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Spebrutinib (SBT) is a Bruton’s tyrosine kinase inhibitor. SBT is

currently in phase II and phase I clinical trials for the

management of rheumatoid arthritis and chronic lymphocytic

leukaemia, respectively. We developed and validated a liquid

chromatography tandem mass spectrometry analytical

method to quantify SBT and investigate its metabolic

stability. SBT and the naquotinib as internal standard were

isocratically eluted on a C18 column. The linearity of the

developed method is 5–500 ng ml21 (r2 � 0.9999) in the

human liver microsomes (HLMs) matrix. Good sensitivity

was approved by the very low limit of detection

(0.39 ng ml21). Inter- and intra-assay accuracy values of

21.41 to 12.44 and precision values of 0.71% to 4.78%, were

obtained. SBT was found to have an in vitro half-life

(82.52 min) and intrinsic clearance (8.4 ml min21 mg21) as

computed following its incubation with HLMs. The latter

finding, hypothesize that SBT could be slowly excreted from

the body unlike other related tyrosine kinase inhibitors. So,

drug plasma level and kidney function should be monitored

because of potential bioaccumulation. To the best of our

knowledge, this is considered the first analytical method for

SBT quantification using LC-MS/MS with application to

metabolic stability evaluation.
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1. Introduction

Bruton’s tyrosine kinase (BTK) has recently become a promising drug target for many diseases, especially

haematopoietic malignancies and autoimmune diseases associated with B lymphocytes. Many BTK

inhibitors are currently in different stages of clinical trials. Acalabrutinib is a BTK inhibitor established

by Acerta Pharma and has been approved by the FDA for adult patients with mantle cell lymphoma

who have received at least one prior therapy [1].

Spebrutinib (SBT, figure 1) is an oral, bioavailable, selective inhibitor of BTK, with potential

antineoplastic activity. Upon administration, SBT irreversibly and covalently binds to BTK leading to

B cell receptor (BCR) signalling. It also inhibits malignancies associated with B cell proliferation. SBT,

established by Avila Therapeutics (acquired by Celgene in March 2012), is currently in phase II clinical

trials for rheumatoid arthritis and offers an encouraging future for the management of leukaemia and

autoimmune diseases. It is also in phase I trials for chronic lymphocytic leukaemia (CLL). In 2014,

Orphan Drug Designation was designated in the EU for the cure of CLL [2–5].

Estimating the bioavailability gives a valuable picture on a compound’s metabolism. Drugs with

rapid metabolism rates are expected to exhibit low in vivo bioavailability [6]. Several outcomes have

indicated that SBT is a drug with a low extraction ratio and slow excretion from the human body

unlike other tyrosine kinase inhibitors (TKIs) [7–9], indicating a probable high risk of dose

accumulation, similar to dacomitinib [10,11]. Consequently, the SBT metabolic stability was evaluated

by assessing two important parameters (in vitro half-life (t1/2) and intrinsic clearance (Clint)) that could

be used to further compute other physiological parameters (e.g. in vivo t1/2, hepatic clearance and

bioavailability). Metabolic stability was measured by the rate of decrease of the drug candidate when

incubating with human liver microsomes (HLMs). Upon reviewing the literature, we did not find any

published chromatographic methods for SBT assay. Therefore, we sought to develop an analytical

method for this drug.
2. Experimental
2.1. Materials
SBT (99.95%) and naquotinib (NQT, 99.12%) were purchased from MedChem Express (USA). HLMs

(M0567) along with all other chemicals and solvents were procured from Sigma-Aldrich (USA). HPLC

grade water was obtained via in-house filtration using Milli-Qw reference system (Merck Millipore,

MA, USA).
2.2. Instrumentation and conditions
Agilent RRLC 1200 was used as an HPLC system for chromatographic resolution of HLMs incubates

using Agilent ZORBAX Eclipse Plus C18 column (length, 100 mm; internal diameter, 2.1 mm; and

particle size, 1.8 mm). Temperature of the column was adjusted at 20+28C. Isocratic mobile phase

was used for chromatographic resolution of SBT and internal standard (IS). The mobile phase

composed of 60% aqueous part (10 mM ammonium formate in water at pH 4.2) and 40% organic part

(acetonitrile). Flow rate, run time and injection volume were 0.15 ml min21, 3.5 min and 2 ml,

respectively. NQT was selected as IS in SBT analysis.

