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Propositional Logic
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Chapter 1

Syntax and Semantics

§1.0 Introduction

Propositional logic deals with wffs that are built from propositional variables
using the propositional connectives ¬, ∧, ∨, →, and ↔. Intuitively, a propo-
sitional variable p stands for a sentence or proposition that is true or false.
Whenever the “truth value” of the propositional variable in a wff is deter-
mined, so is the truth value of any wffs formed from them using propositional
connectives. We say that propositional logic is truth functional, because its
semantics is given by functions of truth values. In particular, in propositional
logic we leave out of consideration any further determination of truth and fal-
sity, e.g., whether something is necessarily true rather than just contingently
true, or whether something is known to be true, or whether something is true
now rather than was true or will be true. We only consider two truth values
true (T) and false (F), and so exclude from discussion the possibility that a
statement may be neither true nor false, or only half true. We also concen-
trate only on connectives where the truth value of a wff built from them is
completely determined by the truth values of its parts (and not, say, on its
meaning). In particular, whether the truth value of conditionals in English is
truth functional in this sense is contentious. The material conditional → is;
other logics deal with conditionals that are not truth functional.

In order to develop the theory and metatheory of truth-functional propo-
sitional logic, we must first define the syntax and semantics of its expressions.
We will describe one way of constructing wffs from propositional variables using
the connectives. Alternative definitions are possible. Other systems will choose
different symbols, will select different sets of connectives as primitive, and will
use parentheses differently (or even not at all, as in the case of so-called Polish
notation). What all approaches have in common, though, is that the forma-
tion rules define the set of wffs inductively. If done properly, every expression
can result essentially in only one way according to the formation rules. The
inductive definition resulting in expressions that are uniquely readable means
we can give meanings to these expressions using the same method—inductive
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1. Syntax and Semantics

definition.
Giving the meaning of expressions is the domain of semantics. The central

concept in semantics for propositional logic is that of satisfaction in a valuation.
A valuation v assigns truth values T, F to the propositional variables. Any
valuation determines a truth value v(α) for any wff α. A wff is satisfied in
a valuation v iff v(α) = T—we write this as v ⊨ α. This relation can also be
defined by induction on the structure of α, using the truth functions for the
logical connectives to define, say, satisfaction of α ∧ β in terms of satisfaction
(or not) of α and β.

On the basis of the satisfaction relation v ⊨ α for sentences we can then
define the basic semantic notions of tautology, entailment, and satisfiability.
A wff is a tautology, ⊨ α, if every valuation satisfies it, i.e., v(α) = T for any v.
It is entailed by a set of wffs, Γ ⊨ α, if every valuation that satisfies all the
wffs in Γ also satisfies α. And a set of wffs is satisfiable if some valuation
satisfies all wffs in it at the same time. Because wffs are inductively defined,
and satisfaction is in turn defined by induction on the structure of wffs, we can
use induction to prove properties of our semantics and to relate the semantic
notions defined.

§1.1 Propositional Wffs

Wffs of propositional logic are built up from propositional variables using logical
connectives.

1. A denumerable set At0 of propositional variables p0, p1, . . .

2. The logical connectives: ¬ (negation), → (conditional)

3. Punctuation marks: (, ), and the comma.

We denote this language of propositional logic by L0.
In addition to the primitive connectives introduced above, we also use the

following defined symbols: ∧ (conjunction), ∨ (disjunction), ↔ (biconditional),
⊥ (falsity), ⊤ (truth)

A defined symbol is not officially part of the language, but is introduced as
an informal abbreviation: it allows us to abbreviate formulas which would, if we
only used primitive symbols, get quite long. This is obviously an advantage.
The bigger advantage, however, is that proofs become shorter. If a symbol
is primitive, it has to be treated separately in proofs. The more primitive
symbols, therefore, the longer our proofs.

You may be familiar with different terminology and symbols than the ones
we use above. Logic texts (and teachers) commonly use either ∼, ¬, and ! for
“negation”, ∧, ·, and & for “conjunction”. Commonly used symbols for the
“conditional” or “implication” are →, ⇒, and ⊃. Symbols for “biconditional,”
“bi-implication,” or “(material) equivalence” are ↔, ⇔, and ≡. The ⊥ symbol
is variously called “falsity,” “falsum,” “absurdity,” or “bottom.” The ⊤ symbol
is variously called “truth,” “verum,” or “top.”
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1.2. Preliminaries

Definition 11A (Formula). The set Frm(L0) of wffs of propositional logic
is defined inductively as follows:

1. Every propositional variable pi is an atomic wff.

2. If α is a wff, then ¬α is a wff.

3. If α and β are wffs, then (α→ β) is a wff.

The definition of wffs is an inductive definition. Essentially, we construct
the set of wffs in infinitely many stages. In the initial stage, we pronounce all
atomic formulas to be formulas; this corresponds to the first few cases of the
definition, i.e., the cases for pi. “Atomic wff” thus means any wff of this form.

The other cases of the definition give rules for constructing new wffs out of
wffs already constructed. At the second stage, we can use them to construct
wffs out of atomic wffs. At the third stage, we construct new formulas from
the atomic formulas and those obtained in the second stage, and so on. A wff
is anything that is eventually constructed at such a stage, and nothing else.

Definition 11B. Formulas constructed using the defined operators are to be
understood as follows:

1. ⊤ abbreviates (α ∨ ¬α) for some fixed atomic wff α.

2. ⊥ abbreviates (α ∧ ¬α) for some fixed atomic wff α.

3. α ∨ β abbreviates ¬α→ β.

4. α ∧ β abbreviates ¬(α→¬β).

5. α↔ β abbreviates (α→ β) ∧ (β → α).

Definition 11C (Syntactic identity). The symbol ≡ expresses syntactic
identity between strings of symbols, i.e., α ≡ β iff α and β are strings of
symbols of the same length and which contain the same symbol in each place.

The ≡ symbol may be flanked by strings obtained by concatenation, e.g.,
α ≡ (β ∨ γ) means: the string of symbols α is the same string as the one
obtained by concatenating an opening parenthesis, the string β, the ∨ symbol,
the string γ, and a closing parenthesis, in this order. If this is the case, then
we know that the first symbol of α is an opening parenthesis, α contains β as a
substring (starting at the second symbol), that substring is followed by ∨, etc.

§1.2 Preliminaries

Theorem 12A (Principle of induction on wffs). If some property P
holds for all the atomic wffs and is such that

1. it holds for ¬α whenever it holds for α;
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1. Syntax and Semantics

2. it holds for (α→ β) whenever it holds for α and β;

then P holds for all wffs.

Proof. Let S be the collection of all wffs with property P . Clearly S ⊆ Frm(L0).
S satisfies all the conditions of Definition 11A: it contains all atomic wffs and
is closed under the logical operators. Frm(L0) is the smallest such class, so
Frm(L0) ⊆ S. So Frm(L0) = S, and every formula has property P .

Proposition 12B. Any wff in Frm(L0) is balanced, in that it has as many
left parentheses as right ones.

Proposition 12C. No proper initial segment of a wff is a wff.

Proposition 12D (Unique Readability). Any wff α in Frm(L0) has ex-
actly one parsing as one of the following

1. pn for some pn ∈ At0.

2. ¬β for some wff β.

3. (β → γ) for some wffs β and γ.

Moreover, this parsing is unique.

Proof. By induction on α. For instance, suppose that α has two distinct read-
ings as (β → γ) and (β′ → γ′). Then β and β′ must be the same (or else one
would be a proper initial segment of the other); so if the two readings of α are
distinct it must be because γ and γ′ are distinct readings of the same sequence
of symbols, which is impossible by the inductive hypothesis.

Definition 12E (Uniform Substitution). If α and β are wffs, and pi is a
propositional variable, then α[β/pi] denotes the result of replacing each occur-
rence of pi by an occurrence of β in α; similarly, the simultaneous substitution
of p1, . . . , pn by wffs β1, . . . , βn is denoted by α[β1/p1, . . . , βn/pn].

§1.3 Valuations and Satisfaction

Definition 13A (Valuations). Let {T,F} be the set of the two truth values,
“true” and “false.” A valuation for L0 is a function v assigning either T or F
to the propositional variables of the language, i.e., v : At0 → {T,F}.
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Definition 13B. Given a valuation v, define the evaluation function v : Frm(L0) →
{T,F} inductively by:

v(pn) = v(pn);

v(¬α) =

{
T if v(α) = F;

F otherwise.

v(α→ β) =

{
T if v(α) = F or v(β) = T;
F if v(α) = T and v(β) = F.

The clauses correspond to the following truth tables:

α ¬α
T F
F T

α β α→ β

T T T
T F F
F T T
F F T

Theorem 13C (Local Determination). Suppose that v1 and v2 are val-
uations that agree on the propositional letters occurring in α, i.e., v1(pn) =
v2(pn) whenever pn occurs in some wff α. Then v1 and v2 also agree on α,
i.e., v1(α) = v2(α).

Proof. By induction on α.

Definition 13D (Satisfaction). Using the evaluation function, we can de-
fine the notion of satisfaction of a wff α by a valuation v, v ⊨ α, inductively
as follows. (We write v ⊭ α to mean “not v ⊨ α.”)

1. α ≡ pi: v ⊨ α iff v(pi) = T.

2. α ≡ ¬β: v ⊨ α iff v ⊭ β.

3. α ≡ (β → γ): v ⊨ α iff v ⊭ β or v ⊨ γ (or both).

If Γ is a set of wffs, v ⊨ Γ iff v ⊨ α for every α ∈ Γ .

Proposition 13E. v ⊨ α iff v(α) = T.

Proof. By induction on α.
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§1.4 Semantic Notions

We define the following semantic notions:

Definition 14A.

1. A wff α is satisfiable if for some v, v ⊨ α; it is unsatisfiable if for no v,
v ⊨ α;

2. A wff α is a tautology if v ⊨ α for all valuations v;

3. A wff α is contingent if it is satisfiable but not a tautology;

4. If Γ is a set of wffs, Γ ⊨ α (“Γ entails α”) if and only if v ⊨ α for every
valuation v for which v ⊨ Γ .

5. If Γ is a set of wffs, Γ is satisfiable if there is a valuation v for which
v ⊨ Γ , and Γ is unsatisfiable otherwise.

Proposition 14B.

1. α is a tautology if and only if ∅ ⊨ α;

2. If Γ ⊨ α and Γ ⊨ α→ β then Γ ⊨ β;

3. If Γ is satisfiable then every finite subset of Γ is also satisfiable;

4. Monotony: if Γ ⊆ ∆ and Γ ⊨ α then also ∆ ⊨ α;

5. Transitivity: if Γ ⊨ α and ∆ ∪ {α} ⊨ β then Γ ∪∆ ⊨ β.

Proof. Exercise.

Proposition 14C. Γ ⊨ α if and only if Γ ∪ {¬α} is unsatisfiable.

Proof. Exercise.

Theorem 14D (Semantic Deduction Theorem). Γ ⊨ α→β if and only
if Γ ∪ {α} ⊨ β.

Proof. Exercise.

Problems

Problem 1. Prove Proposition 12B

Problem 2. Prove Proposition 12C

Problem 3. For each of the five wffs below determine whether the wff can be
expressed as a substitution α[β/pi] where α is (i) p0; (ii) (¬p0 ∧ p1); and (iii)
((¬p0 → p1) ∧ p2). In each case specify the relevant substitution.
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1. p1

2. (¬p0 ∧ p0)

3. ((p0 ∨ p1) ∧ p2)

4. ¬((p0 → p1) ∧ p2)

5. ((¬(p0 → p1) → (p0 ∨ p1)) ∧ ¬(p0 ∧ p1))

Problem 4. Give a mathematically rigorous definition of α[β/p] by induction.

Problem 5. Consider adding to L0 a ternary connective ♢ with evaluation
given by

v(♢(α, β, γ)) =

{
v(β) if v(α) = T;

v(γ) if v(α) = F.

Write down the truth table for this connective.

Problem 6. Prove Proposition 13E

Problem 7. For each of the following four wffs determine whether it is (a) sat-
isfiable, (b) tautology, and (c) contingent.

1. (p0 → (¬p1 →¬p0)).

2. ((p0 ∧ ¬p1) → (¬p0 ∧ p2)) ↔ ((p2 → p0) → (p0 → p1)).

3. (p0 ↔ p1) → (p2 ↔¬p1).

4. ((p0 ↔ (¬p1 ∧ p2)) ∨ (p2 → (p0 ↔ p1))).

Problem 8. Prove Proposition 14B

Problem 9. Prove Proposition 14C

Problem 10. Prove Theorem 14D
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Chapter 2

Derivation Systems

§2.0 Introduction

Logics commonly have both a semantics and a derivation system. The seman-
tics concerns concepts such as truth, satisfiability, validity, and entailment. The
purpose of derivation systems is to provide a purely syntactic method of estab-
lishing entailment and validity. They are purely syntactic in the sense that a
derivation in such a system is a finite syntactic object, usually a sequence (or
other finite arrangement) of sentences or wffs. Good derivation systems have
the property that any given sequence or arrangement of sentences or wffs can
be verified mechanically to be “correct.”

The simplest (and historically first) derivation systems for first-order logic
were axiomatic. A sequence of wffs counts as a derivation in such a system
if each individual wff in it is either among a fixed set of “axioms” or follows
from wffs coming before it in the sequence by one of a fixed number of “in-
ference rules”—and it can be mechanically verified if a wff is an axiom and
whether it follows correctly from other wffs by one of the inference rules. Ax-
iomatic derivation systems are easy to describe—and also easy to handle meta-
theoretically—but derivations in them are hard to read and understand, and
are also hard to produce.

Other derivation systems have been developed with the aim of making it
easier to construct derivations or easier to understand derivations once they
are complete. Examples are natural deduction, truth trees, also known as
tableaux proofs, and the sequent calculus. Some derivation systems are de-
signed especially with mechanization in mind, e.g., the resolution method is
easy to implement in software (but its derivations are essentially impossible to
understand). Most of these other derivation systems represent derivations as
trees of wffs rather than sequences. This makes it easier to see which parts of
a derivation depend on which other parts.

So for a given logic, such as first-order logic, the different derivation systems
will give different explications of what it is for a sentence to be a theorem and
what it means for a sentence to be derivable from some others. However that is
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done (via axiomatic derivations, natural deductions, sequent derivations, truth
trees, resolution refutations), we want these relations to match the semantic
notions of validity and entailment. Let’s write ⊢ α for “α is a theorem” and
“Γ ⊢ α” for “α is derivable from Γ .” However ⊢ is defined, we want it to match
up with ⊨, that is:

1. ⊢ α if and only if ⊨ α

2. Γ ⊢ α if and only if Γ ⊨ α

The “only if” direction of the above is called soundness. A derivation system is
sound if derivability guarantees entailment (or validity). Every decent deriva-
tion system has to be sound; unsound derivation systems are not useful at all.
After all, the entire purpose of a derivation is to provide a syntactic guarantee
of validity or entailment. We’ll prove soundness for the derivation systems we
present.

The converse “if” direction is also important: it is called completeness.
A complete derivation system is strong enough to show that α is a theorem
whenever α is valid, and that Γ ⊢ α whenever Γ ⊨ α. Completeness is harder
to establish, and some logics have no complete derivation systems. First-order
logic does. Kurt Gödel was the first one to prove completeness for a derivation
system of first-order logic in his 1929 dissertation.

Another concept that is connected to derivation systems is that of consis-
tency. A set of sentences is called inconsistent if anything whatsoever can be
derived from it, and consistent otherwise. Inconsistency is the syntactic coun-
terpart to unsatisfiablity: like unsatisfiable sets, inconsistent sets of sentences
do not make good theories, they are defective in a fundamental way. Consis-
tent sets of sentences may not be true or useful, but at least they pass that
minimal threshold of logical usefulness. For different derivation systems the
specific definition of consistency of sets of sentences might differ, but like ⊢, we
want consistency to coincide with its semantic counterpart, satisfiability. We
want it to always be the case that Γ is consistent if and only if it is satisfi-
able. Here, the “if” direction amounts to completeness (consistency guarantees
satisfiability), and the “only if” direction amounts to soundness (satisfiability
guarantees consistency). In fact, for classical first-order logic, the two versions
of soundness and completeness are equivalent.

§2.1 The Sequent Calculus

While many derivation systems operate with arrangements of sentences, the
sequent calculus operates with sequents. A sequent is an expression of the
form

α1, . . . , αm ⇒ β1, . . . , βm,

that is a pair of sequences of sentences, separated by the sequent symbol ⇒.
Either sequence may be empty. A derivation in the sequent calculus is a tree
of sequents, where the topmost sequents are of a special form (they are called
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“initial sequents” or “axioms”) and every other sequent follows from the se-
quents immediately above it by one of the rules of inference. The rules of
inference either manipulate the sentences in the sequents (adding, removing,
or rearranging them on either the left or the right), or they introduce a com-
plex wff in the conclusion of the rule. For instance, the ∧L rule allows the
inference from α, Γ ⇒ ∆ to α ∧ β, Γ ⇒ ∆, and the →R allows the inference
from α, Γ ⇒ ∆,β to Γ ⇒ ∆,α→ β, for any Γ , ∆, α, and β. (In particular, Γ
and ∆ may be empty.)

The ⊢ relation based on the sequent calculus is defined as follows: Γ ⊢ α
iff there is some sequence Γ0 such that every α in Γ0 is in Γ and there is a
derivation with the sequent Γ0 ⇒ α at its root. α is a theorem in the sequent
calculus if the sequent ⇒ α has a derivation. For instance, here is a derivation
that shows that ⊢ (α ∧ β) → α:

α ⇒ α ∧L
α ∧ β ⇒ α

→R⇒ (α ∧ β) → α

A set Γ is inconsistent in the sequent calculus if there is a derivation of
Γ0 ⇒ (where every α ∈ Γ0 is in Γ and the right side of the sequent is empty).
Using the rule WR, any sentence can be derived from an inconsistent set.

The sequent calculus was invented in the 1930s by Gerhard Gentzen. Be-
cause of its systematic and symmetric design, it is a very useful formalism for
developing a theory of derivations. It is relatively easy to find derivations in
the sequent calculus, but these derivations are often hard to read and their
connection to proofs are sometimes not easy to see. It has proved to be a very
elegant approach to derivation systems, however, and many logics have sequent
calculus systems.

§2.2 Natural Deduction

Natural deduction is a derivation system intended to mirror actual reasoning
(especially the kind of regimented reasoning employed by mathematicians).
Actual reasoning proceeds by a number of “natural” patterns. For instance,
proof by cases allows us to establish a conclusion on the basis of a disjunctive
premise, by establishing that the conclusion follows from either of the disjuncts.
Indirect proof allows us to establish a conclusion by showing that its negation
leads to a contradiction. Conditional proof establishes a conditional claim “if
. . . then . . . ” by showing that the consequent follows from the antecedent.
Natural deduction is a formalization of some of these natural inferences. Each
of the logical connectives and quantifiers comes with two rules, an introduction
and an elimination rule, and they each correspond to one such natural inference
pattern. For instance, →Intro corresponds to conditional proof, and ∨Elim to
proof by cases. A particularly simple rule is ∧Elim which allows the inference
from α ∧ β to α (or β).

One feature that distinguishes natural deduction from other derivation sys-
tems is its use of assumptions. A derivation in natural deduction is a tree of

Release : 0552395 (2022-04-04) 19



2. Derivation Systems

wffs. A single wff stands at the root of the tree of wffs, and the “leaves” of the
tree are wffs from which the conclusion is derived. In natural deduction, some
leaf wffs play a role inside the derivation but are “used up” by the time the
derivation reaches the conclusion. This corresponds to the practice, in actual
reasoning, of introducing hypotheses which only remain in effect for a short
while. For instance, in a proof by cases, we assume the truth of each of the
disjuncts; in conditional proof, we assume the truth of the antecedent; in in-
direct proof, we assume the truth of the negation of the conclusion. This way
of introducing hypothetical assumptions and then doing away with them in
the service of establishing an intermediate step is a hallmark of natural deduc-
tion. The formulas at the leaves of a natural deduction derivation are called
assumptions, and some of the rules of inference may “discharge” them. For
instance, if we have a derivation of β from some assumptions which include α,
then the →Intro rule allows us to infer α → β and discharge any assumption
of the form α. (To keep track of which assumptions are discharged at which
inferences, we label the inference and the assumptions it discharges with a
number.) The assumptions that remain undischarged at the end of the deriva-
tion are together sufficient for the truth of the conclusion, and so a derivation
establishes that its undischarged assumptions entail its conclusion.

The relation Γ ⊢ α based on natural deduction holds iff there is a derivation
in which α is the last sentence in the tree, and every leaf which is undischarged
is in Γ . α is a theorem in natural deduction iff there is a derivation in which
α is the last sentence and all assumptions are discharged. For instance, here is
a derivation that shows that ⊢ (α ∧ β) → α:

[α ∧ β]1
∧Elimα

1 →Intro
(α ∧ β) → α

The label 1 indicates that the assumption α ∧ β is discharged at the →Intro
inference.

A set Γ is inconsistent iff Γ ⊢ ⊥ in natural deduction. The rule ⊥I makes
it so that from an inconsistent set, any sentence can be derived.

Natural deduction systems were developed by Gerhard Gentzen and Sta-
nis law Jaśkowski in the 1930s, and later developed by Dag Prawitz and Frederic
Fitch. Because its inferences mirror natural methods of proof, it is favored by
philosophers. The versions developed by Fitch are often used in introductory
logic textbooks. In the philosophy of logic, the rules of natural deduction have
sometimes been taken to give the meanings of the logical operators (“proof-
theoretic semantics”).

§2.3 Tableaux

While many derivation systems operate with arrangements of sentences, tableaux
operate with signed formulas. A signed formula is a pair consisting of a truth

20 Release : 0552395 (2022-04-04)



2.3. Tableaux

value sign (T or F) and a sentence

Tα or Fα.

A tableau consists of signed formulas arranged in a downward-branching tree.
It begins with a number of assumptions and continues with signed formulas
which result from one of the signed formulas above it by applying one of the
rules of inference. Each rule allows us to add one or more signed formulas to
the end of a branch, or two signed formulas side by side—in this case a branch
splits into two, with the two added signed formulas forming the ends of the
two branches.

A rule applied to a complex signed formula results in the addition of signed
formulas which are immediate sub-wffs. They come in pairs, one rule for each
of the two signs. For instance, the ∧T rule applies to Tα ∧ β, and allows the
addition of both the two signed formulas Tα and Tβ to the end of any branch
containing Tα∧β, and the rule α ∧ βF allows a branch to be split by adding Fα
and F β side-by-side. A tableau is closed if every one of its branches contains
a matching pair of signed formulas Tα and Fα.

The ⊢ relation based on tableaux is defined as follows: Γ ⊢ α iff there is
some finite set Γ0 = {β1, . . . , βn} ⊆ Γ such that there is a closed tableau for
the assumptions

{Fα,Tβ1, . . . ,Tβn}

For instance, here is a closed tableau that shows that ⊢ (α ∧ β) → α:

1.
2.
3.
4.
5.

F (α ∧ β) → α
Tα ∧ β
Fα
Tα
Tβ
⊗

Assumption
→F 1
→F 1
→T 2
→T 2

A set Γ is inconsistent in the tableau calculus if there is a closed tableau
for assumptions

{Tβ1, . . . ,Tβn}

for some βi ∈ Γ .
Tableaux were invented in the 1950s independently by Evert Beth and

Jaakko Hintikka, and simplified and popularized by Raymond Smullyan. They
are very easy to use, since constructing a tableau is a very systematic proce-
dure. Because of the systematic nature of tableaux, they also lend themselves
to implementation by computer. However, a tableau is often hard to read and
their connection to proofs are sometimes not easy to see. The approach is also
quite general, and many different logics have tableau systems. Tableaux also
help us to find structures that satisfy given (sets of) sentences: if the set is
satisfiable, it won’t have a closed tableau, i.e., any tableau will have an open
branch. The satisfying structure can be “read off” an open branch, provided
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every rule it is possible to apply has been applied on that branch. There is also
a very close connection to the sequent calculus: essentially, a closed tableau is
a condensed derivation in the sequent calculus, written upside-down.

§2.4 Axiomatic Derivations

Axiomatic derivations are the oldest and simplest logical derivation systems. Its
derivations are simply sequences of sentences. A sequence of sentences counts
as a correct derivation if every sentence α in it satisfies one of the following
conditions:

1. α is an axiom, or

2. α is an element of a given set Γ of sentences, or

3. α is justified by a rule of inference.

To be an axiom, α has to have the form of one of a number of fixed sentence
schemas. There are many sets of axiom schemas that provide a satisfactory
(sound and complete) derivation system for first-order logic. Some are orga-
nized according to the connectives they govern, e.g., the schemas

α→ (β → α) β → (β ∨ γ) (β ∧ γ) → β

are common axioms that govern →, ∨ and ∧. Some axiom systems aim at a
minimal number of axioms. Depending on the connectives that are taken as
primitives, it is even possible to find axiom systems that consist of a single
axiom.

A rule of inference is a conditional statement that gives a sufficient condition
for a sentence in a derivation to be justified. Modus ponens is one very common
such rule: it says that if α and α→ β are already justified, then β is justified.
This means that a line in a derivation containing the sentence β is justified,
provided that both α and α→β (for some sentence α) appear in the derivation
before β.

The ⊢ relation based on axiomatic derivations is defined as follows: Γ ⊢ α
iff there is a derivation with the sentence α as its last formula (and Γ is taken
as the set of sentences in that derivation which are justified by (2) above). α
is a theorem if α has a derivation where Γ is empty, i.e., every sentence in the
derivation is justfied either by (1) or (3). For instance, here is a derivation that
shows that ⊢ α→ (β → (β ∨ α)):

1. β → (β ∨ α)
2. (β → (β ∨ α)) → (α→ (β → (β ∨ α)))
3. α→ (β → (β ∨ α))

The sentence on line 1 is of the form of the axiom α → (α ∨ β) (with the
roles of α and β reversed). The sentence on line 2 is of the form of the axiom
α→(β→α). Thus, both lines are justified. Line 3 is justified by modus ponens:
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if we abbreviate it as δ, then line 2 has the form γ→ δ, where γ is β→ (β ∨α),
i.e., line 1.

A set Γ is inconsistent if Γ ⊢ ⊥. A complete axiom system will also prove
that ⊥→ α for any α, and so if Γ is inconsistent, then Γ ⊢ α for any α.

Systems of axiomatic derivations for logic were first given by Gottlob Frege
in his 1879 Begriffsschrift, which for this reason is often considered the first
work of modern logic. They were perfected in Alfred North Whitehead and
Bertrand Russell’s Principia Mathematica and by David Hilbert and his stu-
dents in the 1920s. They are thus often called “Frege systems” or “Hilbert
systems.” They are very versatile in that it is often easy to find an axiomatic
system for a logic. Because derivations have a very simple structure and only
one or two inference rules, it is also relatively easy to prove things about them.
However, they are very hard to use in practice, i.e., it is difficult to find and
write proofs.
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Chapter 3

Axiomatic Derivations

§3.0 Rules and Derivations

Axiomatic derivations are perhaps the simplest derivation system for logic.
A derivation is just a sequence of wffs. To count as a derivation, every wff in
the sequence must either be an instance of an axiom, or must follow from one
or more wffs that precede it in the sequence by a rule of inference. A derivation
derives its last wff.

Definition 30A (Derivability). If Γ is a set of wffs of L then a derivation
from Γ is a finite sequence α1, . . . , αn of wffs where for each i ≤ n one of the
following holds:

1. αi ∈ Γ ; or

2. αi is an axiom; or

3. αi follows from some αj (and αk) with j < i (and k < i) by a rule of
inference.

What counts as a correct derivation depends on which inference rules we
allow (and of course what we take to be axioms). And an inference rule is
an if-then statement that tells us that, under certain conditions, a step Ai in
a derivation is a correct inference step.

Definition 30B (Rule of inference). A rule of inference gives a sufficient
condition for what counts as a correct inference step in a derivation from Γ .

For instance, since any one-element sequence α with α ∈ Γ trivially counts
as a derivation, the following might be a very simple rule of inference:

If α ∈ Γ , then α is always a correct inference step in any derivation
from Γ .

Similarly, if α is one of the axioms, then α by itself is a derivation, and so this
is also a rule of inference:
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If α is an axiom, then α is a correct inference step.

It gets more interesting if the rule of inference appeals to wffs that appear
before the step considered. The following rule is called modus ponens:

If β→α and β occur higher up in the derivation, then α is a correct
inference step.

If this is the only rule of inference, then our definition of derivation above
amounts to this: α1, . . . , αn is a derivation iff for each i ≤ n one of the
following holds:

1. αi ∈ Γ ; or

2. αi is an axiom; or

3. for some j < i, αj is β → αi, and for some k < i, αk is β.

The last clause says that αi follows from αj (β) and αk (β → αi) by modus
ponens. If we can go from 1 to n, and each time we find a wff αi that is either
in Γ , an axiom, or which a rule of inference tells us that it is a correct inference
step, then the entire sequence counts as a correct derivation.

Definition 30C (Derivability). A wff α is derivable from Γ , written Γ ⊢
α, if there is a derivation from Γ ending in α.

Definition 30D (Theorems). A wff α is a theorem if there is a derivation
of α from the empty set. We write ⊢ α if α is a theorem and ⊬ α if it is not.

§3.1 Axiom and Rules for the Propositional Connectives

Definition 31A (Axioms). The set of Ax0 of axioms for the propositional
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connectives comprises all wffs of the following forms:

(α ∧ β) → α (3.1)

(α ∧ β) → β (3.2)

α→ (β → (α ∧ β)) (3.3)

α→ (α ∨ β) (3.4)

α→ (β ∨ α) (3.5)

(α→ γ) → ((β → γ) → ((α ∨ β) → γ)) (3.6)

α→ (β → α) (3.7)

(α→ (β → γ)) → ((α→ β) → (α→ γ)) (3.8)

(α→ β) → ((α→¬β) →¬α) (3.9)

¬α→ (α→ β) (3.10)

⊤ (3.11)

⊥→ α (3.12)

(α→⊥) →¬α (3.13)

¬¬α→ α (3.14)

Definition 31B (Modus ponens). If β and β→α already occur in a deriva-
tion, then α is a correct inference step.

We’ll abbreviate the rule modus ponens as “mp.”

§3.2 Examples of Derivations

Example 3.2.1. Suppose we want to prove (¬δ ∨ φ) → (δ→ φ). Clearly, this is
not an instance of any of our axioms, so we have to use the mp rule to derive
it. Our only rule is MP, which given α and α→ β allows us to justify β. One
strategy would be to use eq. (3.6) with α being ¬δ, β being φ, and γ being
δ → φ, i.e., the instance

(¬δ → (δ → φ)) → ((φ→ (δ → φ)) → ((¬δ ∨ φ) → (δ → φ))).

Why? Two applications of MP yield the last part, which is what we want. And
we easily see that ¬δ → (δ → φ) is an instance of eq. (3.10), and φ→ (δ → φ)
is an instance of eq. (3.7). So our derivation is:

1. ¬δ → (δ → φ) eq. (3.10)
2. (¬δ → (δ → φ)) →

((φ→ (δ → φ)) → ((¬δ ∨ φ) → (δ → φ))) eq. (3.6)
3. ((φ→ (δ → φ)) → ((¬δ ∨ φ) → (δ → φ)) 1, 2, mp
4. φ→ (δ → φ) eq. (3.7)
5. (¬δ ∨ φ) → (δ → φ) 3, 4, mp
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Example 3.2.2. Let’s try to find a derivation of δ → δ. It is not an instance
of an axiom, so we have to use mp to derive it. eq. (3.7) is an axiom of the
form α→ β to which we could apply mp. To be useful, of course, the β which
mp would justify as a correct step in this case would have to be δ → δ, since
this is what we want to derive. That means α would also have to be δ, i.e., we
might look at this instance of eq. (3.7):

δ → (δ → δ)

In order to apply mp, we would also need to justify the corresponding second
premise, namely α. But in our case, that would be δ, and we won’t be able to
derive δ by itself. So we need a different strategy.

The other axiom involving just → is eq. (3.8), i.e.,

(α→ (β → γ)) → ((α→ β) → (α→ γ))

We could get to the last nested conditional by applying mp twice. Again, that
would mean that we want an instance of eq. (3.8) where α→γ is δ→ δ, the wff
we are aiming for. Then of course, α and γ are both δ. How should we pick β
so that both α→ (β → γ) and α→ β, i.e., in our case δ → (β → δ) and δ → β,
are also derivable? Well, the first of these is already an instance of eq. (3.7),
whatever we decide β to be. And δ→ β would be another instance of eq. (3.7)
if β were (δ → δ). So, our derivation is:

1. δ → ((δ → δ) → δ) eq. (3.7)
2. (δ → ((δ → δ) → δ)) →

((δ → (δ → δ)) → (δ → δ)) eq. (3.8)
3. (δ → (δ → δ)) → (δ → δ) 1, 2, mp
4. δ → (δ → δ) eq. (3.7)
5. δ → δ 3, 4, mp

Example 3.2.3. Sometimes we want to show that there is a derivation of some
wff from some other wffs Γ . For instance, let’s show that we can derive α→ γ
from Γ = {α→ β, β → γ}.

1. α→ β Hyp
2. β → γ Hyp
3. (β → γ) → (α→ (β → γ)) eq. (3.7)
4. α→ (β → γ) 2, 3, mp
5. (α→ (β → γ)) →

((α→ β) → (α→ γ)) eq. (3.8)
6. ((α→ β) → (α→ γ)) 4, 5, mp
7. α→ γ 1, 6, mp

The lines labelled “Hyp” (for “hypothesis”) indicate that the wff on that line
is an element of Γ .

Proposition 32D. If Γ ⊢ α→ β and Γ ⊢ β → γ, then Γ ⊢ α→ γ
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Proof. Suppose Γ ⊢ α→β and Γ ⊢ β→ γ. Then there is a derivation of α→β
from Γ ; and a derivation of β→ γ from Γ as well. Combine these into a single
derivation by concatenating them. Now add lines 3–7 of the derivation in the
preceding example. This is a derivation of α→ γ—which is the last line of the
new derivation—from Γ . Note that the justifications of lines 4 and 7 remain
valid if the reference to line number 2 is replaced by reference to the last line
of the derivation of α→ β, and reference to line number 1 by reference to the
last line of the derivation of B → γ.

§3.3 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions (tautology, en-
tailment, satisfiabilty), we now define corresponding proof-theoretic notions.
These are not defined by appeal to satisfaction of sentences in structures, but
by appeal to the derivability or non-derivability of certain formulas. It was an
important discovery that these notions coincide. That they do is the content
of the soundness and completeness theorems.

Definition 33A (Derivability). A wff α is derivable from Γ , written Γ ⊢
α, if there is a derivation from Γ ending in α.

Definition 33B (Theorems). A wff α is a theorem if there is a derivation
of α from the empty set. We write ⊢ α if α is a theorem and ⊬ α if it is not.

Definition 33C (Consistency). A set Γ of wffs is consistent if and only if
Γ ⊬ ⊥; it is inconsistent otherwise.

Proposition 33D (Reflexivity). If α ∈ Γ , then Γ ⊢ α.

Proof. The wff α by itself is a derivation of α from Γ .

Proposition 33E (Monotony). If Γ ⊆ ∆ and Γ ⊢ α, then ∆ ⊢ α.

Proof. Any derivation of α from Γ is also a derivation of α from ∆.

Proposition 33F (Transitivity). If Γ ⊢ α and {α}∪∆ ⊢ β, then Γ ∪∆ ⊢
β.

Proof. Suppose {α} ∪ ∆ ⊢ β. Then there is a derivation β1, . . . , βl = β
from {α} ∪∆. Some of the steps in that derivation will be correct because of
a rule which refers to a prior line βi = α. By hypothesis, there is a derivation
of α from Γ , i.e., a derivation α1, . . . , αk = α where every αi is an axiom,
an element of Γ , or correct by a rule of inference. Now consider the sequence

α1, . . . , αk = α, β1, . . . , βl = β.

This is a correct derivation of β from Γ ∪∆ since every Bi = α is now justified
by the same rule which justifies αk = α.
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Note that this means that in particular if Γ ⊢ α and α ⊢ β, then Γ ⊢ β. It
follows also that if α1, . . . , αn ⊢ β and Γ ⊢ αi for each i, then Γ ⊢ β.

Proposition 33G. Γ is inconsistent iff Γ ⊢ α for every α.

Proof. Exercise.

Proposition 33H (Compactness).

1. If Γ ⊢ α then there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊢ α.

2. If every finite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ⊢ α, then there is a finite sequence of wffs α1, . . . , αn so that
α ≡ αn and each αi is either a logical axiom, an element of Γ or follows
from previous wffs by modus ponens. Take Γ0 to be those αi which are
in Γ . Then the derivation is likewise a derivation from Γ0, and so Γ0 ⊢ α.

2. This is the contrapositive of (1) for the special case α ≡ ⊥.

§3.4 The Deduction Theorem

As we’ve seen, giving derivations in an axiomatic system is cumbersome, and
derivations may be hard to find. Rather than actually write out long lists of
wffs, it is generally easier to argue that such derivations exist, by making use
of a few simple results. We’ve already established three such results: Propo-
sition 33D says we can always assert that Γ ⊢ α when we know that α ∈ Γ .
Proposition 33E says that if Γ ⊢ α then also Γ ∪{β} ⊢ α. And Proposition 33F
implies that if Γ ⊢ α and α ⊢ β, then Γ ⊢ β. Here’s another simple result, a
“meta”-version of modus ponens:

Proposition 34A. If Γ ⊢ α and Γ ⊢ α→ β, then Γ ⊢ β.

Proof. We have that {α, α→ β} ⊢ β:

1. α Hyp.
2. α→ β Hyp.
3. β 1, 2, MP

By Proposition 33F, Γ ⊢ β.

The most important result we’ll use in this context is the deduction theorem:

Theorem 34B (Deduction Theorem). Γ ∪ {α} ⊢ β if and only if Γ ⊢
α→ β.
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Proof. The “if” direction is immediate. If Γ ⊢ α → β then also Γ ∪ {α} ⊢
α → β by Proposition 33E. Also, Γ ∪ {α} ⊢ α by Proposition 33D. So, by
Proposition 34A, Γ ∪ {α} ⊢ β.

For the “only if” direction, we proceed by induction on the length of the
derivation of β from Γ ∪ {α}.

For the induction basis, we prove the claim for every derivation of length 1.
A derivation of β from Γ ∪ {α} of length 1 consists of β by itself; and if it is
correct β is either ∈ Γ ∪ {α} or is an axiom. If β ∈ Γ or is an axiom, then
Γ ⊢ β. We also have that Γ ⊢ β → (α→ β) by eq. (3.7), and Proposition 34A
gives Γ ⊢ α→ β. If β ∈ {α} then Γ ⊢ α→ β because then last sentence α→ β
is the same as α→ α, and we have derived that in Example 3.2.2.

For the inductive step, suppose a derivation of β from Γ ∪ {α} ends with
a step β which is justified by modus ponens. (If it is not justified by modus
ponens, β ∈ Γ , β ≡ α, or β is an axiom, and the same reasoning as in the
induction basis applies.) Then some previous steps in the derivation are γ→β
and γ, for some wff γ, i.e., Γ ∪{α} ⊢ γ→β and Γ ∪{α} ⊢ γ, and the respective
derivations are shorter, so the inductive hypothesis applies to them. We thus
have both:

Γ ⊢ α→ (γ → β);

Γ ⊢ α→ γ.

But also

Γ ⊢ (α→ (γ → β)) → ((α→ γ) → (α→ β)),

by eq. (3.8), and two applications of Proposition 34A give Γ ⊢ α → β, as
required.

Notice how eq. (3.7) and eq. (3.8) were chosen precisely so that the Deduc-
tion Theorem would hold.

The following are some useful facts about derivability, which we leave as
exercises.

Proposition 34C.

1. ⊢ (α→ β) → ((β → γ) → (α→ γ);

2. If Γ ∪ {¬α} ⊢ ¬β then Γ ∪ {β} ⊢ α (Contraposition);

3. {α,¬α} ⊢ β (Ex Falso Quodlibet, Explosion);

4. {¬¬α} ⊢ α (Double Negation Elimination);

5. If Γ ⊢ ¬¬α then Γ ⊢ α;
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§3.5 Derivability and Consistency

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 35A. If Γ ⊢ α and Γ ∪ {α} is inconsistent, then Γ is incon-
sistent.

Proof. If Γ ∪{α} is inconsistent, then Γ ∪{α} ⊢ ⊥. By Proposition 33D, Γ ⊢ β
for every β ∈ Γ . Since also Γ ⊢ α by hypothesis, Γ ⊢ β for every β ∈ Γ ∪ {α}.
By Proposition 33F, Γ ⊢ ⊥, i.e., Γ is inconsistent.

Proposition 35B. Γ ⊢ α iff Γ ∪ {¬α} is inconsistent.

Proof. First suppose Γ ⊢ α. Then Γ∪{¬α} ⊢ α by Proposition 33E. Γ∪{¬α} ⊢
¬α by Proposition 33D. We also have ⊢ ¬α → (α → ⊥) by eq. (3.10). So by
two applications of Proposition 34A, we have Γ ∪ {¬α} ⊢ ⊥.

Now assume Γ ∪{¬α} is inconsistent, i.e., Γ ∪{¬α} ⊢ ⊥. By the deduction
theorem, Γ ⊢ ¬α → ⊥. Γ ⊢ (¬α → ⊥) → ¬¬α by eq. (3.13), so Γ ⊢ ¬¬α
by Proposition 34A. Since Γ ⊢ ¬¬α → α (eq. (3.14)), we have Γ ⊢ α by
Proposition 34A again.

Proposition 35C. If Γ ⊢ α and ¬α ∈ Γ , then Γ is inconsistent.

Proof. Γ ⊢ ¬α→ (α→⊥) by eq. (3.10). Γ ⊢ ⊥ by two applications of Propo-
sition 34A.

Proposition 35D. If Γ ∪ {α} and Γ ∪ {¬α} are both inconsistent, then Γ
is inconsistent.

Proof. Exercise.

§3.6 Derivability and the Propositional Connectives

We establish that the derivability relation ⊢ of axiomatic deduction is strong
enough to establish some basic facts involving the propositional connectives,
such as that α ∧ β ⊢ α and α, α → β ⊢ β (modus ponens). These facts are
needed for the proof of the completeness theorem.

Proposition 36A.

1. Both α ∧ β ⊢ α and α ∧ β ⊢ β

2. α, β ⊢ α ∧ β.

Proof. 1. From eq. (3.1) and eq. (3.1) by modus ponens.

2. From eq. (3.3) by two applications of modus ponens.
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Proposition 36B.

1. α ∨ β,¬α,¬β is inconsistent.

2. Both α ⊢ α ∨ β and β ⊢ α ∨ β.

Proof. 1. From eq. (3.9) we get ⊢ ¬α→ (α→⊥) and ⊢ ¬β→ (β→⊥). So by
the deduction theorem, we have {¬α} ⊢ α→⊥ and {¬β} ⊢ β→⊥. From
eq. (3.6) we get {¬α,¬β} ⊢ (α ∨ β) → ⊥. By the deduction theorem,
{α ∨ β,¬α,¬β} ⊢ ⊥.

2. From eq. (3.4) and eq. (3.5) by modus ponsens.

Proposition 36C.

1. α, α→ β ⊢ β.

2. Both ¬α ⊢ α→ β and β ⊢ α→ β.

Proof. 1. We can derive:

1. α Hyp
2. α→ β Hyp
3. β 1, 2, mp

2. By eq. (3.10) and eq. (3.7) and the deduction theorem, respectively.

§3.7 Soundness

A derivation system, such as axiomatic deduction, is sound if it cannot derive
things that do not actually hold. Soundness is thus a kind of guaranteed safety
property for derivation systems. Depending on which proof theoretic property
is in question, we would like to know for instance, that

1. every derivable α is valid;

2. if α is derivable from some others Γ , it is also a consequence of them;

3. if a set of wffs Γ is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do
not hold, the derivation system is deficient—it would derive too much. Con-
sequently, establishing the soundness of a derivation system is of the utmost
importance.

Proposition 37A. If α is an axiom, then v ⊨ α for each valuation v.

Proof. Do truth tables for each axiom to verify that they are tautologies.
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Theorem 37B (Soundness). If Γ ⊢ α then Γ ⊨ α.

Proof. By induction on the length of the derivation of α from Γ . If there
are no steps justified by inferences, then all wffs in the derivation are either
instances of axioms or are in Γ . By the previous proposition, all the axioms
are tautologies, and hence if α is an axiom then Γ ⊨ α. If α ∈ Γ , then trivially
Γ ⊨ α.

If the last step of the derivation of α is justified by modus ponens, then
there are wffs β and β → α in the derivation, and the induction hypothesis
applies to the part of the derivation ending in those wffs (since they contain
at least one fewer steps justified by an inference). So, by induction hypothesis,
Γ ⊨ β and Γ ⊨ β → α. Then Γ ⊨ α by Theorem 14D.

Corollary 37C. If ⊢ α, then α is a tautology.

Corollary 37D. If Γ is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then
Γ ⊢ ⊥, i.e., there is a derivation of ⊥ from Γ . By Theorem 37B, any valuation v
that satisfies Γ must satisfy ⊥. Since v ⊭ ⊥ for every valuation v, no v can
satisfy Γ , i.e., Γ is not satisfiable.

Problems

Problem 1. Show that the following hold by exhibiting derivations from the
axioms:

1. (α ∧ β) → (β ∧ α)

2. ((α ∧ β) → γ) → (α→ (β → γ))

3. ¬(α ∨ β) →¬α

Problem 2. Prove Proposition 33G.

Problem 3. Prove Proposition 34C

Problem 4. Prove that Γ ⊢ ¬α iff Γ ∪ {α} is inconsistent.

Problem 5. Prove Proposition 35D
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Chapter 4

The Completeness Theorem

§4.0 Introduction

The completeness theorem is one of the most fundamental results about logic.
It comes in two formulations, the equivalence of which we’ll prove. In its
first formulation it says something fundamental about the relationship between
semantic consequence and our derivation system: if a sentence α follows from
some sentences Γ , then there is also a derivation that establishes Γ ⊢ α. Thus,
the derivation system is as strong as it can possibly be without proving things
that don’t actually follow.

In its second formulation, it can be stated as a model existence result: every
consistent set of sentences is satisfiable. Consistency is a proof-theoretic notion:
it says that our derivation system is unable to produce certain derivations. But
who’s to say that just because there are no derivations of a certain sort from Γ ,
it’s guaranteed that there is valuation v with v ⊨ Γ? Before the completeness
theorem was first proved—in fact before we had the derivation systems we
now do—the great German mathematician David Hilbert held the view that
consistency of mathematical theories guarantees the existence of the objects
they are about. He put it as follows in a letter to Gottlob Frege:

If the arbitrarily given axioms do not contradict one another with
all their consequences, then they are true and the things defined by
the axioms exist. This is for me the criterion of truth and existence.

Frege vehemently disagreed. The second formulation of the completeness the-
orem shows that Hilbert was right in at least the sense that if the axioms are
consistent, then some valuation exists that makes them all true.

These aren’t the only reasons the completeness theorem—or rather, its
proof—is important. It has a number of important consequences, some of
which we’ll discuss separately. For instance, since any derivation that shows
Γ ⊢ α is finite and so can only use finitely many of the sentences in Γ , it follows
by the completeness theorem that if α is a consequence of Γ , it is already a
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consequence of a finite subset of Γ . This is called compactness. Equivalently,
if every finite subset of Γ is consistent, then Γ itself must be consistent.

Although the compactness theorem follows from the completeness theorem
via the detour through derivations, it is also possible to use the the proof of
the completeness theorem to establish it directly. For what the proof does is
take a set of sentences with a certain property—consistency—and constructs
a structure out of this set that has certain properties (in this case, that it
satisfies the set). Almost the very same construction can be used to directly
establish compactness, by starting from “finitely satisfiable” sets of sentences
instead of consistent ones.

§4.1 Outline of the Proof

The proof of the completeness theorem is a bit complex, and upon first reading
it, it is easy to get lost. So let us outline the proof. The first step is a shift
of perspective, that allows us to see a route to a proof. When completeness
is thought of as “whenever Γ ⊨ α then Γ ⊢ α,” it may be hard to even come
up with an idea: for to show that Γ ⊢ α we have to find a derivation, and
it does not look like the hypothesis that Γ ⊨ α helps us for this in any way.
For some proof systems it is possible to directly construct a derivation, but we
will take a slightly different approach. The shift in perspective required is this:
completeness can also be formulated as: “if Γ is consistent, it is satisfiable.”
Perhaps we can use the information in Γ together with the hypothesis that it
is consistent to construct a valuation that satisfies every wff in Γ . After all, we
know what kind of valuation we are looking for: one that is as Γ describes it!

If Γ contains only propositional variables, it is easy to construct a model
for it. All we have to do is come up with a valuation v such that v ⊨ p for all
p ∈ Γ . Well, let v(p) = T iff p ∈ Γ .

Now suppose Γ contains some wff ¬β, with β atomic. We might worry that
the construction of v interferes with the possibility of making ¬β true. But
here’s where the consistency of Γ comes in: if ¬β ∈ Γ , then β /∈ Γ , or else Γ
would be inconsistent. And if β /∈ Γ , then according to our construction of v,
v ⊭ β, so v ⊨ ¬β. So far so good.

What if Γ contains complex, non-atomic formulas? Say it contains α ∧ β.
To make that true, we should proceed as if both α and β were in Γ . And if
α ∨ β ∈ Γ , then we will have to make at least one of them true, i.e., proceed
as if one of them was in Γ .

This suggests the following idea: we add additional wffs to Γ so as to
(a) keep the resulting set consistent and (b) make sure that for every possible
atomic sentence α, either α is in the resulting set, or ¬α is, and (c) such that,
whenever α ∧ β is in the set, so are both α and β, if α ∨ β is in the set, at
least one of α or β is also, etc. We keep doing this (potentially forever). Call
the set of all wffs so added Γ ∗. Then our construction above would provide
us with a valuation v for which we could prove, by induction, that it satisfies
all sentences in Γ ∗, and hence also all sentence in Γ since Γ ⊆ Γ ∗. It turns
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out that guaranteeing (a) and (b) is enough. A set of sentences for which (b)
holds is called complete. So our task will be to extend the consistent set Γ to
a consistent and complete set Γ ∗.

So here’s what we’ll do. First we investigate the properties of complete
consistent sets, in particular we prove that a complete consistent set contains
α ∧ β iff it contains both α and β, α ∨ β iff it contains at least one of them,
etc. (Proposition 42B). We’ll then take the consistent set Γ and show that
it can be extended to a consistent and complete set Γ ∗ (Lemma 43A). This
set Γ ∗ is what we’ll use to define our valuation v(Γ ∗). The valuation is de-
termined by the propositional variables in Γ ∗ (Definition 44A). We’ll use the
properties of complete consistent sets to show that indeed v(Γ ∗) ⊨ α iff α ∈ Γ ∗

(Lemma 44B), and thus in particular, v(Γ ∗) ⊨ Γ .

§4.2 Complete Consistent Sets of Sentences

Definition 42A (Complete set). A set Γ of sentences is complete iff for
any sentence α, either α ∈ Γ or ¬α ∈ Γ .

Complete sets of sentences leave no questions unanswered. For any sen-
tence α, Γ “says” if α is true or false. The importance of complete sets extends
beyond the proof of the completeness theorem. A theory which is complete and
axiomatizable, for instance, is always decidable.

Complete consistent sets are important in the completeness proof since we
can guarantee that every consistent set of sentences Γ is contained in a com-
plete consistent set Γ ∗. A complete consistent set contains, for each sentence α,
either α or its negation ¬α, but not both. This is true in particular for proposi-
tional variables, so from a complete consistent set, we can construct a valuation
where the truth value assigned to propositional variables is defined according
to which propositional variables are in Γ ∗. This valuation can then be shown
to make all sentences in Γ ∗ (and hence also all those in Γ ) true. The proof of
this latter fact requires that ¬α ∈ Γ ∗ iff α /∈ Γ ∗, (α ∨ β) ∈ Γ ∗ iff α ∈ Γ ∗ or
β ∈ Γ ∗, etc.

In what follows, we will often tacitly use the properties of reflexivity, mono-
tonicity, and transitivity of ⊢ (see section 3.3).

Proposition 42B. Suppose Γ is complete and consistent. Then:

1. If Γ ⊢ α, then α ∈ Γ .

2. α→ β ∈ Γ iff either α /∈ Γ or β ∈ Γ .

Proof. Let us suppose for all of the following that Γ is complete and consistent.

1. If Γ ⊢ α, then α ∈ Γ .

Suppose that Γ ⊢ α. Suppose to the contrary that α /∈ Γ . Since Γ is
complete, ¬α ∈ Γ . By Proposition 35C, Γ is inconsistent. This contra-
dicts the assumption that Γ is consistent. Hence, it cannot be the case
that α /∈ Γ , so α ∈ Γ .
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2. For the forward direction, suppose α→β ∈ Γ , and suppose to the contrary
that α ∈ Γ and β /∈ Γ . On these assumptions, α→β ∈ Γ and α ∈ Γ . By
Proposition 36C, item (1), Γ ⊢ β. But then by (1), β ∈ Γ , contradicting
the assumption that β /∈ Γ .

For the reverse direction, first consider the case where α /∈ Γ . Since Γ is
complete, ¬α ∈ Γ . By Proposition 36C, item (2), Γ ⊢ α→ β. Again by
(1), we get that α→ β ∈ Γ , as required.

Now consider the case where β ∈ Γ . By Proposition 36C, item (2) again,
Γ ⊢ α→ β. By (1), α→ β ∈ Γ .

§4.3 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of sentences is con-
tained in some set of sentences which is not just consistent, but also complete.
The proof works by adding one sentence at a time, guaranteeing at each step
that the set remains consistent. We do this so that for every α, either α or ¬α
gets added at some stage. The union of all stages in that construction then
contains either α or its negation ¬α and is thus complete. It is also consistent,
since we made sure at each stage not to introduce an inconsistency.

Lemma 43A (Lindenbaum’s Lemma). Every consistent set Γ in a lan-
guage L can be extended to a complete and consistent set Γ ∗.

Proof. Let Γ be consistent. Let α0, α1, . . . be an enumeration of all the
sentences of L. Define Γ0 = Γ , and

Γn+1 =

{
Γn ∪ {αn} if Γn ∪ {αn} is consistent;

Γn ∪ {¬αn} otherwise.

Let Γ ∗ =
⋃

n≥0 Γn.
Each Γn is consistent: Γ0 is consistent by definition. If Γn+1 = Γn ∪ {αn},

this is because the latter is consistent. If it isn’t, Γn+1 = Γn∪{¬αn}. We have
to verify that Γn ∪{¬αn} is consistent. Suppose it’s not. Then both Γn ∪{αn}
and Γn ∪ {¬αn} are inconsistent. This means that Γn would be inconsistent
by Proposition 35D, contrary to the induction hypothesis.

For every n and every i < n, Γi ⊆ Γn. This follows by a simple induction
on n. For n = 0, there are no i < 0, so the claim holds automatically. For
the inductive step, suppose it is true for n. We have Γn+1 = Γn ∪ {αn} or
= Γn ∪ {¬αn} by construction. So Γn ⊆ Γn+1. If i < n, then Γi ⊆ Γn by
inductive hypothesis, and so ⊆ Γn+1 by transitivity of ⊆.

From this it follows that every finite subset of Γ ∗ is a subset of Γn for
some n, since each β ∈ Γ ∗ not already in Γ0 is added at some stage i. If n is
the last one of these, then all β in the finite subset are in Γn. So, every finite
subset of Γ ∗ is consistent. By Proposition 33H, Γ ∗ is consistent.
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Every sentence of Frm(L) appears on the list used to define Γ ∗. If αn /∈ Γ ∗,
then that is because Γn ∪ {αn} was inconsistent. But then ¬αn ∈ Γ ∗, so Γ ∗ is
complete.

§4.4 Construction of a Model

We are now ready to define a valuation that makes all α ∈ Γ true. To do this,
we first apply Lindenbaum’s Lemma: we get a complete consistent Γ ∗ ⊇ Γ .
We let the propositional variables in Γ ∗ determine v(Γ ∗).

Definition 44A. Suppose Γ ∗ is a complete consistent set of wffs. Then we
let

v(Γ ∗)(p) =

{
T if p ∈ Γ ∗

F if p /∈ Γ ∗

Lemma 44B (Truth Lemma). v(Γ ∗) ⊨ α iff α ∈ Γ ∗.

Proof. We prove both directions simultaneously, and by induction on α.

1. α ≡ p: v(Γ ∗) ⊨ p iff v(Γ ∗)(p) = T (by the definition of satisfaction) iff
p ∈ Γ ∗ (by the construction of v(Γ ∗)).

2. α ≡ ¬β: v(Γ ∗) ⊨ α iff v(Γ ∗) ⊭ β (by definition of satisfaction). By
induction hypothesis, v(Γ ∗) ⊭ β iff β /∈ Γ ∗. Since Γ ∗ is consistent and
complete, β /∈ Γ ∗ iff ¬β ∈ Γ ∗.

3. α ≡ β → γ: v(Γ ∗) ⊨ α iff v(Γ ∗) ⊭ β or v(Γ ∗) ⊨ γ (by definition of
satisfaction) iff β /∈ Γ ∗ or γ ∈ Γ ∗ (by induction hypothesis). This is the
case iff (β → γ) ∈ Γ ∗ (by Proposition 42B(2)).

§4.5 The Completeness Theorem

Let’s combine our results: we arrive at the completeness theorem.

Theorem 45A (Completeness Theorem). Let Γ be a set of sentences.
If Γ is consistent, it is satisfiable.

Proof. Suppose Γ is consistent. By Lemma 43A, there is a Γ ∗ ⊇ Γ which is
consistent and complete. By Lemma 44B, v(Γ ∗) ⊨ α iff α ∈ Γ ∗. From this it
follows in particular that for all α ∈ Γ , v(Γ ∗) ⊨ α, so Γ is satisfiable.

Corollary 45B (Completeness Theorem, Second Version). For all Γ
and sentences α: if Γ ⊨ α then Γ ⊢ α.
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Proof. Note that the Γ ’s in corollary 45B and Theorem 45A are universally
quantified. To make sure we do not confuse ourselves, let us restate Theo-
rem 45A using a different variable: for any set of sentences ∆, if ∆ is con-
sistent, it is satisfiable. By contraposition, if ∆ is not satisfiable, then ∆ is
inconsistent. We will use this to prove the corollary.

Suppose that Γ ⊨ α. Then Γ ∪ {¬α} is unsatisfiable by Proposition 14C.
Taking Γ ∪ {¬α} as our ∆, the previous version of Theorem 45A gives us that
Γ ∪ {¬α} is inconsistent. By Proposition 35B, Γ ⊢ α.

§4.6 The Compactness Theorem

One important consequence of the completeness theorem is the compactness
theorem. The compactness theorem states that if each finite subset of a set
of sentences is satisfiable, the entire set is satisfiable—even if the set itself is
infinite. This is far from obvious. There is nothing that seems to rule out,
at first glance at least, the possibility of there being infinite sets of sentences
which are contradictory, but the contradiction only arises, so to speak, from
the infinite number. The compactness theorem says that such a scenario can
be ruled out: there are no unsatisfiable infinite sets of sentences each finite
subset of which is satisfiable. Like the completeness theorem, it has a version
related to entailment: if an infinite set of sentences entails something, already
a finite subset does.

Definition 46A. A set Γ of wffs is finitely satisfiable iff every finite Γ0 ⊆ Γ
is satisfiable.

Theorem 46B (Compactness Theorem). The following hold for any sen-
tences Γ and α:

1. Γ ⊨ α iff there is a finite Γ0 ⊆ Γ such that Γ0 ⊨ α.

2. Γ is satisfiable iff it is finitely satisfiable.

Proof. We prove (2). If Γ is satisfiable, then there is a valuation v such that
v ⊨ α for all α ∈ Γ . Of course, this v also satisfies every finite subset of Γ , so
Γ is finitely satisfiable.

Now suppose that Γ is finitely satisfiable. Then every finite subset Γ0 ⊆ Γ
is satisfiable. By soundness (corollary 37D), every finite subset is consistent.
Then Γ itself must be consistent by Proposition 33H. By completeness (Theo-
rem 45A), since Γ is consistent, it is satisfiable.

§4.7 A Direct Proof of the Compactness Theorem

We can prove the Compactness Theorem directly, without appealing to the
Completeness Theorem, using the same ideas as in the proof of the complete-
ness theorem. In the proof of the Completeness Theorem we started with a
consistent set Γ of sentences, expanded it to a consistent and complete set Γ ∗
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of sentences, and then showed that in the valuation v(Γ ∗) constructed from
Γ ∗, all sentences of Γ are true, so Γ is satisfiable.

We can use the same method to show that a finitely satisfiable set of sen-
tences is satisfiable. We just have to prove the corresponding versions of the
results leading to the truth lemma where we replace “consistent” with “finitely
satisfiable.”

Proposition 47A. Suppose Γ is complete and finitely satisfiable. Then:

1. (α→ β) ∈ Γ iff either α /∈ Γ or β ∈ Γ .

Lemma 47B. Every finitely satisfiable set Γ can be extended to a complete
and finitely satisfiable set Γ ∗.

Theorem 47C (Compactness). Γ is satisfiable if and only if it is finitely
satisfiable.

Proof. If Γ is satisfiable, then there is a valuation v such that v ⊨ α for all
α ∈ Γ . Of course, this v also satisfies every finite subset of Γ , so Γ is finitely
satisfiable.

Now suppose that Γ is finitely satisfiable. By Lemma 47B, Γ can be ex-
tended to a complete and finitely satisfiable set Γ ∗. Construct the valua-
tion v(Γ ∗) as in Definition 44A. The proof of the Truth Lemma (Lemma 44B)
goes through if we replace references to Proposition 42B.

Problems

Problem 1. Complete the proof of Proposition 42B.

Problem 2. Use corollary 45B to prove Theorem 45A, thus showing that the
two formulations of the completeness theorem are equivalent.

Problem 3. In order for a derivation system to be complete, its rules must be
strong enough to prove every unsatisfiable set inconsistent. Which of the rules
of derivation were necessary to prove completeness? Are any of these rules not
used anywhere in the proof? In order to answer these questions, make a list or
diagram that shows which of the rules of derivation were used in which results
that lead up to the proof of Theorem 45A. Be sure to note any tacit uses of
rules in these proofs.

Problem 4. Prove (1) of Theorem 46B.

Problem 5. Prove Proposition 47A. Avoid the use of ⊢.

