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A thorough assessment of the static magnetic field (SMF)
inside a CO, incubator allowed us to identify non-negligible
inhomogeneities close to the floor, ceiling, walls and the door.
Given that incubator’s shelves are made of a non-magnetic
stainless steel alloy, we did not expect any important effect
of them on the SMF. Surprisingly, we did find relatively
strong distortion of the SMF due to shelves. Indeed, our
high-resolution maps of the SMF revealed that distortion
is such that field intensities differing by a factor of up to
36 were measured on the surface of the shelf at locations
only few millimetres apart from each other. Furthermore,
the most intense of these fields was around five times
greater than the ones found inside the incubator (without
the metallic shelves in), while the lowest one was around 10
times lower, reaching the so-called hypomagnetic field range.
Our findings, together with a survey of the literature on
biological effects of hypomagnetic fields, soundly support the
idea that SMF inhomogeneities inside incubators, especially
due to shelves” holes, are a potential source of confounding
and variability in experiments with cell cultures kept in an
incubator.
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1. Introduction

According to McDonald [1], a confounding variable is a variable other than the independent variable
that we are interested in, that may affect the dependent variable, i.e. the endpoint of our experiment.
Hence, a key aspect of experimental design is the identification of possible confounding variables
and some kind of control of them. The main message of this work is that there might be a
confounding variable (almost) completely unaccounted for in biology laboratories working with
incubators: the static magnetic fields (SMFs), and their inhomogeneities throughout the volume of
incubators, especially on the surface of the shelves, where cell cultures are commonly kept in biological
experiments.

The matter has, in fact, received some attention during the last years among magnetobiology
researchers, who have discussed and measured direct current (DC, or ‘static’) and alternated current
(AC) background magnetic fields (MFs) inside CO; incubators. Hansson Mild et al. [2] measured AC
fields inside an incubator and discussed the importance of the ones generated by the incubator’s
fan, also commenting on equipment placed near the incubator being a possible source of stray fields.
In line with that discussion, Gresits et al. [3] measured AC fields not only in a CO, incubator, but
also near a thermostatic water bath and a laboratory shaker table, finding non-negligible intensities,
with significant variations over relatively short distances. To the best of our knowledge, the most
extensive work on CO, incubators was done by Portelli et al. [4], who measured both DC and
AC fields inside of 21 different incubators. These fields are of particular importance in experiments
of weak DC and/or extremely low frequency MFs, where the field intensities under study are of
the same order of magnitude as the fields typically present inside incubators, clearly posing them
as a potential confounding variable, and also making replication by independent laboratories more
difficult [5].

As stated above, we suggest that background fields should be of concern to all researchers working
with incubators, not only the ones devoted to magnetobiology. In the following sections, we make our
case by: (i) presenting a thorough assessment of the SMFs inside a typical CO, incubator including, for
the first time, a high-resolution mapping of the fields near several holes of a standard, stainless steel (SS)
shelf and (ii) discussing our measurements in the context of an up-to-date survey of the literature on
biological effects of weak SMFs, including the so-called hypomagnetic fields.

2. Material and methods

All measurements were performed in a HERACell 150i CO; Incubator (Thermo Fisher Scientific, MA;
figure 1a). Metallic shelves provided with the incubator by the manufacturer were made of the austenitic
SS AISI 304, an extremely common and well-known alloy. We also used an 8 mm thick 420 x 465 mm
plastic shelf made of polymethyl methacrylate (PMMA). Measurements were performed with an
HMC5883 L 3-axis magnetometer (Honeywell, New Jersey, NY) connected to a personal computer, as
detailed elsewhere [6]. For this work, each independent axis of the sensor was calibrated against a
TM75-41 magnetometer (Izmiran, Fryazino, Russia). Each of the MF maps presented in the next section
was measured by manually locating the sensor in each of the points of a regular grid. Upon the
assumption that the holes of the metallic shelves could be a source of distortion of the SMFs inside
the incubator, we decided to use a grid with a periodicity that would match that of the shelf’s holes,
so that all the measurements of a given map would be performed in equivalent points of the holes’
lattice. Hence, according to the dimensions indicated in figure 1b, we defined one first (coarse) grid
with a unit of 33 x 20mm?2, which covered almost all the usable area of the shelf. Also, suspecting
that the field at the centre of the holes could be different from that at the edges, or from that between
holes, we measured three maps with the coarse grid, shifting its position just 5mm to the right each
time (holes” diameter was 10 mm; figure 2a—). Measurements with the coarse grid led us to a medium
grid which, in term, led us to further refinement. Locations of the grids on the shelf are shown as
grey rectangular areas in figure 1b, and further details are presented in table 1, which shows that the
smallest of our pixels were 1 mm?. While the chip that contains the three orthogonal sensors of our
magnetometer has external dimensions of 3.0 x 3.0 x 0.9 mm, we considered it reasonable to assume
that the sensors themselves are confined in an area smaller than 1mm?, given the presence of the
plastic packaging encapsulating the electronics, plus the fact that circuitry auxiliary to the sensors is
also contained inside the same chip (a multiplexer, an analogue to a digital converter and a control unit,
among others).
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Figure 1. (a) The HERACell 150i CO;, Incubator (Thermo Fisher Scientific, MA) studied in this work and (b) one of its shelves. The grey-
shaded areas indicate the locations of the coarse, medium and refined measuring grids. The small hexagon in the upper right corner is
avisual aid for recognizing the holes pattern on the shelf.