A tandem mass spectrometer (Agilent 6410 QqQ; Agilent, CA, USA) with positive mode electrospray

ionization (ESI) as the source interface was employed throughout the study. This ESI source used

nitrogen as the drying gas with a flow rate of 12 l min21, with nitrogen being also used as the

collision gas (55 psi) in the collision cell. The capillary voltage (3500 V) and ionization source

temperature (3508C) were optimized. Mass Hunter software produced by Agilent (Agilent, CA, USA)

was employed to control the instrument and for data collection. SBT was quantified using multiple

reaction monitoring (MRM) for the mass reaction (precursor to daughter ions) from 424! 370 and

424! 59 for SBT, and 563! 463 and 563! 323 for IS (figure 2). The fragmentor voltages (FV) were

140 and 145 V with collision energy (CE) of 20 and 22 eV for SBT, and 135 and 140 V with CE of 15

and 18 eV for IS. The aforementioned transitions were chosen for SBT analysis to avoid any

interfering signals from the HLMs components and increase the efficiency of the assay [12]. MRM

chromatogram was detected in three segments: 0.0 to 1.0 min (to waste), 1.0 to 2.0 min (IS mass



spebrutinib
molecular weight: 423.45 naquotinib (IS)

molecular weight: 562.72

Figure 1. Chemical structure of spebrutinib and naquotinib (IS).
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transitions) and 2.0 to 3.5 min (SBT transitions) to avoid contamination of the mass detector with the first

eluted peaks (figure 2).

2.3. Preparation of stock solutions and working solutions
A stock solution of SBT (1 mg ml21) in dimethyl sulfoxide (DMSO) was serially diluted with mobile

phase to yield working solution 1 (100 mg ml21) and working solution 2 (10 mg ml21). Stock solution

of IS (100 mg ml21) in DMSO was diluted with an appropriate amount of mobile phase to make the IS

working solution (1 mg ml21).

2.4. Preparation of calibration standards and quality controls
SBT working solution 2 was combined with HLMs matrix (1 mg protein for each 1 ml phosphate buffer)

to construct a calibration plot with 12 levels: 5, 10, 15, 30, 50, 80, 100, 150, 200, 300, 400 and 500 ng ml21.

Four calibration levels were chosen; viz. lower limit of quantification (LLOQ, 5 ng ml21), low (LQC,

15 ng ml21), medium (MQC, 150 ng ml21), and high (HQC, 400 ng ml21) quality control solutions. IS

working solution (100 ml) was added immediately before the addition of metabolic quenching agent

(acetonitrile) to avoid any effect on the rate of SBT metabolism. Acetonitrile is used as a quenching

agent for metabolic reaction and as precipitating agent in protein precipitation extraction procedure.

2.5. Extraction of spebrutinib and internal standard from human liver microsomes matrix
The protein sedimentation method using acetonitrile was employed for SBT and IS extraction as a

standard method for conducting the experimental procedures for metabolic stability [13,14]. A volume

of 2 ml acetonitrile was added with each 1 ml of the spiked HLMs samples and subsequently

centrifuged at 14 000 r.p.m. (12 min at 48C) to discard proteins formed in the precipitate. One millilitre

of each supernatant was then gathered and filtered in a syringe filter (pore size: 0.22 mm). The filtered

samples were transferred to HPLC vials. An injection volume of 2 ml was chosen for optimum

enhancement of the peak shape sharpness. Two controls were prepared, as previously mentioned,

using the same buffer without the HLMs matrix or NADPH. The control lacking HLMs was

employed to confirm that HLMs components did not interfere at the retention times for SBT and IS.

The other control lacking NADPH was exploited to assure that the change in concentration was

metabolically mediated.