Problem 6. Prove Lemma 47B. (Hint: the crucial step is to show that if Γn is
finitely satisfiable, then either Γn ∪ {αn} or Γn ∪ {¬αn} is finitely satisfiable.)

Problem 7. Write out the complete proof of the Truth Lemma (Lemma 44B)
in the version required for the proof of Theorem 47C.
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Chapter 5

Introduction to First-Order Logic

§5.0 First-Order Logic

You are probably familiar with first-order logic from your first introduction to
formal logic.1 You may know it as “quantificational logic” or “predicate logic.”
First-order logic, first of all, is a formal language. That means, it has a certain
vocabulary, and its expressions are strings from this vocabulary. But not every
string is permitted. There are different kinds of permitted expressions: terms,
wffs, and sentences. We are mainly interested in sentences of first-order logic:
they provide us with a formal analogue of sentences of English, and about them
we can ask the questions a logician typically is interested in. For instance:

• Does β follow from α logically?

• Is α logically true, logically false, or contingent?

• Are α and β equivalent?

These questions are primarily questions about the “meaning” of sentences
of first-order logic. For instance, a philosopher would analyze the question of
whether β follows logically from α as asking: is there a case where α is true
but β is false (β doesn’t follow from α), or does every case that makes α true
also make β true (β does follow from α)? But we haven’t been told yet what
a “case” is—that is the job of semantics. The semantics of first-order logic
provides a mathematically precise model of the philosopher’s intuitive idea of
“case,” and also—and this is important—of what it is for a sentence α to be
true in a case. We call the mathematically precise model that we will develop
a structure. The relation which makes “true in” precise, is called the relation of
satisfaction. So what we will define is “α is satisfied in A” (in symbols: |=A α)
for sentences α and structures A. Once this is done, we can also give precise
definitions of the other semantical terms such as “follows from” or “is logically

1In fact, we more or less assume you are! If you’re not, you could review a more elemen-
tary textbook, such as forall x (?).
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true.” These definitions will make it possible to settle, again with mathematical
precision, whether, e.g., ∀x (α(x)→ β(x)),∃xα(x) ⊨ ∃xβ(x). The answer will,
of course, be “yes.” If you’ve already been trained to symbolize sentences of
English in first-order logic, you will recognize this as, e.g., the symbolizations
of, say, “All ants are insects, there are ants, therefore there are insects.” That
is obviously a valid argument, and so our mathematical model of “follows from”
for our formal language should give the same answer.

Another topic you probably remember from your first introduction to for-
mal logic is that there are derivations. If you have taken a first formal logic
course, your instructor will have made you practice finding such derivations,
perhaps even a derivation that shows that the above entailment holds. There
are many different ways to give derivations: you may have done something
called “natural deduction” or “truth trees,” but there are many others. The
purpose of derivation systems is to provide tools using which the logicians’
questions above can be answered: e.g., a natural deduction derivation in which
∀x (α(x) → β(x)) and ∃xα(x) are premises and ∃xβ(x) is the conclusion (last
line) verifies that ∃xβ(x) logically follows from ∀x (α(x)→ β(x)) and ∃xα(x).

But why is that? On the face of it, derivation systems have nothing to do
with semantics: giving a formal derivation merely involves arranging symbols in
certain rule-governed ways; they don’t mention “cases” or “true in” at all. The
connection between derivation systems and semantics has to be established by
a meta-logical investigation. What’s needed is a mathematical proof, e.g., that
a formal derivation of ∃xβ(x) from premises ∀x (α(x) → β(x)) and ∃xα(x) is
possible, if, and only if, ∀x (α(x)→β(x)) and ∃xα(x) together entails ∃xβ(x).
Before this can be done, however, a lot of painstaking work has to be carried
out to get the definitions of syntax and semantics correct.

§5.1 Syntax

We first must make precise what strings of symbols count as sentences of first-
order logic. We’ll do this later; for now we’ll just proceed by example. The basic
building blocks—the vocabulary—of first-order logic divides into two parts.
The first part is the symbols we use to say specific things or to pick out specific
things. We pick out things using constant symbols, and we say stuff about the
things we pick out using predicate symbols. E.g, we might use a as a constant
symbol to pick out a single thing, and then say something about it using the
sentence Pa. If you have meanings for “a” and “P” in mind, you can read
Pa as a sentence of English (and you probably have done so when you first
learned formal logic). Once you have such simple sentences of first-order logic,
you can build more complex ones using the second part of the vocabulary: the
logical symbols (connectives and quantifiers). So, for instance, we can form
expressions like (Pa ∧Qb) or ∃xPx.

In order to provide the precise definitions of semantics and the rules of
our derivation systems required for rigorous meta-logical study, we first of all
have to give a precise definition of what counts as a sentence of first-order
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logic. The basic idea is easy enough to understand: there are some simple
sentences we can form from just predicate symbols and constant symbols, such
as Pa. And then from these we form more complex ones using the connectives
and quantifiers. But what exactly are the rules by which we are allowed to
form more complex sentences? These must be specified, otherwise we have
not defined “sentence of first-order logic” precisely enough. There are a few
issues. The first one is to get the right strings to count as sentences. The
second one is to do this in such a way that we can give mathematical proofs
about all sentences. Finally, we’ll have to also give precise definitions of some
rudimentary operations with sentences, such as “replace every x in α by b.” The
trouble is that the quantifiers and variables we have in first-order logic make
it not entirely obvious how this should be done. E.g., should ∃xPa count as
a sentence? What about ∃x∃xPx? What should the result of “replace x by b
in (Px ∧ ∃xPx)” be?

§5.2 Wffs

Here is the approach we will use to rigorously specify sentences of first-order
logic and to deal with the issues arising from the use of variables. We first define
a different set of expressions: wffs. Once we’ve done that, we can consider the
role variables play in them—and on the basis of some other ideas, namely those
of “free” and “bound” variables, we can define what a sentence is (namely, a wff
without free variables). We do this not just because it makes the definition of
“sentence” more manageable, but also because it will be crucial to the way we
define the semantic notion of satisfaction.

Let’s define “wff” for a simple first-order language, one containing only a
single predicate symbol P and a single constant symbol a, and only the logical
symbols ¬, ∧, and ∃. Our full definitions will be much more general: we’ll
allow infinitely many predicate symbols and constant symbols. In fact, we will
also consider function symbols which can be combined with constant symbols
and variables to form “terms.” For now, a and the variables will be our only
terms. We do need infinitely many variables. We’ll officially use the symbols
v0, v1, . . . , as variables.

Definition 52A. The set of wffs Frm is defined as follows:

1. Pa and Pvi are wffs (i ∈ N).

2. If α is a wff, then ¬α is wff.

(1) tell us that Pa and Pvi are wffs, for any i ∈ N. These are the so-called
atomic wffs. They give us something to start from. The other clauses give us
ways of forming new wffs from ones we have already formed. So for instance,
we get that ¬Pv2 is a wff, since Pv2 is already a wff by (1), and then we get
that ∃v2 ¬Pv2 is another wff, and so on. ?? tells us that only strings we can
form in this way count as wffs. In particular, ∃v0 Pa and ∃v0 ∃v0 Pa do count
as wffs, and (¬Pa) does not.
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This way of defining wffs is called an inductive definition, and it allows us to
prove things about wffs using a version of proof by induction called structural
induction. These are discussed in a general way in ?? and ??, which you should
review before delving into the proofs later on. Basically, the idea is that if you
want to give a proof that something is true for all wffs you show first that it
is true for the atomic wffs, and then that if it’s true for any wff α (and β),
it’s also true for ¬α, (α ∧ β), and ∃xα. For instance, this proves that it’s
true for ∃v2 ¬Pv2: from the first part you know that it’s true for the atomic
wff Pv2. Then you get that it’s true for ¬Pv2 by the second part, and then
again that it’s true for ∃v2 ¬Pv2 itself. Since all wffs are inductively generated
from atomic wffs, this works for any of them.

§5.3 Satisfaction

We can already skip ahead to the semantics of first-order logic once we know
what wffs are: here, the basic definition is that of a structure. For our simple
language, a structure A has just three components: a non-empty set |A| called
the domain, what a picks out in A, and what P is true of in A. The object picked
out by a is denoted aA and the set of things P is true of by PA. A structure A
consists of just these three things: |A|, aA ∈ |A| and PA ⊆ |A|. The general
case will be more complicated, since there will be many predicate symbols and
constant symbols, the constant symbols can have more than one place, and
there will also be function symbols.

This is enough to give a definition of satisfaction for wffs that don’t contain
variables. The idea is to give an inductive definition that mirrors the way we
have defined wffs. We specify when an atomic formula is satisfied in A, and
then when, e.g., ¬α is satisfied in A on the basis of whether or not α is satisfied
in A. E.g., we could define:

1. Pa is satisfied in A iff aA ∈ PA.

2. ¬α is satisfied in A iff α is not satisfied in A.

3. (α ∧ β) is satisfied in A iff α is satisfied in A, and β is satisfied in A as
well.

Let’s say that |A| = {0, 1, 2}, aA = 1, and PA = {1, 2}. This definition would
tell us that Pa is satisfied in A (since aA = 1 ∈ {1, 2} = PA). It tells us further
that ¬Pa is not satisfied in A, and that in turn that ¬¬Pa is and (¬Pa∧ Pa)
is not satisfied, and so on.

The trouble comes when we want to give a definition for the quantifiers:
we’d like to say something like, “∃v0 Pv0 is satisfied iff Pv0 is satisfied.” But
the structure A doesn’t tell us what to do about variables. What we actually
want to say is that Pv0 is satisfied for some value of v0. To make this precise
we need a way to assign elements of |A| not just to a but also to v0. To this
end, we introduce variable assignments. A variable assignment is simply a
function s that maps variables to elements of |A| (in our example, to one of
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1, 2, or 3). Since we don’t know beforehand which variables might appear in
a wff we can’t limit which variables s assigns values to. The simple solution is
to require that s assigns values to all variables v0, v1, . . . We’ll just use only
the ones we need.

Instead of defining satisfaction of wffs just relative to a structure, we’ll define
it relative to a structure A and a variable assignment s, and write |=A α [s] for
short. Our definition will now include an additional clause to deal with atomic
wffs containing variables:

1. |=A Pa [s] iff aA ∈ PA.

2. |=A Pvi [s] iff s(vi) ∈ PA.

3. |=A ¬α [s] iff not |=A α [s].

4. |=A (α ∧ β) [s] iff |=A α [s] and |=A β [s].

Ok, this solves one problem: we can now say when A satisfies Pv0 for the
value s(v0). To get the definition right for ∃v0 Pv0 we have to do one more
thing: We want to have that |=A ∃v0 Pv0 [s] iff |=A Pv0 [s′] for some way s′

of assigning a value to v0. But the value assigned to v0 does not necessarily
have to be the value that s(v0) picks out. We’ll introduce a notation for that:
if m ∈ |A|, then we let s[m/v0] be the assignment that is just like s (for all
variables other than v0), except to v0 it assigns m. Now our definition can be:

5. |=A ∃vi α [s] iff |=A α [s[m/vi]] for some m ∈ |A|.

Does it work out? Let’s say we let s(vi) = 0 for all i ∈ N. |=A ∃v0 Pv0 [s] iff
there is an m ∈ |A| so that |=A Pv0 [s[m/v0]]. And there is: we can choose
m = 1 or m = 2. Note that this is true even if the value s(v0) assigned to v0
by s itself—in this case, 0—doesn’t do the job. We have |=A Pv0 [s[1/v0]] but
not |=A Pv0 [s].

If this looks confusing and cumbersome: it is. But the added complexity is
required to give a precise, inductive definition of satisfaction for all wffs, and
we need something like it to precisely define the semantic notions. There are
other ways of doing it, but they are all equally (in)elegant.

§5.4 Sentences

Ok, now we have a (sketch of a) definition of satisfaction (“true in”) for struc-
tures and wffs. But it needs this additional bit—a variable assignment—and
what we wanted is a definition of sentences. How do we get rid of assignments,
and what are sentences?

You probably remember a discussion in your first introduction to formal
logic about the relation between variables and quantifiers. A quantifier is al-
ways followed by a variable, and then in the part of the sentence to which that
quantifier applies (its “scope”), we understand that the variable is “bound” by
that quantifier. In wffs it was not required that every variable has a matching
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quantifier, and variables without matching quantifiers are “free” or “unbound.”
We will take sentences to be all those wffs that have no free variables.

Again, the intuitive idea of when an occurrence of a variable in a wff α is
bound, which quantifier binds it, and when it is free, is not difficult to get. You
may have learned a method for testing this, perhaps involving counting paren-
theses. We have to insist on a precise definition—and because we have defined
wffs by induction, we can give a definition of the free and bound occurrences
of a variable x in a wff α also by induction. E.g., it might look like this for our
simplified language:

1. If α is atomic, all occurrences of x in it are free (that is, the occurrence
of x in Px is free).

2. If α is of the form ¬β, then an occurrence of x in ¬β is free iff the
corresponding occurrence of x is free in β (that is, the free occurrences
of variables in β are exactly the corresponding occurrences in ¬β).

3. If α is of the form (β ∧ γ), then an occurrence of x in (β ∧ γ) is free iff
the corresponding occurrence of x is free in β or in γ.

4. If α is of the form ∃xβ, then no occurrence of x in α is free; if it is of the
form ∃y β where y is a different variable than x, then an occurrence of x
in ∃y β is free iff the corresponding occurrence of x is free in β.

Once we have a precise definition of free and bound occurrences of variables,
we can simply say: a sentence is any wff without free occurrences of variables.

§5.5 Semantic Notions

We mentioned above that when we consider whether |=A α [s] holds, we (for
convenience) let s assign values to all variables, but only the values it assigns
to variables in α are used. In fact, it’s only the values of free variables in α
that matter. Of course, because we’re careful, we are going to prove this fact.
Since sentences have no free variables, s doesn’t matter at all when it comes
to whether or not they are satisfied in a structure. So, when α is a sentence
we can define |=A α to mean “|=A α [s] for all s,” which as it happens is true
iff |=A α [s] for at least one s. We need to introduce variable assignments to
get a working definition of satisfaction for wffs, but for sentences, satisfaction
is independent of the variable assignments.

Once we have a definition of “|=A α,” we know what “case” and “true in”
mean as far as sentences of first-order logic are concerned. On the basis of
the definition of |=A α for sentences we can then define the basic semantic
notions of validity, entailment, and satisfiability. A sentence is valid, ⊨ α, if
every structure satisfies it. It is entailed by a set of sentences, Γ ⊨ α, if every
structure that satisfies all the sentences in Γ also satisfies α. And a set of
sentences is satisfiable if some structure satisfies all sentences in it at the same
time.
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Because wffs are inductively defined, and satisfaction is in turn defined by
induction on the structure of wffs, we can use induction to prove properties
of our semantics and to relate the semantic notions defined. We’ll collect and
prove some of these properties, partly because they are individually interest-
ing, but mainly because many of them will come in handy when we go on to
investigate the relation between semantics and derivation systems. In order
to do so, we’ll also have to define (precisely, i.e., by induction) some syntactic
notions and operations we haven’t mentioned yet.

§5.6 Substitution

We’ll discuss an example to illustrate how things hang together, and how the
development of syntax and semantics lays the foundation for our more ad-
vanced investigations later. Our derivation systems should let us derive Pa
from ∀v0 Pv0. Maybe we even want to state this as a rule of inference. How-
ever, to do so, we must be able to state it in the most general terms: not just
for P , a, and v0, but for any wff α, and term t, and variable x. (Recall that
constant symbols are terms, but we’ll consider also more complicated terms
built from constant symbols and function symbols.) So we want to be able
to say something like, “whenever you have derived ∀xα(x) you are justified
in inferring α(t)—the result of removing ∀x and replacing x by t.” But what
exactly does “replacing x by t” mean? What is the relation between α(x)
and α(t)? Does this always work?

To make this precise, we define the operation of substitution. Substitution is
actually tricky, because we can’t just replace all x’s in α by t, and not every t
can be substituted for any x. We’ll deal with this, again, using inductive
definitions. But once this is done, specifying an inference rule as “infer α(t)
from ∀xα(x)” becomes a precise definition. Moreover, we’ll be able to show
that this is a good inference rule in the sense that ∀xα(x) entails α(t). But to
prove this, we have to again prove something that may at first glance prompt
you to ask “why are we doing this?” That ∀xα(x) entails α(t) relies on the fact
that whether or not |=A α(t) holds depends only on the value of the term t,
i.e., if we let m be whatever element of |A| is picked out by t, then |=A α(t) [s]
iff |=A α(x) [s[m/x]]. This holds even when t contains variables, but we’ll have
to be careful with how exactly we state the result.

§5.7 Models and Theories

Once we’ve defined the syntax and semantics of first-order logic, we can get
to work investigating the properties of structures, of the semantic notions, we
can define derivation systems, and investigate those. For a set of sentences, we
can ask: what structures make all the sentences in that set true? Given a set
of sentences Γ , a structure A that satisfies them is called a model of Γ . We
might start from Γ and try find its models—what do they look like? How big
or small do they have to be? But we might also start with a single structure or
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collection of structures and ask: what sentences are true in them? Are there
sentences that characterize these structures in the sense that they, and only
they, are true in them? These kinds of questions are the domain of model
theory. They also underlie the axiomatic method : describing a collection of
structures by a set of sentences, the axioms of a theory. This is made possible
by the observation that exactly those sentences entailed in first-order logic by
the axioms are true in all models of the axioms.

As a very simple example, consider preorders. A preorder is a relation R
on some set A which is both reflexive and transitive. A set A with a two-place
relation R ⊆ A×A on it is exactly what we would need to give a structure for
a first-order language with a single two-place relation symbol P : we would set
|A| = A and PA = R. Since R is a preorder, it is reflexive and transitive, and
we can find a set Γ of sentences of first-order logic that say this:

∀v0 Pv0v0

∀v0 ∀v1 ∀v2 ((Pv0v1 ∧ Pv1v2) → Pv0v2)

These sentences are just the symbolizations of “for any x, Rxx” (R is reflexive)
and “whenever Rxy and Ryz then also Rxz” (R is transitive). We see that
a structure A is a model of these two sentences Γ iff R (i.e., PA), is a preorder
on A (i.e., |A|). In other words, the models of Γ are exactly the preorders. Any
property of all preorders that can be expressed in the first-order language with
just P as predicate symbol (like reflexivity and transitivity above), is entailed
by the two sentences in Γ and vice versa. So anything we can prove about
models of Γ we have proved about all preorders.

For any particular theory and class of models (such as Γ and all preorders),
there will be interesting questions about what can be expressed in the corre-
sponding first-order language, and what cannot be expressed. There are some
properties of structures that are interesting for all languages and classes of mod-
els, namely those concerning the size of the domain. One can always express,
for instance, that the domain contains exactly n elements, for any n ∈ Z+. One
can also express, using a set of infinitely many sentences, that the domain is
infinite. But one cannot express that the domain is finite, or that the domain
is non-enumerable. These results about the limitations of first-order languages
are consequences of the compactness and Löwenheim-Skolem theorems.

§5.8 Soundness and Completeness

We’ll also introduce derivation systems for first-order logic. There are many
derivation systems that logicians have developed, but they all define the same
derivability relation between sentences. We say that Γ derives α, Γ ⊢ α,
if there is a derivation of a certain precisely defined sort. Derivations are
always finite arrangements of symbols—perhaps a list of sentences, or some
more complicated structure. The purpose of derivation systems is to provide
a tool to determine if a sentence is entailed by some set Γ . In order to serve
that purpose, it must be true that Γ ⊨ α if, and only if, Γ ⊢ α.

52 Release : 0552395 (2022-04-04)



5.8. Soundness and Completeness

If Γ ⊢ α but not Γ ⊨ α, our derivation system would be too strong, prove
too much. The property that if Γ ⊢ α then Γ ⊨ α is called soundness, and it
is a minimal requirement on any good derivation system. On the other hand,
if Γ ⊨ α but not Γ ⊢ α, then our derivation system is too weak, it doesn’t
prove enough. The property that if Γ ⊨ α then Γ ⊢ α is called completeness.
Soundness is usually relatively easy to prove (by induction on the structure of
derivations, which are inductively defined). Completeness is harder to prove.

Soundness and completeness have a number of important consequences.
If a set of sentences Γ derives a contradiction (such as α ∧ ¬α) it is called
inconsistent. Inconsistent Γ s cannot have any models, they are unsatisfiable.
From completeness the converse follows: any Γ that is not inconsistent—or, as
we will say, consistent—has a model. In fact, this is equivalent to completeness,
and is the form of completeness we will actually prove. It is a deep and perhaps
surprising result: just because you cannot prove α∧¬α from Γ guarantees that
there is a structure that is as Γ describes it. So completeness gives an answer
to the question: which sets of sentences have models? Answer: all and only
consistent sets do.

The soundness and completeness theorems have two important consequences:
the compactness and the Löwenheim-Skolem theorem. These are important re-
sults in the theory of models, and can be used to establish many interesting
results. We’ve already mentioned two: first-order logic cannot express that the
domain of a structure is finite or that it is non-enumerable.

Historically, all of this—how to define syntax and semantics of first-order
logic, how to define good derivation systems, how to prove that they are sound
and complete, getting clear about what can and cannot be expressed in first-
order languages—took a long time to figure out and get right. We now know
how to do it, but going through all the details can still be confusing and tedious.
But it’s also important, because the methods developed here for the formal
language of first-order logic are applied all over the place in logic, computer
science, and linguistics. So working through the details pays off in the long
run.
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Chapter 6

Syntax of First-Order Logic

§6.0 Introduction

In order to develop the theory and metatheory of first-order logic, we must
first define the syntax and semantics of its expressions. The expressions of
first-order logic are terms and wffs. Terms are formed from variables, constant
symbols, and function symbols. Wffs, in turn, are formed from predicate sym-
bols together with terms (these form the smallest, “atomic” wffs), and then
from atomic wffs we can form more complex ones using logical connectives and
quantifiers. There are many different ways to set down the formation rules;
we give just one possible one. Other systems will chose different symbols, will
select different sets of connectives as primitive, will use parentheses differently
(or even not at all, as in the case of so-called Polish notation). What all ap-
proaches have in common, though, is that the formation rules define the set of
terms and wffs inductively. If done properly, every expression can result essen-
tially in only one way according to the formation rules. The inductive definition
resulting in expressions that are uniquely readable means we can give meanings
to these expressions using the same method—inductive definition.

§6.1 First-Order Languages

Expressions of first-order logic are built up from a basic vocabulary containing
variables, constant symbols, predicate symbols and sometimes function symbols.
From them, together with logical connectives, quantifiers, and punctuation
symbols such as parentheses and commas, terms and wffs are formed.

Informally, predicate symbols are names for properties and relations, con-
stant symbols are names for individual objects, and function symbols are names
for mappings. These, except for the equality symbol =, are the non-logical sym-
bols and together make up a language. Any first-order language L is determined
by its non-logical symbols. In the most general case, L contains infinitely many
symbols of each kind.

In the general case, we make use of the following symbols in first-order logic:
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6. Syntax of First-Order Logic

1. Logical symbols

a) Logical connectives: ¬ (negation), → (conditional), ∀ (universal
quantifier).

b) The two-place equality symbol =.

c) A denumerable set of variables: v0, v1, v2, . . .

2. Non-logical symbols, making up the standard language of first-order logic

a) A denumerable set of n-place predicate symbols for each n > 0: An
0 ,

An
1 , An

2 , . . .

b) A denumerable set of constant symbols: c0, c1, c2, . . . .

c) A denumerable set of n-place function symbols for each n > 0: fn
0 ,

fn
1 , fn

2 , . . .

3. Punctuation marks: (, ), and the comma.

Most of our definitions and results will be formulated for the full standard
language of first-order logic. However, depending on the application, we may
also restrict the language to only a few predicate symbols, constant symbols,
and function symbols.

Example 6.1.1. The language LA of arithmetic contains a single two-place
predicate symbol <, a single constant symbol 0, one one-place function sym-
bol ′, and two two-place function symbols + and ×.

Example 6.1.2. The language of set theory LZ contains only the single two-
place predicate symbol ∈.

Example 6.1.3. The language of orders L≤ contains only the two-place predi-
cate symbol ≤.

Again, these are conventions: officially, these are just aliases, e.g., <, ∈,
and ≤ are aliases for A2

0, 0 for c0, ′ for f1
0 , + for f2

0 , × for f2
1 .

In addition to the primitive connectives and quantifier introduced above,
we also use the following defined symbols: ∧ (conjunction), ∨ (disjunction), ↔
(biconditional), ∃ (existential quantifier), falsity ⊥, truth ⊤

A defined symbol is not officially part of the language, but is introduced as
an informal abbreviation: it allows us to abbreviate formulas which would, if we
only used primitive symbols, get quite long. This is obviously an advantage.
The bigger advantage, however, is that proofs become shorter. If a symbol
is primitive, it has to be treated separately in proofs. The more primitive
symbols, therefore, the longer our proofs.

You may be familiar with different terminology and symbols than the ones
we use above. Logic texts (and teachers) commonly use either ∼, ¬, and ! for
“negation”, ∧, ·, and & for “conjunction”. Commonly used symbols for the
“conditional” or “implication” are →, ⇒, and ⊃. Symbols for “biconditional,”
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6.2. Terms and Wffs

“bi-implication,” or “(material) equivalence” are ↔, ⇔, and ≡. The ⊥ sym-
bol is variously called “falsity,” “falsum,”, “absurdity,”, or “bottom.” The ⊤
symbol is variously called “truth,” “verum,”, or “top.”

It is conventional to use lower case letters (e.g., a, b, c) from the beginning
of the Latin alphabet for constant symbols (sometimes called names), and lower
case letters from the end (e.g., x, y, z) for variables. Quantifiers combine with
variables, e.g., x; notational variations include ∀x, (∀x), (x), Πx,

∧
x for the

universal quantifier and ∃x, (∃x), (Ex), Σx,
∨

x for the existential quantifier.
We might treat all the propositional operators and both quantifiers as prim-

itive symbols of the language. We might instead choose a smaller stock of
primitive symbols and treat the other logical operators as defined. “Truth
functionally complete” sets of Boolean operators include {¬,∨}, {¬,∧}, and
{¬,→}—these can be combined with either quantifier for an expressively com-
plete first-order language.

You may be familiar with two other logical operators: the Sheffer stroke |
(named after Henry Sheffer), and Peirce’s arrow ↓, also known as Quine’s dag-
ger. When given their usual readings of “nand” and “nor” (respectively), these
operators are truth functionally complete by themselves.

§6.2 Terms and Wffs

Once a first-order language L is given, we can define expressions built up from
the basic vocabulary of L. These include in particular terms and wffs.

Definition 62A (Terms). The set of terms Trm(L) of L is defined induc-
tively by:

1. Every variable is a term.

2. Every constant symbol of L is a term.

3. If f is an n-place function symbol and t1, . . . , tn are terms, then ft1 . . . tn
is a term.

A term containing no variables is a closed term.

The constant symbols appear in our specification of the language and the
terms as a separate category of symbols, but they could instead have been
included as zero-place function symbols. We could then do without the second
clause in the definition of terms. We just have to understand ft1 . . . tn as just
f by itself if n = 0.

Definition 62B (Formula). The set of wffs Frm(L) of the language L is
defined inductively as follows:

1. If R is an n-place predicate symbol of L and t1, . . . , tn are terms of L,
then Rt1 . . . tn is an atomic wff.

2. If t1 and t2 are terms of L, then = t1t2 is an atomic wff.
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6. Syntax of First-Order Logic

3. If α is a wff, then ¬α is wff.

4. If α and β are wffs, then (α→ β) is a wff.

5. If α is a wff and x is a variable, then ∀xα is a wff.

The definitions of the set of terms and that of wffs are inductive definitions.
Essentially, we construct the set of wffs in infinitely many stages. In the initial
stage, we pronounce all atomic formulas to be formulas; this corresponds to
the first few cases of the definition, i.e., the cases for Rt1 . . . tn and = t1t2.
“Atomic wff” thus means any wff of this form.

The other cases of the definition give rules for constructing new wffs out of
wffs already constructed. At the second stage, we can use them to construct
wffs out of atomic wffs. At the third stage, we construct new formulas from
the atomic formulas and those obtained in the second stage, and so on. A wff
is anything that is eventually constructed at such a stage, and nothing else.

By convention, we write = between its arguments and leave out the paren-
theses: t1 = t2 is an abbreviation for = t1t2. Moreover, ¬ = t1t2 is abbreviated
as t1 ̸= t2. When writing a formula (β ∗ γ) constructed from β, γ using a two-
place connective ∗, we will often leave out the outermost pair of parentheses
and write simply β ∗ γ.

Some logic texts require that the variable x must occur in α in order for
∀xα to count as a wff. Nothing bad happens if you don’t require this, and it
makes things easier.

Definition 62C. Formulas constructed using the defined operators are to be
understood as follows:

1. ⊤ abbreviates (α ∨ ¬α) for some fixed atomic wff α.

2. ⊥ abbreviates (α ∧ ¬α) for some fixed atomic wff α.

3. α ∨ β abbreviates ¬α→ β.

4. α ∧ β abbreviates ¬(α→¬β).

5. α↔ β abbreviates (α→ β) ∧ (β → α).

6. ∃xα abbreviates ¬∀x¬α.

If we work in a language for a specific application, we will often write two-
place predicate symbols and function symbols between the respective terms,
e.g., t1 < t2 and (t1 + t2) in the language of arithmetic and t1 ∈ t2 in the
language of set theory. The successor function in the language of arithmetic
is even written conventionally after its argument: t′. Officially, however, these
are just conventional abbreviations for A2

0t1t2, f2
0 (t1, t2), A2

0t1t2 and f1
0 (t),

respectively.
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Definition 62D (Syntactic identity). The symbol ≡ expresses syntactic
identity between strings of symbols, i.e., α ≡ β iff α and β are strings of
symbols of the same length and which contain the same symbol in each place.

The ≡ symbol may be flanked by strings obtained by concatenation, e.g.,
α ≡ (β ∨ γ) means: the string of symbols α is the same string as the one
obtained by concatenating an opening parenthesis, the string β, the ∨ symbol,
the string γ, and a closing parenthesis, in this order. If this is the case, then
we know that the first symbol of α is an opening parenthesis, α contains β as a
substring (starting at the second symbol), that substring is followed by ∨, etc.

§6.3 Unique Readability

The way we defined wffs guarantees that every wff has a unique reading, i.e.,
there is essentially only one way of constructing it according to our forma-
tion rules for wffs and only one way of “interpreting” it. If this were not so,
we would have ambiguous wffs, i.e., wffs that have more than one reading
or intepretation—and that is clearly something we want to avoid. But more
importantly, without this property, most of the definitions and proofs we are
going to give will not go through.

Perhaps the best way to make this clear is to see what would happen if we
had given bad rules for forming wffs that would not guarantee unique read-
ability. For instance, we could have forgotten the parentheses in the formation
rules for connectives, e.g., we might have allowed this:

If α and β are wffs, then so is α→ β.

Starting from an atomic formula δ, this would allow us to form δ → δ. From
this, together with δ, we would get δ → δ → δ. But there are two ways to do
this:

1. We take δ to be α and δ → δ to be β.

2. We take α to be δ → δ and β is δ.

Correspondingly, there are two ways to “read” the wff δ → δ → δ. It is of the
form β → γ where β is δ and γ is δ → δ, but it is also of the form β → γ with
β being δ → δ and γ being δ.

If this happens, our definitions will not always work. For instance, when we
define the main operator of a formula, we say: in a formula of the form β→ γ,
the main operator is the indicated occurrence of →. But if we can match the
formula δ → δ → δ with β → γ in the two different ways mentioned above,
then in one case we get the first occurrence of → as the main operator, and
in the second case the second occurrence. But we intend the main operator to
be a function of the wff, i.e., every wff must have exactly one main operator
occurrence.

Lemma 63A. The number of left and right parentheses in a wff α are equal.
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Proof. We prove this by induction on the way α is constructed. This requires
two things: (a) We have to prove first that all atomic formulas have the prop-
erty in question (the induction basis). (b) Then we have to prove that when
we construct new formulas out of given formulas, the new formulas have the
property provided the old ones do.

Let l(α) be the number of left parentheses, and r(α) the number of right
parentheses in α, and l(t) and r(t) similarly the number of left and right paren-
theses in a term t. We leave the proof that for any term t, l(t) = r(t) as an
exercise.

1. α ≡ Rt1 . . . tn: l(α) = 1+l(t1)+· · ·+l(tn) = 1+r(t1)+· · ·+r(tn) = r(α).
Here we make use of the fact, left as an exercise, that l(t) = r(t) for any
term t.

2. α ≡ t1 = t2: l(α) = l(t1) + l(t2) = r(t1) + r(t2) = r(α).

3. α ≡ ¬β: By induction hypothesis, l(β) = r(β). Thus l(α) = l(β) =
r(β) = r(α).

4. α ≡ (β ∗γ): By induction hypothesis, l(β) = r(β) and l(γ) = r(γ). Thus
l(α) = 1 + l(β) + l(γ) = 1 + r(β) + r(γ) = r(α).

5. α ≡ ∀xβ: By induction hypothesis, l(β) = r(β). Thus, l(α) = l(β) =
r(β) = r(α).

Definition 63B (Proper prefix). A string of symbols β is a proper prefix
of a string of symbols α if concatenating β and a non-empty string of symbols
yields α.

Lemma 63C. If α is a wff, and β is a proper prefix of α, then β is not
a wff.

Proof. Exercise.

Proposition 63D. If α is an atomic wff, then it satisfes one, and only one
of the following conditions.

1. α ≡ Rt1 . . . tn where R is an n-place predicate symbol, t1, . . . , tn are
terms, and each of R, t1, . . . , tn is uniquely determined.

2. α ≡ t1 = t2 where t1 and t2 are uniquely determined terms.

Proof. Exercise.

Proposition 63E (Unique Readability). Every wff satisfies one, and only
one of the following conditions.

1. α is atomic.
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2. α is of the form ¬β.

3. α is of the form (β → γ).

4. α is of the form ∀xβ.

Moreover, in each case β, or β and γ, are uniquely determined. This means
that, e.g., there are no different pairs β, γ and β′, γ′ so that α is both of the
form (β → γ) and (β′ → γ′).

Proof. The formation rules require that if a wff is not atomic, it must start with
an opening parenthesis (, ¬, or with a quantifier. On the other hand, every
wff that starts with one of the following symbols must be atomic: a predicate
symbol, a function symbol, a constant symbol.

So we really only have to show that if α is of the form (β ∗ γ) and also of
the form (β′ ∗′ γ′), then β ≡ β′, γ ≡ γ′, and ∗ = ∗′.

So suppose both α ≡ (β ∗ γ) and α ≡ (β′ ∗′ γ′). Then either β ≡ β′ or not.
If it is, clearly ∗ = ∗′ and γ ≡ γ′, since they then are substrings of α that begin
in the same place and are of the same length. The other case is β ̸≡ β′. Since
β and β′ are both substrings of α that begin at the same place, one must be a
proper prefix of the other. But this is impossible by Lemma 63C.

§6.4 Main operator of a Formula

It is often useful to talk about the last operator used in constructing a wff α.
This operator is called the main operator of α. Intuitively, it is the “outermost”
operator of α. For example, the main operator of ¬α is ¬, the main operator
of (α ∨ β) is ∨, etc.

Definition 64A (Main operator). The main operator of a wff α is de-
fined as follows:

1. α is atomic: α has no main operator.

2. α ≡ ¬β: the main operator of α is ¬.

3. α ≡ (β → γ): the main operator of α is →.

4. α ≡ ∀xβ: the main operator of α is ∀.

In each case, we intend the specific indicated occurrence of the main oper-
ator in the formula. For instance, since the formula ((δ → φ) → (φ→ δ)) is of
the form (β → γ) where β is (δ → φ) and γ is (φ→ δ), the second occurrence
of → is the main operator.

This is a recursive definition of a function which maps all non-atomic wffs to
their main operator occurrence. Because of the way wffs are defined inductively,
every wff α satisfies one of the cases in Definition 64A. This guarantees that
for each non-atomic wff α a main operator exists. Because each wff satisfies
only one of these conditions, and because the smaller wffs from which α is
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constructed are uniquely determined in each case, the main operator occurrence
of α is unique, and so we have defined a function.

We call wffs by the following names depending on which symbol their main
operator is:

Main operator Type of wff Example
none atomic (wff) Rt1 . . . tn, t1 = t2
¬ negation ¬α
∧ conjunction (α ∧ β)
∨ disjunction (α ∨ β)
→ conditional (α→ β)
∀ universal (wff) ∀xα
∃ existential (wff) ∃xα

§6.5 Subformulas

It is often useful to talk about the wffs that “make up” a given wff. We call
these its subformulas. Any wff counts as a subformula of itself; a subformula
of α other than α itself is a proper subformula.

Definition 65A (Immediate Subformula). If α is a wff, the immediate
subformulas of α are defined inductively as follows:

1. Atomic wffs have no immediate subformulas.

2. α ≡ ¬β: The only immediate subformula of α is β.

3. α ≡ (β ∗ γ): The immediate subformulas of α are β and γ (∗ is any one
of the two-place connectives).

4. α ≡ ∀xβ: The only immediate subformula of α is β.

Definition 65B (Proper Subformula). If α is a wff, the proper subfor-
mulas of α are recursively as follows:

1. Atomic wffs have no proper subformulas.

2. α ≡ ¬β: The proper subformulas of α are β together with all proper
subformulas of β.

3. α ≡ (β ∗ γ): The proper subformulas of α are β, γ, together with all
proper subformulas of β and those of γ.

4. α ≡ ∀xβ: The proper subformulas of α are β together with all proper
subformulas of β.

Definition 65C (Subformula). The subformulas of α are α itself together
with all its proper subformulas.
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Note the subtle difference in how we have defined immediate subformulas
and proper subformulas. In the first case, we have directly defined the imme-
diate subformulas of a formula α for each possible form of α. It is an explicit
definition by cases, and the cases mirror the inductive definition of the set of
wffs. In the second case, we have also mirrored the way the set of all wffs is
defined, but in each case we have also included the proper subformulas of the
smaller wffs β, γ in addition to these wffs themselves. This makes the definition
recursive. In general, a definition of a function on an inductively defined set
(in our case, wffs) is recursive if the cases in the definition of the function make
use of the function itself. To be well defined, we must make sure, however, that
we only ever use the values of the function for arguments that come “before”
the one we are defining—in our case, when defining “proper subformula” for
(β ∗ γ) we only use the proper subformulas of the “earlier” wffs β and γ.

§6.6 Free Variables and Sentences

Definition 66A (Free occurrences of a variable). The free occurrences
of a variable in a wff are defined inductively as follows:

1. α is atomic: all variable occurrences in α are free.

2. α ≡ ¬β: the free variable occurrences of α are exactly those of β.

3. α ≡ (β ∗ γ): the free variable occurrences of α are those in β together
with those in γ.

4. α ≡ ∀xβ: the free variable occurrences in α are all of those in β except
for occurrences of x.

Definition 66B (Bound Variables). An occurrence of a variable in a for-
mula α is bound if it is not free.

Definition 66C (Scope). If ∀xβ is an occurrence of a subformula in a for-
mula α, then the corresponding occurrence of β in α is called the scope of the
corresponding occurrence of ∀x.

If β is the scope of a quantifier occurrence ∀x in α, then the free occurrences
of x in β are bound in ∀xβ. We say that these occurrences are bound by the
mentioned quantifier occurrence.

Example 6.6.4. Consider the following formula:

∃v0 A2
0v0v1︸ ︷︷ ︸
β

β represents the scope of ∃v0. The quantifier binds the occurence of v0 in β,
but does not bind the occurence of v1. So v1 is a free variable in this case.
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We can now see how this might work in a more complicated wff α:

∀v0 (A1
0v0 →A2

0v0v1)︸ ︷︷ ︸
β

→∃v1 (A2
1v0v1 ∨ ∀v0

δ︷ ︸︸ ︷
¬A1

1v0)︸ ︷︷ ︸
γ

β is the scope of the first ∀v0, γ is the scope of ∃v1, and δ is the scope of the
second ∀v0. The first ∀v0 binds the occurrences of v0 in β, ∃v1 the occurrence of
v1 in γ, and the second ∀v0 binds the occurrence of v0 in δ. The first occurrence
of v1 and the fourth occurrence of v0 are free in α. The last occurrence of v0
is free in δ, but bound in γ and α.

Definition 66E (Sentence). A wff α is a sentence iff it contains no free
occurrences of variables.

§6.7 Substitution

Definition 67A (Substitution in a term). We define s[t/x], the result of
substituting t for every occurrence of x in s, recursively:

1. s ≡ c: s[t/x] is just s.

2. s ≡ y: s[t/x] is also just s, provided y is a variable and y ̸≡ x.

3. s ≡ x: s[t/x] is t.

4. s ≡ ft1 . . . tn: s[t/x] is ft1[t/x] . . . tn[t/x].

Definition 67B. A term t is free for x in α if none of the free occurrences
of x in α occur in the scope of a quantifier that binds a variable in t.

Example 6.7.3.

1. v8 is free for v1 in ∃v3A2
4v3v1

2. f2
1 (v1, v2) is not free for v0 in ∀v2A2

4v0v2

Definition 67D (Substitution in a wff). If α is a wff, x is a variable, and
t is a term free for x in α, then α[t/x] is the result of substituting t for all free
occurrences of x in α.

1. α ≡ Pt1 . . . tn: α[t/x] is Pt1[t/x] . . . tn[t/x].

2. α ≡ t1 = t2: α[t/x] is t1[t/x] = t2[t/x].

3. α ≡ ¬β: α[t/x] is ¬β[t/x].

4. α ≡ (β → γ): α[t/x] is (β[t/x] → γ[t/x]).
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5. α ≡ ∀y β: α[t/x] is ∀y β[t/x], provided y is a variable other than x;
otherwise α[t/x] is just α.

Note that substitution may be vacuous: If x does not occur in α at all, then
α[t/x] is just α.

The restriction that t must be free for x in α is necessary to exclude cases like
the following. If α ≡ ∃y x < y and t ≡ y, then α[t/x] would be ∃y y < y. In this
case the free variable y is “captured” by the quantifier ∃y upon substitution,
and that is undesirable. For instance, we would like it to be the case that
whenever ∀xβ holds, so does β[t/x]. But consider ∀x ∃y x < y (here β is
∃y x < y). It is sentence that is true about, e.g., the natural numbers: for
every number x there is a number y greater than it. If we allowed y as a
possible substitution for x, we would end up with β[y/x] ≡ ∃y y < y, which is
false. We prevent this by requiring that none of the free variables in t would
end up being bound by a quantifier in α.

We often use the following convention to avoid cumbersome notation: If α
is a wff which may contain the variable x free, we also write α(x) to indicate
this. When it is clear which α and x we have in mind, and t is a term (assumed
to be free for x in α(x)), then we write α(t) as short for α[t/x]. So for instance,
we might say, “we call α(t) an instance of ∀xA(x).” By this we mean that if
α is any wff, x a variable, and t a term that’s free for x in α, then α[t/x] is an
instance of ∀xα.

Problems

Problem 1. Prove Lemma 63C.

Problem 2. Prove Proposition 63D (Hint: Formulate and prove a version of
Lemma 63C for terms.)

Problem 3. Give an inductive definition of the bound variable occurrences
along the lines of Definition 66A.
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Chapter 7

Semantics of First-Order Logic

§7.0 Introduction

Giving the meaning of expressions is the domain of semantics. The central
concept in semantics is that of satisfaction in a structure. A structure gives
meaning to the building blocks of the language: a domain is a non-empty
set of objects. The quantifiers are interpreted as ranging over this domain,
constant symbols are assigned elements in the domain, function symbols are
assigned functions from the domain to itself, and predicate symbols are assigned
relations on the domain. The domain together with assignments to the basic
vocabulary constitutes a structure. Variables may appear in wffs, and in order
to give a semantics, we also have to assign elements of the domain to them—this
is a variable assignment. The satisfaction relation, finally, brings these together.
A wff may be satisfied in a structure A relative to a variable assignment s,
written as |=A α [s]. This relation is also defined by induction on the structure
of α, using the truth tables for the logical connectives to define, say, satisfaction
of (α ∧ β) in terms of satisfaction (or not) of α and β. It then turns out that
the variable assignment is irrelevant if the wff α is a sentence, i.e., has no free
variables, and so we can talk of sentences being simply satisfied (or not) in
structures.

On the basis of the satisfaction relation |=A α for sentences we can then de-
fine the basic semantic notions of validity, entailment, and satisfiability. A sen-
tence is valid, ⊨ α, if every structure satisfies it. It is entailed by a set of
sentences, Γ ⊨ α, if every structure that satisfies all the sentences in Γ also
satisfies α. And a set of sentences is satisfiable if some structure satisfies all
sentences in it at the same time. Because wffs are inductively defined, and
satisfaction is in turn defined by induction on the structure of wffs, we can
use induction to prove properties of our semantics and to relate the semantic
notions defined.
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§7.1 Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the constant symbols,
function symbols, and predicate symbols have no specific meaning attached to
them. Meanings are given by specifying a structure. It specifies the domain, i.e.,
the objects which the constant symbols pick out, the function symbols operate
on, and the quantifiers range over. In addition, it specifies which constant
symbols pick out which objects, how a function symbol maps objects to objects,
and which objects the predicate symbols apply to. Structures are the basis for
semantic notions in logic, e.g., the notion of consequence, validity, satisfiablity.
They are variously called “structures,” “interpretations,” or “models” in the
literature.

Definition 71A (Structures). A structure A, for a language L of first-
order logic consists of the following elements:

1. Domain: a non-empty set, |A|

2. Interpretation of constant symbols: for each constant symbol c of L,
an element cA ∈ |A|

3. Interpretation of predicate symbols: for each n-place predicate symbol R
of L (other than =), an n-place relation RA ⊆ |A|n

4. Interpretation of function symbols: for each n-place function symbol f of
L, an n-place function fA : |A|n → |A|

Example 7.1.2. A structure A for the language of arithmetic consists of a set,
an element of |A|, 0A, as interpretation of the constant symbol 0, a one-place

function ′A : |A| → |A|, two two-place functions +A and ×A, both |A|2 → |A|,
and a two-place relation <A ⊆ |A|2.

An obvious example of such a structure is the following:

1. |B| = N

2. 0B = 0

3. ′B(n) = n + 1 for all n ∈ N

4. +B(n,m) = n + m for all n,m ∈ N

5. ×B(n,m) = n ·m for all n,m ∈ N

6. <B = {⟨n,m⟩ : n ∈ N,m ∈ N, n < m}

The structure B for LA so defined is called the standard model of arithmetic,
because it interprets the non-logical constants of LA exactly how you would
expect.

However, there are many other possible structures for LA. For instance,
we might take as the domain the set Z of integers instead of N, and define the
interpretations of 0, ′, +, ×, < accordingly. But we can also define structures
for LA which have nothing even remotely to do with numbers.
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Example 7.1.3. A structure A for the language LZ of set theory requires just
a set and a single-two place relation. So technically, e.g., the set of people plus
the relation “x is older than y” could be used as a structure for LZ , as well as
N together with n ≥ m for n,m ∈ N.

A particularly interesting structure for LZ in which the elements of the
domain are actually sets, and the interpretation of ∈ actually is the relation
“x is an element of y” is the structure HF of hereditarily finite sets:

1. |HF | = ∅ ∪ ℘(∅) ∪ ℘(℘(∅)) ∪ ℘(℘(℘(∅))) ∪ . . . ;

2. ∈HF = {⟨x, y⟩ : x, y ∈ |HF | , x ∈ y}.

The stipulations we make as to what counts as a structure impact our
logic. For example, the choice to prevent empty domains ensures, given the
usual account of satisfaction (or truth) for quantified sentences, that ∃x (α(x)∨
¬α(x)) is valid—that is, a logical truth. And the stipulation that all constant
symbols must refer to an object in the domain ensures that the existential
generalization is a sound pattern of inference: α(a), therefore ∃xα(x). If we
allowed names to refer outside the domain, or to not refer, then we would be on
our way to a free logic, in which existential generalization requires an additional
premise: α(a) and ∃xx = a, therefore ∃xα(x).

§7.2 Covered Structures for First-order Languages

Recall that a term is closed if it contains no variables.

Definition 72A (Value of closed terms). If t is a closed term of the lan-
guage L and A is a structure for L, the value tA is defined as follows:

1. If t is just the constant symbol c, then cA = cA.

2. If t is of the form ft1 . . . tn, then

tA = fA(t1
A, . . . , tn

A).

Definition 72B (Covered structure). A structure is covered if every el-
ement of the domain is the value of some closed term.

Example 7.2.3. Let L be the language with constant symbols zero, one, two,
. . . , the binary predicate symbol <, and the binary function symbols + and
×. Then a structure A for L is the one with domain |A| = {0, 1, 2, . . .} and
assignments zeroA = 0, oneA = 1, twoA = 2, and so forth. For the binary
relation symbol <, the set <A is the set of all pairs ⟨c1, c2⟩ ∈ |A|2 such that
c1 is less than c2: for example, ⟨1, 3⟩ ∈ <A but ⟨2, 2⟩ /∈ <A. For the binary
function symbol +, define +A in the usual way—for example, +A(2, 3) maps
to 5, and similarly for the binary function symbol ×. Hence, the value of
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four is just 4, and the value of ×(two,+(three, zero)) (or in infix notation,
two× (three + zero)) is

×(two,+(three, zero)
A

=

= ×A(twoA,+(three, zero)
A

)

= ×A(twoA,+A(threeA, zeroA))

= ×A(twoA,+A(threeA, zeroA))

= ×A(2,+A(3, 0))

= ×A(2, 3)

= 6

§7.3 Satisfaction of a Wff in a Structure

The basic notion that relates expressions such as terms and wffs, on the one
hand, and structures on the other, are those of value of a term and satisfaction
of a wff. Informally, the value of a term is an element of a structure—if the
term is just a constant, its value is the object assigned to the constant by the
structure, and if it is built up using function symbols, the value is computed
from the values of constants and the functions assigned to the functions in
the term. A wff is satisfied in a structure if the interpretation given to the
predicates makes the wff true in the domain of the structure. This notion of
satisfaction is specified inductively: the specification of the structure directly
states when atomic wffs are satisfied, and we define when a complex wff is
satisfied depending on the main connective or quantifier and whether or not
the immediate subformulas are satisfied.

The case of the quantifiers here is a bit tricky, as the immediate subformula
of a quantified wff has a free variable, and structures don’t specify the values
of variables. In order to deal with this difficulty, we also introduce variable
assignments and define satisfaction not with respect to a structure alone, but
with respect to a structure plus a variable assignment.

Definition 73A (Variable Assignment). A variable assignment s for a struc-
ture A is a function which maps each variable to an element of |A|, i.e.,
s : Var → |A|.

A structure assigns a value to each constant symbol, and a variable assign-
ment to each variable. But we want to use terms built up from them to also
name elements of the domain. For this we define the value of terms induc-
tively. For constant symbols and variables the value is just as the structure
or the variable assignment specifies it; for more complex terms it is computed
recursively using the functions the structure assigns to the function symbols.

Definition 73B (Value of Terms). If t is a term of the language L, A is a
structure for L, and s is a variable assignment for A, the value s̄(t) is defined
as follows:
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1. t ≡ c: s̄(t) = cA.

2. t ≡ x: s̄(t) = s(x).

3. t ≡ ft1 . . . tn:
s̄(t) = fA(s̄(t1), . . . , s̄(tn)).

Definition 73C (x-Variant). If s is a variable assignment for a structure A,
then any variable assignment s′ for A which differs from s at most in what it
assigns to x is called an x-variant of s. If s′ is an x-variant of s we write
s′ ∼x s.

Note that an x-variant of an assignment s does not have to assign something
different to x. In fact, every assignment counts as an x-variant of itself.

Definition 73D. If s is a variable assignment for a structure A and m ∈ |A|,
then the assignment s[m/x] is the variable assignment defined by

s[m/x](y) =

{
m if y ≡ x

s(y) otherwise.

In other words, s[m/x] is the particular x-variant of s which assigns the
domain element m to x, and assigns the same things to variables other than x
that s does.

Definition 73E (Satisfaction). Satisfaction of a wff α in a structure A
relative to a variable assignment s, in symbols: |=A α [s], is defined recursively
as follows. (We write ̸|=A α [s] to mean “not |=A α [s].”)

1. α ≡ Rt1 . . . tn: |=A α [s] iff ⟨s̄(t1), . . . , s̄(tn)⟩ ∈ RA.

2. α ≡ t1 = t2: |=A α [s] iff s̄(t1) = s̄(t2).

3. α ≡ ¬β: |=A α [s] iff ̸|=A β [s].

4. α ≡ (β → γ): |=A α [s] iff ̸|=A β [s] or |=A γ [s] (or both).

5. α ≡ ∀xβ: |=A α [s] iff for every element m ∈ |A|, |=A β [s[m/x]].

The variable assignments are important in the last clause. We cannot define
satisfaction of ∀xβ(x) by “for all m ∈ |A|, |=A β(m).” The reason is that if
m ∈ |A|, it is not symbol of the language, and so β(a) is not a wff (that is,
β[m/x] is undefined). We also cannot assume that we have constant symbols
or terms available that name every element of A, since there is nothing in the
definition of structures that requires it. In the standard language, the set of
constant symbols is denumerable, so if |A| is not enumerable there aren’t even
enough constant symbols to name every object.

We solve this problem by introducing variable assignments, which allow us
to link variables directly with elements of the domain. Then instead of saying
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that, e.g., ∀xβ(x) is satisfied in A iff for all m ∈ |A|, |=A β(m), we say it
is satisfied in A relative to s iff β(x) is satisfied relative to s[m/x] for every
m ∈ |A|.

Example 7.3.6. Let L = {a, b, f, R} where a and b are constant symbols, f is
a two-place function symbol, and R is a two-place predicate symbol. Consider
the structure A defined by:

1. |A| = {1, 2, 3, 4}

2. aA = 1

3. bA = 2

4. fA(x, y) = x + y if x + y ≤ 3 and = 3 otherwise.

5. RA = {⟨1, 1⟩, ⟨1, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩}

The function s(x) = 1 that assigns 1 ∈ |A| to every variable is a variable
assignment for A.

Then

s̄(f(a, b)) = fA(s̄(a), s̄(b)).

Since a and b are constant symbols, s̄(a) = aA = 1 and s̄(b) = bA = 2. So

s̄(f(a, b)) = fA(1, 2) = 1 + 2 = 3.

To compute the value of f(f(a, b), a) we have to consider

s̄(f(f(a, b), a)) = fA(s̄(f(a, b)), s̄(a)) = fA(3, 1) = 3,

since 3 + 1 > 3. Since s(x) = 1 and s̄(x) = s(x), we also have

s̄(f(f(a, b), x)) = fA(s̄(f(a, b)), s̄(x)) = fA(3, 1) = 3,

An atomic wff R(t1, t2) is satisfied if the tuple of values of its arguments,
i.e., ⟨s̄(t1), s̄(t2)⟩, is an element of RA. So, e.g., we have |=A R(b, f(a, b)) [s]

since ⟨bA, f(a, b)
A⟩ = ⟨2, 3⟩ ∈ RA, but ̸|=A R(x, f(a, b)) [s] since ⟨1, 3⟩ /∈ RA[s].

To determine if a non-atomic formula α is satisfied, you apply the clauses
in the inductive definition that applies to the main connective. For instance,
the main connective in R(a, a) → (R(b, x) ∨R(x, b)) is the →, and

|=A R(a, a) → (R(b, x) ∨R(x, b)) [s] iff

̸|=A R(a, a) [s] or |=A R(b, x) ∨R(x, b) [s]
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Since |=A R(a, a) [s] (because ⟨1, 1⟩ ∈ RA) we can’t yet determine the answer
and must first figure out if |=A R(b, x) ∨R(x, b) [s]:

|=A R(b, x) ∨R(x, b) [s] iff

|=A R(b, x) [s] or |=A R(x, b) [s]

And this is the case, since |=A R(x, b) [s] (because ⟨1, 2⟩ ∈ RA).

Recall that an x-variant of s is a variable assignment that differs from s at
most in what it assigns to x. For every element of |A|, there is an x-variant
of s:

s1 = s[1/x], s2 = s[2/x],

s3 = s[3/x], s4 = s[4/x].

So, e.g., s2(x) = 2 and s2(y) = s(y) = 1 for all variables y other than x. These
are all the x-variants of s for the structure A, since |A| = {1, 2, 3, 4}. Note, in
particular, that s1 = s (s is always an x-variant of itself).

To determine if a universally quantified wff ∀xα(x) is satisfied, we have to
determine if |=A α(x) [s[m/x]] for all m ∈ |A|. So,

|=A ∀x (R(x, a) →R(a, x)) [s],

since |=A R(x, a) → R(a, x) [s[m/x]] for all m ∈ |A|. For m = 1, we have
|=A R(a, x) [s[1/x]] so the consequent is true; for m = 2, 3, and 4, we have
̸|=A R(x, a) [s[m/x]], so the antecedent is false. But,

̸|=A ∀x (R(a, x) →R(x, a)) [s]

since ̸|=A R(a, x)→R(x, a) [s[2/x]] (because |=A R(a, x) [s[2/x]] and ̸|=A R(x, a) [s[2/x]]).
To determine if an existentially quantified wff ∃xα(x) is satisfied, we have

to determine if |=A ¬∀x¬α(x) [s]. For instance, we have

|=A ∃x (R(b, x) ∨R(x, b)) [s].

First, |=A R(b, x) ∨ R(x, b) [s[1/x]] (s[3/x] would also fit the bill). So, ̸|=A

¬(R(b, x)∨R(x, b)) [s[1/x]], thus ̸|=A ∀x¬((R(b, x)∨R(x, b)) [s], and therefore
|=A ¬∀x¬((R(b, x) ∨R(x, b)) [s]. On the other hand,

̸|=A ∃x (R(b, x) ∧R(x, b)), [s].

That’s because |=A ∀x¬(R(b, x)∧R(x, b)) [s], since for no m ∈ |A|, |=A R(b, x)∧
R(x, b) [s[m/x]]. As you can probably guess from these examples, |=A ∃xα(x) [s]
iff |=A α(x) [s[m/x]] for at least one m ∈ |A|.

For a more complicated case, consider

∀x (R(a, x) →∃y R(x, y)).
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Since ̸|=A R(a, x) [s[3/x]] and ̸|=A R(a, x) [s[4/x]], the interesting cases where
we have to worry about the consequent of the conditional are only m = 1
and = 2. Does |=A ∃y R(x, y) [s[1/x]] hold? It does if there is at least one
n ∈ |A| so that |=A R(x, y) [s[1/x][n/y]]. In fact, if we take n = 1, we have
s[1/x][n/y] = s[1/y] = s. Since s(x) = 1, s(y) = 1, and ⟨1, 1⟩ ∈ RA, the answer
is yes.

To determine if |=A ∃y R(x, y) [s[2/x]], we have to look at the variable
assignments s[2/x][n/y]. Here, for n = 1, this assignment is s2 = s[2/x], which
does not satisfy R(x, y) (s2(x) = 2, s2(y) = 1, and ⟨2, 1⟩ /∈ RA). However,
consider s[2/x][3/y] = s2[3/y]. |=A R(x, y) [s2[3/y]] since ⟨2, 3⟩ ∈ RA, and so
|=A ∃y R(x, y) [s2].

So, for all n ∈ |A|, either ̸|=A R(a, x) [s[m/x]] (if m = 3, 4) or |=A

∃y R(x, y) [s[m/x]] (if m = 1, 2), and so

|=A ∀x (R(a, x) →∃y R(x, y)) [s].

On the other hand,

̸|=A ∃x (R(a, x) ∧ ∀y R(x, y)) [s].

We have |=A R(a, x) [s[m/x]] only for m = 1 and m = 2. But for both of
these values of m, there is in turn an n ∈ |A|, namely n = 4, so that ̸|=A

R(x, y) [s[m/x][n/y]] and so ̸|=A ∀y R(x, y) [s[m/x]] for m = 1 and m = 2. In
sum, there is no m ∈ |A| such that |=A R(a, x) ∧ ∀y R(x, y) [s[m/x]].

Proposition 73G. |=A ∃xβ(x) [s] iff there is an x-variant s′ of s so that
|=A β(x) [s′].

Proof. Exercise.

§7.4 Variable Assignments

A variable assignment s provides a value for every variable—and there are
infinitely many of them. This is of course not necessary. We require variable
assignments to assign values to all variables simply because it makes things a
lot easier. The value of a term t, and whether or not a wff α is satisfied in
a structure with respect to s, only depend on the assignments s makes to the
variables in t and the free variables of α. This is the content of the next two
propositions. To make the idea of “depends on” precise, we show that any two
variable assignments that agree on all the variables in t give the same value,
and that α is satisfied relative to one iff it is satisfied relative to the other if
two variable assignments agree on all free variables of α.

Proposition 74A. If the variables in a term t are among x1, . . . , xn, and
s1(xi) = s2(xi) for i = 1, . . . , n, then s̄1(t) = s̄2(t).
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Proof. By induction on the complexity of t. For the base case, t can be a con-
stant symbol or one of the variables x1, . . . , xn. If t = c, then s̄1(t) = cA =
s̄2(t). If t = xi, s1(xi) = s2(xi) by the hypothesis of the proposition, and so
s̄1(t) = s1(xi) = s2(xi) = s̄2(t).

For the inductive step, assume that t = ft1 . . . tk and that the claim holds
for t1, . . . , tk. Then

s̄1(t) = s̄1(ft1 . . . tk) =

= fA(s̄1(t1), . . . , s̄1(tk))

For j = 1, . . . , k, the variables of tj are among x1, . . . , xn. By induction
hypothesis, s̄1(tj) = s̄2(tj). So,

s̄1(t) = s̄2(ft1 . . . tk) =

= fA(s̄1(t1), . . . , s̄1(tk)) =

= fA(s̄2(t1), . . . , s̄2(tk)) =

= s̄2(ft1 . . . tk) = s̄2(t).

Proposition 74B. If the free variables in α are among x1, . . . , xn, and
s1(xi) = s2(xi) for i = 1, . . . , n, then |=A α [s1] iff |=A α [s2].

Proof. We use induction on the complexity of α. For the base case, where α is
atomic, α can be: Rt1 . . . tk for a k-place predicate R and terms t1, . . . , tk,
or t1 = t2 for terms t1 and t2.

1. α ≡ Rt1 . . . tk: let |=A α [s1]. Then

⟨s̄1(t1), . . . , s̄1(tk)⟩ ∈ RA.

For i = 1, . . . , k, s̄1(ti) = s̄2(ti) by Proposition 74A. So we also have
⟨s̄2(ti), . . . , s̄2(tk)⟩ ∈ RA.

