thefe fubfances תlall form the fubject of the following fections.

Sect I. Of Bonfs.

By lones, we mean thofe hard, folid, wall known fubtances, to which the firminefs, fhape, and Itrength of animal bodies, are owing; which, in the larger ani. mals, form, as it were, the ground-work upon which all the reft is built. In man, in quadrupeds, and many other animals, the boncs are fituated below the other parts, and fearcely any of them are expoled to view; but fhell-fifh and fnails have a hard covering on the outfide of their bodies, evidently intended for defeuce. As thefe coverings, though known by the name of Jells, are undoubtedly of a bony nature, we thall include them alfo in this fection. For the very fame reafons, it would be improper to exclude egg $/ \mathrm{hellh}$, and thofe coverings of certain animals, the tortoife for inftance, known by the name of cruffs.

It had been long known, that bones may be rendered foft and cartilaginous by keeping them in diluted acid folutions, and that forne acids even difiolve them altogether ; that when expofed to a violent heat, they become white, opaque, and brittle; and Dr Lewis had obferved, that a fudden and violent heat rendered them hard, femitranfparent, and fonorous. But their component parts remained unk nown till Schecle mentioned, in his differtation on FluorSpar, publined in the Stockholm Tranfactions for 1771 , that the earthy part of bones is phofphat of lime (M). Since that time confiderable additions have been made to the chemical ana. lyfis of thefe fubltances by Berniard, Bouillon, and Rouelle. Mr Hatchett has publifhed a very valuable paper on the fubject in the Philofophical Tranfactions for 1799; and in the $34^{\text {th }}$ volume of the sinnales de Climie, Mr Merat Guillut has given us a table of the connponent parts of the bones of a confiderable number of animals.

The bony parts of animals may be divided into three clafles; namely, bones, crufls, and Jeells.

1. Bones luave a conliderable degree of hardnefs; ${ }^{219}$ when recent, they contain a quantity of marrow, which of bonee. may be partly feparated from them. When the water in which bones have been for fome time boiled is evaporated to a proper. confiftence, it affumes the furm of a gelly; bones therefore contain gelatine.

If a piece of bone be kept for fome time in diluted 230 f. piece of bone kept it Ther come muriatic, or even acetous acid, it gradually lofes a con-ponent fiderable part of its weight, becomes foft, and acquires paits.
(m) The difcoverer of this has not been completely afcertained: Scheele does uot claim it in that paper ; Bergman gives it to Gahn; but Crell affirms that it was made by Schecle.
a certain degree of tranfparency: and, in fhort, acquires all the properties of carilage. Bone therefore confitts of cariliage, combined with fome fublance which thefe acids are capable of diffulving and carrying off.

If pure ammonia be dropt into the acid which has reduced the bone to this flate, a quantity of white powder precipitates, which poffefles all the properties of phofphat of lime. The fubitance, then, which was combined with the cartilage is phofphat of lime.

After the phofphat of lime lans precipitated, the addition of carbonat of ammonia occafions a farther precipitate, which confitts of carbonat of lime: but the or calcined, an effervefcence is perceptible; the gas which efcapes renders lime water turbid, and is therefore carbonic acid. Now fince bones contain carbonic acid, and fince they contain lime alfo uncombined with any acid Atronger than carbonic-it is evident that they contain a little carlonat of lime. Mr Hatchett found this fubflance in all the bones of quadrupcds and of fifh which he examined + .
When bones are calcined, and the refiduum is diflolved in nitric acid, nitrat of barytes caufes a fmall precipitate, which is infoluble in muriatic acid, and is therefore fulphat of harytes \ddagger. Confequently bones contain fulphuric acid. It has been afcertained, that this acid is combined with lime. The proportion of fulpbat of lime in bones is very inconfiderable.

Thus we have feen, that bones are compofed of cartilage, which confifts almoft entirely of gelatine, of phofphat of lime, carhonat of lime, and fulphat of lime. The following table, drawn up by Mcrat-Guillot $\|$, exhibits a comparative view of the relative proportion of thefe ingredients in a variety of bones. The fulphat of lime, which occurs ouly in a very fmall quan- tity, has been confounded with phofphat of lime.

One humdred parts contain	Gelatine.	Whofp. of lime	$\begin{aligned} & \text { Carb. } \\ & \text { of lime } \end{aligned}$	1.ofs.
$\left.\begin{array}{c} \text { Human bones from a } \\ \text { burying ground, } \end{array}\right\}$	16	67	1.5	15.5
$\left.\begin{array}{l}\text { Do. dry, but not from } \\ \text { under the earth, }\end{array}\right\}$	23	63	2	2
Bonc of ox,	3	93	2	2
calf,	25	54	trace	21
horfe,	9	67.5	1.25	22.25
fheep, - .	16	70	0.5	13.5
elk, .	1.5	90	1	$7 \cdot 5$
hog, - .	17	52	I	30
hare,	9	85	1	5
pullet,	6	72	1.5	20.5
pike, .	12	64	1	23
carp, . -	6	45	0.5	48.5
Horle tooth, . .	12	85.5	0.25	2.25
Ivory,	24	64	0.1	11.15
Hart thorn, . . .	27	57.5	I	14.5

The enamel of the teeth is compoled of the fame * Hatcbett, earthy ingredients as other bones; but is totally deftiPbil Tranf. tute of cartilage *.
1799, p. 2. The cruttaceous coverings of animals, as of echi328. ni, crabs, lobfters, prawns, and cray fifh: and alfo the Cnmponent fhells of eggs, are compofed of the fame ingredients as parts of
erufts,
boncs; but in them the proportion of carbonat of lime far exceeds that of plofphat*.

Thus 100 parts of lohfter cruft contain
6o carbonat of lime,
14 phofphat,
26 cartilage,
$100 \dagger$ 60 carhonat of lime, 12 phofphat of linee, 28 cartilage.

Onc hundred parts of hens egg. fhelis contain

$\stackrel{28}{100 \ddagger}$.

Onc hundred parbenat of lime,
89.6 carbain
.7

$\ddagger I b i t$.

Mr Hatchett found traces of phofphat of lime allo in itid. $\times x i x .6$.
$\| V_{\text {augulit }}$, the fhells of fnails.
3. The fhells of fea animals may be divided into two $\begin{gathered}222 \\ \text { alfes: The firt has the appearance of porcelain; their }\end{gathered}$ onponent claifes: The firt has the appearance of porcelain; their parts of furface is enamelled, and their texture is often fightitly fiells. fibrous. Mr Hatchett has given them the name of porcellaneous fiells. The fecond kind of feell is known by the name of mother of pearl. It is covered with a ftrong epidernis, and below it lies the fhelly matter in layers *. The fhell of the frefh water mufcle, mother * Herif/aut, of pearl, heliotis iris, and turbo olearius, are inltances of M mem. Parr, thefe fhells.

Porcellaneous fhells are compofed of carbonat of Hatitcett, lime cemented together by a very fmall quantity of ani- ${ }^{\text {ibid. } 317 \text {. }}$ mal matter \dagger.

Mother of pearl fhells are compofed of alternate i ibid. layers of carbonat of lime and a thin membranaceous or cartilaginous fubfance. This cartilage fill retains the figure of the fhell, after all the carbonat of lime has been feparated by acids \ddagger.

Mother of pearl contains 66 carbonat of lime,
\ddagger Jid. 318. 34 cartilage.

$100 \|$

|| Merat-
Coral, which is a bony fubitance formed by certain Guiltat; ;ilid. fea infects, has a nearer relation to mother of pearl thells in its flructure than to any other bony fubftance, as the following table \mathbb{q} will fhew.

	White coral.	Red coral.	Articulated coraline. Merat. Guillot, ilid,
Carhonat of lime,	50	53.5	49
Animal matter,	$\frac{50}{100}$	$\frac{46.5}{100.0}$	$\frac{51}{100}$

Sect. If. Of the Muscles of Animals.

The mufcular parts of animals are known in common language by the name of fief. They contitute a confiderable proportion of the food of man.

Mufcular fleth is compofed of a great number of fibres or threads, commonly of a reddifh or whitifh colour; but its appearance is too well known to require any defcription. Hitherto it las not been fubjected to any accurate chemical analy fis. Mr Thouvenel, indeed, has publifhed a very valuable differtation on the
fubject ;
fufcles of fubject ; but his analyfis was made before the method Animals. of examining animal fubitances was fo well underfood as it is at prefent. It is to him, however, that we are iudeloted for almoft all the facts known concerning the conipofition of mufcle.

It is fearcely pofilibe to feparate the mufcle from all the other fubftances with which it is mixed. A quantity of fat often acheres to it elofely; blood pervades the whele of it; and every fibre is enveloped in a particular thin membranous matter, which anatomills diftinguif by the name of cellular fubfiance. The analy fis of the mufcle, then, cannot he fuppofed to exhibit an accurate view of the compofition of pure mufcular fibres, but only of mufcular fibre not perfectly feparated from other fubftances.
. When a mufcle is well wafhed in cold watcr, feveral of its farts are diffolved, and may lec chtained by the ufial chemical methods. When the water is evaporated howly, it at laft cuagulates, and the coagulum naay be feparated by means of a filter. It poffefles the properties of albunies.
2. The water is then to be evaporated gently to dry. nefs, and alcohol foured upon the dry mafs: part of it is diffulved by digettion, and there remains a faline fubAlance, which has not leen examined; but which Fourcroy conjectures to be a phofphat.
3. When the alcohol is evaporated to drynefs, it leaves a peculiar mucous fubflance, foluble both in water and alcolol; and when its watery folution is very much concentrated, it afiumes an acid and bitter taftr. It fwells upon hot coals, and melts, emitting an acid and penetrating fmell. It attracts moillure from the air, and forms a faline efflorefcence. In a hot atmofpliere it becomes four and putrefies. All thefe properties render it probable that this fubflance of Mr Thousenel is that which is converter into zoonic aeid curing the roating of meat.
4. The mufcle is now to be boiled in water for fome time. A quantity of fat appears on its furface in the form of oil, which may be taken off.
5. The water, when evaporated fuffieiently, affumes the form of a jelly on cooling, and therefore contains a. portion of gelatine. It contains alfo a little of the fahne fubftance, and of the mucous fubltance nentioned above.
6. The refiduum of the mufle is now white and infipid, of a fibrous Atrueture, and infoluble in water, and has all the properties of fibrina.

Thus it appears that mufcle is compofed of

> Albumen,
> Mueous matter,
> Gelatine, Filrina, A Falt.

The French chemifts have difcovered, that when a piece of mufcle is allowed to remain a fufficient time in diluted fulphuric acid, it is converted into a fubftance refembling tallow: weak nitric acid, on the other hand,
only that they are compoled, in a great meafure, of gelatine; for it is partly from thern that glue is made; which does not differ from gelatine, exeept in not being perfectly pure:
Mo Hatchett has afectained that they contain no phofphat of lime as a conitituent part, and fearcely any faline ingredicnts; fur when calcined they leave but a very inconfuderable refiduum. Thus 250 grains of hog's bladder left only 0.02 grain of refiduum \dagger.
Sect. IV. Of the SEiN.

Thefin is that ftrong thick covering which envelopes the whole external furface of animals. It is compofed chiefly of two parts: a thin white elaftic layer on the outfide, which is called efidernis or cuticle; and a much thicker layer, compofed of a great many fibres, clofely interwoven, and difpofed in different directions; this is called the cutis, or true fin. The epidermis is that part of the fkin which is raifed in blillters.

1. The epidermis is eafily feparated from the cutisEpiderby maceration in hot water. It poffeffes a very great nis. degree of elanticity.

It is totally infoluble in water and in alcolol. Pure ${ }_{\text {Its }}^{225}$ proper. fised alkalies diffolve it completely, as docs lime like-ties. wife, though flowly \ddagger. Sulphuric and muriatic acids \ddagger Cbaptal, do not diffolve it, at leaf they have no fenfible action t Ampn, de on it for a confiderable time ; but nitrie acid foon de- Cbim, xxii. prives it of its elafticity, caufes it to fall to pieces, and ${ }^{325}$. probably foon decompufes it \S.
§Cruit Jank
It is well known that the living epidermis is tinged on lnfenfible yellow almoft inflantantouny by nitric acid; but this Perjbiation, effect does not take place, at leaft fo fpeedily, when the ${ }^{\text {P. }} 32$. dead cuticle is plunged in nitric acid altogether $\|$.
2. When a portion of cutis is macerated for fome $\|_{226}^{12 b i d}$ hours in water, and agitation and preflure is employed Cutis. to accelerate the effect, the blood, and all the extraneous matter wita which it was loaded, are feparatcif from it, but its texture remains analtered. On evaporating the water employed, a fimall quantity of gelatine may be obtained. No fubfequent maceration in cold water has any farther effect ; the weight of the cutis is not diminifhed, and its texture is not altered: but if it be boiled in a fufficient quantity of water, it may be completely diffolved, and the whole of it, by evaporating the water, obtaised in the tate of gelatine *. $*$ Seguin,

Seguin infurms us that he has afcertained, by a great Niecolfon's varisty of experiments, that the cutis differs from ge. Fournal, i. latine merely in containing an additional quantity of ${ }^{27 \mathrm{I}}{ }_{23}$ oxygen. Hot water (he fays) expels this oxygen, and compored thus converts cutis into gelative \dagger. As thele experi-on gelatine. ments have not been publifhed, it is imponlibie to iorm + ibde 277 . any judgment of their weight.

It is the flin or cutis of : animals or which leather is ${ }^{228}$ ure of formed. The procefs of converting ikin intoleather is sanning. called tanning. This procefs, though practifed in the earliet ages, was mercly empyric.il, thl the happy ingenuity of Mr Seguin led him tw difoucr its real nature. After the epidermis and all the inpurities of the Ikin have been feparated, and its pores have been fo far opened as to admit of being complietely penetrated, it is fteeped in an infufion of oak-bu.tk, which confifts of. gallic acid and tan. The gallic acid (if we believe Seguin) deprives the fkin gradually of oxygen, and thus converts it into gelatine, and the tan combines with this gelatine the inflant it is formed; and this proeefs.

Bran and
\qquad
Nerves.
Nichelfor' tered. Leather, therefore, is merely a combination of
Youn nal, i.
171.

Sect. V. Of the Brain aud N Nerves.
The brain and nerves are the inftruments of fenfation, and even of motion ; for an animal lofes the power of moving a part the inflant that the nerves which enter jt are cut.

The brain and nerves have a ftrong refemblance to each other; and it is probable that they agree alfo in their competition. But hitheito no attempt has been made to analyfe the nerves. The only chemifts who * Four de have examined the nature of brain are Mr Thouret * Pbys. and Mr Fourcroy \dagger.
exxviii. 329. Thue brain confifts of two fubftances, which differ \ddagger Ann. de Cbim. xvi. 282.
229.

Properties of brain. from each other fomewhat in colour, but which, in other refpects, feem to be of the fame nature. The outermoft matter, having fome fmall refemblance in colour to wood-afhes, has been called the cineritious part ; the innermolt part has been called the medullary part.

Brain has a foft feel, not unlike that of foap; its texture appears to be very clofe; its fpecific gravity is greater than that of water.

When brain is kept in clofe veffels fo that the external air is excluded, it remains for a long time unaltered. Fourcroy filled a glafs veffel almoft completely with pieces of brain, and attached it to a pneumatic apparatus; a few bubbles of earbonic acid gas appeared at firf, but it remained above a year without undergoing \ddagger Ibid. 297. any farther change \ddagger.

This is very far from being the cafe with brain expofed to the atmofphere. In a few days (at the tem. perature of 60°) it exliales a moft deteltabie odour, becomes acid, affumes a green colour, and very foon a great quantity of ammonia makes its appearance in it.

Cold water does not diffolve any part of the brain; but by trituration in a mortar, it forms with water a whitifh coloured emulfion, which appears homogenenus, may be pafled through a filter, and the brain does not precipitate by reit. When this emulfion is heated to 145°, a white coaguluen is formed. The addition of a great quantity of water alfo caufes a coagulum to ap. pear, which fwims on the furface, but the water ftill jetains a milky colour. When fulphuric acid is dropt into the watery emulfion of brain, white flakes feparate and fwim on the furface, and the liquid becomes red. Nitric acid produces the fame effects, only the liquid becomes yellow. Alcohol alfo feparates a white coagulum from the emulion, after it has been mixed with it for fome hours. When nitric acid is added to the emulfon till it becomes lightly acid, a coagulum is alfo feparated. 'This coagulum is of a white colour; it is infoluble in water and in alcohol. Heat fuftens, but does not melt it. When dried, it becomes tranfparent, and breaks with a glaffy fracture. It has therefore
\#Ibid.288. fome refemblance to albumen \|.
When brain is triturated in a mortar with diluted fulphuric acid, part is diffolved, the reft may be feparated, by filtration, in the form of a coasulum. The acid liquor is colourlefs. By evaporation, the liquid becomes black, fulphurous acid is exhaled, and cryftals appear; and when evaporated to drynefs, a black mafs remains behind. When this mafs is diluted with water, a quantity of charcoal feparates, and the water remains
clear. The brain is completely decompofed, a quan. Lrain an tity of ammonia combines with the acid and forms ful. Nerve, phat of ammonia, while charcoal is precipitated. The water, by evaporation and treatment with alcohol, yields fulphats of ammonia and lime, phofphoric acid, 230 and phofphats of fuda and ammonia. Brän therefoscl:s anasyfis contains Phofphat of lime,

Traces alfo of fulphat of lime can be difcovered in it. The quantity of thefe falts is very fmall ; altogether they do not amount to $\varepsilon^{\frac{1}{3}} \mathrm{o}^{\text {th }}$ part $\|$.

Diluted nitric acid, when triturated with brain, likewife diffolves a part, and coagulates the reft. The folution is tranfuarent. When evaporated till the acid becomes concentrated, carbonic acid gas and nitrous gas are difengaged ; an effervefcence takes place, white fumes appear, an immenfe quantity of ammonia is difengaged, a bulky charcoal remains mixed with a confiderable quantity of oxalic acid \dagger.

When brain is gradually evaporated to drynefs by the heat of a water bath, a portion of tranfparent liquid feparates at firft from the reft, and the refiduum, when nearly dry, acquires a brown colour ; its weight amounts to about one-fourth of the frefh brain. It may ftill be formed into an emulfion with water, but very foon feparates again fpontaneoufly.

When alcohol is repeatedly boiled upon this dried refiduum till it ceafes to have any more action, it diffolves about five-cighths of the whole. When this alcohol cools, it depofits a yellowifh white fubftance, compofed of brilliant plates. When kneaded together by the fingers, it affumes the appearance of a ductile pafte : at the temperature of boiling water it becomes foft, and when the heat is increafed it blackens, exhales empyreumatic and ammoniacal fumes, and leaves behind it a charry matter \dagger. When the alcohol is evaporated, f Ibid. 3^{13}. it depolits a yellowifh black matter, which redderis paper tinged with turnfol, and readily diffufes itfelf through water \ddagger.

Pure concentrated potafs difolves brain, difengaging ${ }^{\text {1Bis. } 3 \text { IF }}$ a great culuantity of ammonia.

Thefe facts are fufficient to fhew us, that, exclufive of the fmall proportion of faline ingredients, brain is compofed of a peculiar matter, differing in many particulars from all other animal fubftances, but having a confiderable refemblance in many of its properties to albumen. Brain has been compared to a foap; but it is plain that the refemblance is very faint, as fcarcely any oily matter could be extricated from brain by Fourcroy, though he attempted it by all the contrivances which the prefent fate of chemiftry fuggefted; and the alkaline proportion of it is a great deal tou fmall to merit any attention.

Sect. VI. Of Nails, Horns, Hair, Feathers.

These fubltances have not litherto been analyfed. We know only that they have a great refemblance to each other. They give out the fame finell, and exhibit the fame phenomena when burnt, and they yield the fame products when diftilled.

Pure fixed alkali has the property of decompoling thefe fubfances, and of converting them into ammonia and oil. The ammonia is difengaged in great abundance, and the oil combiues with the alkali, and forms

Bloort. a fpecies of foap. When muriatic acid is poured into the folution of thefe fubftances in pure fold, a quantity of fulphurated hytrogen gas is difengaged, and a black fubftause, doubtlefs charcosal, precipitates. Hence it follows that thefe fubltances contain in their compofition a quantity of fulphur. Accordingly, if a bit of filver is put into the folution, it indlantly affumes a black Merat- colour δ.

Thcie fubitances fcarcely contain any earthy ingredients. One luondred grains of ox hori, after calcination, left only 0.04 grain of refi3uum, half of which was phofphat of lime Seventy eight grains of chamuis horn left tive grains of refirtuum If.
Hatibatt, cunpofe animal bodies. We proceed next to the fluid which girculates throngh living bodies, namely lood; and to the various fecretions formed from the blond, either in order to anfwer fome inportant purpofe to the animal, or to be evacuated as ueclefs, that the blood thus purified may be more proper for anfiwering the cuds for which it is deftined. Many of thefe fubftances have been examined with more care by chemits than the aninal fulids.

Sect. ViI. Of Blood.

Blood is a well known fluid, which circulates in the veins and arteries of the more perfect animals. - It is of a red colour, has a conliderable degree of conlittency, and an unctuous feel, as if it contained a quantity of foap. Its tatle is flightly faline, and it has a peculiar fmell.

The fpecific gravity of human blood is, at a medium, $1.0527^{\text {* }}$. Mr Foutcroy found the fpecific gravity of bullock's blood, at the temperature of 60°, to be $1.056+$. The blood does not uniformly retain the fame confiftence in the farie animal, and its confiitence in different animals is very various. It is eafy to fee that its fpecific gravity mult be equally various.

When the bloort is viewed through a microfcope, a great inany globules, of a red colour, are feen floating in it. It is to thefe globules that the red colour of the blood is owing. They were firt examined with attention by Leuwenhoeck. Their form, their proportion, and the changes which they undergo from the addition of various fubtances, have been examined with the greateit care ; but hitherto without addiag much to our knowledge. We neither know the ingredients of which the red globules are cumpofed, nor the changes to which they are fubjected, nor the uffeful purpofes which they ferve; nor has any accurate method been difcovered of feparating them from the reft of the blood, and of obtaining them in a flate of purity.
When blood, after being drawn from an animal, is allowed to remain for fome time at reft, it very foon coagulates into a folid mafs, of the confiftence of curdled milk. This mafs gradually feparates into two parts: one of which is fluid, and is called ferum ; the other, the coagulum, has been called cruor, becaufe it alune retains the red colour which diftinguifhes blood. This feparation is very fimilar to the feparation of curdled milk into curds and whey. The cruor ufually finks to the bottom of the veffel, and, of courfe, is covered by the ferum.
The cruor, or clot as it is fometimes called, is of a ted colour, and poffefles confiderable confiftence. Its
mean fpecific gravity is ahout $1.245 \ddagger$. If we wafh Biond. the cruor in a fufficient quartity of water, it gradually $\underbrace{\text { Punn }}$ lofes its red colour, and aflumes the appcarance of a fialler's whitifh, fibrous, elaftic nafs, which poffeifes all the pro- Pbolyorolgy, perties of fibrina. The cruor therefore is compofed ai. 41 . clicfly of fibsina. The water in which it has been wafhed affuncs a red colour, but continues tranfparent. It is evident from this that it contains, diffolved in it, the red globules; mot, however, in a llate of purity, for it is impoffible to feparate the cruor completely from the ferum: confequently the water muil contain both ferum and red glubules. We know, however, from this, that the red glubules are foluble in wate:. The cruor of the blowl, then, is compofed of red globules and fibrima.

If the cruor of the blood be expofed to a gentle heat, it becomes graduaily dry and brittle. If his dry mafs be fubinitted to difillation, it yieids water, armononia, a thick empyreumatic oil, and much cathonat of ammo. nia : there remains a fpongy coal of a brilliant appearance, from which fulphuric acid extrats foda and iron; there remains behind a mixture of phofplat of lime and charcoal $\|$.
When the fibrina is dinilled, it yield preifely I Fourcroy,「ame produess; but the refidu, it yields precifely the iii. 267. fane producss; but the refiduum contains neither iron nor foda. The red water, on the contrary, which had been employed to walh the cruor, contains both of thefe fubftances, efpecially iron; which may be obtained in the ftate of oxide by evaporating this water to drynefs, and calcining the refiluum q. Thefe facts are fuffi. \& Ibid, cient to demonftrate that the red globules contais iron ; confequently the opinion that their colour depends upon that metal is at leatt poffile. It is probably owing to the foda which it contains, that the prefence of iron cannot be afectrained in the folution of thefe globules by the ufual tefl. The pruffian alkali caufes no precipitate; the infufion of nut galls gives it no blue or purplifh tinge *.

The ferum is of a light *TVells has the tafte, fmell, and feel of the Hed, butour; it Pbil. Tranf: fiftence is not fo great. Its mean fjecific gravity is about 1.0287 f . It converts fyrup of violets to a And fe green, aud therefore contains an alkali. On examina-rum. tion, it is found that it owes this property to a purtion + Jurin, of foda. When heated to the temperature of 1560 f , Hatler's the ferum coagulates, as Harvey firtit difcovered \dagger. It ii . 4 r . coagulates alfo when boiliag water is mixed with it ; $\$$ cullen. but if ferum be mised with fix parts of cold water, it \dagger De Gener. does not coagulate by heat \ddagger. lǐhen thus coagulated, Anim. p. it has a greyifh white colour, and is not unlike the ${ }^{1}$. boiled white of an egg δ. If the coagulum be cut into $\mathrm{Ann.de}$ de finall pieces, a muddy fuid may be iqueezed from it, Cbim. de vii. which has been termed the ferofily. After the fepara-157. tion of this fluid, if the refiduum be carefully wahned $\$$ Ibid. 156.. in boiling water and examined, it will be' fuund to poffefs all the properties of allumen. The ferum, therefore, contains a confiderable proportion of albumen. Hence its coagulation by heat, and the other phenumena which allumen ufually exhibits.

If the ferofity be gently evaporated till it becomes concentrated, and then be allowed to cool, it aflumes the form of a jelly, as was firft obferved by De Haen $\|$. $\|$ Itiul 297.
Confequently it contains gelatine.

If ferum be mixed with twice its weight of water, and, after coagulation by heat, the albumen be fepara-
ted by filtration, and the liquid be fonsly evaporated till it is confiderably concentrated, a number of crytlals are depolited when the liquid is left flanding in a cool place. There cryfals conifit of muriat of foda and car-

IT Ont t

Thus it appears that the fertum of the bloud contains albumen, gelatine, iods, inuriat of foda, and carbonat of foda, befides a portion of water.

Gelatine may be frecipitated from the ferofity by the three nincral acids. Mr Finter obferved, that Goulard's extract, or, which is the fame thing, acetite of lead diffolved in acetous acid, produces with gelatine a copious precipitate g. When nitric acid is diffolved of fernm, it converts it partly into pruific acid *. Acids, aleohol, and tan, precipitate the albunien in diferent flates; but this, after what has been faid in the lait chapter, fection ii. requires no farther explanation.
The proportion between the cruor and ferum of the blood varies much in different anmals, and even in the fame animal in difierent circumftances. The moft common proportion is about one part of cruor to three parts of ferum ; tut in many cafes the cruor exceeds and falls fhort of this quantity : the limits of the ratios of thefe fubftances to each other appear, from a comparifon of the conclutions of moft of thofe who trave written accurately on the fubje et, to be $1: 1$ and $1: 4$; but the firlt cafe mult be very rare indeed *.

When new-drawn blood is flirred brifkly round with a lick, or the hand, the whole of the fibrina collects together upon the ftick, and in this manner may be feparated altogether from the reft of the blood. The red globules, in this cafe, remain behind in the ferum. It is in this manner that the bluod is prepared for the different purpufes to which it is put ; as clarifying fugar, making puddings, \&c. After the fibrina is thus feparated, the blood no longer coagulates when allowed to remain at reit, but a fpongy flaky matter feparates from it and fwims on the furface \dagger,
Ann. de
146.

7 Did. 153. acid \ddagger.

$92: 6$ grains of dried blood being put into a large crucible, anid gradually heated, at firft became nearly fluid, and fwelled up confiderably, emitted a great many fetid fumes of a yellowifh colour, and at latt took fire and burned with a white flame, evidently owing to the prefence of oil. After the flame and the fumes had difappeared, a light fmoke was emitted, which affected the eyes and the nofe, which had the odour of pruffic acid, and reddened moint papers ftained with vegetable blues. At the end of fix hours, when the matter had loft five-fixths of its fubtance, it melted anew, exhibit-
ed a purple flame on its furface, and cmitted a thick fmoke. 'This frnoke affected the eyes and noftrils, and reddened blue paper, hut it had not the fmell of pruffic acid. When a quantity of it was collected and examined, it was found to puifefs the properties of phofphoric acid. l'ise refiduum amounted to isi grains; it had a deep black colour, and a metallic brillisicy, and its particies were attracted by the magnet. It contained no uncwibined fuda, thoug the blood itfilf, before combullion, contains it abundantly; but water extracted from it muriat of foda, part of the reft was diffolved by muriatic acid, and, of courle, was lime; there was hefiries a little filica, which had evidently been feparated from the crucible. The iron had been reduced daring the combution \ddagger.

Such are the properties of blood, as far as they have $A n$. de been hitherto afcertaiued by experiment. We have feen Cbim. vii. that it contains the following ingredicuts:
I. Water,
2. Fibrina,
3. Alhumen,
4. Gelatine,
5. Iron,
6. Soda,
7. Muriat of foda,
8. Phofphat of lime.

235 Componer parts of blood.

But our knowledge of this fingular fluid is by no means fo complete as it ought to be; a more accurate analy fis would probably difcover the prefence of other fubftances, and enable us to account for many of the properties of blood which at prefent are inexplicable.

It would be of great confequence alfo to compare together the blood of different animals, and of the fame animal at different ages, and to afcertain in what particulars they differ from each other. This would probably throw light on fome of the obfcureft parts of the animal cconomy. Very little progrefs has hitherto been made in thefe refearches: if we except the labours of Rouelle, who obtained nearly the fame ingredients, though in different proportions, from the blood of a great variety of animals, the experiments of Fourcroy on the blood of the human fectus are almoft the only ones of that kind with which we are acquainted.

He found that it differs from the blood of the adult Blond of ${ }^{236}$ in three things: $1 / 2$, Its colouring matter is darker, the fows and feems to be more aboundant ; $2 d$, It contains no fibrina, but probably a greater proportion of gelatine than blood of adults; $3 l$, It contains no phof phoric acids.

The examination of difeafed blood, too, would be of great confequence ; becaufe the difference of its proper- Difeafed ties from the blood of people in health might throw much light on the nature of the difeafe. It is well known, that when a perfon labours under inflammation, his blood is not fufeeptible of coagulating fo foon as healthy blood. This longer t:me allows the red globules to fink to the bottom, and the coagulated fibrina appears at the top, of its natural whitillh colour. Hence the appearance of the buffy coat, as it is called, which characterizes blood durins inflammation.

During that difeafe which is known by the name of diabetes, in which the urine is exceffive in quantity, and contains fugar, the ferum of blood often, as appears from the experiments of Dr Dobfon and Dr Rollo, affumes the appearance of whey; and, like it, feems to contain fugar, or, at leaft, it has lolt its ufualt falt taite.
Fourcroy mentions a cafe of extreme feeblenefs, in which all the parts of the body were in an unufual relaxed fate. In that patient a quantity of blood oozed

Milk, out from the eyc-lids, which tinged linen blue, as if it had been flained with pruffian blue. Here prufic alkali feems to have been formed in the blood.

Sect. VIII. Of Milk.

Mile is a fluid fecreted by the female of all thofe animals denominated mammalia, and intended evidently for the nourithment of her offspring.

The milk of every animal has certain peculiarities which dittinguifh it from every other milk. But the animal whofe milk is moft made ufe of by man as an article of food, and with which, confequently, we are beft acquainted, is the coww. Chemilts, therefore, have made choice of cow's milk for their experiments. We Thall at firtt confine ourfelves to the properties and ana. ly fis of cow's milk, and afterwards point out in what refpect the milk of other animals differs from it, as far at leaft as thefe differences have hitherto been afcertained.

Milk is an opaque fluid, of a white colour, a flight peculiar fmell, and a pleafant fweetifh tate. When newly drawn from the cow, it has a tafte very different from that which it acquires after it has been kept for fome hours.

It is liquid, and wets all thofe fubftances which can be moiftened by water; but its confiftence is greater than that of water, and it is flightly unctuous. Like water, it freezes when cooled down to about 30°; but Parmentier and Deyeus, to whom we are indebted for by far the completeft arcount of milk hitherto publifhed , found that its freezing point varies confiderably in the milk of different cows, and even of the fame cow at different times *. Milk boils alfo when fufficiently heated; but the fame variation takes place in the boiling point of different milks, though it never deviates very far from the boiling point of water. Milk is fpecifically heavier than water, and lighter than blood; but the precife degree cannot be afcertained, becaufe almoft every particular milk has a fpecific gravity peculiar to itfelf.

When milk is allowed to remain for fome time at reft, there colle ${ }^{\prime}$ s on its furface a thick unctuous yellowifh coloured fubtance, known by the name of cream. The cream appears fooner in milk in fummer than in winter, evidently owing to the difference of temperature. In fummer, about four days of repofe are neceffary before the whole of the cream colicets on the furface of the liquid; but in winter it requires at leart Fourcroy, double the time \dagger. Afer the cream is feparated, the milk which re mains is much thinner than before, and it has a bluifh white colour. If it be heated to the temperature of 100°, and a little rennct, which is water digefted with the inner coat of a calf's ftomach, and preferved with falt, be poured into it, coagulation enfues; and if the coagulum be broken, the milk very foon feparates into two fulitances : a folid white part, known by the name of curd; and a fluid part, called whey.

Thus we fee that milk may be eafily feparated into three parts; namely, creum, curcl, and wwhey.

Cream is of a yellow colour, and its confiftence increafes gradually by expofure to the atmofphere. In three or four days, it becomes fo thick that the veffel whicla cuntains it may be inverted without riking any lofs. In eight or ten days more its furface is covered Surpl. Vol. II. Part II.
over with mucors and byfi, and it has no longer the flavour of cream, but of very fat cheefe *. This is the procefs for making what in this country is called a cream cheefe.

Cream poffeffes many of the properties of an oil. It Deyux. is \{pecifically lighter than water, it has an unctuous Chim, vii. feel, ftains clothes precifely in the inanner of oil ; anid ${ }^{372}$
if it be kept fluid, it contracts at latt a tatte which is very analogous to the rancidity of oils \dagger. Whea kept + Ibid. 375. boiling for fome time, a hittle oil makes its appearance, and floats upon its furface \ddagger. Cream is neither foluble 1 Hid. 37 ${ }^{\circ}$ in alcohol nor oils ई. Thefe properties are fuficient to flew us that it contains a quantity of oil ; but this oil is combined with a part of the curd, and mixed with fome ferum. Cream, then, is compofed of a peculiar oil, curd, and ferum. The oil may be eafly obtained reparate by agitating the cream for a confiderable time. This procefs, known to every body, is called clurning. After a certain time, the cream feparates into two purtions: one fuid, and refembling creamed milk; the other folid, and called butter.

Butter is of a yellow colour, poffeftes the properties of an oil, and mixes readily with oher cily bodies. When heated to the temperature of 9^{6}, it melts, and becomes tranfparent ; if it be kept for fome time melted, fome curd and water or whey feparate from it, and it affumes exactly the appearance of oil $\|$. But this $\#$ Fourcroy, procefs deprives it in a great meafure of its peculiar Ann. de flavour.
When butter is kept for a certain time, it becomes rancid, owing in a good meafure to the prefence of thefe foreign ingredients; for if butter be well wathed, and a great portion of thefe matters feparated, it does not become rancid nearly fo foon as when it is not treated in this manner. It was formerly fuppofed that this rancidity was uwing to the developement of a peculiar acid : but Parmentier and Degeux have fhewn that no acid is prefent in rancid butter *. When butter is dif- * 1iid. 375. tilled, there comes over water, febacic acid, and oil, at firft fluid, but afterwards concrete. The carbonaceous refiduum is but fmall.
Butter may be obtained by agitating cream newly And how. taken from milk, or even by agitating milk newly drawn from the cow. But it is ufual to allow cream to remain for fome time before it is churned. Now crean, by ftanding, acquires a four talte; butter therefore is commonly made from four crean. Frefh cream requires at leaff four times as much churning before it yields its butter as four crean does \dagger; confequently cream ac. + Fourcrey, quires, by being kept for tome time, new properties, in ibis. 169. confequence of which it is more eatily converted into butter. When very four cream is churned, every one who has paid the fnalleft attention mult have perceived, that the butter-milk, atter the churning, is not nearly fo four as the crean had been. The butter, in all cafes, is perfectly fweet; confequently the acid which had been evolved has in a great meafure difappeared during the procefs of churning. It has been alcertained, that cream may be churned, and butter obtained, though the contact of atmolpheric air be excluded \ddagger. We have \ddagger Roung de no doubt, that in all cafes where fuch an experiment Lafic, is. fucceeded, the cream on which it was made had previoully become four. On the other hand, it has been $\$$ mid-Loafcertained, that when cream is churned in contact with thian $_{\text {Mido- }}^{\text {Roo }}$ air, it abforbs a confiderable quartity of it j; and it port for
cannot be doubted, that the portion abforbed is oxygen.

Thefe facts are fufficient to afford us a key to explain what takes place during the procefs of churning. There is a peculiar oil in milk, which has fo ftrong an affinity for the other ingredients, that it will not feparate from them fpontaneoufly; but it has an affinity for oxygen, and when combined with it, forms the concrete body called butter. Agitation produces this combination of the oil with oxygen; either by caufing it to abforb oxygen from the air, or, if that be imponible, by feparating it from the acil which exits in four cream. Hence the abforption of air during churning; hence alfo the increafe of temperature of the cream, which Dr Young found to amount conftantly to 4°; and hence the fiweetnefs of the butter-milk compared with the cream from which it was obtained.
The affinity of the oil of cream for the other ingredients is fuch, that it never feparates completely from them. Not only is curd and whey always found in the cream, but fome of this oil is conftantly found in creamed milk and even in whey: for it has been afcertained by actual experiment, that butter may be obtained by churning whey; 27 Scotch pints of whey yield at an \# Mid-Lo- average about a pound of butter||. This accounts for zbianReport, a fact well known to thofe who fuperintend dairies, that x;95.
\uparrow Ann. de a good deal more butter may be obtained from the fame quantity of milk, provided it be churned as drawn from the cow, than when the cream alone is collected and churned.

The butter-milk, as Parmentier and Deyeux afcertained by experiment, poffefles precifely the properties of milk deprived of cream 1 .

Curd, which may be feparated from creamed milk by rennet, has all the properties of coagulated albumen. It is white and folid; and when all the moillure is fqueezed out, it has a good deal of brittleneís. It is infoluble in water ; but pure alkalies and lime diffolve it readily, efpecially when affited by heat ; aud when fixed alkali is ufed, a great quantity of ammonia is emitted during the folution. The folution of curd in foda is of a red colour, at leat if heat be employed; owing probably to the feparation of charcoal from the curd by the action of the alkali*. Indeed, when a frong heat has been ufed, charcoal precipitates as the folution cools \dagger. The matter diffelved by the alkali may be feparated from it by means of any acid; but it has loft all the properties of curd. It is of a black colour, melts like tallow hy the application of heat, leaves oily ftains on paper, and rever acquires the confiftence of curd \ddagger. Hence it appears that curd, by the action of a fixed alkali, is decompofed, and converted into two new fubftances, ammonia, and oil or rather fat.
Cord is foluble alfo in acids. If, over curd newly precipitated from milk, and not dried, there be poured eight parts of water, containiug as much of any of the mineral acids as gives it a fenfibly acid tafte, the whole © Scbele, ii is diffolved after a little boilings. Acetous acid and 53. lactic acid do not diflolve curd when very much dilua lid. ted\|. But thefe acids, when concentrated, diffolve it IParmene readily, and in confiderable quantityaf. It is remarktier and Deycux, ibid $+1 \%$. Fourcroy, idi. P. 173 .
either very little effect on it, as fulphuric acid*; or Milk. decompofe it, as nitric acid. By means of this laft acid, as Berthollet difcovered, a quantity of azotic gas may be obtained fronl curd.

Parmen-

Col an :

Curd, as is well known, is ufed in making cheefe: of ${ }^{273}$ and the cheefe is the better the rnure it contains of crcam, or of that oily matter which confltutes crean. It is well known to cheefemakers, that the goodnefs of it depends in a great meafure on the manner of feparating the whey from the curd. If the milk be much heated, the coagulum broken in pieces, and the whey forcibly fcparated, as is the practice in many parts of Scotland, the cheefe is fearce good for any thing; but the whey is delicious, efpecially the lait fqueezed out whey, and butter may be ohtained from it in cosfiderable quantity. A full proof that nearly the whole creamy part of the milk has been feparated with the whey. Whereas if the milk be not too much heated (about 100° is Cufficient), if the coagulum be allowed to remain unbroken, and the whey be feparated by very flow and gentle preflure, the cheefe is excellent; hut the whey is almoft tranfparent, and nearly colourlefs.

Good cheefe melts at a moderate heat; but bad cheefe, when heated, dries, curls, and exlibits all the phenomena of burning horn. Hence it is evident, that all the properties in which curd differs from albumen are owing to its containing combined with it a quantity of the peculiar oil which conflitutes the diftinguifhing characteriftic of cream; hence its flavour and fmell; and hence alfo the white colour of milk.

This famenefs of curd and albumen fhews us, that the coagulation of milk and of albumen depend upon the fame caufe. Heat, indeed, dnes not coagulate milk, becaufe the albumen in it is diluted with too large, a quantity of water. But if milk be boiled in contact with air, a pellicle foon forms on its furface, which has the properties of coagulated albumen : if this pellicle be removed, another fucceeds; and by continuing the boiling, the whole of the albuminous or curdy matter may be feparated from milk*. When this pellicle is allowed to remain, it falls at laft to the bottom of the veffel, where, being expofed to a greater heat, it becomes brown, and communicates to milk that difagreeable tafte which, in this country, is called a finged talle. It happens more readily when milk is boiled along with rice, flour,-\&c.

If to boiling milk there be added as much of any neutral falt as it is capable of diffulving, or of fugar, or of gum arabic, the milk coagulates, and the curd feparates \dagger. \dagger Scberef, ii Alcohol alfo coagulates milk \ddagger; as do all acids, rennet, 52 . and the infufion of the flowers of artichoke, and of the \ddagger FarmerthifleH. If milk be diluted with ten times its weight tirio, 6 bid. po of water, it cannot be made to coagulate at all 1 .

WHEY, after being filtered, to feparate a quantity of \uparrow Scbecele, ii. curd which ftill continues to float through it, is a thin $54 \cdot$ pellucid fluid, of a yellowifh green colour and pleafant properties fiweetifh tafte, in which the flavour of mills may be di- of whey. flinguifhed. It always contains fome curd ; but nearly the whole may be feparated by keeping the whey for fome time boiling; a thick white fcum gathers on the furface, which in Scotland is known by the name of float swhey. When this fcum, which confilts of the curdy part, is carefully feparated, the whey, after being allowed to remain at reff for fome hours, to give the
remainder

Mils. remainder of the curd tine to precipitate, is decanted off, almoft as colourlefs as water, and fcarcely any of the peculiar tafte of milk can be diftinguifhed in it. If it be now flowly evaporated, it depofites at laft a number of white coloured crytals, which are fugar of milk. Towards the end of the evaporation, fome cryitals of muriat of potals and of muriat of lime make their ap-Parmen- pearance*. According to Schecle, it contains alfu a er, p. 4%. little phafphat of limet.
Scbecte, $i \mathrm{ii}$.

After the falts have been ohtained from wher, what remains concretes into a jally on cooling \ddagger. Hence it follows, that whey alfo contains gelatine. Whey, then, is compofed of water, fugar of milk, gelatine, muriat of potafs, and muriat of lime. The other falts, which are fumetimes found in it, are only accidentally pre. lent.

If whey be allowed to remain for fome time, it becomes four, owing to the formation of a peculiar acid known by the name of lactic acid. It is to this pinperty of whey that we are to afcribe the acidity which milk contracts ; for neither curd nor cream, periectly freed from feruin, feem fufceptible of acquiring acid properties. Hence the reafon, alfo, that milk, after it becomes four, always coagulates. Boiled milk has the property of continuing longer fweet ; but it is fingular enough, that it runs fooner to putrefaction than ordi-Parmen- nary milk*.

The acid of milk differs confiderably from the acetous; yet vinegar may be ohtained from milk by a very fimple procefs. If to fomewhat more than 8 lbs . troy of milk, fix fpoonfuls of alcohol be added, and the mix. ture well corked be expofed to a beat fufficient to fupport fermentation (provided attention be paid to allow the carbonic acid gas to efcape from time to time), the whey, in about a month, will he found converted into

Sctecel. ii. vinegar \dagger

Milk is almoft the only animal fubftance which may be made to undergo the vinuus fermentation, and to afford a liquor refembling wine or beer, from which alcohol may be feparated by diftillation. This frigular fact feems to have been firlt difcovered by the Tariars; they obtain all their fpirituous liquors from mares milk. It has been afcertained, that milk is incapable of being converted into wine till it has become four ; after this, nothing is neceffary but to place it in the proper temperature, the fermentation begins of its own accord, and continues till the formation of wine be completed \ddagger. Scheele had obferved, that milk was capable of fermenting, and that a great quantity of carbonic acid gas was
 did not furpect, that the refult of this fermentation was the formation of an intoxicating liquor fimilar to wine.

When milk is diffilled by the heat of a water bath, there comes over water, having the peculiar odour of milk; which putrifies, and confequently contains, befides mere water, fome of the other conftituent parts of milk. After fome time, the milk coagulates Φ, as always happens when hot albumen acquires a certain degree of concentration. There remains behind a thick unctuous yellowifh white fubftance, to which Hoffman gave the name of franchipann. This fubflance, when the fire is increafed, yields at firt a tranfparent liquid, which becomes gradually more coloured; fome very fluid oil comes over, then ammonia, an acid, and at lant a very thick black oil. Towards the end of the pro.
cefs carbonated hydrogen gas is difengaged*. There remains in the retort a coal which contains carbonat of P Parmen. potafs, muriat of potafs, and phofpliat of lime, and "Parmen. fometimes magnefin, iron, and muriat of foda \dagger.

Thus we fee, that cow's milk is compored of the fol-1 Mcm.
lowing ingredients.

1. Water,
2. Oil,
3. Albumen,
4. Gelatine,
5. Sugar of milk, 1787 p. $6 \subset 6$. 2, 8 Its compo. r.ent parts. Mid. Pur.

The milk of all other animals, as far as it has hither. to been examined, cenfifts nearly of the fame ingredients; but there is a very great difference in their proportion.

Toman's milk has a much fwecter tafte than cow's ${ }^{2} 79$ milk. When allowed to remain at reft for a fufficient milk. time, a cream gathers on its furface. 'I'his cream is more abundant than in cow's milk, and its colour is ufnally much whiter. After it is feparated, the milk is exceedingly thin, and has the apucarance rather of whey, with a bluifh white colour, than of ereamed milk. None of the methods by which cour's milk is coagulated fucceed in producing the coagulation of woman's milk*. * Clark, It is certain, however, that it contains curd ; for if it irifh Tranf. be boiled, pellicles form on its furface, which have all the properties of curd \dagger. Its not coagulating, there \dagger Parmenfore, mult be attributed to the great quantity of water tier, ibis. p. with which the curd is diluted.

Though the cream be churned ever fo long, no butter can be obtained from it ; but if, after being agitated for fome hours, it be allowed to remain at reft for a day or two, it feparates into two parts; a fluid which occupies the inferior part of the vellel, pellucid, and colourlefs, like water, and a thick white unctuous fuid, which fwims on the furface. The lowermoft fluid contains fugar of milk and fome curd ; the uppermort does not differ from cream except in confiftence. The oily part of the cream, then, cannot be feparated by agi. tation from the curd \ddagger. This cream contains a greatert Ibid. portion of curd than the cream of cow's milk *: * Ibid.

When this milk, after the curd is feparated from it, is fowly evaporated, it yields cryftals of fogar of milk, and of muriat of foda. The quantity of fugar is rather greater than in cow's milk. According to Haller, the fugar obtained from cow's milk is to that obtained from an equal quantity of woman's milk as $35: 58$, and fometimes as $37: 67$, and in all the intermediate ratios.

Thus it appears, that woman's milk differs from that of cow's in three particulars.

1. It contains a much fmaller quantity of curd. Ies pecu-
2. Its oil is fo intimately combined with its curd, liarities. that it does not yield butter.
3. It contains rather more fugar of milk.

Parmentier and Deyeux afcertained, that the quantity of curd in woman's milk increafes in pruportion to the time after delivery $\|$. Nearly the fame thing has it ridi.p. been obferved with refpect to cow's milk.

Ass's milk has a very frong refemblance to hu- ${ }^{4}$ Si man milk: it has nearly the fame colour, fmell, and confiftence. When left at reft for a fufficient time, a cream forms upon its furface, but by no means in fuch abundance as in woman's milk. This cream, by very long agitation, yields a butter, which is always foft, white, and taftelefs; and, what is fingular, very readily mixes again with the butter-milk; but it may be again fepa-

* Parmen-
tier, P. 423.
282
Its pecu.
liaritles.

283
Goat'smilk.
425.
wes milk
\ddagger Tbid. p.
428.
$2 \$_{5}$
Mares
mills.
| Ibid. p. 431.
rated by agitation, while the veffel, which contains it, is plunged in cold water. Creamed afs's milk is thin, and has an agreeable fweetinh tafle. Alcohol and acids feparate from it a little curd, which has but a fmall degree of confiftence. The ferum yields fugar of milk and muriat of lime *.

Afs's milk therefore differs from cow's milk in three particulars.

1. Its cream is lefs abundant and more infipid.
2. It contains lefs curd.
3. It contains more fugar of milk : the proportion is $35: 80$.
Goat's milx, if we except its confiftence, which is greater, 'does not differ much from cow's milk. Like that milk, it throws up abundance of cream, from which hutter is erfily obtained. The creamed milk coagulates juit as cow's milk, and yields a greater quanity of curd. Its whey contains fugar of milk, muriat of lime, and muriat of foda \dagger.

Ewe's malk refembles almof precifely that of the cow. Its cream is rather more abundant, and yields a butter which never acquires the confiftence of butter from cow's milk. Its curd has a fat and vifeid appearance, and is not withont difficulty made to affume the confiftence of the curd of cow's milk. It makes excellent cheefe \ddagger.

Mare's milk is thinner than that of the cow, but fcarcely fo thin as human milk. Its cream cannot be converted intu butter by agitation. The creamed milk coagulates precifely as cow's milk, but the curd is not fo abundant. The ferum contains fugar of milk, ful. phat of lime, and muriat of lime $\#$.

Sect. IX. Of Saliva.

The fluid fecreted in the mouth, which flows in confiderable quantity during a repaft, is known by the name of faliva. No accurate analyfis has hitherto been made of it, though it poffeffes fome very fingular pro-
286 perties.
Properties It is a limpid fluid like water, but much more vifcid : of faliva it has neither fmell nor tafte.
lis fecific gravity, according to Hamberger, is * Haller's 1.0167*. When agitated, it frothes like all other adPby. vi. 52.

+ Narcelus. Haller, ,bid. p. 54.
\ddagger Fordyce on Digeft. p.
${ }_{51}$ Sourcroy,
${ }^{5}$ Ann. de
Cbim.
xxviii 262
I Ibid. hefive liquids; indced it is ufually mixed with air, and has the appearance of froth.

It neither mixes readily with water nor oil \dagger; but by trituration in a mortar, it may be mixed fu with wa. ter as to pafs through a filter \ddagger. It has a great affinity for oxygen, abforbs it readily from the air, and gives it out again to other bodies $\$$. Hence the reafon why gold or filver, triturated with faliva in a mortar, is oxydated, as Dutenner has obferved; and why the killing of mercury by oils is much facilitated by ipitting into the mixture 斤. Hence alfo, is all probability, the reafon that faliva is a ufeful application to fores of the flkin. Dogs, and feveral other animals, have conftantly recourfe to this remedy, and with much advantage.

Saliva is coagulated by oxy muriat of mercury, by

* Haller's alcohol, and by nitre *. Therefore, in all probability, Pbyy, vi. S4. it contains albumen"and gelatine, or fome analogous fubftances.

When 100 parts of faliva are diftilled, there came over 80 parts of water nearly pure, then a little carbonat of ammonia, fome oil, and an acid, which perhaps is the pruffic. The refiduum amounts to about 1.56 parts,
and is compofed of muriat of foda and phofphat of Bile. lime + .

The tartar of the teeth, which is a crult depofited ${ }^{2} 287$ from faliva, confifts, as Fourcroy lias afcertained, of the teeth. phofphat of lime.

The pancreatic juice has never been examined Pancreatic with much attention; but it does not appear, from the juice. experiments that have been made, to differ much from-Texfor, faliva.

Sect. X. Of Bile.

BILE is a liquid of a yellowifh green colour, an unctuous feel, and bitter tafte, is fecreted by the liver; and in moft animals confiderable quantities of it are ufually found collected in the gall-bladder.

Great attention has been paid to this liquid by phyficians; becaufe the ancients were accuftomed to afcribe a very great number of difeafes, and even affections of the mind, to its agency. The moft accurate chemical analy fis of it which has hitherto appeared, is that of Mr Cadet, which was publifhed in the Memoirs of the French Academy of Sciences for the year 1767. Several important obfervations had been previoully made on it by Boyle, Boerhaave, Verheyen, Ramfay, and Baglivi; and fome facts lave fince been added to our chemical knowledge of bile by Maclurg and Fourcroy. The experiments have chiefly been confined to the bile of oxen, known in this country by the name of gall; becaufe it is moft eafily procured in large quantities.

The fpecific gravity of bile feems to vary, like that ${ }^{289}$ of all other animal fluids. According to Hartmann, it of bile. is 1.027^{*}. When ftrongly agitated, it lathers like * Haller's foap; and for this reafon, as well as from a medical Phyf. vi. theory concerning its ufe, it bas been often called an 546 . animal foap.

It mixes readily with water in any proportion, and affumes a yellow colour: but it refufes to unite with oil when the two fluids are agitated together; the inftant that they are left at reft, the oil feparates and fwims on the furface \dagger.
\dagger Ramfay,
When muriatic acid is poured upon bile, let it be ever Tbefour. fo freth, an odour of fulphurated hydrogen gas is con. Med. Edin. ftantly exhaled \ddagger. When on 100 parts of ox-bile four ${ }^{\text {ii. }}$ Maclurg, parts of ftrong muriatic acid are poured, the whole inttantly coagulates; but in fome hours the greater part p. 10. 290 becomes again fluid; and when paffed through the filter les compo. it leaves 0.26 of a white matter, which has all the pro- ${ }^{\text {nent }} \ddagger$ Cadet, perties of albumen \oint. This matter was detected by ${ }_{\text {Mcm. Par }}{ }^{\text {Cadet }}$ Ramfay; who found that it could be precipitated from 1707. p. bile by alcohol, acetons acid, fulphat of potafs, and mu-340. riat of foda *. Cadet afcertained, that 100 parts of § Tbecaur ox. bile contain about 0.52 of albumen. It is precipi- Edin. ii. tated in a flate of purity by oxy muriatic acid, pro* 460 . vided that acid be not employed in excefs \uparrow.

The muriatic acid folution, after the feparation of $\begin{gathered}\text { Ann. de } \\ \text { Chim. vii. }\end{gathered}$ the albumen, has a fine grafs.green colour. When con. ${ }_{170}$. centrated by fome hours evaporation in a glafs cucurbit on hot coals, it depofites a very copious precipitate, and lofes almoft the whole of its green colour. By longer evaporation, a new precipitate, fimilar to the firf, appears, and the remaining liquid affumes the colour of beer. The precipitate poffeffes all the properties of the refin' of bile. In its moift fate it amounts to 10.8 parts \ddagger. The fame fubsances may be ob- \ddagger Calet, ib tained from bile by nitric acid; but the refin in that

Bile, cafc has a yellow colour, and its properties are fomeary Cal- what altered *.

If 100 parts of bile be gently evaporated to drynefs by a very moderate heat, the dry mals only weighs 10 parts, and has a brownifh black colour. When expofed to a ftrong heat in a crucible, this matter fivells up, takes fire, and emits very thick fumes. 'The refiduan amounts to 1.09. By lixivation with water, 1.87 of cryltallized foda may be obtained \dagger; confequently 100 parts of bile contain, according to Mr Kirwan's table, 0.403546 of pure foda. But it is evident that, by this method, part of the foda mult have been evaporated; therefore 100 parts of bile contain more than 0.403546 of foda. Befides the foda, there is found alfo a fmall portion of muriat of foda \ddagger.

Cadet found the refiduum, after the feparation of the falts, of a black colour: it gave fome traces of iron. He alfo obtained a calcareous falt from bile, which he confidered as a fulphat ; but it is more than probable that it was phofphat of lime.

Cadet alfo ohtained from bile, by evaporating the muriatic acid folution after the feparation of the refin, a falt which crylfallized in trapeziums; it had a fweetifh tafte, and was confidered by him as analogous to fugar of milk *.

Thus we fee that bile contains the following ingredients:

1. Water,	5. A fweetifh falt,
2. Refin,	6. Muriat of foda,
3. Albumen,	7. Phofphat of lime,
4. Soda,	8. Iron.

The proportion of thefe ingredients has by no means been afcertained. The prefence of iron has been denied in bile, becaufe it gives no blue precipitate with pruffic alkali, and becaufe tincture of nut-galls does not faclurg, give it a black colour t. But thefe reafons are infufficient to overturn the experiment of Cadet, who actually found it in bile.

When four parts of vinegar and five of bile are mixed together, the mixture has a fweet tatte, and does not coagulate milk. The lactic acid has precifely the fame imfay, effect as vinegar \ddagger.
p. 462. When bile is diftilled in a water bath, it affords a tranfparent watery liquor, which contracts a pretty ftrong odour, not unlike that of munk or amber, efpecially if the bile has been kept for fome days before it iourcroy, is fubmitted to diftillation δ. The refiduum is of a
292. deep brownifh green ; it attracts moilture from the air, and diffolves readily in water. When diftilled in a retort, it aflords a watery liquor of a yellowifh colour, and impregnated with alkali, oil, carbonat of ammonia, carbonic acid, and hydrogen gas. The coaly retiduum is eafily incinerated *. Bile, expofed to a temperature between 65° and 85° foon lofes its colour and vifcidity, acquires a naufeous fmell, and depofites whitifh mucilaginous flakes After the putrefaction has made confiderable progrefs, its fmell becomes fweet, and refembles amber \dagger. If bile be heated, and flightly concentrated by evaporation, it may be kept for many months with. out alteration \ddagger.

Sect. XI. Of Billary Calcult.

Hard bodies fometimes form in the gall bladder, or in the duct through which the bile paffes into the in-
teftinal canal, and fop up the paffage altogether. Thefe Biliary Cal: concretions have grot the name of biliary calculi or gall.
fones. As they are formed in the midit of bile, and as the fubttances of which they are compofed mult be derived from the bile, it is proper to give an account of them liere, becaufe their properties cannot fail to throw fome additional light on the nature of bile itfelf.

Biliary calculi, all of them at leaft which have been Biliary cal. hitherto examined witl attention, may be divided into culi of three claffes.

1. The firft kind comprehends thofe which have a white colour, and a cryftallized, fhining, lamellated Atructure.
2. The fecond is dark coloured, and has precifely the appearance of infpiffated bile. Both thefe kinds are combuttible.
3. The third kind comprehends thofe gall-itones which do not flame, but gradually wafte away at a red heat.

We fhall take a view of each of thefe kinds of biliary calculi in their order. For the greater part of the chemical knowledge which has been hitherto acquired of them, the world is chiefly indebted to Mr Fourcroy.

1. The firf fpecies of biliary calculi was pointed out Propertiss for the firft time by Haller, in a differtation publifhed of the firf in 1749. Walther afterwards added feveral new facts; and at laft it was accurately defcribed by Vicq d'Azyr. It is almoft always of an oval thape, fometimes as large as a pigeon's egg, but commonly about the fize of a fparrow's; and for the molt part only one calculus (when of this fpecies) is found in the gall bladder at a time. It has a white colour ; and when broken, prefents cryftalline plates or ftrix, brilliant and white like mica, and having a foft grealy feel. Sometimes its co. lour is yellow or greenith ; and it has conftantly a nus. cleus of infpiffated bile \dagger.

Its fpecific gravity is lower than that of water: Gren + Fouraroy, found he fpecific gravity of one $0.803 \ddagger$. Chim. iii.

When expofed to a heat confiderably greater than ${ }^{2}+$ Ann that of boiling water, this cryftallized calculus foftens $\begin{aligned} & t \text { Aimn } \\ & \text { de } \\ & \text { v. }\end{aligned}$ and melts, and cryftallizes again when the tempereture 186. is lowered \S. It is altogether infoluble in water ; but \S Forrcroy, hot alcohol diffolves it with facility. Alcohol, of the ibid. ii. 123 . temperature of 167°, diffolves $\frac{1}{2} \frac{1}{0}$ of its weight of this fubftance; hut alcohol, at the temperature of 60°, fcarcely diffolves any of it *. As the alcohol cools, *Isit. p. the matter is depofited in brilliant plates refenbling 180 . tale or boracic acid \dagger. It is foluble in oil of turpen- + rid. iii. tine \ddagger. When melted, it has the appearance of oil, 19 Gren and exhales the odour of melted wax: when fuddenly ibil. v. 13% heated, it evaporates altogether in a thick fmoke. It is foluble in pure alkalies, and the folution has all the properties of a foap. Nitric acid alfo diffolves it ; but it is precipitated unaltered by water \ddagger.
\ddagger Fsuresty,
This matter, which is evidently the fame with the ibid. in. cryftals which Cadet obtained from bile, and which he ${ }^{2}+7$. confidered as analogous to fugar of inilk, has a trong refemblance to fpermaceti. Like that fubfance, it is of an oily nature, and inflammable ; but it differs from it in a variety of particulars.

Since it is contained in bile, it is not difficult to fee how it may eryflallize in the gall-bladder if it happens to be more abundant than μ fual ; and the confequence

Blliary 'al-mult be a gall-ftone of this fpecies. Fourcroy found
cui, a quantity of the fame fubftance in the dried liuman
Tears.

* Fourcroy, The fecond fpecies of biliary calculus is of a round ibid. Y. 126. or polygonal flape, of a grey colour exteriorly, and
293 fe brown within. It is formed of concentric layers of a
of the fecons.
tonthe
Liver, p .
112
\ddagger Pbysol. vi. 567. matter which feems to be infpifated bile; and there is ufually a mucleus of the white cryfalline matter at the centre. For the mott part there are many of this fpecies of calculas in the gall-hladder together: indeed it is frequently filled with them. Their fize is ufually much fmaller than that of the lat fpecies.

This is the mott common kind of gall-fone. It may be confidered as a mixture of infpiffated bile, and of the cryfthline matter which forms the firlt fpecies: and the appearance of calculi of this kind munt vary confider. ably, according to the proportion of thefe ingredients.
3. Concerning the third fpecies of gali.itone, very little is known with accuracy. Dr Saunders tells us, that he has met with fome gall-ftones infoluble both in alcohol and oil of turpentine; fome which do not flame, but become red, and confume to an afh like a charcoal t. Haller quotes feveral examples of fimilar calculi \ddagger.

Gall-ftones often occur in the inferior animals, particularly in cows and hugs; but the biliary concretions of thefe animals have not hitherto been examined with attention.

Sect. XII. Of Thars.

'rhat pectiliar fluid which is empluyed in lubrica. ting the eye, and which is emitted in confiderable quantities when we exprefs grief by weeping, is known by the name of tears. For an accurate analyfis of this fluid, chemiftry is indebted to Meffrs Fourcruy and Vauquelin. Before their differtation, which was publifhed in 1791, appeared, fcarcely any thing was known about 295 the nature of tears.

The liquid called tears is tranfparent and colourlefs like water ; it has farcely any fmell, but its tafte is always perceptibly falt. Its \{pecific gravity is fumewhat greiner than that of diftilled water. It gives to paper, Itained with the juice of the petals of mallows or sivelet, a permanently green colour, and therefore contains a

- Fourcooy, fixed alkali*. It unites with water, whether cold or and Vau- hot, in all proportions. Alkalies unite with it readily, guelin, four and render it more fluid. The mineral acids produce de Phy.
exxix. 256
+1 Ibid. f .

257.

\$ Ibid. p.
256.

3 Ibid. no apparent change upon it \dagger. Expofed to the air, this liquid gradually evaporates, and becomes thicker. When nearly reduced to a ftate of drynefs, a number of cubic cryplals form in the midft of a kind of nucilage. Thefe cryftals poffefs the properties of mmiat of foda; only they tinge vegetable blues green, and therefore contain an excefs of forla. The mucilaginous natter acquires a yellowifh colour as it drics \ddagger.

This liquid boils like water, excepting that a confiderable froth collccts on its furface. If it be kept a fufficient time at the boiling temperature, $\mathrm{I}_{0}^{\circ 6} \mathrm{\sigma}$ parts of it evaporate in water; and there remain about . 04 parts of a yellowifh matter, which by dittillation in a ftrong heat yield water and a little oil : the refiduum confifts of different faline matters $\$$.

When alcohol is poured into this liquid, a mucilaginous matter is precipitated in the form of large white ?akes. The alcohol leaves behind it, when evaporated,
traces of muriat of foda and foda. The refiluum which remains behind, when infpiffated tears are burnt in the open air, exhibits fome traces of phofphat of liase and phofphat of foda $\|$.

Tears,
Singovia,

$\overline{\text { Fuctreroy }}$
Thus it appears that tears are compuled of the fol. q andin, fou lowing ingredients:

1. Water,
2. Soda,
3. Mucilage,
4. Phufphat of lime,
5. Phofphat of fuda.

3. Muriat of foda,

The faline parts amount only to ahout 0.01 of the whole, or probably not fo much.

The mucilage contained in the tears has the property of abforbing oxygen gradually from the atmofphere, and of becoming thick and vifcid, and of a yellow colour. It is then infuluble in water, and remains long fufpended in it without alteration. When a lufficient quantity of ony-muriatic acio is poured into tears, a yellow flaky piecipitate appears abfolutely fimilar to this infpiffated mucilage. 'The oxy-muriatic acid lofes its peculiar odour ; hence it is evident that it has given out oxygen to the mucilage. 'The property which this mucilage has of abforbing oxygen, and of acquiring new qualities, explains the changes which take place in tears which are expofed for a long time to the action of the atmufphere, as is the cafe in thufe perfons who labour under a fiftula lachrymalis *.
'The mucus of the nofe has alfo been exansined by Fourcroy and Vauquelin. They found it compofed of precifely the fame ingredients with the tears. As this fluid is more expofed to the action of the air than the tears, in moft cafes its mucilage has undergone lefs or more of that change which is the confequence of the abforption of oxygen. Hence the reafon of the great. er vifcidity and confiftence of the mucus of the nofe; hence alfo the great confiftence which it acquires during colds, where the action of the atmofphere is affilt. ed by the increaled action of the parts + .
ed by the increaled action of the parts + .
Sect. XIII. Of Smoria.
Within the capfular ligament of the different joints of the body, there is contained a peculiar liquid, intended evidently to lubricate the paits, and to tacilitate their motion. This liquid is known among anatomifts by the name of finoria.

Whetleer it be the fame in different animals, or even in all the different joints of the fame animal, has not been determined; as nu accurate analy fs of the finovia of different animals has heen attempted. The onlyanalyfis of finovia which has hitherto appeared is that by Mr Margueron, which was publifted in the 14 th rolume of the Annales de Cbimie. He made ufe of finovia obtained from the joints of the lower extremities of oxen.

The finovia of the ox, when it has juft flowed from $\frac{298}{298}$ the joint, is a vifcid femitraufparent fluid, of a greenifh the ox. white colour, and a fmell not unlike frog fawn. It very foon acquires the confitence of jelly; and this happeus equally whether it be kept in a cold or a hot temperature, whether it be expofed to the air or excluded frum it. This conffifence dues not continue long; the finovia foon recuvers again its fluidity, and at the fame*Marg time depofites a thready-like matter *.

Sinovia mixes readily with water, and imparts to that de Cbim. liquid a great deal of vifcidity. The mixture frothes ${ }^{2} 299$ when agitated; becomes milky when boiled, and depo-lts prop
innova, fites fome pellicles on the fides of the difh ; but its vifiemell.

When alcohol is poured into finovia, a white fubftance precipitates, which has all the propertics of albumen. One huncired parts of finovia contain 4.52 of ablumen. The liquid aill continues as vifcid as ever ; but if acetous acid be poured into it, the vifcility difappears altogether, the liquit becomes tranfparent, and depofites a quantity of matter in white threads, which poffelfes the following properties:

1. It has the colour, fmell, tafte, and clafticity of vegetable gluten.
2. It is foluble in concentrated acids and pure alkalies.
3. It is foluble in cold water, the folution frothes; acids and alcohol precipitate the fibrous matter in flakes. One hundred parts of linovia contain 11.85 of bis p. this matter \ddagger.

When the liquid, after thefe fubftances have been feparated from it, is concentrated by evaporation, it depolites cryflals of acetite of foda. Sinovia, therefore, contains forla. Margueron found that 100 parts of tinovia contained about 0.71 of foda.

When ftrong fulphuric, muriatic, nitric, acetic, or fulphurous acid is poured into finovia, a number of white flakes precipitate at firft, but they are foun rediffolved, and the vifcidity of the liquid continues. When thefe acids are diluted with five times their weight of water, they diminifh the tranfparency of finovia, but not its vifcidity; but when they are fo much diluted that their acid tafte is juft perceptible, they precipitate the peculiar thready matter, and the vifcidity of the tinovia difappears \oint.

When linovia is expofed to a dry atmofphere it gradually evaporates, and a fcaly refiduum remains, in which cubic cryftals, and a white faline efflorefcence, are apparent. The eubic cryftals are muriat of foda. One hundred parts of finovia contain about 1.75 of this falt. The faline efflorefcence is carbonat of foda $\|$.

Sinovia foon putrefies in a moift atmofphere, and during the putrefaction ammonia is exhaled. Wien finovia is difilled in a retort there comes over, firlt water, which foon putrefies; then water containing ammonia; then empyreunatic oil and carbonat of ammonia. From the refiduum muriat and carbonat of foda may be extracked by lixiviation. The coal contains fome phof-
id. 128. phat of lime f .
From the analyfis of Mr Margueron it appears that finovia is compofed of the following ingredients:

$$
\begin{aligned}
& 11.86 \text { fibrous matter, } \\
& 4.52 \text { albumen, } \\
& 1.75 \text { muriat of foda, } \\
& .71 \text { foda, } \\
& .70 \text { phofphat of lime (} \mathrm{N}), \\
& -80.57 \text { water, } \\
& \hline \text { SEct. XIV. Of SEMEN. }
\end{aligned}
$$

The peculiar liquid fecreted in the tefles of males, and deflined for the impregnation of females, is known
by the name of femen. The human femen alone has hitherto heen fuhijected to chemical analyfis. Nothing is known concerning the fenimal fluid of other animals. Varquelin publifhed an analylis of the human femers in 1791.

Somen, when newly ejected, is cuibently a mixture Properties of two different fubltances : the one, Aluid and milky, of femen which is finpofed to be fecreted by the protlate gland; the other, which is contidered as the stue fecretion of the tettes, is a thick macilaginous fubitance, in which numerous white hining filaments may be difcovered *. *VauIt has a flight difagrecable odour, an acrid irritating quelin, Ann. tafte, and its fpecific gravity is greater than that of 64. water. When rubbed in a mortar it becomes frothy, and of the couliftence of pomatum, in confequence of its enveloping a great number of air bubbles. It converts paper ilaned with the blofioms of mallows or violets to a green colour, and confequently contains an alkali \dagger.

As the liquid cools, the mucilaginous part becomes 65 . tranfparcut, and acquires greater confiftency; but in about twenty minutes after its cmiflion, the whole becomes perfectly liquid. This liquefaction is not owing to the ahforption of moiture from the air, for it lofes inftead of acquiring weight during its expofure to the atmofphere: nor is it owing to the action of the air, for it takes place equally in clofe veffels. \ddagger. \ddagger Ibid. p.

Semen is infoluble in water before this fpontancous ${ }^{66}$. liquefaction, but afterwards it diffolves readily in it. When alcohol or oxy-muriatic acid is poured into this folution, a number of white flakes are precipitated $\oint . \$ 1 b i d$. .. Concentrated alkalies facilitate its combination with 70. water. Acids readily diffolve the femen, and the folution is not decompofed by alkalies; neither indeed is the alkaline folution decompofed by acids $\|$.

Lime difengayes no ammonia from frefh femen; but 7 r. after that fluid has remaiued for fome time in a moift and warm atmofphere, lime feparates a great quantity from it. Confequently ammonia is formed during the expofure of femen to air \mathbb{I}.

I Ibid.

When oxy-muriatic acid is poured into femen, a 302 namber of white flakes precipitate, and the acid lofes Its compoits peculiar odour. Thefe flakes are infoluble in water, nent parts. and even in acids. If the quautity of acid be fufficient, the femen acquires a yellow colour. Thus it appears that femen contains a mucilaginous fubftance, analogous to that of the tears, which coagulates by abforbing oxygen. Mr Vauquelin obtained from 100 parts of iemen fix parts of this mucilage.

When femen is expoted to the air about the temperature of 60°, it becomes gradually covered with a tranfparent pellicle, and in thrce or four days depofites fmall tranfparent cryftals, often crofling each other in fuch a manner as to reprefent the fpokes of a wheel. Thele cryitals, when viewed through a microfcope, appear to he four-fided prifms, terminated by very long four-fided pyramids. They may be feparated by diluting the liquid with water, and decanting it off. They have all the properties of phofphat of lime *. If, after * Ibid. p. the appearance of thefe cryftals, the femen be filll al. 67 and 73. lowed to remain expofed to the atmofphere, the pellicle
(v) Mr Hatchett found only 0.208 of phofphat of lime in the finovia which he examined. He found, how. ever, traces of fome other phofphat ; probably phofphat of foda. Phil. Tranf. 1799, p. 246.

Senier, Liquor of the Am.
nios.

$\xrightarrow{+}$

\dagger Van $+V_{\text {au- }}$ menl contain three parts of phofphat of lime t. If at de Cbors. p. os.
\ddagger lidd.
§ IliL.

TIbid. p.
75.
on its furface gradually thickens, and n number of white round bodies appear on different parts of it. Thefe bodies alio are phofphat of lime, prevented from cryftallizing regularly by the too rapid abitraction of moifturc. Mr Vaquelin found that 100 parts of feother cryftals appear in the fomen, which have the propertits of carlunat of foda. The evaporation does not go on to complete exficcation, unlefs at the temperature of 77°, and when the air is very dry. When all the moifture is evaporated, the femen has loft 0.9 of its weight, the refidumen is femi-tranfparent like horn, and brittle \ddagger.

When femen is kept in very moift air, at the temperature of about 7^{70}, it acquires a yellow colour, like that of the yolk of an egg: its talte becomes acid, it exhales the odour of putrid fifh, and its furface is covered with abundance of the byffus feptica $\$$.

When dried femen is expofed to heat in a crucible, it melts, acquires a brown colour, and exhales a yellow fume, having the odour of burnt horn. When the heat is raifed, the matter fwells, becomes black, and gives out a ftrong odour of ammonia. When the odour of ammonia difappears, if the matter be lixiviated with water, an alkaline folution may be obtained, which, by evaporation, yields cryftals of carbonat of foda. Mr Vauquelin found that 100 parts of femen contain one part of foda of. If the refidaum be incinerated, there will remain only a quantity of white afhes, confiting of phofphat of lime.

Thus it nppears that femen is compofed of the following ingredients :

> 90 wnter,
> 6 mucilage,
> 3 phofphat of lime,
> I foda,

100

Sect. XV. Liguor of the Amnios.

The feetus in the uterus is enveloped in a peculiar membranous covering, to which anatomitts have given the name of amnios. Within this amnios there is a li. quid, diftinguifhed by the name of the liquor of the amnios, which furrounds the foetus on every part. This liquid, as might have been expected, is very different in different animals, at leaft the liquor amnii in women and in cows, which alone have hitherto been analyfed, have nut the fmalleft refemblance to each other. Thefe two liquids have been lately analyfed by Vauquelin and Buniva, and the refult of their analyfis has been publifh. ed in the 33 d volume of the Annales de Cbimie.

303
Liquor of the hunsan amuios.

* Ann. de

Cbim. Ixxiji. 270.
r. The liquor of the amnios of women is a fluid of a nightly milky colour, a weak but pleafant odour, and a faltifh tafte. The white colour is owing to a curdy matter fufpended in it, for it may be obtained quite tranfparent by filtration *.
Its fpecific gravity is 1.005 . It gives a green colour to the tincture of violets, and yet it reddens very decidedly the tincture of tarnfol. Thefe two properties would indicate at once the prefence of an acid and of an alkali. It frothes conliderably when agitated. On the application of heat it becomes opnque, and has then a great refemblance to milk diluted with a large
quantity of water. At the fame time it exhales the Liquor, odour of builed swhite of egg*.

Acids render it more tranfparent. Alkalies preci. the Am nins. pitate an animal matter in fmall flakes. Alcohol like- Ann. din wife produces a flaky precipitate, which, when col-Cbim.xxx lected and dried, beconies tranfparent, and very like ${ }^{27 t}$. glue. The infufion of nut.galls produces a very copious brown coloured precipitate. Nitrat of filver occafions a white precipitate, which is infoluble in nitric acid, and confequently is muriat of filver \dagger.

When flowly evaporated it becomes flightly milky, a tranfparent pellicle forms on its furface, and it leaves a refiduum which does not exceed 0.012 of the whole. By lixiviating this refiduum, and evaporating the ley, cryftals of muriat and carbonat of foda may be obtained. The remainder, when incinerated, exhales a fetid and armmoniacal odour, refembling that of burning horn; the afhes confilt of a fmall quantity of carbonat of foda, and of phofphat and carbonat of lime \ddagger.

Thus we fee that the liquor of the human amnios is \ddagger Ibid. pe compofed of about

> 98.8 water, $\mathbf{1 . 2}\left\{\begin{array}{l}\text { albumen, } \\ \text { muriat of foda, foda, } \\ \text { phofphat of lime, lime, }\end{array}\right.$

100.0

While the foetus is in the uterus, a curdy-like matter Curdy m is depofited on the furface of its $/ \mathrm{kin}$, and in particularter depo: parts of its body. This matter is often found collected ted on th in confiderable quantities. It is evidently depofited from the liquor of the amnios; and confequently the knowledge of its peculiar nature mult throw confider. able light upon the properties and ufe of that liquor. For an analy fis of this fubftance we are alfo indebted to Vauquelin and Buniva.

Its colour is white and brilliant ; it has a foft feel, and very much refembles newly prepared foap. It is infoluble in water, alcohol, and oils. Pure alkalies diffolve part of it, and form with it in kind of foap. On burning coals it decrepitates like a falt, becomes dry and black, exhales vapours which have the odour of empyreumatic oil, and leaves a refiduum, which is very difficultly reduced to afhes. When heated in a platinum crucible it decrepitates, lets an oil exfude, curls up like horn, and leaves a refiduum confifting chiefly of carbonat of lime \ddagger.

Thefe properties fhew that this matter is different ${ }^{27}$ from every one of the component parts of the liquor of the amnios, and that it has a great refemblance to the fat. It is probable, as Vauquelin and Buniva have conjectured, that it is formed from the albumen of that liquid, which has undergone fome unknown changes. It has been long known, that the parts of a fotus which has lain for fome time after it isas been deprived of life in the uterus, are fometimes converted into a kind of fatty matter. It is evident that this fubflance, after it is depolited upon the Kkin of the fætus, muft preferve it in a great meafure from being acted upon by the liquor of the amnios.
2. The liquor of the amnios of the cow has a vifci-Liquer dity fimilar to mucilage of gum arabic, a brownifh red the ame colour, an acid and bitter tafte, and a peculiar odour, not unlike that of fome vegetable extracts. Its fpecific gravity is 1.028 . It reddens the tincture of turnfol,
\qquad

y:or of and therefore contains an acid. Muriat of barytes e Ans- caufes a very abundant precipitate, which renders it pronios. bable that it contains fulphuric acid. Alcohol feparates from it a great quantily of a reddifh coloured matter *.

When this liquid is evaporated, a thick frotly fcum
${ }_{3 \times 6}{ }^{175}$ gathers on the furface, which is eafily feparated, and in 366 which fome white acid-tafted cryfals may be difcover-
connro. ed. By continuing the evaporation, the matter becomes thick, and wifcid, and las very much the luok of honey. Aleohol hoiled upon this thick matter, and filtered off. depofites upon cooling hrilliant needle formed cryfthls nearly an inch in length. Thefe crytals nay be ohtained in abundance by evaporating the liquor of the annios to a fourth part of its bulk, and thein allowing it to coul. ' The crytals foon make their appearance. They may be fepratated and purilied by wafhing them in a fmall guantity of cold water. Thefe cryttals have the properties of an acid ς.
If after the feparation of this acid the liquor of the amnios be evaporated to the conafifence of a fyum, large tranfparent crytals appear in it, which have all the properties of fulphat of foda. The licquid of the amnios of cows contains a confiderable quantity of this falt.
Thus it appears that the liquor of the annios of cows contains the following ingredients :

> 1. Water,
> 2. A peculiar animal matter,
> 3. A peculiar acid,
> 4. Sulphat of foda:

The animal matter poffefles the following properties: It has a reddith brown colour, and a peculiar tafte; it is very foluble in water, but infoluble ia alcohol, which has the property of feparating it from water. When expofed to a ftrong heat it fwells, exhales firtt the odour of burning gum, then of empyreumatic oil and of am. monia, and at latt the peculiar odour of prufic acid becomes very conficicuous. It differs from yelatine in the vifcidity which it communicates to water, in not forming a jelly when concentrated, and in not being precipitated hy tan. It muft be therefore ranked amiong the very undefined and inaccurate clafs of animal mucilages.

When burnt, it leaves a very large coal, which is readily incinerated, and leaves a little white afhes, compofed of phofphat of magnefia, and a very fmall proportion of phof phat of lime $\|$.

The acid fubttance is of a white and brilliant colour; its tafte has a very flight degree of fournefs; it reddens the tincture of turufol; it is fcarcely foluble in cold water, but very readily in hot water, from which it feparates in long needles as the folution cools. It is foluble alto in alcohol, efpecially when affitted by heat. It combines readily with pure alkalies, and forms a fubflance which is very foluble in water. The other acids decompofe this compound; and the acid of the liquor of the amnius is precipitated in a white cryftalline powder. This acid does not decompofe the alkaline carbonats at the temperature of the atmofphere, but it does fo when affifted by heat. It does not alter folutions of filver, lead, or mercury, in nitric acid. When expofed to a ftrong heat, it frothes and exhales an odour of ammonia and of pruffic acid. The properties are fufficient to thew that it is different from every other acid. Vauquelin and Boniva have given it the name of ainniotic acid. It approaches neareff to the faccholactic

Suppl. Vol. II. Part II.
and the uric acids ; hut the fachlactic acid does not furnifh anmonia by diffillation like the amniotic. The uric acid is not to foluble in hot water as the amniotic, it does not cryfallize in white brilliant needes, and it is infoluble in boiling alcohol; in both which refpects it differs completely from aminotic acid *.
Skct. XVI. of Urine.

No animal fubftance has attracted more attention Urine, than urine, both on account of its fuppofed connection with various difeafes, and on account of the very fingular products which have been ohtained from it. Mr Boyle, and the other chemilts who were his contemporaries, were induced to attend particularly to this liquid, by the difcovery of a method of obtaining pholphorus from it. Bherhaave, Haller, Haupt, Margraf, Putt, Rouelle, Proutt, and Klapruth, fucceffively improved the method of obtaining the phofphoric falts from urine, or added fomething to our kruwledge of the component parts of the ef falts. Schecle added greatly to our knowledge of urine by detecting leveral new fubflances in it which had not been fufpected. Cruick fhank has given us a very valuable paper on wine in the fecond edition of Rollo's Diabeles; and Fourcroy and Vauquetin liave lately publifhed the moft complete analyfis of it which has hitherto appeared.
Freth urine is a liquid of a peculiar aromatic odour, an orange colour; of greater or lefs intenlity, and an acrid faline tafte.

Its Specific gravity varies from 1.005 to 1.033^{*}. © Gruict .

1. It reddens paper ftained with turnfol and with /Bank, Plith the juice of radifhes, and therefore contains an acid. Mago iio
2. If a folution of anmonia be pourcd into fre $f_{\mathrm{h}}{ }^{240}$. 310 urine, a white powder precipitates, which has the pro-Containg perties of phof phat of lime. The prefence of this fub- pholphat of ftance' in urine was firtt difcovered by Scheele \dagger. If iime, lime water be poured into urine, phofphat of lime pre- \dagger Scheele, i. cipitates in greater abundance than when ammonia is ufed; confequently the acid which urine contaius is the phofphoric. Thus we fee that the phofphat of lime is kept diffolved in urine by an exceefs of acid. This alfo was firft difcovered by Scheele \ddagger This fubftance is moft abundant in the urine of the fick. Berthollet las $\$$ IJia. obferved that the urine of gouty people is lefs acid than that of people in perfect hcalth. The average quantity of plofphat of lime in healthy urine is, as Cruickfhank has afcertained, about $\frac{5}{5}$ of the weight of the uine \S.
3. If the phofphat of lime precipitated from urine be Mag . ii. examined, a little magnefla will be found nixed with it. ${ }^{241 \cdot}{ }_{3}$ II Fourcroy and Vauquelin have afcertained that this is Phofphat owing to a little phofphat of magnefia which urine con-of magtains, and which is decompofed by the alkali or lime nefia, employed to precipitate the phofpat of lime I, If Ann. de
4. When frefh urine cools, it often lets fall a briek Cbim. xxxio coloured precipitate, which Scheele firt afcertained to ${ }^{00}$. be cryftals of uric acid. All urine coutains this acid, Uric acid, even when no fenfible preeipitate appears when it cools. For if a fufficient quantity of clear and frefl urine be evaporated to $\sqrt{\frac{1}{78}}$ of its weight, a fubtle powder precipitates to the bottom, and attaches itfelf in part very firmly to the veffel. This part may be diffolved in pure alkali, and precipitated again by acetous acid. It exhibits all the properties of uric acid*. The quan *sclecto, tity of uric acid in urine is very various. During in-i. 20\% 4 F
termittent fevers it is depofited very copiou fly, and has been long known to phylicians under the name of $l a$. teritious feclimeat. Thlis fediment always makes its ap. pearaine at the crifis of fevcrs. In gonty people, the fame fediment appears in equal abundance towards the end of a paroxytm of the ditieafe (F). And if this fe. diment fuddenly difappears after it has begua to be de-

* Cruil. foank, Phil. AIMg.ij. 249.

313
Penzoic ..cid,

+ Ann. $d e$
§ $16 i d . \mathrm{p}$. 03.

354
Albumen
and gela. tine,
\ddagger Phil.Mag ii. 243 .
© Cruil.

V Fourcroy
and Vau-
quelin, Ann. de Clim.
xxxi. 61.
$3: 5$
Urea, pofited, a frefh attack may be expected*.
5. If frefl urine be evaporated to the confiftence of a fyrup, and muriatic acil be then poured into it, a precipitaie appears which poffeffes the properties of benzoic acid. Scheele filft difcovered the prefence of benzoie acid in urine. He evaporated it to drynefs, feparated the faline part, and applied heat to the refiduum. The benzoic acid was fublimerl, and found cryltallized in the receiver. The method which we have given is much ealier ; it was firt propofed by Fourcroy and Vauquelint. By it very confiderable quantities of benzoic acid may be obtained from the urine of horfes and cows, where it is much more abun. dant than in human urine. In human urine it varies from roido to ros
6. When an infution of tan is dropt into wine, a white precipitate appears, having the properties of the combination of t an and albumen, or gelatine. Urine, therefore, contains albumen and gelatine. Thefe fubftances had been fufpected to be in urine, but their prefence was firft demonftrated by Seguin, who difcovered the above method of detecting them. Their quantity in healthy urine is very finall. Cruikfhank found that the precipitate afforded by tan in healthy urine amounted to $\frac{2}{2} \frac{1}{4}$ th part of the weight of the urine \ddagger. It is to thefe fubftances that the appearance of the cloud, as it is called, or the mucilaginous matter, which is fometimes depofited as the urine cools, is owing. It is probable that healthy" urine contains only gelatine and not albumen, thourh the quantity is too fnall to admit of accurate examination; but in many difeafes the quantity of thefe matters is very much increafed. The urine of droplical people often contains fo much albumen, that it coagulates not only on the addition of acids, but even on the application of heat \oint. In all cafes of impaired digeftion, the albuminous and gelatinous part of urine is much increaled. This forms one of the moft confpicuous and important ditinctions between the urine of thofe who enjoy good and bad health\|.
7. If urine be evaporated by a flow fire to the confiftence of a thick fyrup, it affumes a deep brown colour, and exhales a fetid ammoniacal odour. When allowed to cool, it concretes into a mafs of cryftals, compored of all the component parts of urine. If four times its weight of alcohol be poured upon this mafs, at intervals, and a flight heat be applied, the greateft part of it is diffolved. The alcohol, which has acquired a brown colour, is to be decanted off, and diftilled in a crucible in a fand heat, till the mixture has boiled for fome time, and acquired the confiltence of a fyrup.

Dy this time the whole of the alcolol has paffed off, Urine. and the matter, on cooling, cryftallizes in quadrangular plates which interfect each other. This fubfarce is urea, which compofes $\frac{3}{2} \frac{9}{6}$ of the mine, provided the watery part be excluded. To this fubttance the taftr; fmell, and colour of urine are owing. It is a fubftance which characterizes urine, and conftutes it what it is, and to which the greater part of the very fingular plie. nomena of urine areto be aferibed.

The colour of urine depends upon the urea; the greater the quantity, the deeper is the colour. It may be detected by evaporating urine to the confiftence of a fyrup, and pouring into it concentrated nitric acid. Immediately a great number of white fhining cry fals appear in the form of plates, very much refembling cryftallized boracic acid. Thefe eryftals are urea combined with nitric acid.

The quantity of urea varies exceedingly in different urines. In the urine voided foon after a meal, very little of it is to te found, and fearcely any at all in that which hyiterical patients void during a paroxyfm.
8. If urine be flowly evaporated to the confiltence of Muriat of a fyrup, a number of cryltals make their appearance in foda, it. Two of thefe are remarkable by their form: one of them confifts of finall regular octahedrons; which, when examined, are found to pofiefs the properties of muriat of foda. Urine, therefure, contains inuriat of foda. It is well known that muriat of ioda cryfallizes in cubes; the fingular modilication of its form in urine is owing to the action of urea. It has been long known that urine faturated with muriat of foda depolites that falt in regular octahedrons.
9. A nother of the falts which appear during the eva- Muriat of poration of urine has the form of regular cubes. This ammonia, falt has the properties of muriat of ammonia. Now the ufual form of the cryftals of muriat of ammonia is the octahedron. The change of its form in urine is produced alfo by urea.
10. The faline refiduum which rca ains after the fe-Phopphat paration of urea from cryftallized urine by means of al ammonia cohol, has been long known under the names of fufible ${ }^{\text {and of fod }}$ falt of urine and microcofmic falt. Varions methods of obtaining it have been given by chemilts from Buerhave, who firft publithed a procefs, to Runelle and Chaulues, who gave the method juft mentioned. If this faline mafs be diffulverl in a fufficient quantity of hot water, and allowed to cryflallize fpontaneoufly in a clofe veffel, two fets of cryftals are gradually depofited. 'The lowermof fet has the figure of flat rhomboidal prifms; the uppermoft, on the contrary, has the form of rectangular tables. Thefe two may be cafily feparated by expofing them for fome time to a dry atmofphere. The rectangular tables efflorefce and fall to powder, but the rhomboidal prifms remain unaltered.

When thefe falts are examined, they are found to have the properties of phofphats. The rhomboidal prifms confift of phofphat of ammonia united to a little phofphat of foda; the rectangular tables, on the con-
(f) The concretions which fometimes make their appearance in gouty joints have been found to confift chiefly of uric acid. This fingular coincidence deferves the attention of plyfiologifts : it cannot fail, foouer or later, to throw light, not only upon gout, but upon fome of the animal functions.

Uine. trary, are phofplat of fods united to a finall quantity of phofphat of ammonia. Urine, then, comtains phofplat of forla and phofplat of amnionia.

Thus we have found that unine contains the twelve Following fubllances :

1. Water,
2. Phoffhonic acid,
3. Phofphat of lime,
4. Phofphat of magucfia,
5. Unic acid,
6. Benzoic acid,
7. Phofphat of ammonia.

Thefe are the only fulstanees which are coultantly found in healthy urine * ; but it contains alfo occafonally other fubitances. Very ofien muriat of potafs may be dillinguithed among the crytuls which forna during its evaporation. The prefenee of this falt way always be detected by dre pping cautioufly fonte tartarous acid into uribe. If it contains muriat of potals there will precipitate a hittle tartar, which may eatily be recognifed by its properties *.

Urine fometines alfo contains fulphat of foda, and even fulphat of hime. The prefence of thefe falts may be afcertained by pouring into urine a folution of muriat of barytes, a copious white precipitate appeas, confilting of the barytes conbbined with phosplaric acid, and with fulphuric acid, if any be prefent. This pre-, cipitate mult be treated with a fuficient quantity of muriatie acid. The phofphat of barytes is diffoved, but the fulphat of barytes remains unaltered \dagger.
No fubflance putreties fooner, or exhates a more deteftable odour during its fontaneous decompofition, than urine; but there is a very great difference in this refpect in different urines. In fome, putrefaction takes place almolt inftantancoufly as foon as it is voided; in others, fcarcely any change appears for a number of days. Fourcroy and Vauquelin have afeertained that this difference depends on the quantity of gelatine and albumen which urine contains. When there is very little of thefe fubftances prefent, urine remains long unehanged ; on the contrary, the greater the quantity of gelatine or albumen, the fooner does putrefaction commence. The putrefaction of urine, therefore, is, in fome degree, the teft of the health of the perfon who has voided it ; for a fuperabundance of gelatine in urine always indicates fome defect in the power of digeftion *.
The rapid putrefaction of urine, then, is owing to the action of gelatinc on urea. We have feen already the facility with which that fingular fubftance is decumpofed, and that the new products into which it is changed are, ammonia, carbonic acid, and acetous acid. Accordingly, the putréfaction of urine is announced by an ammoniaeal fmell. Mucilayinous flakes are depofited, confilting of part of the gelatinous matter. The phofphoric acid is faturated with ammonia, and the phofphat of lime, in confequence, is precipitated. Ammonia combines with the phofphat of magneffa, forms with it a triple falt, which cryftallizes upon the fides of the veffel in the form of white eryflals, compofed of fix-fided prifms, terminated by fix-fided pyramids. The usie and benzoic acids are faturated with ammonia ; the acetous acid, and the carbonic aeid, which are the products of the decompofition of the urea, are alfo faturated with ammonia, and notwithitanding the quantity which exhales, the production of titis fubfance is fo abundant, that there is a quantity of unfaturated alkali
in the liquid. Putretied urine, herefore, containa chice. Udinery ly the following fubtlances, mult of which are the pro. $\underbrace{\text { Cobasar. }}$ ducts of puterefaction:

> Ammonia,
> Carbunat of ammonia,
> Phofpliat of ammoria,
> Phofphat of magnctia anc ammonid,
> Urat of ammoniz,
> Actite of ammoria,
> Benzoat of ammonia,
> Mariat of foda,
> Muriat of ammenia;

Beliules the precipitated gctatine and phofphat of lime **Am. in
The dithillation of urine produces almot the fame CLim. axxi. changes; for the heat of boiling water is fufficient to 70. decompofe urea, and to converi it into ammonia, carbonic and acetous acids. Aecordingly, when urine is diftilled, there comes over water, containing ammonia diffuled in it, end carbonat of ammonia in cryfals. The acilds contained in urine are faturated with ammonia, and the gelative and phof hat of time precipitate \dagger.

Such are the properties of the human unine. The urime of other animals has not hitherto been examined with equal eare; but it is certain that it differs very confiderably from that of nien. 'ithe urine of cows and horfes, and of all rumirating aninals, for inflance, contains carbonat of lime, without any mixture of phofyhat of line \ddagger. It contains alio a much greater proportion H° ouquelin, of benzoic acid than that of man.

Sect. XVII. Of. the Urinarr Calculus.

Ir is well known that eoncretions not unfrequently form in the bladder, or the other urinary organs, and occation one of the moft difmal difeafes to which the human fpecies is liable.

Thefe concretions were dillinguifhed by the name of Urinary calculi, from a fuppofition that they are of a flony na. calculi ture. They have long attracted the attention of phyficians. Chenniftry had no fooner made its way into medicine than it began to exercife its ingenuity upon the urinary calculus; and various theories were given of their nature and origin. According to Paracellus, who gave them the ridiculous uame of duelech, urinary calculi were intermediate between tartar and fone, and compofed of an animal refin. Van Helmont pronounced them anomalous coagulations, the offspring of the falts of uriue, and of a volatile earthy fpirit, produced at onre, and dellitute of any vifcid matter §. Boyle § Dc Lillos. extracted from them, by dillillation, vil, and a great off, c. 3 . quantity of volatile falt. Boerbave fuppofed them compounds of oil and volatile falts. Hales extracted from them a prodigions quantity of air. He gave them the name of animal'turtar, pointod out feveral circumftances in which they refemble common tartar, and made nany experiments to find a folvent of thein *. Dr ${ }^{*} V_{\mathrm{rg} \text { gefo }}$ Whytt and Ation pointed out alkalics as folvents of stat. ii. calculi. It was an attempt to difcover a more perfect ${ }^{159}$. folvent that induced Dr Black to make thofe experiments which terminated in the difcovery of the nature of the alkaline carbonats.
Such was the flate of the chemical analyfis of cal- Ara'yfred culus, when, in 1776 , Sehecle publifhed a differtation by biyteelv. on the fubject in the Stockbolin Trurgations; which was fucceeded by fume remarks of Mr Dergnaan. Thefe

Urinary illuftrions chemifts completely removed the uncertainty Cakculus. which had hitherto hung over the lubject, and afcer- tained the nature of the calculi which they examined. Since that time confiderable additional light has been thrown upon the nature of thete concretions by the laLours of Aultin, Pcaffon, aud, abuve all, of Finercroy and Vauquelin, who have lately analyted above 300
323 calculi, and afcertained the prefence of feveral new lub-
Their com-ftances which had not been iufpeeted. The fubllances
ponert
parts

324
Unic acid. hitherto difonered in urinary calculi are the folluwing:

1. Uric acid,
2. Urat of ammonia,
3. Phofiphat of lime (a),
4. Phofphat of magnefla-and-anmonia,
5. Oxalist of lime,
6. Silica,
7. An animal matter.
8. The greater number of calculi confilt of uric acid. All thofe analyfed by Scheele were compofed of it entirely. Of 300 calculi analy fed by Dr Pearfon, fcarceIy one was found which did not contain a confiderable quantity of it, and the greater number manifefly were tormed chiefly of it. Fourcroy and Vauquelin found it alfo in the greater number of the 3 co calculi which they analyied.
The prefence of this acid may eafily be afcertained by the following properties: A folution of potafs or foda diffolves it readily, and it is precipitated by the weakeft acids. The precipitate is foluble in nitric acid, the folution is of a pink colour, and tinges the flkin * Fourcroy, red *.

Annu. de
Cim.
2. Uxii. Cbim, xxxii. lubility in fixed alkaline leys, and the odour of ammo-
216 . fo often prefent in urinary calculi as the laft mentioned fubftance. No calculus has hitherto been found compofed of it alone, except the very fmall polygoual cal. culi, feveral of which fometimes exif in the bladder tugether.

It is moft ufually in thin layers, alternating with fome other fubllance, very eafily reduced to powder,
\dagger Sbid. 218. and of the colour of ground coffec \dagger.
\ddagger Ibid.
3. Phofphat of lime is white, without lufre, fiery, friable, Itains the hands, paper and cloth. It has very much the appearance of chalk, breaks under the forceps, is infipid, and infoluble in water. It is foluble in nitric, muriatic, and acetous acids, and is again precipitated by ammonia, fixed alkalies, and oxalic acid.

It is never alone in calculi. It is intimately mixed with a gelatinous matter, which remains under the form of a membrane when the earthy part is diffolved by very diluted acids \ddagger.
4. Plofphat of magnefia-and-ammonia occurs in white femitranfparéat, lameller layers; fometimes it is cryAallized on the furface of the calculi in prifms, or what are called dog tooth cryftals. It has a weak fweetifh tafte, it is fomewhat foluble in water, and very fuluble in acids, though greatly diluted. Fixed alkalies decompofe it.

It never forns entire calculi. Sometimes it is mixed with phofphat of lime, and fometimes layers of it
cover uric acid or oxalat of lime. It is inixed with the fame gelatinous matter as phofphat of lime \ddagger.
5. Oxalat of line is found in certain calculi, which, from the inequality of their furface, have got the name f ourcroy, of moriform or mullerry-/Juped calculi. It is never alune, CDim, axsi but combined with a peculiar animal natter, and form- 219 . ing with it a very hard calculus, of a grey colour, difli. 338 cult to faw afunder, admitting a polifh like ivory, ex- ©xalas of haling, when fawed, an odour like that of fumen. In- lime. foluble and indecompofible by alkälies; foluble in very diluted nitric acid, but flowly, and rith difficulty. It may be decompofed by the carbonats of potafs and foda. When burnt, it leaves behind a quantity of pure lime, which may be eafily recognifed by its properties *.
6. Silica has only been found in two inflances by Fourcroy and Vauquelin, though they analyfed 300 siica calculi. No other chemift has obferved it. It mult therefore be confidered as a very uncommon ingredient of thefe concretions. In the two inflances in which it occurred, it was mixed with uric acid and the two phofphats above mentioned t.
7. Animal matter appears to compofe the cement which binds the different particles of the calculus toge- Animal ther, and in all probability it is the caufe which influ- matecri. ences its formation. It is different in different calculi. Sometimes it has the appearance of gelatine or albumen, at other times it refembles urca. It deferves a more accurate invelligation \ddagger.
No general defcription of the diffcrent calculi has hitherto appeared; but Fourcroy and Vauquelin are at prefent occupied with that fulject. They propofe to claffify them according to their compofition; to point out their different 「pecies and varieties; to give a method of detecting them by their appcarance; to analyfe the animal matter by which they are cemented; and to apply all the prefent chemical knowledge of the fubject in the inveltigation of the caufe, the fymptoms, and the cure, of that dreadful difeafe which the urinary calculi produce. As their labour is already very far advanced, it would be unneceflary for us to attempt any claflification of cakculi. Indeed every attempt of that kind, by any perfon who has not had an opportunity of analyfing a very great number of calculi, mult be fo exceedingly imperfect as farcely to be of any ufe.

We flall fatisfy ourfelves with the following remarks, deduced almolt entirely from the obfervations which thefe celebrated chemifts have already publifhed.

Many calculi confitt entirely, or almoft entirely, of Mechod of uric acid. The animal matter, which ferves as a ce-difolving ment to thefe calculi, appears to be urea. Calculi of the calculi. this kind may be diffolved by injecting into the bladder folutions of pure potafs or foda, fo much diluted as not to act upon the bladder itfelf. The gritty fubftance, which many perfons threatened with the ftone difcharge along with their urine, which has been called gravel, condith almont conftantly of uric acid. It may therefore ferve as an indication that the fubfequent tone, if any fuch form, is probably compofed of uric acid.

The two phofphats, mixed together, fometimes compofe calculi. Thefe calculi are very britte, and gene-
na y rally break in pieces during the extraction. Such calculi may be difolved by injecting into the bladder muriatic acid, fo much diluted as fearcely to have any tafte of acici.
The phofphats never form the nucleus of a calculus. Tliey have never been foum covered with a layer of uric acid, but they often cover that acid. Hence it would leen that the exiftence of any extrancons matter in the blader difpofes thefe phofphats tu cryttallize. When extraneous bodies are accidentally introduced into the Lladiker, and allowed to lodge there, they are conftantly eovered with a coat of phofphat of ammonia and magnefia, or of the two phofphats mixed.

As the phofphat of ammonia and magnefia is not an ingredient of freft urime, but formed during its putrefractum, when it exits in calculi, it would feem to indicate a commencement of putrefaction during the time that the urine lodges in the bladuer. But putrefaction does not take place fpeedily in urine, unlcis where there is an excefs of albumen and gelatine: conSequently we have reafon to fuppofe, that thefe fubflances are morbidly abundant in the urine of thofe patients who are afticted with calculi confifting of the phofphats: hence alfo we may conclude, that their digcfion is imperfect. It will no doubt be objected, that dropfical penple are not peculiarly fubject to calculi ; but their urine is only morbidly albuminous when the difeafe is heginning to difappear, and then there feems to be a deficiency of urea; at leaft their urine has not been obferved to putrefy with uncommon rapidity. Befides, there feems to be fome animal matter prefent, which ferves as a cement to the phofphat in all cafes where calculi form.

Urat of ammonia is only found alone in the very fmall polygonous calculi which exit, feveral together, in the bladder. In other cafes it is mixed with uric acid. It fometimes alternates with uric acid or with the phofphats. It is difolved by the fame fubftance that acts as a folvent of uric acid.

Oxalat of lime often forms the nucleus of calculi compofed of layers of uric acid or of the phofphats. It forms tho e irregular calculi which are called moriform. Thefe calculi are the hardeft and the moft difficult of folution. A very much diluted nitric acid diffolves them but very flowly. As oxalic acid does not exift in urine, fome morbid change muft take place in the urine when fuch calculi are depofited. Brugnatelli's difcovery of the inftantaneous converfion of uric acid into oxalic acid by oxy-muriatic acid, which has been confirmed by the experiments of Fourcroy and Vauquelin, throws confiderable light upon the formation of oxalic acid in urine, by fhewing us that uric acid is probably the bafis of it; but in what manner the change is actually produced, it is not fo eafy to fay.

The calculi found in the bladder of other animals
have nut been examined with the fame care. Sume of them, however, have been fubjected to an accurate analy fis. No uric acid has ever becon found in any of them. $\underbrace{}_{332}$ Fourctoy fourd a calculus extracted from the kidney Calculi of of at hurfe conipofed of three parts of carbunat of lime, inferior and one part of phofphat of line *. Dr Pearfon exami-animals. ned a uriwary calculus of a hurfe; it was compofed of * Ann. de phofphat of lime and phofphat of ammonia. Brugnatel-y5 Ii found a calculus extracted from the Nladder of a fow, which was exceedingly hard, compofed of pure carbonat of line, inchuling a foft nucleus of a fuetid and urinous odour \dagger. Bartholdi examined another calculus of t loid. a fig, the fpecific gravity of which was 1.9300 . It ${ }^{\text {xxxii. } 184 .}$ confilted of phophat of line \ddagger. Dr Pearfon fround a \ddagger Ibid 185 . calculus taken from the blader of a dog conpored of phofphat of lime, phorphat of ammonia, and an animal matter. He found the urinary calculus of a rabbit, of the fpecific gravity 2, compuied of carbonat of lime and fome animal matter $\|$.

The compofition of :he different animal concretions ii. $134+$ bitherto exanined may he feen in the following table.

Rabbit. Carbonat of lime and animal matter t. \quad Poarfon.
We have now given an account of all thofe fecretions which have been attentively examined by chemifts. The remainder have heen hitherto neglected; partly owing to the difficulty of procuring then, and partly on account of the multiplicity of other objedts which occupied the attention of chemical philofophers (R). It remains for us now to ex:mine by what procefles thefe different fecretions are formed, how the conflant wafte of living bodies is repaired, and how the organs themfelves are nourifhed and preferved. This fhall form the fubject of the following chapter.

Chap. III. Of the Functions of Animals.

The intention of the two laft chapters was to exhibit a view of the different fubflances which enter into the compofition of animals, as far as the prefent limited ftate of our knowledge puts it in our power. But were our enquiries coneerning animals confined to the mere ingredients of which their hodies are compofed, even fuppofing the analy fis as complete as poffible, our knowledge of the nature and properties of animals would be imperfect indecd.

How are thefe fubftances arranged? How are they produced?
(R) The chief of thefe fecretions are the following:

1. Cerumen, or ear-wax, is at firft nearly liquid, and of a whitih colour. It gradually acquires confiftence, Its tafte is very bitter. Said to be infoluble in alcohol; but foluble in hot water. Does not become rancid by keeping.
2. The humours of the eye.
3. The milky liquor, fecreted by the thyroid gland.
4. Mucus of the lungs, inteftinal canal, \&c.
5. Smegma of the areola of the breffti, glans penis, vagina, fubcutaneous glands, \&c.
6. Marrow.

Functions produccl? What purpofes do they ferve? What are $\underbrace{\text { of Animatss }}$ the dillinguifhing properties of animals, and the laws

Animals refemble vergetables in the complexnefs of their itructure. I, ike them, they are machines nicely adapted for particular purpofes, conitituting one whole, and continually performing an infinite munber of the moft delicate proceffes. But neither an account of the ftructure of animals, nur of the properties which diftirguifh them from other beings, will be expected here. Thefe have been already treated of fufficiently in the articles Anatomy and Piryshology (Finyele), to which we beg leave to refer the reader. We mean only, in the prefent chapter, to take a view of thofe procefles which are concerned in the produgion of aninnal fubfances, which alone properly belong to chemilry. The other functions are regulated by laws of a very different nature, which have no refemblance or analogy to the laws of chemiltry or mechanics.

1. Every body know's that arimals require food, and that they die fooner or later if food be withheld from them. There is indeed a very great difference in different animals, with regard to the guantity of food which they require, and the time which they can pafs without it. In general, this difference depends upon the activity of the animal. Thofe which are moft active require moft, and thofe which move leaft require leat food.
The caure of this is alfo well known; the bodies of animals do not remain ftationary, they are conttantly watting ; and the wafte is generally proportional to the activity of the animal. It is evident, then, that the body muft receive, from time to time, new fupplies, in place of what has been carried off. Hence the ufe of food, which anfwers this purpofe.
2. We are much better acquainted with the food of animals than of vegetables. It confifts of almoft all the animal and vegetable fubfances which have been treated of in the former part of this article; for there are but very few of them which fome animal or other does not ufe as food. Man ufes as food chiefly the mufcles of animals, the feeds of certain grafles, and a variety of vegetable fruits. Almott all the inferior animals have particular fubllances on which they feed exclufively. Some of them feed on animals, others on vegetables. Man has a greater range; he can feed on a very great number of fubftances. To enumerate thefe fubtances would be ufelefs; as we are not able to point out with accuracy what it is which renders one fubtance more nourifhing than another.

Many fublances do not ferve as nourifhment at all; and not a few, inftead of nourifhing, deftroy life. Thefe laft are called poifons. Some poifons act chemically, by decompofing the animal body. The action of others is not fo well underflood. mouth, and almoft all animals reduce it to a kind of pulpy confiltence. In man and many other animals this is done in the mouth by means of teeth, and the faliva with which it is there mixed; but many other animals grind their food in a different manner. See PrysioloG_{G}, (Encycl.) After the food has been thus ground, it is introduced into the ftomach, where it is fubjected to new changes. The flomach is a flrong foft bag, of different forms in different animals: in man it has fome
refemblance to the hag of a logg-pipe. In this organ the functir food is converied into a folt pap, which has no refem. of Anin blance to the food when firll introduced. This pap has Leen called cliyme.
4. Since chyme poffefes new mroperties, it is evident that the fond has undergone fome changes in the fomach, and that the ingreclients of which it was compofed have entered into new combinations. Now, in what manner have thefe changes been produced?

At firt they were aferibed to the mechanical action of the fomach. The food, it was taid, was till farther triturated in that organ; and, being long agitated backwards and forwards i:l it, was at latt reduced to a pulp. But this opinion, upon examination, was found not to be truc. The experinents of Stevens, Reumur, and Spallanzani, demonitrated, that the formation of chyme is not owing to trituration; for on inelofng different kinds of food in metallic tubes and balls full of holes, in fuch a manner as to fereen them from the mechanical action of the flomach, they found, that thefe fubitances, after having remained a fufficient time in the Itomach, were converted into chyme, juit as if they had not been inclofed in fuch tubes. Indeed, the opinion was untenable, even independent of thefe decifire experiments, the moment it was perceised that cliyme differed entirely from the food which had been taken; that is to fay, that if the fame food were triturated mechanically out of the body, and redueed to pap of precifcly the fame confiltence with chyme, it would not poffefs the fame properties with chyme; for whenever this fact was known, it could not but be evident that the food had undergone changes in its compofition.

The change of food into chyme, therefore, was afcribed by many to fermentation. This opinion is indeed very ancient, and it has had many zealous fupporters among the moderns. When the word fermentation was applied to the change produced on the food in the flomach, the nature of the procefs called fermentation was altogether unknown. The appearances, indeed, which take place during that procefs, had been deferihed, and the progrefs and the refult of it were known. Chemilts had even divided fermentations into differcint claffes; but no attempt had been made to explain the caufe of fermentation, or to trace the changes which take place during its continuance. All that could be meant, then, by faying that the converfion of food into chyme in the ftomach was owing to fermentation, was mercly, that the unknown caufe which acted during the converfion of vegetable fubitances into wine or acid, or during their putrefaction, acted alfo during the converfion of the food into chyme, and that the refult in both cafez was precifely the fame. Accordingly, the advocates for this opinion attempted to prove, that air was conftantly generated in the fomach, and that an acid was conitantly produced: for it was the vinous and acetous fermentations which were affigned by the greater number of phyfrologifts as the caufe of the formation of chyme. Some indeed attempted to prove, that it was produced by the putrefactive fermentation; but their number was inconfiderable, compared with thofe who adopted the other opinion.

Our ideas refpecting fermentation are now fomewhat more precife. It lignitics a flow decompolition, which takes place when certain animal or regetable fubttances are mixed together at a given temperature; and the confequent
dions coniequent production of particular compounds. If ninals, therefure the converfoon of the food into clyyne be owing to fermentation, it is evident that it is totally independent of the flomach any farther than as it fupplies temperature; and that the food would be converted into chyme esactly in the fame manuer, if it were reduced to the fame confifence, and placed in the fame temperature out of the body. But this is by no means the cafe; fubllances are reduced to the fate of cliyme in a fhort time in the flomach, which would vemain unaltered for weeks in the fame temperature out of the body. This is the cafe with borres; which the experiments of Stevens and Spallanzani have fhewn to be foon digefted in the ftomach of the dog. Further, if the converfion of food into ehy me were owing to fermentation, it ought to go on equally well in the fomach and efophagus. Now, it was obferved long ago by Ray and Boyle, that when voracious fifh had fwallowed animals too large to be contained in the flumach, that part only which was in the ftomach was converted into chyme, while what was in the ofophagns remained entire; and this has been fully confirmed by fulfequent obfervations.

Still farther, if the converion were owing to fermentation, it ought always to take place equally well, provided the temperature be the fame, whether the ftomach be in a healthy flatc or not. But it is well known, that this is not the cafe. The formation of chyme depends very much on the flate of the flomach. When that urgan is difeafed, digeftion is conftantly ill performed. In thefe cafes, indeed, fermentation fometimes appears, and produces flatulence, acid eructations, \&c. which are the well-known fymptoms of indegeftion. Thefe facts have been long known; they are totally incompatible with the fuppofition, that the formation of chyme is owing to fermentation. Accordingly that opinion has been for fome time abandoned, by all thofe at leaf who have taken the trouble to exanine the fubject.

The formation of chyme, then, is owing to the Aomach; and it has been coneluded, from the experiments of Stevens, Reanmur, Spallanzani, Sropoli, Brugnatelli, Carimini, \&c. that its formation is brought about by the action of a particular liquid fecreted by the fomach, and for that realon called dylfic juice.

That it is owing to the action of a liquid, is evident; becaufe if pieces of food be inclofed in clofe tubes, they pails through the fomach without any farther alterarion than would have taken place at the fame temperature out of the body: but if the tubes be perforated with fmall holes, the food is converted into chyme.

This liquid does not act indifcriminately upon all fubtances: For if grains of corn be put into a perforated tube, and a granivorous bird be made to fwallow it, the corn will remain the ufual time in the fomach without alteration; whereas if the huk of the grain be previoully.taken off, the whole of it will be converted into chyme. It is well known, too, that many fubftances pafs unaltered through the inteftines of animals, and confequently are not acted upon by the gaftric juice. This is the eafe frequently with grains of oats when they have been fwallowed by horfes entire with their hufks on. This is the cafe alfo with the feeds of apples, \&c. when fiwallowed entire by man ; yet thefe rery fubftances, if they have been previoully ground fuf-
ficiently by the teeth, are digefted. It appears, there- Funaions fore, that it is chiefly the huik or outlide of thefe fuls. of Animals. ftances which refifts the action of the gaftric juice. We fee allo, that trituration greatly facilitates the converlion of food into chyale.

The gaftric juice is not the fame in all animats; for Nature of many animals camnot digef the food on which others gararic live. The conium maculatum (hemlock), for inftance, joice. is a poifon to man inflead of food, yet the goat often feeds upon it. Many animals, as theep, live wholly upon vegctables; and if they are made to feed on animals, their flomachs will not digent them : others, again, as the eagle, feed wholly on animal fubftances, and cannot digeft vegetables.
The gaftric juice does not continue always of the fame naturc, evers in the fame animal: it changes gradually, according to circunillances. Graminivorous animals may be brought to live on animal food ; and after they have been acultomed to this for fome time, their ftomachs become incapable of digefting vegetables. On the other hand, thofe anamals which naturally digett nothing but animal food may be brouglit to digell vegetables.

What is the nature of the gattric juice, whicl poffeffes thefe fiugular properties? It is evidently different in different animals; but it is a very difficult talk, if not an impoffible one, to obtain it in a flate of purity. Various attempts have indeed been made by very ingenious philofophers to procure it; but their analy fis of it is fufficient to fhew us, that they have never ubtain. ed it in a fate of purity.
The methods which have been ufed to procure gaftric juice are, frll, to kill the animal whofe gaftric juice is to be examined after it has fatted for fome time. By this method, Spallanzani collected 37 fpoonfuls from the two firft flomachs of a fleep. It was of a green colvur, undoubtedly owing to the grafs which the animal had cateln. He found alfo half a fpoonful in the ftomach of fome young crows which he killed before they had left their neft.
Small tubes of metal, pierced with holes, and containing a dry fponge, have been fwallowed by animals; and when vomited up, the liquid imbibed by the fonge is fquezzed out. By this method, Spallanzani collected 4^{81} grains of gattric juice from the ftomachs of five crows.
A third method confifts in exciting vomiting in the morning, when the fomach is without food. Spallanzani tried this method twice upon himfelf, and collected one of the times 1 oz .32 gr . of liquid; but the pain was fo great, that he did not think proper to try the experiment a third time. Mr Goffe, however, who could excite vomiting whenever he thought proper by fwallowing air, has employed that method to collect gaftric juice.

Spallanzani has obferved, that eagles throw up every morning a quantity of liquid, which be confiders as gaftric juice; and he has availed himfelf of this to collect it in confiderable quantities.

It is almoft unneceffary to remark how imperfect thefe different methods are, and how far every conchufion drawn from the examination of fuch juices mult deviate from the truth. It is impoffible that the gaftric juice, obtained by any one of thefe proceffes, can be pure; becaufe in the flomach it mult be confantly mixed

Functons mixed with large quantities of faliva, mucus, bile, food, of Animals \&ic. It may be quettinned, indeed, whether any gaftric juice at all can be obtained by thefe methods: for as the intention of the gaftric juice is to convert the food into chyine, in all probability it is only fecreted, or at leaft thrown into the flomach when food is prefent.

We need not be furprifed, then, at the contradictory accounts concerning its wature, given us by thofe philofophers who have attempted to examine it ; as thefe relate not fo much to the galtric juice, as to the different fubtlances found in the thomach. 'The idea that the gaftric juice can be obtained by vomiting, or that it is thrown up fpontaneoufly by fome animals, is, to fay the leatt of it, very far from being probable.

According to Brugnatelli, the gattric juice of carnivorous animals, as hawks, kites, \&cc. has an acid and refunous odour, is very bitter, and not at all watery ; and is compofed of an uncombined acid, a relin, an animal fubitance, and a fmall quantity of muriat of foda*.
*Scopoli's Macquer's Dig.

+ Ibid.
\ddagger Senebier's Obfervat. on Gafiric Juice. The gatric juice of herbivarous animals, on the contrary, as goats, theep, Sic. is very watery, a little mud$d y$, has a bitter faltifl tatle, and contains ammonia, an animal extract, and a pretty large quantity of muriat of foda \dagger. Mr Carminati found the fame ingredients; but he fuppofes that the ammonia had been formed by the putrefaction of a part of their food, and that in reality the gatric juice of thefe animals is of acid nature \ddagger.

The accounts which have been given of the gathic juice of man are fo various, that it is not worth while to tranferibe them. Sometimes it has been found of an acid nature, at uther times not. The experiments of Spallanzani are fufficient to fhew, that this acidity is not owing to the gaftric juice, but to the food. He never found any acidity in the gaftric juice of hirds of prey, nor of ferpents, frogs, and fithes. Crows grave an acidulous gaftric juice only when fed on grain; and he found that the fame obfervation holds with refpect to dogs, herbiferous animals, and domettic fowls. Carnivorons birds threw up pieces of thells and coral without alteration; but thefe fubftances were fenlibly diminifhed in the itomachs of liens, even when inclofed in perforated tubes. Spallanzani himfelf fwallowed calcare. ous fubftances enclofed in tubes; and when he fert on vegetables and fruits, they were fometimes altered and a little diminifhed in weight, juit as if they had been put into weak vinegar ; but when he ufed only animal food, they came out untonched. According to this philofopher, whofe experiments have been by far the moft numerous, the gaftric juice is naturally neither acid nor alkaline. When poured on the carbonat of potafs, it caufes no effervefcence.

Such are the refults of the experiments on the juices taken from the fornach of animals. No conclufion can be drawn from them refpecting the nature of the gaftric juice. But from the experiments which have been made on the digeftion of the ftomach, efpecially by Spallanzani, the following facts are eftablifhed.

The gaftric juice attacks the furface of bodies, unites to the particles of them which it carries off, and cannot be feparated from them by filtration. It operates with more energy and rapidity the more the food is divided, and its action is increafed by a warm temperature. The food is not merely reduced to very minute parts; its tafte and fmell are quite changed; its fenfible properties are deftroyed, and it acquires new and very diffe-
rent ones. This juice does not aft as a ferment f fo Functime far from it, that it is a powerful antifeptic, and even re ot Anm. ftores flefh already putrefied. There is not the fmalleft appearance of fuch a procefs; indeed, when the juice is renewed frequently, as in the ftomach, fubttances dif. folve in it with a rapidity which excludes all idea of fermentation. Only a few air bubhles make the ir efcape, which adhere to the alimentary matter, and buoy it up to the top, and which are probably extricated by the heat of the folution.

With refpeet to the fubflances contained in the ftomach, only two facts have been perfectly afcertained; The firt is, that the juice contained in the ftomach of oxen, calves, theep, invariably conta:ns uncombined phofphoric acid, as Macquart and Vauquelin have demonttrated: The fecond, that the juice contained in the flomach, and even the imer coat of the fomach itfelf, has the property of coagulating milk and the ferum of bluod. Dr Young found that feven grains of the inner coat of a calf's llomach, infufed in water, gave a hiquid which coagulated more than 100 ounces of milk; that is to fay, more than 6857 times its own weight ; and yet, in all probability, its weight was nut much diminifhed.

What the fubflance is which poffeffes this coagulating property, has not yet been afcertained; but it is evidently not very foluble in water; for the infide of a calf's flomach, after beilig fteeped in water for fix hours, and then well wathed with water, ftill furnifhes a liquor on infufion which coagulates milk *: And Dr Young found, that a piece of the inner coat of the fomach, after being previoully wathed with water, and then with a diluted folution of carbonat of potafs, ftill afforded a liquid which coagulated milk and ferum

It is evident, from thefe facts, that this coagulating fubfance, whatever it is, acts very puwerfully; and that it is fearcely poflible to feparate it completely from the fomach. But we know at prefent too little of the na. ture of coagulation to be able to draw any inference from thefe facts. An almoft imperceptible quantity of fome fubfances feems to be fulficient to coagulate milk. For Mr Vaillant mentions in his Travels in Africn, that a porcelain difh which he procured, and which bacl lain for fonse years at the bottom of the fea, poffefled, in confequence, the property of coagulatiug milk when put into it ; yet it communicated no tafte to the milk, and did not differ in appearance from other cups.

It is probable that the faliva is of fervice in the converfion of food into chyme as well as the gaftric juice. It evidently ferves to dilute the food; and probably it may be ferviceable alfo, by communicating oxygen.
5. The chyme, thus formed, pafles from the ftomach C into the inteftines, where it is fubjected to new changes, convert and at laft converted into two very different fublances, into ch: chyle and excrementitious matter.
6. The chyle is a white coloured liquid, very much refembling milk. It is exceedingly difficult to collect it in any confiderable quantity, and for that reafon it has never been accurately analyfed. We know only in general that it refembles milk; containing, like it, an albuminous part capable of being coagulated, a ferum, and globules which have a refemblance to crẻam \dagger. It + Ford on contains allo different falts; and, according to fome, a Digefi fubflance fcarcely differing from the fugar of milk. It ${ }^{1}$ is probable alfo that it contains iron; but if fo, it muft
nation be in the fate of a white oxide; for an infufion of nut tnimats. galls does not alter the colour of chyle f.
6. Concerning the procefs by which chyle is formed from clyme, fcarcely any thing is known. It does not appear that the chyme is precifely the fame in all animals; for thofe which are herbivorous have a greater length of inteftine than thofe which are carnivorous. It is certain that the formanion of the chyle is bronglit about by a chemical change, although we cannot fay precifcly what that change is, or what the agents are lyy which it is produced. But that the change is chemical, is evident, becaufe the chgle is entirely different, both in its properties and appearance, from the chyme. The chyme, by the accion of the inteftines, is feparated into two parts, chyle and excrement : the firf of which is abforbed by a number of fmall veffels called ladials; the fecond is putherl along the inteftinal canal, and at laft thrown our of the bordy altogether.

After the chyme has been converted into chyle and excrement, alt hough thefe two fubftances remain mixed together, it does not appear that they are able to decompofe each other; for perfons have been known feldom or never to rmit any excrementitious matter per anum for years. In thefe, not only the chyle, but the excrementirious matter alfo, was abforbed by the lacteals ; and the excrement was afterwards thrown out of the body by other outlets, particularly by the fkin : in confequence of which, thufe perfons have conftantly that particular odour about them which diftinguifhes excrement. Now in thefe perfons, it is evident that the chyle and excrement, thouglı mixed together, and even abforbed together, did not act on each other; becaufe thefe perfons have been known to enjoy good health for years, which could not have been the cafe had the chyle been deftroyed.
7. It has been fuppofed by fome that the decompofition of the chyme, and the formation of chyle, is produced by the agency of the bile, which is poured out abundantly, and mixed with the chyme, foon after its entrance into the inteftines. If this theory were true, no chyle could be formed whenever any accident prevented the bile from paffing into the inteftinal canal; but this is obvioufly not true; for frequent inflances have occurred of perfons labouring under janndice from the bile ducts being ftopped, either hy gall.fones or fome other caufe, fo completely, that no bile could pafs into the inteftines; yet thefe perfons have lived for a confiderable time in that Itate. Confequently digeftion, and therefore the formation of chyle, mult be poffible, independent of bile.

The principal ufe of the bile feems to be to feparate the excrement from the chyle, after both have been formed, and to produce the evacuation of the excrement out of the body. It is probable that thefe fub. flances would remain mixed together, and that they would perhaps even be partly abforbed together, were it not for the bile, which feems to combine with the excrement, and by this combination to facilitate its fe paration from the chyle, and thus to prevent its abforption. It alfo ftimulates the inteftinal canal, and caufes it to evacuate its contents fooner than it otherwife would do; for when there is a deficiency of bile, the body is conftantly coftive.
8. The excrement, then, which is evacuated per anum, confifts of all that part of the food and chyme Suppe. Vol. II. Part II.
which was not convertcd into chyle, entirely altered functuons however from its original flate, partly by the deconpo- of Ammals fition which it underwent in the fomach and inteftines, and partly by its combination with bile. Accordingly we find in it many fubfances which did not exift at all in the frod. Thus in the dung of cows and herfes there is found a very confiderable quantity of benzoic acid. The excrements of animals have not yer been futjected to an accurate analyfis, though fuch an ana1) fis would throw mach light upon the nature of digeftion. For if we knew accurately the fubflances which were taken into the body as food, and all the new fuhflances which were fornied by digeftion ; that is to fay, the component parts of chyle and of excrement, and the variation which different kinds of food produce in the excrement, it would be a very contiderable Atcp towards afcertaining precifely the changes produced on fond by digetlion, or, which is the fane thing, towards afcertaining exactly the phenomena of digeftion. The only analy fis which has hitherto been made on human excrement is that of T-fomberg ; and as it confitted merely in fubjecting it to dittillation, it is needlefs to give an account of it. Of late, as Mr Fourcroy informs us, the fubject has been refurned in France, and we may foon expect fome very curious and important additions to our knowledge.

Mr Vauquelin bas already publithed an analy fis of 342 the fixed parts of the excrements of fowls, and a com of fowis. parifon of them with the fixed parts of the food; from which fome very curious confequences may be deduced.

He found that a hen devoured in ten days init1.843 grains troy of oats. Thefe contained
$136.509 \mathrm{gr}$. of plofphat of lime,
219.548 filica,

$$
356057 .
$$

During thefe ten days fhe layed four eggs ; tlee fhells of which contained 95.776 gr . phofphat of lime, and 453.417 gr. carbonat of linie. The excrements emitted during thefe ten days contained 175.529 gr . phufphat of lime, 58.494 gr . of carbonat of lime, and 185.266 gr . of filica. Confequently the fixed parte throwir out of the fyitem during thele ten days amounted to Grains.
274.305 phofphat of lime,
511.911 carbonat of lime,
185.266 filica,

Given out 971.482
Taken in 356.057

$$
615.425
$$

Confequently the quantity of fixed matter giverr out of the fytten in tell days excceded the quantity taken in by 615.425 grains.

The filica taken in amounted to 219.548 gr . Tliat given out was only

$$
185.260 \mathrm{gr}
$$

Remains 34.282
Confequently there difappeared 34.282 grains of filica.
The phofphat of lime taken in was 136.509 gr . That given out was

$$
274.305 \mathrm{gr}
$$

\ddagger Ibid. p.
26.
[342]
Gafes contained in the inteftines.

Confequently there mult have been formed, by digeftion in this fowl, no lefs than 137.796 grains of phofphat of lime, befides 511.911 grains of carbonat. Confequently lime (and perhaps alfo phofphorus) is not a fimple fubttance, but a compound, and formed of ingredients which exitt in oat. feed, water or air, the only fuftance to which the fowl had accefs. Silica may enter into its compofition, as a part of the filica had difappeared ; but if fo, it mult be combined with a great quantity of fome other fubllance *.
Thefe confequences are too important to be admitted without a very rigorous examination. The cxperiment mult be repeated frequently, and we muft be abfolutely certain that the hen has no accefs to any calcareons earth, and that the has not diminithed in weight ; becaufe in that cafe fome of the calcareous earth, of which part of her body is compofed, may have been employ. ed. This rigour is the more neceffary, as it feems pretty evident, from experiments made long ago, that fome birds at leaft, cannot produce eggs unlefs they have accefs to calcareous earth. Dr Fordyce found, that if the canary bird was not fupplied with lime at the time of her laying, the frequently died, from her eggs not coming forward properly \dagger. He divided a number of thefe birds at the time of their laying eggs into two parties: to the one he gave a piece of old mortar, which the little animals fwallowed greedily ; they laid their eggs as ufual, and all of them lived: whereas many of the other party, which were fupplied with no lime, died \ddagger.
9.' The inteftines feldom or never are deftitute of gafes, which feem to be evolved during the procefs of digeftion; and may therefore, in part, be confidered as excrementitious matter. The only perfon who has examined thefe gafes with care, is Mr Jurine of Geneva. The refult of lis analyfis is as follows. He found in the fomach and intettines of a man who had been frozen to death, carbonic acid gas, oxygen gas, hydrogen gas, and azotic gas. The quantity of carbonic acid was greateft in the Itumash, and it diminifhed gradually as the canal receded from the Atomach ; the proportion of oxygen gas was confiderable in the fomach, fmaller in the fmall inteltines, and fill fmaller in the great in. teftines; the hydrogen and azotic gafes, on the contrary, were leatt abundant in the fomach, more abundant in the fimall inteftines, and molt abundant in the larger inteftines; the hydrogen gas was mofl abundant in the fmall inteltines. It is well known that the flatus difcharged per anum is commonly carbonated hydrogen gas; fometimes alfo it jeems to hold fulphur, or even
inncy. phofphorus in folution δ.
Metb. Med. ${ }^{1}$
i. 516.

343 :
Clayle :n
the thoracic
duct. has been aborber by the lacknown by the name of thacic a prety veffel likewife is difcharged a tranfparent fluid, conveyed by a fet of veffels which arife from all the cavities of the body. Thefe veffels are called lymplatics, and the fluid which they convey is called lymph. In the thoracic duct, then, the chyle and the lymph are mixed to
344
Miredwith
the lymph, gether.
Very little is known concerning the nature of the lympl, as it is fcarcely poffible to collect it in any quan- tity. It is colourlefs, has fome vifcidity, and is faid to be fpecifically heavier than water. It is faid to be coagulable by heat ; if 50 , it contains albumen; and, from
its appearance, it probably contains gelatine. Its quan. Yuncionn tity is certainly confiderable, for the lymphatics are very of Anima numerous.
11. The chyle and lymph being thus mised together, And con. are conveyed directly into the blood veffels. The ef-veyed to fect produced by their union in the thoracic duct is not tie heare known, but neither the colour nor external properties and lungs. of the chyle is altered. In man, and many other animals, the thoracic duct enters at the junction of the left fubclavian and carotid veins, and the chyle is conveyed directly to the heart, mixed with the blood, which alrcady exifts in the blood veffels. From the heart, the blood and chyle thus mixed together are propelled into the lungs, where they undergo farther changes.

346
12. The abfolute neceflity of refpiration, or of fome Refpira thing analogous, is known to every one; and few are tion ignorant that in man, and hot blooded animals, the or gan by which refpiration is performed is the lungs. For a defcription of the refpiratory organs, we refer to the article Anatomy, Encycl. and the reader will find an account of the manner in which that function is performed in the article Paysiology, Encycl. But what are the changes produced upon the blood and the chyle by refpiration? What purpofes does it ferve to the animal? How comes it to be fo indifpenfably neceffary for its exiftence? Thefe are queftions which can only be anfwered by a careful examination of the phenomena of refpiration.

It has heen long known that an animal can only Requires breathe a cortain quantity of air for a limited time, oxygenga after which it becomes the moft deadly poifon, and produces fuffocation as effectually as the moft noxious gas, or a total abfence of air. It was fufpected long ago that this change is owing to the abforption of a part of the air ; and Mayow made a number of very ingenious experiments in order to prove the fact. Dr Priefley and Mr Scheele demonftrated, that the quantity of oxygen gas in atmofpheric air is diminifhed; and Lavoifier demonftrated, in 1776, that a quantity of carbonic acid gas, which did not previounly exift in it, was found in air after it had been for fome time refpired. It was afterwards proved by Lavoifier, and many other plilofophers, who confirmed and extended his facts, that no animal can live in air totally deftitute of oxygen. Even fith, which do not fenfibly refpire, die very foon, if the water in which they live be deprived of oxygen gas. Frocrs which can fufpend their refpiration at pleafure, die in about forty minutes, if the water in which they have been confined be covered over witls oil *. Infects and worms, as Vauquelin has proved, * Carrado exhihit precifely the fame phenomena. They require $A n n$. de oxygen gas as well as other animals, and die like them if Cbim. 1 xi they be deprived of it. They diminifh the quantity of ${ }^{171}$. the oxygen gas in which they live, and give out; by refpiration, the very fame products as other animals. Worms, which are more retentive of life than molt other animals, or at leaft not fo much affected by poifonous gafes, abforb every particle of the oxygen gas contained in the air in which they are confined before they die. Mr Vauquelin's experiments were made on the gryllus viridifinnus, the limax flavus, and helix pomatia \dagger.

The changes which take place during refpiration are ${ }^{2}$ the following :
.. 1. Part of the oxygen gas refpired difappears.
2. Carbonic ${ }^{\text {b }}$
2. Carbonic acid gas is emitted.
3. Water is emitted in the flate of vapour.

The firf point is to afcertain exactly the amount of thefe changes. Though a great many. experiments have been made on this fubject by different philofophers, the greateft confidence ought to be put in thofe of Lavoifier, both on account of his uncommon accuracy, and on account of the very complete apparatus which he always employed.

He put a guinea.pig into 708989 grains troy of oxygen, and after the animal had breathed the gas for an hour, he took it out. He found that the oxygen gas now amounted only to
59.253 gr . Confequently there had difappeared The carbonic acid gas formed was 116.736 $\begin{array}{ll} \\ & 130.47 z^{2}\end{array}$ This was compofed of about 94.2.34 oxygen, and $3^{36.238}$ of carbon. Confequently fuppofing, as Mr Lavoifier did, that the oxygen abforbed had been employed in the formation of the carbonic acid gas, there till remained to be accounted for 22.502 grains of oxygen which had difappeared. He fuppofed that this had been employed in the formation of water, a quantity of which had appeared. If fo, the water formed mult have amounted to 26.429 grains; which was compofed of 3.927 hydrogen, the reil oxygen *.

Since the water emitted was not actually afcertained, this experiment can only be confidered as an approximation to the truth. Accordingly that very ingenious philofopher contrived an apparatus to afcertain the quantity of oxygen gas abforbed by man, and the quantity of carbouic acid gas and water emitted by him during refpiration. This apparatus he had conftructed at an expence at leaft equal to L. 500 fterling. The experiments- were completed, and he was preparing them for publication, when, on the 8th of May 379.4, he was beheaded by order of Robefpierre, after having in vain requefted a fortnight's delay to put his papers in order for the prefs. Thus perifhed, in the 5 It year of his age, the man who, if be had lived a few years lenger, promifed fair to become the rival of Newton himfelf. Chemiftry, as a fcience, is deeply indebted to him. He faved it from that confufion into which the thoughtlefs ardour of many of his contemporaries were plunging it headlony: he arranged and connected and fimplified and explained the multitude of infulated facts, which had been accumulating with unexampled celerity ; and which, had it not been for his happy arranging genius, might have retarded, iuftead of advanced, the progrefs of the fcience. He reduced all the facts under a few fimple heads, and thus made them eafily remembered and eatily claffified. In a few years more, perhaps, he would have traced thefe general principles to their fources, eftablifhed the feience on the completeft induction, and paved for his fucceffors a road as unerring as that which Sir Ifaac Newton formed in mechanical philofophy.

Mr Lavoifier's experiments have never been publifhed, hut furtunately Mr de la llace has given us the Elogen Fhace's refult of them t. He informs us that it was as folEloge. lows : A man, at an average, confuncs, in twentyfour hours, by refpiration, 32.48437 ounces troy of oxygen gas ; that is to fay, that a quantity of oxygen gas, equal to that weight, difappears from the air which he refpires in twenry-four hours ; that he gives ou by
refpiration, in the fame time, 15.73 oz . troy of carbonic Funaion, acid gas, and 28.55 of water in the flate of Animals,

Total 44.28 Oxygen.
The carbonic acid gas is compofed of 10.486° and 5.243 carbon. The water of 24.2675 and 4.2825 hydrogen.
Total of the oxygen emitted $\quad 34.75+1 \dot{6}$

So that there is
. 2.3697916 ounces of oxygen cmitted more than is abforbed by refpiration. Thus it appears that, by refpiration, the abfolute quantity of oxygen in the blood is diminifhed.

Dr Menzies found that a man, at a medium, draws in at every refpiration 43.77 cubic inches of air, and that $\frac{1}{z}$ th th of that quantity difappears. Confequently, according to him, at every refpiration 2.188 s cubic inches of oxygen gas are confumed. Now 2.188 s cubic inches of that gas amount to 0.6866 g gr. troy. Suppofing, with Halcs, that a man makes 1200 refpirations in an hour, the quantity of oxygen gas confumed in an hour will amount to 824.028 grains, and in 24 hours, to $19776.6-2$ grains, or 4 t. $2 \supset 14$ ounces troy. This quantity exceeds that found by Lavoifier confiderably ; but the allowance of oxygen for every refpiration is rather tou great. Indeed, from the nature of Dr Menzies's apparatus, it was fearce pofible to meafure it accurately.
The quantity of water given out by refpiration, as determined by Hales, amounts in a day to 20.4 oz . *; * Veref. but his method was not fufeeptible of great accuracy. Stat. ii. We may therefore, on the whole, confider Lavoilier's ${ }^{327}$. determination as by far the neareft to the truth of any that has been given.

There is, however, a very fingular anomaly, which becomes apparent when we compare his experiments on the refpiration of the guinea.pig with thofe on the refpiration of man.
The guinea-pig confumed in 24 hours 5.8368 oz . troy of oxygen gas, and emitted . $\quad 6.5236 \mathrm{oz}$. of carbonic acid gas. Man, on the other hand, confumes in the fame time $32 .+8437 \mathrm{uz}$. of oxygen gas, and emits only $\quad 15.73 \mathrm{oz}$. of carbonic acid gas. The oxygen gas confumed by the pig is to the carbonic gas emitted as 1.00:1.12; whereas in man it is as $1.000: 0.4^{8}+$. If we coulh depend upoon the accuracy of each of thefe experiments, they would prove, beyond a doult, that the changes prodaced by the re!piration of the pig are diffreat, at leal in degree, from thote produced is man; but it is more than prohable that fome miltake has crept into one or other of the experiments. We hive mure redfon to fufpect the firft, as it was made before 1779 , at a time when a great many circunflances, necelfary to infure accuracy, wore unknown to Lavoifier.

Such are the fuhtances imbibed and emitted during refpiration. It Atill remains for us to determine what are the clanges which it produces in the blood.
It has been long known that the blood which flows in the veins is of a dark reddin purple colour, whereas the arterial blood is of a flurid fearlet colour. Lower obferved that the colour of the veinuous blood was converted into that of arterial during its paffage through

Functions the lurgs. No chyle can be diftinguifhed by its white of Animals. colour in the blood after it has paffed through the lungs. The changes, then, which take place upon the appearance of the Llood are two: $1 /$, It acquires a florid red colour; $2 d$, 'Tine ciryle totally difappears. Now to what are thefe clianges owing ?

Lower himfelf knew that the change was produced by the air, and Mayow attempted to prove that it was by abforbing a part of the air. But it was not till Dr Priefley difoovered that veinous blosd acquires a lear-
349 let colour when put in contact with oxygen gas, and Two hypo-arterial blood a dark red colour whea put in contact thefes toex-with hydrogen gas, or, which is the fame thing, that plain thefe oxygen gas inftantly gives veinous blood the coluur of
changes. changes. arterial; and hydrogen, on the contrary, gives arterial bhood the colour of veinous blood: it was not till then that philofophers began to attempt any thing like an explanation of the phenomena of refpiration. "Two explanatious have been given ; one or other of which muft be true.

The firit is, that the oxygen of the air, which difap. pears, combines with a quantity of carbon and hydrogen given out by the blood in the lungs, and forms with it carbonic acid gas and water in vapour, which are thrown out along with the air expired.

The fecond is, that the oxygen gas, which difappears, combines with the bloud as it paffes thro' the lungs; and that, at the inflant of this combination, there is fet free from the blood a quantity of carbonic acid gas and of water, which are thrown out along with the air expired. The firft of thefe theories was originally formed by Lavoifier, and it was embraced by La Place, Crawford, Gren, and Girtanner, with a fmall variation. Indeed it does not differ, except in detail, from the original hypothefis of Dr Priedtley, that the ufe of refpiration is to rid the blood of phlogitton; for if we fubAtitute carbon and hydrogen for phlogifton, the two theories precifely agree. Mr Lavoifier attempted not to prove its truth; he only tried to fhew that the oxygen abforbed correfponds exactly with the quantity of oxygen contained in the carbonic acid and the water emitted. This coincidence his own experiments have fhewn not to hold; confequently the theory is entirely deftitute of proof, as far as the proof depends upon this coincidence.

The other hypothelis was propofed by Mr de la Grange, and afterwards fupported and illuitrated by Mr Haffentratz.

In order to difeover what the real effects of refpiration are, let us endeavour to thate accurately the phenumena as far as poflible.

In the firft place, we are certain, from the experiments of Prieltley, Girtanner, and Haffenfratz, that when veinous bluod is expofed to oxygen gas confined over it, the blood inftantly affumes a cearlet colour, and the gas is diminifhed in bulk; therefore part of the gas has been abforbed. We may confader it as certain, then, that when the colour of veinous bisod is changed intu
oxygen has combined with the iron; for we have feen Funtiuns already, that iron, if it exifts in chyle, as it probably of Anmals does, is in the ftate of a white oxide. Confequently, when converted into a red axide, it muit ahforb oxygen. Even though iron be not the colouring matter of the bluod, it would till be probable that the change of co. lour of the chyle depends on the fixation of $u x y$ gen ; for Berthullet and Fourcroy have fhewn that in feveral intances fubitances acquire a red colour by that procefo.

We may confider it as proved, then, that oxygen en. ters the blood as it paffes through the lungs.

In the third place, when arterial bluod is put in contact with azotic gas, or carbonic acid gas, it gradually alfunes the dark colour of veinous Hood, as ipr Prieft. ley found *. The fame philofopher alfo obferved that ${ }^{*}$ Prigfley, arterial blood acquired the colour of veinous bloud when placed in vacuo \dagger. Confequently this alteration \dagger Ibid, and of colour is owing to fome change which takes place Ann. de in the blood itfelf, independent of any external agent.

The arterial blood becomes much more rapidly and deeply dark coloured when it is left in contact with hydrogen gas placed above it \ddagger. We mutt fuppofe there- \ddagger Fourcroy, fore that the prefence of this gas accelerates and in- Ann. de creafes the change, which would have taken place upon the blood without any external agent.

If arterial blood be left in contact with oxygen gas, it gradually affumes the lame dark colour which it would have acquired in vacuo, or in contact with hydrogen; and atter this change oxygen can no longer reftore its fcarlet colour \oint. Therefore it is only upon a § Ibid. is. part of the blood that the oxygen acts; and after this 268 . part has undergone the change which occafions the dark colour, the blood lofes the power of being affecied by oxygen.

Mr Haflenfratz poured into veinous blood a quantity of oxy-muriatic acid; the blood was inflantly decompofed, and aflumed a deep and almoft black colour. When he poured common muriatic acid into blood, the colour was not altered \|. Now oxy-muriatic acid has \| Ibid. the property of giving out its oxygen readily ; confequently the black colour was uwing to the intant combination of a part of the blood with oxygen.

The facts therefore lead us to conclude, with La Grange and Hdfenfrat\%, that during refpiration the oxygen, which dilappears, enters the blood; that during the circulation this oxygen combines with a certain part of the blood; and that the veinous colour is owing to this new combination. We muft conclude, too, that the fubftance which caufes this dark colour leaves the bluod during its circulation thro' the lungs, otherwife it could not be capable of affuming the florid colour. Now we know what the fublances are which are emitted during refpiration ; they are water and carbunic acid gas. It malt be to the gradual combination of oxygen, then, during the circulation, with hydrogen and carbon, that the colour of veinous bloud is owing. And fince the fame combination takes place every time that the blood palies through the lungs, we muft conclude, that it is unly a part of the hydrogen and carbon which is acted upon each time. Let us now attempt, with thefe data, to form fome nution of the decompofition which goes on during the circulation of the blood.
It is probable that, during. a confiderable part of the 35 ? day, there is a conltant infur of chyle into the blood Contributes day, there is a conitant infux of chyle into the blood; to the forto blood.
unit ons to it. Now It appears, from the mult accurate obiciAmmalis vations hitherto made, that weither chyle nor lymph contain librina, which forms a very confpicuous part of the bloud. This fibrima is employed to fupply the watte of the mufeles, the moll active parts of the nody, and thereiore, in all probaulity, requiring the puot trequent fupply. Nor can it be donltech that it is employed fur other ufeful purpofes. The quantity of fiorima in the blood, then, mut be conitantly diminifhing, and therefore new tibrina mult be contantly formed. But the only fubitances out of which it can be formed are the chyle and lympin, neither of which conrain it. Thére muft therefore be a continual decompofrition of the chyle and lymph going on in the bloodvelfels, and a comtimal uew furmation of fibrina. Ocher ribilanees alfo may be fuinaed; but we are eertain that this mufl be formed there, becaule it does not exilt previouly. Now, one great end of refpiration nuit undoubtedly be to afiit this decumponition of chyle and complete formation of blood.

It fullows, from the experiments of Fourcroy formerly enumerated, that hibrina contains mote azot, aurd Iefis hydrogen and carbon, than any of the other ingre. dicuts of the blood, aud confequently alfu than any of the ingredients of the chyle. Iu what manuer the chyle, or a part of it, is converted into fibrilla, it is impolfible to fay: we are not fufficiently acquainted with the diubject to be able to explain the procefs. But wee can lee at leaft, that carbon and hydrogen nult be abftracted from that part of the chyle whach is to be converted into fibrina: And we know, that thefe fubr fances are actually thrown out by refpiration. We masy. conclude, then, that one ufe of the oxygen abforbed is, to abiltract a quantity of carbon and hydro. gen from a part of the cbyle by compound atinity, in lueh proportions, that the remainder becomes librina; therelore one end of refpiration is to furm fibrina. Doublefs the other ingredients of the blood are alfo new inodified, though we know tou little of the fubjeç to throw any light upon it.
13. But the complete formation of blood is not the only advantage ganned by refpiration: the temperature of all ammals depends upon it. It has been long known, that thofe animalis which do not breathe have a semperature but very litule fiperior to the medium in which they live. This is the cafe with fifhes and many infects. Man, on the cuntrary, and quadrupeds which breatue, have a temperature cunfiderably higher than the atmofphere: that of man is 98°. Birds, who breathe in proportion a till greater quantity of air than man, have a temperatuse equal to 103° or 104°. It has been proved, that the temperature of all aumals is propurtional to the quantity of air which they breathe in a given tine.

Thefe facts are fufficient to demonfrate, that the heat of animals depends upun refpiratiun. But it was nut till Dr Biack's doctrine of latent heat became known to the world, that any explanation of the caufe of the temperature of hreathing aninals was attempted. That illuttriuus philoopher, whufe difcoveries form the bafis upon which all the fcientific part of chemiftry has been reared, faw at onee the light which his doctrine of latent heat threw upon this part.of phyliology, and he applied it very early to explain the temperature of animals.

According to him, part of the lateat heat of the air
infpired becomes fealible; and of courfe, the tempera. Finai ns ture of the lungs, and the blood that palies chrough of An make them, mult be railed; and the blood, thus heated, communicates its heat to the whole body. This opinion was ingenious, but it was liable to an unantwerable objection: for if it were true, the temperature of the body ought to be greatelt in the lungs, and to diminifh graduatly as the ditance from the lungs increafes; which is not true. The theury, in contequence, was abandoned cven by Dr Black hunielf; at leaft he made no attempet to iuppurt it.

Lavoiticr and Crawford, who confidered all the changes operated by refipiration as taking place in the lungs, accounted for the origin of the animal heat almolt preciicly ia the fame manner with Dr Black. Accurdung tu them, the oxygen gas of the air combines in the luirg with the indrogen and carbun emitted by the blood. Durug this combination, the oxy gen gives out a great quautity of calloric, with which it tad been combined ; and this caluric is not only fufficient to fupport the teraperature of the budy, but alio to carry off the new formed water in the ftate of vapour, and to raife couliderably the temperature of the air infipired. According to theff philofophers, theis, the whole of the caloric which fupports the temperature of the body is evolved in the lungs. Their theory accordingly was liable to the fame objection with Dr Black's ; but they obviated it in the fullowing manner: Dr Crawford found, that the fpecific caluric of arterial blood was 1.0300 , while that of reinous bloud was only 0.8928 . Hence he concluded, that the intant-inous blood is changed into arterial blood, its \{pecific caloric increafes; confequently it requires an additional quantity of caloric to keep its temperature as high as it had been while velnous blood. This addition is fo great, that the whole new caluric evolved is employed: therefore the temperature of the lungs mult neceffarily remain the fane as that of the rell of the body. Wuring the circuation, arterial bloud is gradually cunverted intu veinous; confequently its fpecific caloric diminifhes, and it muit give ont heat. This is the reafun that the temperature of the extreme parts of the body does not dimininh.

This explanation is certainly ingenious; but it is not quite fatisldquory; for the difference in the fpecific caloric, franting it to be accurate, is too fmall to account for the great quantity of heat which inult be evolved. It is evident that it muit fall to the ground altogether, provided, as we have feen reafon to duppole, the carbo. nic acid gas and water be nut tormed in the lungs, but during the circulation.

Sluce the exygen enters the blood, and combines with it in the thate of gas, it is evident that it will only part at firft with fome of its caloric; and this portion is chictly empluyed in carrying off the carbonic acid gas and the water. For the reafon that the carbonic acid leaves the blood at the intlant that the oxygen gas enters it, feems to be this: The oxygen gas combines with the blood, and part of its.caloric unites at the tame inftant to the carbonic aeid, and converts it into gas: another portion converts the water into vapour. The reft of the ealoric is evolved during the circulation when the oxygen combines with hydrogen and carbon, and forms water and carbonic acid gas. The quantity of calorie evolved in the lungs feems not only fufficient to carry off the carbonic acid and water, which the dimi-

Functions ation of the fpecific caloric (if it really take place) of Animals.muft facilitate; but it feems alfo to raife the temperature of the blood a little higher than it was before. For Mr John Hunter conftantly found, that the heat of the heart in animals was a degree higher than any other part of the body which he examined. Now this could farcely happen unlefs the temperature of the blood were fomewhat raifed during refpiration.

Thus we have feen two ufes which refpiration feems
formation of fibrina; the fecond is the maintaining of the temperature of the budy at a particular ftandard, notwithfanding the heat which it is continually giving out to the colder furrounding bodies. But there is a third purpofe, which explains why the animal is killed fo fuddenly when refpiration is ftopped. The circulation of the blood is abfolutely neceflary for the continuance of life. Now the blood is circulated in a great meafure by the alternate contractions of the heart. It is neceffary that the heart flould contract regularly, otherwife the circulation could not go on. Ihut the heart is ftimulated to contract by the blood : and unlefs blood be made to undergo the change produced by refpiration, it ceafes almoft inftantaneoully to ftimulate. As the bleod receives oxygen in the lungs, we may conclude that the prefence of oxygen is neceffary to its

* Girtanner, itimulating power ${ }^{\text {* }}$.

Your. de
$P L . V$. xxxix.
14. Thus we have reafon to fuppofe, that chyle and lymph are converted into blood during the circulation;

Kid 354 en: loyed in ho fromation of blood.
and that the oxygen gas fupplied by refpiration is one of the principai agents in this change. But belides the lungs and arteries, there is another organ, the fole ufe of which is alfo to produce fome change or other in the blood, which renders it more complete, and more proper for the various purpofes to which it is applied. -This organ is the kidney.

For the ftructure of the kidneys, which in man and quadrupeds are two in number, we refer to Anatomy, Encycl. A very great proportion of blood paffes thro' them ; indeed, we have every reafon to conclude, that the whole of the blood paffes through them very frequently.

Thefe organs feparate the urine from the blood, to be afterwards evacuated without being applied to any purpofe ufeful to the animal.

The kidneys are abfolutely neceflary for the continuance of the life of the animal; for it dies very fpeedily when they become by difeafe unfit to pertorm their functions: therefore the change which they produce in the blood is a change neceffary for qualifying it to anfwer the purpofes for which it is intended.

As the urine is iminediately excreted, it is evident that the change which the kidneys perform is intended folely for the fake of the blood. It is not merely the abftraction of a quantity of water and of falts, accumulated in the bloor, which the kidney performs. A chemical change is certainly produced, either upon the whole blood, or at leaft on fome important part of it; for there are two fubftances found in the urine which do not exift in the blood. Thefe two fubttances are urea and uric acid. They are formed, therefore, in the kidneys; and as they are thrown out, after being formed, without being applied to any ufeful purpofe, they are certainly not formed in the kidneys for their -own fake. Some part of the blood, then, mult be de-
compofed in the kidney, and a new fubftance, or new fubltances, muft be formed; and the urea and uric acid mull be formed at the fame time, in confequence of the combined action of the affinities which produce the change on the blood; and being ufelefs, they are thrown out, together with a quantity of water and falts, which, in all probability, were ufeful in bringing about the changes which take place in the arteries and in the kidneys, but which are no longer of any fervice after thefe changes are brought about.

The changes operated upon the blood in the kidneys are litherto altogether unknown; but they mult be important.

Provided the method of analyfing animal fubitances Cutanceu were fo far perfected as to admit of accurate conclu. peffelo fions, confiderable light might be thrown upon this fubject, by analyfing with care a portion of blood from the emulgent vein and artery -parately, and afcertaining precifely in what particulars they differ from each other.
15. Thus we have feen that the principal changes which the blood undergoes, as far at leaft as we are at prefent acquainted with them, take place in the lungs, in the kidneys, and in the arteries In the lungs, a quantity of water and carbonic acid gas is emitted from the blood, and in the kidney the urine is formed and feparated from it. There feems alfo to be fomething thrown out from the blood during its circulation in the arteries, at lealt through thofe veffels which are near the furface of the body: For it is a fact, that certain fubttances are conftantly emitted from the \mathfrak{k} ins of animals. Thefe fubtances are known in general by the name of perfpirable matter or perfpiration. They have a great refemblance to what is emitted in the lungs; which renders it probable, that they are both owing to the fame caufe; namely, to the decompolition produced in the blood by the effects of refpiration. They confilt chiefly of water in a ftate of vapour, carbon, and oil.

316
The quantity of aqueous vapour differs very confi-Emitaye derably, according to circumitances. It has been thewn ous vapol to be greateft in hot weather, and in hot climates, and after great exercife; and its relation to the quartity of urine has been long known. When the aqueous vapour perfpired is great, the quantity of urine is fmall, and vice verfa.
The moft accurate experiments on this matter that we have feen are thofe of Mr Cruikfhank. He put his hand into a glafs veffel, and luted its month at his writt by means of a bladder. The interior furface of the veffel became gradually dim, and drops of water trickled down. By keeping his hand in this manner for an hour, he collected 30 grains of a liquid, which poffeffed all the properties of pure water *. On repeating the * $O_{n} \operatorname{Inf}$ fame experiment at nine in the evening (thermometerfible Perft 62°), he collected only 12 grains. The mean of thefe ration, p. is 21 grains. But as the hand is more expofed than the trunis of the body, it is reafonable to luppofe that the perffiration from it is greater than that from the hand. Let us therefore take 30° grains per hour as the mean; and let us fuppofe, with Mr Crnikithank, that the hand is $\frac{8}{60}$ th of the furface of the body. The perfpiration in an hour wuth amuunt to 1800 grairs, and in 24 hours to 43200 grains, or 7 pounds 6 ounces troy.

He repeated the experiment again after hard exerAninals cife, and collected in an hour 48 grains of water *. He found alfo, that this aqueous vapour pervaded his ftock. ing without difficulty; and that it made its way thro' a flamoy leather glove, and even through a leather boot, though in much fnaller quantity than when the leg wanted that covering \dagger.

It is not difficult to fee why the quantity of watery vapour dininifhes with cold. When the furface of the body is expofed to a cold temperature, the capacity of the cutaneous veffels diminihes, and confequently the quantity which flows through them mult decreafe.

When the temperature, on the other hand, is much increafed, cither hy being expofed to a hot atmofplere, or by violent exercife, the perfpired vapour not only increafes in quantity, but even appears in a liquid form. This is known by the name of fweat. In what manner fweat is produced, is not at prefent known; but we can fee a very important fervice which it performs to the animal.
No fooner is it thrown upon the furface of the flin than it begins to evaporate. But the change into vapour requires heat ; accordingly a quantity of heat is abforbed, and the temperature of the animal is lowered. This is the reafon that animals can endure to remain for fome time in a much higher temperature without injury than could have been fuppofed.
The experiments of Tillet, and the fill more decifive experiments of Fordyce and his affociates, are well known. Thefe gentlemen remained a confiderable time in a temperature exceeding the boiling point of water.

Befides water, it cannot be doubted that carbon is alfo emitted from the fkin; but in what flate, the experiments hitherto made do not enable us to decide. Mr Cruikfhank found, that the air of the glafs veffel in which his hand and font had been confined for an hour, contained carbonic acid gas; for a candle burned dimly in it, and it rendered lime-water turbid *. And Mr Jurine founcl, that air which had remained for fome time in contact with the fkin, confifted almoft entirely
nc. Micth. of carbonic acid gas \dagger. The fame conclufion may be
di. p. drawn from the experiments of Ingenhoufz and Milly \ddagger.
Now it is evident, that the earbonic acid gas which appeared during Mr Cruikflank's experiment, did not previouny exilt in the glafs veffel; confequently it muft have either been tranfmitted ready fornech through the fkin, or formed during the experiment by the abforption of uxygen gas, and the confequent emiffion of carbonic acid gas. The experiments of Mr Jurine do not allow us to fuppofe the firft of thefe to be true; for he found, that the quantity of air alluwed to remain in contact with the finin did not increafe. Confequently the appearance of the carbonic acid gas mult be owing, either to the emiffion of carbon, which forms carbonic acid gas by combining with the oxygen gas of the air, or to the abforption of oxygen gas, and the fubrequent emifition of carbonic acid gas; precifely in the fame manner, and for the fame reafon, that thefe fuhflances are enitted by the lungs. The laft is the more probable opinion; but the experiments hitherto made do not enable us to decide. Rin emits alfo a particular odorous fubftance. That
every animal has a peculiar fmell, is well known : the Funetions dog can difcover his matter, and even trace him to a ${ }^{\text {at Animals. }}$ diftance by the fcent. A dog, chained fome hours after his mafter had fet out on a journey of fome hundred miles, followed his foot teps by the fmell, and found hin on the third day in the midet of a crowd *. But it is need- * Cruitlefs to multiply inftances of this fact, they are too well /Bank, itid. known to every one. Now this fmell muft be owing ${ }^{1} 93$. to fome peculiar matter which is conflantly emitted; and this matter nuuf differ fomewhat either in quantity or fome other property, as we fee that the clog eafily diftinguifhes the individual by means of it . Mr Cruikflank has made it probable that this matter is an oily fubftance; or at leaft that there is an oily fubftance emitted by the flin. He wore repeatediy, night and day for a month, the fame veft of Reecy hofiery Juring the hottelt part of the fummer. At the end of this time he always found an oily fubftance accumulated ia confiderable maffes on the nap of the inner furface of the veft, in the form of black tears. When rubbed on paper, it makes it tranfparent, and hardens on it like greafe. It burns with a white flame, and leaves behind it a charry refiduum \dagger.
\dagger Ibid. p.
It has been fuppofed that the kin has the property 92. of abforling moifure from the air ; but this opinion has not been confirmed by experiments, but rather the contrary.