2.6. Method validation
The parameters used to validate the current LC-MS/MS assay for SBT have been described in depth in

our previous articles [12,15–18]. Linearity, assay recovery, sensitivity, reproducibility, specificity, limits

of quantification, (LOQ) detection (LOD) and stability were all calculated for SBT according to the US

Food and Drug Administration (FDA) guidelines [19]. The least squared statistical approach was
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Figure 2. MRM mass transitions of IS (a) and SBT (b). PI, product ion.
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recruited to compute the calibration plot equations (y ¼ ax þ b). The linear fit was confirmed using the r2

value.

2.7. Metabolic stability evaluation of spebrutinib
Assessment of the SBT concentration with the amount remaining after incubation with HLMs was

employed as the basis for evaluating the SBT metabolic stability. Briefly, incubation of 1 mM of SBT

with HLMs (1 mg microsomal protein/1 ml phosphate buffer) was executed in duplicate to confirm

the results using phosphate buffer (pH 7.4) that contains magnesium chloride (MgCl2, 3.3 mM). The

mixture was pre-incubated for 10 min in a temperature-controlled water bath (378C). The metabolic

reaction was then initiated and termination performed by respectively adding NADPH (1 mM) and

2 ml acetonitrile at specific time intervals: 0, 0.5, 2.5, 5, 10, 15, 30 and 50 min. The curve for the

metabolic stability of SBT was then constructed.
3. Results and discussion
3.1. HPLC – MS/MS methodology
All parameters of the chromatographic and mass spectrometric systems were attuned to achieve the finest

resolution for SBT and IS. Liquid chromatographic parameters inclusive of mobile phase (composition

and pH) and stationary phase were adjusted to accomplish optimum resolution with a fast run time.

For the aqueous portion (10 mM ammonium formate) of the elution phase, pH was optimized to 4.2

using formic acid. With a higher pH, retention time increased and peak front tailing was observed.

The ratio between the aqueous (10 mM ammonium formate) and organic part (Acetonitrile) was set to

60 : 40. This is because an increase in acetonitrile resulted in poor resolution as well as overlapping

chromatographic peaks, while a decrease in acetonitrile increased the run time. We then proceeded to

test different types of columns. SBT and IS were retained and good results were achieved using a

reverse-phase C18 column. The time for SBT and IS elution was 3.5 min and good separation was

achieved. In addition, we did not find any carry-over influence in blank HLMs sample.
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NQT was carefully chosen as the IS for the SBT analysis, because the same method of extraction from

HLMs matrix could be applied for both SBT and NQT, and their recoveries were 101.9+ 5.8% and

98.7+ 0.7%, respectively. The chromatographic peak of NQT (1.5 min) is near the retention time of

SBT (2.4 min). That supports the proposed method objective of being fast (3.5 min). Both NQT and

SBT are TKIs, and are not clinically administered together to any individual patient simultaneously.

Therefore, the described method herein may be beneficial for various clinical applications (e.g.

therapeutic drug monitoring or pharmacokinetics) for patients under SBT treatment.

MRM was exploited for the SBT assay to increase the sensitivity of the current method and eliminate

any probable interfering signals from the HLMs matrix (figure 2). Flow injection analysis was used for

optimization of ionization and fragmentation parameters including fragmentor voltage and collision

energy to get the most intense fragment ions from SBT and IS. Figure 3 shows the QC standards for

SBT as overlaid MRM chromatograms.

3.2. Validation of the LC-MS/MS method

3.2.1. Specificity

We observed a good resolution of the chromatographic peaks for SBT and IS (figure 4). In addition, a

blank HLMs matrix revealed the absence of peaks in the retention times for the analyte, revealing the

specificity of the developed method. No carry-over influence of SBT and IS in the MRM

chromatograms was observed.

3.2.2. Sensitivity and linearity

The linearity concentration range and the determined correlation coefficient (r2) for the current method

were 5–500 ng ml21 and �0.9999, respectively, with Y ¼ 1.4518x 2 5.0624 as the observed SBT

regression equation obtained from calibration plot. LOD and LOQ values were figured to be 0.39 and

1.19 ng ml21, respectively, and the LLQC peak exhibited good peak shape with high signal to noise

(S/N) ratio, confirming the method sensitivity (figure 5).