2. α ≡ t1 = t2: suppose |=A α [s1]. Then s̄1(t1) = s̄1(t2). So,

s̄2(t1) = s̄1(t1) (by Proposition 74A)

= s̄1(t2) (since |=A t1 = t2 [s1])

= s̄2(t2) (by Proposition 74A),

so |=A t1 = t2 [s2].

Now assume |=A β [s1] iff |=A β [s2] for all wffs β less complex than α. The
induction step proceeds by cases determined by the main operator of α. In
each case, we only demonstrate the forward direction of the biconditional; the
proof of the reverse direction is symmetrical. In all cases except those for the
quantifiers, we apply the induction hypothesis to sub-wffs β of α. The free
variables of β are among those of α. Thus, if s1 and s2 agree on the free
variables of α, they also agree on those of β, and the induction hypothesis
applies to β.
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1. α ≡ ¬β: if |=A α [s1], then ̸|=A β [s1], so by the induction hypothesis,
̸|=A β [s2], hence |=A α [s2].

2. α ≡ β → γ: if |=A α [s1], then ̸|=A β [s1] or |=A γ [s1]. By the induction
hypothesis, ̸|=A β [s2] or |=A γ [s2], so |=A α [s2].

3. α ≡ ∀xβ: if |=A α [s1], then for every m ∈ |A|, |=A β [s1[m/x]]. We
want to show that also, for every m ∈ |A|, |=A β [s2[m/x]]. So let m ∈ |A|
be arbitrary, and consider s′1 = s[m/x] and s′2 = s[m/x]. We have
that |=A β [s′1]. The free variables of β are among x1, . . . , xn, and x.
s′1(xi) = s′2(xi), since s′1 and s′2 are x-variants of s1 and s2, respectively,
and by hypothesis s1(xi) = s2(xi). s′1(x) = s′2(x) = m by the way
we have defined s′1 and s′2. Then the induction hypothesis applies to β
and s′1, s′2, and we have |=A β [s′2]. This applies to every m ∈ |A|, i.e.,
|=A β [s2[m/x]] for all m ∈ |A|, so |=A α [s2].

By induction, we get that |=A α [s1] iff |=A α [s2] whenever the free variables
in α are among x1, . . . , xn and s1(xi) = s2(xi) for i = 1, . . . , n.

Sentences have no free variables, so any two variable assignments assign the
same things to all the (zero) free variables of any sentence. The proposition
just proved then means that whether or not a sentence is satisfied in a structure
relative to a variable assignment is completely independent of the assignment.
We’ll record this fact. It justifies the definition of satisfaction of a sentence in
a structure (without mentioning a variable assignment) that follows.

Corollary 74C. If α is a sentence and s a variable assignment, then |=A

α [s] iff |=A α [s′] for every variable assignment s′.

Proof. Let s′ be any variable assignment. Since α is a sentence, it has no free
variables, and so every variable assignment s′ trivially assigns the same things
to all free variables of α as does s. So the condition of Proposition 74B is
satisfied, and we have |=A α [s] iff |=A α [s′].

Definition 74D. If α is a sentence, we say that a structure A satisfies α,
|=A α, iff |=A α [s] for all variable assignments s.

If |=A α, we also simply say that α is true in A.

Proposition 74E. Let A be a structure, α be a sentence, and s a variable
assignment. |=A α iff |=A α [s].

Proof. Exercise.

Proposition 74F. Suppose α(x) only contains x free, and A is a structure.
Then: |=A ∀xα(x) iff |=A α(x) [s] for all variable assignments s.

Proof. Exercise.
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§7.5 Extensionality

Extensionality, sometimes called relevance, can be expressed informally as fol-
lows: the only factors that bears upon the satisfaction of wff α in a structure A
relative to a variable assignment s, are the size of the domain and the assign-
ments made by A and s to the elements of the language that actually appear
in α.

One immediate consequence of extensionality is that where two structures A
and A′ agree on all the elements of the language appearing in a sentence α and
have the same domain, A and A′ must also agree on whether or not α itself is
true.

Proposition 75A (Extensionality). Let α be a wff, and A1 and A2 be
structures with |A1| = |A2|, and s a variable assignment on |A1| = |A2|. If
cA1 = cA2 , RA1 = RA2 , and fA1 = fA2 for every constant symbol c, relation
symbol R, and function symbol f occurring in α, then |=A1

α [s] iff |=A2
α [s].

Proof. First prove (by induction on t) that for every term, s̄(t) = s̄(t). Then
prove the proposition by induction on α, making use of the claim just proved
for the induction basis (where α is atomic).

Corollary 75B (Extensionality for Sentences). Let α be a sentence and
A1, A2 as in Proposition 75A. Then |=A1

α iff |=A2
α.

Proof. Follows from Proposition 75A by corollary 74C.

Moreover, the value of a term, and whether or not a structure satisfies a wff,
only depends on the values of its subterms.

Proposition 75C. Let A be a structure, t and t′ terms, and s a variable
assignment. Then s̄(t[t′/x]) = ¯s[¯(t′)/x]s(t).

Proof. By induction on t.

1. If t is a constant, say, t ≡ c, then t[t′/x] = c, and s̄(c) = cA = ¯s[¯(t′)/x]s(c).

2. If t is a variable other than x, say, t ≡ y, then t[t′/x] = y, and s̄(y) =
¯s[¯(t′)/x]s(y) since s ∼x s[s̄(t′)/x].

3. If t ≡ x, then t[t′/x] = t′. But ¯s[¯(t′)/x]s(x) = s̄(t′) by definition
of s[s̄(t′)/x].
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4. If t ≡ ft1 . . . tn then we have:

s̄(t[t′/x]) =

= s̄(ft1[t′/x] . . . tn[t′/x])

by definition of t[t′/x]

= fA(s̄(t1[t′/x]), . . . , s̄(tn[t′/x]))

by definition of s̄(f . . .)

= fA( ¯s[¯(t′)/x]s(t1), . . . , ¯s[¯(t′)/x]s(tn))

by induction hypothesis

= ¯s[¯(t′)/x]s(t) by definition of ¯s[¯(t′)/x]s(f . . .)

Proposition 75D. Let A be a structure, α a wff, t′ a term, and s a variable
assignment. Then |=A α[t′/x] [s] iff |=A α [s[s̄(t′)/x]].

Proof. Exercise.

The point of Propositions 75C and 75D is the following. Suppose we have
a term t or a wff α and some term t′, and we want to know the value of t[t′/x]
or whether or not α[t′/x] is satisfied in a structure A relative to a variable
assignment s. Then we can either perform the substitution first and then
consider the value or satisfaction relative to A and s, or we can first determine
the value m = s̄(t′) of t′ in A relative to s, change the variable assignment
to s[m/x] and then consider the value of t in A and s[m/x], or whether |=A

α [s[m/x]]. Propositions 75C and 75D guarantee that the answer will be the
same, whichever way we do it.

§7.6 Semantic Notions

Give the definition of structures for first-order languages, we can define some
basic semantic properties of and relationships between sentences. The simplest
of these is the notion of validity of a sentence. A sentence is valid if it is satisfied
in every structure. Valid sentences are those that are satisfied regardless of how
the non-logical symbols in it are interpreted. Valid sentences are therefore also
called logical truths—they are true, i.e., satisfied, in any structure and hence
their truth depends only on the logical symbols occurring in them and their
syntactic structure, but not on the non-logical symbols or their interpretation.

Definition 76A (Validity). A sentence α is valid, ⊨ α, iff |=A α for every
structure A.

Definition 76B (Entailment). A set of sentences Γ entails a sentence α,
Γ ⊨ α, iff for every structure A with |=A Γ , |=A α.
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Definition 76C (Satisfiability). A set of sentences Γ is satisfiable if |=A Γ
for some structure A. If Γ is not satisfiable it is called unsatisfiable.

Proposition 76D. A sentence α is valid iff Γ ⊨ α for every set of sen-
tences Γ .

Proof. For the forward direction, let α be valid, and let Γ be a set of sentences.
Let A be a structure so that |=A Γ . Since α is valid, |=A α, hence Γ ⊨ α.

For the contrapositive of the reverse direction, let α be invalid, so there is
a structure A with ̸|=A α. When Γ = {⊤}, since ⊤ is valid, |=A Γ . Hence,
there is a structure A so that |=A Γ but ̸|=A α, hence Γ does not entail α.

Proposition 76E. Γ ⊨ α iff Γ ∪ {¬α} is unsatisfiable.

Proof. For the forward direction, suppose Γ ⊨ α and suppose to the contrary
that there is a structure A so that |=A Γ ∪ {¬α}. Since |=A Γ and Γ ⊨ α,
|=A α. Also, since |=A Γ ∪ {¬α}, |=A ¬α, so we have both |=A α and ̸|=A α,
a contradiction. Hence, there can be no such structure A, so Γ ∪ {¬α} is
unsatisfiable.

For the reverse direction, suppose Γ ∪ {¬α} is unsatisfiable. So for every
structure A, either ̸|=A Γ or |=A α. Hence, for every structure A with |=A Γ ,
|=A α, so Γ ⊨ α.

Proposition 76F. If Γ ⊆ Γ ′ and Γ ⊨ α, then Γ ′ ⊨ α.

Proof. Suppose that Γ ⊆ Γ ′ and Γ ⊨ α. Let A be a structure such that
|=A Γ ′; then |=A Γ , and since Γ ⊨ α, we get that |=A α. Hence, whenever
|=A Γ ′, |=A α, so Γ ′ ⊨ α.

Theorem 76G (Semantic Deduction Theorem). Γ ∪ {α} ⊨ β iff Γ ⊨
α→ β.

Proof. For the forward direction, let Γ ∪ {α} ⊨ β and let A be a structure so
that |=A Γ . If |=A α, then |=A Γ ∪ {α}, so since Γ ∪ {α} entails β, we get
|=A β. Therefore, |=A α→ β, so Γ ⊨ α→ β.

For the reverse direction, let Γ ⊨ α → β and A be a structure so that
|=A Γ ∪ {α}. Then |=A Γ , so |=A α → β, and since |=A α, |=A β. Hence,
whenever |=A Γ ∪ {α}, |=A β, so Γ ∪ {α} ⊨ β.

Proposition 76H. Let A be a structure, and α(x) a wff with one free vari-
able x, and t a closed term. Then: ∀xα(x) ⊨ α(t)

Proof. Suppose |=A ∀xα(x). Let s be a variable assignment with s(x) =
tA. By Proposition 74F, |=A α(x) [s]. By Proposition 75D, |=A α(t) [s]. By
Proposition 74E, |=A α(t) since α(t) is a sentence.

Release : 0552395 (2022-04-04) 79



7. Semantics of First-Order Logic

Problems

Problem 1. Is B, the standard model of arithmetic, covered? Explain.

Problem 2. Prove Proposition 73G

Problem 3. Let L = {c, f, A} with one constant symbol, one one-place func-
tion symbol and one two-place predicate symbol, and let the structure A be
given by

1. |A| = {1, 2, 3}

2. cA = 3

3. fA(1) = 2, fA(2) = 3, fA(3) = 2

4. AA = {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 3⟩}

(a) Let s(v) = 1 for all variables v. Find out whether

|=A ∃x (A(f(z), c) →∀y (A(y, x) ∨A(f(y), x))) [s]

Explain why or why not.
(b) Give a different structure and variable assignment in which the wff is

not satisfied.

Problem 4. Complete the proof of Proposition 74B.

Problem 5. Prove Proposition 74E

Problem 6. Prove Proposition 74F.

Problem 7. Suppose L is a language without function symbols. Given a struc-
ture A, c a constant symbol and a ∈ |A|, define A[a/c] to be the structure that
is just like A, except that cA[a/c] = a. Define A ||= α for sentences α by:

1. α ≡ Rd1 . . . dn: A ||= α iff ⟨dA1 , . . . , dAn ⟩ ∈ RA.

2. α ≡ d1 = d2: A ||= α iff dA1 = dA2 .

3. α ≡ ¬β: A ||= α iff not A ||= β.

4. α ≡ (β → γ): A ||= α iff not A ||= β or A ||= γ (or both).

5. α ≡ ∀xβ: A ||= α iff for all a ∈ |A|, A[a/c] ||= β[c/x], if c does not occur
in β.

Let x1, . . . , xn be all free variables in α, c1, . . . , cn constant symbols not in α,
a1, . . . , an ∈ |A|, and s(xi) = ai.

Show that |=A α [s] iff A[a1/c1, . . . , an/cn] ||= α[c1/x1] . . . [cn/xn].
(This problem shows that it is possible to give a semantics for first-order

logic that makes do without variable assignments.)
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Problem 8. Suppose that f is a function symbol not in α(x, y). Show that
there is a structure A such that |=A ∀x∃y α(x, y) iff there is an A′ such that
|=A′ ∀xα(x, f(x)).

(This problem is a special case of what’s known as Skolem’s Theorem;
∀xα(x, f(x)) is called a Skolem normal form of ∀x∃y α(x, y).)

Problem 9. Carry out the proof of Proposition 75A in detail.

Problem 10. Prove Proposition 75D

Problem 11. 1. Show that Γ ⊨ ⊥ iff Γ is unsatisfiable.

2. Show that Γ ∪ {α} ⊨ ⊥ iff Γ ⊨ ¬α.

3. Suppose c does not occur in α or Γ . Show that Γ ⊨ ∀xα iff Γ ⊨ α[c/x].

Problem 12. Complete the proof of Proposition 76H.
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Chapter 8

Theories and Their Models

§8.0 Introduction

The development of the axiomatic method is a significant achievement in the
history of science, and is of special importance in the history of mathematics.
An axiomatic development of a field involves the clarification of many questions:
What is the field about? What are the most fundamental concepts? How are
they related? Can all the concepts of the field be defined in terms of these
fundamental concepts? What laws do, and must, these concepts obey?

The axiomatic method and logic were made for each other. Formal logic
provides the tools for formulating axiomatic theories, for proving theorems
from the axioms of the theory in a precisely specified way, for studying the
properties of all systems satisfying the axioms in a systematic way.

Definition 80A. A set of sentences Γ is closed iff, whenever Γ ⊨ α then
α ∈ Γ . The closure of a set of sentences Γ is {α : Γ ⊨ α}.

We say that Γ is axiomatized by a set of sentences ∆ if Γ is the closure
of ∆.

We can think of an axiomatic theory as the set of sentences that is ax-
iomatized by its set of axioms ∆. In other words, when we have a first-order
language which contains non-logical symbols for the primitives of the axiomat-
ically developed science we wish to study, together with a set of sentences
that express the fundamental laws of the science, we can think of the theory
as represented by all the sentences in this language that are entailed by the
axioms. This ranges from simple examples with only a single primitive and
simple axioms, such as the theory of partial orders, to complex theories such
as Newtonian mechanics.

The important logical facts that make this formal approach to the axiomatic
method so important are the following. Suppose Γ is an axiom system for a
theory, i.e., a set of sentences.

1. We can state precisely when an axiom system captures an intended class
of structures. That is, if we are interested in a certain class of struc-
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tures, we will successfully capture that class by an axiom system Γ iff
the structures are exactly those A such that |=A Γ .

2. We may fail in this respect because there are A such that |=A Γ , but A
is not one of the structures we intend. This may lead us to add axioms
which are not true in A.

3. If we are successful at least in the respect that Γ is true in all the intended
structures, then a sentence α is true in all intended structures whenever
Γ ⊨ α. Thus we can use logical tools (such as derivation methods) to
show that sentences are true in all intended structures simply by showing
that they are entailed by the axioms.

4. Sometimes we don’t have intended structures in mind, but instead start
from the axioms themselves: we begin with some primitives that we
want to satisfy certain laws which we codify in an axiom system. One
thing that we would like to verify right away is that the axioms do not
contradict each other: if they do, there can be no concepts that obey
these laws, and we have tried to set up an incoherent theory. We can
verify that this doesn’t happen by finding a model of Γ . And if there
are models of our theory, we can use logical methods to investigate them,
and we can also use logical methods to construct models.

5. The independence of the axioms is likewise an important question. It may
happen that one of the axioms is actually a consequence of the others,
and so is redundant. We can prove that an axiom α in Γ is redundant by
proving Γ \ {α} ⊨ α. We can also prove that an axiom is not redundant
by showing that (Γ \{α})∪{¬α} is satisfiable. For instance, this is how it
was shown that the parallel postulate is independent of the other axioms
of geometry.

6. Another important question is that of definability of concepts in a theory:
The choice of the language determines what the models of a theory con-
sists of. But not every aspect of a theory must be represented separately
in its models. For instance, every ordering ≤ determines a corresponding
strict ordering <—given one, we can define the other. So it is not neces-
sary that a model of a theory involving such an order must also contain
the corresponding strict ordering. When is it the case, in general, that
one relation can be defined in terms of others? When is it impossible to
define a relation in terms of other (and hence must add it to the primitives
of the language)?

§8.1 Expressing Properties of Structures

It is often useful and important to express conditions on functions and relations,
or more generally, that the functions and relations in a structure satisfy these
conditions. For instance, we would like to have ways of distinguishing those
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structures for a language which “capture” what we want the predicate symbols
to “mean” from those that do not. Of course we’re completely free to specify
which structures we “intend,” e.g., we can specify that the interpretation of
the predicate symbol ≤ must be an ordering, or that we are only interested in
interpretations of L in which the domain consists of sets and ∈ is interpreted
by the “is an element of” relation. But can we do this with sentences of the
language? In other words, which conditions on a structure A can we express by
a sentence (or perhaps a set of sentences) in the language of A? There are some
conditions that we will not be able to express. For instance, there is no sentence
of LA which is only true in a structure A if |A| = N. We cannot express “the
domain contains only natural numbers.” But there are “structural properties”
of structures that we perhaps can express. Which properties of structures
can we express by sentences? Or, to put it another way, which collections of
structures can we describe as those making a sentence (or set of sentences)
true?

Definition 81A (Model of a set). Let Γ be a set of sentences in a lan-
guage L. We say that a structure A is a model of Γ if |=A α for all α ∈ Γ .

Example 8.1.2. The sentence ∀xx ≤ x is true in A iff ≤A is a reflexive relation.
The sentence ∀x∀y ((x ≤ y ∧ y ≤ x) → x = y) is true in A iff ≤A is anti-
symmetric. The sentence ∀x ∀y ∀z ((x ≤ y∧ y ≤ z)→x ≤ z) is true in A iff ≤A

is transitive. Thus, the models of

{ ∀xx ≤ x,

∀x ∀y ((x ≤ y ∧ y ≤ x) → x = y),

∀x∀y ∀z ((x ≤ y ∧ y ≤ z) → x ≤ z) }

are exactly those structures in which ≤A is reflexive, anti-symmetric, and tran-
sitive, i.e., a partial order. Hence, we can take them as axioms for the first-order
theory of partial orders.

§8.2 Examples of First-Order Theories

Example 8.2.1. The theory of strict linear orders in the language L< is axiom-
atized by the set

∀x¬x < x,

∀x∀y ((x < y ∨ y < x) ∨ x = y),

∀x∀y ∀z ((x < y ∧ y < z) → x < z)

It completely captures the intended structures: every strict linear order is a
model of this axiom system, and vice versa, if R is a linear order on a set X,
then the structure A with |A| = X and <A = R is a model of this theory.
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Example 8.2.2. The theory of groups in the language 1 (constant symbol), ·
(two-place function symbol) is axiomatized by

∀x (x · 1) = x

∀x∀y ∀z (x · (y · z)) = ((x · y) · z)

∀x∃y (x · y) = 1

Example 8.2.3. The theory of Peano arithmetic is axiomatized by the following
sentences in the language of arithmetic LA.

∀x ∀y (x′ = y′ → x = y)

∀x 0 ̸= x′

∀x (x + 0) = x

∀x∀y (x + y′) = (x + y)′

∀x (x× 0) = 0

∀x∀y (x× y′) = ((x× y) + x)

∀x∀y (x < y ↔∃z (z′ + x) = y))

plus all sentences of the form

(α(0) ∧ ∀x (α(x) → α(x′))) →∀xα(x)

Since there are infinitely many sentences of the latter form, this axiom system
is infinite. The latter form is called the induction schema. (Actually, the
induction schema is a bit more complicated than we let on here.)

The last axiom is an explicit definition of <.

Example 8.2.4. The theory of pure sets plays an important role in the founda-
tions (and in the philosophy) of mathematics. A set is pure if all its elements
are also pure sets. The empty set counts therefore as pure, but a set that has
something as an element that is not a set would not be pure. So the pure sets
are those that are formed just from the empty set and no “urelements,” i.e.,
objects that are not themselves sets.

The following might be considered as an axiom system for a theory of pure
sets:

∃x¬∃y y ∈ x

∀x ∀y (∀z(z ∈ x↔ z ∈ y) → x = y)

∀x ∀y ∃z ∀u (u ∈ z ↔ (u = x ∨ u = y))

∀x ∃y ∀z (z ∈ y ↔∃u (z ∈ u ∧ u ∈ x))

plus all sentences of the form

∃x∀y (y ∈ x↔ α(y))
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The first axiom says that there is a set with no elements (i.e., ∅ exists); the
second says that sets are extensional; the third that for any sets X and Y , the
set {X,Y } exists; the fourth that for any set X, the set ∪X exists, where ∪X
is the union of all the elements of X.

The sentences mentioned last are collectively called the naive comprehen-
sion scheme. It essentially says that for every α(x), the set {x : α(x)} exists—so
at first glance a true, useful, and perhaps even necessary axiom. It is called
“naive” because, as it turns out, it makes this theory unsatisfiable: if you take
α(y) to be ¬y ∈ y, you get the sentence

∃x∀y (y ∈ x↔¬y ∈ y)

and this sentence is not satisfied in any structure.

Example 8.2.5. In the area of mereology, the relation of parthood is a funda-
mental relation. Just like theories of sets, there are theories of parthood that
axiomatize various conceptions (sometimes conflicting) of this relation.

The language of mereology contains a single two-place predicate symbol P ,
and Pxy “means” that x is a part of y. When we have this interpretation in
mind, a structure for this language is called a parthood structure. Of course, not
every structure for a single two-place predicate will really deserve this name. To
have a chance of capturing “parthood,” PA must satisfy some conditions, which
we can lay down as axioms for a theory of parthood. For instance, parthood
is a partial order on objects: every object is a part (albeit an improper part)
of itself; no two different objects can be parts of each other; a part of a part
of an object is itself part of that object. Note that in this sense “is a part of”
resembles “is a subset of,” but does not resemble “is an element of” which is
neither reflexive nor transitive.

∀xPxx,

∀x∀y ((Pxy ∧ Pyx) → x = y),

∀x∀y ∀z ((Pxy ∧ Pyz) → Pxz),

Moreover, any two objects have a mereological sum (an object that has these
two objects as parts, and is minimal in this respect).

∀x∀y ∃z ∀u (Pzu↔ (Pxu ∧ Pyu))

These are only some of the basic principles of parthood considered by meta-
physicians. Further principles, however, quickly become hard to formulate or
write down without first introducing some defined relations. For instance, most
metaphysicians interested in mereology also view the following as a valid prin-
ciple: whenever an object x has a proper part y, it also has a part z that has
no parts in common with y, and so that the fusion of y and z is x.

Release : 0552395 (2022-04-04) 87



8. Theories and Their Models

§8.3 Expressing Relations in a Structure

One main use wffs can be put to is to express properties and relations in
a structure A in terms of the primitives of the language L of A. By this we
mean the following: the domain of A is a set of objects. The constant symbols,
function symbols, and predicate symbols are interpreted in A by some objects
in|A|, functions on |A|, and relations on |A|. For instance, if A2

0 is in L, then A

assigns to it a relation R = A2
0
A

. Then the formula A2
0v1v2 expresses that very

relation, in the following sense: if a variable assignment s maps v1 to a ∈ |A|
and v2 to b ∈ |A|, then

Rab iff |=A A2
0v1v2 [s].

Note that we have to involve variable assignments here: we can’t just say
“Rab iff |=A A2

0ab” because a and b are not symbols of our language: they are
elements of |A|.

Since we don’t just have atomic wffs, but can combine them using the logical
connectives and the quantifiers, more complex wffs can define other relations
which aren’t directly built into A. We’re interested in how to do that, and
specifically, which relations we can define in a structure.

Definition 83A. Let α(v1, . . . , vn) be a wff of L in which only v1,. . . , vn
occur free, and let A be a structure for L. α(v1, . . . , vn) expresses the rela-
tion R ⊆ |A|n iff

Ra1 . . . an iff |=A αv1 . . . vn [s]

for any variable assignment s with s(vi) = ai (i = 1, . . . , n).

Example 8.3.2. In the standard model of arithmetic B, the wff v1 < v2∨v1 = v2
expresses the ≤ relation on N. The wff v2 = v′1 expresses the successor relation,
i.e., the relation R ⊆ N2 where Rnm holds if m is the successor of n. The
formula v1 = v′2 expresses the predecessor relation. The wffs ∃v3 (v3 ̸= 0∧v2 =
(v1 +v3)) and ∃v3 (v1 +v3

′) = v2 both express the < relation. This means that
the predicate symbol < is actually superfluous in the language of arithmetic;
it can be defined.

This idea is not just interesting in specific structures, but generally when-
ever we use a language to describe an intended model or models, i.e., when we
consider theories. These theories often only contain a few predicate symbols as
basic symbols, but in the domain they are used to describe often many other
relations play an important role. If these other relations can be systematically
expressed by the relations that interpret the basic predicate symbols of the
language, we say we can define them in the language.

§8.4 The Theory of Sets

Almost all of mathematics can be developed in the theory of sets. Developing
mathematics in this theory involves a number of things. First, it requires a
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set of axioms for the relation ∈. A number of different axiom systems have
been developed, sometimes with conflicting properties of ∈. The axiom system
known as ZFC, Zermelo-Fraenkel set theory with the axiom of choice stands
out: it is by far the most widely used and studied, because it turns out that its
axioms suffice to prove almost all the things mathematicians expect to be able
to prove. But before that can be established, it first is necessary to make clear
how we can even express all the things mathematicians would like to express.
For starters, the language contains no constant symbols or function symbols, so
it seems at first glance unclear that we can talk about particular sets (such as
∅ or N), can talk about operations on sets (such as X ∪Y and ℘(X)), let alone
other constructions which involve things other than sets, such as relations and
functions.

To begin with, “is an element of” is not the only relation we are interested
in: “is a subset of” seems almost as important. But we can define “is a subset
of” in terms of “is an element of.” To do this, we have to find a wff α(x, y) in
the language of set theory which is satisfied by a pair of sets ⟨X,Y ⟩ iff X ⊆ Y .
But X is a subset of Y just in case all elements of X are also elements of Y .
So we can define ⊆ by the formula

∀z (z ∈ x→ z ∈ y)

Now, whenever we want to use the relation ⊆ in a formula, we could instead
use that formula (with x and y suitably replaced, and the bound variable z
renamed if necessary). For instance, extensionality of sets means that if any
sets x and y are contained in each other, then x and y must be the same set.
This can be expressed by ∀x ∀y ((x ⊆ y ∧ y ⊆ x) → x = y), or, if we replace ⊆
by the above definition, by

∀x∀y ((∀z (z ∈ x→ z ∈ y) ∧ ∀z (z ∈ y → z ∈ x)) → x = y).

This is in fact one of the axioms of ZFC, the “axiom of extensionality.”
There is no constant symbol for ∅, but we can express “x is empty” by

¬∃y y ∈ x. Then “∅ exists” becomes the sentence ∃x¬∃y y ∈ x. This is
another axiom of ZFC. (Note that the axiom of extensionality implies that
there is only one empty set.) Whenever we want to talk about ∅ in the language
of set theory, we would write this as “there is a set that’s empty and . . . ” As
an example, to express the fact that ∅ is a subset of every set, we could write

∃x (¬∃y y ∈ x ∧ ∀z x ⊆ z)

where, of course, x ⊆ z would in turn have to be replaced by its definition.
To talk about operations on sets, such has X ∪Y and ℘(X), we have to use

a similar trick. There are no function symbols in the language of set theory,
but we can express the functional relations X ∪ Y = Z and ℘(X) = Y by

∀u ((u ∈ x ∨ u ∈ y) ↔ u ∈ z)

∀u (u ⊆ x↔ u ∈ y)
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since the elements of X∪Y are exactly the sets that are either elements of X or
elements of Y , and the elements of ℘(X) are exactly the subsets of X. However,
this doesn’t allow us to use x∪y or ℘(x) as if they were terms: we can only use
the entire wffs that define the relations X ∪ Y = Z and ℘(X) = Y . In fact, we
do not know that these relations are ever satisfied, i.e., we do not know that
unions and power sets always exist. For instance, the sentence ∀x ∃y ℘(x) = y
is another axiom of ZFC (the power set axiom).

Now what about talk of ordered pairs or functions? Here we have to explain
how we can think of ordered pairs and functions as special kinds of sets. One
way to define the ordered pair ⟨x, y⟩ is as the set {{x}, {x, y}}. But like before,
we cannot introduce a function symbol that names this set; we can only define
the relation ⟨x, y⟩ = z, i.e., {{x}, {x, y}} = z:

∀u (u ∈ z ↔ (∀v (v ∈ u↔ v = x) ∨ ∀v (v ∈ u↔ (v = x ∨ v = y))))

This says that the elements u of z are exactly those sets which either have x
as its only element or have x and y as its only elements (in other words, those
sets that are either identical to {x} or identical to {x, y}). Once we have this,
we can say further things, e.g., that X × Y = Z:

∀z (z ∈ Z ↔∃x ∃y (x ∈ X ∧ y ∈ Y ∧ ⟨x, y⟩ = z))

A function f : X → Y can be thought of as the relation f(x) = y, i.e., as
the set of pairs {⟨x, y⟩ : f(x) = y}. We can then say that a set f is a function
from X to Y if (a) it is a relation ⊆ X × Y , (b) it is total, i.e., for all x ∈ X
there is some y ∈ Y such that ⟨x, y⟩ ∈ f and (c) it is functional, i.e., whenever
⟨x, y⟩, ⟨x, y′⟩ ∈ f , y = y′ (because values of functions must be unique). So “f
is a function from X to Y ” can be written as:

∀u (u ∈ f →∃x ∃y (x ∈ X ∧ y ∈ Y ∧ ⟨x, y⟩ = u)) ∧
∀x (x ∈ X → (∃y (y ∈ Y ∧ maps(f, x, y)) ∧

(∀y ∀y′ ((maps(f, x, y) ∧ maps(f, x, y′)) → y = y′)))

where maps(f, x, y) abbreviates ∃v (v ∈ f ∧ ⟨x, y⟩ = v) (this wff expresses
“f(x) = y”).

It is now also not hard to express that f : X → Y is injective, for instance:

f : X → Y ∧ ∀x∀x′ ((x ∈ X ∧ x′ ∈ X ∧
∃y (maps(f, x, y) ∧ maps(f, x′, y))) → x = x′)

A function f : X → Y is injective iff, whenever f maps x, x′ ∈ X to a single y,
x = x′. If we abbreviate this formula as inj(f,X, Y ), we’re already in a position
to state in the language of set theory something as non-trivial as Cantor’s
theorem: there is no injective function from ℘(X) to X:

∀X ∀Y (℘(X) = Y →¬∃f inj(f, Y,X))
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One might think that set theory requires another axiom that guarantees
the existence of a set for every defining property. If α(x) is a formula of set
theory with the variable x free, we can consider the sentence

∃y ∀x (x ∈ y ↔ α(x)).

This sentence states that there is a set y whose elements are all and only those
x that satisfy α(x). This schema is called the “comprehension principle.” It
looks very useful; unfortunately it is inconsistent. Take α(x) ≡ ¬x ∈ x, then
the comprehension principle states

∃y ∀x (x ∈ y ↔ x /∈ x),

i.e., it states the existence of a set of all sets that are not elements of themselves.
No such set can exist—this is Russell’s Paradox. ZFC, in fact, contains a
restricted—and consistent—version of this principle, the separation principle:

∀z ∃y ∀x (x ∈ y ↔ (x ∈ z ∧ α(x)).

§8.5 Expressing the Size of Structures

There are some properties of structures we can express even without using the
non-logical symbols of a language. For instance, there are sentences which are
true in a structure iff the domain of the structure has at least, at most, or
exactly a certain number n of elements.

Proposition 85A. The sentence

α≥n ≡ ∃x1 ∃x2 . . . ∃xn

(x1 ̸= x2 ∧ x1 ̸= x3 ∧ x1 ̸= x4 ∧ · · · ∧ x1 ̸= xn ∧
x2 ̸= x3 ∧ x2 ̸= x4 ∧ · · · ∧ x2 ̸= xn ∧

...

xn−1 ̸= xn)

is true in a structure A iff |A| contains at least n elements. Consequently,
|=A ¬α≥n+1 iff |A| contains at most n elements.

Proposition 85B. The sentence

α=n ≡ ∃x1 ∃x2 . . . ∃xn

(x1 ̸= x2 ∧ x1 ̸= x3 ∧ x1 ̸= x4 ∧ · · · ∧ x1 ̸= xn ∧
x2 ̸= x3 ∧ x2 ̸= x4 ∧ · · · ∧ x2 ̸= xn ∧

...

xn−1 ̸= xn ∧
∀y (y = x1 ∨ · · · ∨ y = xn))

is true in a structure A iff |A| contains exactly n elements.
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Proposition 85C. A structure is infinite iff it is a model of

{α≥1, α≥2, α≥3, . . . }.

There is no single purely logical sentence which is true in A iff |A| is infinite.
However, one can give sentences with non-logical predicate symbols which only
have infinite models (although not every infinite structure is a model of them).
The property of being a finite structure, and the property of being a non-
enumerable structure cannot even be expressed with an infinite set of sentences.
These facts follow from the compactness and Löwenheim-Skolem theorems.

Problems

Problem 1. Find wffs in LA which define the following relations:

1. n is between i and j;

2. n evenly divides m (i.e., m is a multiple of n);

3. n is a prime number (i.e., no number other than 1 and n evenly divides n).

Problem 2. Suppose the formula α(v1, v2) expresses the relation R ⊆ |A|2 in
a structure A. Find formulas that express the following relations:

1. the inverse R−1 of R;

2. the relative product R | R;

Can you find a way to express R+, the transitive closure of R?

Problem 3. Let L be the language containing a 2-place predicate symbol
< only (no other constant symbols, function symbols or predicate symbols—
except of course =). Let B be the structure such that |B| = N, and <B =
{⟨n,m⟩ : n < m}. Prove the following:

1. {0} is definable in B;

2. {1} is definable in B;

3. {2} is definable in B;

4. for each n ∈ N, the set {n} is definable in B;

5. every finite subset of |B| is definable in B;

6. every co-finite subset of |B| is definable in B (where X ⊆ N is co-finite
iff N \X is finite).

Problem 4. Show that the comprehension principle is inconsistent by giving
a derivation that shows

∃y ∀x (x ∈ y ↔ x /∈ x) ⊢ ⊥.

It may help to first show (A→¬A) ∧ (¬A→A) ⊢ ⊥.
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Chapter 9

Derivation Systems

§9.0 Introduction

Logics commonly have both a semantics and a derivation system. The seman-
tics concerns concepts such as truth, satisfiability, validity, and entailment. The
purpose of derivation systems is to provide a purely syntactic method of estab-
lishing entailment and validity. They are purely syntactic in the sense that a
derivation in such a system is a finite syntactic object, usually a sequence (or
other finite arrangement) of sentences or wffs. Good derivation systems have
the property that any given sequence or arrangement of sentences or wffs can
be verified mechanically to be “correct.”

The simplest (and historically first) derivation systems for first-order logic
were axiomatic. A sequence of wffs counts as a derivation in such a system
if each individual wff in it is either among a fixed set of “axioms” or follows
from wffs coming before it in the sequence by one of a fixed number of “in-
ference rules”—and it can be mechanically verified if a wff is an axiom and
whether it follows correctly from other wffs by one of the inference rules. Ax-
iomatic derivation systems are easy to describe—and also easy to handle meta-
theoretically—but derivations in them are hard to read and understand, and
are also hard to produce.

Other derivation systems have been developed with the aim of making it
easier to construct derivations or easier to understand derivations once they
are complete. Examples are natural deduction, truth trees, also known as
tableaux proofs, and the sequent calculus. Some derivation systems are de-
signed especially with mechanization in mind, e.g., the resolution method is
easy to implement in software (but its derivations are essentially impossible to
understand). Most of these other derivation systems represent derivations as
trees of wffs rather than sequences. This makes it easier to see which parts of
a derivation depend on which other parts.

So for a given logic, such as first-order logic, the different derivation systems
will give different explications of what it is for a sentence to be a theorem and
what it means for a sentence to be derivable from some others. However that is
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done (via axiomatic derivations, natural deductions, sequent derivations, truth
trees, resolution refutations), we want these relations to match the semantic
notions of validity and entailment. Let’s write ⊢ α for “α is a theorem” and
“Γ ⊢ α” for “α is derivable from Γ .” However ⊢ is defined, we want it to match
up with ⊨, that is:

1. ⊢ α if and only if ⊨ α

2. Γ ⊢ α if and only if Γ ⊨ α

The “only if” direction of the above is called soundness. A derivation system is
sound if derivability guarantees entailment (or validity). Every decent deriva-
tion system has to be sound; unsound derivation systems are not useful at all.
After all, the entire purpose of a derivation is to provide a syntactic guarantee
of validity or entailment. We’ll prove soundness for the derivation systems we
present.

The converse “if” direction is also important: it is called completeness.
A complete derivation system is strong enough to show that α is a theorem
whenever α is valid, and that Γ ⊢ α whenever Γ ⊨ α. Completeness is harder
to establish, and some logics have no complete derivation systems. First-order
logic does. Kurt Gödel was the first one to prove completeness for a derivation
system of first-order logic in his 1929 dissertation.

Another concept that is connected to derivation systems is that of consis-
tency. A set of sentences is called inconsistent if anything whatsoever can be
derived from it, and consistent otherwise. Inconsistency is the syntactic coun-
terpart to unsatisfiablity: like unsatisfiable sets, inconsistent sets of sentences
do not make good theories, they are defective in a fundamental way. Consis-
tent sets of sentences may not be true or useful, but at least they pass that
minimal threshold of logical usefulness. For different derivation systems the
specific definition of consistency of sets of sentences might differ, but like ⊢, we
want consistency to coincide with its semantic counterpart, satisfiability. We
want it to always be the case that Γ is consistent if and only if it is satisfi-
able. Here, the “if” direction amounts to completeness (consistency guarantees
satisfiability), and the “only if” direction amounts to soundness (satisfiability
guarantees consistency). In fact, for classical first-order logic, the two versions
of soundness and completeness are equivalent.

§9.1 The Sequent Calculus

While many derivation systems operate with arrangements of sentences, the
sequent calculus operates with sequents. A sequent is an expression of the
form

α1, . . . , αm ⇒ β1, . . . , βm,

that is a pair of sequences of sentences, separated by the sequent symbol ⇒.
Either sequence may be empty. A derivation in the sequent calculus is a tree
of sequents, where the topmost sequents are of a special form (they are called
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“initial sequents” or “axioms”) and every other sequent follows from the se-
quents immediately above it by one of the rules of inference. The rules of
inference either manipulate the sentences in the sequents (adding, removing,
or rearranging them on either the left or the right), or they introduce a com-
plex wff in the conclusion of the rule. For instance, the ∧L rule allows the
inference from α, Γ ⇒ ∆ to α ∧ β, Γ ⇒ ∆, and the →R allows the inference
from α, Γ ⇒ ∆,β to Γ ⇒ ∆,α→ β, for any Γ , ∆, α, and β. (In particular, Γ
and ∆ may be empty.)

The ⊢ relation based on the sequent calculus is defined as follows: Γ ⊢ α
iff there is some sequence Γ0 such that every α in Γ0 is in Γ and there is a
derivation with the sequent Γ0 ⇒ α at its root. α is a theorem in the sequent
calculus if the sequent ⇒ α has a derivation. For instance, here is a derivation
that shows that ⊢ (α ∧ β) → α:

α ⇒ α ∧L
α ∧ β ⇒ α

→R⇒ (α ∧ β) → α

A set Γ is inconsistent in the sequent calculus if there is a derivation of
Γ0 ⇒ (where every α ∈ Γ0 is in Γ and the right side of the sequent is empty).
Using the rule WR, any sentence can be derived from an inconsistent set.

The sequent calculus was invented in the 1930s by Gerhard Gentzen. Be-
cause of its systematic and symmetric design, it is a very useful formalism for
developing a theory of derivations. It is relatively easy to find derivations in
the sequent calculus, but these derivations are often hard to read and their
connection to proofs are sometimes not easy to see. It has proved to be a very
elegant approach to derivation systems, however, and many logics have sequent
calculus systems.

§9.2 Natural Deduction

Natural deduction is a derivation system intended to mirror actual reasoning
(especially the kind of regimented reasoning employed by mathematicians).
Actual reasoning proceeds by a number of “natural” patterns. For instance,
proof by cases allows us to establish a conclusion on the basis of a disjunctive
premise, by establishing that the conclusion follows from either of the disjuncts.
Indirect proof allows us to establish a conclusion by showing that its negation
leads to a contradiction. Conditional proof establishes a conditional claim “if
. . . then . . . ” by showing that the consequent follows from the antecedent.
Natural deduction is a formalization of some of these natural inferences. Each
of the logical connectives and quantifiers comes with two rules, an introduction
and an elimination rule, and they each correspond to one such natural inference
pattern. For instance, →Intro corresponds to conditional proof, and ∨Elim to
proof by cases. A particularly simple rule is ∧Elim which allows the inference
from α ∧ β to α (or β).

One feature that distinguishes natural deduction from other derivation sys-
tems is its use of assumptions. A derivation in natural deduction is a tree of
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wffs. A single wff stands at the root of the tree of wffs, and the “leaves” of the
tree are wffs from which the conclusion is derived. In natural deduction, some
leaf wffs play a role inside the derivation but are “used up” by the time the
derivation reaches the conclusion. This corresponds to the practice, in actual
reasoning, of introducing hypotheses which only remain in effect for a short
while. For instance, in a proof by cases, we assume the truth of each of the
disjuncts; in conditional proof, we assume the truth of the antecedent; in in-
direct proof, we assume the truth of the negation of the conclusion. This way
of introducing hypothetical assumptions and then doing away with them in
the service of establishing an intermediate step is a hallmark of natural deduc-
tion. The formulas at the leaves of a natural deduction derivation are called
assumptions, and some of the rules of inference may “discharge” them. For
instance, if we have a derivation of β from some assumptions which include α,
then the →Intro rule allows us to infer α → β and discharge any assumption
of the form α. (To keep track of which assumptions are discharged at which
inferences, we label the inference and the assumptions it discharges with a
number.) The assumptions that remain undischarged at the end of the deriva-
tion are together sufficient for the truth of the conclusion, and so a derivation
establishes that its undischarged assumptions entail its conclusion.

The relation Γ ⊢ α based on natural deduction holds iff there is a derivation
in which α is the last sentence in the tree, and every leaf which is undischarged
is in Γ . α is a theorem in natural deduction iff there is a derivation in which
α is the last sentence and all assumptions are discharged. For instance, here is
a derivation that shows that ⊢ (α ∧ β) → α:

[α ∧ β]1
∧Elimα

1 →Intro
(α ∧ β) → α

The label 1 indicates that the assumption α ∧ β is discharged at the →Intro
inference.

A set Γ is inconsistent iff Γ ⊢ ⊥ in natural deduction. The rule ⊥I makes
it so that from an inconsistent set, any sentence can be derived.

Natural deduction systems were developed by Gerhard Gentzen and Sta-
nis law Jaśkowski in the 1930s, and later developed by Dag Prawitz and Frederic
Fitch. Because its inferences mirror natural methods of proof, it is favored by
philosophers. The versions developed by Fitch are often used in introductory
logic textbooks. In the philosophy of logic, the rules of natural deduction have
sometimes been taken to give the meanings of the logical operators (“proof-
theoretic semantics”).

§9.3 Tableaux

While many derivation systems operate with arrangements of sentences, tableaux
operate with signed formulas. A signed formula is a pair consisting of a truth
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value sign (T or F) and a sentence

Tα or Fα.

A tableau consists of signed formulas arranged in a downward-branching tree.
It begins with a number of assumptions and continues with signed formulas
which result from one of the signed formulas above it by applying one of the
rules of inference. Each rule allows us to add one or more signed formulas to
the end of a branch, or two signed formulas side by side—in this case a branch
splits into two, with the two added signed formulas forming the ends of the
two branches.

A rule applied to a complex signed formula results in the addition of signed
formulas which are immediate sub-wffs. They come in pairs, one rule for each
of the two signs. For instance, the ∧T rule applies to Tα ∧ β, and allows the
addition of both the two signed formulas Tα and Tβ to the end of any branch
containing Tα∧β, and the rule α ∧ βF allows a branch to be split by adding Fα
and F β side-by-side. A tableau is closed if every one of its branches contains
a matching pair of signed formulas Tα and Fα.

The ⊢ relation based on tableaux is defined as follows: Γ ⊢ α iff there is
some finite set Γ0 = {β1, . . . , βn} ⊆ Γ such that there is a closed tableau for
the assumptions

{Fα,Tβ1, . . . ,Tβn}

For instance, here is a closed tableau that shows that ⊢ (α ∧ β) → α:

1.
2.
3.
4.
5.

F (α ∧ β) → α
Tα ∧ β
Fα
Tα
Tβ
⊗

Assumption
→F 1
→F 1
→T 2
→T 2

A set Γ is inconsistent in the tableau calculus if there is a closed tableau
for assumptions

{Tβ1, . . . ,Tβn}

for some βi ∈ Γ .
Tableaux were invented in the 1950s independently by Evert Beth and

Jaakko Hintikka, and simplified and popularized by Raymond Smullyan. They
are very easy to use, since constructing a tableau is a very systematic proce-
dure. Because of the systematic nature of tableaux, they also lend themselves
to implementation by computer. However, a tableau is often hard to read and
their connection to proofs are sometimes not easy to see. The approach is also
quite general, and many different logics have tableau systems. Tableaux also
help us to find structures that satisfy given (sets of) sentences: if the set is
satisfiable, it won’t have a closed tableau, i.e., any tableau will have an open
branch. The satisfying structure can be “read off” an open branch, provided
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every rule it is possible to apply has been applied on that branch. There is also
a very close connection to the sequent calculus: essentially, a closed tableau is
a condensed derivation in the sequent calculus, written upside-down.

§9.4 Axiomatic Derivations

Axiomatic derivations are the oldest and simplest logical derivation systems. Its
derivations are simply sequences of sentences. A sequence of sentences counts
as a correct derivation if every sentence α in it satisfies one of the following
conditions:

1. α is an axiom, or

2. α is an element of a given set Γ of sentences, or

3. α is justified by a rule of inference.

To be an axiom, α has to have the form of one of a number of fixed sentence
schemas. There are many sets of axiom schemas that provide a satisfactory
(sound and complete) derivation system for first-order logic. Some are orga-
nized according to the connectives they govern, e.g., the schemas

α→ (β → α) β → (β ∨ γ) (β ∧ γ) → β

are common axioms that govern →, ∨ and ∧. Some axiom systems aim at a
minimal number of axioms. Depending on the connectives that are taken as
primitives, it is even possible to find axiom systems that consist of a single
axiom.

A rule of inference is a conditional statement that gives a sufficient condition
for a sentence in a derivation to be justified. Modus ponens is one very common
such rule: it says that if α and α→ β are already justified, then β is justified.
This means that a line in a derivation containing the sentence β is justified,
provided that both α and α→β (for some sentence α) appear in the derivation
before β.

The ⊢ relation based on axiomatic derivations is defined as follows: Γ ⊢ α
iff there is a derivation with the sentence α as its last formula (and Γ is taken
as the set of sentences in that derivation which are justified by (2) above). α
is a theorem if α has a derivation where Γ is empty, i.e., every sentence in the
derivation is justfied either by (1) or (3). For instance, here is a derivation that
shows that ⊢ α→ (β → (β ∨ α)):

1. β → (β ∨ α)
2. (β → (β ∨ α)) → (α→ (β → (β ∨ α)))
3. α→ (β → (β ∨ α))

The sentence on line 1 is of the form of the axiom α → (α ∨ β) (with the
roles of α and β reversed). The sentence on line 2 is of the form of the axiom
α→(β→α). Thus, both lines are justified. Line 3 is justified by modus ponens:
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if we abbreviate it as δ, then line 2 has the form γ→ δ, where γ is β→ (β ∨α),
i.e., line 1.

A set Γ is inconsistent if Γ ⊢ ⊥. A complete axiom system will also prove
that ⊥→ α for any α, and so if Γ is inconsistent, then Γ ⊢ α for any α.

Systems of axiomatic derivations for logic were first given by Gottlob Frege
in his 1879 Begriffsschrift, which for this reason is often considered the first
work of modern logic. They were perfected in Alfred North Whitehead and
Bertrand Russell’s Principia Mathematica and by David Hilbert and his stu-
dents in the 1920s. They are thus often called “Frege systems” or “Hilbert
systems.” They are very versatile in that it is often easy to find an axiomatic
system for a logic. Because derivations have a very simple structure and only
one or two inference rules, it is also relatively easy to prove things about them.
However, they are very hard to use in practice, i.e., it is difficult to find and
write proofs.
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Axiomatic Derivations

§10.0 Rules and Derivations

Axiomatic derivations are perhaps the simplest derivation system for logic.
A derivation is just a sequence of wffs. To count as a derivation, every wff in
the sequence must either be an instance of an axiom, or must follow from one
or more wffs that precede it in the sequence by a rule of inference. A derivation
derives its last wff.

Definition 100A (Derivability). If Γ is a set of wffs of L then a derivation
from Γ is a finite sequence α1, . . . , αn of wffs where for each i ≤ n one of the
following holds:

1. αi ∈ Γ ; or

2. αi is an axiom; or

3. αi follows from some αj (and αk) with j < i (and k < i) by a rule of
inference.

What counts as a correct derivation depends on which inference rules we
allow (and of course what we take to be axioms). And an inference rule is
an if-then statement that tells us that, under certain conditions, a step Ai in
a derivation is a correct inference step.

Definition 100B (Rule of inference). A rule of inference gives a suffi-
cient condition for what counts as a correct inference step in a derivation
from Γ .

For instance, since any one-element sequence α with α ∈ Γ trivially counts
as a derivation, the following might be a very simple rule of inference:

If α ∈ Γ , then α is always a correct inference step in any derivation
from Γ .
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Similarly, if α is one of the axioms, then α by itself is a derivation, and so this
is also a rule of inference:

If α is an axiom, then α is a correct inference step.

It gets more interesting if the rule of inference appeals to wffs that appear
before the step considered. The following rule is called modus ponens:

If β→α and β occur higher up in the derivation, then α is a correct
inference step.

If this is the only rule of inference, then our definition of derivation above
amounts to this: α1, . . . , αn is a derivation iff for each i ≤ n one of the
following holds:

1. αi ∈ Γ ; or

2. αi is an axiom; or

3. for some j < i, αj is β → αi, and for some k < i, αk is β.

The last clause says that αi follows from αj (β) and αk (β → αi) by modus
ponens. If we can go from 1 to n, and each time we find a wff αi that is either
in Γ , an axiom, or which a rule of inference tells us that it is a correct inference
step, then the entire sequence counts as a correct derivation.

Definition 100C (Derivability). A wff α is derivable from Γ , written Γ ⊢
α, if there is a derivation from Γ ending in α.

Definition 100D (Theorems). A wff α is a theorem if there is a derivation
of α from the empty set. We write ⊢ α if α is a theorem and ⊬ α if it is not.

§10.1 Axiom and Rules for the Propositional
Connectives

Definition 101A (Axioms). The set of Ax0 of axioms for the propositional
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connectives comprises all wffs of the following forms:

(α ∧ β) → α (10.1)

(α ∧ β) → β (10.2)

α→ (β → (α ∧ β)) (10.3)

α→ (α ∨ β) (10.4)

α→ (β ∨ α) (10.5)

(α→ γ) → ((β → γ) → ((α ∨ β) → γ)) (10.6)

α→ (β → α) (10.7)

(α→ (β → γ)) → ((α→ β) → (α→ γ)) (10.8)

(α→ β) → ((α→¬β) →¬α) (10.9)

¬α→ (α→ β) (10.10)

⊤ (10.11)

⊥→ α (10.12)

(α→⊥) →¬α (10.13)

¬¬α→ α (10.14)

Definition 101B (Modus ponens). If β and β → α already occur in a
derivation, then α is a correct inference step.

We’ll abbreviate the rule modus ponens as “mp.”

§10.2 Axioms and Rules for Quantifiers

Definition 102A (Axioms for quantifiers). The axioms governing quan-
tifiers are all instances of the following:

∀xβ → β(t), (10.15)

β(t) →∃xβ. (10.16)

for any closed term t.

Definition 102B (Rules for quantifiers).

If β → α(a) already occurs in the derivation and a does not occur in Γ or β,
then β →∀xα(x) is a correct inference step.

If α(a) → β already occurs in the derivation and a does not occur in Γ or β,
then ∃xα(x) → β is a correct inference step.

We’ll abbreviate either of these by “qr.”
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§10.3 Examples of Derivations

Example 10.3.1. Suppose we want to prove (¬δ∨φ)→ (δ→φ). Clearly, this is
not an instance of any of our axioms, so we have to use the mp rule to derive
it. Our only rule is MP, which given α and α→ β allows us to justify β. One
strategy would be to use eq. (10.6) with α being ¬δ, β being φ, and γ being
δ → φ, i.e., the instance

(¬δ → (δ → φ)) → ((φ→ (δ → φ)) → ((¬δ ∨ φ) → (δ → φ))).

Why? Two applications of MP yield the last part, which is what we want. And
we easily see that ¬δ→ (δ→ φ) is an instance of eq. (10.10), and φ→ (δ→ φ)
is an instance of eq. (10.7). So our derivation is:

1. ¬δ → (δ → φ) eq. (10.10)
2. (¬δ → (δ → φ)) →

((φ→ (δ → φ)) → ((¬δ ∨ φ) → (δ → φ))) eq. (10.6)
3. ((φ→ (δ → φ)) → ((¬δ ∨ φ) → (δ → φ)) 1, 2, mp
4. φ→ (δ → φ) eq. (10.7)
5. (¬δ ∨ φ) → (δ → φ) 3, 4, mp

Example 10.3.2. Let’s try to find a derivation of δ → δ. It is not an instance
of an axiom, so we have to use mp to derive it. eq. (10.7) is an axiom of the
form α→ β to which we could apply mp. To be useful, of course, the β which
mp would justify as a correct step in this case would have to be δ → δ, since
this is what we want to derive. That means α would also have to be δ, i.e., we
might look at this instance of eq. (10.7):

δ → (δ → δ)

In order to apply mp, we would also need to justify the corresponding second
premise, namely α. But in our case, that would be δ, and we won’t be able to
derive δ by itself. So we need a different strategy.

The other axiom involving just → is eq. (10.8), i.e.,

(α→ (β → γ)) → ((α→ β) → (α→ γ))

We could get to the last nested conditional by applying mp twice. Again, that
would mean that we want an instance of eq. (10.8) where α→γ is δ→δ, the wff
we are aiming for. Then of course, α and γ are both δ. How should we pick β
so that both α→ (β → γ) and α→ β, i.e., in our case δ → (β → δ) and δ → β,
are also derivable? Well, the first of these is already an instance of eq. (10.7),
whatever we decide β to be. And δ→β would be another instance of eq. (10.7)
if β were (δ → δ). So, our derivation is:

1. δ → ((δ → δ) → δ) eq. (10.7)
2. (δ → ((δ → δ) → δ)) →

((δ → (δ → δ)) → (δ → δ)) eq. (10.8)
3. (δ → (δ → δ)) → (δ → δ) 1, 2, mp
4. δ → (δ → δ) eq. (10.7)
5. δ → δ 3, 4, mp

104 Release : 0552395 (2022-04-04)



10.4. Derivations with Quantifiers

Example 10.3.3. Sometimes we want to show that there is a derivation of some
wff from some other wffs Γ . For instance, let’s show that we can derive α→ γ
from Γ = {α→ β, β → γ}.

1. α→ β Hyp
2. β → γ Hyp
3. (β → γ) → (α→ (β → γ)) eq. (10.7)
4. α→ (β → γ) 2, 3, mp
5. (α→ (β → γ)) →

((α→ β) → (α→ γ)) eq. (10.8)
6. ((α→ β) → (α→ γ)) 4, 5, mp
7. α→ γ 1, 6, mp

The lines labelled “Hyp” (for “hypothesis”) indicate that the wff on that line
is an element of Γ .

Proposition 103D. If Γ ⊢ α→ β and Γ ⊢ β → γ, then Γ ⊢ α→ γ

Proof. Suppose Γ ⊢ α→β and Γ ⊢ β→ γ. Then there is a derivation of α→β
from Γ ; and a derivation of β→ γ from Γ as well. Combine these into a single
derivation by concatenating them. Now add lines 3–7 of the derivation in the
preceding example. This is a derivation of α→ γ—which is the last line of the
new derivation—from Γ . Note that the justifications of lines 4 and 7 remain
valid if the reference to line number 2 is replaced by reference to the last line
of the derivation of α→ β, and reference to line number 1 by reference to the
last line of the derivation of B → γ.

§10.4 Derivations with Quantifiers

Example 10.4.1. Let us give a derivation of (∀xα(x) ∧ ∀y β(y)) → ∀x (α(x) ∧
β(x)).

First, note that

(∀xα(x) ∧ ∀y β(y)) →∀xα(x)

is an instance of eq. (10.1), and

∀xα(x) → α(a)

of eq. (10.15). So, by Proposition 103D, we know that

(∀xα(x) ∧ ∀y β(y)) → α(a)

is derivable. Likewise, since

(∀xα(x) ∧ ∀y β(y)) →∀y β(y) and

∀y β(y) → β(a)
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are instances of eq. (10.2) and eq. (10.15), respectively,

(∀xα(x) ∧ ∀y β(y)) → β(a)

is derivable by Proposition 103D. Using an appropriate instance of eq. (10.3)
and two applications of mp, we see that

(∀xα(x) ∧ ∀y β(y)) → (α(a) ∧ β(a))

is derivable. We can now apply qr to obtain

(∀xα(x) ∧ ∀y β(y)) →∀x (α(x) ∧ β(x)).

§10.5 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions (validity, en-
tailment, satisfiabilty), we now define corresponding proof-theoretic notions.
These are not defined by appeal to satisfaction of sentences in structures, but
by appeal to the derivability or non-derivability of certain formulas. It was an
important discovery that these notions coincide. That they do is the content
of the soundness and completeness theorems.

Definition 105A (Derivability). A wff α is derivable from Γ , written Γ ⊢
α, if there is a derivation from Γ ending in α.

Definition 105B (Theorems). A wff α is a theorem if there is a derivation
of α from the empty set. We write ⊢ α if α is a theorem and ⊬ α if it is not.

Definition 105C (Consistency). A set Γ of wffs is consistent if and only
if Γ ⊬ ⊥; it is inconsistent otherwise.

Proposition 105D (Reflexivity). If α ∈ Γ , then Γ ⊢ α.

Proof. The wff α by itself is a derivation of α from Γ .

Proposition 105E (Monotony). If Γ ⊆ ∆ and Γ ⊢ α, then ∆ ⊢ α.

Proof. Any derivation of α from Γ is also a derivation of α from ∆.

Proposition 105F (Transitivity). If Γ ⊢ α and {α}∪∆ ⊢ β, then Γ∪∆ ⊢
β.

Proof. Suppose {α} ∪ ∆ ⊢ β. Then there is a derivation β1, . . . , βl = β
from {α} ∪∆. Some of the steps in that derivation will be correct because of
a rule which refers to a prior line βi = α. By hypothesis, there is a derivation
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of α from Γ , i.e., a derivation α1, . . . , αk = α where every αi is an axiom,
an element of Γ , or correct by a rule of inference. Now consider the sequence

α1, . . . , αk = α, β1, . . . , βl = β.

This is a correct derivation of β from Γ ∪∆ since every Bi = α is now justified
by the same rule which justifies αk = α.

Note that this means that in particular if Γ ⊢ α and α ⊢ β, then Γ ⊢ β. It
follows also that if α1, . . . , αn ⊢ β and Γ ⊢ αi for each i, then Γ ⊢ β.

Proposition 105G. Γ is inconsistent iff Γ ⊢ α for every α.

Proof. Exercise.

Proposition 105H (Compactness).

1. If Γ ⊢ α then there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊢ α.

2. If every finite subset of Γ is consistent, then Γ is consistent.

Proof. 1. If Γ ⊢ α, then there is a finite sequence of wffs α1, . . . , αn so that
α ≡ αn and each αi is either a logical axiom, an element of Γ or follows
from previous wffs by modus ponens. Take Γ0 to be those αi which are
in Γ . Then the derivation is likewise a derivation from Γ0, and so Γ0 ⊢ α.

2. This is the contrapositive of (1) for the special case α ≡ ⊥.

§10.6 The Deduction Theorem

As we’ve seen, giving derivations in an axiomatic system is cumbersome, and
derivations may be hard to find. Rather than actually write out long lists of
wffs, it is generally easier to argue that such derivations exist, by making use
of a few simple results. We’ve already established three such results: Propo-
sition 105D says we can always assert that Γ ⊢ α when we know that α ∈ Γ .
Proposition 105E says that if Γ ⊢ α then also Γ ∪ {β} ⊢ α. And Proposi-
tion 105F implies that if Γ ⊢ α and α ⊢ β, then Γ ⊢ β. Here’s another simple
result, a “meta”-version of modus ponens:

Proposition 106A. If Γ ⊢ α and Γ ⊢ α→ β, then Γ ⊢ β.

Proof. We have that {α, α→ β} ⊢ β:

1. α Hyp.
2. α→ β Hyp.
3. β 1, 2, MP

By Proposition 105F, Γ ⊢ β.
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The most important result we’ll use in this context is the deduction theorem:

Theorem 106B (Deduction Theorem). Γ ∪ {α} ⊢ β if and only if Γ ⊢
α→ β.

Proof. The “if” direction is immediate. If Γ ⊢ α → β then also Γ ∪ {α} ⊢
α → β by Proposition 105E. Also, Γ ∪ {α} ⊢ α by Proposition 105D. So, by
Proposition 106A, Γ ∪ {α} ⊢ β.

For the “only if” direction, we proceed by induction on the length of the
derivation of β from Γ ∪ {α}.

For the induction basis, we prove the claim for every derivation of length 1.
A derivation of β from Γ ∪ {α} of length 1 consists of β by itself; and if it is
correct β is either ∈ Γ ∪ {α} or is an axiom. If β ∈ Γ or is an axiom, then
Γ ⊢ β. We also have that Γ ⊢ β→ (α→β) by eq. (10.7), and Proposition 106A
gives Γ ⊢ α→ β. If β ∈ {α} then Γ ⊢ α→ β because then last sentence α→ β
is the same as α→ α, and we have derived that in Example 10.3.2.