The chief arguments in favour of the abforption of wheither the fkin, have been drawn from the quantity of moilture the finat habdifeharged by urine heing, in fome cafes, not only great-forbs moier than the whole drink of the patient, but even than fure, the whole of his drink and food. But it ought to be remembered that, in diabetes, the difeafe here alluded to, the weight of the body is continually diminihing, and therefore part of it muft be conftantly thrown off. Befides, it is fcarcely poffible in that difeafe to get an accurate aecount of the food fwallowed by the patients; and in thofe cafes where very accurate accounts have been kept, and where deception was not fo much practifed, the urine was found not to exceed the quantity of drink *. In a care of diabetes, related with much accu- * See Rei'o racy by Dr Gerard, the patient was bathed regularly, on Disbetts. during the early part of the difeafe in warm water, and. afterwards in cold water: he was weighed before and after bathing, and no fenfible difference was ever found in his weight $\dagger_{\text {. }}$ Confequently, in that cafe, the quan- + thid. ii. tity abforbed, if any, muft have been very fmall.

It is well knowa, that thirft is much alleviated by cold bathing. By this plan, Captain Bligh kept his men cool and in good health during their very extraordinary voyage acrofs the South Sea. This has beenconfidered as owing to the abforption of water by the: fkin, But Dr Currie had a patient who was walting. faft for want of nourifhment, a tumor in the œefophagus preventing the poflibility of taking food, and whofe thirf was always alleviated by bathing; yet no fenfile inereafe of weight, but rather the contrary, was perceived after bathing. It does not appear, then, that in either of thefe cafes water was abforbed.

Farther, Seguin has fhewn that the flin does not ahforb water during bathing, by a fill more complete cxperiment: He diffulved fome mercurial falt in water, and found that the mercury produced no effect upon a perfon that bathed in the water, provided no part of

Fundions the cuticle was injured; but upen rubbing off a porof Arinals tion of the cuticle, the mercurial folution was abforbed, and the effects of the mescury became evident upon the body. Hence it follons irretiRibly, that water, at leaft in the flate of watir, is not abforbed by the fkin when the body is phunged into it, unlefs the cuticle be fintt

360
Or aily nther f_{l} b ftauce.

* Pbil.

Mag. vi.
95.

This may perhaps be confidered as a complete proof that no fuch thing as ablorption is performed by the fkin ; and that therefore the appearance of carbunic acid gas, which takes place when air is confined around the fkin, unull be owing to the emiffion of carbon. But it ought to be confidered, that altlough the Rin cannot abforli, water, this is no proof that it cannot abforb other fubleances; particularly, that it cannot abforb oxygen gas, which is very different from water. It is well k!own, that water will not pais through bladders, at leaft for fome time ; yet Dr Prieflly fuund that veinous blood acquired the colvur of arterial blood from oxygen gas, as readily when thefe fubftances were feparated by a bladder as when they were in actual contact. He found, too, that when gafes were confined in bladders, they gradually loft their propertics. It is clear from thefe facts, that oxygen gas can pervade bladders; and if it can pervade them, why may it not alfo pervade the cuticle? Nay, farther, we know from the experiments of Cruikflank, that the vapour perfpired paffes. through leather, even when prepared for as to keep out moifture, at leaft for a certain time. It is poffible, then, that water, when in the ftate of vapour, or when diffolved in air, may be abfurbed, although water, while in the ftate of water, may be incapable of pervading the cuticle. The experiments, then, whicly have hitherto at leafl been made upon the abforption of the kin, are altogether infufficient to prove that air and rapour cannot pervade the cutiele ; provided at leatt there be any facts to render the contrary fuppufition probable.

Now that there are fuch facts caunot be denied. We fhall not indeed produce the experiment of Yan Mons as a fact of that kind, becaufe it is liable tu objections, and at beft is very undecifive. Having a patient under his care who, from a wound in the throat, was incapable for feveral days of taking any nouriflment, he kept him alive during that time, by applying to the fkin in different parts of the hody, feveral times a day, a fponge dipt in wine or flrong foup*. A fact mentioned by Dr Watfon is much more important, and much more decifive. A lad at Newnarket, who had been almoll farved in order to bring hind down to fuch a weight as would qualify him for running a horfe race, was weighed in the morning of the race day; he was weighed again jult before the race began, and was found to have gained 30 ounces of weight fince the morning: yet in the interval he had only taken a Gingle glafs of wine. Here abforption muft have taken place, either by the find, or lungs, or hoth. The difficulties in either cafe are the fame; and whatever renders abforption by one probable, will equally frengthen the probability that abforption takes place by the other (R).
16. We have now feen the procefs of digettion, and
the formation of blood, as far at leaft as we are ac. Fur clim quainted with it. But to what purpofes is this bluod "f A mimat en pluyed, which is forned with io nuch care, and fern abt the formation of which fo great an ayparat us las been Btood fup provided? It anfwers two purpofes. The parts of lies the which the body is compofed, benies, mufeles, ligaments, wante of me mbrance, \&ic. are contimually changing. In youth, the fylem they are increafing in fize and lirength, and in mature age they are continually acting, and confequently continually liable to watte and decay. They are often expofed to accidents, which render them unfit for performing their various functions; and even when nofuch accident happens, it feems neceffary fur the health of the fyftem that they thuuld be every now and then renewer. Materials therefore mult be provided for repairing, inereafing, or renewing all the various organs of the body. Phofphat of lime and gelatine for the bones, fibrina for the mufcles, albumen for the cartilages and membranes, \&c. Accordingly all thefe fubflances are laid up in the blood; and they are drawn. from that fluid as from a florehoufe whenever they are required. The procefs by which the different parts of the blood are made part of the various organs of the body is called a/fimilation.

Over the nature of affimilation the thickef darknefs ${ }^{362}$ fill hangs; there is no key to explain it, nothing to tion. lead us to the knowledge of the inftruments employed. Facts, however, have been aecumulated in fufficient numbers to put the exiftence of the procels beyond the reach of doubt. The healing, indeed, of every fractured bone, and every wound of the body, is a proof of its exiftence, and an inflance of its action.

Every organ employed in affimilation has a peculiar Every aff. 3^{363} office; and it always performs this office whenever it nilating has materials to aft upon, even when the performatice organ pro. of it is contrary to the intereft of the animal Thus culiar the flomach always converts food into chyme, even chasge, when the food is of fuch a nature that the procefs of digeftion will be retarded rather than promoted by the change. If warm milk, for inflance, or warm blood, be thrown into the flomach, they are always decompofed by that organ, and converted into chyme; jet thefe fubftances are inuch more nearly affimilated to the animal before the action of the ttomach than after it. The fane thing happens when we eat animal foud.

On the uther hand, a fubitance introduced into an or- and no ${ }^{364}$ gan employed in affimilation, if it has undergone pre-other cifely the change which that organ is fitted to produce, change. is not acted upon by that organ, hut pafid on unaltered to the next affimilating orgail. Thus it is the office of the inteftines to convert chyme into chyle. Accordingly, whenever chyme is introducel into the intentines, they perforin their office, and produce the ufual change: but if chyle itfelf be introduced into the inteflines, it is abforbed by the lacteals without alteration. The expetiment, indeed, has not been tried with true chyle, becaufe it is fearce poffible to procure it in fufficient quantity ; but when milk, which refembles clyle pretty accurately, is thrown into the jejunum, it is abforbed unchanged by the lacteals *.

(к) The Abbé Fontana alfo found, after walking in moift air for an huur or two, he returned home fome ounces heavier than he went out, notwithflanding he liad fuffered confiderable evacuation from a brifk purge purpofely taken for the experiment. This increafe, indeed, might be partly accounted for by the abforption of moiture by his clothes. ingly, cannot be introduced into the arteries without undergoing that change; but blood may be introduced from another aninal without any injury, and confe. quently without undergoing any change. This experiment was firft made by Lower, and it has fince been very often repeated.

Alfo, if a piece of frefh mulcular fleth be applied to the mufcle of an aninal, they adhere and incorporate without any clange, as has been fufficiently eflallifhed by the experments of Mr J. Hunter. And Buvina his afeertained, that frem bone nay, in the fanie manner, be engrafted on the bones of animals of the fame or of different peccies \dagger.

In thort, it feems to hold, at leart as far as experiment, have hitherto been made, that foreign fubftances may be incorporated with thofe of the body, provided they he precifely of the fame kind with thofe to which they are added, whether fluid or folic.. Thans chyle may be mixed with chyle, blood with bloud, mufcle with mufcle, and bone with bone. The esperiment has not been extended to the other aninal fubfances, the nerves, for inflance; but it is extremely prubable that it would hold with refpect to them alfo.

On the other hand, when fubftances are introduced into any part of the body whick: are not the fame with that part, nor the fame with the fubftance upon which that part aets; provided they cannot be thrown out readily, they deftroy the part, and perhaps even the animal. Thus foreign fubftances introduced into the bloord very foon prove fatal ; and introduced into wounds of the flefh or bones, they prevent thefe parts from healing.

Although the different affimilating organs have the power of clanging certain fubftances into uthers, and of throwing out the ufelefs ingredients, yet this power is not abfolute, even when the fubftances on which they act are proper for undergoing the change which the organs produce. Thus the fomach, converts fuod into chyme, the inteflines chyme into chyle, and the fubftances which have not been converted into chyle are thrown out of the body. If there happen to be prefent in the ftomach and inteftines any fubftance which, though incapable of undergoing the changes, at leaft, by the action of the flomach and inteftines, yet has a ftrong affinity, either for the whole chyme and chyle, or for fome particular part of it, and no affinity for the fubftances which are thrown out, that fubftance paffes along with the chyle, and in many cafes continues to remain chemically combined with the fubttance to which it is united in the fomach, even after that fubftance has been completely affimilated, and made a part of the body of the animal. Thus there is a ftrong affinity between the colouring matter of madder and phofphat of lime. Accordingly, when madder is taken into the flomach, it combines with the phurphat of lime of the food, paffes with it through the lacteals and blood veffels, and is depofited with it in the bones, as was proved by the experiments of Duhamel. In the fame manner mufk, indigo, \&cc. when taken into the fomach, make their way into many of the fecretions.

Thefe facts thew us, that affimilation is a chemical procefs from beginning to end ; that all the changes are produced according to the laws of chemiftry; and that we can even derange the regularity of the procefs by Suppl. Vol. II. Part II.
introducing fubflances wiufe mu:ual affinities are tod Fureinns ftrong for the organs to overcome. of A nit:"ale
It cannot be denied, then, that the affimilation of 360 food confifts merely in a certain number of chemical aftinils decompolitiuns which that food undergees, and the tion a checonfequent formation of certain new compounds. lint ${ }^{\text {n. ectat }}$ proare the agents employed in affimilation mercly chemical ${ }^{\text {ceis } ; ~}{ }_{3} 6$ agents? We cannut produce any thing like thefe Bue the changes on the foud uut of the body, and therefure we went not muft allow that they are the confequence of the action dicaical. of the animal organs. But this action, it onay be faid. is mercly the fecretion of particular juices, which have the property of inducung the withed-for change upon the food; and this very change wauld be produced ont of the body, provided we could procure thefe fut finces. and apply them in proper quantity to the fuod. If this fuppofition he trur, the fyecific action of the veffic ${ }_{3}$ confills in the fecretion of certain fubltances; contequently the caufe of this fecretion is the real agent in if. fimilation. Now, can the caufe of this fecretion be fhe wnin to be merely a chemical agent ? Certainly nut. F'or in the flomach, where only this fecretion can be mewn (1) exift, it is not always the fatne, but varies according th circunuftances. Thus eagles at firit caanot digeft grain, but they may be brought to do it by perfifting in making thenn ufe it as food. On the contrary, a lamb caunot at firf digeft animal food, but habit will alf, give it this power. In this cafe, it is evident that the gaftric juice changes according to circuniftances. Now this is fo far from being a cale of a chemical law, that it is ahfolutely incompatible with every fuch law. The agent in affinilation, then, is not a chemical agent, bot one whichacts upon diferent principles. It is true, ift deed, that every ftep in the procefs is chemical ; but the agent which regulates thefe chemical procefics, whish prevents them from acting, except in particular circumAtances and on particular fubltances, and morlifies this action according to cirrumftances, is not a mere chemical agent, but endowed with very different propertics.

The prefence and power of this agent will be aill more evident, if we confider the immunity of the thomach of the living animal during the procefs of digeftion. The ftomach of animals is as fit for food as any other fubftance. The galtric juice, therefore, mult have the fame power of acting on it, and of decompoling it, that it has of acting on uther fuhftances; yet it is well known that the ftomach is not affected by digeffion while the animal retains life; though, as Mr Hunter afcertained, the very gaftric juice which the living ftomach fecrets often diffolves the ftumach itfelf after death. Now what is the power which prevents the gaftric juice from acting on the flomach during life? Certainly neither a chemical nor meclanical agent, for thefe agents muft fill retain the fame power after death. We muit, then, of neceffity conclude, that there exits in the animal an agent very different from chemical and mechanical powers, fince it controuls thefe powers according to its pleafure. Thefe powers therefore in the living body are merely the fervants of this fuperior agent, which directs them fo as to accomplifh always one particular end. This agent feems to regulate the chemical powers, chiefly by bringing only certain fubftances together which are to be decompofed, and by keeping at a diftance thoíe fubftances which would interfere, with, or diminifh, or fyoil the product, or

4 H
injure

Functions injure the organ. And we fee that this feparation is alof Animals ways attended to even when the fubtances are apparently mixed together. For the very fame products are not obtained which would be obtained by mixing the fame fubftances together out of the body that are produced by mixing them in the body; confequently all the fubftances are not left at full liberty to obey the laws of their mutual affinities. The fuperior agent, however, is not able to cxercife an unlimited authority over the chemical powers; fometimes they are too frong for it: fome fubtances accordingly, as madder, make their way into the fyytem ; while others, as arfenic, decompofe and deftroy the organs of the body themfelves.

But it is not in digeltion alone that this fuperior agent makes the mof wonderful difplay of its power ; it is in the laft part of affimilation that our admiration is mof powerully excited. How comes it that the precife fubflances wanted are always carried to every orgall of the body? How comes it that fibrina is always regularly depofited in the mufcles, and phofphat of lime in the bones? And what is ftill more unaccountable, how cones it that prodigious quantities of fome one particular fuhtlance are formed and carried to a particular place in urder to fupply new wants which did not before exill ? A bone, for example, becomes difeafed and unfit for the ufe of the aninal; a new bone thecetiore is formed in its place, and the old one is carried off by the abforbents. In order to form this new bone, large quantities of phofphat of lime are depofited in a place where the fame quantity was not before neceflary. Now, who informs this agent that an unufual quantity of phofphat of lime is necesfary, and that it mutt be carried to that particular place? Or granting, as is moft probable, that the phofphat of lime of the old hone is partly employed for this purpofe, who tauglit this agent that the old bone muft be carried off, new modelled, and depofited, and affimilated anew? The fame wonders take place during the healing of every wound, and the renewing of every difeafed part.

Thefe operations are incompatible with the fuppofition that the body of animals is a mere chemical and mechanical machine; and demonftrate the prefence of fome agent befides, which acts according to very different laws.

But neither in this cafe is the power of this agent over the chemical agents, which are employed, abfolute. We may prevent a fractured bone from healing by giving the patient large quantities of acids. And unlefs the materials for the new wanted fubifances be fupplied by the food, they cannot, in many cafes, be formed at all. Thus the canary bird cannot complete her eggs unlefs fhe be furnifhed with lime.

It is evident that the fupreme agent of the animal body, whatever that agent maly be, acts according to fixed laws; and that when thefe laws are oppofed by thofe which are more powerful, it cannot overcome them. Thefe laws clearly indicate defign; and the agent has the power of modifying them fomewhat according to circumftances. Thus more phofplat of lime is fent to a limb which requires a new bone, and more lime than ufual is taken into the fyftem when the hen is laying eggs. Defign and contingency are confidered by us as infallible marks of confcioufnefs and intelligence. That they are infallible marks of the agency of mind is certain : but that they are in all cafes the proofs of immediate confcioufnefs and intelligence, as
the Stahlians fuppofed, cannot be affirmed with outrun- Funclions ning into inconfintencies. For we ourfelves are not of Aninal confcious of thofe operations which take place during afinilation.

To fay that a being can act with defign without in. telligence, we allow to be a flat contradi: ion, becaufe defign always implics intelligence. There mult therefore be intelligence fomewhere. But may not this in. telligence exift, not in the agent, but in the being who formed the agent ? and may not the whole of the defign belong in reality to that being?

May not this agent, then, be inaterial, and may not Nor mate the whole of affimilation be performed by mere mat-rial. ter, acting according to laws given it by its maker? We anfiwer, that what is called matice, or the fubftances enumerated in the firft part of Chemistry (Suppl.) act always according to certain attractions and repulfions, which arc known by the name of mechanical and chemical laws.

The phenomena of affimilation are fo far from being cafes of thefe laws, that they are abfolutely inconfiftent with them, and contrary to them ; confequently the agent which prefides over affrnilation is not matter. Concerning the nature of this fubfance it is not the bufinefs of this article to inquire; but as it poffeffes properties different from matter, and acts according to very different laws, it would be'an abufe of terms to call it matter.

We fhould give it the name of mind, were it not that Annral metaphyficians have chofen to coufider intelligence as principle. the effence of mind; whereas this fubftance may be conceived to act, and really does act, without intelligence. There is no reafon, however, to fuppofe, with fome, that there are two fubilances in animals: one poffeffed of confcioufnefs as its effence, and therefore called mind or foul in man ; another, deftitute of confcioufnefs, called the living principle, \&c. employed in performing the different functions of affimilation, abforgtion, \&c. It is much more reafonable to fuppofe, that in every animal and vegetable there is a peculiar fubftance, different from matter, to which their peculiar properties are owing; that this fubftance is different in every fuecies of animal and vegetable; that it is capable of acting according to certain fixed laws which have been inpofed upon it by its Creator, and that thefe laws are of fuch a nature that it acts in fubfervience to a particular end; that this fubfance in plants is probably deftitute of intelligence; that in man and other animals it poffeffes intelligence to a certain extent, but that this intelligence is not effential to its exiftence nor to its a-tivity; that it may be deprived of intelligence altogether, and afterwards recover it without altering its nature. Phyfiologits have given it the name of living principle, becaufe its prefence conttitutes life." Perhaps it would be proper to diftinguifh that of animals by the name of animal principle. Upon what the intelligence of the animal principle depends, it is impoffible to fay; but it is evidently conneqed with the ftate of the brain. During a trance, or an apoplectic fit, it has often been lofl for a time, and afterwards recovered.
17. Befiries affimilation, the blood is alfo employed in forming all the different fecretions which are neceffary for the purpofes of the animal economy. Thefe have been enumerated in the laft chapter. The procefs is fimilar to that of affimilation, and undoubtedly the agents in both cafes are the fame; but we are
equally
compofi- equally ignorant of the precife manner in which fecre. on of Ani tion is performed as we are of affimilation.

3l Subances.
18. A fter thefe functions have gone on for a certain time, which is longer or fhorter according to the nature of the animal, the body gradually decays, at laft all its functions ceafe completely, and the animal dies. The caule of this muft appear very extraordinary, when we confider the power which the animal has of renewing decayed parts; for it cannot be doubted that death proceeds, in moft cafes at leaft, from the body becoming incapable of performing its function. But if we confider that this power is limited, and that it mult ceafe altogether, when thofe parts of the fyftem begin to decay which are employed in preparing matcrials for future affimilation, our furprife will, in fome meafure, ceafe. It is in thefe parts, in the organs of digeftion and affimilation accordingly, that this decay ufually proves fatal. The decay in other parts deftroys life only when the watle is fo rapid that it does not admit of repair.

What the reafon is that the decay of the organs caufes death, or, which is the fame thing, caufes the living principle either to ceafe to act, or to leave the body altogether, it is perfectly impoffible to fay, becaufe we know too little of the nature of the living principle, and of the manner in which it is connected with the body. The laft is evidently above the human underftanding, but many of the properties of the living principle have been difcovered; and were the facts already known properly arranged, and fuch general conclufions drawn from them as their connection with each other fully warrant, a degree of light would be thrown upon the animal economy which thofe, who lave not attended to the fubject, are not aware of.

No fooner is the animal dead, than the chemical and mechanical agents, which were formerly fervants, ufurp the fupreme power, and foon decompofe and deftroy that very body which had been in a great meafure reared by their means. But the changes which take place upon animal bodies after death, are too important, and too intimately comected with the fubject of this article to be paffed over lightly. They fhall therefore form the fubject of the next chapter.

Chap. IV. Of the Decomposition of Animal SUBstances.

All the foft and the liquid parts of animals, when expofed to a moderate temperature of fixty-five degrees or more, pafs with more or lefs rapidity through the following changes.' Their colour becomes paler, and their confitence diminifhes; if it be a folid part, fuch as flefh, it foftens, and a ferous matter fweats out, whofe colour quickly changes; the texture of the part becomes relaxed, and its organization deftroyed; it acquires a faint difagreeable fmell; the fubltance gradually links down, and is diminifhed in bulk ; its fmell becomes ftronger and ammoriacal. If the fubject be contained in a clote vefiel, the progiefs of putrefacion, at this flage, feems to flacken; no other fmeld but that of a pungent alkali is perceived; the matter elfervefces with acids, and converts fyrup of violets tis a gieen. But if the communication with the air be admitted, the urinous exhalation is diffipated, and a peculiar. putrid fmell is fpread around with a kind of impetuofity; a fmell of the molt infupportable kind, which lalts a long time, and pervades
every place, affecting the bodies of living animals after the manner of a ferment, capable of altering the fluids: this fmell is corrected, and as it were confued by mal submonia. When the latter is volatilized, the putrefactive procefs becomes active a fecond time, and the fiabftance fuddenly fwells up, becomes filled with bubbles of air, and foon after fubfides again. Its colour changes, the fibrous texture of the flefl being then fearcely diftinguifhable; and the whole is changed into a foft, brown, or greenifh matter, of the conliftence of a poultice, whofe fmell is faint, naufcous, and very active or the bodies of amimals. The odorant principle gradually lofes its force; the fluid portion of the flef aflumes a kind of confiftence, its colour becomes deeper, and it is filally reduced into a friable matter, rather deliquefcent, which being rubbed between the fingers, breaks into a coarfe powder like earth. This is the laft ftate obferved in the putrefaction of animal fubftances; they do not arrive at this term but at the end of a confiderable time \dagger.

In carcafes buried in the earth, putrefaction takes place much more fowly ; but it is fearcely poffible to 373. obferve its progrefs with accuracy. The abdomen is the earth. gradually dilated with clallic flnids which make their appearance in it, and at laft it burfts and difcharges a horribly fetid and noxious gas; at the fame time a dark coloured liquid flows out. If the earth be very dry, and the heat confiderable, the moifture is often abforbed fo rapidly, that the carcafe, inftead of putrefying, dries, and is transformed into what is called a nummiy.

Sucli are the phonomena when dead bodies are left Whenac to putrefy feparately. But when great numbers of cumulated carcales are crowded together in one place, and are fo together. abundant as to exclude the action of external air, and other foreign agents, their decompofition is entirely the confequence of the reciprocal action of their ingredients thenfelves upon each other, and the refult is very different. The body is not entirely diffipated or converted into mould, but all the foft parts are found diminithed remarkably in fize, and converted into a peculiar faponacenus matter. This fingular change was firft accurately obferved in the year 1786 .

The burial ground of the Inuocents in Paris having become noxious to thore who lived. in its neighour hood, on account of the difugrecable and hartful odour which it exhaled, it was fund neceflany to temove the carcafes to another place. It had been ulual to dig very large pits in that burial ground, and to fill then with the carcafes of the poorer fort of penple, each in its proper bier; and when they were quite full, to cover? them with about a foot deptli of earth, and to dig mon.? ther limilar pit, and fill it in the fame manner. Each pit held loetween 1000 and 1500 dead bodies. It was in removing the bodies from thefe pits that this faponaceous fubftance was found. The gravediggers had afcertained, by long experience, that about thirty years were required before all the bodies had undergone this change in its full extent*. Every part of the body * Fourcroy; acquired the properties of this fubfance. The in- Annode teftines and vifcera of the thorax had completely dif Chim. y. appeared; but what is fingular enough, the brain had luft but little of its lize or appearance, though it was ' alfo converted into the fane dubstance.

This faponaceous matter was of a white colour, foft Its proper. and unctuous to the touch, and melted, when heated,

Decompo- like tallow. It exhibited all the properties of a foap, fition of A nimal Sub fances.
\dagger Fourcray,
Ann. de
Cbim. viii.
17.

377
Produced alfo in rus ving water.
ter diffection. A fmall ftream of wate: conflantly paffes Decompo through this pit ; a circumftance which induced him to fition of A try whether animal mufcle expofed to the action of a nimal Sub. running ftream underwent the fame change. The expe- $\underbrace{\text { lances, }}$ riment fucceeded completely: he attempted, in confequence, to render this fubftance, to which he gave the name of Spermaceti, ufeful in thofe manufactures which required tallow; but the fetid odour which it conftantly cxhales was an infurmountable objection. Attempts were indeed made to get over it ; but as we do not hear that Mr Smith Gibbes's Spermaceti has been introduced into any manufacture, we have reafon to conclude that none of thefe attempts fucceeded \ddagger.

Pbil.
Such are the phenomena of putrefaction, as far as Tranf. 1794 they are at prefent known to chemifts. Any attempt ${ }^{\text {and }} 37950$ to explain the manner in which thefe changes take Thcory of place, would be exceedingly imperfect indeed; not only putrefac. becaufe we are ignorant of the frength of the affinitiestion imof the different elementary parts of animal bodies for perfect. each other, but becaufe we do not even know the manner in which thefe elements are combined, and confequently we cannot know by what particular forces thefe compounds are deftroyed. We know only that a certain degree of heat, and the prefence of moifture, are in all cafes neceffary for the putrefactive procefs; for animal bodies may be kept almoft any length of time, without decompofition, at the freezing temperature; and when dried quickly, and kept in that fate, they undergo no farther cliange.

Part III. Of DYeing.

Mankind have in all periods of fociety manifefted a fonduefs for beautifnl and graudy colours. Naked favages at firft applied them to their fkin. This was the cafe with the Britons, and with the Guals, too, in the time of Cæfar ; it is cven ftill the practice in the South Sea inands, and many parts of America. When mankind had advanced fo far towards civilization as to wear garments, they naturally transferred to them the colours which they admired. Hence the origin of dyeing; which is of fuch antiquity, that it precedes the earlied records left us by prufane authors. We fee from the book of Genefis the great progrefs which it had made in the time of the patiarehs.

Dyeing feens to have originated in India, and to. have fpread gradually from that country to the weft. The Indians were the inventors of the method of dyeing cotton and linen, which was not underfood in Europe before the conquefts of Alexander the Grear. The Phenicians excelled in the art at a very early period. It was from them that the Jews purchated all the dyed fluffs deferibed in Exodus. The Phenician dyers feem to have confined their ant to wool: filk was unknown so them, and lisen was ufually worn white. From them the ant of dyeing paffed to the Greeks and Romans.

During the fifth century, the Weflern Empire was overturned by the northern nations, and with it the arts and feiences, which had flourifhed under the protection of the Romans, difappeared. A few of the arts, indeed, were preferved in Italy, hut they were obfcured and degraded. By degrees, however, a fpirit of in. duftry began to revive ia that country. Florence, Ge-
noa, and Venice, becoming rich commercial cities, carried on a confiderable intercourfe with the Grecian cm pire, where many of the arts had been preferved. This, intercourfe was much inereafed by the crufades. The. Italian cities became rich and powerful: the arts which. diftinguifh civilized nations were cultivated with emulation, and dyeing, among others, was rapidly improved.

In the year 1429, the firft treatife on dyeing made its progrefo its appearance at Venice, under the name of Moriegola in modern del arte de sentcri. Giovanne Ventura Rofetta collect. Eurofe. ed, with great induftry, all the proceffes employed by the dyers of his time, and published them in 154^{8}, under the title of Plictho *. For many years dy cing was Berthoket almoft exclufively confined to Italy; but it gradually on Dyeing, made its way to France, the Low Countries, and to ${ }^{\text {i. } 22 .}$ Britain. The minifter Colbert, who employed his talents in extending the commerce and manufactures of France, paid particular attention to the art of dyeing. In the year 1672, he publifhed a table of inftructions, by which thofe who practifed the art were laid under feveral very improper seftrictions. But the bad effects of thefe were in ar good meafure obviated by the judicious appointment of men of fcience to fuperintend the art. This plan, begun by Colbert, was continued by the French government. Accordingly, Dufay, Hellot, Macquer, and Berthollet, fucceffively filled the office. It is to this eftablifhment, and to exertions of the celebrated chemills who have filled it, that France is indebt. ed for the improvements the has made in the art of dyeing during the courfe of the 18 th century. Under the direction of Dufay, a new table of regulations was publifhed in 1737 , which fuperfeded that of Colbert.

Hellots
, aances Hellot, his fuccettor, publifhed, in 1740, an excellent ed for fytem of dyeing wool; and Macquer in 1763 publifhed his treatife on dyeing filk.

In Britain, though dyeing has been carried on for many years with great fuccefs, very little progrefs was made in inveftigating the theory of the ant. The Royal Society, indeed, foon after its inftitution, recommended it to forne of its members; but as no treatife made its appearance in confequence of this, it feems very foon to have loft their attention. Lewis, many years after, publifhed fome very important remarks on dyeing; but they were confined to a few proceffes. The Britith dyers fatisfied themfelves with a tranflation of liellot. Such was the flate of the art when the article Dreng in the Encyelopactia was drawn up. It confifts chiefly of an abllact of Hellot's treatife. But within the laft 30 years, the attention of men of fcience has been very much turned to this conplicated art. In Sweden has appeared the treatife of Scheffer, and Bergman's notes on it ; in Germany, the experiments of Beckmann, Puerner, and Vogler, and the differtation of Franchèville ; in France, the treatifes of D'A mbournay, D'Apligny, Hauffinann, Chaptal, and, above all, of Berthollet; in this country, the ingenious remarks of Delaval, of Henry, and the valuable treatife of Dr Bancroft; befides many other important effays. Thefe, together with the progrefs of the fcience of chemiftry, on which the theory of dyeing depends, have thrown fo much new light upon the art, tbat we find ourfelves under the neceflity of tracing the whole over again. We foall pafs over, however, very flightly thofe parts of the art which have been fufficiently explained in the article Dyeing, Encycl.
To undertand the art of dyeing, we muft be acquainted with the fulfances on which it is practifed, with the nature of colour, and with the method of permanently changing the colour of bodies. Thefe three things we fhall confider in the three following chapters. In the firft, we fhall give an account of the fubftances of which garments are ufually made, with which alone the art of dyeing is concerned; in the fecond, we fhall inquire into the nature of colour; and in the third, explain the theory of dyeing, as far as it is at prefent un. dertlood. In fome fubfequent chapters, we fhall give a general view of the proceffes by whicb the different eolours are given to ftuffs.

Chap. I Of the Substances used for Cllothing.

The fubiftances commonly employed for clothing may be reduced to four ; namely, woul, filk, cotton, linert. As there is no name in the Engliih language which in. cludes all thefe fubftances, we fhall take the liberty, in the remainder of this article, to ufe the word cloth, for that purpofe. They are all made into cloth, of fonte sind or other, befure they can be ufeful as articles of clothing.

1. Wool, as is well known, is the hair which covers the bodies of fheep; it differs from common bair merely in finenefs and foftnefs. Its filaments puffefs a confiderable degree of elafticity; they may be drawn out beyond their ufual length, and afterwards recover their form when the external force is removed. The furface of wool and hair is by no means fmooth: No inequality, indeed, can be perceived, by a microfcope;
nor is any rcfiftance felt when a hair is laill hold of in Subfanices one hand, and drawn between the fingers of the other, from the root towards the point; but if it he drawn from the point towards the root, a refiftance is felt which did not take place before, a tremulous motion is perceived, and a noife may be dittinguthed by the ear. If, after laying hold of a hair between the thumb and fore finger, ${ }^{\text {w }}$ we rub them againft each other in the longitudinal direction of the hair, it acquires a progreffive notion towards the rout ; the point gradually approaches the fingers, while the root recedes from them; fo that the whole hair very foon paffes through between the fingers.

Thefe obfervations, firft made ly Mr Monge, demonftrate that the furface of hair and wool is compofed, either of fmall laninx, placed over each other in a flanting direction from the root towards the point, like the fcales of a fifh-ur of zones, placed one abuve another, as takes place in the horns of animals *.

* Ann, ds

On this ftructure of the filaments of hair and wool Cbim. vi. depend the effects of felling and fulling. In both of ${ }^{300}$. thefe operations, the filaments are made, liy an external force, to rub againft each other ; the pofition of their afperities prevents them from moving, except in one direction : they are mutually entangled, and obliged to approach nearer each other. Hence the thicknefs which cloth acquires in the fulling mill. The filaments have undergone a certain degree of felting, and are interwoven like the fibres of a hat. The cloth is contracted both in length and breadth : it may be cut without being fubject to ravel; nor is there any neceffity for henn-. ming the different pieces employed to make a garment. See Felting and Fulling in this Suppl.

Wool is naturally covered with a kind of greafe, which preferves it from moths. This is always removed before the wool is dyed; becaufe its prefence is very prejudicial to the fuccefs of that operation. The afperities of the furface of woolly fibres would impede the converting of it inte thread by fiuning; but they are in a great meafure covered, previous to that operation, by foaking the wool with oil. The oil muft alfo be removed before the wool be dyed. This procefs is called Scouring, which fee in this Suppl.

We have already, in the fecond part of this article, given an accuant of what is at prefent known concerning the compofition of woul and hair. It would be foreign to the fubject of this chapter, to defcribe the method of Jipinning and weaving wool.

Wwol is of different colours ; but that which is white is preferred for making cloth; becaufe it anfwers better for the purpofes of dyeing than any other kind.
2. Silk is a fubflance fpun in fine threads by the filk zuorm. Its fibres are not faly like thofe of wool; neither have they the fame clafticity: but Gilk, in its natural flate, before it has undergone any preparation, has a confiderable degree of ftiftuefs and elafticity. In this Hate it is known by the name of rawe filk. It is covered with a kind of gumniy varnifh, which may be removed by fcouring with foap. The fcouring deprives it of its ftiffnefs and elafticity. Raw filk is of a yellow. colour, owing to yellow refinous matter with which it is naturally combined. We have given the method of feparating this matter, and alfo the gum, in the article Breaching, Supplement.

Silk, before it is dyed, is always freed from its gum, and generally, alfo from its refin. It may be dyed with.

Subnances out the application of heat; which is not the cafe wit he otton, and linen. The firft two are animal fubfances; ufed firs wool.

Clothing.
\ddagger Buncrofft,
i. 69.
3. Сotton is a fine downy fubifance, contained in the pods of different fpecies of goffypium. The fpecies from which the greater part of the cotton brought to this country is taken is the berbaceum The quan. tity imported annually into Britain is very great; in 1786 it amounted to 20 millions of pounds \ddagger. Cotton varies greatly, according to the plant on which it grows, and the clinate where it is cultivated. The chief differences are in colour, and in the length, finenefs, and Arength of the filaments.

No afperitics can be difcovered on the furface of thefe filaments; but Lewenhoeck oblerved, by means of a microfcope, that they are triangular, and have three fharp edges. This is probably the reafon of a well known fact, that cotton cloth, when applied by way of drefling, always irritates a fore.

Some cottons are naturally white; others a fine light yellow, as thofe of which nankeen is made; but moft zommonly cotton is of a dirty brownifh yellow colour, which muft be removed before the ftuff can be dyed. This is done by the procefs of lleaching. The fibres of cotton, even after being heached, retain almoft always forme lime and oxide of iron, which mutt be removed before we attempt to dye the cotton; becaufe their prefence would fpoil the colour. This is done by Ateeping the cotton for fome tinue in water acidulated with fulphuric acid.

Cotton, like filk, may be dyed without the affiftance of heat. It is not nearly fo eafy to dye cotton any particular colour as it is to dye wool or filk. If wool and cotton be put into the fame dyeing veffel, the wool frequently acquires the wifhed for colour before the cotton has loft any of its original whitenefs.
4. Lint , from which linen is made, is the inner bark of the linunn ufflatifinunt, or fax; a plant too well known in this country to require any defcription.

The flax, when ripe, is pulled and fleeped for fome days in water, in order to feparate the green coloured glutinous matter whicl adheres to the inner bark. This matter undergoesa deyree of putrefaction ; carbonic acid gas and hydrogen gas are difengaged *: it is decompofed, and carried off by the water. If the water, in which the flax is fteeped, be completely ftagnant, the putrefaction is apt to go too far, and to injure the fibres of the lint; but in a running ltream, it does not go far enough, fo that the green matter ftill continucs to adhere to the lint. Flax, therefore, fhould be theeped in water neither completely ftagnant, nor flowing too freely, like a running ftream.

The flax is afterwards fpread upon the grafs, and expofed for fome time to the air and fun: this improves the colour of the lint, and renders the woody part fo brittle, that it is eafily feparated by the action of the lint mill: The fubfequent operations, of dref/ing, fpinsing, weaving, and bleaching, do not belong to this article.

The fibres of lint have very little elafticity. They appear to be quite fmooth ; for no afperities can be perceived by the microfcope, nor detected by the feel; nor does linen irritate fores, as is the cafe with cotton.

Linen may be dyed without the affiftance of heat ; but it is more difficult to give it permanent colours than even cotton.
Thus we have given a fhort defcription of wool, filk,
the twolaft vegetable. The animal contain much azot and hydrogen ; the vegetable much carbon: The animal are readily deftroyed by acids and alkalies; the vegetable withtand the action of thefe fubltances better; even nitric acid does not rcadily deffroy the texture of cotton. The animal fubftances are more eafily dyed than the vegetable, and the colours which they receive are more permanent than thofe given to cotton and linen by the fame proceffes.

Such are the properties of the cloths on which the aft of dyeing is exercifed. But what is the nature of thefe colours which it is the object of that art to com. municate? We fhall examine this fubject in the following chapter.

Chap. II Of Colours.

Alı vifible objects, as has been long ago fufficiently eftablifhed, are feen by means of rays of light paffing off from them in all directions, and partly entering the eye of the fpectator.

1. For the theory of light and vifion we are indebt- Colour ${ }^{386}$ ed to Sir Ifaac Newton. He firf demonflrated, that duced b: light is compofed of feven rays, differing from each o- light. ther in refrangibility, and other properties. Each of thefe rays is diftinguifhed by its particular colour. Hence their names, red, orange, yellow, green, blue, indigo, violet. By mixing together thefe different rays, in various proportions, all the colours known may be obtained. Thus red and yellow conftitute orange ; yellow and blue conftitute green; blue and red conflitute purple, violate, aurora, \&c. according to their proportions. When all the rays are mixed together, they form a white.
2. Bodies differ very much from each other in their Bodies, $\begin{aligned} & \text { feet dif. }\end{aligned}$ power of reflecting light. Some reflect it in vaft quanfect dif.
ferent $r a$
tity, as metals ; others reflect but little, as charcoal. In general, the fmoother the furface of a body is, the greater is the quantity of light which it reflects. Hence the effect of polifhing in increafing the brightnefs of bodies. But it is not in the quantity of the light reflected alone that bodies differ from each other ; they differ alfo in the quality of the light which they reflect. Some bodies reflect one or more particular fpecies of ray to the exclufion of the reft. This is the reafon that they appear to us of different colours. Thofe bodies which reflect only red rays are red; thofe that reflect yellow rays are yellow; thofe that reflect all the rays equally are white ; thofe that reffect too little to affect the eye are black. It is to the different combinations of rays reflected from the furface of bodies that all the different fhades of colour are owing.
Colour, then, in opaque bodies, is owing to their difpofition to reffeg certain rays of light, and to abforb the relt; in tranfparent bodies, to their difpofition to tranf. mit certain rays, and to abjorb the others. But this fubject has been difcuffed, at fufficient length, in the article Oprics, Encycl.; to which, therefore, we beg leave to refer the reader., Here we mean only to inquire in to the carfe of this difpofition of the particles of bodies.
3. Sir Ifaac Newton, to whom we are indebted for Newtc ? the exittence of optics as a fcience, male a fet of expe. theory riments to aicertain the clanges of colour which thin explair in i. plates of matter aflume in confequence of an increafe or
diminution of their thicknefs. Thefe experiments were of a very delicate nature; but Newton conducted them with fo much addrefs, and varied and repeated them with fo much induftry, that he was enabled to ;ender them furprifingly accurate.

Upon a large double convex lens of a 50 feet focus, he placed the plane furface of a planoconvex lens, and prefled the lenfes flowly together. A circle, of a particular colour, appeared in the centre, where the two glaffes touched each other. This circle gradually increafed in diameter as the preflure was augmented; and at laft a new circle, of another colour, occupied the centre, while the firft colour affumed the form of a circular ring. By increafing the preflure, a new coloured circle appeared in the centre, and the diameter of the other two increafed. In this manner he proceeded, till be produced no lefs than 25 different coloured circular rings. Thefe he divided into feven orders, on account of the repetition of the fame colour. They were as follows, reckoning from the central colour, which was ton's always black *.

1. Black, blue, white, yellow, red.
2. Violet, blue, green, yellow, red.
3. Purple, blue, green yellow, red.
4. Green, red.
5. Greenih blue, red.
6. Greenifh blue, pale red.
7. Greenifh blue, reddifh white.

Thefe different colours iwere occafioned by the thin film of air between the tivo glaffes. Now this film varies in thicknefs from the centre of the lens to. wards the circunference; that part of it which canfes the black colour is thinneft, and the other coloured circles are occafioned by air gradually inereafing in thicknefs. Newton meafured the relative thicknefs of the air which produced each of thefe coloured circles; and he found it as follows \dagger :

The abjolute thicknefs of thefe films cannot be afecrtained, unlefs the diftance between the two glafles, at that part where the black fpot appears, were known. Now there is no method of meafuring this ditance; but it certainly is not greater than the thoufandth part of an inch.

He repeated thefe experiments with films of water, and even of glafs, inftead of air ; and he found, that in there cafes the thicknefs of the films, reflecting any particular colour, was diminihed, and that this diminution was proportional to the denfity of the reflecting film.

From thefe experiments Sir Ifaac Newton concluded, that the difpofition of the particles of bodies to refect or tranfmit particular rays depended upon their fize and their denfity : and he even attempted to afcertain the lize, or at leaft the thicknets, of the particles of bodies from their colours. Thus a particle of matter, whofe denfity is the fame with that of glafs which reflects a green of the third urder, is of the thicknefs of $\frac{160 \frac{1}{3}}{100000}$ of an inch *.

- Necuton's

Opties, 251.
In the year ${ }^{1765}$, Mr Delaval publifhed, in the Philofophical Tranfactions, a very ingenious paper on the fame fubject. In this paper, he endeavours to prove, by experiment, that the colours of metallic bodies depend upon their denfity. He takes it for granted, at the fame time, that the fizc of the particles of bodics is inverfely as the denfity of bodies. The denfeft bodies, according to him, are red ; the next in denfity, orange ; the next, yellow; and fo on, in the order of the refrangibility of the different rays. Some time after, the fome ingenious gentleman, in his Experimental Irto quiry into the Caufe of the Permanent Colours of Opaque Bodies, extended his views to animal and vegetable fubflances, and endeavoured to prove the truth of Newton's theory by a very great number of experiments.

Such is a view of the opinion of Newton and Delaval refpecting the caufe of bodies reflecting or tranfmitting particular rays of light, as far, at leaft, as that theory relates to colour, They afcribed this caufe foldy to the fize and the denfity of the particles of bodies.

By particles, it is evident that nothing elfe can be meant than the integrant particles of bodies. Newton, indeed, does not exprefs himfelf precifely in this latiguage ; but it is plain that nothing elfe could be his meaning. Mr Delaval undoubtedly is of that opinion.

According to the Newtonian theory of colour, then, it depends folcly upon the fize of the integrant particles of bodies whofe donfity is the fame; :and uponthe fize and the denfity jointly of all bodies (\mathbf{T})..

It is evident that the truth of the Newtonian theory Exanine 39 , muft depend upon its coincidence with what actually takes place in nature, and that therefore it can only be determined by experiment. Newton himfelf produced but very few experiments in fupport of it; and though this deficiency was amply fupplied by Mr Delaval, it is needtefs for us to adduce any of thefe here ; becaufe, from the prodigious accumulation of chemical facts fince thefe experiments were made, the very bafis upun which they ftood has been deftroyed, and confequently all the evidence refulting from them has been annihilated. They proceeded on the fuppolition, that acids render the particles of bodies fimaller, and alkalies larger than they were before, without producing any other change whatever in the bodies on which they act. To attenpt a refutation of this opinion at prefent would be unncceflary, as it is well known nut to be true.

Let us therefore compare the Newtonian theory of colour with thofe chemical changes which we know for certain to alter the fize of the particles of bodies, in order to fee whether they coincide with it. If the theory be true, the two following confequeaces mult hold
(x) Newton, however, pointed out an exception to this law, concerning which Mr Delaval has been more ex. plicit. Combuftible bodies do not follow that law, but fome othcr. Mr Delaval has fuppofed, that this dco viation is owing to the prefence of phlugiton.
hold in all cafes: r. Every alteration in the fize of the integrant particles of bodies mult caufe thefe particles to affume a different colour. 2. Every fuch alteration mult correlpond precifely with the theory; that is to Lay, the new colour muit be the very colour, and no other, which the theory makes to refult from an increate or dimiantion of tize.
Now neither of thefe confequences holds in fact. We have no method indeed uf alcertainiag the fizes of the integrant particles of bodies, nor of meafuring the precife degree of augmentation or diminution which they fuffer; but we can in many cafes afcertain, whether any new matter has been added to a particle, or any matter abiliacted from it; and confequently whether it has been augmented or diminifhed; which is fufficient for our prefent purpofe.

For initance, whatever be the fize of an integrant particle of gold, it cannot be denied that an integraut particle of oxide of gold is greater ; becaufe it contains an integrant particie of gold combined with at leatt one integrant particle of oxygen. Now the coluur both of gold and of its oxide is yellow, which ought not to be the cafe, according to the Newtonian theory. In like manner, the amalgam of filver is white, precifely the colour of filver and of mercury ; yet an integrant particle of the amalgam muit be larger than an integrant particle either of filver or of mercury. Many other inftances belides thefe will occur to every one, of changes in the fize of the particles taking place without any clange of colour. All thefe are incompatible with the Newtonian theory.

It may be faid, perhaps, in anfwer to this objection, that there are different orders of culours; that the fame colour is reflected by particles of different lizes; and that the increafed particles, in the intances above alluded to, retain their former coluar, becaufe the increment has been precifely fuch as to enable them to teflect the fame colour in the next higher order.

This very anfwer is a complete proof that the New. tomian theory is not fufficient to account for the co. lours of bodies; for if particles of different fizes reflect the fame colour, fise certainly is not the only caule of this reflection ${ }^{*}$. There muft be fome other caufe ve. ry different from fize. Nor is this all; the moft com. , mon colour which remains after an increafe of the fize of the integrant particles of bodies is white; yet white does not appear in any of the orders except the firt, and therefore its permanence cannot be accounted for by any fuppofition compatible with the Newtunian theory.

Even when alterations in the colour of bodies accompany the increafe or diminution of the fize of their particles, thefe alterations feldom or never follow an order which correfponds with the theory. As for metals, it is felf.evident that their colour does not depend upon their denfity. Platinum is the denfedt budy known, and yet it is not red, as it ought to be, but white like tin; a metal which has little more than one third of the denfity of platinum.

The green oxide of iron, when combined with pruffic acid, becomes white; yet the fize of its particles mult be increafed. Now this change of colour is incompatible with the theory ; for, according to it, every change from green to white ought to be accompanied by a diminution inftead of an increafe of fize. A particle of
indigo, which is naturally green, becomes blue by the addition of oxygen, which muft increafe its lize. This change is alfo incompatible with the theory. But it is unneceffary to accumulate inftances, as they will naturally occur in fufficient number to every one.

It follows irrefiftibly from thefe facts, that the Newtonian theory is not fufficient to explain the caufe of colour ; or what caufes budies to reflect or tranfmit certain rays, and to abforb the rett.
4. We have endeavoured, in the article Chemistry, Bodiet on Suppl. to fhew, that bodies have a particular affinity for thcir colo the rays of light ; and that the phenomena of light de. fininy for pend entircly upon thefe affinities. Indeed this confe-igight quence follows from the properties of light eftablifhed by Newton himfelf. We fhall not repeat here the proofs upon which the exiftence of thefe affinities is founded: the reader may eafily fatisfy himfelf by confulting the article above referred to.

Every coluured body, then, has a certain affinity for fome of the rays of light. Thofe rays for which it has a frong affinity are abforbed by it and retained, and the other rays for which it has no aflinity are either reflected or tranfinitted, according to the nature of the body and the direction of the incident ray. Thus a red body has an affinity for all the rays except the red; it ablorbs therefoie the other fix, and refects only the red: a green bondy abforbs all but the green rays, or perhaps the red and yellow: a black body has a ftrong affinity for all the rays, and therefore abforbs them all: while a white body, laving no flrong affinity for any of the rays, reflects or tranfinits them all.

If affinity, as we have endeavoured to thew in the article Сhemistry, Suppl. be an attraction of the fame nature with gravitation, and increafing as the diftance diminithes, it mut depend upon the nature of the attracting particles. Now the only differences which we can conceive to exift between the particles of bodies, are differences in fize, in denfity, and in figure. Changes in thefe three things will account for all the varieties of affinity. Now if affinity depends upon thefe three thangs, and it colour depends upon the affinity between the particles of bodies and the different rays of light, as cannot be denied, it is clear that the caufe of the colour of budies may be ultimately refolved into the fize, deufity, and figure of their particles." Newiton's theory, then, was defeetive, becaufe he omitted the figure of the particles, and afcribed the whole to variations in fize and denfity.

When we fay, then, that colour is owing to affrity, we do nut cuntradict the opinion of Newton, as fome philofophers have fuppofed, but merely extend it: Newton was not miflaken in faying, that culour depends upon the fize and the denfity of the particles of bodies; his mittake lay in fuppofing that it depends upon thefe alone.
5. Since the colour of bodies depends upon their af. finity for light, and fince every body has a certain colour, becaufe it abforbs and retains particular rays while ${ }^{t}$ it tranfnits or reflects the ref, it is evident that cvery body muft continue of its firt colour till one of two things happen; either till it be faturated with the rays which it abforbs, and of courfe ceafe to abforb any more, or till its particles change their nature, by being either decompofed or combined with fome new fubltance. We have no pofitive proof that the firlt caufe
hours. caufe of change ever occurs, as many fubftances lave been expufed to the action of light for a very long time without any change of colour. The abforbed light feems to make its efcape, either in its own form, or in fome unknown or unfufpected one. The fecond caufe of change is very common: indeed its action may be detected in almoft every cafe of alteration in the colour of bodies. The green oxide of iron, by combining with oxygen, becomes red; and this red oxide, when combined with pruffic acid, affunes a blue colour, and with gallic aeid a black colour. The caufe of this ehange of colour, when the compofition of a body changes, is obvious : every change of compofition muli alter the affinity, becaufe it mull of neceffity produce changes in the lize, denfity, or figure of the partieles, or perhaps in all of thefe. Now if the affinity of a body for other bodics be altered, it is natural to fuppofe that it will be altered alfo for light. Accordingly this happens in moft inftances. It does not, however, take place contantly, for very obvious reafons. It may happen that the new denfity, fize, or figure of the altered body is fuch, as to render it ftill proper for attracting the very fame rays of light which it formerly attracted. Juft as iron, after being conbined with a certain dofe of oxygen, is converted into green oxide, which fill retains an affinity for oxygen.

It is evident from all this, that in moft eafes the permanence of colour in bodies will depend upon the permanence of their compofition, or on the degree of facility with which they are acted upon by thofe bodies, to the agency of which they are expofed.

In dyeing, the permanence of colour is of very great to fome other. In all cafes, therefore, it is of confe. quence to attend to the fubttances to which dyed cloth is expofed, and to afcertain their action upon every particular dyeing ingredient. Now the bodies to which dyed cloth is almoft conftantly expofed we air and light; the combined action of which has fo much influence, that very few dyes can refift it.

It is evident that thofe fubftances cannot retain their colour, which have fuch an affinity for oxygen as enables them to take it from atmofpheric air. Thus the green colour of green oxide of iron and of indigo is not permanent, beeaufe thefe fubftances readily abforb oxygen from air. In order, then, that a colour can have any permanence, the coloured body muft not have fo great an affinity for oxygen as to be able to take it from air. Thofe bodies have in general the molt permanent colours which are already faturated with oxygen, and therefore not hable to abforb more. Such is the cafe with red oxide of iron.

All coloured bodies are compounds; fome of thofe only excepted which fill retain an affinity for oxygen. Coloured bodies, therefore, are compofed of feveral ingredients; and in evety coloured body, at leaft fome of the ingredients have a frong affinity for oxygen. Now, before the colour of a body can be permanent, its ingredients mult be combined together by fo Atrong aftnities, that oxygen gas is unable to decompofe it by combining with one or more of its ingredients and carrying it off. If this decompofition take place at once, it is impoffible for the colour of a body to have any permanence. If it takes place flowly, the colour of the

Suppl. Vol. II. Part II.
body gradually decays. The action of oxygen gas upon bodies is much increafed in particular circumilanecs. Almoft all coloured bodics are decompofed by oxygen gas by the affiftance of hear. Thus if wheat nour be expofed to the heat of 44°, it lofes its white colour, and becomes firlt brown and then hlack. At this temperature it is decompofed, and a part, or even the whole of its hydrogen, rombining with oxygen, flies off. Clath is fascely ever expofed to fo high a temperature; but there are other circumftances in which it may be placed which may have a fimilar effect. Thus the action of light feems in fome fubflances to be fimilar to that of heat, and to facilitate the decompolition of the coloured matter by the combination of fome of its ingredients with oxygen *.

- Bertbollet

Coloured bodies, in order to have permanent colours, on Dyeing, muft not be liable to be decompofed by other fubitan. ${ }^{\text {i }}+5$ ces more than by oxygen. For iustance, if they contain oxygen and hydrogen, thefe two bodies muft wot be liable to combine together and form water, nor mut oxygen and carbon be liable to combine and form carbonic acid gas. Light feems to have a tendency to decompofe many bodies in this mamer, and even t" carry off oxygen from them in the form of axygen gas. Thus it renders the nitrat of liker black by carrying off part of its oxygen, and it reduces oxy-muriatic aciol to common muriatic acid by the fame means.

Thefe are the caufes which induce a elange in the colour of coloured bodies, as far as they have been traced; namely, the addition of oxygen, the abltraction of oxygen, partial decompofition by fome one of their ingredients combining with oxygen, complete or partial decompofition by the ingredients entering into new combinations with each other. The coloured mattens ufed in dyeing are very hable to thefe changes, becanie they are in general animal or vegetable fubitances of a very compound nature. Of courfe their ingredients have often no very tlrong affinity for each other, and therefore are very liable to decompolition; and every one of the ingredients has in general a very flrong aflinity for oxygen. This renders the choice of proper colouring matters for dyeing a very important point. In order to have permanency, they nuft not be liable to the above changes, not to mention their being able alfo to withtand the action of foap, acids, alkalies, and every other fubfance to which dyed cloth may be ex. pofed.

It becomes therefore a point of fome cunfequence to Method of be able to afeertain whether cloth dyed of any partieu-afcertainlar colour be permanently dyed or not. The proper me- ing the pirthod of afcertaining this is by actually expofing fuch dyes. cloth to the fun and air; beeaufe as thefe are the agents to whieh it is to be expofed, and which have the moft powerful action, it is clear, that if it withftand them, the colour mutt be confidered as permanent. But this is a tedions procefs. Berthollet propofed expofing fuch cloth to the action of oxy-muriatic acid; thofe colours that withitand it being confidered as permanent. This method anfwers in many cafes: but it is not always to be depended on; for it deftroys fome permanent colours very fpeedily, and does not alter others which are very fading*. But we fhall have occafion to refume * Bancrofi, this fubject afterwards.
Dyers divide colours into two claffes; namely, fimple ${ }^{2} 997$ this fubject afterwards.
Dyers divide colours into two claffes; namely, fimple ${ }^{2} 997$ this fubject afterwards.
Dyers divide colours into two claffes; namely, fimple 49.37 and compound. The fimple colours are thofe which Divirion of 4 I
cannot

\qquad

[^13].

\qquad
\qquad

\qquad

\qquad

\qquad

为powerful action, it is clear, that if it withftand them,

Dyeing in cannot be produced by the mixture of other eolours. Gonera!

They are in number four:

$$
\begin{aligned}
& \text { 1. Blue, Red, } \\
& \text { 2. Yellow, 4. Black. }
\end{aligned}
$$

Some add a fifth, brozun; but it may be produced hy combining two others.

The compound colours are thofe which are produced by mixing together any two limple colours in various proportions. They coultitute all the colours except the four fimple and their various flades.

Thus we have examined the nature of colours; but we have Itill to explain the methol of giving permanent colours to cloth. This fall be the fubject of the next Ghapter.

Chaf. If1. Of Dyeing in General.

From the theory of colour laid down in the latt chapter, it follows, that permanent alterations in the colour of cloth can only be induced $t w o$ ways; either by producing a chemical change in the eloth, or by covering its fibres with fome fubtance which pofiefles the withed-for colour. Recourfe ean foldoun or never be had to the firf methon, becaule it is hardly polfible to produce a chemical change in the fibres of cloth without fpoiling its texture and rendering it ufelefs. The dyer, therefore, when he wifhes to give a new colour to cloth, has always recourfe to the fecond method.

1. The fubtancesemployed for this purpofe are cailed colouring mathers, or aye fluffs. 'I'ley are for the molt part extracted from animal and vegetalle fuiflances, and have ufually the colour which they are iniended to give to the eloth. Thus a blue colour is given to cloth by eovering its fibres with indigo, a blue powder extracted from a lhrub; a red colour, by the colouring matter extracted by water from an infect called cochincal, or from the root of a plant called madder.
2. Mr Delaval has publifhed a very interefting fet of experiments on colnuring matters in the fecond volume of the Manchefter Memoirs. He has proved, by a very numerous fot of experiments, that they are all tranfparent, and that they do not refieg any light, but only tranfmit it: For every colouling matter which he tried, even when diffolved in a liyuid, and forming a tranfparent coloured folution, when feen merely by reflected light, was black, whatever was the eolour of the matter; but when feen by tranfmitted light, it appeared of

* Manclb.
'Mcm. ii. 13 r . its natural colour *. This difeovery, which Mr Delaval has eftablifhed very completely, and to which, as far at leaft as dye ftuffs are concerned, there are but few exceptions, is of very great importance to the art of dyeing, and explains feveral particulars which would otherwife be unintelligible.

Since the particles of the colouring matter with which cloth, when dyed, is covered, are tranfparent, it follows, that all the light reflected from dyed clotlo mult be reflected, not by the dye ftuff itfelf, but by the fibres of the cloth below the dye Aluff. The colour therefore does not depend upon the dye alone, but alfo upon the previous colour of the cloth. If the cloth be black, it
is clear that we cannot dye it any colour whaterer; becaufe as no light in that cafe is reflected, none can be tranfmitted, whatever dye lluff we employ. If the cloth were red, or blue, or yellow, we could not dye it any colour except black ; becaufe as only red, or blue, or yellow rays were reflected, no other could be tranfmitted (x). Hence the iniportance of a fine white colour when cloth is to receive bright dyes: It then reflects all the rays in abundmee: and therefore any colour may be given, by covering it with a dye ftuff which tranfinits only fome particular rays.
3. If the colouring matters were merely fpread over Thy mut the furface of the fibre of cloth by the dyer, the colourstic crmhio produced might be very bright, but they could not be ned winh permanent ; becaufe the colouning matter would be vethe cioth.
y fooa rubbed off, and would cotally difappear whenever the cloth was wanked, or even barcly expoled to the weather. The colouring matter, then, however perfect a colour it poffeffes, is of no value, unlefs it alfo adheres fo firmly to the cloth, that none of the fubAtances ufually applied to cloth in order to clemn it, \&ec. cau difplace it. Now this can only happen when there is a frong affinity between the colouning matter and the cluth, and when they are actually combined together in confequence of that afinity.
4. Dyeing, then, is merely a chemical procefs, and Cann onty contifts in combining a certain colouring matter uith be arplea the fibres of cloth. This procefs can in no inflance be in at thate performed, unlefs the dye thuff he lirit reduced to its integrant particles; for the attraction of aggregation be * tween the particles of dye ftufis is too great to be overcome by the affinity between them and cloth, unlefs they could be brought within much finaller dillanees than is poflible, while they both romain in a folid form. It is neceffary, therefore, previoully to diffolve the colouring matter in fome liquid or other, which has a weaker affulty for it than the cloth has. When the cloth is dipped into this folution, the colouring matter, reduced by this contrivance to a liquid Itate, is brought within the attracting dittance; the cloth therefore acts upon it, and by its Aronger affinity takes it from the folvent, and fixes it upon it felf. By this contrivance, too, the equality of the colour is in fome meafure fecured, as every part of the cloth has an opportunity of attracting to itlelf the proper proportion of colouring particles.

The facility with which cloth imbibes a dye, depends upon two things, namely, the affinity between the cloth. and the dye tluff, and the affinity between the dye ftuff and its folvent. It is directly as the former, and inverfely as the latter. It is of importance to preferve a due proportion between thefe two affinities, as upon that proportion much of the accuracy of dyeing depends. If the affinity between the colouring matter and the cloth be too great, compared with the affinity between the colouring matter and the folvent, the cloth will take the dye too rapidly, and it will be farce polfible to prevent its colour from being unequal. On the other hand, if the affinity between the colouring matter and the folvent be too great, compared with that
(x). Thefe remarks hold only on the fuppofition, that the whole of the furface is of the given colour, which in many inflances is not the cafe.
:ing in that between the coloming maller and the cloth, the meral. cloth will cither not take the colour at all, or it wiil take it very flowiy and wery faintly.

Wool has the flrongef afin iity for almoft all colume ing matters, filk the next ftomgeft, cutton a motiderably weaker affunty, and liten the weakct atlinity of all. Therefore, in order to dye conton or linen, the d)e Quff fhould in many cafes be diffolved in a fubbtance for which it has a waiker affaty than for the fowent cmployed in the dycing of wool or filk. Thus we may we oxide of iron diffolved in fulphuric acid, in order to dye wool ; but for cotton and linen, it is better to diffulve it in acetous acid.
5. Were it pofible to procure a fufficient number of colouring matters having a thong affinity for clath, to aufwer all the purpofes of dyeing, that art would be exceedingly fimple and eafy. But this is by no means the cafe: if we except insige, the dyer is feareely poffoffed of a dye Ituff which yiilds of itfelf a good colour fufficiently pernanent to deferve the name of a dye.

This dificuley, which at firlt fight appears infurmountable, has been obviated by a very ingenions contrivance. Some fubfance is pitched nyon which has a Atrong affinity both for the cloth and the colouring matter. This fubttance is previoully combined with the cloth, which is then dipped into the folution containing the dye fuff. The dye ftuT combines with the iatermediate fubtance; which, being firmls conbinied with the.cleth, fecures the permanence of the dye. Subthances eniployed for this purpofe are denominated nor: dants (r).

The moft important part of dyeing is undoubtedly the proper choice and the proper application of mordants, as upon them the permanence of almolt every dye depends. Every thing which has been faid refpect. ing the application of coluuring matters, applies equally to the application of mordants. They mult be previoufly diffutved in fome liquid, which has a weaker affinity for them than the cloth has to which they are to lee applied; and the cloth mist be dipped, or even fteeped, in this folution, in order to faturate iffelf with the mordant.

Almoit the only fubilances ufed as mordants are, earths, inetallic oxides, tan, andoil.
6. Of earthy mordants, by far the molf important and moil generally ufod is alumina. It was uled as a mordant in very barly ages, and feems indeed to lave been the very firtt fubtance employed for that purpofe. Alumina lias a very ftrong affinity for wool and for filk; but its affiuity for cotton aud linere is a good deal weaker.

It is ufed as a mordant in two flates; cither in the fate of alun, in which it is combined with fulphuric acid and a little potafs; or in the itate of acetite of alumina, in which it is combined with actous acid.
Alum was employel as a mordant very early. The ancients, indeed, do nut feem to have heen generally acquainted with pure alun; they uled it in that flate of impurity in which it is found native; of courfe it was
ufed in dyeing long before the nature of its ingmitnts ngaing is was undertlood, and therefure long before the part exacat. which it asts was fulpected. Lulect, it is but a viry fhort time fiace the office which mordants ${ }^{\text {jer }}$ erform was furpected: the firft perfon that hit upon it was Me Kir; be cgave an acconut of the real ufe of mordants in his tranflation of Macequer's Lietionang, publifhed i, 1771*.
dhum, whicu ufod as a mordant, is ciffulved in water, f. arjo and very fiequently a quantity of tartar is diffulved a. long with it. Into this folution the choth is put and kept in it till it las abforbed as much alumina as is mecellary. It is then taken ont, and for the moll part wafhed and dried. It is now a goo:l deal heavier than it was before, owing to the alumiva which has combinerd with it. The tartar ferves two purpofes: the potafin which it contains combines with the fulphuric acid of the alum, and thus prevents that very corrofive fubs. flance from injuring the texture of the cloth, which otherwife might happen; the tartarous acid, on the other hand, combines with part of the alumina, and forms a tartrite of alumina, which is more cafily cecompofed by the cloth than alim.

Acctite of alumina has been introduced into dyeing fince the commencement of the 18 th century; and, like many other very important improvements, we are indebted for it to the ignorance of the calico printers, who firf introduced it. As they did not underftand the nature nor ufe of the mordants whicl they employed, they were accultomed to mix with their alum an immenfe farrago of fubftances, a great proportion of, which are injurious imflead of being of fervice. Some one or other had mixed with alum actite of lead: the good effects of this mixture would be foon perceived; the quantity of acetite was gradually increafed, and the other ingredients omitted *. This mordant is now * Barcorfft, prepared, by pouring acetite of lead into a folution of $\begin{array}{rl}1, ~ & 76 \\ \text { Bare }\end{array}$ alum : a double decompofition takes place, the fulphuric acid counbines with the lead, and the compound precipitates in the form of an infoluble powder ; white the alunina combines with the acetous acid, and remains diffolved in the liquid. This mordant is employed for cotton and linen, which have a weaker affinity than wool for alumina. It anfivers much better than alum, the cloth is more eafily faturated with alumina, and takes, in confequence, both a richer and a more permanent colour.

Befides alumina, lime is fometimes ufed as a mordant. Cloth häs a ftrong enough affinity for it; but in general it dues not anfwer fo well, as it does not give fo grood a colour. When ufed, it is either in the flate of lime water or of fulphat of lime diffolved in water.
7. Almoft all the metallic uxides have an affinity for Mctallic cloth; but only two of them are extenfively ufed as noordants. mordants, namely, the oxides of tin and of iron.

The oxide of tia was firl introduced into dyeing by Kutter (2), a German chemifl, who brought the fecret to Lundon in 1543 . This period forms an cra in the liftory of dyeing. The oxide of tin has enabled the 412 moderns
(x) This term, impofed by the French dyers before the action of mordants was menderfood, fignifics liters or corroders. Thefe bodies were fuppofed to act merely by corroding the cloth. Mr Henry of Manclicfler has propofed to fubfitute the word tafis for mordant ; but that word is two gencral to anfwer the purpofe well.
(z) Mr Delaval has fuppofed, that the Tyrians were acguainted with the ufe of tin in dyeing, and Mr Hen-

Dyeing in moderns greatly to furpais the ancients in the fineness of General. their colours: by means of it alone, scarlet, the brigliteft of all colours, is produced. The method of producing the celebrated purple dye of the ancients is underfood at prevent, and the thill fifth which yield the dye-ftuff are found abundantly on the coats of Britain and France; but no perfon thinks now of putting the an. client mode in practice, because infinitely more beautfol colours can be produced at a faller price. Much of this fuperiority is owing to the employment of the oxide of till.

Tin, as Proust has proved, is capable of two degrees of oxydation: The firth oxide is compofed of 0.70 parts of tin, and 0.30 of oxygen ; the fecund, or white oxide, of 0.60 parts of tin, and 0.40 of oxygen *. The firth oxide absorbs oxygen with very great facility even from the air, and is rapidly converted into white oxide: This fact makes it certain, that it is the white oxide of tin alone which is the real mordant : even if the other oxide were applied to cloth, as it probably often is, it molt foo le converted into white oxide, by absorbing oxgen from the atmofphere.

Tin is used as a mordant in three fates; diffolved in nitro muriatic acid, in acetous acid, and in a mixture of Sulphuric and muriatic-acids. Nitro-muriat of tin is the common mordant employed by dyers. They prespare it by diffolving tin in diluted nitric acid, to which a certain proportion of muriat of foda, or of ammonia, is added. Part of the nitric acid decomposes there fats, combines with their bare, and rets the muriatic acid at liberty. They prepared it at firth with nitric acid alone ; but that mode was very defective; becaufe the nitric acid very readily converts tin to white oxide, and then is incapable of diffolving it. The consequence of which was, the precipitation of the whole of the tin. To remedy this defect, common flt, or fal-anımoniac, was very ton added, muriatic acid having the property of diffolving white oxide of tin very readily. A confiderable laving of nitric acid might be obtained, by employing as much fulphuric acid as is just fufficient to faturate the bale of the common fall, or fal-ammoniac, employed.

When the nitro-muriat of tin is to be ufed as a mordent, it is diffolved in a large quantity of water, and the cloth is dipped in the folution, and allowed to remain till lufficiently faturated. It is then taken out, and wafted and dried. Tartar is nfually diffolved in the water along with the nitro-muriat. The consequence of this is a double decompofition ; the nitro muriatic acid combines with the portals of the tartar, while the tartarous acid diffolves the oxide of tin. When tartar is ufed, therefore, in any confiderable quantity, the mordant is not a ritro-muriat, but a tartrite of tin.

Mr Hanftiman, to whom the art of dyeing lies under numerous obligations, has propofed to fubflitute acetite of tin fur nitromuriat as a mordant for cotton and li. men. It may be prepared by mixing together acetite
of lead and nitro-muriat of tin. This mordant is pres- Dyeing in ferable for there fluffs; becaufe it is much more carly General. decompofed than the nitro muriat \dagger.

Dr Bancroft has proposed to fubftitute a solution of ${ }^{\dagger} \mathrm{Chnn}$, de tin in a mixture of sulphuric and muriatic acid, instead is. of nitrio-muriat of tin, as a mordant for wool. This mordant, he informs us, is much cheaper, and equally efficacious. It may be prepared by diffolving lomewhat left than one part of tin in two parts of fulphuric and three of muriatic acid, at the degree of concentraion at which they are commonly fold in this country \ddagger. \mid Bancroft This mordant, like the others, mut be diffolved in ap. 290. fufficient quantity of water, in order to be ufed.

Iron, like tin, is capable of two . degrees of oxydation; but the green oxide absorbs oxygen fo readily from the atmosphere, that it is very foo converted into the red oxide. It is only this lat oxide which is really ufed as a mordant in dy acing. The green oxide is indeed fometimes applied to cloth; but it very foo abforms oxygen, and is converted into the red oxide. This oxide has a very ftrong affinity for all kinds of cloth. The permanency of the iron foots on liven and cotton is a fufficient proof of this. As a mordant, it is unfed in two fates; in that of fulphat of iron, and acetite of iron. The firft is commonly ufed for wool. The falt is diffolved in water, and the cloth dipped in it. It may be ufed aldo for cotton; hut in molt cafes acetite of iron is preferred. It is prepared by diffolving iron, or its oxide, in vinegar, four beer, \&c. and the longer it is kept, the more is it preferred. The reafon is, that this mordant fucceeds bet when the iron is in the fate of red oxide. It would be better then to oxydate the iron, or convert it into ruff, before ufing it ; which might eafly be done, by keeping it for forme time in a moist place, and sprinkling it occafionally with water. Of late, pyrolignous acid has been introduced instead of acetous. It is obtained by ditilling wood or tar.
8. Tan, which has been already deferibed in the frt part of this article, has a very flong affinity for cloth, and for feveral colouring matters. It is therefore very frequently employed as a mordant. An infusion of nut galls, or of fumach (A), or any other fubftance containing tan, is made in water, and the cloth is dipped in this infufion, and allowed to remain till it has abforbed a fufficient quantity of tan. Silk is capable of absorbing a very great proportion of tan, and by that means acquires a very great increafe of weight. Manufacturers fometimes employ this method of increafing the weight of file *.

Tan is oftenemployed alfo, along with other mordants, Berthed in order to produce a compound mordant. Oil is also unfed for the fame purpose in the dyeing of cotton and linen. The mordants, with which tan mot frequently is combined, are alumina and oxide of iron.

Betides there mordants, there are feveral other fub-Other m frances frequently unfed as auxiliaries, either to facilitate darts. the combination of the mordant with the cloth, or to alter
ry has declared himfelf of the fame opinion. But this reafoning, as. Dr. Bancroft has Shewn, proceeds upon a miftake. He fuppofes that tin is neceffary for the production of red colours.
(A) Sumach is the rbus coriaria ; a lhrub which is cultivated in the fouthern parts of Europe. Its foots are dried, afterwards ground to powder; in which fate they are fold to the dyer and tanner.
yeing in alter the fhade of colour. The chief of thefe are, tarietieral. tar, acetite of leall, common fult, fal ammoniac, fulphat or
9. Mordants not only render the dye permanent, but have alfo conliderable influence on the colour produced. The fame colouring matter produces very different dyes, according as the mordant is changed. Suppofe, for iultance, that the colouring matter be cochineal; if we ufe the aluminuus mordant, the cloth will acquire a crimfon colour; but the oxide of iron produces with it a black. Thefe changes, indeed, might naturally have been expected: for fince the colour of a dye fuft depends upon its attinity for light, every new combination into which it enters, having a tendency to alter thefe alfinities, will naturally give it a new colour. Now, in all cafes, the colouring matter and mordant combine togcther: the colour of the cloth, then, mult be that which the particies of the dye and of the mordant, when thus combined together, exhibit. Indeed fome mordants nay be confidered in the light of colouring natters alfo, as they always communicate a particular colour to cloth. Thus, iron communieates a brown colour, and ison and tan together conftitute a black dye.

In dyeing, then, it is not only neceffary to procure a mordant, which has a fufficiently flrong affinity for the colouring matter and the cloth, and a colouring matter which poffefes the wifhed for colour in perfection, we mult procure a mordant and a colouring matter of fuch a nature, that when combined together they fhall poffefs the wifhed-for colour in perfection. f_{t} is evident, too, that a great variety of colours may be produced with a fingle dye-lluff, provided we can change the mordant fufficiently.
10. Every thing which tends to weaken the affinity between the mordant and the cloth, or between the, mordant and the colouring matter, and every thing which tends in any way to alter the nature of the mordant, muft injure the permanency of the dye : becaufe, whenever the mordant is deftroyed, there is no longer any thing to caufe the dye fuff to adhere; and when its nature is altered, the colour of the dye muft alter at the fame time. All the obfervations, then, which were made in the laft chapter, concerning the nature of colouring matters, and the changes to which they are fubject, apply equally to mordants. Thefe fubllances, indeed, are fcarcely liable themfelves to any alteration. They are of a much more fimple nature, in general, than dye ftuffs ; and therefore not nearly fo liable to decompofition. But when the colouring matter itfelf is altered, it comes to the fame thing. Its affinity for the mordant being now deflroyed, there is nothing to retain it.

As the permanency of a dye depends upon the degree of affinity between the mordant and the colouring matter, it is clear that the dye may want permanency, even though it refift the oxy muriatic acid, and all the other faline telts propofed by chemifts. Thefe fubftances may happen to have very little action on the dye-fuff, and therefore may not affect it; yet it may foon difappear, in confequence of its want of affinity for the mordant.
11. The colouring matter with which cloth is dyed, does not cover every portion of its furface; its particles attach themfelves to the eloth at certain diftances from
each other: for cloth may be dyed differcnt flades of Dyeing in the fame colour, lighter or darker, mercly by varying General. the quantity of colouring matter. With a frall quan- \qquad tity, the fhade is light; and it becomes deeper as the Dyc 009 quantity increafes. Now this would be impoffible, if do not the dye-llulf covered the whole of the cloth. Newton cover the has demonflrated, that colours are rendered faint when whole furthe rays of light which occafion then are mixed with cloth the white rays. Confequently, from cloth dyed of a light flade, a confiderable quantity of white rays paffes off unchanged: but this could not be the cale if the fuff were covered with coluured matter; becaufe ali the white rays would be deconpofed as they pafs through the coloured matter. Therefore, in light flades, the colouring matter does not cover the cloth; its particles adhere to it, at a certain diftance from each other, and from every part of the cloth which is uncovered. the white rays pafs off unchanged. Even when the fhade of colour is as deep as poffible, the colouring particles do not cover the whole of the cloth, but are at a certain diftance from each other. 'This diftance, undoubtedly, is diminifhed in proportion to the deepnefs of the fhade: for the deeper the fhade, the finalier is the number of white rays which efcape undecompofed; the more, therefore, of the furface is cuvered, and, confequently, the fmaller is the diftance at which each each of them is placed. A fhade may be even conceived fo very deep, that not a particle of white light effapes the action of the colouring matter; in which cafe, the diftance between the particles of colouring matter could not exceed double that diftance at which a particle of matter is able to act upon light.
That the partieles of colouring matter, even when the Compound. Thade is deep, are at fome diftance, is evident from this colour9, well-known fakt, that cloth may be dyed two colours at the fame time. All thufe colours, to which the dyers give the name of compound, are in fact two different colours applied to the cloth at once. Thus cloth gets a green colour, by being firt dyed llue and then yellow. The rays of light that pafs from green cloth thus dyed are blue and yellow; by the mixture of which it is well known that green is produced. In this cafe, it is clear, that each of the colouring matters performs the very fame office as if it were alone; and that the new colour is not pro. duced by the combination of the two colouring matters. That part of the white light, refletted from the cloth, which paffes through the blue colouring matter, is decompofed, and the blue rays only tranfinitted; and that part of the white liglt which paffes through the yellow colouring matter is alfo decompofed, and only the yellow rays tranfmitted. It is clear, therefore, that both of the colouring matters equally cover the naked fibres of the cloth; confequently the one muft be placed in the intervals of the othicr: wherefore the particles of each of the colouring matters are at fome diflance. Now the fame effect happens how deep foever the fhade be; and it makes no difference which of the two dyes be firt given. Nay, if one of the dyes have a ftrong affinity for the cloth, and the other only a weak affinity, the latter will foon difappear, and leave the cloth of the colour which the firf dye gives it.

The difference, then, in the fhade of colour, and alfo the compound colours which cloth may receive, depend entirely upon the diflance between the particles of the colouring matters attached to the cloth, and the poffibi-

Blue. lity of partly filling inp the intervals, cither with the fame colouring matter, or with a different one.
'Thus we have taken a view of the theory of dyeing, as far, at leall, as it is at prefent underflood. It remains for us ftill to give an account of the particular manner by which cach of the colours is imparted to cloth. 'This thall be the fubject of the th, ree following chapters. In the firfo, we frath trat oft he mamer of dyeing the fimple colours; in the froond, of dyeing the compound colours; and in the thired, of dyeing choth partially feveral different colours at the fame time, or of that branch of the art of dyeing which is known in this country by the name of calico printing.

Char. IV. Of Dyeing Simpte Colouri.

The colonrs denominated ly dyers fimple, hecaufe they are the foundation of all their other procefles, are four ; namcly, $1 /$, the $;-2 d$, yelluw; $-3 d$, ied; 4th, black. To thefe they ufually add a fifth, mader the name of root, or brown colour. Thefe flall form the fulject of the following fections.

Sect. I. Of Blve.

3luedyes. 1 The only coluuring matters employed in dyeing blue are suoal and intigo: attempts, indeed, have been made to dye with pruffat of iton; but thefe attempts have litherto failed.
412

1. The ifatis tindorin, or woal, is a plant commonly enough cultivated in this kingdom, and even found wild in fome parts of Eugland. It is of a yellowifh colour. Some perfons think that it was this plant with which the ancient Britons flained their bodies, to make them appear terrible to their enemies. When arrived at maturity, this plant is cut down, wafhed, dried laflity in the fun, ground in a mill, placed in heaps, and allowed to ferment for a fortnight; thens well mixed together, formed into balls, which are piled upon each other, and expofed to the wind and fun. In this flate they gradually become hut, and exhale a putrid ammoniacal fmell. The fermentation is promoted, if neceflary, by fprinkling the balls with water. When it has continued for a fufficient time, the woad is allowed to fall to a coarfe powder. In thisflate it is fold to the dyers.
413 2. Indigo, is a blue coloured powder extracted from
Indigo, the indigofera tinioria, and from feveral other fpeeies of the fame genus of plants, which are cultivated for that purpofe both in the Eaft and Weft Indies.
414

When the indigofora has artived at maturity, it is cut a few inches above ground, placed in frata in a large veffel, and covered with water. The plants froon acquire heat, ferment, and difcharge abundance of carbonic acid gas. When the fermentation is far enough advanced, which is judged of by the palenefs of the leaves, the liquid, now of a green colour, is decanted into large flat veffels, where it is conflantly agitated till blue floccula begin to make their alppearanê. Lime water is now poured in, which caufes the blue flocks to precipitate. The colonlefs liquid is decanted off, and the blue fediment poured into linen bags. When the water has drained from it fufficiently, it is forpmed into linall lumps, and dried in the thade. In this fate it is fold to the dyer under the name of indigo.

Dr Roxbourgh, who firf drew the attention of ma. Blue. rufacturers to the nerium tindorium, a tree very com. mon in Indoftan, from the leaves of which indigo may he extucted with much advantage, has given a much forter method of ohtaining that pignemt. The leaves are kept in a copper full of water, fupportes at the temperature of 150°, till they affume a yellowifh hee, and the liquid acquire a deep yreen colour. The li, yrid is then to he drawn off, agitated in the ufual manner, till the blue floccula appear; and then the indigo is to be precipitated with lime water *.
'This procefs, which fucceeds equally well with the i. 423 . indigofera, thews us that the phants, from which indigo may be extracted, contain a peeviar green pollen, foluble in water. The intention, both of the fermentation of the common method, and of the fealding, according to Dr Roxbourgh's method, is mercly to extract this pollen. Mr Hauffman frift fhewed, that this green bafis of indigo lias a frong affinity for oxyen; and the fubfequent-experinents of Drs Roxbourch and Bancroft have confirmed his obfervations, and put thens beyond the reach of doubt. It gradually attraes oxygen from the air; in confequence of which it acquires a blue colour, and becomes infoluble in water. The agitation is intended to facilitate this abforption, hy expofing a greater furface to the action of the air. The lime water, by abforbing a quantity of carbonic acid, with which the green pollen feems to be eombined, greatly facilitates the fuparation of the indigo.

The method of preparing indizo, and of applying it to the purpofes of dyeing, feems to have been very early known in India. But in Europe, though it had been occafionally ufed as a paint *, its importance as a * Plixii, dye fluff was not underfood before the middle of thel. 35 . c. 6 1 6th century. It is not cren mentioned in the Plictho, which was publined in 1548. At that period, then, the ufe of indigo mufl have been unknown to the Italian dyers. The Dutch were the people who firl imported it from India, and made its importance known in Europe. It was afterwards cultivated in Mexico and the Wcfl Indies with fuch fuccefs, that the indigo from thefe countries was preferred to every other. In coufequence of this preference, they fupplied almoft the whole of the European manket. But within thefe few years, the Eaf Indian indigo, owing entirely to the enlightened exertions of fome of our own countrymen, has recovered its character, and is now imported, in very coufideralle quantities, into Britain.

The indigo of commerce has different fhades of colour, aceordiag to the manner in which it has been prepared, and the proportion of forcign fubflances with which it is mixed. The principal flades are copper colour, violet, and bluc. That indigo, which has the fmalleft fpecific gravity, is alwats mof efteemed; becaufe it is mof free from impurities. Bergman \dagger found the pureft indigo of commerce which he could + Birg. v procure, compofed of

$$
\begin{aligned}
& 47 \text { pure indigo, } \\
& 12 \text { gyin, } \\
& -6 \text { rclin, } \\
& 22 \text { earth, } \\
& 13 \text { oxide of iron. } \\
& \hline 100 \text { (b) }
\end{aligned}
$$

(B) Prouft informs us, that lie found magnefia, even abundantly, in indigo.-Niclioffon's Forr. III. 325 .

Pure indigo is infuluble in water, alcohol, ather, and oils: neither alkalics nor earths liave any action on it : no:s of the acids hitherto tricd lave any effect on it, except the nitric and fulphuric. Nitric acid very foon converts it into a dirty white colour, and act tath de. compores it completely *. Whe:s the acid is concen. trated, it even fets Gre to the indig) (c); when it is diluted, the indigo beeomes Lrown, crytals make their appearance, refeminling thofe of owalic and tattarous aciods: aid there remains behind, after the acid and the cryllals are wafled uff, a vifuid fubiance, of a very bitier tafte, and poffefing many of the propenties of a retin \dagger.

Concentrated fulphuric aci0 difolves indigo readily, and much heat is evolved. The faturated folution is opaque, and confequently black; but, it affun:cs a deep blue colour when diluted with water. This folution is will known in commerce under the name of lignid blive. Bancroft has given it the name of fulphat of indigo. During the folution of the indigo, fome fulphurous acit, and fome hydrugen gas, are evolved f, and the blue colour of the indigo is much heightened. Thafe facts have led Bateroft to fuppofe, that the indigo, during its folution, conbines with an adlitional quantity of oxygen *. This may poffibly be the cafe, but the phenomena are not fulficient to ettablifh it : for the hydrogen gas and fulphurous acid evolved nay owe their formation, not to the action of the fulphuric acid on indigo, but upon the inpurities with which it is always mixed; and the inprovenent of the colour may be owing to the abfence of thefe impurities. The carbonats of fixed alkalies precipitate flowly from fulphat of indigo a blue coloured powder, which poffeffes the properties of indigo; but it is foluble in molt acids and in alkalics. Pure alkalies detroy the colour and properties of fulphat of indigu: they delloy alfo precipitated
${ }^{\prime} \mathrm{g} \mathrm{r}$. indigo §. Thefe facts give fome probatility to Bancroft's opinioa; but they do not eftablifh it : becaufe the differences betwen conmon and precipitated indigo may depend merely on the tate of greater ninuterefs to which it is reduced, which prevents the attrac. tion of aggregation from obltructing the action of other bodies. Even filica, when newly precipitated, is foluble in many menftrua.
3. Indigo has a very ftrong affinity for wool, filk, hod of cotton, and linen. Every kind of cluth, therefore, may by dyed with it, without the affiltance of any mordant whatever. The colour thus indecd is very permanent; becaule the indigo is already faturated with oxygen, and becaufe it is not liable to be decompofed by thofe fubitances, to the action of which the cloth is expofed. But it can only be applicd to cloth in a flate of folution; and the only folvent known being fulphuric acid, it would feem at firlt fight that the fulphuric acid folution is the only 北ate in which indigo can be employed as a dye.

The fulphat of indigo is indeed often ufed to dye wool and filk blue; but it can farcely be applied to cotton and linen, becaufe the affinity of thefe fubftances for indigo is not great enough to enable them readily
to decompofe the fulphat. The colour given iny fule plat of indigo is exceedingly teautiful : it is lenown by the name of Saxon blue; beeaufe the procefs, which was difcovercal by councellor Bartls ia 1712 , was lirtt carricd on at Groffuhayn in Saxony. "lle nethod of the original invertor was very complicated, frum the great number of ufckefs ingredient; which were mixed with the fulphat. But the fe ingredients were gradually l:id alide, and the compotition limpliticd by others, al. ter the natme of it, which was for fime time kept fe. cret, became known to the public. 'l'he beft procefs is that of Mr Poerner*.

One part of indigo is to be diffolved in four parts of Fur bration concentrated fulphuric acid; to the folution one part la Teinture, of dry carbonat of potafs is to be added, and then it is p . 893° to be diluted with eight times its weight of water. The cloth muft be boiled for an hour in a folution, containing five parts of alum and three of tartar for every 32 parts of cloth, It is then to be throven into a water bith, containing a greater or fraller proportion of the diluted fulphat of indigo, according to the flade which the cloth is intended to receive. In this bath it muft be boiled till it has acquired the wifhed for co. lour. The alum and tartar are not intended to act as mordants, but to facilitate the decompolition of the fulphat of indigo. Bergman afcertained that alum poifeffes this property. The alliali added to the fulphat anfivers the fame purpofe. Thefe fubltances, alfo, by faturating part of the fulphuric acid, ferve, in fome meafure, to prevent the texture of the cloth from being injured by the action of the acid, which is very apt to happen in this procefs.
4. But fulphat of indigo is by no means the only fo- Method of lution of that pigment employed in dyeing. By far dycing by the mott common method, and indeed the only method fing indigo. kuswn bufore $17+0$, is to deprive indigo of the oxygen to which it owes its blue colour, and thus to reduce it to the fate of green pollen; and then to diffolse it in twater by means of alkalies, or alkaline earths, which in that Itate act upon it very readily. Indigo is precifely in the thate of green pollen when it is firt extracted from the plant in the fealding procels deferihed by Dr Ruxbourgh. If, therefore, there were any method of Atopping thort here, and of feparating the pigment while it retains its green colour, it would be precifely in the tlate beft adapted for dyeing. Nothing more would be neceffary but to diffolve it in wa. ter by means of an alkali, and to dip the cloth into the folútion \dagger.

But as indigo is not brought home to us in that fate, the dyer is under the necellity of undoing the laft part of the indgo-maker's procefs, by feparating again the oxygen, and reltoring it to its original green colour. Two different methods are employed for this purpofe. The firft of the fe methods is to mix with indigo a folution of fome fubftance which has a ftronger affinity for oxygen than the green batis of indigo. Green oxide of iron, for inftance, and different metallic fulpharets. If, therefore, indigo, lime, and green fulphat of iron, be mixed together in water, the indigo gradually.
(c) The combuftion of indigo by nitric acid, of the denfity $\mathbf{1 . 5 2 ^ { \circ }}$, was firt publifhed by Mr Sage; but Woulfe appears to have obferved the fact before him, and to have pointed it out to Rouelle, who thewed it in Lis lectures. Prouf?, Nickolfon's Four. 111. 325.
gradually lopes its blue colour, becomes green, and is diffolved, while the green oxide of iron is converted in. to the red oxide. The manner in which thee changes take place is obvious. Part of the lime decumpares the fulphat of iron; the green oxide, the inf ant that it is fut at liberty, attracts oxygen from the indigo, de. comperes it, and reduces it to the fate of green pollen. This green pollen is immediately diffolved by the acLion of the ret t of the lime. In like manner, indigo is diffolved when mixed in water, with pure antimony and jonas, or with fulphuret of arfenic and potafs. For there interelling facts we are indebted to Mr Hauff. man.

The fecond method is to mix the indigo in water with certain vegetable fubftances which readily undergo fermentation. During this fermentation, the indigo is deprived of its oxygen, and diffolved by means of quicklime or alkali, which is added to the folution. The first of there methods is usually followed in dyeing cot-
may be known by the putrid vapours which it exhales, and by the difappearing of the green colour. In this fate it would found deftroy the indigo altogether. The inconvenience is remedied by adding more lime, which has the property of moderating the putrefcent tendercy. 2. Sometimes the fermentation goes on too languidly. This defect is remedied by adding more bran or woad, in order to diminifh the proportion of quicklime.
6. Silk is ufually dyed blue by the following pro- ilk, cefs : Six parts of bran, and fix of indigo, u th nearly one part of madder, are tired into a fufficient quantty of water, in which fix parts of common potafin of commerce is diffolved. The liquid is kept at a temperature proper for fermentation. When the indigo, deproved of its oxygen by the fermentation, is diffolved by the potafs, the liquid affumes a green colour. The fils, previouly well floured, is put into the folution in fall quantities at a time; then wrung out of the dye, and hung up in the open air, till the green colour which it has at frit is changed into blue. By this method fill can only be made to receive a light blue colour. In order to give fils a dark blue, it mut previouny receive what is called a ground colour; that is, be previously dyed fome other colour. A particular kind of red dye-ftuff, called archil (E), is commonly employed for this purpose.
The madder employed in the above process may, at firft fight, appear fuperfluous: it feems, however, to contribute fomething to the colour.
7. Cotton and linen are dyed blue by the following process: One part of indigo, one part of green fulphat of iron, and two parts of quicklime, are tired into 2 fufficient quantity of water. The folution is at first green, but it gradually affumes a yellow colour, and its surface is covered with a fining cupper.coloured eellisle. The cloth is to be allowed to remain in the folution for five or fix minutes. When taken out, it has a yellow colour; but on exposure to the atmufphere, it foin becomes green, and then blue, in consequence of the abforption of oxygen. The indigo, in this process, feems to be deprived of a greater quantity of oxygen than is neceffary to reduce it to the tate of green pollen. Mr Hauffman has observed, that the cloth acquires a much deeper colour, provided it be plunged, the infant it is taken out of the dyeing vat, into water acidulated with sulphuric acid. It is usual to dip the cloth into a facceffion of vats, variously charged with colouring matter; beginning with the vat which contains leaf colouring matter, and paffing gradually to thole which contain molt. By this contrivance the cloth is dyed more equally than it probably would be, if it were plumged all at once into a faturated folution of colouring matter.

Sect. II. Of sellout.

The principal colouring matters employed to dye yellow yellow are weld, fuffic, and quercitron bark.

1. Refeda lutcola, known in this country by the name
(D) The employment of Indigo was ftrictly prohibited in England in the reign of Queen Elizabeth ; nor was the prohibition taken off till the reign of Charles II. It was prohibited aldo in Saxony. In the edict it is spoken of as a corrofive fubftance, and called food for the devil. Colbert refrifted the French dyers to a certain quantity of it.
(E) This will be defcribed in a fubfequent faction.
of weld, is a plant which grows wild very commonly in Scotland, and in moft European countries. Cultivated weld has a more flender ftem than the wild kind, but it is more valuable, becaufe it is much more rich in colouring matter. It is an annual plant, of a yellowih green eulour, furnifhed with a great number of fimall leaves. When ripe it is pulled, dried, tied up in parcels, and in that fate fold to the dyer.

Weld readily :ields its culouring matter to water. The faturated decection of it is brown ; but whenfuff. ciently diluted with water it becones yellow. Acids render its colour fomewhat paler, but alkalies give it a deeper thade. When alum is added to it, a yellow coloured precipitate falls down, conffiting of alumina combined with the colouring matter of weld. The affinity therefure of this colouring matter for alumina is fo great, that it is ahle to abftract it from fulphuric acid. Its affinity for oxide of tiu is at leatt equally great; for muriat of tin caufes a copious bright yellow precipitate, compofed of the colouring matter and the oxide combined. Moft of the metallic falts occafion fimilar precipitates, but varying in colour according to the metal employed. With iron, for inflance, the precipitate is drak grey, and with copper brownifh green *.
2. The morus tinloria is a large tree which grows in the Weft India iflands. The wood of this tree is of a yellow colour, with orange veins. The French call it yellow roood (bois jaune); but the Englifh dyers have given it the abfurd name of old fuffic (F). This wood has been introduced into dyeing fince the difcovery of America. The precife time is not known; but that it was ufed in England foon after the middle of the 17 th century, is evident from Sir William Petty's paper on Dyeing, read to the Royal Society foon after its inftitution. In that paper particular mention is made of old fuflic.

Fuftic gives out its colouring matter with great facility to water. The faturated decoction of it is of a deep reddifh yellow colour; when fufficiently diluted it becomes orange yellow. Acids render it turbid; give it a pale yellow colour, and occafion a llight greenifh precipitate, which alkalies rediffolve. Alkalies give the decoction a very deep colour, inelining to red ; fome time after they have been added, a yellow matter feparates from the liquid, and either fwims on the furface, or adheres to the fides of the veffel. Alum, fulphat of iron, of ropper, and of zine, produce precipitates compofed of the colouring matter combined refpectively with the bafes of thefe different falts ; and the colour varies according to the fubtance with which this colouring matter is combined. With alumina it is yellow ; with iron, yellowith brown; with copper, brownifh yellow; and with zinc, greenifh brown + .
3. The quercus nigra, to which Dr Bancroft has given the name of quercitron, is a large tree which grows naturally in North America. Dr Bancroft difcovered, about the year 1784, that the bark of this tree contains

Suppl, Vol. II. Part II.
a great quantity of yellow colouring matter, and fince that time it las been introduced into dyeing with much advantage. To prepare it for the dyer, the epidermis is thaved off, and then it is ground in a mill. It Ceparates partly into Itringy filaments, and partly into a fine light powder. Both of thefe contain colouring matter, and therefore are to be employed; but as they contain unequal quantities, they fhould be ufed in their natural proportions.

Quercitron bark readily gives out its colouring matter to water at the temperature of 100 . The infufion has a yellowifh brown colour, which is rendered lighter by acids, and darker by alkalies. Alum occations a fcanty precipitate of a deep jellow colour ; muriat of tin, a copious bright yellow precipitate; fulphat of tilt, a dark olive precipitate ; and fulphat of copper, a precipitate of a yellow colonr inclining to olive \ddagger.
4. Befides thefe dye ftuffs there are others nccafion- ${ }^{\text {i. }}$ ally ufed by dyers. The following are the mott remarkable :

Genifla tindoria, or dyers broom. This piant yields a very inferior yellow; it is only ufed for coarfe woullen fluffs.

Serralula tincioria, or fawewort. This plant yields a yellow nearly of the fame nature with weld; for which, therefore, it is a good fublitute.

Juglans alba, or American biccory. The bark of this tree yields a colouring matter exactly fimilar to that of quercitron bark, but much fmaller in quantity.

Anotta is a name given to a red pafte formed of the berries of the bixa orellana, a tree which is a native of America. This paile yields its colouring matter to a folution of alkali in water. The folution affords an exceedingly beautiful yellow dye, but very fâding, and incapable of being fixed by any known mordant.

Turmeric is the root of the curcumul longa, a plant which grows both in the Ealt and Weft Indies. It is richer in colouring mater than any other yellow dye ftuff. It yields very beautiful yellows, but too fading to be of much ufe, and no mordant has any influence in contributing to their permanence.
5. Yellow colouring matters have too weak an affi. nity for cluth to produce permanent colours without the ufe of mordants. Cloth, therefore, before it bc dyed yellow, is always prepared by combining fome mordant or other with it. The mordant moft commonly employed for this purpofe is alumina. Oxide of tin is fometimes ufed when very fine yellows are wanted. Tan is often employed as a fubfidiary to alumina, in order to fix it more copioufly on cotton and linen. Tartar is alfo ufed as an auxiliary to brighten the colour ; and muriat of foda, fulphat of lime, and even fulphat of iron, in order to render the fhade deeper.
6. The yellow dyed by means of fultic is more permanent, but not fo beautiful as that given by weld or quercitron. As it is permanent, and not much injured by acids, it is often ufed in dyeing compound colours 4 K
where
(F) The rhus cotinus, or Venice fumach, is 3 fmall Thrub, formerly employed as a yellow dye, but now almoft out of ufe. The French call it fuflet, from which word it is probable, as Dr Bancroft fuppofes, that our dyers formed the term fufic. When the morus tingoria was introduced as a dye-tuff, they gave it the fame name: but in order to diftinguifh the two, they called the fumach, which was a fmall frrub, young fufic; and the morus, which was a large tree, old fuflic. See Bancroft, i. 412.

The fame procefs will ferve for producing bright
golden yellowes, only fome alum mult be added along with ihe till. For the brightelt golden yellow, the propor-
tions fufficient for dyeing 100 parts of cloth are, so the tin. For the brightelt golden yellow, the propor-
tions fufficient for dyeing 100 parts of cloth are, so parts of bark, 7 parts of murio-fulphat of tin, and 5 parts of alum. All the poffible flades of galden yelluw may be given to cloth merely by varying the propor\ddagger Did.330. tion of the ingredients according to the fhade \ddagger.

In order to give the yellow that delicate green thade fo much admired for certain purpofes, the fame procefs may be followed, only tartar muft be added in different proportions according to the Thale. Thus to dye 100 parts of cloth a full bright yellow, delicatcly inclining to green, 8 parts of bark, 6 of murio-fulphat, 6 ot alum, and 4 of tartar, are to be employed. The tartar is to be added at the fame time with the other mordants. If the proportion of alum and tartar be increafed, the green thade is more lively : to render it as lively as porfible, all the four ingredients ought to be employed in equal proportions. As thefe fine lemen-yellows are generally required only pale, 10 parts of each of the ingredients will be fufficient to dye about 300 parts of cloth δ.

By adding a fmall proportion of cochineal, the colour may be raifed to a fine orange, or even an aurorall.
8. Silk may be dyed different thades of yellow, either silk,
where a yellow is required. The mordant is alumina. When the mordant is oxide of iron, fultic dyes a good permanent drab colour.

Weld and quercitron bark yield nearly the fame kind of colour; but as the bark yields colouring matter in much greater abundance, it is much more convenient, and, upon the whole, cheaper than weld. It is probable therefore, that it will gradually fuperfede the ufe of that plant. The method of ufing each of thefe dye ftuffs is nearly the fame.
7. Wool may be dyed yellow by the following procefs: Let it be boiled for an hour, or more, with about $\frac{1}{6}$ th of its weight of alum, diffolved in a fufficienc quantity of water. It is then to be plunged, without being rinced, into a bath of warm water, containing in it as much quercitron bark as equals the weight of the alum employed as a mordant. The cloth is to be turned through the boiling liquid till it has acquired the intended colour. Then a quantity of clean powdered chalk, equal to the hundredth part of the weight of the cloth, is to be ftirred in, and the operation of dycing continued for eight or ten minutes longer. By this method a pretty deep and lively yellow may be given fully as permanent as weld yellow *.
For very bright orange, or golden yellowus, it is neceffary to have recourfe to the oxide of tin as a mordant. A fine orange yellow may be given to woollen cloth, by putting, for every ten parts of cloth, one part of bark into a fufficient quantity of hot water; after a few minutes, an equal weight of murio-fulphat of tin is to be added, and the mixture well ftirred. The cloth
acquires the wihed.for colour in a few minutes when and afterwards dried. The foaking in the acerite of
alumina may be again repeated; and if the fade of yellow is required to be very bright and durable, the alternate wetting with lime water, and foaking in the mordant, may be repeated three or four times. By this contrivance a fufficient quantity of alumina is combined with the cloth, and the combination is rendered more pernanent by the addition of fome lime. The dyeing bath is prepared by putting 12 or 18 parts of quercitron tark (according to the depth of the fade required), tied up in a bag, into a fufficient quantity of cold water. Into this bath the cloth is to be put, and turned round in it for an hour, while its temperature is gradually raifed to about 120°. It is then to be brought to a boiling heat, and the cloth allowed to remain in it after that unly a few minutes. If it be kept long at a boiling heat the yellow acquires a fhade of brown ${ }^{*}$. manent yellows, would be to imitate the method adopted for dyeing cotton in the Eaft. That method is in. deed exceedingly tedious, but it might be very much fortened by carefully attending to the ufes of the ingredients. The effential part of the procefs is to caufe the alumina to combine in fufficient quantity with the cloth, and to adhere with fufficient firmnefs to enfure a permanent colour. This is accomplifhed by ufing three mordants; firft oil, then tan, and laftly alum. The combination of thefe three fubtances produces a mordant which enfures a very permanent colour.

The cotton is firft foaked in a bath compofed of a fufficient quantity of oil, and mixed with a weak folu-

Yellow. tion of foda. Animal oil feems to anfwer beft for the purpofe. Vogler found that glue anfwered extremely well. The foda fhould be caultic: In that fate it combines with the oil, and enables the cloth to abforb it equally. It is then, after being wathed, put into ant infufion of nut galls (the whiter the better). The tan combines with the oil, while the gallic acid carries off the alkali that may remain attached to the cloth 'I'he infulion ought ta be hot ; and the cotton, after comiug out of it, fhoruld be dried as quickly as pomilte Care thould be taken that the quantity of galls do not ex. ceed a juit proportion compared with the oil, otherwife the colour will be darkened. The cotton, thus prepared, is to be put into a folution of alum. 'There is a ftrong affi:ity between tan and alumina; in confequence of which, the alum is decompofed, and the alumina combines with the tan in fufficient abundance \dagger. The cotton, thus prepared, is to be dyed, as above deferibed, with quercitron bark.

Mr Chaptal, whofe ingenious labours have contributed exceedingly to elucidate the theory of dyeing, has propofed an exceedingly fimple and cheap methad of dyeing cotton a fine permanent nankeen yelluw. His procefs is as fullows (G).

Cotton has fo flrong an affinity for oxide of iron, that if put into a folution of that oxide in any acid whatever, it decompofes the falt, abforbs the iron, and acquires a yellow colour. The cotton to be dyed is to be put into a cold folution of fulphat of iron, of the fp. gr. 1.020 ; it is then wrung out, and put directly into a ley of potafs, of the fp. gr. 1.010 , into which a folution of alum has been poured till it was faturated with it. After the cotton has remained in this bath four or five hours, it may be taken out, wafhed, and dried. By this procefs cotton may be dyed all the different fhades of nankeen, by varing the proportion of the fulphat of iron. This culnur has the ad. vantage of not being injured by wafhing, and of being § Ibid, 270. exceedingly cheap \oint.

Sect. III. Of RED.

43 I
Red dyes.

432
Kermes,

Claptal, Ann. de Cbim. xxvi 251.

430 Chaptal's procels for cutton.

The colour which it commtmicates to cloth is exceedingly permanent, but being far inferior in heauty to thofe which may be obtained from cocluineal, it has been but little employed by dyers fince that fiplendid pigment came into common ufe.

Red.
$\xrightarrow{\text { Red. }}$
2. Cochiueal is likewife an infect, a fpecies of coccus. Cochint:as) Linnæus diftinguifhes it by the name of coccus cali, It inhabits different fpecies of cacti, but the moft perfect variety is confmed to the callus coccinillifer. The cochineal infect was firf difoovered in Mexico ; the natiwes had employed it in their red dyes before the arrival of the Spaniards. It became known in Europe foon after the conqueft of Mexicos; and the beauty of the colour which it communicates to el th very foon attracted general attention For many years it was mifaken for a regetable production, as had been the cafe alfo with the kermes. Different accomits of its ral nature had indeed appeared very early in the Phiturophical Tranfactions; but the opinion of Pomet, who inlifted that it was the feed of a particular plant, gained to much credit, that it was not entirely defloyed till the publication of Mr Ellis's paper in the 52 d volume of the Philofophical Tranfactions, which eftablimed the contrary beyond the poffibility of doubt.

The female cochineal infect remains like the kermes, during her whole life adhering to a particular fout of the tree on which it feeds. After fecundation, her body ferves merely as a nidus for her numerous eggs, and gradually fwells as thefe advance towards maturity. In this fate the intects are gathered, put into a linen bag, which is dipt into hot water to deftroy the life of the young animals contained in the eggs, and then dried. In this Itate they are Sent to Europe and fold to the dyer.

The quantity of cochineal difpofed of in Europe is very great. Bancroft informs us, that the spaniards annually bring to market about 600,000 llss. of it. Hitherto the rearing of the infects has belonged almolt exclufively to that nation. Other nations have indecd attempted to Chare it with them, but without any remarkable fuccefs; as the Spaniards ufe every precaution to confine the true cochineal, and even the fpecies of cactus on which it feeds, to Mexico. Mr Thiery de Menonville was fortunate enough to procure fome fpecimens of both, and to transfer them in fafety to St Domingo ; but after his death, the infects were allow. ed to perifh. The wild cochineal infect, which differs from the cultivated kind merely in being fmaller, and containing lefs colouring matter, was produced in St Domingo, in confiderable quantities, before the commencement of the late war. Several fpirited Britifh gentlemen have lately contrived to procure the infect; and vigorous efforts are making to rear it in the Eaft Indies. We have not yet learned the fuccefs of thefe attempts; but we have reafon to hope every thing from the zeal and abilities of thofe gentlemen who have taken an active part in the enterprize.

Cochineal readily gives out its colouring matter to water. The decoction is of a crimfon colour, inclining to violet: It may be kept for a long time without putrefying or lofing its tranfparency. Sulphuric acid

$$
4 \mathrm{~K}_{2}
$$

gives
(G) We ought to menton, that this procefs, or at leaft one very fimilar, has been long well known to the calico printers of this country. Moft of their brown yellowi, or drabs, are dyed with iraa.

Red.

$\underbrace{\text { (Red }}$ gives it a red colour, inclining to yellow, and occafions a fmall fine red precipitate. 'Partar grives it a yellowith red coluur, which becumes yellow after a fmall quantity of red powder has fubfided. Alum brightens the cclour of the decoction, and occafions a crimfon precipitate. Muriat of tin gives a copious fine red yrecipitate; fulphat of iron, a brownifh violet precipitate; fulphat of rinc, a deep violate precipitate; acetite of lead,
ii. 173.
from drying too fatt. Such is the method followed in
Red. Egypt.

The flowers of carthamus contain two colouring matters; a yellow, which is foluble in water, and a red, infoluble in water, but foluble in alkaline carbonats. The method of preparing them above defcribed, is intended to carry off the yellow colouring matter, which is of no ule, and to leave only the red. After the flowers are thus prepared, they are of a red colour, and have loft nearly one-half of their weight. An alkaline ley readily extracts their colouring matter, which may be precipitated by.faturating the alkali with an acid. Lemon juice is commonly ufed for this purpole, becaufe it does not injure the colour of the dye. Next to citric, fulphuric acid is to be preferred, provided too great a quantity be not ufed. The red colouring mat ter of carthamus, extracted by carbonat of forla, and precipitated hy lemon juice, conflitutes the rouge employed by the ladies as a paint. It is afterwards ground with a certain quantity of talc. The finenefs of the talc, and the proportion of it mixed with the carthamus, occafion the difference between the cheaper and dearer kinds of rouge.
6. Brazil wood, or fernambouc, as it is called by the Brazil French, is the wood of the cafalpinia crifla, a tree wood which grows naturally in America and the Weft Indian iflands. It is very hard ; its fpecific gravity is greater than that of water; its tafte is fwectifh: its colour, when frefh cut, is pale; but after expofure to the atmofphere, it becomes reddifh.

Brazil wood yields its colouring matter to alcohol, and likewife to boiling water. The decoction is of a fine red colour. The mineral acids make it yellow, and occafion a reddifh brown precipitate. Oxalic acid caufes an orange red precipitate. Fixed alkali gives the decoction a crimfon colour, inclining to brown; ammonia, bright purple. Alum occafions a copious crimfon precipitate, efpecially if alkali is added at the fame time. Sulphat of iron renders the decoction black. 'Lhe precipitate produced by muriat of tin is rofe coloured ; that by acetite of lead of a fine deep red *.

The decoction of Brazil wood is fitter for dyeing * Berlodles, after it has ftood fome time, and undergone a kind of fermentation.
7. None of the red colouring matters has fo ftrong Red re. an affinity for cloth as to produce a permanent red, quires a without the affiftance of mordants. The mordants em. murdant. ployed are alumina and oxide of tin; oil and tan, in certain proceffes, are alfo ufed; and tartar and muriat of foda are frequently called in as auxiliaries.
8. Coarfe woollen ftuffs are dyed red with madder
(H) If we believe Tournefort, this dye-ftuff was known to the ancients. They employed it to dye the colour known by the name of furple of Amorgos, one of the Cyclades inlands. If this account be accurate, the knowledge of it had been loft during the dark ages. It was accidentaliy difeovered by a Florentine merchant about the year 1300, who obferved, that urine gave a very fine colour to the lichen roccella. Mr Dufay difcovered, that archil poffeffes the property of tinging indelibly white marble, of forming veins, and giving it the appearance of jafper. See Mem. Par. 1732.
(1) The tincture of archil is ufed for making fipirit of wine thermometers. It is a fingular fact, that this tincture becomes gradually colourlefs when excluded from the contact of air, and that it again recovers its colour when expofed to the atmofphere. The phenomenon was firft obferved by the Abbe Nollet, and defcribed by kim in an eflay, publifhed among the memoirs of the Academy of Sciences for 1742.

Red. nrarchil ; but fue cloth is almoft exclufively dyed with cochineal; though the colour which it receives from kermes is much more durable. Brazil wood is fearcely ufed, except as an auxiliary; becaufe the colour which it imparts to wool is not permanent.

Wool is dyed crimfon, by firf impregnating it with alunina by means of an alum bath, and then hoiling it in a decoction of cochineal till it has acquired the wifhed for colour. 'The crimion will be finer if the tin mordant be fubutituted for alum: indeed it is ufual with dyers tis add a little nitro-muriat of tin when they want fine crimfons. The addition of archil and potids to the cochineal, both renders the crimfon darker and gives it more bloum ; but the blown very foun vanifhes. For paler crimfons, one-half of the cochineal is withdrawin, and madder fubftituted in its place.

Wool may be dyed fariet, the moll fplendid of all colours, by firlt boiling it in a folution of murin-fulphat of tin ; then dyeing it pale yellow with quercitron bark, and afterwards crimfon with cochineal: Fur fearlet is a compound colour, confilting of crimfon mix. ed with a little yellore. This method was fuggefted by Dr Bancroft, who firlt explained the nature of the common method. The proportions which he gives are eight parts of murio-fulphat of tin for a 100 parts of eloth. After the cloth has been boiled in this folution for a quarter of an hour, it is to be taken out, and about four parts of cochineal, and two and a half parts of quercitron bark, are to be thrown into the bath. After thefe are well mixed, the cloth is m be returned again to the bath, and boiled in it, till it has acquired the proper colour*.

The common procefs for dyeing fcarlet is as follows : Twelve parts of tartar are diffolved in warm water; then one part of cochineal is added, and foon after ten parts of nitro-muriat of tin. When the bath boils, 100 parts of cloth are put in, turned brifkly through the bath, boiled in it for two hours; then taken out, aired, waihed, and dried. Into another bath eleven parts of cochineal are put ; and after its colouring matter is fufficiently extracted, 28 parts of nitro-muriat of tiu are added. In this bath the cloth is boiled for an hour, and then wafhed and dried.

Every preceding writer on dyeing took it for granted, that the yellow tinge neceffary for fcarlet was produced by the nitro-muriat of tin, or rather by the nitric acid of that compound, and that the tartar was only ufful in enlivening the colour. But Dr Bancroft afcertained, by actual experiment, that nitro-muriat of tin has no fuch effect; that cloth, impregnated with this or any other tin mordant, and afterwards dyed with cochineal, acquires only a crimion colour, unlefs tartar he added; that the tartar las the property of converting part of the cochineal to yellow ; and there. fore is the real agent in producing the fcarlet colour. Good fcarlet, indeed, cannot be made without tin; becaufe every other mordant fullies the colour, and renders it dull \dagger.
9. Silk is ufually dyed red with cochineal or carthamus, and fometimes with Brazil wood. Kermes does not anfwer for filk; madder is fcarcely ever ufed for that purpofe, becaufe it does not yield a bright enough. colour. Archil is employed to give filk a bloom; but. it is fearcely ufed by itfelf, unlefs when the colour want. rd is lilac.

Silk may be dyed crimfon by 凡eeping it in a folution of alum, and then dyeing it in the ufual way in a cochincal bath. But the common procefs is to plunge in dyeing the filk, after it has been alumed, into a bath formed crimfon, of the following ingrechents : Two parts of white galls, three parts of enchineal, three-fixteentlis of tartar, and three lixteenths of nitro-muriat of $t i n$, for every fixteen parts of filk. 'The ingredients are to be put into boiding water in the order they have been enumerated; the bath is then to be filled up with culd water; the filk put into it, and boiled for two hours. After the bath has conled, the filk is ufnally alluwed to remain in it for three hours longer.

The colours hnown by the names of poppy, cherry, Poppy, rof, and fith culour, are given to filk by means of carthamus. The procefs contifts merely in keeping the filk, as long as it extracts any colour, in an alkaline fo. lution of carthamus, into which as much lemon juice as gives it a fine cherry colour has been puured. To produce a deep poppy red, the filk muft be put fuc. ceffively into a number of fimilar baths, and allowed to drain theas. When the filk is dyed, the colour is brightened by plunging it into hot water acidulated with lemon juice. The filk ought to be previoully dyed yel. low with anotta.

Cherry red is produced the fame way, only the anot-Cherr ta ground is omitted, and $l \in\left[s\right.$ colouring matter is ne- 445° ceffary, When a flefh colour is required, a little foap Flefh red, fhould be put into the bath, which foftens the colour, and prevents it from taking too quickly.

To leffen the expence, fome archil is often mixed with carthamus for dark hades.

The fame fhades may be dyed by means of Brazil wood, but they do not Itand.

Silk cannot be dyed a full fcarlet; but a colour ap.Scarlet. proaching to fearlet may be given it, by firt impregnating the ftuff writh murio-fulphat of tin, and afierwards dyeing it in a bath compofed of fom ${ }^{\text {arts }}$ of cochineal and four parts of quercitron bark. To give the colour more body, both the mordant and the dye may be repeated *. A colour approaching fearlet may be alfo* Bancroft, given to filk, by firlt dyeing it crimfon, then dyeing it ${ }^{\text {i. }} 312$. with carthamus, and lattly yellow without heat t. \quad
10. Cotton and linen are dyed red with madder. ${ }^{\text {ii. } 203 .}$ The procefs was borrowed from the Eall; hence the How to colour is often called Adriamople or Turkey red. The dje cotcloth is firl impregnated with oil, then with galls, and ton and lafly with alum, in the manner deferibed in the laftinen red. fection. It is then boiled for an hour in a decoction of madder, which is cominonly mixert with a quantity of blood. After the cloth is dyed, it is plunged into a foda ley, in order to brighten the colour. The red given by this procefs is very permanent, and when properly conducted it is exceedingly beautiful. The whole difficulty confuts in the application of the mordant, which is by far the mof complicated employed in the whole art of dyeing.

Cotton may be dyed fcarlet by means of murio-ful. phat of tin, cochineal, and quercitron bark, ufed as for filk; but the colour is too fading to be of any value *.

* Bancrof
i. 316.

1. The fubftances employed to give a black colour Black to cloth are red oxide of iron and tan. Thefe two fub-dyss..
ftances
ftances have a ftrong affinity for each other; and when combined, affume a deep black colour, not liable to be deftroyed by the action of air and light. The affinity which each of them las for the different kinds of cloth has been already mentioned.
2. Logwood is ufually employed as an auxiliary, becaufe it communicates luitre, and adds couliderably to the fulnefs of the black. It is the wood of the tree called by Linnæus bematoxylum campechianum, which is a native of feveral of the Weft India illands, and of that part of Mexico which furrounds the bay of Honduras. It yields its colouring matter to water. The decoction is at firft a tine red bordering on violet, but if left to itfelf it gradually affumes a black colour. Acids give it a deep red colour; alkalies a deep vivlet, inclining to brown. Sulphat of iron renders it as black as ink, and occafions a precipitate of the fane colour. The precipitate produced by alum is dark red; the fu-
3. Cloth, before it receive a black colour, is ufually dyed bluc. This renders the colour much foller and finer than it otherwife would be. If the cloth be coarfe, the blue dye may be too expentive; in that cafe 449 a brown colour is given by means of walnut peels.
How to in.
duce a
black on
wool,
4. Wool is dyed black by the following procefs. It is boiled for two hours in a decoction of nut galls, and afterwards kept for two hours more in a bath compofed of logwond and fulphat of iron, kept during the whole time at a fcalding heat, but not boiled. During the operation it muft be frequently expofed to the air; becaufe the green oxide of iton, of which the fulphat is compoled, muit be converted into red oxide by abforbing oxygen, before the cluth can aequire a proper colour. The common proportions are tive parts of galls, five of fulphat of iron, and 30 of lugwood tor every 100 of cloth. A little acetite of copper is communly added to the fulphat of iron, becaule it is thought to improve the colour.
5. Silk is dyed nearly in the fame manner. It is capable of combining with a very great deal of tan ; the quantity given is varied at the pleafure of the artift, by allowing the filk to remain a longer or fhorter time in the decoction. After the galling, the filk is put into a folution of fulphat of iron, which is ufualiy mixed with a certain quantity of iron filings and of gum. It is occafionally wrung out of the bath, expofed for fome time to the air, and again immerfed. When it has acquired a fufficiently foll colour, it is wafhed in cold water, and afterwards fteeped in a decuction of foap to take off the harfhnefs, which filk always has after being dyed black.
6. It is by no means fo eafy to give a full black to

Linen, and cotton.
6. The cluth, previoully dyed blue is fteeped for 24 hours in a decoction of nut galls. A bath is prepared, containing acetite of iron, formed by faturating acetous acid with brown oxide of iron. Into this bath the cloth is put in fmall quantities at a time, wrought with the hand for a quarter of an hour, then wrung out and aired, again wrought in a frefh quautity of the bath, and aftewards aired. Thefe alternate proceffes are repeated till the colour wanted is given. A decoction of alder bark is ufually mixed with the liquor containing the nut galls.

It would probably contribute to the goodnefs and permanence of the colour, if the cloth, before being
galled, were impregnaterl with oil, by teing feeped in Brown. a mixture of alkaline ley and oil combiued, as is prac. $\underbrace{-}$ tifed for dyeing cotton red.

Sect. V. Of Brown.

That particular brown colour, with a calt of yellow, which the French call fauve, and to which the Einglifh writers on dycing have appropriated the word facun, though in fact a compound, is commonly rauked among dimple colours ; becaufe it is applied to cloth by a lingle procefs. 'The firbitances employed to produce this colour are numerous; but we ihall fatisiy ourfelves with enumerating the following:

Walnut peels are the green covering of the wal- 452 nut, When firft feparated, they are white internally; dycs. but foon affume a brown, or even a black colour, on expofure to the air. They readily yield their colouring matter to water. They are ufually kept in large cafis, covered with water, for above a year, before they are ufed. To dye woul brown with them, nothing more is neceffary than to fleep the clotn in a decoction of them till it has acquired the withed-for colour. The depth of the fhade is proportional to the Itrength of the decoction. The root, as well as the peel of the wal. nut tree, contains the fame colouring matter, but in fmaller quantity. The bark of the birch, alfo, and many other trees, inay be ufed for the fame purpofe.

It is very probable, that the brown colouring matter is in the ee vegetable fubftances combined with tan. This is certainly the cafe in fumach, which is often employed to produce a brown. This combination explains the reafon why no mordant is neceffary; the tan has a Atrong affinity for the cloth, and the colouring matter for the tan. The dye ftuff and the mordant are already, in fact, combined together.

Chap. V. Of Cumpuund Colours.

Compound colours are produced by mixing together two fimple ones; or, which is the fame thing, by dyeing cloth firft one fimple colour, and then another. The refult is a compound colour, varsing in fhade ac. cording to the proportions of each of the funple colours employed.

Compound colours are exceedingly numerous, vary-Divilion ing almolt to infinity, according to the proportions of compoun the ingredients employed. They may be all arranged colvurs. under the four following claffes :

Mixtures of 1. blue and yellow,
2. blue and red,
3. yellow and red,
4. black and other colours.

To defcribe all the different hades which belong to each of thefe claffes, would be impulfible; and even if it were poffible, it would be unneceffary; becaufe all the proceffes depend upon the principles laid down in the preceding chapters, and may eatily be conceived and varied by thofe who underftand thefe principles. In the following fections, therefore, it will be fufficient to mention the principal compound colours produced by the mixture of fimple colours, and to exhibit a fpecimen or two of the mode of producing them.

Sect. I. Of Mixlares of Blue and Killow.

The colour produced by mixtures of blue and yellow

Mixeures is green; which is diftinguifhed by dyers by a great Blue and variety of names, according to the depth of the flade, Yellow or the prevalence of either of the component parts. Ta54 Thus we have fia green, nteadow or grafs greêl, peaz dow to in greeth, \&c. \&e.
uce green Wool is uifually dyed green by giving it firft a blue co\% $\$ 45$ wool, lour, and afterwards dyeing it yellow; becaufe, when the yellow is firt given, fiseral inconveniences follow: the yellow partly feparates again in the lilue vat, and communicates a green colour to it ; and thus renders it ufelefs for every other purpofe, except dyeing green. Any of the proceffes for dyeing blue, defribed in the laft chapter, may be followed; care being taken always to propoition the depth of the blue to the fhade of green which is required. The cluth thas dyed blue may receive a yellow colour, by following the procefles deferibed in the laft chapter for that purpofe. When the fulphat of indigo is employed, it is uffial to mix all the ingredients together, and to dye the cloth at once: the colour produced is known by the name of Saxon, or Englifo green. One of the mof convenient methods of couducting this procefo is the following:

Six or tight parts of quercitron bark, tied op in a bag, are to be put into the dyeing veffel, which thould contain only a fmall quantity of warm water. When the water boils, fix parts of murio fulphat of tin, and four parts of alum, are to be added. In a few minutes, the dyeing veffel fhould be filled up with cold water, till the temperature is reduced to about 130°. After this, as much fulphat of indigo is to be poured in as is fufficient to produce the intended fhade of green. When the whole has been fufficiently tirred, a hundred parts of cloth are to be put in, and turned brifkly for about - Bancroff, fifteen minutes, till it has acquired the wifhed-for flade *.
-336. By this method, a much more beautiful colour is obtained than is given by the ufual procefs, in which fultic is employed to give the yellow fhade.

Silk, intended to receive a green colour, is ufually dyed yellow firft, by means of weld, according to the prucefs defcribed in the laft chapter; afterwards, it is dipped into the blue vat, and dyed in the ufual manuer. To deepen the thade, or to vary the tint, decoctions of logwood, anotta, fuftic, \&c. are added to the ycllow bath. Or tilk may be dyed at once green, by adding fuitable proportions of fulphat of indigo to the common quercitron bark bath, compofed of four parts of bark, three Ibid. 346 . parts of alum, and two parts of murio. Sulpleat of tin + . 457 Cotton and linen muft be firft dyed blue, and then
nd linen, yellow, according to the methods deferibed in the laft chapter. It is needlefs to add, that the depth of each of thefe colours mult be proportioned to the flade of green colour which it is the intention of the dyer to give.

Sect. II. Of Mixtures of Brue and Red.
The mixture of blue and red produces violet, purple, and lilac, of various thades, and known by valious names, according to the proportion of the ingredients employed. When the colour is deep, and inclines moft to blue, it is called violet; but when the red is prevalent, it gets the name of purpic. When the thade is light, the colour is ufually called lilac. For violet, therefore, the cloth mult receive a deeper blue; for purple, a deeper red; and fur lilac, both of thefe colotirs muft be light.

Wool is ufually dyed firft blue; the fhade, even for

$$
3
$$

violet, ought not to be deeper than that called Jky blue; Mixtures afterwards it is dyed fearlet, in the ufual manner. The of Bine and violets and purples are dyed lirit; and when the vat is Red. fomewhat exhanfted, the cloth is dipped in which is to 459 receive the lilac, and the other lighter fhades. By low in. meaus of fulphat of indigo, the whole procefs may be duced on performed at unce. The cloth is firtt alumed, and then wool, dyed in a veffel, contaning cochine:al, tatar, and fulphat of indigo, in proportions fuited to the depth of the colour required *. A violct colour may allo be gi** Poerner. ven to wool, by inpregnating it with a mordant com. pofed of tin diffolved in a mixture of fulphuric and muriatic acids, formed by diffolving muriat of foda in fulphuric acid: to which folution a quantity of iartar and fulphat of copper is added. The wool is then boiled in a deccuction of logwoud till it las acquired the wilhed for colour \dagger.

Silk is firt dyed crimfon, by means of cochintal, in thollht, ii. the ufual way, excepting only that no tartar, nor folu-33r. tion of tin, is employed: It is then dipped into the ${ }^{460}$ indigo vat till it has acquired the wifhed-for thade. The cloth is often after wards paffed through an archil hath, which greatly improves the beanty of the culour. Archil is often employed as a fubllitute for cochineal: The filk firlt receives a red colour, in the ufual way, by being dyed in an archil bath; afterwards it receives the proper thade of blue. The violet, or purple, given by this procefs is very beautiful, but not very lafting \ddagger.

Silk may be dyed violet or purple at once, by firft treating it with a mordant, comproded of equal parts of nitro-muriat of tin and alum, and then dipping it into a cochineal bath, into which a proper quantity of fulphat of indigo has been poured. But this dye is fading; the blue colour foon decays, and the filk be-
conies red*.

Cotton and linen are firft dyed blue, then galled, then foaked in a decoction of lugwood; fome alum and

* Gucblicitr, Bertbollets, i. 329. 461 acetite of copper are added to the decoction, and the Cotton, cloth is foaked again. This procels is repeated till the and linen, proper colour is obtained \dagger. The colour produced by ${ }_{\text {ii }}$ Bertbollet, this method is not nearly equal in permanency to that 31.33%. defcribed in this Supplement under the word Iron; to which we beg leave to refer the reader. The procefs there defcribed has been long known; but M: Chaptal has implified it fonewlat:.

Sect. IlI. Of Mintures of $2_{\text {Ellow }}$ and Red.

Tme colour produced by the mixture of red and yellow is orange; but alinof an intinity of thades refults from the different proportions of the ingredients, and from the peculiar nature of the yelluw enployed. Sometimes blue is combined with red and yellow on cloth: the refuiting colvur is called olive.

Wool may be dyed orange by precifely the fame pro. cefs which is ufed for farlet, only the propurtion of red mutt be diminifhed, and that of yellow increafed. When wool is fiff dyed red with madder, and then yellow with weld, the refulting colour is called cinnamon colour. ' The mordant, in this cafe, is a mixture of alum and tartar. The fhade may be varied exceedingly, by uling other yellow dye ftuffs inftead of weld, and by varying the proportions, according to circumitances. Thus a reddifh yellow may be given to cloth, by firf dyeing- it yellow, and then paffing it through a madder bath.

Silk is dyed orange by means of carthamus: thesilk, method

462

Orauge
and olive,
33.
\qquad
\qquad
\qquad

\qquad

\qquad

-

Mixtures method has been defcribed in the lat chapter. Cinna. of Black mon colour is given to it by dyeing it, previounly alumCulours, ed, in a bath compofed of the decoctions of logwood, $\underbrace{\text { Colours. Brazil wood, and fultic, mixed together. }}$
455
Cotton Cotton and limen receive a cimamun colour by means
linea. of weld and madder. The procefs is complicated. The cloth is tirl dyed with weld and acetite of copper, then dipped in a folution of fulphat of iron, then galled, then alumed, and then dyed in the ufual way with

* Bortsollet, madder *.
ii. 344, For olive, the cloth is firft dyed blue, then yellow, and laftly paffed through a madder bath. The fade depends upon the proportion of each of thefe colsurs. For vesy deep fhades the cloth is alfo dipped into a forlution of fupphat of irun. Cotton and linen may be dyed olive by dipping them into a bath, conipofed of the decoction of four parts of weld and one of potafs, mixed with the decoction of Brazil wood and a little acetite
t D'Aplige of coppert.
ny, ibid.
$3+5$.
Sect. IV. Of Mixtures of Black wilh other Colours.
${ }^{466}$ Strickly fpeaking, the mixtures belonging to this
Greys, drabs, and browns fection are not mixtures of black colours with other colours, but combinatious of the black dye with other colours; the ingredients of which, galls and brown oxide of iron, being both mordants, varioully modify other colouring matters by combining with them. Thus if cloth be previoully combined with brown oxide of iron, and afterwards dyed yellow with quercitron bark, the refult will be a drab of different fhades, according to the proportion of mordant employed. When the proportion is fmall, the colour inclines to olive or yellow; on the contrary, the drab may be deepened or faddened, as the dyers fpeak, by mixing a little furnach with

* Bonnof, the bark *. The precautions formerly inentioned in

i. 343 . applying the oxide mult be oblerved.

It is very common to dip cloth already dyed fome particular colour into a folution of fulphat of iron, and galls or fome other fubftance containing tan, called the black bath, in order to alter the Thade, and to give the colour greater pernanericy. We thall give a few inflances: greater minutenels would be inconfiftent with the nature of this article.

Cloth dyed blue, by being dipped into the llack bath, becomes bluiflo grey. Cloth dyed yellow, by the fame procefs, becomes blackiflg grey, drab, or yellowifl brown. Cloth previouly alumed, and dyed in a decoction of cochineal and acetite of iron, acquires a permanent violet colour incliwing to brown, or a lilac, if the dyeing vef-

* Gubliche, fel be fomewhat exhaulled *. Cloth ftecped in a mor-

Bertbollet, dant, compofed of alum and acetite of iron diffolved in
 decoction of galls and madder mixed together, acquires a fine deep brown. The method of varying the fhades of linen and cotton will be readily conceived, after we have given an account of calico printing, which forms the fubject of the next chapter.

Chap. VI. Of Calico Printing.

Calico printing is the art of communicating different colours to particular fpots or figures on the furface of cotton or linen cloth, while the reft of the ftuff retains ite original whitencfs.

This ingenious art feems to lave originated in India, where we know it has been practifed for more than 2000 years. Pliny indeed informs us, that the Egyptians were acquainted with calico printing; but a va- 0467 riety of circumitances combine to render it more than calico probable that they borrowed it from India. The artmonting. has but lately been cultivated in Europe; but the entlightened induitry of our mamufacturers has already improved prodigioufly upun the tedious proceffes of their Indian inafters. No art has rifen to perfection with greater celerity : a hundred years ago it was fcarcely known in Europe ; at prefent, the clegance of the patterns, the beauty and permanency of the colours, and the expedition with which the different operations are carried on, are really admirable.

A minute detail of the procefles of calico printing would not only be foreign to the plan of this article, but of very little utility. To the artift the procefles are already known; an account of them therefore could give him no new information ; while it would fatigue and difappoint thofe readers who wifh to underfland the principles of the art. We Gall content ourfelves, therefore, with a hort view of thefe principles.

Calico printing confifts in impregnating thofe parts of the cloth which are to receive a colour with a mordant, and then dycing it as ufual with fome dye fuff or other. The dye fluff attaches itfelf firmly only to that part of the cloth which has received the mordant. The whole furface of the cotton is indeed more or lefs tinged; but by walhing it, and bleaching it for fome days on the grafs with the wrong fide uppermott, all the unmordanted parts refume their original colour, while thofe which have received the mordant retain it. Let us fuppofe that a piece of white cotton cloth is to receive red ftripes; all the parts where the flipes are to appear are penciled over with a folution of acetite of alumina. After this, the cloth is dyed in the ufual manner with madder. When taken out of the dyeing fferward veffel, it is all of a red colour; but by wafhing and dyed and bleaching, the madder leaves evcry part of the cloth ${ }^{\text {bieacned }}$ white except the fripes impregnated with the acetite of alumina, which remain red. In the fame manner, may jellow flripes, or any other wifhed-for figure, be given to cloth, by fubftituting quercitron bark, weld, \&c. for madder.

When different colours are to be given to different parts of the cloth at the fame time, it is done by impregnating it with various mordants. 'Thus if tripes be drawn upon a cotton cluth with acetite of alumina, and ot her ftripes with acetite of iron, and the cloth be afterwards dyed in the ufual way with madder, and then wafhed and bleached, it will be friped red and brozun. The fame mordants with quercitron bark give yellow, and olive ur drab.

The mordants employed in calico printing are aceor Mordane ite of alumina and acetite of iron, prepared in the man- employec ner defcribed in the third chapter of this part. Thefe mordants are applied to the cloth, either with a pencil or hy means of blocks, on which the pattern, according to which the cotton is to be printed, is cut. As they are applied only to particular parts of the cloth, care muft be taken that none of them fpread to the part of the cloth which is to be left white, and that they do not interfere with one anotber when more than one are
applied.
applied. If thefe precautions be not attended to, all the elegance and beauty of the print mull be deltroyed. It is neceffary, therefore, that the murdants fhould be of fuch a degree of contiftence that they will not fpread beyond thofe parts of the cloth on which they are applied. This is done by thickening them with fluur or flarch when they are to be applied by the block, and with gum arabic when they are to be put on with a pencil. The thickening flould never be greater than is fufficient to prevent the fpreading of the mordants; when carried too far, the cotton is apt not to be fufficiently faturated with the mordant ; of courfe the dye takes but imperfectly.
In order that the parts of the cloth impregnated with mordants may be diftinguithed by their colour, it is ufual to tinge the mordants with fome colouring matter or other. The priuters commonly ufe the decoction of Brazil wood fur this purpofe; but Bancroft has objected to this method, becaufe he thinks that the Brazil wood colouring natter impedes the fubfequent procefs of dyeing. It is certain, that the colouring matter of the Brazil wood is difplaced during that operation by the fuperior affinity of the dye fluff for the mordant. Were it not for this fuperior affnity, the colour would not take at all. Dr Baneroft * advifes to colour the mordant with fome of the dye ituff afterwards to be applied; and he cautions the ufing of more for that purpofe than is fufficient to make the mordant diftinguihable when applied to the cloth. The reafon of this precaution is obvious. If too much dye be mixed with the mordant, a great proportion of the mordant will be combined with colouring matter; which muft weaken its affinity for the cloth, and of courfe prevent it from combining with it in fufficient quantity to enfure a permanent dye.

Sometimes thefe two mordants are mixed together in different proportions; and fometimes one or both is mixed with an infufion of fumach or of nut galls. By thefe contrivances, a great variety of colours are produced by the fame dye ftuff.

After the mordants have been applied, the cloth muft be completely dried. It is proper for this purpofe to employ artificial heat, which will cortribute fone- thing towards the feparation of the acetous acid from its bafe, and towards its evaporation; by which the mordant will combine in a greater proportion, and more intimately with the cloth.

When the cloth is fufficiently dried, it is to be waihed with warm water and cow dung, till all the flour or

Suppl. Vol. II. Part II.
gum enployed to thicken the mordants, and all thofe parts of the mordants which are uncombined with the cloth, are removed. 'Elice cow dung ferves to entangle thefe loofe particles of mordants, and to prevent them from combining with thofe parts of the cloth which are to remain white. After this the cloth is thoroughly rinfed in clean water.
Almoft the only dye fluffs employed by calico prin- Dye fluffs ters are, indigo, nadder, and quercitron bark or weld. ufed.
This laft fublance, however, is now but little ufed by the printers of this country, except for delicate greenifh yellows. The quercitron bark has almof fuperfeded it; becaule it gives colours equaliy good, and is muck cheaper, and more convenient, not requiring fo great a heat to fix it. Indigo, not requiring any mordant, is commonly applied at once either with the block or a pencil. It is prepared by boiling together indigo, potafs made cauftic by quickline, and orpiment : the folution is afterwards thickened with gum (k). It mult be carefully fecluded from the air, otherwife the indigo would foon be regenerated, which would render the folution ufelefs. Dr Bancroft has propofed to fubititute coarfe brown fugar for orpinent. It is equally efficacious in decompofing the indigo and rendering it foluble; while it likewife ferves all the purpofes of gum *.
When the cloth, after being impregnated with the i. 120. mordant, is fufficiently cleanfed, it is dyed in the ufual manner. The whole of it is more or lefs tinged with the dye fuff. It is well wafhed, and then fpread out for fome days on the grafs, and bleached with the wrong fide uppermoft. This carries the culour of completely from ali the parts of the cotton which has not imbibed the mordant, and leaves them of their original whitenefs, while the mordanted fuots retain the dye as ftrongly as ever.

Let us now give an example or two of the manner in which the printers give particular colours to calicoes. Some calicoes are only printed of one colour, others have two, others three, or more, even to the number of eight, ten, or twelve. The fmaller the number of colours, the fewer in general are the procefics.

1. One of the moft common coluurs on cotton prints Merhud of is a kind of nankeen ycllow, of various flades, down to printing a deep yellowih brown or drah. It is ufually in ftizipes diabs. or fpots. To produce it, the printers befmear a block, cut out into the figure of the print, with acetite of iron thickened with gum or flour; apply it to the cotton ; which, afterbeing dried and cleancd in the ufual manner, is

42
plunged
(k) Different proportions are ufed by different perfons. Mr Hauffman mixes 25 gallons of water with 16 pounds of indigo well ground (or a greater or fmaller quantity, according to the quality of the indigo and the depth of colour wanted) ; to which he adds 30 pounds of good carbonat of potafs, placing the whole over a fire ; and as foon as the mixture begins to boil, he adds, by a little at a time, 12 pounds of quicklime, to renderthe alkali cauttic, by abforbing its carbonic acid. This being done, 12 pounds of red orpiment are alfo added to the mixture ; whicb is then ftirred, and left to boil for fome little time, that the indigo may be perfectly diffolved; which may be known by its giving a yellow colour immediately upou being applied to a piece of white tranfparent glafs. M. Oherkampf, proprietor of the celebrated manufactory at Jouy near Verfailles, ufes a third more of indigo; and others ufe different proportions, not only of indigo, but of lime, potafs, and orpiment ; which all feem to anfwer with nearly equal fuccefs : but with the beft copper-coloured Guatamala indigo, it is certain that a good blue may be obtained from only half the quantity preferibed by Mr Hauffman, by ufung as much flone, or oytter thell lime, as of indigo, nearly twice as much potafs, and a fourth part lefs of orpienent than of indigo. See Bancroft, 1. 113.

Printing.
plunged into a potafs ley. The quantity of acetite of iron is always proportioned to the depth of the intended fhade.
2. For yellow, the block is befmeared with acetite of alumina. The cluth, after receiviag this mordant, is dyed with quercitron hank, and theas bleached.
3. Red is communicated by the fanc procefs, ouly madder is fubitituted for the bark.
4. The fine light blues, which appear fo often on printed cottons, are produced, by applying to the cloth a block befmeared with a compolition, confilting part. ly of wax, which covers all thofe parts of the cloth which are to remain white. The cloth is then dyed in a cold indigo rat ; and after it is dry, the wax compofition is removed by means of hot water.
5. Lilac, flea brown, and blackihh brown, are given by means of acetite of iron; the quantity of which is atways proportioned to the depth of the flade. For very deep colours, a little fumach is added. The cotton is afterwards dyed in the ufual manner with madder, and then blearhed.
6. Dove colour and drab, by actite of iron and quercitron bark.
When different colours are to appear in the fame print, a greater number of operations are neceffary. 'Two or more blocks are employed, upon each of which that part of the priut only is cut which is to be of fome particular colour. Thefe are befmeared with different mordants and applied to the cloth, which is afterwards dyed as ufual. Let us fuppofe, for inflance, that three blocks are applied to cotton; one with acetite of alumina, another with acetite of iron, a third with a mixture of thefe two mordants, and that the cotton is then dyed with quarcitron bark, and bleached. The parts impregnated with the mordants would have the following colours.

Acetite of alumina, - - Yellow,
iron, - - Olive, drab, dove (L),
The mixture, - . - Olive green, olive.
If part of the yellow be covered over with the indigo liquor, applied with a pencil, it will be converted into green: By the fame liquid, blue may be given to fuch parts of the print as require it.

If the cotton be dyed with madder inftead of quercitron bark, the print will exhibit the following colours:
Acetite of alumina, - . . Red,
iron,
The mixture, - Prown, black,

When a greater number of colours are to appear; for inflance, when thofe communicated by bark and thofe by madder are wanted at the fame time, mordants for part of the pattern are to be applied ; the cotton is then to be dyed in the madder bath and hleached; then the reft of the mordants, to fill up the pattern, are added, and the cloth is again dyed with quercitron bark and bleached. This fecond dyeing does not much affect the madder colours; becaufe the mordants, which render them permanent, are already faturated. The
yellow tinge is eafily removed by the fubfequent bleaching. Sonctimes a new mordant is alfo applied to fome of the madder colours; in confequence of which they receive a new permanent colour from the bark. After the latt bleaching, new colours may be added by means of the indigo liquor. The following table will give an idea of the coluurs which may be given to cotton by thele complicated proceffes.

1. Madder dye.	Colours.
Acetite of alumina,	Red, Brown, black
Ditto diluted	Lilac,
Both mixed,	Purple.
II. Bark dye.	
Acetite of alumiua, iron,	Yellow, Dove, drab,
Lilac and acetite of alumina,	Olive,
Red and acetite of alumina,	Orange.
III. Indigo dye.	
Indigo, -	Blue,
Indigo and fellow,	Green.

Thus no lefs than 12 colours may be made to appear together in the fame print by thele different procefles.

Thefe inflances will ferve to give the reader an idea of the nature of calico printing, and at the fame tine afford an excellent illuftration of the inportance of mordants in dycing.

If it were poffible to procure colours fufficiently permanent, by applying them at once to the cloth by the block or the pencil, as is the cafe with the mordants, the art of calico printing would be brought to the greateft poffible fimplicity : but at prefent this can only be done in one cafe, that of indigo; every other colour requires dyeing. Compotitions indeed may lee made by previoully combining the dye ftuff and the mordants. Thus yellozu may be applied at once by employing a misture of the infufion of quercitron bark and acetite of alumina; red, by mixing the fame mordant with the decoction of alumina, and fo on. Unfortunately the colours applied in this way are far inferior in permanency to thefe, produced when the mordant is previoully combined with the cloth, and the dye ftuff afterwards applied feparately. In this way are applied almoft all the fugitive colours of calicoes which wafhing or even expofure to the air deftroys.

As the application of colours in this way cannot always be avoided by calico printers, every method ofrendering them more permanent is an object of importance. We fhall therefore conclude this chapter with a defcription of feveral colours of this kind propofed by Dr Bancroft, which have a confiderable degree of permanence.

A yellow printing colour may be formed by the following method: Let three pounds of alum, and three ounces of clean chalk, be firt diffolved in a gallon of hot water, and then add two pounds of fugar of lead; ftir this mixture occafionally during the fpace of 24 or 36 hours, then let it remain 12 liours at reft, and afterwards decant and preferve the clear liquor ; this be-

Calico ing done, pour fo much more warm water upon the remaining fediment, as after ftirring and leaving the mixture to fettle will afford clear liquor enough to make, when mixed with the former, three quarts of this aluminous mordant or acetite of alumine. Then take not lefs than fix, nor more than eight, pounds of quercitron bark properly ground; put this into a tinned cópper veffel, with four or five gallons of clean foft water, and make it boil for the fpace of one hour at leaft, add. ing a little more water, if at any time the quantity of liquor fhould not be fufficient to cover the furface of the bark : the liquor having boiled fufficiently, hould be taken from the fire, and left undifturbed for half an hour, and then the clear decoction flould be poured off through a fine fieve or canvas ftraincr. This being done, let lix quarts more of clear water be poured upon the fame bark, and made to boil ten or fifteen minutes, both having been firft well ftirred; and being afterwards left a fufficient time to fettle, the clean decoction may then be ftrained off, and put with the former into a flallow wide veffel to be evaporated by boiling, until what remains, being joined to the three quarts of aluminous mordant before mentioned, and to a fufficient quantity of gum or pafte for thickening, will barely fuffice to make three gallons of liquor in the whole. It will be proper, however, not to add the aluminons mordant, until the decoction is fo far cooled as to be but little more than blood warm; and thefe being thoroughly mixed by firring, may afterwards be thickened by the gum of Senegal or by gum arabic, if the mixture is
intended for penciling; or by a pafte made with narch or flour, if it be intended for printing.

By fubitituting a pound of murio fulphat of tin for the aluminous mordant in the above compofition, a mixture may be formed which affords a very bright and full yellow, of confiderable durability.

Sulphat of tin, mixed with a decoction of quercitron bark, communicates to cutton a cinuanon colour, which is fufficiently pernanent *.

When the decoctions of quercitron bark and log-i. 4 Bencreft, wood are boiled together, and fuitable proportions of fulphat of copper and of verdigris are added to them, with a little carbonat of potafs, a compound is furned which gives a green colour to cotton. Bancroft has made trial of this; and though it has not fully anfivered his expectation, his attempts were attended with fuf. ficient fuccefs to determine him to perfevere in his experiments \dagger.

If acetite of iron be mixed with a decoction of quercitron bark, and the mixture be properly thickened, the compound will communicate to cotton a drab colour of fome durability. This compound, mixed with the olive colouring liquor above defcribed, will produce an olive. If a folution of iron, by a diluted muriatic acid, or by a diluted nitric acid, be employed for this purpofe inftead of iron liquor, it will produce colours a little more lafting; but thefe folutions thould be employed fparingly, that they may not hurt the texture of the linen or cotton to which they are intended to be applied.

S U L.

 is the ratio of 1 to 3 .SUBTRIPLE, is when one quantity is the 3^{d} part of another; as $\mathbf{2}$ is fubtriple of 6. And Subtriple Ralio

SUBTRIPLICATE RATIO, is the ratio of the cube roots. So the fubtriplicate ratio of a to b, is the ratio of $\sqrt{3} \sqrt{ }$ to ${ }^{3} \sqrt{b}$, or of $a^{\frac{1}{5}}$ to $b^{\frac{1}{3}}$.

SUCCESSION of signs, in aftronomy, is the order in which they are reckoned, or follow one another, and according to which the fan enters them; called alfo confequentia. As Aries, Taurus, Gemini, Cancer, \&c.

SULPHURET of lime having lately been recommended by an eminent chemift * as a fubilitute for pota/b in the new method of bleaching, which, if it anfwer, may certainly be afforded at lefs expence, we fhall here give the method of preparing the fulphuret.

Take of fulphur, or brinftone in fue powder, four pounds; lime, well flaked and fifted, twenty pounds ; water fixteen gallons:-thefe are all to be well mixed and boiled for about half an hour in an iron veffel, Atirring them brikly from time to time. Soon after the agitation of hoiling is over, the folution of the fulphuret of lime clears, and may be drawn off free from the infoluble matter, which is confiderable, and which refts upon the bottom of the boiler (A). The liquor in this

S U N

flate is pretty nearly of the colour of fmall beer; but 3ulphuret, not quite fo tranfparent.

Sixteen gallons of frefh water are afterwards to be poured upon the infoluble dregs in the boiler, in order to feparate the whole of the fulphuret from them. When this clears (being previouny well agitated), it is alfo to be drawn off and mixed with the firt liquor; to thefe again thirty-three gallons more of water may be added, which will reduce the liquor to a proper ftandard for Ateeping the cloth.

Here we have (an allowance being made for evaporation, and for the quantity retained in the dregs) fixty gallons of liquor from four pounds of brimfone.

Although fulphur by itfelf is siot in any fenfible de. gree foluble in water, and lime but very fparingly fo, water diffolving but about one feven-hundrcdth part of its weight of lime; yet the fulphuret of lime is highly foluble.

When the above proportion of lime and fulphur is boiled with only twelve gallons of water, the fulphuret partly cryftallizes upon cooling; and when once cryftallized it is not eafy of folution.

SUN (fee Astronomy-Index, Encycl.) is certainly that celeftial body which, of all others, fhould moft attract our attention. It has accordingly employed much
(A) Although lime is one of the conflituent principles of the fulphuret, yet being fo intimately united to the fulphur, it has no longer the property of lime; upon the fame principle that fulphuric acid in fulphat of potafin has not the property of that acid.

San. of the time and meditation, not only of the aftronomer but alfo of the fpeculative philofoplacr, in all ages of the world; and many hypothefes lave heen formed, and fome difcoveries made, refpecting the nature and the ules of this valt luminary.

Sir Iface Newton has thewn, that the fun, by its attractive power, retains the planets of our fyttem in their orbits : he has alfo pointed out the method whereby the quantity of matter which it contains may be accurately determined. Dr Bradley has affigned the velocity of the folar light with a degree of precifon exceeding our utmof expectation. Gallileo, Scheiner, Hevelius, Caffini, and others, have afcertained the rotation of the fun upon its axis, and determined the pofition of its equator. By means of the tranlit of Veulus over the difk of the fun, our mathematicians have calculated its diffance from the earth, its real diameter and magnitude, the denfity of the matter of which it is compofed, and the fall of heavy bodies on its furface. We have therefore a very clear notion of the vaft importance and powerful influence of the fun on its planetary fyftem; but with regard to its internal conltruction, we are yet extremely ignorant. Many ingenious conjectures have indeed been formed on the fubject ; a few of which we thall mention as an introduction to Dr Herfchel's, of which, as it is the lateft, and perhaps the moll plaufible, we fhall give a pretty full account nearly in his owis words.

The dark fpots in the fun, for inftance, have been fuppofed to be folid bodies revolving very near.its furface. They have been conjectured to be the fmoke of voleanoes, or the foum floating upon an ocean of fluid matter. They have alfo been taken for clouds. They were explained to be opaque maffes fwimming on the fluid matter of the fun, dipping down occafionally. It has been fuppofed that a fiery liquid furrounded the fun, and that by its ebbing and flowing the higheft parts of it were occafionally uncovered, and appeared under the fhape of dark fpots: and that by the return of the fiery liquid, they were again covered, and in that manner fucceffively affumed different phafes. The fun itfelf has been called a globe of fire, though perhaps metaphorically. The wathe it would undergo by a gradual confumption, on the fuppolition of its being ig. nited, has been ingenionlly calculated ; and in the fame point of view its immenfe power of heating the bodies of fuch comets as draw very near to it has been affigned.

In the year $ア 7 ク 9$ there was a fpot on the fun which was large enough to be feen with the naked eye. By a view of it with a feven feet reflector, charged with a very high power, it appeared to be diviried into two parts. The largeft of the two, on the gth of April, meafured $1^{\prime} 88^{\prime} .06$ in diameter, which is equal in length to more than 3:,000 miles. Both together mult certainly have extended above 50,000 . The idea of its keing occafioned by a volcanic explofion violently driving atway a fiery fluid, ought to be rejected (fays Dr Herfchel) on many accounts. "To mention only one, the great extent of the fpot is very unfavourable to fuch a fuppofition. Indeed a much lefs violent and lefs pernicious caufe may account for all the appearances of the fpot. When we fee a dark belt near the equator of the planet Jupiter, we do not reeur to earthonuakes and voleanoes for itsorigin. As atmofphere, with its natural
changes, will explain fuch belts. Our fpot on the fun may be accounted for on the fame principles. The earth is furrounded by an atmofphere compofed of various elaftic fluids. The fun alfo has its atmofphere; and if fome of the fluids which enter into its compofition fhould be of a fhining brilliancy, in the manner that will be explained hereafter, while others are merely tranfparent, any temporary caufe which may remove the lucid fluid will permit us to fee the body of the fun through the tranfparent ones. If an obferver were placed on the moon, he would fee the folid hody of the earth only in thofe places where the tranfparent fluids of our atmofphere would permit him. In others, the opaque vapours would reflect the light of the fun without permitting his view to penetrate to the furface of our globe. He would probably alfo find, that our planet had occafionally fome hining fluids in its atmofphere ; as, not unlikely, fome of our northern lights might not efcape his notice, if they happened in the unenlightened part of the earth, and were feen by him in his long dark night. Nay, we have pretty good reafon to believe, that probably all the planets emit light in fome degree ; for the illumination which remains on the moon in a total eclipfe cannot be entirely afcribed to the light which may reach it by the refraction of the earth's atmofphere. For inftance, in the eclipfe of the moon October 22. 1790, the rays of the fun refracted by the atmof phere of the earth torwards the moon, admitting the mean horizontal refraction to be $30^{\prime} .5 \mathrm{c}^{\prime \prime} .8$, would meet in a foeus 189,000 miles beyond the moon ; fo that confequently there could be no illumination from rays refracted by our atmofphere. It is, however, not improbable, that about the polar regions of the earth there may be refraction enough to bring fome of the folar rays to a fhorter focus. The diftance of the moon at the time of the eclipfe would require a refraction of $54^{\prime} 6^{\prime \prime}$, equal to its horizontal parallax at that time, to briug them to a foeus fo as to throw light on the moon.

The unenlightened part of the planet Venus has alfor been feen by different perfons ; and not having a fatellite, thofe regions that are turned from the fun cannot poflibly fhine by a borrowed light ; fo that this faint illumination muit denote fome phofphoric quality of the atmofphere of Venus.

In the inflance of the large fpot on the fun already mentioned, Dr Herfchel concludes, from appearances, that he viewed the real body of the fan itfelf, of which we rarely fee more than its thining atmofphere. In the year 1783 he obferved a fine large fpot, and followred it up to the edge of the fun's limb. Here he took notice that the fpot was plainly depreffed below the furface of the fun, and that it had very hroad fhelving fides. He alfo fufpected fome part, at leaft, of the melving fides to be elevated above the furface of the fun ; and obferved that, contrary to what ufually happens, the margin of that fide of the fpot which was farthent from the limb was the broadef.

The luminous thelving fide of a fpot may be explain ed by a gentle aud gradual removal of the fhining fluid, which permits us to fee the globe of the fun. As to the uncommon appearance of the broadelt margin being on that fide of the fpot which was fartheft from the limb when the fpot came near the edge of it, we may furmife that the fun has inequalities on its furface, which

S U N

may paflibly be the caufe of it. For when mountainous countries are expofed, if it fhould chance that the higheft parts of the landfcape are fituated fo as to be near that fide of the margin or penumbra of the fpot which is towards the limb, they may partly intercept our view of it when the fpot is feen very obliquely. This would require elevations at leaft five or fix hundred miles high; but confidering the great attraction exerted by the fun upon bodies at its furface, and the flow revolution it has upon its axis, we may readily admit inequalities to that amount. From the centrifugal furce at the fun's eqquator, and the weight of bodies at its furface, he computes, that the power of throwing down a mountain by the exertion of the former, balanced by the fuperior force of keeping it in its place of the latter, is near $6 \frac{1}{2}$ times lefs on the fun than on our equatorial regions; and as an elevation fimilar to one of three miles on the earth would not be lefs than 334 miles on the fun, there can be no doubt but that a mountain much higher would ftand very firmly. The little denfity of the folar body feems alfo to be in favour of the height of its mountains; for, ceteris paribus, denfe budies will fooner come to their level than rare ones. The difference in the vanifhing of the falving fide, inftead of explaining it by monutains, may alfo, and perhaps more fatisfactorily, be accounted for from the real difference of the extent, the arrangement, the height, and the intenfity of the fhining fuid, added to the occafional changes that may happen in thefe particulars during the time in which the fpot approaches to the edge of the difk. However, by admitting large mountains on the face of the fun, we fhall account for the different opinions of two eminent aftronomers; one of whom believed the fpots depreffed below the furface of the fun, while the nther believed them elevated above it. For it is not impoffible that fome of the folar mountains may be high enough occationally to project above the fhining claftic fluid, when, by fome agitation or other caufe, it is not of the ufual height; and this opinion is much Atrengthened by the return of fome remarkable fpots which ferved Caflui to afcertain the period of the fun's rotation. A very high country, or chain of mountains, may oftener become vifible, by the removal of the obAtructing fluid, than the lower regions, on account of its not bcing fo deeply covered with it.

In 1791 the Doctor examined a large fpot on the fun, and found it evidently depreffed below the level of the furface. In 1792 he examined the fun with feveral powers from 90 to 500 , when it appeared evidently, that the black fpots are the upaque ground, or body of the fun; and that the luminous part is an atmofphere, which, being interrupted or broken, gives us a tranfient glimpie of the fun itfelf. He perceived likewife, that the fhining furface of the fun is unequal, many parts of it being elevated and others deprefled; and that the elevations, to which Hevelius gave the name of faculs, fo far from refembling torches, were rather like the thrivelled clevations upon a dried apple, extended in length, and moit of them joined together, making waves or waving lines. The facula being clevations, very fatisfac. torily explains the reafon why they difappear towards the iniddle of the fun, and reappear on the other margin ; for about the place where we lofe them, they begin to be cdgewife to our view; and if between the faculx fhould lic dark fpots, they will moit frequently
break out in the middle of the fum, becaufe they are no lunger covered by the fide-views of thefe faculx.

The Doctor gives a very particular account of all his obfervations, which feem to have becn accurately made, and we necd fcarcely add with excellent telefcopes. For that account, however, we muft refer to the me. moir itfelf, and haiten to lay before our readers the refult of his obfervations. "That the fun (fays he) has a very extenfive atmofphere, cannot be doubted; and that this atmofphere confilts of various elaftic fluids, that are mure or lefs lucid and tranfparent, and of which the lucid oue is that which furnifhes us with light, feems alfo to be fully eftablifhed by all the phenomena of its fpots, of the faculx, and of the lucid furface itfelf. There is no kind of variety in thefe appearances but what may be accounted for with the greatell facility, from the continual agitation which, we may eafily conceive, mutt take place in the regions of fuch extenfive elaftic fluids.
"It will be neceffary, however, to be a little more particular as to the manner in which I fuppofe the lucid fluid of the fun to be generated in its atmofphere. An analogy that may be drawn from the generation of. clouds in our own atinofphere, feems to be a very proper one, and full of inftruction. Our clouds are probably decumpolitions of fome of the elaftic fluids of the atmofphere itfelf, when fuch natural canfes, as in this grand chemical laburatury are generally at work, axt upon them: we may therefore admit, that in the very extenfive atmofphere of the fun, from caufes of the fame nature, fimilar phenomena will take place ; but with this difference, that the continual and very extenfive de. compofitions of the elaftic fluids of the fun are of a phofphoric nature, and attended with lucid appearances, by giving out light.
"If it thould be objected, that fuch violent and unremitting decompofitions would exhaut the fun, we may recur again to our analogy, which will furnifh us with the following reflections. The extent of our owa atmofphere, we fee, is ftill preferved, notwithftanding the copious decompofitions of its fllids in clouds and falling rain ; in flathes of lightning, in meteurs, and other luminous phewomena; becaufe there are freni fupplies of elaftic vapours cuntinually afcending to make good the wafte occafioned by thule decompofitions. But it may be urged, that the cafe with the decompof:ion of the claftic fluids in the folar atmofphere wesuld be very different, fince light is emitted, and does not return to the fun, as clunds du to the earth when they defeend in fhowers of rain. To which I anfwer, that, in the decompofition of phofphoric 月uids, every other: ingredient but light may alfo return to the body of the fun. And that the emiffion of light mult watte the fun, is not a difficulty that can be oppofed to our hypothefis: for as it is an evident fact that the fun dues emit light, the fameobjection, if it could be one, would equally militate againft every other affignable way to account for the phenomenon.
" There are, moreover, confiderations that may leffen the preffure of this alledged difficulty. We know the exceeding fubtility of light to be fuch, that in ages of time its emanation from the fun cannot very fenfibly leffen the fize of this great body. 'lo this may be added, that very poflibly there may always be ways of reftoration to compenfute for what is loft by the emif-

Sun. fion of light, though the manner in which this can be brought about hould not appear to us. Many of the operations of Nature are carried on in her great laboratory which we cannot comprehend, but now and then we fee fome of the tools with which the is at work. We need not wonder that their conftruction fhould be fo fingular as to induce us to confefs our ignorance of the method of employing then; but we may reft affured that they are not a mere lufus nature." Here he alludes to the great number of fmall telefcopic comets; which he fuppofes, as others had done before him, may be eniployed to refture to the fun what had been loft by the eniffion of light. "My hypothefis, however, (continues he) does not lay me under any obligation to explain how the fun can fuftain the waltc of light, nor to thew that it will fuftain it for ever; and I fhould alfo remark that, as in the analugy of generating clouds, I merely allude to their production as owing to a decompofition of fome of the elaftic fluids of our atinofohere, that analogy, which firmly refts upon the fact, will not be lefs to my purpofe, to whatever caufe thefe clouds may owe their origin. It is the fame with the lucid clouds, if 1 may fo call them, of the fun. They plainly exit, becaufe we fee then; the manner of their being geuerated may remain an hypothefis-and mine, till a better can be propofed, nay fland good; but whether it does or not, the confequences I am going to draw from what has been faid will not be affected by it."