Values of less than 3.96% were calculated as the RSD for six replicates for each standard were in

HLMs (table 1). Reverse calculations of the 12 SBT calibration levels in HLMs confirmed the

effectiveness of the described assay.

3.2.3. Precision and accuracy

The precision and accuracy values acquired from intra-day and inter-day assessments were found to

range from 0.71% to 4.78%, and from 21.41 to 12.44, respectively (table 2). Average SBT recovery was

101.9+ 5.8% in the HLMs. Those estimated values were deemed acceptable relying on the FDA

guidelines (table 2).

3.2.4. Influences of the matrix and extraction efficiency

The SBT and IS recoveries in the HLMs matrix were 101.9+ 5.8% and 98.7+0.7%, respectively (table 3).

Based on the subsequent analysis, we did not confirm any matrix effect on SBT or IS when the two HLMs
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samples spiked with the SBT LQC (15 ng ml21) and IS (100 ng ml21) were analysed; these samples were

labelled as Set 1. The mobile phase solution was added as a substitute to the HLMs matrix to prepare

Set 2. The influence exerted by the matrix was determined using the following equations:

matrix effect of SBT ¼ mean peak area ratio
Set 1

Set 2
� 100 and

matrix effect of IS ¼ mean peak area ratio
Set 1

Set 2
� 100:

The HLMs consisting of SBT and IS exhibited matrix effects of 101.9+5.8% and 98.7+0.7%,

respectively. The internal standard matrix effect (IS normalized MF) was estimated to be 1.02 via the

following formula, and was found to be within an adequate range [8]:

IS normalized MF ¼ matrix effect of SBT

matrix effect of IS
:

These results demonstrate that there were no observed influences of the HLMs on the SBT and IS

ionization.
3.2.5. Stability

SBT stability in HLMs matrix was tested under all laboratory conditions that might have been subjected

during experimental analysis. SBT exhibited good stability in HLMs matrix after storage at 2208C for 28

days as stability values were ranged from 96.42% to 107.02%. SBT stability data is summarized in table 4.

There was no noticeable degradation of analytes under the examined conditions indicating that STB

exhibited good stability in all laboratory conditions.



Table 1. Back-calculation of the calibration levels of SBT in the human liver microsome matrix. LLOQ, lower limit of
quantification; LQC, lower quality control; MQC, medium quality control; HQC, high quality control.

SBT calibration level in ng ml21 meana s.d. RSD (%) accuracy (%)

5 (LLOQ) 5.62 0.22 3.96 12.44

10 10.37 0.21 2.02 3.73

30 28.06 0.87 3.08 26.48

50 51.25 1.21 2.37 2.49

80 79.49 1.47 1.85 20.64

100 99.35 1.35 1.36 20.65

200 200.23 2.75 1.37 0.11

300 299.36 2.31 0.77 20.21

500 497.03 3.49 0.70 20.59

quality controls

15 (LQC) 14.79 0.18 1.25 21.41

150 (MQC) 149.36 1.82 1.22 20.43

400 (HQC) 399.24 3.05 0.76 20.19
aAverage of six repeats.

Table 2. Intra-day and inter-day assay results for the developed method.

QC level LLQC (5 ng ml21) LQC (15 ng ml21) MQC (150 ng ml21) HQC (400 ng ml21)

assay
intra-
daya

inter-
dayb

intra-
day

inter-
day

intra-
day

inter-
day

intra-
day

inter-
day

mean 5.62 5.52 14.79 14.83 149.36 149.08 399.24 399.71

s.d. 0.22 0.26 0.18 0.23 1.82 1.87 3.05 2.83

% RSD 3.96 4.78 1.25 1.53 1.22 1.25 0.76 0.71

% accuracy 12.44 10.46 21.41 21.15 20.43 20.62 20.19 20.07
aAverage of 12 repeats in 1 day.
bAverage of six repeats in 3 days.