For the inductive step, suppose a derivation of β from Γ ∪ {α} ends with
a step β which is justified by modus ponens. (If it is not justified by modus
ponens, β ∈ Γ , β ≡ α, or β is an axiom, and the same reasoning as in the
induction basis applies.) Then some previous steps in the derivation are γ→β
and γ, for some wff γ, i.e., Γ ∪{α} ⊢ γ→β and Γ ∪{α} ⊢ γ, and the respective
derivations are shorter, so the inductive hypothesis applies to them. We thus
have both:

Γ ⊢ α→ (γ → β);

Γ ⊢ α→ γ.

But also
Γ ⊢ (α→ (γ → β)) → ((α→ γ) → (α→ β)),

by eq. (10.8), and two applications of Proposition 106A give Γ ⊢ α → β, as
required.

Notice how eq. (10.7) and eq. (10.8) were chosen precisely so that the De-
duction Theorem would hold.

The following are some useful facts about derivability, which we leave as
exercises.

Proposition 106C.

1. ⊢ (α→ β) → ((β → γ) → (α→ γ);

2. If Γ ∪ {¬α} ⊢ ¬β then Γ ∪ {β} ⊢ α (Contraposition);

3. {α,¬α} ⊢ β (Ex Falso Quodlibet, Explosion);

4. {¬¬α} ⊢ α (Double Negation Elimination);

5. If Γ ⊢ ¬¬α then Γ ⊢ α;
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§10.7 The Deduction Theorem with Quantifiers

Theorem 107A (Deduction Theorem). If Γ ∪{α} ⊢ β, then Γ ⊢ α→β.

Proof. We again proceed by induction on the length of the derivation of β from
Γ ∪ {α}.

The proof of the induction basis is identical to that in the proof of Theo-
rem 106B.

For the inductive step, suppose again that the derivation of β from Γ ∪{α}
ends with a step β which is justified by an inference rule. If the inference rule
is modus ponens, we proceed as in the proof of Theorem 106B. If the inference
rule is qr, we know that β ≡ γ→∀x δ(x) and a wff of the form γ→δ(a) appears
earlier in the derivation, where a does not occur in γ, α, or Γ . We thus have
that

Γ ∪ {α} ⊢ γ → δ(a),

and the induction hypothesis applies, i.e., we have that

Γ ⊢ α→ (γ → δ(a)).

By

⊢ (α→ (γ → δ(a))) → ((α ∧ γ) → δ(a))

and modus ponens we get

Γ ⊢ (α ∧ γ) → δ(a).

Since the eigenvariable condition still applies, we can add a step to this deriva-
tion justified by qr, and get

Γ ⊢ (α ∧ γ) →∀x δ(x).

We also have

⊢ ((α ∧ γ) →∀x δ(x)) → (α→ (γ →∀x δ(x)),

so by modus ponens,

Γ ⊢ α→ (γ →∀x δ(x)),

i.e., Γ ⊢ β.
We leave the case where β is justified by the rule qr, but is of the form

∃x δ(x) → γ, as an exercise.
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§10.8 Derivability and Consistency

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 108A. If Γ ⊢ α and Γ ∪ {α} is inconsistent, then Γ is incon-
sistent.

Proof. If Γ ∪ {α} is inconsistent, then Γ ∪ {α} ⊢ ⊥. By Proposition 105D,
Γ ⊢ β for every β ∈ Γ . Since also Γ ⊢ α by hypothesis, Γ ⊢ β for every
β ∈ Γ ∪ {α}. By Proposition 105F, Γ ⊢ ⊥, i.e., Γ is inconsistent.

Proposition 108B. Γ ⊢ α iff Γ ∪ {¬α} is inconsistent.

Proof. First suppose Γ ⊢ α. Then Γ ∪ {¬α} ⊢ α by Proposition 105E. Γ ∪
{¬α} ⊢ ¬α by Proposition 105D. We also have ⊢ ¬α→ (α→⊥) by eq. (10.10).
So by two applications of Proposition 106A, we have Γ ∪ {¬α} ⊢ ⊥.

Now assume Γ ∪{¬α} is inconsistent, i.e., Γ ∪{¬α} ⊢ ⊥. By the deduction
theorem, Γ ⊢ ¬α → ⊥. Γ ⊢ (¬α → ⊥) → ¬¬α by eq. (10.13), so Γ ⊢ ¬¬α
by Proposition 106A. Since Γ ⊢ ¬¬α → α (eq. (10.14)), we have Γ ⊢ α by
Proposition 106A again.

Proposition 108C. If Γ ⊢ α and ¬α ∈ Γ , then Γ is inconsistent.

Proof. Γ ⊢ ¬α → (α → ⊥) by eq. (10.10). Γ ⊢ ⊥ by two applications of
Proposition 106A.

Proposition 108D. If Γ ∪{α} and Γ ∪{¬α} are both inconsistent, then Γ
is inconsistent.

Proof. Exercise.

§10.9 Derivability and the Propositional Connectives

We establish that the derivability relation ⊢ of axiomatic deduction is strong
enough to establish some basic facts involving the propositional connectives,
such as that α ∧ β ⊢ α and α, α → β ⊢ β (modus ponens). These facts are
needed for the proof of the completeness theorem.

Proposition 109A.

1. Both α ∧ β ⊢ α and α ∧ β ⊢ β

2. α, β ⊢ α ∧ β.

Proof. 1. From eq. (10.1) and eq. (10.1) by modus ponens.

2. From eq. (10.3) by two applications of modus ponens.
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Proposition 109B.

1. α ∨ β,¬α,¬β is inconsistent.

2. Both α ⊢ α ∨ β and β ⊢ α ∨ β.

Proof. 1. From eq. (10.9) we get ⊢ ¬α→(α→⊥) and ⊢ ¬β→(β→⊥). So by
the deduction theorem, we have {¬α} ⊢ α→⊥ and {¬β} ⊢ β→⊥. From
eq. (10.6) we get {¬α,¬β} ⊢ (α ∨ β) → ⊥. By the deduction theorem,
{α ∨ β,¬α,¬β} ⊢ ⊥.

2. From eq. (10.4) and eq. (10.5) by modus ponsens.

Proposition 109C.

1. α, α→ β ⊢ β.

2. Both ¬α ⊢ α→ β and β ⊢ α→ β.

Proof. 1. We can derive:

1. α Hyp
2. α→ β Hyp
3. β 1, 2, mp

2. By eq. (10.10) and eq. (10.7) and the deduction theorem, respectively.

§10.10 Derivability and the Quantifiers

The completeness theorem also requires that axiomatic deductions yield the
facts about ⊢ established in this section.

Theorem 1010A. If c is a constant symbol not occurring in Γ or α(x) and
Γ ⊢ α(c), then Γ ⊢ ∀xα(x).

Proof. By the deduction theorem, Γ ⊢ ⊤→ α(c). Since c does not occur in Γ
or ⊤, we get Γ ⊢ ⊤→ α(c). By the deduction theorem again, Γ ⊢ ∀xα(x).

Proposition 1010B.

∀xα(x) ⊢ α(t).

Proof. By eq. (10.15) and the deduction theorem.
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§10.11 Soundness

A derivation system, such as axiomatic deduction, is sound if it cannot derive
things that do not actually hold. Soundness is thus a kind of guaranteed safety
property for derivation systems. Depending on which proof theoretic property
is in question, we would like to know for instance, that

1. every derivable α is valid;

2. if α is derivable from some others Γ , it is also a consequence of them;

3. if a set of wffs Γ is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do
not hold, the derivation system is deficient—it would derive too much. Con-
sequently, establishing the soundness of a derivation system is of the utmost
importance.

Proposition 1011A. If α is an axiom, then |=A α [s] for each structure A
and assignment s.

Proof. We have to verify that all the axioms are valid. For instance, here is the
case for eq. (10.15): suppose t is free for x in α, and assume |=A ∀xα [s]. Then
by definition of satisfaction, for each s′ ∼x s, also |=A α [s′], and in particular
this holds when s′(x) = s̄(t). By Proposition 75D, |=A α[t/x] [s]. This shows
that |=A (∀xα→ α[t/x]) [s].

Theorem 1011B (Soundness). If Γ ⊢ α then Γ ⊨ α.

Proof. By induction on the length of the derivation of α from Γ . If there are no
steps justified by inferences, then all wffs in the derivation are either instances
of axioms or are in Γ . By the previous proposition, all the axioms are valid,
and hence if α is an axiom then Γ ⊨ α. If α ∈ Γ , then trivially Γ ⊨ α.

If the last step of the derivation of α is justified by modus ponens, then
there are wffs β and β → α in the derivation, and the induction hypothesis
applies to the part of the derivation ending in those wffs (since they contain
at least one fewer steps justified by an inference). So, by induction hypothesis,
Γ ⊨ β and Γ ⊨ β → α. Then Γ ⊨ α by Theorem 76G.

Now suppose the last step is justified by qr. Then that step has the form
γ→∀xB(x) and there is a preceding step γ→β(c) with c not in Γ , γ, or ∀xB(x).
By induction hypothesis, Γ ⊨ γ →∀xB(x). By Theorem 76G, Γ ∪ {γ} ⊨ β(c).

Consider some structure A such that |=A Γ ∪ {γ}. We need to show that
|=A ∀xβ(x). Since ∀xβ(x) is a sentence, this means we have to show that
for every variable assignment s, |=A β(x) [s] (Proposition 74F). Since Γ ∪ {γ}
consists entirely of sentences, |=A δ [s] for all δ ∈ Γ by Definition 73E. Let A′

be like A except that cA
′

= s(x). Since c does not occur in Γ or γ, |=A′ Γ ∪{γ}
by corollary 75B. Since Γ ∪ {γ} ⊨ β(c), |=A′ B(c). Since β(c) is a sentence,
|=A β(c) [s] by Proposition 74E. |=A′ β(x) [s] iff |=A′ β(c) by Proposition 75D
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(recall that β(c) is just β(x)[c/x]). So, |=A′ β(x) [s]. Since c does not occur
in β(x), by Proposition 75A, |=A β(x) [s]. But s was an arbitrary variable
assignment, so |=A ∀xβ(x). Thus Γ ∪ {γ} ⊨ ∀xβ(x). By Theorem 76G,
Γ ⊨ γ →∀xβ(x).

The case where α is justified by qr but is of the form ∃xβ(x) → γ is left
as an exercise.

Corollary 1011C. If ⊢ α, then α is valid.

Corollary 1011D. If Γ is satisfiable, then it is consistent.

Proof. We prove the contrapositive. Suppose that Γ is not consistent. Then
Γ ⊢ ⊥, i.e., there is a derivation of ⊥ from Γ . By Theorem 1011B, any
structure A that satisfies Γ must satisfy ⊥. Since ̸|=A ⊥ for every structure A,
no A can satisfy Γ , i.e., Γ is not satisfiable.

§10.12 Derivations with Equality symbol

In order to accommodate = in derivations, we simply add new axiom schemas.
The definition of derivation and ⊢ remains the same, we just also allow the
new axioms.

Definition 1012A (Axioms for equality symbol).

t = t, (10.17)

t1 = t2 → (β(t1) → β(t2)), (10.18)

for any closed terms t, t1, t2.

Proposition 1012B. The axioms eq. (10.17) and eq. (10.18) are valid.

Proof. Exercise.

Proposition 1012C. Γ ⊢ t = t, for any term t and set Γ .

Proposition 1012D. If Γ ⊢ α(t1) and Γ ⊢ t1 = t2, then Γ ⊢ α(t2).

Proof. The wff

(t1 = t2 → (α(t1) → α(t2)))

is an instance of eq. (10.18). The conclusion follows by two applications of mp.
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Problems

Problem 1. Show that the following hold by exhibiting derivations from the
axioms:

1. (α ∧ β) → (β ∧ α)

2. ((α ∧ β) → γ) → (α→ (β → γ))

3. ¬(α ∨ β) →¬α

Problem 2. Prove Proposition 105G.

Problem 3. Prove Proposition 106C

Problem 4. Complete the proof of Theorem 107A.

Problem 5. Prove that Γ ⊢ ¬α iff Γ ∪ {α} is inconsistent.

Problem 6. Prove Proposition 108D

Problem 7. Complete the proof of Theorem 1011B.

Problem 8. Prove Proposition 1012B.
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Chapter 11

The Completeness Theorem

§11.0 Introduction

The completeness theorem is one of the most fundamental results about logic.
It comes in two formulations, the equivalence of which we’ll prove. In its
first formulation it says something fundamental about the relationship between
semantic consequence and our derivation system: if a sentence α follows from
some sentences Γ , then there is also a derivation that establishes Γ ⊢ α. Thus,
the derivation system is as strong as it can possibly be without proving things
that don’t actually follow.

In its second formulation, it can be stated as a model existence result: every
consistent set of sentences is satisfiable. Consistency is a proof-theoretic notion:
it says that our derivation system is unable to produce certain derivations. But
who’s to say that just because there are no derivations of a certain sort from Γ ,
it’s guaranteed that there is a structure A? Before the completeness theorem
was first proved—in fact before we had the derivation systems we now do—the
great German mathematician David Hilbert held the view that consistency of
mathematical theories guarantees the existence of the objects they are about.
He put it as follows in a letter to Gottlob Frege:

If the arbitrarily given axioms do not contradict one another with
all their consequences, then they are true and the things defined by
the axioms exist. This is for me the criterion of truth and existence.

Frege vehemently disagreed. The second formulation of the completeness the-
orem shows that Hilbert was right in at least the sense that if the axioms are
consistent, then some structure exists that makes them all true.

These aren’t the only reasons the completeness theorem—or rather, its
proof—is important. It has a number of important consequences, some of
which we’ll discuss separately. For instance, since any derivation that shows
Γ ⊢ α is finite and so can only use finitely many of the sentences in Γ , it follows
by the completeness theorem that if α is a consequence of Γ , it is already a
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11. The Completeness Theorem

consequence of a finite subset of Γ . This is called compactness. Equivalently,
if every finite subset of Γ is consistent, then Γ itself must be consistent.

Although the compactness theorem follows from the completeness theorem
via the detour through derivations, it is also possible to use the the proof of the
completeness theorem to establish it directly. For what the proof does is take a
set of sentences with a certain property—consistency—and constructs a struc-
ture out of this set that has certain properties (in this case, that it satisfies
the set). Almost the very same construction can be used to directly establish
compactness, by starting from “finitely satisfiable” sets of sentences instead
of consistent ones. The construction also yields other consequences, e.g., that
any satisfiable set of sentences has a finite or denumerable model. (This re-
sult is called the Löwenheim-Skolem theorem.) In general, the construction of
structures from sets of sentences is used often in logic, and sometimes even in
philosophy.

§11.1 Outline of the Proof

The proof of the completeness theorem is a bit complex, and upon first reading
it, it is easy to get lost. So let us outline the proof. The first step is a shift
of perspective, that allows us to see a route to a proof. When completeness
is thought of as “whenever Γ ⊨ α then Γ ⊢ α,” it may be hard to even come
up with an idea: for to show that Γ ⊢ α we have to find a derivation, and
it does not look like the hypothesis that Γ ⊨ α helps us for this in any way.
For some proof systems it is possible to directly construct a derivation, but we
will take a slightly different approach. The shift in perspective required is this:
completeness can also be formulated as: “if Γ is consistent, it is satisfiable.”
Perhaps we can use the information in Γ together with the hypothesis that it is
consistent to construct a structure that satisfies every sentence in Γ . After all,
we know what kind of structure we are looking for: one that is as Γ describes
it!

If Γ contains only atomic sentences, it is easy to construct a model for
it. Suppose the atomic sentences are all of the form Pa1 . . . an where the ai
are constant symbols. All we have to do is come up with a domain |A| and
an assignment for P so that |=A Pa1 . . . an. But that’s not very hard: put
|A| = N, cAi = i, and for every Pa1 . . . an ∈ Γ , put the tuple ⟨k1, . . . , kn⟩ into
PA, where ki is the index of the constant symbol ai (i.e., ai ≡ cki).

Now suppose Γ contains some wff ¬β, with β atomic. We might worry that
the construction of A interferes with the possibility of making ¬β true. But
here’s where the consistency of Γ comes in: if ¬β ∈ Γ , then β /∈ Γ , or else Γ
would be inconsistent. And if β /∈ Γ , then according to our construction of A,
̸|=A β, so |=A ¬β. So far so good.

What if Γ contains complex, non-atomic formulas? Say it contains α ∧ β.
To make that true, we should proceed as if both α and β were in Γ . And if
α ∨ β ∈ Γ , then we will have to make at least one of them true, i.e., proceed
as if one of them was in Γ .
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This suggests the following idea: we add additional wffs to Γ so as to
(a) keep the resulting set consistent and (b) make sure that for every possible
atomic sentence α, either α is in the resulting set, or ¬α is, and (c) such that,
whenever α ∧ β is in the set, so are both α and β, if α ∨ β is in the set, at
least one of α or β is also, etc. We keep doing this (potentially forever). Call
the set of all wffs so added Γ ∗. Then our construction above would provide
us with a structure A for which we could prove, by induction, that it satisfies
all sentences in Γ ∗, and hence also all sentence in Γ since Γ ⊆ Γ ∗. It turns
out that guaranteeing (a) and (b) is enough. A set of sentences for which (b)
holds is called complete. So our task will be to extend the consistent set Γ to
a consistent and complete set Γ ∗.

There is one wrinkle in this plan: if ∃xα(x) ∈ Γ we would hope to be able
to pick some constant symbol c and add α(c) in this process. But how do we
know we can always do that? Perhaps we only have a few constant symbols
in our language, and for each one of them we have ¬α(c) ∈ Γ . We can’t also
add α(c), since this would make the set inconsistent, and we wouldn’t know
whether A has to make α(c) or ¬α(c) true. Moreover, it might happen that Γ
contains only sentences in a language that has no constant symbols at all (e.g.,
the language of set theory).

The solution to this problem is to simply add infinitely many constants at
the beginning, plus sentences that connect them with the quantifiers in the right
way. (Of course, we have to verify that this cannot introduce an inconsistency.)

Our original construction works well if we only have constant symbols in the
atomic sentences. But the language might also contain function symbols. In
that case, it might be tricky to find the right functions on N to assign to these
function symbols to make everything work. So here’s another trick: instead
of using i to interpret ci, just take the set of constant symbols itself as the
domain. Then A can assign every constant symbol to itself: cAi = ci. But why
not go all the way: let |A| be all terms of the language! If we do this, there is an
obvious assignment of functions (that take terms as arguments and have terms
as values) to function symbols: we assign to the function symbol fn

i the function
which, given n terms t1, . . . , tn as input, produces the term fn

i (t1, . . . , tn) as
value.

The last piece of the puzzle is what to do with =. The predicate symbol =
has a fixed interpretation: |=A t = t′ iff tA = t′

A
. Now if we set things up so

that the value of a term t is t itself, then this structure will make no sentence
of the form t = t′ true unless t and t′ are one and the same term. And of
course this is a problem, since basically every interesting theory in a language
with function symbols will have as theorems sentences t = t′ where t and t′

are not the same term (e.g., in theories of arithmetic: (0 + 0) = 0). To solve
this problem, we change the domain of A: instead of using terms as the objects
in |A|, we use sets of terms, and each set is so that it contains all those terms
which the sentences in Γ require to be equal. So, e.g., if Γ is a theory of
arithmetic, one of these sets will contain: 0, (0 + 0), (0 × 0), etc. This will be
the set we assign to 0, and it will turn out that this set is also the value of all
the terms in it, e.g., also of (0 + 0). Therefore, the sentence (0 + 0) = 0 will be
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true in this revised structure.
So here’s what we’ll do. First we investigate the properties of complete

consistent sets, in particular we prove that a complete consistent set contains
α ∧ β iff it contains both α and β, α ∨ β iff it contains at least one of them,
etc. (Proposition 112B). Then we define and investigate “saturated” sets of
sentences. A saturated set is one which contains conditionals that link each
quantified sentence to instances of it (Definition 113C). We show that any
consistent set Γ can always be extended to a saturated set Γ ′ (Lemma 113D).
If a set is consistent, saturated, and complete it also has the property that it
contains ∀xα(x) iff it contains α(t) for all closed terms t (Proposition 113E).
We’ll then take the saturated consistent set Γ ′ and show that it can be extended
to a saturated, consistent, and complete set Γ ∗ (Lemma 114A). This set Γ ∗ is
what we’ll use to define our term model A(Γ ∗). The term model has the set of
closed terms as its domain, and the interpretation of its predicate symbols is
given by the atomic sentences in Γ ∗ (Definition 115A). We’ll use the properties
of saturated, complete consistent sets to show that indeed |=A(Γ∗) α iff α ∈ Γ ∗

(Lemma 115D), and thus in particular, |=A(Γ∗) Γ . Finally, we’ll consider how
to define a term model if Γ contains = as well (Definition 116D) and show that
it satisfies Γ ∗ (Lemma 116G).

§11.2 Complete Consistent Sets of Sentences

Definition 112A (Complete set). A set Γ of sentences is complete iff
for any sentence α, either α ∈ Γ or ¬α ∈ Γ .

Complete sets of sentences leave no questions unanswered. For any sen-
tence α, Γ “says” if α is true or false. The importance of complete sets extends
beyond the proof of the completeness theorem. A theory which is complete and
axiomatizable, for instance, is always decidable.

Complete consistent sets are important in the completeness proof since we
can guarantee that every consistent set of sentences Γ is contained in a complete
consistent set Γ ∗. A complete consistent set contains, for each sentence α,
either α or its negation ¬α, but not both. This is true in particular for atomic
sentences, so from a complete consistent set in a language suitably expanded
by constant symbols, we can construct a structure where the interpretation of
predicate symbols is defined according to which atomic sentences are in Γ ∗.
This structure can then be shown to make all sentences in Γ ∗ (and hence also
all those in Γ ) true. The proof of this latter fact requires that ¬α ∈ Γ ∗ iff
α /∈ Γ ∗, (α ∨ β) ∈ Γ ∗ iff α ∈ Γ ∗ or β ∈ Γ ∗, etc.

In what follows, we will often tacitly use the properties of reflexivity, mono-
tonicity, and transitivity of ⊢ (see section 10.5).

Proposition 112B. Suppose Γ is complete and consistent. Then:

1. If Γ ⊢ α, then α ∈ Γ .

2. α→ β ∈ Γ iff either α /∈ Γ or β ∈ Γ .
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Proof. Let us suppose for all of the following that Γ is complete and consistent.

1. If Γ ⊢ α, then α ∈ Γ .

Suppose that Γ ⊢ α. Suppose to the contrary that α /∈ Γ . Since Γ
is complete, ¬α ∈ Γ . By Proposition 108C, Γ is inconsistent. This
contradicts the assumption that Γ is consistent. Hence, it cannot be the
case that α /∈ Γ , so α ∈ Γ .

2. For the forward direction, suppose α→β ∈ Γ , and suppose to the contrary
that α ∈ Γ and β /∈ Γ . On these assumptions, α→β ∈ Γ and α ∈ Γ . By
Proposition 109C, item (1), Γ ⊢ β. But then by (1), β ∈ Γ , contradicting
the assumption that β /∈ Γ .

For the reverse direction, first consider the case where α /∈ Γ . Since Γ is
complete, ¬α ∈ Γ . By Proposition 109C, item (2), Γ ⊢ α→ β. Again by
(1), we get that α→ β ∈ Γ , as required.

Now consider the case where β ∈ Γ . By Proposition 109C, item (2) again,
Γ ⊢ α→ β. By (1), α→ β ∈ Γ .

§11.3 Henkin Expansion

Part of the challenge in proving the completeness theorem is that the model
we construct from a complete consistent set Γ must make all the quantified
wffs in Γ true. In order to guarantee this, we use a trick due to Leon Henkin.
In essence, the trick consists in expanding the language by infinitely many
constant symbols and adding, for each wff with one free variable α(x) a formula
of the form ¬∀xα(x) → ¬α(c), where c is one of the new constant symbols.
When we construct the structure satisfying Γ , this will guarantee that each
false universal sentence has a counterexample among the new constants.

Proposition 113A. If Γ is consistent in L and L′ is obtained from L by
adding a denumerable set of new constant symbols d0, d1, . . . , then Γ is con-
sistent in L′.

Definition 113B (Saturated set). A set Γ of wffs of a language L is satu-
rated iff for each wff α(x) ∈ Frm(L) with one free variable x there is a constant
symbol c ∈ L such that ¬∀xα(x) →¬α(c) ∈ Γ .

The following definition will be used in the proof of the next theorem.

Definition 113C. Let L′ be as in Proposition 113A. Fix an enumeration
α0(x0), α1(x1), . . . of all wffs αi(xi) of L′ in which one variable (xi) occurs
free. We define the sentences δn by induction on n.

Let c0 be the first constant symbol among the di we added to L which does
not occur in α0(x0). Assuming that δ0, . . . , δn−1 have already been defined,
let cn be the first among the new constant symbols di that occurs neither in δ0,
. . . , δn−1 nor in αn(xn).

Now let δn be the wff ¬∀xn αn(xn) →¬αn(cn).
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Lemma 113D. Every consistent set Γ can be extended to a saturated con-
sistent set Γ ′.

Proof. Given a consistent set of sentences Γ in a language L, expand the lan-
guage by adding a denumerable set of new constant symbols to form L′. By
Proposition 113A, Γ is still consistent in the richer language. Further, let δi
be as in Definition 113C. Let

Γ0 = Γ

Γn+1 = Γn ∪ {δn}

i.e., Γn+1 = Γ ∪ {δ0, . . . , δn}, and let Γ ′ =
⋃

n Γn. Γ ′ is clearly saturated.
If Γ ′ were inconsistent, then for some n, Γn would be inconsistent (Exercise:

explain why). So to show that Γ ′ is consistent it suffices to show, by induction
on n, that each set Γn is consistent.

The induction basis is simply the claim that Γ0 = Γ is consistent, which is
the hypothesis of the theorem. For the induction step, suppose that Γn is con-
sistent but Γn+1 = Γn ∪ {δn} is inconsistent. Recall that δn is ¬∀xn αn(xn) →
¬αn(cn), where αn(xn) is a wff of L′ with only the variable xn free. By the
way we’ve chosen the cn (see Definition 113C), cn does not occur in αn(xn)
nor in Γn.

If Γn ∪{δn} is inconsistent, then Γn ⊢ ¬δn, and hence both of the following
hold:

Γn ⊢ ¬∀xn αn(xn) Γn ⊢ αn(cn)

Since cn does not occur in Γn or in αn(xn), Theorem 1010A applies. From
Γn ⊢ αn(cn), we obtain Γn ⊢ ∀xn αn(xn). Thus we have that both Γn ⊢
¬∀xn αn(xn) and Γn ⊢ ∀xn αn(xn), so Γn itself is inconsistent. Contradiction:
Γn was supposed to be consistent. Hence Γn ∪ {δn} is consistent.

We’ll now show that complete, consistent sets which are saturated have the
property that it contains a universally quantified sentence iff it contains all its
instancesit contains an existentially quantified sentence iff it contains at least
one instance. We’ll use this to show that the structure we’ll generate from a
complete, consistent, saturated set makes all its quantified sentences true.

Proposition 113E. Suppose Γ is complete, consistent, and saturated. ∀xα(x) ∈
Γ iff α(t) ∈ Γ for all closed terms t.

Proof. Suppose that α(t) ∈ Γ for all closed terms t. By way of contradiction,
assume ∀xα(x) /∈ Γ . Since Γ is complete, ¬∀xα(x) ∈ Γ . By saturation,
(¬∀xα(x)→¬α(c)) ∈ Γ for some constant symbol c. By assumption, since c is
a closed term, α(c) ∈ Γ . But this would make Γ inconsistent. (Exercise: give
the derivation that shows

¬∀xα(x),¬∀xα(x) →¬α(c), α(c)

is inconsistent.)
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For the reverse direction, we do not need saturation: Suppose ∀xα(x) ∈
Γ . Then Γ ⊢ α(t) by Proposition 1010B, item (2). We get α(t) ∈ Γ by
Proposition 112B.

§11.4 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of sentences is con-
tained in some set of sentences which is not just consistent, but also complete.
The proof works by adding one sentence at a time, guaranteeing at each step
that the set remains consistent. We do this so that for every α, either α or ¬α
gets added at some stage. The union of all stages in that construction then
contains either α or its negation ¬α and is thus complete. It is also consistent,
since we made sure at each stage not to introduce an inconsistency.

Lemma 114A (Lindenbaum’s Lemma). Every consistent set Γ in a lan-
guage L can be extended to a complete and consistent set Γ ∗.

Proof. Let Γ be consistent. Let α0, α1, . . . be an enumeration of all the
sentences of L. Define Γ0 = Γ , and

Γn+1 =

{
Γn ∪ {αn} if Γn ∪ {αn} is consistent;

Γn ∪ {¬αn} otherwise.

Let Γ ∗ =
⋃

n≥0 Γn.
Each Γn is consistent: Γ0 is consistent by definition. If Γn+1 = Γn ∪ {αn},

this is because the latter is consistent. If it isn’t, Γn+1 = Γn∪{¬αn}. We have
to verify that Γn ∪{¬αn} is consistent. Suppose it’s not. Then both Γn ∪{αn}
and Γn ∪ {¬αn} are inconsistent. This means that Γn would be inconsistent
by Proposition 108D, contrary to the induction hypothesis.

For every n and every i < n, Γi ⊆ Γn. This follows by a simple induction
on n. For n = 0, there are no i < 0, so the claim holds automatically. For
the inductive step, suppose it is true for n. We have Γn+1 = Γn ∪ {αn} or
= Γn ∪ {¬αn} by construction. So Γn ⊆ Γn+1. If i < n, then Γi ⊆ Γn by
inductive hypothesis, and so ⊆ Γn+1 by transitivity of ⊆.

From this it follows that every finite subset of Γ ∗ is a subset of Γn for
some n, since each β ∈ Γ ∗ not already in Γ0 is added at some stage i. If n is
the last one of these, then all β in the finite subset are in Γn. So, every finite
subset of Γ ∗ is consistent. By Proposition 105H, Γ ∗ is consistent.

Every sentence of Frm(L) appears on the list used to define Γ ∗. If αn /∈ Γ ∗,
then that is because Γn ∪ {αn} was inconsistent. But then ¬αn ∈ Γ ∗, so Γ ∗ is
complete.

§11.5 Construction of a Model

Right now we are not concerned about =, i.e., we only want to show that a
consistent set Γ of sentences not containing = is satisfiable. We first extend Γ

Release : 0552395 (2022-04-04) 121



11. The Completeness Theorem

to a consistent, complete, and saturated set Γ ∗. In this case, the definition of a
model A(Γ ∗) is simple: We take the set of closed terms of L′ as the domain. We
assign every constant symbol to itself, and make sure that more generally, for
every closed term t, tA(Γ∗) = t. The predicate symbols are assigned extensions
in such a way that an atomic sentence is true in A(Γ ∗) iff it is in Γ ∗. This will
obviously make all the atomic sentences in Γ ∗ true in A(Γ ∗). The rest are true
provided the Γ ∗ we start with is consistent, complete, and saturated.

Definition 115A (Term model). Let Γ ∗ be a complete and consistent,
saturated set of sentences in a language L. The term model A(Γ ∗) of Γ ∗ is
the structure defined as follows:

1. The domain |A(Γ ∗)| is the set of all closed terms of L.

2. The interpretation of a constant symbol c is c itself: cA(Γ∗) = c.

3. The function symbol f is assigned the function which, given as arguments
the closed terms t1, . . . , tn, has as value the closed term f(t1, . . . , tn):

fA(Γ∗)(t1, . . . , tn) = f(t1, . . . , tn)

4. If R is an n-place predicate symbol, then

⟨t1, . . . , tn⟩ ∈ RA(Γ∗) iff Rt1 . . . tn ∈ Γ ∗.

We will now check that we indeed have tA(Γ∗) = t.

Lemma 115B. Let A(Γ ∗) be the term model of Definition 115A, then tA(Γ∗) =
t.

Proof. The proof is by induction on t, where the base case, when t is a con-
stant symbol, follows directly from the definition of the term model. For the
induction step assume t1, . . . , tn are closed terms such that ti

A(Γ∗) = ti and
that f is an n-ary function symbol. Then

f(t1, . . . , tn)
A(Γ∗)

= fA(Γ∗)(t1
A(Γ∗), . . . , tn

A(Γ∗))

= fA(Γ∗)(t1, . . . , tn)

= f(t1, . . . , tn),

and so by induction this holds for every closed term t.

A structure A may make all instances α(t) of a universally quantified sen-
tence ∀xα(x) true, without making ∀xα(x) true. This is because in general
not every element of |A| is the value of a closed term (A may not be covered).
This is the reason the satisfaction relation is defined via variable assignments.
However, for our term model A(Γ ∗) this wouldn’t be necessary—because it is
covered. This is the content of the next result.
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Proposition 115C. Let A(Γ ∗) be the term model of Definition 115A. |=A(Γ∗)

∀xα(x) iff |=A(Γ∗) α(t) for all terms t.

Proof. By Proposition 74F, |=A(Γ∗) ∀xα(x) iff for every variable assignment s,
|=A(Γ∗) α(x) [s]. Recall that |A(Γ ∗)| consists of the closed terms of L, so for
every closed term t, s(x) = t is such a variable assignment, and for any variable
assignment, s(x) is some closed term t. By Proposition 75D, |=A(Γ∗) α(x) [s]
iff |=A(Γ∗) α(t) [s], where s(x) = t. By Proposition 74E, |=A(Γ∗) α(t) [s] iff
|=A(Γ∗) α(t), since α(t) is a sentence.

Lemma 115D (Truth Lemma). Suppose α does not contain =. Then
|=A(Γ∗) α iff α ∈ Γ ∗.

Proof. We prove both directions simultaneously, and by induction on α.

1. α ≡ R(t1, . . . , tn): |=A(Γ∗) Rt1 . . . tn iff ⟨t1, . . . , tn⟩ ∈ RA(Γ∗) (by the
definition of satisfaction) iff R(t1, . . . , tn) ∈ Γ ∗ (by the construction of
A(Γ ∗)).

2. α ≡ ¬β: |=A(Γ∗) α iff ̸|=A(Γ∗) β (by definition of satisfaction). By
induction hypothesis, ̸|=A(Γ∗) β iff β /∈ Γ ∗. Since Γ ∗ is consistent and
complete, β /∈ Γ ∗ iff ¬β ∈ Γ ∗.

3. α ≡ β → γ: |=A(Γ∗) α iff ̸|=A(Γ∗) β or |=A(Γ∗) γ (by definition of
satisfaction) iff β /∈ Γ ∗ or γ ∈ Γ ∗ (by induction hypothesis). This is the
case iff (β → γ) ∈ Γ ∗ (by Proposition 112B(2)).

4. α ≡ ∀xβ(x): |=A(Γ∗) α iff |=A(Γ∗) β(t) for all terms t (Proposi-
tion 115C). By induction hypothesis, this is the case iff β(t) ∈ Γ ∗ for
all terms t, by Proposition 113E, this in turn is the case iff ∀xα(x) ∈ Γ ∗.

§11.6 Identity

The construction of the term model given in the preceding section is enough
to establish completeness for first-order logic for sets Γ that do not contain =.
The term model satisfies every α ∈ Γ ∗ which does not contain = (and hence
all α ∈ Γ ). It does not work, however, if = is present. The reason is that Γ ∗

then may contain a sentence t = t′, but in the term model the value of any
term is that term itself. Hence, if t and t′ are different terms, their values in
the term model—i.e., t and t′, respectively—are different, and so t = t′ is false.
We can fix this, however, using a construction known as “factoring.”

Definition 116A. Let Γ ∗ be a consistent and complete set of sentences in L.
We define the relation ≈ on the set of closed terms of L by

t ≈ t′ iff t = t′ ∈ Γ ∗
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Proposition 116B. The relation ≈ has the following properties:

1. ≈ is reflexive.

2. ≈ is symmetric.

3. ≈ is transitive.

4. If t ≈ t′, f is a function symbol, and t1, . . . , ti−1, ti+1, . . . , tn are terms,
then

ft1 . . . ti−1tti+1 . . . tn ≈ ft1 . . . ti−1t
′ti+1 . . . tn.

5. If t ≈ t′, R is a predicate symbol, and t1, . . . , ti−1, ti+1, . . . , tn are
terms, then

Rt1 . . . ti−1tti+1 . . . tn ∈ Γ ∗ iff

Rt1 . . . ti−1t
′ti+1 . . . tn ∈ Γ ∗.

Proof. Since Γ ∗ is consistent and complete, t = t′ ∈ Γ ∗ iff Γ ∗ ⊢ t = t′. Thus it
is enough to show the following:

1. Γ ∗ ⊢ t = t for all terms t.

2. If Γ ∗ ⊢ t = t′ then Γ ∗ ⊢ t′ = t.

3. If Γ ∗ ⊢ t = t′ and Γ ∗ ⊢ t′ = t′′, then Γ ∗ ⊢ t = t′′.

4. If Γ ∗ ⊢ t = t′, then

Γ ∗ ⊢ ft1 . . . ti−1tti+1 . . . tn = ft1 . . . ti−1t
′ti+1 . . . tn

for every n-place function symbol f and terms t1, . . . , ti−1, ti+1, . . . , tn.

5. If Γ ∗ ⊢ t = t′ and Γ ∗ ⊢ Rt1 . . . ti−1tti+1 . . . tn, then Γ ∗ ⊢ Rt1 . . . ti−1t
′ti+1 . . . tn

for every n-place predicate symbol R and terms t1, . . . , ti−1, ti+1, . . . , tn.

Definition 116C. Suppose Γ ∗ is a consistent and complete set in a lan-
guage L, t is a term, and ≈ as in the previous definition. Then:

[t]≈ = {t′ : t′ ∈ Trm(L), t ≈ t′}

and Trm(L)/≈ = {[t]≈ : t ∈ Trm(L)}.

Definition 116D. Let A = A(Γ ∗) be the term model for Γ ∗. Then A/≈ is
the following structure:

1. |A/≈| = Trm(L)/≈.

2. cA/≈ = [c]≈
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3. fA/≈([t1]≈, . . . , [tn]≈) = [ft1 . . . tn]≈

4. ⟨[t1]≈, . . . , [tn]≈⟩ ∈ RA/≈ iff |=A Rt1 . . . tn.

Note that we have defined fA/≈ and RA/≈ for elements of Trm(L)/≈ by
referring to them as [t]≈, i.e., via representatives t ∈ [t]≈. We have to make
sure that these definitions do not depend on the choice of these representatives,
i.e., that for some other choices t′ which determine the same equivalence classes
([t]≈ = [t′]≈), the definitions yield the same result. For instance, if R is a one-
place predicate symbol, the last clause of the definition says that [t]≈ ∈ RA/≈

iff |=A Rt. If for some other term t′ with t ≈ t′, ̸|=A Rt, then the definition
would require [t′]≈ /∈ RA/≈ . If t ≈ t′, then [t]≈ = [t′]≈, but we can’t have both
[t]≈ ∈ RA/≈ and [t]≈ /∈ RA/≈ . However, Proposition 116B guarantees that this
cannot happen.

Proposition 116E. A/≈ is well defined, i.e., if t1, . . . , tn, t
′
1, . . . , t

′
n are

terms, and ti ≈ t′i then

1. [ft1 . . . tn]≈ = [ft′1 . . . t
′
n]≈, i.e.,

ft1 . . . tn ≈ ft′1 . . . t
′
n

and

2. |=A Rt1 . . . tn iff |=A Rt′1 . . . t
′
n, i.e.,

Rt1 . . . tn ∈ Γ ∗ iff Rt′1 . . . t
′
n ∈ Γ ∗.

Proof. Follows from Proposition 116B by induction on n.

As in the case of the term model, before proving the truth lemma we need
the following lemma.

Lemma 116F. Let A = A(Γ ∗), then tA/≈ = [t]≈.

Proof. The proof is similar to that of Lemma 115B.

Lemma 116G. |=A/≈ α iff α ∈ Γ ∗ for all sentences α.

Proof. By induction on α, just as in the proof of Lemma 115D. The only case
that needs additional attention is when α ≡ t = t′.

|=A/≈ t = t′ iff [t]≈ = [t′]≈ (by definition of A/≈)

iff t ≈ t′ (by definition of [t]≈)

iff t = t′ ∈ Γ ∗ (by definition of ≈).

Note that while A(Γ ∗) is always enumerable and infinite, A/≈ may be finite,
since it may turn out that there are only finitely many classes [t]≈. This is to be
expected, since Γ may contain sentences which require any structure in which
they are true to be finite. For instance, ∀x ∀y x = y is a consistent sentence, but
is satisfied only in structures with a domain that contains exactly one element.
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§11.7 The Completeness Theorem

Let’s combine our results: we arrive at the completeness theorem.

Theorem 117A (Completeness Theorem). Let Γ be a set of sentences.
If Γ is consistent, it is satisfiable.

Proof. Suppose Γ is consistent. By Lemma 113D, there is a saturated con-
sistent set Γ ′ ⊇ Γ . By Lemma 114A, there is a Γ ∗ ⊇ Γ ′ which is consistent
and complete. Since Γ ′ ⊆ Γ ∗, for each wff α(x), Γ ∗ contains a sentence of
the form ¬∀xα(x) →¬α(c) and so Γ ∗ is saturated. If Γ does not contain =,
then by Lemma 115D, |=A(Γ∗) α iff α ∈ Γ ∗. From this it follows in particular
that for all α ∈ Γ , |=A(Γ∗) α, so Γ is satisfiable. If Γ does contain =, then by
Lemma 116G, for all sentences α, |=A/≈ α iff α ∈ Γ ∗. In particular, |=A/≈ α
for all α ∈ Γ , so Γ is satisfiable.

Corollary 117B (Completeness Theorem, Second Version). For all
Γ and sentences α: if Γ ⊨ α then Γ ⊢ α.

Proof. Note that the Γ ’s in corollary 117B and Theorem 117A are univer-
sally quantified. To make sure we do not confuse ourselves, let us restate
Theorem 117A using a different variable: for any set of sentences ∆, if ∆ is
consistent, it is satisfiable. By contraposition, if ∆ is not satisfiable, then ∆ is
inconsistent. We will use this to prove the corollary.

Suppose that Γ ⊨ α. Then Γ ∪ {¬α} is unsatisfiable by Proposition 76E.
Taking Γ ∪{¬α} as our ∆, the previous version of Theorem 117A gives us that
Γ ∪ {¬α} is inconsistent. By Proposition 108B, Γ ⊢ α.

§11.8 The Compactness Theorem

One important consequence of the completeness theorem is the compactness
theorem. The compactness theorem states that if each finite subset of a set
of sentences is satisfiable, the entire set is satisfiable—even if the set itself is
infinite. This is far from obvious. There is nothing that seems to rule out,
at first glance at least, the possibility of there being infinite sets of sentences
which are contradictory, but the contradiction only arises, so to speak, from
the infinite number. The compactness theorem says that such a scenario can
be ruled out: there are no unsatisfiable infinite sets of sentences each finite
subset of which is satisfiable. Like the completeness theorem, it has a version
related to entailment: if an infinite set of sentences entails something, already
a finite subset does.

Definition 118A. A set Γ of wffs is finitely satisfiable iff every finite Γ0 ⊆ Γ
is satisfiable.

Theorem 118B (Compactness Theorem). The following hold for any
sentences Γ and α:
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1. Γ ⊨ α iff there is a finite Γ0 ⊆ Γ such that Γ0 ⊨ α.

2. Γ is satisfiable iff it is finitely satisfiable.

Proof. We prove (2). If Γ is satisfiable, then there is a structure A such that
|=A α for all α ∈ Γ . Of course, this A also satisfies every finite subset of Γ , so
Γ is finitely satisfiable.

Now suppose that Γ is finitely satisfiable. Then every finite subset Γ0 ⊆ Γ
is satisfiable. By soundness (corollary 1011D), every finite subset is consis-
tent. Then Γ itself must be consistent by Proposition 105H. By completeness
(Theorem 117A), since Γ is consistent, it is satisfiable.

Example 11.8.3. In every model A of a theory Γ , each term t of course picks
out an element of |A|. Can we guarantee that it is also true that every element
of |A| is picked out by some term or other? In other words, are there theories Γ
all models of which are covered? The compactness theorem shows that this is
not the case if Γ has infinite models. Here’s how to see this: Let A be an
infinite model of Γ , and let c be a constant symbol not in the language of Γ .
Let ∆ be the set of all sentences c ̸= t for t a term in the language L of Γ , i.e.,

∆ = {c ̸= t : t ∈ Trm(L)}.

A finite subset of Γ ∪∆ can be written as Γ ′ ∪∆′, with Γ ′ ⊆ Γ and ∆′ ⊆ ∆.
Since ∆′ is finite, it can contain only finitely many terms. Let a ∈ |A| be
an element of |A| not picked out by any of them, and let A′ be the structure
that is just like A, but also cA

′
= a. Since a ̸= tA for all t occuring in ∆′,

|=A′ ∆′. Since |=A Γ , Γ ′ ⊆ Γ , and c does not occur in Γ , also |=A′ Γ ′.
Together, |=A′ Γ ′ ∪∆′ for every finite subset Γ ′ ∪∆′ of Γ ∪∆. So every finite
subset of Γ ∪∆ is satisfiable. By compactness, Γ ∪∆ itself is satisfiable. So
there are models |=A Γ ∪∆. Every such A is a model of Γ , but is not covered,
since cA ̸= tA for all terms t of L.

Example 11.8.4. Consider a language L containing the predicate symbol <,
constant symbols 0, 1, and function symbols +, ×, −, ÷. Let Γ be the set
of all sentences in this language true in Q with domain Q and the obvious
interpretations. Γ is the set of all sentences of L true about the rational
numbers. Of course, in Q (and even in R), there are no numbers which are
greater than 0 but less than 1/k for all k ∈ Z+. Such a number, if it existed,
would be an infinitesimal: non-zero, but infinitely small. The compactness
theorem shows that there are models of Γ in which infinitesimals exist: Let ∆
be {0 < c}∪{c < (1÷k) : k ∈ Z+} (where k = (1 + (1 + · · ·+ (1 + 1) . . . )) with
k 1’s). For any finite subset ∆0 of ∆ there is a K such that all the sentences
c < (1 ÷ k) in ∆0 have k < K. If we expand Q to Q′ with cQ

′
= 1/K we have

that |=Q′ Γ ∪∆0, and so Γ ∪∆ is finitely satisfiable (Exercise: prove this in
detail). By compactness, Γ ∪∆ is satisfiable. Any model C of Γ ∪∆ contains
an infinitesimal, namely cC.
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Example 11.8.5. We know that first-order logic with equality symbol can ex-
press that the size of the domain must have some minimal size: The sen-
tence α≥n (which says “there are at least n distinct objects”) is true only in
structures where |A| has at least n objects. So if we take

∆ = {α≥n : n ≥ 1}

then any model of ∆ must be infinite. Thus, we can guarantee that a theory
only has infinite models by adding ∆ to it: the models of Γ ∪ ∆ are all and
only the infinite models of Γ .

So first-order logic can express infinitude. The compactness theorem shows
that it cannot express finitude, however. For suppose some set of sentences Λ
were satisfied in all and only finite structures. Then ∆∪Λ is finitely satisfiable.
Why? Suppose ∆′∪Λ′ ⊆ ∆∪Λ is finite with ∆′ ⊆ ∆ and Λ′ ⊆ Λ. Let n be the
largest number such that α≥n ∈ ∆′. Λ, being satisfied in all finite structures,
has a model A with finitely many but ≥ n elements. But then |=A ∆′ ∪Λ′. By
compactness, ∆ ∪ Λ has an infinite model, contradicting the assumption that
Λ is satisfied only in finite structures.

§11.9 A Direct Proof of the Compactness Theorem

We can prove the Compactness Theorem directly, without appealing to the
Completeness Theorem, using the same ideas as in the proof of the complete-
ness theorem. In the proof of the Completeness Theorem we started with
a consistent set Γ of sentences, expanded it to a consistent, saturated, and
complete set Γ ∗ of sentences, and then showed that in the term model A(Γ ∗)
constructed from Γ ∗, all sentences of Γ are true, so Γ is satisfiable.

We can use the same method to show that a finitely satisfiable set of sen-
tences is satisfiable. We just have to prove the corresponding versions of the
results leading to the truth lemma where we replace “consistent” with “finitely
satisfiable.”

Proposition 119A. Suppose Γ is complete and finitely satisfiable. Then:

1. (α→ β) ∈ Γ iff either α /∈ Γ or β ∈ Γ .

Lemma 119B. Every finitely satisfiable set Γ can be extended to a saturated
finitely satisfiable set Γ ′.

Proposition 119C. Suppose Γ is complete, finitely satisfiable, and satu-
rated. ∀xα(x) ∈ Γ iff α(t) ∈ Γ for all closed terms t.

Lemma 119D. Every finitely satisfiable set Γ can be extended to a complete
and finitely satisfiable set Γ ∗.

Theorem 119E (Compactness). Γ is satisfiable if and only if it is finitely
satisfiable.
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Proof. If Γ is satisfiable, then there is a structure A such that |=A α for all
α ∈ Γ . Of course, this A also satisfies every finite subset of Γ , so Γ is finitely
satisfiable.

Now suppose that Γ is finitely satisfiable. By Lemma 119B, there is a
finitely satisfiable, saturated set Γ ′ ⊇ Γ . By Lemma 119D, Γ ′ can be ex-
tended to a complete and finitely satisfiable set Γ ∗, and Γ ∗ is still saturated.
Construct the term model A(Γ ∗) as in Definition 115A. Note that Proposi-
tion 115C did not rely on the fact that Γ ∗ is consistent (or complete or satu-
rated, for that matter), but just on the fact that A(Γ ∗) is covered. The proof
of the Truth Lemma (Lemma 115D) goes through if we replace references to
Proposition 112B and Proposition 113E by references to Proposition 119A and
Proposition 119C

§11.10 The Löwenheim-Skolem Theorem

The Löwenheim-Skolem Theorem says that if a theory has an infinite model,
then it also has a model that is at most denumerable. An immediate con-
sequence of this fact is that first-order logic cannot express that the size of
a structure is non-enumerable: any sentence or set of sentences satisfied in all
non-enumerable structures is also satisfied in some enumerable structure.

Theorem 1110A. If Γ is consistent then it has an enumerable model, i.e.,
it is satisfiable in a structure whose domain is either finite or denumerable.

Proof. If Γ is consistent, the structure A delivered by the proof of the com-
pleteness theorem has a domain |A| that is no larger than the set of the terms
of the language L. So A is at most denumerable.

Theorem 1110B. If Γ is a consistent set of sentences in the language of
first-order logic without identity, then it has a denumerable model, i.e., it is
satisfiable in a structure whose domain is infinite and enumerable.

Proof. If Γ is consistent and contains no sentences in which identity appears,
then the structure A delivered by the proof of the completness theorem has a
domain |A| identical to the set of terms of the language L′. So A is denumerable,
since Trm(L′) is.

Example 11.10.3 (Skolem’s Paradox). Zermelo-Fraenkel set theory ZFC is a
very powerful framework in which practically all mathematical statements can
be expressed, including facts about the sizes of sets. So for instance, ZFC can
prove that the set R of real numbers is non-enumerable, it can prove Cantor’s
Theorem that the power set of any set is larger than the set itself, etc. If
ZFC is consistent, its models are all infinite, and moreover, they all contain
elements about which the theory says that they are non-enumerable, such as
the element that makes true the theorem of ZFC that the power set of the
natural numbers exists. By the Löwenheim-Skolem Theorem, ZFC also has
enumerable models—models that contain “non-enumerable” sets but which
themselves are enumerable.
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Problems

Problem 1. Complete the proof of Proposition 112B.

Problem 2. Complete the proof of Proposition 116B.

Problem 3. Complete the proof of Lemma 116F.

Problem 4. Use corollary 117B to prove Theorem 117A, thus showing that
the two formulations of the completeness theorem are equivalent.

Problem 5. In order for a derivation system to be complete, its rules must be
strong enough to prove every unsatisfiable set inconsistent. Which of the rules
of derivation were necessary to prove completeness? Are any of these rules not
used anywhere in the proof? In order to answer these questions, make a list or
diagram that shows which of the rules of derivation were used in which results
that lead up to the proof of Theorem 117A. Be sure to note any tacit uses of
rules in these proofs.

Problem 6. Prove (1) of Theorem 118B.

Problem 7. In the standard model of arithmetic B, there is no element k ∈
|B| which satisfies every formula n < x (where n is 0′...′ with n ′’s). Use
the compactness theorem to show that the set of sentences in the language of
arithmetic which are true in the standard model of arithmetic B are also true
in a structure B′ that contains an element which does satisfy every formula
n < x.

Problem 8. Prove Proposition 119A. Avoid the use of ⊢.

Problem 9. Prove Lemma 119B. (Hint: The crucial step is to show that if
Γn is finitely satisfiable, so is Γn ∪ {δn}, without any appeal to derivations or
consistency.)

Problem 10. Prove Proposition 119C.

Problem 11. Prove Lemma 119D. (Hint: the crucial step is to show that if Γn

is finitely satisfiable, then either Γn∪{αn} or Γn∪{¬αn} is finitely satisfiable.)

Problem 12. Write out the complete proof of the Truth Lemma (Lemma 115D)
in the version required for the proof of Theorem 119E.
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Chapter 12

Beyond First-order Logic

§12.0 Overview

First-order logic is not the only system of logic of interest: there are many
extensions and variations of first-order logic. A logic typically consists of the
formal specification of a language, usually, but not always, a deductive system,
and usually, but not always, an intended semantics. But the technical use of
the term raises an obvious question: what do logics that are not first-order
logic have to do with the word “logic,” used in the intuitive or philosophical
sense? All of the systems described below are designed to model reasoning of
some form or another; can we say what makes them logical?

No easy answers are forthcoming. The word “logic” is used in different
ways and in different contexts, and the notion, like that of “truth,” has been
analyzed from numerous philosophical stances. For example, one might take
the goal of logical reasoning to be the determination of which statements are
necessarily true, true a priori, true independent of the interpretation of the
nonlogical terms, true by virtue of their form, or true by linguistic convention;
and each of these conceptions requires a good deal of clarification. Even if
one restricts one’s attention to the kind of logic used in mathematics, there is
little agreement as to its scope. For example, in the Principia Mathematica,
Russell and Whitehead tried to develop mathematics on the basis of logic,
in the logicist tradition begun by Frege. Their system of logic was a form
of higher-type logic similar to the one described below. In the end they were
forced to introduce axioms which, by most standards, do not seem purely logical
(notably, the axiom of infinity, and the axiom of reducibility), but one might
nonetheless hold that some forms of higher-order reasoning should be accepted
as logical. In contrast, Quine, whose ontology does not admit “propositions”
as legitimate objects of discourse, argues that second-order and higher-order
logic are really manifestations of set theory in sheep’s clothing; in other words,
systems involving quantification over predicates are not purely logical.

For now, it is best to leave such philosophical issues for a rainy day, and
simply think of the systems below as formal idealizations of various kinds of
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reasoning, logical or otherwise.

§12.1 Many-Sorted Logic

In first-order logic, variables and quantifiers range over a single domain. But
it is often useful to have multiple (disjoint) domains: for example, you might
want to have a domain of numbers, a domain of geometric objects, a domain
of functions from numbers to numbers, a domain of abelian groups, and so on.

Many-sorted logic provides this kind of framework. One starts with a list
of “sorts”—the “sort” of an object indicates the “domain” it is supposed to
inhabit. One then has variables and quantifiers for each sort, and (usually) an
equality symbol for each sort. Functions and relations are also “typed” by the
sorts of objects they can take as arguments. Otherwise, one keeps the usual
rules of first-order logic, with versions of the quantifier-rules repeated for each
sort.

For example, to study international relations we might choose a language
with two sorts of objects, French citizens and German citizens. We might have
a unary relation, “drinks wine,” for objects of the first sort; another unary
relation, “eats wurst,” for objects of the second sort; and a binary relation,
“forms a multinational married couple,” which takes two arguments, where
the first argument is of the first sort and the second argument is of the second
sort. If we use variables a, b, c to range over French citizens and x, y, z to
range over German citizens, then

∀a ∀x[(MarriedToax→ (DrinksWinea ∨ ¬EatsWurstx)]]

asserts that if any French person is married to a German, either the French
person drinks wine or the German doesn’t eat wurst.

Many-sorted logic can be embedded in first-order logic in a natural way,
by lumping all the objects of the many-sorted domains together into one first-
order domain, using unary predicate symbols to keep track of the sorts, and
relativizing quantifiers. For example, the first-order language corresponding
to the example above would have unary predicate symbols “German” and
“French,” in addition to the other relations described, with the sort require-
ments erased. A sorted quantifier ∀xα, where x is a variable of the German
sort, translates to

∀x (Germanx→ α).

We need to add axioms that insure that the sorts are separate—e.g., ∀x¬(Germanx∧
Frenchx)—as well as axioms that guarantee that “drinks wine” only holds of
objects satisfying the predicate Frenchx, etc. With these conventions and
axioms, it is not difficult to show that many-sorted sentences translate to first-
order sentences, and many-sorted derivations translate to first-order deriva-
tions. Also, many-sorted structures “translate” to corresponding first-order
structures and vice-versa, so we also have a completeness theorem for many-
sorted logic.
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§12.2 Second-Order logic

The language of second-order logic allows one to quantify not just over a domain
of individuals, but over relations on that domain as well. Given a first-order
language L, for each k one adds variables R which range over k-ary relations,
and allows quantification over those variables. If R is a variable for a k-ary
relation, and t1, . . . , tk are ordinary (first-order) terms, Rt1 . . . tk is an atomic
wff. Otherwise, the set of wffs is defined just as in the case of first-order logic,
with additional clauses for second-order quantification. Note that we only have
the equality symbol for first-order terms: if R and S are relation variables of
the same arity k, we can define R = S to be an abbreviation for

∀x1 . . . ∀xk (Rx1 . . . xk ↔ Sx1 . . . xk).

The rules for second-order logic simply extend the quantifier rules to the
new second order variables. Here, however, one has to be a little bit careful
to explain how these variables interact with the predicate symbols of L, and
with wffs of L more generally. At the bare minimum, relation variables count
as terms, so one has inferences of the form

α(R) ⊢ ∃Rα(R)

But if L is the language of arithmetic with a constant relation symbol <, one
would also expect the following inference to be valid:

x < y ⊢ ∃RRxy

or for a given wff α,

α(x1, . . . , xk) ⊢ ∃RRx1 . . . xk

More generally, we might want to allow inferences of the form

α[λx⃗. β(x⃗)/R] ⊢ ∃Rα

where α[λx⃗. β(x⃗)/R] denotes the result of replacing every atomic wff of the
form Rt1, . . . , tk in α by β(t1, . . . , tk). This last rule is equivalent to having a
comprehension schema, i.e., an axiom of the form

∃R ∀x1, . . . , xk (α(x1, . . . , xk) ↔Rx1 . . . xk),

one for each wff α in the second-order language, in which R is not a free
variable. (Exercise: show that if R is allowed to occur in α, this schema is
inconsistent!)

When logicians refer to the “axioms of second-order logic” they usually
mean the minimal extension of first-order logic by second-order quantifier rules
together with the comprehension schema. But it is often interesting to study
weaker subsystems of these axioms and rules. For example, note that in its
full generality the axiom schema of comprehension is impredicative: it allows
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one to assert the existence of a relation Rx1 . . . xk that is “defined” by a wff
with second-order quantifiers; and these quantifiers range over the set of all
such relations—a set which includes R itself! Around the turn of the twentieth
century, a common reaction to Russell’s paradox was to lay the blame on such
definitions, and to avoid them in developing the foundations of mathematics.
If one prohibits the use of second-order quantifiers in the wff α, one has a
predicative form of comprehension, which is somewhat weaker.

From the semantic point of view, one can think of a second-order struc-
ture as consisting of a first-order structure for the language, coupled with a
set of relations on the domain over which the second-order quantifiers range
(more precisely, for each k there is a set of relations of arity k). Of course, if
comprehension is included in the derivation system, then we have the added
requirement that there are enough relations in the “second-order part” to sat-
isfy the comprehension axioms—otherwise the derivation system is not sound!
One easy way to insure that there are enough relations around is to take the
second-order part to consist of all the relations on the first-order part. Such
a structure is called full, and, in a sense, is really the “intended structure”
for the language. If we restrict our attention to full structures we have what
is known as the full second-order semantics. In that case, specifying a struc-
ture boils down to specifying the first-order part, since the contents of the
second-order part follow from that implicitly.

To summarize, there is some ambiguity when talking about second-order
logic. In terms of the derivation system, one might have in mind either

1. A “minimal” second-order derivation system, together with some com-
prehension axioms.

2. The “standard” second-order derivation system, with full comprehension.

In terms of the semantics, one might be interested in either

1. The “weak” semantics, where a structure consists of a first-order part,
together with a second-order part big enough to satisfy the comprehension
axioms.

2. The “standard” second-order semantics, in which one considers full struc-
tures only.

When logicians do not specify the derivation system or the semantics they
have in mind, they are usually refering to the second item on each list. The
advantage to using this semantics is that, as we will see, it gives us categorical
descriptions of many natural mathematical structures; at the same time, the
derivation system is quite strong, and sound for this semantics. The drawback
is that the derivation system is not complete for the semantics; in fact, no
effectively given derivation system is complete for the full second-order seman-
tics. On the other hand, we will see that the derivation system is complete for
the weakened semantics; this implies that if a sentence is not provable, then
there is some structure, not necessarily the full one, in which it is false.
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The language of second-order logic is quite rich. One can identify unary
relations with subsets of the domain, and so in particular you can quantify over
these sets; for example, one can express induction for the natural numbers with
a single axiom

∀R ((R0 ∧ ∀x (Rx→Rx′)) →∀xRx).

If one takes the language of arithmetic to have symbols 0, ′,+,× and <, one
can add the following axioms to describe their behavior:

1. ∀x¬x′ = 0

2. ∀x ∀y (s(x) = s(y) → x = y)

3. ∀x (x + 0) = x

4. ∀x∀y (x + y′) = (x + y)′

5. ∀x (x× 0) = 0

6. ∀x∀y (x× y′) = ((x× y) + x)

7. ∀x∀y (x < y ↔∃z y = (x + z′))

It is not difficult to show that these axioms, together with the axiom of induc-
tion above, provide a categorical description of the structure B, the standard
model of arithmetic, provided we are using the full second-order semantics.
Given any structure A in which these axioms are true, define a function f from
N to the domain of A using ordinary recursion on N, so that f(0) = 0A and
f(x + 1) = ′A(f(x)). Using ordinary induction on N and the fact that axioms
(1) and (2) hold in A, we see that f is injective. To see that f is surjective,
let P be the set of elements of |A| that are in the range of f . Since A is full, P is
in the second-order domain. By the construction of f , we know that 0A is in P ,
and that P is closed under ′A. The fact that the induction axiom holds in A (in
particular, for P ) guarantees that P is equal to the entire first-order domain
of A. This shows that f is a bijection. Showing that f is a homomorphism is
no more difficult, using ordinary induction on N repeatedly.