Before he proceeds to draw thefe confequences, he informs us that, according to the above theory, a dark fpot in the fun is a place in its atmofphere, which happens to be free from luminous decompofitious; that facula are, on the contrary, more copions mixtures of fuch fluids as decompofe eacly other; and that the regions, it which the luminous folar clouds are formed, adding thereto the elevation of the faculx, cannot be lefs than 1843 , nor much more than 2765 miles in depth. It is true, continues he, that in our atmofphere the extent of the clouds is limited to a very narrow compafs; but we ought rather to compare the folar ones to the luminous decompofitions which take place in our aurora borealis, or luminous arches, which extend much farther than the cloudy regions. The denfity of the luminous folar clouds, though very great, may not be exceedingly more fo than that of our aurora borealis. For if we confider what would be the brilliancy of a fpace two or three thoufand miles deep, filled with fuch corrufcations as we fee now and then in our atmofpherc, their apparent intenfity, when viewed at the diftance of the fun, might not be much inferior to that of the lucid folar fluid.

From the luminous atmofphere of the, fun, he proceeds to its opaque body; which, by calculation from the power it exerts upon the planets, we know to be of great folidity ; and from the phenomena of the dark fpots, many of which, probably on account of their high fituations, have been repeatedly feen, and otherwife denote inequalities in their level, we furmife that its furface is diverfified with mountains and valleys.

What has been faid, enables us to come to fome very important conclufions, by remarking, that this way of confidering the fun and its atmofphere removes the great diffimilarity we have hitherto been ufed to find between
its condition and that of the reft of the great bodies of the folar fyitem.

The fun, viewed in this light, appears to be nothing elfe than a very eminent, largc, and lucid planet, evidently the firft, or, in ttrictaefs of freaking, the only primary one of our fyitem, all others being truly fecondary to it. Its fimilarity to the other globes of the folar fyftem with regard to its folidity, its atmofphere, and its diverfified furface, the rotation upon its axis, and the fall of heavy bodies, leads us on to fuppofe that it is moft probably alfo inhabited, like the rett of the planets, by beings whofe organs are adapted to the peculiar circumftances of that valt globe.
It may, however, not be aniifs to remove a certain difficulty, thich arifes from the effect of the fun's rays upon our globe. The heat which is here, at the diftance of 95 millions of niles, produced by thefe rays, is fo confiderable, that it may be objected, that the furface of the globe of the fun itfelf mult be fcorched up beyond all conception.

This may be very fubftantially anfwered by many proofs drawn from natural philofophy, which fhew that heat is produced by the fun's rays only when they act upon a calorific medium ; they are the caufe of the production of heat, by uniting with the matter of fire which is contained in the fubftances that are heated; as the collifion of fint and fleel will inflame a magazine of gunpowder, by putting all the latent fire it contains into action. But an inflance or two of the manner in which the folar rays produce tbeir effect, will bring this home to our moft common experience.

On the tops of mountains of a fufficient height, at an altitude where clouds can very feldom reach to fhelter them from the direct rays of the fun, we always find regions of ice and fnow. Now if the folar rays themfelves conveyed all the heat we find on this globe, it ought to be hotteft where their courfe is leaft interrupted. Again, our aëronauts all confirm the coldnefs of the upper regions of the atmofphere; and fince, therefore, even on our earth, the heat of any fituation depends upon the aptnefs of the medium to yicld to the impreftion of the folar rays, we have only to admit, that on the fun itfelf, the elaftic fluids compofing its atmofphere, and the matter on its furface, are of fuch a nature as not to be capable of any exceffive affection from its own rays: and indeed this feems to pe proved by the copious emiffion of them ; for if the elaftic fluids of the atmofphere, or the matter contained on the furface of the fun, were of fuch a nature as to admit of an eafy chemical combination with its rays, their emifion would be much impeded.

Our author then proceeds to fupport his theory by analogical reafonings; but as thefe will occur to fuch of our readers as are converfant with the fpeculations of aftronomers, we pafs on to his reflections upon the confequences of this theory. "That the flars are funs can hardly admit of a doubt. Their immenfe diftances would perfectly exclude them from our view, if the light they fend us were not of the folar kind. Befides, the analogy may be traced much father. The fun turns on its axis; fo does the far Algul; fo do the flars called β Lyrx, \& Cephei, n Antinoi, oCeti, and many more; moft probably all. From what other caufe can we fo probably account for their periodical changes? Again,

\square

[^14]

[^15][^16][^17]

\qquad

[^18]1

[^19]

our fun has fpots on its furface ; fo has the ftar Algol, and fo have the fars already named, and probably every flar in the heavens. On our fun thefe fpots are changeable; fo they are on the ftar. Ceti, as evidently appears from the irregularity of its changeable luftre, which is often broken in upon by accidental changes while the general period continues unattered. The fame little deviations have been olferved in other periodical Atars', and ought to be aferibed to the fame caufe. But if ftars are funs, and funs are inhabitable, we fee at once what an extenfive field for animation opens itfelf to our view.
"It is true, that analogy may induce us to conclude, that fince itars appear to be funs, and funs, aecording to the common opinion, are bodies that ferve to enlighten, warm, and fuftain a fy ftem of planets, we may have an idea of numberlefs globes that ferve for the habitation of living creatures. But if thefe funs themfelves are primary planets, we may fee fome thoufands of them with our own eyes, and millions by the help of telefeopes, when at the fame time the fame analogical reafoning ftill remains in full foree with regard to the planets which thefe funs may fupport."'

The Doctor then obferves, that from other confiderations, the idea of funs or ftars being merely the fupporters of fyftems of planets, is not abfolutely to be admitted'as a general one. "Among the great number of very compreffed clutters of tars I have given (fays he) in my catalogues, there are fome which open a different view of the heavens to us. The fars in them are fo very clofe together, that, notwithiftanding the great diftance at which we may fuppofe the clutter itfelf to be, it will hardly be poffible to affign any fufficient mutual dill ance to the flars compoing the clufter, to leave room for crowding in thofe planets, for whofe fupport thefe flars have been, or might be, fuppofed to exitt. It thould feem, thercfore, highly probable, that they exift for themfelves; and are, in fact, only very capital lucid, primary planets, connected together in one great fyitem of mutual fupport.
"The fame remark may be made with regard to the number of very clofe donble ftars, whofe apparent diameters being alike, and not very fmall, do not indicate any very great mutual diftance: from which, however, unult be deducted all thofe where the different diftances may be compenfated by the real difference in their refpective magnitudes.
"To what has been faid may be added, that, in fome parts of the milky way, where yet the fars are not very fmall, they are fo crowden, that in the year 1792, Aug. 22. I found by the gauges that, in 41 minutes of time, no lefs than 258,000 of them had paffed through. the ficld of view of my telefcope.
"It feems, therefore, upon the whole, not improbable, that in many cafes dars are united in fuch clofe fyftems as not to leave much room for the orbits of planets or comets; and that confequently, upon this account alfo, many ftars, unlefs we would make them mere ufelefs brilliant points, may themfelves be lucid planets, perhaps unattended by fatellites."

What a magnificent idea does this theory give of the univerfe, and of the goodnefs, as wett as power, of its Author? And how cold muft be that heart, and clouded that underftanding, who, after the contemplation of it, can for one moment liften to the atheifical doctrines
of thofe men who prefume to account for all the phe: nomena of nature by chemical affinities and mechanical attraction? The man who, even in his heart, can fay, that fuch an immenfe fyatem, differing fo widely in the Atructure of the different parts of it, but cverywhere ergwded with life, is the cffect of unintelligent ageney, is indeed, to ufe the empliatic language of an ancient aftronomer-a fool.

SUNDA, Straits of, are formed by the approach of the fouth eaft extrenity of the ifland of Sumatra to the north.weft extremity of the infand of Jawa (See thefe iflands, Encycl.). The flraits are interfperfed with a number of fmall ines; the whole difplaying a feenery fearcely to be execeded in the foftnefs, richnefs, and gaiety of its appearance. The two great iflands, which are low, and in fome places marfhy near the thore, rife afterwards, in a gradual flope, towards the interior of the country, admitting in their afcent every variety of fituation, and all the different tints of verdure. Of the fmaller iflands, a few have fteep and naked fides, fuch as one in the middle of the Atrait, which the Englifh navigators have diftinguifhed, on that aecount, by the name of Thwart the way, and two very fmall round ones, called, from their figures, the Cap and Butron (fee thefe iflands, Suppl.); but moft of the others are cntirely level, founded upon beds of coral, and covered with trees. Some of thefe iflands are furrounded with a white fandy beach, vifited frequently by turtle; but moft of them are adorned with thick hrubbery to the water's edge, the roots being wafhed by the fea, or the branches dipping into it; and on the outfide are fhoals, in which a multitude of little aquatic animals are bufied in framing calcareous habitations for their refidence and protection. Thofe fabries gradually emerge above the furface of the water, and at length, by the adventitious adhefion of vegetable matter, giving hirth to plants and trees, become new iflands, or add to the fize of thofe already produced by the fame means. It is impoffible not to be ftruck with the diverfified operations of Nature for obtaining the fame end, whether employed in originally fixing the granite foundation of the Brazils, or in throwing up, by fome fudden and fubfequent convulfion, the ifland of Amferdam, or in contimuing to this hour, through the means of animated beings, the formation of new lands in the Straits of Sunda-Sir George Stuanton's Account of the Britifs Embafly to Cbina.

SUNNUD, a grant, patent, or charter, in Bengal.
superparticular proportion, or RaTIO, is that in which the greater term exeeeds the lefs. by unit or 1 . As the ratio of 1 to 2 , or 2 to 3 , or 3 . to 4 , \&c.

SUPERPARTient Proportion, or Ratio, is when the greater term contains the lefs term once, and leaves fome number greater than I remaining. As theratio
of 3 to 5 , which is equal to that of 1 to $1 \frac{2}{3}$;
of 7 to 10 , which is equal to that of 1 to $1 \frac{3}{\frac{3}{4}}$; \&e.
SUPPLEMENT, of an Arch or Angle, ingeometry or trigonometry, is what it wants of a femicirele, or of 180°; as the complement is what it wants of a quadrant, or of 90°. So, the fupplement of 50° is 130°; as the complement of it is 40°. -

SUTTON (Thomas, Efq;), founder of the cherterhouse, was born at Knaith in Lincolnhire, in 1532 , of

S U W

Sutton. an ancient and genteel family. He was educated at Eton fchool, and probably at Cambridge, and ftudied the law in Lincoln's Inn; but this profeffion not fuiting his difpofition, he travelled into foreign countries, and made fo long a ftay in Holland, France, Spain, and Italy", as to acquire the languages of thofe various nations. During his abfence, his father died, and left him a confiderable fortune. On his return home, being a very accomplifhed gentleman, he became fecretary to the earl of Warwick and his brother the earl of Leicefter. By the former of thefe soblemen, in 1569. he was appointed mafter of the ordnance at Berwick; and diftinguifhing himfelf greatly in that fituation, on the rebellion which at that time broke out in the north, he obtained a patent for the office of mafter-general of the orduance for that diftrict for life. He is named as one of the chiefs of thofe 1500 men who marched into Scotland, by the order of Queen Elizabeth, to the affiftance of the regent, the carl of Morton, in 1573 ; and he commanded one of the five batteries which obligred the ftrong caftle of Edinburgh to furrender to the Englif. -He purchafed of the bifhop of Durham the manors of Gatefhead and Wickharn ; which, producing coal-mines, became to him a fource of extraordinary wealth. In 1580 , he was reputed to be worth L. 50,000

Soon after this, he married a rich swidow, who brought him a confiderable eftate; and taking up the bufnefs of a merchant, riches flowed in to him with every tide. He is faid to have had no lefs than thirty agents abroad. He was likewife one of the chief victuallers of the navy; and feems to have been matter of the barque called Sutton, in the lift of volunteers attending the Englifh fleet againt the Spanifh armada. It is probable, alfo, that he was a principal inftrument in the defeat of it, by draining the bank of Genoa of that money with which Philip intended to equip his fleet, and thereby hindering the invafion for a whole year. He is likewife faid to have been a commiffioner for prizes under Lord Charles Howard, High Admiral of England; and going to fea with letters of marque, he took a Spanifh thip worth L. 20,0co. His whole fortune, at his death, appears to have been in land L. 5000 per annum; in money, upwards of L. 60,000 ; the greateft eftate in the poffeffion of any private gentleman till much later times. He lived with great munificence and hofpitality ; but lofing his lady in 1602 , he retired from the world, leffened his family, and lived in a private frugal manner ; and, having no iffue, refolved to diftinguifh his name by fome important charity. -Accordingly, he purchafed of the Earl of Suffolk How. ward-Houfe, or the late diffolved charter-houfe, near Smithfield, for the fum of L. 13,000, where he founded the prefent hofpital, in 1611 , for the relief of poor inen and children. Before he had fixed upon this defign, the court endeavoured to divert him from his purpofe, and to engage him to make Charles I. then Duke of York, his heir, by conferring on him a peerage; but being free from ambition, and now near his grave, the luftre of the coronet could not tempt him to change
his plan. He died the 1 th of December, 16 t , at
Hackney, aged 79. His body was convered, with the mott folemn proceffion, to Chrift-church in London, and there depofited, till 1614 , when it was removed to the charter-houfe, and interred in a vault on the north fide of the clapel, under a magnilicent tumb.

SUWOROW (a) Rimiksky (Count Alexander), was a man fo eminent in his profeffion, that, if war be an art founded on fcience, it would be improper not to give fome account of his life in a Work of this nature. Various accounts of him, indeed, are already in the hands of the public: but they differ fo much from one another in the pictures which they prefent of the man, that it is not eafy, if it be always poffible, to diftinguith truth from falfehood. With refpect to the talents of the General, there is not room for the fame difference of reprefentation ; becaufe a train of military fuccefles, almoft unrivalled, has rendered thefe confpicuous to all Europe. In the fhort detail that our limits permit us to give of the life of this fingular man, we thall avail ourfelves of all the information, public and private, which we have been able to obtain, and believe to be authentic; and we hope to make vur readers ac. quainted with fome particulars refpecting his perfon and domeftic habits which are not yet generally known.

The family of Suworow is faid to have been from Sweden, and of a noble defcent. The firft of this name fettled in Ruffia about the latter end of the laft century; and having engaged in the wars againft the Tartars and the Poles, were rewarded by the Czars of that period with lands and peafants. Bafl, the father of our hero, is faid to have been the godfon of Peter the Great ; to have been held in high eftimation for his political knowledge and extenfive erudition; and to have enjoyed, at his death, the two-fold rank of General and Senator*.

As this account is given by a man who profeffes to *See tbe have formed an intimate acquaintance with Suworow tbe camhimfelf, it ought to be correct; and yet we cannot helppaigns of entertaining fome doubts of its truth, or at leaft of its Count Alexaccuracy It is well known that extenfive erudition ander Sue accuracy. It is well known, that extenfive erudition nacorow, by was in no efleem in Ruffia at the period when Bafil frederict Suworow is here faid to have been fo learned; and it Antbing. is likewife known, that if, by erudition, be meant a knowledge of ancient literature, it was even defpifed, at a much later period, by all who were at once noble, and poffeffed of lands and peafants (See Russia, Encycl.). The truth is, as we have learned from unquefo tionable authority, that the family of Suworow was ancient and refpectable; but being far from affluent, and their little property lying at the very extremity of the empire, we have reafon to believe, that the fubject of this memoir was the firft of the family that ever was at court. Bafl, however, if his anceftors were from Swe. den, may have been free from the Ruffian prejudices againt Greek and Latin; and this is the more probable, that he certainly gave a learned education to his fon.

That fon, Alexander Bafilowitch Suworow, was, ace cording to the author already quoted, born in the year 5730 :
(a) This name is fpclled fometimes as we have fpelled it, fometimes Suwaprow, and fometimes Suvorof. This laft is according to the pronunciation; but we have adopted the orthograpby of the General himfelf, in his letter to Charette, the hero of Vendee.

S U W

Suworow. 3730 : we have fome reafon to believe that he was not born before 1732. His father had deftined him, we are told, for the robe; but his early inclinations impelled him to the profeflion of a foldier; and in 1542 he was errolled as a fulifier in the guards of Seimonow. He was afteruards a corpomal, then a ferjeant, and, in 7754, he quitted the guards with the brevet of Lielltenant in the army. He made his firf campaign in the feven years war againft the Pruffians, in the year 1759, entering upon actual fervice under Prince Wolgonki. As feniur officer on duty, he attended on the commander in chief Count Fernor, who, admiring the confummate refolution which he appeared to poffels, favoured him with his particular confidence. In 1761, he was ordered on fervice in the light troops under General Berg; and with the rank of a field officer (we think that of Lieutenant-colonel) he performed pro. digies of valour, and exhibited much of that character which was afterwards fo fully devcloped and difplayed. Even then he feems to have fornied the refolution of dying on the field of battle rather than fuffer himielf to be taken prifoner; for when, with a handful of troops, he was once furrounded by a large detachment of Pruffians, he determined to cut his way through them, or perifh in the attempt. In this daring enterprife he was not only fucceffful, but contrived to carry off with him twenty prifoners, though he was obliged to abandon two field pieces, which he had a little before taken from a finaller detachonent.

At the peace of 1762, he received from the Emprefs a colonel's commiffion, written with her own hand; and being advanced, in 1768 , to the rank of brigadier, he was, in the month of November, ordered to repair, with all poffible fpeed, to the frontiers of Poland. At that unfavourable feafon he croffed rivers and moralfes, whofe palfage was rendered more difficult, by flight frofts; and, in the courfe of a month, traverfed 500 Englifh miks, with the lofs of only a few men in the environs of Smolenflo.

The object of the Emprefs, at this time, was to fab. due the Polifh confecerates, and to poffefs hevelf of certain proviuces of that ill-fated kingdum. How comFletely fhe and her two allies, the Enperor of Germany and the King of Pruffia, fucceeded in their enterprife, has been related elfewhere (fee Poland, Encycl.). It is fufficient, in this memeir, to obferve, that the fuccefi:s of the Ruffians wele chicfly owing to the military fill and intrepidity of Suworow, who was their only active General. and was indeed, for four years, almull confantly employed in offenfive operations agairift the confederates. Not to mention the numerous actions and firmifhes of an inferior kind, in which his conduct and courage were always difplayed, the victory at Staloviz, ovir a luperior force, ably commanded, and the capture of Cracow, were alone fuficient to intitle him to the character which he ever afterwards fol well fupported. The former of thefe drew the higheft encomiums from the great Frederick of Pruffia; and the latter decided the fate of Poland. It is proper to add, that Suworuw, on thefe occafions, did not tarnifh his laurels by unneceflary cruelty. When a French officer, who furrendered at Cracow, offered him his fivord, according to the cuftom of war, he refufed it, faying, that he would not take the fword of a brave man, whofe mafler was not at war with his fo-

Suppl. Vol. II. Part II.
vereign : and, cven to the leaders of the confederatc3, Suworow. he granted better terms of capitulation than they had the prefumption to ank.

In the year 1770, he had been promoted to the rank of Major general; and for his expleits in the Polifh war, the Emprefs conferred upon him, at different times, the orders of St Ann, St George, and Alexander Newfyy.

After performing fome important ferviees on the frontiers of Sweden, Suworow received orders, in the beginning of 1773, to join the army in Moldavia, under the command of Field-marfal JRomanzow; and there he hegan that glorious carcer, which foon made his name a terror to the Torks. His fifll exploit was the taling of ' u utukey; of which he wrote the following laconic account to the commander in chief:
"Honour and glory to God! Glory to you, Ro. manzow! We are in poffeffion of Turtukey, and I am in it !
"Suworow."
During the remainder of the war, which was of fhort continuance, Suworow was conftantly engaged, and conftantly fuccefsful. In the beginning of the year 1774, he was promoted to the rank of Lieutenant.general; and on the 1 ith of June of the fame year, he defeated the Turks in a great battle, in which they loft 3000 men killed, fome hundreds of prifoners, 40 pieces of artillery, and 80 dandards, with their fupert camp. Soon after this vicory, peace was concluded between the two courts; and Licutenaut-general Suworow was ordered to proceed with all poffible hafte to Mofcow, to affit in appeafing the interior troubles of that part of the empire.
Thefe troubles were occafioned by a Coffac rebel, of the name of Pugatchcw, or Pugatchrf, who, at the head of a party of his difcontented countrymen, had lorg eluded the vigilance of Count Panin, the commander in chief in Mufcovy, and frequently cut off detachments of the army which were fent out in queft of him. The chace of Pugatcheff, for fuch it may be called, was now wholly entrulted to the well-known activity of Suworow; and that Generul, afier purfuing the rebel with inconecivable rapidity, through wouds and deferts, came up with him at a place ealled Urlafk, and carried him prifoner to Count Panin, who fent lim to Murcow, where he fuffered the punifhnent due to his crimies. This infurgeut, it is faid, had at one time collected fuch a force, and was followed with fuch enthufiafin, that, if his underfanding had been equal to his courage, and his moderation had keyt pace with his power, he might have poffenfed himfelf of Mofcow, and mace the Imperial Catharine tremble on lier illone.
For feveral years after the taking of Puctitche ff, Suworow was empluged in the Crimea, on the Cuban, and againtt the Nogay Tartars, in a kind of fervice which, though it was of the utmoft importance to the Emprefs, and required all the addrefs of the Lieutchantgenerai, furnifhed no opportunities for that wonderful difplay of promptitude and refource which had charac. terifed his mure active campaigns. One incident, h,wever, muft be mentioned, even in this flort memuir, becaufe it thews the natural difpolition of the man. During the winter that Suworow pafted among the Tartars, he was frequently vifited by the chiefs of that nation ; and at one of thefe vifits, Meehmed Bey, the chief of the Gediffens, often juked with Muffa Bey, another clief, on his inclination to marry. Muffa Bey $+\mathrm{M}$

พン3

3 : wornw. was fo extremely old, that Suworow thought the converfation ridiculous; and one day alked him, What ground Mechmed could have for fuch ide talk? MufIa replied, that Mecthmed Bey was right ; that he wifh. ed to narry; and that lie hoped the General would make hin a prefent of a beautiful T'artar girl of fixteen! Suworow immediately bought a young Tartar flave of a Cullac for 100 rubles, and fent her to Muffa Bey ; who married lier, lived with her a very few jears, and died at the age of one hundred and eight ! regretted, we are told, by the Lieutenait--general, who regarded him with great elteem and attacliment.
In the end of the year 1786 . Suworow was promoted to the rank of General in Chief; and, at the breaking out of the war with the Turks in 1787 , he thewed how well he was iutitled to that rank, by his matterly defence of Kinburn ; a place of no ilrength, but of great importance, as it is fituated at the moutlo of the Dneiper, oppofite to Oczakow. For the ztal and abilities which he difylayed on this occafion, the Emprefs decorated him wilh the order of St Andrew; gave him fix croffes of the order of St George, to be diftributed, according to lis judyment, among fuch of his officers as had moft diftinguifhed themfelves; and, in a very flattering letter, regretted the wounds which he had received in defending the place.

At the fiege of Oczakow, Suworov, who commanded the left wing of the arny under Prince Potemkin, received a dangerous wound in the nape of the neck, which was followed by fo fmart a fever, that, for fome time, his life was defpaired of; but he perfevered in his long accuftomed practice of preierring regimen to mediciue, and liis health was gradually re-eftablifhed. In the year 1789 , he was appointed to the command of the army which was to co-operate with the Prince of Saxe Cobourg in Walachia : and, by nareles of inconceivable rapidity, he twice, in the fpace of two months, preferved the army of that Prince from inevitable deftruction. Putting himfelf at the head of 8000 Ruffians, and literally running to the aid of his ally, he came up with the Turks in time to change the fate of the day at the battle of Forlhani, which was fought on the 2 it of July; and again at Rymnik, which, with 7000 ment, he had reached with equal celerity, he gained, on the 22 d of September, in conjunction with the Prince, one of the greateft vistories that have ever been atchieved. According to the leat exaggerated account, the Tarkih army, commanded by the GrandVifier in perfon, amounted to 90.000 or 100,000 men; of which 70,000 were chofen troops ; whillt the army of the allies exceeded not 25,000 . At the commencement of the attack, Suworrw, who had reconnoitered the country, and formed the plan of the battle, called out to liis Ruffians, "My friends, look not at the eycs of your enemies, but at thcir brealls; it is there that you muft thruft your bayonets." No quarter was given to the 'Turks; and on this account the Ruffian General has been charged with favage ferocity : but the charge, if not groundlcfs, muft be fhared equally between him and the Prince of Cobourg. The commanders of the allied army, aware of the imnenfe fuperiority of their enemies, had refolved, before the engagement, not to encumber themfelves with prifoners, whom they could not fecure without more than hazarding the fate of the day: And where is the man, who
admits the lawfulnefs of war, that will condemn fuch sumoruw. conduct in fuch critical circumftances?

The taking of Bender and Belgrade were the immediate confequences of the victory of Rymnic ; and fo fenfible was the Emperor Jufeph how nuch the rapid movements and military flill of Suworow had contributed to that vietory, that he immediately created him a Count of the Roman empire, and accompanied the diploma with a very flattering letter. Similar honours were conferred upon him by his own fovereign, who fent him the diploma of Count of the empire of Ruffia, with the title of Rymnikiki, and the order of St Andrew of the firt clafs.

In the autumn of 1790 , Prince Potemkin wrote to Count Suworow, requefting a particular conference. The General, who conjectured the object of it, fent him the followring anfwer: "The flotilla of row-boats will get poffeffion of the mouths of the Danube ; Tulcia and laccia will fall into our power; our troops, fupported by the veffels, will take Ifmailow and Braliilow, and make Tchiftow tremble." He was perfectly right in his conjecture: it was to concert with him meafures for the taking of 1 fmailow that the Prince had requefted the conference. He did not, however, receive orders to urdertake that defperate enterprife till the beginning of November, when he rapidly approached towards the fortrefs. His army, by fea and land, confifted of 23,000 men; of whom one-half were Coffacs, and of thefe many were fick. The troops of the garrifon, which were under the orders of feven Sultans, amounted to $43,000 \mathrm{men}$, of whom nearly one-half were Janiffaries; the fortrefs was by much the ftrongeft of any on the Turkifh frontier: it was under the command of an old warrior, who had twice refuled the dignity of Grand Vifier, and harl difplayed againft the Auftrians confiderable abilities, as well as the moft intrepid courage ; and the Grand Seignior had publifherl a firman, furbidding the garrifon, on pain of death without trial, to furrender on any terms whatever.

Potemkin, knowing that Suworow had with him no battering cannon, and dreading the confequences of a repulfe, wrote to the General, that if he was not certain of fuccefs, he would do well not to rifk an affault. The laconic reply was; "My plan is fixed. The Rulfian army has already heen twice at the gates of Ifmajlow; and it would be fhameful to retreat from them thethird time without entering the place." To fpare the effufion of blood, however, if polfible, he fent a note to the Serafkier who commanded in Ifmailow, to affure hint, upon Count Suworow's word of honour, that if he did not hang out a white flag that very day, the place would be taken hy affault, and all the garrifon put to the fword. The Seralkier returned no anfwer to the note; but another commander was pleafed to fay, that "The Danube would ceafe to flow, or the hearens bow down to the earth, before Ifmailow would furrender to the Ruffians!"

Having concerted with the Admiral proper meafures for the affault, Suworow paffed the night with fome officers of his fuite, in impatient vigilance for the appointed hour when the fignals were to be given. Thefe were the firing of a mufiet at three, four, and five in the morning, when the army rufhed upon the place; and notwithftanding the defperate oppofition of the Turks, the depth of the moat, and the height of the
ramparts,
iuwow. ramparts, they were completely matters of Ifmailow by four o'clock P. M. In this one dreadful day the Ottomans luft 33,000 men killed or dangeroufly wounded; 10,000 who wele taken prifoners; befides 6200 women and children, and 2000 Chriftians of Muldavia, who fell in the general maffacre. The place was given up to plunder for three days, according to agreement with the army before the affault; but we have authority to fay, that no perfon was murdered in cold blood, who did not prefer his property to his life.
'The Ruffians found in Ifmailow 23^{2} pieces of cannon, many large and fmall magazines of gunpowder, an jamenfe quantity of bumbs and balls, 345 ftandards allmolt all ttained with blood, provifions tor the Turkifh army for fix months, and abont 10,000 horfes, of which many were extremely beautiful. Suworow, who was jnaceeffible to any views of private intercf, did not appropriaie to himlelf a fingle article, not fo much as a horfe; hut having, according to his cuftom, rendered folemn thanks to God for his victory, wrote to Prince Potemkin the following Spartan letter: "The Ruflan coluturs wave on the ramparts of 1 fmailow."

Peace being concluded with the Turks in December 3791, no political events occurred from that period to call forth the military talents of Suworow till 1794° In the beginning of that year mutinies laving broken out among the Polifh troops in the fervice of Ruffia, and the Emprefs, with her two potent allies, having digetted the plan for the partition of Poland, Count Su. worow received orders, in the month of May, to proceed, by forced marches, into Red Ruffia, with a corps of 15,000 men, and to difarm all the Polifh troops in that province. This fervice he performed without the effufion of blood, difarming in lefs than a fortnight 8000 men, difperfed over a country of 150 miles in circuit. Soon afterwards he was ordered to march into the interior of Poland ; the King of Pruffia having been obliged to raife the fiege of Warfaw, and the Emprefs perceiving that more vigorous meafures than had hitherto been purfued, were neceflary to accomplith her defigns.

To give a detailed aeccunt of his route to Warfaw, would be to write the hifory of the Polifh war, and not the memoirs of Count Suworow. It has been rafhly fuppofed, that he had to contend only with raw troops, commanded by inexperienced leaders, who were not cordially united among themfelves; but the fact is otherwife, and Suworow never difplayed greater refource m the day of danger, than in the numerous battles and fsirmifhes in which he was engaged on his march to the capital of Poland. At laft, after furmounting every obftacle, he fat down, on the 22 d of October, before Praga, a Arongly fortified fuburb of Warfaw, defended by a formidable artillery, and a garrifon of 30,000 men, rendered defperate by their fituation. The Ruffian army exceeded not 22,000 ; and with that comparatively fmall force he refolved to ftom Praga, as he had formed Ifmail. Having erected fome batteries to deceive the garrifon into a belief that they were to be regularly befieged, he concerted with the other Generals the mode of affault ; and when every thing was ready, he gave his orders in thefe words: "Storm, and take the batteries, and cut down all who refift; but fpare the inhabitants, unarmed perfons, and all who fhall afk for quarter."

There are but few examples of a military operation Suworuw. fo boluly conceived, fo fkilfully performed, or fo important in its confequences, as the taking of Praga. The affant was made at once in feven different places at five in the morning; and at nine the Ruflims were malters of the place, having penetrated by pure force a triple entrenchment. Of the Puks 13,200 lay dead on the field of battle, one third of whom were the flower of the youth of Warfaw ; above 2500 were drowned in the Viltula; and 14, 6RO were taken prifoners, of whom 8000 were difarmed and inmediately fet at liberty, and the remainder the next day. We mention thefe circumftances, hecaufe they complately refute the tales of thofe Jacobin feribblers, who have fo Atenuondly endeavoured to tarnifh the laurels of the Rucian hero, by reprefenting him as having ordered a gencral maffacre of men, women, and children. The artillery taken from the enemy confifled of 104 pieces of cannon and mortars, chiefly of large calibre. The Ruffians had 580 men killed, of whom eight were fuperior and ftaff ufficers, and $y 00$ wounded, of whom 23 were officers.

Soon after the ftorming of Praga, Warfaw capitulated, and Suworow was received into the city by the magiltrates in a body, and in their ceremonial habits. When the prefident prefented to him the keys of the city, he preffed them to his lips, and then, holding them up towards heaven, he faid, "Almighty Gud, I render thee thanks, that I have not been compelled to purchafe the keys of this place as dear as $\ldots .$. ." Turning lis face towards Praga, his voice failed him, and his cheeks were inftantly hathed with tears. As he rode through the itreets, the windows were filled with fpectators, who were delighted with the return of order, and the affurance of peace; and the air refounded with the exulting exclamations of "Long live Catharine! Long live Suworew!"

Thus did Count Suworow, in the courfe of a very few months, overturn the kingtom and republic of Poland. It is not our bufinefs, in this article, to decide on the juftice of the caufe in which he was embarked. Of the Polifh revolution, which gave rife to the war that fubverted the republic, and fivept it frum the number of fovereign fates, the reader will find fome account under the title Polano in the Encycloperdia; but it is here proper to acknowledge, that we do not now think fo favourably, as when we wrote that article, of the views and principles of thole who framed the conftitution, which brought upon them the Ruffian and Pruffian arms. Subfequent events feem to have proved completely, that if Poland had not been conquered by the allied powers, it would foon have been involved, under Kolkiuko and his Jacotinical adherents, in all the horrors of revolutionary France; and the unhappy king, inftead of being carried captive into Ruffia, would probably have finifhed his courfe on a faffold. Suworow, who never concerned himfelf with the intrigues of courts, and expreffed on all occafions the mot fovereign contempt of thofe Generals who affected to poffefs the fecrets of ftatefmen, probably never enquired into the final object of the war, but thought it his du. ty to execute, in his own fphere, the orders of his Imperial miftrefs. So fenfible was Catharine of the propriety of this conduct, and of the zeal and abilities which he had difplayed in the Popin campaign, that immediately on recejving accounts of the ftorming of

Suworow. Praga and the fubmiffion of Warfaw, fhe announced ing fix feet, and full chefted. His countenance was Suworow. to him, in a letter written with her own hand, his wellearued advancement to the rank of Field-marfial Ge neral. Nor did her munificence top there; the loaded him with jewels, and prefented him with an eftate of 7000 peafants, in the diftrict of Kubin, which had been the fcene of his firit battle in the courfe of the campaign.

From the fubjugation of Poland we hear little more of Field-marfhal Suworow till he entered upon his glorious career in Italy. He is faid, indeed, to have given offence to the prefent Emperor foon after his acceffion to the throne, by affording protecion to forme meritorious officers, whom his Majelty had in an arbitrary manner difmifed from his fervice; but that offence was overlouked, and Suworow called again into action, when Paul joined the coalition againt France.

Of the exploits of the Field-marfhal in Italy, where, to ufe his own words, he deftroyed armies and overturned ftates, we have given a full account under the title Revolution in this Supplement. In his former campaigns, the wifdom of his meafures, the diftribution of his forces, the undaunted character of his operations, and the progrefive continuance of his fucceffes, furnifh proofs of the fuperiority of his talents hardly to be paralleled in the annals of modern war ; but, animated by the noblenefs of his caufe, and confiding, as he faid, in the God of battles, he feems i. his laft campaign to have furpaffed himfelf. It would appear, however, that his own Sovereign thought otherwife; and if he did, he was certainly as fingular in that opinion as he is faid to have been in many others. Confidering the Field-marthal as the conqueror of Italy, he had indeed created him a Prince by the fyle and title of Prince SuworowItalific ; but how did he receive him, when he returned into the Ruflian dominions at the head of his veteran and victorious bands ?

Though the old warrior thought himfelf almoft be. trayed at the end of the campaign by the crooked policy of the court of Vienna, he donhtlefs hoped to be received at the Court of St Peterfburgh, if not with triumphal arches, at leaft with the moft public teftimonies of his Sovereign's approhation. It is faid that he expected to be fent back at the head of a large army, with full powers to act as he thould judge proper for bringing the war to a happy termination, and reftoring peace and order to Europe; and he certainly expreffed, in letters to different correfpondents, bis earneft wifh to conclude his military career with contributing to the accomplifhment of fo defirable an object. What then mult bave been his difappointment, when the Ruffian Emperor would not fee him, and pofitively furbad his appearance at court ? To the meffenger who brought the order, the Field-marthal gave a purfe of money, zurned his carriage another way, and drove to a wooden houfe, at a diftance from the court, and from his formei friends, "where burft his mighty heart ;" and the conqueror of the Turke, the Poles, and the French republicans, died, almoft unattended, on the 18 th of May 1800. The fovereign, who thus difgraced him at the end of his life, gave him a magnificent funeral !

In his perfon Suworow was tall, confiderably exceed.
ftern; but among his friends his manners were pleafant, and his difpolitions were kind. His temper was naturally violent ; but that violence he conftantly laboured to moderate, though he was never able completely to extinguifh it. According to M. Anthing, an effervefcent fpirit of impatience predominated in his character; and it perhaps never happened (fays that tuthor) that the execution of his orders equalled the rapidity of his wifhes. Though he dinliked all public entertainments, yet when circumftances led him to any of them, he appeared to partake, and endeavoured to promote, the general pleafure. Sometimes he condefcended even to dance and play at cards, though very rarely, and merely that he might not interrupt the etiquette of public manners, to which, when not in the field, he was very attentive. In the field he may be faid to have fpent the whole of his life from the period at which he firt joined the army in the feven years war; for during the time that he was not engaged in actual warfare, and that time, taken altogether, did not exceed twelve years, he was always placed at the head of armies fta. tioned on the frontier of fome enemy's country. He was therefore a mere warrior, and as fuch had no fixed habitation. With refpect to his table and lodging, he contented himfelf with whatever he found, requiring nothing but what abfolute neceffity demands, and what might be tranfported with eafe from one place to another. Frequently he caufed the window-fafhes to be taken away, and fometimes the doors: faying, on the former occafion, that he was not cold ; and, on the latter, that he was not afraid. His couch confifted of a heap of frefh hay fufficiently elevated, and fcattered into conliderable breadth, with a white theet fpread over it, with a cuftion for his pillow, and with a cloak for his coverlid. He has heen reprefented as dirty (c) ; but the reprefentation is falfe. M. Anthing afferts, that he was clean in his perfon, and that, when not on actual fervice, he wafhed himfelf frequently during the courfc of the day. It is among the fingular, though unimportant circumftances of his life (fays the fame author), that, for the laft twenty years, he had not made ufe of a looking-glafs, or incumbered his perfon with either watch or money.

He was fincerely religious; took every opportunity of attending the offices of public devotion; and has been known, on Sundays and feftivals, to deliver lectures on piety to thofe whons duty called to attend on him. We are told by an anonymous writer, in a mifcellany not very forward to praife fuch men as Suworow, or indeed to praife piety in men of any defeription, that chancing one evening to overhear a captain abridge the prayer which his duty required him to repeat at the guard, the Ficld-marhal called out to him, "Thou unconfcionable, abominable, impious man, thou wouldft cheat Heaven! Thou wouldft, no doubt, cheat likewife the Emprefs and me! I thall difmifs thee." His regard for facred things is indeed very apparent in the elegant letter whicn, on the if of Odoher 1795, he wrote to Charette, the hero of Vendee, whom he congratulates upon taking up arms to reftore the temples of the God of his fathers. Alluding to this trait of

Suworow his character, and to his deteftation of Jacobinifm under every form, a late writer in a moft refpectable mifcellany has well characterifed him as the
"Foe to rcligion's foe; of Ruffia's throne
The prop, th' avenger, and the pride in one; Whofe conquering arms, in bold defiance hurl'd, Crufhed the rude monfler of the weftern world."

We have already, when. we thought not that we fhould fo foon be called upon to write his life, obferved, that he was a fcholar, a man of fcience, and a poet. M. Anthing affures us, that from his earlieft years he was enamoured of the fciences, and improved himfelf in them ; but that as the military feience was the fole objeft of his regard, thofe authors of every nation who invettigate, illuftrate, or improve it, engroffed his literary leifure. Hence Cornelius Nepos was with him a favourite claffic; and he ead, with great avidity and attention, the hittories of Montecuculi and Turenne. Cafar, however, and Charles XII. (fays the fame author) were the heroes whom he moft admired, and whofe activity and courage became the favourite objects of his imitation.

With refpect to his moral character, we have every reafon to believe that he was a man of the molt incor. ruptible probity, immoveable in his purpofes, and in. violable in lis promifes; that the cruelties of which he has been acculed were the cruclties of Potemkin, and that by thofe who knew him he was confidered as a man of unqueftionable humanity. The love of his country, and the ambitiou to contend in arms for its glory, were the predominant paffions of his active life; and to them, like the ancient Romans, he facrificed every inferior fentiment, and confecrated, without referve, all the powers of his body and mind. His military career was one long and uniform courfe of fuccefs and triumph, produced by his enterpriting courage and extraordinary prefence of mind; by his perfonal intrepidity and promptitude of execution ; by the rapid and unparalleled movements of his armies; and by their perfect affurance of victory when fighting under his banners. I know not, fays a writer *, by no means partial to him or to the caufe for which he laft fought, whether Suworow was invincible; but it is certain that he died unconquered. No general can boaft of having beaten Suworow; and very few, like hin, have carried that reputation to the grave, after having, like him, waged war for the fpace of fourty years, fometimes againit the moft barbarous people, and fometimes again the moft civilized nations. Such was Alexander Befilovitch Count Suworow. In the year 1774 he married a daughier of the General Prince Iwan Proforowiki, by whom he had two children, now living: Natalia, married to General Count Nicolai Zubow; and Arcadius Count Suworow, a youth of great promife, who accompanied his father in his unparalleled march from Italy to Switzerland.

SWALLOW's.Tail, in fortification, is a fingle tenaille, which is narrower towards the place than towards the country.

SIVAN (See Anas, Encycl.). It is now afcertained, beyond the polfibility of doubt, that there are black fwans, of equal fize, and the fame habitudes, with the common white fwan of this illand. Thefe fowls have been feen chiefly in New Holland; and Captain Van-
couver, when therc, faw feveral of them in very fately attitudes, firimming on the water; and, when flying, difcovering the under part of their wings and breafts to be white. Black fwans were likewife feen in New Holland by Governor Philips, Captain White, and by a Dutch navigator, fo long ago as in 1697 . Governor Philips defcribes the black fiwan as a very noble bird, larger than the common fwan, and equally beautiful in form. Mr White indeed fays, that its fize is not quite equal to that of the European fwan ; but both thefe authors agree with Captain Vancouver in mentioning fome white feathers in its wings.

SWINTON (John), a very celebrated Englifl antiquary, was a native of the county of Chefter, the fon of Jolin Swinton of Bexton in that county, gent. He was born in 1703. The circumftances of his parents Biog. Dia, were probably nut affluent, as he was entered at O . ford in the rank of a fervitor at Wartham college. This was in October ${ }^{1719 \text {. It may be prefumed that he }}$ recommended himfelf in that fociety by his talents and behaviour, as on June $30.17^{2} 3$ he was elected a fcholar on a Chefhire foundation in the college. In the Decenber following, he took his tirft degree in arts. Before he became mafler of arts (which was on December 1. 1726), he had chofen the chuach for his profeffion. and was ordained deacon by the bilhop of Oxford, May 30. 1725 ; and was afterwards admitted to pricit's orders on May 28. 1727. He was not long without fome preferment, being admitted to the rectory of St Peter le Bailey in Oxford (a living in the gift of the crown), under a fequeftration, and inftituted to it in February 1728. In June the fame year, he was elected a fellow of his college ; but, defircus probably to take a wider view of the world, he accepted, not long after, the appointment of chaplain to the Enghifh factory at Leghorn, to which he had been chofen. In this fituation he did not long enjoy his health; and leaving it on that account, he was at Florence in April 1733, where he attended Mr Coleman, the Englifh envoy, in his laft moments. Mr Swinton returned thro' Venice and Vienna; and, in company urith fome Eng. lifh gentlemen of fortune, vifited Preburgh in Hangary, and was prefent at one of their aflemblies.

It is poffible that he had not quitted England in the fuminer of 1730 , for he was elected a fellow of the Royal society in June that year, and admirted about three months later. It was probably while he was abroad that he was admitted into fome tureign focieties: namely, the academy deg/i ffatili at Flurence, and the Etrufian Academy of Cortona. On his return, he feems to have taken up lis abode at Oxford, where lie redided all the latter part of his life, and was for many years chaplain to the gaol in that city. It nany be prefumed that he married in 1743; it was then, at leaft, that he gave up his fellowhip. In 1-59 he became bachelor of divinity : in 1767, he was elected Cufos Arcljivorum, or keeper of the univerlity records: and, on April 4 . 1777, he died; leaving no children. His wife furvived till 1784 , and burh were buried, with a very fhort and plain infcription, in the chapel of Wadham college.

It remains to take notice of the mofl important monuments of a literary man's life, his publications. There were numerous and learned, but not of great magnitude. He publifhed, i. "De Lingux Etrurix Regalis vernacula Differtatio," 4to, 19 pages, Oxon, 173 .

S W I

arupourov, occalioned by two late inquiries into the meaning of the demoniacs in the New Teftament," 8 vo , London, 1739. 3. "De prifcis Romanorum literis differtatio," 4to, 20 pages, Oxon, 1746 . 4. "De Primogenio Etrufcorum Alphabeto, differtatio," Oxon, 1745. 5. "Infcriptiones Citice: : five in binas Inferiptiones Phonicias, inter rudera Citii nuper repertas, conjecturr. Accedit de numinis quibufdam Samaritanis et Phœeniciis, vel infolitam prefe literaturam ferentibus, vel in lucem hactenus non editis, differtatio," 4 to, 87 pages, Oxon, 1750. 6. "Infcriptiones Citiex: five in binas alias Inferiptiones Phœnicias, inter rudera Citii nuper repertas, conjecture," 4to, 19 pages. 7. "De nummis quibufdam Samaritanis et Phoeniciis, vel infolitam prex fe literaturam ferentibus, vel in lucem hactenus non editis, differtatio fecunda," $4^{\text {to }}, 36$ pages. 8. "Metilia: five de quinario Gentis Metiliæ, è nummis vetuftis cateroquin minimum notx, differtatio," 4 to, 22 pages, Oxon, 1750. 9. Several differtations publifhed in the Philofophical Tranfactions of the Royal Society. As, "A differtation upon a Parthian Coin; with characters on the reverfe refembling thofe of the Palmyrenes," vol. xlix. p. 593. "Some remarks on a Parthian Coin, with a Greek and Parthian legend, never before publifhed," vol. 1. p. i6. "A differtation upon the Phoenician numeral characters anciently ufed at Sidon, vol. l. p. 791. "In nummum Parthicum hactenus ineditum conjecture," vol. li. p. 683. "A differtation upon a Samnite Denarius, never before publifhed," vol. lii. p. 28. "An account of a fubærated Denarius of the Plxtorian family, adorned with an Etrufcan infeription on the reverfe, never before publifhed or explained," vol. Lxii. p. 60. "Obfervations upon five ancient Perfian Coins, ftruck in Paleftiue or Phoenicia before the diffolution of the Perfian empire," vol. 1xii. p. 345. Other papers by him may be found in the general index to the Philofophical Tranfactions. 10. A part of the Ancient Univerfal Hiftory, contained in the fixth and feventh volunses of that great work. The particulars of this piece of literary hiftory were communicated by Dr Johnfon to Mr Nichols, in a paper printed in the Gentleman's Magazine for December 1784, p. 892. The original of that paper, which affords a fltrong proof of the fteady attachment of Johnfon to the interefts of literature, has been, according to his defire, depofited in the Britifh Mufeum. The letter is as follows:

" To Mr Nichols.

"The late learned Mr Swinton fof Oxford having one day remarked, that one man, meaning, I fuppofe, no man but himfelf, could affign all the parts of the Univerfal Hitory to their proper authors, at the re-
quelt of Sir Robert Chambers, or of myfelf, gave the Swinton, account which I now tranfnit to you in his own hand, being willing, that of fo great a work the hiftory fhould be known, and that each writer fhould receive his due proportion of praife from pofterity. I recommend to you to preferve this ferap of literary intelligence, in Mr Swinton's own hand, or to depofite it in the Mufeum, that the veracity of the account may never be. doubted.-I am, Sir, your mofl humble fervant,

$$
\text { Dec. } 6.1784
$$

Sam. Johnson."
The paper alluded to, befides feecifying fome parts written by other perfons, afligns the following divifions of the hiftory to Mr Swinton himfelf. "The hiftory of the Carthagians, Numidians, Mauritanians, Gxtulians, Garamantes, Melano-Gretulians, Nigritx, Cyrenaica, Marmarica, the Regio Syrtica, Turks, Tartars, and Muguls, Indians, and Chinefe, a differtation on the peopling of America, and one on the independercy of the Arabs.

In the year 1740, Mr Swinton was involved in a law fuit, in confequence of a letter he had publifhed. It appears from a paper of the time *, that a letter *TbeClame from the Rev. Mr Swinton, highly reflecting on Mr pions, or George Baker, having fallen into the hands of the lat- Evening ter, the court of King's Bench made the rule abfolute june 1 Ijth for an iuformation againt Mr Swinton. Thefe two ${ }^{1740}$. gentlemen were alfo engaged for fome time in a controverfy at Oxford ; which took its rife from a matter relative to Dr Thifllethwaite, fome time warden of Wadham, which then attratted much attention. Mr Swinton had the manners, and fome of the peculiarities, often feen in very reclufe feholars, which gave rife to many whimfical flories. Among the reft, there is one mentioned by Mr Bofwell, in the Life of Johnfon, as having happened in the year r754. Johnfon was then on a vifit in the univerfity of Oxford. "Abour this time (he fays) there had been an execution of two or three criminals at Oxford, on a Monday. Soon afterwards, one day at dinner, I was faying that Mr Swinton, the chaplain of the gaol, and alfo a frequent preacher before the univerfity, a learned man, but often thoughtefs and abfent, preacherd the condemnation fermon on repentance, before the convicts, on the preceding day, Sunday; and that, in the clofe, he told his audience, that he fhould give them the rerrainder of what he had to fay on the fubject the next Lord's day. Upon which, one of our company, a doctor of divinity, and a plain matter-of-fact man, by way of offering an apology for Mr Swinton, gravely remarked, that he had probably preacherd the fame fermon before the univerfity. Yes, Sir (fays Johnfon); but the univerfity were not to be hanged the next morning !

Tacquet II. ranaing.

TACQUET (Andrew), a Jefuit of Antwerp, who died in 1650 . He was a molt laborious and voluminous writer in mathematics. His works were collected, and printed at Antwerp, in one large volume in folio, 1669.

Thllow'Tree. See Croton (Encycl.), where, however, we have fallen into a miltake, which it is here our duty to correct. We learn fron Sir George Staun. ton, that.the candles made of the vegetable tallow are firmer than thofe made of animal tallow, and free from all offenlive fmell, contrary to what was rafhly faid in the article referred to. 'I'hey are not, however, equal to thofe of wax or fpermaceti; but the latter of thefe fubllances is not within the reach of the Chinefe, and the art of blanching the former is little known to them. The tallow tree is faid to have been tranfulanted to Carolina, and to flourifh there as well as in China.

TALOOK, an Arabic word, which fignifies literally attachment, conuection, dependence. In Bengal, however, where it occurs perpetually in the emumeration of the diftricts, and fubdivifions of that province contained in the inftitutes of $A k b e r$, it fignifies a tenure of land. Hence the talook of Cafhinat, the talook of Meueys the headman, the talook of Ahmed Khan, \&c. See A Differtation concerning the Landed Properly of Bensal, by Sir Charles Roufe Boughton.

TALOOKDAR, the poffeffor of a talook.
TALOOKDARY, tenure of a talookdar.
TALUS, or TALUD. in architecture, the inclination or flope of a work; as of the out fide of a wall, when its thicknefs is diminifhed by degrees, as it rifes in height, to make it the firmer.

Talus, in fortification, means alfo the flope of a work, whether of earth or mafonry.

TAMASCAL, the name given in California to a kind of fand-bath employed by the natives in the cure of the venereal difeafe. It is prepared by fcooping a trench in the fand, two feet widc, one foot deep, and of a length proportioned to the lize of the patient; a fire is then made through the whole extent of $i r$, as well as upon the fand which was dug out of the hollow. When the whole is thoroughly heated, the fire is removed, and the fand itirred about, that the warmth may be equally diffufed. The fick perfon is then Atripped, laid down in the trench, and cuvered up to his chin with heated fand. In this pofition a very profufe fweat foon breaks out, which gradually diminifhes according the fand cools. The patient then rifes and bathes in the fea, or the nearefl river. This procefs is repeated till a complete cure is obtained. While the patient is undergoing the operation of the tamafcal, he drinks a confiderable quantity of a warm fudorific, prepared by the decoction of certain herbs, chiefly of the fhrub called by the Spaniards Gouvernante, which fee in this Supplement.

TAN is a fubftance found in moft vegetables, which not having hitherto been refolved into component parts, is therefore confidered as fimple. See Vegetable and Animal Substances in this Suppl.

TANNING is an art, of which a full account, according to the general practice in London and its vicinity, has been given under the proper title in'the En-
dyclopredia. But fince that article was written, the fu Tannug perior knowledge which has been obtained of the tanning principal, as well as of the compolition of the Akins of animals (See Vegctabie and Animal Substances, Suppl.), has fuggefted to fcientific artills varions methods of flortening the procefs by which leather is manufactured. M. Seguin is faid to have thrown much light upon the art of the tanner as it is practifed in France; and in 179; Mr Willian Defmond obtained a patent for practifing Seguin's method in England. He obtains the tanning priaciple by digelling oak bark, or other proper material, in cold water, in an apparatus nearly fimilar to that uled in the faltpetre works. That is to fay, the water which has remained upon the powdered bark for a certain time, in one veffel, is dravn ofi by a cock, and poured upon freth tan. This is again to be drawn off, and poured upon other frefh tan; and in this way the procefs is to be continued to the fifth veffel. The liquor is then highly coloured, and marks, as Mr Defmond fays, from fix to cight degrees on the hydrometer for falts. He calls this the tanning lixivium. The criterion to diftinguifh its prefence is, that it precipitates glue from its aqueous folution, and is alfo ufeful to examine how far other vegetable fuhtances, as well as oak bark, may be fuitable to the purpofe of tanning. The ftrong tanning liquor is to he kept by itfelf. It is found by trials with the glue, that the tanning principle of the firft digetler which receives the clear water, is, of courfe, firft exhaufted. But the fame tan will flill give a certain portion of the aftringent principle, or gallic lixivitm, to water. The yrefence of this principle is afcertained by its llriking a black colour when added to a finall quantity of the fo. lution of vitriol of iron or green copperas. As foon as the water from the digefter ceafes to exhibit this fign, the tan is exhaufted, and muft be rcplaced with new. The gallic lixivium is referved for the purpofe of taking the hair off from hides.

Strong hides, after wafhing, cleaning, and flefhing, in the ufual way, are to be immerfed for two or three days in a mixture of gallic lixivium and one thonfandth part by meafure of denfe vitriolic acid. By this means the hair is detached from the hides, fo that it may be feraped off with a round knife. When fwelling or raifing is required, the hides are to be immerfed for ten or twelve hours in another vat filled with water and one five-hundredth part of the fame vitriolic acid. The hides being then repeatcdly wafhed and dreffed, are ready for tanning; for which purpofe they are to be immerfed for fome hours in a weak tanning liviviun of only one or two degrees; to obtain which, the latter portions of the infufions are fet apart ; or elle fome of that which has been partly exhaufted by ufe in tanning. The hides are then to he put into a ftronger lixivium, where in a few days they will he brought to the fame degree of faturation with the liquor in which they are immerfed. The ftrength of the liqnor will hy this means be confiderably diminithed, and mutt therefore be renewed. When the hides are by this means completely faturated, that is to fay, perfectly tanned, they are to be removed, and flowly dried in the nade.

Calf 月kins, goat Akins, and the like, are to be fteeped

Tannirg, in lime water after the ufual fofoing ard wafhing. Thefe laffic. are io remain in the lime water, which enntains more lime than it can diffolve, and requires to be fliried feveral times a day. After two or three days, the fkins are to be removed, and perfectly cleared of their line by wahing and prefling in water. The tanning procefs is then to be accomplifed in the fame manner as for the frong hides, but the lixivium mu!l be confrderably weaker. Mr Definond remarks, that lime is ufed intead of the grallic lixiviam for fuch hides as are required to hase a clofe grain: becaufe the acid nosed with that lixivinn always fweils the fkins more or lefs; hut that it cannot with the fame convenience he ufed with thick Rkins, on account of the confriderable labour required to clear them of the lime ; any part of which, if left, would render them hark and lialie to crack. He recomirends, likewife, as the beft method to bring the whole furface of the hides in contact with the lixivium, that they fionld be fuipended vertically in the fluid by means of tranfverfe ron's or bars, at fuch a diftance as not to wuch each other. By this practice much of the labour of turnirg and handling nady be faved.

Nir I)efinond concludes his fpecification, by wherring, that in fome cafes it will be expedient to mix frefh tan with the lixivium; and that various modifications of frength, and other circumftances, will prefent themfolves to the operator. We affirms that, in addition to the great faving of time and labour in this method, the leather, being more completely tanned, will weigh heavier, wear better, and? be lefs fufceptible of moitture than leather tannted in the ufual way; that cords, ropes, and cables, made of hemp or fpeartery, impregnated with the tanning principle, will fupport much greater weights without breaknig, be defs liable to be worn out by trition, and will run muse fmothly on pulleys; in. fomuch thei, in his opinion, it will render the ufe of tar in many cafes, particularly in the rigging of thips, unneceffary : and, lattly, that it may be fubltituted for the prefervation of animal food infead of ialt.

Mr Nicholion, from whofe Philofnghical Journal we have taken this accome of Mr Defmond's method of tanning, made fome very proper enguirits at one of the firit manufasuring toules in the borough of Southswark, conccuning its value. He was told by one of the partners, tha: the puinciple upon which the new procefs is founded lad been long kuown to them ; but that they preferted the old and flower methed, becaule the hides are found to feed and improve in their quality by remaining in the pit. He could gain no fatistactory information of what is meant by this feeding and improving; and, without taking upon us to decide between the advantages peculiar to Defmond's intthod and thofe of the common practice, we cannot help faying that this objection of the tanner at Southwark appears to us to be that of a man who either underftands not the principles of his own art, or has fome reafon for oppofing the progrefs of improvement, if it do not originate in nis own houfe.

TASSIE (James) modeller, whofe hiftory is intimately connected with a branch of the fine arts in Britain, was born in the neighbourhood of Glafgow of obfcure parents : and began his life as a country ftone-mafon, withont the expectation of ever rifing bightr. Guing to Glafgow on a fair day, to enjoy himfelf with his companions, at the time when the Foulis's were attempting to eftablifh an academy for
the fine arts in that city, lic faw their collection of Taffe. paintings, and felt an irrefiftible impulfe to become a painter. He removed in Glafgow ; and in the academy acquired a knowledge of drawing, which unfolded and improvel his natural tafte. He was frugral, induftious, and perfevering; but he was poor, and was under the necelity of devoting hindelf to fone cutting for his fupport : not without the hopes that he might one day be at fatury if he could not be a painter. Reforting to Dublin for employment, he became known to Dr (zuin, who was amufing himfelf in his leifure hours with endearouring to imitate the precious flones in colnured paftes, and take accurate impreffions of the encrravings that were on them.

That ant was known to the ancients; and many fpecimens from them are now in the cabinets of the cufious. It feems to have teen loit in the michde agres; was revived in Italy under Leo X. and the Medici family at Florence; became more perfect in France under the regency of the Duke of Urleans, hy his lahnurs and thofe of Homberg. By thofe whom they inttructed as alfiftants in the laboratory it continued to be practifed in Paris, and was carried to Rome. Their art was kept a feeret, and their collections were fmall. It is owing to Quin and to Taffue that it has heen carried to fuch high perfection in Britain, and attracted the attention of Europe.

Dr Quin, in looking out for an affiftant, foon difcovered Tafie to be one in whom he could place peafect confidence. He was endowed with fine tatte: he was modeft and unaffuming : he was patient ; and poffeffed the highelt integrity. The Doctor committed his laboratory and experiments to his care. The affociates were fully fuccefsfin; and found themfelves able to imitate all the yems, and take accurate impreffions of the engravings.

As the Doctor had followed the fubject only for his amufement, when the difcovery was completed, he encouraged Mr 'laffie to repair to Loncon, and to de rote himfelf to the preparation and fale of thofe pattes as his profeffion.

In $1,-6$ he arrived in the Capital. But he was diffiderit and modeft to excefs; rery unfit to introduce hin felf to the attention of perfons of rank and of affinence: befides, the number of engraved gems in Britain was fmall; and thofe few were little noticed. He long flruggled under difficulties which would have difcouraged any one who was not poffeffed of the greateft patience, and the watmeft attachment to the fubject. He gradually emerged from obfeurity, obtained competence ; aud what to him was much more, he was able to increafe his collection, and addl higher degrees of per. fection to his art. His name foon becanse refpected, and the furf cabinets in Europe were open for his ufe; and he uniformly preferved the greateft attention to the exactnefs of the imitation and accuracy of the engraving, fo that many of his paftes were fold on the Continent by the fraudulent for real gems. His fine tafte led him to be peculiarly careful of the impreffion; and he uniformly deftroyed thofe with which he was in the leaft diffatislied. The art has been practifed of late by others; and many thoufands of paftes have been fold as Taffe's, which he would have coufidered as injurious to his fame. Of the fame of others he was not envious; for he uniformly fake with franknefs in praife of thofe who executed them well, though they were endeavonring to rival himfelf.

To the ancient engravings he added a numerous collection of the moft eminent modern ones; many of which approach in excellence of workmanflip, if not in fimplicity of defign and chaftity of exprefion, to the moft celebrated of the ancient. Many years before he dicd he executed a conmifion for the late Emprefs of Ruffia, confifting of about 15,000 different engravings (See Gem, Encycl.). At his death, in 1799 , they amounted to near 20,000; a collection of engravings unequalled in the world. Every lover of the fine arts mult be fenfible of the advantage of it for improvement in knowledge and in tafte. The collection of Feloix at Paris confited of 1800 articles; and that of Delm at Rome of 2500 .

For a number of years, Mr Taffie practifed the modelling of portaits in wax, which he afterwards moulded and cait in pafte. By this, the exact likenefs of many eminent men of the prefent age will be tranfmitted to poitcrity as accurately as thofe of the philofophers and great men have been by the ancient ftatuaries. In taking likeneftes he was, in general, uncommonly happy; and it is remarkable, that he believed there was a certain lind of infpiration (like that mentioned by the poets) neceflary to give him full fuccefo. The writer of this article, in converfing with him repeatedly on the fubject, always found hin fully perfuaded of it. He mentioned many inilances in which he had been directed by it ; and even some, in which, after he had la. boured in vain to realize his ideas on the wax, he had been able, by a fudden flafh of imagination, to pleafe himfelf in the likenefs feveral days after he had laft feen the original.

He poffeffed alfo an uncommonly fine tafte in architecture, and would have been eminent in that branch if he had followed it.

In private life Mr Taffie was univerfally efteemed for his uniform piety, and for the fimplicity, the modefty, and benevolence, that hone in the whole of his character.

TASTELESS Earth (aguf erde), the name given by Profeflor Trommfdorff to a new fimple earth, which he difcovered in the Saxon beryl. It is diftinguifhed (he fays) from other earths by the following properties: It is white, and totally infoluble in water. In a frefh ftate, when moiftened with water, it is fome. what ductile. In the fire it becomes tranfparent and very hard, fo as to feratch glafs, but remains infipid and infoluble in water. The burnt earth diffolves very eafily in acids, and produces with them peculiar falts, which are entirely devoid of talte; and hence he gave it the name of tafielefs earth. Fixed alkalies do not diffolve this earth either in the dry or in the wet way ; and it is equally infoluble with the carhonic acid and with cauftic ammonia. It has a greater affinity to the oxalic than to other acids. Profeflor Trommfdorf in. forms us, that a full account of this earth, accompanied with an accurate defcription, by Dr Bernhardi, of the fofili in which it is found, will appear in the firlt part of the eighth volume of his 耳ournal of Pharmacy.

TEETH, of various forts of machines, as of mill wheels, \&c. Thefe are often called cogs by the work. men; and by working in the pirions, rounds or trundles, the wheels are made to turn une another. Mr Emerfon (in his Mechanics, prop. 25.) treats of the theory of teeth, and fhews that they ought to have the figure of epicycloids, for properly working in one another.

Suppl. Vol. II. Part II.

TEKAWY, in Bengal, money advanced by govern. Tekawy ment to the proptietors or cultivators of land to affilt Tempera.
thiem under circumitances of diftrefs.

TELESCOPE, is an inftrument which has been fo thent of the completely deferibed in the Encycloporlia, that it is in- Mutic. troduced into this place merely to notice an ingenious fuggeltion of Mr Nicholfon's for improving the achromatic telefcope, by adding an artificial iris to the object glafs. Suppofe (fays he) a brafs ring to furround the object end of the telefcope, and upon this let eight or more triangular !lips of brafs be fixed, fo as to revolve on equi-diftant pins paffing through each triangle near one of its corners. If the triangles be nided inwards upon each other, it may readily be apprehended that they will clofe the aperture ; and if they be all made to revolve or flide backwards alise, it is clear that their edges will leave an octagonal aperture, greater or lefs according to circumftances. The equable motion of all the triangles may be produced either hy pinions and one concave toothed wheel, or by what is called fnail. work. Another kind of iris, more compact, may be made, by caufing thin elaltic flips of brafs to flide along parallel to the tube, and be conducted each through a flit in a brafs cap which thall lead them acrofs the aperture in a radial direction. It is probable alfo that the artit, who thall carry thefe hints into effect, may alfo think of feveral other methods.

This thought occurred to the author, from contemplating the contraction and dilatation of the iris of the eye, according as we look at an object morc or lefs luminous. Thefe variations are fo great, that in the obfervable variations of the human eye, the aperture is thirty times as large at one time as at another, whilft in the cat the proportion is greater than a hundred to one.

TEMPERAMENT OF The scale OF MUSic. IntroducWhen the confiderate reader reflects on the large andition. almoft numberlefs differtations on this fubject, by the moft eminent philofophers, mathematicians, and artits, both of ancient and modern times, and the important points which divided, and fill divide, their opinions, he will not furely expect, in a Work like our's, the decifion of a queftion which has hitherto eluded their refearches. He will rather be difpofed, perhaps, to wonder how a fubject of this nature ever acquired fuch importance in the minds of perfons of acknowledged talents (for furely no perfon will refufe this claim to Pythagoras, to Ariftotle, Euclid, Ptolemy, Galileo, Wallis, Euler, and many others, who have written elaborate treatifes on the fubject); and his furprife will increafe, when he knows that the treatifes on the fcale of mufic are as numerous and voluminous in China, without any appearance of their beirg borrowed from the ingenious and fpeculative Greeks.

The ingenious, in all cultivated nations, have remark. ed the great influence of mufic ; and they found no difficulty in perfuading the nations that it was a gift of the gods. Apollo and his facred choir are perhaps the moft refpectable inhabitants of the mythological heavens of the Greeks. Therefore all nations lhave confidered mufic as a proper part of their religions worfhip. We doubt not but that they found it fit for exciting or fupporting thofe emotions and fentiments which were fuited to adoration, thanks, or petition. Nor would the Greeks have admitted mufic into their ferious dramas, if they had not perceived that it heightened the effect. 4 N

The

T E M [6_{50}] T E M

Tempera. The fame experience made them employ it as an aid to ment of the Scale of Mufic. military enthufiafm; and it is recorded as one of the refpectable accomplifhments of Epaminondas, that he had the mufical inftructions of the first matters, and was eminent as a performer.

Thus was the ftudy of mufic ennohled, and recommended to the attention of the greateft philofophers. Its cultivation was beld an object of national concern, and its profeffors were not allowed to corrupt it in order 10 gratify the fatidious tafte of the luxurious or the fenfualif, who fought from it wothing but amereanent. But its influence was not coatined to thefe public purpofes; and, while the men of fpeculation found in mufic an inexhauttible fund of employment for their genius and penetration, and their poets felt its aid in their compoftions, it was hailed by perfons of all ranks as the fonther of the eares and anxieties, and fweetener of the labours of life. O Pbabe decus !-ludorum dulce lenimern. Poor Ovid, the vi\&tim of what remained of good in the eold heart of Octavius, found its balm.
Evul cram (fays he) : requiefque mibi, non fuma potita ofl. Mens intentu fuis ne fort uf gue mulis.
Hoc efl cur cancet vincius quaque compede fofor,
Indocili numero cum grave mollit opus.
Cunitet et innitus finoffe fronus arence
Midverfo tardam qui trabis amne ratem,
Quique ferens put iter lentos ad pelfora vemos,
In vumerum pulfit brachia verfal acuâ.
Feflus ut incubuis baculo, faxove refoctit
Paftor; arundineo curmine mulat oves.
Cantantis fariter, pariter data penfa trabentis Fallitur ancille, decipiturque lab̈or.

Scale of mufic. It sequires temperament.

Few can
rusie a
harpfi-
chord;

It is chiefly in this humble department of mufical influence that we propofe at prefent to lend our aid. What has been faid in the article Music, Encycl. is fufficient for informing the reader of what is received as the feale of mufic, and the inequality of its different fleps, the tones major and minor, femitone, comma, \&e. We fhall only oblerve, that what is there delivered on teniperament by M. d'Alembert, after Rameall, bears the evident marle of uncertainty or want of confidence in the principle adopted as the rule of temperament; and we have learned, fince the printing of that article, that the inftuctions there delivered have not that perfpienity and precifion that are neceflary for enabling a perfon to execute the temperament recommended by Kameau; that is, to cune a keyed inflrument with certainty, according to that fyltem or conftruction of the feale.

If fuch be the cafe, we are in fome meafure difappointed; becaufe we felected that treatile of D^{\prime} Alembert as the performance of a man of great eminence as a mathematician and philofopher, aiming at public inftruction more than his own fame, by this elementary abftract of the great work of the molt eminent mufician in France.

To be able to tune a harpfichord with certainty and accuracy, feems an indifpenfable qualification of any perfon worthy of the name of a mufician. It would certainly be thought an unpardonahle deficiency in a violin performer if he could not tune his inftrument; yet we are well informed, that many profeffional performers on the harpfichord cannot do it, or cannot do it any other way than by uncertain and painful trial, and, as it were,
groping in the dark; and that the tuning of harpfi. Temperaeloords and organs is committed entirely to tuners by ment of the profeffion. This is a great inconvenience to perfons $\begin{aligned} & \text { Scale of } \\ & \text { Mufic. }\end{aligned}$ refiding in the country; and therefore many take leffons $\underbrace{\text { Mufic. }}$ from the profeffed harpfichord tuners, who alfo profefs to teach this art. We have been prefent during fome of thefe leffons; but it did not appear to us that the influctions were fuch as could enable the feholar to tune an inftrument when alone, unlefs the leffons had been fo frequent as to form the ear to an inftantanenus judgment of tune by the fame labit that had inftructed the teacher. There feemed to be little principle that could be treafured up and recollected when wanted.

Yet we cannot help thinking that there are pheno-Yet $\stackrel{3}{\mathrm{~N}}$ amena or facts in mufic, fufficiently precife to furnifin ture furprinciples of abfolute certainty for enabling us to pro- nifher aduce temperaments of the feale which fhall have deter- mundant mined cliaracters, and amoner whieh we may choofedoing this. fuch a one as flall be preferable to the others, according to the purpofes we have in view; and we think that thefe principles are of fuch eafy application, that any perfon, of a moderate fenfibility to jurt intonation, may, without much knowledge or practice in mufie, tune his harpfichord with all defirable accuracy. We propofe to lay thefe before the reader. We might content ourfelves with dimply giving the practical rules. deduced from the principles; but it is furely more de. firable to perceive the validity of the prineiples. This will give us confidence in the deduced rules of practice. In the employment of faered mulic, an infpired writer counfels us to fing, not only " with the heart, but with the underftanding alfo." We may, without irreverence, recommend the fame thing here. Let us therefore attend a little to the dictate of untutored Nature, and fee how the teaches all mankind to form the fcale of melody.

It is a moft remarkable fact, that, in all nations, how- All nations ever they may differ in the ftructure of that chaunt fing by ons which we call the accent, or tone, or twang, in the col- ${ }^{\text {fca }}$ e. loquial language of a partieular nation, or in the favourite phrafes or paffages which are moft frequent in their fonge, all nien make ufe of the fame rifes and falls, or infections of voice, in their mufical language or airs. We have heard the fongs of the Iroquois, the Cherokee, and the Efquimaux, of the Carib, and the inhabitant of Paraguay; of the African of Negroland and of the Cape, and of the Hindoo, the Malay, and the native of Otaheite-and we found none that made ufe of a different fale from our owit, although feveral feemed to be very forry performers by any fcale. There muft be fome natural foundation tor this uniformity. We may never difcover this; but we may be fortunate enough to difeover facts in the phenomena of found which invariably accompany eertain modifications of mufical fentiment. If we fueceed, we are intitled to fuppofe that fuch inieparable companions are naturally econected; and to conelude, that if we can infure the appearance of thofe faits in found, we thall allo give oecafion to thofe mutical fentiments or impreffions.

There is a quality in lengthened or continued found Mufical which we eall its pirch or note, by which it may be ac- pitch counted fhrill or hoarfe. It may be very hoarfe in the what? beginning, and during its continuance it may grow more and more flurill by impereeptible gradations. In this cafe we are fenfible of a kind of progrefs from the

Tempera- one flate of found to the other. Thus, while we gently ment of the draw the how acrofs the ftring of a bafs viol, if we Scale of Mufic. at the fame time flide the finger flowly along the ftring, from the nut toward the bridge, the found, from being hoarfe, becomes gradnaliy acute or fhrill. Hoarfe and fhrill therefore are not different qualities, although they have different names, but are different ftates or degrees of the fame quality, like cold and heat, near and far, early and late, or, what is common to all thefe, little and great. A certain ftate of the air is accounted neither hot nor cold. All ftates on one fide of this are called warm, or hot; and all on the other are cold. In like manner, a certain found is the boundary between thofe that are called hoarfe and thofe called fhrill. The chemift is accuftomed to fay, that the temperature of a body is higher when it is warmer, and lower when colder. In like manner, we are accuftomed to fay, that a perfon raifes or depreffes the pitch of his voice when it becomes more fhrill or more hoarfe. 'The ancient Greeks, however, called the fhriller founds low, and the hoarfer founds bigh; probably becaufe the hoarfer founds are generally ftronger or louder, which we are alfo accuftomed to confider as higher. In common language, a low pitch of voice means a faint found, but in mulical language it means a hoarfer found. The found that is neither hoarfe nor fhrill is fome ordinary pitch of voice, but without any precife criterion.

The change obferved in the pitch of a violin ftring, when the finger is carried along the finger-board with a continued motion, is alfo continuous; that is, not by flarts: we call it gradual, for want of a better term, although gradual properly means gradatim, by degrees, Heps, or ftarts, which are not to be dittinguifhed in this experinuent. But we may make the experiment in another way. After founding the open Atring, and while the bow is yet moving acrofs it, we may put down the finger about s^{2} inches from the nut. This will change the found into one which is fenfibly fhriller than the former, and there is a manifeft flart from the one to the otlier. Or we may put down the finger $2 \frac{1}{2}$ inches from the nut; the found of the open ftring will change to a fhriller found, and we are fenlible that this change or Itep is greater than the former. Moreover, we may, while drawing the bow acrofs the ftring, put down one Singer at $1 \frac{2}{3}$ inches, and, immediately after, put down another finger at $2 \frac{1}{2}$ inches from the nut. We fhall have three founds in fucceffion, each more fhrill than the preceding, with two manifeft fleps, or fubfultory changes of pitch.

Now fince the laft found is the fame as if the fecond had not been founded, we muft conceive the fum of the two fucceffive changes as equivalent or equal to the change from the firft to the third. This change feems fomehow to include the other two, and to be made up of them, as a whole is made up of its parts, or as $2 \frac{1}{2}$ inches are made up of $1 \frac{2}{3}$ and $\frac{5}{6}$ of an inch, or as the fum 15 is made up of 10 and 5 .

Thus it happens that thinking perfons conceive fomething like or analogous to a diftance, or interval, between thefe founds. It is plain, however, that there can be no real diftance or space interpofed between then ; and it is not eafy to acquire a diftinct notion of the bulk or magnitude of thefe intervals. This conception is purely igurative and analogisal; but the andlogy is very eiood, and the obfervation of it, or con-
jecture about it, has been of great fervice in the fcience Temperaof mufic, by making us fearch for fome precife meafure ment of the of thofe manifeft intervals of mufical founds. Scale of
It muft now be semarked, that it is in this refpeet Mefic. alone that founds are fufceptible of mulic. Nor are all 9 . founds poffeffed of this quality. The fmack of a whip, the explofion of a munket, the rufhing of water or wind, the fream of fome animals, and many other founds. both momentary and continuous, are mere noifes; and can neither be called hoarfe nor Mirill. But, on the other hand, many founds, which differ in a thoufand circumftances of loudnefs, fmonthnefs, mellownefs, \&c. which make them plealant or difagrceable, have this quality of mufical pitch, and may thus be compared. The voice of a man or woman, the found of a pipe, a bell, a ftring, the voice of an animal, nay, the fingle blow on an empty cafk-may all have one pitch, or we may be fenfible of the interval between thein. We can, in all cafes, fighten or flacken the ftring of a violin, till the moft uninformed hearer can pronounce with certainty that the pitch is the fame. We are indebted tu the celebrated Galileo for the difcovery of that phyfical circumftance in all thofe founds whiclu communicates this remarkable quality to them, and even enables us to induce it on any noife whatever, and to determine, with the utmoft precifion, the mufical pitch of the found, and the interval between any two fuch founds. Of this we fhall fpeak fully hereafter; and at prefent we only obferve, that two founds, having the fame pitch. are called unisons by muficians, or are faid to be in unifon to one another.

When two untaught men attempt to fing the fame air together, they always fing in unifon, unlefs they exprefsly mean to fing in different pitches of voice. Nay, it is an extremely difficult thing to do otherwife, except in a few very peculiar cafes. Alfo, when a man and woman, wholly uninftructed in mufic, attempt to fing the fame air, they alfo mean to fing the fame mufical notes through the whole air; and they generally imagine that they do fo. But there is a manifelt diffe. rence in the founds which they utter, and the woman is faid to fing more shrille, and the man more hoarse. A very plain experiment, however, will convince them that they are miftaken. $N . B$. We are now fuppofing that the performers have fo much of a mufical car, and flexible voice, as to be able to ling a common ballad, or a pfalm tune, with tolerable exactuefs, and that they can prolong or dwell upon any particular note when defired.

Let them fing the common pfalin tune called St Da . vids, in the fame way that they practife at church; and when they have done it two or three times, in order to fix their voices in tune, and to feel the general impretion of the tune, lat the woman hold on in the firft note of the tune, which we fuppofe to be g, while the man fings the firf three in fucceffion, namely g, d, \bar{g}. He will now perceive, that the laft note fung by himfelf is the fame with that fung by the woman, and which the thinks that fhe is till holding on in the firft note of the tune. Let thii be repeated till the performance becomes eafy. They will then perceive the perfect famenefs, in refpect of mufical pitch, of the woman's firft note of this tune and the man's third note. Some difference, however, will ftill be ferceived; hut it will not be in the pitch, but in the fmoothnets, or clearnefs, or other agreeable quality of the woman's note.

Tempera. When this is plainly perceived, let the man try by ment of the what continued fteps he muft raife his pitch, in order Mufic. to arrive at the woman's note from lis own. If he is

II
There are seven feps in the natural feale, and eight notes.

12

Oetare.

 accuftomed to common ballad finging, he will have no great difficulty in doing this; and will find that, begimning with his own mote, and finging gradually up, his eightl note will be the woman's note. In fhort, if two flutes be taken, one of which is twice as long as the other, and if the man fing in unifon with the large flute, the woman, while finging, as the thinks, the fame notes with the man, will be found to befinging in unifon with the fmaller flute.This is a remarkable and mott important fack in the phenomena of mulic. This interval, comprehending and made up of feven fmaller intervals, and requiring eight founds to mark its fteps, is therefore called an octave. Now, fince the female performer follows the fame dictates of natural ear in finging her tune that the man follows in finging his, and all liearers are fenfible that they are finging the fame tuve, it neceffarily follows, that the two feriefes of notes are perfectly fimilar, though not the fame: For there mult be the fame interval of an octave between any ttep of the lower octave and the fame ftep of the upper one. In whatever way, therefore, we conceive one of thefe octaves to be parcelled out by the different fteps, the partition of both muft be fimilar. If we reprefent both by lines, thefe lines muft be fimilarly divided. Each partial interval of the one mult bear the fame relation to the whole, or to any other interval, as its fimilar interval in the other octave bears to the whole of that octave, or to the other correfponding interval in it.
Farther, we mult now obferve, that although this fimilarity of the octaves was firft obferved or difcovered by means of the ordinary voices of man and woman, and is a legitimate inference from the perfect fatisfaction that each feels in finging what they think the fame notes, this is not the only foundation or proof of the fimilarity. Having acquired the knowledge of that phyfical circumftance, on which the pitch of mufical founds depends, we can demonftrate, with all the rigour of geometry, that the feveral notes in the man and woman's octave muf/ lave the fame relation to their reipective commencements, and that thefe two great inzervals are fimilarly divided. But farther ftill, we can demonftrate that this fimilarity is not confined to thefe two octaves. This may even be proved, to a certain extent; by the fame original experiment. Manymen can fing two octaves in fucceffion, and there are fome rare examples of perfons who can fing three. This is more common in the female voice. This being the cale, it is plain that there will be two octaves common to both voices; and therefore four octaves in fucceffion, all fimilar to each other. The fame fimilarity may be obferved in the founds of inftruments which differ only by an octave. And thus we demonftrate that all octaves are fimilar to each other. This fimilarity does not confift merely in the fimilarity of its divifion. The found of a note and its octave are fo like each other, that if the ftrength or loudnefs be properly adjufted, and there be no difference in kind, or other circumitances of clearnefs, fmoothners, Sic. the two notes, when founded together, are indiftinguifhable, and appear only like a more brilliant note. They coalefce into one found. Nay, moft clear mellow notes, fuch as thofe of a fine buman
voice, really contain each two notes, one of which is oc. tave to the other.

We fid
We faid that this refemblance of octaves is an im- Mufic. portant fact in the fcience of mufic. We now fee why it is fu. The whole feale of mufic is contained in one octare, and all the reft are only repetitions of this fcale. And thus is the doetrine of the fcale of melody brought within a very moderate compafs, and the problem is rewithin a very moderate compals, and the problem is re- tave; hence
duced to that of the repartition of a fingle octave, and called D1Afome attention to the junction with the fimilar fcales of Pason.
the adjoining octaves. This partition is now to be the fubject of difeuffion.

In the infancy of fociety and cultivation, it is pro-Melodies, bable that the melodies or tunes, which delighted the or tunes, or fimple inhabitants, were equally fimple. Being the airs, were fpontaneous effufions of individuals, perhaps only occa-mufic. fional, and never repeated, they would perifh as faft as produced. The airs were probably connected with fome of the rude rhimes, or gingles of words, which were banded about at their feltivals; or they were affociated with dancing. In all thefe cafes they mult have been very fhort, confifting of a few favourite paffages or mufical phrafes. This is the cafe with the common airs of all fimple people to this day. They feldom extend beyond a fhort ftanza of poetry, or a fhort movement of dancing. The artit who could compore and keep in mind a piece of confiderable length, muft have been a great rarity, and a minftrel fit for the entertainment of princes; and therefore much admired, and highly rewarded: his excellencies were almott incommunicable, and could not be preferved in any other way but by repeated performance to an attentive hearer, who mult alfo be an artift, and mutt patiently liften, and try to imitate; or, in fhort, to get the tune by: heart. It muft have been a long time before any diftinct notion was formed of the relation of the notes to each other. It was perhaps impoffible to recollect today the precife notes of yefterday. There was nothing in which they were fixed till inftrumental mufic was invented. This has been found in all nations; but it appears that long continued cultivation is neceffary for raifing this from a very fimple and imperfect itate. The moft refined inftrument of the Greek muficians was very far below our very ordinary inftruments. And, till fome method of notation was invented, we can farcely conceive how any determined partition of the octave could be made generally known.

Accordingly, we find that it was not till after a long кet-xots while, and by very rude and awkward Ateps, that the or Funda. Greeks perceived that the whole of mufic was compri- mental. fed in the octave. The firft improved lyre lad but four ftrings, and was therefore called a tetrachord; and the firft flutes had but three holes, and four notes; and when more were added to the fcale, it was done by joining two lyres and two flutes together. Even this is an inftructive ftep in the hittory of mufical fcience: For the four founds of the infrument bave a natural fyftem, and the awkward and groping attempts to extend the mufic, by joining two inftruments, the fale of the one following, or being a continuation of that of the other, pointed out the diapason or totality of the octave, and the relation of the whole to a principal found, which we now call the fundamental or key, it being the loweft note of our fcale, and the one to which the other notes bear a continual reference. It would far exceed the
limite

Tempera- limits of this Work to narrate the fucceffive changes ment of the and additions made by the Greeks in their lyre; yet
Scale of Scale of Mufic.

The octave Let fuch a perfon firf fing over fome plain and is naturaliy cheerful, or at leaft not mournful, tune, feveral times, divided into two retral chords. no difficulty in perceiving, after a few trials, that the fteps do re, and re mi, are fenfibly greater than the ftep mi fa. We fcel the laft ftep as a fort of nide; as an attempt to make as little change of pitch as we can, Once this is perceived. it will never be forgotten. This will be ftill more clearly perceived, if, inftead of thefe fyllables, he ufe only the vowel a, pronounced as in the word ball, and if he fing the fteps, fliding or flurring from the one to the other. Taking this method, he cannot fail to notice the fmallnefs of the third ftep.

Let the finger farther confider, whether he does not feel this phrafe mufical or agreeable, making a fort of tune or chamet, and ending or clofing agreeably after this fide of a fmall, or, as it were, half ftep. It is generally thought fo ; and is therefore called a close, a cadence, when we end with a half ftep afcending.

Let the finger now refume the whole fale, finging the four laft notes fol, la, \sqrt{i}, do, louder than the other four, and calling off his attention from the low phrafe, and fixing it on the upper one. He will now be able to perceive that this, like the other, has two confiderable fleps; namely, fol, la, and la fi, and then a fmaller ftep, f_{2} do. A few repetitions will make this clear, and he will then be fenfible of the nature of the fimilarity between thefe two phrafes, and the propriety of this great divifion of the fcale into the intervals $d o, f a$, and fol, do, with an interval fa, fol between them.

This was the foundation of the tetrachords, or lyres of four ftrings, of the Greeks. Their earlieft mufic or modulation feems to bave extended no farther than this phrafe. It pleafed them, as a ring of four bells pleafes many country parifhes.
cosz of The finger will perceive the fame fatisfaction with idence. the clofe of this fecond phrafe as with that of the
former: and if he now fing them buth, in immediate Tempera. fucceffion, with a llight paufa between, we imagine that ment of the he will think the clofe or cadence on the upper do even Scale of more fatisfactory than that on the $f a$. It feems to us Mufic. to complete a tune. And this imprefion will be great. ly heightened, if another perfon, or an inftrument, fhould found the lower $d o$, while he clofes on the upper do its octave. Do feems to be expected, or looked for, or fought after. We take $\sqrt[f i]{ }$ as a ftep to do, and there we reft.

Thus does the oftave appear to be naturally compo. The third fed of feven fteps, of which the firf, fecond, fourth, and feventh fifth, and fixth, are more confidcrable, and the third fep are the and feventh very fenfibly fmaller. Having no direct meafures of their quantity, nor even a very diftinet no. tion of what we mean by their quantity, magnitude, or bulk, we cannot pronounce, with any certainty, whether the greater Ateps are equal or unequal; and we prefume them to be equal. Nor have we any diftinet notion of the propurtion between the larger and fmaller fteps. In a loofe way we call them half notes, or fuppofe the rife from $m i$ to $f a$, or from \sqrt{i} to $d o$, to be onehalf of that from do to re, or from re to mi.

Accordingly, this feems to have been all the mufical The Pgths, fcience attained by the Greek artifts, or thofe who did gorean dif. not profefs to fpeak philofophically on the fubject. And coveries di even after Pythagoras publifhed the difcovery which he prove the had made, or more probably had picked up among the Greek mu. Chaldeans or Egyptians, by which it appeared, that fic. accurate meafures of founds, in refpect to gravity and acutenefs, were attainahle, it was affirmed by Ariftoxenus, a fcholar of Ariftotle, and other eminent philofo. phers, that thefe meafures were altogether artificial; had no connection with mufic, and that the ear alone was the judge of mufical intervals. The artif had no other guide in tuning his inftument; becaufe the ra. tios, which were faid to be inherent in the founds (though no perlon could fay how), were never perceived by the ear. The juftice of this opinion is abundantly confirmed by the awkward attempt of the Greeks to improve the lyre by means of thefe boafted ratios. Inftead of illuftrating the fubject, they feem rather to have brought an additional obfeurity upon it, and threw it into fuch confulion, that although many voluminous differtations were written on it, and on the compofition of their mufical fcale, the account is fo perplexed and confufed, that the firft mathematicians and artits of Europe acknowledged, that the whole is an impene. trable myitery. Had the philofophers never meddled with it, had they allowed the practical muficians to conftruct and tune their inftruments in their own way, fo as to pleafe their ear, it is fcarcely pofible that they. fhould not have hit on what they wanted, without all the embarraffment of the chromatic and enharmonic fcales of the lyre. It is farcely poffible to contrive a more cumberfome method of extending the fimple fcale of Nature to every cafe that could occur in their mufical compofitions, than what arofe from the employment of the mufical ratios. This feems a bold affertion; but we apprchend that it will appear to be juft as we prow ceed.

The practical muficians could not be long of finding The iranf. the want of fomething more than the mere diatonic pofition of fcale of their inftruments. As they were always ac-mufic made companied by the voice, it would often happen that a intercalary lyre or flute, perfectly tuned, was too low or too high fary in the for octave.

T E M

Tempera. for the voice that was to accompany it. A finger can ment of the pitch his tune on any found as a key; and if this be seale of too high for the finger who is to accompany him, he
Mufic. $\underbrace{\text { Mulic. }}$ can take it on a lower note. But a lyrift cannot do this. Suppofe his inftrument two notes too low, and that his aceompanyit ean only fing it on the key which is the f_{i} of the lyre. Should the lyrift begin it on that key, his very firft ftep is wrong, being but a half ftep, whereas it fhould he a whole one. In fhort, all the fteps but one will be found wrong, and the lyrift and finger will be perpetually jarring. This is an evident confequence of the inequality of the fourth and feventh fteps to the reft. And if the other iteps, which we imagine to be equal, be not exactly fo, the difcordance will be fill greater.
Difputes of the Pythagoreansand Ariftuxe neans aboue tios.

The method of remedying this is very olvious. If the intervals $m i f a$ and $f i d o$, are, half notes, we need only to interpofe other founds in the middle between each of the whole notes; and then, in place of feven unequal fleps, we fhall have twelve equal ones, or twelve intervals, each of them equal to a femitone. The lyre thus conftructed will now fuit any voice whatever. It will perfectly refemble our keyed inftruments, the harpíchord, or organ, which have twelve feemingly equal intervals in the octave. Aecordingly, it appears that fuch additions were practifed by the muficians of Greece, and approved of by Aritoxenus, and by all thofe who referred every thing to the judgment of the ear. And we are confident that this method would have been adopted, if the philofophers had had lefs influence, and if the Greeks had not borrowed their religious ceremonies along with their mufieal feience. Both of thefe came from the fame quarter; they came united; and it was facrilegious to attempt imovations. The doctrine of mufieal ratios was an occtpation only for the refined, the philofophers; and by fubjecting mufic to this myterions fcience, it became mytterious alfo, and fo mueh the more venerable. The philofophers faw, that there was in Nature a certain inferutable connection between mathematical ratios and thofe intervals which the ear relifhed and required in melody; but they were ignorant of the nature and extent of this counection.

Ratios of
octave, diapente, and diateflaron.

What is this connection, or what is meant when we fpeak of the ratios of founds? Simply this:-Pythagoras is faid to have found, that if two mufieal cords be ftrained by equal weights, and one of them be twice the length of the other, the floort one will found the octave to the note of the other. If it be two-thirds of the length of the long ftring, it will found the fifth to it. If the long ftring found $d o$, the fhort one will found fol If it he three-fourths of the length, it will found the fourth or fa. Thus the ratio of $2: 1$ was called the ratio of the drapason; that of $3: 2$ was called the diapente; and that of $4: 3$ the diatessaron. Moreover, if we now take all the four ftrings, and make that which founds the gravef note, and is the longeft, twelve inches in length ; the fhort or oetave ftring muft be fix inches long, or one-half of twelve; the diapente mult be cight iaches, or two-thirds of twelve; and the

541 T E M

diateflaron mult be nine inches, whieh is three-fourths Temperaof twelve. If we now compare the diapente, not with mene of the the graveft ftring, but with the octave of fix inches, we Scale of fee that they are in the ratio of 4 to 3 , or the ratio Mufic. of diateflaron. And if we compare the diateflaron with the octave, we fee that their ratio is that of $9: 6$, or of $3: 2$, or the ratio of diapente. Thus is the octave divided into a fifth and a fourth, do fol, and fol do, in fucceffion. Alfo the fourth do $f a$, and the fifth $f a$ do, make up the octave. The note which ftands as a fifth to one of the extreme founds of the octave, ftands as a fourth to the other. And, laftly, the two fourths do $f a$, and fol do, leave an interval fa fol between them ; which is alfo determined by nature, and the ratio correfponding to it is evidently that of 9 to 8 .

This is all that was known of the connection of mu-The difco. ${ }^{25}$ fie with mathematical ratios. It is indeed faid by Iam-very of Pybliehus, that Pythagoras did not make this difeovery by thagoras is means of frings, but by the founds made by the ham- eith ${ }_{5}$ ble a mers on the anvil in a fmith's fhop. He obferved the falfely naro founds to be the key, the diateffaron, and the diapenterated.
of mufic; and he found, that the weights of the hammers were in this proportion; and as foon as he went home, he tried the founds made by cords, when weights, in the proportions above-mentioned, were appended to them. But the whole flory has the air of a fable, and of ignorance. The founds given by a fmith's anvil have little or no dependence on the weight of the hammers; and the weights which are in the proportions of the numbers mentioned above will by no means produce the founds alleged. It requires four times the weight to make a fring found the octave, and twice and a quarter will produce the diapente, and one and fivenninths will produce the diateflaron. It is plain, cherefore, that they knew not of what they were fpeaking: yet, on this flight foundatinn, they erected a vall fabric of fpeculation; and in the courfe of their refearches, thefe ratios were found to contain all that was excellent. The attributes of the Divinity, the fymmethy of the miverfe, and the principles of morality, were all refolvalle into the harmonic ratios.

In the attempts to explain, by means of the myfte-Conjoined rious properties of the ratios $2: 1,3: 2,4: 3$, and and diajoin, $9: 8$, which were thus defined by Nature, it was ob- chords. ferved, that their favourite lyres of four ftrings could be combined in two prineipal manners, fo as to produce an extenfive feale. One lyre may contain the notes do, re, mi, ja; and the acuter lyre may contain the notes fol, la, $\sqrt[f]{1}$, do ; and, being fet in fucceffion, haviing the interval fa fol between the higheft note of the oue and the loweft of the other, they make a complete octave. Thefe were called disjoined tetrachords. Again, a third tetrachord may be joined with the upper tetrachord laft mentioned, in fueh fort, that the loweft note of the third tetrachord may be the fame with the higheft of the fecond. Thefe were ealled conjoined tetrachurds (A).

By thus confidering the feale as made up of tetra- 27 chords, the tuning of the lyre was reduced to great he lyres fimplicity. The mufieian had only to make himfelfentirely by perfect in the fhort chant $d o, r e, m i, f a$, or to get it the ear,
(A) This is the principle, but not the precife form, of the disjoined and conjunct tetrachords. The Greeks did not begin the tetrachord with what we make the firft note of our chaunt of four notes, but began one of them with mi, and the other with f_{2}; to which they afterwards added a note below. This beginning feems to have been directed by fome of their favourite cadences; but it would be tedious to explain it.

Tempera- by heart, and to fing it exactly. This intonation would ment of the apply equally to the other $f o l, l a, f i, d o$. We are well
seale ef seale of applomed that this was really the practice. The direcMufic. tions given by Ariftoxenus, Nicanor, and others, for varying the tuming, according to certain occational accommodations, fhew diffinctly that they did not tune as we do, founding the two tlrings together, except in the cafe of the diapafon or octave. It was all done by the judgment of the ear in melody. The moft valuable circumftance in the difcovery of Phythagoras was the determination of the interval between the fourth and the fifth, by which the tetrachords were feparated. The filling up of each tetrachord was left entirely to the ear ; and when the doctrine of the mathematical ratios fhewed that the large intervals do re, re mi, fa fol, fol la, la f, fhould not be precifely equal, Arilloxenus refufed the authority of the reafons alleged for this inequality, becanfe the ear perceived none of the ratios as ratios, and could judge only of founds. He farther affeited, that the inequalities which the Pythagoreans enjoined, were fo trifing, that no car could pofibly perceive them. And accordingly, the theorifts difputed about the refpective fituations of the greater and fmaller tones (io they named the grcat fleps) fo much fooken of, and had different fyftems on the fubject.

But the ftrongeft proof of the indiltinct notion that the theorifts entertained about the influencc of thefe ratios in mufic is, that they would admit no more but thofe introduced by Pythagoras; and their reafons for the rejection of the ratio of 5 to 4 , and of 6 to 5 , were either the moft whimfical fancies about the perfections of the iacred ratios, or affumptions expreisly founded on the fuppofition, that the ear perceives and judges of the ratios as ratios; than which nothing can be more falfe. Had they admitted the ratio of 5 to 4 , they would have obtained the third note of the fcale, and would at once have gotten the whole fcale of our mulic. The ratios of $6: 5$, and $16: 85$, follow of courfe; and every found of the tetrachords would lave been determined. For 5:4 being the ratio of the major third, which is perfectly plealing to the ear, as the mi to the note $d o$, and $3: 2$ being the atic of the filth do fol, there is auother interval mi jol determiner; ; and this ratio, being the difference between do fol and do mi, or between $3: 2$ and $5: 4$, is evidently $6: 5$. In like manaer, the interval mi $f a$ is determined, and its ratio, being 4:3-5:4, is $16: 15$.

But tarther; we flall find, upon trial, that if we put in a found above fol, having the relation $5: 4$ to $f a$, it will be perfectly fatisfactory to the ear if fung as the note la. And if, in like manner, we put in a note above $l a$, having the relation $5: 4$ to fol, we find it fatisfactory to the ear when ufed as $\sqrt{6}$. If we now examine the ratios of thete artificial notes, we fhall find the ratio of the uotes fol la to be $10: 9$, and that of $l a$ f_{2} to be $9: 8$, the fame with that $f a f o l$; alfo $\sqrt{2} d o$ will appear to be $16: 15$, like that of $m i f a$.

We have no remains of the mufic of the Greeks, by which we can learn what were their favourite paffages or mufical phrafes; and we cannot fee what caufed them to prefer the fourth to the major third. Few muficians of our times think the fourth in any degree comparable with the major third for melodioufnefs, and ftill fewer for harmonioufnefs. The piece or tune publifhed by Kircher from Alypius is very fufpicious, as

55] T E M

no other perfon las feen the MS. ; and the collection Temperzfound at Buda is too much disfigured, and probably of nient of the too late a date, to give us any folid help. In all pro- $\begin{aligned} & \text { Scale of } \\ & \text { Mufic. }\end{aligned}$ bability, the common melodies of the Greeks abounded $\underbrace{\text { Mufic., }}$ in eafy leaps up and down on the third and fifth, and on the fourth and lixth, juft as we obferve in the airs for dancing among all fimple people. Their accornplifhed performers had certainly great powers both of invention and execution; and the chromatic and enharmonic divifions of the fcale were certainly practifed by them, and not merely the fpeculations of mathematicians. To us, the enharmonic fcale appears the moft jarring difcord; but this is certainly owing to our not feeing any pieces of the mufic fo compofed, and becaufe we cannot in the leall judge by harmony what the effect of enlarmonic melody would be. But we have fufficient evidence, from the writings of the ancient Greeks, that the enharmonic mufic fell into difufe even bcfore the time of I'tolemy, and was totally and irrecoverably loft before the \upharpoonright th century. Even the chromatic was little practifed, and was chiefly employed for extending the common fcale to keys which were feldom ufed. The uncertainties refpecting even the common fcale remained the fame as ever; and although Ptolemy gives (among others) the very fame that is now admitted as the only perfect one, namely, his diatonicum intenfum, his reafons of preference, though good, are not urged with ftrong marks of his confidence in them, nor do they feem to have prevailed.
There obfervations fhew clearly, that the perception But mes of melody alone is not tufficiently precife for enahling lody is us to acquire exact conceptions of the fcale of mufic. quite inThe whole of the praeticable fcience of the ancients feems to amount to no more than this, that the octave contained five greater and two finaller intervals, which the voice employed, and the ear relifind. The greater intervals feemed all of one magnitude; and the fmaller intervals appeared alfo cqual, but the ear cannot judge what proportion they bear to the larger oncs. The muficians thought them larger thian one-half of the great intervals (and indeed the ratio $16: 15$ of the artificial mifa and $\sqrt{2} d o$, is grcater than the half of $g: 3$ or $10: 9$). Therefore they allowed the thonits to call them limmas inftead of hemiones; but they, as well as the theorifts, differed exceedingly in the nagguitudes which they affigned them.

The beit way that we can think of for exprefing the Circuiar ${ }^{30}$ feale of the octave is, by dividing the circuriference of refertaa circle in the puints C, D, E, F, G, A, and B, (fig. ion of the 1.), in the proportion we think moft fuitable to the fale natural fcale of melody. According to the mactical plate. notion now under our confideration, the arches CD, DE, FG, GA, and $\triangle B$, are equal, containing nemly 59°; and the arches EF and BC are alfo ecinal, but fmaller than the others, containing about 33 !. Now, fuppofe anothir circle, on a piece of card paper, divided in the fame natiner, to move round their common centre, but inftead of having its puints of divifion marked C, D, E, \&cc. let them be marked do, re, me, fa, fo!, la, fi. It is plain, that to whatever point of the outcr circle we fet the point do of the inner one, the other points of the outer circle will fhew the common notes which are fit for thofe iteps of the fcale. The fimilarity of all octaves makes this fimple octave equivalent to a rectilineal fcale fimilarly divided, and repeated as ofter

Tempera- as we pleafe. Fig. I. reprefent this initrument, and ment of the will be often referred to. A fort of fymmetry may be Scale of obferved in it. The point D feems to occupy the

 middle of the feale, and r feems to be the middle note of the octave. The oppofite arch GA, and the correfponding interval fol la, feems to be the middle interval of the octave. The other notes and intervals are fimilarly difpoied on each fide of thefe. This circumftance feems to have been obferved by the Greeks, by the inhabitants of India, by the Chinefe, and even by the Mexicans. The note re, and the interval fol la, have gotten diftinguifhed fituations in their inftruments andWith refpect to the divifion of the circles, we fhall only obferve at prefent, that the dotted lines are conformable to the principles of Arifoxenus, the whole octave being portioned out into five larger and equal intervals, and two fmaller, alfo equal. The larger are called mean or medium tones; and the fmaller are called limmas or femitones. The full lines, to which the letters and names are affixed, divide the octave into the artificial portions, determined by means of the mufical ratios, the arches being made proportional to the meafures of thofe ratios. Thus the arches CD, FG, AB, are proportional to the meafure or logarithm of the ratio $9: 8$; GA and DE are proportional to the logarithm of $10: 9$; and the arches EF and BC are proportional to the logarithm of $16: 15$. We have already mentioned the way in which thofe ratios were applied, and the authority on which they were felected. We Mall have occafion to return to this again. The only farther remark that is to be made with propriety in this place is, that the divifion on the Arifoxenean principles, which is expreffed in this figure, is one of an indefiuite number of the fame kind. The only principle adopted in it is, that there fhall be five mean tones, and two fmall equal femitones; but the magnitude of thefe is arbitrary. We have clofen fuch, that two mean tones are exactly equal to the arch CE, determined by the ratio $5: 4$. The reafons for this preference will appear as we proceed (в).

By this little infrument (the invention, we believe, of a Mr D'Ormiffon, about the beginning of laft century), we fee clearly the infufficiency of the feven notes of the octave for performing mufic on different keys. Set the flower de luce at the Ariftoxenean B, and we Shall fee that E is the only note of our lyre which will do for one of the fteps of the octave in which we intend to fing and accompany. We have no founds in the lyre for $r e, m i$, fol, $l a, ~ \jmath$. The remedy is as clearly pointed out. Let a fet of ftrings be made, having the fame relation to f_{i} which thofe of the prefent lyre lave to $d o$, and infert them in the places pointed out by the Arifoxenean divifions of the moveable octave. We need only five of them, becaufe the $f i$ and $f a$ of the prefent lyre will anfwer. Thefe new founds are marked by a + . required indifferent melody, and that either the ear could not TEMPERA. deternine the equality of the tones and femitones exact. m: NT. ly enough, or that no fuch partition of the octave would anfwer. The Pythagoreans, or partifans of the mufi-
cal ratios, had told them this before. But they were Temperi. in no better condition themfelves; for they found, that ment of th. if a feries of founds, in perfect relation to the octave, be inferted in the manner propofed, the melody will be no better. They put the matter to a very fair trial. It is eafy to fee, that no fyftem of mean tones and limmas will give the fame mufic on every key, unlefs the tones be increafed, and the limmas diminifhed, till the limma becomes juft half a tone. Then all the intervals will be perfectly equal. The mathematicians computed the ratios which would produce this equality, and defired the Arifoxeneans to pronounce on the mufic. It is faid, that they allowed it to be very bad in all their moft favourite paffages. Nothing now renained to the Ariftoxeneans but to attempt occafional methods of tuning. They faw clearly, that they were making the notes unequal which Nature made equal. The Pythagoreans, in like manncr, pointed out many alterations or corrections of intervals which fuited one tetrachord, or one part of the octave, but did nor fuit ano. ther. Both parties faw that they were obliged to deviate from what they thought natural and perfect : therefore they called thefe alterations of the natural or perfect fcale texperament.

The aceomplithed performers were the beft judges of the whole matter, and they derived very little affithance from the mathematicians : For although the rigid rules delivered by them be acknowledged to be perfectly exact, the execution of thofe rules is not fufceptible of the fame exactnefs. Their lyres are tuned, not by mathematical operations, but by the ear. It does not appear that they had mufical inftruments with divided finger-boards, like our bafs viols and guitars; and even on thefe, it is well known that the preffure and touch of the finger may vary fo much, that the moft exact placing of the frets will not infure the nice degrees of the founds. The flutes are the only inftruments of the ancients that are capable of accurate founds. But flutemakers know very well, that they cannot be tuned by mathematical operations, but by the car alone. This accounts for the great prices paid for a well-tuned flute. Some have coft L. 700, and L. 50 was a very common price.

Such feems to have been the fate of the ancient mu-The ${ }^{33}$ reek fic. There was little or no fcience in it. There was, did not cul indeed, a moft abftrufe and refined fcience coupled with tivate fne it ; but by a very flight connection : and it feems to h have been nothing more than an amufement for the in. genious and fpeculative Greeks. Nor could it, in our opinion, be better, fo long as they had no guide in tuning but the judgment of the ear in melody. Many writers infift that the Greeks had a knowledge of what we call barmony alfo. The word ג́puovic is conflantly ufed by them : but it does not mean what we call harmony, the pleafant coalefcence of fimultaneous founds.
 titude, fitnefs, and would, in general, be better tranflated by fymmetry. But we cannot conceive that they paid any marked attention to the effect of fimultaneous founds, fo as to enjoy the pleafure of certain confonances, and employ them in their compofitions. We judge in this way from the rank which they gave them in their
(в) We thall be abundantly exact, if we make $\mathrm{CD}=61^{\circ}, 72 ; \mathrm{CE}=115^{\circ}, 9 ; \mathrm{CF}=149^{\circ}, 42 ; \mathrm{CG}=210^{\circ}, 58$; $C A=265^{\circ}, 3$; and $C B=326^{\circ}, 4^{8}$.
"enyera- their feale. 'To prefer the fourth to the major third ent of the feems to us to be impoffible, if it be meant of finsultaneous founds. And the reafon which is affigned for the preference can have no value in the opinion of a mufacian. It is becaufe the ratio of $4: 3$ is fimpler than that of $5: 4$. For the fame reafon, the fifth is preferred to both, and the octave to all the three, and anifon to every other confonance. They would not alluw the major third $5: 7$ to be a concord at all. We have made-mumberkefs trials of the different concords with perfons altogether ignorant of mutic. We never faw an ialtance of one who thought that mere unifon gave any pofitive pleafure. None of all whom we examined had much pleafure from an ofave. All, without exception, were delighted with a fifth, and with a majur third; and n:any of them preferred the latter. All of them agreed in calling the pleafure from the fifth a fouetnes, and that from the major thind a chserfulnts, or fmarinefs, or by names of fimilar inport. The greater part preferred evern the major lisith to the fourth, and fome felt no pleafure at all from the fouth. Few had much pleafure from the minor third or minor fisth. N. B. Care was taken to found thefe concords without any preparation - merely as founds - but not as making part of any mufical paffage. This circumblance has a great effect on the mind. When the minor third and fixth were heard as making part of the minor mode, all were delighted with it, and called it fweet and mournful. In like manner, the chord $\frac{6}{4}$ never failed to give pleafure. Nothing can be a Atronger proof of the ignorance of the ancients of the pleafures of harmony.

We do not profefs to know when this was difcovered. We think it not unlikely that the Greeks and Italians got it from fome of the northern nations whom they called Barbarians. We cannot otherwife account for its prevalence through the whole of the Ruffian em-pire-the) ancient Slavi had little commerce with the empire of Rome or of Conftantinople; yet they fung in parts in the moft remote periods of their hiftory of which we have any account ; and this day, the moft uncultivated boor in the Ruffian empire would be afhamed to fing in unifon. He liftens a little while to a new tune, holding his clin to his breaft; and as foon as he 'ras got a notion of it, he burfts out in concert, throwing in the harmonic notes by a certain rule which he feels, but cannot explain. His harmonics are generally alternate major and minor thirds, and he feldom miffes the proper cadences on the fifth and key. Perhaps the invention of the organ produced the difcovery. We know that this was as early as the fecond century (c). It was hardly poffible to make much ufe of that ioftrument without perceiving the pleafure of concordant founds.

The difcovery of the pleafures of harmony occafioned a total change in the fcience of mufic. During the dark ages of Europe, it was cultivated chiefly by the monks: the organ was foon introduced into the churches, and the choral fervice was their chicf and almot their only occupation. The very conftruction of this

Suppl. Vol. II. Part II.
inftument muft have coutributed to the improvement Tomperaof mulic, and inftructed mein in the nature of the fale, mente et the The pipes are all tuned by their lengths; and thefe lengths are in the ratios of the Arings which give the fame notes, when all are equally fretched. This mult have revised the fludy of the mulicul ratios. The the ning of the organ wats performed hy confonance, and no longer depended on the niece julformate of founds in fucceflion. 'The dulletl ear, even with tetal ignorauce of mufic, can judre, without the imalleft errom, of an exact artave, fifth, third, or other concord; and a very mean mufician coukl now tunc an organ more accurately than Timothens could tunc his lyre. Othe: keycd infruments, refembling our horpfichosd, were invented, and ialtruments wihh fretted finger-boards. Thefe foon fupplanted the lyres and harps, being much more compendious, and allowing a much greater varicty and rapidity of modulation. All thefe inftruments were the fruits of harmony, in the modern fenfe of that word. The deficiences of the old diatonic fcale were now more apparent, and the neceffity of a number of intercalary notes. 'l'he finger-board of an organ or harpfichord, running through a feries of octaves, and admitting much more than the accompanyment of one note, pointed out new fources of mufical pleafure ariling from the fulnefs of the harmony; and, above all, the practice of choral finging fuggefted the ponfibility of a pleafure altogether new. While a certain number of the choir performed the Cantus or A ir of the mufic, it was irkfome to the others to ntter mere founds, fupporting or compofing the harmony of the Cantus, without any melody or air in their own parts. It was thought probable that the harmonic notes might be fo portioned out among the reft of the choir, that the fucceffion of founds uttered by each individual might alfo conftitute a melody not unpleafant, and perhaps highly grateful. On trial it was found very practicable. Canons, motets, fugues, and other harmonics, were compofed, where the airs performed by the different parts were not inferior in beauty to the principal. The notes which could not be thrown into this agreeable fucceffion, were left to the organif, and by him thrown into the bafs.

By all thefe practices, the imperfections of the fcale of fixed founds became every day more fenfible, efpecially in full harmony. Scientific mufic, or the properties of the ratios, now recovered the high eftimation in which they were held by the ancient theorifts; and as the muficians were now very frequently men of letters, chiefly manks, or fober characters and decent manners, mufic again became a refpectable ftudy. The organift was generally a man of fcience, as well as a performer. At the firft revival of learning in Europe, we find mufic itudied and honoured with degrees in the univerfities, and very foon we have learned and excellent differtations on the principles of the feience. The inventions of Guido, and the differtations of Salinas, Zarlino, and Zoni, are among the moft valuable publications that are extant on mufic. The imporvements introduced by Guido are founded on a very refined
(c) It is faid that the Chinefe had an inftrument of this kind long before the Europeans. Caufeus fays, that it was brought from China by a native, and was fo fmall as to be carried in the hand. It is certain that the Emperor Conflantine Copronymus fent one to Pepin king of France in 757, and that his fon Charletnagne got another from the Emperor Michacl Paleologus. But they appear to have been known in the Englifh churches before that time.

Tempora- examination of the fcale; and the temperaments proment of the pofed by the other two lave fearecly licen improved Scate of by any labours of modern date. Both thefe authors
Mufic. Mulic. had Itudied the Greek writers with great care, and their improvements procecd on a complete knowledge of the doctrines of Pythatoras and I'tolemy. covered that mufical pitch confifted in the fre'quency of the aërea! undula. tions.

At lat the celebrated Galileo Galilei put the finifh ing hand to the doctrines of thofe ancient philofophers, by the difcovery of the connection which fubtifts in nature between the ratios of numbers and the mulical intervals of founds. He difeuvered, that thefe nombers exprefs the frequency of the recurring pulfes or undulations of air which excite in us the fenfation of found. He demonftrated that if two ftrings, of the fame matter and thicknefs, be fretched by equal weights, and be twanged or pinched fo as to vibrate, the times of their vibrations will be as their lengths, and the frequency or number of ofcillations made in a given time will be inverfely as their lengths. The frequency of the fonorous undulations of the air is therefore inverfely as the length of the ftring. When therefore we fay that 2 : 1 is the ratio of the octave, we mean, that the undulations which produce the upper found of this interval are twice as frequent as thofe which produce its fundamental found. And the ratio $3: 2$ of the diapente or fifth, indicates, that in the fame time that the ear receives three undulations from the upper found, it receives only two from the lower. Here we have a natural connection, not peculiar to the founds produced by frings; for we are now able to demonftrate, that the founds produced by bells are regulated by the fame law. Nay, the improvements which have been made in the fcience of motion fince the days of Galileo, fhew us that the undulations of the air in pipes, where the air is the only fubftance moved, is regulated by the fame law. It feems to be the general property of founds which renders them fufceptible of mufical pitch, of acutenefs, or gravity ; and that a certain frequency of the fonorous undulations gives a determined and unalterable mufical note. The writer of this article has verified this by many experiments. He finds, that any noife whatever, if repeated 240 times in a fecond, at equal intervals, proc'e ces the note C fol fa ut of the Gindonian gamut. If it be repeated 360 times, it produces the G fol re ut, \&c. It was imagined, that only certain regular agitations of the air, fuch as are produced by the tremor or vibration of elaltic bodies, are fitted for exciting in us the fenfation of a mufical note. But he found, by the moft ditlinet experiments, that any noife whatever will have the fame effect, if repeated with due frequency, not lefs than 30 or 40 times in a fecond. Nothing furely can have lefs pretenfion to the name of a mufical found than the folitary fnap which a quill makes when drawn from one tooth of a comb to another: but when the quill is held to the teeth of a wheel, whirling at fuch a rate, that 720 teeth pafs under it in a fecond, the found of g in alt. is heard moft diflinctly ; and if the rate of the wheel's motion be varied in any proportion, the noife made by the quill is mixed in the moft diftinct manner with the mufical note correfponding to the frequency of the fnaps. The kind of the original noife determines the kind of the continuous found produced by it, making it harfh and fretful, or fmooth and mellow, according as the original noife is abrupt or gradual: . but even the moft abrupt
noife produces a tolerably fmooth found when fufficient. Tcmpera ly frequent. Nothing can be more abrupt than the ment of th fnap jut now mentioned; yet the g produced by it las scal: of the fmoothnefs of a bird's chirrup. An experiment was made, which was lefs promifing of a found than any that can be thought of. A ftop-cock was fo conftructed, that it opened and Thut the paffage through a pipe 7.20 times in a fecond. This apparatus was fitced to the pipe of a conduit leading from the bellows to the wind-cheit of an organ. 'l'he air was fimply allowed to pafs gently along this pipe by the opening of the cock. When this was repeated 720 times in a fecond, the found g in alt. was molt fmoothly uttered, equal in fweetnefs to a clear female voice. When the frequency was reduced to 360 , the found was that of a clear but rather harth man's voice. The cock was now altered in fuch a manner, that it never fhut the hole entirely, but left about one third of it open. When this was repeated 720 times in a fecond, the found was uncommonly fmooth and fweet. When reduced to 360 , the found was more mellow than any man's voice at the fame pitch. Various changes were made in the form of the cock, with the intention of rendering the primitive noife more analogous to that produced by a vibrating fring. Sounds were produced which were pleafant in the extreme. The intelligent reader will fee here an opening made to great additions to practical mufic, and the means of producing mulical founds, of which we have at prefent fcarcely any conception ; and this manner of producing them is attended with the peculiar advantage, that an inftrument fo conftructed can never go out of tune in the fmalleft degree. But of this enough at prefent.
This difcovery of Galileo's completed the Pythago-This ${ }^{38}$ rean theories, by fupplying the only thing wanted for quency is procuring confidence in them. We now fee that the exprcffed mutic of founds depends on principles as certain and as by the mut plain as the elements of Euclid, and that every thing of Pythat relating to the fcale of mufic is attainable by mathema-goras.
tics. It is very trae that we do not perceive the ratio $3: 2$ in the diapente, as having any relation to the numbers 3 and 2. But we perceive the fweetnefs of found which characterifes this concord. This is undoubtedly the perception of a certain phyfical fact involving this ratio; as much as the fweetnefs on our tongue is the perception of a certain manner of acting of the particles of fugar during their diffolution in the faliva.

The pleafure arifing from certain confonances, fuch Concord, as do fol, is not mure diftinctly perceived than is the arscord, difagreeable feeling which other confonances produce, are proper-1 fuch as do re; and it was a fair field of difquifition to ticular radifcover why the one pleafed and the other difpleafed. tios of freWe cannot fay that this queftion has been completely quency. decided. It has been afcribed to the coincidence of vibrations. In the octave, every fecond vibration of the treble note may be made to coincide with every vibration of the bafs. But the pleafure arifing from the different confonances does by no means follow the proportions of thofe coincidences of vibrations; for when two notes are infinitely near to the ftate which would produce a complete coincidence, the actual coincidence is then exceedingly rare; and yet we know that fuch founds yield very fine harmony. In tuning any concord, when the two notes are very difcordant, the coinciding vibrations recur very frequently; and as we ap-
proachs

Tempera proach nearer and nsarer to perfect concoid, thefe coinrent of the Mufic. near to become rarer and rarer; and if it be infinitely will be perfect concord, the comeidences of vibration many other irrefragable arguments, demonftrate that coalefcence of found, which makes the pleafing harmony of a fifth, for example, does not arife from the coincidence of vibrations; and the only thing which we can demonllate to obtain in all the cafes where we enjoy this pleafure, is a certain arrangement of the component pulfes, and a certain law of fucceffion of the diflocations or interval; between the non-coinciding pulies. We are perfectly able to demonftrate that when, by continually ferewing up one of the notes of a confunance, we icnder the real coincidence of pulfes lefs frequent; the diflucations, or deviations from perfeet coincidence, approach nearer and nearer to a cer. tain defineable law of fucceffion ; and that this law obtains completely, when the perlect ratio of the duration of the pulfe is attained, although perhaps at that time not one pulfe of the one found coincides with a pulfe of the other. Suppofe two organ pipes, found. ing the note C fol fa ut, at the dittance of ten feet from each other, and that their pulfes begin and end at the fame inftant, making the moft perfect coincidence of pulfes-there is no doubt hut that there will be the moft perfect harmuny; and we learn by experience that this harmony is perfectly the fame, from whatever part of the room we hear it. This is an unqueftionable fact. A perfon fituated exactly in the middle between them will receive coincident pulfes. But let bim approach one foot nearer to one of the pipes, it is now demonitrable that the pulfes, at their arrival at his ear, will be the moft diftant from coincidence that is poffible; for every pulfe of one pipe will bifect the pulfe from the uther: but the law of fucceffion of the deviations from coincidence will then obtain in the moft perfeet manner. A mulical found is the fenfation of a certain form of the aerial undulation which agitates the auditory organ. The perception of harmonious found is the fenfation produced by another definite form of the agitation. This is the compofition of two other agitations; but it is the compound agitation only that affects the ear, and it is its form or kind which determines the fenfation, making it pleafant or unpleafant.

Our knowledge of mechanics enables us to defcribe this form, and every circumftance in which one agitaof tion can differ from another, and to difcover general features or circumftances of refemblance, which, in fact, accompany all perceptions of harmony. We are furely intitled to fay that thefe circumftances are fure tefts of harnony; and that when we have, enfured their prefence, we have enfured the hearing of harmony in the adjufted founds. We can even go farther in fome cafes: We can explain fome appearances which accompany im. perfect harmony, and perceive the connection between certain diftinct refults of imperfect coincidences, and the magnitude of the deviations from perfect harmony which are then heard. Thus, we can make ufe of thefe phenomena, in order to afcertain and meafure thofe deviations; and if any rules of temperament fould require a certain determinate deviation from perfect harmony in the tuning of an inftrument, we can fecure the appearance of that phenomenon which correfponds to the deviation, and thus can produce the precife tempe-
rament fuggefted by our rules. We ran, for example, Temperadefroy the perfect harmony of the lifth $\mathrm{C} g$, and tatten ment of the the note g till it deviates from a perfect fitth in the ex. act ratio of 320 to 32 r , which the muficians call the ont-fourth of a comma. The molt exquilite ear for melody is almott infenfitle of a deviation four times greater than this; and yet a perfon who has no mufical ear at all, can execute this temperament by the rules of harmony without the error of the fortieth part of a comina.

For this moft valuable piece of knowledge we are in. Beatinga debted to the late Dr Robert Smith of Cambridge, a wif impervery, eminent geometer and philofopher, and a grood feet corlojudge of mufic, and very pleating performer on the or. gan and harpluchord. This gentleman, in his Difertation on the Priaciples of Harmonics, publihed for the firft time in 1749, has paid particular attention to a phenomenon in coexinlent founds, called a beating. This is an alternate enforcement and diminution of the trengith of found, fonething like what is called a elufe fhake, but differing from it in having no variation in the pitch of the founds. It is a fort of undulation of the found, in which it becomes alternately louder and fainter. It may be often perceived in the found of leells and mulical glafles, and alfo in the founds of particular ttrings. It is produced in this way: Suppofe two unifons quite perfect ; the vibrations of each are either perfectly coincident, or each pulfe of one found is interpofed in the fame fituation between each pulfe of the other. In either cafe they fucceed each other with fuch rapidity, that we cannot perceive them, and the whole appears an uniform found. But fuppofe that one of the founds has 240 pulfes in a fecond, which is the undulation that is produced in a pipe of 24 inches long; fuppofe that the other pipe is only 23 inches and Toेths long. It will give 243 pulfes in a fecond. Therefore the ift, the 8oth, the $160 t h$, and the 240 th pulfe of the tirlt pipe will coincide with the 1 ft , the 81 ft , the 162 d , and the 243 d pulfe of the other. lu the incidents of coincidence, the agitation produced by one pulfe is increafed by that produced by the other. The commencement of the next two pulfes is feparated a little, and that of the next is feparated ftill more, and fo on continually : the diflocations of the pulfes, or their deviations from perfect coincidence, continually increafing, till we come to the 40th pulfe of the one pipe, which will commence in the midale of the 4 rtt pulfe of the other pipe; and the pulfes will now bifect each other, fo that the agitations of the one will counteract or weaken thofe of the other. Thus the compounded found will be ftronger at the coincidences of the pulfes, and fainter when they bifeet each other. This reinforcement of found will therefore recur thrice in every fecond. The frequency of the pulfes are in the ratio of a comma, or $8 \mathrm{t}: 8 \mathrm{8}$. Therefore this conititutes an unifon imperfect by a comma. If therefore any circumftance fhould require that thefe two pulfes fhould form an unifon imperfect by a comma, we have only to alter one of the pipes, till the two, when founded together, beat thrice in a fecond. Nothing can be plainer than this Now let us fuppofe a third pipe tuned an exact fifth to the firft of thefe two. There will be no beating obfervable; becaufe the recurrence of coincident pulfes is fo rapid as to appear a continued found. They recur at every fecond vibration of the bafs, or 120 times in a fecond.

Tempera- But now, inflead of founding the third pipe along with ment of the the firt, let it found along with the fecond. Dr Smith scale of demonftrates, that they will beat in the fame manner as
Mufic. Mufic. Sor Snith applics them to the fience and prac. rice of mufic with great effect Pulfes of
$=140$.

* Mem. A cad. Par.
3701, 1701, 2;07, and 1713. the unifuns did, but thrice as often, or nine times in a fecond. When therefore the fifth $\mathrm{C} g$ beats nine tinses in a fecond, we know that it is too fharp or too flat (very nearly) by a comma.

Dr Smith fiews, in like manner, what number of beats are made in any given time by any concord, imperfect or tempered, in any affigned degree. We humbly think that the moft inattentive perfon mult be fenfible of the very great value of this difcovery. We are obliged to call it bis difcovery. Merfennus, indeed, had taken particular notice of this undulation of imperfect confonances, and had offered conjectures as to their caufe ; conjectures not unworthy of his great inge. nuity. Mr Sauveur alfo takes a ftill more particular notice of this phenomenon *, and makes a molt ingenious ufe of it for the folution of a very important mufical problem; namely, to determine the precife number of pulfes which produce any given note of the gamut. His method is indeed operofe and delicate, even at fimplified and improved by Dr Smith. The following may be fubftituted for it, founded on the mechanifm of fousiding chords. Let a violin, guitar, or any fuch inftrument, be fixed up againf a wall, with the fingerboard downward, and in fuch a manner, that a violin Atring, Atrained by a weight, may prefs on the bridge, but hang free of the lower end of the finger-board. Let another ftring be flrained by one of the tuning pins till it be in unifon with fome note (fuppofe C) of the harpfichord. Then hang weights on the other ftrings, till, upon drawing the bow acrofs both ftrings, at a fmall diftance below the bridge, they are perfect unifons, without the fmalleft beating or undulation, and taking care that the preffure of the bow on that ftring which is tuned by the pin be fo moderate as not to alfect its tenfion fenfibly. Note exactly the weight that is now appended to it. Now increafe this weight in the proportion of the fquare of 80 to the fquare of $8 t$; that is, add to it its $40 t h$ part very nearly. Now draw the bow again acrofs the frings with the fame caution as before. The founds will now beat remarkably ; for the ribrations of the loaded firing are now accelerated in the proportion of $80 t 081$. Count the number of undulations made in fome fmall number (fuppofe 10) of feconds. This will give the number of beats in a fecond; 80 times this number are the fingle pulfes of the loweft found; and 81 times the fame number gives the pulfes of the higheft of thefe imperfect unifons.

If this experiment be tried for the C in the middle of our harpfichords, it will be found to contain 240 pulfes very nearly; for the ftrings will beat thrice in a fecond. The beats are beft counted by means of a little ball hung to a thread, and made to keep time with the beats.

Here, then, is a phenomenon of the moft eafy ob. fervation, and requiring no fkill in mufic, by which the pitch of any found, and the imperfection of any concord, may be difcovered with the itmoft precifion; and by this method may concordant founds be produced, which are abfolutely perfect in their harmony, or having any degree of imperfection or temperament that we pleafe. An inftrument may generally be tuned to perfect harmony, in fome of its notes, without any dif-
ficulty, as we fee done by every blind Crouder. But if Tempera. a certain determinate degree of imperfection, different rrent of the perhaps in the different concords, be neceffary for the Scale of proper performance of mufical compofitions on inftruMufic. ments of fixed founds, fuch as thofe of the organ or
harpfichord kind, we do not fee how it can be difputed that Dr Smith's theory of the beating of imperfećt confonances is orie of the moft important difcoveries, buth for the practice and the feience iof mufic, that have been offered to the public. We are inclined to confider it as the moft important that has been made fince the days of Galileo. The only rivals are Dr Brook Taylor's mechanical demonftration of the vibrations of an elaftic cord, and its companion, and of the undulations of the air in an organ pipe, and the beautiful inveftigations of Daniel Bernoulli of the harmonic founds which frequently accompany the fundamental note. The mufical theory of Rameau we confider as a mere whim, not founded in any natural law; and the theory of the grave laarmonics by Tartini or Romieu is included in Dr Smith's theory of the beating of imperfect confonances. This theory enables us to execute any barmonic fy fem of temperament with precifion, and certainty, and eafe, and to decide on its merit when done.

We are therefore furprifed to fee this work of Dr Smith greatly undervalued, by a moft ingenious gentleman in the Philufophical Tranfactions for 1800 , and called a large and obfcure volume, which leaves the matter juft as it was, and its refults ufelefs and impracticable. We are forry to fee this; becaufe we have great expectations from the future labours of this gentleman in the field of harmonics, and his late work is rich in refined and valuable matter. We prefume humbly to recommend to him attention to his own admonitions to a very young and ingenious gentleman, who, he thinks, proceeded too far in animaduerting on the writings of Newton, Barrow, and other eminent mathematicians. We alfo beg his leave to obferve, that Dr Smith's application of his theory may be very erroneous (we do not fay that it is perfect), in confequence of his notion of the proportional effects produced on the general harmony by equal tenuperaments of the different concords. But the theory is untouched by this improper ufe, and flands as firmly as any propofition in Euclid's Elements. We are bound to add to thefe remarks, that we have oftener than once heard mufic performed on the harp. fichord defcribed in the fecond edition of Dr Smith's Harmonics, both before it was fent home by the maker (the firt in his profeffion), and afterwards by the aus. thor himfelf, who was a very pleafing performer, and we thought its harmony the fineft we ever heard. Mr Watt, the celebrated engineer, and not lefs eminent philofopher, built a hiandfome organ for a public fociety, and, without the leaft ear or relifh for mufic, tuned three octaves of the upen diapafon by one of Dr Smith's tables of beats, with the help of a variable pendulum. Signior Doria, leader of the Edinburgh concert, tried it in prefence of the writer of this article, and faid, "Belliffina-fopra modo belliffima!" Signior Doria attempted tc fing aloug with it, but would not continue, declaring it impoffible, becaufe the organ was ill-tuned. The truth was, that, on the major key of E^{b}, the tuning was exceedingly different from what fhe was accuftomed to, and fhe would not try another key. We mention this particular, to thew how accurately Tempera- rately Mr Watt had been able to execute the temperarent of the
Scale of
ment he intended.

This theory is valuable, therefore, by giving us the management of a phenomenon intimately connected with harmony, and affording us precife and practicable mealares of all deviations from it. It bids fair, for this reafon, to give us a method of executing any fyftem of temperament which we mà find reafon to prefer. But we have another ground of eftimation of this theory: By its affiftance, we are able to afcertain with certainty and precifion the true untempered fale of mufic, which eluded all the attempts of the ingenious Greeks; and we determine it in a way fuited to the favourite mufic of modern times, of which almoft all the excellencies and pleafures are derived from harmony. We do not fay that this otal innovation in the principle of mulical pleafure is unexceptionable; we rather think it very defective, believing that the thrilling pleafures of mufic deprend more upon the melody or air. We appeal even to inftructed muficians, whether the heart and affections are not more affected (and with much more difinez variety of emotion) by a fine melody, fupported, but not ohferved, by harmonics judicioufly chofen? It appears to us that the effect of harmony, always filled up, is more uniformly the fame, and lefs touching to the foul, than fome timple air fung or played by a per. former of femfibility and powers of utterance. We do not wonder, then, that : he ingenious Greeks deduced all their rules from this department of mulic, nor at their being fo fatistied with the pleafures which it yielded, that they were not folicitous of the additional fupport of harmony. We fee that melody has fuffered by the change in every country. There is no Scotchman, lrifhman, Pole, or Ruflian, who does not lament that the fill in compofing heart-touching airs is degenerated in his refpective nation; and all admire the productions of their mufe of "the days that are palt." They are "pleafant and mournful to the foul."

But we Atill prefer the harmonical method of forming the fcale, on account of its precifion and facility : and we prefer the theory of beats, becaufe it alfo gives us the mofl fatisfaflory fcale of melody; and this, not by repeated corrections and recorrections, but by a direct procefs. By a table of beats, tvery note may be fixed at once, and we have no occafion to return to it and try new combinations; for the beatings of the different concords to one bafs being once determined, every beating of any one note with any uther is alfo fixed.

We therefore requelt the reader's patient attention to the experiment which we have now to propofe. This experiment is beft made with two organ pipes equally voiced, and pitched to the note C in the middle of our harpfichords. Let one of them at leaft he a fopped pipe, its pifton being made extremely accurate, and at the fame time eafily moved along the pipe. Let the fhank of it be divided into 240 equal parts. The advantage of this form of the experiment is, that the founds can be continued, with perfect uniformity, for any length of time, if the bellow's be properly conitructed. In default of this apparatus, the experiment may be made with two harpfichord wires in perfect unifon, and touched by a wheel rubbed with rofin inftead of a bow, in the way the founds of the vielle or hurdygurdy are produced. This contrivance alfo will continue the founds uniformly at pleafure, A fcale of 240 parts
muft be adapted to one ftring, and numbered from that Tenperaend of the firing where the wheel or bow is applied to ment of thio it. Great care muft be taken that the fiftingr of the Scale of moveable bridgre do not alter the ftrain on the wire. Mufic. We may even do pretty well with a bow in place of the wheel ; but the found cannot be long lecld on in any pitch. In defcribing the phenomena, we thall rather abide by the ftring, becaufe the numbers of the fcale, or length of the founding part of the wire, correfpond, in fact, much more exactly with the founds. The deviations of the fcale of the pipe do not in the lealt affect the conclufions we mean to draw, but would require to be mentioned in every inftance, which would greatly complicate the proceds.

Having brought the two open ftrings into perfect unifon, fo that no beating whatever is obferved in the confonance, flide the moveable bridge fowly along the ftring while the wheel is turning, beginning the motion from the end moft remote from the bow. All the notes of the octave, and all kinds of concords and difcords, will be heard; each of the concords being preceded and followed by a ruffling beating, and that fucceeded by a grating difcord. After this general view of the whole, let the particular harmonious ftations of the bridge be more carefully examined as follows.
I. Shift the moveable bridge to the divifion 120. If Deterniina= it has been exactly placed, we fhall hear a perfect oc-tion of the tave without any beating. It is, however, feldom fo octave, and exactly fet, and we generally hear fome beating. By character gently hifting the bridge to either fide, this beating becomes more or lefs rapid; and when we have found in which direction the bridge mult be moved, we can then flide it along till the beating ceafe entirely, and the founds coalefee into one found. We can fearcely hear the treble or octave note as diftinguifhable from the bals or fundamental afforded by the other Aring. If the notes are duly proportioned in luudnefs, we cannot hear the two as diltinct founds, but a note feemingly the fame with the fundamental, only more brilliant. ($N . B$. It would be a great improvement of the apparatus to have a micrometer ferew for producing thofe fmall motinns of the bridge.)

Having thus produced a fine nctave, we can now perceive that, as we continue to Mift the bridge from its proper place, in either direction, the beating becomes more and more rapid, changes to a violent ratthing flitter, and then degenerates into a mott difagreeable jar. This phenomenon is obferved in the deviation of every concord whatever from perfect harmony, and muft be carefully kept in remembrance.

Before we quit this concord, the octave, produced Harmony by the bifection of the pipe or flring, we mult obferve, is more that, with refpect to ourfelves, the octave $c \bar{c}$ muft beat met than, almoft twice in a fecond, before we can obferve clearly any mis-tune in it, by founding the notes in fucceffion, or as Iteps in the fale of melody. We never knew any ear fo nice as to difcover a mistuning when it beats but once in three feconds. We think ourfelves intitled therefore to fay, that we are infentible of a temperament in melody amounting to one-third of a comma; and we never knew a perfon fenfible of a temperament half this bulk.

When the imperfection of the octave is clcarly fen. fible by founding the notes in fucceffion, it is extremely difagreeable, fecling like a fruggle or endeavour to at-

T E M [, $\left.66_{2}^{2}\right] \quad$ T E M

Tempers- tain a certain note, and a failure in the attempt. This ment of the feems owing to the famular fimilarity of octaves, in the scale of habitual talking and linging of men and women toge. ther. But when the notes are founded together, although we are not nuch more fentible of the imperfection of the harmony directly, as a failure in the fweetnefs of the concord, we are very fenlible of this phenomenon of beating; and any perfon who can diftinguifh a weak found from a Itronger one, can eafily perceive, in this indirect manner, any fraction of a comma, however minute. This makes the tuning by harmony much more exact than by melody alone. It is alfo much more accommodated to the genius of modern mufic. The ancients had favourite paffages, which were frequently introduced into their airs, and they were folicitous to have thefe in good tune. It appears from paffages in the writings of Galen, that different performers excelled chiefly in their thill in making thofe occafional temperaments which their mulic required. Our mufic is much more ftrict, by reafon of our harmonic accompa. nyments, which are an abominable noife when mis-t uned in a degree, which would have paffed with the ancients for very good melody. Ariftoxenus fays, that the ear cannot difcover the error of a comma. This would now be intolerable.
47 belt fale for melody. But another advantage attends our method. We obtain, by its affitance, the molt pertect icale of melody ; perfect in a degree attainalule only by chance by the Grecks. 'This is now to be our bufinefs to un43 fold.
Determination of the Vib.
II. Set the moveable bridge at 158 , and found the two Arings. They will beat very difagreeahly, being plainly out of tune. Slide it gradually toward 160 , and the beats will grow flower and flower ; will change to a gentle and not unpleafant undulation; and at lat, when the bridge is at 160 will vanifh entirely, and the two founds will coalefce into one fweet concord, in which neither of the component founds can be dittin. guifhed. If the found given by the fhort flring be now examined as a llep in the fcale of melody, it will be found a fifth to the found of the long ftring or fundamental note, perfectly fatisfactory to the nicelt ear. Thus one ftep of the icale las been afcertained.
111. Slide the bridge flowly along the ftring. The beating will recommence, will become the flutter, and then a jarring noife; and will again change to an angry flutter, beating about eight times in a fecond, when the bridge ftands at 169 nearly. Puthing it fill on, but very flowly, the flutter will become an indiftinct jarring noife; which, by continuing the motion, will again become a flutter, or beat aloout fix in the fecond. The bridge is now about 171 .
nut, we fhall hear the beatings return again ; and after Tenpera. Huttering and degenerating to a jarring noife, hy a very in ne of th fmall motion of the bridge, they will again he heard, will grow flower, accompanied with a fort of angry expreffion, and will ceafe entirely when the bridge reaches the rgad divifion of our fcale. Here we have another concord of very peculiar character, being remarkably enlivening and gay. This found gives perfect fatisfaction to the ear, if employed as the third thep in the fcale of melody, being the note mi of that feries, at leaft in all gay or eheerfulairs.

Vt. As we move the bridge from 192 to 200, we hear again the fame beatings, which, in the immediate vicinity to 192 , have a peevith fretful expreffion, in. ftead of the angry wafpifh exprelfion before mentioned. When the bridge has paffed that fituation which produees only grating difcordance, we hear the beatings again, and they become llower, and ceafe altugether when the bridge arrives at 200 . Here we have another confonance, which muft be called a concord, becaufe it is rather agreeable than otherwife, but ftrongly marked by a mournful melancholy in the expreffion. In the fcale of melody, it forms the third tep in thofe airs which exprefs lamentation or grief. It is called the minor third, to ditlinguifh it from the laft enlivening concord, which, being a larger interval, is called the major shisd.

It is well known, that thefe two thirds give the di-Determizsftinguifhing characters to the only two modes of melo-tion of the dious compofition that are admitted into modern mufic. ${ }^{3 \mathrm{~d}}$. The feries containing the major third is called the major, and that containing the minor third is called the minor mode. It is worthy of remark, that the fanatical preachers, in their conventicles and field fermons, affect this mode in their harangues, which are often diftinely mutical, modulating entirely by mufical intervals, and keeping the whole of their chant in fubordination to a fundanental or key note. This is not unnatural, when we contider the general feope of their difcoufes, namely, to infjire melancholy and humiliating thoughts, awakening forrow, and the like. It is not fo eafy to aceount for the ufual whine of a beggar, who generally craves charity in the major third. This is the cale, at leaft, in the northern parts of this ifland.

If we continue to hift the bridge ftill nearer to the end of the firing, we fhall hear nothing but a fucceffion of vile difcordant noifes, fomewhat lefs offenfive when the bridge is about the divifions 213 and 216 , but even there are very unpleafant.
VII. Let us therefore change our manner of pro- Determina. ceeding a little, and again place the bridge at 160 , tion of the which will give us the pleafing concord of the fifth. In. ${ }^{6}$. ftead of puthing it from that place toward the nut, let it be moved toward the wheel or bow. Without repeating what we have faid of the appearance of the beatings, their acceleration, and their degenerating into a jarring difcord, to be afterwards fucceeded by another beating, \&cc. \&c. we fhall only obferve, that when we place the bridge at 150 , we have no beatings, and we hear a confonance, which is in a flight degree pleafant, and may therefore be called a concord. It has the other marks of a concord which we have been making fo much ufe of ; for the beatings recommence when we hift the bridge to either fide of 150 . This note makes the fuxth Itep in the defcending fcale of mournful me-
lody :

Tempera. lody ; that is, when we are paffing from the acnte to nent of the the graver notes, with the intention of putting an emScale of Mufic.

55 ion of the rith. phafis on the third and the fundamental. Although not eminent as a concord with the fundamental alone, it has a molt pleafing effec when litened to in fubordination to the whole feries, or when founded along with other proper accompanyments of the fundamental.
VIII Placing the bridge at 144, we obtain another very pleafing concord, differing in its expreflion from any of the foregoing. We find it difficult to exprefs its character. It is greatly inferior to the fifth in fiweetnefs, and to the inajor third in gaiety, but feems to poffefs, in a lower degrec, both of thefe qualities. In the fcale of cheerful melody, it is the fixth note, which we have dittinguifhed by the fyltable $l a$. It is alfo ufed even in mournful melody, when we are afcending, with the intention of cloling with the oftave. In fhiftiug the bridge from 144 to 120 , we obtain
cale or the nothing but difordant, or at lealt difagreable confonances. And, lafly, if we move the bridge beyond 123, to divifions which are refpectively the halves of thofe numbers which produced the concords already treated of, we obtain the fame fleps in the fale of the upper octave. Thus if the bridge be at 80 , we have the fifth to the octave note, or twelfth to the fundamental. If it be at 60 , we obtain the double octave, \&c. Sc. \&c.

We have perhaps been rafh in affixing certain moral or fentimental characters to certain concords; for we have feen inftances of perfons who gave them different denominations; but thefe were never contradictory to ours, but always expreffed fome fentiment allied to that which we have affigned. We never met with an inflance of a perfon capahle of a little difcriminating reflection, who did not acknowledge a manifeft fentimental diftinction among the different concords which could not be confounded. We doubt not but that the Greeks, a people of exquifite fenfibility to all the beauties of talte and fentiment, paid much attention to thefe characters, and availed themfelves of them in their compofitions. We do not think it at all unlikely, that greater effects have been produced by their mufic, which was fludied with this expuefs view, than have ever been produced by the modern mufic, with all the addition of harmony. We have allowed too great a fhare of our attention to mere harmony. Our great authors are much lefs folicitous to compofe an enchanting air, than to conftruct a full fcore of rich and well conducted har. mony. We du not profefs to be nice judges in mufical compofition, but we may tell what we ourfelves experience. We find our minds worked up by a continu. ance of fine harmony into a general fenfibility; into a frame of mind which would prepare and fit us for receiving ftrong impreffions of moral fentiment, if thefe were diftinctly made. But we have fuldom felt any diftinct emotions excited by mere influmental mulic. And when the harmonies have been merely to fupport: the performance of a voice, the words have been either So frittered by mufical divifions, as to become in fome meafure ludicrous - or have been fo indiftinet; and made fo trifing a part of the mufic, that there was nothing done to give a particular fhape to the moral impreffion on our mind. We have generally been ftrongly affected by fome of the anthems which were in vogue in forsocr times; and we think that we perceived the.caufe
of this difference: There was a great fimplicity in the Tcmperso voice parts: the fyllables were not drawled out into ment of the long mufical phrafes, but pronouncell nearly according Scale of to their proper quansities; fo that the fentiment of the

Mufic.〔peaker was expreffed with all the force of good declamation, and the harnony of the acconpanyment then Atrengthened the appropriate effect of the melody. We mean not to afier thefe obfervations as of much authority, but merely to mention forne facts, and to affign what we felt to be their caufes, in order to promote, in fome degree, however infignificant, the cultivation of mufical fcience. With this view, we venture to fay, that fome of the belt compofitions of K napp of York uniformly affect us more than the more admired anthems of Bird and Taliis. A cadence, which Knapp gives almont entirely to the melody, is laboured by Bird or Tallis with all the rules of art; and you have its characters of perfect or imperfect, full or difappointed, cadences, and fuch an apparatus of preparation and refolution of difcords, that you forefee it at the diftance of feveral bars, and then the part affigned to the voice feems a very trife, and merely to fill up a blank in the harmony. Such compofitions fmell of the lamp, and fail of their purpofe, that of charming the learned car. But enough of this digrefion.
Thus have we found a natural relation between certain founds ftrongly marked by very precife characters. The concordance of found is marked by the abfence of all undulation, and the deviations from this harmony are Shewn to be meafurable by the frequency of thofe undulations. We have alfo found, that the notes, which are thus harmonious along with the fundamental, are fteps in the feale of natural mufic (for we mult acknowledge melody to be the primitive mufic, dictated by nature). We have got the notes - do - mi, fa, fol, la-do, afcertained in a way that can no longer be miftaken.

Let us now examine what phyfical or mechanical re- $\frac{59}{} 5$ lations thefe founds ftand into each other. Our mono- - ongiong to
chord gives us the lengths of the ftrings; aud the difo che con. covery of Galileo fhews us, that thefe are alfo the du- cords, \&.c. rations of the aetrial pulfes which produce the fenfations of mufical notes. Their ratios may therefore be truly called the ratios of the founds. Now we fee that the Arings which produce the founds do fol are 240 and 160. Thefe are in the ratio of 3 to 2 . In this manner we may fate all the ratios obferved in our experiment, viz.
Do : mil have the ratio of 240 to 192 , orof fol $_{+}$
$D_{0}: f a \quad 240: 180 \quad 4: 3$
$\begin{array}{lll}D_{0}: f o l & 240: 180 & 4: 3 \\ D_{0}: 10 & 240: 160 & 3: 2\end{array}$
Do: la $\quad 240: 144 \quad 5: 3$
$\begin{array}{lll}M i & \text { fol } & 192: 160 \quad 6: 5,=d o: m i^{6}\end{array}$
$\begin{array}{ll}F a: f o l & 180: 160 \\ \text { Sol:la. } & 9: 8\end{array}$
Sol:la. $\quad 160: 144 \quad 10: 9$
$M i: f a \quad 19^{2}: 180 \quad 16: 15$
Here we get the fight of all the ratios which the ingenious and unwearied fpeculations of the Greek mathematicians enlifed into the fervice of mufic, without being able to give a good reafon why. The ratio $5: 4$, which their fattidions metaphy ficians rejected, and which others wifhed to introduce from motives of mere neceffity to fill up a blank, is pointed out to us by one of the finett concords. The interval between the fourth and fifth is, very fortunasty, a ftep of the fcale..

The

Tempers. The next flep fol ta is more important. For the ear ment of the
scale of
for melody would lave been very well fati,fied with an Mufic, interval equal to fa fol, or $9: 8$; but if the moveable 60 ObServations on the flep fol lus. bridge be fet at the divition $142 \frac{2}{9}$, correfponding to fuch a ftep, we fhould have a very offenfive fluttering. It is reafonable therefore to conclude, from analogy, that the interval fol lia dnes not correfpond to the ratio $9: 8$; and that $10: 9$, which is, at leatt, cqually fatisfactory to the ear, is the proper ftep, even in the fcale of melody. If we confider what may he called the feale of harmony, there is no room left for doubt. To enjoy the greateft poffible pleafure of harmony, we mult not only take each note as it is related to the fundamental, but alfo as it is related to other notes of the fcale. It may clance to be convenient to aflume for the findamental of our occafional fcale of modulation, the ftring of the lyre which is tuned as $f a$ to its proper fundamental; or it may increafe the harmony (and we know that it does), if we accompany the note $c l o$ with both of the notes $f a$ and $l a$. To have the fine concord of the major third, it is ueceffary that the interval $f a l a$ be equivalent to the ratio $5: 4$. Now $f a$ is 180 , and $5: 4=180: 144$. Therefore, by making the flep fol lut cqual to $9: 8$, we fhould lofe this agreeable concord, and get difeord in its place.

And thus is exinced, in oppofition to Ariftoxenus, the propriety of haviug both a major and a minor tone; the firft exprefled by $9: 8$, and the laft by $10: 9$. The difference between thefe fteps is the ratio $81: 80$, called
61
Deternination of the a comma by the Greek theorifts.

We ftill want two fleps of the fcale, and two founds VIIth. or notes correfponding to them, namely $r e$ and ρ_{i}; and we wifl to eltablifh them on the fame authority with the relt. We fee that this cannot be done by a concordance with the fundamental do. The ear fufficiently informs us that the fteps do re and la f_{i} muit be tones, and not femitones, like mi fa. The fenfible fimilarity of the two terrachords, do re mi fa and fol la fido, alfo teaches us that the ftep $\sqrt{2}$ do hould be a femitone

- like mi fa. This feems to be all that mere melody can teach us. But we have little information whether we fhall make la fi a major or a minor tone. If we copy the tetrachord do re mi fa exactly, we thall make the ftep f_{i} do like $m i f a$, and equiralent to the ratio $16: 15$. This requires the noveable bridge to be placed at 128 . The found produced by this divifion is perfectly fatisfactory to the ear as a ftep of the fcale of mclody. Moreover, our fatisfaction is not confined to the comparifon of it with the note do, into which we flide by this gentle ftep. It makes agreeable melody when ufed as the third to the note fol. If we examine it mathematically, we find it a perfect major third to fol; for fol requires the 160 h divifion. Now $160: 128=5: 4$, which is the ratio of the pulfes of a major third. All thefe reafons feem enough to make us adopt this deter62 mination of the note f_{2}.
Determina- It remains to confider how we thall divide the intertion of the val do-mi. It is a perfect major third. So is $f a l a$, H.
re a major tone, and other fyftems make it minor. E. Tcmpera von in modern times it has been confidered as uncertain ; ment of 1 and the only reafon which we have to offer fror a prefer: Scale © ence of the major tone for the firit ftep is, that, fo far as Mufic we can judge by our own feelings, the founds in the relation of $9: 8$ are lefs difcordant than founds in the rehation of $10: 9$, and becaufe all the other fteps have heen detcrmined by means of concords with the key. We refer, for a more particular examination of the principles on which thefe arrangements are valued, to D)- Smíh's Harmonics, Prop. I. where he thews how one is preferable to another, in proportion as it affordsa greater number of perfect concords among the neighbouring notes, which is the favourite object in all modern mufic. Upon this principle our arrangement is by far the beft, becanfe it admits five more concords in the octave than the other. But we have confidered the fubject in a different manner, merely to avail ourfelves of the phenomenon by which all the fteps, except one, feem to be naturally: afcertained, and by which the connection between harmony and inelody feems to be pointed out to us.

It will be convenient to reprefent the tones major and minor and the henitone, by the fymbols T, t, and H. Alfo to mark the notes by the Roman mumerals, or by cyphers according as they are the extremes of major or minor intervals. By this notation the octave may be reprefented thus:

The reader will remark, that the primary divifions which we affigned to the reprefentation of an octave in fig. I. by the circumference of a circle, are in conformity to this Ptolemaic partition of the octave. He will alfo be fenfible, that the divifion into five equal mean tones and two equal hemitones, which is expreffed by the dotted lines, agrecing with the Ptolemaic divifion only at C and E , is effected by bife Ring the arch CE ; and therefore the deviation of the found fubftituted for the Ptolemaic D is half the difference of $C D$ and $D E$, that is, half a comma. The deviations therefore at F , G, A, and B, are each a quarter of a comma.
It is well known, that if the logarithm of the length Logarith of one ftring be fubtracted from that of another, the mic mes difference is a meafure of the ratio between them. fures of Therefore 30103 is the meafure of the mufical interval mufical i called the octave, and then the mcafures of the

This is a very convenient circumflance. If we take only the four firft figures as integers, and make the

T E M

Temfera odave confit of 3010 parts, we liave a feale more exad Ban of the than the nicelt harmony requires. The circumference Scale of Mulic. of a circle may be fo divided into 301 degrees, and the moveable circle have a nonius, fubdividing each into 10 Or it may be divided into 55,8 degrees, each of which will be a comma. Either of thete divifons will make it a mof convenient infrument for expeditionly cxamining all tomperaments of the feale that can be propofed. Or a traight line may be fo divided, and repeated thrice. Then a fliding ruler, divided in the lame manner, and applied to it, will anfwer the fame purpofe. We frall fee many ufeful empluyments of thefe inflonments by and by.

Having thus endeavoured to communicate fome plain notion of the formation and fingular nature of that grat dation of founds which protluces all the pleafures of mufic, and of the manner of obtaining the teps of this gradation with certainty and preciliun, we proceed to confider how thofe mufical paffages may be performed on fuch keyed inftruments as the organs and harplichords, as they are now conftructed. Thefe initruments have twelve founds and intervals in every octave, in order that an air may be performed in any pitch; that is, taking any one of the founds as a key note. It is plain ihat this cannot be done with accuracy; for we have now feen that the interval mifa is bigger than half of $d o r e$ or re mi , \&ce. and therefore the intercalary found formerly mentioned to be inferted between C and D, D and E, 太c. will not do indifcriminately for the tharp of the found bolow and the flat of the found above it. When the tones are reduced to a mean fize, the ear is fcarcely fenfible of the change in melody, and the harmony of the fifths and fourths is not greatly hurt. But when the half notes are inferted, and employed to make up harmonious intervals, as recommended by Zarlino, the harmony is very coarfe indeed.

But we mult make the reader fenfible of the neceffity of fome temperament, even independent of thofe artificial notes. Therefore

Let the fcholar tune upwards the four Vths $c g, g \bar{d}$, $\bar{d} \bar{a}, \bar{a}=$, all perfect, admitting no beating whatever. This is eafily done, either with the organ or the wheel monochord already deferibed. Then tune downwards the perfect octaves e e, e e. Now examine the IIId $c e$ which refults from this procefs. If the inftrument be of the pitch hitherto fuppofed (c making 240 pulfes in a fecond,) this IIId will be heard beating 15 times in a fecond, which is a difcordance altogether intolerable, the note e being too flarp in the ratio of 81 to 80 , which makes a comma. It is eafily found, by calculation, that e makes $303^{\frac{3}{2}}$ pulfes, inftead of 300 , required for the IIId to c.
N. B. It may not be amifs to inform our readers, that if any concord, whofe perféct ratio is $\frac{m}{n}$ (m being the greatef term of the fmalleit integers exprefling that ratio), be tempered fharp by the fraction $\frac{p}{q}$ of a comma, and if M and N be the pulfes made by the acute and grave notes of the concord during any number of feconds, the number l of beats made in the fame time by this concord will be $=\frac{2 q m}{161 p-q^{4}}$ or $\frac{2 q n}{16 \& p+q}$;

Suppl. Vol. II. Part II.

It is inpoffible, therefore, to liave perfect Vthis and perfect IlIds at the fame time. And it will be fonnd, that the 3 degrefulting from this procefs, and the Vith $c \bar{\pi}$, are itill more difcordant, ratinery at an intolerable rate. Now the major and minor thirds, aiternatcl; fucceeding each other, form the greateft part of our ha:monies; and the VIth is alfo a very fiequent accompanyment. It is necefary therefore to facrifice fomewhat of the perfect harmony of the V ths, in order that we may nut be difgulted with the difcord of thofe other harmonies: and it is this nutual accommodation, and not the changes made neceffary by tire introduction of intercalary notes, which is properly called tepaprament. It will greatly affit us in cuderfanding the effects of the temperaments of the different concords, if we examine all the divilions of the circular reprefenta. tion of the octave and mufical fcale given in fig. 1 . by placing the index of the moveable circle on that note 0° the outer circle for which we want the proper harmonies, or accompanyments, which are either the IIId and Vth, or the fth and VIth. We fhall thus learn, in the firft place, the deviations of the diferent perfect notes of the fcale from the notes required for this new fundamental; and we muft ilsendtudy what effect the fame temperament produces on the agrecablenefs of the harmony of different concords having the fame bals on the fame treble, taking it for granted that the hurt to the harmony of any individual concord is proportional to its temperament.

67
It is in this delicate department of mufical fcience How this that we think the great merit of Dr Smith's work con-may be obfilts. We fee that the deviation from perfect harmony tained by is always accompanied with beats, and increafes when the beats. they increafe in frequency - whet her it increales in the fame proportion may be a quettion. We think that Dr Smith's determination of the equality of imperfect harmony in his $3^{\text {th }}$ propofition, includes every mathematical or phyfical circumftance that appears to have any concern in it. What relates immediately to our fenfations is, as yet, an impenetrable fecret. The theory of beats, as delivered by this author, affords very eafy, though fometimes tedious, methods of meafuring and of enfuring all the varieties which can obtain in the beating of imperfect confonances. It appears to us thercfore very unjuft to fay, with the late writer in the Philofophical Tranfactions, that this obfcure vulume has left the matter where it found it. The author has given us effective principles, although he may have been miftaken in the application; which however we are far from affirming. Our limits will not allow us to give any account of that theory; and indeed our chief aim in the prefent article is to give a method of temperament which requires no fcientific knowledge of the fubject. But we could not think of lofing the opportunity of communicating, by the way, to unlearned perfons, forne more difinct notions of the fale of mufical founds, and of its foundation in nature, than fcholars ufually receive from the greater number of mere mulic malters. The acknowledged connection of the mufical ratios with the pleafures of

4 P
harmony

T E M

Tempera- harmony and melody, has (we hope) been employed in mente of the an eafy and not obfcure manner; and the phenomena
scale of Scale of
Mufis. which we have faithfully narrated, thew plainly that, by $\underbrace{\text { Munf: }}$ diminining the rattling undulations of tempered concords, we are certain of improving the harmony of our inftruments. We fhall proceed therefore on this principle for the ufe of the mere performer, but at the fame time introducing fome very fimple deductions from Sirith's theory, for which we expect the thanks of all fuch readers as wifl to fee a little of the reafons on which they are to proceed.
The experiment, of which we have juft now given an account, fhews that four confecutive fifth compofe a greater interval than two oclaves and a major third. Yet, in the conftruction of our mufical inftruments of fixed fuunds, they mutt be confidered as of equal extent; fince we have 7 half intervals in the Vth, and I2 in the octave, and four in the IIId, four Vths contain 23, and two oehaves contain 24 ; and thefe, with the four which compore a Illd, make alfo 23 . It is plain, therefore, that whatever we do with the IIIds, we mult lefen the Vths. If therefore we keep the IIId perfect, we mult leffen each of the Vihs by fith of a comma; for we learned, hy the beating of the im. perfeit IIId $c e$, that the whole excefs of the four Vth; was a comma. Therefore the Vth c or mult be flatten. ed $\frac{f}{d}$ th of a comma. But how is this to be done with accuracy? Recollect the formula given a little ago, where the number of beats b in any number of feconds is $=\frac{2 q}{161 \times p=q}$. In the prefent cafe $q=1, m=3$, $N={ }_{2}+0$ per fecond, and $p=4$. Therefore the formula is $=\frac{2 \times 3 \times 240}{161 \times 4+1}=\frac{1440}{645}=2,25$ in a fecond, or 9 beats in four feconds very nearly.

In like manner, the next Vth $g \bar{d}$ muft be flatened th of a comma, by making it beat half as faft again, or $13^{\frac{1}{2}}$ beats in four feconds (becaufe in this Vith $N=360$. But as this beating is rather too quick to be eatily comated, it will be better to tune downwards the perfect octuve g, G, which will reduce N to 180 for the Vth Cr 8 . This will give us $\mathrm{I}, 68$ per fecoud, or 10 beats in 6 leconds very nearly.

There is another way of avoiding the employment of too quick beais. Intead of tuning the octave $g \mathrm{G}$, make $c($; beat as often as $c g$. This is even more exactly an octave to g than can be ellimated by a good ear. Dr Smith has deenonfrated, that when a note makes a minor concord with another note below it, and there. fore a major concord with the octave to that note, it beats equally with both; but if the major concord be below, it beats twice as falt with the octave above. Now in the prefent cafe, $c \mathcal{g}$ is a Vth, and $c \mathrm{G}$ a 4 th. For the fame reafon of would beat twice as fatt as c F.

In the next place, the Vth $\bar{d} \bar{a}$ mult be made to beat flat 15 times in 6 feconds.

In like manner, inftead of tuning upward the Vth $\bar{a} \bar{e}=$ tune downward the octave $a \bar{a}$, and then tune upward the Vth $a e$, and flatten it till it beat 15 times in 8 feconds.

If we take 15 feconds for the common period of all thefe beats, we thall have

$$
\text { 'The beats of } \begin{aligned}
c g & =34 . \\
G d & =25 \\
d a & =37 \frac{1}{2} . \\
a e & =2 \xi
\end{aligned}
$$

We fhall now find $c e$ to be a fine IIId, without any fenfible beating; and ther we proceed in the fame way, always tuning upward a perfect Vth; and when this would lead us too high, and therefore produce too quick beating, we fould tune downward an octave. Do this till we reach b 米, which thould be the fame with \bar{c}, or a perfect octave above c. 'This will be a full proof of our accurate performance. But the beit procefs of tuning is to ftop when we get to g 类. Then we ture Vths downward from c, and octaves upward when the Vths would lead us too low. Thus we get $c \mathrm{~F}, \mathrm{~F} f$, $f b^{b}, b^{b} \overline{b^{b},}, \overline{b^{b}} e^{b}$, and thus complete the tuning of an octave. We take this method, inftead of proceeding upwards to \bar{b} : ; hecaufe thofe notes marked tharp or flat are, when tuned in this way, in the beft relation to thofe with which they are moft frequently ufed as LIIds.