Table 3. Recovery of the SBT samples in HLMs matrix.

QC levels

HLM matrix

LLOQ (5 ng ml21) LQC (15 ng ml21) MQC (150 ng ml21) HQC (400 ng ml21)

mean 5.62 14.79 149.36 399.24

s.d. 0.22 0.18 1.82 3.05

precision (RSD %) 3.96 1.25 1.22 0.76

recovery (%) 110.60 99.10 98.87 99.01

SBT recovery 101.9+ 5.8%
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3.3. SBT metabolic stability investigation
The concentration of SBT in the HLMs was figured by means of a calibration graph regression equation.

The SBT metabolic stability graph was established by tracing the ln of the remaining % of SBT versus the

time intervals (figure 6).



Table 4. Stability of SBT under different storage conditions.

nominal concentrations of SBT in ng ml21 meana s.d. RSD (%) accuracy (%)

room temperature for 8 h

5 5.28 0.13 2.55 105.50

15 14.85 0.28 1.89 99.02

150 149.13 2.69 1.81 99.42

400 400.40 2.68 0.67 100.10

three freeze – thaw cycles

5 5.35 0.15 2.90 107.02

15 14.96 0.15 1.01 99.72

150 148.69 2.25 1.51 99.13

400 400.04 2.40 0.60 100.01

stored at 48C for 24 h

5 5.30 0.12 2.32 106.08

15 14.80 0.18 1.22 98.68

150 149.36 1.71 1.14 99.57

400 399.35 3.01 0.75 99.84

stored at 2208C for 30 days

5 5.19 0.31 6.06 103.78

15 14.46 0.75 5.18 96.42

150 148.61 3.55 2.39 99.07

400 397.45 6.20 1.56 99.36
aAverage of six replicates.
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The initial segment of the curve was linear and the obtained regression equation (y ¼ 20.0084x þ
4.5939; r2 ¼ 0.9397) was applied to figure the in vitro t1/2 [13,20] (table 5).

The following equations were also used:

in vitro t1=2 ¼
ln2

slope

(slope ¼ 0.0044)

in vitro t1=2 ¼
ln2

0:0084

in vitro t1=2 ¼ 82:518 min:

Computing the inherent clearance of SBT was executed via the use of the in vitro t1/2 method [21,22]

using the following equation:

Clint,app ¼
ln2

in vitro t1=2
:
ml incubation

mg protein
,

Clint,app ¼
0:693

82:52
:
1000

1

and
Clint,app ¼ 8:4 ml min�1 mg�1:

These outcomes demonstrate that the SBT metabolic stability was denoted by a very low Clint (8.4 ml/

min mg21) and very long in vitro t1/2 value (82.52 min). In addition, SBT exhibited a low metabolic

clearance from the human body via the liver and thus, might be accumulated inside the body, similar

to dacomitinib.



Table 5. Parameters for the metabolic stability of SBT.

time
(min)

conc.
(ng ml21)

LN of % SBT
remaining parameter value

0.0 423.0 4.61 linear part regression

equation

y ¼ 20.0084x þ 4.5939

0.5 415.5 4.59

2.5 407.4 4.57 r2 0.9397

5.0 397.2 4.54

10.0 387.2 4.52 slope 0.008

15.0 381.8 4.50

30.0 370.6 4.47 t1/2 82.52 min

50.0 368.3 4.47 Clint 8.4 ml min21 mg21
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Figure 6. Curve representing the metabolic stability of SBT in human liver microsomes.
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4. Conclusion
A highly sensitive LC-MS/MS method to assay SBT was developed and validated. The proposed method

was fast and accurate and displayed high recovery and good sensitivity. Additionally, the described

method can be claimed a green chemistry approach with the low volume of organic solvent

(acetonitrile) being consumed during such assay. This approach was exploited to study the SBT

metabolic stability in HLMs yielding two key parameters: in vitro t1/2 and Clint. The outcomes

indicated that SBT might be accumulating in the body and slowly eliminated by the liver. This

encourages further research into the pharmacokinetics of SBT with close monitoring of SBT level

during treatment.
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