In set-theoretic terms, a function is just a special kind of relation; for ex-
ample, a unary function f can be identified with a binary relation R satisfying
∀x∃!y R(x, y). As a result, one can quantify over functions too. Using the full
semantics, one can then define the class of infinite structures to be the class of
structures A for which there is an injective function from the domain of A to
a proper subset of itself:

∃f (∀x ∀y (f(x) = f(y) → x = y) ∧ ∃y ∀x f(x) ̸= y).

The negation of this sentence then defines the class of finite structures.
In addition, one can define the class of well-orderings, by adding the follow-

ing to the definition of a linear ordering:

∀P (∃xPx→∃x (Px ∧ ∀y (y < x→¬Py))).
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This asserts that every non-empty set has a least element, modulo the identifi-
cation of “set” with “one-place relation”. For another example, one can express
the notion of connectedness for graphs, by saying that there is no nontrivial
separation of the vertices into disconnected parts:

¬∃A (∃xA(x) ∧ ∃y ¬A(y) ∧ ∀w ∀z ((Aw ∧ ¬Az) →¬Rwz)).

For yet another example, you might try as an exercise to define the class of
finite structures whose domain has even size. More strikingly, one can pro-
vide a categorical description of the real numbers as a complete ordered field
containing the rationals.

In short, second-order logic is much more expressive than first-order logic.
That’s the good news; now for the bad. We have already mentioned that
there is no effective derivation system that is complete for the full second-order
semantics. For better or for worse, many of the properties of first-order logic
are absent, including compactness and the Löwenheim-Skolem theorems.

On the other hand, if one is willing to give up the full second-order semantics
in terms of the weaker one, then the minimal second-order derivation system
is complete for this semantics. In other words, if we read ⊢ as “proves in
the minimal system” and ⊨ as “logically implies in the weaker semantics”,
we can show that whenever Γ ⊨ α then Γ ⊢ α. If one wants to include
specific comprehension axioms in the derivation system, one has to restrict the
semantics to second-order structures that satisfy these axioms: for example, if
∆ consists of a set of comprehension axioms (possibly all of them), we have
that if Γ ∪ ∆ ⊨ α, then Γ ∪ ∆ ⊢ α. In particular, if α is not provable using
the comprehension axioms we are considering, then there is a model of ¬α in
which these comprehension axioms nonetheless hold.

The easiest way to see that the completeness theorem holds for the weaker
semantics is to think of second-order logic as a many-sorted logic, as follows.
One sort is interpreted as the ordinary “first-order” domain, and then for each
k we have a domain of “relations of arity k.” We take the language to have
built-in relation symbols “truekRx1 . . . xk” which is meant to assert that R
holds of x1, . . . , xk, where R is a variable of the sort “k-ary relation” and x1,
. . . , xk are objects of the first-order sort.

With this identification, the weak second-order semantics is essentially the
usual semantics for many-sorted logic; and we have already observed that
many-sorted logic can be embedded in first-order logic. Modulo the trans-
lations back and forth, then, the weaker conception of second-order logic is
really a form of first-order logic in disguise, where the domain contains both
“objects” and “relations” governed by the appropriate axioms.

§12.3 Higher-Order logic

Passing from first-order logic to second-order logic enabled us to talk about
sets of objects in the first-order domain, within the formal language. Why stop
there? For example, third-order logic should enable us to deal with sets of sets
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of objects, or perhaps even sets which contain both objects and sets of objects.
And fourth-order logic will let us talk about sets of objects of that kind. As
you may have guessed, one can iterate this idea arbitrarily.

In practice, higher-order logic is often wffted in terms of functions instead
of relations. (Modulo the natural identifications, this difference is inessential.)
Given some basic “sorts” A, B, C, . . . (which we will now call “types”), we can
create new ones by stipulating

If σ and τ are finite types then so is σ → τ .

Think of types as syntactic “labels,” which classify the objects we want in our
domain; σ → τ describes those objects that are functions which take objects
of type σ to objects of type τ . For example, we might want to have a type
Ω of truth values, “true” and “false,” and a type N of natural numbers. In
that case, you can think of objects of type N → Ω as unary relations, or
subsets of N; objects of type N → N are functions from natural numers to
natural numbers; and objects of type (N → N) → N are “functionals,” that is,
higher-type functions that take functions to numbers.

As in the case of second-order logic, one can think of higher-order logic as a
kind of many-sorted logic, where there is a sort for each type of object we want
to consider. But it is usually clearer just to define the syntax of higher-type
logic from the ground up. For example, we can define a set of finite types
inductively, as follows:

1. N is a finite type.

2. If σ and τ are finite types, then so is σ → τ .

3. If σ and τ are finite types, so is σ × τ .

Intuitively, N denotes the type of the natural numbers, σ → τ denotes the
type of functions from σ to τ , and σ × τ denotes the type of pairs of objects,
one from σ and one from τ . We can then define a set of terms inductively, as
follows:

1. For each type σ, there is a stock of variables x, y, z, . . . of type σ

2. 0 is a term of type N

3. S (successor) is a term of type N → N

4. If s is a term of type σ, and t is a term of type N → (σ → σ), then Rst

is a term of type N → σ

5. If s is a term of type τ → σ and t is a term of type τ , then s(t) is a term
of type σ

6. If s is a term of type σ and x is a variable of type τ , then λx. s is a term
of type τ → σ.
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7. If s is a term of type σ and t is a term of type τ , then ⟨s, t⟩ is a term of
type σ × τ .

8. If s is a term of type σ × τ then p1(s) is a term of type σ and p2(s) is a
term of type τ .

Intuitively, Rst denotes the function defined recursively by

Rst(0) = s

Rst(x + 1) = t(x,Rst(x)),

⟨s, t⟩ denotes the pair whose first component is s and whose second component
is t, and p1(s) and p2(s) denote the first and second elements (“projections”)
of s. Finally, λx. s denotes the function f defined by

f(x) = s

for any x of type σ; so item (6) gives us a form of comprehension, enabling us to
define functions using terms. Wffs are built up from equality symbol statements
s = t between terms of the same type, the usual propositional connectives, and
higher-type quantification. One can then take the axioms of the system to be
the basic equations governing the terms defined above, together with the usual
rules of logic with quantifiers and equality symbol.

If one augments the finite type system with a type Ω of truth values, one
has to include axioms which govern its use as well. In fact, if one is clever, one
can get rid of complex wffs entirely, replacing them with terms of type Ω! The
proof system can then be modified accordingly. The result is essentially the
simple theory of types set forth by Alonzo Church in the 1930s.

As in the case of second-order logic, there are different versions of higher-
type semantics that one might want to use. In the full version, variables of
type σ → τ range over the set of all functions from the objects of type σ to
objects of type τ . As you might expect, this semantics is too strong to admit a
complete, effective derivation system. But one can consider a weaker semantics,
in which a structure consists of sets of elements Tτ for each type τ , together
with appropriate operations for application, projection, etc. If the details are
carried out correctly, one can obtain completeness theorems for the kinds of
derivation systems described above.

Higher-type logic is attractive because it provides a framework in which
we can embed a good deal of mathematics in a natural way: starting with
N, one can define real numbers, continuous functions, and so on. It is also
particularly attractive in the context of intuitionistic logic, since the types
have clear “constructive” intepretations. In fact, one can develop constructive
versions of higher-type semantics (based on intuitionistic, rather than classical
logic) that clarify these constructive interpretations quite nicely, and are, in
many ways, more interesting than the classical counterparts.
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§12.4 Intuitionistic Logic

In constrast to second-order and higher-order logic, intuitionistic first-order
logic represents a restriction of the classical version, intended to model a more
“constructive” kind of reasoning. The following examples may serve to illus-
trate some of the underlying motivations.

Suppose someone came up to you one day and announced that they had
determined a natural number x, with the property that if x is prime, the
Riemann hypothesis is true, and if x is composite, the Riemann hypothesis is
false. Great news! Whether the Riemann hypothesis is true or not is one of
the big open questions of mathematics, and here they seem to have reduced
the problem to one of calculation, that is, to the determination of whether a
specific number is prime or not.

What is the magic value of x? They describe it as follows: x is the natural
number that is equal to 7 if the Riemann hypothesis is true, and 9 otherwise.

Angrily, you demand your money back. From a classical point of view, the
description above does in fact determine a unique value of x; but what you
really want is a value of x that is given explicitly.

To take another, perhaps less contrived example, consider the following
question. We know that it is possible to raise an irrational number to a rational

power, and get a rational result. For example,
√

2
2

= 2. What is less clear
is whether or not it is possible to raise an irrational number to an irrational
power, and get a rational result. The following theorem answers this in the
affirmative:

Theorem 124A. There are irrational numbers a and b such that ab is ratio-
nal.

Proof. Consider
√

2
√
2
. If this is rational, we are done: we can let a = b =

√
2.

Otherwise, it is irrational. Then we have

(
√

2

√
2
)
√
2 =

√
2

√
2·
√
2

=
√

2
2

= 2,

which is certainly rational. So, in this case, let a be
√

2
√
2
, and let b be

√
2.

Does this constitute a valid proof? Most mathematicians feel that it does.
But again, there is something a little bit unsatisfying here: we have proved
the existence of a pair of real numbers with a certain property, without being
able to say which pair of numbers it is. It is possible to prove the same result,
but in such a way that the pair a, b is given in the proof: take a =

√
3 and

b = log3 4. Then

ab =
√

3
log3 4

= 31/2·log3 4 = (3log3 4)1/2 = 41/2 = 2,

since 3log3 x = x.
Intuitionistic logic is designed to model a kind of reasoning where moves

like the one in the first proof are disallowed. Proving the existence of an x
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satisfying α(x) means that you have to give a specific x, and a proof that it
satisfies α, like in the second proof. Proving that α or β holds requires that
you can prove one or the other.

Formally speaking, intuitionistic first-order logic is what you get if you omit
restrict a derivation system for first-order logic in a certain way. Similarly,
there are intuitionistic versions of second-order or higher-order logic. From the
mathematical point of view, these are just formal deductive systems, but, as
already noted, they are intended to model a kind of mathematical reasoning.
One can take this to be the kind of reasoning that is justified on a certain
philosophical view of mathematics (such as Brouwer’s intuitionism); one can
take it to be a kind of mathematical reasoning which is more “concrete” and
satisfying (along the lines of Bishop’s constructivism); and one can argue about
whether or not the formal description captures the informal motivation. But
whatever philosophical positions we may hold, we can study intuitionistic logic
as a formally presented logic; and for whatever reasons, many mathematical
logicians find it interesting to do so.

There is an informal constructive interpretation of the intuitionist connec-
tives, usually known as the BHK interpretation (named after Brouwer, Heyting,
and Kolmogorov). It runs as follows: a proof of α ∧ β consists of a proof of
α paired with a proof of β; a proof of α ∨ β consists of either a proof of α,
or a proof of β, where we have explicit information as to which is the case; a
proof of α→β consists of a procedure, which transforms a proof of α to a proof
of β; a proof of ∀xα(x) consists of a procedure which returns a proof of α(x)
for any value of x; and a proof of ∃xα(x) consists of a value of x, together
with a proof that this value satisfies α. One can describe the interpretation in
computational terms known as the “Curry-Howard isomorphism” or the “wffs-
as-types paradigm”: think of a wff as specifying a certain kind of data type,
and proofs as computational objects of these data types that enable us to see
that the corresponding wff is true.

Intuitionistic logic is often thought of as being classical logic “minus” the
law of the excluded middle. This following theorem makes this more precise.

Theorem 124B. Intuitionistically, the following axiom schemata are equiv-
alent:

1. (α→⊥) →¬α.

2. α ∨ ¬α

3. ¬¬α→ α

Obtaining instances of one schema from either of the others is a good exercise
in intuitionistic logic.

The first deductive systems for intuitionistic propositional logic, put forth
as formalizations of Brouwer’s intuitionism, are due, independently, to Kol-
mogorov, Glivenko, and Heyting. The first formalization of intuitionistic first-
order logic (and parts of intuitionist mathematics) is due to Heyting. Though
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a number of classically valid schemata are not intuitionistically valid, many
are.

The double-negation translation describes an important relationship be-
tween classical and intuitionist logic. It is defined inductively follows (think of
αN as the “intuitionist” translation of the classical wff α):

αN ≡ ¬¬α for atomic wffs α

(α ∧ β)N ≡ (αN ∧ βN )

(α ∨ β)N ≡ ¬¬(αN ∨ βN )

(α→ β)N ≡ (αN → βN )

(∀xα)N ≡ ∀xαN

(∃xα)N ≡ ¬¬∃xαN

Kolmogorov and Glivenko had versions of this translation for propositional
logic; for predicate logic, it is due to Gödel and Gentzen, independently. We
have

Theorem 124C.

1. α↔ αN is provable classically

2. If α is provable classically, then αN is provable intuitionistically.

We can now envision the following dialogue. Classical mathematician: “I’ve
proved α!” Intuitionist mathematician: “Your proof isn’t valid. What you’ve
really proved is αN .” Classical mathematician: “Fine by me!” As far as the
classical mathematician is concerned, the intuitionist is just splitting hairs,
since the two are equivalent. But the intuitionist insists there is a difference.

Note that the above translation concerns pure logic only; it does not address
the question as to what the appropriate nonlogical axioms are for classical and
intuitionistic mathematics, or what the relationship is between them. But the
following slight extension of the theorem above provides some useful informa-
tion:

Theorem 124D. If Γ proves α classically, ΓN proves αN intuitionistically.

In other words, if α is provable from some hypotheses classically, then αN

is provable from their double-negation translations.
To show that a sentence or propositional wff is intuitionistically valid, all

you have to do is provide a proof. But how can you show that it is not valid?
For that purpose, we need a semantics that is sound, and preferrably complete.
A semantics due to Kripke nicely fits the bill.

We can play the same game we did for classical logic: define the semantics,
and prove soundness and completeness. It is worthwhile, however, to note
the following distinction. In the case of classical logic, the semantics was the
“obvious” one, in a sense implicit in the meaning of the connectives. Though
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one can provide some intuitive motivation for Kripke semantics, the latter does
not offer the same feeling of inevitability. In addition, the notion of a classical
structure is a natural mathematical one, so we can either take the notion of
a structure to be a tool for studying classical first-order logic, or take classical
first-order logic to be a tool for studying mathematical structures. In contrast,
Kripke structures can only be viewed as a logical construct; they don’t seem
to have independent mathematical interest.

A Kripke structure M = ⟨W,R, V ⟩ for a propositional language consists
of a set W , partial order R on W with a least element, and an “monotone”
assignment of propositional variables to the elements of W . The intuition is
that the elements of W represent “worlds,” or “states of knowledge”; an element
v ≥ u represents a “possible future state” of u; and the propositional variables
assigned to u are the propositions that are known to be true in state u. The
forcing relation M, w ⊩ α then extends this relationship to arbitrary wffs in
the language; read M, w ⊩ α as “α is true in state w.” The relationship is
defined inductively, as follows:

1. M, w ⊩ pi iff pi is one of the propositional variables assigned to w.

2. M, w ⊮ ⊥.

3. M, w ⊩ (α ∧ β) iff M, w ⊩ α and M, w ⊩ β.

4. M, w ⊩ (α ∨ β) iff M, w ⊩ α or M, w ⊩ β.

5. M, w ⊩ (α→ β) iff, whenever w′ ≥ w and M, w′ ⊩ α, then M, w′ ⊩ β.

It is a good exercise to try to show that ¬(p∧ q)→ (¬p∨¬q) is not intuitionis-
tically valid, by cooking up a Kripke structure that provides a counterexample.

§12.5 Modal Logics

Consider the following example of a conditional sentence:

If Jeremy is alone in that room, then he is drunk and naked and
dancing on the chairs.

This is an example of a conditional assertion that may be materially true
but nonetheless misleading, since it seems to suggest that there is a stronger
link between the antecedent and conclusion other than simply that either the
antecedent is false or the consequent true. That is, the wording suggests that
the claim is not only true in this particular world (where it may be trivially true,
because Jeremy is not alone in the room), but that, moreover, the conclusion
would have been true had the antecedent been true. In other words, one can
take the assertion to mean that the claim is true not just in this world, but in
any “possible” world; or that it is necessarily true, as opposed to just true in
this particular world.
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Modal logic was designed to make sense of this kind of necessity. One
obtains modal propositional logic from ordinary propositional logic by adding
a box operator; which is to say, if α is a wff, so is □α. Intuitively, □α asserts
that α is necessarily true, or true in any possible world. ♢α is usually taken to
be an abbreviation for ¬□¬α, and can be read as asserting that α is possibly
true. Of course, modality can be added to predicate logic as well.

Kripke structures can be used to provide a semantics for modal logic; in
fact, Kripke first designed this semantics with modal logic in mind. Rather than
restricting to partial orders, more generally one has a set of “possible worlds,”
P , and a binary “accessibility” relation Rxy between worlds. Intuitively, Rpq
asserts that the world q is compatible with p; i.e., if we are “in” world p, we
have to entertain the possibility that the world could have been like q.

Modal logic is sometimes called an “intensional” logic, as opposed to an
“extensional” one. The intended semantics for an extensional logic, like classi-
cal logic, will only refer to a single world, the “actual” one; while the semantics
for an “intensional” logic relies on a more elaborate ontology. In addition to
structureing necessity, one can use modality to structure other linguistic con-
structions, reinterpreting □ and ♢ according to the application. For example:

1. In provability logic, □α is read “α is provable” and ♢α is read “α is
consistent.”

2. In epistemic logic, one might read □α as “I know α” or “I believe α.”

3. In temporal logic, one can read □α as “α is always true” and ♢α as “α
is sometimes true.”

One would like to augment logic with rules and axioms dealing with modal-
ity. For example, the system S4 consists of the ordinary axioms and rules of
propositional logic, together with the following axioms:

□(α→ β) → (□α→□β)

□α→ α

□α→□□α

as well as a rule, “from α conclude □α.” S5 adds the following axiom:

♢α→□♢α

Variations of these axioms may be suitable for different applications; for ex-
ample, S5 is usually taken to characterize the notion of logical necessity. And
the nice thing is that one can usually find a semantics for which the derivation
system is sound and complete by restricting the accessibility relation in the
Kripke structures in natural ways. For example, S4 corresponds to the class
of Kripke structures in which the accessibility relation is reflexive and transi-
tive. S5 corresponds to the class of Kripke structures in which the accessibility
relation is universal, which is to say that every world is accessible from every
other; so □α holds if and only if α holds in every world.
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§12.6 Other Logics

As you may have gathered by now, it is not hard to design a new logic. You
too can create your own a syntax, make up a deductive system, and fashion
a semantics to go with it. You might have to be a bit clever if you want
the derivation system to be complete for the semantics, and it might take
some effort to convince the world at large that your logic is truly interesting.
But, in return, you can enjoy hours of good, clean fun, exploring your logic’s
mathematical and computational properties.

Recent decades have witnessed a veritable explosion of formal logics. Fuzzy
logic is designed to model reasoning about vague properties. Probabilistic logic
is designed to model reasoning about uncertainty. Default logics and nonmono-
tonic logics are designed to model defeasible forms of reasoning, which is to say,
“reasonable” inferences that can later be overturned in the face of new informa-
tion. There are epistemic logics, designed to model reasoning about knowledge;
causal logics, designed to model reasoning about causal relationships; and even
“deontic” logics, which are designed to model reasoning about moral and ethi-
cal obligations. Depending on whether the primary motivation for introducing
these systems is philosophical, mathematical, or computational, you may find
such creatures studies under the rubric of mathematical logic, philosophical
logic, artificial intelligence, cognitive science, or elsewhere.

The list goes on and on, and the possibilities seem endless. We may never
attain Leibniz’ dream of reducing all of human reason to calculation—but that
can’t stop us from trying.

144 Release : 0552395 (2022-04-04)



Part III

Computability

145





Chapter 13

Recursive Functions

§13.0 Introduction

In order to develop a mathematical theory of computability, one has to, first of
all, develop a model of computability. We now think of computability as the
kind of thing that computers do, and computers work with symbols. But at the
beginning of the development of theories of computability, the paradigmatic
example of computation was numerical computation. Mathematicians were
always interested in number-theoretic functions, i.e., functions f : Nn → N that
can be computed. So it is not surprising that at the beginning of the theory
of computability, it was such functions that were studied. The most familiar
examples of computable numerical functions, such as addition, multiplication,
exponentiation (of natural numbers) share an interesting feature: they can be
defined recursively. It is thus quite natural to attempt a general definition of
computable function on the basis of recursive definitions. Among the many
possible ways to define number-theoretic functions recursively, one particularly
simple pattern of definition here becomes central: so-called primitive recursion.

In addition to computable functions, we might be interested in computable
sets and relations. A set is computable if we can compute the answer to
whether or not a given number is an element of the set, and a relation is
computable iff we can compute whether or not a tuple ⟨n1, . . . , nk⟩ is an element
of the relation. By considering the characteristic function of a set or relation,
discussion of computable sets and relations can be subsumed under that of
computable functions. Thus we can define primitive recursive relations as well,
e.g., the relation “n evenly divides m” is a primitive recursive relation.

Primitive recursive functions—those that can be defined using just primitive
recursion—are not, however, the only computable number-theoretic functions.
Many generalizations of primitive recursion have been considered, but the most
powerful and widely-accepted additional way of computing functions is by un-
bounded search. This leads to the definition of partial recursive functions, and
a related definition to general recursive functions. General recursive functions
are computable and total, and the definition characterizes exactly the partial
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recursive functions that happen to be total. Recursive functions can simulate
every other model of computation (Turing machines, lambda calculus, etc.)
and so represent one of the many accepted models of computation.

§13.1 Primitive Recursion

A characteristic of the natural numbers is that every natural number can be
reached from 0 by applying the successor operation +1 finitely many times—
any natural number is either 0 or the successor of . . . the successor of 0.
One way to specify a function h : N → N that makes use of this fact is this:
(a) specify what the value of h is for argument 0, and (b) also specify how to,
given the value of h(x), compute the value of h(x+ 1). For (a) tells us directly
what h(0) is, so h is defined for 0. Now, using the instruction given by (b) for
x = 0, we can compute h(1) = h(0 + 1) from h(0). Using the same instructions
for x = 1, we compute h(2) = h(1 + 1) from h(1), and so on. For every natural
number x, we’ll eventually reach the step where we define h(x) from h(x + 1),
and so h(x) is defined for all x ∈ N.

For instance, suppose we specify h : N → N by the following two equations:

h(0) = 1

h(x + 1) = 2 · h(x)

If we already know how to multiply, then these equations give us the infor-
mation required for (a) and (b) above. By successively applying the second
equation, we get that

h(1) = 2 · h(0) = 2,

h(2) = 2 · h(1) = 2 · 2,

h(3) = 2 · h(2) = 2 · 2 · 2,

...

We see that the function h we have specified is h(x) = 2x.

The characteristic feature of the natural numbers guarantees that there is
only one function h that meets these two criteria. A pair of equations like these
is called a definition by primitive recursion of the function h. It is so-called
because we define h “recursively,” i.e., the definition, specifically the second
equation, involves h itself on the right-hand-side. It is “primitive” because in
defining h(x + 1) we only use the value h(x), i.e., the immediately preceding
value. This is the simplest way of defining a function on N recursively.

We can define even more fundamental functions like addition and multipli-
cation by primitive recursion. In these cases, however, the functions in question
are 2-place. We fix one of the argument places, and use the other for the recur-
sion. E.g, to define add(x, y) we can fix x and define the value first for y = 0
and then for y + 1 in terms of y. Since x is fixed, it will appear on the left and
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on the right side of the defining equations.

add(x, 0) = x

add(x, y + 1) = add(x, y) + 1

These equations specify the value of add for all x and y. To find add(2, 3),
for instance, we apply the defining equations for x = 2, using the first to find
add(2, 0) = 2, then using the second to successively find add(2, 1) = 2 + 1 = 3,
add(2, 2) = 3 + 1 = 4, add(2, 3) = 4 + 1 = 5.

In the definition of add we used + on the right-hand-side of the second
equation, but only to add 1. In other words, we used the successor function
succ(z) = z+1 and applied it to the previous value add(x, y) to define add(x, y+
1). So we can think of the recursive definition as given in terms of a single
function which we apply to the previous value. However, it doesn’t hurt—
and sometimes is necessary—to allow the function to depend not just on the
previous value but also on x and y. Consider:

mult(x, 0) = 0

mult(x, y + 1) = add(mult(x, y), x)

This is a primitive recursive definition of a function mult by applying the func-
tion add to both the preceding value mult(x, y) and the first argument x. It
also defines the function mult(x, y) for all arguments x and y. For instance,
mult(2, 3) is determined by successively computing mult(2, 0), mult(2, 1), mult(2, 2),
and mult(2, 3):

mult(2, 0) = 0

mult(2, 1) = mult(2, 0 + 1) = add(mult(2, 0), 2) = add(0, 2) = 2

mult(2, 2) = mult(2, 1 + 1) = add(mult(2, 1), 2) = add(2, 2) = 4

mult(2, 3) = mult(2, 2 + 1) = add(mult(2, 2), 2) = add(4, 2) = 6

The general pattern then is this: to give a primitive recursive definition of
a function h(x0, . . . , xk−1, y), we provide two equations. The first defines the
value of h(x0, . . . , xk−1, 0) without reference to h. The second defines the value
of h(x0, . . . , xk−1, y+1) in terms of h(x0, . . . , xk−1, y), the other arguments x0,
. . . , xk−1, and y. Only the immediately preceding value of h may be used in
that second equation. If we think of the operations given by the right-hand-
sides of these two equations as themselves being functions f and g, then the
general pattern to define a new function h by primitive recursion is this:

h(x0, . . . , xk−1, 0) = f(x0, . . . , xk−1)

h(x0, . . . , xk−1, y + 1) = g(x0, . . . , xk−1, y, h(x0, . . . , xk−1, y))

In the case of add, we have k = 1 and f(x0) = x0 (the identity function), and
g(x0, y, z) = z + 1 (the 3-place function that returns the successor of its third
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argument):

add(x0, 0) = f(x0) = x0

add(x0, y + 1) = g(x0, y, add(x0, y)) = succ(add(x0, y))

In the case of mult, we have f(x0) = 0 (the constant function always return-
ing 0) and g(x0, y, z) = add(z, x0) (the 3-place function that returns the sum
of its last and first argument):

mult(x0, 0) = f(x0) = 0

mult(x0, y + 1) = g(x0, y,mult(x0, y)) = add(mult(x0, y), x0)

§13.2 Composition

If f and g are two one-place functions of natural numbers, we can compose
them: h(x) = g(f(x)). The new function h(x) is then defined by composition
from the functions f and g. We’d like to generalize this to functions of more
than one argument.

Here’s one way of doing this: suppose f is a k-place function, and g0, . . . ,
gk−1 are k functions which are all n-place. Then we can define a new n-place
function h as follows:

h(x0, . . . , xn−1) = f(g0(x0, . . . , xn−1), . . . , gk−1(x0, . . . , xn−1))

If f and all gi are computable, so is h: To compute h(x0, . . . , xn−1), first
compute the values yi = gi(x0, . . . , xn−1) for each i = 0, . . . , k − 1. Then feed
these values into f to compute h(x0, . . . , xk−1) = f(y0, . . . , yk−1).

This may seem like an overly restrictive characterization of what happens
when we compute a new function using some existing ones. For one thing,
sometimes we do not use all the arguments of a function, as when we defined
g(x, y, z) = succ(z) for use in the primitive recursive definition of add. Suppose
we are allowed use of the following functions:

Pn
i (x0, . . . , xn−1) = xi

The functions P k
i are called projection functions: Pn

i is an n-place function.
Then g can be defined by

g(x, y, z) = succ(P 3
2 (x, y, z)).

Here the role of f is played by the 1-place function succ, so k = 1. And we
have one 3-place function P 3

2 which plays the role of g0. The result is a 3-place
function that returns the successor of the third argument.

The projection functions also allow us to define new functions by reordering
or identifying arguments. For instance, the function h(x) = add(x, x) can be
defined by

h(x0) = add(P 1
0 (x0), P 1

0 (x0)).
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Here k = 2, n = 1, the role of f(y0, y1) is played by add, and the roles of g0(x0)
and g1(x0) are both played by P 1

0 (x0), the one-place projection function (aka
the identity function).

If f(y0, y1) is a function we already have, we can define the function h(x0, x1) =
f(x1, x0) by

h(x0, x1) = f(P 2
1 (x0, x1), P 2

0 (x0, x1)).

Here k = 2, n = 2, and the roles of g0 and g1 are played by P 2
1 and P 2

0 ,
respectively.

You may also worry that g0, . . . , gk−1 are all required to have the same
arity n. (Remember that the arity of a function is the number of arguments;
an n-place function has arity n.) But adding the projection functions provides
the desired flexibility. For example, suppose f and g are 3-place functions and
h is the 2-place function defined by

h(x, y) = f(x, g(x, x, y), y).

The definition of h can be rewritten with the projection functions, as

h(x, y) = f(P 2
0 (x, y), g(P 2

0 (x, y), P 2
0 (x, y), P 2

1 (x, y)), P 2
1 (x, y)).

Then h is the composition of f with P 2
0 , l, and P 2

1 , where

l(x, y) = g(P 2
0 (x, y), P 2

0 (x, y), P 2
1 (x, y)),

i.e., l is the composition of g with P 2
0 , P 2

0 , and P 2
1 .

§13.3 Primitive Recursion Functions

Let us record again how we can define new functions from existing ones using
primitive recursion and composition.

Definition 133A. Suppose f is a k-place function (k ≥ 1) and g is a (k+2)-
place function. The function defined by primitive recursion from f and g is the
(k + 1)-place function h defined by the equations

h(x0, . . . , xk−1, 0) = f(x0, . . . , xk−1)

h(x0, . . . , xk−1, y + 1) = g(x0, . . . , xk−1, y, h(x0, . . . , xk−1, y))

Definition 133B. Suppose f is a k-place function, and g0, . . . , gk−1 are k
functions which are all n-place. The function defined by composition from f
and g0, . . . , gk−1 is the n-place function h defined by

h(x0, . . . , xn−1) = f(g0(x0, . . . , xn−1), . . . , gk−1(x0, . . . , xn−1)).

In addition to succ and the projection functions

Pn
i (x0, . . . , xn−1) = xi,

for each natural number n and i < n, we will include among the primitive
recursive functions the function zero(x) = 0.
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Definition 133C. The set of primitive recursive functions is the set of func-
tions from Nn to N, defined inductively by the following clauses:

1. zero is primitive recursive.

2. succ is primitive recursive.

3. Each projection function Pn
i is primitive recursive.

4. If f is a k-place primitive recursive function and g0, . . . , gk−1 are n-place
primitive recursive functions, then the composition of f with g0, . . . , gk−1

is primitive recursive.

5. If f is a k-place primitive recursive function and g is a k+ 2-place prim-
itive recursive function, then the function defined by primitive recursion
from f and g is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest
set containing zero, succ, and the projection functions Pn

j , and which is closed
under composition and primitive recursion.

Another way of describing the set of primitive recursive functions is by
defining it in terms of “stages.” Let S0 denote the set of starting functions:
zero, succ, and the projections. These are the primitive recursive functions of
stage 0. Once a stage Si has been defined, let Si+1 be the set of all functions
you get by applying a single instance of composition or primitive recursion to
functions already in Si. Then

S =
⋃
i∈N

Si

is the set of all primitive recursive functions
Let us verify that add is a primitive recursive function.

Proposition 133D. The addition function add(x, y) = x + y is primitive
recursive.

Proof. We already have a primitive recursive definition of add in terms of two
functions f and g which matches the format of Definition 133A:

add(x0, 0) = f(x0) = x0

add(x0, y + 1) = g(x0, y, add(x0, y)) = succ(add(x0, y))

So add is primitive recursive provided f and g are as well. f(x0) = x0 = P 1
0 (x0),

and the projection functions count as primitive recursive, so f is primitive
recursive. The function g is the three-place function g(x0, y, z) defined by

g(x0, y, z) = succ(z).
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This does not yet tell us that g is primitive recursive, since g and succ are not
quite the same function: succ is one-place, and g has to be three-place. But
we can define g “officially” by composition as

g(x0, y, z) = succ(P 3
2 (x0, y, z))

Since succ and P 3
2 count as primitive recursive functions, g does as well, since

it can be defined by composition from primitive recursive functions.

Proposition 133E. The multiplication function mult(x, y) = x · y is prim-
itive recursive.

Proof. Exercise.

Example 13.3.6. Here’s our very first example of a primitive recursive defini-
tion:

h(0) = 1

h(y + 1) = 2 · h(y).

This function cannot fit into the form required by Definition 133A, since k = 0.
The definition also involves the constants 1 and 2. To get around the first
problem, let’s introduce a dummy argument and define the function h′:

h′(x0, 0) = f(x0) = 1

h′(x0, y + 1) = g(x0, y, h
′(x0, y)) = 2 · h′(x0, y).

The function f(x0) = 1 can be defined from succ and zero by composition:
f(x0) = succ(zero(x0)). The function g can be defined by composition from
g′(z) = 2 · z and projections:

g(x0, y, z) = g′(P 3
2 (x0, y, z))

and g′ in turn can be defined by composition as

g′(z) = mult(g′′(z), P 1
0 (z))

and

g′′(z) = succ(f(z)),

where f is as above: f(z) = succ(zero(z)). Now that we have h′, we can use
composition again to let h(y) = h′(P 1

0 (y), P 1
0 (y)). This shows that h can be

defined from the basic functions using a sequence of compositions and primitive
recursions, so h is primitive recursive.
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§13.4 Primitive Recursion Notations

One advantage to having the precise inductive description of the primitive
recursive functions is that we can be systematic in describing them. For exam-
ple, we can assign a “notation” to each such function, as follows. Use symbols
zero, succ, and Pn

i for zero, successor, and the projections. Now suppose h
is defined by composition from a k-place function f and n-place functions g0,
. . . , gk−1, and we have assigned notations F , G0, . . . , Gk−1 to the latter func-
tions. Then, using a new symbol Compk,n, we can denote the function h by
Compk,n[F,G0, . . . , Gk−1].

For functions defined by primitive recursion, we can use analogous nota-
tions. Suppose the (k + 1)-ary function h is defined by primitive recursion
from the k-ary function f and the (k + 2)-ary function g, and the notations
assigned to f and g are F and G, respectively. Then the notation assigned to h
is Reck[F,G].

Recall that the addition function is defined by primitive recursion as

add(x0, 0) = P 1
0 (x0) = x0

add(x0, y + 1) = succ(P 3
2 (x0, y, add(x0, y))) = add(x0, y) + 1

Here the role of f is played by P 1
0 , and the role of g is played by succ(P 3

2 (x0, y, z)),
which is assigned the notation Comp1,3[succ, P 3

2 ] as it is the result of defining a
function by composition from the 1-ary function succ and the 3-ary function P 3

2 .
With this setup, we can denote the addition function by

Rec1[P 1
0 ,Comp1,3[succ, P 3

2 ]].

Having these notations sometimes proves useful, e.g., when enumerating prim-
itive recursive functions.

§13.5 Primitive Recursive Functions are Computable

Suppose a function h is defined by primitive recursion

h(x⃗, 0) = f(x⃗)

h(x⃗, y + 1) = g(x⃗, y, h(x⃗, y))

and suppose the functions f and g are computable. (We use x⃗ to abbreviate x0,
. . . , xk−1.) Then h(x⃗, 0) can obviously be computed, since it is just f(x⃗) which
we assume is computable. h(x⃗, 1) can then also be computed, since 1 = 0 + 1
and so h(x⃗, 1) is just

h(x⃗, 1) = g(x⃗, 0, h(x⃗, 0)) = g(x⃗, 0, f(x⃗)).
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We can go on in this way and compute

h(x⃗, 2) = g(x⃗, 1, h(x⃗, 1)) = g(x⃗, 1, g(x⃗, 0, f(x⃗)))

h(x⃗, 3) = g(x⃗, 2, h(x⃗, 2)) = g(x⃗, 2, g(x⃗, 1, g(x⃗, 0, f(x⃗))))

h(x⃗, 4) = g(x⃗, 3, h(x⃗, 3)) = g(x⃗, 3, g(x⃗, 2, g(x⃗, 1, g(x⃗, 0, f(x⃗)))))

...

Thus, to compute h(x⃗, y) in general, successively compute h(x⃗, 0), h(x⃗, 1), . . . ,
until we reach h(x⃗, y).

Thus, a primitive recursive definition yields a new computable function if
the functions f and g are computable. Composition of functions also results in
a computable function if the functions f and gi are computable.

Since the basic functions zero, succ, and Pn
i are computable, and com-

position and primitive recursion yield computable functions from computable
functions, this means that every primitive recursive function is computable.

§13.6 Examples of Primitive Recursive Functions

We already have some examples of primitive recursive functions: the addition
and multiplication functions add and mult. The identity function id(x) = x is
primitive recursive, since it is just P 1

0 . The constant functions constn(x) = n
are primitive recursive since they can be defined from zero and succ by suc-
cessive composition. This is useful when we want to use constants in primi-
tive recursive definitions, e.g., if we want to define the function f(x) = 2 · x
can obtain it by composition from constn(x) and multiplication as f(x) =
mult(const2(x), P 1

0 (x)). We’ll make use of this trick from now on.

Proposition 136A. The exponentiation function exp(x, y) = xy is primitive
recursive.

Proof. We can define exp primitive recursively as

exp(x, 0) = 1

exp(x, y + 1) = mult(x, exp(x, y)).

Strictly speaking, this is not a recursive definition from primitive recursive
functions. Officially, though, we have:

exp(x, 0) = f(x)

exp(x, y + 1) = g(x, y, exp(x, y)).

where

f(x) = succ(zero(x)) = 1

g(x, y, z) = mult(P 3
0 (x, y, z), P 3

2 (x, y, z)) = x · z

and so f and g are defined from primitive recursive functions by composition.
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Proposition 136B. The predecessor function pred(y) defined by

pred(y) =

{
0 if y = 0

y − 1 otherwise

is primitive recursive.

Proof. Note that

pred(0) = 0 and

pred(y + 1) = y.

This is almost a primitive recursive definition. It does not, strictly speaking, fit
into the pattern of definition by primitive recursion, since that pattern requires
at least one extra argument x. It is also odd in that it does not actually use
pred(y) in the definition of pred(y + 1). But we can first define pred′(x, y) by

pred′(x, 0) = zero(x) = 0,

pred′(x, y + 1) = P 3
1 (x, y,pred′(x, y)) = y.

and then define pred from it by composition, e.g., as pred(x) = pred′(zero(x), P 1
0 (x)).

Proposition 136C. The factorial function fac(x) = x ! = 1 · 2 · 3 · · · · · x is
primitive recursive.

Proof. The obvious primitive recursive definition is

fac(0) = 1

fac(y + 1) = fac(y) · (y + 1).

Officially, we have to first define a two-place function h

h(x, 0) = const1(x)

h(x, y + 1) = g(x, y, h(x, y))

where g(x, y, z) = mult(P 3
2 (x, y, z), succ(P 3

1 (x, y, z))) and then let

fac(y) = h(P 1
0 (y), P 1

0 (y)) = h(y, y).

From now on we’ll be a bit more laissez-faire and not give the official definitions
by composition and primitive recursion.

Proposition 136D. Truncated subtraction, x −̇ y, defined by

x −̇ y =

{
0 if x < y

x− y otherwise

is primitive recursive.
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Proof. We have:

x −̇ 0 = x

x −̇ (y + 1) = pred(x −̇ y)

Proposition 136E. The distance between x and y, |x− y|, is primitive re-
cursive.

Proof. We have |x− y| = (x −̇ y) + (y −̇ x), so the distance can be defined by
composition from + and −̇, which are primitive recursive.

Proposition 136F. The maximum of x and y, max(x, y), is primitive re-
cursive.

Proof. We can define max(x, y) by composition from + and −̇ by

max(x, y) = x + (y −̇ x).

If x is the maximum, i.e., x ≥ y, then y −̇ x = 0, so x+ (y −̇ x) = x+ 0 = x. If
y is the maximum, then y −̇ x = y− x, and so x+ (y −̇ x) = x+ (y− x) = y.

Proposition 136G. The minimum of x and y, min(x, y), is primitive re-
cursive.

Proof. Exercise.

Proposition 136H. The set of primitive recursive functions is closed under
the following two operations:

1. Finite sums: if f(x⃗, z) is primitive recursive, then so is the function

g(x⃗, y) =

y∑
z=0

f(x⃗, z).

2. Finite products: if f(x⃗, z) is primitive recursive, then so is the function

h(x⃗, y) =

y∏
z=0

f(x⃗, z).

Proof. For example, finite sums are defined recursively by the equations

g(x⃗, 0) = f(x⃗, 0)

g(x⃗, y + 1) = g(x⃗, y) + f(x⃗, y + 1).
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§13.7 Primitive Recursive Relations

Definition 137A. A relation R(x⃗) is said to be primitive recursive if its
characteristic function,

χR(x⃗) =

{
1 if R(x⃗)
0 otherwise

is primitive recursive.

In other words, when one speaks of a primitive recursive relation R(x⃗),
one is referring to a relation of the form χR(x⃗) = 1, where χR is a primitive
recursive function which, on any input, returns either 1 or 0. For example, the
relation IsZero(x), which holds if and only if x = 0, corresponds to the function
χIsZero, defined using primitive recursion by

χIsZero(0) = 1,

χIsZero(x + 1) = 0.

It should be clear that one can compose relations with other primitive
recursive functions. So the following are also primitive recursive:

1. The equality relation, x = y, defined by IsZero(|x− y|)

2. The less-than relation, x ≤ y, defined by IsZero(x −̇ y)

Proposition 137B. The set of primitive recursive relations is closed under
Boolean operations, that is, if P (x⃗) and Q(x⃗) are primitive recursive, so are

1. ¬P (x⃗)

2. P (x⃗) ∧Q(x⃗)

3. P (x⃗) ∨Q(x⃗)

4. P (x⃗) →Q(x⃗)

Proof. Suppose P (x⃗) and Q(x⃗) are primitive recursive, i.e., their characteristic
functions χP and χQ are. We have to show that the characteristic functions of
¬P (x⃗), etc., are also primitive recursive.

χ¬P (x⃗) =

{
0 if χP (x⃗) = 1

1 otherwise

We can define χ¬P (x⃗) as 1 −̇ χP (x⃗).

χP∧Q(x⃗) =

{
1 if χP (x⃗) = χQ(x⃗) = 1

0 otherwise

We can define χP∧Q(x⃗) as χP (x⃗) · χQ(x⃗) or as min(χP (x⃗), χQ(x⃗)). Similarly,

χP∨Q(x⃗) = max(χP (x⃗), χQ(x⃗))) and

χP→Q(x⃗) = max(1 −̇ χP (x⃗), χQ(x⃗)).
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Proposition 137C. The set of primitive recursive relations is closed under
bounded quantification, i.e., if R(x⃗, z) is a primitive recursive relation, then so
are the relations

(∀z < y) R(x⃗, z) and

(∃z < y) R(x⃗, z).

(∀z < y) R(x⃗, z) holds of x⃗ and y if and only if R(x⃗, z) holds for every z less
than y, and similarly for (∃z < y) R(x⃗, z).

Proof. By convention, we take (∀z < 0) R(x⃗, z) to be true (for the trivial reason
that there are no z less than 0) and (∃z < 0) R(x⃗, z) to be false. A bounded
universal quantifier functions just like a finite product or iterated minimum,
i.e., if P (x⃗, y) ⇔ (∀z < y) R(x⃗, z) then χP (x⃗, y) can be defined by

χP (x⃗, 0) = 1

χP (x⃗, y + 1) = min(χP (x⃗, y), χR(x⃗, y))).

Bounded existential quantification can similarly be defined using max. Al-
ternatively, it can be defined from bounded universal quantification, using
the equivalence (∃z < y) R(x⃗, z) ↔ ¬(∀z < y) ¬R(x⃗, z). Note that, for ex-
ample, a bounded quantifier of the form (∃x ≤ y) . . . x . . . is equivalent to
(∃x < y + 1) . . . x . . . .

Another useful primitive recursive function is the conditional function,
cond(x, y, z), defined by

cond(x, y, z) =

{
y if x = 0

z otherwise.

This is defined recursively by

cond(0, y, z) = y,

cond(x + 1, y, z) = z.

One can use this to justify definitions of primitive recursive functions by cases
from primitive recursive relations:

Proposition 137D. If g0(x⃗), . . . , gm(x⃗) are primitive recursive functions,
and R0(x⃗), . . . , Rm−1(x⃗) are primitive recursive relations, then the function f
defined by

f(x⃗) =



g0(x⃗) if R0(x⃗)

g1(x⃗) if R1(x⃗) and not R0(x⃗)
...

gm−1(x⃗) if Rm−1(x⃗) and none of the previous hold

gm(x⃗) otherwise

is also primitive recursive.
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Proof. When m = 1, this is just the function defined by

f(x⃗) = cond(χ¬R0(x⃗), g0(x⃗), g1(x⃗)).

For m greater than 1, one can just compose definitions of this form.

§13.8 Bounded Minimization

It is often useful to define a function as the least number satisfying some prop-
erty or relation P . If P is decidable, we can compute this function simply by
trying out all the possible numbers, 0, 1, 2, . . . , until we find the least one
satisfying P . This kind of unbounded search takes us out of the realm of prim-
itive recursive functions. However, if we’re only interested in the least number
less than some independently given bound, we stay primitive recursive. In other
words, and a bit more generally, suppose we have a primitive recursive rela-
tion R(x, z). Consider the function that maps x and y to the least z < y such
that R(x, z). It, too, can be computed, by testing whether R(x, 0), R(x, 1),
. . . , R(x, y − 1). But why is it primitive recursive?

Proposition 138A. If R(x⃗, z) is primitive recursive, so is the function mR(x⃗, y)
which returns the least z less than y such that R(x⃗, z) holds, if there is one,
and y otherwise. We will write the function mR as

(min z < y)R(x⃗, z),

Proof. Note than there can be no z < 0 such that R(x⃗, z) since there is no
z < 0 at all. So mR(x⃗, 0) = 0.

In case the bound is of the form y + 1 we have three cases:

1. There is a z < y such that R(x⃗, z), in which case mR(x⃗, y+1) = mR(x⃗, y).

2. There is no such z < y but R(x⃗, y) holds, then mR(x⃗, y + 1) = y.

3. There is no z < y + 1 such that R(x⃗, z), then mR(z⃗, y + 1) = y + 1.

So we can define mR(x⃗, 0) by primitive recursion as follows:

mR(x⃗, 0) = 0

mR(x⃗, y + 1) =


mR(x⃗, y) if mR(x⃗, y) ̸= y

y if mR(x⃗, y) = y and R(x⃗, y)

y + 1 otherwise.

Note that there is a z < y such that R(x⃗, z) iff mR(x⃗, y) ̸= y.
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§13.9 Primes

Bounded quantification and bounded minimization provide us with a good
deal of machinery to show that natural functions and relations are primitive
recursive. For example, consider the relation “x divides y”, written x | y. The
relation x | y holds if division of y by x is possible without remainder, i.e., if y
is an integer multiple of x. (If it doesn’t hold, i.e., the remainder when dividing
x by y is > 0, we write x ∤ y.) In other words, x | y iff for some z, x · z = y.
Obviously, any such z, if it exists, must be ≤ y. So, we have that x | y iff for
some z ≤ y, x · z = y. We can define the relation x | y by bounded existential
quantification from = and multiplication by

x | y ⇔ (∃z ≤ y) (x · z) = y.

We’ve thus shown that x | y is primitive recursive.
A natural number x is prime if it is neither 0 nor 1 and is only divisible

by 1 and itself. In other words, prime numbers are such that, whenever y | x,
either y = 1 or y = x. To test if x is prime, we only have to check if y | x for
all y ≤ x, since if y > x, then automatically y ∤ x. So, the relation Prime(x),
which holds iff x is prime, can be defined by

Prime(x) ⇔ x ≥ 2 ∧ (∀y ≤ x) (y | x→ y = 1 ∨ y = x)

and is thus primitive recursive.
The primes are 2, 3, 5, 7, 11, etc. Consider the function p(x) which returns

the xth prime in that sequence, i.e., p(0) = 2, p(1) = 3, p(2) = 5, etc. (For
convenience we will often write p(x) as px (p0 = 2, p1 = 3, etc.)

If we had a function nextPrime(x), which returns the first prime number
larger than x, p can be easily defined using primitive recursion:

p(0) = 2

p(x + 1) = nextPrime(p(x))

Since nextPrime(x) is the least y such that y > x and y is prime, it can be
easily computed by unbounded search. But it can also be defined by bounded
minimization, thanks to a result due to Euclid: there is always a prime number
between x and x ! + 1.

nextPrime(x) = (min y ≤ x ! + 1) (y > x ∧ Prime(y)).

This shows, that nextPrime(x) and hence p(x) are (not just computable but)
primitive recursive.

(If you’re curious, here’s a quick proof of Euclid’s theorem. Suppose pn
is the largest prime ≤ x and consider the product p = p0 · p1 · · · · · pn of all
primes ≤ x. Either p + 1 is prime or there is a prime between x and p + 1.
Why? Suppose p + 1 is not prime. Then some prime number q | p + 1 where
q < p+ 1. None of the primes ≤ x divide p+ 1. (By definition of p, each of the
primes pi ≤ x divides p, i.e., with remainder 0. So, each of the primes pi ≤ x
divides p+ 1 with remainder 1, and so pi ∤ p+ 1.) Hence, q is a prime > x and
< p + 1. And p ≤ x !, so there is a prime > x and ≤ x ! + 1.)
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§13.10 Sequences

The set of primitive recursive functions is remarkably robust. But we will be
able to do even more once we have developed a adequate means of handling
sequences. We will identify finite sequences of natural numbers with natural
numbers in the following way: the sequence ⟨a0, a1, a2, . . . , ak⟩ corresponds to
the number

pa0+1
0 · pa1+1

1 · pa2+1
2 · · · · · pak+1

k .

We add one to the exponents to guarantee that, for example, the sequences
⟨2, 7, 3⟩ and ⟨2, 7, 3, 0, 0⟩ have distinct numeric codes. We can take both 0
and 1 to code the empty sequence; for concreteness, let Λ denote 0.

The reason that this coding of sequences works is the so-called Fundamental
Theorem of Arithmetic: every natural number n ≥ 2 can be written in one and
only one way in the form

n = pa0
0 · pa1

1 · · · · · pak

k

with ak ≥ 1. This guarantees that the mapping ⟨⟩(a0, . . . , ak) = ⟨a0, . . . , ak⟩ is
injective: different sequences are mapped to different numbers; to each number
only at most one sequence corresponds.

We’ll now show that the operations of determining the length of a sequence,
determining its ith element, appending an element to a sequence, and concate-
nating two sequences, are all primitive recursive.

Proposition 1310A. The function len(s), which returns the length of the
sequence s, is primitive recursive.

Proof. Let R(i, s) be the relation defined by

R(i, s) iff pi | s ∧ pi+1 ∤ s.

R is clearly primitive recursive. Whenever s is the code of a non-empty se-
quence, i.e.,

s = pa0+1
0 · · · · · pak+1

k ,

R(i, s) holds if pi is the largest prime such that pi | s, i.e., i = k. The length
of s thus is i + 1 iff pi is the largest prime that divides s, so we can let

len(s) =

{
0 if s = 0 or s = 1

1 + (min i < s)R(i, s) otherwise

We can use bounded minimization, since there is only one i that satisfies R(s, i)
when s is a code of a sequence, and if i exists it is less than s itself.

Proposition 1310B. The function append(s, a), which returns the result of
appending a to the sequence s, is primitive recursive.
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Proof. append can be defined by:

append(s, a) =

{
2a+1 if s = 0 or s = 1

s · pa+1
len(s) otherwise.

Proposition 1310C. The function element(s, i), which returns the ith ele-
ment of s (where the initial element is called the 0th), or 0 if i is greater than
or equal to the length of s, is primitive recursive.

Proof. Note that a is the ith element of s iff pa+1
i is the largest power of pi

that divides s, i.e., pa+1
i | s but pa+2

i ∤ s. So:

element(s, i) =

{
0 if i ≥ len(s)

(min a < s) (pa+2
i ∤ s) otherwise.

Instead of using the official names for the functions defined above, we intro-
duce a more compact notation. We will use (s)i instead of element(s, i), and
⟨s0, . . . , sk⟩ to abbreviate

append(append(. . . append(Λ, s0) . . . ), sk).

Note that if s has length k, the elements of s are (s)0, . . . , (s)k−1.

Proposition 1310D. The function concat(s, t), which concatenates two se-
quences, is primitive recursive.

Proof. We want a function concat with the property that

concat(⟨a0, . . . , ak⟩, ⟨b0, . . . , bl⟩) = ⟨a0, . . . , ak, b0, . . . , bl⟩.

We’ll use a “helper” function hconcat(s, t, n) which concatenates the first n
symbols of t to s. This function can be defined by primitive recursion as
follows:

hconcat(s, t, 0) = s

hconcat(s, t, n + 1) = append(hconcat(s, t, n), (t)n)

Then we can define concat by

concat(s, t) = hconcat(s, t, len(t)).

We will write s ⌢ t instead of concat(s, t).
It will be useful for us to be able to bound the numeric code of a sequence in

terms of its length and its largest element. Suppose s is a sequence of length k,
each element of which is less than or equal to some number x. Then s has at
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most k prime factors, each at most pk−1, and each raised to at most x + 1 in
the prime factorization of s. In other words, if we define

sequenceBound(x, k) = p
k·(x+1)
k−1 ,

then the numeric code of the sequence s described above is at most sequenceBound(x, k).
Having such a bound on sequences gives us a way of defining new functions

using bounded search. For example, we can define concat using bounded search.
All we need to do is write down a primitive recursive specification of the object
(number of the concatenated sequence) we are looking for, and a bound on how
far to look. The following works:

concat(s, t) = (min v < sequenceBound(s + t, len(s) + len(t)))

(len(v) = len(s) + len(t) ∧
(∀i < len(s)) ((v)i = (s)i) ∧
(∀j < len(t)) ((v)len(s)+j = (t)j))

Proposition 1310E. The function subseq(s, i, n) which returns the subse-
quence of s of length n beginning at the ith element, is primitive recursive.

Proof. Exercise.

§13.11 Trees

Sometimes it is useful to represent trees as natural numbers, just like we can
represent sequences by numbers and properties of and operations on them by
primitive recursive relations and functions on their codes. We’ll use sequences
and their codes to do this. A tree can be either a single node (possibly with a
label) or else a node (possibly with a label) connected to a number of subtrees.
The node is called the root of the tree, and the subtrees it is connected to its
immediate subtrees.

We code trees recursively as a sequence ⟨k, d1, . . . , dk⟩, where k is the num-
ber of immediate subtrees and d1, . . . , dk the codes of the immediate subtrees.
If the nodes have labels, they can be included after the immediate subtrees. So
a tree consisting just of a single node with label l would be coded by ⟨0, l⟩, and
a tree consisting of a root (labelled l1) connected to two single nodes (labelled
l2, l3) would be coded by ⟨2, ⟨0, l2⟩, ⟨0, l3⟩, l1⟩.

Proposition 1311A. The function SubtreeSeq(t), which returns the code
of a sequence the elements of which are the codes of all subtrees of the tree with
code t, is primitive recursive.

Proof. First note that ISubtrees(t) = subseq(t, 1, (t)0) is primitive recursive
and returns the codes of the immediate subtrees of a tree t. Now we can
define a helper function hSubtreeSeq(t, n) which computes the sequence of all
subtrees which are n nodes removed from the root. The sequence of subtrees
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of t which is 0 nodes removed from the root—in other words, begins at the root
of t—is the sequence consisting just of t. To obtain a sequence of all level n+1
subtrees of t, we concatenate the level n subtrees with a sequence consisting of
all immediate subtrees of the level n subtrees. To get a list of all these, note
that if f(x) is a primitive recursive function returning codes of sequences, then
gf (s, k) = f((s)0) ⌢ . . . ⌢ f((s)k) is also primitive recursive:

g(s, 0) = f((s)0)

g(s, k + 1) = g(s, k) ⌢ f((s)k+1)

For instance, if s is a sequence of trees, then h(s) = gISubtrees(s, len(s)) gives
the sequence of the immediate subtrees of the elements of s. We can use it to
define hSubtreeSeq by

hSubtreeSeq(t, 0) = ⟨t⟩
hSubtreeSeq(t, n + 1) = hSubtreeSeq(t, n) ⌢ h(hSubtreeSeq(t, n)).

The maximum level of subtrees in a tree coded by t, i.e., the maximum distance
between the root and a leaf node, is bounded by the code t. So a sequence of
codes of all subtrees of the tree coded by t is given by hSubtreeSeq(t, t).

§13.12 Other Recursions

Using pairing and sequencing, we can justify more exotic (and useful) forms
of primitive recursion. For example, it is often useful to define two functions
simultaneously, such as in the following definition:

h0(x⃗, 0) = f0(x⃗)

h1(x⃗, 0) = f1(x⃗)

h0(x⃗, y + 1) = g0(x⃗, y, h0(x⃗, y), h1(x⃗, y))

h1(x⃗, y + 1) = g1(x⃗, y, h0(x⃗, y), h1(x⃗, y))

This is an instance of simultaneous recursion. Another useful way of defining
functions is to give the value of h(x⃗, y + 1) in terms of all the values h(x⃗, 0),
. . . , h(x⃗, y), as in the following definition:

h(x⃗, 0) = f(x⃗)

h(x⃗, y + 1) = g(x⃗, y, ⟨h(x⃗, 0), . . . , h(x⃗, y)⟩).

The following schema captures this idea more succinctly:

h(x⃗, y) = g(x⃗, y, ⟨h(x⃗, 0), . . . , h(x⃗, y − 1)⟩)

with the understanding that the last argument to g is just the empty sequence
when y is 0. In either formulation, the idea is that in computing the “successor
step,” the function h can make use of the entire sequence of values computed
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so far. This is known as a course-of-values recursion. For a particular example,
it can be used to justify the following type of definition:

h(x⃗, y) =

{
g(x⃗, y, h(x⃗, k(x⃗, y))) if k(x⃗, y) < y

f(x⃗) otherwise

In other words, the value of h at y can be computed in terms of the value of h
at any previous value, given by k.

You should think about how to obtain these functions using ordinary prim-
itive recursion. One final version of primitive recursion is more flexible in that
one is allowed to change the parameters (side values) along the way:

h(x⃗, 0) = f(x⃗)

h(x⃗, y + 1) = g(x⃗, y, h(k(x⃗), y))

This, too, can be simulated with ordinary primitive recursion. (Doing so is
tricky. For a hint, try unwinding the computation by hand.)

§13.13 Non-Primitive Recursive Functions

The primitive recursive functions do not exhaust the intuitively computable
functions. It should be intuitively clear that we can make a list of all the
unary primitive recursive functions, f0, f1, f2, . . . such that we can effectively
compute the value of fx on input y; in other words, the function g(x, y), defined
by

g(x, y) = fx(y)

is computable. But then so is the function

h(x) = g(x, x) + 1

= fx(x) + 1.

For each primitive recursive function fi, the value of h and fi differ at i. So h
is computable, but not primitive recursive; and one can say the same about g.
This is an “effective” version of Cantor’s diagonalization argument.

One can provide more explicit examples of computable functions that are
not primitive recursive. For example, let the notation gn(x) denote g(g(. . . g(x))),
with n g’s in all; and define a sequence g0, g1, . . . of functions by

g0(x) = x + 1

gn+1(x) = gxn(x)

You can confirm that each function gn is primitive recursive. Each successive
function grows much faster than the one before; g1(x) is equal to 2x, g2(x) is
equal to 2x ·x, and g3(x) grows roughly like an exponential stack of x 2’s. The
Ackermann–Péter function is essentially the function G(x) = gx(x), and one
can show that this grows faster than any primitive recursive function.
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Let us return to the issue of enumerating the primitive recursive functions.
Remember that we have assigned symbolic notations to each primitive recursive
function; so it suffices to enumerate notations. We can assign a natural number
#(F ) to each notation F , recursively, as follows:

#(0) = ⟨0⟩
#(S) = ⟨1⟩

#(Pn
i ) = ⟨2, n, i⟩

#(Compk,l[H,G0, . . . , Gk−1]) = ⟨3, k, l,#(H),#(G0), . . . ,#(Gk−1)⟩
#(Recl[G,H]) = ⟨4, l,#(G),#(H)⟩

Here we are using the fact that every sequence of numbers can be viewed as
a natural number, using the codes from the last section. The upshot is that
every code is assigned a natural number. Of course, some sequences (and
hence some numbers) do not correspond to notations; but we can let fi be the
unary primitive recursive function with notation coded as i, if i codes such a
notation; and the constant 0 function otherwise. The net result is that we have
an explicit way of enumerating the unary primitive recursive functions.

(In fact, some functions, like the constant zero function, will appear more
than once on the list. This is not just an artifact of our coding, but also a result
of the fact that the constant zero function has more than one notation. We
will later see that one can not computably avoid these repetitions; for example,
there is no computable function that decides whether or not a given notation
represents the constant zero function.)

We can now take the function g(x, y) to be given by fx(y), where fx refers
to the enumeration we have just described. How do we know that g(x, y) is
computable? Intuitively, this is clear: to compute g(x, y), first “unpack” x,
and see if it is a notation for a unary function. If it is, compute the value of
that function on input y.

You may already be convinced that (with some work!) one can write a
program (say, in Java or C++) that does this; and now we can appeal to the
Church-Turing thesis, which says that anything that, intuitively, is computable
can be computed by a Turing machine.

Of course, a more direct way to show that g(x, y) is computable is to de-
scribe a Turing machine that computes it, explicitly. This would, in particular,
avoid the Church-Turing thesis and appeals to intuition. Soon we will have
built up enough machinery to show that g(x, y) is computable, appealing to a
model of computation that can be simulated on a Turing machine: namely, the
recursive functions.

§13.14 Partial Recursive Functions

To motivate the definition of the recursive functions, note that our proof that
there are computable functions that are not primitive recursive actually estab-
lishes much more. The argument was simple: all we used was the fact that it
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is possible to enumerate functions f0, f1, . . . such that, as a function of x and
y, fx(y) is computable. So the argument applies to any class of functions that
can be enumerated in such a way. This puts us in a bind: we would like to
describe the computable functions explicitly; but any explicit description of a
collection of computable functions cannot be exhaustive!