This procefs of temperament will be greatly expe- Ufe io av dited by employing a little pendulum, made of a ball riable per of about two ounces weight, lliding on a light deal rod, dulurn. having at one end a pin hole through it. To prepare this rod, hang it upon a pin fluck into the wainfcoating, and lide the ball downward, till it makes 20 vibrations in $15^{\prime \prime}$, by comparirg it with a houfe clock. In this condition mark the rod at the upper edge of the ball. In like manner, adjuft it for 24, 28, 32, 3^{6}, $40,44,48$, vibrations, making marks for each, and dividing the fpaces between them by the eye, noticing their gradual diminution. Then, having calculated the beats of the different Vths, fet the ball at the mark fuited to the particular concord, and temper the found till the beats keep pace exactly with the pendulum.

Eut previous to all this, we munt know the number Alfolute of pulfes made in a fecond by the C of our inftrument. number For this purpofe we mult learn the pulfes of our tuning paifes ho fork. To learn this, a harpfichord wire muft be ftretch. ed by a weight till it be unifon or octave below our fork: then, by adding d' ${ }^{\prime}$ th of the weight to what is now appended, it will he tempered by a comma, and will beat, when it is founded along with the fork; and we mult multiply the beats by 80 : The product is the number of pulfes required. And hence we calculate the pulfes of the C of our inftrmment when it is cuned in perfect concord with the fork.
The ufual concert pitch and the tuning forks are fo nearly comfonant to 240 pulfes for C , that this procefs is fcarcely neceffary, a quarter of a tone never occafioning the change of an entire beat in any of our numbers.

The intelligent reader cannot but obferve, that this Syfrem ol fyftem of tuning with perfect IIIds, which is preferred ten pecas. to all others by many great mafters, is the one repre menteall fented by our circular figure of the octave. The IIId is there perfect, and the Vth CG is deficient by a quarter of a comma. We cannot here omit taking notice of a molt valuable obfervation of Dr Smith's on this temperament, and, in geseral, on any divifion of the octave into mean tones and equal limmas.

The octave being made up of five mean tones and proportwo limmas, it is plain that, by enlarging the tones, tional va we diminilh the limmas, and that the increment of the riations
tone is two.fifths of the contemporaneous diminution of empera tone is two-fifths of the contemporaneous diminution of nempers

Tempera- the limma. If, therefore, we employ the fymbol v to exaencof the prefs any minute variation of this temperament, and make
ancale of Scale of the increment of a mean tone $=2 \mathrm{v}$, the contemporaneous variation which this induces on a limma will be $=-5 \mathrm{v}$; and if the tone be diminifhed by the fame quantity - 2%, the limma will inereafe by the quantity 5 v. Let us fee what are the contemporaneous changes made on all the intervals of the octave when the tone is diminifled by $2 v$.

1. A Vth is made up of three tones and a limma. Therefore the variation of its temperament is $=-6 v$ $+5 v$, or is $=-v$. That is, the Vth is flattened from its former temperament, whatever that may have been, by the quantity $-\boldsymbol{v}$. Confequently the 4 th, which is always the complement of the Vth to the cetave, has its temperament tharpened by the quantity v.
2. A IId, being a tone diftant from the fundamental, has its temperament changed by $-2 \boldsymbol{v}$.

$$
\text { Therefore a minor } 7^{\text {th }} \text { is raifed by } 2 \pi \text {. }
$$

3. A minor 3^{d} is made up of a tone and a limma: therefore its variation is $=-2 v+5 \%$ or $=3 v$. Therefore a major VIth (its complement) lofes - 3 v . 4. A maj. Illd, or two tones, has its variation $=-4 v$. Therefore a minor 6 th has its variation $=4 \mathrm{v}$. 5. A maj. VIIth, the complemient of alimmahas - 5%. 6. A tritone, orIV th, muft have the variation $=-6 \%$. Therefore the falfe 5 th mult have - . 6 . From this obfervation, Dr Smith deduces the following fimple mathematical conftruction: In the ftrait line CE (fig. 2.) take the fix equal parts $\mathrm{C} g, d_{d} d a, a \mathrm{E}$, E b, bt, and draw through the points of divifion the fix parallel lines g G, d D, \&c. Let thefe lines reprefent fo many feales of the octave, fo placed that the points $\mathrm{C}, g, d, \& \mathrm{c}$. may reprefent the points C, g, d, \&cc. of the circular fale in fig. I where it is cut by the dotted lines reprefenting the fyttem of mean tones and limmas. Then, 1ℓ, take a certain length $d \mathrm{G}$ on the firft line, to the right hand of the line CE, to reprefent a quarter of a comma. G will mark the place of the perfeet Vth, while g reprefents that of the mean or tempered Vth. $2 d l y$, Set off $d \mathrm{D}$, double of $g \mathrm{G}$, in like manner, to the right hand on the fecond parallel. This will be the place of the perfect IId to the key note C. $3 d y$, Alfo fet off a A, on the third parallel, to the left land, equal to g G . This will mark the place of A , the VIth to the key note C. 4tbly, Place E on the point e, becaufe, in the fyitem of mean tones reprefented in fig. I. the IIIds were kept perfeel. sthly, Make $b \mathrm{~B}$, to the right hand on the sth line, equal to g G , to mark the place of the perfect VIIth to the key note C. And, $6 t h l y$, make $t ~ \Gamma$, to the right hand on the fixth line, equal to twice g G. This will ferve for hewing the contemporaneous temperament of the tritone, or IVth, contained between F and B, as alfo of its complement, the falfe $5^{\text {th }}$ in fig. 1 .

It is evident that the temperament of all the notes of the octave, according to the above mentioned fyftem, are properly reprefented in this figure. The Vth is tempered flat by the quarter comma G of the IId is tempered flat by the half comma $\mathrm{D} d$; the V Ith is tempered fharp by a quarter comma $\mathrm{A} a$; the IIId is perfect ; the VIIth is flat by a quarter comma $\mathrm{B} b$; and the $4^{\text {th }}$ is tharp by a quarter comma $\mathrm{G} g$.

Now, let any other itraight line $\mathrm{C} t$ ' be drawn from

vals $g^{\prime} \mathrm{G}, \mathrm{d} \mathrm{D}$, \&c. the temperaments of another fy-Temperaften of mean tones and limmas. For it is evident, that ment of the the contemporaneous variations $f \xi^{\prime}, d d^{\prime}, \& e$. from the Scace of former temperament, are in the juft proportions to each Mufic. other ; $g g^{\prime}$ being $=-v$, the variation proper for the Vth, and the oppolite temperament for its complement or $4^{\text {th }}$. In like manner, $a^{\prime} a^{\prime}$ is $=3 v$, the variation competent to the VIth; and E e^{\prime} is $=4 \mathrm{v}$, the proper variation for the IIId.

In like mamer, $b b^{\prime}$ is $=5 v$, the variation of the VIIth and 21.. Aud, lafty, $t t^{t}$ is the variation 6 of the tritone, and its complenent, the falfe fifth.
For all thefe reafons, any itraight line $\mathrm{C} c^{\prime}$ or $\mathrm{C} e^{\prime \prime}$, drawn from C acrofs the parallicl;, may jufty be called the temperer.
This is a very ufeful confruction: For it is plain, that the founds which can be placed in our organs and harpfichords, which have only twelve keys for an octave, mult approach to a fyftem of mean tones. The divifion of the octave into twelve equal intervals is fuch a fyftem of mean tones exactly. Now, in fuch fy ftems, when a line is drawn from C acrofs the parallets, we fee, at one glance, not ouly all the temperaments of the notes with the key note, but alfo the temperaments of thofe concords which the notes employed in full harmony make with each other. Thus, in the harmony of K - III - V, the III and V make a minior 3 d with each other ; and in the harnony of $\mathrm{K}-4-\mathrm{VI}$, the 4 and VI make a major 3 d with each other. Now the reader will eafily fee, that the firlt of thefe cuncords has its interval diminifhed on both fides, wilen the IIId is tempered farp, but only on one fide when it is tempered flat. The mathematical reader will alfo eafily fee, that the contemporaneous temperament $A a^{\prime}$ of the Vith is always equal to the fum $\xi^{\prime} \mathrm{G}$ and $\mathrm{E} e^{\prime}$, and that $\mathrm{A} a^{\prime \prime}$ is equal to the difference of $g^{\prime \prime} \mathrm{G}$ and $\mathrm{E} e^{\prime \prime}$. Therefore the temperament of this fubordinate concord, in the full harmony $\mathrm{K}-\mathrm{IlI}-\mathrm{V}$, is, in all cafes, the fame with the contemporaneous temperament of the VIth.

In like manner, he will perceive that the temperament of the fubordinate IIId, in the harmony of $\mathrm{K}-4-\mathrm{VI}$, is equal to the contemporancous temperament of the III

We alfo fee, in general, that the whole harmony is more hurt when the temperer lies in the angle ECK, with the IIId tempered fharp, than when it is in the angle ACE, when the IlId is flat; and that the fum of all the temperaments of the concords with the key is the fralleft when the Illds are perfect. This fytem of mean tones, with perfect IIIds, would therefore be the beft, if the barmony of different conconds were equally hurt by the fame temperament.

We do not know any thing that has been publifhed ertain on the feience of mufic that gives more general and 'cales of fpeedy infiruction than this fimple figure. If it be ${ }^{\text {great }}$ ufe drawn of fuch a fize as to allow the comma EK to be divided into a number of equal parts, fufficiently fenfible, all trouble of calculation will be faved.
We would therefore propofe to accompany this figure with proper fcales.
The firf fcale fhould have. G g divided into $13^{\frac{1}{2}}$ parts. This will exprefs the logarithmic meafures of the temperaments mentioned in $11^{0} 6,3$ a comma being $=54$.
The fecond fcale fhould have g G divided into ${ }^{6} 6$ parts.
This

Tempera－This gives the beats made in 16 fecond by the notes ment of the c, g ，when tempered by any quantity $G g^{\prime}$ ．
Scale of＂The third fale flould have $g G$ divided into 60 parts， for the beats made by the notes c, e ，or the notes r, \vec{a} ．
The fourtl feale moukt have g G divided into 72 parts． This gives the beats made by the key note C，with its minor third e^{b} ，

The fifib fcale flould lateg g divided into 48 parts， for the beats made by the notes c, f ．

The fixth fcale flould have $g \mathrm{G}$ divided into 89 parts， on which $A a^{\prime}$ is ineafured，to get the beats of the fu－ bordinate concord formed by g and e in the harmony of I－III－V．

And，lafly，$f \mathrm{G}$ ，divided into 80 parts，will give the beats made by f and \bar{a} in the harmony of K－4－VI．

We are ignorant of the immediate efficient caufes of what？

79
Tempera－ ment of a whole oc－ tave by beats．
the pleafure we receive from certain confonances，and fhould therefore receive，with fatisfaction，any thing that can help us to approximate to a meafure of its de－ frees．We know that，in fact，the pleafaritnefs of any individual concerd increafes as the undulations called beats diminif in frequency．It is probable that we flall not deviate very far from the truth，if we fuppofe the harmonioufnefs of an individual tempered concord to be proportional to the flownefs of thefe undulations． But it by no means follows，that a temperate Vth and a IIld are equally pleafant，cach in its kind，when they beat equally flow．There is a difference in kind in the pleafures of thefe concords ：and this mult arife from the peculiar manner in which the component pulfes of each concord divide each other．We are certain that this is all the difference that obtains between them in Na－ ture．But the harmonioufnefs here fpoken of is the arrangement which produces this pleafure．We are in－ titled to fay，that this is equal in two given inflancea， when the arrangenents are precifely fimilar；and when the things arranged are the fame，nothing feems to re－ main in which the inflances can differ．

At any rate，it is of confequence to be able to pro－ portion and diftribute thefe undulations at pleafure． They are unpleafant ；and when reinforced by uniting， muft be more fo．The theory puts it in our power to prevent this union：perhaps by making them very un－ equal；or，if this fhould．give a chance of periodical ac－ cumulation，we may fund it better to make them all equal．Surely to have all this in our power is very de－ Girable；and this is obtained by the theory of the beats of imperfect confonances．

But we are forgetting the procefs of tuning，and have only tuned three or four notes of our octave．We muft tune the reft by confidering their relation to notes already tuned．Thus，if g c makes 36 beats in 16 fe－ conds，Fe fhould make one third lefs，or about 24 in the fame time ；becaufe N in the formula is now 160 inflead of 240．Proceeding in this way，we fhall ture the octave $\mathrm{C}=\bar{c}$ moft accurately as a fyitem of mean tones with perfect IIIds，by making the notes beat as follows．A point is put over the note that is to be tuned from the other，and $a+$ ，or $a-$ ，means that the concord is to be tempered fharp or flat．Thus g is tuned from c ，

Make $\quad c \dot{g}$ beat－
36 times in 16 feconds

$\dot{\mathrm{G}}$ c	$+$	36
G d ${ }^{\text {d }}$	－	
c．\dot{f}	＝	48

$$
\begin{aligned}
& \text { Make } c \bar{a} \text { beat } \\
& c \dot{e} \\
& d f \text { 炎 } \\
& \text { ? } \\
& \text { ack } \\
& b^{b} f \text { downward - } 24 i \text { i. c. } \frac{8}{8} \text { ths of } c g \\
& b_{6} \dot{\bar{b}}^{6} \\
& \text { o, i. e. a perfeet ostave } \\
& \overline{b^{b}} \dot{e}^{b} \text { downward - 43, i. e. } \frac{6}{5} \text { ths of } c g \\
& \mathrm{C}^{\dot{-}} \\
& \text { - an octave. }
\end{aligned}
$$

Other proceffes may be followed，and perhaps fome of them better than the procefs here propofed．Thus， b^{b} and e^{b} may be tuned as perfect IIIds to d and g downwards．Allis，as we proceed in tuning，we can prove the notes，by comparing them with other notes already tuned，\＆c．\＆c．\＆c．

We have directed to tune the two nntes b^{b} and．f^{b} by taking the leading Vth downwards．We thould have come at the fame pipes in the character of a 米 aud d 必 in the procefs of tuning upwards by Vths．But this would not have produced precifely the fame founds， although，in our imperfect inllruments，one key mult ferve for a 洛 and b^{b} ．By tuning them as here directed， they are better fitted for the places in which they will be moft frequently employed in our ufual modulations．

It may reafonably be afked，Why fo much is facriti－ ced in order to prelerve the IIIds perfect？Were they Another allowed to retain fome part of the fharp temperament fif for ou that is neceffary for preferving the Vths perfect，we infru－ flould perhaps improve the harmony．And fince enlar－ ging the Vth makes the tone greater，and therefore the limma mif f much fmaller，it will bring it nearer to the magnitude of a half tone；and this will be better fuited for its double fervice of the flarp of the note be－ low，and the flat of the note above．Accordingly，fuch a temperament is in great repute，and indeed is gene－ rally practifed，although the VIths and the fubordinate chords of full harmony are evidently hurt by it．Even Dr Smith recommends it as well fuited to our defective infruments，and gives an extremely eafy method of ex－ ecuting it by means of the beats．His method is to make the Vth and IIId beat equally falt，along with the key，the Vth flat，and the third fharp．He demon－ frates（on another occafion），that concords heat equally faft with the fame bafs when their temperaments are in－ verfely as the major terms of their perfect ratios．There－ fore draw EG，and divide it in p ，fo that $\mathrm{E} p$ may be to $p \mathrm{G}$ as 3 to 5 ．Then draw $\mathrm{C} p$ ，cutting $g \mathrm{G}$ in g^{\prime} ，and E K Fig．in． in e^{\prime} ；and this temperer will produce the temperament we want．It will be found，that $\mathrm{E} e^{\prime}$ and $\mathrm{G}_{g^{\prime}}$ are each of them 32 of their refpective fcales．
Therefore make $c g$ beat 32 ．times in 16 feconds

G ${ }^{\text {c }}$	32
G d	24
G 6	24 and tune $b \bar{b}$
$d^{\prime}{ }^{\prime}$	36 ，and tune $a \bar{a}$
$d f$＊	36
ae	27
$a c$ 炎	27
$e \bar{b}$	$40 \frac{x}{2}$ ，proving $6 \bar{b}$
	${ }_{2}^{40 \frac{1}{2}}$

It may be proper to add to all thefe inftructions a caution about the manner of counting the clock while the tuner is counting the beats. If this is to continue for 16 fecunds, let the perfon who counts the clock fay one at the beat he begins with, and then telling them over to limfelf, let him fay done inftead of 17 . Thus 16 intervals will clapfe while the tumer is counting the beats. Were he to begin to count at one, and fop when he hears fixteen, he would get the number of beats in 15 feconds only.

We do not hefitate to fay, that this method of tuning by beats is incomparably more exact than by the mere judgment of the ear. We cannot miftake more than one beat. This miltake in the concord of the Vth amounts to no more than $\frac{1}{\square} \frac{1}{8}$ th of a comnas and in the Illd it is only ${ }_{\mathrm{T}^{\frac{1}{8}} \mathrm{~B}}$.

It may be objected that it is fit only fur the organ and inllruments of continued founds, but will not do for the quickiy perifhing founds of the harplichord. True, it is the only method worthy of that noble inltrument, and this alune is a title to high regard. But farther; the accuracy attainable by it, renders it the only method fit for the examination of fyftems of temperament. E. ven for the harpfichord it is much more exact, and more certain in its procefs, than any other. It does not proceed, by a randon trial of a flattened feries of Vths, and a comparifon with the refulting IIId, and a fecond trial, if the firft be unfatisfactory. It fays at once, let the Vth beat fo many times in 16 feconds. Even in the fecond method, without counting, and merely by the equality of the beats of the Viti and IHd, the progrefs is eafy. Both are tuned perfect. The Vtla is then flattened a little, and the IIld fharpened; -if the Vth beat fafter than the IIId, alter it firit.

All difficulty is obviated by the fimple contrivance of a variable pendulum, already defcribed. This may he made exact by any perfon that will take a little pains; and when once made, will ferve for every trial. When the ball is fet to the proper number, and the pendulum let a fiwinging, we can come very near the truth by a very few trials.
N. B. In tuning a piano forte, which has always two ftrings to a key, we mult never attempt tuning them both at once; the back unifon of both notes of the concord muft be damped, by Aticking in a bit of foft paper behind it.

We hope that the inftructions now given, and the application of them to two very refpectable fyttems of temperament, are fufficient for enabling the attentive reader to put this method of tuning fuccefsfully in practice, and that he perceives the efficiency of it for attaining the defired end. But before we take leave of it, we beg leave to mention another circumflance, which evinces the juft value of the general theory of the beats of imperfect confonances as delivered by Dr Smith.

Thefe reinforcements of found, which are called beatings, are noifes. If any noile whatever be repeated, s. with fufficient frequency, at equal intervals, it becomes a mufical note, of a certain determinate pitch. If it recur 60 times in a fecond, it becomes the note $\mathrm{C} f a$ $u t$, or the double octave below the middle C of our

669] T E M
harpfichords, or the note of an open pipe cight feet Tcmperalong. Now there is a fimilar (we may call it the very ment of the fame) reinforcement of found in every concord. Where Scalc of the pulfe of one found of the concord bifects thic pulfe $\underbrace{\text { Mure. }}$ of the other, the two founds are more unifurmly fyread: but where they coincide, or almoft coincide, the condenfation of one undulation combines with that of the other, and there comes on the ear a fltonger condenfation, and a louder iound. This may be called a noife; and the equable and frequent recurrence of this noife flould produce a mufical note. If, for inftance, c and a are founded together: There is this noife at every third pulfe of c, and every fifth pulfe of a; that is, 8o times in a fecond. This nould produce a note which is a 12 th below c, and a 17 th major below a; that is, the double octave below f, which makes 320 vibrations in a fecond. That is to fay, along with the two notes c and a of the concurd, and the compound found, which we call the concord of the VIth, we fhould hear a third note FF in the bafs. Now this is known to be a fact, and it is the grave harmonic obferved hy Romieu and Tartini about the year 1754, and verified by all muficians fince that time. Tartini prized this obfervation as a moft important difcovery, and confidered it as affordirg a foundation for the whole fcience of mufic. We fee that it is all included in the theory of beats publifhed five years before, namely, in 1749 ; and every one of thefe grave harmonics, or Tartinian founds, as they have been called, are immediate confequences of this theory. The fyftem of harmonious compofition which Tartini has, with wonderful labour and addrefs, founded on it, has therefore no folidity. It is, however, preferable to Rameau's, becaufe it proceeds on a fact founded on the nature of mufical founds; whereas Rameau's is a mere whim, proceeding on a falfe affumption; namely, "that a mulical found is effentially accompanied by its octave, 12 th, and 17 th in allo." This is not true, though fuch accompanyment be very frequent, and it be very difficult to prevent it. Mr Ramean ought to have feen this. Are thefe acute harmonics mufical founds or not? He furely will not deny this. Therefore they, too, are effentially accompanied by their harmonics, and this abfulutely and neceffarily ad infiniturn; which is certainly abfurd. We thall have a better occafion for conidering this point when we deferibe the Trumpgt Marigni in a future article.

We have taken notice of only two fyftems of tempe- $\mathrm{Dr}_{\mathrm{S}}^{\mathrm{S}_{4}}$ Smith's rament ; both of them are fyftems of mean tones, and fytem of are in good repute as practicable methods. It would ERUAL be almodt an endlefs tafk to mention all the fyltems of HIARM $^{\text {HARM }}$ temperament which have been propofed. Dr Smith, after having, with great ingenuity, appreciated the changes of harmonioufnefs that are induced on the different concords by the fanie temperament, and having affigned that propurtion of temperament which renders them equally harmonious, each in its kind, gives a fyftem of temperament, which he calls ecual harmony. Each concord, (excepting the octave) is tempered in the inverfe proportion of the product of the terms of its perfect ratio. It is very nearly equivalent to a divifion of the octave into 50 equal parts. We do not give any farther account of it here, although we think its harmony preferable to any thing that, we have ever heard. We heard it, as executed for him, and under his infpection, by the celebrated harpfichord-maker Kirk-
'Tempera- mann, both when the inftrument was yet in the hands ment of the of the maker, and afterwards by the ingenious author. Scale of We have alfo heard fome escellent mulicians declare, Mufic. that the organ of Trinity college chapel at Cambridge was greatly improved in its harmony by the change made on its temperament under the infpection of Dr Smith. When we name Stanley, we prefume that the authority will not be difputed. We mention this, becaufe the writer in the Philofophical Tranfactions fpeaks of this fyftem, with flattened major thirds, as of no value. But we do not give any farther account of it, becaufe it is not fuited to our inftruments, which have but twelve founds in the octave.

The reader will pleafe to recollect, that the great object of temperament is twofold. Firft, to enable us to iranfpofe mutic from one pitch to another, fo that we may make any note of the organ the fundamental of the piece. This undoubtedly requires a fyftem approaching to one of mean tones, hecaufe the harmony mult be the fame in every key. This requires temperament, becaufe a found mut be occafionally confidered, eitler as the fharp of the note below it, or the flat of the one above. This cannot produce perfect harmuny, becaufe the limma of the perfect diatonic fcale is greater than a half tone. Thus a temperament is neceffary merely for the fake of the inelody. But, fecondly, the nature of modern mufic requires every note to be accompanied, or confidered as accompanied, with full harmony. This is, in fact, the fame thing with modulating on every different note as a fundamental ; but it requires a much clofer attention to the perfection of the intervals, becaufe a defect or excefs in an interval that would fcarceIy offend the ear, if the notes were heard in fucceffion, is quite intolerable when they are founded together. Here the difference between the major and minor tone is of almoft as great moment as the difference of the limma from a lemitone. The fecond object, therefore, is to obtain, in the compais of three octaves, as many good concords of full harmony; that is, conlifling of a fundamental with its major third and its fifth, erect or inverted, as poffible. There is no other harmony, although our notes have frequently a different fituation 86 and appearance.
Maxims of It is no wonder that, in a fubject where we are yet tempera- to feck for a principle, the attempts to attain this ohment very ject hare been very various, and very gratnitous. The mathematicians, even in modern times, have allowed themfelves to be led away by fancies about the fimplicity and coufequent perfection of ratios; and having no clear principle, it is no wonder that fone of their deductions are contrary to experience. According to Euler, thofe ratios which are molt perfect, that is, moft fimple, admit of leall temperament. The octave is therefore infinitely perfect ; for it is allowed by all, that it mult not have the fmalleit temperament. A Vth mult be lefs tempered than a IIId. Even the practical mufician thinks that he has tempered thefe two concords equally, when the offenfive quality of each is made equally fo; but in this cafe it is demonftrable, that the Vth has been much more tempered than the IIld. But this could not be difeovered till we got the sheory of beats.

Mult of the mathematical muficians adhered to fyfems of mean tones; or, which are equivalent, to fuch fyfteras, giving fimilar barmonies on every key of the
larpitichord. This is furely the moft natural, and is Tempera peculiarly fuggefted by the tranfpofing of mufic from ment of tl one pitch to another : but they difler exccedingly, and without giving any convincing arguments, in their eftiMufic. mation of the effects of the fame temperament on differeat concords. Much of this, we apprehend, arifes from difpolition. Y'erfons of a gay difpofition relifh the harmony of the IlId, and prefer a fharp to a flat temperament of this concord. Perfons of a more penfive difpofition, prefer fuch temperaments as alluw the minor thirds to be more perfect.

But there are many, eminent both as performers and as theorifts, who reject any fyftem which gives the fame mony reharmonies on every note of the octave. They oblerve, that in the progrels of the cultivation of mufic in Europe, the melodies of all nations have gradually approached to a certain uniformity. Certain cadences, clofes, ftrains, and phrafes, are becoming every day more common; and even in the conduct of a confiderable piece of mulic, and the gradual but flow paffage of the modulation from one key into another, there is a certain regularity. Nay, they add, that this cannot be greatly deviated from without becoming very offenfive. We may remain ignorant of the caufe of this uniformity ; but its exiftence feems to prove that it arifes from fome natural principle; and therefore it ought to be complied with, and our temperaments fhould be accommodated to it. The refult of this uniformity in the mufic of our times is, that the modulation on fome keys is much lefs frequent than on others, and this frequency decreafes in a certain order. Suppufing that we begin on C : A piece of plain mufic feldom goes farther than G and F. A little more fancy and refinement leads the compofer into D , or into B^{b}, \&c. \& c. It would therefore be defirable to adjuit our temperaments fo, that the harmonies in C fhall be the beft polfible, and gradually lefs perfect in the order of modulation. Thus we fhall, in our general practice, have finer harmony than it it were made equal throughout the octave; becaufe the unavoidable imperfections are thrown into the leatt frequented places of the feale. The practical muficians add to this, that by fuch a temperament the different keys acquire characters, which it each of them more particularly for the expreffion of different fentiments, and for exciting different emotions. This is very perceptible in our harpficlords as they are generally tuned. The major key of A is remarkably brilliant ; that of F is as remarkably simple, \&c.

We cannot fay that we are altogether convinced by thefe arguments. The violin is unqueftionably the inftrument of the greateft powers. A concert of intlruments of this kind, unembarraffed by the harpfichord, or any inftruments incapable of occafional temperament, is the fineft mufic we have. The performers make no fuch degradations of harmony, but keep it as perfect as pollible throughout; and a violin performer is fenlible of violence and conftraint when he accompanies a keyed inftrument into thefe unfrequented paths. Let him play the fame mufic atone, and he will play it quite differently, and much more to his own fatisfaction. We imagine, too, that much of the uniformity fpoken of is the refult of imitation and fahion, and even of the temperaments that we have preferred. There is an evident diftinction in the native mufic of different nations. An experienced mufician will know, from a few bars, whe-

T E M

rempera- ther an air is Irifh, Scotch, or Polifl. This ditinetion ent of the is in the modulation; which, in thofe nations, follows seale of
Mufir. principle, lead to different temperaments.

With refpect to the variety of characters given to the different keys, we mult acknowledge the fact. We have tuned a piano forte in the ufual manner; but inftead of beginning the procefs with C , we hegan it with D. An excellent performer of voluntaries fat down to the inftrument, and began to indulge his rich fancy ; but be wais confounded at every flep : he thonght the inftrument quite out of tune. But when he was inforned how it hal been tuned, and then tried a known plain air on it, he declared it to be perfectly in tune. It is fill wery doubtful, however, whether we fhould not have much finer mulic, by equalifing the harmony in the different keys, and trulting for the different expreffion to much fpoken of to a judicious mixture of other notes ealled diffords.

After all, the great uncertainty about the moft proper temperament has remained to long undetermined, becaufe we had no method of executing with certainty any temperament that was offered to the public. What ten a Vth one-fifth of a comma, and farpen a VIth one-feventh of a comma, unlefs we are able to do both the one and the other? Till Dr Smith publifhed the theory of beats, the monochord was the only affiltance we had: but however nicely it may be divided, it is fearcely poffible to make the moveable bridge fo fteady and fo accurate in its motion, that it will not fenfibly derange the tenfion of the Itring. We have feen fome very nice and coflly monochords; but not one of them could be depended on to one eighth of a comma. Even if perfect, they gave hut momentary founds by pinching. The low cannot be trufted, becaufe its preffure changes the tenfion. Mr Watt's experiments with his monochord of enntinued found fhewed this evidently. A pitch-pipe with a fliding pifon promifes the greateit accuracy ; but we are fadly dilappointed, hecaufe the graduation of the pifton cannot be performed by any mathematical rule. It mult be puffed more than half way down to produce the octave, more than one-third to produce the Vth, Se. and this without any rule yet difcovered. Thariks to Dr Smith we can now produce an inftrunent tunt dexatly, according to any propofed fyftem, and then fubmit is to the fair examination of mulicians. Even the feeculatif may now form a pretty juft opinion of the merits of a fyitem, by calculating, or mealuring by fuch fcales as we have propofed, the beats produced by the tempered concords in all parts of the octave. No one who has liftened with attention to the ratuling beats of a full organ, with its twelfth and fefquialter ftops all founding, will deny that they are holfile to all harmony or good mufic. We cannot be much miftaken in preferring any temperament in proportion as it diminithes the number of thufe beats. We fhould therefore examine them on this principle alone; attending more particularly to the beats of the third major, becaufe thefe are in fact the loudeft and moft difagreeable: and we muft not content ourfelves with the beats of each concord with the fundamental of the full harmony, whether $\mathrm{K}-\mathrm{III}-\mathrm{V}$, or $\mathrm{K}-4-\mathrm{VI}$, or $\mathrm{K}-3-\mathrm{V}$, or $\mathrm{K}-4-6$, which fometimes occurs. We murt attend equally to the beats of the two notes
of accompanyment with each other: thefe are generally Teniperathe moft faulty.
mente of the
This examination is neither difficult nor tedions. r. Write down, in one column, the lengths of the Atrings or divifions of the monochord; in another write their Mufic. logarithons : in a third the renainders, after fubtracting each from the lograrithon of the fundamental. 3. Have at hand a fimilar table for the perfect diatonic fuale. 4. Compare thefe, one by one, and note the diflerence, + or -, in a ath column. Thefe are the temperaments of each note of the fcale. 5. Compare every couple of rotes which will compofe a major or minor third, or a fifih, by fulbtracting the logarithnn of the one note from that of the other. The differenees are the intervals tempered. 6. Compare thefe with the perfect intervals of the diatonie feale, and note the dif. ferences, + or , and fet them down in a fifth column. Thefe are all the temperaments in the fyltem. 7. If we have ufed logarithons confifting of five decimal places, which is even more than fufficient, confider thefe numeral temperaments as the q of the formula given in no 65. For calculating the heats, and then p is always $=540$. Or we may make another column, in which the temperaments are reduced to fome eafy fraction of a comma.
We fhall content ourfelves with giving one example; $S_{3} \mathrm{r}_{\mathrm{am}}^{90}$ of the temperament propofed by Mr Ioung in the Philo-Dr Young. fophical Tranfactions for 1800. It is contained in the following table :

The firt column of the above table contains the ordinary defignations of the notes. The fecond contains the correfponding lengths of the monochord. The third contains the logarithms of column fecond. The fourth contains the difference of each logarithen from the firt. The next column contains, firt, the temperaments of all the major thirds, having for their loweft note the found correfponding to the letter. Thus 49 t, or $\frac{494}{5 \% 0}$ of a
conimas.

T E IN

Tempera. comma, is tise temperament of the IIId, B -D 災, and
ment of che C - F. Secondly, it contains all the minor thirds

Mulic,
"Templars.
formed on the notes reprefented by the letters. The column below contains the temperaments of the Vths. N. B. Thefe temperaments are calculated by the auThus we make the thene of them a little different. Below this we have fet down the meafures of the per--fect intery 1 l , which are to be compared with the diffe-
has been faid illat he and Ckenent V. had concerted Templa: between them the ditlolution of the Templars. The falfity of fich an afiertion is evident on the infecction of their letters. Clement V. at firft will give no credit to the accufations againft the Templars; and even when he receives incontettable proofs from Philip le Bel, he had ftill fo little concerted the plan with that Prince, that every Itep taken by the one or the other occafions difputes on the rights of the church or of the throne.
"It was alfo faid, that the king wifhed to feize on the great riches of thefe knights : but at the very commencement of his proceedings againlt the order, he folemnly renounced all thare in their riches; and perlaps no prince in Chrittendom was truer to his engagement. Not a fingle eftate was amexed to his domain; and all hiltory bears teitimony to the fact.
"We next hear of a fpirit of revenge which actuated this prince; and during the whole courfe of this long trial, we do not hear of a fingle perfonal offence that he had to revenge on the Templars. In their defence, not the moft diftant hint, either at the revengeful fpirit, or at any perfonal offence againt the king, is given ; fo far from it, until the period of this great cataftrophe, the grand matter of the order had been a particular friend of the king's, who had made him godiather to one of his children.
"In fine, the rack and torture is fuppofed to have forced confeffions from them which otherwife they never would bave made: and in the minutes, we find the avowal of at leaft 200 knights all made with the greateft freedom, and without any coercion. Compulfion is mentioned but in the cafe of one perfon; and he makes exactly the fame avowal as 12 other knights, his companions, freely made (A). Many of thefe avowals were made in councils where the bifhops begin by declaring, that all who had confeffed through fear of the torture fhould be looked upon as innocent, and that no Knight Templar thould be fubjected to it (B). The Pope Clement V. was fo far from favouring the king's profecutions, that he began by declaring them all to be void and null. He fufpended the archbimops, bifhops, and prelates, who had acted as inquifitors in France. The king accufes the Pope in vain of favouring the Ternplars ; and Clement is only convinced after having been prefent at the interrogatories of 72 knights at Poictiers, in prefence of many bifhops, cardinals, and legates. He interrogated them, not like a judge who fought for criminals, but like one who wifhed to find innocent men, and thus exculpate himfelf from the charge of having favoured them. He hears them repeat the fame avowals, and they are freely confirmed. He defired that thefe avowals thould be read to them after an interval of fome days, to fee if they would ftill freely perfevere in their depofitions. He hears them all confirmed, Qui perfeverantes in illis, eas expreffe et fponte prout recirate fuerant afprobârunt. He wifhed ftill further to interrogate the grand mafter and the principal fuperiors, preceptores majores, of the divers provinces of France, Normandy, Poitou, and of the Tranfmarine countries. He fent the moit venerable perfons to interrogate thofe of the fuperiors, whofe age or infirmities hindered them from
(A) Layette, No. 20. Interrog. made at Caen.
(s) See the Council of Ravenna. Rubeus Hif. Raven. lib. vi,

TEM [673] T E K

Templars. from appearing before him. He ordered the depolitions of their brethren to be read to them, to know if they acknowledged the truth of them. He required no other oath from them than to anfwer freely and without compulfion; and bath the grand matter and the fuperiors of thefe divers provinces, depofe and confers the fane thiags, confin them fome days after, and approve of the minutes of their depofitions taken down by pub. lic notaries. Nothing lefs than fuch precantions could convince him of his error: it was then only that he revoked his menaces and his fufpention of the French bifoops, and that he allows the king to proceed in the trials of the T'emplars.
"Lc: fuch pretexts he forgotten, and let us only dwell on the aviswals which tiuth alone forced from thefe crimiual knights.
"Their depofitions dcelare, that the Knights Templars, on their reception, denicd Chritt, trampled on the crofs, and fpit upon it ; that Good Friday was a day which was paricularly contecrated to fuch vitra. ges; that they promifed to proititute themfelves to each other for the moft unnatural erinies; that every child begotten by a T'emplar was calt into the tire; that they bound themfelves by oath to obey, without exception, every order coming from the grand matter; to fuare neither facred nor prophane ; to look upon every thing as lawful when the good of the order was in queltion; and, above all, never to violate the horrible fecrets of their nocturnal mytteries, under pain of the moft terrible chaftifements (c).
"In making their depufitions, many of them declared they had only been forced into thefe horrors hy imprifonment and the noft cruel ufage ; that they wiflhed, after the example of many of their brethren, to pafs into other orders, but that they did not dare, fearing the power and vengeance of their order ; that they had fecretly confeffed their crimes, and had craved abfolution. In this public declaration, they teftified, by their tears, the molt ardent defire of being reconciled to the church.
"All repeat the fame depofition, except three, who declare they have no knowledge of the crimes imputed to their order. The Pope, not content with this information taken by men of religious orders and by French nohlemen, requires that a new trial fhould take place in Puitou before cardinals and others whom he limfelf nominates: Again, with the fame freedom, and for the third time, the grand mafter and other chiefs, in prefence of Clement V. repeat their depofitions. Molay even requefted, that one of the lay brothers, who was about his perfon, hould be heard, and this brother confirms the declaration. During many years thefe informations were continued and renewed at Paris, inChampagne, in Normandy, in Quercy, in Languedoc, in Provence. In France alone, above 200 avowals of the fame nature are to be found: nor did they vary in England, where, at the fynod of London held in $13: 1$, 78 Englifh knights were heard and two whole months were fpent in taking informations and in verifying their declarations. Fifty-four Irifh were alfo heard, and ma.

Suppl. Vol. II. Part II.
ny Scoteh, in their refpective countries. It was in con- Templar, fequence of thefe declarations that the order of the Templars was aholifhed in thofe kingdoms, and that the parliament difpofed of their goods (D). The fame declarations were taken and proved in Italy, at Ravcona, at Bologna, at Pifa, and at Florence, though in all thefe councils the prelates were very ready to abfolve all thofe knights who couli fucceed in their jutlifications.
"I would willingly affert (continues the Abbé), that it was the fmaller part of the 'T'emplars who fultered themfelues to be carried andy by fuch abomiations. Some even at Paris were declared innocent. In Italy a llill greater number were abfolved; of all thofe who were judged at the councils of Mayence and Salamance, none were condemned: and hence we nay conclude, that of the 900 houfes helonging to the order, many had not been tainted, and that whole provinces were to be excepted from the general Itain of infamy. But the condemnations, the juridical depolitions, the method of initiating the kuights, almoll became gencral; the iccrecy of their receptions, where neither prince, nor king, nor any perfon whatever, could be prefent during the latt half century, are fo many teltimonies which corroborate the divers accufations contamed in the arcicles fent to the judges; that is to fay, that at leall two. thirds of the erder knew of the abominations practifed without taking any fteps to extirpate them. Wrod omnes, vel quafi due partes ordinis fcientes dicios errores corrigere neglexerint.
"This certainly cannot mean that two thirds of the knights had equally partaken of thefe abominations. It is evident, on the contrary, that many deteited them as foon as they were acquainted with them; and that others only fubmitted to them, though initiated, after the harfheft treatment and molt terrible threats. Neverthelefs, this proves, that the greatelt part of thefe knights were criminal, fome through corruption, others through weaknefs or connivance; and hence the diffulution of the urder became neceffary."

TEMPLEMAN (Peter). M. D. the fon of an e- Biog. Diet. minent attorney at Dorchefter in the county of Dorfet, by Mary daughter of Rubert Haynes, was horn March 17, 1711, and was educated at the Charter-houfe (not on the foundation), whence he proceeded to Trinity. college, Cambridge, and there took his degree of B . A. with diftinguithed reputation. During his refidence at Cambridge, by his own inclination, in conformity with that of his parents, he applied himfelf to the tludy of divinity, with a defign to enter into holy orders; but after fome time, from what caufe we know not, he altered his plan, and applied himfelf to the iludy of phyfic. In the year 1736 , he went to Leyden, where he attended the lectures of Boerhaave, and the profeffors of the other branches of medicine in that celebrated univerfity, for the fpace of two years or more. About the beginning of 1739, he returned to London, with a view to enter on the practice of his profeffion, fupported by a handfome allowance from his father. Why he did not fucceed in that line was eafy to be accounted for by thofe who knew him. He was a man of a very 4 Q liberal
(c) See the Vouchers brought by Dupuy, and Extrad of the Regijers.
(D) Vide Valfinger in Edvardum II. et rpodigma Neuflrie aput Dupuy. - Iifai de Fred. Nicoici.

Temple- liberal turn of mind, of general erudition, with a large man, Terane. acquaintance among the learned of different profeffions, but of an iadolent, inactive difpolition; he could not
enter into juntos with people that were not to his liking; nor cultivate the acquaintance to be met with at teal tables; but rather chofe to employ his time at home in the perufal of an ingenious author, or to fpend an attic evening in a felect company of men of fenfe and learning. In this he refembled Dr Airmftrong, whofe himited practice in his profeffion was owing to the fame caule. In the latter end of the year 1750 he was introduced to Dr Fothergill by Dr Cuming, with a view of intituting a Medical Society, in order to procure the earlieft intelligence of every improvement in phyfic from every part of Europe. At the fame period he tells his friend, "Dr Mead has very generoully offered to affift me with all his intereft for fucceeding Dr Hall at the Charter houfe, whofe death has been for fome time expected. Infpired with gratitude, I have ventured out of my element (as you will plainly perceive), and fent him an orle." Dr 'Templeman's epitaph on Lady Lucy Meyrick (the only Engliih copy of verfes of his writing that we know of), is printed in the eighth volume of the "Select Collection of Mifeellany Poems, 1781. " In 1753 he publified the firt volume of "Curious Remarks and Obfervations in Phylic, Anatomy, Chirurgery, Chemiftry, Botany, and Medicine; extracted from the Hitory and Memoirs of the Royal Academy of Sciences at Paris;" and the fecond volume in the fucceeding year. A third was promiled, but we believe never printed. It appears, indeed, that if he had met with proper encouragement from the public, it was his intention to have extended the work to twelve volumes, with an additional one of index, and that he was prepared to publifh two fuch volumes every year. His tranflation of "Norden's Travels" appeared in the beginning of the year 1757; and in that year he was editor of "Sclect Cafes and Confultations in Phyfic, by Dr Woodward," 8 vo. On the eftablifhment of the 13ricifh Mufeum, in 1753 , he was appointed to the office of keeper of the reading-room, which he refigned on being chofen, in 1760, fecretary to the then newly inftituted Socicty of Arts, Manufactures, and Commerce. In 1762 , he was elected a corre $[$ ponding member of the Royal Academy of Science of Paris, and alfo of the Economical Society at Berne. Very early in life Dt' Templeman was afficted with fevere paroxyfms of an afthma, which eluded the force of all that either lis own Rikl, or that of the molt eminent phyficians then living, could fuggeft to him ; and it continned to harafs him till his death, which happened September 23, 1769 . He was efteemed a man of great learning, particularly with refpect to languages; fpoke Freneh with great fluency, and left the character of a humane, generous, and polite member of fociety.

TERANE', a town in Egypt, fituated on what Mr Browne calls the lift of the molt weftern mouth of the Nile, at a very fmall diftance from the river. Its latitude is $30^{\circ} 24^{\prime}$. The buildings are chiefly unburned brick, though there are allo fome of ftone. The town and diftrict, containing feveral villages, belonged, before the French invafion, to Murad Bey, who ufually entrufted its government, and the collection of its revenue, to one of his Cafhefs. That revenue arifes principally from natıôn (See. Natrum, Encycl.), found
in great quantities in certain lakes about thirty five miles from Terané ; and it is on account of thefe lakes only that the town is worthy of notice in this work; for though there are many columns in its neighbourhood, which indicate the fite of ancient flructures, none of them have inferiptions afcertaining their antiquity.

The eaftern extremity of the moft weftern lake Mr Browne found to be $30^{\circ} 31^{\prime}$ North. No vegetation appears, exeept reeds, on the margin of the lake, which is very irregular in its form; fo that it is not ealy to fay what may be the quantity of ground covered with water. It is higher in winter than in fummer; and when it was vilited by our anthor its breadth did not exceed a mile, though its length was nearly four. Tho warls the end of the fummer, it is faid thefe lakes are almolt dry; and the face that the water has retired from is then occupied by a thick depofition of falt. Not far removed from the eaftern extremity, a fpring rifes with fome force, which much agitates the reft of the water. Clofe to that fpring the depth was far greater than Mr Browne's height ; in other parts it was obfervable that it did not generally exceed three feet. The thermometer near this fpring food at 76 , while in the open air it was 87. The more weftern lake differs not materially from the eaftern in fize, form, or productions. The colour of the water in both is an imperfect red; and where the bottom is vifible, it appears almoft as if covered with blood. Salt, to the thicknefs of five or fix inches, lies conftantly in the more fhallow parts. The furface of the earth, near the lake, partakes more or lefs generally of the character of natrôn, and, in the parts farthedl removed, offers to the foot the flight refiftance of ploughed ground after a flight froft. The foil is coarle fand. The water of the lake, on the flightef evapo. ration, immediately depofits falt. There is a mountain not far from the lakes, where natrôn is found in infu. lated bodics, near the furface, of a much lighter colour than that produced in the lake, and containing a greater portion of alkali. How thick the fulallance of natron commonly is in the lake, our author did not accurately determine ; but thofe employed to collect it report, that it never exceeds a cubit, or commun pike; but it appears to be regenerated as it is carricd away. If ever it fhould be brought to fuperfede the ute of barilla, the quantity obtainable feems likely to anfwer every polfible demand.

TEREBRATULA (Anomıe, Lin. fee that article Encycl.) lave been fuppofed not to exift now but as petrified fhells. This, howerer, is a miftake. The anomia is an inhabitant of every region, and has exifted in every age. As many terebratulæ were caught by Peroufe's people cluring his voyage of difcovery, and as Lamanon the naturalift thought they thould be confidered as a genus by themfelves, he has given us the following defcription of the anomia, or, as he calls it, terebratula, on the coaft of Tartary :

The length of the fhell varies from fix to twenty lines, and its breadth from five to cighteen ; there are, however, cunfiderable varieties of proportion between different individuals, befides thofe arifing from the different ages of the animal. It would be improper, therefore, to diftingnifh the various fpecies of anomix by the proportion of their fhells. The waving lines oa the edges of the Diell are equally defective, as di-

Terebra- Atintive characters; for our author obferved in the fame tulæ.
to feparate, and the ligament, which is very tight, contributing to keep the two fhells united. The teeth which form the hinge of the anomia approach very near to thofe of the fpondylc, deferibed by M. Adanfon. In this latt they are formed by two rounded projections, and in the anomia by the fame a little clongated. It is above thefe teeth that the ligament is placed in the larger fhell : there are between it and the teeth two cavities, onc on each fide, which ferve to reccive the teeth of the other valve. The teeth of the larger fhell have, befides, a flight projection, which fits into a longitudinal furrow in the other fhell in front of the teeth.

The fubftance which covers the inflide of the fhell hoids, as in oyfters, a middle place between nacre and the interior fubftance of fhells, which are deftitute of it. The degree of its luftre, polifh, and thicknefs, varies with the agre and circumflances of individuals.

The colour of the teeth is always white; that of the outer furface of the thell verges more or lefs to the ochry red, efpeeially on the border. The infide has alfo a very flight tint of this colour, on a varying greyifhwhite ground.

There is vifible on each fide of the fhell the impreffion of two very dittinct tendons; a circumflance which furms a very effential difference between this genus and that of the oyfter: this latter liaving only one tendon arifing from the middle of the body. The impreffions of the tendon in the largell thell are oblong, fituate near the fummit, and hollowed; each of then has curved tranfverfe ridges, divided into two parts by a longitudinal furrow, reprefenting the wings of certain infects. In the other valve the infertions have a different form; their fituation is the fame, but they are very irregularly rounded and encompafled by two fuleations, which are feparated from each other by an intervening ridge, and then are continued in a right line towards the opening of the fhell as far as about two thirds of its length. That part of the fummit of the fhell along which the pediele of the animal paffes, is longitudinally Atriated in the larger fhell, of which the middle ftria is the deepeft : the longitudinal frix are divided into equal parts by a tranfverfe depreffion. There are no fimilar marks on the other fhell.

Our author diffected the animal itfelf, and found what he calls the munteau of the anomia, formed of a very fine menbrane, lining the infide of both thells, and containing the body of the animal. Its origin is of the fame breadth as the hinge of the fhell, whence it divides into two lobes, lining both the fhells: it forns, thercfore, only a fingle aperture, terminating at cach end of the hinge, and of the fanie breadth with the intenior furface of the fhell: it appears to have only one trachea, which is formed by the two lobes of the manteau.

Our naturalift having opened the fhell, divided the ligament as delicately as poffible, unfixed the hinge, and detaching from the larger fhell the lobe of the manteau, turned over the body of the animal. This operation expofed to view the large mufeles which adliered to the fhell; they are foft, membranous, and, as it were, ffefhy on the infide, being covered with fmall fanguiferous glands. From the lower part of each mufele there proceeds a pretty iltrong tendon, which reaches to the extremity of the manteau ; they run parallel to the edge of the fhell, and at a confiderable diftance from each other; and are each cuclofed in a fort of flatted fac, off 4 Q2

Terebra. tulx.

Terebra- the flape of a ribbon, which is filled with a red vifcid $\underbrace{\text { tulx. matter. It appears that the place of infertion of the }}$ mufcles, as well as the mufcles themfelves, which extend along the lob of the mantean, furnifh real blood, which is contained in three fmall flethy red glandular bodies of unequal fise, which are vifible after having taken off the mufcles; perhaps thele conftitute the heart of the animal.

The mufcles which are inferted into the other fhell are alfo divided into feveral parts; fome are feen extending along the correfponding lobe of the mantean ; many others rife up in a kind of tuft, which is fixed into the thell above : fome again fubdivide into fuch minute ramifications as not to allow of tracing their courfe, even with the affiftance of a microfcope; but otbers, more apparent, contribute to the formation of the pedicle which paffes through the opening left betiveen the two thells, is connected to each of them by feveral fibres, and fixes itfelf to fome external body, principally to other hivalves. The mufcles of the anomia have therefore three attachments, namely, to the inner furface of each fhell, and to fome external body.

The form of the pedicle is cylindrical, being enclofed in a muicular fubtance, which contains feveral fibres; it is from a line to a line and a half long, and two thirds in diameter. It adheres fo forcibly to different fubitances, as that the animal, and all the mufcles which contribute to the formation of the pedicle, may more eafily be torn through than the pedicle detached from the place of its adhefion. The gluntinous fubftance which connects them to each other, refifts even the heat of boiling water. It is by means of this pedicle that the animal raifes its hell fo as to be, while in the water, in a pofition inclined to the horizon. The fmalleft valve is always the lowett, being that upon which the animal refts; the fuperior one being the larger, and ferving as a covering. Our author thinks the animal has the power of loco-motion.

After raifing the lobe of the manteau he obferved the cars. Thcy are large, compofed of two membranaceous laminx on each fide, of which the fuperior is the narrower. Thefe laminæ are connected to each other by a thin membrane, fo as to form only a fingle pouch. They have on their edges long fringes, which hang loofe upon the manteau; but a very remarkable circumftance is, that their ears are fupported by little bones like thofe of fifh. The form of the ears is that of an arch; they are feparated from each other on their lower part, where the fringes are the longeft; fo that the two ears on one fide are perfectly diftinct from thofe on the uther fide. The commencement of the ears is at the teeth of the hinge.

Between the ears are fituate che fomach, ofophagus, and mouth; the whole forming a triangle, of which the mouth is the bafe. It is placed at the fide of the hinge, and confilts of a large tranfverfe opening without lips or jaw-bone. 'The œfophagus is very hort, but is capable of elongation when the animal opens its mouth. The flomach, which is of the thape of a pointed fac, is connected by a menbrane to the bones of the ear. On opening the flomach, he found a fmall fhrimp half digefted.

At the hottom of the ftomach-is feen the inteltine, of which it is, as it were, a continuation. It is extremely fhort, not exceeding half a line in a fhell fifteen
lines acrofs, and is compofed of a very Dender mem- Tcrefrian brane. The excrements are difcharged upon the lobes of the manteau, but they are eafily thrown out by the motions of the two lobes.

The little bones of the ears, already mentioned, had not formerly been obferved in any of the teftaceous animals; whence the terebratulx approach nearer to finh than the inhahitants of any other thell. In the anomize which are preferved in cabinets, there is found only a very fmall portion of thefe bones, whence they have obtained the improper appellations of tongue or fork, which indicate only the form of the fragments, and not their ufe.

The fmall bones of the ears are compofed of feveral pieces, the principal of which is of an oval form; it fprings from the fide of the hinge, of which it appears to be a continuation; thence it extends about two-thirds of the breadth of the fhell, where it is reflected, and refts againft the upper part of the fork, to the branches of which it is united by a fimple fuperpofition; a kind of articulation very common among the numerous fmall bones that compore the heads of fifh. The fork extends from the fummit a little more than one third of the breadth of the Thell: it is formed by a pivot which divides into two long and pointed branches; thefe are remarkably brittle, and fupport the extremities of the bones of the larger ears. The lamina, which compofes a fecond fet of ears, refts upon a curved bone, which on one fide is attached to the inferior internal part of the bone of the larger ears, and on the other reaches to the fide of the mouth of the animal, where it is united to an. other flat little bone, which is applied to a fimilar bone on the other fide. Thefe latt little bonesare exactly below the membrane which forms the mouth. All thefe bones are flat, very brittle, and furrounded with fibres and mem. branes. By their articulations the ears are enabled to move; they alfo fupport the body of the animal, which touches neither of the fhells, but remains between them as upon treffels. The fpace between the branches of the boncs of the ears is filled up with a tranfparent firm membrane; at the bafe of the fork is a fimilar one, and a perpendicular partition dividing the fpace occupied by the body of the animal from the reft of the thell. There are two orifices in this nembrane communicating with the fpace between the two lobes of the manteau, and which ferves as a trachea; for we have remarked, in the defcription of the manteau, that the two lobes are entirely feparated from each other, and therefore do not form a real trachea.

From this defeription, it follows that the anomia ought to be feparated from the genus oyfter, fince it has a toothed hinge, feveral ligaments, and an interior organization wholly different ; neither ought it to be confounded with the cockle, the fhells of which are both equal, and are deftitute of any fenfible periofteum, without reckoning other differences. It has ftill lefs analogy with the other bivalves, and therefore ought to contitute a peculiar genus; the fpecies of which, both foffil and living, are very numerous.

See Plate XLIII. where fig. I. is a front view of a terebratula of middle fize. Fig. 2. is a view of the internal Atructure.-AA, laminæ of the fuperior earsBB , laminæ of the inferior- C , the flomach- D , the anus-E E, the manteau- F, the œfophagus.

TERNAI, the name given by Peroule to a very

Ternai. fine bay which he difcovered on the coaft of Tartary, in Lat. $45^{\circ} 13^{\prime}$ North, and in Long. $1.35^{\circ} 9^{\prime}$ Ealt from Paris. The bottom is fandy, and diminithes gradually to fix fathoms within a cable's length of the fhore. The tide rifes five feet; it is high water at $8^{\mathrm{h}} 15^{\mathrm{ml}}$ at full and change; and the flux and rellux do not alter the direction of the current at half a league from the thore.
"Five finall erceks (fays La Peroufe), fimilar to the fides of a regular polygon, form the outline of this roadilead; thefe are feparated frome each other by hills, which are covered to the fummit with trees. Never did France, in the frefhelt fpring, offer gradations of colour of fo varied and Arong a green ; and though we had not feen, fince we began to run alung the coalt, either a fingle tire or canoe, we could not imargine that a country fo near to China, and which appeared fo fertile, flould be entirely uninhabited. Before our boats had landed, our glaffes were surned towards the fhore, but we faw only bears and flags, which paffed very quietly along the fea fide. The fame plants which grow in our climates carpeted the whole foil, but they. were Itronger, and of a deeper green ; the greater part were in flower. Rofes, red and yellow lilies, lilies of the valley, and all our meadow flowers in general, were met with at every ftep. Pine tries covered the tops of the mountains ; onks began only half way down, and diminifhed in ftrength and fize in proportion as they came nearer the fea; the banks of the rivers and rivulets were bordered with willow, birch, and maple trees, and on the jkirts of the forefts we faw apple and medlar trees in flower, with clumps of hazle nut trees, the fruit. of which already made its appearance. Our furprife was redoubled, when we reflected on the population which overburdens the extentive empire of China, fo that the laws do not punifh fathers barbarous enough to drown and deftroy their children, and that this people, whole polity is fo highly boafted of, dares not extend itfelf beyond its wall, to draw its fubfiltence from a land, the vegetation of which it would be neceffary rather to check than to encourage. At every ftep after we had landed, we perceived traces of men by the deftruction they had made; feveral trees, cut with tharp-edged inftrumerts; the remains of ravages by fire were to be feen in feveral places, and we obferved fome fheds, which had been erecter by hunters in a corner of the woods. We alfo found fome fmall bafkets, made of the bark of birch trees, fewed with thread, and fimilar to thufe of the Canadian Indians; rackets for walking on the fnow; in a word, every thing induced us to think that the Tartars approaeh the borders of the fea in the feafon for hunting and fifning; that they affemble in culonies at that period along the rivers; and that the bulk of the nation live in the interior of the country on a foil perhaps better calculated for the multiplication of their immenfe flocks and herds."

Our navigators caught in the bay vaft quantities of fine fifh, fuch as cod, harp-fifh, trout, falmon, herrings, and plaice; but though game was plenty on Chore, they had no fuccefs in hunting. The meadows, fo delightful to the fight, could farce be eroffed; the thick grafs was three or four feet high, fo that they found themfelves in a manner buried in it, and they were under the gerpetual dread of being bitten by ferpents, of
which they faw a great number on the banks of the rivulets. 'liey fousd, however, immenfe quantities of fmall onions, forrel, and celery; which, together with the freft fifh, ferved as antidotes againtt the icurvy.

Terre-
Plein, II Thebes

TERRE-Plein, of 'Terre-plain, in furtification, the top, platform, or horizontal furface of the rampart, upon which the cannon are placed, and where the defenders perform their oflice. It is fo called becaufe it lies level, having only a little flope outwardly to counteract the recoil ur the cannon. Its breadth is from 24 to 30 feet; heing terminated by the parapet on the outer fide, and iuwardly by the inner talus.

T'ERRELLA, or little earth, is a magnet turned of a 「pherical tigure, and placed fo as that its poles, equator, \&c. do exactly currefpond with thufe of the world. It was fo firft called by Gilhert, as being a jutl reprefentation of the great nagnetic glabe we inhabit. Such a terrella, it was fuppofed, if nicely poi. fed, and hung in a meridian like a globe, would be turned round like the earth in 2.4 hours by the magnetic particles pervaiding it ; but experience las flew'n that this is a millake.

TETRAEDRON, or Tetrahemron, in geometry, is one of the five Platonic or regular bodies or folids, comprehended under four equilateral and equal triangles. Or it is a triangular pyramid of four equal and equilateral faces.

TETRAGON, in geometry, a quadrangle, or a. figure having four angles. Such as a fquare, a parallelogram, a rhombus, and a trapezium. It fumetimes al. fo means peculiarly a fquare.

Tetracon, in aftrology, denotes an afpect of two planets with regard to the earth, when they are diftant from each other a fourth part of a circle, or 90 degrees. The tetragon is expreffed by the character \square, and is otherwife ealled a \{quare or quartile afpect.

THEBES, in Egypt. Having in the Encyclopadia given Mr Bruce's account of this ancient city, which reprefents it as having been a paltry place, fo contrary to the defcription of Homer, juttice to the father of poetry requires that we here notice what has been faid of it by a fubfequent traveller, who remained three days among its ruins. According to Mr Browne, "the mafly and magnificent forms of the ruins that remain of ancient Thacbes, the capital of Egypt, the city of Jove, the city with 100 gates, mult infpire every intelligent fpectator with awe and admiration. Diffufed on both ficles of the Nile, their extent confirms the clafical obfervations, and Homer's animated defcription rufhes into the memory :
' Egyptian Thebes, in whore palaces vaft wealth is ftored; from each of whole hundred gates.iffue two hundred warriors, with their horfes and chariots.'
"Thefe venerable ruins, probably the molt ancient in the world, extend for about three leagues in length along the Nile. Eait and weft they reach to the mountains, a breadth of about two leagues and a half. The river is here about three hundred yards broad. The circunaference of the ancient city inuft therefore have been about twenty- feven miles.
"In failing up the Nile, the firf village you come to within the preciucts is Kourna, on the weft, where there are few houles, the people living moftly in the caverns. Next is Abuhadjadj, a village, and Karnac, a s fmall diftrict, both on the eaft. Far the largeft portion.

THE

Thebes, of the city ftood on the caftern ficle of the river. On Theodofin: the fouth-wef Medinet-Abu marks the extremity of the ruins; for Arment, which is about two leagues to the fouth, cannot be confidered as a part.
"In defcribing the ruins, we fhall begin with the moft confiderable, which are on the eaft of the Nile. The chief is the Great '「emple, an oblong fquare building of vaft extent, with a double colonnade, one at each extremity. The mafly columns and walls are covered with hieroglyphics; a labour truly ftupendous. 1. The Great Temple ftands in the diftrict called Karnat. 2. Next in importance is the temple at Abubadjadj. 3. Numerous ruins, avenues marked with remains of fphinxes, arc. On the weft Gide of the Nile appear, 1. Two coloffal figures, apparently of a man and woman, formed of a calcareous ftone like the reft of the ruins. 2. Remains of a large temple, with caverns excavated in the rock. 3. The magnificent edifice ftyled the palace of Mcmnon. Some of the columns are about forty feet high, and about nine and a half in diameter. The columns, and walls are covered with hieroglyphics. This ftands at Kourna. 4. Behind the palace is the paffage ftyled Bibûn-el-Moluk, leading up the mountain. At the extremity of this paffage, in the fides of the rock, are the celebrated caverns known as the fepulchres of the ancient kings."

Though Mr Browne agrees with Pococke and Bruce, that the paffage in Homer refers not to the gates of the city, he is yet of opinion, contrary to them, that Thebes had been a walled town. He fays, indeed, that fome faint remains of its furrounding wall are vifible at this day ; and he thinks that he difiovered the ruins of three of its gates, though he does not affirm this with abfolute confidence.

THEODOSIUS, a celebrated mathematician, flourifhed in the times of Cicero and Pompey ; but the time and place of his death are unknown. This Theodofins the Tripolite, as mentioned by Suidas, is probably the fame with Theodofius, the philofopher of Bythinia, who, Strabo fays, excelled in the mathematical feiences, as alfo his fons; for the fame perfon might have travelled from the one of thofe places to the wther, and fpent part of his life in each of them ; like as Hipparchus was called by Strabo the Bythimian, but by Ptolemy and others the Rhodian-

Theodofius chiefly cultivated that part of geometry which relates to the doctrine of the fphere, concerning which he publithed three books. The firtt of thefe contains 2.2 propofitions; the fecond, 23 ; and the third, I4; all demonftrated in the pure geometrical manner of the ancients. Ptoleny made great ufe of thefe propofitions, as well as all fucceedir.g writers. Thefe books were tranflated by the Arabians, out of the original Greek, into their own language. From the Arabic the work was again trauflated into Latin, and printed at Venice. But the Arabic verfion being very defective, a more complete edition was publihed, in Greek and Latin, at Paris 1558 , by John Pena, Regins Profeffor of aftronony. And Vitello acquired reputation by rranllating Theodofus into Latin. This author's works were alfo commented on and illuftrated by Clavius, Heleganius, and Guarinus, and laftly by De Chales, in his Curfus Mathematicus. But that edition of Theodofus's Spherics, which is now molt in ufe, was tranilated and publifhed by our countryman the learned Dr Bar-
row, in the year 1675 , illuftrated and demoftrated in a new and concife method. By this author's account, Theodofius appears, not only to be a great mafter in this more difficult part of geometry, but the firft confiderable author of antiquity who has written on that fubject.

Theadofius, too, wrote concerning the Celeftial Houfes ; allo of Days and Nights ; copies of which, in Greek, were in the King's library at Paris. Of which there was a Latin edition, publifhed by Peter Dafypo. dy, in the year $15 \% 2$.

THEON, of Alexandria, a celebrated Greek philofopher and mathematician, who flourithed in the $4^{\text {th }}$ century, about the year 380 , in the time of Theodofius the Great ; but the time and manner of his death are unknown. His genius and difpofition for the ftudy of philofophy were very early improved by clofe application to all its branches; fo that he acquired fuch a proficiency in the fcience as to render his name venerable in hiftory, and to procure him the honour of being prefident of the famous Alexandrian fchool. One of his pupils was the admirable Hypatia, his daughter, who fucceeded him in the prefidency of the fchool; a truft which, like limfelf, fhe difcharged with the greateft honour and ufefulnefs. See her life, Encycl.

The fudy of Nature led Theon to many jut conceptions concerning God, and to many ufeful refiections in the fcience of moral philofophy. Hence, it is faid, he wrote with great accuracy on Divine Providence. And he feems to have made it his ftanding rule, to judge the truth of certain principles, or fentiments, from their natural or neceffary tendency. Thus, he fays, that a full perfuafion that the Deity fees every thing we do, is the ftrongeft incentive to virtue ; for he infifts, that the moft profigate have power to refrain their hands, and hold their tongues, when they think they are ob. ferved, or overheard, hy fome perfon whom they fear or refpect. With how much more realon then, fays he, fhould the apprehention and belief, that God fees all things, reftrain men from fin, and conftantly excite them to their duty? He alfo reprefents this belief concerning the Deity as productive of the greateft pleafure imaginable, efpecially to the virtuous, who might depend with greater confidence on the favour and protection of Providence. For this reafon, he reconımends nothing fo much as meditation on the prefence of God: and he recommended it to the civil magiftrate as a reAtraint on fuch as were profane and wicked, to have the following infcription written, in large characters, at the corner of every freet-God sees thee, O Sinner.

Theon wrote notes and commentaries on fome of the ancient mathematicians. He compofed alfo a book, intitled Progymnajmata, a rhetorical work, written with great judgment and elegance ; in which he criticifed on the writings of fome illuftrious orators and hiftorians; pointing out, with great propriety and judgment, their beauties and imperfections; and laying down proper rules for propriety of ftyle. He recommends concifenefs of expreflion, and perfpicuity, as the principal or. naments. This book was printed at Bane in the year 1541 ; but the beft edition is that of Leyden, in 1626 , in 8vo.

THEOPHILANTHROPISTS, a fect of deifts, who, in September 1796, publithed at Paris a fort of catechifm or directory for focial worhip, under the

Theon, Theophi-
lanthro-lanthrupifts.
title of Manuel des Tbeanthrophiles. This religious bre. viary found favour ; the congregation became numerous; and in the fecond edrion of their manuel they aflumed the lefs harih denumination of Theophilamtliropes, i.e. lovers of Gou and man. A book of hymns, a liturgy for every decade of the French year, and an homiletical felection of tioral leffons, are announced, or publifhed, by their unknown fynod. Thus they poffefs a fyllem of pious fervices adapted to all occations, which fome one of the individuals who attend reads aloud; for they objeef to the employment of a regular lecturer, in confequence of their hollility to prietts. This novel fect was countenanced by Lareveillere Lepaux, one of the Directory, and, foon after its formation, opened temples of its own in Dijon, and in other provincial towns. They hod declamations, in the fipirit of fermons, which abounded with fuch phrafes as l'eternal geometre, and the like, and which have long fince been familiar to thofe who frequent the lodges of free mafonry. Whether the fect now exifts, or fell at the lait revolution which annihilated the ditectory, we have not learned; but a tranflation of its Manuel into Englifh, for the ufe, we fuppofe, of our Jacobins, was made fo early as the year 1797. From this contemptible performance, we learn that the creed of the Theophilanthropifts is comprifed in the four following propofitions:

The Theophilanthropits believe in the exiftence of God, and the immortality of the foul.

The fpectacle of the univerfe attefts the exitence of the Firft Being.

The faculty which we poffefs of thinking, affures us that we have, within ourfelves, a principle which is fuperior to matter, and which furvives the diffolution of the body.

The exiftence of God, and the immortality of the foul, do not need long demonftrations; they are fentimental truths, which every one may find written in his heart, if he confult it with fincerity.

Thus a fort of religious inflinet is fet up as the fole foundation of piety, which every one has as much right to difavow as another to afiert; and the obligations of which, therefore, can in no way be fhewn to be incumbent on thufe to whom this novel illumination is not vouchfafed. Society, under fuch a fytem, gains no means of influencing the conduct of refractury members.

The morality of the Theophilanthopits is founded on one fingle precept: Worbip God, cherijh your kind, render yourfelves ufeful to your country!

Among the daties comprehended under the denomination of cherifhing our kind, we find that of not lending for ufury: the others are chiefly extracted from the gofpels, and do not interfere with the province of the civil magiftrate. The queltion of monogamy is not difcuffed.

Among the duties to our country are placed thofe of fighting in its defence, and of paying the taxes. It was certainly prudent in the fatefman to flide thefe duties into the catalogne of his ellablifhed maxims of morality; and he ran thereby little riks of provoking heretical animadverfions on his creed in France.

The following infcriptions are ordered to be placed above the altars in the feveral temples or fynagogues of the Theophilanthropifts; but for what reafon altars are admitted into fuch fynagogues we are not informed:

Firf infeription, "We believe in thic Exiftence of TheophiGod, in the immortality of the foul "

Second infcription, "Workhip God, cherifh your kind, render yourfelves ufeful to the country."

Third infeription, "Good is every thing which tends to the prefervation or the perfection of man.-Evil is every thing which tends to deflroy or to deteriurate him."

Fourth infeription, "Children, honour your fathers and mothers. Obey them with affection. Comfort their old age. Fathers and mothers, inftruct your children."

Fifhb infcription, "Wives, regard in your hufbands the chiefs of your houfes.-Hubands, love your wives, and render yourfelves reciprocally happy."
This pentalogue is chiefly objectionable un account of the vague drift of the fifth commandmeut : the whole has too general a turn for obvious practical application. The introduction of ceremonies, of fculpture, of painting, and of engraving, is forbidden. If poetry and mufic may concur to render the worhip imprefive, why niot the other fine arts? The fine arts have never illuf. trated a country which excluded them from the public temples. Are they to be extinguifhed in France by Theophilanthropic iconoclalts ?

At p. 28. of the Manuel, this fuprifing maxim occurs : Avoid innovations! A fect fifteen months old grown as telly as the church of Rome! They acknowledge, that perhaps better inferiptions may be found; yet they forbid the exchange. They prefer mump finus to the fump/finus of genuine Chriftianity!

THEOPHILUS, a writer and bilhop of the primitive church, was educated a Heathen, and afterwards converted to Chriflianity. Some have imagined that he is the perfon to whom St Luke dedicates the Acts of the Apoflles: but they are grofsly miltaken; for this Theophilus was fo far from being contemporary with St Luke and the apoflles, that he was not ordained bifhop of Antioch till anno 170; and he governed this church twelve or thirteen years. He was a vigo- Biog. Dis. rous uppofer of certain heretics of his time, and cornpofed a great number of works; all of which are loft, except three books to Autolycus, a learned Heat hen of his acquaintance, who had undertaken to vindicate his own religion againnt that of the Chritians. The firt book is properily a difcourfe hetween him and Autolycus, in anfwer to what this Heathen had faid arainit Chrittianity. The fecond is to convince him of the falfeluod of his own, and the truth of the Chriftian religion. In the third, after having proved that the writings of the Heathens are full of abfurdities and contradictions, he vindicates the doctrine and the lives of the Chrillians from thofe falfe and fcandalous imputations. which were then brought againht them. Latlly, at the end of his work, he adds an hiftorical chronology foum the begiuning of the world to his own time, to prove that the hiftury of Mofes is at once the mull ancient and the truch ; and it appears from this little epitome, how well this author was acquainted with profane hif tory. Thefe three hooks are filled with a great variety of curious difquifitions concerning the opinions of the poets and philofophers, and there are but few things in them relating immediately to the ductrines of the Chriftian religion. Not that Theophilus was ignorant of thefe doctrines, but, having compofed his works fer

Therapea- the converfion of a Pagan, he infifted rather on the exts. ternal evidence or proofs from without, as better adapted, in his opinion, to the purpofe. Fis flyle is elegant, and the turn of his thoughte very agreeable ; and this little fpecinen is fufficient to fhew that he was indeed a very eloquent man.

The piece is intitled, in the Greek manufcripts, "The beroks of Themphilus to Autolycus, concerning the Faith of the Chrutians, againt the malicious detractors of their rel!gion." They were publifhed with a Latin vertion, by Conradus Gefner, at Zurich, in 15ұ6. They were afterwards fubjoined to Juftin Martyr's works, printed at Paris in 1615 and 1636 ; then publinaed at Oxford, 1694, i:1 12 mu , under the infpection of Dr Fetl; and, lafty, by Jo. Chrill. Wolfus, at Hamburgh, 1723, in Svo.

It is remarkable, that this patriarch of Antioch was the firft who applied the term Trinity to exprefs the Three Perfons in the Godhead.

THERAPEUTE, fo ealled from the extraordinary purity of their religious worfhip, were a Jewifh feet, who, with a kind of religious phrenzy, placed their whole felicity in the contemplation of the Divine nature. Detaching themfelves wholly from fecular affairs, they transferred their property to their rclations or friends, and withdrew into folitary places, where they devoted themfelves to a holy life. The principal fo. ciety of this kind was formed near Alexandria, where they lived, wot far from each other, in feparate cottages, each of which had its own facred apartment, to which the inhabitant retired for the purpofes of devotion. After their morning prayers, they fpent the day in fudying the law and the prophets, eudeavouring, by the help of the commentaries of their anceftors, to difcover fome allegorical meaning in every part. Befides this, they entertained themfelves with compofing facred hymns in various kinds of metre. Six days of the week were, in this manner, paffed in folitude. On the feventh day they met, clothed in a decent habit, in a public affembly; where, taking their places according to their age, they fat, with the right hand between the breaft and the chin, and the left at the fide. Then fome one of the clders, ftepping forth into the middle of the affembly, difcourfed, with a grave countenance and a calm tone of voice, on the doctrines of the fact; the audience, in the mean time, remaining in perfect ti. lence, and occafionally expreffing their attention and approbation by a nod. The chapel where they met was divided into two apartments; one for the men, the other for the wromen. So ftrict a regard was paid to filence in thefe affemblies, that no one was permitted to whifper, or even to breathe aloud; but when the difcourfe was finifhed, if the queltion which had bect propofed for folution had been treated to the fatisfaction of the audience, they expreffed their approbation by a murmur of applaufe. Then the ipeaker, rifing, fung a hymn of praife to God, in the latt verfe of which the whole affembly joined. On great feftivals, the meeting was clofed with a vigil, in which facred mufic was performed, accompanied with folemn dancing: and thefe vigils were continued till morning, when the affembly, after a morning prayer, in which their faces were directed towards the rifing fun, was bruken up. So abftemious were thefe afcetics, that they commonly ate nothing before the fetting fun, and ofter fafted two or
three days. They abtained from wine, and their ordimary food was bread and herbs.

Much difpute has arifen anong the learned concerning this fea. Some have inagined them to have been Judaizing Gentiles: but Philo fuppofes them to be Jews, by fpeaking of them as a branch of the fect of Effenes, and exprefisly clafes them anong the fullowers of Moles. Others have maintained, that the Therapeete were an Alexandrian fect of Jewifh converts to the Chrittian faith, who devoted themfelves to a monaltic life. But this is inpulfible ; for Philo, who wrote before Chriltianity appeared in Egypt, fpeaks of this as an eftablifhed fect. From comparing Philg's account - of this fect with the ftate of philofophy in the country where it flourithed, we conclude that the Therapeut x were a body of Jewinh fanatics, who fuffered themfelves to be drawn afide from the fimplicity of their ancient religion by the example of the Egyptians and Pythagoreans. How long this fect continued is uncertain; but it is not improbable that, after the appearance of Chriftianity in Egypt, it luon became extinct.

THERMOME ['RIC sPECTKUM, is a name given to the fpace in which a thermometer may be placed, fo that it thall be affected by the fun's rays refracted by a prifm. It is, in part, the faime with the Prismatic S'pectrum, which exhibits the different colours produced by the folar light.
The philofuphical inftrument now called a thermometer, was firt named thermoscope; and was prized by the naturalift, becaufe it gave hin indications of the prefence and agency of fire in many cafes where our fenfation of warmth or heat was unable to difcover it. It was not long before it was obferved that it alfo affords us meafures of the changes which take place cither in the quantity or the activity of the caufe of heat, and of many other important phenomena ufually accompanied by heat They were then- catied thermomoters. But in both of thefe offices, it is ttill a doubt wherher it indicates and meafures any real fubitance, a being fui generis, to which we may give the name fire, phlogifion, caloric, beat, or any other; or only indicates and meafures certain flates or conditions, in which all bodies may be found, without the addition or abltraction of any material fubftance.

We think that this queftion has a greater chance now of being decided than in any former time, in confequence of a recent and very important difcuvery inade by that unwearied obferver of the works of God, the celebrated Dr Herfchel. Being greatly incommaded when looking at the fun, by the great heass produced in the eye-pieces of his telefeopes, he thought that the laws of refraction enabled him to diminifh them by a proper conftruction of his eye-pieces. He began his attempts like a philofopher, by examining the heat produced in the various parts of the prifmatic fpectrum. Comparing the gradation of heat with that of illumi. nation, he found that they did not, by any means, follow the fame law. The illumination increafed gradually from the violent end of the fpectrum, where it was exceedingly faint, to the boundary of the green and yellow, where it was the moft remarkable; and after this it decreafed as the illuminated object approached the red extremity of the fpectrum. But the calorific power of the refracted light increafed all the way from the extreme violet to the extreme red; and its laft augmen-

Thermo. tations were confiderable, and therefore unlike the ufual nerric.

68 I] T Hi E

the effects of the fun's light on vegetable colours, on Thermanthe nitric and nitrous acids, on manganefe, on the calees or oxides of metals, and numberlefs other iantanees, which all concur in rendering it almunt unqueftionable that the fun's rays, and thofe of other fhining bodies, may be, and daily are, combined with the other fubftances of which bodies are compofed, and may be again feparated from thicm. And, floould any doubts renain, it would feem that the theory of combution, firft conceived and imperfectly publifhed by Dr Hooke in his Micrography, p. 103. and in his Lampus, p.1. \&c. adupted by Mayow (fee Hooke and Mayow in this Suppl.), forgotten, and latcly revived and confirmed by Mr Lavoifier, renoves them entirely. In the beautiful and well-cuntrived experimeats of the latt gentleman, the light, accompanied by its heat, which had been ahbforbed in the proecfs of growth or other natural ope. rations, re-appeared in their primitive form, and might again be abforbed and made to undergo the fame round of changes.

Schecle, not inferior to Newtun in cantion, patience, and accuracy, and attentive to every thing that occurred in his experiments, difcovered the feparability of the illuminating and the warming influences of fhiming bodies. He remarked, that a plate of glafs, the mofl colourlefs and pellucid that can be procured, when fuddenly interpofed between a glowing fire and the face, inftantly cuts off the warming power of the fire, without caufing any fenfible dinination of its briliancy. He followed this difcovery into many obvious confequences, and found them all fully confirmed by obfervation and experiment. The writer of this article, immediately on licaing of Schacle's experinients, repeated them with complete fuccefs: but lie found, that when the glafs plate lad acquired the highett temperature which it could acquire in that fituation, it did not any longer intercept the heat, or at leaft in a very frmall and almoft infemitible degres. It feemed to abfort the heat, till faturated, without abfurbing any confiderable portion of the light.

This feparability of heat from light docs not feem to have met with the attention it deferved. Dr Schecle's untenable theories on thefe fubjects turued away the attention of the chemits from this difcovery, and the mathematical philofophers feem not to have licad of it at all. The Iate Dr Hutton of Edinburgh was more fenfible of its importance; and in his laft endeavours to fupport the falling caufe of phlogiflon, mikes frequent allufions to i. But in his attempts to explain the emrious obfervations of Meffrs Sauflure and Pictet, in which there are unqueftionable appearances of radiated beat, he reafons fo unconfequentially, that few readers proceed farther, fu as to notice feveral obfervations of tacts where the illuminating and warming influences are plainly feparated. In all thefe inflances, however, Dr Hutton confiders the invifible rays as light, but not as heat; maintaining that they are invifible, or do not render bodies vifible, only becaufe our eyes are infenfible to their feeble action.

It was referved for Dr Herfchel to put this matter beyond difpute by thefe valuable experiments. For did the invifibility of any of the light beyond the extrenc red of the prifmatic fpectrum arife from the infenfibility of our organs, the feectrum would gradually fade away beyond the red ; but it ceafes abruptly. Thefe thoughts

4 R
could

Thermo- could not efcape this attentive oblerver. He therefore smetric. examined more particularly thofe invifible rays, cauling
them to be reflected by mirrors, and refracted through lenfes; and, in flurt, he fubjected them to all the fubfequent trcatments which Newton applied to the colouring rays. He found them retain their fpecific refrangibilities and reflexihilities with as much uniformity and obftinary as Newton had obferved in the colour-making rays. They were made to pafo through lenfes while the illurinating rays were intercepted by an opaque body, and the invifible rays were then collected into a focus. They were reflected, both by the anterior and pofterior furfaces of tranfpatent bodies. In all thefe trials they retained their power of expanding the liquor of a thermometer, and exciting the fenfation of heat.

Thefe trials were not corfined to the folar light or the folar rays: They were aliu made on the emanations from a candle, from an open fire, and from red-hot iron; then they were made with bodies not lot enough to Shine; with the heat of a common ftove, and the heat from iron which was nut vifible in the dark. The event was the fame in all; and it was clearly proved that heat, or the caufe of heat, is as fufceptible of r. diation as light is; and that this radiation is performed in both according to the fame laws.

We look with impatience for the fubfequent experiments of this celebrated philofopher on this fubject ; for we confider them as of the greatelt and moft extenfive importance for explaining the operations of Na ture. We fee, with indifputable evidence, that there are rays from the fun, and other bodies, which do not illuminate. It does not follow, however, that there are rays which do not warm; for the thermometer was affected in every part of the coloured fpectrum. Dr Herfchel feems to think that the power of affecting the organ of fight depends on the particular degrees of mechanical momentum which are indicated by the different degrees of refrangibility. We confefs that we think it unlikely that fuch a power fould terminate abruptly. We do not obferve this in analogous phenomena : the evanefcence of our fenfations of found, of mufical pitch, of heat, \&c. are all gradual. We think it more likely that illuminating and warming are feecific effects of different things. We fhuuld have enter. tained this opinion independent of all other experience: and we think it ftrongly confirmed by the experiments of Dr Scheele already mentioned. We are difpofed therefore to believe that there are rays which illuminate, but which do not warm; and rays which warm without illuminating. We have experiments in profpect, by which we hope to put this to the teft.

Thefe experiments of Dr Herfchel afford another good argument for the common opinion concerning light, namely, that it is a matter emitted from the 乃bining body, and not merely the undulations of an elaitic medium ; for if it were undulation, then, fince there is heat in the yellow light, it would follow that a certain frequency of undulation produces both the fenfation of heat and the fenfation of a yellow coluur. In this cafe they fhould be infeparable.

This follows, in the ftricteft manner, from the principles or affumptions adopted by Euler in his mechanical theory of undulations. The chromatic differences in the rays of light are affirmed to arife entirely from the different frequencies of the ethereal undulations;
and he endeavours to fhew that thefe differences in frequency produce a differerace in refrangibility. It is evident that this reafoning is equally conclufive with refpect to the caloritic or heating power of the rays. The light and the heat are both undulations: thefe differ only in frequency; and this frequency is indicated (according to Euler) by the refrangibility. There is a certain frequency therefore which excites the fenfation of yellow. The fame frequency, indicated by the fame refrangibility, produces heat ; therefore the frequency which produces this degree of heat alto produces the fenfation of yellow. We muft not fay that the momentum of the undulation may produce heat, but is infufficient for the production of light, as a ftring may vilurate too feebly for being heard; for we fee, by Dr Herfchel's experiments, that, with a momentum fufficient for making the mof brilliant fpectrum, there are rays (and thofe which have the greateft momentum) which produce heat, and yet are invifible.

It dues not follow, from any of Dr Herfclicl's experiments, that the rays emitted by iron, which is not hot enough to fhine in a dark room, lave all the different degrees of refrangibility obferved by him. Perhaps none of them would fall on the chromatic fpectrum. We think, however, that this is not probable. It may be tried by cullecting them to a focus by a lenfe, intercepting, however, all thofe which are lefs refrangible than the red-making rays. We trult that the thermo. meter in the focus will itill be affected.

This is but a very imperfect account of this important difcovery: hut we thought that it would be highly interefting to our readers. The prefs was employed on this very fheet when we received the information from a friend, who bad feen Dr Herfchel's Differtation, which will appear in the firft volume publifhed by the Royal Society. We trult that the ingenious author will foon follow it up with the invefligation of the fubject in all its confequences.

We hope that he will examine what will refult from mixing fome of the invifible rays with fome of the coloured ones. We know that the yellow and the blue,
 invifible rays may alfo change the appearance. Wre do not, however, expect this.

We alfo hope that Dr Herfchel will examine whether the invifible rays of the fun produce any effect on vegetable colours; whether they blacken the calces of inlver and bifmuth, luna cornea, and decompufe the nitrous and the oxygenated muriatic acid, \&c. \&c. We fhould thus get more infight into the nature of caloric and of combultion. Combuftion may perhaps be reftored to its rank in the phenomena of Nature, and no longer be funk in the general gulph of oxygenation, and thus obliterated from the memory of chemilts. It is perhaps the mole. remarkable phenomenon of material Nature ; and fire and burning will never go out of the language of plain men. Fire, and all its concomitants, have, in all times, been confidered as even the cbief objects of chemical attention; and an unlearned perfon will ftare, when a chemift tells hin that there is no fuch thing, and that what he calls the burning of a piece of coal is only the making it four. He will perhaps fmile; but it will not be a fmile of affent.

It was one darling object of the Revolutionary Committee of Chemilts, affembled at Paris in 1787 , to banith from our minds, by means of a new language, all

T H E [683] T H E

 from the philufophers of France. Wre think ourfetves in a condition to prove this by letters to this country from the fcene of action; in which the expected victury is fpuken of in terms of exultation, and with folithe reftraint, that the writer forgets that it is D_{R} Dlack whom he is infurning that l'air five'and la pauvere phiogifligue will foon be forgoten; and get the writer was a gentleman of uncommon modelily and worth, and fincerely attached to 1 re Black. We give this ats a remarkable inltance of the efprit de curps, and of the nature and towering ambition of that nation. From this they have not fiverved; and they hope to gain this fummit of fcientific dominion in the fame way as the fame phiofoplers hope to banifh Chriftianity by means of their new kalendar. It may, however, turn out that both Dr_{r} Hooke and Mr Lavuifier are mitaken, when they make the oxygen gas the fole fource of both the light and the heat which accompany combultion. One of them may perhaps be furnifised by the bady which all, except the new philofophers, call combuftible.'The ohjections which may be made to the theory of Huyghens and Euler, on the acknowledged principles of mechanics appear to us unanfiverable. Euler has never attempted to anfwer thufe taken from the different difperling powers of different fubblances. The objections made to the Nuwtonian, or vulgar theory of emifium, are not fuch as imply abfurdity; they are only difficulties. The chief of them, vir. the famenefs of velocity in all lights whatever, is of this kind. It is merely an improbability. But the objections to the theory of undulation, deduced from the chemical effects of light, are not lefs frong than thofe deduced from mechanical principles. It is quite inconccivable that the undulation of a medium, which pervades all bodies, thall produce aromatic oils in fome, a green frecula in others, fhall change fulphuric acid into fulphur, \&c. \&c. No effects are produced by the undulations of air, or the tremors of elaftic bodies, which have the moft diflant analogy or refenblance to these.

That the fun and other flining bodies emit the matter of light and heat, feems therefore to merit the general reception which it meets with from the philofophers. But even of this clafs there are differences in opiniun. Some inagine that light only is emitted, and that the heat which we feel is occafioned by the action of the luminots rays on our atmofphere, or on the ground. Were the fun's calorific ray's as denfe at the furface of the fun as his lumulous rays are, the heat there muft exceed (fay they) all that we can form any conception of. Y'et we fee, that when the nucleus of the fun is laid hare by fome natural operation, which, like a volcanic explofinn, throws afide the luminous ocean which covers it to a prodigions depth, the naked parts of this nucleus are black. Therefore the intemfe heat in that place is not able to make it fhining lot, as it does in all our experiments with intenfe heats, giving a dazzling glare. This is thought lighly improbable; and it is therefore fuppofed that there is, primitively, no heat in the fun's rays, but that they act on our air, or other terreftrial matter, combining with it, and difengaging heat from it, or producing that partieular ftate and condition which we call beat.

We think that Dr Herfchel's difcovery militates ftrongly and irrefiftibly againtt this opinion; and fhews,
that whatever reafon we hive for faying tiat the fan's Thermrays bring light from the fun, we have the fame autho. rity for faying, that they bring heat, fire, caluric, phlogilton, or by whatever other name we ehoofe to dillinguifa the caufe of warmth, expaufion, liquefaction, cbullition, \&c.

We muit cither fay that light and heat are not fuh. ftances of a preculiar kind, fufceptible of umion with the other ingredients of bodies, but mercly a flate of un. dalation of an elaflic medium, as found is the undula. tion of air; , we mult fay that the fun's rays con. tain light and heat, in a detached ftate, fit for appearing in their fimplell form, producing illumination and expanfion, and for unitiag chemieally with other matter. Whichever of thefe opinjons we adopt, it is pret. ty clear that all attempts tos difover a difference in the weight of hot and cold bodies inay be given over. In the firit cale, it is felfevident ; in the feeond, we have abundant evidence, that if lizht and heat, beirg gravitating matter, like all other bodics, were added to, or abftracted from bodies, in fufficient quantity to be ferifibly beavy, the rays of the fun, or even the light of a candle, would occafion inftant deffruction by its mere momentum; fince every particle of radiated light and heat moves at the rate of 200,000 miles in a fecond.
This difcovery of Dr Herfehel's adds greatly to the probability of the opinion which we exprefled on another oceafion, that the forces or powers of natural fubflances, which are the inmediate caufes of the chemical phenomena, are no way different from the mechanical forces which render bodies heavy, coherent, elattic, expanfive, \&c.; in thort, that they are what we call acceleraling forces. We deduced this from the fact, that mechanical force can be oppofed to them, fo as to prevent their action in circumftances where it would otherwife certainly take place. Thus by exterual preffure, we can prevent that union of water and caluric which would convert it into elaltic fteain. We can even difunite them again, when tleam is already produced, by forcibly condenfing it into a fmaller fpace. Now, the refraction and reftection of heat are performed according to the fame precife laws which we obferve in the refraction and reflection of light ; and Sir Ifaac Newton has demonftrated that thofe phenomena arife from the action of accelerating furces, whofe direction is perpenoicular to the acting furfaces. The matter of heat, therefore, is like other matter in its mechanical properties; and, in the motion of refraction, it is acted on and deflected, juIt as a projectile is acted on and deffected by gravity. It continues in motion till its velocity and direction are changed by deflecting forces, exerted by the particles of the tranfparent medium or the reflecting furface. It would take up too much room, but it is a very eafy procels, to demontrate that this regular refraction of heat is ahtogether incompatible with the ufualily fuppofed notion of caloric; namely, that it is an expanfise fluid like air, but incomparably more elattic: from which property very plaufible explanations have been given of the elafticity of gafes, fteams, and fuch like fluids. Every intelligent meclanician will be fenfible, that all this fort of chemical fcience falls to the ground, when it is proved, by exhibition of the fact, that radiated heat is refracted in the fame way with radiated light. We muft look for the explanation of the immenfe explofive force of fulminating filver, gold, \&c. in fome

T H E

Thermon.etric.
very different principles from thofe which are now in vogue. We apprehend, too, that the very phenomenon of this refraction gives indication of fortes which are fufficiently powerful for this explanation : For when we reflect on the aftonifing velocity of the ray of heat ; on the minute fpace along, which it is defected, and confequently the time of this action, minute beyond all imagination; and when we compare thefe circumftances with the deflection produced by gravity in the motion of a projectile - it is evident that the deflecting force of refraction muft exceed the greateft force that we have any knowledge of, in a greater proportion than the weight of Mount Etna exceeds that of 3 particle of fand. We would defire Mr de la Place to fufpend his hopes of eftablifhing univerfal fatalifm, till he can reconcile thefe phenomena with his fundamental principle, "that all forces wubich are diffufed from a fingle point, neceffarily and effentially diminibs in the inverfe duplicate ratio of the diffances." Till he can do this, he had better fill allow, with Newton, that the felection of the duplicate ratio for the action of gravity (by which alone the folar fytem can be rendered permanent and orderly) is a mark of wifdom and benevolence. We would advife him to reconcile his mind to this; and perhaps, Like the modeft and admiring Newton, he may, in good time, find comfort in the thought.

It is alfo highly worthy of remark, that this refract. ing force, almoft immenfe, which is fo plainly exerted between the particles of bodies and light, when confi. dered as of the fame kind with thofe that produce chemical union, appears abundantly fufficient for explaining fome of the moft wonderful phenomena of chemiftry; fuch as the prodigious elafticity of fteam, of gunpowder, and the fill more aftonifhing explofion of fulminating gold and filver. Some of the phenomena of deflected light are produced by thefe optical forces acting at diftances fufficiently great to admit of meafurement; as in the Newtonian obfervations on the paffage of light near the edges of opaque bodies. Thefe deflections enablc us to compare the deflecting forces with gravity. The refrading force, however, is vaftly greater than even this, as may be feen by the greater deflection which is produced by it; and, being exerted along a fpace incomparably fmaller, it muft be greater ftill. Here, then, are forces fully adequate to the phenomena of fulmination. And we would again defire Mr De la Place to remark that, although thefe exploding forces are irrefiftible, their aetion feems to vanifh entirely beyond the limits of mathematical contact. This is plain from the fact, that thofe explofions do not project the fragments to great diffances. This is remarkably the cafe in all the moft eminent of them. Common or nitric gunpow. der is perhaps the only great exception. This particular circumftance will furely fuggeit to this eminent analyt the inverfe triplicate ratio of the diftance as more likely to explain the phenomena than his favourite law.

We truft that our readers will not be difpleafed with this fhort fletch of Dr Herfchel's difcovery, and the few reflections which it naturally fuggefted to our minds. We fhall not be greatly furprifed, although it flould produce a fort of counter-revolution in checmical fcience, in corfequence of new conceptions which it may give us of the uniun of bodies with light and heat. The phenomena of the regetable and animal economy fhew
that they are fufeeptible of combination with otber fub. Theveriot ftances belides the bafis of vital air. Whatever changes $\underbrace{\text { Thomas. }}$ this may produce in the great revolution which has al. ready taken place in chemical fcience, they will (in our opinion) be favourable to true philofophy; becaufe Dr Herfchel's difcovery co-operates with other arguments of found mathematical reafoning, to overturn that principle on which De la Place hopes to found his atheiftical doctrine of fate and neceffity. It contributes therefore to reflore to the face of Nature that fmiling feature of providential wisdom which Newton had the honour of exhibiting to the view of rational men. The fun is the fource of light and genial warnth to a valt fyftem, which is held together, in almoft eternal order and beauty, by a law of attraction felected by Infinite Wifdom, as the only one adequate to this magnificent purpofe.

THEVENOT (Melchifedec), librarian to the king of France, and a celebtated writer of travels, was born at Paris in 1621, and had fcarcely gone through his academical Itudies, when he difcovered a ftrong paffion for vifiting foreign countries. At firit he faw only part of Europe; but then be took great care to procure very particular informations and memoirs from thofe who had travelled over other parts of the globe, and out of thofe compored his "Voyages and Travels." He laid down, among other things, fome rules, together with the invention of an inftrument, for the better finding out of the longitude, and the declination of the needlc; and fome have thought that thefe are the beft things in his works, fince travels, related at fecond-hand, can never be thought of any great authority or moment ; not but Thevenot travelled enough to relate fome things upon his own knowledge. A nother paffion in him, equally ftrong with that for travelling, was to collect fcarce books in all fciences, efpecially in philofophy, mathematics, and hiftory; and in this he may be faid to have fpent his whole life. When he had the care of the King's library, though it was one of the beft furnifhed in Europe, he found 2000 volumes wanting in it which he had in his own. Befides printed books, he tought a great many manufcripts in French, Englifh, Spanifh, Italian, Latin, Greek, Hebrew, Syriac, Arabic, Turkih, and Perfic. The marbles preiented to him by Mr Nointel, at his return from his embaffy to Conftantinople, upon which there are bas-reliefs and infcriptions almoft 2000 years old, may be reckoned among the curiofities of his library. He fpent moft of his time among his hooks, without aiming at any poit of figure or profit : he had, however, two honourable employments; for he affifted at a conclave held after the death of Pope Innocent X. and was the French kirg`s envoy at Genoa. He was attacked with what is called a flow fever in 1692, and died Octoher the fame year, at the age of 71. According to the account given, be managed himfelf very improperly in this illnefs; for he diminifhed his frength by abftinence, while he fhould have increafed it with hearty food and generous wines, which were yet the more neceffary on account of his great age.-Thevenot's Travels into the Levant, \&c. were publifhed in Englifh in the year 1687, folio; they had been publifhed in French at Paris 1663 , folio. He wrote alfo "L'Art de Nager," the Art of Swimming, $12 \mathrm{mo}, 1696$.
THOMAS (Chritian). was bern at Leipfic 1655,
and was well educated, firt under his father, and afterwards in the Leiplic univerlity. At firlt he acquiefeed in the eftablifhed doctrines of the fhools; but upon reading Puffendorf's "A pology for rejecting the Scholaftic Principles of Morals and Law," light fuddenly burit upon his mind, and he determined to renounce all implicit deference to ancient dogmas. He read lectures upon the fubject of Natural Law, firft from the text of Grotius, and afterwards from that of Puffendorf, freely exercifing his own judgment, and, where he faw reafon, advancing new opinions. Whilt his father was liviug, paternal prudence and moderation rellrained the natural vehemence and acrimony of the young man's temper, which was too apt to break out, even in his public lectures. But when he was left to himbelf, the holdeefs with which he advanced umpopular tenets, and the fererity with which he dealt out his fatirical cenfures, foun brought upon him the violent refentment of theolugians and profeffors.

An "Introduction to Puffendorf," which Thomas publifhed in the year 1687, wherein he deduced the obligation of morality from natural principles, occation. ed great offence. The following year he became ftill more unpopular, by opening a monthly literary journal, which he intitled "Free Thoughts, or Monthly Dialogues on varions Books, chiefly new ;" in which he attacked many of his contemporaries with great feverity. The raillery of this fatirical work was too provoking to be endured : complaints were lodged before the ecclefiaftical court of Drefden; the bookfeller was called upon to give up the author; and it was only through the intereft of the Marefchal that Thomas efeaped punifhment. The title of the work was now changed; but its fpirit remained. A humorous and fatirical life of Ariftotle, and feveral other farcaftic papers, kept alive the flame of refentment, till at length it again burft forth, on a charge brought againft him before the fame court by the clergy of Leipfic, for contempt of religion: but he deई्ended himfelf with fuch ability, that none of his ad. verfaries chofe to reply, and the matter was dropped.

A fatirical review, which he wrote, of a treatife "On the Divine Right of Kings," publifhed by a Danifh divine; "A Defence of the Sect of the Pictints," and other eccentric and fatirical publications, at latt inflamed the refentment of the clergy againit Thomas to fuch a degree, that he was threatened with imprifonment. To efcape the ftorm which thickened about him, he entreared permiffion from the Elector of Brandeburg, in whofe court he had feveral friends, that he might read private lectures in the city of Hall. This indulgence being obtained, Thomas became a voluntary exile from Leipfic. After a chort interval, he was appointed public profeffor of jurifprudence, firft in Eerlin, and afterwards at Hall. In thete fituations, he found himfelf at full liberty to indulge his fatirical humour, and to engage in the controverfies of the times : and as long as he lived, he continued to make ufe of this liberty in a manner which fubjected him to much odium. At the fame time, he perfevered in his endeavours to correct and fubdue the prejudices of mankind, and to improve the ftate of philofophy. He died at Hall in the year 1728 .

Befides the fatirical journal already mentioned, Thomas wrote feveral treatifes on logic, morals, and jurifprudence ; in which he advanced many dogmas contra-
ry to received opinions. In his writings on Plyfics, he Thomas, leaves the ground of expeximent and rational inveftiga. Thornon. tion, and appears among the myftics. His later picices are in many particulars inconfiftent with the former. His principal philofophical works are, "An Introduction to Aulic Philofophy, or Ontlines of the Art of Thinking and Reafóning ;" "Introduction to Rational Philofophy;" "A Logical Praxis:" "Introduction to Moral Philofophy ;" "A Cure for Irregular Paffions, and the Doctrine of Self. Knowledge;" "The new Art of difcovering the fecret Thoughis of Men :" "Divine Jurifprudence;" "Foundations of the Law of Nature and Nations;" "Differtation on the Crime of Magic ;" "Efay on the Nature and Effence of Spirit, or Principles of Natural and Moral Science:" "Hitory of Widdom and Folly."

From the fpecimen given by Dr Entiteld of his more peculiar tenets (for we have read none of his books), 'Lhomas appears to have been a man of wonderful inconlittency in his opinions; teacling on one fubject ra. tional piety and true fcience, and on another ablurdity and atheifm. "No other rule (he fays) is neceffary in reafoning, than that of following the naturall order of inveltigation ; beginning with thofe thirgs which are beit known, and proceeding, by eafy fteps, to thofe which are more difficult." This is perfectly conffitent with the foundation of the Baconian logic ; and is in deed the only foundation upon which a fyltem of fcience can polfibly be built. Yet could the man, who pros feffes to proceed from a principle fo well eftablifhed, gravely advance, as conclufions of feience, the following abfurdities : "Ferception is a paffive affection, produced hy fome external object, either in the intellectual fenfe, or in the incliation of the will. God is not per. ceived by the intellectual fenfe, but by the inclination. of the will: for creatures affect the brain ; but God, the heart. All creatures are in God: wothing is exterior to him. Creation is extenfion producid from nothing by the divine power. Creatures are of two kinds, paffive and active ; the former is matter, the latter fpirit. Matter is dark and cold, and capable of being acted upon by firit, which is light, warm, and active. Spirit may fubfit without matter, but defires a union with it. All bodies confilt of matter and fpirit, and have therefore fome kind of life. Spirit attracts fpirit, and thus fenfibly operates upon matter united to fpirit. This attraction in man is called love; in other bodies, fympatby. A finite fpirit may be confidered as a limited fohere, in which rays, luminous, warm, and active, flow from a centre. Spirit is the region of the body to which it is united. The region of finite fpirits is God. The human foul is a ray from the divine na. ture; whence it defires union with God, who is love. Since the effence of fpirit confifts in action, and of body in paflion, fpirit may exift without thought : of this kind are light, ether, and other active principles in nature." Fortunately, this jargon is as uniutelligible as the categories of Kant, and the blapphemies of Spino. za; for an account of which, the reader is referred to Critical Philosophr in this Suppl. and to Spinoza in the Encycl.

THORNTON (Bonnel), a modern poet, the inti- Biograppicel mate friend of Lloyd and Colman, and juftly claffed Dizionarys. with them in point of talents, was horn in Maidenlane, London, in the year 1724. . He was the fon of

Thernton. an apothecary ; and being edueated at Weftminfler fchool, was elected to Chrif-Church, Oxford, in the year 1743. He was thus tight years fenior to Colman, who was elected of in 175 \% The firtt publieation in which he was concerned was, "The Student, or Oxford and Cambridge Mifcellany," which appeared in monthly numbers; and was collected in two volumes 8 vo , in 174^{8}. Smart was the chief conductor of the nork; but Thornton, and other wits of both univerfities, affifed in it. He took his degree of mafler of arts in 1750; and as his father withed him to make phyfic his profeffion, he took the degree of bachelor of that faculty in 1754. In the fame year he undertook the perivdical paper called The Cornoiffiur, in conjunction with Colman, which they contimued weekly to the 3 oth of September $\mathbf{4} 75$. In the concluding paper, the different ages and purfuits of the two authors are thus jocularly pointed out, im the defrrip. tion of the double author, Mr Town. "Mr Town is a fair, black, midille-fized, very flort man. He wears his own hair and a periwig. He is about thinty years of age (literally thirty-two), and not more than four-and twenty. He is a fludent of the law and a bachelor of phytic. He was bred at the univerfity of Oxford, where, having taken no lefs than three degrees, he looks down on many learned profeffors as his inferiors: yet, having been there but little longer than to take the firt degree of bachelor of arts, it has more than once happened that the cenfor-general of all England has been réprimanded by the cenfor of his college, for neglecting to furnifh the ufual effay, or, in the collegiate phrafe, the theme of the week." Engaged in purfuits of this kithd, Bonnel Thornton did not very clofely follow the profeffion to which his father deftined lim, but lived rather a li. terary life, employing his pen on varions fubjects. To the daily paper called the Public Advertifer, then in high reputation, he was a frequent contributor; and he once had it in contemplation tu treat with Mr - Rich for the patent of Covent Garden theatre. In 1764, Mr Thornton married Mifs Sylvia Brathwaite, youngett daughter of Colonel Brathwaite, who had been governor of a fort in Africa. Ia 1766, encouraged, as lie fays himfelf, by the fuecefs of his friend Colman's Terence, he publifhed two volumes of a tranflation of Plautus in blank verfe; propofi:ig to complete the whole if that fpecimen fhould be approved. Thefe volumes contained feven plays, of which the Captive was trannlated by Mr Warner, who afterwards completed all that Thornton had left unfinithed; and the Mercator by Mr Colman. The remaining five are, the Ampbitryon, Miles Gloriofius, Trinummus, Aulularia, Rudens. Some parts of the remaining plays which Thornton had tranflated are preferved by his continuator. There can be no doubt that this is the beft way of tranflating the old comedies, and that Thornton was well qualified for the talk; but the work has never been in high favour with the pullic. Yet Warburtun faid of it, tlat "he never read fo juft a tranflation, in fo pure and elegant a fyle." Thornton publifhed in 1767, The Battle of the Wigs, as an additional canto to Garth's Difpenfary ; the fubject of which was the difputes then fubbitting between the fellows and licentiates.

The life of Thornton was not deftined to attain any great extenfion : in the prime of his days, while he was jurounded by domeftic felicity, the comforts of for-
tune, and the refper of foeiety, ill health came upon him; and medical aid proving inefficient, he died, of the gout in his ftomach, May $9.1 ; 68$, at only 44 years of age. His wife, a daughter, and two fons, furvived lim. Befides the productions already mentioned, he wrote the papers in the Adventurer marked A; "An Ode to St Ceeilia's day, adapted to the ancient Britifl Mufic," a burlefque performance; "The Oxford Barber;" with many detached effays in the public papers. A few letters addreffed to his Sylvia before they were married, difplay great tendernefs, exprelled with franknefs and eafe. A fmall edition of his works might, with much propricty, be prefented to the public, before it fhall be too late to afcertain them all." His character may be"teken from his epitaph, written in Latin by his friend Dr Warton, and placed on his monument in WeftminRter Abbey. It is to this effect: "His genius, cultivated mof happily by every kind of polite 1 terature, was accompanied and recoinmeuded by manners open, fincere, and candid. In his writings and converfation he had a wonderful livelinefs, with a vein of pleafantry peculiarly his own. In ridiculing the failings of men, without bitternefs, and with much humour, he was fingularly happy; as a companion, he was delightful."
THUNDER. There is not one of the appearances of nature which has fo much engaged the attention of mankind as thunder. The favage, the citizen, and the philofopher, have obferved it with dread, with anxiet y, and with curiofity; and the philofopher of our times treats the others with a frile of condefcenlion, while he here enjoys the fulleft triumph of his fuperiority.

> Felix qui potuit refum cognof cere caufas, Alque metus omnes et inevitabile fulinen Subjecit pedibus.

But though this grand phenomenon has long engaged the curious attention of philofophers, it is but very lately that they have been able to explain it ; that is, to point out the more general law of nature of which it is a particular inftance. Inflammable vapours had long furnifhed them with a fort of explanation. The difcovery of gunpowder, and fill more that of inflammable air, gave fome probability to the exittence of extenfive Atrata of inflanmable vapours in the upper regions of the atmofplere, which, heing fet on fire at one end, might burn away in rapid fucceffion, like a train of gunpowder. But the fmalleft inveftigation would fhew fuch a diffimilarity in the phenomena, and in the general effects, that this explanation can have no value in the eyes of a true naturalit. Horrid explofion, and a blaft which would fweep every thing from the furface of the earti, muft be the effects of fuch inflammation. The very linited and capricious nature of the ravages made by thunder, render them altogether unlike explofions of elaflic fuids.

No fuoner were the wonderful effects of the charged ${ }^{2}{ }^{2}$, electrical phial obferved, than naturalifts began to think refembles of this as exhibiting fome refemblance to a thunder- the clectr ftroke (fee Electricivy, Encycl. no 12.); but it was cal fhock not till toward the year 1750 that this refemblance was viewed in a proper light by the celebrated Franklin. In a differtation written that year, he delivers his opinion at large, and notices particularly the following circumfances of fimilarity.

T H U

1. The colour and crouked form of lightening, perfeetly fimilar to that of a vivid electrical fpak $^{\text {petween }}$ ditant bodies, and unlike every other appearance of light. This ancylular, defultory, capricious form of an electrical fpark, and of forked lightuing, is very fingular. No two fucceflive fparks have the fame form. Their fharp angles are unlike every appearance of motion through unrffifing air. Such mutions are always curvilineal. The fpark is like the fimultaneous exiftence of the light in all its parts: and the fact is, that no perfon can pofitively fay in which direction it moves.
2. Lightning, like electricity, always frikes the molt advanced objects-hills, trees, tteeples.
3. Lightning affects to take the beft conductors of electricity. Bell wires are very frequently deftroyed by it. At Leven houfe in Fifefhire, in 1733, it ran along a gilded moulding from one end of the houfe to the other, exploding it all the way, as alfo the tinfoil on the backs of feveral mirrors, and the gilding of fereens and leather hangings.
4. It burns, explodes, and deftroys the fe conductors precifely as electricity does. It diffolves metals; melts wires; it explodes and tears to pieces bodies which contain moitture. When a perfon is killed by light. ning, his fhoes are commonly burtt. When it falls on a wet furface, it fpreads along it. The Royal Villiam, in Louifourgh harbour, in 1758 , received a thunderftroke, which diffipated the maintop-gallant maft in dult, and came down on the wet decks in one \{park, which fpread over the whole deck as a fpout of water would have done. This is quite according to electrical laws.
5. It has fometimes ftruck a perfon blind. Electricity has done the fame to a chicken which it did not kill.
6. It affects the wervous fyftem in a way refembling fome of the known effects of electricity. The follow. ing is a moft remarkable inftance: - Camphell, Efq. of Succoth, in Dunbartonthire, had beco blind for feveral years. The diforder was a gutta ferena. He was led one evening along the fleets of Clafgow by his rervant Alcxander Dick, during a terrible thunder ftorm. 'the lightning fometimes fluttered along the ftreets for a quarter of a minute without ceafing. While this fluttering lafted, Mr Campbell faw the itreet diftinctly, and the changes which had been made in that part by taking down one of the city gates. When the form was over, his entire blindnefs returned.- We have from a friend another inftance, no lefs remarkable. One evening in autumn he was fitting with a gentleman who had the fame diforder, and he obferved feveral lambent flafhes of lightning. Their faces were turned to the parlour window; and immediately after a flafh, the gentleman faid to his wife "Go, my dear, make them flut the white gate ; it is open, you fee." The lady did fo, and returned; and, after a little, faid, "But how did you know that the gate was open?" He exclaimed, "My Gud! I faw it open, and two men look in, and go away again," (which our friend alfo lad obferved). The gentleman, on being clofe queftioned, could not recolleet having had another glance, nor why it had not furprifed him; but of the glimpfe itfelf he was certain, and defcribed the-appearance very exactly.
7. Lightning kills; and the appearances perfectly re.
femble thofe of a mortal ftroke of electricity. The Thunder. mufcles are all in a fate of perfect relaxation, even in thofe fituations where it is ufually otherwife.
8. Lightning is well known to deftroy and to change the polarity of the mariner's needle.

Dr Franklin was not contented with the bare obler- Dr Frankvation of thefe important refemblances. He availed lin difcohimfelf of many curious difcoveries which he had made vered that of electrical laws. In particular, having obferved that it was the electrieity was drawn off at a great diftance, and without the leaft violence of action, by a tharp metallic point, he propofed to plilofophers to erect a tall maft or pole on the higheft part of a building, and to furnith the top of it with a fine metalline point, properly infulated, with a wire leading to an infulated apparatus for exlibiting the common electrical appearances. To the whole of this contrivance he gave the name of thunderrod, which it ftill retains. He had not a proper opportunity of doing this himfelf at the time of writing his differtation in a letter from Philadelphia to the Royal Society of London; but the contents were fo fcientific, and fo interefting, that in a few weeks time they were known over all Europe. His directions were followed in many places. In particular, the French academicians, encouraged by the prefence of their monarel, and the great fatisfaction which he expreffed at the repetition of Dr Franklin's moit inftructive experiments, which difcovered and eftablifhed the theory of pofitive and negative electricity, as it is ftill received, were eager to execute his orders, making his grand experiment, which promifed fo fairly to bring this tremendous operation of nature not only within the pale of fcience, but within the management of human power.

But, in the mean time, Dr Franklin, impatient of delay, and perhaps incited by the honourable defire of well-deferved fame, put his own \{cheme in practice. His inventive mind fuggefted to him a mof ingenious method of prefenting a point to a thunder eloud at a very great diftance from the ground. This was by fixing his point on the head of a paper kite, which the wind thould raife to the clouds, while the wet Atring that beld it fhould ferve for a conductor of the electricity. We prefume that it was with a palpitating heart that Dr Franklin, unknown to the neighbours, and accompanied only by his fon, went into the fields, and fent up his meflenger that was to-bring him fuch news from the heavens. He told a perfon, who repeated it in the hearing of the prefent writer, that when he faw the fibres of the cord raife themfelves up like hoge brifles, he uttered a deef figh, and would have wifhed that moment of joy to have been his laft. He obtained but a few faint fparks from his apparatus that day; but returned to his houfe in a fate of perfect happinefs, now feeling that his name was never to die. Thus did the foap-bubble, and the paper-kite, from being the playthings of children, hecome, in the hands of Newton and of Franklin, the means of acquiring immortal honour, and of doing the moft important fervice to fociety.

We may juftly confider this as one of the greatelt of philofophical difcoveries, and as doing the higheft honour to the inventor; for it was not a fuggeftion from an accidental obfervation, but arofe from a fcientific comparifon of facts, and a fagacious application of the doftrine of pofitive and negative eledtricity ; a doctrine wholly

Thunder. wholly Dr Franklin's, and the refult of the moft acute and diferiminating obfervation. It was this alone that fuggefted the whole; and by explaining to his fatisfaction the curious property of flarp points, gave him the courage to handle the thunderbolt of Jove.

It is then a point fully afeertained, that thunder and lightning are the electric fnap and fpark, as much fu. perior to our puny imitations as we can conceive from the immenfe extent of the infruments in the hands of Nature. If, fays Dr Franklin, a conductor one foot thick and five feet long will produce fuch fuaps as agitate the whole human frame, what may we not expect from a furface of 10,000 acres of electrified elonds? How loud mult be the explufion? how terible the effects ?

This difcovery immediately directed the attention of

Electrical flate of the atmofphere philofophers to the flate of the atmofphere with refpect to electricity ; and in this alfo Dr Franklin led the way. He inmediately erected his thunder rods; and they have been imitated all over the world, with many alterations or improvemeuts, according to the different views and kkill of their authors. It is needlefs to infirt here on their conftruction. They have been defcribed in the article Electricity, Encycl.; and any perfon well acquainted with its theory, as laid down in the Supplementary article Electricity, will be at no lufs to accommodate his own conitruction to his fituation and purpofes.

Dr Franklin took the lead, as we have already obferved, in this examination of the electrical fate of the atmofphere. He feldom found it without' giving figns of electricity, and this was generally negative. See Phil. Tranf. Vol. XLVIII. p. 358 and 785.

Mr Canton repeated thofe experiments, and found the fame refults; both, however, found that the electricity would frequently change from pofitive to negative, and from negative to pofitive, in very fhort fpaces of time, as different portions of clouds or air paffed the thunder rod.
5 5 to We muft here remark, that our acquaintance with be obferved the laws of electricity fufficiently informs us, that the in this exa- electricity of our thunder-rod may frequently be of a mination by a thuo der rod.
different kind from that of the cloud which excites the appearances at our apparatus. We know that air, like glafs, is a non-conductor; and that when it is brought into any ftate of clectricity, either by communication, or by mere induction, it will remain in that fate for fome time, and that it always changes its electricity per fratum. A pofitive cloud, in the higher regions of the atmofphere, will render the air immediately below it negative, and a fratum below that pofitive. If the thunder rod be in this politive ftratum, it will exhibit pofitive electricity ; but if the cloud be confiderably nearer, the rod, by being in the aojoining negative fratum, may fhew a negative electricity, which will exceed the pofitive electricity which the diftant pofitive clond would have induced on its lower end by mere polition, liad the intervening air been away. This excefs of negative electricity muft depend on the degree in which the furrounding ftratum of air has heen rendered negative. If this has been the almoft inftantaneous effect of the pre: fence of the pofitive cloud, it cannot be rendered fo negative as to produce negative electricity in the lower end of the thunder-rod. But if the fratum of air has
for fome confiderable time accompanied the pofitive T unde cloud, its negative electricity has been increafing, and fome would remain, even if the clond were removed. We muft, at all times, confider the thunder rod as af. feeted by all the electricity in its neighbourthood. The diftant pofitive cloud would at any rate render the lower end of the rod pofitive, without communication, by merely difplacing the electricity in the rod itfelf, juft as the north pole of a loadfone would make the remote end of a foft iron rod a north pole. In like manner, the negative flratum of air inmediately adjoining to the pofitive cloud would make the lower end of the cod negative, without communication. A pofitive fratum of air below this would have the contrary effect. The appearances, then, at the end of the rod, mult be the relult of the prevalence of one of thefe above the others; and many intervening circumftances mult be underfood, before we can infer with certainty the flate of a cloud from the appearances at the lower end of the apparatus. It would, therefore, be a moft inftructive addition to a thunder rod to have an electrofcope at both ends. If they fnew the fame kind of electricity, we may be affurcd that it is by communication, and is the fame with that of the furrounding itratum of air : But if they Thew oppofite electricities (which is generally the cafe), then we learn that it is by pofition or induction. We recommend this to the careful attention of the philofopher.

In this way we perfectly explain an appearance which puzzled both of the above-mentioned obfervers. When a fingle low cloud approached the rod, the eleetrofcope would fhew politive electricity, but negative when the clond was in the zenith, and pofitive again when it had palfed by. We alfo learn from this the caufe of Dr Franklin's difappointment in his expefations of sery remarkable phenomena by means of his kite. He imagined that it would be vaftly fuperior to the apparatus which he had recommended to the philofophers of E11rope. But the ftring of the kite, traverfing feveral firata in different fates of electrieity, ferved as a conductor between them, and be could only obtain the fuperplus; which might be nothing, even when the clouds were Arongly electriticd.
The moft copious and curious obfervations on the electrical flate of the at moffhere are thofe by Profeflor Beccaria of Turin. He had comnected the tops of feveral fteeples of the city by infulated wires. He did the fame thing at a monaftery on a high hill in the neigh. bourhood. Each of thefe collected the electricity of a feparate flratum of confiderahle extent. He frequently found thefe two ftrata in oppofite flates of flrong electricity.
The following general obfervations are made out Bectaria's from a comparifon of a valt varicty of more particulargeneral ones made in different places :

1. The air is almoft always electrical, efpecially in woffheric the day time and dry weather; and the electricity is generally pofitive. It does not become negative, unlefs by winds from places where it rains, finows, or is foggy.
2. The moifture of the air is the conftant conductor of its eleerricity in clear weather.
3. When dark or wet weather clears up, the elearicity is always negative. If it has been very moift, and dries very faft, the electricity is very intenfe, and dimi-

Chindet nifhes when the air attains its greateft drynefs; and may continue long Aationary, by a fupply of air in a drying fate from diftant places,
4. If, while the lis overcafts in the zenith, only a high cloud is formed, without any fecondary clouds un. der it, and if this cloud is not the extenfion of another which rains in fome remote place, the eloctricity (if an) $)$ is alurays pofitive.
5. If the clonds, while gathering, are \$haped like locks of wool, and are in a ftate of motion amung each other: or if the general cloud is forming far aloft, and Atretclies down like defcending tmoke, a frequent pulitive electricity prevails, more intenfe as the changes in the atmofphere are quicker; and its intenfity prediets the great quantity of fnow or rain which is to follow.
6. When an extenfive, thin, level cloud forms, and darkens the Riy, we have ftrong politive electricity.
7. Low thick fogs, rifing into dry air, carry up fo much electricity as to produce fparks at the apparatus. If the fog continues round the apparatus without riding, the electricity fails
8. When, in clear weather, a cloud paffes over the apparatus, low and tardy in its progrefs, and far from any other, the pofitive electricity gradually diminifhes, and returns when the cloud has gone over.
9. When many white clouds gather over head, continually uniting with and parting from each other, and thus form a body of great extent, the pofitive electricity increafes.
10. In the morning, when the hygrometer indicates drynefs equal to that of the preceding day, politive e. lectricity obtains, even before funrife.
11. As the fun gets up, this electricity increafes; more remarkably if the drynefs increafes. It diminifhes in the evening.
12. The mid.day electricity, of days equally dry, is proportional to the heat.
13. Winds alivays leffen the electricity of a clear day, efpecially if damp: therefore they do not electrify the air by friction on folid bodies.
14. In cold feafons, with a clear Ky and little wind, a contiderable electricity arifes after funfet, at dew fall. ing.

The fame happens in temperate and warm weather.
If, in the fame circumftances, the general drynefs of the air is lefs, the electricity is alfo lefs.
15. The electricity of dew, like that of rain, depends on its quantity. This electricity of dew may be imtitated by electrifying the air of a clofe room (not too dry), and filling a bottle with very cold water, and fetting it in the upper part of the room. As the damp condenfes on its fides, an electrometer will fhew very vivid electricity.

Such a collection of obfervations, to be fit for inference, requires very nice difcrimination. It is frequently difficult to difcover electricity in damp air, though it is then generally ftrongeft; tecaufe the infutation of the apparatus is hurt by the dampnefs. To make the obfervation with accuracy, requires a portable apparatus, whofe infulation can be made good at all times. With fuch apparatus we flall never mifs obferving eleftricity in fogs, or during fuow.

There is a very curious phenomenon, which may be frequently obferved in Edinburgh, and no doubt in other towns fimilarly fituated. In a clear day of the Suppl. Vol. II. Part IL.
month of May, an eafterly wind frequently brings a Thunder. for with it, which advances from the fea in a denfe body; and when it comes up the High fereet, it chills the body exceedingly, while it does not greatly affect the thermometer. Immediately before its gaining the ftrect, one feels like a tickling on the face, as if a conweb hat fallen on it, and naturally puts up his hand, and rubs the face. We have never found this to fail, and have often been amufed with feeing every perfon rubbing his face in his turn. The writer of this artice has obferved the fame thing at St Peterflourgh, in a funmer's evaning when a low fog came on about ten o'clock.

The general appearances of a thunder ftorm are nearIf as follows :

For the moft part the wind is gentle, or it is calm. A Phenomelow denfe clond hegins in a place previoutly clear: this thander increafes faft in fize; but this is only upwards, and in air iturm. arched form, like great bags of cotton. The lower furface of the cluod is commonly devel, as if it refted on a ghafs plave.

Sonn after appear numberlefs fmall ragged clone!s, like flakes of cottun teazled nut. Thefe are moving about in various uncertain directions, and continually changing their ragged fhape. This change, however, is generally by augmentation. Whaterer occafions the precipitation of the diffolved water feems to gain ground. As thefe clouds move about, they approach each other, and then flretch out their ragged arms toward each other. This is not by an augmentation, but by a real bending of thefe tatters towards the other cloud They feldom come into contact; but after coming rive near in forne parts, they as plainly recede, either in whole, or by bending their arms away from each other.

But during this confufed motion, the whole mafs of fmall clonds approaches the great one above it ; and when near it, the clouds of the lower mafs frequently conlefice with each other before they finally coalefce with the upper cloud: But as frequently the upper cloud increafes without them. Its lower furface, from being level and fmooth, now becomes ragged, and its tatters itretch down towards the others, and long arms are extended towards the ground. The heavens now darken apace, the whole mafs links down; and arifes, and frequently mifts in fqualls; fmall clouds are now moving fwiftly in various directions; lightning now darts frum cloud to cloud. A fpark is fometimes feen co-exiftent through a valt horizontal extent, of a crooked flape, and of different brilliancy in its different parts. Lightning ftrikes between the clouds and the earth-frequently in two places at once. A continuation of thefe fnaps rarifies the cloud ; and in time it diffipates. This is accompanied by heavy rain or hail; and then the upper part of the clouds is high and thin.

During this progrefs of the ftorm, the thunder rod is ftrongly electrified; chiefly when the principal choud is over head. The ftate of the electricity frequently changes from pofitive to negative-almuft every flafi, however diftant, occafions a fudden Atart of the electrofcope, and then a change of the electricity. When the cloud is more uniform, the electricity is fo too.

The queftion now is, In what manner does the air sources of acquire this elcetricity? How come its different parts armefpheto be in different Itates, and to retain this difference for ric electria length of time? and how is the elcetric equilibrium
reftored

Thander. reflored with that rapidity, and that extent, that we obferve in a thunder form? For we know that air is a very imperfect conductor, and tranfmits electricity to fmall diftances only, and very fowly. We fall mention feveral circumf ances, which are known facts in eleetricity, a:d munt frequently concur, at leant, with the other caufes of this grand phencmenom.

Air is rendered electrical in a great variety of ways.

1. All operations which excite electricity in other bodits have the fame effect on air. It is electrified by friction. When blown on any body, fuch as glafe, isc. that body exhibits eketricity by a fenfible elcatrofeope. We thereforc conclude that the air has acquired the oppolite electricity from this rubber. A glafs veffel, exhautted of air, and broken ia the dirk, gives a loud crack, and a very fenfible flah of light. A: air-gun, difcharged (without a ball) in the dark, does the fame. Dluwirg on an electric with a pair of bellows never fails to excite it. in flort, the facts to this puipofe are numberlefs.
2. Electricity is produced by a number of chemical operations, which are contimally going on. The melting and freezing of electric bodies in contaat with each ot her, fuch as chocolate in its moulds, wax-candles in their moulds, fealing wax, \&c. Nay, it is highly probable that anv body, in pafling from its fluid to its folid form, or the contrary, is electrical. This is the cafe when a folution of Glayber's falt, or of nitre, in water, is made to cryitallize all at once by agitation.

The folution of bodies in their menffrua is, in like manner, productive of electricity in many cafes. Thus iron or chalk, while diffolving in the fulphuric acid, produce negative electricity in the mixture, and pofitive in the electric vapours which arife from them.

A mot copions fource of electricity is the converfion of water into claftic fleam by violent heats. When this is done in a proper apparatus, the electricity of the liquid is negative, and the vapour is pofitive. But if this be accompanied hy a decompolition of the water, the liquid is fometimes ftrongly negative. Thus, when water eqaporates fudcenly fron a red hot filver cup, the cup is Atrongly negative; but if from clean red llot iron, fo that the iron is calcined, and inflammable air produeed, the iron is pofitive. If the decompofition of the water is fuficiently copions to do more than conpenfate for the negative electricity produced by the nere expanfion of the water inton fteam, the electricity is pofitive; but not othervife. Water expanded from a piece of red hot conal always gives negative ellectricity, and this frequently very trong. Thefe experinuents fould always be made in reetalline veffels. If made in glafs venels, the glafs takes a charge, which expends the produced electricity, and renaius neary neutral, fo that the production of cletricity is not obferved. Thefe facts are to he found among many experiments of Mr Sanfure. But there is liere a very wide fich of new inquiry, which cannot fail of being very inflructive, and particularly in the prefent queftion. We fee fome of the effects very dillinctly in feveral phenomena of thunder and lightaing. Thus, the great eruptions of Etna and Vefuvius are always accompanied by forked lightnings, which are feen darting among the volumes of emitted fmoke and fleam. Here is a very copious converfion of water into elaltic fleam; and here alio it is moft reafonable to expect a copious decompofition of
water, by the iron and coally matters, which are ex. Tlunicr. pofed to the joint action of fire and water. Thefe two electricities will be oppofite; or when not oppofite, will not be equal : in either of which eafes, we have vaft mafies of feam in flates fit for flafing into each other.

A fact more to our purpofe is, that if a filk or linen cloth, of a downy texture, be inviltened or damped, and hung before a clea- ire to dry, the fibres britte up, and on bringing the finger, or a metal knob, near them, they are plainly attracted by it. We found them negatively clectric. This hews that the finple folution of water in air produces electricity. And this is the chief operation in Nature connected with the fate of the atmofphere. It is thus that the watery vapunrs from all bedlies, and particularly the copious esfudation of plants, difappear in our atmof here. There can be no doubt hut that the oppofite eleftricity will he produced by the precipitation of this rapour ; that is, by the formation of clouds in clear air. When damp, but clear air in one velfel expands into an aujoining veffel, from which the air has been exhautled, a choud appears in both, and a delicate electrometer is affiected in both veffels; but our apparatus was not fitted for afcertaining the kind of electricity produced. Here then is another unexplored field of experineent. We goz two veffels made, having diaphragms of thin filk. Thefe were damped, and fet into two tubs of water, of wery different temperatures. Diy air was then blown thro' them, and came from their fpouts faturated with water. The fpouts were turned toward each other. Being of very different temperatures, the ftreams produced a cloud upon mixing together, and a flrong negative electricity was produced. We even found that an electrometer, placed in a veffel filled with condenfed air, was affected when this air was allowed to rufh out by a large hole.

Lafly, we know that the tourmaline, and many of the columar cryflals, are rendered electrical by merely heating and cooling. Nay, Mr Canton found that dry air became negative by heating, and pofitive by cooling, even when it was not permitted to expand or contract.
When water is precipitated, and forms a cloud, it is reafonatle to expect that it will have the clectricity of the air from which it is precipitated. This may be various, but in general negative : For the heat by which the air was enabled to diffolve the water made it negative; and much more the friction on the furface of the earth. But as heat cauled it to diffolve the water, cold will make it precipitate it ; and we fhould therefore expect that the air will be in the flate in which it was when it took up the water. But if it be cooled fo faft as to precipitate it ia the form of rain, or fnow, or hail, we may expect pofitive electricity. Accordingly, in fummer, hail thowers always fhew frong pofitive electricity ; fo does fnow uhen falling dry.

Here, then, are copious fources of atmofpheric electricity. The mere expanfion and condenfation of the air, and fill more the folution and precipitation of watery vapours in it, are perhaps fufficient to account for all the inequality of electric flate that we obferve in the atmofphere.

The mafes of air thus differently conftituted are evidently difpofed in ftrata. The clouds are feen to be fo. Thefe clouds are not the firata, but the boundaries of
frata ;

Thunder. Arata; which, from the very nature of things, are in different tates with refpect to the fufception or precipitation of water. When two fuch ftrata are thus ad. joining, they will flowly act on each other's tempera. ture, and by mixing will form a thin Itratum of clond along their mutual contines. If the oue flratum has any motion relative to the other, and be in the fmalleft degree difturhed, they will mix to a gieater depth in each; and this mixture will not be perfectly uniform. The extreme mubility of air will greatly iacreafe this jumble of the adjoining parts of the two ftrata, and will give the cloud a greater thicknefs. If the jumble has been very great, fo as to pufh one of thein through the other, we fhall have great towering clouds, perhaps pervading the whole thicknefs of the tratum of air. We take thefe clouds to be like great foggy bladders, fuperficially opaque where they have come into contact with the furrounding ftratum of air, but tranfparent within.

When the wind, or ftratum in motion, docs not pufh all the quiefcent air before it, it generally gets over it, and then flows allong its upper fide, and, by a partial mixing, produces a fleecy cloud, as already deferibed. We may obferve here, by the way, that the motion of thofe fleecy clouds is by no ineans a jut indication of the motion of the fratum ; it is nearly the motion compofed of the half of the motions of the two.
10 fra. This is in all probability the ftate of the atmofphere,
thick, feparated from each other by thin fleeces of clouds, which have been produced by the mixture of the two adjoining frata. This is no fancy; for we actually fee the fiy feparated by ftrata of clouds at a great diftance from each other. And we fee that thefe ftrata maintain their fituations, without farther adinixture, for a long time, the bounding clouds continuing all the while to move in different directions. In the year 1759, during the fiege of Quebec, a hard gale blew one day from the weftward, which made it almont impracticable to fend a number of provifion boats to our troops flationed ahove the town. "While the men were tugging hard at the oars againft the wind, and hardly advancing, thourh the tide of flood favoured them, the French threw fone bombs to deflroy the boats. One of thefe burft in the air, near the top of its flight, which was about a quarter of a mile high. 'lhe round ball of fmoke produced by the explotion remained in the fame fpot for above feven minutes, and difappeared by gradual diffufion. The lower air was moving to the eaftward at leaft 30 feet per fecond.

In $17^{8} 3$, when a great fleet rendezvoufed in Leith Roads, the thips were detained by an eatterly wind, which had blown for fix weeks without intermiffion. The fky was rgenerally clear; fometimes there was a thin fleece of clouds at a great height, movingr much more flowly in the fame direction with the wind below. During the laft eight days, the upper current was from the weft ward, as appeared by the motion of the upper clouds. High towering clouds came down the river, with a little rain; the ftrata were jumbled, and the whole atmo. sphere grew hazy and uniform; then came thuader, and heavy rain, and the wind below flifted to the weftward.

Thus it is fufficiently evinced, that the atmofphere frequently confifts of fuch trata, well diltinguifhed from
each other : their appearance and progrefs leave us no Thunder. room to doubt but that they come firom different quarters, and had been taken up or formed at different places, and in different circumitances, and therefore dif. fering in refpect of their electrical thates.

The confequence of their continuing long together The clecwould be a gradual but flow progrefs of their electri- crectuaito city to a fate of equilibrium. The air is perhaps never refom is in a perfectly dry tate, and its moillure will caule the very flow. electricity to diffufe itfelf gradually. It is not beyond ly in gethe power of our mathematics to afeertain the progrefs meral. of this approximation to the electric equilibrium. IVe fee fomething very like it in the curious experiments of Beccaria with mirror plates laid together, and charged by means of a coating on tice outer plates. Thefe plates were found to conlift of alternate ftrata of pofstive and negative electricity. which gradually penetrated through the plates, and coalefeed till they were reduced to two ftrata ; perhaps in time the electricity would have difappeared entirely by thefe two alfo coalefcing. In the fame manner there would be a flow transfulion of fenfible electricity through thefe ilrata without any fenfible appearances. If any collaicral canfes fhould make a part more damp than the rett, there would be a more brifk transference through it, accompanied with faint flafhes of lambent lightning.

But thunder requires a rapid communication, and a A rapid reftoration of electric equilibrium in arr inttant, and to an $\}$ extena valt extent. The means for this are at hand, furnifh- five reftoed by Nature. The ftrata of charged air are furnifhed thunder with a coating of cloud. The lower ftratum is coated clap. on the underfinle by the earth.

When a jumble is made in any of the ftrata, a preci- Manmer in pitation of vapour mult generally follow. Thus a con- whith this duetor is brought between the elcetrical coatings. This is effected will quickly enlarge, as we fee that in our litile imita-ing of tions the knobs of our conductors inftantanenufly ar-cloud. range any particles of dult which chance to lic in the way, in fuch a manner as to complete the line of conduct, and occafton a fpark to 0y to a much greater diftance than it would have leaped if no duft liad been interpofed. We have often procurcd a difchange between two knobs which were too far afunder, by merely breathing the damp air between them. In this manner the interpofed cloud immeciately attrakts other clouds, grows ragged by the paffage of electricity through clear air, where it caufes a precipitation by altering the natural equilibrium of its electricity; for a certain quantity of eleetricity may be neceffary for air's holding a certain quantity of vapour. Accordingly we fee in a thunder thom that fmall clouds continualiy and fisudenly form in parts formerly clear. Whatever cauies thander does in fact promote this precipitation.

Thefe clouds have the electricity of the firrounding air, and mult communicate it to others in an oppodite fate, and within reach. They mult approach them, and mult afterwards recede from them, or from any that are in the fame flate of electicity with themfelves. Hence their ragged forms, and the limilar form of the under furface of the great cloud; hence their continual and capricious fiifting from place to place: they are carriers, which give and take between the other clonds. and they may become ftepping funes for the general difclarge.

If a fmall cloud form a communication with the $4 \mathrm{~S}_{2}$ grourd.

T H U

Thunter. $\underbrace{-}$ ground, and the great cloud be pofitive or negative, we mult hove a complete difcharge, and all the electrical phenomena, with great violence; for this coating of vapour is abundantly complete for the purpofe. It confifts of fmall veficles, which are fufficieutly near each wher for difcharging the whole air that is in their interfices. A phial coated with amalgam is by no means fully coated. If we hold it between the eye and the light, we mall fee that it is only covered with a number of detached points of amalgam, which Looks like a cobweb. Yet this glafs is almolt completely difcharged by a fingle fpark, the refiduum being hardly perceptible.

The general feene of thunder is the heavens; and it is by no means a frequent cafe that a difcharge is made into the earth. The air intervening between the earth and the loweft coating is commonly very much confufed in confequence of the hills and dales, which, by altering the currents of the winds, tofs up the inferior parts, and mix them with thofe above. This generally keeps the earth pretty much in the fame electrical flate as the loweft Atratum of clouds.

Nor are the great thunder florms in general inftances of the reftoration of equilibrium bet ween t wo ftrata immediat ely incumbent on each other. They feem, for the molt part, to be ftrokes between two parcels of air which are horizontally diftant. This, however, we do not affirm with great confidence. Our chief reafon for thinking fo is, that in thefe great ftorms the fpark or flaft of forked lightning is directed horizontally, and fometimes is feen at once through an extent of feveral miles.

The nature of this fuark has not, we think, been properly confidered. It is fimply compared to a long electrical fpark, which we conceive to be drawn thro' pure air, and is confidered as marking the aetual transference of electricity from one end to the other. But this we doubt very much. We are certain of having obferved fhafts of lightning at one and the fame inftant Atretching horizontally, though with many capricious zigzags and lateral fputterings, at leaft five miles. We cannot conceive this to have been the ftriking ditance, becaufe the greatef vertical diftance of the ftrata is not the half of this. We rather think that it is a fimultaneous range of difcharges, cach accompanied with light, differently bright, according to the electrical capacity of the cloud into which it is made; and if there is a real transference of electric matter on this uccafion (which we do not affirm), it is ouly of a fmall quantity from one cloud to the next adjoining. This we think confirmed by the found of thander. It is not a fnap, incomparably londer than our kudeft fnap from coated glafs; but a long continued, rumbling, and very unaquable noife. There is no doubt but that this fnap was almont fimultaneous through the whole extent of the fpark; bat its different parts are conveyed to our ear in time, and are therefore heard by us in fueceffion; and it is not an uniform roar, but a rumbling noife, unequally loud, according as the different parts of the frap are indeed differently lond. We hould hear a noife of the fame kind if we flood at one end of a long line of fuldiers, who difcharged their mukets (differently loaded) in the fame inftant. When any part of the fparis is very near us, and is not very diffufe, the fnap begins with great fmartnefs, and continues for fome time, not unlike the violent tearing of a piece of flong filk; after which it becomes more and more mel-
low as it comes from a greater diftance. We do not, however, affirm, that the whole extenfive fpark and fnap are co-exiftent or fimultancous. The cloud is, in all probability, but an indifferent conductor, and even a fenfible time may elapfe during the propagation of the fpark to a great diftance. Beccaria obterved this in a linc of 250 feet of chain, lying loofely on the ground, and confifting of near 6000 links. He thought that it employed a full fecond; but when the chain was gently ftretched, the communication feemed inftantaneous.

17
We cannot help thinking that even the electrical Ohferva. fnap between two metal knobs is of the fame kind. tions on the Not a quantity of luminous matter which iffues from electric the one and goes to the other, but a light that is excited or produced in different material interjacent particles of air or other interpofed matter. The angular and fputtering form is qnite incompatible with the motion of a fimple duninous poiut. Nay, our chemical knowledge here comes in aid, and obliges us to feeculate about the manner in which this light is produced. Whence dues it come? It may he produced by two knobs of icc. We know that water confits of vital and inflammable air, which have already emitted the light which made an ingredient of their compofition. The fpark therefure does not come from the ice. Is it then from the air? If fo, perhaps water is produced, or rather fomething elfe, for there is not always inflammable air at hand to compofe water. Yet the transference of electricity has decompofed the air, or has robbed it of part of its light. The remainder may not be water; but it is no longer air. Is not this confirmed by the peculiar fmell wbich always accompanies electric fparks? and the peculiar taite, not unlike the tafte felt on the tongue when it is touched by the rinc in the experiments on Galvanism? Even the fine pencil of light which flows from a point pofitively electrified, appears through a magnifying glafs to confift, not of luminous lines, but of lines of luminous points. And thefe points are of difierent brilliancy and different colour, both of which are inceflantly changing. And be it farther obferved, that thefe lines are curves, diverging from each other, and eonvex to the axis. This circumftance indicates a mutual repulfion, asifing, in all probability, from the expanfion of the air. And, laftly, no fark nor light of any kind can be obtained in a fpace perfectly void of air.

All thefe circumftances concur in explaining the nature of the finaft of forked lightning. It is a feries of appearances excited in the intervening medium, and which produces fome chemical change in it. 'Thunder, when it ftrikes a houfe, always leaves a peculiar fmell. Inflammable air has alfo a peculiar and very difagree. able fmell. The fmell produced by electricity greatly refembles the fmell prodnced by Itriking 1 wo pieces of quartz together.

Mr Deluc fuppofes that the electrical fpark, as it is 18 exhibited in thunder, is always accompanied by the de-tion of compofition of air now fo familiarly known, and that thunder not this is the origin of the deluge of rain whicb commonly probable. finifhes the form. But this is not in the fmalleft degree probable. The decompofition extends furely no farther than where the light is feparated; and we fhould no more expect a deluge of rain, even if we had inflammable air ready at band, than we expect drops of water in our electrical experiments. Something different from

T H U

water follows this decompolition, tutal or partial, of the vital air; and the water which we do obferve to accompany thunder, is no more than what we fhould expect from the copious precipitation of water in a cloudy form. Mr Sauflure's obfervations affure us, that the particles of a cloud are veficks. Indeed no perfon who has looked narrowly at a fog, or has obferved how large the particles are of the cloud which forms in a receiver when we fuddenly diminith the denfity of the air, and who oblerves how flowly thefe particke defcend, can doubt of their being hollow veficles. We cannot perlaps explain their formation; but there they are. We can hardly conceive them receiving the comnotion which accompanied the finap without cullapfing by the agitation. Perhaps the very cefation of their electricity may produce this effect. 'They will therefore no longer flicat in the air, but fall, and unite, and come to the ground in rain. We may expect this rain to be copious, for it is the produce of two Atriuta of clonds. It greatly contributes to the putting an end to the florm, by pafing through the Atrata, and helping to reftore the equilibrium.
One may at firft expect that a fingle clap of thunder will refture the equilibrium of any extent of clouds, and we require an explanation of their frequent repetition before this is accomplifhed. This is nut difficult, and the fact is a confirmation of the aloove theory, which is confiderably different from the generally received notions of the fubject. We confider the fratum of clear air as the charged electric; pofitive on one fide, and negative on the other, and coated with conducting cluads. When the difcharge is made, the flate of elcctricity is indeed changed through the whole fratum, but the equilibrium is by no means completed. The Atratum is perhaps a quarter of a mite in thicknefs. The difcharge does not immediately affect all this; but dors it fuperticially, leaving the re it unbalanced. It is like the refiduum which is left in a Leyden phial when the difeharge has been made by means of a fpark drawn at a ditance. It is Atill more like the refiduum of the dif. charge of a Leyden phial that is coated only in patches on one fide. Each of thefe patches difcharge what is inmediately under it and round it to a certain finall diftance, but leaves a part beyond this Itill charged. This redundant electricity gradually diffufer itfelf into the fpaces juft now difcharged; and, after fome confiderable time has elapfed, another difcharge nay be made. In like manner, the electricity remaining in the interior of the ftratuna diffufes itfelf, comes within the action of the coating, and may be again difcharged by a clap of thunder. We have a ftill better parallel to this in Beccaria's experiments with two or more plates of glafs luid together. After the firft difcharge, the internal furfaces will exhithit certain eleciricity. Lay the plates together, and, afier fome time, the electricity of the inner furfaces will be different, and another difcharge may be obtained.

Magnetifm affords the beft illuftration of this. If a maguet be brought near a piece of foft iron, lying below a paper on which iron filings are lightly frewed, it will inftantly induce a north pole on one end and a fouth pole on the other; and this will be diflinctly obferved by the way in which thefe filings will arrange themfelves. But if, inftead of foft iron, we place a bar of hard tempered fteel, the fouth pole will be but a
finall matter removed from the noth pule; but by con- Thusier. thaning the magner long in the fame place, the diftribution of maghetifm in the piece of hard fteel will gradually advance atong the bar, and after a long time the neutral point will be almon in the middle of the bar, and the fouth pole will be at the farther end. Sec Magnetism, in this Suppl.

20
We faid that the clouls were the ufual fcenes of the Moft thunviolent electrie phenomena. We imagine that the great- der frokes eff part of the thunder lirokes which have been felt turnina have been of the kiud which Lord Mahon, no:v Lord strokes. Stanhope, calls the returuing flroke. If two clouds A and B are incumbent over the plain a and l; and if $A+-B$ A be pofitive and B negative, the carth will be maintained in a negative flate at a, and a pofitive fate at $b . \overline{a-}+b$ If the difcharge be now nade between the clonds \mathbf{A} and B, the electricity muft inftantly rufh up through a conductor at a, and down thuugh one at b, and each place will have a flroke. The fare thing will happen if the negative cloud B is abuve the pofitive clond A, but not in fo great a degree; for the negative electricity at a will now be much lefs than in the other cale, becaufe it is induced only by the prevalence of the pofitive cloud \mathbf{A} over the more remote reyative cloud B .
This returning flroke explains, much better than we can by any direet ftroke, the capricious effects of thunder. A perfon at Vienna received a terrible fhock by having his hand on a thunder-rod during a violent explofion which he faw above three miles diftant. Sparks are obferved at thunder:rods at every the moft diftart flafh of lightning.
Beccaria has a different theory of thunder. He innagimes that the different parts of the earth are in different flates of electricity, and that the clouds are the hunder reftoring conductors. Put this does uoz accord with what we know of electricity. The earth is fo good a conductor, that Dr Watfon could not obferve any time loft in conmunicating the eleetricity to the diltance of more than four miles. It is very true, that the earth is almoit always in a ftate of very unequal, and even oppofite, elcetricity in its different parts; but this arifes from the variety of clouds ftrongly clectrified in the oppofite way. This induces electricity, or difturbs the natural uniform difution of eiectricity, juft as the bringing magnets or loadftones into the neighbourhood of a piece of iron, without touching it, renders it magnetical in its different parts. While they continue in their places, the piece of iron will be magnetical, and differently f_{0} in its different parts.
Such are the thoughts wlich occur to us on this fubjec. But we by no means affirn that we have given a full account of the procedure of Nature; we. have only pointed out feveral neceffary confequences of the known laws of electricity, and of its production in the at mofphere by means of natural operations which are continually going on. Thefe muf operate, and produce an electrical flate of the atmufphere greatly refembling what we obferve: and we have thewn, frum the acknowledged doctrines of electricity, how this want of equilibrium may be removed, and muft be removed, by the fame operations of Nature. The equilibrium mult be reftored by means of the conducting coating furnith. ed by the clouds. But thefe may be the leaft confiderable of Nature's refources; and the fubject is ftill an. unexplored:

T H U [694]

Thunder unexplored field, in the examination of which we may hope to makc great progrefs, in confequence of our daity increaling knowledge of the chemical tate of the

22
Dr Franklin's invention of a guard tyainft thander.

Knowledge is valuable cliefly as it is ufeful. No man ever faw the propriety of this apothegn more Atrongly than Dr Franklin, or more afficuwully adhered to it in the courfe of a long and ftudions life. However greatly we may admire his fagacity, penetration, and logical diferimination, in the difcoveries he has made in the fcience of electricity, and his difeovery of the identity of electricity and thunder, we muft acknow. ledge infinitely greater obligations to him for putting it in our power to ward off the fatal, and formerly inevitable Atroke, of this awful agent in the hands of Nature.

Dr Franklin confiders the earth as performing the office of a conductor in redturing the electric equilibrium of the atmofphere, which has been difturbed by the inceffant action of the unwearied powers of Na ture.

He obferves that the ulual preference will be given to the beft conductors. In this refpect, a metal rod far furpaffes the brick, fone, timber, and other materials which compofe our buildings, efpecially when they are dry, as is ufually the cafe in the thundery feafon. He therefore advifes us to place metalline conductors in the way of the atmofpherical electricity, in thofe places where it is moft likely to ftrike, and to continue them down to the moif earth, at fome depth under the furface. Nay, as it has been found that thunder has not in every inftance ftuck the highelt parts of buildings, he advifes to raife the metalline conductors to fome condiderable height above the building, the more certainly to invite the electricity to take this courfe.

To enfure fuccefs, he obferves that the electrical thock diffipates watcr, and even metalline conductors, when too fmall. He therefore advifes to make the conductor at leaf half au inch fquare, none of that fize having ever been deftroyed, though fmaller have, by the thunder; yet even thefe had conducted the thunder to the ground with perfect fafety to the building.

No part of a conductor mult terminate in the building; for the electricity accumulates exccedingly at the remote extremities of all long rods, and tends to fly off with great force, efpecially if another conductur is near. This aids the accumulation, by acquiring at its upper end an electricity oppofite to that of the lower end of the other : and this effect, pooduced by the influence of a politive cloud, makes the upper and negative end of the lower portion of a divided conductor draw more electricity to the lower end of the upper portion. This redundant electricity, Itrongly attracted by the negative lower portion, Ales off with great violence through the air; or if furrounded with any matter capable of converfion into elaftic vapour by heat, burfts it with irretiftible force. Thus the thunder, acting on the vane fpindle of St Bride's Iteeple in London, fprung from its lower end to the upper end of an iron window bar, and barft the ftone in which it was fixed, by expanding the moiture into fteam. Ir like manner it burft the fone at the lower end of this bar, to make its way to an iron cramp which comected the oppofite fides of the fteeple; from this it Itruck to another cramp; and fo from
cramp to cramp, till it reached the gutter-leads of the Thunder. church, burtting and throwing off the fonework in many places.

All interruptions mutt therefore be carefully avoided, and the whole nult be made as much as pullible one continued metal rod.

Farther, Dr Franklin, obferving the fingular property which tharp points poffefs of drawing off the electricity in filence, advifes us to tinifh our conductor with a tine point of gilt copper, which cannot be blunted by ruft.

But as thus raining the conductor, and pointing it, Is the thunare fo many invitations to the thunder to take this deffectual courfe; and as we cannot be certain that the quantity ind fafe thus invited may not be more than what the rod cancontriconduct with fafety - it has appeared to Dr Wilfon, and vance? other abie electricians, that it will be fafer to give abundance of conduct to what may uavoidably vifit us, without inviting what might otherwife lave gone harnlefsly by.

This was attentively confidered by Dr Franklin, Dr Watfon, Mr Canton, Dr Wilfon, and others, met as a committee of the Royal Society, at the defire of the Board of Ordance, to contrive a conductor for the powder magazine at Purfleet.

We think that the theory of induced electricity, founded on Dr Franklin's difcoveries, and confirmed by all the later inventions of the electrophorus, condenfer, \&c. will decide this queftion in the moft fatisfactory manner.

When a cloud politively electrified comes over a Scientific building, it renders it negatively electrical in all its account of parts, if of conducting materials, and even the ground electricity on which it ftands. This effect is more remarkably induced on produced if the ftructure is of a tall and flender fhape, a building like a lteceple or a rod. Therefore the external electri- ay a thuncical fluid is attracted by the building with greater force ${ }^{\text {der cloud, }}$ than if it had conlifted of materials lefs conductive. A difcharge will therefore be made through it in preference to any neighbouring building, becaufe it is more eminently negative. For the fame reafon, if there are two buildings cqual and fimilar, one of them being a good conductor, and the other being a lefs perfect one, the perfect conductur, becoming more powerfully regative, the cloud will become more ftrongly pofitive over tixis houfe than over the other, and the ftroke will be made through it.

- The fame thing mult obtain in a perfect conductor con- Ard on the tinued from the top to the foundation of a houfe, built thunder of worfe condueting materials. The conductor becoming more eminently negative than any other part of the building, the eleftric fluid will be more ftrongly attracted by it, accumulated in its neighbourhood, and will all be difcharged through it, fo long as it is able to conduet.

If the building is of great extent, the proximity of one part of the building to the thunder cloud may produce an accumulation of electrical fluid in its neighLourhood, in preference to a mare perfect, but remute, conductur. But when the diftances from the cloud are not very unequal, the accumulation will always be in the neiglbbourhood of the perfect conductur; and this will determine the difcharge that way. The accumulation in the neighbourhood of the rod will be fmall in. deed, when the rod is fmall ; but then it is denfe, and the whole of electric phenomena fhew that it is the denfity,

T H U

denfity, and not the quantity, of accumulation which produces the violent tendency to fly off: it is this aluan which makes it impofitle to confine electricity in a boily wh ch terminates in a fharp point.

For the fane rafon, bodies of the fame materials and fhape will increa ie the accumulation in the adjoining patt of the clou! in proportion as they are rearer to it, or mure advanced beyond the refl of the building.

And hodies of nender fhape, and pointed, will pro. duce this accumulation in their neighbourbood in a ithil more remarkable degree, and determine the courfe of the difcharge with thill greater certainty.

But it is evidert that a metallic rod, no higher than the reft of the building, may occation an accumulation in the adjoining part of a near thunder cloud fufficient to produce a difcharge, when the building itfelf, confinling of imperfect conducturs, woukl not have provoked the difcharge at all. It inay therefore be doubted whether we have derived any advantage from the conductor.

To judge properly of this, we muft confider houfes as they really are, confilting of different materials, in very different fhapes and fituations; and particularly as having many large pieces of metal in their couftruction, in various pofitions with regard to the cloud, the ground, and to each other. Suppofe all the reft of the building to be of non-conducting materials. When a politive thmader clond comes overhead, every piece of metal in the building becomes electrical, without having received any thing as yet from the cloud; that end of each which is neareft the cloud becoming negative, and the remote end pofitive. But, moreover, the electricity of one increales the electricity of its neighbour. Then the moft elevated becomes more itrongly attractive at its upper end than it would have been had the others been away; and therefore produces a greater accumulation in the nearer part of the thunder chond than it would otherwife have done, and it will receive a fpark. By this its lower end becomes more overcharged, and this makes the upper end of the next more undercharged, and the fpark is communicated to it, and fo on to the ground; which would not have happened without this fucceftion of conouctors. Thus it is eafy to conceive, that the accumulation in the clond is juft infufficient to produce a difcharge-While things are in this Atate, jult ready to inap, floould a man chance to pafs under a bell wire, or under a luitre hanging by a chain, his bodv will immediately augment the pofitive elearicity of the lower end of the cunductor above him, and thus will augment the negative electricity of its up. per end. This again will produce the fame effect in the conductor above it : and thus each conductor becomes more overcharged at its lower end, and more undercharged at the upper end. Before this, every thing was juft ready to fnap. All will now flrike at once. The cloud will be difcharged through the houfe, and the man will be the facrifice, the whole difcharge being made through his body. This needs no demonilration for any well-informed electrician. Thofe who have only fuch a knowledge of the theory as can be gathered from the writings of Priefley, Cavailo, and other popular authors, may convince themfelves of the truth of what is here delivered in the following manner.

In dry weather, and the moff favourable circumftan. ees for good clectrical experiments, let a very large
globe, fmoothly covered with metal, and well infulated, be as highly electrified as poffible, without expofing it to a rapid diffipation. To enfure this circumflance (which is important) let it be clectrified till it begians to fputter, and note the flate of the electrometer. Difo charge this electricity, and clectrify it to ahout half of. this intenfity. Provide three or four infulated metal conduetors, about three inches long and an inch dianne. ter. terminated by hemifyheres, and all well polifhed.

Having electrified the ghoise, as above directed, bring one of the infulated conductors flowly up to it, and note its diftance when it rcceives a fpark. In doins this, take care that there be no condueting body near the remote end of the infilated conductor. It will be beft to pufh it gradually forward by means of a long glafs rod. Withdraw the conductor, difcharge its elec: tricity, reflore the globe to its former electricity, indicated by an electrometer, and repeat this experiment till the greateft ftriking diftance is exactly difcovered. Now fet another of the infulated conductors about half an inch behind the firlt, and pufl them forward together, by a glals rocl, till a fpark is obtained. The ffriking dittance will be found greater than before. Then repeat this laft experiment, with this difference, that the two conductors are pufled forward by taking hold of the remote one. The friking ditance will be found mueh greater than before. Laftly, puht forward the two conductors, the remote one having a wire communicating with the ground, till they are a fmall matier quithout the friking diflance; and, leaving them in this fituation, take any little conducting body, fuch as a brafs ball fixed on the end of a glafs rod, and pafs it brikly through between the globe and the neareft conductor, or through between thie two conductors, taking care that it tonch neither of them in the paffage. It will be feen that, however fwifi the paffage is madc, there will be a difcharge through all the four bodice. The inference from this is obvious and demoaltrativc.

A very remarkable inflance of this fact was feen at the chapel in Tottenham Court Road, Loidon. A nan going into the chapel by the ealt door, was killed by the thunder, which came down from the litele bellhoufe, alung the bell-wire, and the rod of the cluc: pendulum, trom the end of which it leaped to fone iron work above the door, and from thence, from nail to nail, till it reached the man's head.

This interruption of conduct, which is almon una. voidable in the conftruction of any building, is the carfe of molt of the accidents that are recorded; for whon the ends of thofe communicating conductors are inclo. fed in matcrials of lefs conduciing power, the ciecticity, in making its way to the next in a very deafe flatc, nicver fails to explode every thing which can be conveited into elaltic vapour by heat. There is always a fufficient quantity of moiture in the fone or brickwork for this purpofe; and moft vegetable fubtlances connain moilture or other expanfible matter. The thome, brick, or timber, is burf, and thrown to a confiderable dillance; or if kept together by a weight of wall, the wall is fhattered. It is worth remarking, that alh hough no force whatever feems able to prevent this explotion, the quantity of matter exploded is extremely finall ; fur the flones are never thrown to a greater diffance than they would have been by two or three grains of gunpowiter properly co:fined.

T H U

Thin lef. All thefe accidents will be prevented by giving a fufficient uninterrupted conduct; and it is proper to make ufe of fuch a conductor, although it may invite many difeharges which would not otherwife happen. So long as the conductor is fufficient for the purpofe, there feems to be no doubt of the propriety of this maxim.

29 A thunder rod will protes even when it is not able to dif. charge the whole thunjer.

But the moft ferious objection remains. As we are certain that thefe conductors, whether raifed above the building or not, will produce difcharges through them which otherwife would not have happened, and as we are quite uncertain whether the quantity contained in a thunder cloud may not greatly exceed what the thunder rod can conduct without being diffipated in finoke, it feens very dangerous thus to jnvite a ftroke which our conductur may not be able to difcharge. In particular, it is reafonable to believe that the ftrata of electrified clouds which come near the earth lofe much of their electricity by paffing over the fharp points of trees, \&c. while thofe which are much higher may retain their electricity undiminifhed, and pafs on. May it not therefore happen, that our conductor will invite a fatal froke, which would have gone harmlefs by ?

The doubt is natural, and it is inportant.
Let us fuppofe a very extenfive and highly elecrified cloud, in a pofitive flate, to come within fuch a diftance from a building as jufl not to flrike it, if unprovided with a conductor, hut which will muft certainly ftrike the fame building furnifhed with a conductor; and let the electricity be fo great that the conductor fhall be diffipated in finoke before even a fmall part of it is difcharged - What will be the fate of the building? We believe that it will be perfectly fate.

However rapid we may fupplofe that motion by which electricity is communicated, it is till motion, and tine elapfes during the propagatiou. The cloud is difcharged, not in a very inftant, but in a very fhort time. Part of the clous is therefore difcharged, while it explodes the conductor, and the electricity of the reuainder is now too weak (by our fuppofition) to ftrike the building no longer furnithed with a conductor. This mult be the cafe, lawever large and powerful the clond may be, and however fimall the conductor.

But fuppofe that the cloud has come fo near as to Arike the building unprovided with a conductor. Then as much will be difcharged through the building as it can conduct; and if the quantity be too great, the building will be deflroyed : but let a conductor (tho' infufficient) be added. The difcharge will be made through it as long as it latts, and the remainder only will be difcharged through the houfe, furely with much lefs danger than before.

The truth of thefe conclufions from theory is fully verified by fack. When the church of Newbury in New England was struck by lightuing in 1755 , a bell wire, no bigger than a knitting needle, conducted the thunder with perfect fafety to the building as far down the fleeple as the wire reached, though the ftroke was fo great that the wire had been exploded, and no part of it remained, but only a mark along the wall occafioned by its fmoke. From the termination of the wire to the ground the fteeple was exceedingly thattered, and fones of great weight were thrown out from the foundation (where they were probably moifter) to the diftance of 30 and 30 feet.

T H U

A nother remarkable inftance inappened in the furm. Thunker. mer palace at St Peterfburg. A Heyduk and a foldier of a foot regiment were ftanding centinels at the door of the jewel-chamber: the Heyduk, with his fcimitar refting on his arm, was carelefsly leaning on the foldier, who had his mufket fhouldered. Buth were Atruck down with lightning; and he foldier was killed, his left leg feorched, and his fhoes burt. The Heyduk had received no damage, but felt himfelf tripped up, as if a great dog had run againf him.. A narrow flip of gold lace, which was fewed aloug the feam of his jacket and pantaloon breeches, reaching to his thees, had been exploded on the left fide. This feem.s to have been his protection. In all probability, the ftroke came to both along the mufket (or perhaps to the Heyduk along the fcimitar). The Heyduk had a complete, though infufficient, conductor, and was fafe. The foldier had not, and was killed. The pufh felt by the former probably arofe from the explofion of the lace.

It feems therefore plain that metalline conductora are always a protection; that advancing them above the building, increafes their protection; and that pointing them may fometimes enable them to diminifh a Ytroke, by difcharging part of the electricity filently.