3. Results

Figure 2d shows the total MF strength, |B|, measured on the metallic shelf located at the middle of the
incubator (sixth level out of 11 possible) and with the grid’s points coinciding with the centre of holes
(figure 2a). Fields were in the range of 20.5-52.9 uT. Figure 2e corresponds to aligning the grid to the
holes’ right-side edge (figure 2b); fields fell in the range of 32.4-166.4 uT. Lastly, measurements taken
between holes (figure 2c,f), were within 6.1-49.3 uT. We observed that: (i) none of the maps showed
smooth variations, meaning that there were many clearly abrupt changes in the field intensity from
one pixel to the surrounding ones; (ii) the three ranges of intensities are clearly different, and they all
include the value of the geomagnetic field at Bratislava, Slovak Republic (where the measurements were
conducted), of approximately 48.7 uT [7]; and (iii) The highest intensities were measured with the grid
aligned with the holes” edges. In summary, these observations suggested that the strongest fields are at
or near the edges, but also that they do not occur at all edges (or at least not evenly along their whole
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Figure 2. (a—c) Schematics of a metallic shelf with the coarse measuring grid overlapped to it. Red crosses indicate the position of
measurements. (d—f) MF strength for the grid aligned to the centre, edge and between the holes, respectively. The area delimited by the
black rectangle in (e) was further investigated, (g) with a medium, 5.5 x 5 mm grid. The black hexagon has the exact same dimensions
as the one in the upper right corner of figure 1b. Although there are a few pixels in (g) in the range of 200—415 uT (dark-brown pixels),
colour scale maximum was limited to 200 T to enhance contrast of the image, thus making the hexagonal pattern visible.

Table 1. Grids used in this work.

coarse medium refined
area (mm?) 297 x 380 132 x 80 2 x2
pirelsize (o) Bx0 55x5 1x1
numberofplxels .............................................................................. 0 ><20(200) ...................... 25)(17(425 ) ..................... o (529)
appr0x|mate uncertamtymlocanon o Sensor(mm) S L s

perimeter), because ‘low-field” horizontal blue bands are present in figure 2e. Also, these maps strongly
suggested that the used grid was not fine enough (i.e. pixels were too big) to assess the fields in full detail.
Therefore, we used a medium grid with pixels of 5.5 x 5 mm? to explore an area (black rectangle) around
the ‘hot-spots’ in figure 2¢, and the result is shown in figure 2. Even though this map’s pixels had an area
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Figure 3. (a) MF components (By, B, and B,) and total strength (|B|) at Tmm over holes 1and 2. (b) The same as (a) for hole 3, but for
several distances, h, from the surface (h =1, 3, 6,10 and 14 mm).

24 times smaller than the one in the coarse grid, it still looked “pixelated’. However, it showed a noisy, but
discernable, hexagonal pattern: the black hexagon, added to the map as a visual aid, has exactly the same
dimensions as the one at the upper right corner of figure 1b, suggesting that the magnetic pattern was the
same as the holes’ pattern on the shelf. Upon these findings, we further refined our grid to 1 x 1 mm? and
explored with it three 22 x 22 mm? areas centred in three different holes. At first, we located our sensor as
close as possible to the surface of the shelf, at an estimated height, i1, of 1 mm. Figure 3a shows the three
components, By, By, and Bz, and the total strength, |BJ, for holes 1 and 2 (figure 1b). In these two maps,
the MF is clearly shaped by the presence of the hole, but in an irregular way. By contrast, in the first row
of figure 3b, the pattern of hole 3 clearly resembles the circular shape of the hole. In the succeeding rows
of figure 3b, the same hole (number 3) was reassessed, but at greater heights (h =3, 6, 10 and 14 mm). It is
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Figure 4. (a) MF total strength (|B|) at the 11 shelf levels of the incubator, measured on a plastic shelf and the incubator’s door open.
(b) Comparison of field's components and total strength at the sixth level, for the door open and closed.

evident how field is homogenized as distance from the shelf increases, fading into the background field.
Table 2 displays minima, maxima and differences (A) corresponding to all maps in figure 3.