The way out is to allow partial functions to come into play. We will see
that it is possible to enumerate the partial computable functions. In fact, we
already pretty much know that this is the case, since it is possible to enumerate
Turing machines in a systematic way. We will come back to our diagonal
argument later, and explore why it does not go through when partial functions
are included.

The question is now this: what do we need to add to the primitive recursive
functions to obtain all the partial recursive functions? We need to do two
things:

1. Modify our definition of the primitive recursive functions to allow for
partial functions as well.

2. Add something to the definition, so that some new partial functions are
included.

The first is easy. As before, we will start with zero, successor, and projec-
tions, and close under composition and primitive recursion. The only difference
is that we have to modify the definitions of composition and primitive recur-
sion to allow for the possibility that some of the terms in the definition are not
defined. If f and g are partial functions, we will write f(x) ↓ to mean that f
is defined at x, i.e., x is in the domain of f ; and f(x) ↑ to mean the opposite,
i.e., that f is not defined at x. We will use f(x) ≃ g(x) to mean that either
f(x) and g(x) are both undefined, or they are both defined and equal. We
will use these notations for more complicated terms as well. We will adopt the
convention that if h and g0, . . . , gk all are partial functions, then

h(g0(x⃗), . . . , gk(x⃗))

is defined if and only if each gi is defined at x⃗, and h is defined at g0(x⃗),
. . . , gk(x⃗). With this understanding, the definitions of composition and prim-
itive recursion for partial functions is just as above, except that we have to
replace “=” by “≃”.

What we will add to the definition of the primitive recursive functions to
obtain partial functions is the unbounded search operator. If f(x, z⃗) is any
partial function on the natural numbers, define µx f(x, z⃗) to be

the least x such that f(0, z⃗), f(1, z⃗), . . . , f(x, z⃗) are all defined, and
f(x, z⃗) = 0, if such an x exists

with the understanding that µx f(x, z⃗) is undefined otherwise. This defines
µx f(x, z⃗) uniquely.
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Note that our definition makes no reference to Turing machines, or al-
gorithms, or any specific computational model. But like composition and
primitive recursion, there is an operational, computational intuition behind
unbounded search. When it comes to the computability of a partial func-
tion, arguments where the function is undefined correspond to inputs for which
the computation does not halt. The procedure for computing µx f(x, z⃗) will
amount to this: compute f(0, z⃗), f(1, z⃗), f(2, z⃗) until a value of 0 is returned.
If any of the intermediate computations do not halt, however, neither does the
computation of µx f(x, z⃗).

If R(x, z⃗) is any relation, µx R(x, z⃗) is defined to be µx (1 −̇ χR(x, z⃗)). In
other words, µx R(x, z⃗) returns the least value of x such that R(x, z⃗) holds.
So, if f(x, z⃗) is a total function, µx f(x, z⃗) is the same as µx (f(x, z⃗) = 0).
But note that our original definition is more general, since it allows for the
possibility that f(x, z⃗) is not everywhere defined (whereas, in contrast, the
characteristic function of a relation is always total).

Definition 1314A. The set of partial recursive functions is the smallest
set of partial functions from the natural numbers to the natural numbers (of
various arities) containing zero, successor, and projections, and closed under
composition, primitive recursion, and unbounded search.

Of course, some of the partial recursive functions will happen to be total,
i.e., defined for every argument.

Definition 1314B. The set of recursive functions is the set of partial re-
cursive functions that are total.

A recursive function is sometimes called “total recursive” to emphasize that
it is defined everywhere.

§13.15 The Normal Form Theorem

Theorem 1315A (Kleene’s Normal Form Theorem). There is a prim-
itive recursive relation T (e, x, s) and a primitive recursive function U(s), with
the following property: if f is any partial recursive function, then for some e,

f(x) ≃ U(µs T (e, x, s))

for every x.

The proof of the normal form theorem is involved, but the basic idea is
simple. Every partial recursive function has an index e, intuitively, a number
coding its program or definition. If f(x) ↓, the computation can be recorded
systematically and coded by some number s, and the fact that s codes the
computation of f on input x can be checked primitive recursively using only x
and the definition e. Consequently, the relation T , “the function with index e
has a computation for input x, and s codes this computation,” is primitive
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recursive. Given the full record of the computation s, the “upshot” of s is the
value of f(x), and it can be obtained from s primitive recursively as well.

The normal form theorem shows that only a single unbounded search is
required for the definition of any partial recursive function. Basically, we can
search through all numbers until we find one that codes a computation of the
function with index e for input x. We can use the numbers e as “names”
of partial recursive functions, and write φe for the function f defined by the
equation in the theorem. Note that any partial recursive function can have
more than one index—in fact, every partial recursive function has infinitely
many indices.

§13.16 The Halting Problem

The halting problem in general is the problem of deciding, given the specifica-
tion e (e.g., program) of a computable function and a number n, whether the
computation of the function on input n halts, i.e., produces a result. Famously,
Alan Turing proved that this problem itself cannot be solved by a computable
function, i.e., the function

h(e, n) =

{
1 if computation e halts on input n

0 otherwise,

is not computable.
In the context of partial recursive functions, the role of the specification of a

program may be played by the index e given in Kleene’s normal form theorem.
If f is a partial recursive function, any e for which the equation in the normal
form theorem holds, is an index of f . Given a number e, the normal form
theorem states that

φe(x) ≃ U(µs T (e, x, s))

is partial recursive, and for every partial recursive f : N → N, there is an e ∈ N
such that φe(x) ≃ f(x) for all x ∈ N. In fact, for each such f there is not just
one, but infinitely many such e. The halting function h is defined by

h(e, x) =

{
1 if φe(x) ↓
0 otherwise.

Note that h(e, x) = 0 if φe(x) ↑, but also when e is not the index of a partial
recursive function at all.

Theorem 1316A. The halting function h is not partial recursive.

Proof. If h were partial recursive, we could define

d(y) =

{
1 if h(y, y) = 0

µx x ̸= x otherwise.

Since no number x satisfies x ̸= x, there is no µx x ̸= x, and so d(y) ↑ iff
h(y, y) ̸= 0. From this definition it follows that
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1. d(y) ↓ iff φy(y) ↑ or y is not the index of a partial recursive function.

2. d(y) ↑ iff φy(y) ↓.

If h were partial recursive, then d would be partial recursive as well. Thus,
by the Kleene normal form theorem, it has an index ed. Consider the value of
h(ed, ed). There are two possible cases, 0 and 1.

1. If h(ed, ed) = 1 then φed(ed) ↓. But φed ≃ d, and d(ed) is defined iff
h(ed, ed) = 0. So h(ed, ed) ̸= 1.

2. If h(ed, ed) = 0 then either ed is not the index of a partial recursive
function, or it is and φed(ed) ↑. But again, φed ≃ d, and d(ed) is undefined
iff φed(ed) ↓.

The upshot is that ed cannot, after all, be the index of a partial recursive
function. But if h were partial recursive, d would be too, and so our definition
of ed as an index of it would be admissible. We must conclude that h cannot
be partial recursive.

§13.17 General Recursive Functions

There is another way to obtain a set of total functions. Say a total function
f(x, z⃗) is regular if for every sequence of natural numbers z⃗, there is an x
such that f(x, z⃗) = 0. In other words, the regular functions are exactly those
functions to which one can apply unbounded search, and end up with a to-
tal function. One can, conservatively, restrict unbounded search to regular
functions:

Definition 1317A. The set of general recursive functions is the smallest
set of functions from the natural numbers to the natural numbers (of various
arities) containing zero, successor, and projections, and closed under composi-
tion, primitive recursion, and unbounded search applied to regular functions.

Clearly every general recursive function is total. The difference between
Definition 1317A and Definition 1314B is that in the latter one is allowed to
use partial recursive functions along the way; the only requirement is that
the function you end up with at the end is total. So the word “general,” a
historic relic, is a misnomer; on the surface, Definition 1317A is less general
than Definition 1314B. But, fortunately, the difference is illusory; though the
definitions are different, the set of general recursive functions and the set of
recursive functions are one and the same.

Problems

Problem 1. Prove Proposition 133E by showing that the primitive recursive
definition of mult is can be put into the form required by Definition 133A and
showing that the corresponding functions f and g are primitive recursive.
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Problem 2. Give the complete primitive recursive notation for mult.

Problem 3. Prove Proposition 136G.

Problem 4. Show that

f(x, y) = 2(2
. .

.
2x

)

}
y 2’s

is primitive recursive.

Problem 5. Show that integer division d(x, y) = ⌊x/y⌋ (i.e., division, where
you disregard everything after the decimal point) is primitive recursive. When
y = 0, we stipulate d(x, y) = 0. Give an explicit definition of d using primitive
recursion and composition.

Problem 6. Show that the three place relation x ≡ y mod n (congruence
modulo n) is primitive recursive.

Problem 7. Suppose R(x⃗, z) is primitive recursive. Define the function m′
R(x⃗, y)

which returns the least z less than y such that R(x⃗, z) holds, if there is one,
and 0 otherwise, by primitive recursion from χR.

Problem 8. Define integer division d(x, y) using bounded minimization.

Problem 9. Show that there is a primitive recursive function sconcat(s) with
the property that

sconcat(⟨s0, . . . , sk⟩) = s0 ⌢ . . . ⌢ sk.

Problem 10. Show that there is a primitive recursive function tail(s) with
the property that

tail(Λ) = 0 and

tail(⟨s0, . . . , sk⟩) = ⟨s1, . . . , sk⟩.

Problem 11. Prove Proposition 1310E.

Problem 12. The definition of hSubtreeSeq in the proof of Proposition 1311A
in general includes repetitions. Give an alternative definition which guarantees
that the code of a subtree occurs only once in the resulting list.

Problem 13. Define the remainder function r(x, y) by course-of-values recur-
sion. (If x, y are natural numbers and y > 0, r(x, y) is the number less than y
such that x = z×y+r(x, y) for some z. For definiteness, let’s say that if y = 0,
r(x, 0) = 0.)
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Chapter 14

Computability Theory

§14.0 Introduction

The branch of logic known as Computability Theory deals with issues having
to do with the computability, or relative computability, of functions and sets.
It is a evidence of Kleene’s influence that the subject used to be known as
Recursion Theory, and today, both names are commonly used.

Let us call a function f : N 7→ N partial computable if it can be computed
in some model of computation. If f is total we will simply say that f is
computable. A relation R with computable characteristic function χR is also
called computable. If f and g are partial functions, we will write f(x) ↓ to
mean that f is defined at x, i.e., x is in the domain of f ; and f(x) ↑ to mean
the opposite, i.e., that f is not defined at x. We will use f(x) ≃ g(x) to mean
that either f(x) and g(x) are both undefined, or they are both defined and
equal.

One can explore the subject without having to refer to a specific model
of computation. To do this, one shows that there is a universal partial com-
putable function, Un(k, x). This allows us to enumerate the partial computable
functions. We will adopt the notation φk to denote the k-th unary partial
computable function, defined by φk(x) ≃ Un(k, x). (Kleene used {k} for this
purpose, but this notation has not been used as much recently.) Slightly more
generally, we can uniformly enumerate the partial computable functions of ar-
bitrary arities, and we will use φn

k to denote the k-th n-ary partial recursive
function.

Recall that if f(x⃗, y) is a total or partial function, then µy f(x⃗, y) is the
function of x⃗ that returns the least y such that f(x⃗, y) = 0, assuming that all of
f(x⃗, 0), . . . , f(x⃗, y−1) are defined; if there is no such y, µy f(x⃗, y) is undefined.
If R(x⃗, y) is a relation, µy R(x⃗, y) is defined to be the least y such that R(x⃗, y) is
true; in other words, the least y such that one minus the characteristic function
of R is equal to zero at x⃗, y.

To show that a function is computable, there are two ways one can proceed:

1. Rigorously: describe a Turing machine or partial recursive function ex-
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plicitly, and show that it computes the function you have in mind;

2. Informally: describe an algorithm that computes it, and appeal to Church’s
thesis.

There is no fine line between the two; a detailed description of an algorithm
should provide enough information so that it is relatively clear how one could,
in principle, design the right Turing machine or sequence of partial recursive
definitions. Fully rigorous definitions are unlikely to be informative, and we
will try to find a happy medium between these two approaches; in short, we
will try to find intuitive yet rigorous proofs that the precise definitions could
be obtained.

§14.1 Coding Computations

In every model of computation, it is possible to do the following:

1. Describe the definitions of computable functions in a systematic way.
For instance, you can think of Turing machine specifications, recursive
definitions, or programs in a programming language as providing these
definitions.

2. Describe the complete record of the computation of a function given
by some definition for a given input. For instance, a Turing machine
computation can be described by the sequence of configurations (state of
the machine, contents of the tape) for each step of computation.

3. Test whether a putative record of a computation is in fact the record of
how a computable function with a given definition would be computed
for a given input.

4. Extract from such a description of the complete record of a computation
the value of the function for a given input. For instance, the contents of
the tape in the very last step of a halting Turing machine computation
is the value.

Using coding, it is possible to assign to each description of a computable
function a numerical index in such a way that the instructions can be recovered
from the index in a computable way. Similarly, the complete record of a com-
putation can be coded by a single number as well. The resulting arithmetical
relation “s codes the record of computation of the function with index e for
input x” and the function “output of computation sequence with code s” are
then computable; in fact, they are primitive recursive.

This fundamental fact is very powerful, and allows us to prove a number
of striking and important results about computability, independently of the
model of computation chosen.
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§14.2 The Normal Form Theorem

Theorem 142A (Kleene’s Normal Form Theorem). There are a prim-
itive recursive relation T (k, x, s) and a primitive recursive function U(s), with
the following property: if f is any partial computable function, then for some k,

f(x) ≃ U(µs T (k, x, s))

for every x.

Proof Sketch. For any model of computation one can rigorously define a de-
scription of the computable function f and code such description using a nat-
ural number k. One can also rigorously define a notion of “computation se-
quence” which records the process of computing the function with index k for
input x. These computation sequences can likewise be coded as numbers s.
This can be done in such a way that (a) it is decidable whether a number s
codes the computation sequence of the function with index k on input x and
(b) what the end result of the computation sequence coded by s is. In fact, the
relation in (a) and the function in (b) are primitive recursive.

In order to give a rigorous proof of the Normal Form Theorem, we would
have to fix a model of computation and carry out the coding of descriptions of
computable functions and of computation sequences in detail, and verify that
the relation T and function U are primitive recursive. For most applications,
it suffices that T and U are computable and that U is total.

It is probably best to remember the proof of the normal form theorem in
slogan form: µs T (k, x, s) searches for a computation sequence of the function
with index k on input x, and U returns the output of the computation sequence
if one can be found.

T and U can be used to define the enumeration φ0, φ1, φ2, . . . . From now
on, we will assume that we have fixed a suitable choice of T and U , and take
the equation

φe(x) ≃ U(µs T (e, x, s))

to be the definition of φe.

Here is another useful fact:

Theorem 142B. Every partial computable function has infinitely many in-
dices.

Again, this is intuitively clear. Given any (description of) a computable
function, one can come up with a different description which computes the
same function (input-output pair) but does so, e.g., by first doing something
that has no effect on the computation (say, test if 0 = 0, or count to 5, etc.).
The index of the altered description will always be different from the original
index. Both are indices of the same function, just computed slightly differently.
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§14.3 The s-m-n Theorem

The next theorem is known as the “s-m-n theorem,” for a reason that will be
clear in a moment. The hard part is understanding just what the theorem says;
once you understand the statement, it will seem fairly obvious.

Theorem 143A. For each pair of natural numbers n and m, there is a
primitive recursive function smn such that for every sequence x, a0, . . . , am−1,
y0 ,. . . , yn−1, we have

φn
smn (x,a0,...,am−1)

(y0, . . . , yn−1) ≃ φm+n
x (a0, . . . , am−1, y0, . . . , yn−1).

It is helpful to think of smn as acting on programs. That is, smn takes a
program, x, for an (m + n)-ary function, as well as fixed inputs a0, . . . , am−1;
and it returns a program, smn (x, a0, . . . , am−1), for the n-ary function of the
remaining arguments. It you think of x as the description of a Turing machine,
then smn (x, a0, . . . , am−1) is the Turing machine that, on input y0, . . . , yn−1,
prepends a0, . . . , am−1 to the input string, and runs x. Each smn is then just
a primitive recursive function that finds a code for the appropriate Turing
machine.

§14.4 The Universal Partial Computable Function

Theorem 144A. There is a universal partial computable function Un(k, x).
In other words, there is a function Un(k, x) such that:

1. Un(k, x) is partial computable.

2. If f(x) is any partial computable function, then there is a natural number
k such that f(x) ≃ Un(k, x) for every x.

Proof. Let Un(k, x) ≃ U(µs T (k, x, s)) in Kleene’s normal form theorem.

This is just a precise way of saying that we have an effective enumeration of
the partial computable functions; the idea is that if we write fk for the function
defined by fk(x) = Un(k, x), then the sequence f0, f1, f2, . . . includes all the
partial computable functions, with the property that fk(x) can be computed
“uniformly” in k and x. For simplicity, we are using a binary function that
is universal for unary functions, but by coding sequences of numbers we can
easily generalize this to more arguments. For example, note that if f(x, y, z) is
a 3-place partial recursive function, then the function g(x) ≃ f((x)0, (x)1, (x)2)
is a unary recursive function.

§14.5 No Universal Computable Function

Theorem 145A. There is no universal computable function. In other words,
the universal function Un′(k, x) = φk(x) is not computable.
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Proof. This theorem says that there is no total computable function that is
universal for the total computable functions. The proof is a simple diagonal-
ization: if Un′(k, x) were total and computable, then

d(x) = Un′(x, x) + 1

would also be total and computable. However, for every k, d(k) is not equal to
Un′(k, k).

Theorem Theorem 144A above shows that we can get around this diago-
nalization argument, but only at the expense of allowing partial functions. It
is worth trying to understand what goes wrong with the diagonalization argu-
ment, when we try to apply it in the partial case. In particular, the function
h(x) = Un(x, x) + 1 is partial recursive. Suppose h is the k-th function in the
enumeration; what can we say about h(k)?

§14.6 The Halting Problem

Since, in our construction, Un(k, x) is defined if and only if the computation
of the function coded by k produces a value for input x, it is natural to ask
if we can decide whether this is the case. And in fact, it is not. For the
Turing machine model of computation, this means that whether a given Turing
machine halts on a given input is computationally undecidable. The following
theorem is therefore known as the “undecidability of the halting problem.” We
will provide two proofs below. The first continues the thread of our previous
discussion, while the second is more direct.

Theorem 146A. Let

h(k, x) =

{
1 if Un(k, x) is defined

0 otherwise.

Then h is not computable.

Proof. If h were computable, we would have a universal computable function,
as follows. Suppose h is computable, and define

Un′(k, x) =

{
fnUn(k, x) if h(k, x) = 1

0 otherwise.

But now Un′(k, x) is a total function, and is computable if h is. For instance,
we could define g using primitive recursion, by

g(0, k, x) ≃ 0

g(y + 1, k, x) ≃ Un(k, x);

then
Un′(k, x) ≃ g(h(k, x), k, x).
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And since Un′(k, x) agrees with Un(k, x) wherever the latter is defined, Un′ is
universal for those partial computable functions that happen to be total. But
this contradicts Theorem 145A.

Proof. Suppose h(k, x) were computable. Define the function g by

g(x) =

{
0 if h(x, x) = 0

undefined otherwise.

The function g is partial computable; for example, one can define it as µy h(x, x) =
0. So, for some k, g(x) ≃ Un(k, x) for every x. Is g defined at k? If it is, then,
by the definition of g, h(k, k) = 0. By the definition of f , this means that
Un(k, k) is undefined; but by our assumption that g(k) ≃ Un(k, x) for every
x, this means that g(k) is undefined, a contradiction. On the other hand, if
g(k) is undefined, then h(k, k) ̸= 0, and so h(k, k) = 1. But this means that
Un(k, k) is defined, i.e., that g(k) is defined.

We can describe this argument in terms of Turing machines. Suppose there
were a Turing machine H that took as input a description of a Turing machine
K and an input x, and decided whether or not K halts on input x. Then we
could build another Turing machine G which takes a single input x, calls H to
decide if machine x halts on input x, and does the opposite. In other words,
if H reports that x halts on input x, G goes into an infinite loop, and if H
reports that x doesn’t halt on input x, then G just halts. Does G halt on
input G? The argument above shows that it does if and only if it doesn’t—a
contradiction. So our supposition that there is a such Turing machine H, is
false.

§14.7 Comparison with Russell’s Paradox

It is instructive to compare and contrast the arguments in this section with
Russell’s paradox:

1. Russell’s paradox: let S = {x : x /∈ x}. Then x ∈ S if and only if x /∈ S,
a contradiction.

Conclusion: There is no such set S. Assuming the existence of a “set of
all sets” is inconsistent with the other axioms of set theory.

2. A modification of Russell’s paradox: let F be the “function” from the set
of all functions to {0, 1}, defined by

F (f) =

{
1 if f is in the domain of f , and f(f) = 0

0 otherwise

A similar argument shows that F (F ) = 0 if and only if F (F ) = 1, a
contradiction.
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Conclusion: F is not a function. The “set of all functions” is too big to
be the domain of a function.

3. The diagonalization argument: let f0, f1, . . . be the enumeration of the
partial computable functions, and let G : N → {0, 1} be defined by

G(x) =

{
1 if fx(x) ↓= 0

0 otherwise

If G is computable, then it is the function fk for some k. But then
G(k) = 1 if and only if G(k) = 0, a contradiction.

Conclusion: G is not computable. Note that according to the axioms of
set theory, G is still a function; there is no paradox here, just a clarifica-
tion.

That talk of partial functions, computable functions, partial computable
functions, and so on can be confusing. The set of all partial functions from N
to N is a big collection of objects. Some of them are total, some of them are
computable, some are both total and computable, and some are neither. Keep
in mind that when we say “function,” by default, we mean a total function.
Thus we have:

1. computable functions

2. partial computable functions that are not total

3. functions that are not computable

4. partial functions that are neither total nor computable

To sort this out, it might help to draw a big square representing all the partial
functions from N to N, and then mark off two overlapping regions, correspond-
ing to the total functions and the computable partial functions, respectively.
It is a good exercise to see if you can describe an object in each of the resulting
regions in the diagram.

§14.8 Computable Sets

We can extend the notion of computability from computable functions to com-
putable sets:

Definition 148A. Let S be a set of natural numbers. Then S is computable
iff its characteristic function is. In other words, S is computable iff the function

χS(x) =

{
1 if x ∈ S

0 otherwise

is computable. Similarly, a relation Rx0 . . . xk−1 is computable if and only if
its characteristic function is.
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Computable sets are also called decidable.
Notice that we now have a number of notions of computability: for partial

functions, for functions, and for sets. Do not get them confused! The Turing
machine computing a partial function returns the output of the function, for
input values at which the function is defined; the Turing machine computing
a set returns either 1 or 0, after deciding whether or not the input value is in
the set or not.

§14.9 Computably Enumerable Sets

Definition 149A. A set is computably enumerable if it is empty or the
range of a computable function.

Computably enumarable sets are also called recursively enumerable instead.
This is the original terminology, and today both are commonly used, as well
as the abbreviations “c.e.” and “r.e.”

You should think about what the definition means, and why the terminology
is appropriate. The idea is that if S is the range of the computable function f ,
then

S = {f(0), f(1), f(2), . . . },

and so f can be seen as “enumerating” the elements of S. Note that according
to the definition, f need not be an increasing function, i.e., the enumeration
need not be in increasing order. In fact, f need not even be injective, so that
the constant function f(x) = 0 enumerates the set {0}.

Any computable set is computably enumerable. To see this, suppose S is
computable. If S is empty, then by definition it is computably enumerable.
Otherwise, let a be any element of S. Define f by

f(x) =

{
x if χS(x) = 1

a otherwise.

Then f is a computable function, and S is the range of f .

§14.10 Equivalent Defininitions of Computably
Enumerable Sets

The following gives a number of important equivalent statements of what it
means to be computably enumerable.

Theorem 1410A. Let S be a set of natural numbers. Then the following
are equivalent:

1. S is computably enumerable.

2. S is the range of a partial computable function.
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3. S is empty or the range of a primitive recursive function.

4. S is the domain of a partial computable function.

The first three clauses say that we can equivalently take any non-empty
computably enumerable set to be enumerated by either a computable function,
a partial computable function, or a primitive recursive function. The fourth
clause tells us that if S is computably enumerable, then for some index e,

S = {x : φe(x) ↓}.

In other words, S is the set of inputs on for which the computation of φe

halts. For that reason, computably enumerable sets are sometimes called semi-
decidable: if a number is in the set, you eventually get a “yes,” but if it isn’t,
you never get a “no”!

Proof. Since every primitive recursive function is computable and every com-
putable function is partial computable, (3) implies (1) and (1) implies (2).
(Note that if S is empty, S is the range of the partial computable function that
is nowhere defined.) If we show that (2) implies (3), we will have shown the
first three clauses equivalent.

So, suppose S is the range of the partial computable function φe. If S is
empty, we are done. Otherwise, let a be any element of S. By Kleene’s normal
form theorem, we can write

φe(x) = U(µs T (e, x, s)).

In particular, φe(x) ↓ and = y if and only if there is an s such that T (e, x, s)
and U(s) = y. Define f(z) by

f(z) =

{
U((z)1) if T (e, (z)0, (z)1)

a otherwise.

Then f is primitive recursive, because T and U are. Expressed in terms of
Turing machines, if z codes a pair ⟨(z)0, (z)1⟩ such that (z)1 is a halting com-
putation of machine e on input (z)0, then f returns the output of the compu-
tation; otherwise, it returns a.We need to show that S is the range of f , i.e.,
for any natural number y, y ∈ S if and only if it is in the range of f . In the
forwards direction, suppose y ∈ S. Then y is in the range of φe, so for some
x and s, T (e, x, s) and U(s) = y; but then y = f(⟨x, s⟩). Conversely, suppose
y is in the range of f . Then either y = a, or for some z, T (e, (z)0, (z)1) and
U((z)1) = y. Since, in the latter case, φe(x) ↓= y, either way, y is in S.

(The notation φe(x) ↓= y means “φe(x) is defined and equal to y.” We
could just as well use φe(x) = y, but the extra arrow is sometimes helpful in
reminding us that we are dealing with a partial function.)

To finish up the proof of Theorem 1410A, it suffices to show that (1) and
(4) are equivalent. First, let us show that (1) implies (4). Suppose S is the
range of a computable function f , i.e.,

S = {y : for some x,f(x) = y}.

Release : 0552395 (2022-04-04) 181



14. Computability Theory

Let

g(y) = µx f(x) = y.

Then g is a partial computable function, and g(y) is defined if and only if for
some x, f(x) = y. In other words, the domain of g is the range of f . Expressed
in terms of Turing machines: given a Turing machine F that enumerates the
elements of S, let G be the Turing machine that semi-decides S by searching
through the outputs of F to see if a given element is in the set.

Finally, to show (4) implies (1), suppose that S is the domain of the partial
computable function φe, i.e.,

S = {x : φe(x) ↓}.

If S is empty, we are done; otherwise, let a be any element of S. Define f by

f(z) =

{
(z)0 if T (e, (z)0, (z)1)

a otherwise.

Then, as above, a number x is in the range of f if and only if φe(x) ↓, i.e., if and
only if x ∈ S. Expressed in terms of Turing machines: given a machine Me that
semi-decides S, enumerate the elements of S by running through all possible
Turing machine computations, and returning the inputs that correspond to
halting computations.

The fourth clause of Theorem 1410A provides us with a convenient way of
enumerating the computably enumerable sets: for each e, let We denote the
domain of φe. Then if A is any computably enumerable set, A = We, for some
e.

The following provides yet another characterization of the computably enu-
merable sets.

Theorem 1410B. A set S is computably enumerable if and only if there is
a computable relation Rxy such that

S = {x : ∃y Rxy}.

Proof. In the forward direction, suppose S is computably enumerable. Then
for some e, S = We. For this value of e we can write S as

S = {x : ∃y T (e, x, y)}.

In the reverse direction, suppose S = {x : ∃y Rxy}. Define f by

f(x) ≃ µy AtomRx, y.

Then f is partial computable, and S is the domain of f .
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§14.11 Computably Enumerable Sets are Closed under
Union and Intersection

The following theorem gives some closure properties on the set of computably
enumerable sets.

Theorem 1411A. Suppose A and B are computably enumerable. Then so
are A ∩B and A ∪B.

Proof. Theorem 1410A allows us to use various characterizations of the com-
putably enumerable sets. By way of illustration, we will provide a few different
proofs.

For the first proof, suppose A is enumerated by a computable function f ,
and B is enumerated by a computable function g. Let

h(x) = µy (f(y) = x ∨ g(y) = x) and

j(x) = µy (f((y)0) = x ∧ g((y)1) = x).

Then A ∪B is the domain of h, and A ∩B is the domain of j.
Here is what is going on, in computational terms: given procedures that

enumerate A and B, we can semi-decide if an element x is in A∪B by looking
for x in either enumeration; and we can semi-decide if an element x is in A∩B
for looking for x in both enumerations at the same time.

For the second proof, suppose again that A is enumerated by f and B is
enumerated by g. Let

k(x) =

{
f(x/2) if x is even

g((x− 1)/2) if x is odd.

Then k enumerates A ∪ B; the idea is that k just alternates between the enu-
merations offered by f and g. Enumerating A∩B is tricker. If A∩B is empty,
it is trivially computably enumerable. Otherwise, let c be any element of A∩B,
and define l by

l(x) =

{
f((x)0) if f((x)0) = g((x)1)

c otherwise.

In computational terms, l runs through pairs of elements in the enumerations of
f and g, and outputs every match it finds; otherwise, it just stalls by outputting
c.

For the last proof, suppose A is the domain of the partial function m(x)
and B is the domain of the partial function n(x). Then A ∩ B is the domain
of the partial function m(x) + n(x).

In computational terms, if A is the set of values for which m halts and B
is the set of values for which n halts, A ∩B is the set of values for which both
procedures halt.

Expressing A ∪ B as a set of halting values is more difficult, because one
has to simulate m and n in parallel. Let d be an index for m and let e be an
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index for n; in other words, m = φd and n = φe. Then A∪B is the domain of
the function

p(x) = µy (T (d, x, y) ∨ T (e, x, y)).

In computational terms, on input x, p searches for either a halting computation
for m or a halting computation for n, and halts if it finds either one.

§14.12 Computably Enumerable Sets not Closed under
Complement

Suppose A is computably enumerable. Is the complement of A, A = N \
A, necessarily computably enumerable as well? The following theorem and
corollary show that the answer is “no.”

Theorem 1412A. Let A be any set of natural numbers. Then A is com-
putable if and only if both A and A are computably enumerable.

Proof. The forwards direction is easy: if A is computable, then A is computable
as well (χA = 1 −̇ χA), and so both are computably enumerable.

In the other direction, suppose A and A are both computably enumerable.
Let A be the domain of φd, and let A be the domain of φe. Define h by

h(x) = µs (T (d, x, s) ∨ T (e, x, s)).

In other words, on input x, h searches for either a halting computation of φd

or a halting computation of φe. Now, if x ∈ A, it will succeed in the first case,
and if x ∈ A, it will succeed in the second case. So, h is a total computable
function. But now we have that for every x, x ∈ A if and only if T (e, x, h(x)),
i.e., if φe is the one that is defined. Since T (e, x, h(x)) is a computable relation,
A is computable.

It is easier to understand what is going on in informal computational terms:
to decide A, on input x search for halting computations of φe and φf . One of
them is bound to halt; if it is φe, then x is in A, and otherwise, x is in A.

Corollary 1412B. K0 is not computably enumerable.

Proof. We know that K0 is computably enumerable, but not computable. If
K0 were computably enumerable, then K0 would be computable by Theo-
rem 1412A.

§14.13 Reducibility

We now know that there is at least one set, K0, that is computably enumerable
but not computable. It should be clear that there are others. The method of
reducibility provides a powerful method of showing that other sets have these
properties, without constantly having to return to first principles.
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Generally speaking, a “reduction” of a set A to a set B is a method of
transforming answers to whether or not elements are in B into answers as to
whether or not elements are in A. We will focus on a notion called “many-
one reducibility,” but there are many other notions of reducibility available,
with varying properties. Notions of reducibility are also central to the study
of computational complexity, where efficiency issues have to be considered as
well. For example, a set is said to be “NP-complete” if it is in NP and every
NP problem can be reduced to it, using a notion of reduction that is similar to
the one described below, only with the added requirement that the reduction
can be computed in polynomial time.

We have already used this notion implicitly. Define the set K by

K = {x : φx(x) ↓},

i.e., K = {x : x ∈ Wx}. Our proof that the halting problem in unsolvable,
Theorem 146A, shows most directly that K is not computable. Recall that K0

is the set
K0 = {⟨e, x⟩ : φe(x) ↓}.

i.e. K0 = {⟨x, e⟩ : x ∈ We}. It is easy to extend any proof of the uncomputabil-
ity of K to the uncomputability of K0: if K0 were computable, we could decide
whether or not an element x is in K simply by asking whether or not the pair
⟨x, x⟩ is in K0. The function f which maps x to ⟨x, x⟩ is an example of a
reduction of K to K0.

Definition 1413A. Let A and B be sets. Then A is said to be many-one
reducible to B, written A ≤m B, if there is a computable function f such that
for every natural number x,

x ∈ A if and only if f(x) ∈ B.

If A is many-one reducible to B and vice-versa, then A and B are said to be
many-one equivalent, written A ≡m B.

If the function f in the definition above happens to be injective, A is said
to be one-one reducible to B. Most of the reductions described below meet
this stronger requirement, but we will not use this fact.

It is true, but by no means obvious, that one-one reducibility really is a
stronger requirement than many-one reducibility. In other words, there are
infinite sets A and B such that A is many-one reducible to B but not one-one
reducible to B.

§14.14 Properties of Reducibility

The intuition behind writing A ≤m B is that A is “no harder than” B. The
following two propositions support this intuition.

Proposition 1414A. If A ≤m B and B ≤m C, then A ≤m C.
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Proof. Composing a reduction of A to B with a reduction of B to C yields a
reduction of A to C. (You should check the details!)

Proposition 1414B. Let A and B be any sets, and suppose A is many-one
reducible to B.

1. If B is computably enumerable, so is A.

2. If B is computable, so is A.

Proof. Let f be a many-one reduction from A to B. For the first claim, just
check that if B is the domain of a partial function g, then A is the domain
of g ◦ f :

x ∈ Aiff f(x) ∈ B

iff g(f(x)) ↓ .

For the second claim, remember that if B is computable then B and B
are computably enumerable. It is not hard to check that f is also a many-one
reduction of A to B, so, by the first part of this proof, A and A are computably
enumerable. So A is computable as well. (Alternatively, you can check that
χA = χB ◦ f ; so if χB is computable, then so is χA.)

A more general notion of reducibility called Turing reducibility is useful
in other contexts, especially for proving undecidability results. Note that by
corollary 1412B, the complement of K0 is not reducible to K0, since it is not
computably enumerable. But, intuitively, if you knew the answers to questions
about K0, you would know the answer to questions about its complement as
well. A set A is said to be Turing reducible to B if one can determine answers to
questions in A using a computable procedure that can ask questions about B.
This is more liberal than many-one reducibility, in which (1) you are only
allowed to ask one question about B, and (2) a “yes” answer has to translate
to a “yes” answer to the question about A, and similarly for “no.” It is still
the case that if A is Turing reducible to B and B is computable then A is
computable as well (though, as we have seen, the analogous statement does
not hold for computable enumerability).

You should think about the various notions of reducibility we have dis-
cussed, and understand the distinctions between them. We will, however, only
deal with many-one reducibility in this chapter. Incidentally, both types of
reducibility discussed in the last paragraph have analogues in computational
complexity, with the added requirement that the Turing machines run in poly-
nomial time: the complexity version of many-one reducibility is known as Karp
reducibility, while the complexity version of Turing reducibility is known as
Cook reducibility.
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§14.15 Complete Computably Enumerable Sets

Definition 1415A. A set A is a complete computably enumerable set (un-
der many-one reducibility) if

1. A is computably enumerable, and

2. for any other computably enumerable set B, B ≤m A.

In other words, complete computably enumerable sets are the “hardest”
computably enumerable sets possible; they allow one to answer questions about
any computably enumerable set.

Theorem 1415B. K, K0, and K1 are all complete computably enumerable
sets.

Proof. To see that K0 is complete, let B be any computably enumerable set.
Then for some index e,

B = We = {x : φe(x) ↓}.

Let f be the function f(x) = ⟨e, x⟩. Then for every natural number x, x ∈ B
if and only if f(x) ∈ K0. In other words, f reduces B to K0.

To see that K1 is complete, note that in the proof of Proposition 1416A we
reduced K0 to it. So, by Proposition 1414A, any computably enumerable set
can be reduced to K1 as well.

K can be reduced to K0 in much the same way.

So, it turns out that all the examples of computably enumerable sets that
we have considered so far are either computable, or complete. This should
seem strange! Are there any examples of computably enumerable sets that
are neither computable nor complete? The answer is yes, but it wasn’t until
the middle of the 1950s that this was established by Friedberg and Muchnik,
independently.

§14.16 An Example of Reducibility

Let us consider an application of Proposition 1414B.

Proposition 1416A. Let

K1 = {e : φe(0) ↓}.

Then K1 is computably enumerable but not computable.

Proof. Since K1 = {e : ∃s T (e, 0, s)}, K1 is computably enumerable by Theo-
rem 1410B.

To show that K1 is not computable, let us show that K0 is reducible to it.
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This is a little bit tricky, since using K1 we can only ask questions about
computations that start with a particular input, 0. Suppose you have a smart
friend who can answer questions of this type (friends like this are known as
“oracles”). Then suppose someone comes up to you and asks you whether or
not ⟨e, x⟩ is in K0, that is, whether or not machine e halts on input x. One
thing you can do is build another machine, ex, that, for any input, ignores that
input and instead runs e on input x. Then clearly the question as to whether
machine e halts on input x is equivalent to the question as to whether machine
ex halts on input 0 (or any other input). So, then you ask your friend whether
this new machine, ex, halts on input 0; your friend’s answer to the modified
question provides the answer to the original one. This provides the desired
reduction of K0 to K1.

Using the universal partial computable function, let f be the 3-ary function
defined by

f(x, y, z) ≃ φx(y).

Note that f ignores its third input entirely. Pick an index e such that f = φ3
e;

so we have

φ3
e(x, y, z) ≃ φx(y).

By the s-m-n theorem, there is a function s(e, x, y) such that, for every z,

φs(e,x,y)(z) ≃ φ3
e(x, y, z)

≃ φx(y).

In terms of the informal argument above, s(e, x, y) is an index for the ma-
chine that, for any input z, ignores that input and computes φx(y).

In particular, we have

φs(e,x,y)(0) ↓ if and only if φx(y) ↓ .

In other words, ⟨x, y⟩ ∈ K0 if and only if s(e, x, y) ∈ K1. So the function g
defined by

g(w) = s(e, (w)0, (w)1)

is a reduction of K0 to K1.

§14.17 Totality is Undecidable

Let us consider one more example of using the s-m-n theorem to show that
something is noncomputable. Let Tot be the set of indices of total computable
functions, i.e.

Tot = {x : for every y, φx(y) ↓}.

Proposition 1417A. Tot is not computable.
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Proof. To see that Tot is not computable, it suffices to show that K is reducible
to it. Let h(x, y) be defined by

h(x, y) ≃

{
0 if x ∈ K

undefined otherwise

Note that h(x, y) does not depend on y at all. It should not be hard to see that
h is partial computable: on input x, y, the we compute h by first simulating
the function φx on input x; if this computation halts, h(x, y) outputs 0 and
halts. So h(x, y) is just Z(µs T (x, x, s)), where Z is the constant zero function.

Using the s-m-n theorem, there is a primitive recursive function k(x) such
that for every x and y,

φk(x)(y) =

{
0 if x ∈ K

undefined otherwise

So φk(x) is total if x ∈ K, and undefined otherwise. Thus, k is a reduction of
K to Tot.

It turns out that Tot is not even computably enumerable—its complexity
lies further up on the “arithmetic hierarchy.” But we will not worry about this
strengthening here.

§14.18 Rice’s Theorem

If you think about it, you will see that the specifics of Tot do not play into
the proof of Proposition 1417A. We designed h(x, y) to act like the constant
function j(y) = 0 exactly when x is in K; but we could just as well have made
it act like any other partial computable function under those circumstances.
This observation lets us state a more general theorem, which says, roughly,
that no nontrivial property of computable functions is decidable.

Keep in mind that φ0, φ1, φ2, . . . is our standard enumeration of the partial
computable functions.

Theorem 1418A (Rice’s Theorem). Let C be any set of partial computable
functions, and let A = {n : φn ∈ C}. If A is computable, then either C is ∅ or
C is the set of all the partial computable functions.

An index set is a set A with the property that if n and m are indices which
“compute” the same function, then either both n and m are in A, or neither is.
It is not hard to see that the set A in the theorem has this property. Conversely,
if A is an index set and C is the set of functions computed by these indices,
then A = {n : φn ∈ C}.

With this terminology, Rice’s theorem is equivalent to saying that no non-
trivial index set is decidable. To understand what the theorem says, it is helpful
to emphasize the distinction between programs (say, in your favorite program-
ming language) and the functions they compute. There are certainly questions
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about programs (indices), which are syntactic objects, that are computable:
does this program have more than 150 symbols? Does it have more than 22
lines? Does it have a “while” statement? Does the string “hello world” every
appear in the argument to a “print” statement? Rice’s theorem says that no
nontrivial question about the program’s behavior is computable. This includes
questions like these: does the program halt on input 0? Does it ever halt?
Does it ever output an even number?

Proof of Rice’s theorem. Suppose C is neither ∅ nor the set of all the partial
computable functions, and let A be the set of indices of functions in C. We
will show that if A were computable, we could solve the halting problem; so
A is not computable.

Without loss of generality, we can assume that the function f which is
nowhere defined is not in C (otherwise, switch C and its complement in the
argument below). Let g be any function in C. The idea is that if we could
decide A, we could tell the difference between indices computing f , and in-
dices computing g; and then we could use that capability to solve the halting
problem.

Here’s how. Using the universal computation predicate, we can define a
function

h(x, y) ≃

{
undefined if φx(x) ↑
g(y) otherwise.

To compute h, first we try to compute φx(x); if that computation halts, we
go on to compute g(y); and if that computation halts, we return the output.
More formally, we can write

h(x, y) ≃ P 2
0 (g(y),Un(x, x)).

where P 2
0 (z0, z1) = z0 is the 2-place projection function returning the 0-th

argument, which is computable.
Then h is a composition of partial computable functions, and the right side

is defined and equal to g(y) just when Un(x, x) and g(y) are both defined.
Notice that for a fixed x, if φx(x) is undefined, then h(x, y) is undefined for

every y; and if φx(x) is defined, then h(x, y) ≃ g(y). So, for any fixed value
of x, either h(x, y) acts just like f or it acts just like g, and deciding whether or
not φx(x) is defined amounts to deciding which of these two cases holds. But
this amounts to deciding whether or not hx(y) ≃ h(x, y) is in C or not, and if
A were computable, we could do just that.

More formally, since h is partial computable, it is equal to the function φk

for some index k. By the s-m-n theorem there is a primitive recursive function
s such that for each x, φs(k,x)(y) = hx(y). Now we have that for each x, if
φx(x) ↓, then φs(k,x) is the same function as g, and so s(k, x) is in A. On the
other hand, if φx(x) ↑, then φs(k,x) is the same function as f , and so s(k, x)
is not in A. In other words we have that for every x, x ∈ K if and only if
s(k, x) ∈ A. If A were computable, K would be also, which is a contradiction.
So A is not computable.
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Rice’s theorem is very powerful. The following immediate corollary shows
some sample applications.

Corollary 1418B. The following sets are undecidable.

1. {x : 17 is in the range of φx}

2. {x : φx is constant}

3. {x : φx is total}

4. {x : whenever y < y′, φx(y) ↓, and if φx(y′) ↓, then φx(y) < φx(y′)}

Proof. These are all nontrivial index sets.

§14.19 The Fixed-Point Theorem

Let’s consider the halting problem again. As temporary notation, let us write
⌜φx(y)⌝ for ⟨x, y⟩; think of this as representing a “name” for the value φx(y).
With this notation, we can reword one of our proofs that the halting problem
is undecidable.

Question: is there a computable function h, with the following property?
For every x and y,

h(⌜φx(y)⌝) =

{
1 if φx(y) ↓
0 otherwise.

Answer: No; otherwise, the partial function

g(x) ≃

{
0 if h(⌜φx(x)⌝) = 0

undefined otherwise

would be computable, and so have some index e. But then we have

φe(e) ≃

{
0 if h(⌜φe(e)⌝) = 0

undefined otherwise,

in which case φe(e) is defined if and only if it isn’t, a contradiction.
Now, take a look at the equation with φe. There is an instance of self-

reference there, in a sense: we have arranged for the value of φe(e) to depend
on ⌜φe(e)⌝, in a certain way. The fixed-point theorem says that we can do this,
in general—not just for the sake of proving contradictions.

Lemma 1419A gives two equivalent ways of stating the fixed-point theorem.
Logically speaking, the fact that the statements are equivalent follows from the
fact that they are both true; but what we really mean is that each one follows
straightforwardly from the other, so that they can be taken as alternative
statements of the same theorem.

Lemma 1419A. The following statements are equivalent:
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1. For every partial computable function g(x, y), there is an index e such
that for every y,

φe(y) ≃ g(e, y).

2. For every computable function f(x), there is an index e such that for
every y,

φe(y) ≃ φf(e)(y).

Proof. (1) ⇒ (2): Given f , define g by g(x, y) ≃ Un(f(x), y). Use (1) to get
an index e such that for every y,

φe(y) = Un(f(e), y)

= φf(e)(y).

(2) ⇒ (1): Given g, use the s-m-n theorem to get f such that for every x
and y, φf(x)(y) ≃ g(x, y). Use (2) to get an index e such that

φe(y) = φf(e)(y)

= g(e, y).

This concludes the proof.

Before showing that statement (1) is true (and hence (2) as well), consider
how bizarre it is. Think of e as being a computer program; statement (1) says
that given any partial computable g(x, y), you can find a computer program
e that computes ge(y) ≃ g(e, y). In other words, you can find a computer
program that computes a function that references the program itself.

Theorem 1419B. The two statements in Lemma 1419A are true. Specifi-
cally, for every partial computable function g(x, y), there is an index e such
that for every y,

φe(y) ≃ g(e, y).

Proof. The ingredients are already implicit in the discussion of the halting
problem above. Let diag(x) be a computable function which for each x returns
an index for the function fx(y) ≃ φx(x, y), i.e.

φdiag(x)(y) ≃ φx(x, y).

Think of diag as a function that transforms a program for a 2-ary function
into a program for a 1-ary function, obtained by fixing the original program as
its first argument. The function diag can be defined formally as follows: first
define s by

s(x, y) ≃ Un2(x, x, y),

where Un2 is a 3-ary function that is universal for partial computable 2-ary
functions. Then, by the s-m-n theorem, we can find a primitive recursive
function diag satisfying

φdiag(x)(y) ≃ s(x, y).
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Now, define the function l by

l(x, y) ≃ g(diag(x), y).

and let ⌜l⌝ be an index for l. Finally, let e = diag(⌜l⌝). Then for every y, we
have

φe(y) ≃ φ
diag(⌜l⌝)(y)

≃ φ⌜l⌝(⌜l⌝, y)

≃ l(⌜l⌝, y)

≃ g(diag(⌜l⌝), y)

≃ g(e, y),

as required.

What’s going on? Suppose you are given the task of writing a computer
program that prints itself out. Suppose further, however, that you are working
with a programming language with a rich and bizarre library of string functions.
In particular, suppose your programming language has a function diag which
works as follows: given an input string s, diag locates each instance of the
symbol ‘x’ occuring in s, and replaces it by a quoted version of the original
string. For example, given the string

hello x world

as input, the function returns

hello ’hello x world’ world

as output. In that case, it is easy to write the desired program; you can check
that

print(diag(’print(diag(x))’))

does the trick. For more common programming languages like C++ and Java,
the same idea (with a more involved implementation) still works.

We are only a couple of steps away from the proof of the fixed-point theo-
rem. Suppose a variant of the print function print(x, y) accepts a string x and
another numeric argument y, and prints the string x repeatedly, y times. Then
the “program”

getinput(y); print(diag(’getinput(y); print(diag(x), y)’), y)

prints itself out y times, on input y. Replacing the getinput—print—diag
skeleton by an arbitrary funtion g(x, y) yields

g(diag(’g(diag(x), y)’), y)
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which is a program that, on input y, runs g on the program itself and y.
Thinking of “quoting” with “using an index for,” we have the proof above.

For now, it is o.k. if you want to think of the proof as formal trickery, or
black magic. But you should be able to reconstruct the details of the argument
given above. When we prove the incompleteness theorems (and the related
“fixed-point theorem”) we will discuss other ways of understanding why it
works.

The same idea can be used to get a “fixed point” combinator. Suppose you
have a lambda term g, and you want another term k with the property that k
is β-equivalent to gk. Define terms

diag(x) = xx

and
l(x) = g(diag(x))

using our notational conventions; in other words, l is the term λx. g(xx). Let
k be the term ll. Then we have

k = (λx. g(xx))(λx. g(xx))

−→→ g((λx. g(xx))(λx. g(xx)))

= gk.

If one takes
Y = λg. ((λx. g(xx))(λx. g(xx)))

then Y g and g(Y g) reduce to a common term; so Y g ≡β g(Y g). This is known
as “Curry’s combinator.” If instead one takes

Y = (λxg. g(xxg))(λxg. g(xxg))

then in fact Y g reduces to g(Y g), which is a stronger statement. This latter
version of Y is known as “Turing’s combinator.”

§14.20 Applying the Fixed-Point Theorem

The fixed-point theorem essentially lets us define partial computable functions
in terms of their indices. For example, we can find an index e such that for
every y,

φe(y) = e + y.

As another example, one can use the proof of the fixed-point theorem to design
a program in Java or C++ that prints itself out.

Remember that if for each e, we let We be the domain of φe, then the
sequence W0, W1, W2, . . . enumerates the computably enumerable sets. Some
of these sets are computable. One can ask if there is an algorithm which takes
as input a value x, and, if Wx happens to be computable, returns an index for
its characteristic function. The answer is “no,” there is no such algorithm:
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Theorem 1420A. There is no partial computable function f with the fol-
lowing property: whenever We is computable, then f(e) is defined and φf(e) is
its characteristic function.

Proof. Let f be any computable function; we will construct an e such that We

is computable, but φf(e) is not its characteristic function. Using the fixed point
theorem, we can find an index e such that

φe(y) ≃

{
0 if y = 0 and φf(e)(0) ↓= 0

undefined otherwise.

That is, e is obtained by applying the fixed-point theorem to the function
defined by

g(x, y) ≃

{
0 if y = 0 and φf(x)(0) ↓= 0

undefined otherwise.

Informally, we can see that g is partial computable, as follows: on input x and
y, the algorithm first checks to see if y is equal to 0. If it is, the algorithm
computes f(x), and then uses the universal machine to compute φf(x)(0). If
this last computation halts and returns 0, the algorithm returns 0; otherwise,
the algorithm doesn’t halt.

But now notice that if φf(e)(0) is defined and equal to 0, then φe(y) is
defined exactly when y is equal to 0, so We = {0}. If φf(e)(0) is not defined,
or is defined but not equal to 0, then We = ∅. Either way, φf(e) is not the
characteristic function of We, since it gives the wrong answer on input 0.

§14.21 Defining Functions using Self-Reference

It is generally useful to be able to define functions in terms of themselves. For
example, given computable functions k, l, and m, the fixed-point lemma tells us
that there is a partial computable function f satisfying the following equation
for every y:

f(y) ≃

{
k(y) if l(y) = 0

f(m(y)) otherwise.

Again, more specifically, f is obtained by letting

g(x, y) ≃

{
k(y) if l(y) = 0

φx(m(y)) otherwise

and then using the fixed-point lemma to find an index e such that φe(y) =
g(e, y).

For a concrete example, the “greatest common divisor” function gcd(u, v)
can be defined by

gcd(u, v) ≃

{
v if 0 = 0

gcd(mod(v, u), u) otherwise
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where mod(v, u) denotes the remainder of dividing v by u. An appeal to the
fixed-point lemma shows that gcd is partial computable. (In fact, this can be
put in the format above, letting y code the pair ⟨u, v⟩.) A subsequent induction
on u then shows that, in fact, gcd is total.

Of course, one can cook up self-referential definitions that are much fancier
than the examples just discussed. Most programming languages support def-
initions of functions in terms of themselves, one way or another. Note that
this is a little bit less dramatic than being able to define a function in terms
of an index for an algorithm computing the functions, which is what, in full
generality, the fixed-point theorem lets you do.

§14.22 Minimization with Lambda Terms

When it comes to the lambda calculus, we’ve shown the following:

1. Every primitive recursive function is represented by a lambda term.

2. There is a lambda term Y such that for any lambda term G, Y G −→→
G(Y G).

To show that every partial computable function is represented by some lambda
term, we only need to show the following.

Lemma 1422A. Suppose f(x, y) is primitive recursive. Let g be defined by

g(x) ≃ µy f(x, y) = 0.

Then g is represented by a lambda term.

Proof. The idea is roughly as follows. Given x, we will use the fixed-point
lambda term Y to define a function hx(n) which searches for a y starting at n;
then g(x) is just hx(0). The function hx can be expressed as the solution of a
fixed-point equation:

hx(n) ≃

{
n if f(x, n) = 0

hx(n + 1) otherwise.

Here are the details. Since f is primitive recursive, it is represented by
some term F . Remember that we also have a lambda term D such that
D(M,N, 0) −→→ M and D(M,N, 1) −→→ N . Fixing x for the moment, to repre-
sent hx we want to find a term H (depending on x) satisfying

H(n) ≡ D(n,H(S(n)), F (x, n)).

We can do this using the fixed-point term Y . First, let U be the term

λh. λz.D(z, (h(Sz)), F (x, z)),
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and then let H be the term Y U . Notice that the only free variable in H is x.
Let us show that H satisfies the equation above.

By the definition of Y , we have

H = Y U ≡ U(Y U) = U(H).

In particular, for each natural number n, we have

H(n) ≡ U(H,n)

−→→ D(n,H(S(n)), F (x, n)),

as required. Notice that if you substitute a numeral m for x in the last line,
the expression reduces to n if F (m,n) reduces to 0, and it reduces to H(S(n))
if F (m,n) reduces to any other numeral.

To finish off the proof, let G be λx.H(0). Then G represents g; in other
words, for every m, G(m) reduces to reduces to g(m), if g(m) is defined, and
has no normal form otherwise.

Problems

Problem 1. Give a reduction of K to K0.
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Chapter 15

Introduction to Incompleteness

§15.0 Historical Background

In this section, we will briefly discuss historical developments that will help
put the incompleteness theorems in context. In particular, we will give a very
sketchy overview of the history of mathematical logic; and then say a few words
about the history of the foundations of mathematics.

The phrase “mathematical logic” is ambiguous. One can interpret the word
“mathematical” as describing the subject matter, as in, “the logic of mathe-
matics,” denoting the principles of mathematical reasoning; or as describing
the methods, as in “the mathematics of logic,” denoting a mathematical study
of the principles of reasoning. The account that follows involves mathematical
logic in both senses, often at the same time.

The study of logic began, essentially, with Aristotle, who lived approxi-
mately 384–322 bce. His Categories, Prior analytics, and Posterior analytics
include systematic studies of the principles of scientific reasoning, including a
thorough and systematic study of the syllogism.

Aristotle’s logic dominated scholastic philosophy through the middle ages;
indeed, as late as eighteenth century Kant maintained that Aristotle’s logic
was perfect and in no need of revision. But the theory of the syllogism is far
too limited to model anything but the most superficial aspects of mathematical
reasoning. A century earlier, Leibniz, a contemporary of Newton’s, imagined
a complete “calculus” for logical reasoning, and made some rudimentary steps
towards designing such a calculus, essentially describing a version of proposi-
tional logic.

The nineteenth century was a watershed for logic. In 1854 George Boole
wrote The Laws of Thought, with a thorough algebraic study of propositional
logic that is not far from modern presentations. In 1879 Gottlob Frege pub-
lished his Begriffsschrift (Concept writing) which extends propositional logic
with quantifiers and relations, and thus includes first-order logic. In fact,
Frege’s logical systems included higher-order logic as well, and more. In his
Basic Laws of Arithmetic, Frege set out to show that all of arithmetic could
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be derived in his Begriffsschrift from purely logical assumption. Unfortunately,
these assumptions turned out to be inconsistent, as Russell showed in 1902.
But setting aside the inconsistent axiom, Frege more or less invented modern
logic singlehandedly, a startling achievement. Quantificational logic was also
developed independently by algebraically-minded thinkers after Boole, includ-
ing Peirce and Schröder.

Let us now turn to developments in the foundations of mathematics. Of
course, since logic plays an important role in mathematics, there is a good
deal of interaction with the developments just described. For example, Frege
developed his logic with the explicit purpose of showing that all of mathematics
could be based solely on his logical framework; in particular, he wished to show
that mathematics consists of a priori analytic truths instead of, as Kant had
maintained, a priori synthetic ones.

Many take the birth of mathematics proper to have occurred with the
Greeks. Euclid’s Elements, written around 300 B.C., is already a mature repre-
sentative of Greek mathematics, with its emphasis on rigor and precision. The
definitions and proofs in Euclid’s Elements survive more or less in tact in high
school geometry textbooks today (to the extent that geometry is still taught
in high schools). This model of mathematical reasoning has been held to be a
paradigm for rigorous argumentation not only in mathematics but in branches
of philosophy as well. (Spinoza even presented moral and religious arguments
in the Euclidean style, which is strange to see!)

Calculus was invented by Newton and Leibniz in the seventeenth century.
(A fierce priority dispute raged for centuries, but most scholars today hold that
the two developments were for the most part independent.) Calculus involves
reasoning about, for example, infinite sums of infinitely small quantities; these
features fueled criticism by Bishop Berkeley, who argued that belief in God was
no less rational than the mathematics of his time. The methods of calculus
were widely used in the eighteenth century, for example by Leonhard Euler,
who used calculations involving infinite sums with dramatic results.

In the nineteenth century, mathematicians tried to address Berkeley’s crit-
icisms by putting calculus on a firmer foundation. Efforts by Cauchy, Weier-
strass, Bolzano, and others led to our contemporary definitions of limits, conti-
nuity, differentiation, and integration in terms of “epsilons and deltas,” in other
words, devoid of any reference to infinitesimals. Later in the century, mathe-
maticians tried to push further, and explain all aspects of calculus, including
the real numbers themselves, in terms of the natural numbers. (Kronecker:
“God created the whole numbers, all else is the work of man.”) In 1872,
Dedekind wrote “Continuity and the irrational numbers,” where he showed
how to “construct” the real numbers as sets of rational numbers (which, as
you know, can be viewed as pairs of natural numbers); in 1888 he wrote “Was
sind und was sollen die Zahlen” (roughly, “What are the natural numbers, and
what should they be?”) which aimed to explain the natural numbers in purely
“logical” terms. In 1887 Kronecker wrote “Über den Zahlbegriff” (“On the
concept of number”) where he spoke of representing all mathematical object
in terms of the integers; in 1889 Giuseppe Peano gave formal, symbolic axioms
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for the natural numbers.

The end of the nineteenth century also brought a new boldness in dealing
with the infinite. Before then, infinitary objects and structures (like the set
of natural numbers) were treated gingerly; “infinitely many” was understood
as “as many as you want,” and “approaches in the limit” was understood as
“gets as close as you want.” But Georg Cantor showed that it was possible to
take the infinite at face value. Work by Cantor, Dedekind, and others help to
introduce the general set-theoretic understanding of mathematics that is now
widely accepted.

This brings us to twentieth century developments in logic and foundations.
In 1902 Russell discovered the paradox in Frege’s logical system. In 1904 Zer-
melo proved Cantor’s well-ordering principle, using the so-called “axiom of
choice”; the legitimacy of this axiom prompted a good deal of debate. Between
1910 and 1913 the three volumes of Russell and Whitehead’s Principia Mathe-
matica appeared, extending the Fregean program of establishing mathematics
on logical grounds. Unfortunately, Russell and Whitehead were forced to adopt
two principles that seemed hard to justify as purely logical: an axiom of in-
finity and an axiom of “reducibility.” In the 1900’s Poincaré criticized the use
of “impredicative definitions” in mathematics, and in the 1910’s Brouwer be-
gan proposing to refound all of mathematics in an “intuitionistic” basis, which
avoided the use of the law of the excluded middle (α ∨ ¬α).

Strange days indeed! The program of reducing all of mathematics to logic
is now referred to as “logicism,” and is commonly viewed as having failed, due
to the difficulties mentioned above. The program of developing mathematics
in terms of intuitionistic mental constructions is called “intuitionism,” and is
viewed as posing overly severe restrictions on everyday mathematics. Around
the turn of the century, David Hilbert, one of the most influential mathe-
maticians of all time, was a strong supporter of the new, abstract methods
introduced by Cantor and Dedekind: “no one will drive us from the paradise
that Cantor has created for us.” At the same time, he was sensitive to founda-
tional criticisms of these new methods (oddly enough, now called “classical”).
He proposed a way of having one’s cake and eating it too:

1. Represent classical methods with formal axioms and rules; represent
mathematical questions as wffs in an axiomatic system.

2. Use safe, “finitary” methods to prove that these formal deductive systems
are consistent.

Hilbert’s work went a long way toward accomplishing the first goal. In 1899,
he had done this for geometry in his celebrated book Foundations of geometry.
In subsequent years, he and a number of his students and collaborators worked
on other areas of mathematics to do what Hilbert had done for geometry.
Hilbert himself gave axiom systems for arithmetic and analysis. Zermelo gave
an axiomatization of set theory, which was expanded on by Fraenkel, Skolem,
von Neumann, and others. By the mid-1920s, there were two approaches that
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laid claim to the title of an axiomatization of “all” of mathematics, the Prin-
cipia mathematica of Russell and Whitehead, and what came to be known as
Zermelo-Fraenkel set theory.