Dr Franklin baving formed all his notions of thunder from his pre eftablifhed thenry, and having feen the principal phenomena fo conformable to it, was naturally led to expect this conformity in cafes which he could not eafily examine precifely by experiment. Accordingly in his firft differtation, he affirmed that a fine point always difcharges a thunder cloud filently, and at a great diftance. The analogous experiments in artificial electricity are fo beautiful and fo perfpicuous, that this confidence in the protecting power of fine points is not furprifing : and this confidence was rendered almof coriplete by a moft fingular cafe which fell under his uwn obfervation. He was avakened one night by loud cracks in his ftair-cafe, as if forne perfon bad been laftuing the wainfeuating with a great horfewhip. He thought it fo, and got up in anger to chide the idle fool. On looking out at his chamber door, he faw that the difturbance proceeded from electric explofions at fome interruptions of his conductor. He faw the electricity pafs, fometimes in bright fparks, producing thofe loud thwacks, and fonetimes in a long continued Aream of denfe white dazzling light as big as his finger. illuminating the fair-cafe like funfline, and making a loud noife like a cutler's wheel. Had the cloud (fays he) retained all this till it came within Ariking diftance, the confequences would have been inconceivally dreadful. Yet not long after this he found that he had been in a miftake ; for the houfe of Mr Watt in Philardelphia, furnithed with a finely pointed conductor, was ftruck by a terrible clap of thunder, and the point of the conductor was melted down about two inches. This is perhaps the only inflance on record of a finely-pointed condư̄or being llruck. The board room at the powder magazine at Purfleet was indeed Aruck, though provided with a conduct or ; but the froke was through another part of the building. St Peter's church, Cornhill, has been eight times flruck between 1772 and 1787; while St Michael's, in its neighbourhood, and much higher, has never had a ftroke fince 1772, when it was furnifhed with an excellent pointed condutor by Mr Nairne.

TH U

Dr Franklin having feen the above exception to his rule, and reflected on it, acknowledges that there are cafes where a pointed conductor may be flruck, viz. when it ferves as a llepping Itone, to complete a canal of conveyance already near completed. A finall cloud may fometimes ferve as a flepping flone (like the man conning under a lultre) for the eleetricity to come out of a great cloud, and difcharge through the pointed conductor. Whenever it comes to the thiking diftance from the conducter, it will explode at once: whercas the great clund ifticlf mult have come nearer, and had its foree gradually diminifined. It is remarkable that a puint, employed in this way in artiticical clectricity, mult be troughe nearer to another body than a ball need be, before it can rececive a throke. The difference is alsout one third uf the whole Nairne found, that a ball une nine-tenths inches in dianeter, exploded at the difluice of nine inches, and a plint at lix inches diftance.

We muft alfo obferse that a pointed conductor can lave no adrantage over a blunt one in the cale of a returning ftroke ; which is perhaps the mot common of any. l'his deperds no another difcharge, which is node perhaps at a great dillance. This was noutt ditincily the eafe in the inflance mentioned fome time ago, of the perfon at Viemna who had a fhock from a tuunder rod by an explofion far diftant. This thunder rod was a very fine one, furnithed with five gilt points

Still, however, this property of fharp points was greatIy over.rated by Dr Franklin, and thote who took all their notions of electricity from the fimple difcoveries of his fagacious mind. Unfortunately Dr Franklin had not cultivated mathematieal knowledye; and, ever eager after difcovery, and ardent in all his purfuits, his wonderful penetration carried him through, and feldom allowed him to reft long on falfe eonclufions. He was certainly one of the greatef philofoplecrs; and a lit le erudition would periaps have brought him fite by fide with Newton. It was relerved, however, for Lord C. Cavendifh and for Æpinus, to fubject the inveltigations of Franklin to number and meafure. By ftudying what they have written on the fubject, or even the view which we have given of their theory in the article Electricitr (Suppl.), the reader will be fully convinced, that a point has little or no advantare over a ball, with refpeet to a thunder cloud which is bruught to the thunder rod by a brifk wind; alhough, when it comes nowly up during an alinoft perfect caln, it may difcharge all that can be difeharged without a fnap. The conitipdtion in a point is indeed very great, but the quantity conftipated is moderate; and therefore its action, at any confiderable difance, is but trifling. All this is fully verified by Dr Wilfon's judicious experiments in the Pantheon. He liad a prodigious quantity of elearified furface fufiended there, and made a pointed apparatus come to its llriking diftance with a motion which he could regulate and meafure. And he found that with the very moderate velocity of twelve feet in a fecond, he never failed of procuring a very fmart froke: The experiments made in the ufual way by the partifans of fharp points (for it became a matter of indecent party) were numberlefs, and decidedly in their favour. The great and juft authority of Dr Franklin, who was one of the committee, procured them Itill more conlideration, or at leaft hindered people from feeing the force of Dr Wilfon's reafoning. It is fomewhat fur- ${ }^{-}$ Suppl. Vol. II. Part II.
prifing, that Dr Wilfon, a lover of mathematical lenrn. Thender. ing, and a good judge, as appears from lis publication of the papers of Mr Kobins, did not himidflee the hill force of his own ex periments. He bad not furely itudied either Aypinus or Cavendifh. He indeed frequently fays, that the flate of the electricity in a thonder chund, and in coated glafs, is exceedingly different; and that the firlt extends its ienfible influence much farther than the: latt, when both have the fame quantity of elechicity. But he feems not to have formed to himbilf any adre. quate notion of the difference. Had be done this, he would have feen that he has dif pofed his great elecerificd furface very improperly. It thould have beren colketed much neater his pointed apparatus, that this might, it pollible, have been withen the fphere of attraction of every part of his artifieial cloud. He would then have found refults, fone of whicls would have been much more favousble to his owa grental opiniur, while others would have exhibited the pecularitics of the fharp point in a more thowy mauner than any thin:g we have teen.
Reafoning from the true theory of coated glafs, we Thunder thall learn that, when the glafs is exceedingly thin, cloud very the accumulation of electricity, or, the charge, will be ed glaf; exceedingly great ; while the external appearance, or apparent energy, of the electricity may be hardly fen. fible, and will extend to a very fmall diftance. Thus, a circular plate of coated glafs, fix inches in diameter and one-twenticth thick, when eleetrified fo as to make an eleQrumeter diverge 50 degrees, contains about 60 times as much electricity as a brafs plate, of the fame diameter, electrified to the fame degree; and thefe tivo will have the fance influence on an eleetroneter placed at a diftance trom them, and will give a fpark nearly at the fame ditance. The fyark from the coated glafs will be bright, and will give a fhock; wijile that from the brafs plate will be triffing. The caufe of the equality of influence is, that the pofirive clectricity of ti, one fide of the coated glafs is almoft balanced by the negative electricity of the other fide, and the untalanced part is about $\frac{1}{5}$ th of the whule. If we now tike a brafs plate of $46 \frac{1}{5}$ inches in diameter, and electrity it to the fame degree with the coated glafs, we fhall find that it will require the fame number of turns of the machine to bring it to this flate, or to charge the coated glafs. They contain the fame quantity of electricity, and the fpark of both will give tbe fame flock. But this large plate will have a much wider influence: a perfon coning within ten feet of it will fee his hair bend towards it, and feel like a colweb un his face.

It may be farther demonfrated that the power of And the a point to abilrach the electricity to a given degree from infuence of the large platc, is valtly fmalicr than its power to ab- fharp points Atract it to the fame degree from the cuated plate. This is erifing. is different in the different degrees of the abflraction, and cannot be expreffed by any one number.

All thefe confiderations taken together, thew us that the pointed conductor has little advantage over the ball in the circumftance above-mentioned. It has, however, an advantage, and therefore fhould be enpluyed; and in the cafe of a calm, or very gentle progrefs of the thunder cloud, the advantage may be very great.

Thus we think the queftion deuded; and the only remaining confideration is the quantity of metallic conduct that fhould be given. Prudence teaches us not to

4 T
fpare,

T H U [698 T T I I

Thunder fparc, efpecially in very lofty buildines. The conducII. Tiberias.
$3 \hat{3}$ An exter. five and fubfertial metalline cunductos is the chief fesuricy. for on the dome of St Panl's in London conlifts of four iron flraps, each four iuches broad and one half an inch thick. This conductor was once made red hot by a thunder ftroke. Nus inftance lass been found of a rod one-half in inch fquare being exploded. The acciderit at Mr Wrate's houfe in Philadelphia is curious. The brafs wire which terminated the rod had been ten inches lonry and one-fourth thick at the bafe, and two one-lialf inclies were melted. It was unable, therefore, to con- duct that troke when its diancter was lefs than onefixteenth of an inch.

We recommend lead or copper in preference to iron. Iron waftes by ruft, and by exfoliating retains water, which may be dangerous by its expanfion. A ftrap of lead, two inclues broad and one-fourth thick, ftapled down to the roof or wall with brafs ftaples, fecures us from all rifks from nerglect. An iron rod, or one fafteed wi:h iron cramps, requires frequent infpection, to fee that nothing has failed or walted by ruth. The point or points fhould furely be copper. It would be very proper to connect all the leads of the riages, gutters, and fponts, with the conductor, by fraps of lead. This will greatly extend its protection.

A great extcet of building is not fufficiently fecured by one conductor. And a powder magazine fhould have fome erecied round it at a dilance on mafts.

Maxims in a Thunder Storm.

Avord being under trees-but be near them: do net avoid rain. When in a room, avoid the fire-fide, which would bring you into the reighbourhood of the highet part of the houfe, viz. the ftack of chimneys. The bellwire, the grate, the lire irons-are bad neighbours. Nay, the foot of the chimncy is not a good one, efpecially if it has ever caked together by burning (A). Go to the middle of the room, and fit down, if not near a luftre, or any thing langing from the ceiling. Aroid nuirrors, or gilded mouldings.

Thunder Clouds, in phyliology, are thofe clouds which are in a thate lit fur producing lightning and thunder. See the preceding article.

THUS, in fea language, a word ufed by the pilot in directing the helmfman or 1teerfman to keep the fhip in her prefent fituation when failing with a feant wind, fo that fhe may not approach too near the direction of the wind, which would fhiver her fails, nor fall to leeward, and run farther out of her courfe.

TIBERIAS (anc. geog.), the latt town of Crallilee, fituated on the fouth inde of the lake Tiberias; built by Herod the Tetrarch, and called Tiberias in honour of the Emperor Tiberius; diftant 30 Itadia from Hippus, 60 from Gadara, and 120 from Scythopolis: whence
it appears to have been at no great diflance from where Tierra the Jordan runs out of the lake. It is a numher of Fuege times mentioned by St John the Evangelitt. Pliny places it on the wett extremity of the lake, commending the falubrity of its hot waters. Jerone fays, the ancient name was Cbenareth; which, if true, will account for the name of the lake.

TIERRA del Fuego, feveral iflands at the fouthern extremity of America. "I hey take their name from a volcano on the largett of them. 'Ihey are all very barren and mountainous; but from what Mr Furfler fays, in his Voyage to the South Sea, the chmate does not appear to be fo rigorots and tempettuous as it is reprefented in Anfon's Voyage. Upon the lower grounds and iflands, that were feltered by the high mountains, Mr Fortler found feveral forts of trees and plants, and a variety of hirds. Among the trees was Winter's barktrec, and a fpccies of arbutus, loacied with red fruit of the lize of finall cherries, which were very well tatted. In fome places there is alfo plenty of celcry. Among the birds was a fpecies of duck, of the fize of a goofe, which ran along the fea with amazing velocity, beating the water with its wings and feet. It la:d a grey pluanage, with a yellow b:li and feet, and a few white quill feathers. At the Falkland illands it is called a loggerbeaddack. Among the birds are alfo plenty of geefe and falcons. The rocks of fome of the illands are covered with large mufcle-fhelis, the fifh of which is well-fla. voured. The uatives of this country are fhort in their perfons, not exceeding five fect fix inches at moft, their. heads large, their faces broad, their check bones prominent, and their nofes flat. They have littie brown eyes, without life ; their hair is black and lank, hanging about their heads in diforder, and befmeared with trainoil. On the chin they have a few ftraggling fhort hairs inftead of a beard. The whole affemblage of their features forms the mof loathfome pisture of mifery to which human nature can pofibly be reduced. Thofe which Mr Forfter faw had no other clothing than a fmail piece of feal-fkin, which hung from their floulders to the middle of their back, being faftened round the neck with a ftring : the relt of their body was perfectly naked. Their natural colour feems tu be an olive browil, with a kind of giofs, refembling that of copper ; but many of them difguife themelves with itreaks of red paint, and fometimes, though feldom, with white. Their whole character is a ttrange compound of ftupidity, indifference, and inactivity. They have no other arns than bows and arrows : and their inftuments for fifhing are a kind of fifh-gigs. They live chiefly on feals flefh, and like the fat oily part moft. There is no appearance of any fubordination among then ; and their mode of life approaches nearer to that of brutes than that of any other nation.

TILLANDSIA, the large barren wild pine of
(A) In the terrible thunder feroke on Leven Houfe in Scotland, the two great ftreams of electricity had taken the courfe of the vents which had been moft in ufe, but not to get at the iron work, for it had branched off from the vents, at a great diftance from the bottom. The chief conductors through the buiding had been various gilded mouldings, gilded leather hangings, gilded fkreens, picture frames, and the foil of mirrors. In this progrefs the fteps have been fo many, and fo capricious, that no line of progrefs can be traced, according to any principle. The thunder feems to have electrified at once the whole of the leaden roof, and, befides the two main tracks along the vents, to have afterwards darted at every metal thing in its way. The loweft point of the track was a leaden water cittern; which, however, receired no damage; but a thick fone wall was burft through to get at it.. the Weft Indies; a genus of the monngymia order, helonging to the hexandria clafs of plants. It is called Garagatua by Father Plumier, and is a paraftic plant, and ought pertape, in flrit propristy, to be denominatud an ageuric: for althongh it is fufpended in the air among the brancles of lofty trees, to whofe boughs it is fattenel by its numerous roots; yet it is mut indel.t. al to thufe hougha, like the mifletoe and ot her paraftic piants, for nouritiment, but werely for fupport ; jrovident Natur. having, ia a very extraodinaly manner, fupled this with other means io preferve its exiltence: Ior the leares, which much refemble thofe of the pineapple, but are larger, firround this plant in a circular nanner ; cach leaf being termiated near the falk with a hollow bucket, which contains about half a pint of water. It is by thefe numerous fmall refervoirs of wafor that the roots, as well as every other part of this plant, are fapplied with nowitmment without the help of any earth. The flourithing condition of this plant, ats well as the great growth of fig-trees, upon barren rocks, thews that water is of greiter uide to vegetation than earth.

Oue eontrivance of Nature it this vegetable, fays Dr sloane, is truly admiable. The feed is crowned with many long downy threads, not only that it may be carried everywhere by the wind, but that by thofe threads, when driven through the houghs, it may be held faft, and ftick to the arms and prominent parts of the barks of trees. So foun as it fpronts or germinates, although it be on the under part of a hough, its leaves and ttalks rife perpendicular or erect: if they affumed any other direction, the ciltern of refervoir juft men. tioned, made of the hollow leaves, could not hold water, which is neceflary to the life and nourifhment of the plant. In fcarcity of water this refervoir is ufeful, not to the plant only, but to men, and even to birds and all furts of infects, which come thither in troops, and feldorn go away without refrefhment.
'lo the fame purpole, Dampier, in lis voyage to Campeachy, relates, "t that the wild pine has leaves that will hold a pint and a half or quart of rain-water, which refrethes the leaver, and nourifhes the roots. When we find thefe pines, we ftick our knives into the leaves, juft above the root; and the water gufhing out, we catch it in our hats, as I myfelf have frequently done, to my great relief."

TIMEUS, a Greek hiforian, the fon of Andronieus, who was eminent for his riches and excellent qualities, was born at Tanromentum in Sicily, and flumithed in the time of Agathocles. He wrote feveral books, and among the reft an hiftory of his own country ; but they are all loft.

Timeus, a famous Pythagorean phidefopher, was born at Locres in Italy, and lived before Plato. There is ftill extant a fmall treatife of his on Nature and the Soul of the World, written in the Doric dialect. This treatife, which is to be found in the works of Plato, furnifhed that great philofopher with the fubject of his treatife intitled Timeus.

TINNING, the covering or lining of any thing with melted tin, or with tin reduced to a very fine leat. Looking-glaffes are foliated or finned with thin plates of beaten tin, by a procefs deforibed under the title Foliating, Encycl.

Fettles, fance.paus, and other kitclen utenfis, which are ufually made of copper, are timated by the following procifs: The furface to le timpd, if of new enprr, hlould firft be clanned or ficurrel with falt and fulphurie acid (vitriolic acid) dilated with water. This, huwever, is not always dune; fone workmen contenting hen:felves with feouring it with fend perfealy dry, or with fales of iron. Poweened relin is ofen frewed over it ; and when the veffel or membil is conliderabls heated, melted tin is poured in:o it, and mberd witn fax cuiled hard over the furfece to t.e coztes. Thio tin may be either pure, fuch as that krown Ly the nen: of grain-in ; or a computition conffitis of two part 3 of tin and one of lead. For very ohnicus reafons, we flould certainly prefer the pure tin ; tut the erenerality of workmen give the preference to the compulition, becaufe the furface coated with it appears more brillian:. The tin is not always put into the veffel in a liquid ftate; for fume workmen flrew it in frall pieces over the furface to be coated, and then litat the veffel till the tin molt, when they rul it as furmenly.

In tinning oid velfels which have bren timed before, the procefs is fomewhat different. In thefe caies, the furface is tirft fcraped with an infrument proper for the purpufe, or feoured with the feales of iron, which may be always found in a black frnith's thop: it is then Arewed over with fal-ammoniac in powder, inftead of rotin, or an infution of fallammoniac in fate urine is boiled in it till the urine be craporated, and it is then tinned with pure tin ; the compofition of tin and lead being in this cafe never ufed. The tin, while liquid, is rubbed into the furface with a piece of fal-aminoniac, inftead of a bundle of flax. When iron veffels are to be tinned, they are firft cleaned with muriatic acid, after which the procefs is the fame as in the tinning of old copper.

In the year 1785 , Mr John Poulain of Mortlake, Surrey, obtained a patent for the difcovery of a new compofition for tinning veffels, efpecially fuch as are ufed for culinary purpofes. This compofition confitts of grain-tin one pound, good malleable iron one vunce and a half, platinum one drachm, filver one pennyweight, gold three grains: the whole muft be well fufed together in a crucible, with one ounce of pounded borax, and two ounces of pounded glafs, and then caft in fmall ingots. The compofition, to be fit for ufe, mult be heated and put in a metal mortar, alfo heated over a fire, and well pounded with a heated metal pefte; when it is well pounded, make an ingot of it, by putting it on the fire in a mould made of iron plate, in which mould the compofition mult be well flirred and let to cool ; then it is fit for ufe. To apply the compofition, firft tin the utenfil or veffel with grain-tin and fal 'ammoniac, as is ufually done in the common way of tinning; clean well the tinned part of the metal utenfil or veffel, and then apply a coat of the compofition with fal ammoniac, as is ufually done in the comanom way tinning ; and when the compofition is well fpread, let it cool; then make it a little red-hot in all its parts, to neal it, and plunge the metal utenfil or veffel, while yet hot, in cold water; then, with a fharp fcraper, fcrape and rub off the rough or grumons particles of the com. pofition applied on the metal utenfil or vefiel, and four. it well with fand. The fame operatiun mult be re-

Tinning peated for every coat of the compofition that is applied;
two coats of the compofition are quite fufficient for culinary utenfils or veffels, and a thin coat of grain-tin
may be applied ever the laft coat of the comporition, to finooth it. The author adds, that his compofition may be employed for covering or plating the furface of alt materials made of copper, brafs, iron, and other metals or mixtures of metals, and that it fhould be applied with a charcoal fire in preference to any other fire. All this may be true, and it may be a very va. luahle coating to copper; but the farcity, high price, and iafufibility of platinum, mult for ever prevent it from coming into very general ufe. We think that even the EnAMELLING of Tiffels for the Kitchen muft be more common. See that article in this Supplement.

The following procefs is lefs expenfive, whit the coating given by it is exceedingly durahle, adds ftrength to the copper reffel, and fecures it much longer than the common timing from the action of acids :

When the veffel has been prepared and cleaned in the ufual manner, it muft be roughened on the infide by being beat on a rough anvil, in order that the tinning may hold better, and be more intimately conneetcd with the copper. The procefs of tinniug mult then be begun with perfectly pure grained tin, having an addition of fal ammoniac inftead of the common colophonium or refin. Over this tinning, which muft cover the copper in an even and uniform manner throughout, a feeond harder coat mult be applied, as the firlt forms only a kind of medium for connecting the fecond with the copper. For this fecond tinning you empluy pure grained-tin mixed with zinc in the proportion of two to three, which mult be applied alfo with fal ammoniac, finooth and even, fo that the lower Atatnm may be entirely covered with it. This coating, which, by the addition of the zinc, becomes pretty hard and folid, is then to be hammered with a fmoothing haminer, after it has been properly rubbed and fcoured with chalk and water ; by which means it becomes more folid and acquires a fmooth compact furface.

Veffels and utenfils may be tinned in this manner on both fides. In this cafe, after being expofed to a fufficient heat, they inuft be dipped in the fluid tin, by which means both fides will be tinned at the fame time.

As this tinning is exceedingly durable, and has a beautiful colour, which it always retains, it may be employed for various sinds of meta! inftruments and veffels which it may be neceffary to fecure from ruft.

TINPLATE, called in Scotland Wbite iron, is a thin plate of iron covered with tin, to which it is united by ehemical affinity. See Chemistry, n° 122. Suppl.
'I'IPRA, the name of certain mountainous diftricts to the ealtward of Bengal, inhabited by a people of very fingular manners. As every thing which contributes a liugle faet to the hiltory of human nature is interenting to the phitofopher, the reader will be pleafed with the fulluwing account of the religion, laws, and manners of thefe people, taken from the 2 d volume of the Afatic Refearches.

Though they acknowledge one Creator of the univerfe, to whom they give the name of Pa'tiyan, they believe that a deity exifts in every tree, that the fun and moon are gods, and that whenever they worthip thofe
fubordinate divinities Pátiyan is pleafed. This is very fimilar to the religious creed of ancient Greece and Rome, differing only with refpect to creation, which, in the proper fenfe of the word, the Greeks and Rumans feem not to have admitted.

If any one of thefe mountaineers, called in the memoir Cucis, put another to death, the chief of the tribe, or other perfons who bear no relation to the deceafed, have no concern in punifhing the murderer ; but if the murdered perfon have a brother or other heir, he may take blood for blood; nör has any man whatever a right to prevent or oppofe fuch retaliation.

When a man is detected in the commiffion of theft or other atıocious offence, the chieftain caufes a recompence to be given to the complainant, and reconciles both parties; but the chief himelf receives a cuftonary fine, and each party gives a feaft of pork or other meat to the people of his refpective tribe.

In ancient times, it was not a cullom among them to cut off the heads of the women whom they found in the habitations of their enemies; but it happened once that a woman afked another, why the came fo late to her bufinefs of fowing grain? She anfwered, that her hurband was gone to battle, and that the neceffity of preparing food and other things for him had occafioned her delay. This anfwer was overheard by a man at enmity with her hufband; and he was filled with refentment againft her, confidering, that as the had prepared food for her hufband for the purpofe of fending him to battle againft his tribe, fo, in general, if women were not to remain at home, their hußands could not be fupplied with provifion, and confequently could not make war with advantage. From that time it became a conftant practice to cut off the heads of the enemy's women, efpecially if they happen to be pregnant, and therefore confined to their houfes; and this harbarity is carried fo far, that if a Cuci affail the houfe of an enemy, and kill a woman with child, fo that he may bring two heads, he acquires honour and celebrity in his tribe, as the deftroyer of two foes at once.

As to the marriages of this wild nation, when a rich man has made a contract of marriage, he gives four or five head of gayáls (the cattle of the mountains) to the father and mother of the bride, whom he carries to his owu houfe: Her parents then kill the gayúls; and having prepared fermented liquors and boiled rice with other eatables, invite the father, mother, brethren, and kindred of the bridegroom to a nuptial entertainment. When a man of fmall property is inclined to marry, and a mutuai agreement is made, a fimilar method is foliowed in a lower degree; and a man may marry any woman except his own mother. If a married couple live cordially together, and have a fon, the wife is fixed and irremovable; but if they have no fon, and efpecially if they live together on bad terms, the hurband may divorce his wift, and marry another woman.

They have no idea of heaven or hell, the reward of good, or the punifment of bad, actions; but they profefs a belief, that when a perfon dies, a certain fpirit comes and feizes his foul, which he carries away ; and that whatever the fpirit promifes to give at the inftant when the body dies, will be found aud enjoyed hy the dead; but that if any one fhould take up the corfe and carry it off, he would not find the treafure.

The food of this people confifts of elephants, hogs,
deer, and other animals ; of which if they find the carcafes or limbs in the forefts, they dry them, and eat them occalionally.

When they have refolved on war, they fend fies, before holtilities are begun, to learn the flations and Itrength of the enemy, and the condition of the roads; after which they march in the night, and two or three hours before daylight make a fudden affault with fwords, lances, and arrows: if their enemies are compelled to abandon cheir ftation, the affailants inflantly put to death all the males and females, who are left behind, and Atrip the houfes of all their furniture ; but fhould their adverfaries, having gained intelligence of the intended affuut, be refolute enough to meet them in battle, and fhould they find themfelves overmatelied, they fpeedily recreat and quictly return to their own habitations. If at any tinc they fee a Rar very near the moon, they fay, "to-night we fhall undonbectily be attacked by fume enemy;" and they pais that night under arms with extreme vigilance. They oiten lic in anbufio in a forell near the path, where their fues are uld to pafs and repafs, waiting for the enemy with different forts of weapons, and killing every man or woman who happens to pais by: in this fituation, if a leech, or a worm, or a fnake, hould bite one of thern, he bears the pain in perfect filence; and whecver can bring home the head of an enemy, which he has cut off, is fure to be diflinguifhed and exalted in his nation. When two hoftile tribes appear to have equal furce in battle, and neither has hopes of putting the other to flight, they make a fignal of pacific intentions, and, fending agents reciprocally, foon conclude a treaty; after which they kill feveral head of gaydels, and feaft on their fleth, calling on the fun and moun to bear witnefs of the pacifin. cation: but if one fide, unable to refift the enemy, be thrown into diforder, the vanquifhed tribe is confidered as tributary to the victors; who every year receive from them ${ }^{2}$ certain number of gayáls, wooden dithes, weapons, and other acknowledgments of vaffalage. Before they go to battle, they put a quantity of roafted álus (efculent routs like potatoes), and paite of riceflour, into the hollow of bamboos, and add to them a .provifion of dry rice with fome leathern bags full of liquor: then they affemble, and march with fuch ceiterity, that in one day they perform a journcy ordinarily made by letter-carriers in three or four cays, fince they have nut the trouble and delay of dreffing victuals. When they reach the place to be attacked, they furround it in the night, and at early dawn enter it, putring to death both young and old, women and children, except fuch as thcy choole to bring away captive : they put the heads, which they cut off, into leathern bags ; and if the bloce of their enemies be on their hauds, they take care not to wafh it off. When after this Maughter they take their own food, they thrula a part of what they eat into the mouths of the heads which they have brought away, faying to each of them, "Eat, quench thy thirf, and fatisfy thy appetite ; as thou haft been flain by iny hand, fo may thy kinfmen be flain by -ny kinfmen!" During their journey, they have ufually two fuch meals; and every watch, or two watches, they fend intelligence of their proceedings to their families. When any one of them fends word that he has cut off the head of an enemy, the people of his family, whatever be their age or fex, exprefs great de-
light, making caps and ornaments of red and black rupes; then filling fome large veffels with fermented liqnors, and decking themfelves with all the tinkets they poffefs, they go forth to meet the conquetor, blowing large fhells, and ftriking plates of metal, with other rude inllimments of inufic. When both parties are met, they thew extravagant joy, men and women dancing and finging together; and if a married man has brought an enemy's head, his wife wears a head dicfs with gray ornaments, the hufband and wife alternattly pour fermented liquor into each sther's mouths, and the waftees his blondy hands with the fame liquor which they are drinking. Thus they go revelling, with excelfive merriment, to thair place of abode; and having piled up the heads of their enemies in the court-yard of their chieftain's houfe, they fing and dance round the pile; after which they kill fome gayáls and hogs with their fpears; and having boiled the flefh, make a feaft on it, and drink the fermented liquor. The richer men of this race faften the heads of their foes on a baniboo, and fix it on the graves of their parents, by which ad they acquire great reputation. He who brings back the head of a flaughtered enemy, receives prefents from the wealthy of cattle and fipirituous liquors; and if any captives are brought alive, it is the prerogative of thofe chieftains, who were not in the campaigu, to flrike off the heads of the captives. Their weapons are made by particular tribes; for fome of them are unable to fabricate inflruments of war.

In regard to their civil inflitutions; the whole management of their houfelold affairs belongs to the women; while the men are employed in clearing forefs, building huts, cultivating land, making war, or hunting game and wild beafts. Five days (they never reckon by months or years) after the birth of a male child, and three days after that of a female, they entertain their family and kiafinen with boiled rice and fermented liquor; and the parents of the child partase of the feaft. They begin the ceremuny with fixing a pole in the court-yard; and then killing a gayal or a hog with a lance, they confecrate it to theis deity; after which. all the party eat the flefh and drink liquur, cluing the day with a dance and with fongs. If ally one anong them be fo deformed, by nature or by accident, as to be unfit for the propagation of his fpecies, he gives up all thought of keeping houfe, and begs for his fubtift. ence, like a religious mendicant, from door to door, continually dancing and finging. When fuch a perfon goes to the houfe of a rich and liberal man, the owner of the houfe ufually Arings together a number of red and white flones, and fixes onie end of the fling on a long cane, fo that the other end tnay hang down to the ground; then, paying a kind of fuperfitious hunage to the pelbbles, he gives alns to the beggar ; after which he kills a gayal and a hog, and fome other quadrupeds, and invites his tribe to a feaft: the giver of fucla an entertainment acquires extraurdinary fame in the nation, and all unite in applauding him with every token of honour and reverence.

When a Cúci dies, all his kinfmen join in killing a hog and 3 gayal; and, baving boiled the meat, pour fome liquor into the mouth of the deceafed, round whofe body thiey twift a piece of cloth by way of fhroud: all of them tafte the fame liquor as an offering to his foul; and this ceremony they repeat at intervals for feveral

Tireffs, days. Then they lay the body on a nage, and kindling Tifri. a fire under it, piecee it with a fpit and Ury it; when it is perfectly dried, they cover it with two or three folds of cloth, and enclofing it in a little cafe within a cheft, bury it under ground. All the fruits and flowers that they gather within a year after the burial they featter on the grave of the deceated: but fome hury their dead in a different mamer; covering thear lint with a fhroud, then with a mat of woven reeds, ard hanging them on a high tree. Some, when the fleth is decayed, wath the bones, and keep them dry in a bowl, which they open on every fudden emergence; and, fancying themfelves at a confultation with the bones, purfue whatever mea. fures they think proper; alleging that they act by the commaml of their departed pareuts and kindimen. A widow is obliged to remain a whole year near the grave of her hutband; where her family bring leer food: if the die within the year, they mourn for her; if fine live, they carry her back to her houle, where ail her relations are entertained with the ufual fealt of the Cuicis.

If the deceated leave three fons, the eldet and the youngeft flare all his property; but the middle fon takes nothing : if he have no fons, his cftate gocs to his brothers ; and if he have no brothers, it efcheats to the chief of the tribe.

TIRESIAS, a famous foothfayer of antiquity, was the fon of Everes and the nymph Chariclo. Pherecydes lays, that Mincria being accidentally feen by Tirefias, as fhe was bathing with Chariclo in the fountain of Hippocrene, the goddefs was enraged, and declared that he fhould fee nothing more: on which he inftantly loft his fight ; but afterwards received from the goddefs fuperior endowments. Others fay, that Juno ftruck him ftone-blind for deciding a cafe between Jupiter and her, to lier diffatisfaction; for which Jupiter gave him the faculty of divination: He was the molt celebrated prophet in the Grecian annals. Ulyffes is ordered by Circe to confult hins in the fhades.

There feek the Theban bard depriv'd of fight,

Within irradiate with prophetic light.
Dut, befides the honour done to him by Homer, Sophocles makes him act a venerable and capital part in his tragedy of Oedipus. Callimachus afcribes to Minerva the gift of his fuperior endowments; the preeminence of his knowledge is likewife mentioned by 'Tully in his firft book of Divination. And not only Tirefias is celebrated by Diodorus Siculus, but his daughter Daphae, who, like her father, was gifted with a prophetic fpirit, and was appointed prieftefs at Dclphos. She wrote many oracles in verfe, from whence Homer was reported to have taken feveral lines, which he interwove in his poems. As the was often feized with a divine fury, fhe acquired the title of fibyl, which fignifies "enthufiaft." She is the firit on whom it was bellowed: in aftertimes this denomination was given to feveral other females that were fuppofed to be infpired, and who uttered and wrote their predictions in verfe; which verfe being fung, their function may be juftly faid to unite the priefthood with prophecy, poetry, and mulic.

TISRI, or TizRI, in chronology, the firt Hebrew month of the civil year, and the 7 th of the ecclefiaftical or facred year. It anfivered to pait of our September and October.

TITIING Mine, are nuw a kind of peity con- Tithing flables, clected hy parifues, and fwon in their offices in the court leet, and fometimes by juntices of the peace, \&c. There is fiequently a tithing-man in the fame town with a conllable, who is, as it were, a deputy to execute the office in the contlable's abfer.ce ; but there are fume things whicli a contlable has power to do, that tithing-men and head-boroughs cannot interncddle with. When there is no conftabie of a parifl, lis office and the authority of a tithing-man feems to be all one under anothe: name.

TITHONUS, in fabulous hiftory, the fon of Laomedon king of 'roy, and the brother of Priamus; was beloved by Aurora, who carried him to Delos, thence to Ethiopia, and at laft to heaven, where fie prevailed on the Dellinies to beftow upon him the gift of immortality; but forgot to add that of youth, which could ouly render the prefent valuable. At length 'l'ithonus grew io old that he was obliged to be roeked to Neop like an infant; when Aurora, not being able to put an end to his mifery ly death, transformed him into a grafshopper; which renerrs its jouth by cafling his k in, and in its chirping retains the loquacity of old age.

THTLE for orders, in the cluurch of England, is an aflurance of being employed and maintained as an officiating clergyman in fome cathedral or parochial chureh, or other place of Divine worthip. And, by the 33^{d} Cinon, " no one is to be ordained but in order to be a curate or incumbent, or to have fome minifter's place in fome church, or except he be fellow, conduct, or chaplain, in fome college in one of the univerfities, or be mafter of arts of five years fanding, and live there at his own colt." By the fame canon, the bifnop, who ordains a clerk without title, is bound to keep him till he prefer him to fome ecclefiatical living.

TOD or wool, is mentioned in the fatute 12 Ca rol. IL. c. 3^{2}. as a weight containing 2 ftone, or 28 pounds.

TOMBUCTOO, a large city in North Africa, and capital of a kingdom of the fame name. It has for fome years paft been the great object of European refearch, being one of the principal marts for that extenfive commerce which the Muors carry on with the Negroes. The hopes of acquiring wealth in this purfuit, and zeal for propagating their religion, have filled this extenfive city with Moors and Mahomedan converts; the king himfelf, and all the chief officers of ftate are Moors; and they are faid to be more fevere and intolerant in their principles than any other of the Moorifh tribes in this part of Africa. Mr Park was informed, by a ve. nerable old Negro, that when he firft vifited Tombuctoo, he took u_{p}, his lodging at a fort of public inn, the landlord of which, when he conducted him into his hut, fpread a mat on the floor, and laid a rope upon it ; faying, " if you are a Muflulman, you are my friend, fit down; hut if you are a Kafir, you are my flave; and with this rope I will lead you to market." The reigning fovereign of Tombuctoo, when Mr Park was in Africa, was mamed Abu Alrabima. He was reported to poffefs immenfe riches, and his wives and concubines were faid to be clothed in filk, and the chief officers of ftate live in confiderable fplendour. The whole expence of his govermment is defrayed by a tax upon merchandize, which is collected at the gates of the city.

Of that city very little is known with accuracy, as two of thefe cafes, the hollow teeth arofe from fome Toothacbe it has never been vifited by any European. It is the largett on the Niger, Honfa only excepted; and probably contpins from 60,000 to $80,0=0$ inhabitants. In fome of the Gazettecrs, its houfes are faid to be built in the form of bells; but they are probably fuch buildings as thofe of Sego, which fee in this Supplement: 'Tumbuctoo, aceording to Major Rennel, is in $16^{\circ} 30^{\prime}$ N. Lat. and $1^{\circ} 33^{\prime}$ E. Long. from Greenwich.

TOMSOOK, in the language of Bengal, a bord.
TOOTH-ache, a well known excruciating pain (fee Encycl.), for the alleviation, and even the cure of which, many fpecilies have been offered to the public. Of one of the moft extraordinary of thefe, there is an account, in a fmall work publifhed at Florence in 1794, by profeffor Gerbi, who gives the defcription of an infect, a kind of curculio, which, from its property of allaying the tooth-ache, has received the epithet of antiodonialgicus, and which iz found on a fpecies of thillte, carduus jpinofiflinus. The flowers of this thittle, when amaly. fed, gave the acid of gall, the muriatic acid, oxalat of time, extractive matter, and a very little refin. On the bottom of the calyx, which fupports the flowers, there are often found escrefences like the gall nut, which are at firit fpheroidal, afterwards cylimdric, and at length affume the figure of two hemifpheres: they confift of the like component parts with the flowers, but contain more refin, and far more oxalat of lime; as the gall apple of the oak, aceording to the experiments of M. Branchi, which are here mentioned, contains more of the acid of galls than the bark and other parts of the oak, in which he could difeover no fulphuric acid. The infect, aecording to the author's obfervations, eats not only the parenchyna, but alfo the veffels and fibres of the leaves. The egg, before the worm makes its appearance, is nourihed by the f f p of the plant, and of the above exercfences, in which it refides, by means of the attractive power that the egg ponefles for certain vegetable juices and fubltances. The excrefcences arife by the accumulation of a folid fubftance, which is precipitated from the nourining juices of the thitle, diminified by nourining the egg and the worm. This infect, the eggs of which are depofited in thefe excrefuences, is, together with the curcalio of the centuary, a new fpecies. It is of a longill figure; covered below with fhort ycllow hair, and abuve with golden yellow velvely fpots. Its corflet is variegated with fpeeks; and the coveriug of its wings with fpecks and ftripes. It has a thort prubofcis, and fhews fome likenefs to the curculio villnyus of Geoffroy. Its larva reprefents a fort of ichneumon. By chemical analy fis it exhibits fome traces of common falt; by diftillation with a flrong dry heat, fome volatile lixivious falts; and it contains, befides thefe, fome gelatinous, and a little febaceous and flimy estractive matter. If about a dozen or fifteen of thefe infects, when in the ftate of larva, or even when come to perfection, be bruifed and rubbed flowly between the fore-finger and the thumb, until they have loft their moifure, and if the painful tooth, where it is hollow, be tonched with that finger, the pain ceafes, fometimes inflantaneoufly. This power or property the finger will retain for a year, even though it be often wahed and ufed. A piece of fhamoy leather will ferve equally well with the finger. Of 629 experiments, 401 were attended with complete fuccefs. In
fault in the juiees: in the rell they were merely local. II If the ginns are inf imed, the remedy is of no :ivail. Torelli.

To the truth of atis tale the reader will give what credit he pleafes; but it is furely very dificult to belicve, that a living finger, continually perfpiring, can retain fer a year the inoikure imbibed from this infect. But it fuem.s there are other infects which have the property of curing the tooth ache; fuch as the carahus cbryfoceptbalus of Roffi; the caralus ferrug ineus of Fabricius; the cocinalla feptem pundata (the lady bird); the chryfomela populi, and the chryfomela fanguinolunta. It would appear, therefore, that this property beiongs to various kinds of the coleoptera.

The idea of thefe infects being endowed with the property of curing the tooth-ache is not confined to Italy ; for Dr Hirfch, dentif to the court of Weimar, afferts (Verkundiser, Septemter 24,1798) that he cmployed them with the happieft effect, except in fome cafes where his patients were females. He fays, that he took that fmall infect, found commonly among corn, coccinella feptem pungata, and bruifed it between his fingers. He then rubbed the fingers with which he had bruifed it, till they became warm at the points, and touched with then the unfound parts of the gums, as well as the difeafed tooth. Dr Hircha adds, that he made the fame experinent a few days after with cqual fuccefs, though he had not bruifed a new infect with his fingers. He feems to think that, to irfure the efficacy of the procefs, the infect flould be alive; becaufe, when dead, its internal parts, in which he prefumes the virtue chiefly refides, become dried up, leaving only the wings and an empty fhell; and therefore propofes to phyficians to turn their attention to the finding out of forme method for preferving the virtue of the infect, fo that its efficacy may be in full vigour throughout the year.

Befides thefe beetles, eliarcoal has heen recommended as an anodyne in the tooth-ache; but whether it aperates merely by filling the hollow of the tooth, and therchy preventing the accefs of atmofpheric air to the nerve, or by any of its fingular and hielierto unknown qualities, feems not to have been well afcertained.

TOR, a town of Afia, in Arabia Petrea, feated on the Red Sea, with a good harbour, defended by a caftle. There is a handfome Greek convent, in whofe garden are fountains of bitter water, which they pretend are thofe rendered fweet by ${ }^{-M o f e s, ~ b y ~ t h r o w i n g ~ a ~ p i e c e ~ o f ~}$ wood into them. Some think that this town is the ancient Elana. E. Long. 31. 25. N. Lat. 28. 0.

TORELLI (Jofeph), was born at Verona on the $4^{\text {th }}$ of November 1721. His father Lucas Torelli, who was a merchant, dying when young Torelli was but an infant, he was left entirely to the care of his mother Antonia Albertini, a Venetian lady of an excellent character. After receiving the firf rudiments of learning, he was placed under the Ballerini, who, obferving the genius of the boy, prevailed upon his mother to fend him to complete his education at Patavia. Here he fpent four years entirely devoted to fludy, all l.is other paffions being abforbed by his thirt for knowledge..

The unfullied innocence of his life, and the prudence and gravity of his conduct, foon attracting the attention of his mafers, they not only commended him with eagernefe, but perforned to him the part of parents, converfed

Torelli. converfed with him familiarly abont their refpective fciences, and read over to him privately the lectures which they had to deliver. This was the eafe particularly with Hercules Dondinus, under whom Torelli itudied jurifurudence. But he by no means confined himfelf to that feience alone. The knowledge which tie aequired was fo general, that upon whatever fubject the converfation happened to turn, he delivered his fentiments upon it in fuch a manner that one would have thought he had beltuwed upon it his whole attention.

After receiving the degree of Doctor, he returned home to the enjoyment of a confiderable fortune; which putting it into his power to choofe his own mode of living, he determined to devote himfelf entirely to literary purfuits. He refolved, however, not to cultivate one particular branch to the exclution of every wther, but to make himfelf mafter of one thing after another, as his humour inclined him; and he was particularly attentive to lay an accurate and folid foundation. Tho' he deelined practifing as a lawyer, he did not, on that account, relinquifh the Atudy of law. The Hebrew, Greek, Latin, and Italian languages, occupied much of his time. His object was to underftand accurately the two firt, and to be able to write and fpeak the two laft with propriety and elegance. Befides thefe languages, he learned French, Spanifh, and Englih. On the laft, in particular, he beftowed uncommon pains; for he was peculiarly attached to the Britifh nation, and to Britifh writers, whom he perufed with the greateft attention; not merely to acquire the language, but to imbibe alfo that force and loftinefs of fentiment for which they are fo remarkalle. Nay, he even began an ltalian tranflation of Paradife Loott.

He likewife made himfelf acquainted with ethics, metaphyfics, and pulemical divinity ; to which lath fubject he was induced to pay attention by the cultom of his country. With ancient hiftory he was very familiarly acyuainted, calling in to his afliftance, while engaged in that lludy, the aids of chronalogy, geograply, and criticifm. This laft art, indeed, by means of which what is counterfeit may be diftinguinhed from what is genuine, what is interpolated from what is uncorrupt. ed, and what is excellent from what is faulty, he carried about with him as his counfellor and his guide upon all occalions.

The theory of mufic he fudied with attention, preferring thofe powerful airs which make their way into the foul, and roufe the paffions at the pleafure of the mufieian. His knowledge of piftures was held in high eftimation by the artifts themfelves, who were accuftomed to ank his opinion concerning the fidelity of the defign, the harmony of coluurs, the value of the picture, and the name of the painter. He himfelf had a colleetion, not remarkably fplendid indeed, but exceedingly well chofen. Architecture he tudied with tlill greater attention, becaufe he confidered it as of more real utility. Nor did he neglect the purfuits of the antiquarian, but made himfelf familiarly aequainted with coins, gems, medals, engravings, antique veffels, and monuments. Indeed factee any monumental infcriptions were engraved at Verona which he had not either compofed or corrected. With the antiquities of his own country he was fo intimately acquainted, that every perfon of emisence, who vifited. Verona, took care to have him in
their company when they examined the curiofities of the city.

But thefe purfuits he confidered merely as amufe. ments ; mathematics and the belles lettres were his ferious Itudies. Thefe ftudies are, in general, confidered as incompatible; but Torelli was one of the few who could combine the gravity of the mathematician with the amenity of the mules and graces, and who bandle the compais and the plectrum with equal 隹ll. Of his progrefs in mathematics, leveral of his treatifes, and efpecially lis edition of Archimedes, publifhed fince his death by the univerlity of Oxford , are fufficient proofs. Nor was his progrels in the more plealing parts of literature lefs diftinguifhed. In both thefe fludies he was partial to the ancients, and was particularly hotlile to the poetry and the literary innovations of the French.

Nothing could be purer or more elegant than his Latin Atyle, which he had acquired at the expence of much time and labour. His Latin tranflation of Archimedes is a fufficient proof of this, and is indeed really wonderful, if we confider that the Romans, being far inferior to the Grecks in mathematical knowledge, their language was of necelfity deflitute of many neceffary words and phrafes. He wrote the Italian language with the claffic elegance of the $14^{\text {th }}$ and $15^{\text {th }}$ centuries. Witnefs his different werks in that language, both in profe and verfe. He tranflated the whole of AEfop's Fables into Latin, and Theocritus, the Epibalamium of Catullus, and the comedy of Plautus, called P ecudulus, into Italian verfe. The two firft books of the Mneid were alfo tranflated by him with fuch exactnefs, and fo mnel, in the Atyle of the uriginal, that they may well pafs for the work of Virgil himfelf.

His life, like his fudies, was drawn after the model of the ancient fages. Frugal, temperate, modeft, he exhibited a lliking contratt to the luxarious manners of his age. In religion he adhered Atrictly, though not fuperititioufly, to the opinions of his anceftors. He was firm to his refolutions, but not foolifhly obdtinate ; and fo ttrict an obferver of equity, that his probity would have remained inviolate, even though there had been no law to bind hin to jultice. He never married, that he might have leifure to devote himfelf, with lels interruption, to his favourite ladies. Every one readily found admuffion to him, and no'man left him without being both pleafed and inftructed; fuch was the fwestuefs of his temper, and the readinefs' with which he communieated information. He adhered with great conftancy to his friendfhips.. This was particularly ex. emplified is the cafe of Clensens Sihiliatus, who has favonred the world with the life of Torelli. With him he kept up the slofeft connection from a fehool-boy till the day of his death. He was peeuliarly attached likewife to many men of diftinction, beth in Italy and Britain. He died in Auguft 1781, in the 7oth year of his age.

The following is a complete lift of his works, his edition of Arehimedes excepted, which was not publihed till after his death :

1. "Lucubratio Academica, fivi Somnium Jacobi Pindemontii, \&c." Patavii, 1742.-2. "Animadverfiones in Hebraicum Exodi Librum et in Grxeum lxx Interpretationem;" Veronæ, $1744 \cdot-3$. " De principe Gulx incommodo, ejufque remedio, Libri duo ;" Colo-

TOR

Torpedo. nix Agrippinx, 1744-4. "De Prolabili Vitx Morumque Regula ;" Culoniz, 1747. 5. "Li due primi Canti dell' 'lliade (di Scipione Maffei) e li due primi dell' Eneide di Giufeppe 'l'orelli tradotti in verfi Italiani ;" Verona, 1749.-6. "Gli ftefli due canti dell" Eneide riftampati foli lo fteffo auno per lo ftefo Rannanzini." -7. "Scala de Meritia capo d'anno Trattato Geometrico ;", Verona. ${ }^{1751 .-8 . ~ " D e ~ N i h i l o ~ G e o m e t r i c o, ~ l i h . ~ 2 . ; " ~}$ Verune, 1758.-9." Lettera intorno a due paffi del Purgaturio di Dante Alighiero ;" ib. 17 0 o-lio. "Della Denominazione del corrente anno vulgarmeate deito 1760 io Bologna per Lelio della Volpe."-11. "Il pfudolo. Comedia, \&ec. e fi agginuge la traciuzione d'alemin Tlinl di Teocrito e di Mofeo ;" Firenzi, 1765.-12. "Inno a Maria Virgine nella Feftivita della fua Concezione:" Verona, 1706.-13. "Iettera a Miladi Vaing-Rveit premeita al libro che ha per titalo xii. lettere lugleti, con altra lettera all'autore della fuddetta;" Verona, 1767.-14. "Elegia di Tommafo Gray, Poeta luglete, in un Cinetero Campeftre in verfi Italiani rimati ;" Verona, 1767.-15. "Geometrica;" Veronæ. 1769.-16. "Demonifratio antiqni Thcorematis de motuun commixtione;" Veronx, 1774.-17. "Lettera fupra Dante contro il Signor di Voltaire ;" Verona, 17 81.-18. "Poemetto di Catullo fu le Nozze di Pcleo e Tetite, ed un Epitalamio dello ftefo ;" 1781.-19. "EEfopi Fabule."-2c. "Teucrito tradotto, in verfi Tufcani."-21. "Elementi d'Euclide tradotti nell idioma Italiano."-..22. "Elementorum Profpectivæ, libri duo."
tokpedo, or Cramp fish, has been deferibed under the generic title Raja; and an attempt made to explain its electrical phenomena in the article Electricitv, $\mathrm{n}^{\circ} 253$, \&ic. (Buth thefe articles are in the Encyclopedia). Frum fome late difcoveries, however, of Volta and others, the fhock given by the torpedo appears much more analogous to the fhock of Galva. nism than to that of common electricity ; and even the electrical organs of the fifh feem to refemble the apparatus with which thofe difcoveries in galvanifm were made.
In the σ_{3} d volume of the Philofophical Traufactions, Mr Hunter defcribes the electric organ of the torpedo as contifting of a number of columns, varying in their length from an inch and a half to a quarter of an inch, with diameters about two-tenths of an inch. The num. ber of columns in each organ of the torpedo which he prefented to the Royal Society was about 470 ; but in a very large torpedo which be diffected, the number of columns in one organ was 1182 . Thefe columns were compofed of films parallel to the bafe of each; and the diftance between each partition of the columns was $\frac{1}{5}$ th of an inch. From thefe facts, the reader will find the anomalies of torpedinal eleetricity (fuppofing it the fame with common electricity) accounted for in a very ingenious and philofophical manner by Mr NicholCon, at p. 358 of the firtt volume of his valuable Journal. We pafs on, however, to point out the refemblance between it and the lately difcovered phenomena in gal. vanifm.

Take any number of plates of copper, or, which is Suppl. Vol. II. Part II.
$7051 \quad T \quad 0 \quad R$
better, of filver, and an equal number uf tin, or, which r epo, is much better, of zinc, and a like number of difce, or pieces of card, or leather, or cloth (A), or any porous fuhftance capable of retaining moilture. Let thefe latt be foaked in pure water, or, which is better, falt and water, or alkaline levs. The filver or copper may be picces of money. Build up a pile of thefe picces ; manely, a piece of tilver, a piece of zinc, and a piece of wet card : then another piece of filver, a piece of zinc, and a piece of wet eard: and fo forth, in the fane order (or any orther order, provided the pieces fuccen it each other in their turn), till the whole number intend. ed to be made ufe of is builded up. The inftrument is then completed.

In this itate it will afford a perpetual current of the galvanic influenee tlrough any conductor communicating between its upper and lower plates; and if this conductor be an animal, it will receive an electrical floceck as often as the touch is made, by which the circuit is completed. Thus if one hand be applied to the lower plate, and the uther to the upper, the operator will reeeive a thock, and that as often as he pleafes to lift his finger and put it down again.

This fhock refembles the weak charge of a bat tery of immenfe furface ; and its intenfity is fol low that it cannot make its way through the dry fkin. It is therefore neceffary that a large furface of each liand fhould be well wetted, and a piece of inetal be graiped in eaeh, in order to make the touch; or elfe that the two extremities of the pile fhould communicate with feparate vef. fels of water, in which the hands may be plunged.
The commotion is Atronger the more numerous the pieces. Twenty pieces will give a thock in the arms, if the above precautions be attended to. One hundred pieces may be felt to the fhoulders. The current acts on the animal fyttem while the circuit is complete, as well as during the iuftant of commotion, and the action is abouninably painful at any place where the fkin is broken.
It is eflential to the fuccefs of the experiment, that the contiguous furfaces of the metallic plates be perfectly dry during its whole continuance; for the introduction of water or any liquid immediately deftroys the energy of the pile. It is neceffary that one of the metals employed thould be much more eatily oxidated than the other, and that the liquid with which the card or eloth is moiltened thould be capable of oxidating it. Hence when ziac and filver are ufed, the pile does not act if the cluth be moiftened with newly builed dittil. led water; and it foon ceales to aet if it be covered with a receiver and feparated from the external air.

The Galvanic pile not only gives hoocks to aniinal bodies, but it exhibits ali the phenomena of common electricity. A vilible fpark is emitted on completing the broken circle, metals are eafily made red hot and fet on fire by it; and Van Marum afcertained that it charges a battery, however large, to its own intenfity in an inflant. Now, as it polfeffes exactly the properties of electricity and no other properties, it can fcarcely be doubted that the fluid which circulates in the Galvanic pile is common electricity. To explain the caufe of the 4 U
current
(a) Woollen or linen cloth appears to be mare durable, and more fpeedily foaked, than card.

Torredo. current indeed may bea difficult takk: and hitherto it uuft be acknowlerlged, that no explanation has been offered that is perfectly fatisfactory. But this is no reafon for denying the identity of Galvanifm and electricity ; and accordingly, this identity leems now admitted by all thofe phitofophers who have given themfelves the trouble to repeat the experiments.

Though Mr Volta's celebrated experiments have not removed all uncertainty, and though he has drawn his confequences too far, they muft certainly be confidered as a very inportant itep towards a theory of the Cal. vanic pile. Thefe cxperiments are in fubflance as folluws: If two different metals, infulated, and having only their natural quantity of electricity, are brought into contact, they alfume, when again feparated, different electric ftates; the one is pofitive and the other negative. This difierence, which in each contact is very fmall, becomes, when fucceflively accumulated by means of an electrical condenfer, fufficiently ftrong to feparate the electrometer very fenfibly. The action does not take place at a diftance, but only upon the contact of the different metals: it exifts as long as the contact continues; but its intenfity is not the fame for all metals. It will be fufficient to take for example copper and zinc. In their mutual contact, the copper becomes negative and the zinc pofitive.

After having proved the developement of metallic electricity, independently of any humid conductor, Mr Volta next introduces fuch conductors. If we form a metallic plate of two portions, the one of zinc, the other of copper, by foldering their ends together, and taking the zinc between our fingers, touch with the copper the upper plate of the condenfer, which is alfo of copper, the condenfer becomes negative. This agrees obvioully with the former experiment. But if, on the contrary, we hold the copper in our fingers, and touch the upper plate of the condenfer witb the zinc, upon removing the metals and raifing the upper plate of the condenfer, it indicates no electricity, notwithftanding the lower plate is conneeted with the common refervoir in the earth. But as foon as we interpofe between the zinc and the plate of the condenfer a piece of paper moiftened with pure water, or any other moitt conductor, the condenfer becomes charged with pofitive electricity. It becomes alfo charged, but negatively, when we hold the zinc in our fingers, and touch, with the copper, the humid conductor laid on the condenfer.

Mr Volta thus explains thefe facts-Metals, and probably all other fubitances, exert, as we have juft feen, a reciprocal action on their refpective electricities at the moment of contact. When we hold the metallic plate by the copper, a part of its clectric fluid paffes into the zinc; but if this zinc is in immediate contact with the condenfer, which is alfo of copper, the condenfer tends with equal force to difcharge its own fluid into the zinc, and therefore can receive nothing from the zinc; confequently, after the contact, it mult remain in its natural flate. If, on the contrary, we place wet paper between the zinc and the copper of the condenfer, the force tending to difplace the electricity, which exifts only upon the contact of the two metals, is now deftroyed; the water, which appears to poffefs this property, but in a very weak degree, with regard to the metallic fubftances, very little impedes
the tranfmiffors of the fluid of the zinc to the conden- Torpedo. fer, and the condenfer is at liberty to become pofitively charged. Finally, when we touch the condenfer with the end which is of copper, the interpofition of the wet paper, of which the proper action is very weak, does not prevent the tranfition of a part of the politive electricity of the condenfer into the plate of zinc: fo that after feparation, the condenfer is found to be charged negatively.

From this theory, Mr Volta finds no difficulty in explaining the pile. For the fake of fimplicity, we will fuppofe it to be infulated, and we will reprefent by unity the excefs of the electricity of a piece of zinc above that of a piece of copper in immediate contact with it.

If the pile is compofed but of two pieces, the lower one of copper, the upper one of zinc, the electric ftate of the firft will be reprefented by $-\frac{1}{2}$, and that of the fecond by $+\frac{1}{2}$. If we add a third piece, which mult be of copper, we muft feparate it, in order that the fluid may be difplaced, by wet patteboard, from the piece of zinc below it; and in this cafe it will acquire the fame flate of electricity with the zinc; at leaft neglecting the proper action of the watcr, which appears to be very feeble, and alfo the flight degree of reffance which the water may oppofe to the communication as an imperfect conductor of electricity. The apparatus being infulated, the excefs of the upper piece can only be acquired at the expence of the lower piece of copper : and, in this cafe, the charges of the refpective pieces will be different from the former experiment. The lower piece of copper will be $-\frac{2}{3}$; the piece of zinc, which is in immediate contact with it $-\frac{2}{3}+1$, or $\frac{1}{3}$; and the upper piece of copper, feparated from the zinc by wet patteboard, will have the fame charge, that is $+\frac{\pi}{3}$; fo that the negative charge of the lower piece will be equal to the fum of the pofitive charges of the two others, the whole quantity being the fame as in the natural ftate.

If on this pile we place another piece of zinc, this piece will demand a greater quantity of electricity by unity than the copyer on which it is placed: but fince this excefs can only be obtained at the expence of the pieces below, the pile being infulated, we fhall have,

For the lower piece of copper, -
For the fecond piece, which is of zinc, that is, it will be neutral.

For the third piece, which is of copper, feparated from the fecond piece by wet pafteboard

0
For the upper piece, which is of zinc, and in contact with the third,

By purfuing the fame mode of reafoning, we may find the electrical ftate of each piece of the pile, fuppofing it infulated and formed of any given number of pieces; the quantities of electricity will increafe at each Itep, from the bafe to the fummit of the pile, in an arithmetical progreffion, of which the fum will vanifh.

Suppofing, for the fake of fimplicity, the number of conflituent parts to be even, we may difcover, by a very eafy calculation, that the piece of copper, which is the firtt, and the piece of zinc, which is the laft of the pile, muft be equally electrified, the one pofitively, the other negatively; and the fame will be true of any pieces taken at equal diftances from the extremities of

Torpedo, the pile. Between the pofitive and the negative ftates, the electricity will vanifh; and there will always be two pieces, one of zinc, the other of copper, which will be in the natural ftate. They will be in the middle of the pile, as has already bcen fhown in the example of four pieces.

Let us now make a communication hetween the lower part of the pile and the earth : it is cevident, that then the lower piece of copper, which is negatively electrified, will tend to abforb from the ground what it has loft; but its electrical ftate cannot change, unlefs that of the fuperior pieces be alfo varied, finee the difference of the pieces mult always be the fame in the flate of equilibrium. Therefore all the negative quantities of the lower half of the pile mutt be neutralifed at the expence of the common refervoir ; and in this eafe, the loweft piece, which is of copper, will have the electricity of the earth, which we call o. The fecond piece, which is of zinc, and in immediate contact with the firt, will have +1 . The third, which is of copper, and feparated from the zine below it by wet palteboard, will alfo have +1 . The fourth, which is of zinc, and in immediate contact with the third, will have +2 . And in the fame manner the electricity of the different elements will continue to increafe in arithmetical progreffion.

If we then touch, with our hands, the two extremities of the pile, thefe exceffes of electricity will be difcharged through our bodies into the common refer. voir, and will produce a thock fo much the more fenfible, as the lofs is quickly repaired from the earth, and an electrical current is formed, of which the rapidity is greater within the pile than within the animal body, which is an imperfect conductor; fo that the internal parts of the pile are at liberty to refume a degree of tention approaching to that which they had when in the ftate of equilibrium. The communication with the earth being ftill preferved, if we bring the fummit of the pile into contact with the upper plate of a condenfer, of which the lower is connected with the ground, the electrieity, which was accumulated at the fummit with a very flight degree of tenfion, will pafs into the condenfer, where the tenfion may be confidered as evanefeent; but the pile not being infulated, this lofs will be repaired from the earth: the new portions of elec. tricity recovered by the upper part of the pile will pafs into the condenfer like the preceding, and will at laft be fo accumulated there, that when we remove the plate of the condenfer, we may find in it very evident marks of electricity, and we may even take fparks from it.

Such is Mr Volta's theory ; but the experiments of Mr Davy are fufficient to demonftrate that the ideas of this celebrated electrician require fome modification. His theory mult at lealt be extended to the imperfect conductors as well as the metals. Mr Davy has fhewn that two kinds of galvanie circles may be formed. The firft is compoled of two different metallic fub. fances, or one metallic fubftance and charcoal, and a peculiar fluid. The fecond is compofed by two different fluids and one metallic fubftance.

The following table of fome circles of the firtt kind,
in which the different fubftances are arranged accord- Tarp ide. ing to the order of their known galvanic jowers, will $\underbrace{\text { pron }}$ fhow how intimately chemical agencies are related to the production of galvanifn.

Table of fome Galvanic Circles. Compced of lavo per. jeit Conduafors und one imperjecl Lionduibor.

The moft active fingle circles of the fecond order are thofe in whieh the two imperfect conductors are capable of exerting different chemical agencies on the perfect conductor, at the fame time that they are poffeffed of power of action on each other. But even circles in which only one of the fluid parts is decompofable by the folid, are pofieffed of power of action. Thus copper, filver, or lead, acts very powerfully when connected in the proper order with folutions of alkaline fulphurets and of nitrous acid; both of which fluids are poffeffed of diftinct chemical agencies upon them. And copper or filver acts, though with lefs intenfity, when water, or a fluid which they are incapable of decompofing, is fubftituted for one of the chemical agents.

The following table contains fome powerful galvanic combinations of the fecond order, arranged according to the intenfity of their action.

Table of fome Galvanic Circles. Compofed of two im-

 perfea Condutiors and one perfect Condutor.

Meffrs Nicholfon and Carlifle contructed an apparatus fimilar to that of Volta, which gave them a fhock as before defcribed, and a very acute fenfation whereever the fkin was broken. Very early in the courfe of this experiment, the contacts being made fure by placing a drop of water upon the upper plate, Mr Carlifle oblerved a difengagement of gas round the touching wire. This gas, though very minute in quantity, evidently feemed to have the fmell afforded by hydrogen when the wire of communieation was Itcel. This, with fome other facts, led Mr Nicliolfon to propofe to break the circuit by the fubftitution of a tube of water be${ }_{4} \mathrm{U}_{2}$
tween

Torpede. tween two wires. They therefore inferted a brafs wire through each of two corks inferted in a glafs tube of half an inch internal diameter. The tube was filled with New River water, and the diftance between the points of the wires in the water was one inch and three quarters. This compound difcharger was applied fo that the external ends of its wire were in contact with the two extreme plates of a pile of 3^{6} half crowns, with the correfpondent pieces of zinc and pafteboard. A fine flearn of minute bubbles immediately began to flow from the point of the lower wire in the tube whiel communicated with the filver, aurl the oppofite point of the upper wire became taminhed, firft deep orange and then black. On reverfing the tuhc, the gas came from the other point, which was now loweft; while the upper, in its turn, became tarnifhed and black. Reverfing the tube again, the phenomena again changed their order. In this flate the whole was left for two hours and a half. The upper wire gradually emitted whitifh filmy clouds, which, towards the end of the procels, became of a pea.green colour, and hung in perpendicular threads from the extreme half inch of the wire, the water being rendered femiopaque by what fell off, and in a great part lay, of a pale green on the lower furface of the tube, which, in this difpofition of the apparatus, was inclined about forty degrees to the horizon. The lower wire, of three quarters of an inch lung, conftantly emitted gas, except when another circuit, or complete wire, was applied to the apparatus; during which time the emiffion of gas was lufpended. When this laft mentioned wire was removed, the gas re-appeared as before, not inftantly, but after the lapfe of four beats of a half fecond clock ftanding in the room. The product of gas, during the whole two hours and a half, was two-thirtieths of a cubic inch. It was then mixed with an equal quantity of common air, and exploded by the application of a lighted waxed thread.

Thefe experiments were immediately repeated and varied by uther philofophers. Meffrs Cruickflank, Haldane, Davy, Henry, Wollafton, Fourctoy, and Vauquelin, are the moft diftinguifhed.

Mr Cruickfhank afcertained, that when the wire coming from the zinc end of the pile is plunged into infufion of litmus, the infufion becomes red, and an acid, which appears to be the nitric, is formed; that the wire from the filver end reddens the infufion of brazil wood, and of coulfe an alkali is formed. This alkali has been fuppofed to be fixed ; but in our experiments it was obvioully ammonia, for the change on the infufion of mallows (the colouring matter which we ufed) was not permanent. He afcertained alfo, that the filver end wire revives metals from their falts, as had been previounly known to happen whenever nafcent hydrogen comes in contact with them. He thought alfo, that he had afcertained that all liquids containing no oxygen are nonconductors of galvanifm.

To avoid the trouble of conllantly repiling the pieces of filver and zinc, Mr Cruick hank couftructed a kind of trough of baked wood, 26 inches in length. 1.7 inches deep, and 1.5 inches wide: in the fides of this trongh grooves were made oppofite to each other, about the tenth of an inch in depth, and fufficiently wide to admit one of the plates of zinc and filver when foldered together; three of thefe grooves were made in the
fpace of one inch and the tenths, fo that the whole ma. Torpode chine contained 60 pair of plates. A plate of zinc and filver, each 1.0 inches fyuare, well ceniented together, were introduced into each of thefe grooves or notches, and afterwards cemented into the trough by a compofition of rofin and wax, fo perfectly that no water could pafs from one cell to the other, nor between the plates of zinc and filver. This circumftance muft be ftrictly at. tended to, elfe the machine will be extremely imperfect. When all the plates were thus fecured in the trough, the interfices or cells formed by the different pairs of plates were filled with a folution of the muriat of ammonia, which here fupplied the place of the muiftened papers in the pile, but anfwered the purpofe much better. It is hardly neceffary to obferve, that in fixing the zine and filver plates, they muft be placed regularly, as in the pile, viz. alternately zine and filver, the filver plate being always on the fame fide. When a communieation was made between the firft aud laft cell, a ftrong fhock was felt in the arms, but fomewhat different from that given by the pile, being quieker, lefs tremulous, and bearing a greater refemblance to the common electrical thock. He conftructed two of thefe machines, which contained in all 100 pair of plates; thefe when joined together gave a very ftrong hock, and the fpark could be taken in the day-time at pleafure; but what furprifed him not a little, was the very nender power which they poffeffed in decompofing water: in this refpect they were certainly inferior to a pile of 30 pair, although fuch a pile would not give a fhock of one third the ftrength.

This apparatus retained its power for many days, and would in all probability have retained it much longer, had not the fluid got between the dry furfaces of the metals. To remedy this defeet, he foldered the zinc and filver plates together, and found that this method anfwers very well. The zinc plates may he cleaned at any time, by filling the different cells for a few minutes with the ddute muriatic acid. Although this apparatus may not entirely fuperfede the pile, efpecially if it fhould be found to decompofe water, \&c. but flowly, yet in other refpects it will no doubt be found very convenient and portable.

Colonel Haldane proved, as might have been expected, that the pile does not act under water, nor in vacuo, nor when furrounded by a gas which contains no oxygen, and found it more powerful when placed in oxygen gas.

Mr Henry found that more oxygen was obtained from fulphuric acid than from water by the agency of the pile. He deoxydated nitric and oxymuriatic acid by means of it, and obtained gafes by the decompofition of the water of liquid muriatic acid. The gafes he found incapable of tranfmitting the galvanic isfluence.

Mr Dary found, that if the zinc end wire be plunged into one glafs of water, and the filver end wire into another, and the circle be completed by plunging a finger into each glafs, the hydrogen gas is evolved in one glafs and the oxygen in the other. He proved thatthe action of the pile is proportional to the oxydation of the zinc ; that its action is increafed by interpofing. acids, becaufe they increafe the rapidity of oxydation, and that with acids the pile acts even in vacuo. He found alfo that a pile of zinc and charcoal has very
great

T R A [709] T R A

Torpedo great encrgy. To him we are indebted for the pile with one metal formerly deferibed, and he has more lately proved that charcoal or plumbago may be fub- Atituted for the metal. A pile of charcual, plumbago, and cloth, moiftered with muriat of lime, retains its chergy for a lung time.
Dr Wollallon proved, that when common electricity is paffed through waier by means of two very fine metallic points, chemical changes are effected by it, analagous to thofe occafioned by the tranfmifion of the gat vanic influence. This fact, fingly, prefents a very frong analogy between galvatiifin and the common electrical infuence; and when companed with the other facts, it amounts aimult to a demonfration of their identity. Dr Wollallon likewife afeertained that electricity is evolved dariag oxydation. Fe found that an electrical machiae cannut be exeited when plunged into any gas that does not contain oxygen; and luppofes the excitation in a great meafure owing to the oxydation of the amalgan.

Furreroy and Vauquelin made ufe of metallir plates ahuet a foot fquare, and obfersed that a much finather number of fuch plates than are fufficient to produce mooks, give fparks, and even fet fire to the metals when prefented in fine wires or leaves. By twelve pairs of fuch plates, a misture of oxygen and hydrogen gas may be exploded, and iron wire fet on fire in oxygen gas. All the metals may be fet on fire.

Such is a fhort fketch of the new facts which have been difoovered in galvanifm; but the examination of the fubject has not proceeded far enough to admit of a fatisfactory explanation of them. The facts relating to the feparate production of oxygen and hydrogen, acid and alkali, in water, are totally incommenfurable with the ufually received theory of chemiftry. And even fuppofing that the appearance of the two laft of thefe bodies is connected with the pefence of atmofpheric. air, it is ftill extremely difficult to conceive, that either oxygen or liydrogen can pafs in an invifible form through fluids or organic bodies. Common phyfical facts prefent us with so analogies fufficiently dillinct to snable us to reafon on this fubject; and the elucidation of it will prubably be connected with perfectly new vis ws of corpufcular asion.

If this article be thought long, and if we appear to have lof fight of our original fubject, the Torpedo, we have only to plead in excufe for our conduct, that whilit we could not avoid pointing out the refemblance betweed the fhock given by the torpedo and that by Volta's apparatus, we felt it a kind of duty to embrace the only opportunity that we fhall have of laying before our readers the additional information refpecting the phenomena of Galavaism which we have received fince the publication of that article. Theie phenomena are yet hew, and they are unqueftionably important; indeed fo very important, that to us it appears neither impolible, nor even imprubable, that to the galvanic agency of metals and minerals inay be attributed volcanoes and earthquakes.

TOUCAN, or Ambrican Gunse, is one of the modern conftellations of the fouthern hemifphere, confifting of nine fmall thars.

TRACTORS, Metallic. See Perkintsm in this Suppl.

TRACTRIX, in geonetry, a curve line, called Tractrix alfo Catenaria; which fee, Encyclopedea and Arch, Suppl.
TRADESCANT (Joln), an ingrenious naturalift and antiquary, was, according to Althony Wood, a Fleming or a Dutcha:an. We are informed by Parkinfon, that he had travelled into moft parts of Europe, and into Barbary ; and rrom fome emiblems remaining upon his monumelte in Lambeth church-yard, it plainly appears that he had vifited Grecce, Egypt, and other eallern countries. In his travels, he is fuppofed to have collected, not only plants and feeds, but moft of thofe curiofities of every fort which, after his death, were fold by his fon to lite famons Elias A fhmole, and depofited in his mufeum at Oxford. When he firlt fetted in this kingdum cannot, at this diftance of time, be afcertained. Perhaps it was at the latter end of the reign of Queen Elizabeth, or the begimuing of that of King James I. His print, engraven by Hollar before the year 1656, which reprefents him as a perfun very far advanced in years, feems to countenance this opinion. He lived in a great houfe at South Lambeth, where his mufeum was frequently vifited by perfons of rank, who became benefactors thereto: among thefe were King Charles I. (to whom he was gardener), Henrietta Maria his Queen, Archbifnop Laud, George Duke of Buckingham, Robert and William Cecil, Earls of Salifury, and many other perfuns of diftinction. John Tradefcant may therefore be juftly confidered as the earlieft collector (in this kingdom) of every thing that was curious in natural hiflury, viz. minerals, birds, fifhes, infects, \&c. He liad alfo a good collection of coins and medals of all forts, bcfides a great variety of uncommon rarities. A catalogue of thefe, pubilithed ty his fon, contains an enumeration of the many plants, fhrubs, trees, \&cc. growing in lis garden, which was pretty extenfive. Some of thefe plants are, if not tutally extinct, at leaft become very uncommon, even at this time: though this able man, by his great induftry, made it'manifett, in. the very infancy of botany, that there is fearce any plant extant in the known world that will not, with proper care, thrive in this kingdom.
When his houfe at Suuth Lambeth, then called Tradefonit's Ark, came imso Afhinole's poffefion, he added a nuble room to it, and adurned the chimney with his arms, impaling thofe of Sir William Dugdale, whofe daughter was his thiret wife; where they remain to this day.

It were much to be wifhed, that the lovers of botany had vifited this once famous garden before, or at lealt in the beginning of the 17 th century. But this feems to have been tutally neglected till the year 1749, when Dr Watfon and the late Dr Mitchell faveured the Royal Society with the only account now extant of the remains of Tradefeant's garden.

When the death of John Tradefcant happened is not known ; no mention being made thereof in the regiterbook of Lambeth church.

TRAJECTORY, a term often ufed, generally for the path of any body, moving either in a void, or in a medium that refifts its motion; or even for any curve paffing through a given number of points. Thus Newtoln, Princip. lib. I. prop. 22. propofes to defcribe a, traiectory that fhall pafs through five given points.

TRAITOR's:

T R A

[7 7
Traitor's Jlland II Tranflation,

TRAITOR's Island, one of the Archipelago call-
d Nar:Ggrors Iflands, in the South Sea (See that article $S_{u p p}$.). It is low and fat, with only a hill of fome height in the middle; and is divided into two
parts by a channel, of which the mouth is about 150 toifes wide. It abounds with banamas, yams, and the fineft cocoa-nuts, which Peroufe fays he ever faw. A. bout twenty canoes approached the French fhips without dread, traded with a goord deal of honefty, and never refufed, like the natives of the archipelago of Navigators, to give their fruit hefore they were paid for it ; nor, like them, did they give a preference to beads over nails and pieces of iron. They fpoke, however, the fame language, and had the fame ferocious look; their drefs, their manner of tatowing, and the form of their canoes, were the fame; nor could we (fays the author) doubt that they were one and the fame people: they differed, indeed, in having univerfally two joints cut off from the little finger of the left hand; whereas, in the iflands of Navigators, I only perceived two individuals who had fuffered that operation. They were alfo of much lower ftature, and far lefs gigantic make; a difference proceeding, no doubt, from the foil of thefe inlands, which being lefs fertile, is confequently lefs favourable to the expanfion of the human frame.

TRAMMELS, in mechanics, an inftrument ufed by artificers for drawing ovals upon boards, \&c. One part of it confilits of a crofs with two grooves at right angles; the other is a beam carrying two pins, which flide in thofe grooves, and alfo the defribing pencil. All the engines for turning ovals are conftructed on the fame principles with the trammels: the only difference is, that in the trammels the board is at reft, and the pencil moves upon it; in the turning engine, the tool, which fupplies the place of the pencil, is at reft, and the board moves againft it. See a demonftration of the chief properties of thefe inftruments by Mr Ludlam, in the Pbil. Tranf. vol. lxx. p. 378 , \&c.

TRANSFORMATION, in geometry, is the changing or reducing of a figure, or of a body, into another of the fame area, or the fame folidity, but of a different form. As, to transform or reduce a triangle to a fquare, or a.pyramid to a parallelopipedon.
$T_{\text {RANSFormation of oquations, in algebra, is the }}$ changing equations into others of a different form, but of equal value. This operation is often nëceffary, to prepare equations for a more eafy folution.

TRANSLATION, in literature, is a matter of fo much importance, that no other apology can be made for the very imperfect manner in which it is treated in the Encycloprdia, than a candid declaration that it was impoffible to enter at all upon the fubject within the narrow limits to which we were then reftricted by the proprietors of the work. The fundamental laws of tranflation, which we gave in that article, we believe indeed to be incontrovertibly juft ; but we are forry that our inaccurate exprefions have led fome of our readers to fuppofe that Mr Tytler, in his eflay, has done nothing more than illuftrate the ideas that were fuggefted to him by Dr Campbell. The truth is, that the fame ideas of a juft tranflation occurred to thefe two ingenions writers at the fame time, without the fnal, left commurication with each other: and this fict, which confifts with our own knowledge, is furely a
corruboration of the laws laid down by both; but the Tranfation queftion is, how are thefe laws to be obeyed?

In order that a tranflator may be enabled to give a complete tranfript of the ideas of the original work, it is alinoft needlefs to olferve, that he mult poffefs a perfect knowledge of both languages, viz. that of his aulthor, and that into which he is to tranflate; and that he muft have a competent acquaintance with the fub. ject of which his author treats. Thefe propofitions we confiler as felfevident ; but if any of our readers thall be of a different opinion, we refer them to an Efay on the Principles of Tranfation, publifhed 1797 by Cadell and Davies, London, where they will find our doctrine very clearly illuftrated. It may be proper to add, that fuch a knowledge of the Greek and Latin languages as inerely enables a man to read them with eafe and entertainment to himfelf, is by no means fufficient to qualify him for tran!ating every Greek and Latin book, even though it treats of a fubject with which he has a general acquaintance. The religious rites and ceremonies of the Greeks and Romans, as well as the radical worls of their language, were derived from the Eaft; and he who is an abfolute flranger to oriental literature, will be very liable to mitake occafionally the fenfe of Greek and Roman authors who treat of religious fubjects. We could illuftrate the truth of this pofition by quotations from fome of the moft admired modern tranflations of the Greek Scriptures, which we have no hefitation to fay fall very fhort of the authorifed verfion in accuracy as well as in elegance. The divines employed by King James to tranflate the Old and New Teftaments were profoundly filled in the learning, as well as in the languages, of the Eaf ; whilft fome of thofe who have prefumed to improve their verfion feem not to have poffeffed a critical knowledge of the Greek tongue, to have known ftill lefs of the Hebrew, and to have been abfolute ftrangers to the dialect fpoken in Judea in the days of our Saviour, as well as to the manners, cuftoms, and peculiar opinions of the Jews fects. Neither metaphyfical acutenefs, nor the moft perfect knowledge of the principles of traulation in general, will enable a man who is ignorant of thefe things to improve the authorifed verfion either of the Gofpels or the Epiftes; for fuch a man knows not accurately, and therefore cannot give a complete tranfeript of the ideas of the original work.
But fuppofing the tranflator completely qualified with refpect to knowledge, it becomes a queftion, whether he may, in any cafe, add to or retrench the ideas of his author? We are ftrongly inclined to think, that, in no cafe, it is allowable to take fuch liberties; but the ingenious and elegant effayift, whofe work on the prin. ciples of tranflation we muft always quote with refpect, is of a differeat opinion. "To give a general anfwer (fays he) to this queftion, I would fay, that this liberty may be ufed, but with the greateft caution. It muft be further obferved, that the fuperadded idea fhall have the mot neceflary connection sith the original thought; and actually increafe its force. And, on the other hand, that whenever an idea is cut off by the tranflator, it inult be only fuch as is an acceffory, and not a principle, in the claufe or fentence. It mufl likewife be confeffedly redundant, fo that its retrenchment fiall not impair or weaken the original thought. Under thefe

Tranfa- limitations, a tranflator may exercife his judgment, and tion. aftume to himfelf, in fo far, the character of an original
writer."

Of the judicious ufe, as he thinks it, of this liberty, the author quotes many examples, of which we fhall feleet three, as well calculated to illufrate our own ideas of the fubject.

In the firt book of the Iliad, Achilles, having refolved, though indignantly, to give up Brifeis, delires Patroclus to deliver her to the heralds of A gamemnon:

Patroclus now th' unwilling beauty brought; She in foft forrows, and in penfive thought, Paft filent, as the heralds held her hand, And oft look'd back, flow moving o'er the ftrand. Pope.
Our author thinks, and we heartily agree with hin, that the amplification in the three lalt lines of this verfion highly improves the effect of the picture; but we cannot eonfider this amplification as a new idea fuperadded. It was the object of Homer to inform his countrymen, that Brifeis went with the heralds unvoil-
 youm xur. and it is by no means improbable, that the rhythmical movenient of the verfe may have prefented to the ancient Greeks the image of the lady waiking nowly and reluctantly along. This image, we are fure, is not produced by a literal tranflation of the Greek words into Englifh ; and therefore it was Pope's duty, not to add to the ideas of the original, but, by amplification, to prefent to his own countrymen the picture which Homer, by the fuperiority of the Greek language and rhythm, bad prefented to his.

In the ninth book of the Iliad, where Phonix reminds Achilles of the care he had taken of him while an infant, one circumlance, extremely mean, and even difgufting, is found in the original:

The literal verfion of thefe lines is indeed very grofs: " When I placed you before my knees, I crammed you with meat, and gave you wine, which you often vomited upon my bofom, and ftained my clothes, in your troublefome infaney:" but we cannot agree with our author, that the Englifh reader is obliged to Pope for having altogether funk this naufeous image. What is, or ought to be, our object in reading Homer? If it be merely to delight our ear with fonorous lines, and pleafe our fancy with grand or Splendid images, the tranflator. certainly did right in keeping out of view this difgulting pieture of favage life; but when he did fo, he cannot be faid to have given a complete tranfcript of his author's ideas. T'o pleafe ourfelves, however, with splendid images, is not our only object when ftudying the works of the ancient puets. Another, and in our opinion a more important object, is to acquire a lively. notion of ancient, manners;- and if fo, Pope grofsly mifleads the mere Englifh reader, when, inftead of the
beafly image of Homer, he prefents lim with the fol- Tranfla. lowing feene, which he may daily meet with in his own family, or in the fanilies of his friends:

> Thy infant breatt a like affection fhow'd, Still in my arms, an ever pleafing load; Or at my knee, by Ploenix would'f thou fland, No food was grateful but from Phonix hand: I pafs my watchings o'er thy helpelef years, 'Ihe tender labours, the compliant cares.

This is a picture of the domeftic manners of Great Britain in the 19th century, and not of Greece in the heroic ages.

In the beginning of the eighth book of the Jliad, Homer puts into the mouth of Jove a very ftrange fpeech, Ituffed with braggart vaunting and ludicrous images. This, as our author obferves, is far beneath the dignity of the thunderer; but it is only beneath the dignity of the thunderer as our habits and noodes of thinking compel $u s$ to conceive fuch a being. The thunderer of the Greeks was a notorious adulterer and fodomite, whofe moral character finks beneath that of the meaneft of our bravos; and as he had dethroned lis father, and waged for fone time a doubtful war with certain earthly giants, it does not appear to us that the boaffing fpeech which Homer puts into his mouth is at all unfuitable to lis acknowledged attributes. But whether it be or not, was not the tranflator's concern. Homer, when he compofed it, certainly thought it not unworthy of the thunderer ; and whatever Pope's opinion might be, he had no right to fubflitute his own notions of propriety for thofe of his author. The mythological tales of the poets, and more efpecially of Homer and Hefiod, conitituted, as every one knows, the religious creed of the vulgar Greeks (fee Polytheism, no 33. Encycl.) ; and this circumftance makes it doubly the duty of a tranflator to give, on fuch fubjects, a fair tranfeript of his author's ideas, that the mere Englifh reader, for whom he writcs, may know what the ancients really thought of the objects of their idolatrous worfhip. This Pope has not done in the fpeech under confideration; and has therefore, in our opinion, deviated widely from the firf and mont important of the three general laws of tranflation. Johufon has apologized, we think fufficiently, for many of Pope's embellifluments of his author ; but he has not attempted to make an apology for fuch embellifhments as alter the fenfe. We cannot indeed conceive a pretence upon which it can ever be allowahle in a tranlator to add to the ideas of his author, to retrench, or to vary them. If he be tranflating hifory, and find his author advancing what he believes to be falfe, he may correct him in a note ; but he has no right to make one man utter, as his own, the helief or the fentiments of another, when that belief, and thofe fentiments, are not his own. If he be tranlating a work of fcience, he may likewife correet the errors of his author in notes, as Dr Clerke corrected thofe of Ro. hault ; but no man has a right to give to a Rohault the fcience of a Newton. The tranflator of a poem may certainly employ amplification to place in a friking light the images or the fentiments of the original work; but he muft not alter thofe images or fentiments fo as: to make that appear grand or elegant in the verfion, which is mean or difgutting in the original. On every: occafion.

T R A

Trand. tion.
occafion on which he takes fach liberties as thefe, he ceafes to be a tranflater, and becomes a faithlefs paraphraft.

The fecond general law of tranlation, though certainly lefs important, is pertisps more difficult to be obferved than the firll. We have flated it in thefe words: (Sce Translamion, Encyci.) "The fyle and manner of the uriginal mould be preferved in the tranflation;" but it is obvious, that this cannot be done by him who poffeffes net fufficient taite and judgment to afcertain with preciion to what clafs the thyle of the original belongs. "If a tranflator fail in this difeernnent, and want this capacity, let him be ever fo thoroughly mater of the fenfe of his author, he will prefent him through a diflorting mediam, or exhibit him in a garb that is unfuitatie to his character." It would obviounly be very improper to tranflate the elegantly timple language of Cæfar iuto rounded periods like thofe of The Rambler, or the Orations of Cicero into the language of Swift.

The chief characteriftic of the hiftorical ftyle of the facred Scriptures is its fimplicity; and that fimplicity is, for the moft part, well preferved in the authorifed verfion. It is, however, loft in many of the modern verfions. Caftalio's, for inftance, thongh intitled to the praife of elegant lativity, and though, in general, faithful to the fenfe of the original, yet exhibits numberleis tranfgreffions of the law which is now under contideration. Its fentences are formed in long and intricate periods, in which many feparate members are artfully combined; and we obferve a conftant endeavour at claffical phrafeology and ornamented diction, inftead of the beautiful fimplicity of the original.

The verfion of the Scriptures by Arias Montanus is, in fome refpects, a contraft to that of Caftalio. By adopting the literal mode of tranfation, Arias undoutt. edly intended to give as faithful a picture as he could; both of the fenfe and of the manner of the original. Not attending to the peculiar idioms of the Hebrew, Greek, and Latin tongues, which, in fome refpects, are very different from each other, he has, by giving to his Latin the combination and idioms of the two fint of thefe languages, fometimes made the facted writers talk abfurdly. In Latin, as every fehool-boy knows, two negatives make an affirmative, whiff in Greek they add force to the negation. Xogis sunu ou suva $\sigma \theta_{\mathrm{E}}$ ousfv lignifies, "Without me ye can do nothing," or, "Ie caninot poffibly do any thing;" but Arias has tranflated the words fine me non poteflis facere nibil, i. e. "without me ye cannot do nothing," or, "ye muft do fomething," which is directly contrary to the meaning of our Lord. It is not therefore by tranflating literally or verbally that we can hope to preferve the ftyle and manner of the original.

To exprefs in florid or elevated language the ideas of an author who writes himfelf in a fimple llyle, is not to give in the verfion a juft picture of the original; but to attempt, for the fake of verbal accuracy, to intro. duce into one language the pecuiliar idioms or conltruc: tion of another, is till worfe; as in this mode of tranflation the fenfe, as well as the manner of the original, is lof. The rule obviounly is to ufe, in the verfion, the words and phrafeology which we have reafon to believe that the 'author would himfelf have ufed, had he been matter of the language into which we are tranfla-
ting his ideas. Thus, if we are to trannate into Englih a piece of elegantly timple Greek or Latin, we muft make ourfelves completely maller of the author's meaning, and, neglecting the Greek or Latin idioms, exprefs that meaning in elegantly limple Englifh. We need not add, that when the language of the original is Aorid or grand, if that ttyle be fuited to the fubject, the language of the tranflation fhoull be florid or grand likewife; but care mult always te taken that perfpicnity be not facrificed to ambitious ornaments of any kind; for ornaments which cbieure the fenfe are worfe than ufelefs.

If thefe reficctions be jult, it is obvious that a poem cannot be properly tranflated into profe. The mere fenfe may doubthefs be thus transferred from one language into atother, as has generally been done by Macpherfon in his hobbling verfion of the Iliad, and perhaps more completely by a late tranflator of Anacreon; but in fuch a verfion, the fyle and manner of the original mutt neceffarily be loft. Of this the fullowing accurate profe tranflation of Anacreon's minth ode (on a dove) is a flriking intance:
"O lovely Pigeon! whence, whence do you fly? Whence, fpeeding through the air, do you breathe, and dittil fo many perfumes? Who is your mafter ? For it concerns me to know. 'Anacreon fent me to a youth, -to Bathyllus, at prefent the prince, and difpofing of all things. Venus fold me, receiving a little hymn in return. And I ferve Anacreon in fuch tranfactions as thefe: and now I carry his letters, fuch as you fee: and he affirms that he will immediately make me free. But I will remain a fervant with him although he inay dilmifs me: Fur wherefore does it behove me to fly, both over mountains, and felds, and to perch on trees, devouring fome ruftic food? Now indeed I eat bread, fnatching it from the hands of A nacreon himfelf; and he gives to me the wine to drink which he drinks before me; and laving drunk, 1 perhaps may dance, and cover my mafter with iny wings: then going to reft, I neep upon the lute itfelf. You have it all;-begone: you have made me more talkative, O inortal! than even a jay *."
*The Od
How inferior is the general effect of this piece of of A yocre profe to that of the well known puetical verfions of tranfloted Addifon and Johnfon? and yet the mere ideas of the into Engli original are perliaps more faithfully tranferibed by this ${ }_{\text {pod afe, prip }}$ ford anonymous writer than by either of thofe elegant tranf-1796. lators. The emotions indeed excited by the original are not here brought into view.

The third general law of tranlation is fo neally allied to the fecond, that we have very few directions to give for the obfervation of it. He who, in his verlion, preferves the ftyle and manner of the original, as we have endeavoured to thew that they ought to be preferved, will, of courfe; give to the tranflation the eafe of original compofition. The principal difficulty that he has to encounter in this part of his tafk, will ocenr in the tranflating of idiomatical and proverbial phrafes. Hardbyay two languages are conltructed precifely in the fame way; and when the ttructure of the Englifh language is compared with that of the Greek and Latin; a remarkable difference between the ancient and modern tongues is found to pervade the whole. This muft occafion very confiderable difficulty; but it is a diffi. culty which will be removed by a due obfervance of the
former

T R A [7:3] T R A

Tranna- former law, which directs the tranflator to make his aution. thor fpeak Englifh in fuch a ftyle to Englifhmen as lice \{poke his own tongue to his own countrymen, and of courfe to ufe the Englifh idion with Engtifh words. But what is to be done with thofe proverbial phrafes of which every language has a large collection, and which allude to local cultoms and manmers?

The ingenions author of the Effay fo ofters quoted, very properly oblerves, in anfwer to this queftion, that the tranflation is perfect when the tranflator employs, in his own language, an idiomatic phrafe correfponding to that of the original. "It is not (fays he) polfible perhaps to produce a happier infance of tranflation by correfponding idioms, than Sterne has given* in the tranlation of Slawkenbergius's tale. Nibil me penitict bujus nafi, quoth Pamphagus; that is, "My nole has been the making of me." Nec ef cur preniteat; that is, "How the deuce fhould fuch a nofe fail ?" Miles peregrini in faciem fufpexit! "The centinel looked inte: the ftranger's face. Never faw fuch a nofe in his life!"
"As there is nothing (continues our author) which fo much conduces both to the eafe and fpirit of compofition as a happy ufe of idiomatic phrafes, there is nothing which a tranflator, who has a moderate command of his own language, is fo apt to carry to an extreme." Of this he gives many ftriking examples from Echard's tranflations of Terence and Plautus, for which we mult refer the reader to the Effay itfelf. He obferves, likewife, that in the ufe of idiomatic phrafes, a tranflator frequently forgets both the country of his original author, and the age in which he wrote; and while he makes a Greek or Roman fpeak French or Englifh, he unwittingly puts into his mouth allufions to the manners of modern France or England. This, to ufe a phrafe borrowed from painting, may be termed an of. fence againt the coffume The proverbial expreffion Bxepaxe iswe, in Theocritus, is of fimilar import with the Englifh proverb, to carry coals to Newcafle; -and the Scotch, to drive falt to Dyfart; but it would be a grofs impropriety to ufe either of thefe expreffions in the tranflation of an ancient claffic. Of fuch impro. prieties our author points out many inftances both in French and Euglifh tranflations of the claffics; and he might have increafed the number by quotatiuns from Blackwell's Memoirs of the Court of Augultus, where, inftead of Roman fenators and their wives, we meet with modern gentlemen and ladies, with fecretaries at zuar, paymaflers, commiffary general's, and lord bigb ad. mirals. It is true the Memoirs of the Court of Auguftus is no tranflation; but with refpect to coltume, it is neceffarily fubject to the laws of tranflation.

Offences againft coftume are often comnitted by the ufe of improper words as well as of improper phrafes. 'Io introduce into dignifed and folemn compofition words affociated with mean and ludicrous fubjects, is equally a fault in an original author and in a tranflator; and it is obvioufly improper, in the tranfation of works of very high antiquity, to make ufe of words which have but lately been admitted into the language of the eranflator. Faults of this kind are very frequent in Dr Geddes's tranflation of the Bihle, as when the pafforer is called the fipover; the tabernacle of the congregation, the convention tent; and a burnt-offering, a bolocaufl. The firtt of thefe expreffions prefents to the imagination an image profanely ludicrous; the fecond, brings into our view the French Convention, which,
Suppl: Vol. II. Part II.
we fufpect, oecupied no fmall portion of the Doctor's Tranis. thoughts, when they flould have been wholly employed on the facred text; and the word bolocauff, which mutt be unintelligible to the mere Englifh reatier, is, in the mind of every man of letters, clofely affociated with the abominable rites performed at the facrifices of the ancient heathens. But it is needlefs to point out faults of this kind in a work which is open to more ferions objections, and which, we truft, fhall never be gencrally read. We are furry that truth compels us to fay, that the novel expreffions introduced by Dr Campbell into, his verfion of the grofpels-fuch as coryluence for multitude, and reign for kingdom-are, to fay the beft of them, no improvements of the authorifed verfion. We will not rank them with Dr Geddes's innovations, becaufe we will not clafs the great author of the Differta. tion on Miracles with a paradoxical Chriftian of no communion ; but we do not think that Dr Campbell's laurels were frethened on his brow by the tranflation of the Gofpels.

We thall conclude this article with the following reflections, taken from the Effay which has been fo often quoted :
"If the order in whiclo we have claffed the three general laws of tranlatión he their juft and natural arrangement, which, we prefume, will hardly be denied, it follows, that, in every cafe where it is neceffary to make a facrifice of one of thefe laws to another, a oue regard ought to be paid to their rank and comparative importance. When the genius of the original language differs much from that of the tranflation, it is often neceffary to depart from the anthor's manner in order to convey a faithful picture of his fenfe; but it would he highly prepofterous to depart, in any cafe, from the fenfe, for the fake of imitating the manuer. Equally improper would it be, to facrifice either the fenfe or manner of the original, if thefe can be preferved confiftently with purity of expreffion, to a fancied eafe or fuperior gracefulnefs of compolition; and it is certain that the fenfe may always be preferved, though to purity of expreffion the manner of the original mult fome. times be facrificed."

TRAPEZOID, fumetimes denotes a trapezium that has two of its lides parallel to each other ; and fometimes an irregular folid figure, having four fides not parallei to each other.

TRAVERSE, in gunnery, is the turning a piece of ordnance about, as upon a centre, to make it point in any particular direction.

Traterse, in fortification, denotes a trench with a little parapet, fometimes two, one on each fide, to ferve as a cover from the enemy that might come in flank.

Traverse, in a wet fuls, is a fort of gallery, made by throwing fauciffons, joifts, fafcines, itones, earth, \&c. into the fofs, oppofite the place where the miner is to be put, in order to fill up the ditch, and make a paffage over it.

Traverse alfo denotes a wall of earth, or fione, raifed acrufs a work, to thop the fhet from rolling along it.

Traverse alfo fometimes fignifies any retrenchment, or line fortified with fafcines, barrels, or bags of earth, or gabions.

T'RAVESTY, or burlefque tran@ation, is a fpecies of writing which, as it partakes, in a great degree, of original compolition, is not to be meafured by the laws of ferious tranflation. It conveys neither a juft picture
tinn
Traveng.

T R E $\left[\begin{array}{llllll}714 & 1\end{array}\right.$

Travefty of the fentiments, nor a faithful reprefentation of the 11 Treacle.
ftyle and manner of the original ; but pleafes it felf in exlibiting a ludicrous character of both. It difplays
an overcharged and grotefque refemblance, and excites our rifible enotions by the incongruous affociation of dignity and meanuefs, wildon and abfurdity. This affociation forms equally the balis of travetty and of ludicrous parody, from which it is no otherwife dillinguihed than by its affuning a different language from the original. In order that the mimickry may be underftood, it is neceflary that the writer choofe, for the exercife of his talents, a work that is well known, and of great reputation. Whether that reputation is deferved or unjuft, the work may be equally the fubject of burlefque imitation. If it has been the fubject of general but undeferved praife, a parody or a travefty is then a fair fatire on the falfe taite of the original author and his admirers, and we are pleafed to fee both become the oljects of a jult caltigation. The Rebearfal, Tom Thumb, and Crononbotonthologos, which exhibit ludicrous parodies of paffages from the favourite dramatic writers of the times, convey a great deal of juft and ufeful critieifm. If the original is a work of real excellence, the travefty or parody detracts nothing from its merit, nor robs the author of the finalleft portion of his jult praife. We laugh at the affociation of dignity and meannefs; but the former remains the exclufive property of the original, the latter belongs folely to the copy. We give due praife to the mimical powers of the imitator, and are delighted to fee how ingeniounly he can elicit fubjects of mirth and ridicule frum what is grave, dignified, pathetic, or fublime.

But this fpecies of compolition pleafes only in a fhort fpecimen. We cannot bear a lengthened work in travefty. The incongruous affociation of dignity and meannefs excites rifibility chiefly from its being unexpected. Cotton's and Scarron's Virgil entertain but for a few pages : the compofition foon becomes tedious, and at length difgufting. We laugh at a fhort exhibition of buffoonery; but we cannot endure a man who, with good talents, is conftantly playing the fool.

TKEACLE (fee Encycl.) or Melasses, is a fubfance very wholefome, but of a talte difagreeably fweet. Methods have accordingly been propofed for purifying it, fo as that it may, on many occations, fupply the place of refined fugar, which has longheen at a price which a great number of poor perfons cannot afford to pay for what mult now be conlidered as a neceffary of life. The following is the procefs for purifying treacle, given by the M. Cadet (Devaux) in the Feuille du Cultivateur, founded upon experiments made by Mr Lowitz of Peterfburgh :
Take of treacle 24 lbs . of water 24 lbs . of charcoal, thorunghly burnt, 6 lbs . Bruife the charcoal grofsly, nix the three fubflances iu a caldron, and let the mixture buil gently upon a clear wood fire. After it has boiled for half an hour, pour the liquor throngh a frain-ing-bag, and then replace it upon the fire, that the fuperfluous water may be cvaporated, and that the treacle may be brought to its original confiftence. There is little or no lofs by this operation, as 24 lbs . of treacle give nearly the fame quantity of fyrup.
This procefs has been repeated in the large way, and bas fucceeded : the treacle is fenfibly ameliorated, fo that it may be ufed formany difhes; neverthelefs, thofe with milk, and the fine or aromatic liqueurs, are not near fo good as with fagar.

TREBISOND, a large, populous, and frong town Trebifond of Turkey in Afia, in the province of Jenich, with a Greek archbifhop's fee, a harbour and a cafte. It is feated at the foot of a very fleep hill. The walls are fquare and high, with battlements ; and are built with the ruins of ancient fructures, on which are inferiptions not legihle. The town is not populous; for there are more woods and gardens in it than houfes, and thefe but one fory high. The caftle is feated on a flat rock, with ditches cut therein. The harbour is at the eaft end of the town, and the mole built by the Genoefe is almoft deltruyed. It flands on the Black Sea, 104 miles north-weft of Erzerum, and 440 eaft of Conftantinople. E. Lon. $40^{\circ} 25^{\prime}$. N. lat. $40^{\circ} 45^{\prime}$.
TREE. Under this title (Encycl.) we gave an account of the method recommended by Meflrs Furfyth and Hitt for curing injuries and defects in trees. The actual cautery is employed in Cevennes, and in the department de l'Allier, in France, for ftopping the progrefs of rottennefs in large trees. When they perceive that this very common and dellructive difeafe begins to make fome progrefo in the chefnut-tree, by excavating its trunk, they collect heath and other combuftible vegetables, and burn them in the very cavity, till the furface is completely converted into a coal. It feldom happens that the tree perifhes by the effect of this operation, and it is always found that this remedy fufpends the progrefs of the decay. It is practifed in the fame manner, and with fimilar fuccefs, on the white oak. When we compare the effects of the actual cautery on the animal fyttem, in fimilar difeafes, a new refemblance is feen between the difeafes which affect the organic beings of both kingdoms, as well as between the remedies by which they may be oppofed. - Nicholfon's Yournal.
triangle, Arithmetical, a kind of numeral triangle, or triangle of numbers, being a table of certain numbers difpofed in form of a triangle. It was fo called by Pafcal; but he was not the inventor of this table, as fome writers have imagined, its properties having been treated of by other authors fome centuries before him, as is Thewn in Dr Hutton's Mathematical Tracts, vil. i. p. 69. \&c.

The for:n of the triangle is as follows :

1	1				
1	1	1			
1	2	3	3	1	
1	-4	6	4	1	
1	5	10	10	5	1
1	6	15	20	\&c.	
1	7	21	$\& c$		
1	8	$\& c$			
1	9				
1	9				

And it is conftructed by adding always the laft two numbers of the next two preceding columns together, to give the next fucceeding column of numbers. ${ }^{\circ}$

The firt vertical column conlifts of units; the fecond, a feries of the natural numbers $1,2,3,4,5, \& c . ;$ the third, a feries of triangular numbers $1,3,6,10, \& \mathrm{c}$.; the fourth, a feries of pyramidal numbers, \&c. The oblique diagonal rows, defeending from left to right, are alfo the fame as the vertical columns. And the numbers taken on the horizontal lines are the co.efficients of the different powers of a binomial. Many other properties and ufes of thefe numbers have been delivered by various authors, as may be feen in the Introduction

T R 1

 8, 75, 76, 77, 89, fecond edition.TRIANGULAR Compasses, are fuch as have three legs or feet, by which any triangle, or three points, may be taken off at once. Thefe are very ufeful in the confruction of maps, globes, \&c.

Tilangulan Numbers, are a kind of polygonal num. bers; being the fums of arithmetical pragreffions, which have if the common difference of their terms.

Thus, from thefe arithmeticals $123+5 \quad 6$, are formed the triangular numbers $1 \begin{array}{lllll}1 & 6 & 10 & 15 & 21\end{array}$, or the third column of the arithmetical triangle abovementioned.

The fum of any number n of the terms of the triangular numbers, $1,3,6,10, \& c$. is $=$

$$
\frac{n^{3}}{6}+\frac{n^{2}}{2}+\frac{n}{3}, \text { or } \frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3}
$$

which is alfo equal to the number of hot in a triangular pile of balls, the number of rows, or the number in each fide of the bafe, being n.

The fum of the reciprocals of the triangular feries, infinitely continued, is equal to 2 ; viz.

$$
\frac{1}{1}+\frac{1}{6}+\frac{1}{10}+\frac{1}{1 T}, \text { Sc. }=2
$$

For the rationale and management of thefe numbers, fee Malcolm's Arith. book 5. ch. 2.; and Simp fon's Algeb. fec. 15.
TRIESTE, a fmall, but flrong and ancient feaport of Italy, in IAtria, on the gulph of Venice, with a bifhop's fee. It is beautifully fituated on the fide of a hill, about which the vineyards form a femicircle. The Atreets are narrow; but there is a large fquare, where they keep the annual fair. The harbour is fpacious, but not good; becaufe it is open to the W. and S. W. winds. The inhabitents have a good trade in falt, oil, almonids, iron, \&c. bronght from Laubach; and they make good wines. The cathedral, and the late Jefuits church, are the two beft buildings. It belongs to the Houfe of Auftria, and is eight miles north of Capo d'lftria, and 80 north-eaft of Venice. E. Long. 14. 4. N. Lat. 45. $5^{6 .}$

TRINITARIANS (Order of), was inflituted at Rome in the year 1198 , under the pontificate of Inrocent III. the founders whereof were John de Matha and Felix de Valois. His Holinefs gave them permir. fion to eltablifh this order for the deliverance of captives, who groaned under the tyranny of the infidels: he gave them as a habit a white gown, ornamented with a red and blue crofs. After the death of the two founders, Pope Honorious III. continued the order; and their rule was approved by his fucceffor Clement IV. in 1367 . At firft they were not permitted to eat flefh; and when they travelled, were to ride only upon affes. But their rule was corrected and mitigated by the biihop of Paris, and the abbots of St Victor and St Genevieve, who allowed them to eat any kind of food, and to ufe horfes. This order poffeffed, at one time, about 250 convents in 13 different provinces: fix of which were in France; namely, France, Normandy, Picardy, Champaine, Languedoc, and Provence ; three in Spain, viz. New Caftile, Old Caftile, and Arragon; one in Italy, and one in Portugal. There was formerly the province of England, where this order had 43 houfes; that of Scotland, where it had nine ; and that of Ireland, where it had 52 ; befides a great num-
ber of monafterics in Saxony, Hungary, Bohemia, and other countries. The convent of Cerfroy in France was head of the ordcr. It is impoffible for us to fay what is now the flate of the order, which can have no vifible exittence in France, and is probably fuppreffed even in Italy.

TRIONES, in aftronomy, a fort of conitcllation, or affemblage of feven ftars in the Urfa Major, popularly. called Charles's Wain.-From the feptern triones the north pole takes the denomination feplent io.
TRIPOLI of Syria is, accurding to Mr Browne, by no means fo populous a place as we were led to reprefent it in the Encycloperdia. It is indeed, he fays, a city of fome extent, fituated about a mile and a half from the fea; but inllead of fixty, he eftimates its population at about fixteen thouriand. The air is rendered unwholefome by much ftagnant water. The town is placed on a flight elevation, the length confiderably exceeding the breadth. On the highedt ground, to the fouth, is the cafte, formerly porficifed by the calls of Tripoli ; it is large and ftrong. Hence is vilible a part of mount Libanus, the fummit of which is covered with fnow. The gardens in the vicinity are rich in mulberry and other fruit trees. The city is well built, and moft of the flreets are paved.

Here is found a number of Mahommedan merclants, fome of the richeft and moft refpectable in the empire. Silk is the chief article of commerce.
The miri, or fixed public revenue paid by Tripoli to Conftantinuple, is only about L. rooo Sterling, 20 purfes, a-year. Syria at prefent contains only four Pathaliks, Damafcus, Aleppo, Acré, and Tripoli ; the laft of which is the fmalleft in territory and power. Our anthor obferved no antiquities at Tripoli; but the country round it is noted for producing the beft tobacco in Syria.

TRISECTION, the dividing a thing into three equal parts. The term is chiefly ufed in geometry, for the divifion of an angle into three equal parts. The trifection of an angle geometrically, is one of thofe great problems, whofe folution lias been fo much fought for by mathematicians for 2000 years paft; being, in this refpect, on a footing with the famous quadrature of the circle, and the duplicature of the tube.

TRISTAN d'Achuna, the largett of three iflands which were vifited hy Lord Macartncy and his fuite on the 3 it of December 1792. The other two are diAtinguifhed by the names of Inacceffible and Nightingale iflands. "Inacceflible (as Sir Erafmus Gower obferved) feems to deferve that name, being a high, bluff, as well as apparently barren plain, about nine miles in circumference, and has a very forbidding appearance. There is a high rock detached from it at the fouth end. Its latitude is $37^{\circ} 19^{\prime}$ fouth; its longitude $11^{\circ} 50^{\prime}$ wett from Greenwich. This rude-looking fpot may be feen at 12 or 14 leagues diftance. Nightingale ifland is irregular in its form, with a hollow in the middle, and is about feven or eight miles in circumference, with fmall rocky ifes at its fouthern extremity. It is defcriber? as having anchorage on the north-eafl fide. Its latitude is $37^{\circ} 29^{\prime}$ fouth ; and longitude $11^{\circ} 48^{\prime \prime}$ weft from Greenwich. It may be feen at feven or eight leagues diftance. The largeft of thefe three iflands, which comparatively may be called the great ife of Trifan d' A cunba, is very high, and may be feen at 25 leagues diflance. It feems not to exceed in circumference 15 miles. A part of the inand towards the north rifes $4 X_{2}$
perpen-
perpendicularly from the fea to a height apparently of a thoufand feet or more. A level then commences, forming what among feamen is termed table land, and extending towards the centre of the inand; from whence a conical mountain rifes, not uulike in appearance to the Peak of Teneriffe, as feen from the bay of Santa Cruz. Boats were fent to found and to examine the fhore for a convenient place to land and water. In confequence of their report, the Lion (a thip of 64 guns) food in, and came to anchor in the evening on the north lide, in 30 fathoms water, one mile from the fhore ; the bottom black fand with nime ; a fmall rock, off the weft point, bearing fouth-weft by fouth, jult open with the weflern extremity of the ifland; a caf. cade, or fall of water, emptying it felf upon the beach, fouth by eait. All the finre, from the fouthern point to the eattern extremity, appears to he clear of danger, and fteep, except the weft point, where there are breakers about two cables length, or near 500 yards from the fhore. The fhip, when anchored, was overfhadowed by the dark mals of that portion of the ifland whofe fides feemed to rife, like a mofs. grown wall, immediately from the ocean. On the right the elevation was lefs rapid, and between the rifing part and the fea was left a flat, of fome extent, covered with fedge grafs, interfperfed with fmall fhrubs, which, being perfectly green, lonked from the fhip like a pleafant meadow, watered by a ftream that fell, afterwards, from its banks upon the beach. The officers, who went afhore, reported, that the cafks might be filled with freth water by means of a long hofe, without moving them from the boais. The landing place thereabouts was alfo deferibed as being fafe, and fuperior to any other that had been examined. From the plain, the land rofe gradually towards the central mountain, in ridges covered with trees of a moderate fize and height. The coaft abounded with fea lions and feals, penguins and albatrofies. One of the latter was brought on board, his wings nieafiring ten feet from tip to tip; but others are faid to have been found much larger. The coatt was covered with a broad fea weed, feveral fathoms long, and defervedly by uaturalifts termed gigantic fucus. Some good fifl was cauglit with the hook and line.
" The accident of a fidden guft, by which the anchor was in a few hours driven from its hold, and the flip forced out to fea, prevented the ifland from being explored, as was intended. It is probable that had the Lion anchured in 20, inftead of 30 fathons water, the anchor would have held firmly. Some advantage was obtained, however, frum conining to this place. The juft pofition of thofe illands, in refpect to their longitude, was afcertained, by the mean of feveral time. pieces, to be alow two degrees to the caftward of the place where they are ldid down in charts, taken from ublervations made at a period when the inftruments for this purpofe were lefs accurate than at prefent. The fpot where the Lion anchored was determined, by good meridional obfervations, and by accurate time-pieces, to be $37^{\circ} 6^{\prime}$ fouth latitude, and $11^{\circ} 43^{\prime}$ weft longitude from Greenwich. The compals had feven degrees of variation weflward from the pole. Fahrenheit's thernometer food at 67 degrees. It was ufeful alfo to have afcertained, that a fafe anchorage, and plenty of good water, were to be found here. Thefe iflands are certainly worthy of a more particular inquiry ; for they are not 50 leagues from the general track of vel-
fels bound to China, and to the coalt of Coromanclel, by the outer paffage: In war time, an excellent ren. dezvous might be tettled there, for hips that wanted no other fupply but that of water. When circumftances require particular difpatch, it is practicable to come from England to Triftan d'Acunha without fopping in the way, and afterwards to the cnd of the voyage to India or China."
Thefe iflands are feparated by a fpace of ahout fifteen hundred miles from any land to the weftward or northward of them. They are lituated in that part of the fouthern hemifphere, in the neighbourhood of which a continent, to balance the quantity of land in the northern hemilphere, was once expected to be found, but where it has been fince difcovered that there is none. Of what extent, however, the bafes of thefe iflands are under the furface of the fea, cannot be afcertained ; or whether they may, or may not, be fufficient to make up for the defect of land appearing above water. Navigators report, that to the caltward of them are other finall iflands, differing not much in latitude, fuch as Gough and Alvarez illands, and the Marfouines ; as well as extenfive thoals, lying due fouth of the moit foutherly point of Africa, and extending eafterly feveral degrees. That all thefe together form a chain, fome of fubaqueous, and fome of fuperaqueous mountains, hut all connected by their roots, is perhaps a conjecture lefs improbable, than that they fhould feparatcly arife, like tall columns, from the vaft abyfs.

A fettement in Triftan d'Acunha is known to have been twice in the contemplation of adventurers, but not as yet to have been carried into exccution. One had the project of rendering it a mart for the change of the light manufacuures of Hindoftan, fuited to hot climes, for the filver of the Spanifh fettlements in South America; in the route between which places it is conveniently fituated. The other plan meant is only as a fuitable fpot for drying and preparing the furs of fea lions and feals, and for extracting the fpermaceti of the white or long-nofed whale, and the whale-bone and oil of the black fpecies. Whales of every kind were feen fporting ahout Tritan d'Acunha, particularly near the fetting of the fun; and the fword-fint likewife made its appearance occafionally.-Sir George Staunton's Account of the Embafly to Cbina.

TRITON, in zoology, a genus belonging to the order of vermes mollufca. The body is oblong; the tongue is fpiral ; it has twelve tentacula, fix on each fide, the hindmoft ones having claws like a crab. There is but one fpecies, found in holes of rocks about the fhore.

TROTTER (Mrs Catharine), was the daughter of Captain David Trotter, a Scotch gentleman. He was a commander in the royal navy in the reign of Charles II. and at his death left two daughters, the youngelt of whom, Catharine, our celelrated author, was born in London, Auguft 1679. She gave early marks of her genius; and learned to write, and alfo made herfelf miftrefs of the French language, by her own application and diligence, without any inftructor; but flat had fome affiftance in the Itudy of the Latin grammar and logic; of which latter fhe drew up an abitradt for her own ufe. The mof ferious and important fubjects, and efpecially religion, foon engaged her attention.But notwithftanding her education, her intimacy with feveral families of diftinction of the Romifh perfuafion, expofed her, while very young, to inpreffions in favour

Tritter. of that church; which not being removed by her con ferences with fome eminent and learned members of the cburch of England, the embraced the Romifh communion, in whicli fle continued till the year 1707. In 1695, fle produced a tragedy callecl Agnes de Caiflto, which was afed at the theatre-royal when the was only in her $17^{\text {th }}$ year. The reputation of this peiformance, and the verfes which fhe addreffed to Mr Cangreve upon his Mourning Bride, in 1697, were probably the foundation of her acquaintance with that celebrated writer. Her fecond tragedy, Futal. Friend/bip, was acted in 1698 , at the new theatre in Lincoln's-InaFields. This tragedy met withgreat applaufe, and is fill thought the moft perfect of her dramatic performances. Her dramatic talents not being confined to tragedy, fhe brought upon the flage, in 1701, a comedy called Love at a lofs, or Moft votes carry it. In the fame year the gave the public her third tragedy, entititled the Unbappy Penitent, acted at the theatreroyal in Drury-lane. But poetry and dramatic writing did not fo far engrofs the thoughts of our author but that the fometimes turned them to fubjects of a very different nature; and difinguithed herfelf in an extraordinary manner in defence of Mr Locke's writings; a female metaphyfician being a remarkable phenomenon in the republic of letters.

She turned to the exercife of her dramatic genius in 1703 , and fixed upon the revolution of Sweden, under Guftavus Erickfon, for the fubject of a tragedy. This tragedy was acted, in 1706, at the Queen's theatre in the Hay-Market. In 1707, her doubts concerning the Romifh religion, which fhe had fo many years profeffed, having led her to a thorough examination of the grounds of it, by confulting the beft books on both fides of the queftion, and advifing with men of the beft judgment, the refult was a conviction of the falfenefs of the pretenfions of that church, and a return to that of England, to which ine adhered during the remainder of her life. In 1708 , the was married to the Rev. Mr Cockburn, then curate of St Dunftan's in Fleet. ftrect, but lee afterwards obtained the living of LongHorfely, near Morpth in Northumberland. He was a man of confiderable abilities; and, among feveral other things, wrote an account of the Mofaic Deluge, which was much approved by the learned.

Mis Cockburn's remarks upon fome writers in the controverfy concerning the foundation of moral duty and moral obligation, were introduced to the world, in Augull 1743, in the Literary Journal, intitled The Hißory of the Works of the Learned. The Atength, clearnefs, and vivacity fhewn in her remarks upon the moft abfract and perplexed quettions, immediately raifed the curiofity of all good julges about the conecaled writer; and their admintation was greatly increated when her fex and advauced age were known. Dr Rutherforth's Effay on the Nature and Obligatione of Virtue, publifted in May 174, foon engaged her thoughts; and notwithtanding the afthmatic diforder which liad feized her many years before, and now left her fmall intervals of eafe, fhe applied lierfelf to the confutation of that elaborate difcourfe, and finifhed it with a fpirit, elegance, and perfpicuity equal, if not fuperior, to all her fornier writings.

The lofs of her humband in 748 , in the 71 fl year of his age, was a fevere ftock to her; and fhe did not long furvive him, fying on the 11th of May 1749, in her

7nft year, after having long fupported a painful diforder with a refiguation to the Divine will, which had been the governing principle of her whole life, and her fupport under the various trials of it.

Her works are collected into two large volumes 8 vo. by Dr Birch ; who has prefixed to them an account of her life and writings.

Trumpet Marine, or Marigny. This is a ftringed inftrument, invented in the oth century by an Italian artift Marino or Marigni, and called a trumpet, hecaufe it takes only the notes of the trumpet, with all its omifions and imperfections, and can therefore exccute only fuch melodics as are fitterl for that inflrument. It is a very curious inffrument, though of finall mufical powers, becaufe its mode of performance is totally unlike that of othef Atringed infruments; and it deferves our very particular attention, becaufe it lays open the mechanifm of mufical founds more than anything we are acquainted with; and we fhall therefore make ufe of it in order to communicate to our readers a philofophical theory of mufic, which we have already treated in detail as a liberal or fcientific art.
The trumpet marine is commonly made in the form of a long triangular pyramid, ABCD , fig. A. on which a fingle ftring EFG is flrained over a bridge F by means of the finger pin L. At the narrow end are feveral frets $1,2,3,4,5$, \&c. between $E_{\text {. and }} K$, which divide the length $E F$ into aliquot paris. 'Thus E_{I} is $3^{\frac{1}{2}}$ of EF, E_{2} is $\frac{3}{3}$, and fo on. The bow is drawn lightly acrofs the cord at H, and the ftring is ftopped by preffing it with the finger immediately above the frets, but not fo hard as to make it touch the fret. When the open ftring is founded, it gives the funclamental note. If it be ftopped, in the way now defcribed, at $\frac{1}{3} \mathrm{~d}$ of its length from E , it yields the 12 th of the fundamental; if flopped at $\frac{t}{4}$ th, it gives the double octave; if at $\frac{3}{5}$ th, it gives the 17 th majur, \&ec. In fhort, it always gives the note correfponding to the length of the part between the fret and the note E. The founds refemble thofe of a pipe, and are indeed the fame with thoie known by the name barmonies, and now executed by every performer on inftruments of the viol or violin rpecies. But in order to increafe the noife, the bridge F is conflructed in a very particular manner. It docs not reft on the found-board of the infrument through its whole breadth, but only at the corner a, where it is firmly fixed. The other extremity is detached about sod th of an inch from the found board; and thus the bridge, being nade to tremble by the ftrong vibration of the thick cord, rattles on the fuund-board, or on a bit of ivory glued to it. The minal way in which this motion is procured, is to have another fitring jaffing mader the middle of the bridge in fuch a manner that, hy Atraining it tight, we raife the corner b from the found board to the proper height. This contrivance incteafes prodigisufly the noife of the inftrument, and gives it fumewhat of the fmart found of the trumpet, tho' very harfl and coarfe. But it merits the attention of every perfon who wifhes to know any thing of the philofophy of mufical founds, aud we flall therefore fay as much on the fubject as will cunduce to this effect.

Galileo, as we have obferved in the article Temperament, Suppl. was the firt who difcovered the real connection between mathenatics and mulic, by demon. frating that the times of the vibrations of clatlic cords

Plate
XI.V.

$T \quad R \quad U$

Trmppet of the fame matter and fize, and ftretched by equal Marilie. weights, are proportional to the lengths of the flrings.

He inferred from this that the mufical pitch of the found produced by a ftretched cord depended folely on the frequency of the vibrations. Moreover, not being able to dilcover any other circumitance in which thofe founds phyfically refenbled each other, and reflecting that all founds are immediately produced by agitations of air acting on the ear, he concluded that each vibration of the cord produced a fonorous pulfe in the air, and therefore that the pitch of any found whatever depeaded on the frequency of the aerial pulfes. In this way alone the found of a Atring, of a bell, of an organ pipe, and the bellow of a bull, may have the fame pitcl. He could not, however, demontrate this in any cafe but the one above mentioned. But he was encouraged to hope that mathematicians would be able to demonfrate it in all cafes, by his having obferved that the fame proportions obtained in organ pipes as in ftrings Aretched by equal weights. But it required a great progrefs in mechanical philofophy, from the ftate in which Galileo found it, before men could fpeculate and reafon concerning the pulfes of air, and difcover any analogy between them and the vihrations of a flring. This analogy, however, was difcovered, and its demonftration completed, as we thall fee by and by. In the mean time, Galileo's demonftration of the vibrations of elaftic cords became the foundation of all mufical philofophy. It muft be thoroughly underfood before we can explain the perfornance of the trumpet marine.

The demontration of Galiteo is remarkable for that beautiful limplicity and perfpicuity which diftinguif all the writings of that great mechanician, and it is the elementary propofition in all mechanical treatifes of mufic. Few of then indeed contain any thing more; but it is extremely imperfea, and is juft only on the fuppofition that all the matter of the tring is collected at its middle point, and that the reft of it has elafticity without inertia. This did not fuit the accurate knowledge of the $17^{\text {th }}$ century, after Huyghens and Ncwton lad given the world a talle of what might be done by profecuting the Galiean mechanics. When a mufical cord has its middle point drawn afide, and it is ftrained into the fhape of two lltait lines, if it be let go, it will bo obferved not to vibrate in this form. It may eafily be feen in the extremity of its excurfions, where it refts, before it return by its elaticity. The reafon is this (fee fig. B.) When the middle point C of the cord is drawn afide, and the cord has the form of two fraight lines AC, CB, this point C , being pulled in the directions CA, CB, at once, is really accelerated in the direction CD , which bifeets the angle ACB ; and if it were then derached from the rell of the material cord, it would move in that direction. But any other point f between C and B has no accelerating force whatever acting on it. It is equally pulled in the directions $f \mathrm{C}$ and $f \mathrm{~B}$. The particle C therefore is obliged to drag along with it the inert matter of the reft of the cord; and when it has come to any intermediate fituation c, the cord canmot have the form of two ftraight lines $\mathrm{A}_{c, c}, \mathrm{~B}$, with the particle f fituated in f. This particle will be left fomewhat behind, as in φ, and the cord will have a curved form $A \subset \notin B$; and in this form it will vibrate, going to the other fide, and affuming, not the rectilineal form ADB , but the curved form

$T \quad R \quad U$

A \& B. That every particle of the curve A ec $f \mathrm{f}$ B is Trumpet now accelerated toward the axis $A B$ is evident, hecaute every part is curved, and the whole is ftrained toward A and B, which tends to ftraiten every part of it. But in order that the whole may arrive at the axis in one moment, and conftitute a tlraight line AB , it is evidently neceffary that the accelerating force on every particle be as the diftance of the particle from that point of the axis at which it arrives. It is well known to the mathematician that the accelerating force by which any particle is urged towards a rectilineal pofition, with refpect to the adjoining particles, is proportional to the curvature. Our readers, who are not familiar with fuch difcuffions, may fee the truth of this fundamental propofition by confidering the whole of $\mathrm{A} \epsilon \mathrm{B}$ as only a particle or minute portion of a curve, magnified by a microfeope. The force which ftrains the curve may be reprefented by c A or AE. Now it is well known (and is the foundation of Galieo's demonftration) that the ftraining force is to the force with which c is accelerated in the direction $c \mathrm{E}$ as $\mathrm{A} c$ to $c \mathrm{D}$, or as AE to $c \mathrm{D}$, or as AE to twice $c \mathrm{E}$. Now $c \mathrm{E}$ is the meafure of the curvature of $\mathrm{A} \subset \mathrm{B}$, being its deflection from a right line. Therefore when the ftraining force is the faine all over the curve, the accelerating force, by which any portion of it tends to become fraight, is proportional to the curvature of that portion. And if r be the radius of a circle paffing through A, c, and B , and coinciding with this element of a curve, it is plain that $c \mathrm{D}: c \mathrm{~A}=$ \& $\mathrm{A}: r$, or that the radius of curvature is to the element $\leftarrow \mathrm{A}$ as the extending force to the accelerating force; and $c \mathrm{D}=\frac{c \mathrm{~A}^{2}}{r}$; and is inverfely as r, or directly as the curvature.

Hence we fee the nature of that curve which a mufical cord muft have, in order that all its parts may arrive at the axis at once. The curvature at c mult be to the curvature at f as E_{c} to $g f$. But this may not be enougl. It is farther neceffary that when c has got half way to E , the curvature in the different points of the now curve into which the cord has now arranged itfelf, be alfo, in every point, proportional to the dif. tance from the axis. Now this will be the cafe if the extreme curve has been fuch. For, taking the cord in any other fucceffive fhape, the diftance which each point has gone in the fame moment mutt be proportional to the force which impelled it; therefore the remaining diftances of all the points from the axis will have the fame proportions as before. And the geometrical and evident confequence of this is, that the curvatures will alfo be in the fame proportion.

Therefore a cord that is once arranged in this form will always preferve it, and will vibrate like a cycloidal penduum, performing its ofcillations in equal times, whether they be wide or narrow. Therefore fince this perfect ifochronifin of vibrations is, all that is wanted for preferving the fanse mufical pitch or tone, this cord will always have the fame note.

This propofition was the difcovery of Dr Brooke Taylor, one of the ornaments of our country *, and is publifhed in his celebrated work Methodus Incrementorumr. The inveftigation, however, and the demonftration in that work, are fo obfcure and fo tedious that few had patience to perufe them. It was more elegantly treated afterwards by the Bernoullis and others. The curve
unnpet curve got the name of the Taylorean curve ; and is confidered by many eminent mathematicians as a trochoid, viz. the curve defcribed by a point in the nave or fpoke of a wheel while the wheel rolls along a ftraight line. But this is a miltake, although it is allied to the troclooid in the fame manner that the figure of fines is allied to the cycloid. Its phyfical property intitles it to the name of the harmonical curve. As this curve is not only the fuundation of all our knowledge of the vibration of elaltic cords, but alfo furnifhes an equation which will leall the mathematician throngh the whole labyrinth of aereal undulativus, and be of ufe on many other occafious; and as the firlt mathematicians have, through inattention, or through enmity to Dr Taylor, affected to confider it as the trochoid already well known to themelves-we fhall give a thort account of its confluction and chief properties, fimplified from the elegant defcription given by Dr Smith in his Harinonics.

Let SDTV, QERP (fig. C.), be circles defcribed round the centre C. Draw the diameters QCR, ECP, cutting each other at right angles. From any point G in the exterior cirele draw the radius GC, cutting the interior circle in F, draw KHFI parallel to CCR, and make HI, HK, each equal to the arch EG. Let this be done for every point of the quadrantal arch EGR. The points I, K, are in the harmonic curve; that is, the curve A KDIB pafing througlt the points K and I , determined by this conftruction, has its curvature in every point K proportional to the diltance KN from the bafe AB.

To demonftrate this, draw FL perpendicular to the axis, and join EL. Take another point g in the outer circle indefinitely near to G . Draw $g c$, cutting the inner circle in f, and $f b$ and $f l$ perpendicular to DC, CT , and join El. Then fuppofe two lines $\mathrm{K} n^{\prime} \mathrm{K} m^{\prime}$ perpendicular to the curve in K and k. They mult meet in m^{\prime}, the centre of the equicurve circle. Draw KN n^{\prime}. perpendicular to the bafe, and $m^{\prime} n^{\prime}$ parallel to it, and join $k n$. Lafly, draw XL x perpendicular to EL.

It is plain that $k \mathrm{O}$, the difference of HK and $b k$, is equal to $\mathbf{G} g$, the difference of GE and $g \mathrm{E}$, and that KO is equal to $\mathrm{F} r$, and $\mathrm{L} l$ to $r f$. Alfo, becaufe $E L X$ is a right angle, $E X=\frac{E L^{2}}{E C}$.

We have $\mathrm{F}: \mathrm{F} f=\mathrm{CL}: \mathrm{CF},=\mathrm{CL}: \mathrm{CD}$.

$$
\mathrm{Ff}: \mathrm{Gg}=
$$

Therefore $\mathrm{F}_{r}: \mathrm{G}_{g}$, or $\mathrm{KO}: \mathrm{O} k=\mathrm{CL}: \mathrm{CE}$.
The triangles ECL and $k \mathrm{OK}$ are therefore fimilar, as are alfo $k O \mathrm{~K}$ and $\mathrm{K} n m$, and confequently ECL and $\mathrm{K} n m$; and becaufe EC is parallel to $\mathrm{K} n$, EL is parallel to $\mathrm{K} m$. For the fame reafon $k m$ is parallel to $\mathrm{E} /$, and the triangles E / x and $m \mathrm{~K} k$ are fimilar, and

$$
\begin{aligned}
& \mathrm{L} x: \mathrm{K} k=\mathrm{LE}: \mathrm{K} m \\
& \text { and } \mathrm{L} x: \mathrm{K} k=\mathrm{EC}: \mathrm{K} n \text {. But farther, } \\
& \mathrm{L} x: \mathrm{L} j=\mathrm{CE}: \mathrm{CL}, \\
& \mathrm{~L},: \mathrm{F} f=\mathrm{KN}: \mathrm{CD}, \text { being }=\mathrm{FL}: \mathrm{FC} \\
& \mathrm{~F} f: \mathrm{G} g=\mathrm{CD}: \mathrm{CE}, \text { being }=\mathrm{F} f: k \mathrm{O} \\
& \mathrm{G} g: \mathrm{K} k=\mathrm{CE}: \mathrm{CL}, \text { being }=\mathrm{KO}: \mathrm{K} k .
\end{aligned}
$$

Therefore $\mathrm{L} x: \mathrm{K} k=\mathrm{KN} \times \mathrm{CE}: \mathrm{EL}^{3},=\mathrm{KN}: \mathrm{EX}$. Therefore $\mathrm{KN}: \mathrm{EX}=\mathrm{LE}: \mathrm{K} m$, and $\mathrm{K} m=\frac{\mathrm{EX} \cdot \mathrm{LE}}{\mathrm{K}} \mathrm{N}$, and $K N: E X=C E: K$, and $K_{n}=\frac{E X \cdot C E}{K N^{-}}$.

In the very narrow vibrations of mulical cords, CD is excecdingly fmall in comparifor with C E, fo that EX•EL, or EX•CE, may, without fenfible error, be taken for CE^{2}, and then we obtain $\mathrm{K} m$ or $\mathrm{K} n$ (which hardly differ) $=\frac{\mathrm{CE}^{2}}{\mathrm{KN}}$, and therefore the curvature is proportional to KN. The fmall deviation from this ratio would feem to fhew that this confruction does not give the harmonic curve with accuracy. But it is not fo. For it will be found, that although the curvature is not as KN , it is ftill propurtional to the fpace which any particle K muft really defcribe in order to arrive at the axis. Thefe paths are lines whofe curvatures diminifh as they approach to DC.

We fee iff, that the bafc ACB of the curve is equal to the femicircular arch QER.
$2 d$, Alfo that the tangent KZ in any point K is per. pendicular to EL.

3d, We learn that the curvature at A and B is nothing, for in thefe two points KN is noching.
$4 t h$, The radius of curvature at D is precifely $=\frac{C E^{2}}{C D}$.
Therefore, as the fting approaches the axis, and $C D$ diminithes, the curvature diminifhes in the fame proportion. The vibrations therefore are performed like thofe of a pendulum in a cycloid, and are ifochronous, whether wide or narrow, and therefure the mufical pitch is conftant.

This is not Atrictly true, becaufe in the wide vibrations the extenfion or extending force is fomewhat greater. Hence it is that a ftring when violently twanged founds a little fharper at the beginning. Dr Long made a harpfichord whofe ffrings were ftretched by weights, by which this imperfection was removed.
It is proper to exhibit the curvature at D in terms of the length $A B$, and of the greateft excurfion $c D$. Therefore let c be the circumference of a circle whofe diameter is \mathbf{I}. Let $A B$ the length of the cord be $=\mathrm{L}$, and let CD the $\frac{1}{4}$ breadth of the vibration be B .
We had a little ago $\mathrm{D} m=\frac{\mathrm{CE}^{2}}{\mathrm{CD}}$, but $c: 1=\mathrm{AB}$: CE , and $\mathrm{CE}=\frac{\mathrm{AB}}{c}$ and $c \mathrm{E}^{2}=\frac{\mathrm{AB} c}{c^{2}}$. Therefore D_{m} $=\frac{\mathrm{AB}^{2}}{{c^{2} \times C} \bar{D}^{\prime}}=\frac{\mathrm{L}^{2}}{9,37 \mathrm{CD}}{ }^{\text {nearly }}$.

We can now tell the number of vibrations made in a fecond by a ftring. This we obtain by comparing its mution, when impelled by the accelerating force which acts on it, with its motion when acted on by its weight only. Therefure let L be the length of a ftring, and W its weight, and let E be the training weight, or extending force: Let f be the force which accelerates the particle $\mathrm{D} d$ of the cord, and w the weight of that particle, while W is the weight of the whole cord. Let z be the fpace which the particle $\mathrm{D} d$ would defcribe during the time of one vibration by the uniform action of the ferce f, and let S be the fpace which it would defcribe in the fame time by its weight w alone. Then (Drnamics, Suppl. no 103 . cor. 6.) the time in which f would impel the particle $\mathrm{D} d$ along $\frac{1}{2} \mathrm{DC}$, is to the time of one vibration as $1: c$. And $\frac{2}{2} D C$ is to z as the fquare of the time of deferibing $\frac{1}{\mathbf{t}} \mathrm{DC}$ is to thefquare of the time of defcribing z; that is, $z: c^{2}=$ $\frac{3}{2} \mathrm{DC}: 2 x$, and $c^{2} \mathrm{DC}=2 x$.

T R U

'Trumpet
Marine.
Now, by the property of the larmonic curve, $\mathrm{AB}: \mathrm{D}_{m}=2 z: \mathrm{AB}$

But D $m: \mathrm{D} d=\mathrm{E}: f$ And D $d: \mathrm{Al}=\mathrm{E}: \mathrm{W}$ Therefore $2 \approx \cdot \mathrm{E} \cdot \boldsymbol{\omega}=\mathrm{AB} \cdot f \cdot \mathrm{~W}$ And $f: q v=2 z \because \mathrm{E}: \mathrm{AD} \times \mathrm{W}$ But $w: f=2 \mathrm{~S}: 2 \approx$ Therefore $2 s \times E=A B \times V$ And $2 \mathrm{E}: \mathrm{W}=\mathrm{AB}: \mathrm{S}$.
That is, a mulical chord, extended by a foree E, performs one vibration DCV in the time that a heavy body deferibes a fpace S, which is to the length of the cord as its weight is to twice the extendintg force.

Now let g be the fpace througla which a heavy body falls in one fecond, and let the time of vibration (eltimated in parts of a fecond) be T. We have

$$
\begin{gathered}
\mathrm{AB}: \mathrm{S}=2 \mathrm{E}: \mathrm{W} \\
\mathrm{~S}: \mathrm{g}=\mathrm{T}^{12}: \mathrm{I}^{2}
\end{gathered}
$$

Therefore $A B: g=2 \mathrm{E} \cdot \mathrm{T}^{2}: \mathrm{W}$

$$
\text { And } A B \times W=T^{2} \times 2 E \times g
$$

Therefore $\mathbf{T}^{2}=\frac{A B \times W}{2 g \cdot E}$, and $T=\sqrt{\frac{A B \times W}{2 g \cdot E}}$
Let n be the number of vibrations made in a fecond. $n=\frac{1}{\mathrm{~T}}=\sqrt{\frac{2 \mathrm{~g} \cdot \mathrm{E}}{\mathrm{AB} \cdot \mathrm{W}}}=\sqrt{\frac{2 g \mathrm{E}}{\frac{2}{\mathrm{~L} \cdot \mathrm{~W}}} .}$

If the length of the cord be meafured in feet, $2 g$ is very nearly 3^{2}. If in inches, $2 g$ is 386 , more nearly. Therefore $n=\sqrt{\frac{3^{2} \mathrm{E}}{\mathrm{L} \cdot \mathrm{W}}}$ or $\sqrt{\frac{3^{886}}{\mathrm{~L} \cdot \mathrm{~W}}}$. This may eafily be compared with obfervation. Dr Smith hung a weight of 7 pounds, or 49,000 grains, on a brafs wire fufpended from a finger pin, and flortened it till it was in perfect unifon with the double octave below the open ftring D of a violin. In this flate the wire was 35,55 inches long, and it weighed 3^{1} grains.

Now $\sqrt{\frac{38+\times 49000}{35,55 \times 31}}=130,7=n$. This wire, therefore, ought to make 130,7 vibrations in a fecond. Dr Smith proceeded to afcertain the number of aereal pulfes made by this found, availing himfelf of the theory of the beats of tempered confonances invented by himfelf. On his fine chamber organ he tuned upwards the -perfect fifths DA, A $e, e b$, and then tuned downward the perfect 6thed. Thus he obtained an octave to D, which was too fharp by a comma, and lie found that it beat 65 times in 20 feconds. Therefore the number of vibrations was $\frac{65}{20} 81$, or 263,25 . Thefe were complete pulfes or motions from D to V and back again, and therefore contained $526 \frac{1}{2}$ fuch vibrations as we have now been confidering. The double octave below fhould make $\frac{1}{4}$ th of this, or 131,6 , which is not a complete vibration more than the above theory rcquires: more accurate coincidence is needlefs.

This theory is therefore very completely eflablined, and it may be confidered as one of the fineft mechanical problems which has been folved in latt eentury. We mention it with greater minutenefs, becaufe the merit of Dr Taylor is not fufficiently attended to. Mr Rameau, and the other great theoritts in mufic, make no mention of him; and fuch as have occafion to fpeak of the abfolute number of vibrations made by any mufical note, always quote Mr Sauveur of the French aca-
demy. This gentleman has written fome very excellent Trumpe differtations on the theory of mufic, and Sir Ifaac New. Mariue ton in his Principia often quotes his authority. He has given the actual determination of the number of vibrations of the note C , obtained in a manner limilar to that practifed by Dr Smith on his chamber organ, and which agrees extremely well with that ineafure. But MrSauveur has alfo given a mechanical inveftigation of the problem, which gives the fame number of vibrations that he obferved. We prefume that Rameau and others took the demonftration for good; and thus Mr Sauveur paffes on the Continent for the difcoverer of this theorem. But it was nut publifhed till 1716 , though read in 1713; whereas Dr 'Taylor's demonftration was read to the Royal Society in May 1714. But this demoniftration of Mr Sauveur is a mere paralogifm, where errors compenfate errors; and the affumption on which he proceeds is quite gratuitous, and has nothing to do with the fubject. - Yet John Bernoulli, from enmity to 'Taylor and the Englifh mathematicians, takes not the lealt notice of this fophilticated demonftration, accommodated to the experiment, and fo devoid of any pretenfions to argunsent that this fevere critic could not but fee its falfity.

Sauveur was one of the firf who obferved ditinctly that remarkable fact which Mr Rameau made the foundation of his mufical theory, viz. that a full mufical note is aecompanied by its octave, its twelfth, and its feventeenth major. It had been cafually obferved before, by Marfennus, by Perrault, and others ; but Sauveur tells diftinctly how to make the obfervation, and affirms it to be true in all deep notes. Ramean afferts it to be univerfally and neceffarily true in all notes, and the foundation of all mufical pleafure.
It had been difcovered before this time, that not only a full note caufed its unifon to refound, but alfo that a 12 th, being founded near any open ftring, the ftring: refounded to this 12 th. It does the fame to a 15 th , a 17 th major, a 22d, \&c.
Dr Wallis added a very curious circumftance to this obfervation. Two of his pupils, Mr Noble and Mr Pigott, in 1673 , amufing themfelves with thefe refonnances, nbferved, that if a fmall bit of paper be laid on the ftring of a violin which is made to refound to its unifon, the paper is thrown off: a proof that the flring refounded by really vibrating, and that it is thrown into thefe, vibrations by the pulfes of the air produced by the other flring. In like manner the paper is thrown off when the flring refounds to its octave. But the young gentlemen ohferved, that when the paper was laid on the middle point of the ftring, it remained without agitation, although the flring fill refounded. They found the fame thing when they made the ftring refound to its 12 th: papers laid on the two points of divifion lay ftill, but were thrown off when laid on any other place. In fhort, they found it a general rule, that papers laid on any points of divition correfponding to the note which was refounded, were not agitaterd.

Dr Wallis (the greateft theorit in mufic of the 17 th century) jurtly concluded that thefe points of the refounding triug were at reft, and that the intermediate parts were vibrating, and procucing the notes correfponding to their lengths.
From this Mr Sauveur, with great propriety, deduced

T R U

Trunpet the theory of the performance of the trumpet marine, Marine. the vielle, the clavichord, and fome other inftruments.

When the flring of the trumpet marine is gently ftopped at $\frac{1}{2}$, and the bow drawn lightly acrofs it at H (fig. A), the full vibration at the finger is topped; but the fring is thrown into vibrations of fome kind, which will either be deftroyed or may go on. It is of importance to fee what circumflance will permit their continuance.

Suppofe an elaftic cord put into the fituation ABCDE (fig. D), fuch that $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DE}$, are all equal, and that BCD is a fraight line. Let the point C be made faft, and the two points B and D be let go at once. It is evident that the two parts will immediate1) vibrate in two harmonical curves $\mathrm{A} b \mathrm{C}$ and CDE, which will change to ABC and $\mathrm{C} d \mathrm{E}$, and fo on alternately. It is alfo evident that if a line FCG be drawn touching the curve ABC, it will alfo touch the curve CDE ; and the line which tonches the curve $\mathrm{A} b \mathrm{C}$ in C , will alio touch the curve $\mathrm{C} d \mathrm{E}$. In every inflant the two !.alves of the cord will be curves which have a common targent in the point C . The undoubted confequence of this is, that the point C will not be affected by thefe vibrations, and its fixure may be taken away. The $s u^{-d}$ will continue to vibrate, and will give the found of the octave to its fundamental note.

The condition; then, which muft be implemented, in order that a flring may refound to its octave, or take the found of its octave, is fimply this, that its two parts may vibrate equally in oppofite directions. This is evidently poffible; and when the bow is drawn acrofs the ftring of the trumpet marine at H , and irregular vibrations are produced in the whole flring, thofe which happen to be in one direction on both fides of the middle point, where it is gently flopped by the finger, will deftroy each other, and the confpiring unes will be inftantly produced, and then every fucceeding action of the bow will increafe them.

The fame thing muft happen if a fring is gently flopped at one-third of its length; for there will be the fame equ:librium of forces at the two points of divition, fo that the fixures of thefe points may be removed, and the flring will vibrate in three parts, founding the 12 th of the fundamental.

We may obferve, by the way, that if the bow be drawn acrofs the ftring at one of the points of divifion, correfponding to the flopping at the other end of the fring, it will hardly give any diftinct note. It rattles, and is intolerably harfll. The reafon is plain: The how takes fome hold of the point C , and drags it along with it. The cord on each fide of C is left behind, and therefore the two curves cannot have a conmmon tangent at C . 'The vibrations into which it is thus jogged hy the bow deftroy each other.

We now fee why the trumpet marine will not found every note. It will found none but fuch as correfpond to a divifion of the ftring into a number of equal parts, and its note will be in unifon with a flring equal to one of thofe parts. Therefore it will foylt of all found the fundamental, by its whole length;
2. Its oftave, correfponding to -
3. The 12 th,
4. The 15 th, or double octave,
5. The 1 thength
6. The 19th,

Suppl. Vol. II. Part II.
7. The 2 nf, which is not in the diatonic fcale of our inufic.
8. The triple octave, or 22 d ,
9. The 23 d , or 2 d in the fcale of the triple octave,
10. The 24 th, or 3 d in this fcale,

If. The 25 th, a falle 4 th of this feale, ir
12. The 26 th, a perfect 5 th of this fcale, r^{2}
13. The 27 th, a falfe oth of ditto, $\frac{1}{3}=\frac{3}{5}$ or $2^{\frac{1}{6}}$
14. The 28 th, a falfe 7 th minor,
15. The 28th, a perfect 7 th major, 16. The quadruple octave,

Thus we fee that this inftrument will not execute all mufic, and indeed will not complete any octave, becaufe it will neither give a perfect 4 th nor 6 th. We fhall prefently fee that thefe are the very defects of the trumpet.
This fingular fringed inflrument has been defcribed in this detail, chiefly with the view of preparing us for underftanding the real trumpet. The Vielle, Savoyarde, or Hurdygurdy, pefforms in the fame manner. While the wheel rubs one part of the ftring like a bow, the keys gently prefs the ftrings, in points of aliquor divifion, and produce the harmonic notes.

It is to prevent fuch notes that the part of harpfichord wires, lying between the bridge and the pins, are wrapped round with lift. Thefe notes would frequently ditturb the muic.

Laftly on this head, the 左olian harp derives its vaft variety of fine founds from this mode of vilration. Seldom do the cords perform their fundamental or fimple vibrations, They are generally founding fonse of the hamonies of their fundanmentals, and give us all this variety from frings tuned in unifon.

Trumpet, Mufical, is a wind if frument which founds by preffing the clufed lips to the fmall end, and forcing the wind through a very narrow aperture between the lips. This is one of the moft ancient of mufical inftruments, and has appeared in all nations in a vaft variety of forms. The conch of the favage, the horn of the cow-herd and of the poftman, the bugle horn, the lituvs and tuba of the Romans, the military trumpet, and the trombone, the cor de chaffe or French horn-are all inftruments winded in the famse manner, producing their variety of tones by varying the mamer and force of blowing. The ferpent is another inftrument of the fame kind, but producing part of its notes by means of holes in the fides.

Although the trumpet is the fimplet of all mufical inftruments, being nothing but a long tube, narrow at one end and wide at the other, it is the molt difficult to be explained. T'o underfand how fonorous andregulated undualtions can be excited in a tube without any previous vibration of reeds to form the waves at the entry, or of heles to vary the notes, requires a very nice attention to the mechanifm of aereal undulations, and we are by no means certain that we have as yet lit on the true explanation. We are certain, however, that thefe aereal undulations do not differ from thofe produced by the vibration of ftrings ; for they make flrings refound in the fame manner as ribrating cords do. Galileo, however, did not know this argument for his affertion that the mulical pitch of a pipe, like that of a cord, depended o., the frequency alone of the aereal undulations; but he thought it highly
probable,

Mufiesl
Trumpe:

T R U

Mufical probah'c, from hisobfervations on the ftructurc of organs, Trunpet. that the notes of pipes were related to their lengths in the fame manner as thofe of wires, and he exprefsly makes this remark. Newton, having difcovered that found moved at the rate of about 960 feet per fecond, obferved that, according to the esperiments of M: Sauveur, the length of an open pipe is half the length of an aereal pulfe. This he could eafily afcertain by dividing the fpace defcribed by found in a fecond by the number of pulfes.

Daniel Bernoulli, the celebrated promoter of the Newtonian mechanics, difcovered, or at leaft was the firft who attentively marked, fome other circumilances of refemblance between the undulations of the air in pipes and the vibrations of wires. As a wire can be made, not only to vibrate in its full length, founding i:s fundamental note, but can alfo be made to fubdivide itfelf, and vihrate like a portion of the wholc, with points of reft between the vibratiag portions, when it gives one of its harmonic notes; fo a pipe cannot only have fuch undulations of air going on within it as are competent to the production of its fundamental note, but alfo thofe which produce one of its harmonic notes. Every one knows that when we force a flute, by blowing too ftrongly, it quits its proper botc, and gives the octave above. Forcing ftill mure, produces the 12 th. Then we can produce the double octave or 15 th, and the 17 th major, \&c. In fhort, by attending to feveral circumftances in the manner of blowing, all the notes may be produced from one very long pipe that we produce from the trumpet marine, and in precifely the fame order, and with the fame omiffions and imperfections. This alone is almof equivalent to a proof that the mechanifm of the undulations of air in a pipe are analogous to that of the vibrations of an elaftic cord. Having with fo great fuccefs inveftigated the mechanifm of the partial vibrations of wires, and alfo another kind of vibrations which we fhall mention afterwards, incomparably more curious and more important in the philofophy of mufical founds, Mr Bernoulli undertouk the inveftigation of thofe more mytterious motions of air which are produced in pipes; and in a very ingenious differtation, publifhed in the Memoirs of the Academy of Paris for ${ }^{1762, ~ \& c . \text {. he }}$ gives a theory of them, which tallies in a wonderful manner with the chief phenumena which we obferve in the wind infruments of the flute and trumpet kind. We arc not, however, fo well fatisfied with the truth of his a/fumptions refpecting the flate of the air, and the precife form of the undulations which he affigns to it; but we fec that, notwithftanding a probability of his being miftaken in thefe circumftances (it is with great deference that we prefume to fuppofe him miftaken), the chief propofitions are till true; and that the changes from note to note mult be produced in the order, tho' perhaps not in the precife manner, affigned by him.

It is by no means eafy to conceive, with clearnefs, the wray in which mufical undulations are excited in the various kinds of trumpets. Many who have reputation as mechanicians, fuppofe that it is by means of vibrations of the lips, in the fame manner as in the lautboy, clarionette, and reed pipes of the organ, where the air, fay they, is put in motion by the trembling reed. But this explanation is wrong in all its parts; even in the reed pipes of an organ, the air is not put in motion by the rceds. They are indeed the occafions of its mudical undulation, but they do not immediately impel it
into thofe waves. This metliod (and indeed all me. Mufical thods but the viluations of wires, bells, \&\&c.) of produ. Trumpet. cing found is little underflood, though it is highly worthy of notice, being the origin of animal voice, and becaufe a knowledge of it would enable the artifts to entertain us with founds hitherto unknown, and thus add coaliderably to this gift of our Bountiful Father, who has thewn, in the itructure of the larynx of the human fpecies, that he intended that we thould enjoy the pleafures of mufic as a laborum dulce lenimen. He has there placed a micrometer apparatus, by which, after the uther mufcies have done their part in bringing the glottis nearly to the tenfion which the intended note requires, we can cafly, and inflantly, adjuft it with the utmolt nicety.

We truft, therefore, that our readers will indulge us while we give a very curfory view of the manncr in which the tremulous motion of the glottis, or of a reed in an organ pipe, produces the fonorous undulations with a conflant or unitorm frequency, fo as to yield a molical note.

If we blow through a fmall pipe or quill, we produce only a whizzing or hiffing noife. If, in blowing, we fhut the entry with our tongue, we hear fomething like a folid blow or tap, and it is accompanied with forne faint perception of a mutical pitch, juif as when we tap with the finger on one of the holes of a flute when all the reft are flut. We are then fenfile of a difference of pitch according to the length of the pipe; a longer pipe or quill giving a graver found. Here, then, is like the beginning of a fonorous undulation. Let us confider the flate of the air in the pipe: It was filled by a column of air, which was moving forward, and would have been fucceeded by other air in the fame flate. This air was therefore nearly in its thate of natural denity. When the entry is fuddenly ftopped by the tongue, the included air; already in motion, continues its motion. This it cannot do withont growing rarer, and then it is no longer a balance for the preffure of the atmofphere. It is therefore retarded ial its motion, totally thopped (being in a rarefied Itate), and is then preffed back again. It comes back with an accelerated motion, and recovers its natural denfity, whale the ftate of rarefaction goes forward through the open air like any other aereal pulfe. Its motions are fomewhat, but not altogether, like that of a fpiral wire, which has been in like manner moving uniformly along the pipe, and has been ftopped by fomething catching hold of its hindermof extremity. This fpring, when thus catched behind, Atretches itfelf a little, then contracts beyond its natural ftate, and then expands again, quivering feveral times. It can be demonftrated that the column of air will make but one quiver. Suppofe this accomplifhed in the hundredth part of a fecond, and that at that inflant the tongue is removed for the hundredth part of a fecond, and again applied to the entry of the pipe. It is plain that this will produce fuch another pulfe, which will join to the former one, and force it out into the air, and the two pulfes together will be like two pulfes produced by the vibration of a cord. If, inltead of the tongue, we fuppofe the flat plate of an organ-reed to be thus alternately applied to the hole and removed, at the exact moments that the renewals of air are wanted, it is plain that we fhall have fonorous undulations of uniform frequency, and therefore a mufical note. This is the way in which reeds pro-

Aufical duce their cffect，not by inselling the air into alternate Trsumpet． thates of motion to and fro，and alternate ftrata of rare－
ficel and condenfed air，lont by giving them time to ac－ quire this llate by the combination of the air＇s clafticity with its progreflive motion．
＇The adjultment of the fucceeding puff of air to the pulle which precedes it，fo that they may make oue dinooth and regular pulte，is more exact than we have yet remarked；for the floppage of the hole not only accelions a larefaction lefore it，but by checking the air which was jutt going to enter，makes a condenfation bebinid the door（to to lyeak）；fo that，when the paflage is arain opened，the two parcels of air are fitted for fupporting each other，and forming one pulfe．
suppote，in the nest place，that the reed，initead of completely thutting the hole each time；only half thuts it．＇Phe lame thing mutt till happen，although not in fo remarkable a degree．When the paffage is contract－ ed，the fupply is diminifhed，and the air now in the pipe mull ratefy，by advancing with its former velocity． It inult therefore retard；by retarding，regain its for－ neer denfity；and the air，not yet got into the pipe， mutt condenfe，\＆e．And if the paffage he again open－ ed or cnlarged in the proper time，we hell have a com－ plete pulfe of condenfed and rarefied air；and this mant be accompanied by the beginning of a mufical note， which may be continued like the former．

This will be a fofter or more mellow note than the other；for the condenfed and rarelied air will not be fo fuddenly changed in their denfities．The difference will be like the difference of the notes produced by drawing a quill along the teeth of a comb，and that produced by the equally rapid vibrations of a wire．For let it be remarked here，that mufical notes are by no means confined，as theorifts commonly fuppofe，to the regular cycloidal agitations of air，fuch as are produced by the vibrations of an claftic cord；but that any crack，fnap， or noife whatever，when repeated with fufficient frequen－ cy，becomes ipfo fario a mufical found，of which we can tell the pitch or note．What can be lefs mufieal than the folitary cracks or fnaps made by a 1 tiff door when very flowly opened？Do this brinkly，and the ereak changes to a chirp，of which we can tell the note．The founds will be harfh or finooth，according ts the friaps of which they are compofed are abrupt or gradual．

This diftinction of founds is mott fatisfactorily con－ firmed by experiment．If the tongue of the urgan reed is quite flat，and if，in its vibrations，it apply iffelf to the whole margin of the hole at onee，fo as eompletely to thint it（as is the cafe in the oldfafhioned regal ftop of the organ），the note is clear，fmart，and harth or hard： but if the lips of the reed are enrved，or the tongue properly bent backward，fo that it applies itfelf to the edges of the hole gradatim，and never completely fhuts the paffage，the note may have any Iegree of mellow iweetnefs．＇This remark is worth the attention of the iottrument－makers or organ－builders，and enables them to vary the voice of the organ at pleafure．We only mention it here as introductory to the explanation of y the foun．is of the trumpet．

We trult that the reader now perceives how the air， proceeding along a pipe，may be put in the ftate of al． ternate frata of condenfed and rarefied air，the par－ ticles，in the mean time，proceeding along the pipe with a very moderate velocity；while the flate of undulation is propagated at the rate of eleven or twelve hundred
fect in a fecond；jul as we may fometimes fee a fercam of water gliding gently down a canal，while a wave ruas along its lurface with much greater rapidity．

It will greatly affit the imagination，if ne compare thefe aereal undulations with the undulations of water in an open canal．While the water is flowing fmooth－ ly along，fuppofe a lluice to be thruft up from the bot－ tom quite to the furface，or bey ond it．This will ine mediately caufe a deprefion on the lower fide of tie fluice，by the water＇s going aloner，the canal，and a heap－ ing up of the water on the other lise．liy properly timing the motion of this 胜保 up and down，we caan produce a feries of comected waves．If the lluice be not pufhed up to the furface but only anc－half way， there will be the fame fucceffion of waves，but much finauther，ふc．\＆c．

It is in this fate，though not by fuch means，that the air is contained in a founding trunpet．It is not brought into this llate by any tremor of the lips．The trumpeter fonetimes feels fuch a tremor ；but whenever he feels it，he can no longer found his note．His lips are painfully tickled，and he muft clange his manner of winding．

When blowing with great delicacy sond care，the deepert notes of a French horn，or trombone，we fome－ times can feel the undulations of the air in the pipe di－ ftinctly futtering and beating againt the lips；and it is diffieult to hinder the lips from being affected by it： but we feel plainly，that it is not the lips which ase flut－ tering，but the air before them．We feel a curious in． Itance of this when we attempt to whitle in concert． If our accompanier intonates with a certain degree of incorrectnefs，we feel fomething at our own lips which makes it impoffible to utter the intended nute．This bappens very frequently to the perfon who is whiftling the upper note of a greater third．In like manner，the undulations in a pipe react on the reed，and check its ri－ brations．For if the dimenfions of a pipe are fuch that the undulations formed by the reed cannot be kept up in the pipe，or do not fuit the length of the pipe，the reed will either not play at all，or will vibrate only in ftarts．This is finely illuftrated by a beautiful and in． Atructive experiment．Take a fmall reed of the vox bu－ mana flop of an organ，and fet it in a glafs foot，adapt－ ed to the windbox of the organ．Intlead of the com－ mon pipe above it，fix on it the niding tube of a fmall telefcope．When all the joiots are thrutt down，touch the key，and look attentively to the play of the reed． While it is founding，draw out the joints，making the pipe continually longer．We thall obferve the reed thrown into ftrange fits of quivering，and fometimes quite motionlefs，and then thrown into wide fonorous vibrations，according as the maintainable pulfe is com－ menfurate or not with the vibrations of the reed．This plainly fhews that the air is not inpelled into its undu． lations by the reed，but that the reed accomnodates it－ felf to the undulations in the pipe．

We acknowledge that we cannot explain with dil－ tinetnefs in what manner the air in a trumpet is firit put into inulical unduations．We fee that it is only in very long and flender tubes that this can be done． In fhort tubes，of confiderable diameter，like the cow－ herd＇s horn，we obtain only one or two very indi－ Binct notes，of which it is difficult to name the pitels； and this requires great force of blalt；whercas，to bring ows the deep notes of the French horn，a very gentle

Mutical
Trumpet．

Mufical and well-regulated' blaft is neceflary. The form of the Trumpet. lips, combined with the force of the blat, form all the notes. But this is in a way that canot be taught by any defeription. 'The performer kearns it by habit, and ficls that the inftrument leaps into it note without him, when he gradually varies his blatt, and continues founding the fame note; although he, in the mean time, makes fome fmall change in his manner of blowing. This is owing to what Mr Bernoulli obferved. The tube is fuited only to fuch pulfes, and can only maintain fuch pulfes as correfpond to aliquot parts of its length : and when the embouchure is very nearly, but not accurately, fuited to a particular note, that note forms itfelf in the tube, and, reiting on the lips, brings them into the form which can maintain it with eafe. We have a proof of this when we attempt to found the note correfponding to one feventh of the length. Not traving a diftinct notion of this note, which makes no part of our feale of melody, we cannot eafily prepare for it in the way that liabit teaches us to prepare for the others: whereas, from what we fall fee prefently, the notes one fiath and one cighth are both familiar to the mind, and eafly produced. When, therefore, we attempt to produce the note one-feventh, we flide, againft our will, into the one fixth or one eighth.

Nor can we completely illuftrate the formation of mufical pulfes by waves in water. A canal is equally fufceptibie of every lieight and length of progreffive waves; whereas we fee that a certain length of tube will maintain ouly certain determined pulfes of air.

We mutt therefore content ourlelves for the prefent with having learned, by means of the reed pipes, how the air may exift progrefively in a tube, in an alternate ftate of condenfation and rarefaction; and we fhall now proceed to contider how this thate of the air is related to the length of the tube. And here we can do no mere than give an outline of Mr Bernoulli's beautiful thenry of flutes and trumpets, but without a mathema. tical examination of the particular motions. We can, however, hew, with fufficient evidence, how the different notes are produced from the fame tube. It requires, however, a very fteady attention from the reader to enable him to perceive how the different partions of this air act on each other. We trult that this will now be given.

The conditions which mut be implenented, in order to maintain a mufical pulfe, are two: 1. That the vibrations of the different plates of air be performed in equal times, otherwife they would all mix and confound each other. 2. That they move all together, all beginning and all ending at the fame inftant. It does not appear that any other ftate of vibration can exif and be maintained.