Having determined that the metallic shelves were indeed a source of non-negligible distortion, in
order to study the eventual distortion of the fields only due to the incubator’s walls, ceiling and floor, all
metallic shelves were removed from the incubator, the plastic shelf was positioned at each of its 11 levels
and fields were assessed using the coarse grid. Figure 4a shows the 11 MF maps, all plotted in the same
colour map scale for ease of comparison (see table 3 for numerical values). First observation to be made
is that maps are smooth (i.e. only slightly ‘pixelated’): without the distortion from the metallic shelves,
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Table 3. Minimum, maximum and differences (A ) for the 11 shelf levels of the incubator, assessed with a plastic shelf and the incubator’s n
door open. Level 6 was also measured with the door closed (6*). All values are in T, within a precision of 2 pT.

shelf B, B, B,

level  minimum maximum A  minimum maximum A minimum maximum A
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the coarse grid turns out to be appropriate for studying the fields inside the incubator. It is clear that
variations within several centimetres are relatively subtle both in each level, and between consecutive
levels (which are 4 cm apart). However, differences greater than 40 uT are observed in the upper shelves.
Also, even though differences between consecutive shelves are small, the first and the eleventh levels
are clearly different. Lastly, we evaluated the effect of performing the measurements either with the
incubator door open, or closed (figure 4b). The maps clearly show that components By and By (and most
notably this latter, perpendicular to the plane of the door) are the most affected by the closing of the door,
while B; is almost unaffected. Comparing differences for the open and closed condition (see A for levels
6 and 6 in table 3), it is evident that closing the door has a slight homogenizing effect on the fields inside
the incubator.

4. Discussion and conclusion

Given that incubator’s shelves are made of a non-magnetic SS alloy (AISI 304, relative magnetic
permeability 4, =1), we did not expect any important effect of them on the SME. Surprisingly, we did
find relatively strong distortion of the SMF due to shelves. Thus, a first question to address is how CO,
incubator shelves can display the magnetizations we measured. The answer has long been known in the
metallurgy industry. Manufacturing processes like folding, stamping, drilling, extruding or punching
can induce an structural transition from austenite to martensite, leading to a weak magnetization of the
otherwise non-magnetic SSs [8-10]. Furthermore, this effect has been studied in detail in the particular
alloy of our shelves [11-13]. It is worth noting that even though the explanation of our findings is based
on facts well known by the metallurgy industry, they are probably ignored by most part of the scientific
community working with cell cultures, including magnetobiology researchers.

Secondly, it is fair to question the relevance of our findings: could the MF inhomogeneities that we
found actually affect the outcome of an experiment through confounding or increasing the variability
of a biological endpoint? While SMFs’ capability of eliciting biological effects has extensively been
demonstrated (e.g. see review by the World Health Organization [14]), it is also true that most of such
reports dealt with fields orders of magnitude stronger than the ones we measured (i.e. from mT to
several teslas). Hence, it is appropriate to retrieve here a diversity of studies with fields no greater than
415pT (i.e. the absolute maximum among all our measurements), reporting effects on cell-free systems
[15-19], genotoxicity [20-22], in vivo neurophysiological effects [23-26], in vivo sensory receptors [27],
analgesia [28,29], behaviour [30-32], muscles [33], pineal gland [34,35], development [36], modulation of



hydrogen peroxide production [37] and endothelial cell proliferation [38]. Furthermore, in their extensive
review, Binhi & Prato [39] gathered and analysed over 130 articles on effects of fields between 0 and
10 uT (hypomagnetic fields). These effects were observed when compared with samples ‘exposed” to the
geomagnetic field, which takes values in the range of 23-64 uT, depending on the location on the Earth
[40]. Moreover, an example of special interest for the present work is the study by Martino ef al. [41]
on fibrosarcoma and colorectal cancer cells, because the authors reported changes of proliferation upon
differences of approximately 35-45uT, a range that includes the ones we measured within a single shelf,
for several shelves (see As for |B| at shelves 8-11 in table 3). This indicates that, even using plastic shelves,
proliferation can indeed be significantly affected by the exact location of cultures on the same shelf.

A further detail to point out is that in standard multi-well plates, typical vertical distances from inside
wells” bottom to the resting plane (e.g. the shelf inside an incubator) are of 3.0 mm (Thermo Scientific,
MA) or 3.53 mm (Corning, NY), while under typical experimental design in Petri dishes cells can lie
1.09 mm (MatTek, MA) over the resting plane, or as close as 0.17 mm in case of glass bottom Petri dishes
(Ted Pella, CA; Cellvis, CA). In table 3, we show that at a height of 1 mm, differences as high as 250.6 uT
were measured within a few millimetres distance (hole 2), while at a height of 3 mm the difference was
of 34.6 uT (hole 3).

In summary, we conclude that our measurements, along with the data retrieved from the literature
in the preceding paragraphs, make it sensible to suggest that SMF inhomogeneities inside incubators,
and especially at typical experiment location of cells regarding metallic shelves, can be a source of
confounding and variability. Consequently, the use of non-metallic shelves, along with bearing in mind
the exact location of cultures inside the incubator (even on the same shelf), could enhance in-lab
repeatability of results throughout all disciplines working with cell cultures in incubators, regardless
of their specialty.
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