In 1921, Hilbert set out on a research project to establish the goal of proving
these systems to be consistent. He was aided in this project by several of his
students, in particular Bernays, Ackermann, and later Gentzen. The basic
idea for accomplishing this goal was to cast the question of the possibility of
a derivation of an inconsistency in mathematics as a combinatorial problem
about possible sequences of symbols, namely possible sequences of sentences
which meet the criterion of being a correct derivation of, say, α ∧ ¬α from the
axioms of an axiom system for arithmetic, analysis, or set theory. A proof
of the impossibility of such a sequence of symbols would—since it is itself
a mathematical proof—be formalizable in these axiomatic systems. In other
words, there would be some sentence Con which states that, say, arithmetic
is consistent. Moreover, this sentence should be provable in the systems in
question, especially if its proof requires only very restricted, “finitary” means.

The second aim, that the axiom systems developed would settle every math-
ematical question, can be made precise in two ways. In one way, we can for-
mulate it as follows: For any sentence α in the language of an axiom system
for mathematics, either α or ¬α is provable from the axioms. If this were true,
then there would be no sentences which can neither be proved nor refuted on
the basis of the axioms, no questions which the axioms do not settle. An axiom
system with this property is called complete. Of course, for any given sentence
it might still be a difficult task to determine which of the two alternatives
holds. But in principle there should be a method to do so. In fact, for the ax-
iom and derivation systems considered by Hilbert, completeness would imply
that such a method exists—although Hilbert did not realize this. The second
way to interpret the question would be this stronger requirement: that there
be a mechanical, computational method which would determine, for a given
sentence α, whether it is derivable from the axioms or not.

In 1931, Gödel proved the two “incompleteness theorems,” which showed
that this program could not succeed. There is no axiom system for mathematics
which is complete, specifically, the sentence that expresses the consistency of
the axioms is a sentence which can neither be proved nor refuted.

This struck a lethal blow to Hilbert’s original program. However, as is
so often the case in mathematics, it also opened up exciting new avenues for
research. If there is no one, all-encompassing formal system of mathematics,
it makes sense to develop more circumscribesd systems and investigate what
can be proved in them. It also makes sense to develop less restricted methods
of proof for establishing the consistency of these systems, and to find ways to
measure how hard it is to prove their consistency. Since Gödel showed that (al-
most) every formal system has questions it cannot settle, it makes sense to look
for “interesting” questions a given formal system cannot settle, and to figure
out how strong a formal system has to be to settle them. To the present day,
logicians have been pursuing these questions in a new mathematical discipline,
the theory of proofs.
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§15.1 Definitions

In order to carry out Hilbert’s project of formalizing mathematics and showing
that such a formalization is consistent and complete, the first order of business
would be that of picking a language, logical framework, and a system of ax-
ioms. For our purposes, let us suppose that mathematics can be formalized in
a first-order language, i.e., that there is some set of constant symbols, function
symbols, and predicate symbols which, together with the connectives and quat-
ifiers of first-order logic, allow us to express the claims of mathematics. Most
people agree that such a language exists: the language of set theory, in which
∈ is the only non-logical symbol. That such a simple language is so expressive
is of course a very implausible claim at first sight, and it took a lot of work
to establish that practically of all mathematics can be expressed in this very
austere vocabulary. To keep things simple, for now, let’s restrict our discus-
sion to arithmetic, so the part of mathematics that just deals with the natural
numbers N. The natural language in which to express facts of arithmetic is LA.
LA contains a single two-place predicate symbol <, a single constant symbol 0,
one one-place function symbol ′, and two two-place function symbols + and ×.

Definition 151A. A set of sentences Γ is a theory if it is closed under
entailment, i.e., if Γ = {α : Γ ⊨ α}.

There are two easy ways to specify theories. One is as the set of sentences
true in some structure. For instance, consider the structure for LA in which the
domain is N and all non-logical symbols are interpreted as you would expect.

Definition 151B. The standard model of arithmetic is the structure B
defined as follows:

1. |B| = N

2. 0B = 0

3. ′B(n) = n + 1 for all n ∈ N

4. +B(n,m) = n + m for all n,m ∈ N

5. ×B(n,m) = n ·m for all n,m ∈ N

6. <B = {⟨n,m⟩ : n ∈ N,m ∈ N, n < m}

Note the difference between × and ·: × is a symbol in the language of
arithmetic. Of course, we’ve chosen it to remind us of multiplication, but ×
is not the multiplication operation but a two-place function symbol (officially,
f2
1 ). By contrast, · is the ordinary multiplication function. When you see

something like n · m, we mean the product of the numbers n and m; when
you see something like x × y we are talking about a term in the language of
arithmetic. In the standard model, the function symbol times is interpreted
as the function · on the natural numbers. For addition, we use + as both the
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function symbol of the language of arithmetic, and the addition function on
the natural numbers. Here you have to use the context to determine what is
meant.

Definition 151C. The theory of true arithmetic is the set of sentences sat-
isfied in the standard model of arithmetic, i.e.,

TA = {α :|=B α}.

TA is a theory, for whenever TA ⊨ α, α is satisfied in every structure which
satisfies TA. Since |=A TA, |=A α, and so α ∈ TA.

The other way to specify a theory Γ is as the set of sentences entailed
by some set of sentences Γ0. In that case, Γ is the “closure” of Γ0 under
entailment. Specifying a theory this way is only interesting if Γ0 is explicitly
specified, e.g., if the elements of Γ0 are listed. At the very least, Γ0 has to be
decidable, i.e., there has to be a computable test for when a sentence counts
as an element of Γ0 or not. We call the sentences in Γ0 axioms for Γ , and Γ
axiomatized by Γ0.

Definition 151D. A theory Γ is axiomatized by Γ0 iff

Γ = {α : Γ0 ⊨ α}

Definition 151E. The theory Q axiomatized by the following sentences is
known as “Robinson’s Q” and is a very simple theory of arithmetic.

∀x∀y (x′ = y′ → x = y) (Q1)

∀x 0 ̸= x′ (Q2)

∀x (x = 0 ∨ ∃y x = y′) (Q3)

∀x (x + 0) = x (Q4)

∀x∀y (x + y′) = (x + y)′ (Q5)

∀x (x× 0) = 0 (Q6)

∀x∀y (x× y′) = ((x× y) + x) (Q7)

∀x∀y (x < y ↔∃z (z′ + x) = y) (Q8)

The set of sentences {Q1, . . . , Q8} are the axioms of Q, so Q consists of all
sentences entailed by them:

Q = {α : {Q1, . . . , Q8} ⊨ α}.

Definition 151F. Suppose α(x) is a wff in LA with free variables x and y1,
. . . , yn. Then any sentence of the form

∀y1 . . . ∀yn ((α(0) ∧ ∀x (α(x) → α(x′))) →∀xα(x))

is an instance of the induction schema.
Peano arithmetic PA is the theory axiomatized by the axioms of Q together

with all instances of the induction schema.
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Every instance of the induction schema is true in B. This is easiest to see
if the wff α only has one free variable x. Then α(x) defines a subset Xα of N
in B. Xα is the set of all n ∈ N such that |=B α(x) [s] when s(x) = n. The
corresponding instance of the induction schema is

((α(0) ∧ ∀x (α(x) → α(x′))) →∀xα(x)).

If its antecedent is true in B, then 0 ∈ Xα and, whenever n ∈ Xα, so is n + 1.
Since 0 ∈ Xα, we get 1 ∈ Xα. With 1 ∈ Xα we get 2 ∈ Xα. And so on. So for
every n ∈ N, n ∈ Xα. But this means that ∀xα(x) is satisfied in B.

Both Q and PA are axiomatized theories. The big question is, how strong
are they? For instance, can PA prove all the truths about N that can be
expressed in LA? Specifically, do the axioms of PA settle all the questions
that can be formulated in LA?

Another way to put this is to ask: Is PA = TA? TA obviously does prove
(i.e., it includes) all the truths about N, and it settles all the questions that
can be formulated in LA, since if α is a sentence in LA, then either |=B α or
|=B ¬α, and so either TA ⊨ α or TA ⊨ ¬α. Call such a theory complete.

Definition 151G. A theory Γ is complete iff for every sentence α in its
language, either Γ ⊨ α or Γ ⊨ ¬α.

By the Completeness Theorem, Γ ⊨ α iff Γ ⊢ α, so Γ is complete iff for
every sentence α in its language, either Γ ⊢ α or Γ ⊢ ¬α.

Another question we are led to ask is this: Is there a computational proce-
dure we can use to test if a sentence is in TA, in PA, or even just in Q? We
can make this more precise by defining when a set (e.g., a set of sentences) is
decidable.

Definition 151H. A set X is decidable iff there is a computational procedure
which on input x returns 1 if x ∈ X and 0 otherwise.

So our question becomes: Is TA (PA, Q) decidable?
The answer to all these questions will be: no. None of these theories are

decidable. However, this phenomenon is not specific to these particular theo-
ries. In fact, any theory that satisfies certain conditions is subject to the same
results. One of these conditions, which Q and PA satisfy, is that they are
axiomatized by a decidable set of axioms.

Definition 151I. A theory is axiomatizable if it is axiomatized by a decidable
set of axioms.

Example 15.1.10. Any theory axiomatized by a finite set of sentences is axiom-
atizable, since any finite set is decidable. Thus, Q, for instance, is axiomatiz-
able.

Schematically axiomatized theories like PA are also axiomatizable. For to
test if β is among the axioms of PA, i.e., to compute the function χX where
χX(β) = 1 if β is an axiom of PA and = 0 otherwise, we can do the following:
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First, check if β is one of the axioms of Q. If it is, the answer is “yes” and the
value of χX(β) = 1. If not, test if it is an instance of the induction schema.
This can be done systematically; in this case, perhaps it’s easiest to see that
it can be done as follows: Any instance of the induction schema begins with a
number of universal quantifiers, and then a sub-wff that is a conditional. The
consequent of that conditional is ∀xα(x, y1, . . . , yn) where x and y1, . . . , yn are
all the free variables of α and the initial quantifiers of β bind the variables y1,
. . . , yn. Once we have extracted this α and checked that its free variables
match the variables bound by the universal qauntifiers at the front and ∀x, we
go on to check that the antecedent of the conditional matches

α(0, y1, . . . , yn) ∧ ∀x (α(x, y1, . . . , yn) → α(x′, y1, . . . , yn))

Again, if it does, β is an instance of the induction schema, and if it doesn’t, β
isn’t.

In answering this question—and the more general question of which theories
are complete or decidable—it will be useful to consider also the following defi-
nition. Recall that a set X is enumerable iff it is empty or if there is a surjective
function f : N → X. Such a function is called an enumeration of X.

Definition 151K. A set X is called computably enumerable (c.e. for short)
iff it is empty or it has a computable enumeration.

In addition to axiomatizability, another condition on theories to which the
incompleteness theorems apply will be that they are strong enough to prove
basic facts about computable functions and decidable relations. By “basic
facts,” we mean sentences which express what the values of computable func-
tions are for each of their arguments. And by “strong enough” we mean that
the theories in question count these sentences among its theorems. For in-
stance, consider a prototypical computable function: addition. The value of
+ for arguments 2 and 3 is 5, i.e., 2 + 3 = 5. A sentence in the language of
arithmetic that expresses that the value of + for arguments 2 and 3 is 5 is:
(2 + 3) = 5. And, e.g., Q proves this sentence. More generally, we would like
there to be, for each computable function f(x1, x2) a wff αf (x1, x2, y) in LA

such that Q ⊢ αf (n1, n2,m) whenever f(n1, n2) = m. In this way, Q proves
that the value of f for arguments n1, n2 is m. In fact, we require that it proves
a bit more, namely that no other number is the value of f for arguments n1, n2.
And the same goes for decidable relations. This is made precise in the following
two definitions.

Definition 151L. A wff α(x1, . . . , xk, y) represents the function f : Nk → N
in Γ iff whenever f(n1, . . . , nk) = m, then

1. Γ ⊢ α(n1, . . . , nk,m), and

2. Γ ⊢ ∀y(α(n1, . . . , nk, y) → y = m).
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Definition 151M. A wff α(x1, . . . , xk) represents the relation R ⊆ Nk iff,

1. whenever R(n1, . . . , nk), Γ ⊢ α(n1, . . . , nk), and

2. whenever not R(n1, . . . , nk), Γ ⊢ ¬α(n1, . . . , nk).

A theory is “strong enough” for the incompleteness theorems to apply if
it represents all computable functions and all decidable relations. Q and its
extensions satisfy this condition, but it will take us a while to establish this—
it’s a non-trivial fact about the kinds of things Q can prove, and it’s hard to
show because Q has only a few axioms from which we’ll have to prove all these
facts. However, Q is a very weak theory. So although it’s hard to prove that
Q represents all computable functions, most interesting theories are stronger
than Q, i.e., prove more than Q does. And if Q proves something, any stronger
theory does; since Q represents all computable functions, every stronger theory
does. This means that many interesting theories meet this condition of the
incompleteness theorems. So our hard work will pay off, since it shows that
the incompleteness theorems apply to a wide range of theories. Certainly, any
theory aiming to formalize “all of mathematics” must prove everything that
Q proves, since it should at the very least be able to capture the results of
elementary computations. So any theory that is a candidate for a theory of
“all of mathematics” will be one to which the incompleteness theorems apply.

§15.2 Overview of Incompleteness Results

Hilbert expected that mathematics could be formalized in an axiomatizable
theory which it would be possible to prove complete and decidable. Moreover,
he aimed to prove the consistency of this theory with very weak, “finitary,”
means, which would defend classical mathematics against the challenges of
intuitionism. Gödel’s incompleteness theorems showed that these goals cannot
be achieved.

Gödel’s first incompleteness theorem showed that a version of Russell and
Whitehead’s Principia Mathematica is not complete. But the proof was actu-
ally very general and applies to a wide variety of theories. This means that it
wasn’t just that Principia Mathematica did not manage to completely capture
mathematics, but that no acceptable theory does. It took a while to isolate
the features of theories that suffice for the incompleteness theorems to apply,
and to generalize Gödel’s proof to apply make it depend only on these fea-
tures. But we are now in a position to state a very general version of the first
incompleteness theorem for theories in the language LA of arithmetic.

Theorem 152A. If Γ is a consistent and axiomatizable theory in LA which
represents all computable functions and decidable relations, then Γ is not com-
plete.

To say that Γ is not complete is to say that for at least one sentence α,
Γ ⊬ α and Γ ⊬ ¬α. Such a sentence is called independent (of Γ ). We can in
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fact relatively quickly prove that there must be independent sentences. But
the power of Gödel’s proof of the theorem lies in the fact that it exhibits a
specific example of such an independent sentence. The intriguing construction
produces a sentence χΓ , called a Gödel sentence for Γ , which is unprovable
because in Γ , χΓ is equivalent to the claim that χΓ is unprovable in Γ . It does
so constructively, i.e., given an axiomatization of Γ and a description of the
derivation system, the proof gives a method for actually writing down χΓ .

The construction in Gödel’s proof requires that we find a way to express
in LA the properties of and operations on terms and wffs of LA itself. These
include properties such as “α is a sentence,” “δ is a derivation of α,” and
operations such as α[t/x]. This way must (a) express these properties and
relations via a “coding” of symbols and sequences thereof (which is what terms,
wffs, derivations, etc. are) as natural numbers (which is what LA can talk
about). It must (b) do this in such a way that Γ will prove the relevant facts,
so we must show that these properties are coded by decidable properties of
natural numbers and the operations correspond to computable functions on
natural numbers. This is called “arithmetization of syntax.”

Before we investigate how syntax can be arithmetized, however, we will
consider the condition that Γ is “strong enough,” i.e., represents all computable
functions and decidable relations. This requires that we give a precise definition
of “computable.” This can be done in a number of ways, e.g., via the model
of Turing machines, or as those functions computable by programs in some
general-purpose programming language. Since our aim is to represent these
functions and relations in a theory in the language LA, however, it is best to
pick a simple definition of computability of just numerical functions. This is the
notion of recursive function. So we will first discuss the recursive functions. We
will then show that Q already represents all recursive functions and relations.
This will allow us to apply the incompleteness theorem to specific theories such
as Q and PA, since we will have established that these are examples of theories
that are “strong enough.”

The end result of the arithmetization of syntax is a wff ProvΓ (x) which,
via the coding of wffs as numbers, expresses provability from the axioms of Γ .
Specifically, if α is coded by the number n, and Γ ⊢ α, then Γ ⊢ ProvΓ (n). This
“provability predicate” for Γ allows us also to express, in a certain sense, the
consistency of Γ as a sentence of LA: let the “consistency statement” for Γ be
the sentence ¬ProvΓ (n), where we take n to be the code of a contradiction, e.g.,
of ⊥. The second incompleteness theorem states that consistent axiomatizable
theories also do not prove their own consistency statements. The conditions
required for this theorem to apply are a bit more stringent than just that the
theory represents all computable functions and decidable relations, but we will
show that PA satisifes them.
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§15.3 Undecidability and Incompleteness

Gödel’s proof of the incompleteness theorems require arithmetization of syntax.
But even without that we can obtain some nice results just on the assumption
that a theory represents all decidable relations. The proof is a diagonal argu-
ment similar to the proof of the undecidability of the halting problem.

Theorem 153A. If Γ is a consistent theory that represents every decidable
relation, then Γ is not decidable.

Proof. Suppose Γ were decidable. We show that if Γ represents every decidable
relation, it must be inconsistent.

Decidable properties (one-place relations) are represented by wffs with one
free variable. Let α0(x), α1(x), . . . , be a computable enumeration of all such
wffs. Now consider the following set D ⊆ N:

D = {n : Γ ⊢ ¬αn(n)}

The set D is decidable, since we can test if n ∈ D by first computing αn(x), and
from this ¬αn(n). Obviously, substituting the term n for every free occurrence
of x in αn(x) and prefixing α(n) by ¬ is a mechanical matter. By assumption,
Γ is decidable, so we can test if ¬α(n) ∈ Γ . If it is, n ∈ D, and if it isn’t,
n /∈ D. So D is likewise decidable.

Since Γ represents all decidable properties, it represents D. And the wffs
which represent D in Γ are all among α0(x), α1(x), . . . . So let d be a number
such that αd(x) represents D in Γ . If d /∈ D, then, since αd(x) represents D,
Γ ⊢ ¬αd(d). But that means that d meets the defining condition of D, and so
d ∈ D. This contradicts d /∈ D. So by indirect proof, d ∈ D.

Since d ∈ D, by the definition of D, Γ ⊢ ¬αd(d). On the other hand, since
αd(x) represents D in Γ , Γ ⊢ αd(d). Hence, Γ is inconsistent.

The preceding theorem shows that no consistent theory that represents all
decidable relations can be decidable. We will show that Q does represent all
decidable relations; this means that all theories that include Q, such as PA
and TA, also do, and hence also are not decidable. (Since all these theories
are true in the standard model, they are all consistent.))

We can also use this result to obtain a weak version of the first incomplete-
ness theorem. Any theory that is axiomatizable and complete is decidable.
Consistent theories that are axiomatizable and represent all decidable proper-
ties then cannot be complete.

Theorem 153B. If Γ is axiomatizable and complete it is decidable.

Proof. Any inconsistent theory is decidable, since inconsistent theories contain
all sentences, so the answer to the question “is α ∈ Γ” is always “yes,” i.e., can
be decided.

So suppose Γ is consistent, and furthermore is axiomatizable, and complete.
Since Γ is axiomatizable, it is computably enumerable. For we can enumerate

Release : 0552395 (2022-04-04) 211



15. Introduction to Incompleteness

all the correct derivations from the axioms of Γ by a computable function. From
a correct derivation we can compute the sentence it derives, and so together
there is a computable function that enumerates all theorems of Γ . A sentence
is a theorem of Γ iff ¬α is not a theorem, since Γ is consistent and complete.
We can therefore decide if α ∈ Γ as follows. Enumerate all theorems of Γ .
When α appears on this list, we know that Γ ⊢ α. When ¬α appears on this
list, we know that Γ ⊬ α. Since Γ is complete, one of these cases eventually
obtains, so the procedure eventually produces an answer.

Corollary 153C. If Γ is consistent, axiomatizable, and represents every
decidable property, it is not complete.

Proof. If Γ were complete, it would be decidable by the previous theorem (since
it is axiomatizable and consistent). But since Γ represents every decidable
property, it is not decidable, by the first theorem.

Once we have established that, e.g., Q, represents all decidable properties,
the corollary tells us that Q must be incomplete. However, its proof does
not provide an example of an independent sentence; it merely shows that such
a sentence must exist. For this, we have to arithmetize syntax and follow
Gödel’s original proof idea. And of course, we still have to show the first claim,
namely that Q does, in fact, represent all decidable properties.

It should be noted that not every interesting theory is incomplete or un-
decidable. There are many theories that are sufficiently strong to describe
interesting mathematical facts that do not satisify the conditions of Gödel’s
result. For instance, Pres = {α ∈ LA+ :|=B α}, the set of sentences of the
language of arithmetic without × true in the standard model, is both complete
and decidable. This theory is called Presburger arithmetic, and proves all the
truths about natural numbers that can be formulated just with 0, ′, and +.

Problems

Problem 1. Show that TA = {α :|=B α} is not axiomatizable. You may
assume that TA represents all decidable properties.
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Chapter 16

Arithmetization of Syntax

§16.0 Introduction

In order to connect computability and logic, we need a way to talk about the
objects of logic (symbols, terms, wffs, derivations), operations on them, and
their properties and relations, in a way amenable to computational treatment.
We can do this directly, by considering computable functions and relations on
symbols, sequences of symbols, and other objects built from them. Since the
objects of logical syntax are all finite and built from an enumerable sets of
symbols, this is possible for some models of computation. But other models
of computation—such as the recursive functions—-are restricted to numbers,
their relations and functions. Moreover, ultimately we also want to be able to
deal with syntax within certain theories, specifically, in theories formulated in
the language of arithmetic. In these cases it is necessary to arithmetize syntax,
i.e., to represent syntactic objects, operations on them, and their relations, as
numbers, arithmetical functions, and arithmetical relations, respectively. The
idea, which goes back to Leibniz, is to assign numbers to syntactic objects.

It is relatively straightforward to assign numbers to symbols as their “codes.”
Some symbols pose a bit of a challenge, since, e.g., there are infinitely many
variables, and even infinitely many function symbols of each arity n. But of
course it’s possible to assign numbers to symbols systematically in such a way
that, say, v2 and v3 are assigned different codes. Sequences of symbols (such
as terms and wffs) are a bigger challenge. But if we can deal with sequences
of numbers purely arithmetically (e.g., by the powers-of-primes coding of se-
quences), we can extend the coding of individual symbols to coding of sequences
of symbols, and then further to sequences or other arrangements of wffs, such
as derivations. This extended coding is called “Gödel numbering.” Every term,
wff, and derivation is assigned a Gödel number.

By coding sequences of symbols as sequences of their codes, and by chos-
ing a system of coding sequences that can be dealt with using computable
functions, we can then also deal with Gödel numbers using computable func-
tions. In practice, all the relevant functions will be primitive recursive. For
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instance, computing the length of a sequence and computing the i-th element
of a sequence from the code of the sequence are both primitive recursive. If the
number coding the sequence is, e.g., the Gödel number of a wff α, we immedi-
ately see that the length of a wff and the (code of the) i-th symbol in a wff can
also be computed from the Gödel number of α. It is a bit harder to prove that,
e.g., the property of being the Gödel number of a correctly formed term or of
a correct derivation is primitive recursive. It is nevertheless possible, because
the sequences of interest (terms, wffs, derivations) are inductively defined.

As an example, consider the operation of substitution. If α is a formula,
x a variable, and t a term, then α[t/x] is the result of replacing every free
occurrence of x in α by t. Now suppose we have assigned Gödel numbers to α,
x, t—say, k, l, and m, respectively. The same scheme assigns a Gödel number
to α[t/x], say, n. This mapping—of k, l, and m to n—is the arithmetical analog
of the substitution operation. When the substitution operation maps α, x, t to
α[t/x], the arithmetized substitution functions maps the Gödel numbers k, l,
m to the Gödel number n. We will see that this function is primitive recursive.

Arithmetization of syntax is not just of abstract interest, although it was
originally a non-trivial insight that languages like the language of arithmetic,
which do not come with mechanisms for “talking about” languages can, after
all, formalize complex properties of expressions. It is then just a small step to
ask what a theory in this language, such as Peano arithmetic, can prove about
its own language (including, e.g., whether sentences are provable or true). This
leads us to the famous limitative theorems of Gödel (about unprovability) and
Tarski (the undefinability of truth). But the trick of arithmetizing syntax is
also important in order to prove some important results in computability the-
ory, e.g., about the computational power of theories or the relationship between
different models of computability. The arithmetization of syntax serves as a
model for arithmetizing other objects and properties. For instance, it is sim-
ilarly possible to arithmetize configurations and computations (say, of Turing
machines). This makes it possible to simulate computations in one model (e.g.,
Turing machines) in another (e.g., recursive functions).

§16.1 Coding Symbols

The basic language L of first order logic makes use of the symbols

⊥ ¬ ∨ ∧ → ∀ ∃ = ( ) ,

together with enumerable sets of variables and constant symbols, and enumer-
able sets of function symbols and predicate symbols of arbitrary arity. We can
assign codes to each of these symbols in such a way that every symbol is as-
signed a unique number as its code, and no two different symbols are assigned
the same number. We know that this is possible since the set of all symbols is
enumerable and so there is a bijection between it and the set of natural num-
bers. But we want to make sure that we can recover the symbol (as well as
some information about it, e.g., the arity of a function symbol) from its code
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in a computable way. There are many possible ways of doing this, of course.
Here is one such way, which uses primitive recursive functions. (Recall that
⟨n0, . . . , nk⟩ is the number coding the sequence of numbers n0, . . . , nk.)

Definition 161A. If s is a symbol of L, let the symbol code cs be defined as
follows:

1. If s is among the logical symbols, cs is given by the following table:

⊥ ¬ ∨ ∧ → ∀
⟨0, 0⟩ ⟨0, 1⟩ ⟨0, 2⟩ ⟨0, 3⟩ ⟨0, 4⟩ ⟨0, 5⟩
∃ = ( ) ,

⟨0, 6⟩ ⟨0, 7⟩ ⟨0, 8⟩ ⟨0, 9⟩ ⟨0, 10⟩

2. If s is the i-th variable vi, then cs = ⟨1, i⟩.

3. If s is the i-th constant symbol ci, then cs = ⟨2, i⟩.

4. If s is the i-th n-ary function symbol fn
i , then cs = ⟨3, n, i⟩.

5. If s is the i-th n-ary predicate symbol Pn
i , then cs = ⟨4, n, i⟩.

Proposition 161B. The following relations are primitive recursive:

1. Fn(x, n) iff x is the code of fn
i for some i, i.e., x is the code of an n-ary

function symbol.

2. Pred(x, n) iff x is the code of Pn
i for some i or x is the code of = and

n = 2, i.e., x is the code of an n-ary predicate symbol.

Definition 161C. If s0, . . . , sn−1 is a sequence of symbols, its Gödel number
is ⟨cs0 , . . . , csn−1⟩.

Note that codes and Gödel numbers are different things. For instance, the
variable v5 has a code cv5 = ⟨1, 5⟩ = 22 · 36. But the variable v5 considered as
a term is also a sequence of symbols (of length 1). The Gödel number #v5

# of

the term v5 is ⟨cv5⟩ = 2cv5+1 = 22
2·36+1.

Example 16.1.4. Recall that if k0, . . . , kn−1 is a sequence of numbers, then the
code of the sequence ⟨k0, . . . , kn−1⟩ in the power-of-primes coding is

2k0+1 · 3k1+1 · · · · · pkn−1

n−1 ,

where pi is the i-th prime (starting with p0 = 2). So for instance, the formula
v0 = 0, or, more explicitly, =(v0, c0), has the Gödel number

⟨c=, c(, cv0 , c,, cc0 , c)⟩.
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Here, c= is ⟨0, 7⟩ = 20+1 · 37=1, cv0 is ⟨1, 0⟩ = 21+1 · 30+1, etc. So #= (v0, c0)#

is

2c=+1 · 3c(+1 · 5cv0+1 · 7c,+1 · 11cc0+1 · 13c)+1 =

22
1·38+1 · 32

1·39+1 · 52
2·31+1 · 72

1·311+1 · 112
3·31+1 · 132

1·310+1 =

213 123 · 339 367 · 513 · 7354 295 · 1125 · 13118 099.

§16.2 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up inductively
from constants and variables according to the formation rules for terms. Since
sequences of symbols can be coded as numbers—using a coding scheme for the
symbols plus a way to code sequences of numbers—assigning Gödel numbers
to terms is not difficult. The challenge is rather to show that the property a
number has if it is the Gödel number of a correctly formed term is computable,
or in fact primitive recursive.

Variables and constant symbols are the simplest terms, and testing whether
x is the Gödel number of such a term is easy: Var(x) holds if x is #vi

# for
some i. In other words, x is a sequence of length 1 and its single element (x)0
is the code of some variable vi, i.e., x is ⟨⟨1, i⟩⟩ for some i. Similarly, Const(x)
holds if x is #ci

# for some i. Both of these relations are primitive recursive,
since if such an i exists, it must be < x:

Var(x) ⇔ (∃i < x) x = ⟨⟨1, i⟩⟩
Const(x) ⇔ (∃i < x) x = ⟨⟨2, i⟩⟩

Proposition 162A. The relations Term(x) and ClTerm(x) which hold iff
x is the Gödel number of a term or a closed term, respectively, are primitive
recursive.

Proof. A sequence of symbols s is a term iff there is a sequence s0, . . . , sk−1 = s
of terms which records how the term s was formed from constant symbols and
variables according to the formation rules for terms. To express that such a
putative formation sequence follows the formation rules it has to be the case
that, for each i < k, either

1. si is a variable vj , or

2. si is a constant symbol cj , or

3. si is built from n terms t1, . . . , tn occurring prior to place i using an
n-place function symbol fn

j .

To show that the corresponding relation on Gödel numbers is primitive recur-
sive, we have to express this condition primitive recursively, i.e., using primitive
recursive functions, relations, and bounded quantification.
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Suppose y is the number that codes the sequence s0, . . . , sk−1, i.e., y =
⟨ #s0

#, . . . , #sk−1
#⟩. It codes a formation sequence for the term with Gödel

number x iff for all i < k:

1. Var((y)i), or

2. Const((y)i), or

3. there is an n and a number z = ⟨z1, . . . , zn⟩ such that each zl is equal to
some (y)i′ for i′ < i and

(y)i = #fn
j (# ⌢ flatten(z) ⌢ #)#,

and moreover (y)k−1 = x. (The function flatten(z) turns the sequence ⟨ #t1
#, . . . , #tn

#⟩
into #t1, . . . , tn

# and is primitive recursive.)
The indices j, n, the Gödel numbers zl of the terms tl, and the code z of

the sequence ⟨z1, . . . , zn⟩, in (3) are all less than y. We can replace k above
with len(y). Hence we can express “y is the code of a formation sequence of the
term with Gödel number x” in a way that shows that this relation is primitive
recursive.

We now just have to convince ourselves that there is a primitive recursive
bound on y. But if x is the Gödel number of a term, it must have a formation
sequence with at most len(x) terms (since every term in the formation sequence
of s must start at some place in s, and no two subterms can start at the same
place). The Gödel number of each subterm of s is of course ≤ x. Hence, there

always is a formation sequence with code ≤ p
k(x+1)
k−1 , where k = len(x).

For ClTerm, simply leave out the clause for variables.

Proposition 162B. The function num(n) = #n# is primitive recursive.

Proof. We define num(n) by primitive recursion:

num(0) = #0#

num(n + 1) = #′(# ⌢ num(n) ⌢ #)#.

§16.3 Coding Wffs

Proposition 163A. The relation Atom(x) which holds iff x is the Gödel
number of an atomic wff, is primitive recursive.

Proof. The number x is the Gödel number of an atomic wff iff one of the
following holds:

1. There are n, j < x, and z < x such that for each i < n, Term((z)i) and
x =

#Pn
j (# ⌢ flatten(z) ⌢ #)#.
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2. There are z1, z2 < x such that Term(z1), Term(z2), and x =

#=(# ⌢ z1 ⌢ #,# ⌢ z2 ⌢ #)#.

Proposition 163B. The relation Frm(x) which holds iff x is the Gödel num-
ber of a wff is primitive recursive.

Proof. A sequence of symbols s is a wff iff there is formation sequence s0, . . . ,
sk−1 = s of wff which records how s was formed from atomic wffs according
to the formation rules. The code for each si (and indeed of the code of the
sequence ⟨s0, . . . , sk−1⟩) is less than the code x of s.

Proposition 163C. The relation FreeOcc(x, z, i), which holds iff the i-th
symbol of the formula with Gödel number x is a free occurrence of the variable
with Gödel number z, is primitive recursive.

Proof. Exercise.

Proposition 163D. The property Sent(x) which holds iff x is the Gödel
number of a sentence is primitive recursive.

Proof. A sentence is a wff without free occurrences of variables. So Sent(x)
holds iff

(∀i < len(x)) (∀z < x)

((∃j < z) z = #vj
# →¬FreeOcc(x, z, i)).

§16.4 Substitution

Recall that substitution is the operation of replacing all free occurrences of
a variable u in a wff α by a term t, written α[t/u]. This operation, when carried
out on Gödel numbers of variables, wffs, and terms, is primitive recursive.

Proposition 164A. There is a primitive recursive function Subst(x, y, z)
with the property that

Subst( #α#, #t#, #u#) = #α[t/u]#.

Proof. We can then define a function hSubst by primitive recursion as follows:

hSubst(x, y, z, 0) = Λ

hSubst(x, y, z, i + 1) ={
hSubst(x, y, z, i) ⌢ y if FreeOcc(x, z, i)

append(hSubst(x, y, z, i), (x)i) otherwise.

Subst(x, y, z) can now be defined as hSubst(x, y, z, len(x)).
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Proposition 164B. The relation FreeFor(x, y, z), which holds iff the term
with Gödel number y is free for the variable with Gödel number z in the formula
with Gödel number x, is primitive recursive.

Proof. Exercise.

§16.5 Axiomatic Derivations

In order to arithmetize axiomatic derivations, we must represent derivations as
numbers. Since derivations are simply sequences of wffs, the obvious approach
is to code every derivation as the code of the sequence of codes of wffs in it.

Definition 165A. If δ is an axiomatic derivation consisting of wffs α1, . . . , αn,
then #δ# is

⟨ #α1
#, . . . , #αn

#⟩.

Example 16.5.2. Consider the very simple derivation

1. β → (β ∨ α)
2. (β → (β ∨ α)) → (α→ (β → (β ∨ α)))
3. α→ (β → (β ∨ α))

The Gödel number of this derivation would simply be

⟨ #β → (β ∨ α)#, #(β → (β ∨ α)) → (α→ (β → (β ∨ α)))#, #α→ (β → (β ∨ α))#⟩.

Having settled on a representation of derivations, we must also show that
we can manipulate such derivations primitive recursively, and express their
essential properties and relations so. Some operations are simple: e.g., given
a Gödel number d of a derivation, (d)len(d)−1 gives us the Gödel number of its
end-wff. Some are much harder. We’ll at least sketch how to do this. The
goal is to show that the relation “δ is a derivation of α from Γ” is primitive
recursive on the Gödel numbers of δ and α.

Proposition 165C. The following relations are primitive recursive:

1. α is an axiom.

2. The ith line in δ is justified by modus ponens

3. The ith line in δ is justified by qr.

4. δ is a correct derivation.

Proof. We have to show that the corresponding relations between Gödel num-
bers of wffs and Gödel numbers of derivations are primitive recursive.
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1. We have a given list of axiom schemas, and α is an axiom if it is of the
form given by one of these schemas. Since the list of schemas is finite,
it suffices to show that we can test primitive recursively, for each axiom
schema, if α is of that form. For instance, consider the axiom schema

β → (γ → β).

α is an instance of this axiom schema if there are wffs β and γ such
that we obtain α when we concatenate ( with β with → with ( with γ
with → with β and with )). We can test the corresponding property of
the Gödel number n of α, since concatenation of sequences is primitive
recursive, and the Gödel numbers of β and C must be smaller than the
Gödel number of α, since when the relation holds, both β and γ are
sub-wffs of α. Hence, we can define

IsAxβ→(γ→β)(n) ⇔ (∃b < n) (∃c < n) (Sent(b) ∧ Sent(c) ∧
n = #(# ⌢ b ⌢ #→# ⌢ #(# ⌢ c ⌢ #→# ⌢ b ⌢ #))#).

If we have such a definition for each axiom schema, their disjunction
defines the property IsAx(n), “n is the Gödel number of an axiom.”

2. The ith line in δ is justified by modus ponens iff there are lines j and
k < i where the sentence on line j is some formula α, the sentence on
line k is α→ β, and the sentence on line i is β.

MP(d, i) ⇔ (∃j < i) (∃k < i)

(d)k = #(# ⌢ (d)j ⌢
#→# ⌢ (d)i ⌢

#)#

Since bounded quantification, concatenation, and = are primitive recur-
sive, this defines a primitive recursive relation.

3. A line in δ is justified by qr if it is of the form β→∀xα(x), a preceding
line is β → α(c) for some constant symbol c, and c does on occur in β.
This is the case iff

a) there is a sentence β and

b) a wff α(x) with a single variable x free so that

c) line i contains β →∀xα(x)

d) some line j < i contains β → α[c/x] for a constant c

e) which does not occur in β.

All of these can be tested primitive recursively, since the Gödel numbers
of β, α(x), and x are less than the Gödel number of the formula on line i,
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16.5. Axiomatic Derivations

and that of a less than the Gödel number of the formula on line j:

QR1(d, i) ⇔ (∃b < (d)i) (∃x < (d)i) (∃a < (d)i) (∃c < (d)j) (

Var(x) ∧ Const(c) ∧
(d)i = #(# ⌢ b ⌢ #→# ⌢ #∀# ⌢ x ⌢ a ⌢ #)# ∧
(d)j = #(# ⌢ b ⌢ #→# ⌢ Subst(a, c, x) ⌢ #)# ∧

Sent(b) ∧ Sent(Subst(a, c, x)) ∧ (∀k < len(b)) (b)k ̸= (c)0)

Here we assume that c and x are the Gödel numbers of the variable and
constant considered as terms (i.e., not their symbol codes). We test that
x is the only free variable of α(x) by testing if α(x)[c/x] is a sentence,
and ensure that c does not occur in β by requiring that every symbol of β
is different from c.

We leave the other version of qr as an exercise.

4. d is the Gödel number of a correct derivation iff every line in it is an
axiom, or justified by modus ponens or qr. Hence:

Deriv(d) ⇔ (∀i < len(d)) (IsAx((d)i) ∨ MP(d, i) ∨ QR(d, i))

Proposition 165D. Suppose Γ is a primitive recursive set of sentences.
Then the relation PrfΓ (x, y) expressing “x is the code of a derivation δ of
α from Γ and y is the Gödel number of α” is primitive recursive.

Proof. Suppose “y ∈ Γ” is given by the primitive recursive predicate RΓ (y).
We have to show that the relation PrfΓ (x, y) is primitive recursive, where
PrfΓ (x, y) holds iff y is the Gödel number of a sentence α and x is the code of
a derivation of α from Γ .

By the previous proposition, the property Deriv(x) which holds iff x is the
code of a correct derivation δ is primitive recursive. However, that definition
did not take into account the set Γ as an additional way to justify lines in the
derivation. Our primitive recursive test of whether a line is justified by qr also
left out of consideration the requirement that the constant c is not allowed to
occur in Γ . It is possible to amend our definition so that it takes into account Γ
directly, but it is easier to use Deriv and the deduction theorem. Γ ⊢ α iff there
is some finite list of sentences β1, . . . , βn ∈ Γ such that {β1, . . . , βn} ⊢ α. And
by the deduction theorem, this is the case if ⊢ (β1 → (β2 → · · · (βn → α) · · · )).
Whether a sentence with Gödel number z is of this form can be tested primitive
recursively. So, instead of considering x as the Gödel number of a derivation of
the sentence with Gödel number y from Γ , we consider x as the Gödel number
of a derivation of a nested conditional of the above form from ∅.

First, if we have a sequence of sentences, we can primitive recursively form
the conditional with all these sentences as antecedents and given sentence as
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consequent:

hCond(s, y, 0) = y

hCond(s, y, n + 1) = #(# ⌢ (s)n ⌢ #→# ⌢ Cond(s, y, n) ⌢ #)#

Cond(s, y) = hCond(s, y, len(s))

So we can define PrfΓ (x, y) by

PrfΓ (x, y) ⇔ (∃s < sequenceBound(x, x)) (

(x)len(x)−1 = Cond(s, y) ∧
(∀i < len(s)) (s)i ∈ Γ ∧
Deriv(x)).

The bound on s is given by considering that each (s)i is the Gödel number of
a subformula of the last line of the derivation, i.e., is less than (x)len(x)−1. The
number of antecedents β ∈ Γ , i.e., the length of s, is less than the length of
the last line of x.

Problems

Problem 1. Show that the function flatten(z), which turns the sequence ⟨ #t1
#, . . . , #tn

#⟩
into #t1, . . . , tn

#, is primitive recursive.

Problem 2. Give a detailed proof of Proposition 163B along the lines of the
first proof of Proposition 162A.

Problem 3. Prove Proposition 163C. You may make use of the fact that any
substring of a wff which is a wff is a sub-wff of it.

Problem 4. Prove Proposition 164B

Problem 5. Define the following relations as in Proposition 165C:

1. IsAxα→(β→(α∧β))(n),

2. IsAx∀xα(x)→α(t)(n),

3. QR2(d, i) (for the other version of qr).
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Chapter 17

Representability in Q

§17.0 Introduction

The incompleteness theorems apply to theories in which basic facts about com-
putable functions can be expressed and proved. We will describe a very minimal
such theory called “Q” (or, sometimes, “Robinson’s Q,” after Raphael Robin-
son). We will say what it means for a function to be representable in Q, and
then we will prove the following:

A function is representable in Q if and only if it is computable.

For one thing, this provides us with another model of computability. But we
will also use it to show that the set {α : Q ⊢ α} is not decidable, by reducing
the halting problem to it. By the time we are done, we will have proved much
stronger things than this.

The language of Q is the language of arithmetic; Q consists of the following
axioms (to be used in conjunction with the other axioms and rules of first-order
logic with equality symbol):

∀x∀y (x′ = y′ → x = y) (Q1)

∀x 0 ̸= x′ (Q2)

∀x (x = 0 ∨ ∃y x = y′) (Q3)

∀x (x + 0) = x (Q4)

∀x∀y (x + y′) = (x + y)′ (Q5)

∀x (x× 0) = 0 (Q6)

∀x∀y (x× y′) = ((x× y) + x) (Q7)

∀x∀y (x < y ↔∃z (z′ + x) = y) (Q8)

For each natural number n, define the numeral n to be the term 0′′...′ where
there are n tick marks in all. So, 0 is the constant symbol 0 by itself, 1 is 0′, 2
is 0′′, etc.

As a theory of arithmetic, Q is extremely weak; for example, you can’t even
prove very simple facts like ∀xx ̸= x′ or ∀x ∀y (x + y) = (y + x). But we will
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17. Representability in Q

see that much of the reason that Q is so interesting is because it is so weak.
In fact, it is just barely strong enough for the incompleteness theorem to hold.
Another reason Q is interesting is because it has a finite set of axioms.

A stronger theory than Q (called Peano arithmetic PA) is obtained by
adding a schema of induction to Q:

(α(0) ∧ ∀x (α(x) → α(x′))) →∀xα(x)

where α(x) is any formula. If α(x) contains free variables other than x, we add
universal quantifiers to the front to bind all of them (so that the corresponding
instance of the induction schema is a sentence). For instance, if α(x, y) also
contains the variable y free, the corresponding instance is

∀y ((α(0) ∧ ∀x (α(x) → α(x′))) →∀xα(x))

Using instances of the induction schema, one can prove much more from the
axioms of PA than from those of Q. In fact, it takes a good deal of work to
find “natural” statements about the natural numbers that can’t be proved in
Peano arithmetic!

Definition 170A. A function f(x0, . . . , xk) from the natural numbers to
the natural numbers is said to be representable in Q if there is a formula
αf (x0, . . . , xk, y) such that whenever f(n0, . . . , nk) = m, Q proves

1. αf (n0, . . . , nk,m)

2. ∀y (αf (n0, . . . , nk, y) →m = y).

There are other ways of stating the definition; for example, we could equiv-
alently require that Q proves ∀y (αf (n0, . . . , nk, y) ↔ y = m).

Theorem 170B. A function is representable in Q if and only if it is com-
putable.

There are two directions to proving the theorem. The left-to-right direc-
tion is fairly straightforward once arithmetization of syntax is in place. The
other direction requires more work. Here is the basic idea: we pick “general
recursive” as a way of making “computable” precise, and show that every gen-
eral recursive function is representable in Q. Recall that a function is general
recursive if it can be defined from zero, the successor function succ, and the
projection functions Pn

i , using composition, primitive recursion, and regular
minimization. So one way of showing that every general recursive function is
representable in Q is to show that the basic functions are representable, and
whenever some functions are representable, then so are the functions defined
from them using composition, primitive recursion, and regular minimization.
In other words, we might show that the basic functions are representable, and
that the representable functions are “closed under” composition, primitive re-
cursion, and regular minimization. This guarantees that every general recursive
function is representable.
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It turns out that the step where we would show that representable func-
tions are closed under primitive recursion is hard. In order to avoid this step,
we show first that in fact we can do without primitive recursion. That is, we
show that every general recursive function can be defined from basic functions
using composition and regular minimization alone. To do this, we show that
primitive recursion can actually be done by a specific regular minimization.
However, for this to work, we have to add some additional basic functions:
addition, multiplication, and the characteristic function of the identity rela-
tion χ=. Then, we can prove the theorem by showing that all of these basic
functions are representable in Q, and the representable functions are closed
under composition and regular minimization.

§17.1 Functions Representable in Q are Computable

We’ll prove that every function that is representable in Q is computable. We
first have to establish a lemma about functions representable in Q.

Lemma 171A. If f(x0, . . . , xk) is representable in Q, there is a wff α(x0, . . . , xk, y)
such that

Q ⊢ αf (n0, . . . , nk,m) iff m = f(n0, . . . , nk).

Proof. The “if” part is Definition 170A(1). The “only if” part is seen as
follows: Suppose Q ⊢ αf (n0, . . . , nk,m) but m ̸= f(n0, . . . , nk). Let k =
f(n0, . . . , nk). By Definition 170A(1), Q ⊢ αf (n0, . . . , nk, k). By Defini-
tion 170A(2), ∀y (αf (n0, . . . , nk, y) → k = y). Using logic and the assumption
that Q ⊢ αf (n0, . . . , nk,m), we get that Q ⊢ k = m. On the other hand, by
Lemma 174E, Q ⊢ k ̸= m. So Q is inconsistent. But that is impossible, since Q
is satisfied by the standard model (see Definition 151B), |=B Q, and satisfiable
theories are always consistent by the Soundness Theorem (corollary 1011D).

Lemma 171B. Every function that is representable in Q is computable.

Proof. Let’s first give the intuitive idea for why this is true. To compute f , we
do the following. List all the possible derivations δ in the language of arith-
metic. This is possible to do mechanically. For each one, check if it is a deriva-
tion of a wff of the form αf (n0, . . . , nk,m) (the wff representing f in Q from
Lemma 171A). If it is, m = f(n0, . . . , nk) by Lemma 171A, and we’ve found the
value of f . The search terminates because Q ⊢ αf (n0, . . . , nk, f(n0, . . . , nk)),
so eventually we find a δ of the right sort.

This is not quite precise because our procedure operates on derivations
and wffs instead of just on numbers, and we haven’t explained exactly why
“listing all possible derivations” is mechanically possible. But as we’ve seen, it
is possible to code terms, wffs, and derivations by Gödel numbers. We’ve also
introduced a precise model of computation, the general recursive functions.
And we’ve seen that the relation PrfQ(d, y), which holds iff d is the Gödel
number of a derivation of the wff with Gödel number y from the axioms of Q,
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is (primitive) recursive. Other primitive recursive functions we’ll need are num
(Proposition 162B) and Subst (Proposition 164A). From these, it is possible to
define f by minimization; thus, f is recursive.

First, define

A(n0, . . . , nk,m) =

Subst(Subst(. . . Subst( #αf
#,num(n0), #x0

#),

. . . ),num(nk), #xk
#),num(m), #y#)

This looks complicated, but it’s just the function A(n0, . . . , nk,m) = #αf (n0, . . . , nk,m)#.
Now, consider the relation R(n0, . . . , nk, s) which holds if (s)0 is the Gödel

number of a derivation from Q of αf (n0, . . . , nk, (s)1):

R(n0, . . . , nk, s) iff PrfQ((s)0, A(n0, . . . , nk, (s)1))

If we can find an s such that R(n0, . . . , nk, s) hold, we have found a pair of
numbers—(s)0 and (s1)—such that (s)0 is the Gödel number of a derivation
of Af (n0, . . . , nk, (s)1). So looking for s is like looking for the pair d and m
in the informal proof. And a computable function that “looks for” such an
s can be defined by regular minimization. Note that R is regular: for every
n0, . . . , nk, there is a derivation δ of Q ⊢ αf (n0, . . . , nk, f(n0, . . . , nk)), so
R(n0, . . . , nk, s) holds for s = ⟨ #δ#, f(n0, . . . , nk)⟩. So, we can write f as

f(n0, . . . , nk) = (µs R(n0, . . . , nk, s))1.

§17.2 The Beta Function Lemma

In order to show that we can carry out primitive recursion if addition, multi-
plication, and χ= are available, we need to develop functions that handle se-
quences. (If we had exponentiation as well, our task would be easier.) When we
had primitive recursion, we could define things like the “n-th prime,” and pick a
fairly straightforward coding. But here we do not have primitive recursion—in
fact we want to show that we can do primitive recursion using minimization—so
we need to be more clever.

Lemma 172A. There is a function β(d, i) such that for every sequence a0,
. . . , an there is a number d, such that for every i ≤ n, β(d, i) = ai. Moreover,
β can be defined from the basic functions using just composition and regular
minimization.

Think of d as coding the sequence ⟨a0, . . . , an⟩, and β(d, i) returning the
i-th element. (Note that this “coding” does not use the power-of-primes coding
we’re already familiar with!). The lemma is fairly minimal; it doesn’t say we can
concatenate sequences or append elements, or even that we can compute d from
a0, . . . , an using functions definable by composition and regular minimization.
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All it says is that there is a “decoding” function such that every sequence is
“coded.”

The use of the notation β is Gödel’s. To repeat, the hard part of proving
the lemma is defining a suitable β using the seemingly restricted resources,
i.e., using just composition and minimization—however, we’re allowed to use
addition, multiplication, and χ=. There are various ways to prove this lemma,
but one of the cleanest is still Gödel’s original method, which used a number-
theoretic fact called the Chinese Remainder theorem.

Definition 172B. Two natural numbers a and b are relatively prime iff their
greatest common divisor is 1; in other words, they have no other divisors in
common.

Definition 172C. Natural numbers a and b are congruent modulo c, a ≡ b
mod c, iff c | (a− b), i.e., a and b have the same remainder when divided by c.

Here is the Chinese Remainder theorem:

Theorem 172D. Suppose x0, . . . , xn are (pairwise) relatively prime. Let
y0, . . . , yn be any numbers. Then there is a number z such that

z ≡ y0 mod x0

z ≡ y1 mod x1

...

z ≡ yn mod xn.

Here is how we will use the Chinese Remainder theorem: if x0, . . . , xn are
bigger than y0, . . . , yn respectively, then we can take z to code the sequence
⟨y0, . . . , yn⟩. To recover yi, we need only divide z by xi and take the remainder.
To use this coding, we will need to find suitable values for x0, . . . , xn.

A couple of observations will help us in this regard. Given y0, . . . , yn, let

j = max(n, y0, . . . , yn) + 1,

and let

x0 = 1 + j !

x1 = 1 + 2 · j !

x2 = 1 + 3 · j !

...

xn = 1 + (n + 1) · j !

Then two things are true:

1. x0, . . . , xn are relatively prime.
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2. For each i, yi < xi.

To see that (1) is true, note that if p is a prime number and p | xi and p | xk,
then p | 1 + (i + 1)j ! and p | 1 + (k + 1)j !. But then p divides their difference,

(1 + (i + 1)j !) − (1 + (k + 1)j !) = (i− k)j !.

Since p divides 1 + (i + 1)j !, it can’t divide j ! as well (otherwise, the first
division would leave a remainder of 1). So p divides i − k, since p divides
(i − k)j !. But |i− k| is at most n, and we have chosen j > n, so this implies
that p | j !, again a contradiction. So there is no prime number dividing both
xi and xk. Clause (2) is easy: we have yi < j < j ! < xi.

Now let us prove the β function lemma. Remember that we can use 0,
successor, plus, times, χ=, projections, and any function defined from them
using composition and minimization applied to regular functions. We can also
use a relation if its characteristic function is so definable. As before we can
show that these relations are closed under Boolean combinations and bounded
quantification; for example:

not(x) = χ=(x, 0)

(min x ≤ z)R(x, y) = µx (R(x, y) ∨ x = z)

(∃x ≤ z) R(x, y) ⇔ R((min x ≤ z)R(x, y), y)

We can then show that all of the following are also definable without primitive
recursion:

1. The pairing function, J(x, y) = 1
2 [(x + y)(x + y + 1)] + x;

2. the projection functions

K(z) = (min x ≤ z) (∃y ≤ z) z = J(x, y),

L(z) = (min y ≤ z) (∃x ≤ z) z = J(x, y);

3. the less-than relation x < y;

4. the divisibility relation x | y;

5. the function rem(x, y) which returns the remainder when y is divided
by x.

Now define

β∗(d0, d1, i) = rem(1 + (i + 1)d1, d0) and

β(d, i) = β∗(K(d), L(d), i).

This is the function we want. Given a0, . . . , an as above, let

j = max(n, a0, . . . , an) + 1,
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and let d1 = j !. By (1) above, we know that 1 + d1, 1 + 2d1, . . . , 1 + (n+ 1)d1
are relatively prime, and by (2) that all are greater than a0, . . . , an. By the
Chinese Remainder theorem there is a value d0 such that for each i,

d0 ≡ ai mod (1 + (i + 1)d1)

and so (because d1 is greater than ai),

ai = rem(1 + (i + 1)d1, d0).

Let d = J(d0, d1). Then for each i ≤ n, we have

β(d, i) = β∗(d0, d1, i)

= rem(1 + (i + 1)d1, d0)

= ai

which is what we need. This completes the proof of the β-function lemma.

§17.3 Simulating Primitive Recursion

Now we can show that definition by primitive recursion can be “simulated”
by regular minimization using the beta function. Suppose we have f(x⃗) and
g(x⃗, y, z). Then the function h(x, z⃗) defined from f and g by primitive recursion
is

h(x⃗, 0) = f(z⃗)

h(x⃗, y + 1) = g(x⃗, y, h(x⃗, y)).

We need to show that h can be defined from f and g using just composition
and regular minimization, using the basic functions and functions defined from
them using composition and regular minimization (such as β).

Lemma 173A. If h can be defined from f and g using primitive recursion,
it can be defined from f , g, the functions zero, succ, Pn

i , add, mult, χ=, using
composition and regular minimization.

Proof. First, define an auxiliary function ĥ(x⃗, y) which returns the least num-
ber d such that d codes a sequence which satisfies

1. (d)0 = f(x⃗), and

2. for each i < y, (d)i+1 = g(x⃗, i, (d)i),

where now (d)i is short for β(d, i). In other words, ĥ returns the sequence

⟨h(x⃗, 0), h(x⃗, 1), . . . , h(x⃗, y)⟩. We can write ĥ as

ĥ(x⃗, y) = µd (β(d, 0) = f(x⃗) ∧ (∀i < y) β(d, i + 1) = g(x⃗, i, β(d, i)).
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Note: no primitive recursion is needed here, just minimization. The function
we minimize is regular because of the beta function lemma Lemma 172A.

But now we have
h(x⃗, y) = β(ĥ(x⃗, y), y),

so h can be defined from the basic functions using just composition and regular
minimization.

§17.4 Basic Functions are Representable in Q

First we have to show that all the basic functions are representable in Q. In the
end, we need to show how to assign to each k-ary basic function f(x0, . . . , xk−1)
a wff αf (x0, . . . , xk−1, y) that represents it.

We will be able to represent zero, successor, plus, times, the characteristic
function for equality, and projections. In each case, the appropriate represent-
ing function is entirely straightforward; for example, zero is represented by the
formula y = 0, successor is represented by the wff x′

0 = y, and addition is
represented by the wff (x0 + x1) = y. The work involves showing that Q can
prove the relevant sentences; for example, saying that addition is represented
by the wff above involves showing that for every pair of natural numbers m
and n, Q proves

n + m = n + m and

∀y ((n + m) = y → y = n + m).

Proposition 174A. The zero function zero(x) = 0 is represented in Q by
αzero(x, y) ≡ y = 0.

Proposition 174B. The successor function succ(x) = x + 1 is represented
in Q by αsucc(x, y) ≡ y = x′.

Proposition 174C. The projection function Pn
i (x0, . . . , xn−1) = xi is rep-

resented in Q by
αPn

i
(x0, . . . , xn−1, y) ≡ y = xi.

Proposition 174D. The characteristic function of =,

χ=(x0, x1) =

{
1 if x0 = x1

0 otherwise

is represented in Q by

αχ=
(x0, x1, y) ≡ (x0 = x1 ∧ y = 1) ∨ (x0 ̸= x1 ∧ y = 0).

The proof requires the following lemma.

Lemma 174E. Given natural numbers n and m, if n ̸= m, then Q ⊢ n ̸= m.
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Proof. Use induction on n to show that for every m, if n ̸= m, then Q ⊢ n ̸= m.
In the base case, n = 0. If m is not equal to 0, then m = k + 1 for some

natural number k. We have an axiom that says ∀x 0 ̸= x′. By a quantifier

axiom, replacing x by k, we can conclude 0 ̸= k
′
. But k

′
is just m.

In the induction step, we can assume the claim is true for n, and consider
n+ 1. Let m be any natural number. There are two possibilities: either m = 0
or for some k we have m = k + 1. The first case is handled as above. In the
second case, suppose n + 1 ̸= k + 1. Then n ̸= k. By the induction hypothesis
for n we have Q ⊢ n ̸= k. We have an axiom that says ∀x∀y x′ = y′ → x = y.

Using a quantifier axiom, we have n′ = k
′ → n = k. Using propositional logic,

we can conclude, in Q, n ̸= k→n′ ̸= k
′
. Using modus ponens, we can conclude

n′ ̸= k
′
, which is what we want, since k

′
is m.

Note that the lemma does not say much: in essence it says that Q can
prove that different numerals denote different objects. For example, Q proves
0′′ ̸= 0′′′. But showing that this holds in general requires some care. Note also
that although we are using induction, it is induction outside of Q.

Proof of Proposition 174D. If n = m, then n and m are the same term, and
χ=(n,m) = 1. But Q ⊢ (n = m ∧ 1 = 1), so it proves α=(n,m, 1). If n ̸= m,
then χ=(n,m) = 0. By Lemma 174E, Q ⊢ n ̸= m and so also (n ̸= m∧ 0 = 0).
Thus Q ⊢ α=(n,m, 0).

For the second part, we also have two cases. If n = m, we have to show
that Q ⊢ ∀y (α=(n,m, y) → y = 1). Arguing informally, suppose α=(n,m, y),
i.e.,

(n = n ∧ y = 1) ∨ (n ̸= n ∧ y = 0)

The left disjunct implies y = 1 by logic; the right contradicts n = n which is
provable by logic.

Suppose, on the other hand, that n ̸= m. Then α=(n,m, y) is

(n = m ∧ y = 1) ∨ (n ̸= m ∧ y = 0)

Here, the left disjunct contradicts n ̸= m, which is provable in Q by Lemma 174E;
the right disjunct entails y = 0.

Proposition 174F. The addition function add(x0, x1) = x0 + x1 is repre-
sented in Q by

αadd(x0, x1, y) ≡ y = (x0 + x1).

Lemma 174G. Q ⊢ (n + m) = n + m

Proof. We prove this by induction on m. If m = 0, the claim is that Q ⊢
(n + 0) = n. This follows by axiom Q4. Now suppose the claim for m; let’s
prove the claim for m + 1, i.e., prove that Q ⊢ (n + m + 1) = n + m + 1.
Note that m + 1 is just m′, and n + m + 1 is just n + m

′
. By axiom Q5,

Q ⊢ (n + m′) = (n + m)′. By induction hypothesis, Q ⊢ (n + m) = n + m. So
Q ⊢ (n + m′) = n + m

′
.
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Proof of Proposition 174F. The wff αadd(x0, x1, y) representing add is y =
(x0 + x1). First we show that if add(n,m) = k, then Q ⊢ αadd(n,m, k),
i.e., Q ⊢ k = (n + m). But since k = n + m, k just is n + m, and we’ve shown
in Lemma 174G that Q ⊢ (n + m) = n + m.

We also have to show that if add(n,m) = k, then

Q ⊢ ∀y (αadd(n,m, y) → y = k).

Suppose we have (n + m) = y. Since

Q ⊢ (n + m) = n + m,

we can replace the left side with n + m and get n + m = y, for arbitrary y.

Proposition 174H. The multiplication function mult(x0, x1) = x0 · x1 is
represented in Q by

αmult(x0, x1, y) ≡ y = (x0 × x1).

Proof. Exercise.

Lemma 174I. Q ⊢ (n×m) = n ·m

Proof. Exercise.

Recall that we use × for the function symbol of the language of arithmetic,
and · for the ordinary multiplication operation on numbers. So · can appear
between expressions for numbers (such as in m·n) while × appears only between
terms of the language of arithmetic (such as in (m×n)). Even more confusingly,
+ is used for both the function symbol and the addition operation. When it
appears between terms—e.g., in (n + m)—it is the 2-place function symbol
of the language of arithmetic, and when it appears between numbers—e.g., in
n + m—it is the addition operation. This includes the case n + m: this is the
standard numeral corresponding to the number n + m.

§17.5 Composition is Representable in Q

Suppose h is defined by

h(x0, . . . , xl−1) = f(g0(x0, . . . , xl−1), . . . , gk−1(x0, . . . , xl−1)).

where we have already found wffs αf , αg0 , . . . , αgk−1
representing the functions

f , and g0, . . . , gk−1, respectively. We have to find a wff αh representing h.
Let’s start with a simple case, where all functions are 1-place, i.e., consider

h(x) = f(g(x)). If αf (y, z) represents f , and αg(x, y) represents g, we need
a wff αh(x, z) that represents h. Note that h(x) = z iff there is a y such that
both z = f(y) and y = g(x). (If h(x) = z, then g(x) is such a y; if such a
y exists, then since y = g(x) and z = f(y), z = f(g(x)).) This suggests that
∃y (αg(x, y)∧αf (y, z)) is a good candidate for αh(x, z). We just have to verify
that Q proves the relevant wffs.
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Proposition 175A. If h(n) = m, then Q ⊢ αh(n,m).

Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Let k = g(n). Then

Q ⊢ αg(n, k)

since αg represents g, and

Q ⊢ αf (k,m)

since αf represents f . Thus,

Q ⊢ αg(n, k) ∧ αf (k,m)

and consequently also

Q ⊢ ∃y (αg(n, y) ∧ αf (y,m)),

i.e., Q ⊢ αh(n,m).

Proposition 175B. If h(n) = m, then Q ⊢ ∀z (αh(n, z) → z = m).

Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Let k = g(n). Then

Q ⊢ ∀y (αg(n, y) → y = k)

since αg represents g, and

Q ⊢ ∀z (αf (k, z) → z = m)

since αf represents f . Using just a little bit of logic, we can show that also

Q ⊢ ∀z (∃y (αg(n, y) ∧ αf (y, z)) → z = m).

i.e., Q ⊢ ∀y (αh(n, y) → y = m).

The same idea works in the more complex case where f and gi have arity
greater than 1.

Proposition 175C. If αf (y0, . . . , yk−1, z) represents f(y0, . . . , yk−1) in Q,
and αgi(x0, . . . , xl−1, y) represents gi(x0, . . . , xl−1) in Q, then

∃y0 . . . ∃yk−1 (αg0(x0, . . . , xl−1, y0) ∧ · · · ∧
αgk−1

(x0, . . . , xl−1, yk−1) ∧ αf (y0, . . . , yk−1, z))

represents

h(x0, . . . , xl−1) = f(g0(x0, . . . , xl−1), . . . , gk−1(x0, . . . , xl−1)).

Proof. Exercise.
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§17.6 Regular Minimization is Representable in Q

Let’s consider unbounded search. Suppose g(x, z) is regular and representable
in Q, say by the wff αg(x, z, y). Let f be defined by f(z) = µx [g(x, z) = 0].
We would like to find a wff αf (z, y) representing f . The value of f(z) is that
number x which (a) satisfies g(x, z) = 0 and (b) is the least such, i.e., for any
w < x, g(w, z) ̸= 0. So the following is a natural choice:

αf (z, y) ≡ αg(y, z, 0) ∧ ∀w (w < y →¬αg(w, z, 0)).

In the general case, of course, we would have to replace z with z0, . . . , zk.
The proof, again, will involve some lemmas about things Q is strong enough

to prove.

Lemma 176A. For every constant symbol a and every natural number n,

Q ⊢ (a′ + n) = (a + n)′.

Proof. The proof is, as usual, by induction on n. In the base case, n = 0, we
need to show that Q proves (a′ + 0) = (a + 0)′. But we have:

Q ⊢ (a′ + 0) = a′ by axiom Q4 (17.1)

Q ⊢ (a + 0) = a by axiom Q4 (17.2)

Q ⊢ (a + 0)′ = a′ by eq. (17.2) (17.3)

Q ⊢ (a′ + 0) = (a + 0)′ by eq. (17.1) and eq. (17.3)

In the induction step, we can assume that we have shown that Q ⊢ (a′ + n) =
(a+n)′. Since n + 1 is n′, we need to show that Q proves (a′ +n′) = (a+n′)′.
We have:

Q ⊢ (a′ + n′) = (a′ + n)′ by axiom Q5 (17.4)

Q ⊢ (a′ + n′) = (a + n′)′ inductive hypothesis (17.5)

Q ⊢ (a′ + n)′ = (a + n′)′ by eq. (17.4) and eq. (17.5).

It is again worth mentioning that this is weaker than saying that Q proves
∀x∀y (x′ +y) = (x+y)′. Although this sentence is true in B, Q does not prove
it.

Lemma 176B. Q ⊢ ∀x¬x < 0.

Proof. We give the proof informally (i.e., only giving hints as to how to con-
struct the formal derivation).

We have to prove ¬a < 0 for an arbitrary a. By the definition of <, we
need to prove ¬∃y (y′ + a) = 0 in Q. We’ll assume ∃y (y′ + a) = 0 and prove a
contradiction. Suppose (b′ + a) = 0. Using Q3, we have that a = 0∨∃y a = y′.
We distinguish cases.
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Case 1: a = 0 holds. From (b′ + a) = 0, we have (b′ + 0) = 0. By axiom Q4

of Q, we have (b′ + 0) = b′, and hence b′ = 0. But by axiom Q2 we also have
b′ ̸= 0, a contradiction.

Case 2: For some c, a = c′. But then we have (b′ + c′) = 0. By axiom Q5,
we have (b′ + c)′ = 0, again contradicting axiom Q2.

Lemma 176C. For every natural number n,

Q ⊢ ∀x (x < n + 1 → (x = 0 ∨ · · · ∨ x = n)).

Proof. We use induction on n. Let us consider the base case, when n = 0. In
that case, we need to show a < 1 → a = 0, for arbitrary a. Suppose a < 1.
Then by the defining axiom for <, we have ∃y (y′ + a) = 0′ (since 1 ≡ 0′).

Suppose b has that property, i.e., we have (b′ + a) = 0′. We need to show
a = 0. By axiom Q3, we have either a = 0 or that there is a c such that a = c′.
In the former case, there is nothing to show. So suppose a = c′. Then we have
(b′ + c′) = 0′. By axiom Q5 of Q, we have (b′ + c)′ = 0′. By axiom Q1, we
have (b′ + c) = 0. But this means, by axiom Q8, that c < 0, contradicting
Lemma 176B.

Now for the inductive step. We prove the case for n+ 1, assuming the case
for n. So suppose a < n + 2. Again using Q3 we can distinguish two cases:
a = 0 and for some b, a = c′. In the first case, a = 0 ∨ · · · ∨ a = n + 1 follows
trivially. In the second case, we have c′ < n + 2, i.e., c′ < n + 1

′
. By axiom Q8,

for some d, (d′ + c′) = n + 1
′
. By axiom Q5, (d′ + c)′ = n + 1

′
. By axiom Q1,

(d′ + c) = n + 1, and so c < n + 1 by axiom Q8. By inductive hypothesis,
c = 0 ∨ · · · ∨ c = n. From this, we get c′ = 0′ ∨ · · · ∨ c′ = n′ by logic, and so
a = 1 ∨ · · · ∨ a = n + 1 since a = c′.

Lemma 176D. For every natural number m,

Q ⊢ ∀y ((y < m ∨m < y) ∨ y = m).

Proof. By induction on m. First, consider the case m = 0. Q ⊢ ∀y (y =
0 ∨ ∃z y = z′) by Q3. Let a be arbitrary. Then either a = 0 or for some b,
a = b′. In the former case, we also have (a < 0 ∨ 0 < a) ∨ a = 0. But if a = b′,
then (b′ + 0) = (a + 0) by the logic of =. By Q4, (a + 0) = a, so we have
(b′ + 0) = a, and hence ∃z (z′ + 0) = a. By the definition of < in Q8, 0 < a. If
0 < a, then also (0 < a ∨ a < 0) ∨ a = 0.

Now suppose we have

Q ⊢ ∀y ((y < m ∨m < y) ∨ y = m)

and we want to show

Q ⊢ ∀y ((y < m + 1 ∨m + 1 < y) ∨ y = m + 1)

Let a be arbitrary. By Q3, either a = 0 or for some b, a = b′. In the first case,
we have m′ + a = m + 1 by Q4, and so a < m + 1 by Q8.
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Now consider the second case, a = b′. By the induction hypothesis, (b <
m ∨m < b) ∨ b = m.

The first disjunct b < m is equivalent (by Q8) to ∃z (z′ + b) = m. Suppose
c has this property. If (c′ + b) = m, then also (c′ + b)′ = m′. By Q5, (c′ + b)′ =
(c′ + b′). Hence, (c′ + b′) = m′. We get ∃u (u′ + b′) = m + 1 by existentially
generalizing on c′ and keeping in mind that m′ ≡ m + 1. Hence, if b < m then
b′ < m + 1 and so a < m + 1.

Now suppose m < b, i.e., ∃z (z′ + m) = b. Suppose c is such a z, i.e.,
(c′ + m) = b. By logic, (c′ + m)′ = b′. By Q5, (c′ + m′) = b′. Since a = b′ and
m′ ≡ m + 1, (c′ + m + 1) = a. By Q8, m + 1 < a.

Finally, assume b = m. Then, by logic, b′ = m′, and so a = m + 1.
Hence, from each disjunct of the case for m and b, we can obtain the

corresponding disjunct for for m + 1 and a.

Proposition 176E. If αg(x, z, y) represents g(x, z) in Q, then

αf (z, y) ≡ αg(y, z, 0) ∧ ∀w (w < y →¬αg(w, z, 0))

represents f(z) = µx [g(x, z) = 0].

Proof. First we show that if f(n) = m, then Q ⊢ αf (n,m), i.e.,

Q ⊢ αg(m,n, 0) ∧ ∀w (w < m→¬αg(w, n, 0)).

Since αg(x, z, y) represents g(x, z) and g(m,n) = 0 if f(n) = m, we have

Q ⊢ αg(m,n, 0).

If f(n) = m, then for every k < m, g(k, n) ̸= 0. So

Q ⊢ ¬αg(k, n, 0).

We get that

Q ⊢ ∀w (w < m→¬αg(w, n, 0)). (17.6)

by Lemma 176B in case m = 0 and by Lemma 176C otherwise.
Now let’s show that if f(n) = m, then Q ⊢ ∀y (αf (n, y) → y = m). We

again sketch the argument informally, leaving the formalization to the reader.
Suppose αf (n, b). From this we get (a) αg(b, n, 0) and (b) ∀w (w < b →

¬αg(w, n, 0)). By Lemma 176D, (b < m ∨ m < b) ∨ b = m. We’ll show that
both b < m and m < b leads to a contradiction.

If m < b, then ¬αg(m,n, 0) from (b). But m = f(n), so g(m,n) = 0, and
so Q ⊢ αg(m,n, 0) since αg represents g. So we have a contradiction.

Now suppose b < m. Then since Q ⊢ ∀w (w < m → ¬αg(w, n, 0)) by
eq. (17.6), we get ¬αg(b, n, 0). This again contradicts (a).
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§17.7 Computable Functions are Representable in Q

Theorem 177A. Every computable function is representable in Q.

Proof. For definiteness, and using the Church-Turing Thesis, let’s say that a
function is computable iff it is general recursive. The general recursive func-
tions are those which can be defined from the zero function zero, the successor
function succ, and the projection function Pn

i using composition, primitive re-
cursion, and regular minimization. By Lemma 173A, any function h that can
be defined from f and g can also be defined using composition and regular
minimization from f , g, and zero, succ, Pn

i , add, mult, χ=. Consequently, a
function is general recursive iff it can be defined from zero, succ, Pn

i , add, mult,
χ= using composition and regular minimization.

We’ve furthermore shown that the basic functions in question are repre-
sentable in Q (Propositions 174A to 174D, 174F and 174H), and that any
function defined from representable functions by composition or regular min-
imization (Proposition 175C, Proposition 176E) is also representable. Thus
every general recursive function is representable in Q.

We have shown that the set of computable functions can be characterized as
the set of functions representable in Q. In fact, the proof is more general. From
the definition of representability, it is not hard to see that any theory extending
Q (or in which one can interpret Q) can represent the computable functions.
But, conversely, in any derivation system in which the notion of derivation
is computable, every representable function is computable. So, for example,
the set of computable functions can be characterized as the set of functions
representable in Peano arithmetic, or even Zermelo-Fraenkel set theory. As
Gödel noted, this is somewhat surprising. We will see that when it comes to
provability, questions are very sensitive to which theory you consider; roughly,
the stronger the axioms, the more you can prove. But across a wide range
of axiomatic theories, the representable functions are exactly the computable
ones; stronger theories do not represent more functions as long as they are
axiomatizable.

§17.8 Representing Relations

Let us say what it means for a relation to be representable.

Definition 178A. A relation R(x0, . . . , xk) on the natural numbers is repre-
sentable in Q if there is a formula αR(x0, . . . , xk) such that whenever R(n0, . . . , nk)
is true, Q proves αR(n0, . . . , nk), and whenever R(n0, . . . , nk) is false, Q proves
¬αR(n0, . . . , nk).

Theorem 178B. A relation is representable in Q if and only if it is com-
putable.
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Proof. For the forwards direction, suppose R(x0, . . . , xk) is represented by the
formula αR(x0, . . . , xk). Here is an algorithm for computing R: on input n0,
. . . , nk, simultaneously search for a proof of αR(n0, . . . , nk) and a proof of
¬αR(n0, . . . , nk). By our hypothesis, the search is bound to find one or the
other; if it is the first, report “yes,” and otherwise, report “no.”

In the other direction, suppose R(x0, . . . , xk) is computable. By definition,
this means that the function χR(x0, . . . , xk) is computable. By Theorem 170B,
χR is represented by a formula, say αχR

(x0, . . . , xk, y). Let αR(x0, . . . , xk) be
the formula αχR

(x0, . . . , xk, 1). Then for any n0, . . . , nk, if R(n0, . . . , nk) is
true, then χR(n0, . . . , nk) = 1, in which case Q proves αχR

(n0, . . . , nk, 1), and
so Q proves αR(n0, . . . , nk). On the other hand, if R(n0, . . . , nk) is false, then
χR(n0, . . . , nk) = 0. This means that Q proves

∀y (αχR
(n0, . . . , nk, y) → y = 0).

Since Q proves 0 ̸= 1, Q proves ¬αχR
(n0, . . . , nk, 1), and so it proves ¬αR(n0, . . . , nk).

§17.9 Undecidability

We call a theory T undecidable if there is no computational procedure which,
after finitely many steps and unfailingly, provides a correct answer to the ques-
tion “does T prove α?” for any sentence α in the language of T. So Q would
be decidable iff there were a computational procedure which decides, given a
sentence α in the language of arithmetic, whether Q ⊢ α or not. We can make
this more precise by asking: Is the relation ProvQ(y), which holds of y iff y is
the Gödel number of a sentence provable in Q, recursive? The answer is: no.

Theorem 179A. Q is undecidable, i.e., the relation

ProvQ(y) ⇔ Sent(y) ∧ ∃xPrfQ(x, y)

is not recursive.

Proof. Suppose it were. Then we could solve the halting problem as follows:
Given e and n, we know that φe(n) ↓ iff there is an s such that T (e, n, s), where
T is Kleene’s predicate from Theorem 1315A. Since T is primitive recursive it
is representable in Q by a formula βT , that is, Q ⊢ βT (e, n, s) iff T (e, n, s).
If Q ⊢ βT (e, n, s) then also Q ⊢ ∃y βT (e, n, y). If no such s exists, then Q ⊢
¬βT (e, n, s) for every s. But Q is ω-consistent, i.e., if Q ⊢ ¬α(n) for every n ∈
N, then Q ⊬ ∃y α(y). We know this because the axioms of Q are true in the
standard model B. So, Q ⊬ ∃y βT (e, n, y). In other words, Q ⊢ ∃y βT (e, n, y)
iff there is an s such that T (e, n, s), i.e., iff φe(n) ↓. From e and n we can
compute #∃y βT (e, n, y)#, let g(e, n) be the primitive recursive function which
does that. So

h(e, n) =

{
1 if ProvQ(g(e, n))

0 otherwise.

This would show that h is recursive if ProvQ is. But h is not recursive, by
Theorem 1316A, so ProvQ cannot be either.
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Corollary 179B. First-order logic is undecidable.

Proof. If first-order logic were decidable, provability in Q would be as well,
since Q ⊢ α iff ⊢ ω → α, where ω is the conjunction of the axioms of Q.

Problems

Problem 1. Show that the relations x < y, x | y, and the function rem(x, y)
can be defined without primitive recursion. You may use 0, successor, plus,
times, χ=, projections, and bounded minimization and quantification.

Problem 2. Prove that y = 0, y = x′, and y = xi represent zero, succ, and
Pn
i , respectively.

Problem 3. Prove Lemma 174I.

Problem 4. Use Lemma 174I to prove Proposition 174H.

Problem 5. Using the proofs of Proposition 175B and Proposition 175B as a
guide, carry out the proof of Proposition 175C in detail.

Problem 6. Show that if R is representable in Q, so is χR.
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Chapter 18

Theories and Computability

§18.0 Introduction

We have the following:

1. A definition of what it means for a function to be representable in Q
(Definition 170A)

2. a definition of what it means for a relation to be representable in Q
(Definition 178A)

3. a theorem asserting that the representable functions of Q are exactly the
computable ones (Theorem 170B)

4. a theorem asserting that the representable relations of Q are exactly the
computable ones Theorem 178B)

A theory is a set of sentences that is deductively closed, that is, with the
property that whenever T proves α then α is in T . It is probably best to
think of a theory as being a collection of sentences, together with all the things
that these sentences imply. From now on, we will use Q to refer to the theory
consisting of the set of sentences derivable from the eight axioms in section 17.0.
Remember that we can code formula of Q as numbers; if α is such a formula,
let #α# denote the number coding α. Modulo this coding, we can now ask
whether various sets of formulas are computable or not.

§18.1 Q is C.e.-Complete

Theorem 181A. Q is c.e. but not decidable. In fact, it is a complete c.e.
set.

Proof. It is not hard to see that Q is c.e., since it is the set of (codes for)
sentences y such that there is a proof x of y in Q:

Q = {y : ∃xPrfQ(x, y)}.
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But we know that PrfQ(x, y) is computable (in fact, primitive recursive), and
any set that can be written in the above form is c.e.

Saying that it is a complete c.e. set is equivalent to saying that K ≤m Q,
where K = {x : αx(x) ↓}. So let us show that K is reducible to Q. Since
Kleene’s predicate T (e, x, s) is primitive recursive, it is representable in Q, say,
by αT . Then for every x, we have

x ∈ K →∃s T (x, x, s)

→∃s (Q ⊢ αT (x, x, s))

→Q ⊢ ∃s αT (x, x, s).

Conversely, if Q ⊢ ∃s αT (x, x, s), then, in fact, for some natural number n the
formula αT (x, x, n) must be true. Now, if T (x, x, n) were false, Q would prove
¬αT (x, x, n), since αT represents T . But then Q proves a false formula, which
is a contradiction. So T (x, x, n) must be true, which implies αx(x) ↓.

In short, we have that for every x, x is in K if and only if Q proves
∃s T (x, x, s). So the function f which takes x to (a code for) the sentence
∃s T (x, x, s) is a reduction of K to Q.

§18.2 ω-Consistent Extensions of Q are Undecidable

The proof that Q is c.e.-complete relied on the fact that any sentence prov-
able in Q is “true” of the natural numbers. The next definition and theorem
strengthen this theorem, by pinpointing just those aspects of “truth” that were
needed in the proof above. Don’t dwell on this theorem too long, though, be-
cause we will soon strengthen it even further. We include it mainly for histor-
ical purposes: Gödel’s original paper used the notion of ω-consistency, but his
result was strengthened by replacing ω-consistency with ordinary consistency
soon after.

Definition 182A. A theory T is ω-consistent if the following holds: if
∃xα(x) is any sentence and T proves ¬α(0), ¬α(1), ¬α(2), . . . then T does
not prove ∃xα(x).

Theorem 182B. Let T be any ω-consistent theory that includes Q. Then T
is not decidable.

Proof. If T includes Q, then T represents the computable functions and re-
lations. We need only modify the previous proof. As above, if x ∈ K, then
T proves ∃s αT (x, x, s). Conversely, suppose T proves ∃s αT (x, x, s). Then x
must be in K: otherwise, there is no halting computation of machine x on input
x; since αT represents Kleene’s T relation, T proves ¬αT (x, x, 0), ¬αT (x, x, 1),
. . . , making T ω-inconsistent.
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18.3. Consistent Extensions of Q are Undecidable

§18.3 Consistent Extensions of Q are Undecidable

Remember that a theory is consistent if it does not prove both α and ¬α for any
formula α. Since anything follows from a contradiction, an inconsistent theory
is trivial: every sentence is provable. Clearly, if a theory if ω-consistent, then it
is consistent. But being consistent is a weaker requirement (i.e., there are theo-
ries that are consistent but not ω-consistent.). We can weaken the assumption
in Definition 182A to simple consistency to obtain a stronger theorem.

Lemma 183A. There is no “universal computable relation.” That is, there
is no binary computable relation R(x, y), with the following property: whenever
S(y) is a unary computable relation, there is some k such that for every y, S(y)
is true if and only if R(k, y) is true.

Proof. Suppose R(x, y) is a universal computable relation. Let S(y) be the
relation ¬R(y, y). Since S(y) is computable, for some k, S(y) is equivalent to
R(k, y). But then we have that S(k) is equivalent to both R(k, k) and ¬R(k, k),
which is a contradiction.

Theorem 183B. Let T be any consistent theory that includes Q. Then T is
not decidable.

Proof. Suppose T is a consistent, decidable extension of Q. We will obtain a
contradiction by using T to define a universal computable relation.

Let R(x, y) hold if and only if

x codes a formula δ(u), and T proves δ(y).

Since we are assuming that T is decidable, R is computable. Let us show that
R is universal. If S(y) is any computable relation, then it is representable in
Q (and hence T) by a formula δS(u). Then for every n, we have

S(n) → T ⊢ δS(n)

→ R( #δS(u)#, n)

and

¬S(n) → T ⊢ ¬δS(n)

→ T ̸⊢ δS(n) (since T is consistent)

→ ¬R( #δS(u)#, n).

That is, for every y, S(y) is true if and only if R( #δS(u)#, y) is. So R is
universal, and we have the contradiction we were looking for.

Let “true arithmetic” be the theory {α :|=MNSQQN α}, that is, the set of
sentences in the language of arithmetic that are true in the standard interpre-
tation.

Corollary 183C. True arithmetic is not decidable.
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§18.4 Axiomatizable Theories

A theory T is said to be axiomatizable if it has a computable set of axioms A.
(Saying that A is a set of axioms for T means T = {α : A ⊢ α}.) Any
“reasonable” axiomatization of the natural numbers will have this property. In
particular, any theory with a finite set of axioms is axiomatizable.

Lemma 184A. Suppose T is axiomatizable. Then T is computably enumer-
able.

Proof. Suppose A is a computable set of axioms for T. To determine if α ∈ T ,
just search for a derivation of α from the axioms.

Put slightly differently, α is in T if and only if there is a finite list of axioms
β1, . . . , βk in A and a derivation of (β1 ∧ · · · ∧ βk) → α in first-order logic.
But we already know that any set with a definition of the form “there exists
. . . such that . . . ” is c.e., provided the second “. . . ” is computable.

§18.5 Axiomatizable Complete Theories are Decidable

A theory is said to be complete if for every sentence α, either α or ¬α is
provable.

Lemma 185A. Suppose a theory T is complete and axiomatizable. Then T
is decidable.

Proof. Suppose T is complete and A is a computable set of axioms. If T is
inconsistent, it is clearly computable. (Algorithm: “just say yes.”) So we can
assume that T is also consistent.

To decide whether or not a sentence α is in T, simultaneously search for
a derivation of α from T and a derivation of ¬α. Since T is complete, you are
bound to find one or the other; and since T is consistent, if you find a derivation
of ¬α, there is no derivation of α.

Put in different terms, we already know that T is c.e.; so by a theorem we
proved before, it suffices to show that the complement of T is c.e. also. But
a wff α is in T̄ if and only if ¬α is in T; so T̄ ≤m T.

§18.6 Q has no Complete, Consistent, Axiomatizable
Extensions

Theorem 186A. There is no complete, consistent, axiomatizable extension
of Q.

Proof. We already know that there is no consistent, decidable extension of Q.
But if T is complete and axiomatized, then it is decidable.
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This theorems is not that far from Gödel’s original 1931 formulation of the
First Incompleteness Theorem. Aside from the more modern terminology, the
key differences are this: Gödel has “ω-consistent” instead of “consistent”; and
he could not say “axiomatizable” in full generality, since the formal notion of
computability was not in place yet. (The formal models of computability were
developed over the following decade, including by Gödel, and in large part to
be able to characterize the kinds of theories that are susceptible to the Gödel
phenomenon.)

The theorem says you can’t have it all, namely, completeness, consistency,
and axiomatizability. If you give up any one of these, though, you can have the
other two: Q is consistent and computably axiomatized, but not complete; the
inconsistent theory is complete, and computably axiomatized (say, by {0 ̸= 0}),
but not consistent; and the set of true sentence of arithmetic is complete and
consistent, but it is not computably axiomatized.

§18.7 Sentences Provable and Refutable in Q are
Computably Inseparable

Let Q̄ be the set of sentences whose negations are provable in Q, i.e., Q̄ = {α :
Q ⊢ ¬α}. Remember that disjoint sets A and B are said to be computably
inseparable if there is no computable set C such that A ⊆ C and B ⊆ C.

Lemma 187A. Q and Q̄ are computably inseparable.

Proof. Suppose C is a computable set such that Q ⊆ C and Q̄ ⊆ C. Let
R(x, y) be the relation

x codes a formula δ(u) and δ(y) is in C.

We will show that R(x, y) is a universal computable relation, yielding a con-
tradiction.

Suppose S(y) is computable, represented by δS(u) in Q. Then

S(n) → Q ⊢ δS(n)

→ δS(n) ∈ C

and

¬S(n) → Q ⊢ ¬δS(n)

→ δS(n) ∈ Q̄

→ δS(n) ̸∈ C

So S(y) is equivalent to R(#(δS(u)), y).
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§18.8 Theories Consistent with Q are Undecidable

The following theorem says that not only is Q undecidable, but, in fact, any
theory that does not disagree with Q is undecidable.

Theorem 188A. Let T be any theory in the language of arithmetic that is
consistent with Q (i.e., T ∪Q is consistent). Then T is undecidable.

Proof. Remember that Q has a finite set of axioms, Q1, . . . , Q8. We can even
replace these by a single axiom, φ = Q1 ∧ · · · ∧Q8.

Suppose T is a decidable theory consistent with Q. Let

C = {α : T ⊢ φ→ α}.

We show that C would be a computable separation of Q and Q̄, a contradiction.
First, if α is in Q, then α is provable from the axioms of Q; by the deduction
theorem, there is a derivation of φ→ α in first-order logic. So α is in C.

On the other hand, if α is in Q̄, then there is a proof of φ → ¬α in first-
order logic. If T also proves φ → α, then T proves ¬φ, in which case T ∪ Q
is inconsistent. But we are assuming T ∪Q is consistent, so T does not prove
φ→ α, and so α is not in C.

We’ve shown that if α is in Q, then it is in C, and if α is in Q̄, then it
is in C. So C is a computable separation, which is the contradiction we were
looking for.

This theorem is very powerful. For example, it implies:

Corollary 188B. First-order logic for the language of arithmetic (that is,
the set {α : α is provable in first-order logic}) is undecidable.

Proof. First-order logic is the set of consequences of ∅, which is consistent
with Q.

§18.9 Theories in which Q is Intepretable are
Undecidable

We can strengthen these results even more. Informally, an interpretation of
a language L1 in another language L2 involves defining the universe, relation
symbols, and function symbols of L1 with wffs in L2. Though we won’t take
the time to do this, one can make this definition precise.

Theorem 189A. Suppose T is a theory in a language in which one can in-
terpret the language of arithmetic, in such a way that T is consistent with the
interpretation of Q. Then T is undecidable. If T proves the interpretation of
the axioms of Q, then no consistent extension of T is decidable.
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The proof is just a small modification of the proof of the last theorem;
one could use a counterexample to get a separation of Q and Q̄. One can
take ZFC, Zermelo-Fraenkel set theory with the axiom of choice, to be an
axiomatic foundation that is powerful enough to carry out a good deal of ordi-
nary mathematics. In ZFC one can define the natural numbers, and via this
interpretation, the axioms of Q are true. So we have

Corollary 189B. There is no decidable extension of ZFC.

Corollary 189C. There is no complete, consistent, computably axiomatiz-
able extension of ZFC.

The language of ZFC has only a single binary relation, ∈. (In fact, you
don’t even need equality.) So we have

Corollary 189D. First-order logic for any language with a binary relation
symbol is undecidable.

This result extends to any language with two unary function symbols, since
one can use these to simulate a binary relation symbol. The results just cited
are tight: it turns out that first-order logic for a language with only unary
relation symbols and at most one unary function symbol is decidable.

One more bit of trivia. We know that the set of sentences in the language
0, ′, +, ×, < true in the standard model is undecidable. In fact, one can
define < in terms of the other symbols, and then one can define + in terms of
× and ′. So the set of true sentences in the language 0, ′, × is undecidable.
On the other hand, Presburger has shown that the set of sentences in the
language 0, ′, + true in the language of arithmetic is decidable. The procedure
is computationally infeasible, however.

Release : 0552395 (2022-04-04) 247





Chapter 19

Incompleteness and Provability

§19.0 Introduction

Hilbert thought that a system of axioms for a mathematical structure, such
as the natural numbers, is inadequate unless it allows one to derive all true
statements about the structure. Combined with his later interest in formal
systems of deduction, this suggests that he thought that we should guarantee
that, say, the formal systems we are using to reason about the natural numbers
is not only consistent, but also complete, i.e., every statement in its language
is either derivable or its negation is. Gödel’s first incompleteness theorem
shows that no such system of axioms exists: there is no complete, consistent,
axiomatizable formal system for arithmetic. In fact, no “sufficiently strong,”
consistent, axiomatizable mathematical theory is complete.

A more important goal of Hilbert’s, the centerpiece of his program for the
justification of modern (“classical”) mathematics, was to find finitary consis-
tency proofs for formal systems representing classical reasoning. With regard
to Hilbert’s program, then, Gödel’s second incompleteness theorem was a much
bigger blow. The second incompleteness theorem can be stated in vague terms,
like the first incompleteness theorem. Roughly speaking, it says that no suffi-
ciently strong theory of arithmetic can prove its own consistency. We will have
to take “sufficiently strong” to include a little bit more than Q.

The idea behind Gödel’s original proof of the incompleteness theorem can
be found in the Epimenides paradox. Epimenides, a Cretan, asserted that all
Cretans are liars; a more direct form of the paradox is the assertion “this sen-
tence is false.” Essentially, by replacing truth with derivability, Gödel was able
to formalize a sentence which, in a roundabout way, asserts that it itself is not
derivable. If that sentence were derivable, the theory would then be inconsis-
tent. Gödel showed that the negation of that sentence is also not derivable from
the system of axioms he was considering. (For this second part, Gödel had to
assume that the theory T is what’s called “ω-consistent.” ω-Consistency is
related to consistency, but is a stronger property.1 A few years after Gödel,

1That is, any ω-consistent theory is consistent, but not vice versa.
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19. Incompleteness and Provability

Rosser showed that assuming simple consistency of T is enough.)
The first challenge is to understand how one can construct a sentence that

refers to itself. For every wff α in the language of Q, let ⌜α⌝ denote the
numeral corresponding to #α#. Think about what this means: α is a wff in
the language of Q, #α# is a natural number, and ⌜α⌝ is a term in the language
of Q. So every wff α in the language of Q has a name, ⌜α⌝, which is a term in
the language of Q; this provides us with a conceptual framework in which wffs
in the language of Q can “say” things about other wffs. The following lemma
is known as the fixed-point lemma.

Lemma 190A. Let T be any theory extending Q, and let β(x) be any wff with
only the variable x free. Then there is a sentence α such that T ⊢ α↔β(⌜α⌝).

The lemma asserts that given any property β(x), there is a sentence α that
asserts “β(x) is true of me,” and T “knows” this.

How can we construct such a sentence? Consider the following version of
the Epimenides paradox, due to Quine:

“Yields falsehood when preceded by its quotation” yields falsehood
when preceded by its quotation.

This sentence is not directly self-referential. It simply makes an assertion about
the syntactic objects between quotes, and, in doing so, it is on par with sen-
tences like

1. “Robert” is a nice name.

2. “I ran.” is a short sentence.

3. “Has three words” has three words.

But what happens when one takes the phrase “yields falsehood when preceded
by its quotation,” and precedes it with a quoted version of itself? Then one
has the original sentence! In short, the sentence asserts that it is false.

§19.1 The Fixed-Point Lemma

The fixed-point lemma says that for any wff β(x), there is a sentence α such
that T ⊢ α↔ β(⌜α⌝), provided T extends Q. In the case of the liar sentence,
we’d want α to be equivalent (provably in T) to “⌜α⌝ is false,” i.e., the state-
ment that #α# is the Gödel number of a false sentence. To understand the idea
of the proof, it will be useful to compare it with Quine’s informal gloss of α
as, “‘yields a falsehood when preceded by its own quotation’ yields a falsehood
when preceded by its own quotation.” The operation of taking an expression,
and then forming a sentence by preceding this expression by its own quotation
may be called diagonalizing the expression, and the result its diagonalization.
So, the diagonalization of ‘yields a falsehood when preceded by its own quo-
tation’ is “‘yields a falsehood when preceded by its own quotation’ yields a
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19.1. The Fixed-Point Lemma

falsehood when preceded by its own quotation.” Now note that Quine’s liar
sentence is not the diagonalization of ‘yields a falsehood’ but of ‘yields a false-
hood when preceded by its own quotation.’ So the property being diagonalized
to yield the liar sentence itself involves diagonalization!

In the language of arithmetic, we form quotations of a wff with one free
variable by computing its Gödel numbers and then substituting the standard
numeral for that Gödel number into the free variable. The diagonalization
of φ(x) is φ(n), where n = #φ(x)#. (From now on, let’s abbreviate #φ(x)#

as ⌜φ(x)⌝.) So if β(x) is “is a falsehood,” then “yields a falsehood if pre-
ceded by its own quotation,” would be “yields a falsehood when applied to the
Gödel number of its diagonalization.” If we had a symbol diag for the function
diag(n) which computes the Gödel number of the diagonalization of the wff
with Gödel number n, we could write φ(x) as β(diag(x)). And Quine’s version
of the liar sentence would then be the diagonalization of it, i.e., φ(⌜φ(x)⌝) or
β(diag(⌜β(diag(x))⌝)). Of course, β(x) could now be any other property, and
the same construction would work. For the incompleteness theorem, we’ll take
β(x) to be “x is not derivable in T.” Then φ(x) would be “yields a sentence
not derivable in T when applied to the Gödel number of its diagonalization.”

To formalize this in T, we have to find a way to formalize diag. The function
diag(n) is computable, in fact, it is primitive recursive: if n is the Gödel number
of a formula φ(x), diag(n) returns the Gödel number of φ(⌜φ(x)⌝). (Recall,
⌜φ(x)⌝ is the standard numeral of the Gödel number of φ(x), i.e., #φ(x)#). If
diag were a function symbol in T representing the function diag, we could take
α to be the formula β(diag(⌜β(diag(x))⌝)). Notice that

diag( #β(diag(x))#) = #β(diag(⌜β(diag(x))⌝))#

= #α#.

Assuming T can derive

diag(⌜β(diag(x))⌝) = ⌜α⌝,

it can derive β(diag(⌜β(diag(x))⌝)) ↔ β(⌜α⌝). But the left hand side is, by
definition, α.

Of course, diag will in general not be a function symbol of T, and cer-
tainly is not one of Q. But, since diag is computable, it is representable in Q
by some formula δdiag(x, y). So instead of writing β(diag(x)) we can write
∃y (δdiag(x, y) ∧ β(y)). Otherwise, the proof sketched above goes through, and
in fact, it goes through already in Q.

Lemma 191A. Let β(x) be any formula with one free variable x. Then
there is a sentence α such that Q ⊢ α↔ β(⌜α⌝).

Proof. Given β(x), let φ(x) be the formula ∃y (δdiag(x, y) ∧ β(y)) and let α be
its diagonalization, i.e., the formula φ(⌜φ(x)⌝).

Since δdiag represents diag, and diag( #φ(x)#) = #α#, Q can derive

δdiag(⌜φ(x)⌝, ⌜α⌝) (19.1)

∀y (δdiag(⌜φ(x)⌝, y) → y = ⌜α⌝). (19.2)
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Now we show that Q ⊢ α↔ β(⌜α⌝). We argue informally, using just logic and
facts derivable in Q.

First, suppose α, i.e., φ(⌜φ(x)⌝). Going back to the definition of φ(x), we
see that φ(⌜φ(x)⌝) just is

∃y (δdiag(⌜φ(x)⌝, y) ∧ β(y)).

Consider such a y. Since δdiag(⌜φ(x)⌝, y), by eq. (19.2), y = ⌜α⌝. So, from
β(y) we have β(⌜α⌝).

Now suppose β(⌜α⌝). By eq. (19.1), we have

δdiag(⌜φ(x)⌝, ⌜α⌝) ∧ β(⌜α⌝).

It follows that

∃y (δdiag(⌜φ(x)⌝, y) ∧ β(y)).

But that’s just φ(⌜φ(x)⌝), i.e., α.

You should compare this to the proof of the fixed-point lemma in com-
putability theory. The difference is that here we want to define a statement in
terms of itself, whereas there we wanted to define a function in terms of itself;
this difference aside, it is really the same idea.

§19.2 The First Incompleteness Theorem

We can now describe Gödel’s original proof of the first incompleteness theorem.
Let T be any computably axiomatized theory in a language extending the
language of arithmetic, such that T includes the axioms of Q. This means
that, in particular, T represents computable functions and relations.

We have argued that, given a reasonable coding of formulas and proofs as
numbers, the relation PrfT (x, y) is computable, where PrfT (x, y) holds if and
only if x is the Gödel number of a derivation of the wff with Gödel number y
in T. In fact, for the particular theory that Gödel had in mind, Gödel was able
to show that this relation is primitive recursive, using the list of 45 functions
and relations in his paper. The 45th relation, xBy, is just PrfT (x, y) for his
particular choice of T. Remember that where Gödel uses the word “recursive”
in his paper, we would now use the phrase “primitive recursive.”

Since PrfT (x, y) is computable, it is representable in T. We will use
PrfT (x, y) to refer to the formula that represents it. Let ProvT (y) be the
formula ∃xPrfT (x, y). This describes the 46th relation, Bew(y), on Gödel’s
list. As Gödel notes, this is the only relation that “cannot be asserted to be
recursive.” What he probably meant is this: from the definition, it is not clear
that it is computable; and later developments, in fact, show that it isn’t.

Let T be an axiomatizable theory containing Q. Then PrfT (x, y) is decid-
able, hence representable in Q by a wff PrfT (x, y). Let ProvT (y) be the formula
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we described above. By the fixed-point lemma, there is a formula χT such that
Q (and hence T) derives

χT ↔¬ProvT (⌜χT⌝). (19.3)

Note that χT says, in essence, “χT is not derivable in T.”

Lemma 192A. If T is a consistent, axiomatizable theory extending Q, then
T ⊬ χT.

Proof. Suppose T derives χT. Then there is a derivation, and so, for some
number m, the relation PrfT (m, #χT

#) holds. But then Q derives the sen-
tence PrfT (m, ⌜χT⌝). So Q derives ∃xPrfT (x, ⌜χT⌝), which is, by definition,
ProvT (⌜χT⌝). By eq. (19.3), Q derives ¬χT, and since T extends Q, so does T.
We have shown that if T derives χT, then it also derives ¬χT, and hence it
would be inconsistent.

Definition 192B. A theory T is ω-consistent if the following holds: if
∃xα(x) is any sentence and T derives ¬α(0), ¬α(1), ¬α(2), . . . then T does
not prove ∃xα(x).

Note that every ω-consistent theory is also consistent. This follows simply
from the fact that if T is inconsistent, then T ⊢ α for every α. In particular, if
T is inconsistent, it derives both ¬α(n) for every n and also derives ∃xα(x). So,
if T is inconsistent, it is ω-inconsistent. By contraposition, if T is ω-consistent,
it must be consistent.

Lemma 192C. If T is an ω-consistent, axiomatizable theory extending Q,
then T ⊬ ¬χT.

Proof. We show that if T derives ¬χT, then it is ω-inconsistent. Suppose
T derives ¬χT. If T is inconsistent, it is ω-inconsistent, and we are done.
Otherwise, T is consistent, so it does not derive χT by Lemma 192A. Since
there is no derivation of χT in T, Q derives

¬PrfT (0, ⌜χT⌝),¬PrfT (1, ⌜χT⌝),¬PrfT (2, ⌜χT⌝), . . .

and so does T. On the other hand, by eq. (19.3), ¬χT is equivalent to
∃xPrfT (x, ⌜χT⌝). So T is ω-inconsistent.

Theorem 192D. Let T be any ω-consistent, axiomatizable theory extend-
ing Q. Then T is not complete.

Proof. If T is ω-consistent, it is consistent, so T ⊬ χT by Lemma 192A. By
Lemma 192C, T ⊬ ¬χT. This means that T is incomplete, since it derives
neither χT nor ¬χT.
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§19.3 Rosser’s Theorem

Can we modify Gödel’s proof to get a stronger result, replacing “ω-consistent”
with simply “consistent”? The answer is “yes,” using a trick discovered by
Rosser. Rosser’s trick is to use a “modified” derivability predicate RProvT (y)
instead of ProvT (y).

Theorem 193A. Let T be any consistent, axiomatizable theory extending
Q. Then T is not complete.

Proof. Recall that ProvT (y) is defined as ∃xPrfT (x, y), where PrfT (x, y) repre-
sents the decidable relation which holds iff x is the Gödel number of a deriva-
tion of the sentence with Gödel number y. The relation that holds between x
and y if x is the Gödel number of a refutation of the sentence with Gödel num-
ber y is also decidable. Let not(x) be the primitive recursive function which
does the following: if x is the code of a formula α, not(x) is a code of ¬α.
Then RefT (x, y) holds iff PrfT (x, not(y)). Let RefT (x, y) represent it. Then,
if T ⊢ ¬α and δ is a corresponding derivation, Q ⊢ RefT (⌜δ⌝, ⌜α⌝). We define
RProvT (y) as

∃x (PrfT (x, y) ∧ ∀z (z < x→¬RefT (z, y))).

Roughly, RProvT (y) says “there is a proof of y in T, and there is no shorter
refutation of y.” Assuming T is consistent, RProvT (y) is true of the same
numbers as ProvT (y); but from the point of view of provability in T (and we
now know that there is a difference between truth and provability!) the two
have different properties. If T is inconsistent, then the two do not hold of
the same numbers! (RProvT (y) is often read as “y is Rosser provable.” Since,
as just discussed, Rosser provability is not some special kind of provability—
in inconsistent theories, there are sentences that are provable but not Rosser
provable—this may be confusing. To avoid the confusion, you could instead
read it as “y is shmovable.”)

By the fixed-point lemma, there is a formula ρT such that

Q ⊢ ρT ↔¬RProvT (⌜ρT⌝). (19.4)

In contrast to the proof of Theorem 192D, here we claim that if T is consistent,
T doesn’t derive ρT, and T also doesn’t derive ¬ρT. (In other words, we don’t
need the assumption of ω-consistency.)

First, let’s show that T ⊬ ρT . Suppose it did, so there is a derivation of ρT
from T ; let n be its Gödel number. Then Q ⊢ PrfT (n, ⌜ρT ⌝), since PrfT repre-
sents PrfT in Q. Also, for each k < n, k is not the Gödel number of a deriva-
tion of ¬ρT , since T is consistent. So for each k < n, Q ⊢ ¬RefT (k, ⌜ρT ⌝). By
Lemma 176C, Q ⊢ ∀z (z < n→¬RefT (z, ⌜ρT ⌝)). Thus,

Q ⊢ ∃x (PrfT (x, ⌜ρT ⌝) ∧ ∀z (z < x→¬RefT (z, ⌜ρT ⌝))),
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but that’s just RProvT (⌜ρT ⌝). By eq. (19.4), Q ⊢ ¬ρT . Since T extends Q, also
T ⊢ ¬ρT . We’ve assumed that T ⊢ ρT , so T would be inconsistent, contrary
to the assumption of the theorem.

Now, let’s show that T ⊬ ¬ρT . Again, suppose it did, and suppose n is the
Gödel number of a derivation of ¬ρT . Then RefT (n, #ρT

#) holds, and since
RefT represents RefT in Q, Q ⊢ RefT (n, ⌜ρT ⌝). We’ll again show that T would
then be inconsistent because it would also derive ρT . Since

Q ⊢ ρT ↔¬RProvT (⌜ρT ⌝),

and since T extends Q, it suffices to show that

Q ⊢ ¬RProvT (⌜ρT ⌝).

The sentence ¬RProvT (⌜ρT ⌝), i.e.,

¬∃x (PrfT (x, ⌜ρT ⌝) ∧ ∀z (z < x→¬RefT (z, ⌜ρT ⌝))),

is logically equivalent to

∀x (PrfT (x, ⌜ρT ⌝) →∃z (z < x ∧ RefT (z, ⌜ρT ⌝))).

We argue informally using logic, making use of facts about what Q derives.
Suppose x is arbitrary and PrfT (x, ⌜ρT ⌝). We already know that T ⊬ ρT ,
and so for every k, Q ⊢ ¬PrfT (k, ⌜ρT ⌝). Thus, for every k it follows that
x ̸= k. In particular, we have (a) that x ̸= n. We also have ¬(x = 0 ∨ x =
1 ∨ · · · ∨ x = n− 1) and so by Lemma 176C, (b) ¬(x < n). By Lemma 176D,
n < x. Since Q ⊢ RefT (n, ⌜ρT ⌝), we have n < x ∧ RefT (n, ⌜ρT ⌝), and from
that ∃z (z < x∧RefT (z, ⌜ρT ⌝)). Since x was arbitrary we get, as required, that

∀x (PrfT (x, ⌜ρT ⌝) →∃z (z < x ∧ RefT (z, ⌜ρT ⌝))).

§19.4 Comparison with Gödel’s Original Paper

It is worthwhile to spend some time with Gödel’s 1931 paper. The introduction
sketches the ideas we have just discussed. Even if you just skim through the
paper, it is easy to see what is going on at each stage: first Gödel describes the
formal system P (syntax, axioms, proof rules); then he defines the primitive
recursive functions and relations; then he shows that xBy is primitive recursive,
and argues that the primitive recursive functions and relations are represented
in P. He then goes on to prove the incompleteness theorem, as above. In
Section 3, he shows that one can take the unprovable assertion to be a sentence
in the language of arithmetic. This is the origin of the β-lemma, which is what
we also used to handle sequences in showing that the recursive functions are
representable in Q. Gödel doesn’t go so far to isolate a minimal set of axioms
that suffice, but we now know that Q will do the trick. Finally, in Section 4,
he sketches a proof of the second incompleteness theorem.
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§19.5 The Derivability Conditions for PA

Peano arithmetic, or PA, is the theory extending Q with induction axioms for
all wffs. In other words, one adds to Q axioms of the form

(α(0) ∧ ∀x (α(x) → α(x′))) →∀xα(x)

for every wff α. Notice that this is really a schema, which is to say, infinitely
many axioms (and it turns out that PA is not finitely axiomatizable). But
since one can effectively determine whether or not a string of symbols is an
instance of an induction axiom, the set of axioms for PA is computable. PA
is a much more robust theory than Q. For example, one can easily prove
that addition and multiplication are commutative, using induction in the usual
way. In fact, most finitary number-theoretic and combinatorial arguments can
be carried out in PA.

Since PA is computably axiomatized, the derivability predicate PrfPA(x, y)
is computable and hence represented in Q (and so, in PA). As before, we will
take PrfPA(x, y) to denote the formula representing the relation. Let ProvPA(y)
be the formula ∃xPrfPA(x, y), which, intuitively says, “y is derivable from the
axioms of PA.” The reason we need a little bit more than the axioms of Q
is we need to know that the theory we are using is strong enough to derive a
few basic facts about this derivability predicate. In fact, what we need are the
following facts:

P1. If PA ⊢ α, then PA ⊢ ProvPA(⌜α⌝).

P2. For all wffs α and β,

PA ⊢ ProvPA(⌜α→ β⌝) → (ProvPA(⌜α⌝) → ProvPA(⌜β⌝)).

P3. For every wff α,

PA ⊢ ProvPA(⌜α⌝) → ProvPA(⌜ProvPA(⌜α⌝)⌝).

The only way to verify that these three properties hold is to describe the wff
ProvPA(y) carefully and use the axioms of PA to describe the relevant formal
derivations. Conditions (1) and (2) are easy; it is really condition (3) that
requires work. (Think about what kind of work it entails . . . ) Carrying out
the details would be tedious and uninteresting, so here we will ask you to take
it on faith that PA has the three properties listed above. A reasonable choice
of ProvPA(y) will also satisfy

P4. If PA ⊢ ProvPA(⌜α⌝), then PA ⊢ α.

But we will not need this fact.
Incidentally, Gödel was lazy in the same way we are being now. At the end

of the 1931 paper, he sketches the proof of the second incompleteness theorem,
and promises the details in a later paper. He never got around to it; since
everyone who understood the argument believed that it could be carried out
(he did not need to fill in the details.)

256 Release : 0552395 (2022-04-04)



19.6. The Second Incompleteness Theorem

§19.6 The Second Incompleteness Theorem

How can we express the assertion that PA doesn’t prove its own consistency?
Saying PA is inconsistent amounts to saying that PA ⊢ 0 = 1. So we can take
the consistency statement ConPA to be the sentence ¬ProvPA(⌜0 = 1⌝), and
then the following theorem does the job:

Theorem 196A. Assuming PA is consistent, then PA does not derive
ConPA.

It is important to note that the theorem depends on the particular represen-
tation of ConPA (i.e., the particular representation of ProvPA(y)). All we will
use is that the representation of ProvPA(y) satisfies the three derivability con-
ditions, so the theorem generalizes to any theory with a derivability predicate
having these properties.

It is informative to read Gödel’s sketch of an argument, since the theorem
follows like a good punch line. It goes like this. Let χPA be the Gödel sentence
that we constructed in the proof of Theorem 192D. We have shown “If PA is
consistent, then PA does not derive χPA.” If we formalize this in PA, we have
a proof of

ConPA →¬ProvPA(⌜χPA⌝).

Now suppose PA derives ConPA. Then it derives ¬ProvPA(⌜χPA⌝). But since
χPA is a Gödel sentence, this is equivalent to χPA. So PA derives χPA.

But: we know that if PA is consistent, it doesn’t derive χPA! So if PA is
consistent, it can’t derive ConPA.

To make the argument more precise, we will let χPA be the Gödel sentence
for PA and use the derivability conditions (P1)–(P3) to show that PA derives
ConPA→χPA. This will show that PA doesn’t derive ConPA. Here is a sketch
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of the proof, in PA. (For simplicity, we drop the PA subscripts.)

χ↔¬Prov(⌜χ⌝) (19.5)

χ is a Gödel sentence

χ→¬Prov(⌜χ⌝) (19.6)

from eq. (19.5)

χ→ (Prov(⌜χ⌝) →⊥) (19.7)

from eq. (19.6) by logic

Prov(⌜χ→ (Prov(⌜χ⌝) →⊥)⌝) (19.8)

by from eq. (19.7) by condition P1

Prov(⌜χ⌝) → Prov(⌜(Prov(⌜χ⌝) →⊥)⌝) (19.9)

from eq. (19.8) by condition P2

Prov(⌜χ⌝) → (Prov(⌜Prov(⌜χ⌝)⌝) → Prov(⌜⊥⌝)) (19.10)

from eq. (19.9) by condition P2 and logic

Prov(⌜χ⌝) → Prov(⌜Prov(⌜χ⌝)⌝) (19.11)

by P3

Prov(⌜χ⌝) → Prov(⌜⊥⌝) (19.12)

from eq. (19.10) and eq. (19.11) by logic

Con→¬Prov(⌜χ⌝) (19.13)

contraposition of eq. (19.12) and Con ≡ ¬Prov(⌜⊥⌝)

Con→ χ

from eq. (19.5) and eq. (19.13) by logic

The use of logic in the above just elementary facts from propositional logic,
e.g., eq. (19.7) uses ⊢ ¬α↔ (α→⊥) and eq. (19.12) uses α→ (β→ γ), α→β ⊢
α→ γ. The use of condition P2 in eq. (19.9) and eq. (19.10) relies on instances
of P2, Prov(⌜α→ β⌝) → (Prov(⌜α⌝) → Prov(⌜β⌝)). In the first one, α ≡ χ and
β ≡ Prov(⌜χ⌝) →⊥; in the second, α ≡ Prov(⌜G⌝) and β ≡ ⊥.

The more abstract version of the second incompleteness theorem is as fol-
lows:

Theorem 196B. Let T be any consistent, axiomatized theory extending Q
and let ProvT (y) be any formula satisfying derivability conditions P1–P3 for T.
Then T does not derive ConT .

The moral of the story is that no “reasonable” consistent theory for math-
ematics can derive its own consistency statement. Suppose T is a theory of
mathematics that includes Q and Hilbert’s “finitary” reasoning (whatever that
may be). Then, the whole of T cannot derive the consistency statement of T,
and so, a fortiori, the finitary fragment can’t derive the consistency statement
of T either. In that sense, there cannot be a finitary consistency proof for “all
of mathematics.”
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There is some leeway in interpreting the term “finitary,” and Gödel, in the
1931 paper, grants the possibility that something we may consider “finitary”
may lie outside the kinds of mathematics Hilbert wanted to formalize. But
Gödel was being charitable; today, it is hard to see how we might find something
that can reasonably be called finitary but is not formalizable in, say, ZFC,
Zermelo-Fraenkel set theory with the axiom of choice.

§19.7 Löb’s Theorem

The Gödel sentence for a theory T is a fixed point of ¬ProvT (y), i.e., a sen-
tence χ such that

T ⊢ ¬ProvT (⌜χ⌝) ↔ χ.

It is not derivable, because if T ⊢ χ, (a) by derivability condition (1), T ⊢
ProvT (⌜χ⌝), and (b) T ⊢ χ together with T ⊢ ¬ProvT (⌜χ⌝) ↔ χ gives T ⊢
¬ProvT (⌜χ⌝), and so T would be inconsistent. Now it is natural to ask about
the status of a fixed point of ProvT (y), i.e., a sentence θ such that

T ⊢ ProvT (⌜θ⌝) ↔ θ.

If it were derivable, T ⊢ ProvT (⌜θ⌝) by condition (1), but the same conclusion
follows if we apply modus ponens to the equivalence above. Hence, we don’t
get that T is inconsistent, at least not by the same argument as in the case of
the Gödel sentence. This of course does not show that T does derive θ.

We can make headway on this question if we generalize it a bit. The left-
to-right direction of the fixed point equivalence, ProvT (⌜θ⌝)→ θ, is an instance
of a general schema called a reflection principle: ProvT (⌜α⌝) → α. It is called
that because it expresses, in a sense, that T can “reflect” about what it can
derive; basically it says, “If T can derive α, then α is true,” for any α. This is
true for sound theories only, of course, and this suggests that theories will in
general not derive every instance of it. So which instances can a theory (strong
enough, and satisfying the derivability conditions) derive? Certainly all those
where α itself is derivable. And that’s it, as the next result shows.

Theorem 197A. Let T be an axiomatizable theory extending Q, and sup-
pose ProvT (y) is a formula satisfying conditions P1–P3 from section 19.6. If
T derives ProvT (⌜α⌝) → α, then in fact T derives α.

Put differently, if T ⊬ α, then T ⊬ ProvT (⌜α⌝) → α. This result is known
as Löb’s theorem.

The heuristic for the proof of Löb’s theorem is a clever proof that Santa
Claus exists. (If you don’t like that conclusion, you are free to substitute any
other conclusion you would like.) Here it is:

1. Let X be the sentence, “If X is true, then Santa Claus exists.”

2. Suppose X is true.
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3. Then what it says holds; i.e., we have: if X is true, then Santa Claus
exists.

4. Since we are assuming X is true, we can conclude that Santa Claus exists,
by modus ponens from (2) and (3).

5. We have succeeded in deriving (4), “Santa Claus exists,” from the as-
sumption (2), “X is true.” By conditional proof, we have shown: “If X
is true, then Santa Claus exists.”

6. But this is just the sentence X. So we have shown that X is true.

7. But then, by the argument (2)–(4) above, Santa Claus exists.

A formalization of this idea, replacing “is true” with “is derivable,” and “Santa
Claus exists” with α, yields the proof of Löb’s theorem. The trick is to apply the
fixed-point lemma to the wff ProvT (y)→α. The fixed point of that corresponds
to the sentence X in the preceding sketch.

Proof of Theorem 197A. Suppose α is a sentence such that T derives ProvT (⌜α⌝)→
α. Let β(y) be the wff ProvT (y) → α, and use the fixed-point lemma to find
a sentence δ such that T derives δ ↔ β(⌜δ⌝). Then each of the following is
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derivable in T:

δ ↔ (ProvT (⌜δ⌝) → α) (19.14)

δ is a fixed point of β(y)

δ → (ProvT (⌜δ⌝) → α) (19.15)

from eq. (19.14)

ProvT (⌜δ → (ProvT (⌜δ⌝) → α)⌝) (19.16)

from eq. (19.15) by condition P1

ProvT (⌜δ⌝) → ProvT (⌜ProvT (⌜δ⌝) → α⌝) (19.17)

from eq. (19.16) using condition P2

ProvT (⌜δ⌝) → (ProvT (⌜ProvT (⌜δ⌝)⌝) → ProvT (⌜α⌝)) (19.18)

from eq. (19.17) using P2 again

ProvT (⌜δ⌝) → ProvT (⌜ProvT (⌜δ⌝)⌝) (19.19)

by derivability condition P3

ProvT (⌜δ⌝) → ProvT (⌜α⌝) (19.20)

from eq. (19.18) and eq. (19.19)

ProvT (⌜α⌝) → α (19.21)

by assumption of the theorem

ProvT (⌜δ⌝) → α (19.22)

from eq. (19.20) and eq. (19.21)

(ProvT (⌜δ⌝) → α) → δ (19.23)

from eq. (19.14)

δ (19.24)

from eq. (19.22) and eq. (19.23)

ProvT (⌜δ⌝) (19.25)

from eq. (19.24) by condition P1

α from eq. (19.21) and eq. (19.25)

With Löb’s theorem in hand, there is a short proof of the second incomplete-
ness theorem (for theories having a derivability predicate satisfying conditions
P1–P3): if T ⊢ ProvT (⌜⊥⌝) →⊥, then T ⊢ ⊥. If T is consistent, T ⊬ ⊥. So,
T ⊬ ProvT (⌜⊥⌝)→⊥, i.e., T ⊬ ConT. We can also apply it to show that θ, the
fixed point of ProvT (x), is derivable. For since

T ⊢ ProvT (⌜θ⌝) ↔ θ

in particular

T ⊢ ProvT (⌜θ⌝) → θ

and so by Löb’s theorem, T ⊢ θ.
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§19.8 The Undefinability of Truth

The notion of definability depends on having a formal semantics for the lan-
guage of arithmetic. We have described a set of formulas and sentences in the
language of arithmetic. The “intended interpretation” is to read such sentences
as making assertions about the natural numbers, and such an assertion can be
true or false. Let B be the structure with domain N and the standard inter-
pretation for the symbols in the language of arithmetic. Then |=B α means “α
is true in the standard interpretation.”

Definition 198A. A relation R(x1, . . . , xk) of natural numbers is definable
in B if and only if there is a formula α(x1, . . . , xk) in the language of arithmetic
such that for every n1, . . . , nk, R(n1, . . . , nk) if and only if |=B α(n1, . . . , nk).

Put differently, a relation is definable in B if and only if it is representable
in the theory TA, where TA = {α :|=B α} is the set of true sentences of
arithmetic. (If this is not immediately clear to you, you should go back and
check the definitions and convince yourself that this is the case.)

Lemma 198B. Every computable relation is definable in B.

Proof. It is easy to check that the formula representing a relation in Q defines
the same relation in B.

Now one can ask, is the converse also true? That is, is every relation
definable in B computable? The answer is no. For example:

Lemma 198C. The halting relation is definable in B.

Proof. Let H be the halting relation, i.e.,

H = {⟨e, x⟩ : ∃s T (e, x, s)}.

Let δT define T in B. Then

H = {⟨e, x⟩ :|=B ∃s δT (e, x, s)},

so ∃s δT (z, x, s) defines H in B.

What about TA itself? Is it definable in arithmetic? That is: is the set
{ #α# :|=B α} definable in arithmetic? Tarski’s theorem answers this in the
negative.

Theorem 198D. The set of true sentences of arithmetic is not definable in
arithmetic.

Proof. Suppose δ(x) defined it, i.e., |=B α iff |=B δ(⌜α⌝). By the fixed-point
lemma, there is a formula α such that Q ⊢ α ↔ ¬δ(⌜α⌝), and hence |=B

α↔¬δ(⌜α⌝). But then |=B α if and only if |=B ¬δ(⌜α⌝), which contradicts the
fact that δ(y) is supposed to define the set of true statements of arithmetic.
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Tarski applied this analysis to a more general philosophical notion of truth.
Given any language L, Tarski argued that an adequate notion of truth for L
would have to satisfy, for each sentence X,

‘X’ is true if and only if X.

Tarski’s oft-quoted example, for English, is the sentence

‘Snow is white’ is true if and only if snow is white.

However, for any language strong enough to represent the diagonal function,
and any linguistic predicate T (x), we can construct a sentence X satisfying
“X if and only if not T (‘X’).” Given that we do not want a truth predicate
to declare some sentences to be both true and false, Tarski concluded that
one cannot specify a truth predicate for all sentences in a language without,
somehow, stepping outside the bounds of the language. In other words, a the
truth predicate for a language cannot be defined in the language itself.

Problems

Problem 1. A wff α(x) is a truth definition if Q ⊢ β ↔ α(⌜β⌝) for all sen-
tences β. Show that no wff is a truth definition by using the fixed-point lemma.

Problem 2. Every ω-consistent theory is consistent. Show that the converse
does not hold, i.e., that there are consistent but ω-inconsistent theories. Do
this by showing that Q ∪ {¬χQ} is consistent but ω-inconsistent.

Problem 3. Two sets A and B of natural numbers are said to be computably
inseparable if there is no decidable set X such that A ⊆ X and B ⊆ X (X is
the complement, N \X, of X). Let T be a consistent axiomatizable extension
of Q. Suppose A is the set of Gödel numbers of sentences provable in T and
B the set of Gödel numbers of sentences refutable in T. Prove that A and B
are computably inseparable.

Problem 4. Show that PA derives χPA → ConPA.

Problem 5. Let T be a computably axiomatized theory, and let ProvT be
a derivability predicate for T. Consider the following four statements:

1. If T ⊢ α, then T ⊢ ProvT (⌜α⌝).

2. T ⊢ α→ ProvT (⌜α⌝).

3. If T ⊢ ProvT (⌜α⌝), then T ⊢ α.

4. T ⊢ ProvT (⌜α⌝) → α

Under what conditions are each of these statements true?

Problem 6. Show that Q(n) ⇔ n ∈ { #α# : Q ⊢ α} is definable in arithmetic.
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