The column of air in a tube may be confidered as a material fyتing (having weight and inertia.) This fpring is compreffed and coiled up by the preffure of the atmofphere. But in this coiled flate it can vibrate in its different parts, as a long fpiral wire may do, though preffed a little together at the ends. It is evident that the air within a pipe, fhut at both ends, may be placed in fuch a fituation, in a variety of ways, that it will vibrate in every part, in the fame manner as a chord of the fame length and weight, thrained by a force equal to the preflure of the atmofphere. Thus, in the fhut
into the form of this carve. The force which impels隹 the point C to the axis is to that which impels the Trumpet. point c as CE to ce. Now, [uppofe the air in this pipe divided into parallel ftrata or plates, crofling the tube like diuphragms. In order that thefe may vibrate in the fame manner (not acrofs the tube, but in the direction of its axis), all that is necelfary for the moment is, that the excefs of the preflure of the fratum $d d$ above that of the Atratum ff may be to the excefs of the preffure of DD above that of FF as $c e$ to CE. In this cafe, the flratum c e will be accelerated in the direction ef, and the ftratun土 EE is accelerated in the fame direction, and in the due proportion. Now this may be done in an infinite variety of ways for a fingle mument. It depends, not on the abfolute denlity, but on the variation of denfity ; becaufe the preffure by which a particle of air is urged in any direction arifes from the difference of the ditapees of the adjoining particles on each fide of it. But in order to continue this vibration, or in order that it may obtain at once in the whole pipe, this variation of denfity muft continue, and be according to fome connected law. This circumftance greatly limits the ways in which the vibration may be kept up. Mr Bernoulli finds that the ifochro. nifm and fynchronifm can be maintained in the following manner, and in no other that he could think of:

Let $A B$ (fig. 2.) be a cylindrical pipe, fhut at A, and open at B. Then, in whatever manner the found is produced in the pipe, the undulations of the contained air mult be performed as follows: Let a a he a plate of air. This plate will approach to, and recede from, the fhut end A, vibrating between the fituations $b b$ and $c c$, the whole vibration being $b c$, and the plate will vibrate like a pendulum in a cycloid. The greater we fuppofe the excurfions $a b, a c$, the louder will the found be; but the duration of them all muft be the faıne, to agree with the fact that the tone remains the fame. The motion will be accelerated in approaching to a a from either fide, and retarded in the recefs from it. Let us next confider a plate $\alpha \alpha$, more remote from A. It muft make fimilar vibrations from the fituation β β to the $\mathrm{fi}_{1}-$ tuation $\gamma \gamma$. But thefe vibrations mult be greater in propurtion as the plate is farther from A. It cannot be conceived otherwife: For fuppofe the plate a a to make the fame excurfions with $a b$, and that the reft do the fame. Then they will all retain the fame diftances from each other ; and thus there will be no force whatever acting on any partieles to make them vibrate. But if every particle make excurtions proportional to its diflance from A, the variation of denfity will, in any inftant, be the fame through the whole pipe, and each particle in the vibrating plate $\beta \beta$ will be accelerated or retarded in proportion to its dittance from A; while the accelerations and retardations over all will, in any inftarit, be proportional to the dittance of each particle from its place of reft. All this will appear to the mathematician, who attentively confiders any momentary fituation of the particles. In this manner all the particles will fupport each other in their vibrations.

It follows from this defeription that the air in the tube is alternately rarefied and condenfed. But thefe claanges are very different in different parts of the tube. They mult be greatelt of all at A; becaufe, while all the plates approach to A, they concur in condenfing the air immediately adjoining to A; while the air in

$T R \quad U$

beyond it. The air at B is always of irs natural denfity, being in equilibrio with the furrounding air. At B, therefore, there is a fmall parcel of air, of its natural denfity, which is alternately going in and out.

This account is conlarmed by many facts. If the botom of the pipe be fhut by a fine membrane, Atretched acrofs it like a drumhead, with a wire flretched over it, either externally or intermally, in the fame manner as the catgut is Atretched acrofs the bottom of a drum, it will be thrown into flrong vibrations, making a very loud noife, by rattling againgt the crofs wire. The fame thing happens if the membrane be patted over a hole clofe to the bottom, leaving a fmall fpace rutud the edge of the hole without patte, fo that the membrane may play out and in, and rattle on the margin of the hole. 'This alfo makes a prodigious noife. Now, if the membrane be patted on a hole far from the bottom, the agitations will be much fainter; and when the hole is near the mouth of the pipe, there will be none. - When a pipe has its air agitated in this manner, it is giving the loweft note of which it is fufceptible.

Let us next confider a pipe open at both ends. Let $C B$ (fig. 3) be this pipe. It is plain that, if there be a partition A in the middle, we foll have two pipes $A B, A C$, each of which may undulate in the manner now defcribed, if the undulations in each be in oppofite directions. It is evidently poffible, alfo, that thefe undulations may be the fame in point of ftrength in both, and that they may begin in the fame inftant. In this cafe, the air on each fide of the partition will be in the fame fate, whether of condenfation or rarefaction, and the partition A it felf will always be in equilibrio. It will perfectly refemble the point C of the mutical cord BFCGH (fig. 6.), which is in equilibuio between the vibrating forces of itstwo parts. In the pipe, the plates of air on each fide are either both approaching it, or both receding from it, and the partition is either equal. ly fqueezed frum both fides, or equally drawn outwards. Confequently this partition may be removed, and the parcels of air on each fide will, in any iatant, fupport each other. There feems no other way of conceiving thefe vibrations in open pipes which will admit of an explanation by mechanical laws. The vibrations of all the plates mut be obtained without any mutual hinderence, in order to produce the tone which we really hear ; and therefore fuch vibraitons are impreffed by Natuce on each plate of air.

But if this explanation be juft, it is plain that this pipe $C B$ muft give the fame note with the pipe $A B$ (fig. 2.) of half the length, fhut at one end. But the found, being doubled, with perfect confonance, muit he clear, ftrong, and mellow. Now this is perfectly agrieable to obfervation; and this fact is an unequivocal confirmation of the juftnets of the theory. If we take a flender pipe, about fix inches lung and one half of an incls wide, thut at one end, and found it by blowing acrof; its mouth, as we whifte on the pipe of a key, or acrofs a hole that is clofe to the mouth, and formed with an edge like the found-hole of a German flute, we fhall get a very diftinct and clear tone from it. If we now take a pipe of double the length, open at both ends, and blow acrofs its mouth, we obtain the fame note, but more clear and flrong. And the note produced by blowing acrofs the mouth is not changed by a hole made exactly in the middle, in refpeet of its mufical

725] T R U

pitch, although it is greatly hurt in point of clearnefs Mufical and Itrength. Alfo a membrane at this hole is ftrong- Trumpet. ly agitated. All this is in perfect conformity to this mechanifm.

Thus we have, in a great meafure, explained the effect of an open and a shut pipe. The fhut pipe is always an octave, graver than an open pipe of the fame length; becaufe the open pipe is in unifon with a mut pipe of half the length.

Let AC (fig. 4.) be a pipe fhut at both ends. We may confider it as compuled of two pipes $A B, B C$, ftopped at A and C, and open at B. Undulations may be performed in each half, precifely as in the pipe $A B$ of tig. 2.; and they will not, in the fmalleft degree, obAruct each other, if we only fuppofe that the plates in each half are vibrating at once in the fame direction. The condenfation in $A B$ will correfpund with the rarefaction in BC , and the middle parcel B will maintain its natural denfity, vibrating to, and again acrofs the middle; and two plates $a a, \alpha \alpha$, which are equally diftant from B, will make equal excurfions in the fame direction.

We may produce found in this pipe by making an opening at B . Its note will be found to be the fame with that of BC of fig. 2 or of AB of fig. 2 .

In the next place, let a pipe, fhut at one end, be confidered as divided into any odd number of equal parts, and let them be taken in pairs, beginning at the flopped end, fo that there may be an odd one left at the open end. It is plain that each of thefe pairs may be confidered as a pipe ftopped at both ends, as in fig. 4.

For the partitions will, of themfelves, be in equilibrio, and may be removed, and vibrations may be maintained in the whule, confittent with the vibration of the odd part at the open end; and thefe vibrations will all fupport each other, and the plates of air which are at the points of divifion will remain at reft. Conceive the pipe $A 13$ of fig. 2 , to be added to the pipe $A C$ of fig. 4. the part A of the firt being joined to A of the other. Now, fuppofe the vibrations to be performed in both, in fuch a manner that the fimultaneous undulations on each fide of the junction may be in oppufite directions. It is plain that the partition will be in $t-$ quilibrio, and may be remeved; and the plate of air will perform the fame office, being alternately the middle plate of a condenfed and of a rarefed parcel of air. The two pipes CA, $\lambda \mathrm{B}$ will together give the fame nute that $\mathrm{A} B$ would lave given alone, but luoder.

In like manner may ancthur pipe, equal to $A C$, be joined to the thut end of this compound pipe, as in fre 5. and the three will ftill give the fame note that $A B$. would have done alone:

And in the fame manner may any number of pipes, each equal to AC, te added, and the whole will give ftill the fame note that $A B$ would have given alone.

Hence it legitimately follows, that if the undulations can be once begun in this manner in a pipe, it may give cither the found competent to it, as a fingle pipe AB (fig. 2.) ; or it may give the found competent to a pipe of $\frac{1}{3} \mathrm{~d}, \frac{1}{5} t h$, $\frac{1}{5} t h$, \&ic. of it δ lengt $\mathrm{h}_{\text {; }}$; the undulations in each part $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, maintaining themfelves in the manner already deferibed. This feems the only way in which they can be preferved, both ifochronous and fynchronous.

It is known that the graveft tones of pipes are as the
lengths

Mufical lengths of the pipes, or the frequeney of the undulaTrumpet. tions are inverfcly as their lengths. (This will be demonfrated prefently). Therefure theie acceffory tones fhould be as the odrl numbers $3,5,7$, \&ec. and the whole tones, ineluding the fundamental, flould form the progreflion of the odd numbers $s, 3,5,7$, ic.

This is aburdantly confirmed by experiment. Take a German fute, and fop all the finger-holes. The flute, by gradually forcing the blaft, will give the fundamental, the 12 th, the 17^{2} h, the 2 sf , \&ec. (A).
Again, let $A D$ (fig. 6.) reprefen: the length of a pipe. Conitruct on $A D$ an harmonic curve AEBFCGHD, in fuch a manner that $H D$ may be $: ~ A B=\frac{1}{2} B C$, $=\frac{1}{2} \mathrm{CI}$ 仿 The fmall ordinates $m n$ will exprefs the total excurfion of the plates of air at the points $m m$, ice. and thofe ordinates which are above the axis will exprefs excurfions on oue fide of the place of reft, and the ordinates below will mank the excurtions in the oppofite directions, in the fame manaer as if this harnonic curve were really a vibrating cord. Thefe excurlions are nothing in the points A, B, C, I-I, and are greateft at the points E, F, G, I), where the little inats of air retains its natural denfity, and travels to and again, condenfing the air at B , or rarefying it, according as the parcels E and F are appreaching to or receding from each other. The puints A, B, C, H, may be called Nones, and the parts E, F, G, D, may be calied Bights or Loops. This reprefents very well to the eye the motion of the plates of air. The denfity and velocity need not be minutely confidered at prefent. It is enough that we fee that when the denfity is increafing at A , by the approach of the pancel E , it is diminifhing at B by the receis of E and $F ;$ and in. creafing at C, by the approach of F and G, and diminithing at H, by the recefs of G. In the next vibration it will be diminifhing at A and C , and increafing at B and H . And thus the alternate nodes will be in the fame Itate, and the adjoining nodes in oppofite llates.

The reader mult carefully diftinguifh this motion from the undulatory motion of a pulie, inveftigated by Newton, and defribed in the artiele Acoustics, Encycl. That undulation is going on at the fame time, and is a refult of what we are now confidering, and the caufe of our hearing this undulation. The undulation we are now confidering is the original agitation, or rather it is the sounding bodr, as much as a vibrating ftring or bell is; for it is not the trumpet that we hear, but the air trembling in the trumpet. The trumpet is performing the office, not of the flring, but of the pin and bridge on which the ftring is Arained. This is an important remark in the philofophy of mufical founds.

There is yet another fet of notes producible from a
pipe befides thofe which follow in the order of frequency 1, 3, 5, 7. \&ke.

Suppofe a pipe open at bothends, founding by blowiug acrofs the end, and undulating, as already defcribed, with a node in the middle A (fig. 3.) If we ftill exprefs the fundamental note of the pipe AF of liz. 2 . by 1 , it is plain that the fundamental of an open pipe of the fame length will have the frequency of its undulations expreffed by 2 ; becaufe an open pipe of twice the length of Al3 (fig. 2.) will be 1 , the two pipes ΛB (fig. 2.), and CB (fig. 3.), being in unifon.

But this open pipe may be made is undulate in another manner; for we lave feen that AB of fig. 2. joined to CA of tig. 4. may found altogether when the partition A is removed, fill giving the note of ΛB (fig. 2.) Let fuch another as AB (fig. 2.) be added to the end C , and let the partition be removed. The whole may ftill undulate, and till produce the fane wote; that is, a pipe open at both ends may found a note which is the fundamental of a pipe like AB (fig. 2.), but ouly une-fourth of its length. The pipe CB of fig. 3. may thus be fuppofed to be divided into foilr equal parts, CE. EA, AF, FB, of which the extreme parts EC and FB contain undulations fimilar to thofe in AB (fig. 2.) ; and the two middle parts contain undulations like thofe in CA (fig. 4.) The partitions at E and F may be removed, hecaufe the undulations in EC and EA will fupport each other, if they are in oppofite directions; and thofe in FB and FA may fupport each other in the fame manner.
It mult here be remarked, that in this ftate of undu. lation the direction of the agitations at the two extremities is the fame; for in the middle piece EF the particles are moving one way, condeufing the air at E , while they rarefy it at F. Therefore, while the middle parcel is moving from E towards F, the air at B mult be moving towards F, and the air at C mufl be-moving from E. In fhort, the air at the two extremities mult, in every inftant, be moving in the oppofite direction to that of the air in the middte.

In like manner, if the pipe CB of fig. 3. be divided into fix parts, the two extreme parts may undulate like AB of fig. 2. and the four inner parts may undulate like two pipes, fuch as CA of fig. 4. and tle whole will give the found which makes the fundamental of a pipe of one.fixth of the length, or laving the frequency 6 .

We may remark here, that the fimultaneous motion of the air at the extremities is in oppofite directions, whereas in the laft cafe it was in the fame direction. This is eafly feell ; for as the partition which is between the two middle pieces mult always be in equilibrio, the air muft be coming in or going out at the extremities
(A) A little reflection will teach us that thefe tones will not be perfectly in the fcale. A certain proportion between the diameter and length of the pipe produces a certain tone. Making the pipe wider or fmaller flattens or tharpens this tone a little, and alfo greatly changes its clearuefs. Organ-builders, who have tried every proportion, have adopted what they found beft. This requires the diameter to be about $\frac{1}{T}$ th or $\frac{i}{T}=$ th of the length. Therefore, when we caufe the fame pipe to found different notes, we negle̊ this proportion; and the notes are falfe, and even very coarfe, when we produce one correfponding to a very fmall portion of the pipe. For a fimilar reafon, Mr Lambert found that, in order to make his pitclt pipe found the vctave to any of its notes, it was not fufficient to florten its capacity one-half by pufhing down the pitton; he found that the part remaining muft be lefs than the part taken off by a fised quantity $\mathrm{I}_{\frac{5}{5}} \frac{5}{2}$ inches. Or, the length which gave any note dsing x, the length for its octave mult be $\frac{x-1 \Psi^{5}}{2}$.

T R U

give the $5^{\text {th }}$ of the loweft note that they are able to produce; whercas the sth of the real fundamental can. nut be uttered. Therefure that loweft nute is not the fundamental, but the octave to the fundamental.

Few performers can fomad even this fecond ofave on a fhort inftrument, fuch as the ordinary military trumpet; and what they imagine to be the fundamental found of this inftrument is the double oftave above it. 'This appears very tlrange; and it may be afked, how we know what is really the fundamental note of a trumpet? The anfwer to this is to be oltained only by demonftrating, on mechanical principles, what is the frequency of undulation correfponding to a given leagth of pipe. 'This is a propofition equally fundamental with its correfponding one in the theory of mufical cords; hut we have referved it till now, hecaufe many readers would Anp florit at fuch an inveltigation, who are able to underfand completely what we have now delivered conecrning the mufic of the trumpet.
Suppole the refore a pipe flut at both ends, and that the whole weight of the contained air is concentrated in its middle point, the reft retaining its elalticity without inertia; or (which is a more accurate conception), let the middle point be conceived as extending its elafticity to the two extremities of the pipe, being repelled from each by a foree inverfely as the diftance. Let the length of this pipe be L. This may alfo exprefs the weight of the middle plate of air, which will always be proportional to the length of the pipe, becaufe all is fuppofed to be concentrated there. Let E be the elafticity of the air. This mult be meafured by the preffure of the atmofphere, or by the weight of the column of mercury in the barometer. Perlaps the rationale of this will be better conceived by fome readers by confidering E as the height of a homogeneous atmofphere. Then it is plain that E is to L as the weight of this. atmofpheric column to the weight of the column of the fame air which fills the pipe whofe length is \mathbf{L}. Then it is alfo plain that E is to L as the external preflure; and confequently, as the elafticity which fupports that preffure is to the weight or inertia of the matter to be moved. Let this middle plate or diaphragm be withdrawn from its place of reft to the very finall diftance a. The elafticity or etpulfion will be augmented un one fide and diminithed on the other; and the difference between them is the only force which impels the diaphragm toward the middle point, and catses it to vibrate, or produces the undulation. It is plain that the repulfion on one fide is $\frac{\frac{1}{2} \mathrm{~L}}{\frac{1}{2} \mathrm{~L}-a} \times \mathrm{E}$, or $\frac{\mathrm{L}}{\mathrm{L}-2 a} \mathrm{E}$ (for $\frac{1}{2} \mathrm{~L}-a: \frac{1}{2} \mathrm{~L}=\mathrm{E}: \frac{\frac{1}{2} \mathrm{LE}}{\frac{2}{2} \mathrm{~L}-a}$), and the repulfion on the other fide is $\frac{\frac{1}{2} \mathrm{~L}}{\frac{1}{2} \mathrm{~L}+a} \times \mathrm{E}$, or $\frac{\mathrm{L}}{\mathrm{L}+2 a} \mathrm{E}$. The difference of thefe repulfions is $\mathrm{E} \times \mathrm{L} \times \frac{4 a}{\mathrm{~L}^{2}-4 a^{2}}$. But as we fuppofe a exceedingly fmall in comparifon with $\mathrm{L}_{\text {, th }}$ this difference, or the accelerating force, may fafely be expreffed by $E \frac{4 a}{L}$, or $4^{a} \frac{\mathrm{E}}{\mathrm{L}}$.

Hence we deduce, in the firlt place, that the undulations will be ifochronous, whether wide or narrow; becaufe the accelerating force is always proportional to . the difance a from the middle point.

In the one, the agitations at each cnd of the tube are in the fame direction, and in the other they are in the oppofite. Both produce pulfes of found which are conveyed to the car. Thus we fee that the air in a pipe open at both ends may undulate in two ways. It may undulate with a node in the middle, giving the note of AB (fig. 2.), or of its $3^{\mathrm{cl},} 5$ th. $7 \mathrm{th}, 8 \mathrm{c}$. palt; and it may undulate with a loop or bight in the middle, founding like $\frac{1}{2}, \frac{1}{\frac{1}{3}}, \frac{1}{5}, \mathcal{E}$ c. of $A B$, fig. 2.
In like manner may this pipe produce founds whofe frequency are exprefied by $8,10, \& \in$. and proceed as the even numbers.
This tate of agitation may be reprefented in the fame way that we reprefented the founds $1,3,5$, \&c. by conftructing on AM (fig. 7.) an harmunic curve, with any number of nodes and loops. Divide the parts AF, Fi, DE, EM, equally in C, O, P, B. CB will correfpond to the pipe, and the ordinates to the curve GFHDLEN will exprefs the excurfions of the plates of air.

If the pipe gives its fundamental note, its length murt be reprefented by CO , and the undulations in it will refemble the vibrations of part CO of a cord, whofe length $A D$ is equal to $2 C O$, and which has a node in F.

If the pipe is founding its octave, it will be reprefented by CP , and its indulations will refemble the vibrations of a cord CP, whofe length AE is $\frac{3}{3}$ of CP , having nodes at F and D, \&c. \&c.

We can now fee the pofibility of fuch undulations exifting in a pipe as will be permanent, and produce all the variety of notes by a mere change in the manner of. blowing, and why thefe notes are in the order of the natural numbers, precilely as we obferve to happen in winding the trumpet or French horn. We have, $1 / 2$, the fundamental expreffed by 1 ; then the octave 2 ; then the 82 th, 3 ; the double oftave 4 ; then the third major of that oetave 5 , or 17 th of the fundamental; then the octave of the 12 th, or the 5 th of this double nctave, $=6$. We then jump to the triple octave 8, without producing the intermediate found correfponding in $\frac{1}{7}$ th of the pipe. With much attention we can hit it; and it is a fact that a perfon void of mufical ear tumbles on it as eafily as on any other. But the mulician, finding this found begin with hum, and his ear being grated with it, perhaps thinks that he is mittaking his embouchure, and he fides into the octave. After the triple octave, we eafily hit the founds correfponding to $\frac{1}{9}$ and $\frac{2}{T}$, which are the 2 d and 3 d of this octave. The next note r't is fharper than a juft 4 th. We eafily produce the note 12 , which is a jutt 5 th ; 13 is a falfe 6 th; 14 is a found of no ufe in our mufic, but eafily hit ; 15 and 16 give the exact 7 th and 8 th of this octave.

Thus, as we afcend, we introduce more notes into every octave, till at laft we can nearly complete a very high octave; but in erder to do this with fuccefs, and tolerable readinefs, we muft take an intrument of a very low pitch, that we may be able nearly to fill up the fteps of the octave- in which our melody lies. Few players can make the Frencb horn or trombone found its real fundamental, and the octave is generally miftabea for it. The proof of this is, that moft players can

Mufical tremities together. This circumftance mult give fome

fenfible difference of character to the founds 4 and 6 .

$T R \quad U$

Mufical Now, let a pendulum, whofe quantity of matter is $\underbrace{\text { Trumpet. }}$ L , and length a, be fuppofed to vibrate in a cycloid by the force $\frac{4 a}{\mathrm{I}} \mathrm{E}$, or $\frac{4 \mathrm{E}}{\mathrm{I}} a$. It muft perform its vibra. tions in the fame time with the plate of air ; becaule the moving force, the matter to be moved, and the fpace along which they are to be dimilarly impelled, are the fame in both cafes. Let another pendulum, having the fame quantity of matter L, vibrate by its weight I alone. In order that thefe two pendulums may vibrate in equal limes, their lengths muft be as the accelerating forces. Therefore we mult have $\frac{4 \mathrm{E}}{\mathrm{L}} a: \mathrm{L}$ $=a: \frac{a \mathrm{~L}^{2}}{4 \mathrm{E} a},=\frac{\mathrm{L}^{2}}{4 \mathrm{E}}$, which is therefore the length of the fynchronous pendulum.

Now, a cord without weight and inertia, but loaded with the weight L at its middle point, and ftrained by a weight E, and drawn from the axis to the diftance a, is precifely fimilar in its motion to the diaphragm we are now confidering, and muft make its ofcillations in the fame time.

This is applicable to any number of plates of air, by fublituting in the cord a loaded point for each of the plates; for when the cafe is thus changed, botls in the pipe and the cord, the face to be paffed over by the plate of air bears the fame proportion to a, which is paffed over by the whole air concentrated in the middle point, which the fpace to be paffed over by the correfponding loaded point of the cord bears to that paffed over by the whole matter of the cord concentrated in the middle point ; and the fame equality of ratios obtains in the accelerating forces of the plate of air and the correfponding loaded point of the cord. Suppofe, then, a pipe divided into $2,3,4$, scc. equal parts, by I, 2, 3, diaphragms, each of which contains the air of the intervening portion of the pipe, the whole weight L being equally divided among them. If there be but one diaphragm, its weight muft be L; if two, the weight of each mult be $\frac{\pi}{2} L$; if three, the weight of each muft be $\frac{x}{3} \mathrm{~L}$; and fo on for any number.

By confidering this attentivcly, we may infer, without farther inveftigation, what will be the undulations of all the different plates of air in a pipe flopped at both ends. We have only to compare it with a cord fimilarly divided and loaded. Increafe the number of loaded points, and diminifh the load on each, continual. ly-it is evident that this terminates in the cafe of a fimple cord, with its matter uniformly diffued; and a fimple pipe, with its air alfo uniformly diffufed over its whole length.

Therefore, if we take an elaftic cord, and fretch it by fuch a weight that the extending weight may bear the fame proportion to the accelerating force acting on the whole matter concentrated in its middle point, which the elaflicity of the air bears to its accelerating force acting on the whole matter concentrated at the mouth of an open pipe, founding its fundamental note, the cord and the air will vibrate in the fame time. Moreover, fince the proportion between the vibrations of a cord fo contlituted, and thofe of a cord having its matter uniformly diffufed, is the fame with the proportion between the undulations in a pipe fo conftituted, and thofe of a pipe in which the air is uniformly diffufedit is plain that the vibrations of the cord and of the
pipe in their natural Ate will alfo be performed in equal Mufical times.

We look on this as the eafieft way of obtaining a diftinct perception of the authority on which we reft our knowledge of the abfolute number of undulations of the air in a pipe of given length. It may be obtained directly ; and Daniel Liernoulli, Euler, and others, have given very elegant folutions of this problem, without having recourle to the analogy of the vibrations of cords and undulations of a column of air But it requires more mathematical knowledge than many readers are poffeffed of who are fully able to follow out this analogical inveltigation.

Let us therefore compare this theory with experiment. What we call an open pipe of an organ is the fame which we, in this theory, have confidered as a pipe open at both ends; for the opening at the foot, which the organ-builders call the vosce of the pipe, is equivalent to a complete opening. The aperture, and the fharp edge which divides the wind; may be continued all round, and the wind admitted by a circular flit, as is reprefented in fig. 10. We have tried this, and it gives the moft brilliant and clear tones we ever heard, far exceeding the tones of the organ. An open organ pipe, thereforc, when founding its fundamental note, undulates with one node in its middle, and its undulations are analogous, in refpect of their mechanifm, with the vibrations of a wire of the fame length, and the fame weight, with the column of air in the pipe, and fretched by a weight equal to that of a column of the fame air, reaching to the top of a homogeneous atmofphere, or equal to the weight of a column of mercury as high as that in the barometer.

Dr Smith (fee Harmonics, 2 d edit. p. 193.) found that a brafs wire, whofe length was 35,55 inches, and weight 31 troy grains, and thretched by 7 pounds avoirdupois, or 49000 grains, was in perfect unifon with an open organ pipe whofe length was 86,4 inches.

Now 86,4 inches of this wire weighs 75,34 grains. When the barometer ftands at 30 inclies, and the thermometer at 55° (the temperature at the time of the experiment), the height of a homogeneous atmofphere is 332640 inches. This has the fame proportion to the length of the pipe which the preffure of the atmofphere has to the weight of the column of air contained in the pipe.

Now 86,4:332640 $=75,34: 290060$. This wire, therefore, fhould be ftretched (if the theory be juft) by 290060 grains, in order to be unifon with the other wire, and we thould have $35,55^{2}: 86,4^{2}=49000: 290060$ But, in trath, . $35,55^{2}: 86,4^{2}=49000: 2894.30$ The difference is 630 The error fcarcely exceeds $\frac{5}{\delta} \bar{\sigma}$, and does not amount to an error of one vibration in a fecond.

We mult therefore account this theory as accurate, feeing that it agrees with experiment with all defirable exactnefs.

We may alfo deduce from it a very compendious rule for determining the abfolute number of aereal pulfes made by an open pipe of any given length. When confidering the vibrations of cords, we found that the number of vibrations mane in a fecond is $\sqrt{\frac{386}{L W}}$, where E is the extending weight, W the weight of the cord and L its length, Let H be the height of a homoge-

T R U [729] T R U

Mufical
Trumpe. ncous atmofphere. We have its weight $=\frac{H W}{L},=E$.
Therefore fubllituting $\frac{H W}{\mathrm{~L}}$ for E in the above formu. la, we have the number of aerial pulfes made per fecond $=\sqrt{\frac{3^{86 \mathrm{H}}}{\mathrm{L}^{2}}}$, or $=\frac{\sqrt{3^{86 H}}}{\mathrm{~L}}$. Now $\sqrt{3^{86} \overline{\mathrm{H}}}$, com. puted in inches, is $113.3!$. Therefore, if we alfo meafure the length of the pipe L in inches, the pulfes in a fecond are $=\frac{11331}{L}$. Thus, in the cafe before us, $\frac{11331}{86,4}=131,12$, or this pipe produces 131 pulfes in a fecond. Dr Snith found by experiment that it produced 130,9 , differing only about $\frac{1}{6}$ th of a pulfe.

We fee that the pitch of a pipe depends on the height of the homogeneous atmoffhere. This may vary by a change of temperature. When the air is warmer it expands, and the weight of the induced coJumn is leffened, while it thill carries the [ane preflure. 'Therefore the pitch mult rife. Dr sinith found his organ a full quarter tone higher in fummer than in winter. The effect of this is often felt in concerts of wind inttruments with tringed inftruments. The heat which fharpens the tone of the firf flattens the laft. The harpfichord foon gets out of tune with the horns and flutes.

Sir Ifase Newton, comparing the velocity of found with the number of pulfes made by a pipe of given length, obferved that the length of a pulfe was twice the length of the open pipe which produced it. Divide the fpace paffed over in a fecond by the number of pulfes, and we obtain the length of each pulfe. Now it was found that a pipe of 21,9 inches produced 262 pulfes. The velocity of found (as computed by the theory on which our inveltigation of the undulations in pipes proceeds) is 960 feet. Now $\frac{963 \times 12}{262}=44$ inches very nearly, the half of which is 22 , which hardly differs from 21,9. The difference of this theoretical velocity of fonnd, and its real velocity 1142 feet per fecond, remains ftill to be accounted for. We may juft obferve here, that when a pipe is meafured, and its length called 21,0 , we do really allow it too little. The voice hole is equivalent to a portion, not inconfiderable of its length, as appears very clearly from the experiments of Mr Lambert on a variable pitch-pipe, and on the German flute, recorded in the Berlin Memoirs for 1775. He found it equivalent to $\frac{1}{6}$ th ; and this is fuf. ficient for reconciling thefe meafures of a pulfe with the real velocity of found.

The determination which we bave given of the undulations of air in an organ pipe is indirect, and is but a fketch of the beautiful theory of Daniel Bernoulli, in which he Itates with accuracy the precife undulation of each plate of air, both in refpect of pofition, denfity, velocity, and direction of its motion. It is a pleafure to obferve how the different equations coincide with thofe which exprefs the vibrations of an elaftic cord. But this would have taken up much room, and would not have been fuited to the information of many curious readers, who can eafly follow the train of reafoning which we have employed.

Mr Bernoulli applies the fame theory to the expla.
nation of the undulations in flutes, or inttruments whofe founds are modified by holes in the fides of the pipc. But this is foreign to our purpofe of explaining the mulic of the trumpet. We thall only oblerve, that a hole made in that part of a pipe where a node thonld form itfelf, in order to render practicable the undulations, competent to a particular note, prevents its formation, and in its place we only get fuch modulations (and their correfpunding founds; as have a loop in that place. The intellygent reader will perceive that this tingle circumftance will explain almoft every phenon:enon of flutes with holes; and alfor the efficts of holes in inflruments with a reed vuice, fuch as the hatuthy or clarionette.

We now fee that the fomm or mulical pitch of a pipe is inverfel) as its length, in the fane manner as in thrings, And we lean, by comparing them, that the found of a trumpet has the fame pitch with an open organ pipe of the fame length. A Fench horn, 16 fect long, lias the found C fa ul, which is alfo the found of an open flute-pipe of that length.

The Trombone, great trumpet, or Sackbut, is an old inftrument deferibed by Merfennus and other allthors of the laft century. It has a part which nides (airtight) within the o:her. B_{5} this contrivance the pitch can be altered by the performer as he plays. This is a great inprovement when in good hands ; becaufe we can thus correct all the falfe notes of the trumpet, which are very offenfive, when they occur in an emphatical or holding note of a piece of mufic. We can even employ this contrivance for filling up the blanks in the lower octaves.

We mull not take leave of this fubject without taking notice of another difeovery of Mr Bernoulli's, which is exceedingly curious, and of the greateft importance in the philofophy of mufic.

Artilts had long ago oblerved that the deep notes of mufical inftruments are fometimes accompanied by their harmonic founds. This is noft clearly perceived in belis, fome of which give thefe harmonies, particularly the 12 th , almoft as Atrong as the fundamental. Muficians, by attending more carefully to the thing, feem now to think that this accompaniment is univerfal. If one of the finell founding ftrings of the hafes of a harpfichurd be ftruck, we can hear the 12 th very plainly as the found is dying away, and the 17th major is the laft found that dies away on the ear. This will be rendered much more fenlible, if we divide the wire irto five parts, and at the points of divilion tie round it a thread with a faft knot, and cut the ends off very fhort. This makes the ftring falfe indecd by the unequal loading; but, by rendering thofe parts fomewhat lefs move. able by this additional matter, the portions of the wire between thefe points are thus jogged, as it were, into fecondary vibrations, which have a more fenfible proportion to the fundamental vibration. This is ftill more fenfible in the found of the ftrings of a violincello when fo loaded; but we mult be careful not to load them too much, becaufe this would fo much retard the fundamental vibration, without retarding the fecondary vibrations, that both cannot be maintained together. (N.B. This experiment always produces a beat in the found).-Liftening to a fine founding flute-pipe of the organ, we can alfo very often perceive the fame thing. Mr Rameau, and moft other theorifts in mufic, now af.

Mufical fert that this is the effence of a mufical found, and ne-

$\underbrace{\text { Trunpet }}$

 ceflurily exits in all of them, dittinguifhing them from harfl moifes. Rameau has made this the foundation of his tlytem of mulic, afficting that the pleafure of harmony refults from the fucceffinl imitation of this harmony of Nature, (fec Music, Encycl.). But a little logic fhould convince thefe theorills that they muft be miltaken. If a note is mulical becaule it has thefe acconpaninents, and hy this compofition alone is a mufical note, what are thefe harmenics? Are they mufical notes? This is granted. Therefore they have the fame compotition ; and a mufical note muft confilt at once of every polfible found ; yet we know that this would be a jarring noife. A littlc mathematics, too, or mechanics, would have convinced them. A fimple vibration is furely a molt poffible thing, and therefore a fimple found. No, fay the theorilts; for though the vibration of the cord may be fimple, it produces fuch undulations in the air as excite in us the perception of the harmonics. But this is a mere anfertion, and leaves the quettion undecided. Is not a fimple undulation of the air as poffible as the fimple viluration of a cord?It is, however, a very curions thing, that almot all mulical fiunds really have this accompaniment of the octave, 12 h , doulle octave, and 17 th major ; for thefe are the harmonies that we licar.

The jealoufy of Leibnitz and of John Eernoulli, and their untriendly thoughts refpecting all the Britifh mathematicians, made John Bernoulli do every thing in his power to leffen the value of Dr 'Taylor's inveltigation of the vibration of a mulical cord. Taylor gave him a good opportunity. Perlaps a little vain of his inveftigation of this abitrufe matter, he thought too anuch of it. He affirmed that the harmonic curve was the effential form of a Atring giving a mufical note. This was denied, without knowing at firft whether it was true or falfe. But as the analytic mathematics innproved, it was at lengeth found that there are an infinity of forms into which an elantic cord can be thrown, which are coulifent both with ifoclronous vibrations, whether wide or narrow, and alfo with the condition of the whole cord becoming a ftraight line at once. Euler, D'Alembert, and De la Grange, have profecuted this matter with great ingenuity, and it is one of the finelt problems of the prefent day:

Daniel Bernoulli, of a very different caft of mind from his illuttrions friends, admired both Newton and Taylor ; and fo far from withing to eclipfe Dr Taylor by the additions he had made to his thcory, tried whether he could not extend T'aylor's doctrine as far as the author had faid. When he took a review of what he had done while explaining the partial vibrations of nufical cords, he thought it very poffible that while a cord is vibrating in three portions, with two nodes or points of reft, and founding the 12 th to its fundamental, it night at the fame time be alfo vibrating as a fimple cord, and founding its fundamental note. It was poffible, he thought, that the three portions might he vibrating between the four points with a triple frequency, while the two middle nodes were vibrating acrofs the ftraight line between the two pins; and thus the vibrating cord might be a moveable axis, to which the rapid vibrations of the three parts might always be referred. This was very fpecious; and when a little more attentively conlidered, became more probable: for if
the cord $\mathrm{A}_{\beta} \mathrm{B}_{2} \mathrm{C}_{r} \mathrm{D}$ (fig. 8.) be vibrating as a 12 th to its fundumental $A D$, the points B and C are in equili. brio. If therefore thefe two points be laid hold of by hooks, and be drawn afide to β and γ, while the ftring is yet vilbrating, this frould not hiader the vibrations. If the hooks be annibiated in an inftant, the whole fhould vibrate between A and D; and this fhould be in a way very different from the fimple vibration. The queftion now is, will the cord continue to vilsate with the loops β s $\gamma, \beta y \gamma, \& c$. in the gooth part of a fecond (for intance), while the whole itring vibrates from $\mathrm{A} \beta \gamma \mathrm{D}$ to $\mathrm{A} \beta^{\prime} \gamma^{\prime} \mathrm{D}$ ia the 300 th part of a fecond ? or will it at once acquire the form of the fimple harmonic curve? The cafe in which it is moll likely to take the latter mode of vibration is when the points β and γ are let go at the inflant that each portion of the ftring is in the middle of its vibration, and therefore forms the line $\mathrm{A} \beta \gamma \mathrm{D}$. But a moment's confideration will flew us that it cannot do this; for at that inftant the point q, for inftance, which had come from q, is moving ontwards with a mot rapid motion, and therefore will continue to go outward, while β and γ are approaching the axis. The point w, on the contrary, is at this moment approaching the axis with a motion equally rapid. They cannot therefore all come to the axis at once, and the vibration mull differ greatly from a fimple one. On the other hand, let it be fuppofed that both fpecies of vibrations can be preferved, and that, at the moment of letting go the points 3 and γ, the cord has the form $A m \beta q \geqslant n$ D. Then, when B and r have come to B and C, having made $\frac{7}{2}$ a vibration, the point m will be in the axis, having made a vihration downward, and a half vibration upwards, q, in like manner, is in the axis, having made a whole viluration upwards, and half a sibration downwards. n is like m. Thus the whole comes to the asis at once; and in fuch a manner, that if the puints B and C were inflantly ftopped, the three portions would continue their partial vibrations without any new effort. The refult of this compound vibration mult be a compound pulfe of air, which will excite in us the perception sf the fundamental found and of its 12 th. Tlee confequence will be the fame if the points $\hat{\beta}$ and γ are Itopped any where flort of the axis; and thereforc (faid Bernoulli) the lling will really vibrate fo if not ilopped at all.

But this was refufed by Euler, who obferved that in the points β and y of contrary flexure, having no curvature, there can be no accelerating force. This caufed Bernoulli to attempt a direct inveltigation, examining minutely the curvatures and accelerating forces in the different points.

He had the pleafure of finding that the accelerating forces arifing from the curvature in every point, were precifcly fuch as would produce the accelerations neceffary in thofe points for performing the motion that was required. And he exhibited the equations expreffive of the flate of the cord in all thefe points. And, on the faith of thefe equations, he reftored the Taylorean curve to the rank which its inventor had given it; and he afferted that in every mufical vibration the cord was difpofed in a harmonical curve cither fimple or compound. He farther thewed that the equations which Euler and D'Alembert had given for the mufical cord (at leaft in the eafes which they had publith-

TRU [73 [] TRU

Nufical ed) were included in his equations, and that their equaTrumpet.
tions orly exhibited its momentary flates, while his own
equations fhewed the phyfical connection of them all; which is, that the whole cord forms a harmonic curve between the two fised pins, while its different portions form fubordinate harmonic curves on the firlt as an axis Euler and D'Alembert, although they acknowledge this in the particular cafes which they had taken as examples, on account of their fimplicity, fill infift that no fubordinate harmonic vibrations can correfpond to all the ftates of an elaftic cord which their equations exhibit as ifochronous and permanent. Mr Bernoulli's death put an end to the controverfy, and the queftion (eonfidered as a general theory) is perhaps fill undecided. It may very probably be true, that as a fimple vibration may be permanent which never has the form of the limple harmonic defcribed by Dr 'Taylor, io a vibration may exilt compounded of fuch vibrations, and therefore not expreflible by any equation deduced from the Taylorean curve.

But, in the mean time, Mr Bernoulli has made the moft beautiful difcovery in mechanics which has appeared in the courfe of the lalt century, and has explained the moft curious phenomenon of continued founds, viz. the almofl univerfal accompaniment of the Harmonic notes of any fundanental found. For this fufceptibility of compounded variation is not confined to a 12 th, but is equally demontrable of every other harmonic. Nay, it is evident that the fame fimple vibra. tion of a cord may furnih a moveable axis to more than one harmonic. For as the fimple vibration can have a fubordinate harmonic vibration fuperinduced upon it, fo may this compounded vibration have another fuperinduced on it, and fo on to any degree of compofition. And farther, as Mr Bernoulli has hewn the complete analugy betwcen the accelerations of the different points of an elaftic cord and of the correfponding plates of a column of air, it legitimately follows that all the confequences which we can eafily deduce, refpecting the vibrations of an elaftic cord, may be affirmed refpecting the undulations of a column of air in a pipe. Therefore this accompaniment of the harmonics mufe not be confined to the mufic of ftrings and bells, but equally obtains in the mufic of wind inffruments. And thus the doctrine hecomes univerfal.

Mr Bernoulli did not think it enough to fhew that thefe compound vibrations are poflible. He endeavours to fhew that this accompaniment muft be frequent. He illuftrates this very prettily, by fuppofing that a toothed wheel is turned round, and rubs with its teeth on an elaftic cord. If the fucceffive dropping of the teeth keep exactly pace with fuch vibrations as the cord can take and maintain by its elaftecity, thefe will certainly be formed on it. If the intervals do not exaaly correfpond, a little reflection will fhew that the agitation which the cord acquires will approxinate to thofe which it can maintain; and, if when they are exactly fo in any place of it, arid the wheel be in that in. ftant removed, this vibration will remain and diffufe itfelf through the relt of the cord; lo that the very latt dying quiver (fo to fpeak) will be a harmonic. Every barmonic agitation tends, by the very nature of the thing, to continue, while thofe that are incompatible really do deftroy each other; and the very laft muft be the remainder or fuperplus of fuch as could continue,
over thofe which deftroyed each other. Accordingly, the harmonic notes of wires are always mof diftinetly heard as the found is dying away.

There is no occalion now to fay any thing about the fallacy of Rameau's Generation Harmoniyue as a thenry of mufical pleafure. Our harmonies pleafe us, not becaule a found is accompanied by its harmonics, but becaufe harmonics pleafe. His principle is therefore a tautology, and gives no inftruction whatever. His theory is a very forcel accommodation of this plinciple to the practice of muficians, and tafe of the Public. He is exceedingly pu\%zled in the cafe of the fouflominan:te, or 4 th of the fale, and the Gth where there is no refonnance. He fays that thefe notes, "fremiffent, quoirqu" elks ne refonnent pas." D3ut this mineads us. They do not refound ; becanfe a $4^{\text {th }}$ and 6 th cannot be pro. duced at all by dividing the cord. They tremble: becaufe the falfe 4th and falle 6th are very near the true ones, and the true fth and Goth would both tremble and refound, if they were made falfe. A ftring will both tremble and refound, if very nearly truc, as any one obferves the 12 th and 17 th on a harplichord tremble and refound very Itrungly, though they are tempered notes. The whole theory is overturned at once by tuning the $4^{\text {th }}$ falfe, fo as to correfpond to an aliquot divifion of the cord. It will then refound; and if this had happened to be agreeable, it would have been catched at as the foufdominante.

The phyfical caufe of the pleafure of harmonic founds is yet to feek, as much as our choice of thofe notes for melody which give us the beft harmony (fee Temperament, Suppl.). We have no hefitation in faying that, with refpeef to our chonice, the two are quite in. dependent. 'Thoufands enjoy the higheit pleafure from melody who never heard a harmonions found. All the untaught fingers, and all limple nations, are examples.

They not only fix on certain intervals as the fteps of their tunes, but are difgulted when other fteps are taken. Nur do we hefitate, for the very fame reafons, to fay that the rules of accompaniment are dependent on the cantus or air, and by no means on the funda. mental bafs of Rameau. The dependence affumed by him, as the rule of accompaniment, would, if properly adhered to, according to his uwn notions of the comparative values of the harmonics, lead to the molt fantallic airs imaginable, always jumping by large intervals, and altogether incompatible with graceful mutic. The rules of modulation which he has fqueezed out of his principle, are nothing but forced, very forced, accommodations of a very pague principle to the current practice of his contemporaries. They do not fuit the primitive melodies of many nations, and they have caufed thefe national mulies to degenerate. This is acknowledged by all who are not perverted by the prevailing habits. We have heard, and could write down, fome moft enchanting lullabies of timple peafant women, poffeffed-of mulical fentibility, but far removed, in the cool fequeftered vale of life, from all opportunities of tealing from our great compofers. Some of thefe lullabies never fail to charm, even the moft erudite mafician, when fung by a fine flexible voice : but it would puzzle Mr Rameau to accompany them fecundum artem.

IVe conclude this fubject by deferibing a moft beautiful and instructive experiment.

Mr Watt, the cclebrated engineer, was amuling him.

T R U

[732]

T S C

Mufical felf (about the year 1765) with organ-building, and Trumpet. invented a monochord of continued found, by which he
could tune an organ with mathematical precilion, according to any propofed fyftem of temperament. It confifted of a covered Atring of a violincello, founding by the friction of an ivory wheel. The inftrument did not anfwer Mr Watt's purpole, by reafon of the dead harfhnefs of its tone, and a flutter in the ftring by the unequal action of the whecl. But Mr Watt was amufed by obferving the ftring frequently taking, of its own accord, points of divifion, which remained fixed, while the rett was in a ftate of ftrong vibration. The inftrument came into the poffeffion of the writer of this article. He foon faw that it gave him an opportunity of making all the experiments which Bernoulli could only relate. When the ftring was kept in a ftate of fimple vibration, by a very uniform and gentle motion of the wheel, if its middle point was then gently touched with a quill, this point immediarely fopped, but the ftring continued to vibrate in two parts, founding the octave: And this it continued to do, however Atrong the vibrations were rendered afterwards by increaling the preffure and velocity of the wheel. The fame thing happened if the ftring was gently touched at one third. It inftantly divided itfelf into three parts, with two rodes, and founded the $12 t \mathrm{l}$. In the fame manner the double octave, the 17 th, and all other harmonics, were produced and maintained.

But the pretsieft experiment was to put fomething foft, fuch as a lock of cotton, in the way of the wide vibrations of the eord, at one-third and two-thirds of its length, fo as to difturb them when they became very wide. When this was dune, the ftring inftantly put on the appearance of fig. 8. performing at once the full vioration competent to its whole length, and the three fubordinate vibrations, correfponding to one-third of its length, and founding the fundamental and the 12 the with equal ftrength. In this manner all the different accompaniments were produced at pleafure, and could be continued, even with ftrong founds. And it was amufing to obferve, when the wheel was ftrongly preffed to the fring, and the motion violent, the nodes would form themfelves on various parts of the ftring, running from one part to another. This was always accompanied with all the jarring founds which correfponded to them.

When the ftring was making very gentle, fimple vibrations, and the wheel hardly touching it, if a violincello was made to found the 12 th very ftrongly in its neighbourhood, the ftring inftantly divided itfelf, and vibrated in unifon, frequently retaining its limple vibration and fundamental tone. We recommend this experiment to every perfon who wifhes to make himfelf well acquainted with the mechanifm of mulical founds. He will fee, in a molt fenfible and convincing manner, how a fingle Atring of the Eolian harp gives us all the changes of harmony, fliding from one found to another, according as it is affected in its different parts by an irregular breeze of wind. The writer of this article has attempted to regulate thefe fweet harmunic notes, and to introduce them into the organ. His fuccefs has been very encouraging, and the founds far exceed in pathetic fweetnefs any that have yet been produced by that noble inftrunient. But he has not yet brought them fully under command, nor made them firong enough for any thing but the foftef chamber mufic. Other
lary occupations prevent him from giving the atten. Mufica tion to this fubject that it deferves. He recommends Trumpe it therefore to the mufical inftrument-makers as richly deferving their notice.' His general method was this: A wooden pipe is made, whofe fection is a double fquare. A partition in the middle divides it into two pipes, along fide of each other. One of them commu. nicates with the foot and wiucl cheft, and is thut at the upper end. The other is open at the upper, and fhut at the lower end. In the partition there is a nit almont the whole length, and the fides of this flit are brought to a very fmooth chamfered or feather edge. A fine catgut is drained in this nit, fo as almoft to touch the fides. It is evident that when the wind enters one pipe by the foot, it paftes through the flit into the other, and efcapes at the top, which is open. In its paffage it forees the catgut intu motion, and produces a mulical note, having all the fweetnets of the Nolian harp. The ftrength of found may be increafed by increaling the body of air which is made to undulate. This was done by ufing, inftead of cat gut, very narrow filk tape or ribband varnifhed : but the unavoidable raggednefs of the ellges nade the founds coarfe and wheeling. Flat filver wire was not fufficiently elaftic ; flat wire, ufed for watch balance fprings, was better, but ftill very weak founded. Other methods were tried, which promifed better. A thin round plate of metal, properly fupported by a fpring, was fet in a round hole; made in another plate not fo thin, fo as juft not to touch the fides. The air forced through this hole made the fpring plate tremble, dancing in and out, and produced a very bold and mellow found.-This, and fimilar experiments, are richly worth attention, and promife great additions to our inftrumental mufic.

TSCHIRNHAUS (Ehrenfred Walther Von), a name well known in the republic of letters, and one of the omaments of the 1 th century, was born April 10 . 1651, at Killingfwald near Gorlitz in Upper Lufa. tia. His father was Ernelt Chriftepher Von Tfchirnhaus, Baron Kiningfwald and Stoltzberg, and Obernfchonfeld, privy counfellor, and in various offices of rank under the Electors George I. and II. of Saxony, the firt of whom honoured him with the diftinction of the gold chain and portrait, as a mark of his fenfe of his merits and fervices. The mother of the young Von Tfchirnhaus was Maria Stirling, daughter of Laro a Stirling et Achil, Stirling of Achil, or Achyle, in Scotland, an old and refpectable family, as appears by an epitaph which the Duke Chrifian, brother of the E. lector George II. inficribed on the tomb of Johan Albert Stirling of Achil, in the cathedral of Marck fpurg. This gentleman liad been prefident of the fenate of the electo:ate, privy counfellor, director of thre impofts, and mafter of horfe to the Prince, and had, by his faithful and ufeful fervices, acquired his higheft efteem.
E. W. Von Tfchirnhaus was born, as has been obferved, at Killingfwald, the ufual refidence of the family, and poffeffed by it during more than 300 years. The family came originally from Bohemia, and appears to have been condiderable, feeing that, from the earlieft ac. counts of it in Lufatia, the Barons of Kinling[wald are generally found in the moft refpectable civil offices.

The figure which Baron Von Tfchirnhaus, the fubject of this relation, has made in the fcientific and political world, makes it fuperfluous to fay that his early

Tuen．

大＂ing

Tchirn- years were well employed. Quick apprebenfion, a clear haus. perception of the fubject of lis thoughts, and the molt
ardent and infatiable thirft for knowledge, dittinguifhed him during his academical education. When 17 years of age, he was fent to Leyden. In 1672 all Atudy was interrupted in Holland by the din of war ; and Mr Von Tchiruhaus left the univerfity for the camp. His kuowledge in mathematics, mechanics, and all phyfical feience, found ample room in the military fervice for thewing the importance of thofe fciences; and Itchirnhaus fo dittinguithed himfelf by his fervice in this way, that Baron Niculaud, a general officer of great merit, and at the fame time an accomplifhed fcholar, took delight in puthing him into exery fervice where he could fhew himfelf and his talents.

After two years iervice, he returned to his father's; but finding little to interelt him in the life of a mere conntry gentleman, and till burning with the fame thirft of knowledge, he prevailed on has father to allow him to travel. His younger brother George Albrecht Von Thehirnhans, Baron Obernichonfeld, which he inherited from his grandfather Stisling, loved him with the warmell affection, and fupplied limm liberally with what weas required for his appearance everywhere in a manner becoming his rank, and for fully gratifying his curiofity. He ufed often to fay, "Sorry was I to lofe the company of $m y$ dear brother, and I fometimes wifhed to accompany him ; but not having his thirlt for knowledge, I knew that his love for me would debar him of much happinefs, which I fhould thus have obftructed." Felices anima! He went to Holland, from thence into England, France, Italy, Sicily, Malta, Greece.-Returning through the Tyrol, he met his brother at Vienna, where both were in great favour at the court of Leopold. Wherever he went, he made himfelf acquainted with the moft eminent in all departments of fcience, living with them all in the mutual exchange of difcoveries and of kind offices. In Holland he was intimate with Huyghens and Hudde; in England, with Newton, Wallis, Hulley, and Oldenburgh; in France, anong a people who more fpeedily contract acquaintance, there was not a nan of note with whom he did not cultivate an active acquaintance-and, fortunately, Leibnitz then lived at Paris: in Italy, he was particular carefled by Michaeli, foon after Cardinal; and was in the clofeft correfpondence with Kircher. His enjoyments, however, were derived folely from the communications of the mott eminent ; his curiofity was directed to every thing, and wherever he faw an ingenious artifan, he was eager to learn from him fomething ufeful. In 1682, when at Paris for the third time, he communicated to his friends his celebrated theory of the cauflic curres, which narked him out as a valuable acquifition, and he was elected a member of the Royal Academy of Sciences, which was then reformed by the great minifter Colbert, and the mott illultrious in all nations were picked out for its ornaments. There he found himfelf feated with Leibnitz, Huyghens, John Bernoulli, \&c.

After twelve years employed in vifiting Europe, he returned home: but after a fhort ftay, went to Flan. ders, and prepared to publifh his wark, intitled Medicina Meutis; of which the fubject may almoft be gueffed, from the way in which he had exercifed his own mind. Having the moft exalted notions of the intellectual and
moral nature of man, he thought that the continual fupply of information was as neceffary as the continual rupply of food. And his great principle was TO ENlighten. This work was committed to the care of fome friends, and did not appear till 1687 , at Anilterdam. A fecond edition appeared at Leipfic in 1695.

Finding now that his moderate fortune was infufficient for the great public projects he had in view, be fongbt for affiltance, and endeavoured to make friends by frequenting the court of the Elector at Drefden. He fuon became a favourite of his Princes, George the II. and III. and was appointed to active offices of great refponfibility. By the orders and encouragement of the Elector, then king of Poland, he introduced into his native country the firft manufacture of glafs; and his project foon throve to fuch a degree, that not only Saxony was fupplied, but they even began to export the finer kinds of white glafs for windows; in which manufacture Saxony ftill excels. It was in the courfe of experiments for improving this manufacture that I'fchirnhaus made the celebrated great burning glaffes which till bear his name. He made two of thefe lenfes, and gave one to the Emperor, and the other to the Academy of Paris. He was eager to improve the art of forming and polifhing optical glafies; and in the profecution of the theory on which their performance depends, he made fume beautiful difcoveries in the department of pure geometry. It is well known that all the fciences are allied, and of a family, and that eminence in one is fcldom attainable withont the affitance of others. His prefent purfuits led him to the ftudy of chemittry, which he profecuted with the fame ardour which he exhibited in every thing he undertcok. But all the while, mathematics, and efpecially geometry, was his favourite fludy; and he was anxious to make the fane advances in the general paths of mathematical invelligation which he thought he had made in the general laws of material nature. He apprehended that only bye paths were yet known, and that many things were $\}$ et inacceflible; becaufe we had not yet found out the great roads from which thofe branches were derived. He was of Des Cartes's opinion, that the true road in mathematics nut be an ealy one, cxcept in cafes which were, in their own nature, complicated. Very early, therefore, he began writing on mathematical fubjects, always continuing his general views of the fcience, and his endeavours to fyllematife the fludy; but, at the fame time, beftowing a very particular attention on. any branch which chanced to intereft him; each of thefe his epifodical Audies in mathematics deferves the name of a department of the fcience. This is the cafe with his theory of cauftic curves, with his method of tangents, and his attempt to free Leibnitz's calculus. from all confideration of infinitetimal quantities. Mr Thchiruhaus feldom gave himfelf any truble with a particular problem. In all his mathematical performances, there is an evident connection with fomething which he conlidered as the great whole of the fcience; and the manner of treating the different queftions is plainly accommodated to a fyltem in his thoughts. This he intended as the third part of the Medicina Mentis; and, having nearly completed the fecond, he had propofed thefe as the occupation of the enfuing winter (17089). But his death, which may be called premature,

Tfchirn. haus.

T S C

Techirn- has deprived the world of thefe, and other beneficent and ufeful labours.

Mr Von Tfchirnhans was of the moft mild and gentle difpofition, as was well known to all who enjoyed his acquaintance. This difpofition was fo eminent in him, that farcely any perfon ever faw him angry, or even much ruffled in his temper. He forgave injuries frankly and heartily, and often food the friend (unknown) of thofe who had wronged him. By fuch conduct, he changed fome enmities into the molt fteary and affectionate friendfhips. As an inquirer and an inventor, be had contentions with other claimants, and fome difputes about the legitimacy of his mothods; as, for example, with Nicholas Tatio Duiller, who attacked Tfchirnhaus's method of tangents; and Preftet and Rolle, who found fault with his expreflion of equations of the third degree. But thefe were all friendly debates, and never carried him beyond the limits of gentlemanly behaviour. He began to difpute with Ozanam about a quadratrix; but on being merely told that he was miftaken, by P. Soucict, he immediately acknowledged his crror, and corrected it.

Many original and important mathematical perform. ances of Mr. Von Thchirnhaus are to be feer in the Leipfic Acts, in the Memoirs of the Academy of Sciences at Paris, and other literary journals. His happy generalifation of Dr Barrow's theorem for the focus of a flender pencil of rays after reflection or refraction, and the theory of caultic curves, in which this terminates, both conftitutes one of the moft elegant branches of optical fcience, and affords a rich harveft of very curious and unexpected geometrical truths. The manner in which be notices the rough way in which his firf and fole miftake in this theory was pointed out, is perhaps incomparable as an example of gentlemanlike reprehention, and is a leffon for literati of all deferiptions, higly valuable on account of the foft way in which it falls, while it is convincing as a mathematical theorem.

Tfehirnhans was the difcoverer of the fubllance of which the celebrated Saxon porcelain is made, and of the manner of working it up; by which he eftablifhed a manufacture highly profitable to his country, and has given us the fineft pottery in the world. He never wearied in Spreading ufeful knowledge; and the fhops of our artifans of almoft all kinds were fupplied with books of inftruetions and patterns, many of them written by Mr Von Tfchirnhaus, or under his infpection. Ufeful books of all kinds were tranflated out of foreign languages at his expence. Men of genius in the arts were enabled, through the encouragement of himfelf and his friends, and often by his pecuniary affiftance, to bring their talents before the public eye. In fhort, he feemed at all times to prefer the public good to his own ; and never felt fo much pleafure as when he could promote fcience or the ufeful arts. He was as it were flimulated to this by an innate propenfity. And as he was more defirous of being than of appearing the accomplifhed man, he was in no concern what notice others took of his fervices to the public. He even reprefents the defire of fame as hoftile to the improvement either of fcience or morality, in his Medicina Mentis; a work which is acknowledged by all who knew him to be a picture of his own amiable mind. He lightly elteemed riches; and knew not what.
ufe they were of, except for providing the neceflaries of Tfchinn. life, and the means of acquiring knowledge. In perfect conformity to this maxim, be modeflly, and with elegant refpect, refufed the ample prefents made him by his affectionate fovereign ; and when he was added to his cabinet council, he received the diploma, but begged and ohtained to be free from the title. And when lie prefented his great burning glafs to the Enipe. ror, and got from him the dignity and infignia of Baron of the Empire, be pleaded for leave to decline it, requefting to keep the chain and portrait, which he always wore under his veft. He expended a very great portion of the ample revenue left him by his father in the fervice of his country, by promoting the ufeful arts and fciences.

MrVon TCehirnhaus venerated truth above all things; faying, that thofe who thought any thing comparable with it were not the fons of Gor, but ftep-children, and that the love of truth is the ruling affection in every man of a worthy heart. In a letter to an intimate friend, he faid that, by the age of five andetwenty, he had completely fubdued the love of glory, of riches, and of worldly pleafures; and that at no time he had found it difficult to reprefs vanity, becaule he was every day confcious of having acted worfe than he was certain that he might and fhould have done. He felt himfelf humbled in the fight of the All-perfect Judge.

Nor was all this the vain boaft of a man averfe to bulinefs, and poffeffed of an ample fortune, which permitted him, without inconvenience, to pleafe his fancy in ftudy, and in helping others with what to himfelf was fuperfluous. Such a character, though rare, may exift, without being the object of much refpect. No: Mr Tfchirnhaus was really a philofopher of the true ftoic fect, in refpect of fortitude of mind, while a good Chriftian in modefty and diffidence. In the laft five ycars of his life he bore up under troubles, and embarraffments, and misfortunes in his family, which would have tiled the mind of Cato himfelf. But in the midft of thefe Itorms he was unflaken, and preferved his ferenity of mind. He was even fenfitle of this being a rare gift of Providence, and ufed frequently to exprefe his thankfulnefs for a treafure fo precious.' He felt deeply his relation to the Author of Nature, and rejoiced in thinking himfelf fubject to the providence of God. He faid that he was fully perfuaded that he would meet with perfect juftice, and would therefore ftrive to perform his own part to the utmolt of his power, that his future condition might be the more happy, and that he might in the mean time enjoy more fatisfaction on reflecting on his own conduct. His lot, he faid, was peculiarly fortunate : having fuch thirft for novelty, he would have been unhappy without an affluent fortune; and his own enjoyments encouraged neither vice nor idlenefs in himjelf or in the minifters to his pleafures.

This amiable perfon was of a conftitution not puny, but not rohult, and he had hurt it by too conltant fudy. He feared no difeafe; thinking that he had a cure or an alleviation for all but one. namcly, the ftone and gravel. He had a dread of this, and laboured to find a preventative or a remedy. He thought that he had alfo done a great deal here; and deferibes in his Medicina Corpores a preparation of whey, which he faid

T S C

fichirn.

 haus.he ufed with great advantage to his health. But his precautions were in vain: He was attacked with the gravel, which, after three months fufiering, brought on a fupprefion of urine. The phylicians faw that his end approached; and finding him difregard their preferiptions, they quitted him. He treated himfelf (it is faid judicioully) for fome time, and with fome appearance of fuccefs; but at lalt he law death not far oll. He dictated a letter to his Sovereign, thanking hini for all his favours and kindnels, and recommenderd his children to his protection. He never fretted nor complained; but frequently, with gliftening eyes, expreffed his warmeft thanks to Providence for the wonderful track of good fortune and of happinefs that he had enjoyed; and faid that he alfo felt fome fatisfaction in the confcioufnefs that fome of this was owing to his own prudent conduct. He polfeffed his entire faculties to the laft moment; and when he felt his fpirit jult about to depart, his laft words were, " Fötriumplse - Viforia!" No longer able to fpeak, he made figns for what he wanted; and a little after, thutting his eyes, as if to feep, he gently, and without a groan, yielded up his Spirit, about four o'clock in the morning of the 1sth of October 1708 , aged 56.

His funeral was performed in a manner becoming his rank, and the body conveyed to the family vanlt. The Elector (King of Poland) defrayed the expence ; for he would not allow his family to have any thing to do with the funcral of a man of fo public a character, and fo univerfally beloved.

The account of fuch a life as that of Baron Von Tfchinhaus would, at all cimes, make a pleafant and ufeful impreffion. In thefe our times, in the end of the 18 th century, after fociety has availed it felf of all the acquifitions in feience and art, furmihed by that ardent age of the world which this gentleman contributed to adorn; in an age when we boaft of illumination unparalleled in hiftory, and of improvements almoft amounsing to perfection; and in particular, of an emancipation from the prejudices which had obfcured our view of the chief grod, and fiffed public fpirit-now, when we are to full of knowledge that it is rumuing over on all hands, in volumes of intruction, how to make the world one happy family: in thefe bright days of philanthropilm, can the public records of Europe exhibit a fuperior character to that of Mr Von Tfchirnhaus, either in refpect of wifdum or of dif́porition? Was he not a philanthropit, a fincee lover of mankind? Was he not wife, in employing lis great acquired knowledge as the means of direct and active beneficence, by limiting his exertions to the extent of thofe circles where his own efforts woukl be cffective? He did not write books, teaching others how to do good: he taught it by example; being determined that his own withes to fee men happier thould not fail by the want of fuch wifhes in others, even after he hould inftruct them. He never allowed his infatiable curiofity for frelh difeoveries to interfere with the immediate turning to the good of his own comntry the knowledge he had aiready acquired. He probably never thought of improving the fituation of the Chinefe or the Mexicans, finding that it required all his ample fortune, and all the intereft and influence he could acquire, to do the good he wifhed in Saxony. We doubt not but that he was equally attentive to the

735] T S C

till narrower circle of duties formed by his own family. TfchimWe fce that he was a dearly beloved brother; which haus, could hardly be without his allo being a loving brother $\underbrace{\text { Trhamie. }}$ and a dutiful fon. The nature of the diftreffes which he experienced in his family, and the manner in which he behaved under them, fhew him to have been an eminent Chrifian moralift. With a modefty that is unmatehed by any one of the thoufands who have poured out inftructions upon us durng the laft ten years, and a gracefulnefs which claracterifes the gentleman, his MTedicina Mentis is offered to public notice, merely as an experimental proof that a certain way of thinking and acting is productive of internal quiet of mind; of great mental enjoyment, both moral and intellectual ; and of peace, and the grod will of thofe around us: and that it did, in fact, produce a dutiful and comfortable relignation to the unavoidable trials of human life. He pretends not to be greatly fuperior in widdom to his neighbours, but merely tells how things fucceeded with himfelf. He did not cruple, however, to publifh to the world difcoveries in feience, in which he had got the ftart of others during that bufy period of feientific oecupation: and thefe difcoveries in mathematics were highly prized by the lirf men of the age; nor will the name of 'Tfchirnhaus, or his cauftic curves, ever be foryotten.

We felt ourfelves abliged to the friend who took notice of the omiffion of this gentleman's name, fo eminent in the mathematical world, in the courfe of our alphabet; but when we looked into the Memoirs of the Academy of Paris for 1709 for fome account of him, what we there faw appeared fuch a continual panegyric, that we could not take it as a fair picture of any real character. Looking about for more impartial information, we found in the AAG Eruditorum, Ieipf. 1709, the account of which the foregoing is an abdract, except a particular or two which we have copied from an account in the Literary Journal of Breflaw, by Count Herbertein, whom we can farcely fufpect of undue partiality, becaufe he had fome difputes with Mr Von Tfehirnhaus on mathematical fubjects. May we not fay, " the memory of this man is fweet!"

TSCHAMIE, the Indian name of a tree in the Northern Circars of Hinduftan. It grows, fays Dr Ro:burgh, to be a pretty large tree, is a native of mout parts of the coaft, chiefly of low lands at a confiderable diftance from the fea, and may be only a variety of profopis fpecigerch, for the thoms are in this fometimes wanting; flowers during the cold and beginning of the hot feafions. Trumk tolerably ercet, bark deeply cracked, dirty ath colour. Branches irregular, vety numerous, forming a pretty large hady head. Prikiles fattered over the fmall branches; in fome trees wanting. Leaves alteruate, gencrally bipinnate, from two to three inches long; pinus from one to four, when in pairs oppofite, and have a gland between their infertions. Leaflets opporite, from feven to ten pair, obliquely laneed, finooth, entire, about half an inch long, and one.fixth broad. Stipulis none. Spilies feveral, axillary, filiform, nearly ercct. Brads minute, one-fowered, falling. Flowers numerous, fmall, yellow, fingle, approximated. Calyx below, five-toothed. Filaments united at the bafe. Anthers incumbent, a white gland on the apex of each, which falls off foon after the flower expands. Style crooked.

Thiutki, crooked. Stigma fimple. Legume long, pendulous, nut $\underbrace{\text { Tucker. inflated. Seeds many, lodged in a brown meally fub- }}$ ftance.

The pod of this tree is the only part ufed. It is about an inch in circumfercuce, and from fix to twelve long; when ripe, brown, fnooth, and contains, befides the feeds, a large quantity of a brown meally fubflance, which the natives eat; its talte is fiveetifh and agreeable; it may therefore be compared to the Spanilh algaroba, or locult tree. (Ceratcnia filiqua, Lim.)

In compliance with Dr Keruig's opinion, Dr Roxburgh ealls this tree a profopis; but as he thinks the antheral glands give it a claim to the genus adenantbera, we have retained the Indian name till its botanical claffification flall be afcertained by thofe who have greater authority in the fcience than we lay elaim to.

TSHUTSKI, a people inhabiting a country fituated on the ealtern extremity of Afia, oppofite to the north welt coalt of America, and bounded by the Anadyr on the fouth. The Thutfini nation is divided into two very difline tribes: the one is called fationa. ry, or fixed inhabitants of the coaft; the other, Reindeer, or wanderers. The former occupy fuch places as are convenient for fifhing, and the chace of fea-animals, from the river Anadyr to a finall diftance north of the eaftern promontory. The extent of their population, according to the beft intelligence, amounts to about 3000 males. They are very induftrious, and are neat workmen; which is evinced by their boats, lances, arrows, bows, apparel, utenfils, $\hat{\text { cx }}$. with which they fupply the wanderers. Their female prifoners are alfo a great article of trade: as they harter them for reindeer, copper and iron kettles, kuives, beads, and fuch articles as the wanderers obtain from the Ruffian traders. Their married women are faithful to their hufbands; but chaftity feens not to be a virtue arrong the unmarried part of the fex, who grant any favours to ftrangers for beads, buttons, tobacco, \&c.

The aged among the Thutki are fubject to rheumatic complaints, which they cure, or attempt to cure, by lighting the dried leaves of wormwoud, fo prepared as to burn like tinder, and letting it remain till burnt out on the parts affected. In cafes of fevere illnefs, they offer facrifices of deer to the fpirits of lorture; and fometimes a dog is killed, when the fick are led round it, and anointed with its blood and fat. They burn their dead to afhes; lay flones on the fpot to refemble, in forme degree, the form of a man; place a large fone at the head, which they anoint with marrow and fat ; and form a pile, or heap of deers horns, at a fmall diftance from it. This place is vifited annually by the relatives of the deceafed, who recapitulate the feats of their departed friend, anointing, each, the head-fone, and adding a horn to the heap. The wandering tribe conlider themfelves as a fuperior race of beings, and the moft independent of men; and it is a fact that the Ruffians have never been able to bring them under their dominion. They call their more ttationary neighbours old women, fit only to attend on them, and to guard their cattle. By Brookes the country of the Thutiki is placed Long. 168. 41. W. Lat. 66. 5. N.

TUCKER (Abraham), Efq; a curious and original thinker, was a gentleman of afluent fortune, and author of "The Light of Nature purfued," 9 vols 8 vo ;
of which the five firt volumes were publifhed by him. felf in 1768 , under the aifumed name of "Edward Search, Efq." and the four laft after his death, in 1777, as "The pofthumous Work of Abraham Tucker, Efq. publifhed from his manufcript as intended for the prefs by the author," Mr Tucker lived at Betchworthcalte, near Dorking in Surrey ; an eftate which he purchafed in the carly part of his life. He married the daughter of Edward Barker, Efq. by whom he had two danghters ; one of whom married Sir Henry St John, and died in his lifetine ; the other furvived, and now lives at Betchworth caftle. He loft his eycfight a few years before his death, which happened in 1775° To defcribe him as a neighbour, landlord, father, and magiftrate, it would be neceflary to mention the moft amiable qualities in each. It is unneceffary to add, that he was very fincerely regretted by all who had the pleafure of his acquaintance, and who thood connected with him in any of thofe relations.

Tueker (Jofial, D. D.), well known as a political and commercial writer, was bor:i at Langhorn in Caermarthenthire, in the year 1712. His fatlier was a farmer, and having a fmall eftate left him at or near Aberyftwith, in Cardiganhire, he removed thither; and perceiving that his fon had a turn for learning, he fent him to Kuthin fchool in Denbighfhire, where he made fo refpectable a progrefs in the claffics, that he obtained an exhibition at Jefus Coilege, Oxford. It is generally undertond that feveral of his journeys to and from Oxford were performed on foot, with a Atick on his fhoulder, and bundle at the end of it. Thus it might be faid by him, as by Simonides, "Omnia mea mecum forto."

At the age of 23 he entered into holy orders, and ferved a curacy for fome time in Gloucefterfhire. A bout 1737 he became curate of St Stephen's church in Briftol, and was appointed minor-canon in the cathedral of that city. Here he attracted the notice of Dr Jofeph Butler, then Bifhop of Britol, and afterwards of Durham, who appointed Mr Tucker his domettic chaplain. By the intereft of this prelate Mr Tucker obtained a probendal ftall in the cathedral of Briftol; and on the death of Mr Catcott, well known by his treatife on the Deluge, and a volume of excellent fermuns, he became rector of St Steplien. The inhabitants of that parihh conlift chiefly of merchants and tradefmen; a circumflance which greatly aided his natural inclination for comnercial and political fudies.

When the famous bill was brought into the Houre of Commons for the naturalization of the Jews, Mr Tucker, confidering the meafure rather as a merehant or pelitician than as a Chrittian divine, wrote in defence of it with a degrce of zeal which, to fay no more, was at leaft indecent in a man of his profeffion. , As fuch it was viewed by his brethren of the clergy, and by his parifhioners; for, while the former attacked him in pamphlets, newfpapers, and magazines, the latter burnt his effigy dreffed in canonicals, together with the letters which he had written in defence of the naturalization.

In the year 1753 he publifhed an able pamphlet on the "Turkey Trade;" in which he demonftrates the evils that refult to trade in general from chartered companies. At this period Lord Clare (afterward Earl Nugent) was returned to Parliament for Brifol ; which honour

T U C

Tucker.

Tucker, 1799. The following we believe to be a tolerably cor- ken cuft $4 t<0$ fiorins; 476 ditto of Admiral Von der Tulpoms-Tulipuma- rect lift of his works.
$\underbrace{\text { nia. }}$ Theological and Controverfial.-1. A Scrmon, prcached hefore the Governors of the Infirmary of Britol, 1745. 2. Letters in behalf of the Naturalization of the Jews. 3. Apology for the Church of England, 1772. 4. Six Sermuns, $12 \mathrm{mo}, 1773$. 5. Letter to Dr Kippis on his Vindication of the Proteftant Diffeating minifters. 6. Two Sermone and Four Tracts. 7. View of the Difficulties of the Trinitarian, Arian, and Socinian Syftems, and Seventeen Sermons, 1777.

Political and Commercial.-8. A pamphlet on the Turkey Trade. 9. A brief View of the Advantages and 1 Vifadvantages which attend a Trade with France. 10. Reffections on the Expediency of Naturaliziag foreign Proteftants, and a Letter to a Friend on the fame Subject. Ir. The Pleas and Arguments of the Mother Country and the Colonies flated. 12. A Letter to Mr Burke. ${ }^{13}$. Quere, Whether a Connection with, or Separation from, America, would be for national Advantage? 14. Anfwers to Objections againt the Separation from America. 15. A Treatife on Civil Goverument. 16. Cui Bono? 17. Four Letters on national Subjects. 18. Sequel to Sir William Jones on Government. 19. On the Difpute between Great Britain and Ireland. 20. Several Papers under the Signa. ture of Caffandra, \&c. on the Difficulties attendant on an Invafion. 21. A Treatife on Commerce (Mr Coxe, in his Life of Sir Robert Walpole, fays that this was printed, but never publifhed).

Mifellaneous.-22. Directions for Travellers. 23. Cautions againft the Ufe of Spirituous Liquors. 24. A Tract againt the Diverfions of Cock-fighting, \&e.

TULIPOMANIA, the very proper name given to a kind of gambling traffic in tulip roots, which prevailed in Holland and the Netherlands during fome part of the rith century. It was earried on to the greateft extent in Amfterdam, Haerlem, Utrecht, Alkmaar, Leyden, Rotterdam, Hoorn, Enkhuyfen, and Meedenbliek; and rofe to the greateft height in the years 1634, 1635, i636, and 1637. Munting, who, in 1696 , wrote a book of 1020 pages folio on the fubject, has given a few of the molt extravagant prices, of whieh we hall prefent the reader with the following. For a root of that fpecies called the I'iceroy, the after mentioned articles, valued as below, were agreed to be delivered.

- A perit
weight lefs than a
grain.
Thefe tulips afterwards were fold according to the weight of the roots. Four hundred perits * of Admiral Lief-

Eyk, 1620 florins; 106 perits Schitder coft 1615 florins; 200 ditto Semper Auguflus, 5500 florins; 410 ditto Viceroy, 3000 florins, \&c. The fpecies Semper Auguftus has been often fold for 2000 fl rins; and it once happened that there were only two roots of it to be had, the one at Amfterdamand the other at Haer: lem. For a root of this fpecies, one agreed to give 4600 florins, together with a new carriage, two grey horfes, and a complete harnefs. A nother agreed to give twelve aeres of land for a root: for thofe who had not ready money, promifed their moveable and immoveable goods, houfe and lands, cattle and clothes. A man, whofe name Munting once knew, but could not recollect, won by this trade mure than 60,000 florius in the courfe of four months. It was followed not only by mercantile people, but alfo by the firft noblemen, citizens of every defcription, mechanics, feamen, furmers, turf.diggers, chimney-fweeps, footmen, maid-fervants, and old clothes-women, \&c. At firft, every one won and no one loft. Some of the pooreft people gained in a few months houfes, coaches, and horfes, and figured away like the firft characters in the land. In every town fome tavern was felected which ferved as a change, where high and low traded in flowers, and confirmed their bargains with the moff fumptuous entertainments. They formed laws for themfelves, and had their notaries and clerks.
To get poffeffion of fine flowers was by no means the real object of this trade, though many have faid that it was, and though we have known fome individuals in Scotland, who, led away by what they thought the fafhion, have given ten gaineas for a tulip root. During the time of the tulipomania, a fpeculator often offered and paid large fums for a root which he never received, and never wifhed to receive. Another fold roots which he never poffefled or delivered. Oft did a nobleman purchafe of a chimncy-fweep tulips to the amount of 2000 florins, and fold them at the fame time to a farmer; and neither the nobleman, chimney-fweep, or farmer, had roots in their poffefion, or wifhed to poffefs them. Before the tulip feafon was over, more roots were fold and purchafed, befpoke, and promilied to be delivered, than in all probability were to be found in the gardens of Holland; and when Semper Auguftus was not to be had, which happened twice, no 〔pecies perhaps was oftener purchafed and fold. In the fpace of three years, as Muating tells us, more than ten millions were expended in this trade in only one town of Holland.
'To undertand this gambling traffic, it may be neceffary to make the following fuppofition. A nobleman befpoke of a merchant a tulip root, to be delivered in fix months, at the price of soco florins. During thefe fix months the price of that fpecies of tulip mult have rifen or fallen, or remained as it was. We fhall fuppofe that, at the expiration of that time, the price was 1500 florins; in that cafe, the nobleman did not wifh to have the tulip, and the merchant paid him 50 c flo. rins, which the latter loft and the former won. If the price was fallen when the fix months were expired, fo that a root could be purchafed for 800 florins, the nobleman then paid to the merchant 200 florins, which he received as fo much gain; but if the price continued the fame, that is, 1000 florins, neither par-

T U L
 730] T U R

Thlipona ty gained or loft. In all thefe circumftances, how1:is.
his tulips to the purchafer; and, in cale he refufed to receive them, the vender thould either keep them, or fell them to another, and have recourle on the purchafer for any lofs he misht fultain. It was ordered alfo, that all contraets fhould remain in forec till farther enquiry was made. But as no one could forefee what judgment would be given refpeeting the valitity of each contrace, the buycrs were more obtlinate in refufing payment than before ; and venders, thinkirg it much fefer to zecommodate matters anicably, were at length fatisfed with a fmall prnfit inttead of exobitant gain: and thus ended this extraordinary traffic, or rather gambling. Beckmann's Hiflory of Inventions, val. i.

TUM. 1 , in Bengal, rent-roll or affement.
TUMBREL, is a kind of carriage with two wheels, uffd cither in hubautry for dung, or in artillery to carny the tools of the pioncers, \&ec. and fometimes likewife the money of an army.

TUNGSTEN (See Chemistry, $\mathrm{n}^{\circ} \mathrm{t} 78$, \& 8 c . in this Suppl.) when well fulfed, is, according to Guyton alias Morveau, of no higher fpecific gravity than 8.3406. This is very different from the fpecific gravity which has hitherto been affigned to it. The fame eminent cherrift concludes, from its extreme brittlenels and difficulty of fution, that it aflords litile pronife of utility in the arts, except in metallic alloys, or by virtue of the property which its oxyd poffeffes, of affording fixed colours, or giving fixity to the colours of ve. getables.

TURNSOL, a dye-ftuff menufactured in Holland, the preparation of which was long kept a profound fecret. In order to minead foreigners, the Dutch pretended that turnfol was mace from rags dyed with the juice of the fun-flower (Helianthus), from which it obtained its name. Since the late revolution, however, in Holland, the true method employed by the Dutch for preparing this colour has been difeovered, and the procefs is as follows:- That kind of lichen called orchal (Lichen-Rocella. See that article in this Suppl.), or, when that cannot be procured, the large oak mofs, after being dried and cleaned, is reduced to powder, and by means of a kind of oil-prefs the powder is forced thro' a brafs fieve, the holes of which are fmall. The f:fted powder is then thrown into a trough and mixed with an alkali called vetas, which is nothing elfe than the. afhes of wine lees, in the proportion of half a pound of aftes to one pourd of powder. This mixture is moiftcued with a little human urine, for that of other animals contains lefs ammonia, by which a fermentation is produced ; and the moiftnefs is ftill kept up by the ad. dition of more urine. As foon as the mixture affumes a red colour, it is poured into another trough; is again moiftened with urire, and than ftirred round in order that the fermentation may be renewed. In the courfe of a few days it acquires a bluifh colour, and is then carefully mixed with a third part of very pure pulverifed potafh; after which the mixture is put into wooden pails, three feet in height, and about half a foot broad. When the third fermentation takes place, and the patte has acquired a confiderably dark blue colour, it is mix. ed with chalk or pulverifed marble, and ftirred wall round that the whole may be completely united. This laft fubftance gives the colour no bigher quality, and is intended merely to add to the weight. The blue, prepared in this manner, is poured into oblong fquare iron
moulds;

Turpen- moulds; and the cakee, when formed, are placed upon $\underbrace{\text { tine. }}$
fir boards on an airy flour in order to dry, after which
they are packed un for fale.

TURPENTINE, a well known fubftance extrated from the pine. Under the atticle Pinus (Encul.), we have given an acenamt of one procefs by which this extraft is inade; but the following, which is taken from the 3 It volume of the Gournal de Poyfique, is very different, and probahly better. The pine from which turpentine is excracted, is never fit for this operation till it be thirty years of age. The extraction is begun in Fehruary and continued to the end of OAtober. Incifions are made with an hatchet, herimning at the foot of the tree on one fide, and rifng fuceefively: they are repeated once or twice a week, the fize about one fingers breadth acrofs, and thrce or four inches long. During the four years in which it is continued, the inctions have rifen to about eight or nine feet Then the incilions are begun on the other file ; and during this time the old ones fill up, and may be again opered after fome years; fo that a tree on a good foil, and well managed, mey yield turpentine for a century. At the bottom of the tree, under the incifion, a hoie is cug in the ground to receive the refin which flows from the tree. This refin is called terebintbine brut, is of a milky colour, and is that which flows during the three fuminer months; it requires further purification.

The winter crop is called barras oalipot, or white refin : it fticks to the bark of the tree, when the heat has not been ttrong enough to let it fow into the trough in the ground. It is feraped off with iron knives.

Two methods are practifed for purifying thefe refins. That which is followed at Bayonne is to have a copper cauldron which will hold 300 lb . of materials fixed over a fire, and the flame circulating at the bottom of the copper. The turpentine is put in, melted with a gentle heat, and, when liquid, it is ftrained through a trawbafket inade for the purpofe, and ftretched over a baircl, which receives the drained antpentine. This purificazion gives it a golden colour, and may be performed at all times of the year.

The fecond manner, which is practifed only in the mountain of De Bu:h, near Bourdeaux, confilts in having a large tub, feven or eight feet Square, and pierced with fmall holes at the bottom, fet upun another tub to catch the liquor. This is expofed to the hotteft fun for the whole day, filled two thrds wih turpentive, which as it melts falls through the holes, and leaves the impurities behind. This pure turpentine is lefs goldencoloured, and is much more eftemed than the orher. This proeefs can only be done in the fummer.

To make oil of turpentine, an alembic, with a worm like what is ufed by the diftillers, is exployed here. It generally contains 250 lb . of turpentive, which is boiled gently, and kept at the boiling point till no more oil paffes, when the fire is damped. This generally gives 60 lb . of oil, and the operation lafts one day.

The boiling turpentine, when it will give no more oil, is tapped off from the fill and flows into a tub, and from thence into a mold of fand, which it fills, and is fuffered to cool for at lealt two days without difturbing it. This refidue is known under the name of colophony. It is of a brown colour, and very dry. It may be made clearer and nearer in colour to that of the refin, by adding hot water to it before it is tapped off the atill,
and fill boiling and flirrirg the water well with it, which is done with a hefom of wet fraw; and it is then fold for rofin, but is little efteemed, as it contains no effential oil.

TUSCUL,ANUM, a villa belonging to Cicero, near Tufculun, where he wrote his Quglliones Tufculana, fo named from the place; thus becone famous as well for the productions of genius as of nature. Formerly the villa of Sylla: now called Grotta Ferrata.-A. nother Tufculanum (infcription), a town of the Tianfpadana, litiated on the weft fide of the Lacus Benatus. Now faid to be called Tofcolano, in the territory of Brefcia, fubject to Venice. Here many monuments of a.atiquity are dug up.

TUSCULUM (anc. geog.), a town of Latium, to the north of Alba; fituated on an eminence, and therefore called Supernum (Forace, Strabo). In fight of Rome, at about the difance of 100 ftadia, or 12 miles. Adomed with plantations and princely edifices: The fpot remarkable for the goodnefs of the foil, and its plenty of water. Built by Telegonus, who flew his father Ulyfles (Ovid, Horact) ; called the grandion of Ulsfes in Silius Italicus. A municipium (Cicero); the birth-place of the elder Cato (Nepos, Cicero). Now Frefcati, in the Campania of Rome.

TUTENAG, according to Sir George Staunton, is, properly fpeaking, zine extracted from a rich ore, or calamine. The ore is powdered and mixed with char-coal-duft, and placed in earthen jars over a low fire, by means of which the metal rifes in the form of vapour, in a common dittilling apparatus, and afterwaids is condenfed in water. The calamine from which tutenag is thus extracted, contains very little iron, and no liad or arfenic, fo common in the calanine of Europe (See Calamine, Encycl.) Hence it is that tutenag is more beautiful than our zinc, and that the white conper of the Chinefe takes fo fine a polifl. Sce White Coppre, in this Supplement.

TYERS (Thomas), an author both in poetry and profe, the friend of Johnfon, and well known to motk of the eminent characters of the prefent time, was a Hudent of the Temple in. 1753. His farher intended hinn for the law, but the jonng man it feems penned a fonnet when he fhould engrois. He was an accomplifhed, but not a profound man; and had tafte and elegance of mind, flightiy tinged with gleams of genius. He wrote fome pattorals and political tracts, which probably will not furvive the partiality of his particular friends.

TYPOGRAPHY, as the word imports, is the art of printing by types; but it is likewife ufed to fignify the multiplying of copies by any mechanical contrivance. Of the art of printing by types, and the many improvements from time to tine either made orattempted in it, a pretty full account will be found in the Encychpadia, under the titles Letter, Logugraphy, and Printing ; and in this Supplement under the word Printing. Of typography, in the other and larger fenfe, fome account may likewife be found in the Encyclop lia under the title Metbod of Copying Writings ; but to almoft all thefe articles there is ample room for fome additions here.

The Jereotype printing of Didot and Herban, being confidered in France as a great improvement, muft not be pafied over wholly without natice. The term /eres-

T Y P

Typagra phy.
able in in this method the types are fixed and immove or lif form, fo that none of then can be pulled to thofe who are at all acquainted with the hiftory of printing, that the project of fuldering a whole form together, or of calliug a folid furn from an imprefious made by a general fyttem of types, or page ready compofed, is not new. It was realifed 70 years ago by William Ged, a golifmith in Edinburgh; for an account of whofe method we refer the reader to his life in the Encyclopedia. Didut now fullows nearly the fame procefs as Ged. He does not indeed calt his types in a mafs, but after the form is compofed and carefully corrected, he cenments or fulders the types together fo firmly that none of them is liable to be loofened by the action of the prefs or the adhefion of the balls. How far this method of printing is of vaiue with regard to books which are altered and improved in every fubfequent edition, may, perhaps, be queftioned; but on a loofe confideration of the fubject, it feems as if it would, in every cafe, be advantageous to a bookfeller to print a few copies of a work, and keep the types fanding to print others as they may be wanted; -we fay it would be advantageous, if it were not for the immenfe value in types, which would, by that means, be locked up. To form fome judgnsent of this, it may beftated, that the works of Virgil, printed by Didot, in 18 mo , form a beautiful volume of 418 pages, of 35 lines each. The character ranges line for line with that called burgeois, $N_{2} 2$. in Caflon's book of fpecimers, the face of the letter being rather fmaller; and we are tuld* that the price of the plates of this work is twelve hundred franks, or gol. fterling. From this fact fome judgment may be formed of the commercial queftion. We have cafually looked at different books printed by Didot, hut can fay nothing of their correctnefs : the page is very pretty.

For multiplying copies of any writing, or of a book of ordinary lize, Kochon, of the French National Infitute, and now Director of the Marine Obfervatory at the port of Breft, irvented, about the year 1781, a machine for engraving, with great celerity and correctnefs, the pages of the book or manulcript on fo many. plates of cupper. It was fubmitzed to the examination of a committee of the Ruyal Acadeniy of Scienees, whofe report of its utility was given in the following words:
". 'This machine appears to us to unite feveral advantages. $\quad 1 /$, Engraved editions of books may be executed, by this means, fuperior to thole which can be made by the hand of the engraver, however fkilful; and thefe engraved originals will be made with much more fpeed, and much lefs expence. $2 d$, As this machine is purtable, and of no confiderable bulk, it may become very ufeful in armies, fleets, and public offices, fur the impreffion of orders, inftructions, \&c. 3 . It poffeffes the advan. tage which, in a variety of circumftances, is highly va. luable, of being capable of being ufed by any man of intelligence and Rill, without requiring the affitance of any profeffional workman. And, lafly, It affords the facility of waiting for the entire compolition and engravings of a work before any of the copies are pulled off; the expence of plates, even for a work of confiderable magnitude, being an object of little charge;

$74 \mathrm{I}] \quad \mathrm{T} \quad \mathrm{Y}$

and this liberty it affords to authors, may prove highly bencficial in works of which the chief merit confifts in the order, method, and connection of ideas."

Rochon's machine confifts of two brafs wheels*, pla- Sec Plate ced on the fame axis above each other, and feparated XLVI. by a number of pillars, each two inches in length. Thefe two whecls, with the interval which feparatcs them, are equivalent to a lingle whed about three inches thick. In order iherefore to fimplify the defcription, they are conlidered as a lingle wheel which moves freely on its axis.

This wheel is perforated near its circminference with a number of fquare holes, which are the fheatlis or fockets through which a like number of fteel punches, of the fame thape, are inferted, and are capable of moving up and down. They are very well fitteu; and from this circumftance, as well as the thicknefs of the double wheel, they have no fhake, or fide motion, independent of the motion of the wheel itfelf. Every punch is urged upwards by a feparate fpring, in fuch a manner, that the wheel armed with its characters, or fteel types, (the lower faces of the punches being cut into the figures of the feveral letters), may turn freely on its axis; and if it be moved, the ieveral punches will pafs in fuceeffion beneath an upright fcreiv, for preffure. The fcrew is fixed in a very hirm and folid frame, attached to the fupports of the machine; and by this arrangement a copperplate, difpofed on the table, or bed of the apparatus, will reccive the impreffion of all the punches in fucceffion, as they may be brought beneath the vertical preffing ferew, and fubjected to its action.

But as the prefs is fixed, it would neceffarily follow that each fucceffive impreffion would, in part, deltroy or mutulate the previous impreffions, unlefs the plate itfelf were moveable. It therefore becomes neceffary that the plate fhould be moveable in t vo directions: the firft, to determine the interval between the letters and words, and form the lines; and the other motion, which is more fimple, becaufe its quantity may remain the fame through the whole of a book, ferves to gire the interval between line and line, and to form the pages.

It will eafily be conceived tlat it would be a tedious operation to feek, upon the circumference of the wheel, each feveral character, as it might be required to come beneath the prefs, becaufe it is neceffary to repeat this operation as many times as there are characters in a work. The author has confiderably diminilhed the time and trouble of this operation, by fixing upon the axis of the great wheel, which carries the punches, all. other finall wheel, about four iaches in diameter, the teeth of which act uvon a rack, which carries a rule muving between two niders. This rule, or ftraight line, will therefore reprefent the developement, or unfolding of the circumference of the wheel which caufes it tomove, and will thew the pofition of the great wheel, which carries the punches. Fur thefe two wheels being contentric, the developement of the fmall toothed wheel, of ahout two inclies radius, will exhibit, in a imall fpaec (for example, that of a fout), an accurate regifter of the relative pofitions of the punches with regard to the preffing.ferew. To obtain this effect, nothing more is neceffary than to place a fixed index ope pofite to the moveable rule, which haft is divided in the following manner:

T Y P

'rypers. The punch on which the firit letter of the alplabert phy. is engraved, mull be brought under the centre of the preffing-forew; and a line of divifion then drawn upon the nuseable rule, to which the letter itfelf mutt be added to diftinguifh it. The index, already mentioned, being placed oppofite, and upon this firt divifion, will ferve to place immediately beneath the preffing-ferew the punch, or rather the character, correfponding with the divifion upon the rule, without its being afterwards neceffary to inlpeet the place either of the punch or the ferew, with regard to each other. Confequently, as foon as the divifions which currefpond with all the punches inferted in the wheel are engraved upon the Atraight rule, the fixed index will immediately determine the politioniuto which that wheel mut be brought, in order to place the punches under the preffing. ferew in the order which the work may require.

This regifter, for this name ditinguifhes the rule and its index, has no other function in the machine than to guide the hand of the operator, and to fhew when the punch is very near its proper pofition beneath the prefling-fcrew. When this is the cafe, the required pofition is accurately obtained by means of a detent or catch.

The detent which he ufes for this operation is a lever with two tails, one of which is urged toward the circumference of .the wheel by a fpring. To this extre* mity of the lever is fixed a piece of hardened Ateel, of the figure of a wedge, which, by means of a fpring, is preffed towards the axis of the great wheel, but may be relieved, or drawn back, by preflure on the oppofite tail of the lever, fo as to permit the great wheel to revolve at liberty.

In the next place, it muft be explained how this detent takes hold of the wheel, fo as to retain it preciftly in the fituation neceffary to caufe any one of the punches, at pleafure, to give its imprefinon to the plate. For this purpofe there are a number of notches cut in the circumference of the wheel, for the purpofe of receiving the detent. Thefe notches may be about half an inch deep, wider towards the circumference than elfewhere, and it will be of advantage that this outer width Mould be as great as the circumference of the wheel can conveniently allow. By this contrivance, the wedge will not fail to prefent it Celf oppofite to one of the notches into which it will fall, and draw the wheel exactly to its due fituation, even though the index of the regifter fhould not be brought precifely to the line of divition appropriated to any particular letter. For if this laft degree of precifion were required in working the machine, it would be very prejudicial to the requifite fpeed which, above all things, is required in its ufe. When the wedge is therefore left at liberty, it not only enters immediately into its place, and moves the wheel till its two fides apply fairly to the interior furfaces of the notch, but retains the wheel in this flate with the neceffary degree of ftability.

The method of giving the proper figure to thefe notches is very eafy. For this purpofe it is neceffary, in the firft place, to imprefs all the characters contained in the wheel on a plate of copper or pewter. The fupport on which the plate is fixed mult be moved in a right line, after each ftroke of the punch, through fuch a fpace that the characters may be arranged one after the other without touching. Now, as the perfect li-
near arrangement (fuppofing every other part to be Trpograo true) mutt depend on the notches, it might feem futicient to cut thefe according to the method ufed for the wheels of clock work : but as it is very difficult to avoid fome obliquity on the face of the punch, and perhaps in the hole through which it paffes, it is in almolt every cafe neceffary to retouch the notch itfelf. 'The requifite degree of precifion may be eatily obtainted, when, upon examiniag with attention the print of the chasrakters engraven יبpon the plate, the inequalities thall have been afcertained by a very finc line paffing exactly under the bafe of two fimilar letters, affumed as objects of comparifon: for the irregularity of linear pofition may, by this mieans, be detemined with great exact. nefs, and remedied to the molt extreme nicety. In this operation, the workman muit file away part of that furface of the notch which is oppofite to the direction of the motion the character requires. Great care mult be taken to file unly a fmall portion at a time, in order that the in!tant may be feized at which the wedge, by entering into the notch, brings the character to its due fituation.

Thefe details, refpecting the right-lined arrangement on the characters, mult not divert our attention from the very great celerity with which any letter is brought to its place under the prefs by means of the regifter and detent. This celerity is an ubject of fo much importance in the engraving of a great work, that every means ought to be purfued which may tend to increafe it. For this reafon it is, that inftead of following the alphabetic order in the arrangement of punches on the furface of the wheel, we ought to prefer that in which the fum of the different motions to be given to the whecl, for engraving an entire work, fhall be the leaft poffible. This tedious enquiry may well he difpenfed with, by obferving the order in which printers difpoie their cafes of characters, that the letters of the mofl frequent recurrence may be moft immediately under the hand of the workman.

If all the charaeters afforded an equal refiftance to impreffion in a plate of metal, a conitant force would never fail to drive the punches to the fame depth. But the faces of the letters are very unequal, and confequently it will be neceffary to ufe a variable force. Muft workmen ufe the hammer, and not a ferew, as in this machine, for llamping. If the hammer had been ufed in this machine, it is evident, that if we fuppofed it to have fallea from the fame height upon every one of the punches, the force of the ftroke could be rendered variable according to the nature of the characters, by placing a capital, or head, upon each, of an height properly adjutted to receive the hammer after paffing through a greater or lefs fpace. But the heads of our punches are variable at pleafure, becaufe they are fcrewed on ; and thus it is that, by experimentally adjufting the heads of all the punches, a fet of impreffions are obtained of equal depths from every one of them. When, for example, the letter i is placed under the hammer, the upper part of its head is at a fmall diftance from the head of the hammer, in order that its fall, which begins always at the fame place, may frike this letter weakly ; but when the letter M is brought under the hanmer, the upper part of its head being much lefs elevated than that of the letter i, will receive a mucb ftronger blow. The impreffions of the letters M and i will therefore al.

ways te equally deep, if the heads of the punches be once properly lixed by experiment.

Inftead of the froke of a haminer, howcver, our an. thor nakes ufe of the preffure of a ferew, of which the threads are fo inclined that it tuns tbrough its female focket, and would fall out merely by its own weight. This conftruction affords the double advantage of pre ferving the impreffions from the effects of the circular montion, and of affording a fall in the fcrew of nearly nine lines for each revolution. The head of this fercw is folidly fised in the centre of a hrafs wheel, of which the polition is horizontal. The diameter of this wheel mult be fufficiently large, that its motion may not be perceptilly affected by the irregularities of friction in the ferew. This confiderable diameter is alfo requifite, becawfe the preffurc of the ferew depends, not only upon the force which is applied, but the diftance of the place of application from the centre of movement

It is effentid that this wheed hould have very little make; for which reafon it is advifable that the axis of the forew fhould be prolonged alrove the wheel itfelf, that it may fide in a focket firmly fixed to the franse of the machine. In this fituation, the wheel, which is fixed on the prolongation of the forew, will have its plane conftantly preferved in a fituation parallel to itfelf, without any libration, notwith tanding the rife and fall of near nine lines, or three quarters of an inch, which it undergoes for each revolution on its axis.

It has been fta:ed, as a requilite condition, that the forew mould conftantly fall frem the fame fixed point, or elcuation, upon the heads of every one of the punches. To accomplifh this effential purpnfe, a lever is firmly fixed to the fupport of the fcrew; which lever refembles the beam of a balance, having one of its extre. mities armod with a claw, and the other fervinat to give it motion through a fmall verticle fpace. The claw falls into a notch in the upper furface of the whet at tached to the ferew, as foon as that wheel has rifen to the defired elevation ; and the lever itfelf is fo far limit. ed in its mntion, that it cannot take hold of the wheel, excepting when it has reached that height. The wheel, therefore, remains confined and immoveable, by means of this detent, and cannot defcend until it is delivered by prefure upon the oppofite tail of the lever. In this machine, the whee! which has the preffing forew for its axis does not perform an entire revolution. It was with a view that there might never be any fall capable of fhaking and difturbing the machine that the acthor deternified to ufe only two-thirds of a revolution to Aribe thole punches, which afford the frongeft refift. ance. The ferew confequently falls on!y through fix lines upon thofe heads which are leaft eltvated, and about two lines upon thofe which itand higheft. Whence the diference between the extreme heights does not exceed four lines.

It is obvious, that fo \{mall a difference is not fufficient to ftrike all the characters from M to the letter i, when the wheel which governs the ferew is put in motion by a conftant weight, of which the impulfe, like that of a hammer, is increafed only by the acceleration of its fall. It is evident that this requifite variation of force might be had by changing the weight; but it is equally clear, that the numberlefs and inceffant changes which the engraving of an entire work would demand, would be incompatible with that degree of fpeed which
forms one of the firlt requifites. He was therefure Tig ngra. obliged to render the force of the weight, which turns the ferew, varialle, by caufing it to act upon levers of greater or lefs lengths, according to the different quantities of impulfe required by the feveral punches. For this purpofe he adopted the fullowing conftruction: He connected hy a theel chain to the whecl, which moves the fcrew, another wheel, having its axis horizontal, fo that the two wheels refpeetively command each other. They are of equal dianeter, and the chain is no longer than to make an entire turn round each wheel. This feenod wheel, n: leading pulley, is intended to afford the requifite variations of force, which it does by means of a fnail fixed upon its axis. The fuail is acted upon by a cond paffing over its fpiral circumference, or groove, and bearing a weight which is only to he changed when a new fet of punches for characters of a dif. ferent fize are put into the great whel. The fpiral is fo formed, that when the weight defeends only through a fmall fpace, the part of the cord, which is unwound, acts at a very mort diflance from the centre of the pul. ley; but when the fall is greater, the part of the inail upon which it acts is fo far enlarged as to afford a much longer lever, and confequently, to give a proportionally greater effect to the ftroke. This conftruction, therefore, hy giving the advantage of a longer lever to a greater fall of the fcrew, affords all the power which the nature of the work, and the different fpaces of the lettersdemand.

The fupport on which the plate is fixed muft, as has before been remarked, move fo as to form ftrait lines, This motion, which ferves to fpace the different characters with precifion, is obtained by means of a ferew, the axis of which remains fixed, and carries a female ferew or nut. The nut itfelf is attached to the fupport of the metallic plate, which receives the letters, and carries it in the right lined direction without any deviation ; becaufe it is confined in a groove formed between two pieces of metal. The ferew is moved by a lever, which can turn it in one direetinn only, becaufe it aets by a click upon a ratchet-wheel, which is fixed to the head of the ferew. The action of this lever always begins from a fixed fop; but the fpace through which it moves is variable, according to the refpective breadths of the letters. This new confideration induced M. Rochon to fix upon the rule or plate of the regifter, a number of pins, correfponding with the different divifions which anfwer to each punch : thefe pins determine the diftance to which the lever can move. It therefore becomes a condition, that its pofition in the machine fhould be oppofite to the fixed index which de. termines the character at any time beneath the preffing. fcrew. The lever and its pin. are therefore the fole agents employed to fpace the characters. If the plate were not moved by the lever, the impreffions would fall upon each other ; and thus, for example, the letter $;$ would be totally obliterated ty the impreffion of the letter i.

Whenever, therefore, it is required to difpole the letters i and l befide each other, the plate muft be moved after ftriking the letter i through a fpace equal to the quantity of the defired operation. Suppofe this to be. one.fourth of a line, and that the lever fhould run through an arc of ten degrees to move the plate thro' this quantity; as foon as the pin of the letter l fhall be adjufted to the neceffary length to enable the lever to. defcribe an arc of ten degrees, the operation of fpacing.

Trixus, the two letters i and l will be reduced to that of plaTyuter, cing the laft letter beneath the fixed index, and moving
the plate till the lever thall be ftopped by the pin belonging to the letter l. All the other letters will be equally spaced, if the difpofition of the punches in the wheel be fuch, that the laft ftroke of any letter fhall confound itfelf with any letter of a fingle ftroke, fuppoling them to he impreffed one after the other, withsut moving the lever between ftroke and ftroke. This arrangement deferves to be very ferioufly attended to, becaufe the procefs could not be performed withuut it.

Many well-informed perfons are of opinion, that the perfect equality which this machine for engraving af. fords in the formation of letters and figns the moft dif. ficult to be imitated, may afford a means of remedying the dangers of forgery. It is certain that the perform. ance exhibits a fimple and ftriking character of precifion, which is fuch, that the leaft experienced eyes might flatter themfelves, in certain eafes, to diltinguifh counterfeits from originals. Lavoifier, whom the friends of fcience and the arts will not ceafe to regret, made fome experiments of this kind for the caiffe de'fompte, which were attended with perfect fuccefs. Artilts appointed for that purpofe endeavoured in vain to imitate a vignette, formed by the fucceffive and equal motion of a character of ornament.

TYRTÆUS, an Athenian general and mufician, is celebrated by all antiquity for the compofition of military fongs and airs, as well as the performance of them. He was called to the affiftance of the Lacedæmonians in the fecond war with the Meffenians, about 68513. C. ; and a memorable victory which they obtained over that people is attributed by the ancient \int choliafts upon Horace to the animating found of a new military flute or clarion, invented and played upon by Tyrtæus. Plutarch tells us that they gave him the freedom of their city; and that his military airs were conftantly fung and played in the Spartan army to the laft hour of the republic. And Lycurgus the orator, in his oration againft Leocrates, fays, "The Spartans made a law, that whenever they were in arms, and going out upon any military expedition, they fhould all be firft fummon. ed to the king's tent to hear the fongs of Tyrtæus;" thinking it the beft means of fending them forth in a difpofition to die with pleafure for their country. Fragments of his peotry, in elegiac verfe, are prelerved in Stobæus, Lycurgus Orat. in Fulvius Urlinus, at the end of Poems by illuftrious Women; and in the Oxford edition of Eleg. Ej Lyric Frag. E Scholia, print-

TYMLER (William, Efq;), fo well known in the literary world as one of the ablelt, and certainly the moft gentlemanly, of the defenders of the fame of Mary Queen of Scots, was born at Edinburgh, October 12. 1712. He was the fon of Mr Alexander Tytler, writer (or attorney) in Edinburgh, by Jane, daughter of Mr William Lealie, merchant in Aberdeen, and granddaughter of Sir Pairick Leflie of Idan, provoft of that city. He received his education at the grammar fehool (or, as it is there called, the High School) and the univerfity of his native city, and diftinguifhed himfelf by an early proficiency in thofe claffical ftudies, which, to the lateft period of his life, were the occupation of his leifure hours, and a principal fource of his mental enjoyments.

In the year 173 r , ke attended the academical lectures of Mr Alexander Bayne, Profeffor of municipal law in the univerfity of Edinburgh, a gentleman diftinguinted alike for his profeffional knowledge, his literary accomplifments, and the elegance of his tafte. The Profeffor found in his pupil a congenial fpirit; and their connection, notwithftanding the difparity of their years, was foon ripened into all the intimacy of the flricteft friendfhip. So ftrong indeed became at length that tie of affection, that the worthy Profeffor, in his latter years, not only made him the companion of his fludies, but when at length the victim of a lingering difeafe, chofe him as the comforter of thofe many painful and melancholy hours which preceded his death.

At the age of $31, \mathrm{Mr}$ Tytler was admitted into the Society of Writers to his Majefty's Signte, and continued the practice of that profeffion with very good fuc. cefs, and with equal refpect from his clients and the public, till his death, which happened on the 12 th of September 1792. He married, in September 1745, Anne Craig, daughter of Mr James Craig of Dalnair, writer to the fignet, ty whom he has left two fons, Alexander Frafer Tytler, one of the Lords of Seffion in Scotland; and Patrick Tytler, Lieutenant colonel of a regiment of fencible infantry, and Fort-major of the caftle of Stirling; tngether with one daugliter, Mifs Chriftina T'ytler. His wife died about nine years before him ; and, previoufly to that period, he had loft a fon and a daughter, both grown to maturity.

The moft remarkable feature of Mr Tytier's character was an ardour and activity of mind, prompted al. ways by a flrong fenfe of rectitude and honour. He felt with equal warmth the love of virtue and the hatred of vice; he was not apt to difguife either feeling, nor to compromife, as fome men more complying with the world might have done, with the faftion of the time, or the difpofition of thofe around him. He feldom waved an argument on any topic of hiftory, of politics, or literature ; he never retreated from one on any fubject that touched thofe more important points on which he had formed a decided opinion. Decided opinions he always formed on \{ubjects of importance; for on fuch fubjects he formed no opinions rafly ; and what he firmly believed he avowed with confidence, and fometimes with warmth.

Nor was it in opinion or argument only that this warmth and ardour of mind were confpicuous. They prompted him equally in action and conduct. His affection to his family, his attachment to his friends and companions, his compaffion for the unfortunate, were alike warm and actire. He was in fentiment alfo what Johnfon (x ho felt it ftrongly in himfelf, and mentions it as the encomium of one of his friends) calls a good bater ; but his hatred or refentment went no further than opinion or words, his better affections only rofe into action. In his opinions, or in his expreffion of them, there was fometimes a vehemence, an appearance of acrimony, which his friends might regret, and which ftrangers might cenfure ; but he had no afperity in his mind to influence his actual conduct in life. He indulged oppofition, not enmity ; and the world was juft to him in return. He had opponents; but two of his biographers, who knew him well, as well as the people with whom he moft affociated, declare their belief that he had not a fingle enemy. His contefts were on opinions,

T Y T [745] T Y T

ling ling

Tytier, nions, not on things; his difputes were hiforical and literary. In converfation, he carried on thefe with uncommon interets and vivacity; and the fame kind of impulfe which prompted his couverfation (as is jutty obferwed by an author, who publifhed fome notices of his life and character in the periodical work iutitled The Bee) indnced him to become an author. He wrote fore the appearance of the Inquiry, fays an ingenious writer, it was the fathion for literary difputants to attack each other like mifereants and banditti. The perfon was uever Ceparated from the caufe; and whatever attached the one, was confidered as equally affecting the otber; fo that fcurrility and abufe bloted the pages even of a Bentley and a Ruddiman. The Hiforical lnquiry was free from every thing of that fort : and though the higheft vame produced not a mitiga-

Suppl. Vol. II. Part II. ling ling ling ling ling ling ling

 ling
tion of the force of any argument, the meaner? never fuffered the finallell abufe. He confudered it as being greatly beneath the dignity of a man contending for truth, to overftretch even an argument in the fimallef degree, far more to pervert a fact to anfwer his purpofe on any occalion. In the courfe of his argament, he had two often occafien to hew that this had been done on the Green; to which is prefixed a differtation on the Life and Writings of King James, in one volume 8 vo , printed at Edinburgh in 1783 . This difertation forms a valuable morfel of the literary hiftory of Europe; for James ranked Atill higher in the literary world as a poet, than in the political world as a prince. Great juftice is done to his memory in both refpects in this differtation: and the two morfels of postry here refcued from oblivion will be efteemed by men of tafte as long

5 B

[^20]\qquad $-\mathrm{r}$

[^21]

[^22][^23]
\qquad
2 - -

\qquad
\qquad
\qquad
\qquad

Abstract

\square

\qquad
\qquad .)

[^24]
T Y T

as the language in which they are written can be underflood (A)
2. "A differtation on Scottim Mufic," firt fubjoined to Arnot's hitlory of Ediuburgh. The fimple melodies of Scetland have been long the delight of the natives, many of which, to them, convey an idea of pathos that can he equalled by none other; and are much admired by every ftranger of mufical talents who las vified this country. They have a powerful effect, indeed, when properly introduced, as a relief, into a mufical compofition of complicated harmony. Thefe are of two kinds, pathetic and humorons. Thofe who wint to receje information concerning this curiong fubject, will derive much fatisfaction from the perufal of this differtation. There is yet another kind of mafic peculine to the Fighlands of Scotland, of a more wild, irregular, and animating ftrain, which is but fightly treated here, and requires to te ftill more fully elucidated.
3. "Obferrations on the Vifion, a poem," firil pub. lified in Ramay's Evergreen, now alfo printed in the Tranfactions of the Society of Antiquaries of Scotland. This nay he confidered as a part of the literary hiftory of Scotland.
4. "On the Fafhinnable Amufanents in Edinburgh during the laft centurs," ibid. It is unneceffary to dwell on the light that fuch differtations as thefe, when judiciouny executed, throw upon the hiffory of civil fociety and the progrefs of manners. Mr Tytler was likewife the author of $\mathrm{N}^{\circ}, 16$. of the Lounger, a weekIs paper, publifhed at Edinburgh in the year 1786. His fubjeq is the Defeat of Modern Fenale Education in teaching the Duties of a Wife; and he treats that fuljeet like a mafter.

On all Mr Tytler's compofitions the character of the man is Atrongly impreffied, which never, as in fome other inflances, is in the fmalledt degree contradieied by, or at variance with, the character of the author. He wrote what lie felt, on fubjects which he felt, on fubjects relating to his native country, to the arts which he loved, to the times which he revered. His heart, indeed, was in every thing which he wrote, or faid, or did. He had, as his family and friends could warmly attef, all the hindnefs of benevolence: he had its anger too; for benevolence is often the parent of anger. There was nothing neutral or indifferent about Mr Tytler. In phitofophy and in hiftury, he could not bear the coldnefs, or what fome night call the temperance of feepticifm ; and what he firmly believed, it was his difpolition keenly to urge.

His mind was ftrongly impreffed hy fentiments of religion. His piety was fervent and habitual. He believed in the doctrine of a particular Providence, fuper-
intending all the actions of individuals as well as the Tytler, great operations of Nature: he had a conflant impreffion of the power, the wifdom, and the benevclence of the Supreme Being ; and he embraced, with thorough conviction, the trutts of Chriftianit?.

His reading was various and extenfive. There was fcarcely a fubject of literature or tafte, and few eren of fcience, that had not at times engaged his attention. In hiftory he was deeply verfed; and what he had read his flrong retentive memory mabled him eafily to recal. Ancient as well as modern fory was familiar to kim; and, in particular, the Britifh hiftory, which he had read with the moft minute and critical attention. Of this, befides what he has given to the public, a great number of notes, which he left in MS. touchiag many controverted points in Euglifh asd Scottint hifory, afford the moft ample proof.

In nuffic as a fcience he was uncommonly filled. It was his favorrite amufement; and with that natural partiality which all entertain for their favourite objects, he was apt to affign to it a degree of moral importance which fome might deem a little whinfical. He has often been heard to fay, that he never knew a good tatte in mufic affuciated with a malevolent heart : And being afked, What prefeription he would recommend for attaining an old age as healthful and happy as his owa.? "My prefeription (faid he) is fimple-flort but cheerful meals, mulic, and a good confcience."

In domeltic life, Mr Tytier's character was particularly amiable and praife worthy. He was one of the kindeft hulbands and moof affectionate fathers. At the beginning of this account, we mentioned his having loft, at an advanced period of life, an excellent wife, and a fon and a daughter both grown to maturity, who merited and poffeffed his warmelf affections. The temper of mind with which he bore thefe loffes, he has himfelf expreffed in a MS. note, written not long before his death ; with which, as it conveys a fentiment equal. ly important in the conlideration of this life, and in the contemplation of that which is to come, we fhall conclude the prefent memoir: "The lenient hand of time (fays he) after mentioning the death of his wife and children), the lenient hand of time, the affectionate care of my remaining children, and the duty which calls on my exertions for them, have by degrees reftured me to myfelf. The memory of thofe dear objects gone before me, and the foothing hupe that we flall foon meet again, is now the fource of extreme pleafure to me. In my retired walks in the country I am never alone; thofe dear fhades are my conitant companions! Thus what I looked upon as a bitter calamity, is now become to me the chief pleafure in life."
(-4) There is a beautiful hiforical picture of this prince playing on the harp, with his queen and a circle of lis courtiers liftening to the mufic, by Graham, in London; one of the moft eminent artifts of the age.

vameTACUUM Boymeanum, is the approach to a real vacuum, to which we can arrive by means of the air.pump.

Torricelian Vacueas, is the moft complete vacuum which we can make by means of the torricellian tube. Sec Barometer, and Pneumatics, Encycl.

VADE-mecum, the title given to fuch hooks as men of particular profeffions, having frequent oceation to confult, may eafily carry about with them. 'Thus a fmall volume, publifhed in the beginning of the 1 sth century, giving an account of the ancient and prefent church of England, and of the duties, rights, privileges, and hardhips of the clergy, is known by the title of the Clergyman's Valle-mectum.

VAKEEL, a minifter. agent, or ambaffador.
VALGUS, Borv or Bandy Legged. Some children are bow-legged from thcir birth; others become fo from fetting them on their feet too early. The tibia of fome is croaked; the knees of others are diltorted; from a fault in the ankle, the feet of fome are turned inwards, thefe are called vari; and in others they turn outwards, thefe are called valgi. The beft method of preventing thefe diforders in weakly clildren, is to exercife them duly, but not violently; by daneing or toffing them about in one's arms, and not fet ing them much on their feet, at leaft not without proverly fupporting them: if the diforder attends at the birth, or increafes after it is begun, apply emollients, then apply boots of flong lea ther, wood, \&e. as required to difpofe the cronked legs gradually to a proper form: or other inftruments may be ufed inftead of boots, which, when not too coflly, are ufually to be preferred. Slighter inflances of thefe diforders yield to careful nurling without inftruments.

VAND 1', the Indian uame of a plant of the genus Epidendrum; which fee, Encycl. The randá is thus deferibed by Sir William Jones.
"Cal. Spathes minute, ftraggling. Cor. 'Petal's five, diverging, oval oblong, obtule, wavy; the two luwe it larger; the thrce highoft equal, hent towards the nectary. Neilary central, rigid: Mouth gaping, oblique: Upper lip fhorter, three parted, with a polified honeycup: under lip cuncave in the middle, keeled above, with two imaller cavities below, two procefles at the baje, incurved, hullow, oval pointed, converging, honeybearing. Stam. Filuments very faort. Anlbers round, flatilh, margined, covered with a lid, eatily deciduous from tie upper lip of the neflary. Pist. Gcrin, beneath long, ribbed, contorted with curves of oppolite flexure. Style very thort, adhering to the upper lip. Stigma it itple. Per. Ciapjule oblong-conic, wreathed, lis-kueled, each with two fmaller keels, thiee-eelled, crowned with the dry corol. Seeds imnumerable, like tine dutt affixed to the receptacle with extremely tine hairs, which become thick woul. Sapes incurved, fol tary, from the cavity of the leaf, at moft feven flowered; pedicles alternate. Petals milk-white externally, tranfpareut; brown with. in, yellow. footted. Upfer lip of the nectary fnow-w hite; under lip rich purple, or light crimfon, Itriated at the bafe, with a bright yellow gland, as it feems, on cach
procefs. The flowera gratcfully fragrant, and exqui- Vanda'ir, litely beautiful, looking as if compoted of fhells, or made Van 'erof enamel; crifp elatic, vifeid internally. Lutves llicathing, oppolite, equally curved, rather fleßhy, fword-form, rctufe in two ways at the fummit, with one acute point. Roots fibrous, fmooth, flexible ; flooting even from the top of the leaves."

This lovely plant attaches iffelf chicfly to the higheft Amrus and Bilvas (the Mangifera and Cratezia of Lin.) ; but it is an air-plant, and lives (fays the Prefident) in a pot without carth or quater: its leaves are ex. cavated upwards, to catch and retain dew.
VANDA LIA, a ducly of Farther Pomerania, fubject to the king of Pruffia. Stolpen is the capital.

Vandalia, a country in Germany, in the circle of Lower Saxony and duchy of Mecklenburg. It lies between the bifhopric and duchy of schwerin, the lordfips of Stocrock and Stargard, Po:nerania, and the marquifate of Prandenburg; and is 75 mikes in length and 7 in breadth. It contrins feveral finall lakes, and the principal town is Cultrow.

VANDERMONDE, member of the National In. flitute of Sciences and Arts, was born at Paris in the year 1735. He devoted his jouth to felf initruetion; and even at the age of thirty was far ctiough foom furfo pecting that he was deltined to inllruct oilhers in hiz turn. Chance brought him near to the celebraced Fontaine. That fexagenary geometrician caflily civined the progreis which Vandermonue would one d.y make in the mathematics ; in him he anticipated, as it were, a fueceffor to limitlf; he patronised and careffid him, let him into the fecret of his refearches, calcularions, inventions, of that lively enjoyment which prof,und fpeculation gives to an elevated attentive nuind; and which, bleoded with the iweets of tranquillity, the charms of etreat, and the confcioufnels of luccefs, becomes often a lort of paffion, as felcitous as durable. All that time Fontaine, wlofe attention was again directed to the refearches which he hal added to ihole of Jean Berronilit, relative to the then famous question of the toutocrones, had the glory to be vanqui ne:1 ouly by D'Alembert and La Grange. Van lermonde, a witnels to this contbar, neeeflarily illu!trinos, aninated by the honour which he faw annexed to that sjorious defiat, enchanted with the light of Fontailic, at happy, in foite of his age, from lis love of geometry, as a youtli of twenty cou'd be with a fentumin lefs tranquil, thought he fluuld infure his happinefs for cver, by yikl ifg to a paffion which the ce of age could not extinguil? ; in a word, he devotect himelf to geometry.

His labours, however. were for iome time fecret; and pethaps the puoblic would never have enjoyed the benefit of any of his works, if anotber geonectrician (whofe nanne, fays Lacepede, cannot be prethounced, in this place, without a mixture of intereft and regret) !ad not inspired him with a confcicufnefs of his o. wn ficmuth, and courage to difplay it. Fontzine had alrcady devoted himt to geonetry; Dufcjour exhorted hinito peretrate even into its fanctuary. In brief, he prefonted

Vander- himfelf to the Academy of Sciences, into which he was monde. adinitted in 1771; and in that very year juftified the
fuffrages of his affociates, by a paper which he publifhed relative to the refolution of cquations.

From the 16 th century the method of refolving equations of the four firt degrees lias been known, and fince that time the general theory of equations has received great inprovements. In fpite, however, of the recent labours of many great geometricians, the folutions of equations of the fifth degree had in vain been attempted. Vandermonde wifhed to confolidate his labours with thofe of other illuftrious analyfts; and he propofed a. new theory of equations, in which he feems to have made it particularly his bufinefs to fimplify the methods of calculation, and to contract the length of the formula, which he confidered as one of the greateft difficulties of the fubject.

This work was quickly fullowed by another on the problems called by geometricians problems of fituation. It feems to lave been the deftiny of Vandermonde, as well as of Fontaine, who firlt initiated him into the myCeries of mathematical fcience, to labour frequertly upon fubjects already landled by the greateft matter. In his firlt memoir he had Itarted, fo to fpeak, in competition with La Grange and Euler; in his fecond, with Euler and Leibnitz. This laft was of opinion that the analy fis made ufe of in his time, by the geometricians, was not applicable to all queltions in the phyfical fciences ; and that a new geometry fhould be invented, to calculate the relations of pofitions of different bodies, in fpace : this he called geometry of fituation*. Excepting, however, one application, made by Leibnitz himfelf, to the game of folitaire, and which, under the appearance
ters, difcovering, by learned analytical refearches, irra. tional quantities of a new fpecies, fhewing the fequels of which thefe irrationals are the terms or the fum, and pointing out a direct and general method of making in them all the pofible reductions.

In the fame year appeared lis work on the Elimination of unknown Quantities in Algebra. '1his elimination is the art of bringing back thofe equations which include many unknown quantities, to equations which only contain one. The perfection of relearches in this art would confit in obtaining a general and particular formuld of elimination in a form the moft concife and convenient, in which the number of equations and their degrees hould be defigned by indeterminate letters. Vandermonde, while he confidered the geometers as very diftant from this point, had fome glimple of a poffbility of reaching it, and propofed fome new methods of approaching nearer it.

In 1778 , he prefented, in one of the public fittings of the Academy, a new fyltem of harmony, which he detailed more fully in another public itting of 1780. In this fyltem, Vandermonde reduces the modes of proceeding adopted until his time, to two principal rules, which thus become eftablifhed on effects admitted by all muficians. Thefe two general rulcs, one on the fucceffion of according founds, the other on the arrangement of the parts, depend themfelves on a law more elevated, which, according to Vandermonde, ought to mle the whole feience of harmony.

By the publication of this work, he fatisfactorily attained the end he had propofed to himfelf, and nbtained the fuffrages of three great men, reprefentatives, fo to fpeak, of the three great \{chools of Germany, France, and Italy ; Gluck, Philidor, and Piccini.

With thefe labours, intermingled with frequent refearches on the mechanic arts, as well as on objects of political economy, the attention of Vandermonde was taken up; when, July 14. 1789, the voice of liberty refounded over the whole furface of France, and fudden. ly all the thoughts, as well as all the affections, of Vandermonde, were engaged on the fide of, what he called liberty.

He became fo furious a democrate, fo outrageons an enemy to every thing eftablifhed, that he concurred in the abolition of the Royal Academy, of which he had been fo ambitious of becoming a member, and affoeiated himfelf clofely with Robefpierre, Marat, and the reft of that atrocious gang of villains, who covered France with ruins, with fcaffolds, and with blood. This part of Vandermonde's hiftory is fuppreffed by his enlogift Lacepedc, becaufe, forfooth, difcuftions on political opinions ought not, in his opinion, to be admitted into the fanctuary of the fciences.

In that fanctuary he did not long remain. Soon after his atrocities, he was attacked by a diforder in his lungs, which almoft taking away his breath, manifefted itfelf by alarming fymptoms, and conducted him by rapid fteps to the tomb. He died in the end of the year 1795; a ftriking inftance of the wayward violence of the human mind, which even the love of fcience could not keep at a diftance from tumult and uproar.

VARENIUS (Bernard), a learned Dutch geographer and phyfician of the 17 th century, who was author of the beft mathematical treatife on geography, intitled, Geographia Univerfalis, in qua affitiones generalis Tellu-

Vander. munce, Varenius. of an object of curiofity, fcarcely worthy the fublimity and ufefulnefs of geometry, is an example for folving the moft elevared and important quefions, Euler was almoft the only one who had practifed this geometry of fituation. He had reforted to it for the folution of a problem called the cavalier, which alfo appeared very familiar at firt fight, and was alfo pregnant with mfeful and important applications. This problem, with the vulgar, confifted merely in running through all the cafes of the chefs board, with the knight of the game of chefs; to the profound geometrician, however, it was a precedent for tracing the route which every ondy muft follow, whofe courie is fubmitted to a known law, by conforming to certain required conditions, through all the points difpofed over a fpace in a prefcribed order. Vaudermonde was chiefly anxious to find in this fpecies of analy fis a fimple notation, likely to facilitate the making of calculations ; and he gave an example of this, in a fhort and ealy folution of the fame problem of the cavalier, which Euler had rendered famous.

His tafte for the high cenceptions of the fpeculative fciences, as blended with that which the amor patris naturally infpires for oljects immediately ufeful to fo. ciety, had led him to turn his thoughts towards perfecting the arts converfant in weaving, by indicating a manner of noting the points through which are to pafs the threads intended to form the lines which terminate the furface of different regular bodies: accordingly a great part of the above memoir is taken up with this fubject.
in the year following (1772) he printed a third memoir ; in which he traced out a new path for geome-

$V A R$

variable ris explicantur. This excellent work has heen tranflated
IUl| into all languages, and was honoured by an edition, with improvements, by Sir Iface Newton, for the ufe of his academical ftudents at Cambridgc.

VARIABLE, in geometry and analytics, is a term applied by mathematicians to fuch quantities as are confidered in a variable or changeable ftate, either increafing or decreafing. Thus the abfciffes and ordinates of an ellipfis, or other curve line, are variable quantities ; becaufe thefe vary or change their-magnitude together, the one at the fame time with the other. But fome quantities may be variable by themfelves alone, or while thofe connected with them are conftant: as the abfeifies of a parallelogram, whofe ordinates may be confidered as all equal, and therefore conftant; allo the diameter of a circle, and the parameter of a conic fection, -are conflunt, while their abfciffes are rariable. See Fluxions, Encyc/.

VARIATION of Curvature, in geometry, is ufed for that inequality or change which takes place in the curvature of all curves except the circle, by which their corvature is more or lefs in different parts of them; and this variation conflitutes the quality of the curvature of any line.

VARIOLAE Vaccine, or Cow pox, is the name commonly, though as fome people think, improperly, given to a very fingular difeafe, which, for two or three years paft, has occupied a great Thare of the attention ofmedical men. It has been many years prevalent in fome of the great dairy counties in England, particularly: Gloucefterhire; and it has been long underftood by the farmers and others in thefe counties, that it for ever exempts all perfons who have beea infected with it

It is very furprifing that, though they knew this fact, and although no perfon had ever been known to Wie of the cow-pox, they never thought of having recourfe to a voluntary infection of this kind, in order to free themfelves and their families_from the poflibility of being iufected with the variolous poifon, which fo often proves mortal. In one cafe, indeed, communicated to Dr Pearfon by Mi Downe of Bridport, the experiment was long ago tried by a farmer upon his own perfon, and with complete fucce fs: But this only makes it the more wonderful that his example fhould not have been

In the town of Kicl, however, in the duchy of Fol-
ftein, where the difeafe is faid to be well known, as frequently affeeting cows, we are told that children are fometimes inoculated with cow-pox (Die Finnen), with a view to preferve their beauty; but that the people in the country do not like this inoculation, becaufe they pretend that it leaves behind it feveral diforders.

With thefe exceptions, Dr Jenner was the firft per. fon who introduced the vaccinc inoculation; and to him the public are alfo indebted for the firft careful and accurate inveltigation of this interefting fubject. The following is his account of the origin and hiftory of the difeafe, and of its characteriftic fymptoms.
"There is a difeafe to which the horfe, from his ftate of domeftication, is frequently fubject. The farriers have termed it the greafe. It is an inflammation and fwelling in the heel, from which iffues matter pof. feffing properties of a very peculiar.kiod, which feems capable of generating a difeafe in the human body-faf-
ter it has undergone the modification which I fhall pre. fently (peak of), which bears fo ftrong a refemblance to the fmall-pox, that I think it highly probatle that it may be the fource of that difeafe.
"In this dairy connty (Gloucefterfhice), a great number of cows are kept, and the office of inilking is performed indifcriminately by men and naid fervants. One of the former having been appointed to apply dreffings to the heels of a horfe affected with the greafe, and not paying due attention to cleanlinels, incautionfly bears his part in milking the cows with fome particles of the infectious matter adhering to his fingers. When this is the cafe, it commonly happens that a difeafe is communicated to the cows, and from the cows to the dairy maids, which fpreads through the farm until moft of the cattle and domeftics feel its unpleafant confequences. This difeale has obtained the name of the cow-pox. It appears on the nipples of the cows in the Its 5 form of irregular puftules. At their firt appearance ance on the they are commonly of a palifh bluc, or rather of a co cow and lour fomewhat approacling to livid, and are furround- whe perfoo ed by an eryfiplens erylupelatous inflammation. These puttules, her. unlefs a timely remedy be applied, frequently degenerate into phagedenic ulcers, which prove extremely troublefome. The animals become indifpofed, and the fecretion of milk is much leffened. Inflamed fpots now begin to appear on different parts of the hands of the domeftics employed in milking, and fometimes on the wrifts, which quickly run on to fuppuration, firft affuming the appearance of the fmall vefications produced by a burn. Moft commonly they appear about the joints of the fingers, and at their extremities; but whatever parts arc affected, if the fituation will admit, thefe fuperficial fuppurations put on a circular form, with their edges more elevated than their centre, and of a colour diftantly approaching to blue. Abforptions take place, and tumors appear in each axilla. The fyftem becomes affected, the pulfe is quickened, and hiverings, with general laffitude, and pains about the loins and limbs, with vomiting, come on. The head is painful, and the patient is now and then even affected with delirium. Thefe fymptoms, varying in their degrees of violence, generally continue from one day to three or four, leaving ulecrated fores about the hands, which, from the fentibility of the parts, are very troublefome, and commonly heal flowly, frequently becoming phagedenic, like thore from whence they fprung. The lips, nof trils, eyclids, and other parts of the body, are fometimes affected with fores; but the fe evidently arife from their being needlefsly rubbed or fcratched with the patient's infected fingers. No eruptions of the k in have followed the decline of the feverifh fymptoms in any inftance that has come under my infpection, one only excepted; and in this cafe a wery few appeared on the arms: they were very minute, of a vivid red colour, and foon died away without advancing 10 maturation : fo that I can. not determine whather they had any connection with the preceding fymptoms.
"Thus the difeafe makes its progrefs from the horfe to the nipple of the cow, and from the cow to the human fulject.
"Murbid matter of various kinds, when abforbed in- Its fingulato the fyftem, may produce efiects in fome degree fimi-rity, lar; but what renders the cow pox virus fo extremely fingular, is, that the perfon who has been thus.affected

Variole
Vaccine.
from the contagion of fmall-pox. followed.

V A R [750] V A R

Variole is for ever after fecure from the infection of the fimall.

Vaccina.
pox; neither expofure to the variolous efluvia, nor the infertion of the matter into the fkin, producing this dittemper.
"It is neceffary to obferve, that puftulous fores fre. 'quently appear fontaneoufly on the nipples of cows; and inflances have oceurred, though very rarely, of the hands of the ferrants employed in millsing being affectEd with fores in confequence, and even of their feeling an indifpulition from abforption. Thefe puitules are of - much milder nature than thofe which arife from that contagion whish conflitutes the true cow-pox. They are always free from the hhifh or livid tint fo confpicuons in that difeafe. No eryfipelas attends them, nor - do they flew any phagedenic difpofition, as in the other cafe, but quickly terminate in a feab, without creating any apparent diforder in the cow. This complaint appears at various feafons in the year, hut mof commonly in the foring, when the cuws are filt taken from their winter food and fed with grafs. It is very apt to appear alfo when they are fuckling their young. But this difeafe is not to be confidered as fimilar in any refpect to that of which I am treating, as it is incapable of producing any fpecific effects on the human conttitution. However, it is of the greateft confequence to yoint it out here, left the want of diferimination fhould oec afion an idea of lecurity from the infection of the fmall pox, which might prive delufive."

Dr Jenner adds, that the active quality of the virus from the horfe's heels is greatly increafed after it has acted on the nipples of the cow, as it rarely happens that the horfe affects his dreffer with fores, and as rarely that a milkmaid efcapes the infection when fhe milks infected cows. It is molt active at the commencement of the difeafe, even before it has acquired a pus-like appearance. Indeed the Doctor is rather induced to think that the matter lofes this property entirely as foon as it is fecreted in the form of pus, and that it is the thin darkifh lioking fuid only, oozing from the newly form--ed cracks in the heeld, limilar to what fometimes ex--udes frum erylipelatous blifters, which gives the difeafe. . He is led to this upinion, from having often inferted jus taken from old fores in the hecls of horfes, into fratches made with a lancet, on the found nipples of cows, which has produced no other effect than fimple inflammation.

He is uncertain if the nipples of the cow are at all time 14 ceptible of being acted upon by the virus from the horfe, but rather fiifpects that they mult be in a 'state of predifpofition, in orrder to enfure the effect. But he thinks it is clear that when the cow-pox virus is - once generated, the cows, when milked with a hand really infected, cannot refilt the contagion, in whatever ftate their nipples may chance to be. He is alfo doubtful whether the matter, either from the cow or the hrofe, will affect the lound $1 k i n$ of the human body ; but thinks it probable that it will not, except on thufe parts where the cuticle is very thin, as on the lips.

At what period the cow-pox was firf noticed in Glouceterthire is net npon record. The oldett farmers were not unacquainted with it in their carlielt days when it appeared upon their farms, whout any devia. tion from the phenomena which it now exhibits. Its connection with the fmall pox feems to have been unknown to them. Probably the general introduction of
inoculation firft occafioned the difcovery. Dr Jenner conjectures that its rife in that neighbourhood may not have been of very remote date, as the practice of milk. ing cows might formerly have been in the hands of women only; and confequently the cows might not in former times have been expofed to the contagions mat. ter brought by the men fervants from the heels of horfes. He adds, that a knowledge of the fuurce of the infection is new in the minds of moft of the farmers, but has at length produced good confequences; and that it feems probable, from the precautions they are now difpuled to adopt, that the appearance of the cowpox in that quarter may either be entirely extinguined or hecome extremely rare.

With refpect to the opinion adduced (Dr Jenner obferves), that the fource of the infection is a peculiar morbid matter arifing in the horfe; although I have not (fays he) been able to prove it from actual experiments conducted immediately under my own eye, yet the evidence 1 have adduced appears to eftablifi it.
"They who are not in the habit of conducting experments, may not be aware of the coincidence of circumitailces, neceffary for their being managed fo as to prove perfectly decifive; nor how often mea engaged in profefinonal purfuits are liable to interruptions, which difappoint them almoft at the inftant of their being accomplifhed; however, I feel no room for hefitation refpecting the common origin of the difeafe, being well convinced that it never appears among the cows, except it can be traced to a cow introduced amung the general herd which has been previoully infected, or to an infected fervant, unlefs they have been milked hy fome one who, at the fame time, has the care of a horfe affected with difeafed heels."

The following cafe, which we alfo quote from Dr Jenner, would feem to fhew that not only the herls of the horle, but other parts of the body of that anmal, are capable of generating the virus which produces the cow-pux.
"An extenfive inflammation of the eryfipelatous kind appeared, without any apparent caufe, upon the upper part of the thigh of a fucking colt, the property of Mr Millet, a farmer at Rockhampton, a village near Berkeley. The inflammation continued feveral weeks, and at length terminated in the formation of three or four finall abfeeffes. The inflamed parts were fomented, and dreffings were applied by fome of the fame perfous who were employed in milking the cows. The number of cows milked was twenty-four, and the whole of them had the cow-pox. The milkers, confifting of the farmer's wife, a man, and a mail ferwant, were infected by the cows. 'I he man-fervant had previoully gone through the fmall-pox, and felt but little of the cow-pox. The lervant maid had fome years hefore been iufected with the cow-pox, and the alfo felt it now in a flight degree: hut the farmer's wife, who never had gone througir either of thefe difeales, felt its effects very fevercly. That the difcafe produced upon the coivs by the eolt, and from them convered to thofe who milked them, was the true and not the fpurious cow-pox, there can be tearcely any room for fufpicion; yet it wolld have been more completely fatisfactory had the effects of variolous matter been afcertained on the farmer's wife; but there was a peculiarity in her fituation which prevented my making the experiment."

V A R [75 [V V R

Variolia

Suhfequent authors liave not been all difpofed to adopt Dr Jenner's opinion that this difeale derives its origin from the greafe in horfes. We have leen the Ductor himelf alluw that he has not been able to prove it decilivety by actual experiments; and to eftablith a fact fo contrary to all analogg, perhaps no weaker evidence ought to be admitted. The omly other beftial diforder with which we are acquainted, which is capable of being commonicated by contagion to the human fpecies, is hydrophobia: but here the diforder is the fame in man as in the animal from which he derives it; and the analogy hulds good in the propagation of the vaccine difeafe from the cow to her milker. But that the difcharge from a local difeafe in the heel of a horfe fould be capable of producing a general diforder in the conititution of a cow, with fymptoms totally dif. ferent, and that this new difeafe once produced fhould be capable of maintaining an uniform character in the cow and in man, feems a much greater departure from the ordinary proceeding of Nature. We are very far from faying that this is impuffible; for little indeed do we know of what Nature can or cannot do. All we mean to fay is, that a fact fo very extraturdinary ought not to be haftily admitted.

In Holltein, we are told that the farmers do not know of any relation exifting between the greafe and the cow-pox, at leaft a perfon who refided three years in that country never heard of any. This, however, is certainly no proof. The fame communication which contains this remark (a letter from 1)r De Carro of Vienma to Dr G. Pearfon) adds, "that in great farms men do not milk cows, but that in the fmaller ones that happens very often; that a difeafe of horfes, called mauke (true German name for greafe), is kıown by all thofe who take care of them; that old horfes particularly, attacked with the mauke, are always put in cow's ftables, and there are attended by women; and that it is particularly in harveft that men in fmall farms milks cows." It mult be allowed, then, that in this fituation, fupoofing Dr Jenner's opinion well founded, the cow-pox was naturally to be looked for, and here accordingly we find $i t$. The quetion is certainly of no real utility, and therefore it has very properly been lefs attended to than other points refpecting this dilorder which lead to important practical conclufions.

Of all che queltions which have ariten relative to the cow-pox, there is none fo intereiting, and luckily there is none which has reccived fofull a difcuffion, or fo fatisfactury an anfwer, as the one we are now about to confider. Are thofe perions who have once had the cow-pox effectually and for ever fecured againft the va.
was, that a previous attack of fmall-pox did not prevent a fubfequent attack of cow-pux ; and the fecond

Varinle was perhaps ftill more wonderful, that the cow-pox Vacciter. virus, athourh it rendered the cunltitution anfufcupti- $10{ }^{10}$ the of the fimall-pox, thould severthelefs leave it un-expluited. changed with refper 10 its own aktion, fur that the fame perfon is fulceptible of repeated attacks of the cuw prox.

Thefe rpinions have been fubmited to the tef of very extenfive experience by a varicty of intelligent practitioners; and we think there can now be little doubt that the two lath are crroneons, while the truth of the firll has been eftablifhed by an immenfe body of incontrovertible evidence.
-The opinions that a perfon who has lad the fmall. pox may atterwards have the cow-pox, and that the fame perfon may have the cuw-pox more than once, probably arofe from the difinetion between the local effects of the vaccine virus, and the general diforder of the condtitution not having been fufficiently 'attended. to. It is generally adenitted, that in the inoculated fmall pox the local affection may go fo far as that a puttole thall arife on the part, containing matter capable of communicating the true imall-pox to others, and yet, if no general alifetion of the comftution takes place, the patient is not fecure from the diforder. In like manner, there are cafes upon record which prove that a perton may, after having had the fmall-pox, have a local affection produeed by inoculation, in which true variolous matter fhall be formed capable of communicating buth the local and conftitutional fymptoms of fmall. pox to others ; and murfes, when much expofed to va. riolous contagion, often have an eruption refembling finall-pox upon fuch parts of their K in as have been expofed to the action of the virus, though they have formerly undergone the difeafe. Yet there is protably no perfon at this day who will go fo far as to affert that the fame perfon can have the fuecific variolon: fever more than once.

The cafe feems to be precifely the fame with refpecs to cow pox. Dr Pearfon and others have inoculated. a number of perfons after they have had the fmall- pow with the vaccine virus, and have produced only the local affection; and by the fame telt it is afeertained that the fame perfon cannot more than once have the confitutional iymptomi of the cour pox. Dr Wrouchille iadeed tells us that he has feen oane cate of grembine cow-pox puflule and fpecific tever in a con litution which thad previoully fuffered the forall pos. There can be no hirher authority on this fubject than that of $\mathrm{D}:$ Woodville; and if he had achaally feen his patient in the finall-pox as well as the cow-pox, we flomhd have admitted this fins re cafe as completely decinive of the queftion. But the only evidence of this perfon having had the fnall-pox, is the affertion of the patient that he had it avben a child. This we can hy no means fuftain as conclufive in oppofition to the I)uctor's own experience, as well as the experience of D_{1} Pearfon.

That the milkers are futject to repeated attacks of the local fymptoms of cow poox, whether they have had the fmall-pox or not, is certain. In the cafe of the farmer's fervants at Rockhampton, which we have quoted above from Dr Jenner, ane of whom had previoully undergone the fmall-pox, and the other the cow-pox, and buth of whom were afterwards infoeted

$V A \quad[752] \quad \mathrm{A} \quad \mathrm{A} R$

Ir
by the cow-pox in a figbt degree, it feems rcafonable to conclude that the local fymptoms only were prefent in the laft attack. We may at the fame time obferve, that in a cafe of this kind, where a very painful uleer is produced in a very fentible part, this nay probably be attended by an incrafed frequency of pulle ; yet if this has not the fpecific marks of the cow-pox fever, we fhould not fay that fuch a perfon has the diforder conftitutionally.

With refpect to the principal propofition, that the fpecific fever of cow-pox renders the conflitution unfufceptible of the variolous fever, we think no doubt now remains. About 1000 perfons who have undergone the vaccine inoculation have been afterwards inoculated with variolous matter, which has produced no other than local effects. : Wefides thele, there lave been a vaft number inoculated by private practitioners in different parts of the kingdom, the refult of which has not been reported. But we may fafely fuppofe, that if any one of them had afforded a conclufion oppofite to the one now generally admitted, it would have been communicated to the public.

We muft not, however, conceal one feemingly well authenticated cafe which has lately occurred, and which, fo far as it goes, certainly militates againt this conclufion, and which, we doubt not, will be eagerly caught at by the opponents of the new practice. We quote it from the Medical and Chirurgical Review for Sep. tember 1800.
" Mr Malim, furgeon of Carey Street, London, inoculated a child, two years and an half old, with vaccine matter procured from Dr Jenner. On the third day there were fufficient marks of the adtion of the virus, and from this time to the end of the difeafe the local affection proceeded regularly and without interruption. On the eighth day the child complained of headache and ficknefs; had a quick pulfe, white tongue, and increafed heat, with an enlargement and tendernefs in the axilla. Thefe fymptoms fubfided in the courfe of the next day, and the child remained well till the twelfth, when it had a very fevere attack of fever, fucceeded, the following day, by an irruption; the appearance, progrefs, and termination of which, left no doubt in the ininds of feveral eminent practitioners of -its being the fmall-pox. That it was really fo, has been fince elearly proved by inoculation. There was a child ill of fmall-pox in the houfe at the time the above inoculation for cow-pox was performed-"

The Reviewers juttly remark, that the hitory is defective, in not defcribing more minutely the appearances of the inoculated parts at the different ftages, as well as in not mentioning the length of time that the matter had been taken previous to being uled. Both thefe points are the more important, as a fufpicion naturally arifes, that the local affection wlyich fucceeded the vaccine inoculation was not the gémuine cow-pox puftule, but one of the fpurious kind, which had not the power of deftroying variolous fufceptibility. The matter having been furnifhed by.Dr Jemer, no doubt, renders this fuppofition the lefs probable; but if it was either long or improperly kept after it came out of his hands, it may have undergonc a material change, by putrefaction or otherwife. Dr Jenner mentions an inflance of a practitioner, who had been accuftomed to preferve variolous matter in a warm pocket; a fituation favour-
able for producing putrefaction in it. This matter, when inferted, wat found to produce inflammation, fwellings of the axillary glands, fever, and fometimes eruptions; but not of the true variolous kind, as patients thus inoculated were found ftill fufceptible of the fmall. pox contagion. It is furely a pofitule fuppofition, tho' merely a conjecture, that the vaccine matter in $\mathrm{Mr} \mathrm{Ma}-$ lim's cafe had undergone fome fuch change.
'The cafe, however, is in feveral refpects an interefting one. As it has been fuppofed that variolous contagion, communicated in the form of exhalation, does not affect the conititution in lefs than fourteen or fifteen days, and as the vaccine matter, communicated by inoculation, produces its fpecific effects fome days earlier, it has been fuggefted, that wherever a perfon has been accidentally expofed to variolous effluvia, we fhould endeavour to anticipate the fmall pox by immediately inoculating with the vaccine virus. But if there be nothing falacious in the above cafe, it appears that this meafure would not fop the progrefs of the fmall-pex. but that our patient would incur the additional danger of having two difeafes inftead of one.

At all events, it muft be allowed that this child had p been infected by the fmall-pox before the vaccine mat-accounted ter had begun to produce its \{pecific effects, and pro. for. bably even before the inoculation. Thus the fmall-pox may be confidered as having begun before the cow-pox; and though we fhould be forced to allow that, matters being thus fituated, the latter diforder coald not prevent the farther progrefs of the former, it by no means follows, that when the cow-pox has fairly run its courfe, the conftitution is ftill fufceptible of fmall-pox. The two difeafes muft have exifted in this patient at the fame time, though the one was in a latent fate during the active fage of the other.

This folitary cafe, then, is by no means conclufive, and certainly is not fufficient to outweigh the immenfe mafs of concurring evidence which is oppofed to it.

We proceed now to another highly important branch 14 of our fubject - the comparifon of the advantages and of the new difadvantages of the two difeafes, with a vicw to thepradice. practice of inoculation.

Notwithtanding the immenfe number of cafes in which the inoculation of the cow-pox has been tried, we are not yet fully qualified to appreciate the value of the new practice; becaufe the difeale has varied very much in feverity, and even in its mott remarkable fymptoms, and that without any caufe which has yet been difcovered.

Dr Jenuer's account of the difeafe gave us reafon to think, that the local affection in cow-pox was more fevere than in the inoculated fmall-pox; that the fever in this difeafe was never attended with dangerous fymp. toms; that thofe fymptoms which affect the patient with feverity are entirely fecondary, excited by the irritating proceffes of inflammation and ulceration; that the difeafe was not attended with any eruption refembling fmall-pox ; and that the fore produced by the inoculation was apt to degenerate into a very diftreffing phagedenic ulcer, which required to be treated with applicatious of a caultic nature, of which he found the unguentum hydrargyri nitrati the moft ufeful.

Soon after Dr Jemner's publication, the attention of medical men was forcibly drawn to the fubject ; and feveral eminent practitioners in London, particularly Dr George

Variate George Pearfon, and Dr Wnodvilte phyfician to the Vaccine. $\xrightarrow{-}$ fmall-pox and inoculation hofpitals, immediately began to practife the vaccine inoculation. The latter gentleman fool publifhed an accurate and candid account of the effect of this virus upon 200 patients, with a table of the refults of above 500 cafes in which the inocula. 15

Anomalies

 in the progreps of the difeafe. ion was performed.It is very remarkable, that in none of thee cafes did the inoculated part ulcerate in the manner deferibed by Dr Jenner, nor did the inflammation ever occation any patients ; and of there no fewer than 57 had pultules, and only 5 escaped without. Nor can it be laid that this difproportion arofe from these 10 patients having the difeafe in a more virulent form than ordinary, for matter was aldo taken from the primary fore in 4 of the 10 , with which 48 were inoculated; of whom 27 had pustules, and 21 had none: whereas, of 9 perfons who were inoculated with matter from the puftules of there fame 4 , only 2 efeaped without puttules. This observation correfpcinds allow with Dr Pearfon's experience.

Although thee eruptions have been met with by other practitioners, yet they certainly appear very rarely in private practice. Dr Woodville, for this reafon, confiders them, in a more recent publication, as the eff. feet of forme adventitious cause, independent of the cowpox: And this he fuppofes to be the variolated atmofphere of the hofpital, which thole patients were neceffarily obliged to infpire during the progress of the cowpox infection. This opinion, however, does not feem to agree well with his former remark, which, as we have fid, is confirmed by Dr Pearfon, that eruptions rarely took place, if care was taken to avoid matter for inoculation from fuch as had puftules; a fact that cannot be explained on fuch a fuppolition. Neither is this idea reconcileable with what he alfo tells us, that the proportion of cafes in the hofpital attended with pultales has been of late only three or four in a hundred.

This change in the appearances of the difeale in the hands of different practitioners, and even of the fame Suppl. Vol. II. Part II.
practitioner at different times, is one of the roof maccountable circumstances reflecting this fingular diforder. There is forme curious information on this fubje ct,

 ${ }_{5} \mathrm{C}$ by

Variscite
Vaccume.
$\xrightarrow{\sim}$

 by the east
\qquad 1 \square \square (. -

[^25] +

Abstract

Variolx raccint.
py to fay, that the danger in the vaccine difeale is fill much lefs. Dr Pearfon tells us, that in little more than fix monthis after the new inoculation was introduced into London, which includes the period at which the cow-pox affumed the mof unfavourable appearance, 2000 perfons at leaft underwent the operation ; of thefe, oue only, an infant at the breaft, under the care of Dr Woodville, died. In this folitary fatal cafe, the local tumor was but very inconfiderable; and the eruptive fymptoms took place on the feventh day, when the child was attacked with fits of the fpafmodic kind, which recurred at fhort intervals, with increafed violence, and cartied it off on the cleventh day after the cowpox matter had been infected into its arm, and after an eruption of about 80 puftules had appeared.
Since that time a much greater number, amounting certainly to feveral thoufands, have been inoculated with cow-pos in different parts of Great Britain and on the continent. Among thefe, not one fatal inflance, that we have heard of, has occurred.

But even if the danger to the individual from the fmall. pox and from the cow-pox were equal, there is an imporrant advantage to the public attending the latter, which we think would alone be fufficient to intitle it to a prefer. ence-It is not capable of being propagated by the efflusia arifing from the bodies of perfons infected with it. There are many fituations in which a prudent fur. geon will be reftrained from inoculating with fmall-pnx, left the contagion thould fpread to other people, who may be either prevented by prejudice from fubmitting to the operation, or in whom it would be obvioully im. proper, from the circumftances of age, teething, or the prefence of fome other difeafe. Here the cow-pox wirus may be fubftituted with great propriety. It is chiefly from this quality that the cow-pox bids fair to extirpate the fmall-pox entirely.

This valuable property of the vaccine diforder is not, however, to be admitted without fome limitation. When it preduces numerous puftules on the body, Dr Woodville tells us, that the exhalations they fend forth are capable of affecting others, in the fame manner as the fmall-pox. Two infances of cafual infection in this way have fallen under his obfervation. In one, the difeafe was fevere, and the eruption confluent; in the other, the difeafe was mild, and the puftules few. It has been remarked, that the inoculated cow pox is little, if at all, differcut from the difeafe when cafually caught. But, ftrictly fpeaking, the above are the only two cafes in which the difeafe has been communicated otherwife than by inoculation.

The writers upon this fubject are divided in opiuion, whether the cow-pox and fmall-pox ought to be confidered as different difeafes, or whether they are merely varieties of the fame difeafe.
They certainly, notwithflanding the firorg analogy which fubfifts between them, differ from each other in feveral ftriking particulars. The cow-pox comes to man from the cow, and is capable of being carried back from him to that animal. Similar attempts with variolous matter have failed : in this refpect, then, thefe two morbid poifons are altogether diffcreat .

The local tumor produced hy the inoculation of the cow pox is commonly of a different appearance from that which is the confequence of inoculation with variolous matter: for if the inoculation of the cow-pos be performed by a fimple puncture, the confequent tumor, in the proportion of three times out of four, according to 1) Woodville, affumes a form completely citcular, and it continues circumferibed, with its edges elevated and well defincd, and its furface flat, through every flage of the difeafe; while that which is produced from the variolous matter, either preferves a peculiar form, or fpreads along the flkin, and becomes angulated, or irregular, or disfigured by numerous veficulic. Another diftinction fill more decifive and general, is to be drawn from the contents of the cow-pox tumor ; for the fluid here formed very rarely becomes puriform; and the fcab which fucceeds is of a harder texture, exhibits a froother furface, and differs in its colour from that which is formed by the concretion of pus. The appearances, however, are fometimes fo changed, that they can in no tefpect be diltinguifned from thofe which arife from the inoculation of fmall-pox. We may alfo mention that the tendency of the fore in the inoculated part to degenerate into a phagedenic ulcer does not uccur in fmall-pox.
O_{n} the other hand, the points in which thefe two difeafes refemble each other are very remarkable. When introduced into the body by inoculation, they affect the conftitution in nearly the fame length of time, and feem to be governed by nearly the farne laws. They mutually deftroy the fufceptibility of the body for the action of each other.

Dr Pearfon, who thinks the difeafes ought to be confidered as dittinct fpecies, neverthelefs draws the following conclufions, as eftablifthed by experience.
" C That in certain conftitutions, or under the circunflances of certain co-operating agents, the vaccine poifon produces a difeafe refembling the finall-pox; and of courfe the puftule in the inoculated part is very different from that of the vaccine pox orlinarily occurring, and the eruptions refemble very much, if not c.aally, fome varietties of the fmall-pox: That in fome inftances thefe eruptions have occurred, although the inoculated part exlibited the genuine vaccine puftule: That the matter of fuch eruptive cafes, wherher taken from the inoculated part, or from other parts, produces univerfally $(\dot{\AA})$, or at lealt generally, fimilar eruptive cafes; and has not (he believes) been feen to go back, by paffing through different conftitutions, to the flate in which it produces what is called the genuine vaccine difeafe: That eruptions, of a different appearance from variolous ones, fometimes occur in the true cow-pox."

From thefe facts we are Atrongly inclined to think that the vaccine difeafe and the fmall-pox ought mere- probably ly to be confidered as varieties of the fame difeafe ; and only variewe have little doubt that they both derive their origin ${ }_{\text {fame }}$ ties of the from the fame fource.

If Dr Jenner's opinion, that the vaccine difeafe is derived from the greafe, were fully eftablifhed, we thould be difpofed to offer a conjecture, that the finall.poox, in coming from the borfe to man, may have paffed thro' fome
(A) We have feen that Dr Woodville's table contains a few exceptions to this rule, though it ftrongly cono firms the general truth of the propofition.

V A C [755] V E N

ration x, fone animal different from the cow. and may thus have Vaccinx.
undergone a modification limilar to, but not exacily, the fame with what takes place in the paffage of the virus through the conftitution of the cow.

But without having recourfe to this conjecture, which is perfectly gratuitons, we are of opinion that the varia. tions which have taken place in the cow-pox within the falt thrce years are fufficient to warrant a belief, that the fmall-pox may have originally been exachly the fame difeafe, even in the human conltitution, as the cow-pox is now: but that-in a fucceffion of ages, and from the operation of caufes wholly unknown to us, it may have been changed to what we now fee it.

We thall now conclude this article with a few prac. tical remarks, which we hope may be of ufe to practitioners who mean to begin the vaccine inoculation.

It is of the utmof confequence that the matter employed fhould be the genuine vaccitic virus. Dr Jen- ner points out the following oarticulars as fources of a Spurious cow pos: 1. 'That arifing from puftules on the nipples or udder of the cow, which puftules contain no Ppecific virus. 2. From matter, although originally porfeffing the fpecific virus, which has fuffered a decompo. fition, either from putrefaction, or any other caufe lefs obvious to the fenfes. 3. From matter taken from an ulcer in an advanced ftage, though the ulcer arofe from a true cow-pox. 4. From matter produced on the human fkia from the contact of fome peculiar morbid matter generated by a horfe.
Many have remarked that inoculation with the vaccine matter is more apt to fail in communicating the infection than with variolous matter, efpecially if it be fuffered to dry upon the lancet before it is ufed. This does not feem to depend upon the virus of the former being more volatile, but upon its becoming more hard and indiffoluble upon exficcation. Care hould therefore be taken to moilten it a confiderable time before it is ufed.

We have already noticed the danger that may arife from miftaking the local effects of the vaccine difeafe for its effects upon the conflitution. To guard practitioncrs againtt this ertor, Dr Woodville nakes the following remarks: "Whicn a confiderable tumor and an extenfive rednefs take place at the inoculated part, within two or three days after the infectious matter has been applied, the failure oí inoculation may be confidered as certain as where neither rednefs nor tumor is the confequence. This rapid and premature advancement of the inflammation will always be fufficient to prevent the inoculator from miltaking fuch cafes for thofe of efficient inoculation. But there are other circumilances under which I have found the inoculation to be equally ineffectual, and which, as being more likely to deceive the inoculator, require his utmoft circum. fpection and difcrimination. There allude to cafes in which it happens that though the local affection does not exhibit much more inflammation than is ufual, yet neither veficle nor puftule fupervencs; and in which, about the fixth or feventh day, it rapidly advances into an irregular fuppuration, producing a feftering or cruf. taceous fore. Care, however, Thould be taken to diftinguilh this cafe from that in which the inoculated part affumes a puftular form, though it continues for one or two days only, when the fame appearances follow as thofe above defcribed; for I have experienced
the latter inoculation to be as effectual as where the tumor has proceeded in the moft regular manner."
"The efflorefcence at the inoculated part, which feldnm intervencs before the eighth, or later than the eleventh, lay, is to be regarded as an indication that the whole fythen is affected; and if the patient has net felt any indifpofition on or before its approach, he may be afliured that there will not be any afterwards. When efflurefcence does not commence itl the cleventh day, it is almoll always attended with more indifonfition than when it occurs on the eighth or minth day. The eftlorefence is more frequent in young iufants than i:a children advanced to three or four years of age; and the former have the eflorefeence and the difeafe more favourably than the latter, infomuch that by far the greater part of them have no percentible illnets, and requite no medicines. On the other liand, in adults, the cow-pox frequently produces headache, pain of the limbs, and other febrile fynptoms, for two or three days, which are greatly relieved by a brifk purgative."

We would, upon the whole, reconmend the vaccine iroculation to our medical readers as beiner an effectual preventative againft the fmall pox, and fafer to the individual, whilc it is more advantageous to the public at large, in being lefo capable of propagation by conta. gion.
VECTOR, or Radius Vector, in aftronomy, is a line fuppofed to be drawn from any planet, moving round a centre, or the focus of an ellipfe, to that centre or focus. It is fo called, becaufe it is that line by which the planet feems to be carried round its ceatre ; and with which it defcribes areas proportional to the times.

VEGETABLES. 2 See Vegetable Substances in VEGETATION. $\}$ this suppl.

VENTILATION OF SHIPs is a matter of fo great impottance, that we would rather hazard the ftating of an idle project for this purpofe, than omit any thing which may be ufful. We hazard nothing, however, in flating the following plan by Mr Abernethy, who candidly acknowledges that it is built upon the principles which we, together with the learned editor of Chambers's Cyclopædia, have borrowed from Dr Hailes. This plan confilts merely in caufing two tubes to defeend from above the deck to the bottom of a veffel, or as low as ventilation is required; and which fhould communicate by fmaller pipes (open at their extremities) with thofe placcs defigned to be ventilated. There fhould be a contrivance for flopping thefe communicating pipes, fo that ventilation may be occafionally prevented from taking place, or confined to any particular part of the velfel.
One of the principal air tubes fhould defcend as near to the Itern of the vefiel as convenient, and the other aa near to the ftem.

Through that tube which is in the head, the foul air is to be extracted; and through that which is in the ftern, the frefh air is to defcend to the different decks and other apartments of the veffel.

The extraction of the air is eafly effected in the fol. lowing manner: Let a tranfverfe tube be fitted to that which defcends in the head of the veffel; it may be funk within the level of the deck, to as to caufe no inequality of furface. Let it be continued till it comes be-
neath

Ventila- neath the fire-place, then afcend in a perpsudicular dition. rection through the fire, and open a little above it; or
it may be made to communicate with the chimney. It would be more convenient if the fire was near the place whete the tube rifes through the deck; but the experiment mult equally fucceed, if the tube be made to defcend again till it is beneath the common fire-place. The effect that will refult from this contrivance is obvious; when the tube which paffes through the fire is heated, the air will afcend with a force proportionable to it levity, and the afcending column can only be fup. plied from below, confequently it mult come from all thofe parts of the fhip with which the main tube communicates.

When the ports are open, the quantity of air thus exhaufled from the fhip will be fupplied from all quarters; but if they were all Gut, and the hatchways and other openings completely clofed, the renewal of fieth air is made certain by means of the tube which defcends in the Itern. The main air tube, where it ifes above the deck in the Atern, fhould have an horizontal one fitted to it, which might be made to traverfe, fo that it could be turned to windward; it might alfo expand at its extremity like the mouth of a trumpet; and thus perfectly frefh air mult enter, and the force of the gale would tend to impel it into the veffel.

When that part of the tube which paffes through the fire is red hot, the dranght which would be thus occafioned might perhaps be too great, and the open pipes which communicate with the decks might emit and imbibe the frefh air in fo direct a ftream, that it might be injurious to thofe perfons within the current.

Mr Abernethy therefore thinks it wonld be better if thofe fmaller pipes which lead from the main tubes were made to run along the decks, and communicate with them by ummerous orifices. Two pipes opening into the main exhaufting tube night be extended along the tops of the deck, in the angle formed between the fides and the cieling: and thus the air would be extracted equally from all parts, and in a manner not likely to occafion injurions currents. Some divition of the ftream of air which enters from the ftern might alfo be made, if it were thought neceffary.

Thus a very complete, and in no way injurious, ven. tilation may be obtained: the air in the veffel would be perfectly changed when the fire was ftrong, withwut expence or trouble; and a gradual and falubrious aiteration of it night at all times be made, by a very little additional quantity of fuel. The air cubes fhould confif of feparate joints, fo that occafionally they might be taken to pieces; and to prevent their being injured or put out of order by rough ufage, the copper pipes thould be made of conliderable ftrength, placed againft the fides of the veffel, and even incaled in wood.

In the Letters and Papers of the Bath Society, Scc. we lave the following defeription of a ventilator for preferving corn on Thip-board, by Thomas South, Efq;

Fig. 1 . is a cylindrical air-veffel, or forcing punip, of lead, tin, or cther cheap metal; its internal diameter being ten inches, and its length three feet; having a crutch•handled pitton to work with, and an iron nofle, viz. a hollow iavertcd cone, t wo feec long, to condenfe the air, and increafe its power in its paffage downwards. This cylinder fhould be rivetted or icrewed, by neans of an iron collar or firaps, to the deck it paffes through,
both above and below, as at $a a$; and fhould be farther fecured by fome holdfait near b, to keep it fteady in working.

Fig. 2. is a bortom of wood, four inches and a half thick, with a projecting rim at its bale, for the metal cylinder to reft on when cemented and fcrewed to the wood. The centre of this bottom is excavated, for the reception of the crown of the nofle. In the fame figure the nofle is reprefented with its crown like a bown difh, to condenfe the air gradually, without refiitance, in its advance to the more contracted bafe of the inverted cone, i. e. the top or entrance of the nofle. A. bout two-thirds down this nolle may be fixed a male fcrew, as $c c$, for the purpofe hereafter mentioned.
N. B. The forcing-pump thould be cafed in wood, to protect it from outward brunfes, which would prevent the working of the pifton, and ruin its effects. The leather round the embolus fhould be greafed when ufed.

Fig. 3. is a crutch-handle, fattened to the embolus A by its iron legs B, B. A is a cylinder of wood, caled with leather, fo as to fit well, but glide fmoothly, in the metal cylinder; having an openmg as large as its ftrength will permit, for the free accefs of atmofpheric air. C is a valve well leathered on its top, and yielding downwards to the preflure of the air when the pilton is raifed up. D is a crofs bar of iron, to confine the valve, fo that it may clofe inftantly on the return of the pilton downwards.

Fig. 4. is a tin pipe or tube, of lefs than four inches diameter, and of fuch length as, when fixed to the bafe of the cylinder, fig. 1. fhall admit the nofle d, fig. 2. to within half an inch of the valve E, at the botton of the wooden cylinder F, in fig. 4 ; which valve E will then yield to the preffure of air condenfed in its paffage through the notle, and deliver it into the pipes below. This valve muft be well leathered on its upper furface, and faftened with an hinge of leather to the cylinder it is meant to clofe: affixed to its bottom is the fpindle G, palfung through a firal fpring H, which, being compreffed on the defcent of the valve, will, by its elafticity, caufe it to rife again, clofe the aperture above, and retain the air delivered beneath it. On connecting this cylinder with the upper end of the nolle, at ee, fig. 2. we mult carefully prevent any lapfe of air that way, by a bandage of oakum fmeared with: wax, on which to forew the cylinder, like the joints of a flute air-tight. I is a bar of iron, having a rifing in irs centre, wide enough for the fpindle to play through but at the fame time fufficiently contracted to prevent the pallage of the fpiral fpring.

Fig. 5: is an aflemblage of tin pipes, of any lengths, Thaped fuitably and conveniently to their fituation it the fhip. to the form of which, when thut into one antother, they muft be adapted; obferving oaly, that the neck be itraight for a length fufficient to admit the lower end of the cylinder, tig. 4. as high as the letter F , or higher.

Fig. 6. To the middle pipe, which runs along the bottom, thould be fixed a perpendicular one, fully perforated, to convey the air more readily into the centre of the heap; and this may have a conical top, as reprefented in the Plate, perforated with a fmaller punch to prevent the air from efcaping too haftily. In large cargoes, two or three of thefe perpendiculars may be neceflary;

V E l [757] \quad V E R

Ventila- neceffary ; and each Thould be well fecured by an iron tion, Verden. bar σ, ferewed down to prevent their being injured $u y$ the ihifting of the cargo in ftormy weather or a rolling
[ea. The top of the conical cap of thefe pipes may reach two-thirds up the cargo.

Fig. 7. is a valve of the fame conftruetion as that reprefented in fig. 4. but inclofed in a tube of brafs, having a femme forew at ff , adapted to the nale ferew $c c$, on the nolle fig 2. and may then be inferted into the head of the pipe fig. 5. This will add to the expence; but in a large apparatus is to be preferred, as a more certain fecurity from lapfe of air, than the junction of the tube fig. + . to the neek ee in fig. 2.
N. B. ee is a neek of wood, making a part of the bottom fig. 2. Whereon to fecure the tube tig. 4. when applied to the nolle. The joints of the pipes, when put together for ufe, fould be made air.tight, by means of bees wax or fome flronger cement, till they reach the bottom of the veffel, when there is no farther need of this precaution. The horizontal pipes fhould run by the fice of the kelfon the whole length of the hold. The tin plates of which K is made, fhould be puached in holes, like the rofe of a watering.pot, in two or three lines only at moft, and then formed into a tube, with the rough fide outwards. I may have four or five lines of the like perforations. M, and the reft, mould gradually increafe in their number as they advance towards the middle of the hold, and continue fully perforated to the lalt pipe, which thould be clofed at its end to prevent the ingrefs of the corn. It is the centre of the cargo which molt requires ventilating, yet air thould pervade the whele. Like the trade winds, it will direct its courfe to the part moit heated, and, having effected its falutary purpofe there, will difgerfe itfelf to refrelh the mafs.

Where the hatches are clole-caulked, to prevent the iuflux of water, vent-holes may be bored in convenient parts of the deck, to be bunged up, and opened occafionally, from winence the ftate of the corn may be known by the effluvia which afcend when the ventilator is working.

The power of the ventilator is determined by the fquare of its diameter multiplied into the length of the ftroke, and that again by the namber of ftrokes in any given time.

The air-veffel or foreing pump, with the reft of the apparatus here defcribed, is adapted to a veffel of 120 tons burden; but by lengthening the air-veffel, extending its diamser to 14 inches, and adding ro inches more to the length of the ftroke, a power may be obtained of ventilating a cargo of 400 tons within the hour. If this machine be properly wrought for one hour every day, or even every two days, beginning the operations immediately when the corn is put on board, the cargo may be preferved from taint or injury of cve. ry kind during the longeft voyage.

VERDEN, a duchy of Germany, in the circle of Lower Saxony. It is bounded on the eaft and fouth by that of Lunenburg; on the weft, by the Wefer and the duchy of Bremen; and on the north, by the duchies of Bremen and Lunenburg; extending both in length and breadth about 28 miles. It confifts chiefly of heaths and high dry lands; but there are good marhes on the rivers Wefer and Aller. In 1712 , the Danes wrefted this duchy from Sweden, and, in 1715 , ceded
it to the king of Great Britain, as electur of Hasover; Verdigris. which ceffion, in 1718, was conlirmed by the Swedes. The inhahitants are Lutherans.

VERDIGRIS, or Acetite of Copper. See that article, Encych. where an account is given of the pro. cefs by which verdigris was long manufactured. A different, and more economieal procefs, however, has for fome years been practifed in Montpellier, which is worthy of notice, becaufe it may be adopied in this country by fubitituting the hufks of goofeberries or currants for thofe of grapes

In the manufacture of verdigris, the materials are copper and the hufks of grapes after the lalt preffing. The copper is formed into round plates, half a line in thicknefs, and from twenty to twenty five inches in diameter. Each plate, at Montpellier, is divided into twenty-five laminie, forming almolt all oblong fquares of from four to fix inches in length, three in breadth, and werghing about four ouncts. They are beat feparately with the lammer on an anvil to fnooth their furfaces, and 10 give the copper the neceffary conliftence. Without this precaution it would exfoliate, and it would be more difficult to fcrape the furface in order to detach the oxydated crut. Befides this, fcales of pure metal would be taken off, which would halten the confumption of the eapper.

The hufks, which fhunld not be too much preffed, are firft made to ferment by being put into clofe vats, and the fermentation is generally completed in three or four days. The time, however, mult vary according to the temperature in which they are kept, and other cireumfances. Whill the huks are fermenting, a preliminary preparation is given to the copper plates. This confits in diffolving verdigris in water in an earthen veffel, and rubbind over eacn plate with a piece of coarfe lineul dipped in this folution. The plates are then im. mediately placed clofe to each other, and left in that manner to dry. Sometimes the plates are only laid on the top of the fermented hulks, or placed under thole which have been already ufed for calang the copper to oxydate. It has been obferved, that when this opera. tion has not been employed, the plaies grow black at the firt operation, inltead of Lecoming green. It is not, however, neceflary to thofe which have been once ufed, and are to be ufed again.

When the plates are thus prepared, and the hunks have been bruaght to ferment, the workmen try whether the latter arc proper for the proceís, by placing under them a plate oi copper, and leaving it buried there for twenty-four hours. If the plate, after this period, is found covered with a fimooth green cruit, in fuch a manner that none of the metal appears, they are then thought hit for being difpoled in layers with the copper. On the other hand, if drops of water are obferved on the furface of the plates, the plates are faid to fwent, and it is concluded that the heat of the hulks bas not fufficiently fublided. 'L'hey confequently defer making another trial till the next day. When they are affured that the hufks are in a proper flate, they form them into layers in the following manner :

The plates are all put into a box, which, inftead of having a bottom, is divided in the middle by a wooden grate. The plates difpofed on this grate are fo ftrongly heated by a chaffing-difh placed under them, that the woman employed in this labour is fometimes obliged

V E R

Verdigris, to take them up with a cloth, in order that hie may Verdun. not burn her hands. As foon as they have acquircd
that heat, they are put into jars in layers with the hutks. Each jar is then el icd with a covering of ftraw, and left to oxydate. Thirty or forty pounds of copper, more or lefo according to the thicknefs of the plates, are put into each jar. At the end of ten, twelve, fifteen, or twenty days, the jar is opened ; and if the hufis are white, it is tume to take out the plates. The cryltals are then feen detached, and of a filky appearance on their furface. The hufks are th:own back, and the plates are put in what is called relai. For that purpole they are immediately depofited in a corner of the cellar on ficks ranged on the floor. They are placed in an upright polition, one leaning againt the other; and at the cud of two or three day's they are moiftened, by taking them up in handfuls and immerfing the n in water in earthen pans. They are depofired quite wet in their former pofstion, and left there for feven or eiglit days; after which they are once or twice immerfed again. This inmerfion and drying are renewed fix or eight times every feven or eight days. is the plates were formerly put into wine, thefe immerfons were called one wine, two zuines, t'jree wines, according to the number of times. By this procefs the plates fwell up, the green is nonrifhed, and a coat of verdigris is formed on all their furfaces, which may be eafily detached by fcraping them with a knife.

This verdigris, which is called freß verdigris, moift verdigris, is fold by the manufacturers to people who dry it for foreign exportation. In this firft flate it is only a palte, which is carefully pounded in large wooden troughs, and then put into bags of white leather, a foot in height and ten inches in diameter. Thefe bags are expoled to the air or the fun, and are left in that fate till the verdigris bas acquired the proper degree of drynefs. By this operation it decreafes about 50 per cent. more or lefs according to its primitive Itate. It is faid to fland proof by the knife, when the point of that inftrument pufhed again!t a cake of verdigris through the 1kin cannot penetrate it. White lead may be made by a fimilar procefs.

Cryfallized $V_{\text {ERDIGRIS }}$ is manufactured at Montpellier in the following manner: A vinegar, prepared by the diftillation of four wise, is put into a kettle, and boiled on the common verdigris. After faturation the folution is left to clarify, and then poured into another kettle of copper, where it is evaporated till a pellicle forms on the furface. Sticks are then immerfed into it, and by means of fome packthread are tied to fome wooden bars that reft on the edge of the kettle. Thefe iticks are about a foot long, and are fplit crofs-wife nearly two inclies at the end, fo that they open into four branches, kept at about the diftance of an inch Srom each other by fmall bags. The cryttais adhere to thefe 』icks and cover them entirely, forming thensfelves into groups or clufters, of a dark blue colour, and a rhomboidal fhape. Each clutter xeiglis from five to fix pounds. Three pounds of moilt verdigris are required for one pourd of the cryftals ; the undiffolved refiduum is thrown away.

VERDUN, an ancient, ftrong, and confiderable town of France, in the department of Mcufe, and late province of 'Lorrain, with a biflop's fee, and a itrung cisadel. Its fortiacations were conftructed by the Che-
a native of this plac\%. In 1751, grcat part of the ca. thedral was deftroyed by lightning. Verdun was taken hy the Fruffians in $1-92$, but retaken by the Frencla foon after. The inhabitants are noted for the fine fweetmeats they make. It is feated on the river Maefe, which runs tbrough the midale, 42 miles fouthweft of Luxemburg, and $1 ; 0$ eat of Paris E. Lon. 5° 28^{\prime} N. L.at. $45^{-3} 9$.

VERMIFUGE, a medicine which expels worms from the inteftines. Of thefe medicines numbers are daily advertifed in the ncw papers as infallible, though the ingredients of which they are compofed are carefully kept fecret. We think it our duty therefore to affure our readers, that the medicines ve:.ded by quacks are generally the very fame that would be preferibed by a regular phyfician for the difeafe in which they are pretended to be fpuci cs, with this only difference, that the unfeen and unprincipled quack generally prefcribes them in more powerful dofes than the regular phyfician deems fafe for his patient. 'Thus Ching's famous worm medicine, which thas been fo ttrenuoufly recommended, is nothing more than mercury given in the very fame form in which it is given by every phyfician; but Ching gives it in dufes, which, thourh they have not injured the children of a bifhop and a judge, we have known to falivate other children to the gieat lazard of their lives. It is indeed wonderful that parents thould trult the health and the lives of their children to men whom they never faw, and whom they know to be not oppreffed with an over delicate fenfe of honour, in pre. ference to a man of fcience who has a character to fupport, and who is probably their friend, and almot al. ways their acquaintance.

Of the different vermifuges, however, it mult be confeffed that the greater number are liable occafionally to fail. One of the moft powerful which we have mentioned in the article Medicine, Encycl. is compofed of the fpiculæ of the cowbure or cow-itch; and fince that article was publifhed, it has come more into ufe, chiefly through the recommendation of Mr Chamberlaine furgeon. He fays that a tea-fpoonful of the electuary (See Medicine, Eictcl. p. $3+2$.) may be fafely given to a young child, and one or even two table fpoonfuls to adults. The medicine is to be taken in the morning fafting; and the dofe to be repeated for two or tbree mornings, atter which a gentle purge completes the cure. This medicine, however, Mr Chamberlaine prohibits in every cafe where there is a tendency to inflammation in any part of the intettinal canal, or where the mucus has been carried of or greatly diminifhed by dyfentery or any other caufe.

Dr Hacmme:lin of Ulm has lately recommended as a very powerfui and lafe verminge the coraline of Corfica, and fays that it has been fo ufed in that inland with complete fucceis from time immenorial. It is a fucus atheriag to the rocks walhed by the fea, and fometimes to the tones and Chells thrown upon the thore. It is found in little tufts. It is generally of a yellow colour, with a reddilh tincture. When dried, as it appears when affered for fale, it contains a ftong fmell of the fea. It confilts of little cartilaginous Italks, with full threads, gradually cylindrical and tubulated. It ta:te is fait a d unplea fait. In the fyilem of plants of cinnæus, it belongs to the clafs cryprogamia. Ite mut com-

V E S [770] V E S

rernont, mon names are, fea-rock mofs; the Grecian herb; leVerp ${ }^{3}$ mithochorton ; and the coraline of Corfica. It is the conferva belminiborlos of Scliwendimann, and the fucus befminhocorion of Latourette. There is reafon to think that all thofe fpecies of fucus whofe texture is foft and fpungy, might be applied to the fame medicinal ufes. F'here is a fort of red coraline found in Sweden which, according to fome writers, is a greater deltroyer of worms than any other known fubftance; being not too flrong for the Homach either of infants or of adults. Schwendimann afferts that the conferva dichotomis of Linnæus, which is found in the ditches in England, bears a ftrong analogy to the coraline of Corfica. Might not this conferva be tried as a vermifuge? The Corfican coraline is in great eftimation in the pharmacepoeias of the Continent, efpecially in that of Geneva, in which is given a recipe for preparing a fyrup of it.

VERMONI, one of the United States of North America, bounded on the north by Canada; on the eaft, by the river Connecticist, which divides it from New Hamphire ; on the fouth, by Maffachufets; and on the weft, by New York. It is about 155 miles long, and 60 broad, and is divided into 7 counties. A chain of high mountains, running north and fouth, divides this ftate nearly in the centre, between the river Connecticut and lake Champlain. The height of land is generally from 20 to 30 miles from the river, and about the fame difance from the New York line. The natural growth upon this mountain is hemlock, pine, fpruce, and other evergreens: hence it has always a green appearance, and, on this account, has obtained the deferiptive rame of Vermont, from the French Verd Mont, Green Mountain. On fome high parts of this mountain, fnow lies till May, and fometimes till July. The country is generally hilly, bus not rocky. It is finely watered, the foil is very fertile, and there is not a better climate in the world. 'l'he inhabitants have very lately been eftimated at 100,000 . The bulk of them are emigrants fiom Connecticut and I.Saffachufets. The principal town is Bennington, but the affembly genera!ly hold their feffions at Windfor.

VESPA (See Encycl.). A new fpecies of this ge. nu:s of infeets has been lately defcribed by Cuvier, in a note read before the Philomathic Society of Paris. It has fome refemblance to the vejpa nidulans of Fabricius, which, as is generally known, is a native of certain parts of America. The nefts of the vefpa nidulans are conftrueted of a very fine web, of a very folid and pretty white pafte. Their form is that of a bell clofed upon all fides, excepting a narrow hole at the bottom; and they are fufpended from the branches of trees.

The velpa defcribed by Cuvier, which is a native of Cayenne in America, has in general more volume than the preceding fpecies, and its pafte is grey, coarfer, lefs homogeneous, and lefs folid. The bottom of irs neft alfo, in licu of being fhaped funnel-like, is flat, and the orifice appears at one of the fides of the bottom part, and not in the middle. In the country where it is found, this fpecies of wafp is called the tatou fly (rrouche fatou). It differs greatly in form from that which Fabricius has defcribed; it is all entirely of a fhining black; the firt articulation, or joint of its abdomen, is narrow, and in form of a pear; the fecond, larger than the others, is in form of a bell: the wings are brown. The following is the character affigned to it by Cuvier:

Vefpatatua, Nigra, Nitida, Alis fufcis, abdomine pedi-Vefpertilio. cellato.

VESPERTILIO (fee Encycl.) has been fubjected to fome crucl, but curious experiments, by the Abbé Spallanzani and M. de Jurine. 'I'he former of thefe philofophers having let loofe feveral bats in a chamber perfectly dark, found that they flew about in it without any impediment, neither rufhing agrainft any thing in the apartment, nor touching the walls with their wings. This furprifed him ; but imagining that they were conducted by fome glimple of light which he did not perceive, he blindfolded them with a fmall and very clofe hood. They then ceafed to fly; but he obferved, at the fame time, that this did not proceed from any deprivation of light, but rather from the conftraint thence occaftoned, efpécially when a hood of a very light texture was attended with the fame effect.

He then conceived the idea of pafting up the eyes ofthe bats with a few drops of fize or gum ; but they ftill flew about in the fame manner as if their eyes had been open. As this, however, was not fufficient, he pafted up the eyes of thefe animals with round bits of leather; and this even did not impede them in their flight.

That he might at length be certain of his object, he blinded them entirely, either by burning the cornea with a red hot wire, or by pulling out the pupil with a pair of fmall pincers, and fcooping out the cye entirely. Nut contented even with this precaution, he covered the wounds with pieces of leather, that the light might have no influence whatever on the remains of the organs which had been deltroyed. The animals feemed to fuffer very much by this cruel operation ; but when they were compelled to ufe their wings, either by day or by night, and even in an apartment totally dark, they flew perfectly well, and with great caution, towards the walls, in order to fufpend themfelves when they wifhed to reft. They avoided every impediment, great or fmall, and flew from one apartment to another, backwards and forwards, through the door by which they were connected, without touching the frame with their wings. In a word, they fhewed themfelves as bold and lively in their fight as any other animals of the fame fpecies which enjoy the ufe of their eye-fight.

Thefc experiments were repeated by M. Jurine, and with the fame refults. Spallanzani had fuppofed that the bat poffeffed fome organ or fenfe which is wanting in the human fpecies, and which fupplies to thefe animals the place of vifion; and Jurine determined to afcertain the truth or falfehood of this hypothefis by anatomical refearches. Duting the courfe of thefe, he found the organ of hearing very great in proportion to that of other animals, and a contiderable nervous appa. ratus affigned to that part. The upper jaw alfo is furnifhed with very large nerves, which are expanded in a tiffue on the muzzle.
M. Jurine then extended his experiments to the organ of hearing and that of fmell. Having put a fmal! hood on a long.eared bat, it immediately pulled it off, and flew. IHe ftopped up its ears with cotton; but it freed itfelf in the like manner from that inconvenience. He then put into its ears a maltic of turpentine and wax. During the operation the animal fhewed a great deal of impatience, and flew afterwards very imperfectly.

A longeared bat, the ears of which had been bound up, flew very badly: but this did not arife from any

Teprertilic, pain occafioned by the ligature ; for when its ears were Vibration fewed up, it lew exceedingly well. In all probahility Figures. the animal would have preferred having its ears bound
up to having them fewed. Sometimes it flew towards the cieling, cxtending its muzzle before it fetuled.
M. Jurine poured liquid pomatum into the eara of a bat which enjoyed the ufe of its fight. It appeared to be much affected by this operation; but when the fubItance was removed it took fight. Its ears were again filled, and its eyes were taken out; but it flew then only in an irregular manner, without any certain or fix. ed लirection.

Che ears of a horfe-floe bat, which had the ufe of its firglst, were filled with tinder mixed with water. It was unealy under the operation, and appeared afterwards reflefs and tlunned; but it conducted it felf tolerably well. On being blinded, it rufhed with its head againt the cicling, and made the air refonnd with Itrokes which it gave itfelf on the muzzle. This experiment was repeated on other bats with the like effects.

The tympanum of a large horfe-fhoe bat was pierced with a pin (trois quart). The animal appeared to fuffer much from the operation, and fell down in a perpendicular direction when thrown into the air. It died next morning. The fame effect was produced on piercing the tympanum of a long.eared bat with a needle.

The author then made very accurate refearches on the difference between the organifation of the brain of thefe two kinds of bats; and, after a carcful diffection, found that the eye of the long-eared bat is much larger than that of the horfe-fhoe bat, but that the optic nerve is proportioned to it. The outer part of the ear of the former is much larger than that of the latter, but the interior part is finaller.

The horfe thoe bat is indemnitied for this difference by a greater extention of the organ of fmell, as evidently appears when the external clevations and inregularities of its muzzle are examined. When it is about to take flight, it agitates its nofe much more than the longeared bat.

From thefe experiments, the author concludes: Firft, That the eyes of the bat are not indifpenfably neceffary to it for finding its way; fecondly, That the organ of hearing appears to fupply that of fight in the dilcovery of bodies, and to furnifh thefe animals with different fenfations to direct their flight, and enable them to avoid thofe obftacles which may prefent themfelves.

VIBRATION Figures, are certain figures, formed by fand or very diy faw-duit, on a vibrating furface, which is connected with the fenfation of found in our organs of hearing. If the furface, on which the figures are to be formed, be Itrewed over with bodies eafily put in motion, thefe, during the vibration, remain on the parts at reft, and are thrown from the parts in motion. The form of the parts at relt, which will be thewn by the fand that remains unmoved, and which, in general, is fymmetric, is called a vibration figure. To produce fuch a figure, nothing is neceffary but to know the method of bringing that part of the furface which you wifh not to vibrate into a ftate of reft, and of putting in motion that which you wifh to vibrate. On this depends the whole expertnefs of producing vibration figures.

Thus take a fquare piece of glafs, pretty thin, and very fmooth, fuch as that uled for windows, about four or
five inches over, or even more. Sinooth it at the edges on a grinding-ftone; ftrew a little faw duft over its furface, and lay hold of it gently with the thumb and fore. finger of the left hand. Holding it thus by the middle, with the right hand rub a violin buw foftly againft one of its edges, drawing the bow either up or down in a direction almoit perpendicular to the furface of the glafs, and you will fee a tremulous movement, and the whole dutt leap about. If the brow be exactly in the middle of one of the fides, the dult will arrange itfelf almof in the direction of the two diagonals, dividing the fquare into four ifofceles triangles. If the bow be applied at a quarter only of the diftance of the one corner from the other, the duft will arrange itfelf in fuch a manner as to be found in the two diameters of the fquare, dividing it into four equal qquares. At other times, when the bow diviates a little, the duft forms a figure like a double C, when the two letters are joined back to back. If the fquare be held by the two extremities of the diameter, oppofite to that againtt which the bow is applied, the duit will form a kind of oval, one of the axes of which will be the fame diameter. If the glafs be of a circular figure, and be held by the middle, the dult will arrange itfelf in fuch a manner as to form the fix radii of a regular hexagon. Thele difcoveries were made by Dr Chlarni, about the time that he invented the mufical inttrument, to which he gave the name of eu. pHON (fee that article, Suppl.); and as he found the vibration figures to vary in form with the various tones produced by the vibrating fubftances, a profecution of his experiments may probably contribute to throw new light on the philofophy of mufical founds. We flall therefore give, from the 3 d volume of Neues fournal der Play $\sqrt{2 k}$, by profeffor Gren, a few directions for making fucli experiments.

Any fort of glafs may be employed, provided its furface be fmooth; and when the plate las acquired the proper vibration, it thould be kept in that tate for fome feconds, by continuing to rub it with the bow. The figures will thus be accurately formed.

Such plates thould be procured as are pretty equal in thicknefls. It may be faid, in general, that a plate the thinner it is will be fo much the fitter for thefe experiments, though in this refpect there is a certain minimum. In fmall plates, fuch as thofe that are circular, and not above fix inches in diameter, the obfervation is general ; but in larger plates too great thinnefs is prejudicial. Befides, it will be found that very thin glafs is commonly very uneven, and mutt therefore be unfit for the experiments.

In practifing the experiments, it will be proper to have plates of different lizes; and the fand employed thould not be ton fine. In other words, it muft be of fuch a nature that when you incline the glafs-plate it may readily roll off; becaufe, in that cafe, it will he eafily thrown from the vibrating parts. It will be of advantage that it be mixed with fine duft, which Thews peculiar phenomena during the experiments, as it colleets itfelf at one place of the vibrating part.

The plate muft be equally beftrewed with fand, and not too thick, as the lines will then be exceedingly fine, and the figures will acquire a better defined appearance.

VIE'CA (Francis), a very celebrated French ma-Hutton's thematician, was born in 1540 at Fontenai, or Fonte. Matbemat nai-le-Comté, in Lower Poitous, a province of France.
$\mathrm{He}^{\text {ry }}$

Vieta. He was Malter of requetts at Paris, where he died in 1603 , being the 63 dyear of his age. Among other branches of learning in which he excelled, he was one of the moft refpectable mathematicians of the 16 th century, or indeed of any are. His writings abound with marks of great originality, and the finelt geuius, as well as intenfe application. His application was fuch, that he has fometimes remained in his fludy for three days together without eating or flecping. His inventions and improvernents in sll parts of the inatherratics were very conliderable. He was in a manuer the inventor and introducer of Specious Algabra, in which letters are ufed inftead of numbers, as well as of many beautiful theore'ns in that feience. He made aifo conniderable improvements in geometry and trigonometry. His angular fetions are a very ingenious and maAterly performance: by thefe he was enabled to refolve the problem of Adrian Romanus, propofed to all mathematicians, anounting to an 'equation of the 45 th degree. Romanus was fo Atuck with his fagacity, that he immediately quitted his refidence of Wirtab, भug in Franconia, and came to France to vifit him, and folicit hus friendhip. His Apollonins Gallus, being a reltoration of Apollor:ius's tract on 't'engencies, and many other geonetrical pieces to be found in his works, Mew the fuct tafte and genius for tuue geometrical fpeculations. - He gave fome malterly tracts on Trigonoinetry, both plane and fpherical, which may be found in the collection of his works, publifhed at Leyden in $\mathrm{t}_{4} \mathrm{G}$, by Schooten, hefides another large and feparate volume in folio, publifhed in the authon's life-time, at Paris, in 1579, containing extenfive trigonometrical tables, with the conftruetion and ufe of the fame, which are particularly deferibed in the introduction to Dr Hutton's Logarithms, p. 4. \&r.. To this complete treatife on tiigonometry, plane and fpherical, are fubjoined feveral mifcellaneous problems and obfervations; fuch as, the quadrature of the circle, the duplication of the cube, \&ic. Computations arc here given of the ratio of the diameter of a circle to the circumference, and of the length of the fine of 1 minnte, hoth to a great many places of figures; by which he found that the fine of 1 minute is

$$
\begin{aligned}
& \text { between } 2908881959 \\
& \text { and } \quad 20088820.5^{6} ;
\end{aligned}
$$

alfo the diameter of a circle being 1000 , \&c. that the perimeter of the infcribed and cicumicribed polygon of 393216 dides will be as follows, viz. the
perim. of the inferibed polygon - 31415926535
perim. of the circumferibed polygon 31415925:37 and that therefore the circumference of the circle lies between thofe two numbers.
Vieta having offerved that there were many faults in the Gregorian Kalendar, as it then exiled, compofed a new form of it, to which he added perpetual canons, and an explication of it, with remarks and objeetions againft Claviss, whom he accufed of having deformed the true Lelian reformation, by not rightly underftanding it.

Befides thefe, it feems a work, greatly efteemed, and the lofs of which cannot be fufficiently deplored, was his Harmonicon Calefle, which, being communicated to father Merfenne, was, by fome pertidious acquaintance of that honeft-minded perfon, furreptitioully taken from lim and irrecoverably loft. or fupprefled, to the great

Suppz. Vol. II. Part II.
detriment of the learned world. Turre were alfo, it is faid, other works of an aftronomical kind, that have been buried in the ruins of time.

Vieta was alfo a profound decipherer, an accomplifh. ment that proved very ufeful to his eountry. As the different purts of the Spanim monarchy lay very ditant from one another, when they had occafion to commu nicate any fecret defizns, they wrote them in ciphera and unknown characters during the riforceers of the leagrue. The cipher was connpured of more than 500 diflerent claracters. which viclded their hidden contents to the penetrating genius of Vieta alone. His filll K_{0} difconcerted the Spanith conncil; for two years, that they publifhed it at Rome, and other parts of Eureps. that the Fronch king had only difcovered their ciplans by means of magic.

VINTAIN, a town, fitnared about two miles up a creek on the fod hern fide of the river Gambid. It is much reforted to by Elaropeans, on account of the great quantitics of bees-wax which are brought hitieco for fale. The wax is collected in the woods by the lieloops, a wild and unfociable race of people. 'Their country, which is of confiderable extent, abounds in rice ; and the natives fupply the traders, both on the Gambia and Caffamanfa rivers, with that article, and alfo with goats and poultry, on very reafonable terms. The honey which they collect is chisfly ufed by then. felves in making a ftrong intoxicating liquor, much the fame as the nead which is produced from honey is Great Britain.

In their traffic with Emropeans, the Folnops geverally employ a factor, or agent, of the Manding in tina, who fpeaks a little Englith, and is acquainted with the: trade of the river. This broker makes the bargain: and, with the connivance of the European, receives a certain part only of the payment; which he gives to his employer as the whole; the remainder (which is very tully called the eheating moncy) he receives when the Feloop is gone, and appropriates to himfelf as a reward lor his trouble. Vintain, according to Mr Park, from whofe valuable travels this account of the Feloop)s is taken, is fituated in $13^{\circ} 9^{\prime}$ North Lat. and $15^{\circ} 56^{\prime}$ Long. Weft from Greenwich.

VIRGLNITY, the tell or criterion of a virgin ; or that which intitles her to the denominations. Sce Fiymen, Encech.

VISION. In the article Optics, n^{0} 154. (Einiycl.), it is faid, that as we have a power of contracting or telaxing the ligamonta ciliaria, and thereby altering the form of the cryltalline humour of the eye, we hence fee objects diftinctly at different diftances. It appears, however, from fome experiments inade by Mr Everard Home and Mr Ramiden, in the year 1794, that this power of contracting and relaxing the ligamenta cilia. ria is not alone fufficient to account for the phenontenon. Converfing with Mr Home on the different uifs of the cluryftalline humour, Mr Ramiden faid, that as that humour "confils of a fubftance of different denfities, the central parts being the moft compact, and from thence diminifhing in denfity gradudly in every direction, appronching the vitreous humour on one fide, and the aqueous humour on the other, its refrafive power becomes nearly the fame with that of the two contiguous fubfances. That fome philofophers have flated the ufe of the cryltalline humour to be, for ac-
commodating the c;e to fee nbjekes at difercn: dil? ances : but the firmmels of tie central part, and the very frall cifference between its refrective power ne?r the circu:aference and that of the vitrous or the aqueons humour, feemed to reader it un it for that phupote ; its principal ufe 1 diher aprearing to be for corncting the aberration ariling fion the fpherical liglire of the cornea, where tle principal part of the refraction takes place, pronuci:g the fame effect that, in an achronatic o.j.ject glate. we obtain in a lefs perfećt manner by prop)etionirg the ratii of cursture of the different lenfes. In the eye the corrcetion foms periceit, which in the ohject.glafs can only be an approximation ; the contrary aberations of the !enies not having the fane ratio: fo that, if rhis therration be perfectly corretted, at any given didnace fron the centre, in every orher it mult be in iome degree imperfect.
"Purfuing the fame comparifon: In the achromatic object glafs we may conceive hoiv much an object muit apycar fannter from the gleat quantity of litht loll by reflection at the furfaces of the different lenfes, there being as meny primery reflections as there ate furfaces; and it would be fortutate if this reflected light was totally lntt. Put of it is again reflected towards the eye by the interior furfaces of the lenfes; which, by diluting the image formed in the fucus of the object glars, makes llat image appear far lefo bright than it vould other wile have done, producing that milky appearance fn often complained of in viewing lucid objects through this fort of teleforpe.
"Intleeje, the fane p:operties that obviate this defect, ferve alfo to correct the eniors from the fpherical figure, ty a regular diminution of dentity, fiom the centre of the cryfliline outward. Every appearance Fews the cryfalline to conlift of lamine of diferent derftrics; and if we examine the junction of different " ectia, having a very fruall difference of refraction, we flall find thet we may have a fenfible refraction without refleftion. Now, if the difference between the conii. hous media in the eje, or the lamitix in the cryftal. lue, be very finall, we thall have refraction without haverg reflection: and this appears to be the fate of the eye; for alhough we have iwo furfaces of the aqueuns, swo of the crythalline, and two of the vitreons linmour, yet we lave cnly one refleted image; and that being from the anterior farface of the cornea, there can be no furface to refled it back, and dilute an image on the retina.
"This hypothe fis may be put to the tef whenever accident thall furnifh us with a fubject baving the cryftaldite cxtracted from one eve, the other remaining perfeet in its natural fatie; at the fame time we may afcertain whecticr or no the crytalline is that part of the organ which ferves for vitwing objects at different diflances diftinally. Secing no refiection at the furface of the cry? alline, might lead fome perfons to infer that its ref:active power is very inconfiderable; but many circumftances hew the contrary : yet what it really is may be seadily afcertained by laving the focal length and diftance of a lens from the operated eye, that cnables it to fee objects the moft diltinctly; allo the focal length of a lens, and its dittance from the perfect eye, that erables it to fee objects at the fame diffance as the imperfect eye: thefe data will be fufficient whereby to
calculate the refractive power of the cryalalline with confiderable precifion.
"Again, having the fpherical abevation of the dif. ferent humours of the cye, and having afeertained the refractive power of the cryftalline, we have data from whence to determine the proportional increale of its denfity as it approaches the central part, on a fuppolition that this pioperty corrects the aberration.
"An oppsttunity prefented itfelf for bringing the obfervations of Mr Ramfdets, 1 efpecting the uie of the crytalline lens, to the proof. A young man came in. to Sit George's Hofpital with a cataract. in the right eye. The eryitaliine lens was readily extracted, ar:d the union of the wound in the curnea took place unattended by inllammation; fo that the eye furfered the finallelt degree of injury that can attend fo fevere an operation. The man himfelt was in healeh, 21 years of age, intelligent, and his left eye perfect: the other had been an uncommoniy thort time in a difeafed ftate, and 27 days after the operation appeared to be free from every other defict but the lufo of the eryltalline lens.
"A number of experiments were made on the im. perfect eye, affited by a len:, and compared with the perfect eyc. The aim of thefe trials, which were ju. diciounly varied, was io afecrtain whether the eye which had been deprived of the cryltalline lens was capable of aljufting islelt to disinct vifion at different diftances. Among other refults, the perfect eye, with a glafs of $6 \frac{1}{2}$ inches focus, had dittinct vilion at 3 inches; the near limit was $1 \frac{7}{8}$ inch, the ditant limit lefs than 7 inches. The imperfect eye, with a glafs 27^{2} inches focus, with an aperture J $^{\frac{3}{0}}$ ths of an inch, had ditinit vifon at $2 \frac{7}{8}$ inclies, the near limit $1 \frac{7}{8}$ inch, and the diftant limit 7 inches. The accuracy with which the eve was brought to the farme point, on repeating the experiment, p:oved it to be uncommonly correce; and as he did not himfelf fee the fale ufed for admeafurement, there could be no fource of fallacy. From the refult of this cxperiment, it appears that the range of acjuttment of the imperfect cye, when the two eyes were mase to fee at nearly the lame focal diftance, exceeded that of the perfeet eye. Mr Raniden fuggelled a reafon why the point of dilinet vition of the inoperfect eye might ajpear to the men himfelf nearer than it was in reality; namely, that from the imperfection of this organ he might find it eafier to read the letters when they fubrended a greater angle than at his real point of ditinut vition. The experiments, however, appear to fhew that the internal porer of the eye, by which it is adjuthed to fee at different diftances, ducs not relide in the ciyo ftalline lens, at leaft not altogether; and that if any agency in this refpect can be proved to refide in the cryltalline, the orher powers, whatever they may be, are capable of exertion beyond their ufual limits, fo as to perform its office in this refpect.
"From thefe confiderations, and in confequence of other reflections tending to thew that an elongation of the optical axis is not probably the means of adjultment, thefe philofophers directed their enquiries to afcertain how far the curvature of the cornea might be fubject to change. They found by trial that this part of the organ poffeffes a degree of elalticity which is very conf1derable, both for its perfection and its range; and by
anatomical

V I S

 anatomical diffection it was found that the foum fraight mufcles of the eye do in effect terminate in the cornea at their tendinous estremities ; that the whole external lamina of the cornea could by gentle force be feparated, by means of the fe mufcles, from the eye; fo that the tendons feem loft in the cornea, and this laft has the appearance of a central tendon. It was alfo feen that the central part of the cornea is the thickeft and the mott elaftic."Thefe were confiderable advances towards eftablifhing tbe hypothefis of adjuitment by the external curre of the eye. It remained to be flewn, by experinents on the living fubject, that this curve does really vary in the due direction, when the mind perccives the dittinct rifble fenfation of objects at different diflances. For this purpofe Mr Ranfden provided an apparatus, confifting of a thick 'onard fteadily fixed, in which was a fquare hole large enough to admit a perfon's face ; the forehead and chin refting againft the upper and lower bars, and the cheek againft either of the fides; fo that when the face was protruded, the head was tleadily fixed by refting on three fides; and in this position the left eye projected beyond the outer furface of the board. A microfcope, properly mounted, fo as with eale to be fet in every requifite pofition, was applied to view the cornea with a magnifying power of thirty times. In this fituation, the perfon whofe cye was the object of experiment was defired to look at the comer of a chimney, at the diftance of 235 yards, through a fmall hole in a brafs plate, fixed for that purpofe, and afterwards to look at the edge of the hole itfelf, which was only fix inches diftant. After fome management and caution, which the delicate nature of thefe experiments requires, the motion of the cornea, which was immediately perceptible, became very diftinct and certain. The circular fection of its furface remained in a line with the wire in the field of the microfcope, when the eye was adjufted to the diftant object, but projected confiderably beyond it when adapted to the near one. When the diftant object was only 92 feet from the obferver, and the near object fix inches, the difference in the prominence of the cornea was ellimated at 1 . Sorth of an inch. Thefe experiments were repeated and varied at different times and on different fubjects. 'The obferver at the microfcope found no difficulty in determining, from the appearaacc of the cornea, whether the eye was fixed on the remote or the near object.
"Frons thefe different experiments Mr Home confiders the following facts to have been afeertained:
"I. 'lhat the eye has a power of adjuiling itfelf to different diftances when deprived of the cryftalline lens; and therefore the £brons and laminated fructure of that lens is not intended to alter its form, but to prevent refections in the paffage of the rays through the furfaces of media of different denities, and to correet fpherical aberration.
" 2 That the cornea is made up of lamine; that it is elatic, and when Aretched is capable of being clongated 2-11th part of its diameter, contracting to its former length imrediately upon being left to ittelf.
" 3 . That the tenduns of the four itraight mufcles of the eye are continued on to the edge of the cornca, and terminate 0 are inferted, in its external lanioz: their action r ill therefore extend to the edge of the cornea.
" 4 . 'That in changing the focus of the eye from fee-
ing with parallel rays to a near diftance, there is a vifible alteration produced in the figure of the cornea, rendering it more convex; and when the eye is again adapted to parallel rays, the alteration by which the cornea is brought back to its former llate is cqually vifible."

Mr Home made many other experiments with a view to throw light upon this cuinus fubjeet ; and the refult of the whole appears to be, that the adju?nent of the eye is produced by three different changes in that organ; an increafe of curvature in the cornea, an elongr. tion of the axis of vition, and a motion of the cryflalOne lens. Thefe changes, in a great meafure, depend upon the contraction of the four ftraight mufcles of the eye. Mr Ramíten, from computations grounded on the principles of optics and general ttate of the facts, eftimates that the increafe of curvature of the cornea may be capable of producing one:third of the effect, and that the change of place of the lens, and elongation of the axis of vifion, fufficiently account for the other two thirds of the quantity of adjufinent neceffary to make uo the whole.

- VITALITY, the power of fubfining in life, which the fathionable philofophers of the French and German fchools attribute to chemiffry. For a configtation of their abfurd and impious jargon on this fubject, we refer our readers, with fome degree of confidence, to the articles Physiology (Encygl.), and Animal Substances (Suppl.)

VIVERRA (fee Encycl.) A new fnecies of this genius of animals wa; difcocered by Vaillant during his laft travels in Africa; at leaft he ranks under the generic name Viverra, the animal of which he gives the fol. lowing defcription. Its body was of the fize of that of a kitten fix months old : it had a very large nofe, the upper jaw exceeding the fower near two chitds of an inch in length, and forming a fort of moveable fnout refembling that of the coati of Guiana. 'The forc fect were armed with four large claws, very fharp and curved; the hind ones have each five, but they are floot and blunt. All the fur on the upper part of the body is marked with coois bands of a deep brown colour, on a ground of light brown with which many white hairs are intermixed. The lower part of the body and in. lides of the legs are of a reddifh white. The tail, which is yery flelhy, and more than two thirils longer than the body, is black at the tip, and the relt brown, intermixed with white hairs.

This animal employs its fore paws to dig very deep hokes in the earth, in which it remains conceated during the day, not going out till fun- fet in cuteft of food.

The Hottentots who accompanied our traveller called it muys-bond (a moufe dog) ; a general name amang the inhabitants of the Cape for all the fmaller carnivorons quadrupeds.

VIVES (Ludovicus), the contemporary and fricud of Erafmus, was a native of Valentia in Spain. Though well trained in all the fubteties of the feholatie philofo. phy at Paris, he had the grood fenfe to difeaver its futility, and diligently apphed thinfllf to more ufeful fludies. At I ouvain he undertook the office of a precep. tur, and exerted himfelf with great ability and fuccefs in corrceting barbarim, challiting the corrupters of learning, and reviving a taite for true fcience and elegant letters. Erafmus, with whom Le lived upon the 5J) 2
footing

U L. T

Vives, footing of intimate friendfhip, fpeaking of Vives when Utram:- he was only 26 years of age, fays, that there was no rine.

$7641 \quad \mathrm{~V} . \mathrm{O}$ R

bination. Ncw light has been thrown on this fubjest by Morvcau, who has difcovered that felenite loaded with iron, when decompofed by carbonacenus matier, yields a blue fulphuret of iron of equal permanency with the true ultramarine.

At prefent, fmalt of a good colour is often purchafed at a dear rate and fubftituted for ultramarine: and it is found that the colour of this preparation of cobalt is more durable in the fire than even that of the lapis lazuli. For the analyfis of lapis lazuli, fee Mineralogy, no 69. Sufel.

UNICORN, the fcriptural name of an animal, which was undoubtedly the one horned rhinoccros. Ariftotle, however, defcribes a unicorn of a different kind; and, from his defcription, feems to have been derived the idea of that figure, which is one of the fupporters of the royal arms of Great Britain, and is generally fuppofed to reprefent a fictitious animal, or creature of the imagination. But this fuppofition, if not groundlefs, feeins to be carried by much ton far. Under the word Unicorn (Encycl.) we have recorded the teflimony of Sparman and Labo, to the exillence of a unicorn haped like a beautiful horfe; and their teftimony has lately bsen Atrongly corroborated by Mr Barrow, (a) a man of unqueftionable veracity, who heid a high office under government when the Cape of Good Hope was in the poffeffon of the Englin. He actually faw figures of the unicorn, fuch as defcribed by Labo, drawn with thofe of the elephants and other animals on the fmooth rocks in the interior of the country; and he very naturally infers that fuch figures would not have been conceived by favages, who had not feen the living animal. The Bohmen or Bojef. mans, were furprifell at his expreffing any doubt of its exiftence ; and the Dutch colonifts take it for granted that fuch an animal is to be found beyond the limits of the colong. Sume of the Bujefmans feemed ready to undertake an expedition to the north fide of the great range of mountains, and fur a proper reward to bring to the author a real unicorn; but what prevented the expedition we are not told. It may be performed, and is furely as well worthy of the amateurs of natural hiftory as a journey into the heart of Africa in queft of birds, flowers, or ferpents. Till very lately the Mammotr (fee Encycl.) was confounded with the clephant, and Itrange inferences were thence drawn refpecting the change of the poles of the earth. But now (1802) the fleleton of a Mammoth is exhibiting in Iondon, whence it appears that the two animals, though nearly the fame fize, are quite diftinct, and that the one may have lived in countries, where the bones of the mamnoth are indeed generally found, of fuch a temperature, that the elephant could not exult in thein five montlis. Now, indeed, the mammoth feems to be extinet, and fo may the unicurn be ; but it appears unequeltionable that both have once exifted; and it is probable that the latter ftill exifts.

VORTICES of Des Cartes are now juttly exploded ; but being the fiction of a very fuperior mind, they are ftill an objer of curiofity, as being the fcundation of a great philofophical romance. According to the atthor of that romance, the whole of infinite fpace was
part of philofonhy in which be did not excel; and that he had made fuch proficiency in learning, and in the arts of foeaking and writing, that he fcarcely knew his equal. He wrote a commentary upon Augulline's treatife $D=$ C:vilate D_{c}, which difcovers an extentive acquatutance with ancient philofophy. Henry VIII. of Lingland, to whom he dedicated this work, was fo plealed with it, that he invited the author to his court, and raade him preceptor to his danghter Mary. 'i'hough he difcharged his office with great ficlelity, yet in confequence of his oppolition to the king's divoree, he fell neder bis difplcaiure ; and it was not without dificulty that he efcaped to Bruges, where he eevoted the remainder of his days to ftudy. He died in the year 1537 , or, according to Thumus, in 1541 . With Eratmus and Buddæus he formed a triumvirate of hiterature which did honour to the age. He wrote De Prima Pbilofopbia, "On the Firtt Philofoohy;" De Ex. planatione Effentiarum, "On the Explanation of Effences:" De Cenfura Veri, "On the Teft of Truth;" De Initiis, Sectis, et Laudibus Pbilofothic. "On the Origin, Sects, and Praifes of Philofophy;" and De Corruptis Artibus et Tradendis Difciplinis, "On the Corruption of Science, and on Education." Thefe writings, of which the two laft are the moft valuable, difcover great frength of judgment, an extenfive knowledge of philofophy, much enlargement of conception, uncommon fagacity in detecting the errors of ancient and modern philofophe:s, pasticularly of Ariftotle and his followers, and, in fine, a mind capable of attcmpting things beyond the ftandard of the age in which he lived. To all this he added great perfpicuity and elegance of flyle, not unvorthy of the friend of Erafmus.

UL'TRAMARINE is a very tine blue powder, almoft of the calour of the corn-flower or blue-kotle, which has this uncommon property, that, when expofed to the air or a moderate heat, it neither fades nor becomes tarnihed. On this account it is ufed in paint. ing; but it was employed formerly for that purpofe much more than at prefent, as fmali, a far cheaper article, was not then known. (See Cobalt, in this Suppl.) Ultramarine is made of the bline parts of the lapis lazuli, by feparating them as much as poffible from the other coloured particles with which they are mixed, and reducing them to a fine powder. The real lapis lazuli is found in the mountains of that part of Tartary called Bucharia, which extends caftwards from the Cafpian fea, and particularly at Kalab and Budukichu. It is fent thence to the Eaft Indies, and from the Ealt Indies to Europe. Good ultramarine mut be of a beautiful dark colour, and free from fand as well as every other mixture. It mult unite seadily with oit ; it mult not become tarnihed on a red hot tile or plate of iron, and it ought to diffolve in flrong acids, almof like the zenlite, without caufing an effervefence. In the year 176 , an ounce of it at Paris coft four-pounds ferling, and an onnce of cendie d'cutremer, which is the refuie, two pounds. The bafis of this colour was long fufpecied to be copper, but the experiments of Margraff flewad that it was iron, in fome unknown ftate of com-
vertices. full of matter; for with him matter and extenfion were the fame, and confequently there could be no void. This imnsenfity of matter he fuppofed to be divided in. to an infinte number of very fimall cuhes ; all of which, being whiled aboue nonn their own centres, neceflarily gave nceation to the production of two different elements. The firt conlited of thofe andular pirts which, having been neceffarily rubbed off, and grinced yet Imaller by their mutual friction, conttituted the moft fuhtle and movenble patt of matter. 'I'he fecond confifterl of thofe little g'obale; that were formed by the rubbing uff of the firlt. The interflices betwixt thefe globules of the lecond element were fillet up by the particles of the fort. But in the intinite collitions, which mult accur in an infinise face filled with matter, and all in motion, it muft neceffarily happen that many of the globules of the fecond element fonald be broken and grind ed down into the fir:t. The ourantity of the tirlt element having thus been increafed beyond what was Cuf. ficient to fill up the interttices of the fecond, it muft, in many places, have been heaped up together, wiehout any mixture of the fecond along with it. Such, a=cording to Des Cartes, was the original diviton of matter. Upon this infinitude of matter thus divided a ceriain quantity of motion was originally impreffed by the Creator of all things, and the laws of motion were fo adjufed as always to preferve the fame quantity in it, without increafe, and withont diminution. Whatever motion was loft by one part of matter, was communicated to fome otber; and whatever was acquired by one part of matter, was derived from fome other: and thus, through an eternal revolution from reft to motion, and from motion to reft, in every part of the univerfe, the quantity of motion in the whole was always the fame.

But as there was no woid, no one part of matter could he moved without thrufling fome other ont of its place, nor that without thrufting fome other, and fo on. 'To avoid, therefore, an infinite progrefs, he fuppofed that the matter which any body pußed before it rolled immediately backwards to fupply the place of that matter which fowed in behind it; as we may obferve in the frimming of a fith, that the water which it pufhes before it immediately rolls backwards to fupply the place of what flows in behind it, and thus forms a fmall circle or vortex round the body of the fifh. It was in the fame manner that the motion originally impeffed by the Creator upon the infintude of matter necelfarily produced in it an infinity of greater and fimaller vorrices, or circular ftreams : and the law of motion being fo adjutted as always to preferve the fame quantity of motion in the univerfe, thofe vortices either continued for ever, or by their diffolution gave birth to others of the fame kind. There was thuy at all times an infinite number of greater and fmaller vorrices, or circular ftreams, revolving in the univerfe.

But whatever moves in a circle is con?antly endeavouring to fly off from the centre of its revolution. For the natural motion of all bodies is in a itraight line. All the particles of matter therefore, in each of thofe greater wrtices, were continually prefling from the centre to the circumference, with more or lefs force, according to the different degrees of their bulk and folidity. The larger and more folid globules of the fecond element forced themfelves upwards to the circumference, while the
fmaller, more yielding, an 1 more active particles of the Vortises. firit, which could flow even throug! the intertices of the fecond, were forceddownwards ontlecentre. "They were forced downwards to the ecotre notwithfanding their luatural tendency was upwards to the circun. ference; for the fame reafon that a piece of wood, when plunged in water, is forced upwards to the furface, notwithftanding its nitural tendency is downwards to the bottom; becanfe itstendency dewnwards is lefs frong than that of the particles of water, which, therefore, if ore may fay fo, prefs in befure it, and this force it upwards. But there being a greater guantity of the firt element than what was ueceffary to fill up the interflices of the fecond, it was neceffarily accumulated in the centre of each of the fe great circialar ftreanis, and formed there the liery and active fubitance of the fun. For, according to thit philofopher, the fular fythems were ininite in maber, each tised tim being the centre of one; and he is annong the fiff of the mulerns who thes tonk away the boundarics of the univerfe: even Copernicns and Kepler, themfelves, have conmed it within what they Suppofed the vault of the firmament.

The centre of each vortex being thrs nccupied by the mof active and moveable parts of matter, there was necetarily among them a more violent agitation than in any ether part of the vortex, and this violent agitation of the centre cherifhed and fupported the movement of the whole. But among the particles of the firft element, which fill up the inturtices of the fecond, there are many, which, from the preffure of the globules on all fides of them, neceffarily receive an angular form, and thus conftitute a third element of particles lefs bit for motion than thofe of the other two. As the particles, however, of this third elenent were formed in the interfices of the fecond, they are neceffarily fmaller than thofe of the fecond, and are therefore, along with thofe of the firf, urged down cow rds the centre, where, when a number of them happen to take hold of note another, they form fuch fpots upon the furface of the accumblated particles of the firft element, as are ofien difcovered by telefcopes upon the face or that furn which enlightens and animates our particular fyftem. 'Thofe fuots are often broken and dilpelled by the violent agitation of the particles of the firt element, as has hitherto happily been the cafe with thofe which have fucceffively been formed upon the face of our fun. Sometimes, however, they encrult the whole furface of that fire which is accumulated in the centre ; and the communication betwixt the molt active and the mond inert parts of the vortex being thus interrupted, the :apidity of ita motion immediately begina to languif, and can no longer defend it from being fwallowed up and carried away by the fuperior violence of fome o:her like circular fream; and, in this mamer, what was onee a fur becomes a planet. Thus the time was, according to the fyftem, when the moon was a body of the fame kind with the fun, the fiery centre of a circular ftrcam of ether, which flowed continually round her ; but ber face having been crufted over by a congeries of angular particles, the motion of this circular ftream began to languifh, and could no longer defend itfelf from being: abforbed by the more violent vortex of the eartb, which was then, too, a fun, and which chanced to be placed in its neighbourhood. The moon therefore became a planet, and revolved round the earth. In procefs of

U R A

 [Wortice, time, the fame fortune, which had thus befallen the Uralian. $\underbrace{\text { Uranit }}$ moon, befel alfo the earth; its face was encruted by a grofs and inactive fubftance; the motion of its vortex began to languif, and it was abforbed by the greater vortex of the fun: but though the vortex of the earth had thus become languid, it thill had force enough to oceation both the diurnal revolution of the earth, and the monthly motion of the moon. For a fnall circular ftrean may eafily be conecived as flowing round the body of the earth, at the fame time that it is carried along by that great ocean of cther which is continually revolving romed the fun ; in the fame manner as, in a great whirpool of water, one may often fee feveral finell whirpools, which revolve round centres of their own, and at the fame time are carried round the centre of the great one. Such was the caufe of the original formation and conlequent notions of the planetary fy tem. When a folid body is turned round its centre, thofe parts of it which are neareft, and thofe which are remoteft from the centre, complete their revolutions in one and the fame time. But it is otherwife with the revalutions of a fuid : the parts of it which are neaseft the centre complete their revolutions in a fhorter time than thofe which are remoter. The planets, therefore, all floating in that immenfe tide of xther which is continually fetting in from weft to eaft round the body of the fun, complete their revolutions in a longer or a ihorter time, according to their nearnefs or diftance from him.This bold fyltem was eminently fitted to eaptivate the imagination: and though fraught with contradictions and impoffibilities, attempts have been made to revive it, even in this country, under different names. All thofe fyttems which reprefent the motions of the heavenly bodies as being the effeet of the phy fical agency of æthers, of air, of fire, and of light, of which the univerfe is conceived to be full, labour under the fame difficulties with the Caitefian hypothefis; and very few of them, if ary, are fo neatly put together. It is fureIy fuffeient, however, to denalifh this goodly fabric, barely to afls how an abfolute infinity of matter can be divided into cubes, or any thing elfe? how there can pofibly be interftices in a perfect plenum? or how in fuch a plenum any portion of matter can be thruft from its place?

URALIAN Cossacs, a people that inhabit the Rufiian provinee of Orenburg in Alia, on the fouth fide of the river Ural. Thefe Coffacs are defeended from thofe of the Don: they are a very valiant race. They rrofefs the Greek religion; but there is a kiid of difenters from the eftablifhed religion, whom the Rufians called Rofolniki, or Separatifs, and who ftyle themfelves Starover/ k, or Old Betievers. They confider the fervice of the eftablifhed church as profane and facrilegious, and have their own prielts and ceremonies. The Uralian Coffacs are all enthufials for the ancient ritual, and prize their beards almot equal to their lives. A Ruffian officer having ordered a number of Coffac recruits to be publicly flaved in the town of Yaitfle, in 1771, this wanton infult excited an infurrection, which was tuppreffed for a time; but, in 1773, that daring impoftor, Pugatchef, having aflumed the name and perfon of Leter 1II. appeared among them, and taking advantige ef this circumitance, and of their religious prejudices, wufed them onee more into open rebellion. this being at laft effectually fuppreffed by the defeat
and execution of the impoftor (See Suworow, Suppl.), in order to extinguifh all remembrance of this rebellion, the river Yaik was ealled Ural; the Yaik Coflacs were denominated Uralian ColJacs; and the town of Yaitk, Uraifk. The Uralian Coffacs enjoy the right of fifhing on the coaft of the Cafpian Sea. for 47 miles on each fide of the river Ural. Their principal fifhery is for turgeons and beluga, whofe roe fupplies large quantitics of caviare; and the fifh, which are chicffy falted and dried, afford a conliderable article of confumption in the Ruffian empire. In confequence of thefe filheries, thefe Coffacs are very rich.

URBINO, a town of Italy, in the territory of the Pope, and eapital of the duchy of Urbino, with an old eitadel, an archbifhoo's fee, and a handfome palace, where the dukes formerly refided. The houfes are well builc, and great quantities of fine earthen ware are made here. It is feated on a mountain, between the rivers Metro and Foglia, 18 miles fouth of Rimini, 58 eaft of Florence, and 120 north-eaft of Rome. E. Lon. 12. 70. N. lat. $43 \cdot 46$.

Urbino, a duchy of Italy, in the territory of the church, boundeci on the north by the gulph of Venice; on the fouth, by Perugino and Umbria; on the eaft, by the marquifate of Ancona; and on the welt, by Tuicany and Romagna. It is about 55 miles in length, and 45 in breadth. Here is great plenty of game and fifh; but the air is not very wholefome, nor is the foil fertile. Urbino is the eapital.

URCEOLA, a lately difcovered genus of the pentandria elafs, and monogynia order of plants, ranking immediately after Taberna montana (fee Encycl.), and confequently belonging to the 3oth natural order or clafs called Conortre by Linnæus in his natural method of ar angement. One of the qualities of the plants o! this order is their yielding, on being cut, a juice which is generally milky, and for the molt part deemed of a poifonous nature. The genus is thus characterifed by Dr Roxburgh : Calys beneath five-touthed; corol one petaled, pitcher fhaped, with its contracted mouth five.toothed : neetary entire, furrounding the germs; follieles two, round, drupacious; feeds numerous, im. merfed in pulo. 1 here is but one known fpecies, which is thus deferibed by the fame eminent botanift;

Urceola elastica: Shrubby, twining, leaves oppofite, oblong, panicles terminal, is a native of Sumatra, Prince of Wales's Ifland, \&e. Malay conntries. Siem woody, climbi: g over trees, \&c. to a very great extent, young fhoots twining, and a little hairy, bark of the old woody parts thick, dark coloured, confiderably uneven, a little feabrous, on which are found feveral fpecies of moff, particularly large patches of lichen; the wood is white, ligite, and porous. Laaves oppofite, fhortpetioled, horizontal, ovate, oblung, pointed, entire, a little fcabrous, with a few leattered white hairs on the underfide. Stipulus none. Panicles terminal, brachiate, very ramus. Flazers numerous, minute, of a dull greeuith colour, and hairy on the outlide. Brads lanccolate, one at each divifion and fubdivifion of the panicle. Caly x perianth, one-leaved, five wothed, permanent. Corol one petaled, piteher-fhaped, hairy, mouth much contracted, five-toothed, divifions erect, acuie, nectary entire, cylindric, embracing the lower twothirds of the germs. Stamens, filaments five, very fhort from the bale of the corol. Anthers arrow-haped, converging,

U R C

U R T

Lrceola. verging, bearing their pollen int two grooves on the inlide, near the apex ; between thefe grooves and the infertions of the filaments they are covered with white foft hairs. Pijlil, germs two; ahove the nectary they are vory hairy round the margins of their truncated tops. Sityle firghto, floorter than the flamens. Stigma ovate, with a circular band, dividing it into two portions of cifferent colous. Pır. Follicles two, round, laterally comproffed into the thape of a eunip, wrinkled, leathery, about three inches in their greatefe diame-ters-one ceiled, two valved. Seeds very numerous, reniform, imme: ied in frem flefhy pulp.

See Plate XLVII. where fig. 1. is a branchlet in Hower of the ratural fize. 2. A flower magnified. 3 . The fame laid open, which expofes to view the fituation of the flamens inferted into the botton of the corol, the nectarium furrounding the lower half of the two germs, their upper half with bairy margins, the fyle and ovate party coloured; Aligma appearing above the neetary. 4. Outfide of one of the ftamens; and, 5 . Infide of the fame, both much magnified. 6. The neftarinm laid open, expofing to view the whole of the pittil. 7. The two feed veffels (called by Linnæus ful. ficles) , natural fize; half of one of them is remuved, to thew the feed immerfed in pu!?. A portion thereof is alfo cut away, which more clearly fhews the fituation and fhape of the feed.

Flom wounds made in the bark of this plant there oozes a milky fluid, which on expofure to the open air feparates into an elaftic coagulun, and watery liquid apparently of no ufe, afice the feparation takes place. This cosgulum is not only like the American caontchoue ne Indian rubber, but puffeffes the fame properties; for which, fee Caoutcriouc, both in the Encycl. and $S_{u p} ; 1$.

The chemical properties of this vegetable milk, while frefl, were found by Mr Howifon, late furgeon on Prince of Wales's Inand, furpriingly to refemble thofe of animal milk. From its decompofition, in confequence of fpontaneous fermentation, or by the addition of acids, a feparation takes place between its cateons and ferous parts, ooth of which ere very fimilar to thofe produced by the fame proceffes from animal milk. An oily or butyrous matter is alfo one of its component
parts, which appears upon the furface of the gatm fo Urinary, foon as the latter las attained its folid form. He en. deavoured to form an extract of this milk fo as to approach to the confifence of new butter, by which lie hoped to retard its fermentativc flage, without depriving it of its ufeful qualities; but as he liad no apparatus for dittilling, the furface of the milk, that was expufed to the air, imflantly formed into a fulid coat, by which the evaporation was in a great degree prevented. He, however, learned, by coll çing the thickened milk from the infide of the coats, and dlepofiting it in a jelly pot, that, if excluded from the air, it might be preferved in this ftate for a confiderable length of time; and even without any preparation be kepr in bottles, tolerably good, upwards of twelve months.

URINARY, concretions. See Animal Substaness, Suppl.

URTICA. See Encycl. where it is obferved that the common nettle, though it has a place in the materia medica, is now very little ufes. It has lately been recommended, however, by Zannetini, a phytrian who attended the French army in Italy, as a good libbtitute in fevers for cinclonna. The fuccefs of fome experiments, which he made with it in testian and quartain malignant fevers, furpaffel, he fays, his moft fanguine expectation. The nettle often produces a fpeedier effect than bark; for it heats in a great degree, and when the dofe is pretty ifrong, occations a lethargic neep. The dufe mult never exceed a dram, and is given in wine two or three tires in the courfe of 24 hours. Zannetini found this nedicise of great fervice to guard againt that total exlauttion which forms the principal character of malignant fevers; and he recommends a fight infution of it in wine as an excellent prefervative for thofe who refide in marhy and infalubrious diltricts. In employing the nettle in fever, Zannetini gives the fame caution as ought to be obferved in regard to cin. chona, that is, that it mult not be employed where there is an inclination to inflammation, or where a continued fever, arifing from obftructions, exits. This difcovery is not unworthy the attention of phyficians, and deferves at leaft to be faither invelligated, as a great deal would be faved if cinchona could be entirely difenfert. with.

W.

Waies. WV ALEF, New Soutu, is a corntry which muft be interelting on account of the fingular colony which was fettled there in the year 1788 . Under the title Neru Holland (Encycl.) fome account has been given of that fettlement, as well as of the climate and the foil about Port Jackfon; but it will probably gratify the curiofity of our readers, if we give a fhort hiAury of thofe European fettlers, of whom it is to be
hoped that they canied not with them, to that dittant fhore,

"Minds not to be changed by time or place."
This hiftory we flall take from the accurate . Iccount of the Englifh Colony in Nizu Soutb Wales, by David Collins, Efq; who went out with Governor Phillip, and continued to execute the offices of Judge-advocate and

Urace, Secretary till the clofe of the year 179^{5}; and we fhall begin our narrative from the difembarkation of the firf colonilts, when his Majefty's commiftion to the governor, and the letters patent, ettablining courts of criminal and civil judicature in the territory, were read.

The criminal court was confituted a court of record, and was to confilt of the judireadvocate and fuch fix officers of the fea and land fervice as the governor thall, by precent irrued under his haud and feal, require to af fentie for that purpofe This court has power to inquire of, hear, determine, and punifh all treafons, mif. pisfons of treafons, murders, felonies, forgeries, perjuries, trefpafles, and other crimes whatfoever that may be committed in the colony; the punifhment for fuch offences to be inflikted according to the laws of England as nearly as may be, confidering and allowing for the circumftances and fituation of the fettlement and its inhabitanis. The charge againit any offender is to be reduced into writing, and exhibited by the judge-advocate: witneffes are to be examined uoon oath, as well for as againtt the prifoner; and the court is to adjudge whether he is guilty or not guilty by the opinion of the major part of the court. If guilty, and the offence is capital, they are to pronounce judgment of dath, in like manner as if the prifoner had been convicted by the verdict of a jury in England, or of fuch corpural pus nifhment as the court, or of the major part of it, Thall deem meet. And in cafes not capital, they are to adjudge fuch corporal panifhment as the majority of the court fhall determine. But no ofiender is to fuffer death unlefs five members of the court fhail concur in adjudging lim to be guiity, until the proceedings fhail have been tranfmitted to England, and the king's pleafure fignified thereupon. The provolt-marthat is to caufe the judgement of the convt to be executed according to the governor's warrant under his hand and feal.

Befide this court for the trial of criminal offenders, there is a civil court, confilting of the judge-advocate and two inhabitants of the fettlement, who are to be appointed by the governor; which court has full power to hear and determine in a fummary way all pleas of lands, houfes, debts, contracts, and all perfonal pleas whatfuever.

From this coust, on either party, plaintiff or defendant, finding himfelf or themfelves aggrieved by the judgment or decree, an appeal lies to the governor, and from him, where the debt or thing in demand fhall exceed the value of L. 300 , to the king in counenl.

A vice-adniralty court was alio appointed, for the trial of offences on the high feas; and the governor, lientenant governor, and judge-advocate, were by patent made juftices of the peace, with a power in the governor to appoint other jultices.

The fituation which Governor Phillip had felected for his refidence, and for the principal fettlement, was the eaft fide of a cove in Port Jackfon, which he called Sydney Cove. Its latitude was found to be $33^{\circ} 5^{2 \prime} 33^{\prime \prime}$ fouth, and its longitude $152^{\circ} 19^{\prime} 30^{\prime \prime}$ eaft. This fitua. tion was chofen without due examination ; for it foon appeared that the head or upper part of the cove wore a much more favourable appearance than the ground immediately about the fettlement. From the natives, the new fettlers met no oppofition: during the firft fix weeks they received only one vifit from them, two men frolling one evening into the camp, and remaining in
is for about half an hour. They appeared to admire whatever they faw ; and after receiving a batchet (of the ufe of which the eldeit inftantly and curioully flew. ed his knowledge, by turning up his foot and frarpening a piece of wood on the fole with the hatchet) took their leave, apparently well pleafed with their reception. The fifhing buats alfo frequently reported their having been vifited hy many of thefe people when hauling the feine; at which lahour they often affiled with checrfulnefs, and in return were generall rewaided with a part of the fifir taken.

The firlt labour in which the convicts were employ. ed was that of building huts; and for this purpofe it was found neceffary to divide them iato gangs, and to appoint an overfeer to each, who fhunld fee that the proper quantity of work was performed. The provifions were dillributed by a weekly ration, and to each man were allowed 7 lb . of bifcuit, 1 ib . of humr, 7 lb . of beef or 4 lb . of pork, 3 pints of peale, and 6 ounces of butter. To the female convicts two thirds of this ration were allowed. This was the full ration, which, in many inftances, it becanie seceffary to rectuce; and once, in confequence of the delay of tranfports with a fupply, the convicts were put on an a!lowarce of which fleth meat conftituted no part.
'The temporary huts in which the colonilts lived, for fome time after their arrival, were formed principally of the cabbage-tree. With this the fides and ends were filled; the polts and plates being made of the pine; and the whole was plaftered with clay. The roofs were generally thatched with the grafs of the gumrush; though fome were covered with clay; but icveral of thefe failed, the weight of the clay and rain foon deftoying them. In a thort time they applied themfelves to the burning of bricks; by which their habitations fuon became much more lalting and comfortable. The progrels of the colunly, howeser, towards that degree of convenience which was within its reach, was greatly impeded by the incorrigible viees of thofe who principally compofed it. Drunkennefs, theft, robbery, and unconquerabic lazinefs, continued to mark the character of the great body of the convicts. Though to fly from the colony, and venture into the interior o: the country, was inevitable death in the form of famine or of murder, yet fuch was the invincible antipathy to labour inanifelled by fome of thofe people, that they often fled to the woods, from which they feltom returned; fome dying of hunger, and fome beiug facrificed by the natives. Difinclination to labour produced here, as elfewhere, its natural $\in f f c e t-r o b b e r y$.

In the month of May 1788 , a lad of 17 years of age was tried, convicted, and executed, tor breakirg open a tent belonging to one of the tranfport 臽ips; feveral others were taken into cuftody in that month for various thefts and burglaries, and two were afterward tried and executed. One of thefe had abiconded, and lived in the woods for 19 days, fubfifting by what he was able to procure by nocturnal depredations among the huts and ttock of individuals. His vifits for this purpofe were to frequent and daring, that it became abfolutely necef. fary to proclaim him an outlaw. By the negligence of one of thole fellows who had been entrufted with the care of the cattle, the bull and four cows were loft: he left them in the fields, and returned to his hut to dine ; and in the mean time they either ftrayed away or

W A L. $[769]$ W A I.

wales.
were driven off by the natives Five years elapfed before thefe cattle were difcovered wild, at a confiderable diftance up the country, and greatly multiplied.

The perpetration of crimes, chiefly theft and robbery, had become fo prevalent before twenty months had fafled fince the colony was eitablighed, that it was neceflary to think of a fyitem of police. A plan was prefented to the governor by a convitt, which with fome improvements was adopted on the 8th of Augult 1789. The following are the heads of the arrangenent.

The fettlement was divided into four diftricts, over each of which was placed a watch contilting of three perfons, one principal and two fubordinate watchmen. Thefe being felected from among thofe conviets whofe conduct and character had been unexceptionable fince their landing, were veRed with authority to patrole at all hours in the night, to vifit fuch places as might be deemed requilite for the difcovery of any felony, trefpafs or mifdemeanor, and to fecure for examination all perfons that might appear to be concerned therein; for which purpofe they were directed to enter any fulpected hust or dwelling, or to ufe any other means that might appear expedient. They were required to detain and give information to the rearell guardhunfe of any foldier or feaman who thould be found Itraggling after the tattoo had been beat. 'They were to ule their utmolt endeavours to irace out offenders on receiving accounts of any depredation; and in addition to their nightduty, they were directed to take cognizance of fuch conviets as gamed, or fold or bartered their flops or provitions, and report them for punithment. A return of all occurrences during the night was to be made to the judge-advocate; and the military were required to furnilh the watch with any affiltance they might be in need of, beyond what the civil power could give them. They were provided each with a fhort itaff, to diltinguifh them during the night, and to denote their office in the colony; and were influcted not to receive any itipulated encouragement or reward from any individual for the convietion of offenders, but to expect that negligence or miconduct in the execution of their trutt would be punithed with the utmoft rigour. It was to have been wifhed, fays Mr Collitis, that a watch eftablifhed for the prefervation of public and private propeety had been formed of free people, and that necer. fity had not compelled us, in felesting the fi:t nembers of our little police, to appoint them from a body of men, in whofe eyes, it could not be denied, the property of icdividuals had never before been facred. But there was not any choice: The military had their line of duty marked out for them, and between them and the convict there was no defeription of people from whom overfeers or watchmen couid be provided. It might, however, be fuppoted, that amang the convicts there mutt be many who would feel a pride in being dittinguifhed from their fellows, and a pride that might give lurth to a returning principle of honelty. It was hoped that the convicts whom we had chofen were of this defcription; fome cffort had become neceflary to detect the varioas offenders who were prowling about with fecurity under cover of the night; and the convicts who bad any property werc themfelves interefted in defeating fuch practices. They promiled tidelity and diligence, from which the fcorn of their iellow-priloners fould not induce them to fiverve, and began with a

Suppl. Vol. II. Part II.
confidence of fuceefs the duty which they had themfelves offered to undertake.

A fpecies of difturber now infefted the colony, againt which the vigilance of a police could not guard. Rats, in immenfe numbers, had attacked the provifion llores, and could be counteracted only by removing the provifions from one fore to another. Whew their ravages were firt difcovered, it was found that eight cafks of flour were already deftroyed by the fe vermin, Such of thele animals as efcaped the dogs, which were fet upon them, ीew to the gardens of individuale, where they rio. ted on the Indian corn that was growing, aut did confiderable mifchicf.

Our author gives the moft melancholy account of the extreme fufferings of the carly colonifts from want of provifions, and of the difeafes imported into the country by newcomeri, who had either canght them on the voyage or brought them from England the fettlers on Norfork-Ifland (fee Encycl.), to which New South Wales was a mother country, mult have been much more liable than that colony to suffer fiom famine, had they not fometimes obtained a temporary fupply from a fource which was unknown at Sychey Cove. On a mountain in the ifland, to which had been given the name of Mount Pitt, they were fortunate enough to obtain, in an abundance almot incredible, a fpecies of aquatic birds, anfwering the defeription of that known by the name of the puifin. Thele birds came in from the fea every evening, in clouds literally darkening the air, and defeending on Mount Pitt, depolited thcir eggs in deep holes made by themfelves in the ground, generally quitting then in the morning, and returning to feek their fubli?!ence in the fea. From two to three thoufand of thefe birds were often taken in a night. Their feeking their food in the ocean left no doubt of their own Heth partaking of the quality of that upon which they fed; but to people circumftanced as were the inhabitaits on Norfolk ifland, this leffened not cheir importance; and while any Mount Pitt birds (fuch being the name given them) were to be tiad, they were eageily fought.

The Grit fettler in New South TVales, who declared himfelf able to live on the produce of his farm, without any afliftance from the flores, was James Rufe; who in April 1793 relinquithed his clain to ansy farther thare of the public provifion. As a reward, the governor immediately put him in pollefion of an allotment of 30 acres

In the July of the fame year, the convicts whofe terms of tranfportation had expired were now collected. and by the authority of the governor informed, that fuch of them as withed to become fettlets in this country hould receive every encourage nent ; that thofe whe did not, were to labour for their provitions, ftipulating to work for 12 or 18 months certain; and that in the way of fuch as preferred returuing to England no obllacles would be thrown, provided they could procure paffages trom the malters of fuch thips as mightic arrive; but that they were not to expect any affitance on the part of govermane to that end. The with to return to their freend appeared to be the prevailing idea, a few only giving iu thacir names a3 fettlers, and none engaging to work for a certain tine.

That the wifh to return home was ftrong indeed, and paramount to all other feelings, was evinced in a very 5 E melancholy

W A L

melancholy inftance fome time before. A convict, an elderly man, was found dead in the woods, near the fettlement ; who, on being opened, it appeared, had died from want of nourifhment; and it was found that he was accuftomed to deny himfelf even what was abfolutely neceffary to his exiftence, abitaining from his provifons, and felling them for money, which he was reServing, and had fomewhere concealed, in order to purchafe liie paffage to England when his time Thould terminate!

Of some convicts whofe terms of tranfportation had expired, the governor eftablifhed a new fettement in Augult 1791, at a place which he called Profpert Hill, about twenty miles diftant from Sydney Cove; and another refidence was formed at the Ponds within three or four miles of the former. This made the fourth fettement in the colony, exclufively of that at Norfolk Inand.

About this time the governor received from England a public feal for the colony: on the obverfe of which were the king's arms and royal titles; and on the reverfe, emllematic figures fuiter to the fituation of the people for whofe ufe it was defigned. The motto was "Sic fortis Etruria crevit;" and in the margin wcre the words "Sigillum Nov. Camb. Auft". A commiffion alfo arrived, empowering him to remit abfolutely, or conditionally, the whole or any part of the term for which the felons fent to the colony might be tranfported. By this power he was enabled to beftow on fuperior honefty and induftry the moft valuable retard which, in fuch circumftances, they could receive.

In addition to the calamities under which the fettle. ment had fo often laboured from being reduced to very fhort allowance of provifions, and the frequency of the ordinary difeafes which were to be expected among a people fo fituated, a new malady of a very alarming nature was perceived about A pril 1792 . Several conviets were feized with infanity; and as the major part of thofe who were vifited by this calamity were females, who, on account of their fex, were not haraffed with hard labour, and who in general fhared largely of fueh little comforts as were to be procured in the fettlement, it was difficult to aflign a caufe for this diforder. It feems, however, to have been of fhort duration; for we hear not of it again during the period that Mr Collins's narrative comprehends.

About this time (1792) che colony had affumed comething of an eftablifhed form. Brick huts were in hand for the convicts in room of the miferable hovels occupied by many, which had been put up at their firft landing, and in room of others which, fiom having been erected on fuch ground as was then cleared, were now found to interfere with the direction of the ftreets which the governor was laying out. People were alfo em. ployed in cutting paling for fencing in their gardens. At a place called Paramatta, about 16 miles fiom Sydney Cove, fituated on a finall river which runs into Port Jackfon, the people were employed, during the greatent patt of the month of May, in getting in the maize and fowing wheat. A foundation for an hofpital was laid, a houle built for the malter carpenter, and roofs pre-
pared for the different huts either building or to be built in fucure.

In December 1792, when Captain Phillip refigned the government, nearly five years from the fouodation of the colony, there were in cultivation at the different fettlements 1429 acres, of which 417 belonged to fettlers; that is, 67 fettlers, for there was no more, cultivated nearly half as much ground as was cultivated by the public labour of all the convicts; a flriking proof of the fuperior zeal and diligence with which men exert themfelves when they have an intereft in their labour. Of free fettlers, whofe exertions promifed fo fairly to promote the interefts of the colony, feveral arrived from England in January 1793, and fixed themfelves in a fituation which they called Liberty Plains. To one of thefe, Thomas Rofe, a farmer from Dorfetfhire, and his family of a wife and four children, 120 acres were allotted. The conditions under which thefe people agreed to fettle were, " to have their paffage provided by government (A); an affortment of tools and implements to be given to them out of the ftores; that they fhould be fupplied with two years provifions; that their lands fhould be granted free of expence; the fervice of convicts alfo to be affigned to them free of expence; and that thofe conviets fhould be fupplied with two years rations and one year's clothing."

Among the great difficulties with which this infant eftablifhment had to ftruggle, not the leaft was that of procuring catcle. Of thofe which were embarked in England and.other places for the colony, a very fmall proportion only arrived; for of 15 bulla and 119 cow ε_{3} which had been embarked for Botany Bay, only 3 bulls and 28 cows were landed at the fettlement. It was not until the arrival of the Endeavour, Captain Bampton, in 1795, that the mode of conveying cattle to the colory without material lofs was difcovered. In that veffel, out of 130 head which he embarked at Bombay, one cow only died on the paffage, and that too on the day before his arrival.

The fcarcity of cattle naturally raifed their price. Even after this laft importation, an Englifh cow in calf fold for L. 80 .

Notwithfanding the various obftacles which induftry had met in the cultivation of this fettlement, it yet made confiderable advances; for in October 1793, the value of land had fo rifen, that one fettler fold his allotment of 30 acres for as many pounds; and one farm, with the houfe, \&c. fuld for L. 100 . The value of ground, indeed, was confiderably enhanced by government agreeing to purchafe the redundanee of the produce of the fettlers at fixed prices. Wheat properly dried and eleanfed was received from the fettlers at Sydney, by the commiffary, at ios. per bufhel. Some cultivators, however, had devifed ancther mode of difpofing of their corn. One of them, whofe fituation was near Paramatta, having obtained a fmall fill from England, found it more advantageous to draw an ardent diabolical fpirit from his whear, than to fend it to the flores. From one bufhel of wheat he obtained nearly five quarts of firit, which be fold or paid in exchange for labour, at the rate of five or fix fhillings per
quart.
(A) Government paid for the paffage of each perfon above ten years of age L. $.8,8 \mathrm{~s}$. and one shilling per day for vietualling them.

W A L [771 $]$ W A L

Waies. quart. A better ufe was made of grain by another fettler ; who, having a mill, ground it, and procured 44 lb . of good flour, from a bufhel of wheat taken at 59 lb . This flour he fold at 4 d . per lb.

By a return of the number of perfons in New South Wales and Norfolk Illand in April 1794, it appeared that there were in all 4414 , including women and ehildren : the annual expence of whom, to the mothercountry, Mr Collins eflimates at L. 161,101. Rapid ftrides, howeter, were at that time making towards independenee, if not towards an ability of repaying to England a part of what the fettlement had coll her. Already the colony lived on grain of its own growth, and an inereafe of live ftock was become almoft certain. There were now 4665 aeres of ground cleared for cultivation ; more than lalf of which had been effected by thofe who had becone fettlers in the courfe of fifteen montlis.

To this fpirit of inprovement fuch a check was given in September 1794, that not more than a third of go. vernment ground, and a fifth of ground belonging to individuals, was in cultivation in 1795 . As this event has been mifreprefented, we fufpeet purpofely, by fome of our journalifts, we fhall give the true account of it in the words of Mr Collins himfelf.
"The Francis fehooner (fays he) returned from Norfolk, having been abfent about eight weeks and three days. From Mr King, who commanded in that ifland, we learned that his harvef had been prodigioully productive. He had purchafed from the firf crops, which the fettlers had brought to market, upwards of 11,000 bufhels of maize; and bills for the amount were drawn by him in favour of the refpective fettlers; but requiriug the fanction of the Lieutenant governor, they were now fent to Port Jackfon. Mr King had been partly induced to make this provifional kind of purchafe, under an idea, that the corn would be acceptable at PortJackfon, and alfo in compliance with the conditions on which the fettlers had received their refpective allotments under the regulations of Governor Phillip; that is to fay, that their overplus grain thould be purchafed at a fair market price. Being, huwever, well ftocked with that article already, the Lientenant governor did not think himfelf juftifiable in putting the crown to fo great an expence (nearly L. 3000 Sterling), and declined accepting the hills." This naturally excited fome difcontents in Norfolk Ifland, and one or two fettlers gave up their farms; but immediately on the arrival of Governor Hunter, he paid for the corn, and tranquillity was reftored to the ifland."

Though feveral quarrels had occurred between the natives and individuals among the colonifts, yet it-was fuppofed that our people were in general the aggrefors. The governor had taken much pains to infpire the natives with confidence, and had in a great meafure fucceeded. To theft they were naturally and irrefiftibly inclined : but, like other favages, they feemed unconfcious of the crime, and were feldom deterred by detection from mixing with the colonills. At a fettlement which had early been formed at a river called the Hawkefory (and at which, cultivation having gone on well, there was, in courfe, much grain to fimulate to depredation), the natives affumed a more formidable appearance.
"At that fettlement (fays Mr Collins) an open war
feemed abont this time to have commenced between the natives and the fettlers; and word was received over. land, that two people were killed by them; one a fettler of the name of Wilfon, and the other a freeman, one William Thorp, who had hired himfelf to this Wil. fon as a labourer. The natives appeared in large bo. dies, men, wonten, and children, provided with hlankets and nets to carry off the corn, of which they appeared as fond as the natives who lived among us, and feemed determined to take it rhenever and wherever they conld meet with opportunities. In their attacks they con. ducted themfelves with much art; but where that fetio ed they had recourfe to force; and on the leaft appearance of refiftance made ufe of their fpears or clubs. 'To check at once, if polfihe, thele dangerous iepredators. Captain Paterfon directed a party of the corp's to be fent from Paramata, with inftructions io deftroy as ma. ny as they could meet with of the wood tribe (13e-dis. gal) : and, in the hope of Atriking terror, to erect gils. bets in different places, whereon the bodics of all they might kill were to be hung. It was reported that feveral of thefe people were killed in eonfequence of this order; but none of their bodies being found (perhajes if any were killed they were carried off by their companions), the number could not be afeertained. Some prifoners, however, were taken, and fent to Sydney; one man (apparently a cripple), five women, and fome children. One of the women, with a child at her breaft, had been fhot through the foulder, and the fame fhut had wounded the babe. They were immediately placed in a hut near our hofpital, and every care taken of them that humanity fuggeited. The man was faid, inftead of being a cripple, to have been very active about the farms, and initrumental in fome of the murders which had been comunitted. In a fhort time he found menis to efcape, and by fwimming reached the north thore i! fafety; whence, no doubt, he got back to his friends. Captain Paterfon lioped, by detaining the prifoners and treating them well, that fome good effect might refult ; but finding, after fome time, that coercion, not atten. tion, was more likely -to anfwer his ends, he fent the women back. While they were with us, the wounded child died, and one of the women was delivered of a boy, which died immediately. On our withdrawing the party, the natives attacked a farm nearly oppofite Richmond Hill, belonging to one William Rowe, and put him and a very fine child to death; the wife, after receiving feveral wounds, crawled down the bank, and concealed herfelf among fome reeds half immerfed in the river, where the remained a confiderable time with. out affiftance: being at lengtl found, this poor creature, after having feen her hufband and her child nanghtered before her cyes, was hrought into the hofpital at Paramatta, where the recovered, though flowly, of her wounds."

By the vigorous meafures which were adopted, the colony, towards the clofe of 1796 , had acquired a degree of ftrength which feemed to enfure its future profperity. Not only the neceffary edifices were raifed for the habitations of its people, but fome for the purpofes: of religion, amufement, \&c. A playhoufe liad been erected at the expence of fome perfons who performed in it for their own emolument, and who admitted auditors at one fhilling each. A convenient church had been built, a printing prefs had been fet up, the civil

W A L [772.] IV A L

court was open for the recovery of delits by action and fur proving wills, licences had been iffued to regulate the fale of fpirits, and paflage-boats were eftablifhed for the convenience of commmiention between the difierent fettlements In the honles of individuals were to be fourd moft of \cdot the conforts, and not a few of the luxulits, of life; and, in a word, the furmer years of faninine, toil, and difficulty, were now exchanged for thofe of plenty, cafe, and pleafure.

The quantisy of ground at this time in cultivation was 5419 acres; of which 2547 were occupied by fettlers. The number of perfons in New South Wales and its dependencies amounted to 4348 . The price of labour, hewever, compared with the prices of provifion, (as given in Mr Collins's Tables), does not appear fo high as to enable the workman to live very confortably. He who receives but three fallings for his day's work, and gives two fliliings for a pound of muton, fifteen pence for a pound of pork, and half of that fum for a pound of flour, will fearcely derive from shis mere labour the fupport neceffary for a family.

That many things are yet wanted to give full effect to the advantages which the colony mow enjoys, Mr Collins declares in the following paragraph, with which he concludes bis account :
" 'The want at this tine of feveral public buildings in the fettlement has already been mentioned. 'To this want mofl be added, as abfolutely neceflary to the wellbeing and comfort of the fettlers, and the profperity of the colouy in general, that of a puhlic fore, to be opened on a plan, though not exactly the fame, yet as liberal as that of the Ifland of St Helena, where the Eaft India Company ifue to their own fervants European and Indian goods at so per cent. advance on the prime roft. Confidering our immenfe ditlance from England a greater advance would be neceffary ; and the fettlers and otheri would be well fatisfied, and think it equally liberal, to pay 50 per cent. on the prime coll of all goods brought from Eigland; for at prefent they pay never lefs than 100, and frequently 1000 , per cent. on what they have occafion to purchafe. It may be fuppofed that government would not choofe to open an ac?ount, and be concerned in the retail of goods; but any individual would find it to his intereft to do this, particularly if affiled by goyernment in the freight ; and. the inhabitants would gladly prefer the manufactures of their own country to the fweepings of the ludian bazars.
"The great want of men in the colony mult be fupplied as foon as a peace thall take place; but the want of refpectable fettlers may, perhaps, he longer felt; by thefe are ineant men of property, with whom the gentlemen of the colony could affuciate, and who fhould be thoroughly experienced in the bufinefs of agriculture. Should fuch men ever arrive, the aiminitration of jufzice might affume a lefs military appearance, and the trial by jury, ever dear and mult congenial to Englifhmen, be feen in New South Wales."

There is, however, one ferious dificulty which the colony has not yet overcome, and which, until it be overcome, will certainly prevent fuch men from fettling in New South Wales. Till fome ftaple commodity can be raifed for exportation, induftrious free fettlers will never be tempted to emigrate from Europe to a country where their induftry cannot procure the comforts as
well as the neceffaries of life. The American colonies, in their infancy, did not labour under this difadvantage. T'obacco foon became, and ftill continues to be, an article of fuch importance, that its cultivation afforded the trans-atlantic farmer a ready exchange for European commodities; whilit in New South Wales there feems to be ro regetable production of much vahe, except New Zealand hemp, which is produced indeed in great abundance in Nerfolk Inand, and which Captain Cook long ago pointed out as an article of great importance to the Bitifh navy. This is indeed a valuable plant, and g rows in all the cliffs of the inland, where nothing elfe will grow, in fufficient abundance to give conftant employment to 500 people; yet when Mr Collins left the fettlement, there was no more than one loom on the inand, and the flay or reed was detigned for coarfe canvas; nor did they poffefs a fingle tool required by flaxdreffers or weavers beyond the poor fubititutes which they were obliged to fabricate for themfelves. In this defect of neceffaries for the manufacture, only 18 prople could be employed in it; and of thefe the united labour in a week produced 16 yards of canvas, of the fize called $\mathrm{N}^{\circ} 7$.

Defides a ufeful manufactory of this plant, which certainly might be eftablifhed, the colony appears to poffefs feveral important advantages. From Mr Collins's narrative, it appears probable that a feal and perhaps a whale fifhery might be eftablifhed with a fair proipect of fuccefs; good wich earth is found near Sydney Cove; there are immenfe ftrata of coal in the fouthern part of New: Holland; Noifolk Inand abounds with lime; and valt quantities of Shells, which anfwer the fame purpofe, have been found on the main-land. Though the wood in general be not of a durable kind, it appears that there is fome good timber near the Hawkelbury river; and at Nortolk Iland and NewZealand it is remarkably finé.

WALPOLE (Horace, Earl of Orford), was the youngett fon of the celchrated Sir Robert Walpole, afterwards Earl of Oiford, by his firt wife, Catharime, dausliter of Kobert Shorter, Efq. of Bybrook in Kem. He was born 1716; and "as educated, firlt at Eton ichool, and afterwards at Cambridge. At Eitun her formed an intimate acquaintance with the celebrated poet Gray; and they went together on the tour of Enarope, iil the years 1739, 1740, and 1741. Unhappily. they had a difpute in the courfe of their travels, which produced a feparation.

Mr Walpule was able to make a fplendid figure during the remainder of his dettined courfe; but poor Gray, anter the feparation, was obliged to observe a very fevere economy. "This difference arofe from the difference of their tempers: the latter being, from his earlieft years, curious, penfive, and philofophical; the fonmer, gay, lively, and inconfiderate. This, therefore, occafioned their feparation at Reggio. Mr Gray went before him to Venice; and flaying there till he could find means of returning to England, he made the beft of his way home, repafling the Alps, and following almolt the fame rout, through France, which he had be-s fore gone to Italy. In juftice to the memory of fore-. fpectable a friend, Mr Walpole (fays Mr Mafon, Life. of Gray, 4to, P: 41.) enjoins me to charge him with the chief blame in their quarrel, confeffing that more attention, complaifance, and deference, to a warm friend-

Waipo'e. Thip, and fuperior judgment and prudence, might have prevented a rupture that gave much uneafinefs to them both, and a lating concern to the furvivor; though in the year 1,44 a reconciliation was affected between them, by a lady who wifhed well to both parties." This event tool: place after their return to England; but the neound in their friendhip left a foar that never wa, totally effaced.
We do not, indeed, think that Horace Walpule and Mr Gray were formed, either by nature or by habits, to continue long in a ftate of intimate friendihip. Gray appears to have been a man of the puret moral principles, a friend to religion, penfive, and at lealt fufficiently cunfcious of his intcllectual powers and intellectual attainments. Walpole's morality was certainly of a loofer kind; he feems to have had no religion; he was often unfeafonably gay; and to an equal flare of intellectual pride, though without equal reafon, he added the pride of birth. It can therefore excite no furprife that a man of Gray's independent firit could not bear the fupercilious freaks of fuch a character.
Mr Walyole was nominated to reprefent the city of Norwich, when his father vifited it July 3d, 1733, having aequired confequence, net only as the fon of the minifter, but as having attended the Prince of Orange to England in that year. He was chofen member for Collington, in Cornwall, in the parliament which met Jame $2 ;$ th, 1741 ; was a fecond time in parliament as reprefentative for Cafte-Rifing, in Norfolk, in 1747; and for King's Lyan in 7554 and $1 ; 61$; and, at the expiration of that parliament, he finally retired from the ftage of politics, and cunfined himfelf wholly to literary purruits. He tield to his death the office of uflaer of his Majeily's exchequer, comptroller of the ppe, and clerk of the eftreats. Upon the death of his nephew, George, third Earl of Orford, 1991, he fucceeded to the title and eftates; but that event made folittle alteration in his mode of living, that we know not whether he ever took his feat in the houfe of peers. During almof the whole cuurfe of his life he was the vietin of the gout, which at lat reduced him to a cripple : but it never impaired his faculties; and, to the rery mument of death, his underilanding feemed to bid defiance to the flock of Nature. He dhed at his houre in Berkefley Square, in 170 th, having jufl entered his 80 th year; and was interred in the family vauit at Houghton, in a private manner, agreeably to his particular directions.
Horace, Lord Orford, was never married, and, by one of his bingraphers, his chief millrels thrungh life is faid to lave tren the mufe It is certain that he devoted the greater part of his life to belles letres and virtú, though he ridiculoully affected. in his Itetters to his friends, to defpife learaing and learried men, for which he was very properly reprimanded both by. Gray and Hume. It was an affectation peculiarly abfurd in him, who was contantly publihhing fomet hing, and who wrote with incommon acrimony againf all who prelumed to call in queftion the fidelity of the picture which he had drawn of Richard III, or indeed to controvert any of his opinions. Hence his antipathy to Johnfon, becaufe he was.a tory, a Chrifian, and a rigid moralift; whilt he himfelf was a whig, an infidel, and fuch a muralit as could retail, without blufhing, all the fcandalous anicc-
dotes, whether true or falfe, of that augulf family, from Waring. whom he acknowledged his whole fortune to be derived. He had, indeed, another reafon for difliking Jolinfon. Lord Orford thone in converfation, and furpaffed all his contemporaries in that kind of talk which, without dazzling by its wit, always delighted; while Johnfon, when roufed, knocked down, as by a flah of lightning, his Lordhip, and every one elfe who lad the confidence before hin to talk profanely. Johnfun's wit was original ; Lord Orford's conlitted of ludicrous florics and of literay and political anectutes. His works, of which by far the molt valuable part has lung been in the hands of the public, were collected in 1798, and publified in five voiumes $4^{\text {to }}$. They refemble lis converfation, being rather amuing than profound or inllructive.

W'ARING (Edward, M. D.), Lucafian Profeflop of Mathematics in the univerfity of Cambridge, was the fon of a wealthy farmer, of the Old Heath, near Shrewfbury. The early part of his education he received at the free.fchool in Shrewfoury; whence he removed to Cambridge, and was admitted on the 24 th of March 1753 a member of Magdalen cullege. Here his talents for abitrufe calculation foon developed thenifelves, and, at the time of taking his degree, he was confidered as a prodigy in thofe fciences which make the fubject of the bachelor's examination. The name of Senior Wrangler, or the firtt of the year, was thought fcarcely a fufficient honour to diftinguih one who fo far out hone lis contemperaries; and the merits of Joha Jebb were fufficiently acknowledged, by bring the fecond in the lift. Waring took his firt, or bachelor's degree, in 1757, and the Lucafian Profeffor fhip became vacant before he was of fuficient flanding for the next, or mafter's degree, which is a neceffary qualiication for that office. This defeet was fupplied by a ruyal mandate, through which lie liecame mafter of arts in 1760 ; and fhortly after his admiffion to this degree, the Lucatian Profeffor.

The roy ${ }^{\prime}$! mandate is too frequently a fereen for indolence ; and it is now become almoft a cuftom, that heads of colleges, who ought to fet the example in dif: cipline to others, are the chief violaters of it, by making their office a pretext for taking their dector's degree in divinity, without performing thofe exercifes which were detigned as proufs of their qualifications. Such indult nee cannat be inputed to Waring ! get feveral circumfances, previous to his clection into the profeflorial chair, difcuvered that there was, at leatt, one perfon in the miverfity who difapproved of the anticipation of degrees by external influence. - Waring, be. fore his election, gave a fmall fecimen of his abilities, as proof of this qualification fur the office which he was then foliciting; and a controverfy on his merits enfued: Dr Puwell, the mafter of St John's Coliege, attacking, in two paniphlets, the Profeflor; and his friend, afterwards Judge Wilfon, defending. The attack was fcarcely warranted by the errors in the fpecimen; and the atundant proufs of talents in the excrecife of the pro: fefforial office are the beft anfwers to the farcafms which the learned divine amufed himfelf in cafting on rifing merit. An office held by a Barrow, a Newton, a Whi!ftun, a Cotes, and a Sanderfon, mull excite an ingenious mind to the greateft exertions; and the new Pro. feflor, whatever may have been his fuccefs, did not fall

Wris. behind any of his predeceffors, in either zeal for the fcience, or application of the powers of his mind, to extend its bonnderies. In 176_{2}, he publifhed his Mifcellanea Analytica; one of the mot abftrofe books written on the abitrufeft parts of algebra. This work extended his fame over all Eurone. He was elected, without folicitation on his part, member of the focieties of Bonorid and Gottingen ; and received flattering marles of efteem from the molt eminent mathematicians at hame and abroad. The difficulty of this work may be prefumed from the writer's own words, "I cimnot fay that I know any one who thought it worth while to read through the whole, and perhaps not the half of it."

Mathematics did not, however, engrofs the whole of his attention. He could dedicate forne time to the ftudy of his future profeffion; and in 176\%, he was admitted to the degree of duetor of phyfic ; but, whether from the incapacity of uniting together the employments of active life with abftrufe fpeculation, or from the natural diffidence of his temper, for which he was moft peculiarly remarkable; the degree which gave him the right of exercifing his talents in medicine was to him merely a barren title. Indeed he was fo emharraffed in his manners before ftrangers, that he could not have made his way in a profeffion in which fo much is done by addrefs; and it was fortunate that the cafe of his circurrftances permitted lim to devote the whole of his time to his favourite purfuit. His life paffed on, marked out by difcoveries, chiefly in abftract fcience; and by the publication of them in the Philofophical Tranfactions, or in feparate volumes, under his own infpection. He lived fome years after taking his doctor's degree, at St lves, in Huntingdonhire. While at Cambridge he married-quitted Cambridge with a view of living at Shrewfury; but the air or finoke of the town being injuriousto Mrs Waring's health, he removed to his own eftate at Plaifey, about 8 miles from Shrew bury, where he died in 1797 , univerfally efteemed for inflexible integrity, modefty, plainnefs, and fimplicity of manners. They who knew the greatnefs of his mind from his writings looked up to him with reverence everywhere; but he enjoyed himfelf in domeftic circles with thofe chiefly among whom his purfuits could not be the object either of admiration or envy. The outward pomp which is affected frequently in the higher departments in academic life, was no gratification to one whofe ha. bits were of a very oppolite nature; and he was too much occupied in fcience to attend to the intrigues of the univerfity. There, in all queftions of fcience, his word was the law; and at the annual examination of the candidates for the prize inttituted by Dr Smith, he appeared to the greateft advantage. The candidates were generally three or four of the beft proficients in the mathematics at the previous anmual examination for the bachelor's degree, who were employed from nine o'clock in the morning to ten at night, with the exception of two hours for dinner, and twenty minutes for tea, in anfwering, viva vore, or writing down anfwers to the profeffor's queftions, from the firft rudiments of philofophy to the deepeft parts of his own and Sir Ifaac Newton's works. Perhaps no part of Europe affords an inftance of fo fevere a procefs; and there was never any ground for fufpecting the Profeffor of partia. Ifty. The zeal and judgment with which be perform-
ed this part of his office cannot be obliterated from the W iring. memory of thofe who paffed through his fiery or deal.

Wifhing to do ample juftice to the talents and virtue of the Profeffor, we feel ourfelves fomewhat at a lufs in tpeaking of the writings by which alone he will be known to pofterity. He is the difcoverer, according to his own account, of nearly 400 propofitions in the analytics. This may appear a vain glorious boaft, efpecially as the greater part of thofe difcoveries are likely to fink into oblivion; but he was, in a manuer, compelled to make it by the infolence of Lalande, who, in his life of Condorcet, afferts that, in 176.7 , there was no firft-rate analyft in England. In reply to this affertion, the Profeffor, in a letter to Dr Mafkelyne, firf mentions, with proper refpect, the inventions and writings of Harriot, Briggs, Napier, Wallis, Halley, Brunker, Wren, Pell, Barrow, Mercator, Newton, De Moivre, Maclaurin, Cotes, Stirling, Taylor, Simpfon, Emerfon, Landen, and others; of whom Emerfon and Landen were living in ${ }_{1} 7 \mathrm{~K}_{4}$. He then gives a fair and full detail of his own inventions, of which many were publifhed anterior to 1764 ; and concludes his letter in thefe words.
"I know that Mr Lalande is a firft.rate aftronomer, and writer of aftronomy; but 1 never heard that he was much converfant in the deeper parts of mathematics; for which reafon I take the liberty to afk him the following queftions:
" Has he ever read or underftood the writings of the Englifh mathematicians: and, as the queftion comes from me, I fubjoin, particularly of mine ? If the anfwer be in the negative, as it is my opinion, if his anfwer be the truth, that it will, then there is an end of all further controverfy ; - but if he afferts that he has, which is more than Condorcet did by his own acknowledgment, then he may know, from the enumeration of inventions made in the prefaces, with fome fublequent ones added, that they are faid to amount to more than 400 of une kind or other. Let him try to reduce thofe to as low a number as he can, with the leatt appearance of candour and truth; and then let him compare the number with the number of inventions of any French mathematician or mathematicians, either in the prefent or palt times, and there will refult a comparifon (if I miftake not) not much to lis liking; and, further, let him compare fome of the firft inventions of the French mathematicians with fome of the firft contained in my works, both as to utility, generality ${ }^{\prime}$, novelty, dificiculty; and elegance, butt wifely as to utility, there is little con tained in the deep parts of any fcience; he will find their difficulty and novelty from his difficulty of undertanding them, and his never having read any thing finilar before; their generality, by the application of them; principles of elegance will differ in different perfons.I muft fay, that he will probably not find the difference expected. After or before this inquiry is inftituted for mine, let him perform the fame for the other Englifh mathematicians ; and when he has completed fuch inquiries, and not before, he will become a judge of the juftice of his affertion; but I am afraid that he is not a fufficient adept in thefe ftudies to inftitute fuch in. quiries; and if he was, fuch inquiries are invidious, troublefome, and of fmall utility.".

By matbematical readers this account, which was not publimed

W A R

Waring. publithed by the Profeffor himfelf, is allowed to be very littie, if at all, exaggerated. Yet if, according to his own confeffion, "few thonght it worth their while to read even half of his works," there muft he fome grounds for this neglect, either from the difficulty of the fubject, the unimportance of the difeoveries, or a defect in the communication of them to the public. The fubjects are certainly of a difficult nature, the calculations are abilrufe ; yet Europe contained many perfons not to be deterred by the inoft intricate theorems. Shall we fay, then; that the difcoveries were unimportant? If this were really the cafe, the want of utility would be a very fmall difparagement among thofe who cultivate fcience with a vicw chiefly to entertainment and the exercife of their rational powers. We are compelled, then, to attribute much of this neglect to a perplexity in ftyle, manner, and language ; the reader is ftopped at every inftant, firft to make out the writer's meaning, then to fill up the chafm in the demonttration. He mult invent anew every invention; for, after the enunciation of the theorem or problem, and the mention of a few Reps, little aififance is derived from the Profeffor's powers of explanation. Indeed, an anonymous writer, certainly of very confiderable abilities, has aptly compared the works of Waring to the beavy appendages of a Gothic building, which add little of either beauty or ftability to the ftructure.

A great part of the difcoveries relate to an affumption in algebra, that equations may be generated by multiplying together others of inferior dimenfions. The roots of thefe latter equations are frequently terms called negative or impofible; and the relation of thefe terms to the coefficients of the principal equation is a great objces of inquiry. In this art the profeffor was very fuccefsful, though little affifance is to be derived from his writings in looking for the real roots. We thall not, perbaps, he deemed to depreciate his merits, if we place the feries for the fum of the powers of the roots of any equation among the moft ingenious of his difcoveries; yet we cannot add, that it has very ufefully enlarged the bounds of fcience, or that the algebraift will ever find occafion to introduce it into practice. We may fay the fame on many ingenious transformations of equations, on the difenvery of impoffible roots, and fimilar exertions of unduubtedly great talents. They have carried the affumption to its utmolt limits; and the difficulty attending the \{peculation has rendered perfons more anxious to afcertain its real utility; yet they who rejeet it may'occafionally receive ufeful hints from the Mifcellanea Analytica.

The firlt time of Waring's appearing in public as an author was, we believe, in the latter end of the year 1.759, when be publifhed the firlt chapter of the Mifcellanea Analytica, as a fpecimen of his qualitications for the profefforfhip; and this chapter he defended, in a reply to a pamphlet, intitled, "Obfervations on the Firt Chapter of a book called Mifcellanea Analytica." Here the Profeffor was frangely puzzled with the com. mon paradox, that nothing divided by nothing may be equal to various finite quantities, and has recourfe to unqueftionable authorities in proof of this pofition. The names of Maclaurin, Sanderfon, De Moivre, Bernoulli, Monmort, are ranged in favour of his opinion : But Dr Powell was not fo eafly convinced, and returns to the charge in defence of the. Obfervations; to which the

775] W A R
Profeffor replied in a letter to the Kev. Dr Powell, Fellow of St John's cullege, Cambridge, in anfwer to his obfervations, \&c. In this controverfy, it is certain that the Profeffor gave evident proofs of his abilities; though it is equally certain that he fullowed too implicitly the decilions of his predeceffors. No apparent advantage, no authority whatever, thould induce mathematicians to fwerve from the princijles of right reafoning, on which their feience is fuppofed to be peculiarly founded. According to Maclaurin, Dr Waring, and others, If $\mathrm{P}=\frac{a-x}{a^{2}-x^{2}}$, then, when $x=a, \mathrm{P}$ is equal to $\frac{1}{2 a}$; for, fay they, $\frac{a-x}{a^{2}-x^{2}}$ is egual to $\frac{a-x}{a-x} \times$ $\frac{1}{a+x}$; that is, when x is equal to $a, P=\frac{1}{a+2}$, or $\frac{1}{2 a}$. But when x is equal to a, the numerator and denominator of the fraction $\frac{a-x}{a^{2}} \frac{-x}{-x^{2}}$ are both, in their language, equal to nothing. Therefore, nothing divided by nothing is equal to $\frac{1}{2 a}$. In the fame manner, $\frac{a-x}{a^{3}-x^{3}}=\frac{1}{a^{2}+a x+x^{2}} \times \frac{a-x}{a-x}$, which, when x is equal to a, becomes $\frac{1}{3^{a^{2}}}$. Therefore, nothing divided by nothing is equal to $\frac{1}{3 a^{2}}$, or $\frac{1}{3 a^{2}}=\frac{1}{2 a}$; that is, $\frac{1}{3^{a}}$ $=\frac{1}{2}$; which is abfurd. But we necd only trace back our fteps to fee the fallacy in this mode of reafoning. For P is equal to fome number multipled into $\frac{a-x}{a-x}$; that is, when x is equal to a, P is equal to fome number multiplied into nothing, and divided by nothing; that is, P is, in that cafe, no number at all. For $a-a$ cannot be divided by $a-x$ when x is equal to a, fince, in that cafe, $a-x$ is no number at atl.

If, in the beginuing of his career, the Profeffor could admit fuch paralogifms into his fpeculations, and the writings of the mathematicians, for nearly a century before him, may plead in his excufe, we are not to be furprifed that his difcoveries fhould be built rather on the affumptions of others than on any new principles of his own. Acquiefcing in the ftrange notion, that nothing could be divided by nothing, and produce a variety of numbers, he as eatily adopted the pofition, that an equation has as many roots as it has dimenfions.Thus 2 and -4 are faid to be roots of the equation $x^{2}-2 x=8$, though 4 can be the root only of the equation ; $x^{2}-2 x=8$, which differs fo materially from the preceding, that in one cafe $2 x$ is added, in the other cafe it is fubtracted from x^{2}.

Allowances being made for this error in the principles, the deductions are, in general, legitimately made; and any one, who can give himelf the trouble of demonftrating the propofitions, may find fufficient employment in the Profeffor's analytics. Perhaps it will be fufficient for a ftudent to devote his time to the fimpleft cafe $x^{n} \pm 1=0$; and when he has found a few thoufand roots of +1 and - 1 , the publication of them may afford to pofterity a Atrong proof of the-

Waring. ingenuity of their predecefors, and the application of the powers of their mind to ufeful and important truths In this exercife may be confulted the method given by the Profeffor, of finding a quantity, which, multiplied into a given irrational quantity, will produce a rational product, or confequently exterminate irrational quantities out of a given equation ; but if an irrational quantity cannot come into an equation, the utility of this invention will not be admitted without hefitation.

The "Proprietates Algebraicarum Curvarum," publifhed in 1772 , neceffarily labour under the fame defects with the Mifcellanea Analytica, the Meditationes Algebraicx, pullihed in 1770 , and the Meditationes A nalytice, which were in the prefs during the years 1773, 1774, 1775, 1776. Thefe were the chief and the moft laborious works edited by the Profeffor; and in the Philofophical Tranfactions is to be found a variety of papers, which alone would be fufficient to place him in the firft rank in the mathematical world. The nature of them may be feen from the following eatalogue.

Vul. LiII. p. 294, Mathematieal Probleme.-I.IV. 193. New properties in Conics.-LV. 143. Two Theorems in Mathematics.-LX1X. Problems coneerning Interpolations.--86. A General Relolution of Algebraical Equations.-LXXVI. 8r. On Infinite Series. LXXVII. 7I. On Finding the Values of Algebraical Quantities by Converging Seriefes, and Demonftrating and Extending Propofitions given by Pappus and o-thers.-LXXVIII. 67. On Centripetal Forces. -Ib. 588. On fome Properties of the Sum of the Divifion of Numbers. -LXXIX. I66. On the method of Correfpondent Values, \&c.-1b. 185 . On the Refolution of Attractive Puwers.-LXXXI. i46. On Infinite Serie-fes.-LXXXIV. 385-415. On the Summation of thofe Scriefes whofe general term is a determinate funcion of z, the diftance of the term of the Series.
i For thefe papers, the Profeffor was, ini 784, "defervedly honoured by the Royal Society with Sir Godfrey Copley's medal; and moft of them afford very ftrong proofs of the powers of his mind, both in ab. Aract feience, and the application of it to philofoply; though they labour, in common with his other works, under the difadvantage of being clothed in a very un. attractive form. The mathematician, who has refolution to go through them, will not only add nuch to his own knowledge, but be nfefully employed in diliating on thofe articles for the benefit of the more general reader. We might add in this place, a work written on morals and metaphyfics in the Englifh language; but as a few copies only were prefented to his friends, and it was the Profeffor's wilh that they fhould not have a more extenfive circulation, we fhall not bere enlarge upon its contents.

In the mathematieal world, the life of Waring may be corfidered as a diftinguifled æra. 'I'he ftrictnefs of demonttration required by the ancients had gradually fallen into difufe, and a more commodious, though al. moft mechanical mode by algebra and fluxions took its place, and was carried to the utmon limit by the Pro. teffor. Hence many new demonftrations may he attributed to him, but 400 difcoveries can fearcely fall to the lut of a human being. If we examine thoroughly thofe which our Profeffor would diftinguifh by fuch uames, we Thall find many to be mere deductions, o.
thers, as in the folution of biquadratics, anticipated by former writers. But if we cannot allow to him the merit of fo inventive a genius, we mult applaud his afiduity ; and, ditinguifhed as he was in the feientific world, the purity of his life, the fimplicity of his manners, and the zeal which he always manifefted for the truths of the Gorpel, will intitle him to the refpect of all who do not efteem the good qualities of the heart inferior to thofe of the head.

WARTON. (Jofeph, D. D.) was born either towards the end of the year 1721, or in the beginning of the year 1722. He was the eldeft fon of Thomas Warton, B. D. who had been fellow of Magdalen College, Oxford ; poctry profeffor from the year 1718 to 1728 , and viear of Bafingtoke in Hamplhire, and of Cubham in Surrey. Where the fubject of this memoir was born we have not learned, though, were we to hazard a conjecture, we would fay that it was in Oxford, as his father probably refided in that city during his profeflorthip.

Our knowledge of the private hiftory of Dr Warton is indeed extremely limited. We do not even know at what fchool, or in what college, he was educated; tho it was probably at Winchetter fchool, and certainly in fome of the colleges in the univerfity of Oxford. For many years, he was fuccefively under and upper mafter of Winchefter college; but refigned the laft of thefe offices when he found the infirmities of age coming upon him; and was fucceeded by Dr Goddard the prefent excellent mafter. He was likewife prebendary of the cathedral church of Winchefter, and rector of Wickham in Hamplhire, where he died, aged 78.

His publications ase few, but valuable. A fmall collection of poems, without a name, was the firft of them, and contained the Ode to Fancy, which has been fo much and fo defervedly admired. They were all of them afterwards priated in Dodfley's collection. He was alfo a confiderable contributor to the Adventurer, publithed by Dr Hawkefworth; and all the papers which contain criticifns on Shakefpeare were written by him and his brother Thomas IVarton, the fubject of the next article.

The firft volume of his Effay on the Life and Writings of Pope was publifhed, had paffed through feveral editions, and an interval of between 20 and 30 years had elapfed, before he gave a fecond volume of that elegant and inftructive work to the world. He liad not only meditated, but had colliceted materials for a literary hittory of the age of Leo X. ; and propofals were actually in cirenlation for a work of that kind; but it is probable that the duties of his ftation did not leave him the neceffary leifure for an undertaking which required years of fectufion and iadependence. His lart anci late work, which he undertook for the bookfellers at a very advanced age, was an edition of Pupe's Works, that las not altugether fatisfied the public expectation. He retained, with great propriety iodeed, many of the nutes of Warbuiton; but is feverely reprehended by the author of the Purfuits of Literature for fuppreffing the name of that prelate on his title-page, or including it only, as fubordinate to his own, in the general ex. preflion others.

Dr Warton was cheerful in his temper, convivial in his difpofition, of an elegant tafte and lively imagination, with a large portion of feholarhip, and a very

W A R [777] W A R

Warton. general knowledge of the Belles Lettres of Europe; it may be prefumed that Dr_{r} Warton poffeffed, beyond mott men, the power of enlivening Claffical Society. He was the intimate friend of Dr Jolinfon; was feen at the parties of Mrs Montague, as well as at the table of Sir Jofhua Reynolds, and was an original member of the Literary Club. He poffeffed a liberal mind, a generous difpofition, and a benevolent heart. He was not only adinired for his talents and his knowledge, but was beloved for thofe qualities which are the beft gifts of this imperfect ftate.

Warton (Thomas) the brother of the preceding, was born in the year 1728. He received, as we have reafon to believe, the firt part of his education at Winchefter ; and at the age of 16 was entered a commoner Biag, Dia. of Trinity College, Oxford, under the tuition of Mr Geering.
He began his poetical career at an early age. In 1745, he publifled tive paftoral eclogues, in which are beautifully defcribed the miferies of war to which the thepherds of Germany were expofed. Not lung after, in the year 1748 , he had full fcope afforded for the exertion of his genius. It is well known that Jacobite principles were fufpected to prevail in the univerlity of Oxford about the time of the rebellion in the year 1745 . Soon after its fuppreflion, the drunkennefs and folly of fome young mens gave offence to the court, in confequence of which a profecution was inflituted in the court of King's Bench, and a Atigma was fixed on the vice chancellor and fome other heads of colleges in Oxford. Whillt this affair was the general fubject of converfation, Mr Mafon publifhed his "Ifis," an clegy, in which he adverts to the above-mentioned circumftances. In anfwer to this poem, Mr Warton, encouraged by Dr Huddesford, the prefident of his college, publifhed, in $\mathbf{1 7 4 9}$, "The Triumph of Tfis," which excelled more in manly expoffulation and dignity than the poem that produced it did in neattnefs and elegance. With great puetical warmth, and a judicious ielection of circumflances, he characterifes the eminent men who had been educated in Oxford, and draws a ftriking and animated portrait of Dr King, the celebrated public orator of that time. The whole poem fhews the early maturity of his genius, and is fivifhed with happy diligence.

In the year 1751, he fucceeded to a fellow.fhip of his college, and was thus placed in a fituation eafy and indepcndent, and particularly congenial with his habits of retirement and fudy. In 1753, appeared his obfervations on "The Faery Queen of Spencer," in 8 vo , a work which he corrected, cularged, and republifhed, in two volumes croun oetavo, in the year 1762. He fent a copy of the firt edition to Dr Johnfon, who, in a letter to him upon the fubject, expreffed this handfome compliment: "I now pay you a very honeft acknowledgment for the advancement of the literature of our native country : you liave flew of to all, who thall hereafter attempt the ftudy of ancient authors, the way to fuccefs, by directing them to the perufal of the books which thefe anthors hat read.'
In 1754, Dr Johnfon vifited Oxford for the firft time after he had quitted refidence there. Much of his time was fpent with Mr Warton; and there appeared to have been a confiderable degree of confidertial intercourfe between thein upon literary fubjects, and parti-

Suppl. Vol. II. Part II.
cularly on their own works. A pleafing account of Wirtan this vifit was communicated by Mr Warton to Mr Bof. well, who has inferted it in his life of Johnfon.

In 1755 , Mr Warton exerted himfelf to procure for his friend the degree of matter of arts by diploma from the univerfity of Oxford; an honaur which Johnfon eftcemed of great importance to grace the title page of his dietionary which he was about to publifl. In 1756, Mr Warton was elected profefior of puctry, which office he held for the ufual term of ten years. His lectures were remarkable for elegance of diation ad juftnefs of obfervation. One of them, on the fubject of paltural poetry, was afterwards prefixed to his editiuse of Theocritus. In 175 , he contributed to affift Dr Johnfon in the fuhfeription to his edition of Shakefpeare, and furnifhed hin with fome valuable notes. The Doctor remaks, in a letter to him, when foliciting his farther aid, "It will be reputable to my work, and fuitable to yoar jrofefforfif, to have iomething of yours in my notes."

From the Clarendon prefs, in the year 1766 , he publifhed "Anthologir Grece, a Conftantino Cephala conditx, Libri tres," in 2 vols, 12 mo . He concludes the learned and clafical preface to this work, which is replete with accurate remarks on the Greel: epigram, in the following words, which mark this publication for' his own: "Vereor ut hactenus in plexendis florum corollis otium nimis longum pertraxerim. Proximè fequetur, cui nunc omnes operas et vires intendo, Theocritus. Interca quafi promulfidem convivii Lectoribus meis clegantias hafier vetultatis endidix propino.

In the year 177°, he conferred a fimilar honour upon the academical prefs by his edition of Theocritus, in 2 vols, 8 vo . He undertook this work by the advice of Judge Blackttone, then fellow of All Suuls College, and an ardent promoter of every publication that was likely to do credit to the Clarendon prefs. This elaborate publication reflects no fmall credit on the learning, diligence, and tatte of the editor.

In 1771 , he was elected a fellow of the Antiquarian Society, and was prefented by the Earl of Litchtield to the fmall living of Kiddington in Oxfordihire, which he held till his death. He likewife in this year publihhed an improved account of "The Life of Sir Thomas Pope, founder of Trinity College, Oxford. In compofing thefe memoirs, he hettowed much labour and refearch, and fhewed great judgment in the arrangement of his materials. But poffibly, in his ardour to pay a debt of gratitudc, he has not fufficiently confidered what was dne to his own fame. The fame fltength of defeription and vigour of remark would have better fuited the life of fome eminently dittinguithed character, and extender the reputation of the author as a biographer leyond the circle of thofe academical readers who are influenced by the fame feelings of veneration, refpect, and gratitude which prompted Mr Warton to compofe this work. The preface contains fome excellent remarks on biograplhical writing.

The plan for a hitory of Englifh poetry was laid by Pope, enlarged by Gray : but to bring ant original plan nearly to a completion was referved for the perfeverance of Warton. In 1744 appeared his firit volume; in 177^{8}, the fecond and third; which brings the narrative down to the commencement of the reign of Elizabeth

IV A R

Warton.
in 1581. This work difplays the moft fingular combination of extraordinary talents and attainments. It unites the deep and minute refearehes of the antiquary with the elegance of the claffical fcholar and the 隹ill of the prachifed writer. The fyle is vigorous and manly; the ohfervations acute and jutl ; and the views of the fubject are estenfive and accurate.

In 1777, he collerted his poems into an octavo volume, containing mifcellaneous pieces, odes, and fonnets. This publication may be confidered in fome meafure origital; there being only feven pieces that had before appeaved, and near three times that number which were then printed for the firf time.

In vindication of the opinion he had given in his fecond volume of "The Hittory of Poetry," relative to the ingenious attempt of Clasterton to impofe upon the public, he pronuced, in $17^{8}=$ " An Inquiry into the Authenticity of the Puens attributed to Rowley." In this excellent pamphlet the pronciples of tuo criticifm are laid down, an appoal is properly made to the internal evidence of the poems; and apon the fe gromeds it is proved, in the muf fatisfactory manner, that they could not have been writien by a monk of the fourteenth century.

The year 1785 brought him thofe diftinctions which were no lefs honourable to thofe who conferred than to him who received them. He was appointed poet-laureat on the death of Whitehead, and elected Camden profeffor of ancient hiffory on the refiguation of Dr Scott. Itis inauguration lecture was delivered in a clear and impreffive manner from the profefforial chair. It contained excellent obfervations on the Latin hiftorians, and was written in a frong, perfpicuous, and claffical ftyle. In his odes, the vigour and brilliancy of his fancy were not proftituted to an infipid train of courtly complements: each prefents an elegant \{pecimen of deferiptive poetry, and as all of them have only a flight relation to the particular occafion on which they were written, and have always a view to fome particular and interefting fubject, they will be perufed with pleafure as long as this fuecics of comporition is admired.

He made occalional journeys to London to attend the literary club, of which he was fome years a member; and to vifit his friends, particularly Sir Jufhua Rejnolds. At his houfe he was fure to meet perfons remarkable for fathion, elegance, and talte.

His laft publication, except his official odes, confiftcd of Milton's fmaller poems. A quarto edition appeared in 1790 , with corrections and additions. The great object of thefe notes is to explain the allufions of Milton, to trace his imitations, and to illuftrate his beauties.

Until he reached his fixty fecond year, he continued to enjoy vigorous and uninterrupted health. On being feized with the gout, he went to Bath, and flattered bimfelf, on his return to college, that he was in a fair way of recovery. But the change that had taken place in his conftitution was vifible to his friends. On Thurdday, May 20, 1790, he paffed the evening in the common room, and was for fome time mure cheerful than ufual. Between ten and eleven o'clock he was fruck with the palfy, and continued infenfible till his death, which happened the next day at two o'clock. On the 27 th, his remains were interred in the cullege chapel with the moft diftinguifhed academical honours.

The inferintion uren the flat תone which is placed Warton. over his grave contains only an enumeration of his preferments.

Such was the gereral conduct and behaviour of MIr Warton as to render him truly amiable and reipectablc. By his frieuds he was beloved for his open and eafy manners; and by the members of the univerfity at large he was iffected for his conflant rofiennce, Arong attachment to Alma Mater, his thelious purnuits, and high literary characier. In a!l parties where the company accorced with his inclination, his converfation was eafy and gray, enlivened with humour, ensiched with anecdote, and pointed with wit. Among his pecu. liarities it may be mentioned that he was ford of all military fights. He was averfe to ftrangers, particu. larly to thofe of a literary turn; and yet he took a great pleafure in encouraging the efforts of rifing genius, and affiting the fudious with his advice; as many of the young men of his collere, who mared his affability and honoured his talents, could teftify. He was bred in the felool of puntters; and made as many grood ones as Barton and Leigh, the celebrated word-hunters of his day: Under the mafk of indolence, no man was more bufy; his mind was ever on the wing in fearch of fome literary prey. Although, at the accuftomed hours of Oxford ftidy, hie was often feen fauntering about, and converfing with any friend he chanced to incet; yet, when others were watting their mornings in fleep, he was indulging his meditations in his favourite walks, and courting the Mufes. His fituation in Oxford was perfectly congenial with his difpofition, whether he indulged his fallies of pleafantry in the common room, retired to his own fudy, or to the Podleian library; fauntered on the banks of his favourite Cherwell, or furveyed, with the enthir. fiaftic eye of tatte, the ancient gateway of Magdalen College, and other fpecimens of Gothic architecture.

The following is a lift of Mr Warton's works: 1. "Five Paftoral Eclogues," 4 to, 1ヶ45. Meprinted in Pearch's Collection of Poems. 2. "T The Pleafures of Melancholy," written in 1745 ; firt printed in Dodfley's Collection, and afterwards in the Collection of Mr Warton's Poems. 3. "Progrefs of Difcontent," written in 174 5. Firft printed in the "Student," a periodical paper. 4. "The Triumnh of Ifis, a Poem," 4to, 1750.5 " Newmarket, a sutire," folio, 1751. 6. "Ode for Mulic," performed at the theatre in Oxford 175\%. 7. "Obfervations on the Faerie Queen of Spenfer," 8vo, 1754. 8. "Infariptionum Metricaruin Delectus," 4to, 1758. 9. "A Defcription of the City, College, and Cathedral, of Winchelter," 8vo, no date. 10. "The Life of Sir Thomas Pope," in the 5 th volume of the Biographia Britannica," republifhed in 1772. 11. "The Life and literary Remains of Ralph Bathurf, M. D. Dean of Wells, and Prefident of 'Trinity College in Oxford," 1761. 12. "A Companion to the Guide, and a Guide to the Companion," $12 \mathrm{mo}, 1762.13$. "The Oxford Saufage," in which are feveral Poems by Warton. 14. "Anthologix Græcæ a Conftantino Cephalâ conditæ Libri tres, ${ }^{2}$ 2 tom. 1766. 15. "Theocritis Syracufi que fuperfunt ${ }_{2}$. cum Scholiis Grecis," \&cc. 2 tom. 4to, 1770. 16. "Hitory of Englifh Poetiy, from the Clofe of the IIth to the Commencement of the 18 th Century," 4to, Vol. I. 1774. Vol. II. 1778 . Vol. III. 1781. 17. "Poems," Svo, 1777. 18. "Specimen of a

Wanting. Hiftory of Oxfordhire," 1783. 19. "An Enquiry ton into the Authenticity of the Poems attributed to Thomas Rowley," 8vo, 1783. 20. Verfes on Sir J. Reynolds's painted Window in New College Chapel, 4to," 1782. 21. "Poenis on Feveral Occafions, by John Milton, with Notes critical and explanatory," 8 vo , $17^{8:}$

WASHINGTON (Ctorge), whofe name is likely to live as long as that of any modern, was born on the orth of Eebruaty 1732, in the patilh of Walhingtom, Virgini?. He was defeended from an ancient fanily in Chethire, of which a branch had hecn cilablifhed in Virginid about the midide of the 17 th century. We are not acupuainted witi any remarkaole circumfances of his edveation or his early youth; and we fhould not indeed expect any marks of that diforderly prematurenefs of talent, which is fo otiten fallacious, in a character whofe diftinguifhing praife was to be regular and na. tural. His claffical intruction was probably fmall, fuch as the private tutor of a Virginian country gentleman could at that period have imparted; and if his opportunities of information had been more favourable, the time rras too thort to profit by them (A). Before he was twenty he was appointed a major in the colonial militia, and he had ve:y early occafion to difolay thofe political and military talents, of which the exertions on a greater theatre have fince made his name fo tamous throughout the world.

The plenipotentiaries who framed the treaty of Aix ia Chapelle, by leaving the boundaries of the Britifh and Freuch territories in North America unfixed, had fown the feeds of a new war, at the moment when they concluded a peace. - The limits of Canada and Louifiana, negligently defcribed in vague language by the treaties of Utrecht and Aix la Chapelle, becaufe the greater part of thefe valt countries was then an impenetrable wildernefs, furnithed a motive, or a pretext, for one of the molt fuccefsful, but one of the moft bloody and wafteful wars in which Great Britain had ever been engaged. See Britain, Encyel.
In the difputes which arofe between the French and Englif officers on this futject, Major Wafhington was employed by the governor of Virginia, in a negociation with the French governor of Fort du Quelne (now H'itfourgh); who threatened the Englifh frontiers with a body of French and their Indian allies. He fucceeded in averting the invafion; but holtilities becoming in. evitable, he was in the next year appointed lieutenant colonel of a regiment raifed by the colony for its own defence; to the command of which he foon after fuccceded. The expedition of Braddock followed in the year 17.55 ; of which the fatal iflue is too well known to require being defcribed by us. Colonel Walhington ferved in that expedition only as a volunteer; but fuch was the general confidence in his talents, that he may be faid to have conducted the retreat. Several Britifh officers are ftill alive who renember the calmnefs and
intrepidity which he hlewed in that difficule fituation, Wasling. and the voluntary obedience which was fo chocerfully paid by the whole amy to his fuperior mind. After having acted a dillinguihed part in a fubfequent and more fluceefful expedition to the Ohio, he was obligred by ill licalth, in the year 1758 , to relign his nilitary fituation. The fixteen years which followed of the life ci Wathington fuoply few materials for the biogatyher. Having married Alrs Cultis, a Virginian lachy of aniable character and refpectable connections, he fettle! at his beautiful feat of Mount Vernon, of which we have hat fo many deferiptions; where, with the exception of fuch attendance as was requised by his duties as a ma. giftrate and a member of the allembly, his time was oc. cupicei by his domeltic enjos inents, and the cultivation of his eftate, in a manner well finted to the tranquillity of his pure and unambitious misd. Ac the end of this period he was called by the voice of his countiy from this thate of calna and fecure though unoitentatious hap. pinefs.

For almof half a century fymptoms of difaflection to the mother-counery had been fo vifible in the New England provinces, that fo early as I $73+$ the celebrated Bihhop Berkeley bad predicted a total feparation of Noith America from Great Britain. That prelate, when a private clergyman, had lived three yea:s in Rhode illond, and was an attentive and ragacious ob. ferver of the manners and principles of the people, among whom the perceived the old leaven of their fore. fathers fermenting even then with great violence. The middle and fouthern provinces, however, were more loyal, and their influence, together with perpetual dread of the French before the peace of 1763 , put of the feparation to a more dittant day than that at which, we have reafon to belicve, the Bifhop expected it to take place. Virginia, the molt loyal of all the colonies, had long been in the habit of calling itfelf, with a kind of proud pre-eminence, bis Majjly's ancient dominion; and it was with fome difficulty that the demagogues of New England could gain over that province when the time arrived for effecting their long meditated revolt. At lalt, however, they fucceeded; and we find Mr Wafhington as a delegate from Virginia in the Congrefs which met at Philadelphia on the 26 th of O\&tober 1774. (See America, n"174. Encyc/.) As no American united in fo high a degree as he did, military experience with refpectability of character, he was appointed to the command of the army which had allenbled in the New England provinces, to hold in check the Britilh army which was then encamped under General Gage at Bofton.

At this period there is fome reafon to believe that neither Mr Wafhington nor his conftituents entered heartily into the views of the New Englanders; but afraid left the arny of thofe rebellious fanalics, after fhaking off the yoke of Great Uritain, might give law to the continene, he took upon himfelf the command of that army in the ${ }_{5} \mathrm{~F}_{2}$
month
(A) Several' accounts of the life of Waßhington have flated that he ferved as a midmipman on board a Britifh frigate. This is a miflake. His elder brother, who died young, ferved in that capacity in Vernon's expedition againtt Carthagena; whence the family feat was called Mount Vernon. Walhington himfelf never left the U. nited States, eaceot in one fhort voyage to a Wéft India ifland, vhen he was very young.

W A S [780] W A S

Warning month of July 1775 (3). To detail his conduct in the ton. -r me which followed, wothl be to rate the history of the American war, which, we have already related in the article America (El.cgei.). Withes a very hurst period after the declaration of indecent dene, the attains of A. wherica were in a condition fo celperate, that perhaps nothing but the pecuitur character of Wathington's genous contd basestroterd item. Activity was the folacy of invaders. In the field of bathe the superiority of a difeiplined army is difplayed. But delay was the wifdom of a country defended by undifcuohned weeders againtt an enemy who mut be more exinufted by tine than lie could be weakened by detect. It required the consummate fiderice, the calm wisdom, the inftrxibie frmeefs, the moderate and wall balanced temper of Washington to embrace foch a plan of policy, and to perfevere in it : to refit the temptations of tnterprize ; to fix the confidence of his folditers without the attractton of victory; to Support the frit of the army and the people amide thole flow and cautions plans of de. dentive warfare which are more dispiriting than defeat itself; to contain his own ambition and the impetuotity of his troops; to endure temporary obscurity for the falvation of his country, and for the attainment of fold and immortal glory ; and to lifter even temporary reproach and obloquy, fupported by the approbation of his own confcitnce and the applanfe of that imall number of wile men, whole praife is an earnelt of the admiration and gratitude of pofterity. Victorious generals eatily acquire the confidence of their army. I heirs, however, is a confidence in the fortune of their general. That of Wafhington's army was a confidence in his zuifdom. Victory gives spirit to coward, and even the agitations of defeat fometires impart a courage of defpars. Conrage is infixed by fuccels, and it may be stimulated to defperate exertion even by calamity; but it is generally palled by inactivity. - A fyltem of cautions defence is the fevereft trial of human fortitude; and by this tell the firmnefs of Wafhit,gton was tried. It muff not, however, be concealed, that dome of the Britifh commanders gave him advantages, which he furely did not expect ; for more than once, as it appears to us, they had it in their power to annihilate his army, merely by following up their victories. The flue of the content is known.

Much has been laid by the Britifh and American desocrates of the magnanimity of Frafhington during the ravages of a civil war, in which he acted fo contpicuonus a fart ; and we feel not ourfelves inclined to refuse him the praife which he may have merited on this or on any other account. But granting that duty required him to execute as a 'Spy the accomplished Andre, true magnanimity would have prevented him from infultingly erecting, in the view of that unfortunate offacer, the gallows on which he was to be hung, feveral days before his execution! When Earl Cornwallis was overpowered by numbers, and obliged at York town to furrender to the united armies of America and France, a magnanimous conqueror would not have malicioufly claimed, contrary to the ufage of civilized war, the
ford from the hands of that gallant nobleman. On Wafting there two occalions, and on forme others, the conduct of Wathington agreed fo ill with his general character, that we are inclined to believe that lie mut have been influenced ty the leaders of the French army Rochembeat and Faycte. One thing is certain, that he was fo little plaid wither with bis own conduct on marticular uccations; or with the general principle of the Ameriean revolution, that he never could he forced en talk on the fubje ct. An Italian nobleman, who vifited hin alter the peace, had often attempted, in vain, io turn the convelfath to the events of the war. At length he thought fee had found a favourable opportunity of efffecining his purpofe; they were riding together over the ferne of ais action where Wathingron's conduct had been the fabject of no fall animadverfion. Count -fail to uim , "Your conduct, Sir, in this action has beau criticifed." Wafhington made no aulwer, but clapped fours to his horde; after they had paffed the fief, he tuned to the Italian and raid, "Count --, 1 colerve that you with me to [peak of the war; it is a converfation which I always avoid. I rejoice at the eftablifhment of the liberties of America. But the time of the struggle was a horrible period, in which the belt men were compelled to do many things repugnant to there nature." 'this, we think, is the language of a good man not altogether fatisfied with the part which he had been compelled to act, and who though he rejuiced at the eftablibment of the liberties of America, probably furefaw that the would reap no benefit from her favourite independence.

The conclufion of the American war permitted Wafhington to return to chafe domettic fences, from which no views of ambition Sem to have had the power to draw him. But he was not allowed long to enjoy this privacy. The fupreme government of the United States, hastily thrown up, in a moment of turbulence and danger, as a temporary fortification against anarchy, pro. vied utterly inadequate to the prefervation of general tranquillity and permanent fecurity. The confusions of civil war had given a taint to the morality of the people, which rendered the reltaints of a juts and vigorous government more indifpenfably neceffary. Confixation and paper money, the two greatelt feboels of rapacity and dithonelly in the world, had widely spread their poifon among the Americans. One of their own writers tells us, that the whole fyttem of paper money was a fyttem of public and private frauds. In this tate of things, which threatened the diftolution of morality and government, good men raw the nectifity of concernrating and invigorating the fupreme authority. Under the influence of this conviction, a convention of delegates was affembled at Philadelphia, while ftrengthened the bands of the Federal Uaion, and bellowed on Congress thole powers which were necefliary for the purpofes of good government. Warrington was the prefident of this convention, as lie, in three years after, was elected prefodent of the United States of America, under what was called "The New Constitution," tho' it ought to have been called a reform of the republican
governosent,
(B) That fuch were the motives of his conduct on this oceafion, is rendered in the higheft degree probable in the preface to A View of the Caufes and Confequences of the American Resolution, in thirteen Dijcourfes, Preach. ed in North America, between the years 1763 and 1775 ; by Jonathan Boucher, A. M. and F. A. S. Vicar os Erfom in the County of Surrey.

W A S [78 t] W A S

Wafning government, as that republican government itfelf was ton. only a reform of the ancient colonial conftitution under the Britith crown. None of thefe changes extended fo far as an attempt to new-model the whole focial and political fyttem.

Events cecurred during his chief magiflacy which convulfed the whole political world, and which tried molt Cevercly his modetation and prodence. The French revolution took plice; Wafhington, who had experienced the evils of one revolution, augured, from the beginning, no good from the daring fpeculations of inexperienced vifonaries; and the progrels of the revolution was not calculated to cure his diltruft. When, in the year 1593, France, then groaning under the moft intolerable and hideous tyranny, became engaged in war with almoft all the governnients of the civilued world, it is faid to have been a matter of deliberation with the Prefident of the United States, whether the republican enroy, or the agent of the French princes, thould be received in America as the diplomatic reprefencative of France. But whatever might be his private feelings of repugnance and horror, his public conduct was influenced only by his public duties. As a virtuous man he mult have abhorred the fyftem of crimes which was eftablifhed in France. But as the firft magiftrate of the American commonwealth, he was bourd only to confider how far the intereft and fafety of the people whom he governed were aficeted by the conduct of France. He faw that it was wife and nece!ary for America to preferve a good underftanding and a beneficial intercourfe with that great country, in whatever manner the was governed, as long as the ablained from committing injury againt the United States. Guided by this julk and fimple principle, uninfluenced by the abhorrence of crimes which he felt, and which others affected, he received Mr Genet, the miniter of the French Republic. The hiftory of the outrages which that minifter committed, or infligated, or countenanced, againft the American government, mult be frefh in the memory of all our readers. The conduct of Wafhington was a model of firm and dignified moderation. Infults were offered to his authority in official papers, in anonymous libels, by incendiary declaimers, and by tumultuous meetirers. The law of nations was trampled under foot. His confiden. tial miniters were feduced to betray him, and the deluded populace were fo inflamed by the arts of their enemies, that they broke our into inlurrection. No vexation, however galling, could difurb the tranquilliey of his mind, or make him deviate from the policy which his tituation preferibed. With a more confimed authority, and at the head of a longer eflablifhed government, he might perhaps have thought greater vigour jutiliable. But in his circumftances, he was fenfible that the nerves of authority were not flrong enough to bear being ftrained. Perfuafion, always the molt defirable inftrument of government, was in his cafe the fafeft. Yet he never overpalfed the line which feparates conceffion from meannefs. He reached the utmoft limits of moderation, without being betrayed into pllfillanimity. He preferved external and internal peace by a fyfern of mildnefs, without any of thofe virtual confeffions of weaknefs, which fo much difhonour and enfeeble fupreme authority. During the whole of that arduous flruggle, bis perfonal character gave that ftrength to a new mugylracy which in other countries arifes from
ancient habits of obedience and refpect. The authori- Kinfhing$t y$ of his virtue was more efficacious for the prefervation of America than the legal powers of his office.

During this turbulent period, he was re-elegled to the office of the Prefidency of the United States, which he hold from April 1789 till September 1796. Probably no magiftrate of any commonwealth, anciert or modern, crer occupied a ylace fo painful and perilous. Certainly no man was ever called upon fo ofien to facrifice his virtuous feelings (he had no other facrifices to make) to his public duty. Two circumllances of this lore deferve to be particularly noticed. In the fpring of 1594, he fent an ambaffacior to Paris with credentials, addrefled to his "Dear friends the citizens compofing the Committee of Public Safety of the Frencl: Republic," whom he prays God "to take under his holy protection." Furtunately the Amerncan ambaffador was fpered the humiliation of prefenting his eredentials to thefe bloody tyrants. Their power was fubverted, and a few of them had fuffered the punithment of their crimes, which no punifment could expiate, before his arrival at Paris. Readily as we admit the perity of the motives which induced him to fend this embaffy to Paris, we cannot poffibly approve of his conduct in deviating fo far from the ufual diplomatic ltyle, as to call Robefpierre his friend; but he was befet by an abfurd, though formidatle, faction at home.

He had another flruggle of feeling and duty to encounter, when he was compelled to fupprefs the infurrection in the weltern counties of Pennfylvania by force of arms. But here he had a confolation. 'The exereife of mercy conloled his mind for the neceffity of having recourfe to arms. Never was there a revolt quelled with fo little blood. Scarcely ever was the balef daftard fo tender of his own life, as this virtuous man was of the lives of his follow. citizens. The value of his clemency is enhanced by recollecting that he was neither without provocations to feverity, nor without pretexts for it. His character and his office had been revileo in a manner almoft unexampled among civilized nations. His authority had been infulted.- His fafety had been threatened. Of his perfonal and political enemies fome might, perlaps, have been fufpected of having in!tigated the infurrection; a greater number were thought to wifh well to it; and very few fhewed much zeal to fupprefs it. Is babitus animorum fuit, ut pelfimum fofi inus uudercnt pauci, piures vellent, omnes potercntur. But neither refentment, nor fear, nor even policy itfelt, could extinguif the humanity of Wafhington. This fcens to have been the only facritice which he was incarable of making to the intere? of his comutry.
throughout the whole courfe of his fecond Preficer:cy, the canger of America was great and inminent almoft beyond cxample. The fpilit of change, indeel, at that period, flook all nations. But in other connthies it had to encounter ancient and folidly eftablithed power; it had to tear up by the roots long habits of attachment in fome nations for their government; of awe in others ; of acquiefcence and fubmiffion in all.But in America the grovernment was new and weak. The people had fcarce tinie to recover from the ileas and feelings of a recent civil war. In other countries the volcanic force mult be of power to blow up the mountains, and to convulfe the contineuts that leld it

Waning down, before it could efcape from the deep caverrs in torn. which it was inprifoned:-in America it was covered
only by the alles of a late convulfon, or at moll by a little thin foil, the produce of a few years quiet.

The government of America had sone of thofe falutary picjudices to employ, which in every other country were wided with fuccels to open the eses of the people to the enomitis of the French revolution. They had. on the conitrary, to contend with the prcjudices of their peop's in the moft moderate precautions againft internal confulion, in the moft meafured and guarded refiftance to the enparalleled infults and enormous encroachments of France. Widwat zealous fupport from the people, the American government was impotent. It required a conficterable time, and it coft an arcunous and dubinus Atrug. gle, to direct the popular fpirit againft a fifter republic, eftablihed among a people to whofe aid the Americans afcribed the eftablimment of their independence. It is probable, indeed, that no poliey conld have produced this effect, unle's it had been powerfully aided by the crimes of the Fivench governnent, which have proved the ftrongeit allies of all ẹtablifted governments; which have produced fuch a general difpofition to fubmit to any known tyranny, rather than rufh into all the unknown and undefinable evils of civil confufion, with the horrible train of new and monftrous tyrannics of which it is ufually the forcrumner. But of thefe circumftances Wafhington availed himfelf with uncommon addrefs. He employed the horror excited by the atrocities of the French revolution for the moil honeft and praife-worthy purpofes ; to proferve the internal quiet of his country; to affert the dignity, and to maintain the rights, of the commonwealth which he governed, againft foreign enemies. He avoided war withont incurring the inputa. tion of pufllanimity. He cherifhed the deteftation of Americans for anarchy, without weakening the fpirit of liberty; and he maintained, and even confolicated, the authority of govenment, without abridging the privileges of the people.

The refgnation of Wafhington in 1790 was certainly a meafure of prudence, and we doubt not of patriotifm; but the conduct of his fucceffor has been fuch as to give the Americans reafon to regret that the reins of govern. mont were thrown up by the only hand, perlaps, that was fit to guide them during fo unfettled a fate of public affairs. When he retircd, he publifhed a valedic. tory addrcis to his countrymen, as he had before done when he quitted the command of the army in 1783. In thefe compofitions, the whole heart and foul of Wafhington are laid open. Other ftate papers bave, doubulefs, fhewn more fpirit and dignity, more eloquence, greater force of genius, and a more enlarged comprehenlion of mind; but none ever cifplayed more fimplicity and ingenuoufnefs, more moderation and fobriety, more good lenfe, more pradence, more honelty, more earneft affection for lis country and for mankind, more profound reverence for virtue and religion; nore ardent withes for the happinefs of his fellow-creatures, and more jutt and rational views of the means which alone can effectually promote that happinefs.

From his refignation till the month of July 1799. he lived in retirement at Mount Vernon. At thislatter period, it hecame neceflary for the United States to arm. They lad cndured with a patience, of which there is no example in the hiltory of flates, all the con-
tumely and wrong which fucceffive adminiftrations ial WianitagFrance had heaped upon them. 'Their thips were cverywhere captured, their minifters were detained in a fort of imprife nment at l'aris; while incendiareis, clothed in the lacred character of ambafladors, feattered over their peaceful provinces the fire brands of fedition and civil w dr. An offer was made to terminate this long courle of injufice, fur a bribe to the French minitters. This offer was made hy perfons who appeared to be in the confidence of M. Ialieyrand, who frof.ged to act by his authority; who have been fuce, indeed, difavowed hy him: but who never will be believed not to have been his agents, till he convict them of impofture br legal evidence, and procure them to be punithed for f_{0} abominable a frauJ.
the United States refolved to arm by land and fea. The command of the army was beltowed on Ceneral Wafhington; which he accepted, becaufe he was convinced that " every thing we hold dear and facred was ferioully threatened* ;" though he had flatered himfelf "that he had quitted for ever the boundlefs field of public action, inceflant touble and high refponfibility, in which he had long acted fo confpicuous a patt." In this office he continued during the fhort period of his life which ftill remained.-On Thurfday the 12 th 1)ecemher 1799, he was feized with an inflammation in his throat, which became confiderably worfe the next day : and of which, notwithitanding the efforts of his phyficians, he died on Saturday the 14 th of December 1790, in the 68th year of his age, and in the 23 d year of the independence of the United States, of which he may be conlidered as the founder. The fame calmnefs, fimplicity. and regularity, which had uniformly marked his demeanor, did not forfake him in his dying moments. He faw the approaches of death without fear: -he met them without parade.-Even the perfectly well-ordered flate of the moft minute particulars of his private bufinefs, bore the famp of that conftant authority of prudence and practical reafon over his actions, which was a diftinguifhing feature of his character. He died with thofe fentiments of piety which had given vigour and confiftency to his virtue, and adorned every part of his ilhutrious life.

WATCHWORK. Our intention in this article does not extend to the manual practice of this art, nor even to all the parts of the machine. We mean to confider the moit important and difficult part of the conAruction, namely, the method of applying the naintaining power of the wheels to the regulator of the motion, fo as not to hurt its power of regulation. Our obfetvations would have come with more propriety un. det the title Scapement, that being the name given by our altifts to this part of the conftruction. Indeed they were intented for that article, which had been unaccountably omitted in the body of the Dictionary under the words Crock and Watch. Bur the bad health and occupations of the perfon who had engaged to write the article, have obliged us to defer it to the lalt opportunity which the alphabetical arrangement affords us : and, even now, the fame caufes unfortunately preveat the author from treating the fubject in the mamer he intended, and which it well deferves. But we trult that, from the account which is here given, the reader, who is converfant in matherastical philofophy, will perceive the juftands of the cursciuljuus, and that an intelli-

W A T [783] W A T

Watch. gent artift will have no lucfitation in acceding to the work.

* Conrafi Gefingri E. fitome, l^{1}. $6 c_{4}$. propriety of the maxims of conftruction deduced from them.

The regulator of a clock or watch is a pendulum or a balance. Without this check to the motion of the wheels, impelled by a weight or a fpring, the machine would run down with a motion rapidly accelerating, till friction and the reffitance of the air induced a fort of uniformity, as they do in a kitchen jack. But if a pendulum be fo put in the way of this motion, that only one tooth of a whecl can pafis it at each vibration, the revolution of the wheels will depend un the vibration of the pendulum. 'Ibis has long been obferved to have a certain conltancy, infomuch that the aftronomers of the Eat employed pendulums in meafuring the times of their obfervations, patiently counting their vibrations daring the plafes of an eclipfe or the tranfits of the ftars, and renewing them by a little puh with the finger when they became too fma!!. Gaffendi, Riccioli, aind others, in more recent times, followed this example. The celebrated phyfician Sanctorius is the firlt perfon who is mentioned as havirg applied them as regulators of clock movemente. Machines, however, called clocks, with a train of toothed wheels, leading round an index of hours, had been contrived long before. The earlicht of which we have any account is that of Richard of Wallingford, Λ bbot of St Alban's, in 1326 (A). It appears to have been regulated by a fly like a kitchen jack*. Not long after this Giacomo Dondi made one at Padua, which had a motus fucculforius, a bobbling or trotting motion; from which expreffion it feems probable that it was regulated by fome alternate movement. We cannot think that this was a pendulum, becaufe, once it was introduced, it never could have been fup. planted by a balance. Ibs alternate motion of a pendulum, and its feeming uniformity, are among the noof familiar obfervations of common life; and it is Carprifing that they were not more early thought of for regulating time ineaturers. The alternate motions of the eld balance is one of the moft far.fetched means that can be imagined, and might pais for the investion of a very reflecting mind, while a pendulum only requires to be drawn afide from the pluntb-line, to make it vibrate with regularity. The balance muft be put in motion by the clock, and that motion muft be ilooped, and the contrary motion induced; and we mult know that the fame force and the fame checks will produce uniform ofcillations. All this muft be previounly known before we can think of it as a regulator; yet fo it is that clocks, regulated by a balance, were long ufed, and very common through Europe, before Galico propofed the pendulum, about the year 1600 . Pendulum clocks then came into general ufe, and were found to be greatly preferable to balance clocks as accurate meafurers of time. Mathernaticians faw that their vibrations had fome re-
gular dependance on uniform gravity, and in their wrilings we mect with many attemps to determine the time and demonflrate the ifochronifin of the vibrations. It is armufing to read thefe attenpts. We wonder at the awokwardnefs and infufficiency of the explanation given of the motions of pendalums, cven by men of acknowledged eminence. Merfemus carried on a moft ufcful correfpondence with all the mathematicians of Europe, and was the means of making then acquainted with each other; nay, he was himfelf well converfant in the fcience; yet one canmot but finile at his reafonings on this fubject. Standing on the thoulders of our predeceffors, we look a:ound us, in grcat fatisfaction with our own powers of obfervation, not thinking how we are raifed up, or that we are trading with the ftock left us by the diligent and fagacious philofophers of the 1 7th century (B). Riccioli, Gaffendus, and Galileo, made fimilar attempts to explain the motion of pendulums; but without fuccefs. This honour was referved for Mr Huyghens, the moft elegant of modern geometers. He had fucceeded in 1656 or 1657 in adapting the machinery of a clock to the maintaining of the vibrations of a pendulum. Charmed with the accuracy of its performance, he began to inveltigate with ferupulous attention the theory of its motion. By the mof ingenious and elegant application of geometry to mechanical problems, he demonftrated that the wider vibrations of a pendulum employed more time than the narrower, and that the time of a femicircular vibration is to that of a very fmall one nearly as 34 to 29 ; and, aided by a new department of geometrical fcience invented by himfelf, namely, the evolution of curves, he fhewed how to make a pendulum fwing in a cycloid, and that its vibrations in this curve are all performed in equal times, whatever be their extent.
buat before this time, Dr Hooke, the moft ingenious and inventive mechanician of his age, had difcovered the great accuracy of pendulum clock3, having found that the manner in which they had been employed had obfured their real merit. They had beèn made to yibrate in very large arches, the only motion that could be given them by the contrivances then known: and in 1656 he invented another method, and made a clock which moved with alioniking regularity. Ufing a heavy pendulum, and making it fiving in very fmall arches, the clocks fo conftrused were found to excel Mr Huyghens's cycloidal pendulums; and thofe who were unfriendly to Huygheus had a fort of triumpla on the occafion. But this was the refult of ignorance. Mr Fuyghens had hewn, that the error of $\mathrm{r}^{\frac{1}{0}-}$ of an inch, in the formation of the parts which produced the cycloidal motion, caufed a greater irregularity of vibration than a circular vibration could do, although it frould extend five or fix degrees on each fide of the perpendicular. It has been found that the unavoidable inaccuracies,
(A) Profeffor Beckmann, in the firf volume of his Hiflory of Inventions, cxpreffes a belief that clocks of this kind were ufed in fome monafteries fo early as the $11 \mathrm{th}^{\prime}$ century, and that they were derived to the monks from the Saracens. His authorities, however, are difcordant, and feem not completely facisfactory even to himfelf.
(в) We are provoked to make this obfervation, by obferving at this moment, in a literary journal, a pert and petulant upfart fpeaking of Newton's optical difcoveries in terms of ridicule and abufe, employing thefe very. difcoveries to diminim his authority. Is it not thus that Chriftianity is now fighted by thofe who enjoy the : fruits of the pure morality which it introduced? contticios, eve of the cyalda that of a common pendulum vibrating in arches which do not exceed three or four degrees from the perpendicular. Such clocks alone are now made, and they ex. cced all expectation.

We have faid that a pendulum needed only to be removed from the perpendicular, and then let go, in order to vibrate and meafure time. Hence it might feem, that nothing is wanted but a machinery fo conneeted with the pendufum as to keep a regifter, as it were, of the vibration. It could not be difficule to contrive a method of doing this; but more is wanted. The air mut be difplaced by the pendulum. This requires fome force, and muft therefore employ fone part of the momentum of the pendulum. The pivot on which it fwings occafions friction - the thread, or thin piece of metal by which it is hung, in order to avoid this frition, occafions Come expenditure of force by its want of perfeet flexibility or elafticity. Thefe, and other caufes, make the vibrations grow more and more narrow by degrees, till at laf the pendulum is brought to reft. We muft therefore have a contrivance in the wheelwork which will refore to the pendulum the fmall portion of force which it lofes in every vibration. The action of the wheels therefore may be called a maintain. ing power, becaule it keeps up the vibrations.

But we now fee that this may affect the regularity of vibration. If it be fuppofed that the action of gravity renders all the vibrations ifochronous, we mutt giant that the additional impulfion by the wheels will deItroy that ifochronifm, unlefs it be fo applied that the furs-total of this impulfion and the force of gravity may vary fo with the fituation of the pendulum, as ftill to give a ferics of forces, or a law of variation, perfectly fimilar to that of gravity. 'This cannot be effected, unlefs we know both the law which regulates the ation of gravity, producing ifochronifm of vibration, and the intenfity of the force to be derived from the whecls in every fituation of the pendulum.

The neceffary requifte for the ifochronous motion of the pendulum is, that the force which urges it toward the perpendicular, be proportional to its diftance from it (fee Dynamics, no 102. Cor. 7. Suppl.); and therefore, fince pendulums fwinging in fnall circular arches are fenfibly ifochronous, we muft infer that fuch is the law by which the accelerating action of gravity on them is realiy accommodated to every fituation in thole arches.

It will greatly conduce to the better underftanding of the eflect of the maintaining power, if the reader keep in continual view the chief circumftances of a mo-
the fituations B, K, \& c. by which it is urged toward C, are proportional to, and may be reprefented by, the ordinates $B E, K L, b c, k /$, \&ic. to the fraight line DC d.
2. The velocities acquired at B, K, \&c. by the acceleration along $A B, A K, \& x$. are proportional to the ordinates BF, KM, \&c. to the femicircle AHa ; and, therefore, the velocity with which the pendulum paffes through the middle point C, is to its velocity in any other point L , as CH to BF .
3. The times of delcribing the parts $\mathrm{AB}, \mathrm{BK}, \mathrm{KC}$, \&ce. of the whole arch of olcillation, are proportional to, and may be reprefented by, the arches AF, FM, MH, scc. of the femicircle.
4. If one pendulum defcribe the arch reprefented by $\mathrm{AC} a$, and another defcribe the arch KC k, they will deferibe them in equal times, and their maximum selocities (viz. their velocities in the middle point), are proportional to $A C$ and $K C$; that is, the velocities in the middle point are proportional to the width of the ofcillations.

The fame proportions are true with refpect to the motions outwards from C. That is, when the pendulum deferibes CA, with the initial velocity CH , its velocity at K is reduced to KM by the retarding action of gravity. It is reduced to BF at B , and to nothing at A ; and the times of defcribing $\mathrm{CK}, \mathrm{KB}, \mathrm{BA}, \mathrm{CA}$, are as HM, HF, HA. Another pendulum fetting out from C, with the initial velocity CO , reaches onty to K, CK being $=\mathrm{CO}$. Allo the times are equal. If we confider the whole ofcillation as performed in the direction $A a$, the forces $A D, B E, K L$ accelerate the pendulum, and the fimilar forces $a d, b c, k l$, on the other fide, retard it. 'Ilse contrary happens in the next ofcillation $a \mathrm{CA}$.
5. The areas DABE, DAKL, \&cc. are proportional to the fquares of the velocities accuired by moving along $A B, A K$, $\alpha=$. or to the diminution of the〔quares of the velocities fuftained by moving outwards along BA or KA , \&c.

The confideration of this figure will enable the reader (even thougb not a mathematician) to form fome notion of the effect of any propoled application of a maintaining power by macans of wheelwork : For, knowing the weight of the pendulum, we know the accelerating action of that weight in any particular fituation A of the pendulum. We alfo know what addition or fubtraction we produce on the pendulum in that fituation by the wheel-work. Suppofe it is an addition of preffure equal to a certain number of grains. We can make $A D$ to D \& as the firt to the lait; and then A \& will be the whole force urging the pendulum toward C. Doing the fame for every point of $A C$, we obtain a line $\delta, 4 c$, which is a new feale of forces, and the fpace $D C \delta$, comprehended between the two fcales $C D$ and $C 5$, will exprefs the addition made to the fquare of the velocity in paffing along AC by the joint action of gravity and the maintaining power. Allo, by drawing a line . perpendicular to AC, making the fpace $\mathrm{C}_{\pi} \times$ equal to CAD , the point π will be the limit of the ofcillation outward from C , where the initial velocity HC is extinguifhed. If the line x^{*} cut the fame circle in 3 , one-half the arch a A will nearly exprefs the contraction made in the time of the outward ofcillation by the maintaining power. An accurate de-

W A T [$7 S_{5}$] W A T

Wrat $=1$ work.
termination of this laft circumftance is operofe, and even difficult: but this falution is not far from the 'truth, and will greatly affit our judgment of the effect of any propofal, even though $x \pi$ be drawn only by the judgement of the eye, making the area left out as nearly equal to the area taken in as we can eftimate by infpectiou. This is faid from experience.

Since the motion of a perndulum or balance is altermate, while the preffure of the wheels is conftantly in one direction, it is plain that fonne art mull be ufed to accommodate the one to the other. When a tooth of the wheel has given the balance a motion in one directinn, it mult quit it, that it may get an impultion in the oppolite direction. The balance or pendulum thas efcaping from the tooth of the wheel, or the tooth efaping from the balance, has given to the general contrivance the name of scapement among our artills, from the French word echappement. We proceed, therefore, to confider this fubject more particularly, firlt confidering the feapements which are peculiarly fuited to the fmall vibrations of pendulums, and then thofe which mutt produce much wider vibrations in balances. This, with fome other circumftances, render the fcaoements for pendulums and balances very different.

I. Of the Aaion of a Wheel and Pallet.

The fcapement which has been in ufe for clocks and watches ever lince their firf appearance in Europe, is extremely fimple, and its mode of operation is too obvious to need much explanation. In fig. 2. XY reprefents a horiznotal axis, to which the pendulum P is attached by a flender rod, or otherwife. This axis has two leaves C and D attached to it, one near each end, and not in the fame plane, but fo that when the pendulum hangs perpendicularly, and at reft, the piece C fpreads a few degrees to the right band, and D as much to the left. They commonly make an angle of 70 , 80 , or 90 degrees. Thefe two pieces are called pal. zers. AFB reprefents a wheel, turning round on a perpendicular axis EO, in the order of the letters AFEB. 'The teeth of this wheel are cut into the form of the teeth of a faw, leaning forward, in the direction of the motion of the rim. As they fomewhat refemble the points of an old-falhioned royal diadem, this wheel has got the name of the CROWN wheel. In watches it is often called the balance wobeel. The number of teeth is generally odd; fo that when one of them B is preffing on a pallet D , the oppofite pallet C is in the fpace between two teeth A and I. 'The figure reprefents the pendulum at the extremity of its excurtion to the right hand, the tooth A having jult efcaped trom the pallet C, and the tooth B having jult dropped on the pallet D . It is plain, that as the pendulum now moves over to the left, in the arch PG, the toorh B continues to press on the pallet D, and thus accelerates the pendulum, both during its defcent along the arch PH, and its afcent along the arch HG. It is no lefs evident, that when the pallet D , by turning round the axis XY, raifes its point above the plane of the wheel, the tooth B efcapes from it, and I drops on the pallet C , which is now nearly perpendicular. I preffes C to the right, and accelerates the motion of the pendulum along the arch GP. Nothing can be more obvious than this action of the wheel in maintaining the vibrations of the

Suppl. Vol. II. Part II.
pendulum. We can eafily perceive, alfo, that when the pendulum is hanging perpendicularly in the line X X , the tooth L, by prefling on the pallet D , will force the pendulum a little way to the left of the perpendicular, and will forec it fo much the farther as the pendulu:n is lighter ; and, if it be fufficiently light, it will be forced fo far from the perpendicular that the tooth lis wi!l efeape, and then I will catch on C , amd fo. ce the pendulum back to P, where the whole operation will b: repeated. The fame efficet will be produced in a more remarkable degree, if the rod of the pendulum be continued through the axis $X Y$, and a ball Q put on the other ead to balance 1'. And, indeed, thus is the contrivance which was firlt applied to clocles all over Ellropse, before the application of the pendulum. They were balunce clucks. The force of the wheel was of a certain magnitude, and therefore able, during its action on a pallet, to communicate a certain quantity of motion and velocity to the balls of the balance. When the tooth B efcapes from the pallet D , the balls are then moving with a certain velocity and momentuin. In this condition, the balance is checked by the tooth I catching on the pailet C. But it is not initantly tiopped. It continues its motion a little to the left, and the pallet \mathbf{C} forces the tooth I a litile backward. But it cannot force it fo far as to efcape over the top of the tooth I; becaufe all the momenten of the balance was generated hy the furce of the tooth B; and the tooth I is equally powerful. Befides, when I catches on C, and C continues its motion to the left, its lower point applies to the face of the tooth I, which now acts on the balance by a long and powerful lever, and foon ftops its farther motion in that direction, and now, continuing to prefs on C, it urges the balance in the oppofite direction.

Thus we fee that in a fcapement of this kind, the motion of the wheel muft be very hobbling and unequal, making a great ftep forward, and a hort ftep back. ward, at every beat. This has occafoned the contrivance to get the name of the recoiling scapement, the recoiling pallets. This hobbling motion is very ob. fervable in the wheel of an alarm.

Thus have we obtained two principles of regulation. The firft and molt obvious, as well as the molt perfect, is the natural ifochronous vibration of a pendulum. The only ufe of the wheelwork here, befides regiltering the vibrations, is to give a gentle impulfion to the pendu. lum, by means of the pallet, in order to compenfate friction, \&c. and thus maintain the vibrations in their primitive magnitude. But there is no fuch native motion in a balance, to which the motion of the wheels mult accommodate itfelf. . The wheels, urged by a determined preffure, and acting through a determined fpace (the face of the pallet), muft generate a certain determined velocity in the balance; and therefore the time of the ofcillation is alfo determined, both during the progrefive and the retrograde motion of the wheel. The actions being fimilar, and through equal fpaces, in every of cillation, they mult employ the fame time. Therefore a balance, moved in this manner, mult be ifochronous, and a regulator for a time-keeper.

By thus employing a balance, the horizontal pofition of the axis XY is unneceffary. Accordingly, the old clocks had this axis perpendicular, by which means the

W A T $\quad 786$

Watchwork.
whole weight of the balance relted on the point of the pivot Y or X, according as the balance PQ was placed above or below. By making the fupporting pivot of hard iteel, and very fharp, friction was greatly diminithed. Nay, it was entirely removed from this part of the machinc by fufpending the balance by a thread at the end X, inftead of allowing it to relt on the point of the pivot Y.

As the balance regulator of the motion admits of every pofition of the machine, thofe clocks were made in an infinite variety of fanciful forms, efpecially in Germany, a country famous for mechanical contrivances. They were made of all fizes, from that of a gicat tteeple clock, to that of an ornament for a lady's toilet. The fubtitution of a fpring in place of a weight, as a firt mover of the wheel-work, was a moft ingenious thought. It was very gradual. We have feen, in the Emperor's mufeum at Bruffels, an old (perhaps the firtt) fpring clock, the fpring of which was an old fword blade, from the point of which a catgut was wound round the barrel of the firt wheel. Some ingenious German fubftituted the fpiral fpring, which both took lefs room, and produced more revolutions of the firf wheel.

When clocks had been reduced to fuch fmall fizes, the wifh to make them portable was very natural ; and the means of accomplifhing this were obvious, namely, a farther reduction of their fize. This was accomplifhed very early; and thus we obtained pocket watches, moved by a firal fpring, and regulated by a balance with the recoiling fcapement, which is ftill in ufe for common watches. The hobbling motion of the crown wheel is very eafily feen in all of them.

It is very uncertain who firt fubftituted a pendulum in place of the balance (Clock, Encycl.) Huyghens, as we have already obferved, was the firf who inveftigated the motions of pendulums with fuccefs, and his book De Horologio Ofcillatorio may be confidered as the elements of refined mechanics, and the fource of all the improvements that have been made in the conftruction of fcapements. But it is certain that Dr Hooke had employed a pendulum for the regulation of a clock many years before rhe publication of the abovementioned treatife, and he claims the merit of the invention of the only proper methad of employing it. We imagine therefore that Dr Hooke's invention was nothing more than a fcapement for a pendulum making fmall vibrations, without making ufe of the oppofite motions of the two fides of the crown wheel. Dr Hooke had contrived fome fcapement more proper for pendulums than the recoiling pallets, becaufe certainly thofe might be employed, and are actually employed as a fcapement for pendulum clocks to this day, although they are indeed very ill adapted to the purpofe. He had not only remarked the great fuperiority of fuch pendulum clocks as were made before Huyghens's publication of the cycloidal pendulum over the balance' clocks, but had alfo ficen their defects, arifing from the light pendulums and wide arches of vibration, and invented a fcapement of the nature of thofe now cmployed. The pendulum clock which he made in 1658 for Dr Wilkins, afterwards Bifhop of Chefter, is mentioned by the inventor as peculiarly fuited to the moderate fiving of a pen. dolum ; and he oppofes this circumftance to a general practice of wide vibrations and trifling pendulums. The

French are not in the practice of aforibing to us any thing that they can claim as their own; yet Lepaute fays that the Echappenent à l'Ancre came from England about the year 1665 . It is alfo admitted by him that clock-making flourifhed in England at that time, and that the French artifts went to London to improve in it. Putting thefe and other circumftances together, we think it highly probable that we are indebted to Dr Hooke for the fcapement now in ufe. The.principle of this is altogether different from the fimple pallets and direct impulfe already defcribed; and is fo far from being obvious, that the manner of action has bcen mifunderftood, even by men of fcience, and writers of fyftems of mechanics.

In this fcapement we employ thofe teeth of the wheel which are moving in one direction; whereas in the former fcapement, oppofite teeth were employed moving in contrary directions. Yet even here we mult communicate an alternate motion to the axis of the pallets. The contrivance, in general, was as follows: On the axis A (See fig. 3.) of the pendulum or balance is fiaed a piece of metal BAC, called the crutch by our artifts, and the anchor by the French. It terminates in two faces $\mathbf{B} b \mathbf{C} c$ of tempered ftecl , or of fome hard flone. Thefe are called the paleets, and it is on them that the tecth of the wheel act. The faces $\mathrm{B} b \mathrm{C} c$. are fet in fuch pofitions that the teeth pufh them out of the way. Thus B pufhes the pallet to the left, and C purhes its pallet to the right. Both puif their pallets fidewife outward from the centre of the wheel. The pallet \mathbf{B} is ufually called the leading, and \mathbf{C} the driving pallet by the artifts, although it appears to us that thefe names thonld be reverfed, becaufe B drives the pallet out of the way, and C pulls or leads it out of the way. They might be called the firfl and fecond pallet, in the order in which they are acted on by the wheel. We thall ufe either denomination. The figure is accommodated to the inactive or refting pofition of the pendulum. Suppofe the pendulum drawn afide to the right at Q, and then let go. It is plain that the tooth B, prcffing on the face of the pallet $\beta \mathrm{B} b$ all the way from β to b, thrufts it afioe outwards, and thus, by the connection of the crutch with the pendulum rod, aids the pendulum's motion along the arch QPR. When the pendu. lim reaches k, the point of the tooth B has reached the angle b of the pallet, and efcapes from it. The wheel preffing forward, another tooth C drops on the pallet face $\mathbf{C} c$, and, by preffing this pallet outward, evidently aids the pendulum in its motion from R to P. The tooth C efcapes from this pallet at the angle $c_{\text {, }}$ and now a tooth B^{\prime} drops on the firt pallet, and again aids the pendulum; and this operation is repeated continually.

The mechanifm of this communication of motion is thus explained by feveral writers of elements. The tooth B (Gg. z.) is urged forward in the direction BD , perpendicular to the radius MB of the swing wheEL. It therefore preffes on the pallet, which is moveable only in the direction BE , perpendicular to BA the radius of the pallet. Therefore the force BD mult be refolved into two, viz. BE , in the direftion in which alone the pallet can move, and ED, or BF, perpendicular to that direction. The laft of thefe only prefles the pallet and crutch againft the pivot hole A.

Watcit work.

W A T $[787]$ W A T

Watch-work-

BE is the only ufeful force, or the force comununicated to the pallet, enabling it to maintain the pendulum's motion, by reftoring the momentum loft by friction and other caufes.

But this is a very erroneous account of the modus operandi, as may be feen at once, by fuppofing the radius of the pallets to be a tangent to the wheel. This is a pofition modt frequently given to them, and is the very pofition in fig. 3. In this cafe $M B$ is perpendicular to $B \underset{s}{ }$, and therefore $B D$ will coincide with $B A$, and there will be no fuch force as $B E$ to move the pendulum. It is a tuuth, deducible from what we know of the mechanical conftitution of folid bodies, and confirmed by numberlefs obfervations, that when two folid bodics prefs on each other, either in impulfion or in dead preffure, the direction in which the mutual preflure is exerted is always perpendicular to the touching furfaces, whatever has been the direction of the impolling body (See Impulsion, Suppl. n 66. Machinery, Suppl. $8^{\circ} 35$. and feveral other parts of this Work.) Moreover this preffure is mutual, equal, ar.d oppofite. Whatever be the Mapes of the faces of the tooth and pallet, we can draw a plane BN, which is the common tangent to both furfaces, and a line HBI through the point of contact perpendicular to BN. It is farther demonftrated in the article Machinery, Suppl. $n^{\circ} 35, \& c$. that the action of the wheel on the pendulum is the fame as if the whole crutch were annihilated, and in its thead there were two rigid lines AH, MI, from the centres of the crutch and wheel, perpendicular to HI, and connected by a third rigid line or rod HI, touching the two in H and I .

For if a weight V be hung at v, the extremity of the -horizontal radius $M v$ of the wheel, it will act on the lever v MI, preffing its point I upwards in the direction IH perpendicular to MI ; the upper end of this rod IH will, in like manner, prefs the extremity H of the rod HA , and this will urge the pendulum from P toward R. To withftand this, the pendulum rod AP may be withheld by a weight z, hanging by a thread on the extremity of the horizontal lever $A z$, equal to $M v$, and connected with the crutch and pendulum. The weights V and z may be fo proportioned to each other that, by acting perpendicularly on the crooked levers v MI, and $z A H$, the prefures at H and I hall be equal, and juit balance each other by the intervention of the rod HI. When this is the cafe, we have put things into the fame mechanical ftate, in refpect of mutual action, as is effected by the crutch, pallets, and wheel, which, in like manner, produce equal preffures at B the point of contact, in the direction BH and BI. The weight V may be fuch as produces the very fame effect at B that is produced by the previous train of wheel-work. 'The weight z therefore mutt be juft equal to the force produced by the wheel-work on the point \approx of the pendulum rod, becaufe by acting in the oppofite direction it juft balances it. Let us fee therefore what force is communicated to the pendulum by the wheels.

Let x be the upward preffure excited at I, and y the equal oppofite preffure excited at H. Then, by the property of the lever, we have MI:M $w=\mathrm{V}: x$, and $x \times \mathrm{MI}=\mathrm{V} \times \mathrm{M} v$. In like manner $y \times \mathrm{AH}=$ $Z \times A z$. Therefore, becaufe $x=y$, and $A z=M v$, we have $\mathrm{V}: \mathrm{Z}=\mathrm{MI}: A H$. That is, the force exert-
ed by the tooth of the wheel in the direction ws its motion is to the force impreffed on the pendulum rod at a diftance equal to the radius of the wheel as Mif to AH. The force impreffed on the ball of the pendulum is efs than this in the proportion of $A P$ to $A z$, or $M v$.

Cor. 1. If the perpendiculars MN, AV, be drawn on the tangent plane, the forces at B and z will be as BN to BO . For thefe lines are refpectively equal to M1 and AH.

Cor. 2. If HI meet the line of the centres AC in S, the forces will be as $S M$ to $S A$; that is, $V: Z=$ SMI: SA.

Cor. 3. If the face $\beta B b$ of the pallet be the evalutrix of a circle defcribed with the radius λH, and the face of the tooth be the evolutrix of a circle deferibed with the radius MI, the force impreffed on the pendulume by the wheels will be conflant during the whole vibration (Machinery, n° 36.) But thefe are not the only forms which produce this conltancy. The forn's of teeth defcribed by different authors, fuch as De la Hire, Camus, \&c. for producing a conftant force in trains of wheel work, will have the fame effect here. It is alfo eafy to fee that the force imprefled on the pendulum may be varied according to any law, by making thefe faces of a proper form. Therefore the face, from B outwards, may be fo formed that the force commu. nicated to the pendulum by the wheels, during its defcent from Q to P, may be in one conflant proportion to the accelcration of gravity, and then the fum of the forces will be fuch as produce ifochronous vibrations. If the inner part $\mathrm{B} b$ of the face be formed on the fame principle, the difference of the forces will have the fame law of variation. If the face βb be the evolutrix of a circle, and the tooth B terminate in a point gently rounded, or quite angular, the force on the pendulum will continually increafe as the tooth flides from β to b. For the line AH continues of the fane magnitude, and M1 diminifhes. The contrary will happen, if the pallet be a point, either tharp or rounded, and if the face of the tooth be the evolutrix now mentioned; for MI will renuain the fame, while AH diminithes. If the tooth be pointed, and βb be a flraight line, the force commanicated to the pendulum will diminifh, while the tooth flides from β to b. For in this cale AII diminifhes and MI increafes.

Cor. 4. In general, the force on the pendulum is greater as the angle MB b increafes, and as $A B b$ diminifhes.

Cor. 5. The angular velocity of the wheel is to that of the pendulum, in any part of its vibration, as AH to MI. This is evident, becaufe the rod IH moving (in the moment under confideration) in its own direc. tion, the points H and I move through equal ¢paces $_{2}$ and therefore the angles at A and M mult be inverfely as the radii.

All that has now been faid of the firt pallet $A B$ may be applied to the fecond pallet AC.

If the perpendiculars C s be drawn to the touching plane $\circ \mathrm{C} n$, cutting AM in s, we fhall have $\mathrm{V}: z=s \mathrm{M}$: s A, as in Cor. 2. And if the perpendiculars $M i, A b$, be drawn on $\mathrm{C} s$, we have $\mathrm{V}: \mathrm{Z}=\mathrm{Mi}: \mathrm{A} h$, as in the general theorem. The only difference between the action on the two pallets is, that if the faces of both are plain, the force on the pendulum increales during the whole of the action on the pallet C, whereas it dimi-

Watch
wuik.
\qquad

Watch work.
nifhes during the progrefs of the tooth along the other pallet.

The readcr will doubrlefs remark that each tooth of the wheel acts on hoth pallets in fucceffion; and that, during its action on either of them, the pendulum makes one vibation. Therefore the number of vibratione dusing onc turn of the wheel is double the number of the teeth : confequently, while the tooth nides along one of the pallets, it advances half the fpace between two finceeffive teeth; and when it efcapes from the pallet, the other tooth may be jult in contact with the other pallet. We fay it may be fo; in which cafe there will be no dropping of the teeth from pallet to pallet. This, however, requires very nice workmanfhip, and that every tooth be at precifely the fame diftance from its neighbour. Should the tooth which is juft going to apply to a pallet chance to be a little too far advanced on the wheel, it would touch the pallet before the other had efcaped. Thus, fuppofe that before B efcapes from the point b of the pallet, the tooth C is in contact with the pallet CG, 13 cannot efcape. Therefore when the pendulum returns from R towards Q_{3}, the pallet βb, returning along with it, will pufh back the tooth B of the whecl. It does this in oppofition to the force of the whecl. Therefore, whatever motion the wheel had communicated to the pendulum, during its fwing from P to Q, will now be taken from it again. The pendulum will not reach Q, becaufe it had been aided in its motion from Q, and had proceeded further than it would bave done without this help. Its motion toward Q is further diminihhed by the friction of the pallet. Therefore it will now return again from fome nearer point q, and will not go fo far as in the laft vibration, but will return through a fill fhorter arch: And this will be fill more contracted in the next vibration, \&c. scc. Thus it appears that if a tooth chances to touch the pallet before the efcape of the other, the wheel will advance no farther, and foon after the pendulum will be brought to relt.

For fuch reafons it is neceflary to allow one tooth to efcape a little before the other reaches the pallet on which it is to act, and to allow a fmall drop of the teeth from pallet to pallet. But it is accounted bad workmanhhip to let the drop be confiderable, and clofe fiapenient is accounted a mark of care and of good workmanflip. It is evidently an advantage, becaufe it gives a longer time of attion on each pallet. This freeing the fcapement cannot be accomplifhed by fling fomething from the face of the tooth; becaufe this being done to all, the diftance between them is diminifhed rather than augmented. The pallets mult be firft fcaped as clofe as poffible. This obliges the workman to be careful in making the teeth equidiftant. Then a fmall matter is taken from the point of each pallet, by filing off the back $b r$ of the pallet. The tooth will now efcape before it has moved through half a fpace.
From all that has been faid on this particular, it appears that the inteval between the pallets muft comprebend a certain number of teeth, and half a fpace more.
The firlt circumftance to be confidered in contriving a fcapement is the angular motion that is intended to be given to the pendulum during the action of the wheel. This is ufually called the angle of fcapement, or the angle of ation. Having fixed on an angle a that we think
proper, we mul fecure it by the pofition and form of the face of the pallets. Knowing the number of teeth in the fiving-wheel, divide 185° by this number, and the quotient is the angle b of the wheel's motion during one vibration of the pendulum. In the line AM, joining the centres of the curtch and wheel, make SM to SA , and $s \mathrm{M} \cos \mathrm{A}$, as the angle a to the angle b; and then, having determined how many teeth hall be comprehended between the pallets, call this number n. Multiply the angle b by $n+1$, and take the half of the produet. Ste off this half in the circumference of the wheel (at the points of the teeth) on each fide of the line joining the centres of the crutch and whel, 28 at TB and TC. Throush S and s draw SB and s C , and through B draw 6136 perpendicular to $S B$, for the medium pofition of the face of the firt pallet ; that is, for its pofition when the pendulum hangs perpendicular. In like manner, drawing $\circ \mathrm{C} n$ perpendicular to $s \mathrm{C}$, we have the medium pofition of the fecond pallet. T'he demonftration of this con? ruction is very evident from what has heen faid.
We have hitherto fuppofed that the pendulum finifhes its vibration at the inflant that a tooth of the wheel cfeapes from a pallet, and another tonth drops on the other pallet. But this is never, or fhould never be, the cafe. The pendulum is made to fwing fomewhat beyond the angle of fcapement : for if it do not when the clock is clean and in good order, but \{op pirccifely at the drop of a tooth, then, when it grows foul, and the vibration diminifhes, the teeth will not efcape at all, and the clock will immediately ftop. Therefore the force communicated by the wheels during the vibration within the limits of fcapement, muft be uncreafed fo as to make the pendulum throw (as the artifts term it) farther ont; and a clock is more valued when it throws out confiderably beyond the angle of fcapement. There are grod reafons for this. The momentum of the pendulum, and its power to regulate the clock (which Mr Harrifon fignificantly called its dominion), is proportional to the width of its vibrations very nearly.

This circumftance of exceeding the angle of fcape. ment has a very great influence on the performance of the clock, or greatly affects the dominion of the pendulum. It is eafy to fee that, when the face $s 6$ of the leading pallet is a plane, if the pendulum continue its motion to the right, from P toward Q , after the tooth B has dropped on it, the pallet will puih the wheel back again, while the tooth flides outward on the pallet toward β. Such pallets therefore will make a recoiling fcapement, refembling, in this circumftance, the old pallet employed with the crown wheel, and will have the properties attached to this circumitance. One confequence of this is, that it is much affected by any inequalities of the maintaining power. It is a matter of the moft filiar obfervation, that a common watch goes flower wün within a quarter of an hour of being down, when the action of the fpring is very weak, in confequence of its not pulling by a radius of the fufee. We obferve the fame thing in the beating of an alatum clock. Alfo if we at any time prefs forward the wheelwork of a common watch with the key, we obferve its beats accelerate immediately. The reafon of this is pretty plain. The balance, in confequence of the acceleration in the angle of fcapement, would have . gone much farther, employing a confiderable time in

Watch. work.

W A T $[789] \quad$ W A T

Watch. the excurfion. This is checked abruptly, which both
work. fhortens the vibration and the time employed in it. In the 'return of the pendulum, the motion is accelerated the whole way, along an arch which is Chorter than what correfponds to its velocity in the midrle point; for it is again cliecked on the other fide, and does not make its full excurfion. iSoreover, all this irregulaity of force, or the great deviation from a refiftance to the cxcurfion proportional to the diftance from the middle point, is exerted on the pendulum when it is near the end of the excurfion, where the velocity being fmall, this irregular force asts long upon it, at the very time that it has litile force wherewith to refift it. All tem. porary inequalities of force, thereforc, will be more felt in this fituation of the balance than if they had been exerted in the middle of its motion. And although the regulating power of a pendulum greatly cxceeds that of the light balances ufed in pocket watches, fomething of thre fame kind may be expected even in pendulum clocks. Accordingly this appears by a feries of expe. riments made by Mr Berthoud, a celebrated watchmaker of Paris. A clock, with a half fecond pendulum weighing five dirams, was furnithed with a recoiling fcapement, whofe pallets were plancs. The angle of fcapement was $5 \frac{2}{2}$ degrees. When actuated with a weight of two pounds, it fwung 8°, and loit $15^{\prime \prime}$ per hour; with four pounds, it fwang 10°, and loit 6^{\prime}. 'Thus it appears that by doubling the maintaining power, although the vibration was increafed in confe. quence of the greater impulfe, the time was leffened $9^{\prime \prime}$ per hour, viz. about $\mp \frac{8}{8} \overline{0}$. It is plain, from what was faid when we defcribed the firft feapement, that an increafe of maintaining power muft render the vibration more frequent. We faw, on tbat occafion, that, even when the gravity of the pendulum is balanced by a weight on the other end of the rod, the force of the wheels will produce a vibatory motion, and that an augmentation of this force will increafe it, or make the vibrations more rapid. The precife effect of any particular form of tceth-can be learned only by computing the force on the pendulum in every pofition, and then conftructing the curve $f: x$ C of fig. 1 . 'The rapid in. creafe of the ordinates beyond thofe of the triangle ADC , forms a confiderable area $\mathrm{DA} \pi o$, to compenfate the area $\times 0$, and thus makes a confiderable contraction $A x$ of the vibration, and a fenfete contraction $\frac{A^{\theta}}{2}$ of the time.

Mr George Graham, the celebrated watchmaker in London, was alfo a good mathematician, and well qualified to confider this fubject fcientifically. He contrived a fcapement, which he hoped would leave the pendulum almoft in its natural ftate. The acting face of the pallet $a b c$ (fig. 4.) is a plane. The tooth drops on a, and efcapes from c, and is on the middle point b when the pendulum-is perpendicular. Beyond a, the face of the pallet is an arch $a d$, whofe centre is A, the centre of the crutch. The maintaining power is made fo great as to produce a much greater vibration than the angle of active fcapement $a \AA c$. The confequence of this is that, when the tooth drops on the angle e, the pendulum, continuing its motion, carries the crutch along with it, and the tooth paffes on the arch $a d$, in a direction paffing through the centre of, the crutch. This prefure can neither accelerate nor retard the mo-
tion of the crutch and pendulum. As the patidum was accelerated after it paffed the perpendicular, by the other pallet, it will (if quite unobfructed) throw out farther than what correfpond to the velocity which it had in the middle point of its vitration ; perhaps till the tooth paffes from $a t 0 c$ on the circular arch of the pallet. But although it fultains no conerary action from the whecls duting this excurfion beyond the angle of fcapement, it will not proceed fo far, but will ftop when the tooth reaches d; becaufe there mult be fome refiftance arifing from the friction of the tooth elong the arch $a d$, and from the clamminefs of the oil employed to lubricate it: hut this refiftance is exceedingly minute, not amounting to $\frac{3}{8}$ th of the preflurc on the arch. Nay, we think that it appears from the experiments of Mr Coulomb that, in the cale of fuch minute preflures on a furface covered with oil, there is no fenfible retardation analogrous to that produced by friction, and that what retardation we obferve arifes entirely from the clamminefs of the oil. We are fo imperfectly acquainted with the manner in which friction and vifcidity obftruct the motions of bodies, that we cannor pronounce decifively what will be their effect in the prefent cafe. Friction does not increafe much, if at all, by an increafe of relocity, and appears like a fixed quantity when the preflure is given. This makes all motions which are obitructed by friction terminate abruptly. This will horten both the length and the time of the outward excutfion of the penduhum. The vifcidity of the oil refifts differently, and more nearly in the proportion of the velocities. The diminution of motion will not be in this proportion, becaufe in the greater velocities it acts for a fhorter time. Were this accurately the cafe, the refiftance of vifcidity would alfo be nearly conftaot, and it would operate as friction does. But it does not ftop a motion abruptly, and the motions are extinguifhed gradually. Therefore, although vifcidity unult alwaya diminifh the extent of the exculion, it may fo vary as not to diminif the time. We apprehend, however, that it gene.slly does. But whatever happens in the excurfion, the return will certainly be flower, and employ more time than if it had not been obitructed, becaufe the velocity in every point is lefs than if perfectly free. The whole arch, confifting of a returning arch and an excurfion on the other fide, may be either flower or quicker, according as the compenfation is complete or not, or is even overdone.

All thefe reffections occurred to Mr Graham ; and he was perfuaded that the time of the tooth's remaining on the arch $a d$, both afcending and defcending, would differ very little from that of the defctiption of the fame arch by a free pendulum. The great caufes of irregularity feemed to be removed, viz. the inequalities in the action of the wheels in the vicinity of the extremity of the vibration, where the pendulum having little momentum is, long in the fame little fpace, expofed to their action. The derangement produccd by any force depends on the time of its action, and therefore mult be greateft when the motion is nowett. The perdulum gets its impulfe in the very middle of iss vibration, where its velocity is the grateft ; and therefore the inequalities of the maintaining power act on it only for a thort time, and make a very trifling alteration in the time of its deferibing the arch of icapement, Beyond this, it is nearly in the fate of a free pendu-

Wra:chs. work.

Wat h. lom ; nay, even though it be affected by an inequality w.sk. of the mairtaining power, and it be accelerated beyond its ufual rate in that arch, the chief effect of this will be to caufe it to defcribe a larger arch of excurfon. The fhortening of the time of this defcription by the frection will be the fame as before, happening at the very end of the excurtion ; but the return will be morc retarded by the friction on a longer arch. - And, by this, a compenfation may be made for the trifling contraction of the time of defcribing the arch of fcapement.
lhis circumftance of giving the impulfe in the middle of the vibration. where its time of action is the fmallett poffible, and whercby the pendulum is fo long left free from the action of the wheels, is of the very firit importance in all fcapements, and fhould ever be in the mind of the mechanician. When this is adhered co, the form of the face $a b c$ is fcarcely of any moment. Much has been written on this form, and many attempts have been made to make it fuch that the action of the whicels fhall be proportional to the action of gravity. To do this is abfolutely impoffible. Mr Graham made them planes, not only becaufe of eafieft execution, but becaufe a plane really confpires pretty well with the change of gravity. While the pendulum moves from Q to P (fig. 3.), the force of gravity, acting in the direction QP, is continually diminithing. So is the accelerating power of the pallet from a to b. When the pendulum rifes from P to R, a force in the oppofite direction RP continually increafes. This is analogous to the continual diminution of a force in the direction PR. Now we have luch a diminution of fach a force, in the action of the pallet from b to c, and fuch an aug. mentation in the action of the other pallet.

For all thefe reatons, this confluction of a fcapement appeared very promifing. Mr Grahan put it in practice, and it anfwered his noll fanguine expectation, and is now univerfally adopted in all nice clocks. Mr Grabam, however, did not tbink it prudent to caufe a tooth to drop on the very angle a of the pallet. He made it drop ore a point f of the arch of excurfson. This has alfo the advantage of diminifhing the angle of action, which we have proved to be of fervice. It requires, indeed, a greater maintaining power ; but this can eafily be procured, and is lefs affected by the changes to which it is liable by the effect of heat and cold on the sil. Our obfervations on the effects of friction and vilcicity in the atch ad feem to be contirmed by the obfervations of feveral artifts, who agree in faying that a great increafe of maintaining power increafes the vibrations, but makes them perceptibly flower. When they wrote, much oil was applied to diminith the friction on the arch of repole; but, fince that time, the rubbing parts were made fuch as required no oil, and this retardation difappeared. In the cleck of the tranfit room of the Royal Obfervatory, the angle of action feldom exceeds onethird of the fwing of the pendulum. The pallets are of oriental ruby, and the wheel is of Ateel tempered to the utmoft degree of hardnels. This clock never varies a whole fecond fiom equable motion in the courfe of five days.

This contrivance is known by the name of the DEAD beat, the dead scapement; becaufe the feconds index ftands Itill after each drop, whereas the index of a clock with a recoiling fcapement is always in motion, hob. bling backward and forward.

Thefe feapements, both recoiling and dead beat, have been made in a thoufand forms; but any perfon toler. ably acquainted with mechanics, will fee that they are all on the fame principlea, and differ only in thape or fome equally uoimodrtant circumftance. Perhaps the mott convenient of any is that reprefented in fig. 5. where the fhaded part is the crutch, made of brafs or iron, and A and B are two pieces of agate, flint, or other hard fone, cut into the proper thape for a pallet of either kind, and firmly fixed in proper fockets. They project half an inch, or thereabouts, in frons of the crutch, fo that the fwing wheel is alfo before the crutch, diftant about $\frac{1}{2}^{2}$ th of an inch or fo. Pallets of ruby, driven by a hard It tel fwing wheel, need no oil, but merely to be once rubbed clean with an oily cloth.

Sometimes the wheel has pins inftead of teeth. They are ranged round the rim of the wheel, perpendicular to its plane, and both pallets are on one fice of the wheel, tlanding perpendicular to its plane. Onc of thefe pins drops from the firlt to the fecond pallet at once. The pallets are placed on two arms, as in fig. 6. in which cafe the pins are alternately on different fides of the wheel; or on one, as in fig. 7. By the motion of the pendulum to the right, the pin (in fig. 7.), after refting on the concave arch $d a$, acts on the face $a c$, and drops from c on the other concave arch $i g$, which continues to move a little way to the right. It then returns, and the pin flides and acts on the pallet $i b$, and efcapes at b; and the next pin is then on the arch of repole $d a$.

It being evident that the recoiling fcapement accelerates the vibrations beyond the rate of a free pendulum, and it afo appearing to many of the frit artifts that the dead feapement retards then, they have attempted to form a feapement which fhall avoid both of thefe defeets, by forming the arches $a d$, ig, fo as to produce a very fmall recoil. Mr Berthoud does this in a very fimple manner, by placing the centre of $a d$ at a fmall diftance from that of the crutch, fo as to make the rife. of the pallet above the concentric arch about one-third of the arch itfelf. A pplying fuch a crutch to the light pendulum mentioned in a former paragraph, he found that doubling, and even tuebling the maintaining power, produced no change in the time of vibration, though it increafed the width from 8° to $i^{\circ}{ }^{\circ}$ and 14°. We have no doubt of the efficacy of this contrivance, and think it very proper for all clocks which require much oil, fuch as turret clocks, \&c. But we apprehend that no rule can be given for the angle that the recoiling arch fhould make with the concentric one. We imagine that this depends entirely on the flare which friction and oil have in producing the retardation of the dead beat.

Other artifts have endeavoured to avoid the inconveniences of friction and oil on the arch of repofe in another way. Inftead of allowing the tooth of the wheel to drop on the back of the pallet, which we called the arch of excurfion, and others call the arch of repofe, it drops on a detent ot a (fig. 8.), of which the part $t a$ is part of an arch whofe centre is A, the centre of the crutch, and the part $t 0$ is in the direction of the radius. This piece does not adhere to the pallet, but is on the end of an arm o A, which turns round the axis A of the crutch on fine pivots: it is made to apply itfelf to the back of the pallet by means of a flender fpring A_{p}, attached to the pallet, and preffing inward on a pin p,

Warchwork.

W A T [79L] W A '

Wath werk. $\xrightarrow{\square}$
fixed in the arm of the detent. When fo applied, its arch ta makes the repofe, and its point a makes a fmall portion of the face $a c$ of the pallet.

The action of this apparatus is very eafly underftood. When a tooth efeapes from the fecond pallet, by the motion of the pendulum from the left to the right, an. other tooth drops on this pallet (which the figure fhews to be the firft or leading pallet) at the angle t, and refts on the fimall portion $t a$ of an aich of repofe. But the crutch, continuing its motion to the tight, immediately quits the armo A, carrying the pallet $a c r$ along with j j, and leaving the wheel locked on the detent ota. By and bye the pendulum Enifhes its excurfion to the right, and returns. When it enters the arch of action, the pallet has applied itfclf to the detent of a, and withdraws it frola the tooth. The tooth immediately acts on the face $a c$ of the pallet, and reftores the motion loft during the laft vibration. The ufe of the foring is merely to keep the detent applied to the pallet without thaking. It is a little bent during their feparation, and adds fomething of an oppoling force to the afcent of the pendulum on the other fide of the wheel, and accelerates its return. A fimilar cetent on the back of the fecond pallet performs a fimilar office, fupporting the wheel while the pendulum is beyond the arch of feapement, and quitting it when the pendulum enters that arch.

We do not know who firft practifed this very ingenious and promifing invention. Mr Mudge certainly did fo as early as 1753 or 1754. Mr Eerthoud fpeaks obfcurely of contrivances of the fanie nature. So does Le Roy, and (we think) Le Paute. We fay that it is very promifing. Friction is almof annihilated by transferring it to the pivots at A; fo that, in the ex. curfion beyond the angle of feapenent, the pendulum feems almoft free. Indeed forne artifts of our acquaintance have even avoided the friction of the pivots at A, by making the arm of the detent a fpring of confiderable thicknefs, except very near to A, where it is made very thin and broad. But we do not find that this conftruction, though eafily executed, and fufceptible of great precifion and Ateadinefs of action, is much practifed. We prefume that the performance has not anfwered expectations. It has not been fuperior to the incomparably more firmple cead fcapement of Graham. Indeed we think that it cannot. A part of the friction Itill remains, which cannot be removed; namely, while the arch $t a$ is drawn from between the tooth and pallet. Nay, we apprehend that fomething more than friction mult be overcome here. The tooth is apt to force the detent outward, unlefs the part t a be a little clevated at its point a like a claw, above the concentric arch, and the face of the tooth be made to incline forward, fo as to fit this fhape of the detent. This will confume fome force, when the momentum of the pendulum is by no means at it maximum. Should the clock be foul, and the excuifions beyond fcapement be very fmall, this difturbance mult be exceedingly pernicions. But we have a much greater objection. During the whole excurfion beyond fcapement, there is a new force of a fpring acting on the pendulum, which deviates confiderably from the proportions of the accelerasing power of gravity. It does not commence its action till the detent feparates from the arm of the crutch. Then the fpring of the detent acts as a retarding force
againtt the excurfion of the pendulum, now on the o. ther fide, bringing it fooner to refl, and then accelerating it in its way hack to the beginning of the arch of fcapement. In fhort, this contlruction fhould have the properties of a recoiling feanement. ITe got a clockmaker to make fome experiments on one which he had made for an mateur, which fully confirned our conjecture. When the deicnt fiaing was Atrong, an increafe of maintainirg power made the vibrations both wider and more rapid. 'The artit reduced the flrength of the fpring till this effect was rendered very finall. It might perhaps be quite removed by means of a Itill weaker foring: But the fpring was already fo weak that a hard ftep on the floor of the room did fometimes difengage the detent from the wheel. It appears, thercfore, that nothing can be reafonably expefied frons this conitruction that is not as well performed by the dead fcaperment of Mr Graham, of much eafitı execution, and more certain performance.

Very fimilar to this confruction (at leaft in the excurfion beyond the angle of fcapement) is the conftruction of Mr Cumming, and it has the fame defects. His pallets are carried, as in the one deferibed, by the crutch. The detents prets on them behind by their weight only : thercfore, when the tooth is locked on the detent of one pallet, its weight is taken off from the pendulum on that fide, and the weight of the detent on the other fide oppofes the alcent, and accelerates the defcent of the pendulum.

Mr Cumming execnted another fcapement, confiting, like thole, of a pallet and detent. But the manner of applying the maintaining power is extremely different in principle from any yet dcferibed. It is exceedingly ingenious, and feems to do all that is poffible for removing every fource of irregularity in the maintaining power, and every ubftruction to free mo. tion arifing from friction and oil in the fcapement. For this reafon we thall give fuch an account of its effential circumftances as may fuffice to give a clear conception of its manner of acting, and its good properties and defects; but referring the inquifitive reader to Mr Cumming's Elements of Clock and Watch Work, publifhed in 1766 , for a more full account.

In the fcapements latt defcribed, the pallets were fixed to the crutch and pendulum, and the maintaining power, during its action, was applied to the pendulum by means of the pallets, in the lame way as in ordinary fcapements. The detents were unconnected with the pendulum, and it was frec during the whole excurion. In the prefent fcapement both the pallets and detents are detached from the pendulum, except in the moment of unlocking the wheel; fo that the pendulum may be faid to be free during its whote vibration, except during this fhort moment.

ABC (fig. 9.) reprefents a portion of the fwing wheel, of which O is the centre, and A one of the teeth ; Z is the centre of the crutch, pallets, and pendulum. The crutch or detents is reprefented of a form refembling the letter A, having in the circular crofs piece a llit $i k$, alfo circular, Z being the centre. This. form is very different from Mr Cumming's, and inferior to his, but was adopted here in order to avoid a long. defeription: The arm ZF forms the firlt detent, and the tooth A is reprefented as locked on it at F. D is. the firft pallet on the end of the arm $\mathrm{Z} d$ moveable

Watch.
work.
round the fame centre with the detents, but moveable independently of them. 'Ihe arm $d e$, to which the pallet D is attached, lies altogrether behind the arm ZF of the deteut, being f xed to a lound pitce of brafs ef g, which has pinnts turting conecntric with the verge or axis of the pendulum. 'To the fame round piece of brafs is fixed the horizontal arme cH , earrying at its extremity the ball H , of fuch f:ze, that the action of the tooth H on the pallet D is juft able (but withoirt any rife of failing) to raife it up to the pofition here drawn. ZP p reprefents the fork, or the pendulum rod, behind both detent and pallet. A pin p projects forward, coming through the flit $i k$, withont tonehing the tipper or under margin of it. There is alfo atlached to the fork the arm $m n$ (and a fimilar one on the other fide), of fuch length that, when the penduhm rod is perpendicular, as is reprefented here, the angular diftance of $n q$ from the rod eq II is precifely equal to the angular di. stance of the lefir lide of the pin p from the left end i of the flit $i k$.

The mode of action on this apparatus is abundantly fimple. The natural pofition of the pallet D is at δ, reprefented by the dotted lines, refting on the back of the detent F. It is naturally brought into this pofition by its own weight, and Atill more by the weight of thie ball H. The pallet D, being. fet on the fore fide of the arm at Z, comes into the fame plane with the detent F and the fwing-wheel. It is drawn, however, in the figure in another pofition. The tooth C of the wheel is fuppofed to have efcaped from the lecond pallet, on which the tooth A immediately engages with the pallet D, firuated at δ, forces it out, and then reits on the detent F, the pallet D leaning on the tip of the tooth. F is brought into this fituation in a way that will appear prefently. After the efeape of C, the pendulum, moving down the areh of femivibration, is reprefented as having attained the vertical polition. Proceeding fill to the left, the pin p reaches the extremity i of the nit $i k$; and, at the fame inftant, the arm n touches the rod eHI in q. The pendulum proceeding a hair's breadch further, withdraws the detent F from the tooth, which now even puftes off the detent, by aeting on the flant face of it. The wheel being now unlocked, the tooth following C on the other fide acts on its pallet, puhes it off, and refts on its detent, which has been rapidly brought inte a proper pofition by the action of A on the flant face of F. It was a fimilar action of C on its detent, in the moment of cfeape, which brought F into a fit pofition for locking the whel by the tonth A. The pendulum till gning on, the arm $m n$ carries the weight of the ball H , and the pallet connected with it, and it comes to reft before the pin p again reaches the end of the nit, which had been fuddenly withdrawn from it by the action of A on the flant face of F. The pendulum now returns towards the right, loaded on the left with the ball H , which reftores the motion which it had loft during the latt vibration. When, by its motion to the right, the pin p reaches the end k of the flit $i k$, it unlocks the wheel on the right fide. At the fame inftant the weight H ceafes to act on the pendulum, being now raifed up from it by the action of a tooth like 13 on the pallet D.

Let us now confider the mochanifm of thefe motions. The prominent feature of the contrivance is the almolt complete difengagement of the regulator from the wheels.

The wheeis, indeed, aft on the pallets ; but the paliets are then detached from the pendulum. The fole ule of the wheel is to raife the listle weights while the penculum is on the nther fide, in order to have them in radinefs at the arrival of the pendulum. 'I'hey are then laid on the pendulum, and fupply an accelerating force, v.lhich refores to the pendulum the momentum lot during the preceding vibration. Therefore no inequalities in the actinn of the wheel on the pallets, whether arifing from friction or oil, has any effece on the maintaining power. It remains always the fame, ramely, the rotative mo. mentum of the two weights. The only circumftance, in which the irregularity of the action of the wheels can affect the pendulum is at the moment of mocking. Here indeed the regula for may be affected; but this moment is fo fhort, in comparifon with other feapements, that it mult be confidered as a real improvement.

It is very uncandid to refufe the anthor a claim to the character of an ingenious artift on account of this contrivance, as has been cone by a very ingenious univerfity Profeffor, who taxes Mr Cumming with ignorance of the fir ℓ elements of mechanics, and fays that the beft thing in his book is his advice to fufpend the pendulum from a great block of marble, firmly fixed in the wall *. This is certainly a good advice, and we doubt * See Ludnot but that the Profeffor's clock would have performed / um's Figigy ftill better if he had coudefeended to follow it. It is ftill lefs candid to queftion the orig:nality of the invention. We know for certain that it was invented at a time and place where the author could not know what had been done by others. It would have been more like the urbanity of a well-educated man to have acknowledged the genius, which, without fimilar advantages, had done fo much.

But, while we thus pay the tribute of juttice to Mr Cumming, we do not adopt all his opinions. The: clock has the fame defects of the former in refpect of the laws of the force which accelerates the pendulum. The fudden addition of the fmall weight, and this almoft at the extremity of the vibration, would derange it very much, if the addition were fufeeptible of any fenfible variation. The irregularity of the action of the wheels may fenfibly affect the motion during the unlocking, when the clock is foul, and the pendulum $j u f$ able to unlock; for any difturbance at the extremity of the vibration greatly affects the time. We acknowledge that the parts which we here fuppofe to be foul may not be fo in the courfe of twenty years, thele parts being only the pivots of the feapement. The great defect of the fcapement is its liablenef3 to unlock by any jolt. It is more fubject to this than the others already mentioned. This rilk is much increafed by the nender make of the parts, in Mr Cumming's drawings, and in the only clock of the kind we have feen; but this is not neceffary : and it fhould be avoided for another reafon; the interpoling fo many flender and crooked parts between the moving power and the pendulum weakens the communication of power, and sequires a much more powerful wheelwork.

All thefe, however, are fight defecer, and only the laft can be called a fault. The clocks made on this principle lave goue remarkably well, as may be feen by the regifters of his majefty's private oblervatory. But the greateft objection is, that they do rot perform: bet-

W A T [793 1 W A T

Watch. ter than a well-made dead fcapement; and they are work. vaftly more troublefome to make and to manage. 'l'his is ftrictly true, and is a fcrious objection. The fact is, that the dominion of a heavy pendulum is fo great. that if any cne of the fcapements now defcribed be well executed with pallets of agate, and a wheel of hard fteel, and if the pendulum be fufpenced agreuably to Mr Cummirg.s advice, there is hardly any difference to be ob ferved in their performance. We fhall content ouridues with a lingle proof of this from fact. The clock invented by the celebrated Harrifon is at leafl cqual in its perfor:nance to any other. Friction is almoft annihilated, and no oil is required. It went fourteen years without being touched, and during that time did not vary one complete fecond from one day to another, nor ever deviated half a minute by accumulation from equable motion: Yct the feapenncnt, in lo far as it refpects the law of the accelerating force, deviates more from the proportion of the faces than the nolt recoiling fcapement that ever was pur to a good clock. It is fo different from all hitherto delcribed, both in form and princifle, that we mult not omit fome account of 1t, and with it we fhall conclude our feapements for clocks.
I.ct GDO reprefent the fiving-wbeel, of which M is the centre. A is the verge or axis of the pendulum. It has two very thort arms AB, AE. A flender rod $B C$ iurns on fine pivots in the joint B, and has at its extremity C a hook or claw, which takes hold of a tooth D of the fwing-wheel when the pendulum moves from the right fide to the left. This claw, when at liberty, ftands at right angles, or, at leall, in a certain determinate angle, with regard to the arm $A B$; and when drawn a little from that polition, it is brought back to it again by a very flender fpring. The arm AE is furnifhed with a detent EF, which alfo, when at liberty, maintains its pofition on the arm by means of a very flender fpring:

Let us now fuppole that the tooth D is prefling on the claw C , while the pendulum is moving to the right. The joint B yields, by its motion round \AA, to the preffure of the tooth on the claw. By this yielding, the angle $A B C$ opens a little. In the mean time, the fame motion round A caules the point F of the detent on the other fide to approach the circumference of the wheel in the arch of a circle, and the tooth G at the fame time advances. They meet, and the point of G is lodged in the notch under the projecting

Supfl. Vol. II. Part II.
heel f. When this takes place, it is evident that any farther motion of the point E round A mult push the tonth C a little backward, by means of the detent EF. It cannot come any ncarer to the whel. becaufe the ooint of the tooth fops the heel f. The intant that F puhes G back, the tooth I) is withdrawn from the claw C, and C lieg unt, by the aetion of its fpring, and refumes its polition at right angles to IBA; and the wheel is now frec from the clew, but is pubing at the detent $F(c)$. The penculum, having finithed its excurfion to the right (in which it caules the wheel to recoil by means of the detent F), returns toward the left. The wheel now advances again, and, by preffing on F, ails the pendulum through the whole angle of Ccapement. By this motion the claw C deferibes an arch of a çircle round A, and approzches the wheel, till it take hold of a oother tonth, namely, the one following D , and pulls it back a little. This immediately frees the detent F from the preflure of the tooth G, and it flies out a little from the wheel, tefuming its natural polition by means of its fpring. Soon after, the motion of the pendulum to the left ceales, and the pendulum returus; D pulling forward the hook C to ait the pendilum, and the former operation is repeated, \&c. \& \&

Such is the operation of the pallets of Harrifon and Hindley. Friction is almott totally avoided, and oil entirely (D). The motion is given to the pendulum by a fair pull or puih, and the tecth of the wheel only apply themlelves to the detents without rubbing. 'lhere is no drop, and the fcapement makes no noife, and is what the artilts call a filent fopement. The mechani. cian will readily perceive, that by properly difpofing the arms $A B, A E$, and difpofing the pallets on the circumfcrence of the wheel, the law, by which the action of the wheel on the pendulum is regulated, may be greatly varied, fo as to harmonize, as far as the nature of feapement, alternately pufhing and pulling, will admit, with the action of gravity.

But this is evidently a rccolling fcapement, and one of the worft kind; for the recoil is made at the very confines of the vibration, where every difturbance of the regular cycloidal vibration occafions the greateft difturbance to the motion. Yet this clock kept time with moft unexampled piecifion, far excelling all. that had been made before, and equal to any that have been made fince. Ihis is entirely owing to the immenfe fuperiority of the momentum of the peridulum over the maintaining power. 5 II
II.
(c) The reader may here remark the manner in which the preffure of the tooth G on the detent is transferred to the joint E by the intervention of the fhank FE, and from the joint E to the pendulum rod, by the intervention of the arm EA. This communication of preflure is precifely the fame that we made ufe of in explaining the common fcapement. MG, FE, and EA, in this fig. 10. arc performing the offices which we then gave to the lines MB, B !, and HA, in fig. 3. Harrrifon's pallet realifes the ab!raet theory.
(D) Mr Harrifon was at firft by profeffion a carpenter in a country place. Being extiemely ingenious and inventive, he had made a variety of curious wooden clocks. He made one, in particular, for a turret in a gentleman's houfc. Its expofure made it wafte oil very faft, and the maker was often obliged to walk two or three miles to renew it, and got nothing for his trouble. In trudging home, not in very good humour, he pondered with himfelf how to make a clock go without oil. He changed all his pinion leaves iuto rollers; which anfwered very well But the pallets required it more than any other part. After various other projects, he contrived thofe now reprefented, where there was no frietion, and no oil is wanted. The turret clock continued to go without being touched till Mr Harrifon left the country.
that the ofcillalions of a balance, nerod ly its fpring, and Watchundifurbed by all forcizn forces, are jerformed in equal times, achetbor they be evide or narreas. This principle was alfumed by the celebrated meehanician Dr Robert Hooke, on the authority of many experinents which he had made on the bending and uikending of fprings. He found that the force neceflay for retaining a fipring in any confrained pofition was proportional to its tenfion, or defection from its natural form. He expreffed this in an anagram, which be publinhed about the year 1660 , in order to eftablifh his claim to the difcovery, and yet conceal it, till he had made fome imporiant application of it. When the anagram was explained fonse years afterwards, it was, "Ul tenfio, fic vis." Dr Hooke thought of applying this difcovery to the regulation of watch movements. For, if a flender fpring be froperly applied to the axis of a watch balance, it will put that balance in a certain determinate pofition. If the balance be turned alice from this pofition, it feems to follow that it will be urged back toward it by a force pro. portional to its difance from it. He immediately made the application to an old watch, which he afterward gave to Dr Wilkins, BiRop of Chefter. This was in 1658. Its motion was fo amazingly improved, that Hooke was perfuaded of the perfeeion of his principle, and thought that nothing was now wanting for making a watch of this kind a perfect chronometer but the hand of a good workman. For his watch feemed almott perfec , thongh made in a fmall country town, in a very coarfe manner. Mr Huyghens alfo claims this difovery. Ie publined his claim about the year 1675, and prepofed to make watches for difcovering the longitude of a fhip at fea. But there is the moft unqueftionable exidence of Dr Hooke's priority by fifteen years, and of his having made feveral watches of this kind. One of them was in the poflcfion of his majefly king Charlcs II. Dr Hooke's firt balance fpring was Atraight, and acted on the balance in a very imperfect manner. But he foon faw the imperfectiors, and made feveral fucceffive alterations; and, among others, he employed the cylindrical fuiral now employed by Mr Arnold ; but he gave it up for the flat firal: and the king's watch had one of this kind before Mr Huyghens publinied his invention. His project of longitude watcheá had been carried on along with Lord Brouncker and Sir Robert Moray, and they had ouarrelled lome years before that publication. See Watch. Encycl.

But both Dr Hooke and Mr Huyghens were too fanguine in their expectations. We, by no mcans, have the evidence for the truth of this princiole that we bave for the accelerating action of the gravity on a pendulum. It refts on the nicety and the propriety of the experiments; and long experience has fhewn that it is fenfibly true only within certain limits. The demonftrations by which Bernoulli fupports the unqualified principle of Mr Huyghens, proeeed on hypothetical ductrines concerning the nature of elafticity. And even thefe Thew that the law of elafticity which he aflumed was felected, not becaufe founded on fimpler principles than any other, but becaufe it was confiltent with the experiments of Hooke and Huyghens. Befides, although this fhould be the true law of a fpring, it does not foilow that this fpring, applied in any zuay to the axis of a balance, will urge that balance agrecably to the fame law : and if it did, it fill does not follow that the ofcilla.
tions

W A T
 $795^{\text {] }}$ W A T

Watch- tions of the balance will be ifochronous; for the force has to move not only the balance but alfo the fpring. Part of the reftoring force of the fpring is employed in reftoring it rapidly to its quiefcent fhape, and thas enabling it to folloze and fill impel the yielding balance. It is therefore only the furplus which is employed in actually moving the balance, and it is uncertain whether this furplus varies according to the fame law, being always the fame proportion of the whole force of the fpring. We find it an extremely difficult problem to determine the law of variation of this furplus, even in the frmpleft form of the fpring ; nay, it is by no means an eafy problem to determine the law of ofcillation of a fpring, unloaded with any balance; and we can eafily thew that there are fuch forms of a fpring, that although the velocity with which the different parts approach to their quiefcent pofition be exactly as their excurfion from it, this is by no means the law of velocity which this fpring will produce in a balance. The matter of fact is, that when the fpring is a fimple flraight ftecl wire, fufpending the balance in the direction of its axis, the motions of it, if not immoderate, are precifly agreable to Huyghens's and Hooke's rule; and that the motion of a balance urged by a fpring wound up into a flat, or a cylindrical fpiral, as in common watches, and thofe of A rnold, deviates ferfibly from it, unlefe a certain analogy be preferved between the length and the elafticity of the fpring. If the fpring be inmoderately long, the wide vibrations are flower than the narrow ones; and the contrary is obferved when the fpring is immoderately fhort. A certain taper, or gradual diminution of the fyring, is alfo found to have an effect in equalizing the wide and narrow vibrations. There is alfo a great difference between the force with which a part of the fpring unbends itfelf, and the attion of that force in urging the balance round its axis ; and the performance of many watches, good in other refpects, is often faulty from the manner in which this unbending force is em ployed.

But, fince thefe corrections are in our power in a confiderable degree, we may fuppofe them applied, and the true motion (which we fhall call the cycloidal) attained; and we may then adapt the conftritaion of the frapenent to the preferving this motion undifturbed. And here we nuff fee at once that the problem is incomparably more delicate than in the cafe of pendulums. The vibrations mult be very wide, and the angular motion rapid, that it may be little affected by external motions. The fmallett inequalities of maintaining power acting through io great a fipace, mutt bear a confider. able proportion to the very minute momentum of a watch balance. Oil is as clammy on the pallets of a watch as on thofe of a clock; a vifcidity which would never be felt by a pendulum of 20 pounds weight will top a balance of 20 grains altogether. For the fame reafon, it is evident that any impropriety in the form of the pallet murt be incomparably more pernicious than in the cafe of a pendulum ; the deviation which this may occafion from a force proportional to the angular diftance from the middle point, mult bear a great proportion to the whole force.

The common recoiling fcapement of the old clocks ftill holds its place in the ordinary pocket watches, and anfwers all the cummon purpofes of a wateh very well. A well finified watch, with a recoiling fcapement,
will keep time within a minute in the day. This is enough for the ordinary affairs of life. But fuch watches are fuhjeet to great variation in their rate of going, by any change in the power of the wheels. This is evident; for if the watch be held back, or preffed forward, by the key applied to the fufse fyuare, we hear the beating greatly retarded or accelerated. The maintaining power, in the beft of fuch watches, is never lefs than onefifth of the regulating power of the fpring. For, if we take off the balance fpring, and allow the balance to vibrate by the impulfe of the wheels alone, we fhall find the minute hand to go forward from 25 to 30 minutes per hour. Suppofe it 30 . Then, fince the wheels act through equal fpaces with or without a fpring, the forces are as the fouares of the acquired velocities. (Dynamics, Suppl. $n^{\circ} 95$.) The velucity in this cafe is double; therefore the accelerating force is quadruple, and the force of the fpring is three times that of the wheels. If the hand goes forward 25 mi mutes, the force of the wheels is about one-ifth of that of the fpring. This great proportion is neceflary, as already obferved, that the watch may go as foon as unftopped.

We have but little to fay on this feapement ; its prin. ciple and manner of action, and its good and bad qualities, being the fane with thofe of the fimilar fcapement for pendulums. It is evident that the maintaining power being applied in the moft direct manner, and during the whole of the vibration, it will have the greatelt poffible influence to move the balance. A given mainfpring and train will keep in motion a heavier balance by means of this fcapement than by any other. But. on the other hand, and for the fane reafon, the balance has lefs dominion over the wheel-work, and its vibrations are more affected by any irregularities of the whec!work. Moreover, the chicf action of the wheel being at the very extremities of the vibrations, and being ver abrupt, the variations in its force are moft hurtful to the jfochronifm of the vibrations.

Although this fcapement is extremely fimple, it is fufeeptible of more degrees of goodnefs or imperfection than almoft any other, by the variation of the few particulars of its conftrustion. We thall therefore briety defcribe that conftruction which long experience has fanctioned as approaclisg near to the beft performance that can be obtained from the common lapement. Fig. 1t. reprefents it in what are thought its beft proportions, as it appears when louking Atraight down on the end of the balance arbor. C is the centre of the balance and verge. CA and CB are the two pallets; CA being the upper pallet, or the one neat to the balance, and CB being the lower one. F and D are two teeth of the crown wheel, moving from left to right; and E, G, are two teeth on the lower part of the circumference, moving from right to left. The tooth D is reprefented as juft cicaped from the point of CA, and the lower tnoth E as juft come in contact with the lower pallet. The feapement hould not, however, be quite fo clofe, becaufe an inequality on the teeth might prevent D from efcaping at all. For if Etonch the pallet CB before D has quitted CA, all will Iland ftill. 'This fault will be corrected by withdrawing the wheel a little from the verge, or by fhortening the pallets.

The proportions are as follow. The ditance between the front of the teeth (that is, of G, F, E, D,) and

V A T

Watch. wo:k. ti:e axis C of the balance is one- fifth of IM, the diflance between the points of the teeth. The length CA, CB of the paltets is three.fifths of the fane difance. The pallets make an angle ACB of 95 degrees, and the front DH or FK of the teeth make an angle of 25° with the axis of the crown wheel. The floping fide of the tooth mult be of an epicy cloidal form, fuited to the relative motion of the tooth and pallet.

From thefe proportions it appears that the pallet A can throce out, hy the action of the tooth D, till it reaches $a, 120$ degrees from CL, the linc of the crownwheel axis. For it can throw out till the pallet B ftrike againll the front of E, which is inclined 25° to CL. To this add BCA, =95 , aind we have LC a $=120$. In like manner B will throw out as far on the other fide. From 240°, the fum of thefe angles, take the angle of the pallets 95°, and there remains 145° for the greateft vilbation which the balance can nake without ftriking the front of the teeth. This ex. tent of vibration fuppofes the teeth to terminate in points, and the acting farfaces of the pallets tobe planes directed to the very axis of the verge. But the points of the teeth muft be rounded off a litule for ftrength, and to diminifh friction on the face of the pallets. This diminifhes the angle of fcapement very confiderably, by fhortening the teeth. Moreover, we muft by no means allow the point of the pallet to bank or ftrike on the forefide of a tooth. This would greatly derange the vibration by the violerice and abruptnefs of the check which the wheel would give to the pallet. This circumftance makes it improper to continue the vibrations much beyond the angle of feapement. One-third of a circle, or 120°, is therefore reckoned a very proper vibration for a fcapement made in thefe proportions. The impulfe of the wheels, or the angle of fcapement, may be increafed by making the face of the pallets a little concave (preferving the fame angle at the centre). The vibration may alfo be widened by pufhing the wheel nearer to the verge. This would alfo diminifh the recoil. Indeed this may be entirely removed by bringing the front of the whel up to C , and making the face of the pallet not a radius, but parallel to a radius and behind it, i. e. by placing the pallet CA fo that its acting face may be where its back is juit now. In this cafe, the tooth D would drop on it at the centre, and lie there at reft, while the balance completes its vibration. But this would make the barking (as the ftroke is called) on the teeth almot unavoidable. In fhort, after varying every circumitance in every poffible manner, the beft makers have fettled on a fcapement very nearly fuch as we lave defrribed. Precife rules can fcarcely be given; becaufe the law by which the force acting on the pallets varics in its intenfity, deviates fo widely from the action of the balance fpring, efpecially near the limits of the excurfions.
The difcoveries of Huyghens and Newton in rational mechanics engaged all the mathematical philofophers of Europe in the folution of mechanical problems, about the end of the laft century. The vibrations of elaftic plates or wires, and their influence on watch balances, became faniliar to every body. The great requifites for producing ifochronous vibrations were well underflood, and the artifts were prompted by the feculatifts to attempt conftructions of fcapements proper for this purpofe. It appeared clearly, that the moll effetual means
for this purpofe was to leave the balance unconnecteu with the whects, efpecially near the extremities of the vilration, where the motion is languid, and where every inequality of maintaining power mutt act for a longer time, and therefore have a great effect on the whole duration of the vibrations. The maxim of conftructionthat maturally arifes from thefe reflections is to confine, if poffible, the alion of the wheels to the middle of the vibration, where the motion is rapid, and where the chief effect of an increafe or diminution of the maintaining power will be to enlarge or contract the angular motions, but will make little change on their duration ; becaufe the greateft part of the motion will be effected by the balance fpring alone. This maxim was inculcated in exprefs terms by Joha Bernoulli, in his Rccherches Mrechaniques et Phyfiques; but it had been fuggefted by common fenfe to feveral unlettered artifts hefore that time. About the beginning of this century watehes were made in London, where the verge had a portion edb (fig. 12.) of a fmall cylinder, having its centre c in the axis, and a radial pallet b a proceeding from it. Suppofe a tooth juft efcaped from the point of the pallet, moving in the direction $b d e$, the cylin. drical part was fo fituated that the next tooth dropped on it at a fmall diftance from its termination. While the verge continues turning in the direction $b d e$, the tooth continues relting on the cylinder, and the balance fuftains no asion from the wheels, and has only to overcome the minute frictions on the polihed furface of a hard ftel cylinder. This motion may perhaps continue till the pallet acquires the pofition f, almoll touching. the tooth. It then flops, its motion being extinguifled by the increafing force of the fpring. It now returns, moving in the direction $c d b$; and when the pallet has acquired the pofition $c i$, the tooth g quits the circumference of the cylinder, and drops in on the pallet at the very centre. The ctooked form of the tooth allows the pallet to proceed fill farther, before there is any danger of banking on the tooth. This vibration being alfo ended, the balance refumes its firft direction, and the tooth now acts on the face of the pallet, and reflores to the balance all the motion which it had lof by friction, \&c. during the two preceding vibrations.

It is evident that this confluction obviates all the objections to the former recoiling fcapement, and that, by fufficiently diminithing the diameter of the cylindrical part, the friction may be reduced to a very fmall quantity, and the balance be made to move by the action of the fpring during the whole of the excurfion, and of the returning vibration. Yet this conftruction does not feen to have come much into ufe, owing, in all probability, to the great difficulty of making the drop fo accurate in all the teeth. The fmalleft inequality in the length of a tooth would occafion it to drop fooner or later; and if the cylinder was made very finall, to diminifh friction, the formation of the notch was almoft a microfcopical operation, and the fmalleft fhake in the axis of the verge or the balance-wheel would make the tooth flip palf the cylinder, and the watch run down amain.

About the fame time, a French artift in London (then the fchool of this art) formed another fcapement, with the fame views. We have not any diftinct account of it, but are only informed (in the 7^{7} th volume of the Mablincs apfrouvées par l'Acad, des Sciences) that the
tooth

W A T 797] W A 'T

Wratch- tooth refted on the furface of a hollow cylindst, and then efeaped by acting on the iuclined edge of it. But we may prefume that it had merit, being there told that Sir Iface Newton wore a watch of this kind.

A much fuperior fcapsment, on the fame principle, was invented by Mr Geo. Graliam, at the fame time that he changed the recoiling feape:nent for pendulurns into the dead beat. Indeed it is the fame fcapement, accommolated to the large vibrations of a balance. In figr. 13. DE reprefents part of the rin of the balancewheel. A and C are two of its tecth, having their faces be formed into phants, inclined to the circumference of the wheel, in an angle of about 15 degrees; fo that the length $b e$ of the face is nearly quadruple of its height c m. Suppofe a circular arch ABC deferibed round the centre of the wheel, and through the middle of the faces of the teeth. 'The axis of the balance paffes thro' fome point B of this arch, and we may fay that the mean circumference of the teeth paffes through the centre of the verge. On this axis is fixed a portion of a thin hollow cylinder $b c d$, made of hard tempered fteel, or of fome hard and tough fone, fuch as ruby or fapphire. Agates, though very hard, are brittle. Chalcedony and cornclian are tough, but inferior in hardnefs. This cylinder is fo placed on the verge, that when the balance is in its quielcent pofition, the two edges b and d are in the circuinference which paffes through the points of the teeth. Ly this conflruction the portion of the cylinder will occupy 210° of the circumference, or 30° more than a femicircle. The edge l, to which the tooth approaches from without, is rounded off on both angles. The other edge d is formed into a plane, inclined to the radius about 30°.

Now, fuppofe the wheel preffed forward in the directivo AC. The point b of the tooth, tonching the rounded edge, will pufh it outwards, turning the balance round in the direction $b \mathrm{c} d$. The heel e of the tooth will efeape from this edge when it is in the pufition b, and e is in the pofition f. The point b of the touth is now at d, but the edge of the cylinder has now got to i. The twoth, therefore, refts on the infide of the cylinder, while the balance continues its vibration a little way, in conferquence of the fhove which it has received from the action of the inclined plane pulling it out of the way, as the mould board of a plough fhoves a flone afide. When this vibration is ended, by the oppofition of the balance-fpring, the balance returns, the tooth (now in the pofition B) rubbing all the while on the infide of the cylinder. The balanec comes back into its natural pofition $b c d$, with an accelerated motion, by the action of its fpring, and would, of itfelf, vibrate as far, at leaft, on the other fide. But it is aided again by the tooth, which, prefing on the edge d, pufhes it afide, till it come into the pofition k, when the tooth efcapes from the cylinder altogether. At this moment the other edge of the cylinder is in the pofition l, and therefore is in the way of the next tooth, now in the polition A. The balance continues its vibration, the tooth all the while refting, and rubbing on the outfide of the cylinder. When this vibration, in the direction $d c b$, is finifhed, the balance refumes its firft motion $b c d$. by the action of the fpring, and the tooth begins to act on the firf edge b, as foon as the balance gets into its natural pofition, fhoves it afide, efcapes from it, and drops on the infide of the cylinder. In this manner are
the vibrations produced, gradually increafed to their maximum, and maintained in that flate. Every fucceeding tooth of the wheel acts firft on the edge b, and then on the edge d; relling frit on the outfide, and then on the infide of the cylinder. The balanee is under the influence of the wheels while the edpe b paffes to b, and while d paffes to l; and the relt of the vibration is performed without any abion on the part of the wheels, but is a little ohftrocted by friction, and by the clamminefs of the oil. In the conftruction now deferibed, the arch of action or feapement is evidently 30°, being twice the angle which the face of a $100 \pm 1 \mathrm{~m}$ makes with the circumference.

The reader will perecive, that when this fcapement is executed in fuch a manner that the fuccecding tooth is in contact with the cylinder at the inftant that the preceding one efeapes from it, the face of the tcoth mult be equal to the inficle diameter of the cylinder, and that the diftance between the heel of one tooth and. the point of the following one mutt he equal to the outfide diancter. When the fapement is fo clufe there is no drop. A good artift approaches as near to this adjuftment as poffible ; becaufe, while a tooth is dropping, but not yet in contadt, it is not acting on the balance, and fome force is luft. The cxecution is accounted very good, if the diftance between the centres of two teeth is twice the external diameter of the cylinder. This allows a drop equal to the thicknefs of the cylinder, which is about $\frac{1}{2}^{\frac{1}{2}}$ th of its diameter.

We muft alfo explain how this cylinder is fo connected with the verge as to make fuch a great revolution round the tooth of the wheel. The triangular tooth $c b \mathrm{~m}$ is placed on the top of a little pillar or pin fixed into the extremity of the piece of brafs $m \mathrm{D}$ formed on the rim of the whecl. Thus the wedge-tooth has its plane paral. lel to the plane of the whecl, but at a fmall diftance above it. Fig. 3 reprefents the verge, a long hollow cylinder of hard feel. A great portion of the metal is cut out. If it were fpread out flat, it would lave the Shape of fig. C. Suppofe this rolled up till the edges GH and $\mathrm{G}^{\prime} \mathrm{H}^{\prime}$ are joined, and we have the exact form. The part acted on by the point of the tooth is the dot. ted line $b d$. The part DIFE' ferves to comnect the two ends. Thus it appears to be a very flender and delicate piece ; but being of tempered Ateel, it is ftrong enough to refilt moderate jolts. The ruby cylinders are much more delicate.

Such is the cylinder fcapement of Mr Graham, called alfo the horizontat scapement, becaufe the balance wheel is parallel to the others. Let us fee how far it may be expected to anfwer the intended purpofes. If the excurfions of the balance beyond the angle of impulfion were made altogether unconnected with the wheels, the whole vibration would be quicker than one of the fame extent, made by the action of the balance. fpring alone, becaufe the middle part of it is accelerated by the wheels. But the excurfions are obitructed by friction and the clamminefs of oil. The effect of this in obflruiting the motion is very confiderable. Mr Le Roy placed the balance fo, that it refted when the point of the tooth was on the middle of the cylindric furface. When the wheel was nllowed to prefs on it, and it was drawn 80° from this pofition, it vibrated only during $4 \frac{1}{r}$ feconds. When the wheel was not allowed to touch . the cylinder, is vibrated 90 feconds, or 20 times as.

Watch work.

Watch- long; fo much did the frietion on the cylinder exceed work. that of the pivots. We are not fufficiently acquainted
with the laws of either of thefe obftructions to pronounce decidedly whether they will increafe or diminifh the time of the whole vibrations. We obferve diftincly, in motions with confiderable friction, that it does ust increafe nearly fo faft as the velocity of the motion; nay, it is often lefs when the velocity is very great. In all cafes it is obferved to terminate motions abruptly. The friction requires a certain force to overcome it, and if the body has any lefs it will ftop. Now this will not orily contract the excurfion of the balance, but will horten the time. But the return to the angle of inpulfion will undoubtedly be of longer duration than the excurfion ; for the arch of return, from the extremity of the excurfion to its beginning, where the angle of impulfion ends, is the fame with the arch of excurfion. The velocity which the balance has in any point of the return is lefs than what it had in the fame point of the excurfion ; becaufe, in the excurfion, it had velocity enough to carry it to the extremity, and alfo to overcome the friction. In the return, it could, even without friction, only have the velocity which would have carried it to the extremity ; and this fmaller velocity is diminifhed by friction during the return. The velocity being lefs through the whole return than during the excurfion, the time mull be greater. It may therefore lappen that this retardation of the return may compenfate the contraction of the excurfion and the diminution of its duration. In this cafe the vibration will occupy the fame time as if the balance had been free from the wheels. But it may more than compenfate, and the vibrations will then be flower; or it may not fully compenfate, and they will he quicker. We cannot therefore fay, a priori, which of the two will happen: but we may venture to fay that an increafe of the force of the wheels will make the watch go flower: for this will exert a greater preffure, give a greater impulfion, produce a wider excurfion, and increafe the friction during that greater excurfion, making the wide vibrations flower than the narrow ones; becaufe the angle of impulfion remaining the fame, the preffures exerted muft be quadrupled, in order to double the excurion (See Drnamics, in 9 . Suppl.), and therefore the friction will be increafed in a greater proportion than the momentum which is to overcome it. But, with refpect to the obltruction arifing from the vifcidity of the oil, we know that it follows a very different law. It bears a manifeft relation to the velocity, and is nearly proportional to it. But flill it is difficult to fay how this will affect the whole vihration. The duration of the excurfion will not be fo much contracted as by an equal obftruction from friction, becaufe it will not terminate the motion abruptly. There are thereYore more chances of the increafed duration of the return exeeeding the diminution of it in the excurfion. All that we can fay, therefore, is, that there will be a compenfation in both cafes. The time of excurfion will be contraEted, and that of return augmented.

Now, as the friction may be greatly diminifhed by fine polifh, fine oil, and a fmall diameter of the cylinder, we may reafonably expeet that the vibrations of fuch a balance will not vary nearly fo much from ifochronifm as with a recoiling fcapenent, and will be little affected by changes in the force of the wheels.

Accordingly, Graham's cylindrical fcapement fupplantcd all others as foon as it was generally known. We cannot compare the vibrations with thofe of a free balance, becaufe we have no way of making a free balance vibrate for fome hours. But we find that doubling or trebling the force of the wheels makes very little alteration in the rate of the watch, though it greatly enlarges the angular motion. Any one may perceive the immenfe fuperiority of this fcapement over the common recoiling fcapement, by preffing forward the movement of a horizontal watch with the key, or by keeping it back. No great change can be obferved in the frequency of the beats, however hard we prefs. But a more careful examination thews that an increafe of the power of the wheels generally caufes the watch to go flower; and that this is more remarkable as the watch has been long going without being cleaned. This fhews that the caufe is to be afcribed to the friction and oil operating on the wide arches of excurfion. But when this fcapement is well executed, in the beft proportions of the parts, the performance is extremely good. We know fuch watches, which have continued for feveral weeks without ever varying more than 7^{\prime} in one day from equable motion. We have feen one whofe cyliader was not concentric with the balance, hut fo placed on the verge that the axis of the verge was at o (fig. 13.), between the centre B of the cylinder and the entering edge b, and $B e$ was equal to the thicknefs of the cylinder. The watch was made by Emery of London, and was faid to go with aftonifhing regularity, fo as to equal any time-piece while the temperature of the air did not vary ; and when clean, was faid to be lefs affected by the temperature than a watch with a free fcapement, but unprovided with a compenfation piece. It is evident that this watch mufl have a minute recoil. This was faid to he the aim of the artif, in order to compenfate for the obftruction caufed by friction during the return of the balance from its excurfions. It indeed promifes to have this effect ; but we fhould fear that it fubjects the excurfions to the influence of the wheels. We fufpect that the indifferent performance of cylinder watches may often arife from the cylinder being off the centre in fome difadvantageous manner.

The watch from which the proportions here fated were taken, is a very fine onc made by Graham for Archibald Duke of Argyle, which has kept time with the regularity now mentioned. We believe that there are but few watches which have folarge a portion of the cylinder: few indeed have more than one half, or 180° of the circumference. But this is too little. The tooth of the wheel does not begin to act on the refting cylinder till its middle point A or B touch one of the edges. To obtain the fame angle of fapement, the inclination of the face of the tooth mult be increafed (it muft be doubled) ; and this requires the maintaining power to be increafed in the fame proportion. Befides, in fuch a fcapement it may happen that the tooth will never reft on the cylinder ; becaufe the inftant that it quits one edge it falls on the other, and puthes it afide, fo that the balance acquires no wider vibration than the angle of feapement, and is continually under the influence of the wheels. The fcapement is in its beft fate when the portion of the cylinder exceeds 180° by twice the inclination of the teeth to the circumference of the wheel.

It would employ volumes to defcribe all the fcapements which have been contrived by different artitts, aiming at the fame points which Graham had in view. We fall only take notice of fuch as have fome effential difference in primiple.

Fig. 14. exprefents a fcapement invented in France, and calied the Echajernent à $l_{\text {IRGute }}$, becaule the pal. Iet refembles a comma. The teeth A, B, C, of the balance wheel are fet very oblique to the radins, and there is formed on the point of each a pin, ftanding up perpendicalar to the piane of the wheel. This greatly refembles the wheel of Grahan's feapement, when the triangular wedge is cut off trom the top of the pin on which it ftands. The asis c of the verge is placed in the circumference paffing through the pins. The pallet is a plate of hard fleel a ef $i b$, having its plane parallel to the plase of the wheel. The inner edge of this plate is formed into a concave cylindrical furface betweer 0 and b, whofe axis ϵ coincides with the axis of the verge. Adjoining to this is the acting face $b d$ of the pallet. This is ejther a ftraight line $b a$, making an angle of nearly 30^{2} with a line $c b g$ drawn from the centre, or it is more generally curved, according to the noftrum of the artitt. The back of the pallet aef is alfo a cylindrical furface (convex) concentric with the other. This extends about 100° from a to f. The part lectween f and d may have any thape. The interval a_{0} is formed into a convex furface, in fuch a manner as to be everywhere interfected by the radius in an angle of 30° nearly ; i. e. it is a portion of an equiangular fipiral. The whole of this is conneeted with the verge by a crank, which paffes perpendicularly through it between f and e; and the plate is fet at fuch height on the crank or verge, that it can turn round clear of the wheel, but not clcar of the pins. The teeth of the wheel are fet fo obliquely, and made fo hender, that the verge may turn almofl quite romed without the crank's banking on the teeth. The part $f d b$, called the horn, is of fuch a length, that when one pin B rells on the cutfide cylinder at a, the point d is juft clear of the next pin A.

When the wheel is not acting, and the balance- fpring is in equilibrio, the notition of the balance is fuch that the point d of the forn is near i, about 30° from d. The figure reprefents it in the pofition which it has when the tooth A has juit efcaped from the point d of the horn. In this pofition the next tooth B is applied to the conves cylinder, a very little way (about 5^{c}) from its extremity a. 'i'his defeription will enable the reader to underfland the operation of the virgule fcape. ment.

Now fuppofe the pin A juft efcaped from the horn. The fucceeding pin B is now in contact with the back of the cylinder ; and the balance, having got an impulfe by the action of A along the concave pallet $b d$, contimues its motion in the difection $d g b$, till its force is fpent, the point of the horn arriving perhaps at b, more than 90° from d. All this while the following tooth B is reiting on the back ef of the cylinder. The balance now returns, by the action of its fpring; and when the horn is at i, the pin gets over the edge $a 0$, and drops on the oppofite fide of the concave cylinder, where it refts, while the horn moves from i to k, where it ftops, the force of the balance being agrain fpent. The balance then returns; and when the horn comes within
30° of d, the pin gets out of the hollow cylinder, thoves the horn out of its way, and efcapes at d. Befides the impulfe which the balance receives by the action of the wheel on the horn $b d$, there is another, though fmaller, action in the contrary direction, while the point of B paffes over the furface a_{0}; for this furface being inclined to the radius, the proffure on it urges the balance round in the direction $b d i$.
'The ehief difference of this fcapenment from the former is, that the inclined plane is taken from the teeth of the wheel, and placed on the verye. Tbis alone is a confiderable improvement ; for it is diffecult to fape all the teeth alike; uhereas the horn $l d$ is invariable. Moreover, the refting parts, although they be drawn large in this figure for the fake of diflinetnefs, may be made vaftly fmaller than Graham's cylinder, which muft be big enough to hold a tooth within it. By this change, the friction, during the repofe of the wheel, that is, during the excurfions of the balance, may be vafly diminifhed. The infide cylinder need be no big. ger than to receive the pin. But although the petformance of thefe fcapenients is excellent, they have not come into general ufe in this country. The caufe feems to be the great nicety requifite in naking the pins of the wheel pafs exactly through the axis of the verge. The leaft thate in the pivots of the balance and balance wheel muft greatly change the action. \dot{A} very minute increafe of diftanee between the pirots will caufe the pin B to flide from the edge a to the horn, without refting at all on the infide cylinder; and when it does fo, it will ftop the balance at once, and, immediatcly after, the watch will run down. The fame irregularities will happen if all the pins be not at precifely the fame diftance from the ax is of the wheel.

This fcapement was greatly improved, and, in appearance, totally changed, by Mr Lepaute of Paris in 1753. By placing the pins alternately on the two fides of the rim of the balance-wheel, he avoided the ufe of the outfide cylinder altogether. The fapement is of fuch a fingular form, that it is not eafy to reprefent it hy any drawing. We fhall endeavour, lowever, to deferibe it in fuch a manner as that our readers, who ate not artifls, will underftand its manner of acting. Artifts by profeffion will eafily comprehend ho. v the paris may be united which we reprefern as feparate.

Let ABC (fig. 15.) reprefent part of the rim of the balance-wheel, liaving the pins $t, 2,3,4,5$, Sec. projecting from its faces; the pins $1,3,5$, being on the fide next the eye, but the pins 2 and 4 on the farther fide. D is the centre of the balance and verge, and the fmall circle round D) reprefents its thicknefs. But the verge in this place is erooked, like a crank, that the rim of the whel may not be interrupted by it. This will be more particularly deferibed by and bye. There is attached to it a piece of hard tempered fteel $a b c d$, of which the part $a b c$ is a concave areh of a circle, having D for its centre. It wants about 30° of a femicircle. The rett of it $c d$ is alfo an arch of a circle, having the fame radius with the balance-wheel. The natural polition of the balance is fuch, that a line drawn from 1 , through the middle of the face $c d$, is a tangent to the circumference of the whed. But, fuppofe the balance surned round till the point d of the horn comes to $d^{\prime \prime}$, and the point c comes to 2 , in the circumference in which the pins are placed. Then tie

Watch- pin, preffing on the beginning of the horn or pallet, wo.rk.
pufhes it atide, flides along it, and efcapes at d, after
having generated a certais velocity in the balance. So far this fcapement is like the virgule fcapement defcribed already. But now let another pallet, limilar to the one now defcribed, be placed on the other fide of the wheel, but in a contrary pofition, with the acting face of the pallet turaed away from the centre of the whect. Let it be fo placed at E, that the moment that the pin 1 , on the upper fide of the wheel, efcapes from the pallet $c d$, the pin 4 , on the under fide of the wheci, fall 3 on the end of the circular arch ef g of the other pallet. Let the two pallets be connefted by means of equal pulleys G and F on the axis of each, and a thread round both, fo that they flall turn one way. The balance on the axis D , having gotten an impulfe from the action of the pia I, will continue its motion from A towards i, and will carry the other pallet with a $\sqrt{2}$ milar motion round the centre E from b towards k. The pin 4 will therefore reft on the concave arch $g f e$ as the pallet turns round. When the furce of the balance is fent, the pallet δd retuns towards its firt pofition. 'The pallet $g h$ turns along with it; and when the point of the firft has arrived at d, the beginning g of the other arrives at the pin 4; and, proceeding a -little farther, this pin efcapes from the concave arch ef g, and nlides along the pallet $g h$, pufhing it afide, and therefore urging the pallet round the centre \mathbf{E}, and confequently (by means of the convection of the pulleys) urging the balance on the axis D round at the fame time, and in the fame direction. The pin 4 efcapes from the pallet $g h$, when b arrives at 3 ; but in the time that the pin 4 was fliding along the yiedding pailet $g h$, the pin 3 is moving in the circumference $B D A$; and the inftant that the pin 4 efcapes from h at 3 , the pin 3 arrives at 2 , and finds the beginning c of the concave arch $c b a$ ready to receive it. It therefore refts on this arch, while the balance continues its motion. This perhaps continues till the poiat b of the arch comes to 2. The balance now ftops, its force being fpent, and then returns; and the pin 3 efcapes from the circle at c, flides along the yielding pallet $c d$, and when it efeapes at I , another pin on the under fide of the wheel arrives at 4 , and linds the arch $g f e$ ready to receive it. And in this manner will the vihration of the balance be continued.

This defcription of the mode of action at the fame time points out the dimenfions which muth be given to the parts of the pallet. The length of the pallet $c d$ or $g b$ mult be equal to the interval between two fucceeding pins, and the diftance of the centres D and E mull be double of this. The radius $\mathrm{D} e$ or $\mathrm{E} g$ may be as fmall as we pleafe. The concave arches $c b a$ and $\delta f e$ muft be continued far enough to keep a pin retting on them during the whole excurfion to the balance. The angle of fcapement, in which the balance is under the influence of the wheels, is had by drawing $\mathrm{D} c$ and $\mathrm{D} d$. This angle $c \mathrm{D} d$ is about 30°, but may be made greater or lefs.

Fig. B will give fome notion how the two pallets nay be combined on one verge. KL reprefents the verge with a pivot at each end It is bent into a crank MNO, to admit the balance wheel between its branches. 13 C reprefents this wheel, feen edgewife, with its pins, alernately on different fides. The pallets are alfo re-
prefented edgewife by $b c d$ and $b g f$, fixed to the in. fide of the branches of the crank, fronting each other. The polition of their acting faces may be feen in the preceding figure, on the verge D , where the pallet g b is reprefented by the dotted line $2 i$, as being lituated behind the pallst $c d$. The remote pallet $2 i$ is placed fo, that when the point d of the near pallet is juft quitted by a pin a on the upper lide of the wheel, the angle formed by the face and the arch of reft of the other pallet is juft ready to receive the next pin 2 , which lies on the under fide of the rim. A little attention will make it plain, that the action will be precifely the fame as when the pallets were on feparate axes. The pin I efcapes from d, and the pin 2 is received on the arch of reft, and locks the wheel while the balance is continuigg its motion. When it returns, 2 gets off the arch of relt, pulhes afide the pallet $2 i$, efcapes from it when i gets to I , and then the pin 3 finds the point ε ready to receive it, isc. The vibrations may be increafed by giving a fufficient impulfe through the angle of fcapement. But they cannot be more than a certain quantity, otherwife the top N of the crank will Arike the rim of the wheel. By placing the pins at the very edge of the wheel, the vibrations may eafily be increafed to a femicircle. By placing them at the points of long teeth, the crank may get in between them, and the vibrations extended fill farther, perhaps to 210°.

This feapement is unqueftionably a very grood one; and when equally well executed, fhould excel Graham's both by having but two acting faces to form (and thefe of hard fteel or of ftone), and by allowing us to make the circle of reft exceediagly fnall without diminifhing the acting face of the pallet. This will greatly diminif the friction and the influence of oil. But, on the other hand, we apprehend that it is of very difficult essecution. The figure of the pallets, in a manner that fhall be fufceptible of adjuftment and removal for repair, and yet fufficiently accurate and fteady, feems to us a very delicate job.

Mr Cumming, in his Elements of Clock and Watchwork, defribes (flightly) pallets of the very fame conflruction, making what he conceives to be coufiderable improvements in the form of the acting faces and the curves of reft. He has alfo made fome watches with this fcapement; but they were fo difficult, that few workmen can be found fit for the tafl; and they are exceedingly delicate, and apt to be put out of order. The connection of the pallets with each other, and with the verge, makes the whole fuch a contorted figure, that it is eafily bent aud twifted by any jolt or unfkilful handling.
There remains another feapement of this kind, having the tooth of the balance-wheel refting on a cylindrical furface on the axis of the verge during the excurfion, of the balance beyond the angle of feapement, and which differs fomewhat in the application of the maintaining power from all thofe already deferibed.

This is known by the name of Dupleix's foapement, and is as follows: Fig. 16. reprefents the effential parts greatly magnified. AD is a portion of the balancewheel, having teeth f, b, g, at the circumference. Thefe teeth are entircly for producing the refl of the wheel, while the balance is making excurious beyond the fcapement. This is effected by means of an agate cylinder op q, on the verge. This cylinder has a notch
o. When the cylinder turns round in the direction opq , the notch eafily paffes the tonth B which is relting on the cylindric furface; but when it returus in the direstion q p o, the tonth B gets into the notch, and follows it, prefling on one fide of it till the notch comes inte the polition o. The tooth being then in the pofition b, cfapess from the nutch, and another tnoth drops on the convex furface of the cylinder at P,

The batance-wheel is alfo furnihed, with a fet of ftout fat fided pins, llanding upright on its rim, as reprefented by a, D . There is alfo fixed on the verge a larger cylinder GFC above the fimaller one op q, with its an lex furfiee clear of the wheel, and having a pallet C, of ruty or fapphire, firmly indented into it, and projecting fo far as juft to keep clear of the pins on the wheel. The palition of this cylinder, with refpect to the fnaller one below it, is fuch that, when the tooth bis efcaped from the notch, the pallet C has juit paffed the pin a, which was at A while B relled on the fnall cylinder ; but it moved from A to a, while B moved to b. The wheel being now at liberty, the pin a exerts its preflure on the pallet C in the moft direct and advantageous manner, and gives it a Atrong impullion, following and accelerating it till another toverh itops on the little cylinder. The angle of fcapement depends partly on the projection of the pallet, and partly on the diameter of the fmall cylinder and the advance of the tooth B into the notch. Independent of the action on the finall cylinder, the angle of fcapement would be the whole arch of the large cylinder between C and $\%$. But a ttops before it is clear of the pallet, and the arch of impulfion is fhortened by all the fpace that is defribed lyy the pin while a tooth moves from B to b. It ftops at a.
We are informed by the beft artifts, that this fcape. ment gives great fatisfaction, and equals, if it do not excel, Graham's cylindrical fcapement. It is eafier made, and requires very little oil ou the fmall cylinder, and none at all on the pallet. They fay that it is the beft for pocket watches, and is cominr every day more into repute. Theory feems to accord with this character. The refting cylinder may be made very fmall, and the direct impulie on the pallet gives it a great fuperiority over all thofe already defcribed, where the action on the pallet is oblique, and therefore much force is loft by the influence of oil. But we fear that much force is lof by the tooth B fhifting its place, and thus fhortening the arch of impulfion; for we cannot reckon much on the action of B on the fide of the notch, becaufe the lever is fo extremely fhort. Accordingly, al! the watches which we have feen of this kind have a very flrong main fpring in proportion to the fize and vibration of the balance. If we leffen this dininution of the angle of impultion, by leffening the cylinder op q, and by not allowing B to penetrate far into the noteh, the fmalleft inequality of the teeth, or shake in the pivots of the balance or wheel, will caufe irregularity, and even uncertainties in the locking and unlocking the wheel by this cylinder.
A fcapement exceedingly like this was applied long ago by Dutertre, a French artitt, to a pendulum. The only difference is, that in the pendulum fcapement the fmall cylinder is cut through to the centre, half of it only leing left; but the pendulum fcapement gives a more tfective employment of the maintainingpower, becaufe Suppl. Vol. II. Part II.
the wheel acts on the pallet during the subole of the arfifted viluration. In a balance feapement, if we attenpt to diminifh the inefficient motion of the pia from A to a, hy leffiening the diameter of the finall cyliader, the hold given ton the tooth in the notel will be fo trining, that the looth will be thrown nut hy the finathett play in the pivot holes, or inequality in the leegth of the teeth.

With this we conclude our accornt of ficapements, where the action of the maintaining power on the bdlance is fufpended during the excurfionbeg ond the a igle of impulfion, by making a tooth reft on the furface of a frall concentric cylinder. In fuch feapments, the balance, during its excurfions, is almoft free from any connection with the wheels, and its ifochromifin is difturbed hy nothing but the fricion on this furfare. We come now to feapements of more atful conftruction, in which the balance is really and cumpletely free during the whole of its excurfin, being altogether difengaged from the wheehwork. Thefe are called netached scaplments. They are of more ececut date. We believe that Mr Le Roi was the firl inventor of them, abont the year 1748. In the Menoirs of the Academy of Paris for that year, and in the Collection of approved Machines and Inventions, we have deferiptions of the contrivance. The balance wheel refts on a detent, while the balance is vibrating in perfect freedom. It has a pallet ftanding out from the centre, which, in the courfe of vibration, paffes clofe by the point of a tooth of the wheel. At that inftant a pin, connected with this pallet, withdraws the detent from the wheel, and the tooth juft now mentioned follows the pallet with rapidity, and gives it a fmart pufh forward. Immediately after, another tooth of the wheel meets the other claw of the detent, and the wheel is again locked. When the balance returns, the pin pufles the detent back into its former place, where it again locks the wheel. Then the balance, refuming its firf direction, unlocks the wheel, and receives another impulfion from it. Thus the balance is unconnected with the wheels, except while it gets the impulion, and at the moments of unlocking the wheels.
This contrivance has been reduced to the greateft poffible fimplicity by the Britih artifts, and feems icarcely capable of farther improvement. The follow. ing is one of the moft approved confructions. In fig. 17. a b o reprefents the pallet, which is a cylinder of hard fteel or ftone, having a notch $a b$. A portion of the balance wheel is reprefented by A B. It is pla. ced fo near to, the cylinder that the cylinder is no more than clear of two adjoining teeth. DE is a long fpring, fo fixed to the watch-plate at E , as to prefs very gently on the ftop pin G. A fimall fud F is fixed to that fide of the fpring that is next to the wheel. The tooth of the wheel refts on this flud, in fuch a manner that the tooth a is juft about to touch the cylinder, and the tooth f is juft clear of it. Another fpring, extremely Ilender, is attached to the fpring DE , on the fide next the balance wheel, and claps clofe to it, but keeping clear of the ftud F, and having its point o projecting about $\frac{{ }_{5}^{7}}{5}$ th of an inch beyond its extremity. When the point 0 is preffed towards the wheel, it yiclds mot readily; but, when preffed in the oppofite direction, it carries the fpring DE along with it . The cylinder being fo placed on the verge that the edge a of the notch

Watch-
wo.k.

W A T

Watchwork.
is clofe by the tooth a, a hole is drilled at i, clofe by the projecting point of the flender ipring, and a fmall pin is driven into this hole. This is the whole apparatus; and this fituation of the parts currefponds to the quiefcent pofition of the balance.

Now, let the balance be turned out of this pofition 80 or 90 degrees, in the direction $a b c$. When it is let go, it returns to this pofition with an accelerated motion. The pin i frikes on the projecting point of the flender fpring, and, prefing the ftrong fpring DE outward from the wheel, withuraws the flud F from the tooth; and thus unlocks the wheel. The tooth a engages in the notch, and urges round the balance. The pin i quits the fleader fpring before the tooth quits the notch; fo that when it is clear of the pallet, the wheel is locked again on the fud F, and another tooth g is now in the place of a, ready to act in the fame manner. When the force of the balance is fpent, it ftops, and then returns toward its quiefcent pofition with a motion cont inually accelerated. The pin i arrives at the point o of the flender fpring, raifes it from the frong fpring without difturbing the latter, and almoft without being difturbed by this trifling obftacle; and it goes on, turning in the direction $a b c$, till its force is again fpent ; it tops, returns, again unlocks the wheel, and gets a new impulfion. And in this manner the vibrations are continued. Thus we fee a vibration, almoft free, maintained in a manner even more fimple than the common crutch fcapement. The impulfe is given direct, without any decompofition by oblique action, and it is continued through the wobole motion of the wheel. No part of this motion is loft, as in Dupleix's fcapement, by the gradual approach of the tooth to its active pofition. Very little force is required for unlocking the wheel, becaufe the fpring DFE is made flender at the remote end E, fo that it turns round E almof like a lever turning on pivots. A fudden twitch of the watch, in the direction $b a$, might chance to unlock the wheel. But this will only derange one vibration, and even that not confiderably, becaufe the teeth are fo clofe to the cylinder that the wheel cannot advance till the notch comes round to the place of frapement. A tooth will continue preffing on the cylinder, and by its friction will change a little the extent and duration of a fingle vibration. The greateft derangement will happen if the wheel fhould thus ualock by a jolt, while the notch paffes through the arch of fcapement in the returning vibration. Even this will not greatly derange it, when the watch is clean and vibrating wide; becaufe, in this pofition, the balance has its greateft momentum, and the direction of the only jolt that can unlock the wheel tends to increafe this momentum relatively. In fhort, confidering it theoretically, it feems an almolt perfect feapement; and the performance of many of thefe watches abundantly confirms that opinion. They are known to keep time for many days together, without varying one fecond from day to day ; and this even under confiderable variations of the maintaining power. Other detached fcapements may equal this, but we fcarcely expect any to exceed it ; and its fimplicity is fo much fuperior to any that we have feen, that, on this account, we are difpofed to gine it the preference. We do not mean to fay that it is the beft for a pocket watch. Yerhaps the fcapement of Dupleix or Graham may be preferable, as being fuf-
ceptible of greater ftrength, and more able to withftand jolts. Yet it is a fact that fome of the watches made in this form by Arnold and others have kept time in the wonderful manner abovementioned while carried about in the pocket.

Mr Mudge of London invented, about the year $\mathbf{1 7 6 3}_{3}$, another detached fcapement, of a fill more ingenious conftruction. It is a counterpart of Mr Cumming's fcapement for pendulums. The contrivance is to this effect. In fig. 18. abc reprefents the balance. Its axis is bent into a large crank EFGHIK, fufficiently roomy to admit within it two other axes M and L, with the proper cocks for receiving their pivots. The three axes form one ftraight line. About thefe fmaller axes are coiled two auxiliary fpring's, in oppofite directions, having their outer extremities fixed in the ftuds A and B. The balance has its !pring alfo, as ufual, and the three fprings are fo difpofed that each of them alone would keep the oalance at reft in the fame pofition, which we may fuppofe to be that reprefented in the figure. The auxiliary fprings A and B are connected with the balance only occafionally, by means of the arms m and n projecting from their refpective axes. Thefe arms are catched on oppofite fides by the pins o, p, in the branches of the crank; fo that when the balance turns round, it carries one or other of thofe arms round with it, and, during this motion, it is affected by the auxiliary fpring connected with the arm fo carried round by it.

Let us fuppofe that the balance vibrates 120° on each fide of its quiefcent pofition $a b c$, fo that the radius E_{a} acquires, alternately, the pofitions $\mathrm{E} b$ and $\mathrm{E} c$. The arxiliary fprings are connected with the wheels by a common dead-beat pendulum fcapement, fo that each can be feparately wound up about 30°, and retained in that pofition. Let us alifo fuppofe that the fpring a has been wound up 30° in the direction $a b$, by the wheel-work, and that the point a of the rim of the balance, having come from c, is paffing through a with its greatef velocity. When the radius $\mathrm{E} a$ has paffed $a 30^{\circ}$ in its courfe toward b, the pin of finds the arm m in its way, and carries it along with it till a gets to b. But, by carrying away the arm m, it has unlocked the wheel-work, and the fpring B is now wound up 30° in the other direction, but has no connection with the balance during this operation. Thus the balance finifhes its femivibration $a b$ of 120°, oppofed by its own fpring the whole way, and by the auxiliary fpring A through an angle of 90°. It returns to the pofition $\mathrm{E} a$, aided by \AA and by the balance.fyring, through an angle of 120°. In like manner, when $\mathrm{E} a$ has moved 30° toward the pofition $E c$, the pin p meets with the arm n, and carries it along with it through an angle of 90°, oppofed by the fpring B, and then returns to the pofition $\mathrm{E} a$, affifted by the fame fpring through an arch of 120°.

Thus it appears that the balance is eppofed by each auxiliary fpring through an angle of 90°, and affifted through an angle of 120°. This difference of action maintains the vibrations, and the neceffary winding up of the auxiliary fprings is performed by the wheelwork, at a time when they are totally difengaged from the balance. No irregularity of the wheel-work can have any influence on the force of the auxiliary fprings, and therefore the balance is completely difengaged from

Watchwork.

W A T

all thefe irrcgularities, except in the fhort moment of unlocking the wheel that winds up the fprings.
This is a moft ingenious conftruction, and the neares approach to a free vibration that has yet bcen thought of. It deierves particular remark that, during the whole of the returning or accelerated femivibration, the united force of the fprings is proportional to the dittance from the quiefcent pofition. The fame may be faid of the retarded excurfion beyond the angle of impulfe : therefore the only deviation of the forces from the law of cycloidal vibration is during the motion from the quiefcent pofition to the meeting with the auxiliary fpring. Therefore, as the forces, on botll fides, beyond this angle, are ia their due oroportion, and the balance al. ways makes fuch e:curfions, there feems nothing to dilurb the ifochonifm, whether the vibrations are wide or narruw. Accordingly, the performance of this fcapement, under the fevereft trials, equalled any that were compared with it, in as far as it depended on feapement alone. But it is evident that the execution of this fcapeanent, though moit fimple in priuciple, mult always be vally more dificult than the one defcribed before. There is fo litule room, that the parts mult be exceedingly fmall, requiring the mof accurate workmanfhip. We think that it may be grcatly fimplified, preferving all its advantages, and that the parts may be made of more than twice their prefent fize, with even lefs load on the balance from the inertia of matter. This im. provement is now carrying into effect by a friend.

Still, however, we do not fee that this fcapement is, theoretically, fuperior to the laft. The irregularities of maintaining power affect that \{capement only in the arch of impulion, where the velocity is great, and the time of action very fmall. Moreover, the chief effeet of the irregularities is only to enlarge the excurtions; and in thefe the wheels have no concern.

Mr Mudge has alio given another detached fcapement, which he recommends for pocket watches, and executed entirely to his fatisfaction in one made for the Queen. A dead beat pendulum fcapement is interpo. fed, as in the laft, between the wheels and the balance. The crutch EDF (fig. 19.) has a third atm DG, ftanding outwards from the meeting of the other two, and of twice their length. This arm terminates in a fork AGB. The verge V has a pallet C , which, when ell is at relt, would Itand between the points A, B of the fork. But the whecl, by its action on the pallet E , forces the fork into the polition $\mathrm{B} g b$, the point A of the fork being now where B was before, juft touching the cylindrical furface of the verge. The fcapement of the crutch EDF is not accurately a dead beat fcape ment, but has a very fmall recoil beyond the angle of impulfion. By this circumftance the branch A (now at B) is made to prefs mof gently on the cylinder, and keeps the wheel locked, while the balance is going round in the direction BHA. The point A gets moving from A to B by means of a notch in the cylinder, which turns round at the fame time by the action of the branch AG on the pallet C; but A does not touch the cylinder during this motion, the notch leaving free room for its paffage. When the balance returns from its excurfion, the pallet C Arikes on the branch A (ftill at B), and unlocks the wheel. This now acting on the crutch pallet F, caufes the branch b of the fork to fol-
low the pallet C , and give it a Atrong impulfe in the direction in which it is then moving, cauling the balance to make a femivibration in the direction AHB. The fork is now in the lituation Ag a, fimilar to $\mathrm{B} g b$, and the wheel is again locked on the crutch pallet \dot{E}.

The intelligent reader will admit this to be a very fteady and effective fapement. The lockage of the wheel is procured in a very ingenious manner: and the friction on the cylinder, neceffary for effecting this, may be made as fmall as we plafe, notwithltanting a very frong action of the wherl: For the preflure of the fork on the colinder depends entirely on the degree of recoil that is formed on the pallets E and F. Pref. fure on the cylinder is not indijpenfably neetflary, and the crutch feapement might be a real dead beat. But a fmall recoil, by keeping the fork in contact with the cylinder, gives the mott perfert fleadinefs to the motion. The ingenious inventor, a man of approved integrity and judgment, declares that her Majefty's watch was the beft pocket watch lie had ever feen. IVe are nut difpofed to queftion its excellency. We faw an experiment watch of this conftruction, made by a counery artif, having a balance fo heavy as to vibute only twice in a fecond. Every vibration was fenfibly beyond a turn and a half, or 540°. 'The artilt affured us, that when its proper balance was in, vibrating fomewhat more than five times in a fecond, the vibrations even exceeded this. He had procured it this great mobility by fublituting a roller with fine pivots in place of the fimple pallet of Mudge. This great extent of detached vibration is an unqueftionable excellence, and is peculiar to thofe two fcapements of this ingenious artilt.

Very ingenious fcapements have been made by Ernnhaw, Howel, Hayley, and other Britiht artilts; and ma. ny by the artitts of Paris and Geneva. But we mutt conclude the atticle, having defcribed all that have ary difference in principle.

The fcapement having beeri brought to this degree of perfection, we have an opportunity of making experiments on the law of action of fprings, which has been too readily affumed. We think it eafy to demonfrate, that the figure of a fpring, which mult have a great extent of rapid motion, will have a confiderable influence on the force which it impreffes on a belance in aत̃tual motion. The accurate determination of this influence is not very difficult in fome fimple cafes. It is the greatelt of all in the plane fpiral, and the leaft in the cylindrical ; and, in this lait form, it is fo much leis as the diameter is lefs, the length of the fpring being the fanc. By employing many tuins, in order to have the farne ultimate force at the extremity of the excurfion, this it. fluence is increafed. A particular length of fpring, therefore, will make it equal to a given quantity; and it may thus compenfate for a particular magnitude of friction, and other obftructions. This accounts for the ohfervation of Le Roy, who found that every fpring, suben applied to a novement, had a certain length, which made the wide and narrow vibrations ifochronous. His method of trial was fo judicious, that there can be no doubt of the juftaefs of his conclution. His time keeper bad no fuzee; and when the laft revolution of the main wheel was going on, the vibrations were but of half the extent of thofe made during the firft revolution. With. out minding the real rate of going, be only compared

Wrath.
wuin.

W A T [804] W A T

the duration of the firft and laft revolution of the minute hand. in artift of our acquaintance repeated thefe experiments, and with the fame refult: But, unfortunately, conld derive little benefit from them; be. caufe in one flate of the oil, or with one balance, he found the lengths of the fame fpring, which produced ifochonous vibrations, were different from thofe which had this effect in another fate of the oil, or with another balance. He alfo obferved another difference in the rate, arifing from a difference of pofition, according as XII, V1, III, or IX, was uppermot ; which diffe. rence plainly arifes from the fwagging of the fpring by its weight, and, in that fate, acting as a pendulum. This unluckily put a too to his attempts to leffen this hurtful influence hy employing a cylindrical fpiral of fmall diameter and great length.

WATER Blowing Machine, called-in French Souffet d'eat or trompe, is a machine which, by the action of falling water, fioplies air to a blaft furnace. It confils of an topright pipe, through which a thower of water is made to fall; and this Mower carrics cown with it a mafs of air, which is received bericath in a kind of tub, and condueted to the furnace by means of a pipe. The firft idea of fuch a nachine was doubtlefs fuggefted by thore local winds, which are always produced by natural falls of water over precipices, and in the mountains (fce page 277 of this Volume) ; but perhaps we are indebted for the frill accurate theory of it to Profeffor Venturi.

That philofopber, in his experimental refearches concerning the lateral communication of motion in fluids, proves that the water-blowing machine affords air to the furnace, by the accelerating force of gravity and the lateral communication of motion combined together. He begins with an idea, which, he candidly acknow. ledges, did not efcape the penetration of Leonardo Da Vinci. Suppofe a number of equal balls to move in contact with each other along the horizontal line $A B$ (Plate XLVI. fig. 1.). Imagine them to pafs with an uniform motion, at the rate of four $b_{a}!l_{s}$ in a fecond. Let us take 13 F , equal in 16 feet Erglith. Du. ring each recond four ball; will fall from B to F, and their refocetive diftances in falling will te nearly $\mathrm{BC}=$ $1, \mathrm{CD}=3, \mathrm{DE}=5, \mathrm{EF}=7 . \quad \mathrm{Wc}$ have here a very evident reprefentation of the feparation, and fucceffive elongation, which the accelerating force of gravity produces between bodies which fall after each other.

The rain water flows out of gutters by a continued current ; but during its fall it feparates into portions in the vertical direction, and ftrikes the pavement with diftinct blows. The water likewife divides, and is feattered in the horizontal direction. The fream which iffues out of the gutter may be oac inch in diameter, and ftrike the pavement over the fpace of one foot. The air which exifts between the vertical and horizontal feparations of the water which falls, is impelled and carried downwards. Other air fucceeds laterally ; and in this manner a current of air or wind is produced round the place ftruck by the water. Hence the following idea of a water-blowing maching :

Let BCDE (Eig. 2.) reprefent a pipe, through which the water of a canal $A B$ falls into the lower receiver, MN. The fides of the tube have openings all rourd, through which the air freely enters to fupply what the water carries down in its fall. This mixture of water
and air proceeds to Atrike a mals of llone Q; wherce rebounding through the whole width of the receiver MN , the water fcpirates from the air, and falls to the bottom at XZ, whence it is difcharged into the lower channel or drain, by one or more openings TV. The air being lefs heavy than the water, eccupies the upper. patt of the receiver; whence being urged through the upper prpe O, it is conveyed to the forge.

It has been feppofed by fome eminent chemins, that the air which pafies through the pipe O is furnithed hy the decompofition of water. To afcertain whether this be the cafe or not, our author formed a water. blowing engine of a fmall f:ze. The pipe BD was two iaches in diameter, and four feet in height. When the water accurately filled the fection BC , and all the lateral openings of the pipe BDEC were clofed, the pipe O no longer offered any wind. It is therefore evident, that in the open pipes the whole of the wind comes from the atmofphere, and no portion is afforded by the decompnlition of water. It remains, therefore, to determine the circumblances proper to drive into the receiver Miv the greateit quantity of air, and to meafure that quantity.

1. 'To obtain the greateft effect from the acceleration of gravity, it is necel?ary that the water fhould begin to fall at BC, (fig. 2.) with the leat poffible velocity; and that the hiight of the water FB thould be no more than is neceflary to fill the fection BC. Our authot fuppofes the vertical velocity of this fection to be produced by an height or head equal to $B C$.
2. We do not yet know, by direct experiment, the diftance to which the lateral communication of motion between water and air can extend itfelf; but we may admit with confidence, that it can take place in a fection douhle that of the original fection with which the water enters the pipe. [eet us fuppofe the fection of the pipe BDEC to be couble the fection of the water at BC ; and, in order that the feream of Auid may extend and divide itfalf through the whole double fection of the pipe, fome bars, or a grate, are placed in BC , to diftribute and fcatter the water through the whole internal part of the pipe.
3. Since the air is required to move in the pipe O with a certain velocity, it mult be compreffed in the receiver. This. compreffion will be propotioned to the fum of the azcelerations, which thall have been deftroyed in the inferior part KD of the pipe. Taking KD $=1,5$ feet, we fhall have a preffure fufficient to give the requilite velocity in the pipe O. The fides of the portion KD , as well as thofe of the receiver MN , mult be exactly clofed in every part.
4. The lateral openings in the remaining part of the pipe BK may be fo difpofed and multiplied, particularly at the upper part, that the air may have free accefs within the tube. We will fuppofe them to be fuch that 0,1 foot height of water might be fufficient to give the seceffary velocity to the air at its introduction through the apertures.

All thefe conditions being attended to, and fuppofing the pipe $B D$ to be cylinarical, it is required to determine the quantity of air which paffes in a given time through the circular fection $K L$. Let us take in feet $\mathrm{KB}=\mathrm{r}, 5 ; \mathrm{BC}=\mathrm{BF}=a ; \mathrm{BD}=b$. By the common theory of falling bodies, the velocity in KL will be $7,76 \checkmark(a+b-1,4)$; the circular fection $\mathrm{KL}=$

0,785

Water, $0,785 a^{2}$. Admitting the air in KL to have acquithe mixture of the water and air which palfes in a fe-
cond through KI is $=6$, $a^{2} \sqrt{ }(a+b-1,7)$. We muit deduct from the quantity $(a+b-1,4)$ that beight which anfwers to the velocity the water muit Infe by that portion of velocity which it commanicates to the air laterally introduced; but this quantity is fo fimall that it may be reglected in the calculation. The water which paffes in the fame time of one fecond thro' BC is $=0,4 a^{2} \sqrt{ }(a+0,1)$. Confequently, the quantity of air which paffes in one fecond through KL, will be $=6,1 a^{2} \sqrt{ }(a+b-1,4)-0,4 a^{2} \sqrt{ }(a+0,1)$, taking the air itfelf, even in its ordinary thate of compreffion, under the weight of the atmofphere. It will be proper, in practical applications, to deduct one-fourth from this quantity; 1 . On account of the fhocks which the fcattered water fultains againit the inferior part of the tube, which deprive it of part of its motion; and, 2. Becaufe it mult happen that the air in LIK will not, in all its palts, have acquired the fame velocity as the water.

If the pipe O do not difcharge the whole quantity of air afforded by the fall, the water will defeend at XZ; the point K will rife in the pipe, the affux of air will diminith, and part of the wind will iffue out of the lower lateral apertures of the pipe BK.

We hall nut here examine the greater or lefs degree of perfection of the different forms of water-blowing machines which are ufed at varions iron forgee; fuch as thofe of the Catalans, and elfewhere. Thefe points may be eafly determined from the principles here laid down, compared with thofe eltablifhed in the articles Resistance of Fluids (Encycl.), and Dynamics (Supplement.).

WEAVING (fee Encycl.) is an operation which, by means of a well-known inftrument called the rueaving.loom, has hitherto been performed by bodily labour. That labour is pretty fevere ; and Mr Robert Millar, an ingenious calico printer in the counts of Dumbaton, bcotand, wihing to leffen it, invented, fome years ago, a weaving-loom, which may be wrought by water, fteam, horfes, or any other power. For his invention he received a patent, dated June 26 th 1796 ; and though timh compels us to fay, that we do not think it likely to emulate the fpinning machine of Arkwright, it is fufficiently ingenious to deferve notice in a Work of this kind. The following is his own defeription of his patent weaving-loom:

Fig. 1. (Plate L.) reprefents a fide view of the loom, $\mathrm{AA}, \mathrm{BE}, \mathrm{CC}, \mathrm{DD}$, being the frame. a is an axis (which we thall call the fpindle) acrofs the frame. On this axis is a fheeve b, two inches thick, having a groove round it, two inches deep, and half an inch wide. The bottom of this groove is circular, except in one part c, where it is filled up to the top; a lever d refts on the bottom of this groove, and is lifted up by it when the elevation c comes round to the fituation reprefented in the figure. By this motion, the leverd acts on the ratchet-wheel e by the catch t, and draws it forward one tooth, each revolution of the fhetve. This ratehet wheel is in an iron frame $g g$, which alfo properly carrics the two catches t and u, which are connected with it at v. The catch u holds the ratchetwbeel in its pofition, while the lever d, and the catch t, are moved by the groove 6 in the Cheeve. On the arbor
of the ratchet is a fmall pinion b, working in the wheel Weavi ng f; this wheel is tixed on the end of the rollere e of figg. 3. On the fide of the faeeve b is lixed a wiper l, which lifts the treadlel. 'I'his ticadle turns on its juints in the fheeve E, which is fixed to the fide of the frame A and D; it is kejt preting on the bottom of the groove in the fheeve by a fpring m, fiaed to the frame fide A, and having a flender rod n from its extremit y, joining it with the ticadle at /. From the puint of the treadle there goes a belt o, which paffes over the pulley p, which is feen edgewife in this figure, and is joined to the top of the ny pin q, of fig. 2. At the end of the frame A is the fhort polt F; on this rells the yarn beam j, having a fheeve r, over which paffes a cord, having a weights fufpended to it. The other end of this cord is faftened to the furing z^{\prime}; the weight eaufes the yarnbeam to ftretch the web from the ratchet whecle, with its catch u; and the fpring v allows the rope to flide on the fheeve as the ratchet is drawn round during the working.

Fig. 2, is a front view of the loom. $a a$ is the fpindle which carries the noeve b, and the wipers d and d, which move the treadles $\tau w, \pi v$, of fig. 1 . Thefe ufe the treadles of the headles, with which they are con. nected by cords from the fhafts of the headles s, s. From the upper fhaft there go $t w o$ leathern belts f, f, to the, roller y, furnifhed each with a buckle, for tightening them at pleafure. The two wipers c, c, on the thaft a, which ferve for taking back the lay, have the two treadles x, x, in fig. 3 . with a belt from each paffing over the roller $b 2$ of fig. 1 . and fixed to the fword of the lay. From the fwords of the lay forward is fixed a belt to each end of the roller i; from this roller there goes a cord to the ipring j, which ferves for taking forward the lay which is linged on the rocking tree t. The far-wheel b of fig. 3 . and the fheeve b of fig. 1 . are fised to the oppolite ends of the fpindle a without the frame; and both the wheel and heeve have a wipor k fixed to them for moving the treadles. In order to drive the fluttle, the belts o, o, go from the points of the treadles, over the pulleys p, p, to the top of the flypin q : 'Lhis turns on a pin-joint in a rail r, which goes aciofe the loom. Irom its lower end there go two fmall cords to the fhuttle drivers ${ }_{o}, g$, which flide on the iron rods n, n. A long tron rod v goes acrois the lay, and is hung on two centres at the ends. In this red v are fixed two fmall crooked wires ru, $s u$, which are more diftinctly marked in the little figure w above, which reprefents a fection of the lay. 'The dot at the lower end of the wire w, in this figure, is the fection of the rod v. The fhuttle paftes between thefe wires and the lay every thot, and lifts them up, caufing the rod v to turn round a little. But if the fhuttle fhould not pafs thefe wires, nor lift them, it would be drawn home by the lay, and deftroy the web. To prevent this, there is fixed on one end of the rod v a foout crooked wire z, having a broad or flat bead, which naturally relts on a plate of iron, marked and fixed to the back of the lay. This plate has a nit in its middle about an inch deep. In this flit refts the rod a_{2} of fig. 3 . on which is a fhort flud. which is caught by the wire z wlien the wire w is not lifted back by the paffing fhuttle. This will ftop the lay from coming bome, and will fet off the loom.

Fig. 3. is another fide view of the loom oppo-

W E I [806 1 W E I

Weights. fite to fig. 1. On the fpindle a is the flar wheel b, on the outfide of the loon frame, on the arms of which wheel is fixed the wiper k, as the fimilar wiper is fixed to the fheeves on the other end of the fpindle. The wipers which drive the thuttles are fixed on oppofite fquares of the fpindle, and work alternately. Below the ftar-wheel is a pinion e, which is on a round fpindle, turned by the water.wheel, by means of a wheel on this fpindle. In a wheel on this fpindle are two ftuds, on which the pinion c flides uff and on as the loom is fet off and on by the lever d. At the farther end of this lever is the weight s, hanging by a cord which paffes over a pulley t, fixed at the outer end of the fpring-catch on which the lever d refts; and thus the loom is drawn in at the upper end of the lever d. But when the fhuttle does not lift the wire ε, it catches on the fud on the rod $a 2$, which is conneeted with the fpring catch, and the lever d flies off with the weight s, and the loom flops working. On the head of the poit F is the yarnbeam. The rollers e and f are cylinders, preffed together by a ferew lever, and take away the cloth between them at a proper rate. In the roller f is a groove for a band for driving the roller g, on which the cloth winds itfelf as it is wrought. Wherever fprings are mentioned to be ufed in the above defcription, weights may be ufed in their ftead, and to the fame effect, and more efpecially upon the treadle of fig. I. for driving the fhuttle.
iveights and Measures, in commerce, are fo various, not only in different countries, but cyen in different provinces of the fanre country, and this variation is the fource of fo much inconveniency in trade, that writers on polical and commercial economy have propofed various methods for fixing an univerfal and inmoveable flandard of weights and meafures for all ages and nations. Sir James Stewart Denham's fpeculations on this fubject bave heen noticed in his life publifed in this Supplement; Mr Whithurt's ingenious contrivance for eftablifhing a flandard of weights and meafures has been mentioned under the title Measure (Ency.l.) ; and the new table of weights and meafures, which the French republicans wifh to impofe upon all Europe, is given (Encycl.) under the title Rerolurion, no 183.
As thefe meafures occur frequently, even in Englifh tranflations of French books of value, we fhall here give fuch an account of them as may enable the reader to reduce them with eafe to the Englifh ftandards. They are of five kinds; meafures of length, of copacity. of zueight, of fuperficies for land, and of zuood for fuel. For every kind, there are many meafures of different fizes, one of which has been taken as the batis of all the reft, and it name affumed as the root of their names. Thus metre is called the principal meafure of length; litre, of capacity; gramme, of weight; are, of fuperficies of land; and stere, of wood for fuel. Thefe words being the radical terms of the nanoes of other meafures of length, capacity, \&c. a relation is hereby preferved between the names.

The meafures of length above the metre, are ten times, a hundred times, a thoufand times, ten thoufand times, greater than the metre. The meafures of length below the metre, are ten times, a bundred times, a thoufand times, lefs. To form the names of thefe meafures, other words which indicate the relations of ten times, a
hundred times, greater; and of ten simes, a bundred times, lefs, \&c. are placed before the word metre. The fame amexes have been ufed to form the names of meafures, greater or lefs, than the litre, the gramme, \&c. It is neceflary, therefore, to ftate in this place the Englih equivalents of only the matre, the litre, the grannue, the are, and the ftere.

The metre $=3.28084$ feet Englifh.
The litre $=61.0243$ cubic inches, or $1 \frac{1}{1} \frac{3}{4} 4$ pint ale meafure.

The gramme, or cubic centimetre of water, at the freezing point, $=\frac{1}{5} \frac{\mathrm{lb}}{} \mathrm{b}$. averd. or $\frac{z^{\frac{2}{8}}{ }^{\frac{1}{8}} \text { of an ounce, }}{}$ or ${ }^{26} 5$ of a dram nearly.

The are $=1076 \frac{2}{5}$ fquare feet, or $119 \frac{3}{5}$ fquare yards, or ato of an acre nearly.

The stere, or cubic metre $=35.35467$ cubic feet.
The better part of our countrymen, not choofing to adopt the weights and meafures prefcribed to them by the French Convention and the National Intitute, Sir George Sluckburgh Evelyn, Bart. turned his attention to this fubject, and publifhed, in the Philofophical Tranf. actions for 179 , an account of fome endeavours to afcertais a ftandard of weigbts and meafures. The principles upon which he proceeded are the fame with Mr Whitehurl's; but he has carried his experiments mech farther than his predeceffor, and feems to have conducted them with greater accuracy. His memoir is hardly fufceptible of abridgment ; and our limits do not permit us to infert it entire. This is indeed unneceffary, if it be true, as another ingenious gentleman alleges *, *H. Good that we are in the actual poffeffion, and the coritant ufe, win, Efq. of a flandard both for weight and meafure, as invariable in Niccot. as that now ufed in France. This ftandard he finds in nan, voli, iv. the foot meafure, and in the avoirdupoife, or, as he p. nal , $16 \mathrm{c}_{\text {. }}$ thinks it ought to be called, the decade ounce weight.

The decade ounce weight of pure rain, or ditilled water, at 60° of heat, is generally allowed to be equal in bulk to the one-thoufandth patt of the cubic foot. Were 44.3511 parts out of 10000 , or about $\frac{1}{2} \frac{1}{2}^{2}$ th part added to the prefent Winchelter buthel, that bulhel would then contain exactly 10 cubic feet or 10000 oz . of diftilled water, at $6 \nu^{\circ}$ of heat.

Our author then gives comparative tables between this fyltem and that which is now eltablifed in France. Taking the metre at 3 French feet, and 11.296 lines t, and the French foot to be to the Englifh as + Yournal de $1: 1.065752004 \ddagger$, one Freneh foot will be equa! to P Pby. vol. wo 10.65752007 Engliih decades, or tenths of an Englifh p. ${ }_{p} 60$.
foot : hence he calculates the following
Comparatura Tables, Englifa zuith French.
LONG MEASURE.
Long
decide.
Merre. Metre.
Long decades.
$I=0.03047983$ ferè $1=\left\{\begin{array}{l}32.808 ; 83358, \text { \&c. } \\ \text { or inches } 39.3703 .\end{array}\right.$
square measure.
Square
dscade: Ares, Ares, Square decadcs.
$1=0.0000092922$ ferè $1=\left\{\begin{array}{l}107640.3142, \text { or fqr. } \\ \text { inch. } 155002.052448\end{array}\right.$ cube measure.

[^26] multiplying the ounce by $437 \cdot 5=$ the number of grains in an avoirdupoife ounce.

Our author, who feems to have paid much attention to weights and meafures, obferves, that a ftandard meafure for the purpofes of trade, in particular, as well as for others, that would uniformly give an accurate refult, and could be eafily made, examined, and afcestained, by common mechanics, which neither our prefent liquid nor dry meafures evidently can, would furely be an acquifition of great valuc. Such an one, he prefumes, would be the following: A fquare pyramid, whofe perpendicular height is exactly thrice the length of the fide of the bafe : for fuch an one, and every fection of it, made by a plane parallel to its bale, would, in the firfl inftance, poffefs, and, in every fubdivifion, retain thefe remarkable properties.

If, Similar comparative dimenfions to thofe above given, for the original pyramid, i.e. every fmaller pyra. mid, formed by the above-mentioned parallel fection, would have its perpendicular height thrice the length of the fide of its bafe; and,

2 dly , The length of the fide of each bafe will always indicate, or equal the cube root of the folid content of the pyramid; e. \dot{g}. If the length of the fide of the bafe be 3 , the folid content will be the cube of 3 , viz. $3 \times 3 \times 3=27$.

We do not perceive very clearly the great value of this fandard; but Mr Goodwyn fays, that he has been many years in the habit of uning a pyramid meafure to examine corn; and is perfeetly convinced that fach a one will indicate a far more accurate refult than can arife from the manuer in which corn is meafured by the buffel. This we are bound to believe; for it is abfurd to oppofe theories to a fact afcertained by experience.

WESTRINGIA, a new genus of plants deferibed by J. E. Smith, M. D. prefident of the Linnæan Soeiety of London. It was firft difcovered in New Holland by Dr Solander, who called it Cunila Fruticofa, though it is totally different from the Cunila (fee that article, Encych.), and more refembles rofemary, from which, however, it is likewife different. Its peculiar character is: Calyx femiquinquefidus, pentagonus; corolla refupinata, limbo quadrifido, lobo longiore erecto, bipartito: Stamina difantia, duo breviora (inferiora) abortiva. Dr Smith affigns it rather to the didynamia-angiofpermia, placing it immediately after the Teucrium, than to the diandria clafs of plants.

WHEAT (fee Triticum, Encycl.) has for fome years paft been at fo very high a price, that every hint for increafing its quantity or improving its quality is intitled to notice. In the Leicefter Journal for the 6th of December 1799 , there is an ingenious paper on the

807] W H E
fubject of tranfplanting wheat, as a means of providing againt the expected fearcity of that neceffary of life. It is recommended " to fow, in dry land, at the ufual feafon, as much corn as may be deemed neceflary to plant in the fpring any number of acres whieh may be occu. pied with that article in the following year. When the foil is prepared, a furrow is to be made with a very fmall plough and one horfe, in the centre of the sidge or land, returning back in the fame track (this time only of every ridge); then turn towards the left hand, and plough another furrow, about eight or nine inches from the firft furrow, turning always to the left hand, till the whole ridge is finihed; it will then be formed into trenches, in paralled lines, of about cight or nine inches afunder, and imitate what gardeners term drawing of drills. In thefe furrows the plants arc to be laid." Mr John Ainfworth of Glen, the experienced anthor of this communicatior, fays he has practifed this method with the moft comolete fuccefs.

It has been likewife pracifed, on a fmall fcale, with equal fuccefs, but we know not in what county. About the end of Auguft 1783 , that gentleman threw a rmall quantity of wheat, which near two years before had been feeped and limed (fee Wheat, Encycl.) into an unmanured corner of his garden. In the beginning of February following he had a piece of ground (alfo unmanured) dug in an open part of his orchard, and he tranfplanted it on beds of fix rows wide, at nine inches afunder every way. It tillered, and fpread over the ground fo completely, as to prevent even a weed grow. ing among it. It produced admirable corn, and at the rate of near four quarters per acre.

From accurate calculations which he then made, he found that an acre, fuppofing the feed to be very good, and the plants let 'at the diffance above mentioned, would sequire only baif a pcck of feed.

Befides the faving of the feed, there are two other material advantages which attend fuch a method; one is, that fome fuitable crop may be on the ground all the winter for ufe; and the other is, that ploughing the ground fo late as February, will effectually bury and deftroy thofe weeds which were beginning to vegetatc ; and before others can fpring up, the corn plants have taken to the ground, and fo fpread over it that the weeds cannot rife, by which means there is a very clean crop, and all the cuftomary expence for weeding is faved.
'This author fecms to think that wheat will thrive as well, and produce as full a crop, when fown in the Spring, as if it had been committed to the ground in the preceding autugnn. In the fouthern counties of England we doubt not but it may; but the cafe is otherwife in Scotland, where the fpring is not fo early, and where, from the narrownefs of the inand, the frof is feldom fo fevere. We agree, howcver, with Dr Pike, in thinking it a pity that the way of fetting wheat (as done in Norfolk and Suffolk) is not every where more general. The procefs is indeed tedious and trouble. fome; and we have often wondered that, among the numberlefs machines lately contrived to leffen manual labour, none has been invented for dibbling wheat expeditiouny and accurately. We are therefore pleafed to learn, that Dr Pike bimfelf has turned his attention to the fubject, and hopes in the courfe of this year (1800) to prefent the public with a method of fetting whea:

Wheat, zubeat at rekfectiv ex.act difances through a rubole Wilkie. field, and as expspitiousle as the common broadeaf foruins, aubich can therefore be aftied to forms of ary magmilude; and when a peck of feed is found to be fufficient for an acre (and in fome land much lefis), the faving on a large farm muft be immenfe. We truft to the liberality of his profefion, that he will not take out a patent for his invention.

Though we have elfewhere given the ufual recipes for preventing fmut in wheat, it would be improper to conclede this article without mentioning the very fimole wne which Mr Wagftaffe of Norwich has uniformly found attended with complete fuccefs. This confifts in nothing more than immerfing the feed in pure water, and repeatedly fcouring it therein, juft before it is fown or dibbled in the foil. Whether well, fpring, or river water be ufed, is indifferent; but repeated firring and change of water is effential to remove the particles of infection that may have imperceptibly achered to the feeds thus purified The fublequent crop will be perfect in itfelf, and its feeds, he fays, fucceffivcly fo likewife, if there are no adjacent fields from whence this contamination may be wafted. He recommends the fame wafhing, and for the fame reafon, of barley and oats before they be fown.

WILKIE (William, D.D.), the author of an heroic poem, intitled the Epigoniad, was born in the parifh of Dalmeny, in the county of Weft-I othian, on the 5 th of October 172 I . He was defcended of an an. cient family in that county, though his father rented only a fmall farm, and was poor and unfortunate through life. He was able, however, to give his fon a liberal education; and that fon, it is faid, difcovered fo early a propenfity to the fudy of poetry, that he began to write verfes in his tenth year.

As this wonderful prematurity of genius was never heard of during Wilkie's life, it will probably be confidered as a ftory fabricated to raife the Scottifh poet to the fame eminence with Pope, whofe verffication he is allowed to have imitated with fuccefs. We have no doubt but that Wilkie wrote in early life the defcription of a ftorm, which is publifined in the gth volume of the Statiftical Account of Scotland; but that he wrote it in his tenth year is not proved, and is highly improbable. The poem difplays a notion-a confufed notion indeed-of the laws of electricity, which a boy in his tenth year, and at a period when electricity was little underitood, could not have acquired.

Having learned the rudiments of the Latin tongue at the parifh-fchool of Dalmeny, young Wilkie was, at the age of thirteen, fent to the univerfity of Edinburgh, where he was foon diftinguif:ed by his originality of thought, and by his rapid progrefs in cradition and fcience. Among lis fellew-ftedent; he was moft clofe. ly affociated with Dr Rohertfon the hiltorian, Mr John Home the poet, Dr M'Ghie (A), who afterwards obtained the friend hhip of Johnfon, and became a member of the Ivy-lane Club; and a Mr Cleghorn, who promifed
be an ornament to the univerfity, in which he was af. terwards a profeffor, but died before he had time to realize the fond hopes of his friends. During the courfe of his education, Wilkie became acquainted with the celebreted David Hume and Dr Fergufun, and at a later period with Dr Adam Smith, the far-famed author of "The KJeateh of Nations." Of all thofe nien he regarded Dr Fergulon with the greatelt affection, and Dr Smith with the greatet admiration. This latt writer he confrdered as equal o Robertion and Hume in erudicion, and vaftly thcir fuperior in originality and invention; and this ooinion the cherifhed to the day of his death.

Before he had completed his education, his father died, leaving lim no other inheritance than the fock. and unexpired leafe of his farm, and the care of his three fitters. Wilkie, therefore, turned much of his attention to agriculturé; in which he became eminent, not merely as a theorift, but as a practical farmer. He had too much fcience to be the flave of ancient prejudice, and too much judgment to be hurried into hazardous experiments by the charms of untried fpeculation. One of lis filters being married to a !kilful, though unlettered farmer, he availed himfelf of his brother's experience; and upon the facts and maxims derived from him built a fyftem of practical farming, which fully anfwered his own expectation, and obtained the applaufe of all his neighbours.

He ftll profecuted his ftudies in the univerfity, and without ceefing to be a farmer became a preacher in the church of Scotland. Fur fome years this made no alteration in the mode of his living. He preached occafionally for the minifters in his neighbourhood; cultivated his farm; read the claffics; and, enamoured of the fimple fublimity of Homer, projected an epic poem on the Homeric model. The fubject of his intended poem he drew from the fourth book of the Iliad, where Sthenelus gives Agamemnon a fhort account of the facking of Thebes; and as that city was taken by the fons of thofe who had fallen before it, Wilkie gave to his poem the quaint title of Epigoniad, from the Greek word ETryoro which fignifies defcendants. It is not our bufinefs to write a criticifm upon this poem. The fubject was ill chofen; for the learned reader has enougb of the heroic ages in the immortal poems of Homer and Virgil, and in thofe ages the unlearned reader can feel no interef. The Epigoniad, therefore, though compofed in fmooth and elegant verfe, with due attention to ancient mamners, and conftructed on the molt regular plan, has fallen into neglect, from which no critic or biographer will ever refcue it.

In the year 1753, Mr Wilkie was ordained minifter of Ratho, in confequence of a prefentation from the Earl of Lauderdale, who knew his worth and admired lis genius. Without neglecting his favourite amufementa of hufbandry, or the ftudy of the belles lettres, lie difcharged with fidelity the duties of a Chriftian paflor, was famed for his original and impreffive mode of preaching,
(A) According to Sir John Hawkins, this man bore arms on the fide of guvernment at the battle of Falkirk 1745. After which, taking a degree in phylic, he went to London in hopes of employment tbrough the intereft of his countrymen, and perhaps in return for his loyalty. He was a learned, ingenious, and modeft man; but fo little fuccefsful in his profeffon, that he died of a broken heart, and was buried by a contribution of his friends.

W I L [809 $]^{\circ}$ W O O

wilkie. preaching, and foon came to be loved as well as efteemed by his rural flock.

In the year 1757 the Epigoniad was publifhed, the refult of fourteen years fudy and application, which might furely have been more ufefully employed on fome other work; and in 1759 a fecond edition was called for, to which he added A Dream in the manner of Spenfer. He was, the fame ycar, chofen profeffor of natural philofophy in the univerfity of St Andrew's ; an office for which it is difficult to conceive how he could have been fitted by the fandy of epic poetry, and clofe attention to the cultivation of his farm. He was, however, a man of a vigorous mind, and we never heard that he difgraced his electors.

When he removed to St Andrew's, his whole fortune exceeded not L. 200 Sterling; a proof that his Epigoniad had not enriched him. With this fum be purchafed a few acres of land in the neighbourhood of the city, carried his two unmarried fifters with him, and continued to live io the univerfity exactly as he had lived at Ratho. In his profefforial career there was nothing remarkable. He patronifed genius, efpecially poetical genius, in the young men who attended lis lectures, and by them was, of courfe, loved and efteemed: (See Fergusson in this Suppl.) In the year 1768 he publifhed a volume of fables of no great value, previous to which the univerfity conferred upon him the degree of D. D.; and he died, after a lingering illnefs, on the 10th of OEtober 1772.

The manners of Dr Wilkie were fingular, and in fome refpects difgutting. He has been feverely blamed for his penurioufnefs, but, in our opinion, unjuftly. His father had left him in debt, with nothing but the profits which he might make of a fmall farm to difcharge that debt, and to fupport himfelf and three filters. In him, therefore, tigid economy was, for mary years, a virtue; and he knows little of human nature, who can blame a man for not breaking habits which it had been the duty, as well as the bufinefs, of a great part of his life to form. Amidt his moft rigid and offenfive cconomy, he was liberal in his donations to the poor.

He had been feized, while minifter of Ratho, with an unformed ague, of which he never got entirely rid. For this complaint he thought an extraordinary perfipilation neceflary, and generally flept, in winter, under twenty-four blankets. He had an utter averfion from clean linen, and has been known to bargain, when he ftaid a night from home, not only for the proper quantity of blankets to his bed, but alfo for fheets, which had been ufed by fome other perfon, and rendered fus. ficiently dirty to pleafe his feeling. It will eafily be conceived that fuch a man was, to the laft degree, novenly in his drefs.

Sufpicions have been thrown out by his lateft, and we believe his only, biographer, that Dr Wilkie's belief of the Chriftian religion was neither orthodox nor fleady. Not having had the pleafure of his acquaintance, we cannot pofitively fay that thefe fufpicions are groundlefs; but the writer of this article has converfed much about the author of the Epigoniad with a clergyman who knew him well, and who would have been glad to accufe him of infidelity, if he could have preferred fuch an accufation with truth. He was a very ablent man, apt to forget what he was about even when Suppl. Vol. II. Part IL.
difcharging the moft folemn parts of his clerical duty, and ufed to fay of himfelf that he never could conduet a facrament. From this abfence of mind, and thofe confeffions of it, may have arifen the fufpicion that ho was not a firm believer; but no fuch fufpicion was ever thrown out to this writer by the clergyman already referred to.

He had one very extraordinary defect in a poet: He could not read aloud the fnootheft verfes, fo as to preferve either the meafure or the fenfe of them. Of this Dr Anderfon has produced very complete proof in his life of Wilkie, prefixed to his poetical works in the Edinburgh edition of the Britifh Poets. With all his defects, however, and all his foibles, he was unqueftionably a genius, and, we are inclined to believe, a good man.

WINES (fee that article, Encycl. and Vegetabie Substances, Suppl.) are fo often adulterated with minerala prejudicial to the health, that various methods have been devifed for detecting the adulteration. 'The property which liver of fulphur (alkaline fulphures) and hepatic air (fulphurated hydrogen) poffefs of precipitating lead in a black form, has been long ago made public; and this property has been employed to determine the quality of wines by means of the liquor probatorius Wirtembergenfis, or Wirtemberg proving liquor. But in trying wines fuppofed to have been adulterated, this proof does more hurt than fervice, becaufe it precipitates iron of the fame colour as the pernicious lead. Many wine-merchants, therefore, of the greateft refpectability, rendered by thefe means fufpected, have been ruined.

The following is recommended by M. Hanhemann as a better teft of found wines than the proving liquor of Wirtemberg. Mix equal parts of oyfter fnells and crude fulphur in a fine powder, and put the mixture into a crucible. Heat it in a wind furnace, and increafe the fire fuddenly, fo as to bring the crucible to a white heat, for the fpace of 15 minutes. Pulverife the mals when it is cool, and preferve it in a bottle clofely fopped.

To prepare the liquor, put 120 grains of this powder, and 120 grains of cream of tartar (acidulons tartarite of potafh), into a Atrong bottle; fill the bottle with common water, which boil for an hour, and then-s let it cool; clofe the bottle immediately, and thake it for fome time : after it has remained at reft to fettle, decant the pure liquor, and pour it into fmall phials capable of holding about an ounce each, firft putting into each of them 20 drops of muriatic acid. They mult be ftopped very clofely with a piece of wax, in which there is a fmall mixture of turpentine.

One part of this liquor, mixed with three parts of ${ }^{-}$ fufpected wine, will difcover, by a very fenfible black. precipitate, the leaft traces of lead, copper, \&ec. but will produce no effect upon iron, if it contains any of that metal. When the precipitate has fallen down, it may fill he difcovered whether the wine contains iron, by faturating the decauted liquor with a little falt of tartar (tartareous acidulum of potah), by which the liquor will inmediately become black. Pure wines remain clear and bright after this liquor has been added to them.

WOOD-cuts are engravings on wood, commonly: $s \mathrm{~K}$

W O O
Worit-curs on hox, which, in many cafes, are ufed with advantage $\xrightarrow{4}$ inflead of copper-plates. The art of cutting or engraving on wood is undoubtedly of high antiquity: for Chinefe printing is a fpecimen of it. (See China, $n^{2} 127$ Encycl) Even in Europe, if credit be dite to Papillon, this art was practifed at a period confiderably remote ; for he mentions eight engravings on wood, en= titled, "A reprefentation of the warlike actions of the great and magnanimous Macedonian king, the bold and valiant Alexander: dedicated, prefented, and humbly offered, in the moft holy father, Pope Honorius IV. by us Alexander Alberic Cunio Chevalier, and Ifabella Cunio, \&c." This anecdote, if trie, carries the art of cutting in wood back to 1284 or 1285 ; for Honorius occupirit the papal throne only during thefe two jears. Even this is not the remotet period to which fome have carried the art in Europe; for the ufe of feals or lignets being of very high antiquity, they imagine that the invention of vood-cuts muft be coeval with them. The fuppolition is certainly plautible, but it is not fupported by proof. The earlieft impreffion of a woodencut, of which we have any certain account, is that of St Chriftopher carrying an infant Jefus through the fea, in which a hermit is feen holding up a lantern to fhew him the way; and a peafant, with a fack on his back, climbing a hill, is exhibited in the back ground. The date of this imprefion is 1423 .

In the year 1430 was printed at Haarlem, "The hiftory of St Jchn the evangelit and his revelation, reprefented in 48 figures in wood, by Lowrent Janfon Cofter;" and, in 1448 , Jorg Schappf of Augfburg cut in wood the hiftory of the A pocalypfe, and what was called T'be poor man's bille. (See Engraving, Encycl. page 668.)

A folio chronicle, publifhed 1493 by Schedal, was adorned with a vaft number of woud-cuts by William Plydenwurf and Michael Wolgemut, whofe engravings were greatly fuperior to any thing of the kind which had appeared before them. Wolgenut was the preceptor of Albert Durer, whofe adminithle performances in this department of art are juflly leld in the higheft efleem even at the prefent day.

About this period it became the practice of almoft all the German engravers on copper to engrave likewife on wood; and many of their wood cuts furpafs in beauty the inpreffion of their copper-plates. Such are the wood-cuts of Albet Aldtorfer, Hifbel Pen, Virgil Soles, Lucas van Cranach, and Lucas van Lyden, the friend and imitator of Albert Durer, with feveral others.

It appears that the Germans carried this art to a great degree of perfection. Hans or John Holbien, who flourimed in 1500, engraved the Dance of Death, in a feries of wooden-cuts, which, for the freedom and delicaey of execution, has hardly been equalled, and never furpafled.

Italy, France, and Holland, have produced many capital artitts of this kind. Joan 'Toruxfium printed a bible at Lyden, in 1554 (a copy of which we have feen), with wooden-cuts of excellent workmanhhip. Chritopher Jegher of Antwerp, from his eminence in the art, was employed by Rubens to work under his infpection, and he exented feveral pieces which are keld in much eftimation; the character of thefe is boldneefs and fpirit.
$8 \mathrm{ro}] \quad \mathrm{W} O \quad \mathrm{O}$

- The next attempt at improvement in this art was by Wond cuts. Hugo da Carpi, to whom is attributed the invention of the chiara fouro. Carpi was an Italian, and of the 16th century; but the Germans clain the invention alfo, and produce in evidence feveral engravings by Mair, a difciple of Martin Shoen, of date 1499. His mode of perfurming this was very fimple. He firft engraved the fuiject upon copper, and finithed it as much as the artifts of his time ufually did. He then prepared a hlock of wood, upon which he cut out the extreme lights, and then impreffed it upon the print ; by which meaus a faint tint was added to all the reft of the piece, excepting only in thofe parts where the lights were meant to predominate, which appear on the fpecimens extant to be whitened with white paint. The drawings for this fpecies of engraving were inade on tinted .paper with a pen, and the lights were drawn upon the paper with white paint.

There is, however, a material difference between the cbiaro fouros of the old German malters and thofe of the Italians. Mair and Cranach engraved the outlines and deep fhadows upon copper. The impreffion taken in this ftate was tinted over by means of a fingle block of wood, with thofe parts hollowed out which were defigned to be left white upon the print. On the contrary, the mode of engraving by Hugo da Carpi was, to cut the outline on one block of wood, the dark thadows upon a fecond, and the light thadows, or half tint, upon a third. The firt being impreffed upon the paper, the outlines only appeared: this block being taken away, the fecond was put in its place, and being alfo impreffed on the paper, the dark fladows were added to the outlines; and the third block being put in the fame place upon the removal of the fecond, and alfo imprefled upon the paper, made the dim tints, when the primt was completed. In forme inftauces, the number of blocks were iuereafed, but the operation was Atill the fame, the print receiving an impreffion from every block.

In 1698, John Baptift Michel Pappillon practifed engraving on wood with much fuccefs, particularly in ornamental foliage and flowers, fhells, \&c. In the opinion, however, of fome of the moft eminent artift, his performances are ftiff and cramped. From that period the art of engraving on wood gradually degenerated, and may be faid to have been wholly lolt, when it was latcly re-invented by Mr Bewick of Neweafle.

This eminent artift was apprentice to Mr Bielby, an engraver on metal of the very lowelt order, who was feldom empluyed in any thing more difficult than the cutting of the face of a clock. Application having been made to this man for a wood-cut or two of the moft trifing defeription, the job was given to Thomas Bewick; by whom it was executed in fuch a manner, that Mr Bielby, who was accuflomed to employ his apprentices in fuch work, advifed him to profecute engraving in that line. The advice was followed; and young Bewick inventing tools, even making them with his own hands, and fawing the wood on which he was to work into the requifite thicknefs, proceeded to improve upon his own difcoveries, without affiftance or inftruction of any kind. When his apprenticefhip expired, he went to London, where the obfcure wood.engravers of the time wifhed to avail themfelves of his abilities, while they were determined to give him no infight
wond cuts into their art. He remained fome years in London; and during that time, if we millake not, received from the Society for the Encouratement of Arts, Ejc. a premium of confiderable value for the beft engraving in wood. Keturning to Newcafle, he entered into copartnerflip with his old mafter ; and eftablifhed his reputation as an artilt by the publication of his admirable Hiltory of Quadrupeds. This was fullowed by his Hittury of Birds, of which only one volume has yet (1800) appeared.

Johin Bewick, brother to Thomas, learned the art of him, and practifed it for feveral years in London with great applaufe. His abilities, however, though refpectable, were not, by the befl judges, deemed fo brilliant as his brother's; and owing to bad health, and the nature of his connection with the bookfellers and others, he feems not to have advanced the art beyond the ftage at which de received it. He died, three or fuur years. ago, at Newcaftle.

Mr Nefbit, who executed the admirable Hudibras publifhed by Vernor and Hood (A), and Mr Anderfon, whofe beautiful cuts adorn the poem entitled Grove Hill, were the next, and hitherto have been the laft of Thomas Bewick's pupils, who have appeared before the public as artifts. By thefe gentlemen we are authorifed to fay, that the method practifed by the ancient engravers on wood, whofe works are ftill admired, muft have been different from that of Bewick and his pupils. What that method was feems to be altogether unknown. Papiilon, who writes the beft hiftory extant of the art, gueffes indeed in what manner the old engravers proceeded fo as to give their works the fpirit and freedom for which they are famed; but that his gueffes are erroneous feems evident from the ftiffnefs of his own works. The principal characteriftic in the mechanical department of the productions of the ancient mafters is the croffing of the black lines, which Papillon has attempted with the greateft awkwardnefs, though it feems to have been accomplifhed by them with fo much eafe, that they introduced it at random, even where it could add nothing to the beauty of the piece. In Bewick's method of working, this crofs hatching is fo difficult and unnatural, that it may be confadered as impracticable (в).

The engravers of Bewick's fchool work on the end of the wood which is cut acrofs the trunk of the tree, in pieces of the proper thicknefs. As wood-cuts are generally employed in the printer's prefs amidit a form of types, this thicknefs mult be regulated by the height of the types with which they are to be ufed. The tools employed are nedrly the fame with thofe ufed in copperplate engraving, being only a little more deep, or luzenge, as engravers call it. They muf have points of various degrees of finenefs for the different purpofes to which they are applied, fome of them being fo much rounded off at the bottom as to approach to the nature of a goodge, whild others are in fact litile chiffels of
various fizes. Thefe chiffels and goodges, 10 which Wood cats. every artift gives the flape which he deems mont con. venient, are held in the hand in a manner fomewhat different from the tool of the engraver on copper, it being neceffary to have the power of lifting the chips upwards with eafe. To attempt a defeription of this in writing would be in vain; but it is catily acquired, we are told, by practice.

The pupils of the fchool of Bewick confider it as quite improper to fpeak of his invention as a revival of the ancient art. Some old prints, it is true, have the appearance of being executed in the fame way with his; but others have certainly been done by a method very different. It is therefore not fair to appreciate the prefent art by what has been done, but by what may be done; and that remains yet to be newn. 'The art is in its infancy; and thofe who are difpoled to com. pare it with the art of engraving on copper, ought to look back to the period when the copperplate engraving was of fo recent invention as Bewick's method of engraving on wood. Marc Autonio, who engraved under the direction of the great painter Raphatl, thouglit it no mean proof of his proficiency in lis art, that he was able to imitate on copper-plates the wood-cuts of Albert Durer ; and Papillon is highly indignant that there thould have been perfons fo very blind as to miltake the copies for the originals. If copper has its advantages over wood in point of delicacy and minutenefs, wood has, in its turn, advantages not inferior in regard to ftrength and richnefs. Thofe prints which were executed under the aufpices of Titian and Ru. bens, will always remain a monument of the fpirit and vigour natural to wood engraving ; and if there be not found in them all the attention to chiaro fouro, which the prefent age demands, it mult not be attributed either to defect in the art, or to want of abilities in the ardifts but to the talle of the times when chiaro fouro was little underftood. It remains for fome enterprifing artif to fhew that the vigom of the ancient art may be attained by the prefent one, and at the fame time to add to that vigonr thofe gradations of fhade which are fo much admired in good copperplates. As there feems to be a more perfect, or at lealt a more plealant black produced by a wood than by copperplate printing, and certainly a more perfect white (c), who will fay that any internediate thade whatever nay not be produced by wood-cuts? To attempt this on a fmall fcalc would indeed he vain, becaule the flightell variation, produced by a little more or lc fs ink, or a harder preffure in printing, bears fuch a proportion to a very thort line, as muft neceffarily render the attempt ahortive.

Wood-engraving, therefore, mifft always appear to difadvantage while it is confined to fmall fubjects, and will never reach its lation as a fine art, till thofe who are engaged in its cultivation improve upon the difonveries of one another, and apply to fubjects to which it is properly adapted. As an economical art for illuftra${ }_{5} K_{2}$
ting
(A) The defigns were by 'Thornton; and the cuts from them have been compared to Holleein's far.famed Dance of Death.
(B$) \mathrm{Mr}$ Nefbit has indeed introduced fomething of it into two or three of his pieces, merely to fhew that he could do it ; but fo great was the labour, and fo littbe the advantage of this improvement, if fuch it can be called, that probably it will not be attempted again.
(c) The parts of the print intended to be white are not even touched by the wood-block.

W O O

Wonl- ting mechanics and other fubjects of fcience, it is too combing. little employed even in its prefent ftate.

The works of Bewick and his pupils, which have hitherto been publifhed, are not numerous. Befides his quadrupeds and birds, the Hudibras by Nedbit, and the Grove Hill by Anderfon, which have been already noticed, we are acquainted with none but the following :-Goldfnith's Traveller and Deferted Village with elegant plates, all by 'Thomas Bewick, except one or two which were executed by John; Somerville's Clace by the fame artilts, executed in a ltyle of elegance which perhaps has never been furpaffed; a View of sit Nicholas's Church, Newcaltle, 15 inches long, by Mr Nefbit, who received for it a filver medal from the Society for the Encouragement of Arts, and an honorary letter from the Society of Antiquaries.

WOOL-combing, a well known operation, which, when performed hy the hand, is laborious, tedious, and expenfive. The expence of it through all England has been calculated at no lefs a fum than L. 800,000 ; and to leffen this expence, the Rev. Edmund Cartwright of Doncafter in Yorkmire bethought himfeif, fome years ago, of carding wool by machinery. After repeated attempts and improvements, for which he trok out three patents, he found that wool can be combed in perfection by machinery, of which he gives the following defcription :
Plate L.
Fig. I. Is the crank lafher. A is a tube through which the material, being formed into a niver, and flightly twifted, is drawn forward by the delivering rollers. B, a wheel faft upon the crofs.bar of the crank. C, a wheel, on the oppofite end of whofe axis is a pinion working in a.wheel upon the axis of one of the delivering rollers.

Note, When two or more flivers are required, the . cans or bakets, in which they are contained, are placed

812 1 W O O
upon a table under the lafher (as reprefented at D), which, by having a flow motion, twifts them together as they go up.

Fig. 2. Is the circular clearing comb, for giving work in the head, carried in a frame by two cranks. Fig. 3. The comb-table, having the teeth pointed towards the centre, moved by cogs upon the rim, and carried round upon trucks, dike the head of a windmill. a, b, the drawing rollers. c, a, callender, or conductin ${ }_{0}$ rollers.

Note, Underneath the table is añother pair of rollers, for drawing out the backings.

In the above fuccification, we have omitted the frame in which the machine ftands, the wheels, fhafts, \&c. Had thefe been introduced, the drawing would have been crowded and confufed; befides, as matters of information, they would have been unneceffary, every me. chanic, when he knows the principles of a machine, being competent to apply the movements to it.

The wool, if for particular nice work, goes through three operations, otherwife two are fufficient: the firft operation opens the wool, and makes it connect together into a rough niver, but does not clear it. The clearing is performed by the fecond, and, if neceffary, a third operation. A fet of machinery, confilting of three machines, will require the attendance of an overlooker and ten children, and will comb a pack, or 240 lb . in twelve honrs. As neither fire nor oil is neceffary for machine-combing, the faving of thofe articles, even the fire alone, will, in general, pay the wages of the overlooker and children; fo that the actual faving to the manufacturer is the whole of what the combing cofts, by the old imperfect mode of hand-combing. Machinecombed wool is better, efpecially for machine-fpinning, by at leaft 12 per cent. being all equally mixed, and the flivers miform, and of any required length.
\qquad
Woolcombing. $\xrightarrow{\text { res }}$
 -
\qquad ,

\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^27] ,

$y_{i} r_{i} 1$.
Fi! : \because.

WOWL HCOMBING

Fis. ${ }^{3}$

E E M [SI3] Z it M

Zemindars. language Choulberies. The word Zcmindar is Perfian, and that language can have had no currency in the countries of India, until it was introduced by the people of Perfia. When the Emperor Shehâh-ul-Dien Ghory conquered the empire of Hindottan (A), he left Sultan Cutnb-ul-Dien to be his viceroy at Delhy, and admisiter the government of Hindortan. From that time the cultoms and practices of the Mahomedans began gradually to be eftablifhed in India: their arnies were fent into the countries of the reduced Rajahs, nimder the command of Omrahs, in order to preferve the conquett; and lands were allotted to them to defray the expence. From hence arofe the fyftem of Jaghiredarry in Hindoftan. But when thefe Omrah Jaghicc. dars had eftablithed their own Atrength, feveral of them rebelled againtt the imperial authority, and afpired at the crown. Thus circumitanced, the emperors, in order to obviate thefe mifchiefs, thought it would be more politic to commit the management of the country to the native Hindoos, who had molt diftinguifhed themfelves by the readinefs and conftancy of their obedience to the fovereign power.

In purfuance of this plan, diftricts were allotted to numbers of them under a reafonable revenue (Jummah Monâlih), which they were required to pay in money to the governors of the provinces, deputed from the Emperor. And in cafe any one of the Omrahs or provincial governors thould fwerve from his allegiance, the Zemindars of that country were to exert themfelves in fuch a manner as fionld check rehellion, and reftore good governmeut. For this purpofe, grants of Ze mindary were feverally conferred upon fuch of the Hindoos as were obedient ; defcribing their apportionment of the country ; and every perfon who had received a grant under the authority of the crown was thereby tully invefted with the functions of Zemindar.

The functions of a Zemindar are, ift, The prefervation and defence of their refpective boundaries from traitors and infurgents; 2dly, The tranquillity of the fubjects, the abundance of cultivators, and increafe of his revenue ; 3 dly, The punifiment of thieves and robbers, the prevention of crimes, and the deftruction of highwaymen. The accomplimment of thefe objects is confidered in the royal grant as the difcharge of office to the fovereign; and on that account the word office (Khidmut) is employed in the Dewanny Sunnud for a Zemindary.

It was a rule in the times of the ancient emperors, that when any of the Zemindars died, their effects and property were fcqueftrated by the government. After
which, in conficteration of the rights of long fervice, T.emindrea which is incumbent on fovercigns, and elevates the dirnity of the cmployer, Sumuds for the office of Zemindary were granted to the children of the deceafed Zemindar ; and no other perfon was accepted, becaufe the inhabitants could never feel for any ftranger the attachment and affection which they naturally entertain for the family of their Zemindar, and would have been aflieted if any other had been put over them. For this reafon, the emperors, confidering it a3 a means of collciliating the minds of the people, graciounly fixed ard confirmed the children of the deceated Zemindar in the office of their fathers and grandfathers, by ifluing new Sunnuds to transfer the puffeftion to them. By degrecs Zemindaries beeane truly beritable property, which, however, could be transferred by gift or fate from one family to another. They could likewife be forfeited to the fovereign, by the Zemindar's deviating from his allegiance, neglecting to pay his tribute, or to difcharge the duties of his ftation.

It is univerfally known, fays Sir Charles Roufe Boughton, that, when the three prosinces of Bengal, Bahar, and Oriffa, were ceded to the Britifh Eaft India Company, the country was diltributed among the Zemindars and Talookdars (fee that artiele in this Vol.), who paid a Atipulated revenue, by twelve inftalasents, to the fovereign power or its delegates. They affembled at the capital in the beginuing of every Bengal year (commencing in April), in order to complete their ti. nal payments, and make up their annual accounts; to fettle the difcount to be charged upon their feveral remittances in various coins for the purpofe of reducing them to one ftandard, or adjult their concerns with their bankers; to petition for remiffions on account of forms, drought, inundation, difturbances, and fuch like; to make their reprefentations of the ftate, and occurrences of their diftricts : after all which they entered upon the colledtions of the new year; of which, however, they were not permitted to begin receiving the rents from their own farmers, till they had completely clofed the accounts of the preceding year, fo that they might not encroach upon the new rents, to make up the deficiency of the pait. Our author proves, we think completely, the right of the Zemindars to transfer their poffeffions, either by iuheritance to their children, or, with the confent of the fovereign, to other families; and he argues Itrenuoufly and fuccefsfully againf the bad policy, as well as injultice, of interfering with thofe rights, as long as the Zemindars difcharge the duties of their feveral fations.
(A) This event took place towards the clofe of the 12 th century. bute paid by a conquered country.

DIRECTIONS for plaging the PLATES.

Eainburg i

PAMKED BY JOBN BROEN, ANCHOR CLOSE.
I803.

NOT TO BE TAKEN FROM THE ROOM EICAT. no. 23012

A.

[^28]
\qquad
\qquad
\qquad

[^0]: Suppl. Vol. II. PartI.

[^1]: (a) We believe they are uaiverfaliy preferable.

[^2]:

[^3]:

[^4]: tion

[^5]:

[^6]: Suppl. Vol. II. Part II.

[^7]:

[^8]:

[^9]: rifk

[^10]: Suppl. Vol. II. Part II.

[^11]: 190
 Difcovery uf bread.

 SImple as the manufaciure of bread may appear to us who bave been always accultomed to confider it as a common procefs, its, difcovery was prubably the work of ages, and the refult of the ounited efforts of men, whofe fagacity, had they lived in a more fortunate peSuppl. Vol.II. Part II.

[^12]: ,

[^13]:

[^14]:

[^15]:

[^16]:

[^17]:

[^18]:

[^19]: our

[^20]: 25

[^21]:

[^22]:

[^23]: \qquad

[^24]: I

[^25]: \qquad

[^26]: Cube
 decades. Litres. Litre. Cube decades.
 $I=0.02831637$ fere $I=\left\{\begin{array}{l}35.3152622, \& c . \text { or } \\ \text { cub.inch. } 61.0247727\end{array}\right.$
 WEIGHTS.

[^27]:

[^28]:

