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ABSTRACT 

This thesis develops machine-learning models capable of predicting Department 

of Defense distribution system performance of United States Marine Corps ocean 

requisitions to the United States Pacific Command area of operations. We use historical 

data to develop a model for each sub-segment of the Transporter leg within the 

distribution pipeline and develop two different models to predict the ocean transit sub-

segment based on Hawaii and non-Hawaii destinations. We develop a linear regression, 

regression tree and random forest model for each sub-segment and find that the weekday 

and month in which requisitions begin the Transporter segment are among the most 

significant drivers in variability. United States Transportation Command currently uses 

the average performance per sub-segment to estimate Transporter length, and our models, 

when applied to the test set, perform considerably better than the average. We conclude 

that the random forest models provide the best and most robust results for most sub-

segments. However, we encounter several issues concerning missing values within our 

dataset, which we suspect artificially inflate the significance of some of our predictor 

variables. We recommend refining data collection processes in order to collect 

observations that are more accurate and applying the same methodologies in the future. 
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EXECUTIVE SUMMARY 

This thesis uses historical data and machine-learning algorithms to develop a 

series of models capable of predicting the length of the Transporter segment within the 

Department of Defense (DOD) distribution system. United States Transportation 

Command (USTRANSCOM) currently uses the average length of each sub-segment to 

estimate Transporter performance times, and we use this as our baseline to compare our 

models. We focus on 2015 United States Marine Corps (USMC) ocean shipments to the 

United States Pacific Command (PACOM) area of operations.  

The distribution system consists of four main segments and is further broken 

down into 12 sub-segments, each of which receives a separate timestamp at completion. 

The Transporter leg begins when the carrier picks up a requisitioned item from a supplier 

and ends when the carrier delivers the item to the point of need. This segment consists of 

five sub-segments, which we show to be independent and model separately. Additionally, 

we create models for the ocean transit sub-segment to account for the large difference in 

distance between shipments traveling to Hawaii and those traveling to non-Hawaii 

destinations.  

We collect and clean twelve months of data from the Strategic Distribution 

Database (SDDB) in preparation for analysis and encounter multiple data quality issues. 

We remove all unique identifiers, variables that do not apply to ocean shipments and the 

Transporter segment and any variable missing more than 60 percent of observations. This 

reduces our dataset to approximately 40 variables, which we further reduce to 20 

variables. We also created variables to represent the weekday, month and quarter in 

which the Transporter segment began. The combination of missing observations across 

all variables results in only 40 percent of the dataset containing complete cases, which is 

enough data to build models; however, we suspect this negatively affects the accuracy of 

our models.  

We build a linear regression, regression tree and random forest model for each 

sub-segment of the Transporter leg and two models for the ocean transit sub-segment. 



 xviii 

Many of our models find the weekday and month in which the Transporter leg began to 

be significant drivers of variability. Upon further exploration of this result, we find these 

results are artificially high. We run two simple linear regressions for the Hawaii ocean 

transit model with two subsets of the data using transit time as the response and month as 

the only predictor. Model A utilizes a data subset with only complete observations and 

finds that month explains almost 80 percent of the variation in ocean transit time. Model 

B utilizes a subset including missing values and finds month explains less than 40 percent 

of variation in transit time. We conclude the information held by the dataset is not 

completely representative of the sustainment materiel that flows through the system, and 

this negatively affects our ability to analyze performance accurately.  

When applied to our test set, most of our random forest models perform 

considerably better than the baseline model, and, in some cases, result in average root 

mean square errors of less than one day. Only in sub-segment 5 is the baseline model a 

more accurate predictor of performance than our random forest model; however, both 

models produce errors of approximately one day. We conclude that our models develop a 

more accurate means of estimating Transporter leg performance than the current 

USTRANSCOM standard; however, we have preliminary indications that the models 

perform poorly on 2016 data. 

Although our models perform very well against the test sets, we deduce that the 

quality of data from which we base our models negatively affects our ability to model the 

system accurately. We recommend re-evaluating and updating the collection and 

consolidation processes associated with the SDDB. Additionally, we also recommend 

implementing accountability measures to ensure the system accurately captures 

timestamps throughout the process, as the timestamps are vital to predicting distribution 

system performance. Finally, we recommend employing these methodologies in the 

future on better quality data.  

 

  



 xix 

ACKNOWLEDGMENTS 

To my advisors, Dr. Buttrey and LTC Alt, I appreciate all of your guidance 

throughout this process. I would also like to thank LTC Hiltz and his USTRANSCOM 

J4/J5 staff and Cam Klunder from the MARCORLOGCOM DMC for all of their 

assistance. Lastly, I would like to express my sincere appreciation to my husband, 

Joshua, for his unrelenting patience and support.  

 



 xx 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

The Department of Defense (DOD) distribution system lacks an adequate method 

to estimate delivery dates of requisitioned materiel. According to our dataset, over half of 

all shipments do not meet internal delivery standards, and the Sustainment Dashboard, 

the current predictive tool available to some users, lacks statistical rigor. Unit 

commanders must make logistical decisions based on potentially inaccurate information, 

which equates to more risk. In this research, we develop a tool, using statistical methods 

and historical data, capable of providing more accurate delivery-date predictions. 

Equipping leaders with this information will enable them to make better decisions with 

limited resources while minimizing risk. 

A. PURPOSE 

The DOD distribution pipeline consists of a complex combination of people, 

resources, and policies designed to support the warfighter. Despite numerous 

improvements over the last 15 years, it continues to perform below expectations, a 

problem identified by several government agencies (Government Accountability Office 

[GAO] 2015a). The system consists of four legs—source, supplier, transporter, and 

theater—which are further divided into 12 sub-segments. When a unit requests an item 

through the supply system, the item typically travels through the segments depicted in 

Figure 1 before finally reaching the requesting unit.  

Analysts use data collected from these segments to measure system performance 

on two internal metrics within the distribution chain—Time Definite Delivery standards 

(TDD) and Logistics Response Time (LRT). TDD measures consistency and 

dependability within the system, and LRT measures the time between order placement 

and receipt by the using unit (Hiltz 2015, 1). The DOD standard requires the LRT to be 

less than the TDD. Mahan explains that users generally accept that the system will 

operate at 85 percent reliability. This metric indicates what the customer actually “feels” 

while waiting for a requisition to arrive (Mahan et al. 2007, 17). However, this only 

reflects the expectation of variation and not the actual variation within the system (Hiltz 



 2 

2015, 3). During calendar year 2015, our dataset indicates that close to 50 percent of all 

United States Marine Corps (USMC) requisitions to the United Stated Pacific Command 

(PACOM) area of operations (AO) did not meet TDD standards. Table 1 shows the 

average number of days it took to complete ocean requisitions in 2015 broken down by 

final destination as well as the 2015 TDD standards. 

Table 1.   PACOM Calendar Year 2015 Distribution Performance by 
Requisition Destination. 

Destination 
Total 

Number 
Average 
(days) TDD 

Proportion  
On-Time 

Hawaii 3191 47.70 43 0.58 
Korea 5 108.80 57 0 

Guam, Japan, Okinawa 8953 67.50 57 0.48 
Singapore, Diego Garcia, Hong 

Kong, Australia, Marshall Islands, 
Pacific, Philippines, Thailand and 

all other PACOM countries 4 110 70 0.60 

 

The Sustainment Dashboard provides decision makers information regarding late 

shipments with the limitations previously discussed. In many cases, leaders learn about 

late shipments after the requisition misses the required delivery date (RDD). This erodes 

confidence in the system and often leads to negative behaviors, such as hoarding of 

supplies and multiple ordering (Mahan et al. 2007, 17–18).  

This research focuses on creating a more accurate predictive tool in order to 

provide leadership early notification of potentially late shipments. Alerting decision 

makers to potential problems earlier in the process enables them to take action before the 

RDD and can prevent negative effects on mission accomplishment. While the ability to 

deliver items quickly is important, the ability to deliver items within the promised 

delivery window is equally important (Slone 2004).  

B. PROBLEM STATEMENT  

Predicting future performance of the distribution system requires detailed analysis 

of multiple variables. This research seeks to address the following questions: 
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• What factors drive variability within the distribution system? 

• Can a more accurate predictive tool be developed in order to inform 
decision makers of late shipments prior to shipments missing the RDD? 

C. MOTIVATION 

Lack of proper and timely logistics support creates unnecessary risk to unit mission 

accomplishment, potentially jeopardizing national security. The DOD Joint Logistics 

Publication explains the importance of logistics in the accomplishment of military missions.  

The relative combat power that military forces can generate against an 
adversary is constrained by a nation’s capability to plan for, gain access to, 
and deliver forces and materiel to required points of application. 
(Chairman of Joint Chiefs of Staff [CJCS] 2013, ix) 

The ability of the United States to deploy and sustain its military serves as a 

limiting factor on the nation’s projection of power abroad. Inaccurate logistics data 

negatively affects command and control decision-making and forces logisticians to be 

reactive rather than proactive ultimately affecting support to the warfighter (Schaffer and 

Borns 2015). Major General John Broadmeadow, former Commanding General of 

Marine Corps Logistics Command (MARCORLOGCOM), explains the role of 

MARCORLOGCOM in supporting Marine Corps logistics.  

Marine Corps Logistics Command executes its global mission with a clear 
and precise objective—to ensure that Marines in harm’s way have every 
measure of logistics support to accomplish their mission. (Wingard et al. 
2015) 

The results of this research will provide process owners with improved insights into the 

performance of their systems and will serve as a foundation for future work in the 

improvement of the DOD supply chain.  

D. METHODOLOGY AND LIMITATIONS  

The distribution system, a multibillion-dollar enterprise, supports over 6 million 

requisitions annually (Mahan et al. 2007). At the request of MARCORLOGCOM, this 

research focuses on the Transporter segment of USMC ocean requisitions to the PACOM 

AO. We explore the performance of each of the five Transporter sub-segments 
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independently. This research also explores the quality of data available to distribution 

customers as well as its influence on prediction accuracy. We use R, a statistical 

computing language, to explore and analyze the data (R Core Team 2015).  

E. THESIS STRUCTURE 

This study begins with gathering and cleaning all data that could potentially 
influence shipment performance. Once we clean and format the data, we use it to train 
and validate machine-learning models to develop a predictive tool capable of estimating 
delivery dates.  

Chapter II covers background information and relevant orders, a sustainment 

dashboard overview and a summary of reports on distribution performance. It also 

provides an overview of similar problems and the methods used to solve them. We 

provide details concerning the datasets, data cleaning and methodology in Chapter III. 

Chapter IV explains the analysis behind the model. Finally, Chapter V provides a 

summary of research results and recommendations for future work.  
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II. BACKGROUND AND LITERATURE REVIEW 

This literature review contains three parts. The first delivers an overview of the 

Department of Defense (DOD) distribution pipeline structure and operations. It provides 

background and context to the problem this thesis aims to solve. The second part includes 

reports and analysis from various government agencies that highlight several 

inefficiencies within the system as well as several recommendations for improvement. 

The last section of this literature review assesses methods used to solve similar problems. 

Reviewing these methods provides a basic framework from which to begin work on 

developing a distribution system predictive tool. 

A. BACKGROUND 

The DOD distribution pipeline consists of multiple sources of supply, modes of 

transportation, and final destinations focused on providing the right equipment, at the 

right time, to support the warfighter. United States Transportation Command 

(USTRANSCOM) oversees the Joint Deployment and Distribution Enterprise (JDDE), a 

collection of resources necessary to conduct joint distribution operations (Deputy Under 

Secretary of Defense for Acquisition Transportation and Logistics 2007). On average, it 

manages 1,900 air missions, 25 ships underway, and 10,000 ground shipments per week 

along with a workforce of 140,000 personnel operating in 75 percent of the world’s 

countries (USTRANSCOM 2016).  

Each service component depends on USTRANSCOM’s management of the 

strategic distribution system to support its warfighters. The United States Marine Corps 

(USMC), the smallest component, makes up approximately 5 percent of total distribution 

traffic. The USMC supply system’s expeditionary mission often suffers from slow 

response times due to distribution requirements to remote locations with low volume and 

frequency (Nickle 2015). The Marine Corps Logistics Command (MARCORLOGCOM) 

serves as the service’s Distribution Process Owner (DPO). The USMC tasks 

MARCORLOGCOM with maintaining near real-time visibility of all assets with the 

ability to track, trace and expedite shipments from the point of origin to final destination 
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utilizing the Distribution Management Center (DMC) (Commandant of the Marine Corps 

[CMC] 2014). The DMC monitors daily distribution traffic throughout the USMC and is 

responsible for further analysis of the system’s performance. 

1. Organization of the DOD Supply Chain 

The DOD supply chain consists of four segments—source, supplier, transporter, 

and theater—each with different process owners (Hiltz 2015, 5). Figure 1 illustrates the 

four segments of the process and its 12 sub-segments. We combine these segments to 

measure the Logistics Response Time (LRT) (Hiltz 2015, 5). This metric determines 

compliance with the Time Definite Delivery (TDD) standards. The TDD is intended to be 

a number of days such that 85 percent of requisitions are delivered in fewer days than the 

TDD standard (Mahan et al. 2007). LRT is compliant when it is less than or equal to 

TDD. 

 

 
Figure 1.  The DOD Global Distribution Pipeline Broken down by Segments 

and Sub-segments. Source: Government Accountability Office 
(2015a). 

 

Integrated Distribution Lanes (IDL) extend from the supply source to the using 

unit and exist to enable further analysis of the system. Grouping these distribution lanes 

by mode of transportation and final destination results in 111 different TDDs. The JDDE 
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agrees upon these standards at the annual TDD conference. The LRT measures system 

response time, and the TDD measures reliability (Hiltz 2015, 1). Table 2 lists the fiscal 

year 2015 (FY15) United States Pacific Command (PACOM) TDD standards. We focus 

our research on this geographic location.  

Shipment priority codes determine mode of transportation. Three issue priority 

groups (IPG) exist to accommodate three shipment speeds. An IPG 1 requisition requires 

the fastest mode of transportation available, IPG 2 requires faster transportation than IPG 

3, but not as fast as IPG 1, and IPG 3 is the slowest mode available (Under Secretary of 

Defense for Acquisition, Technology and Logistics).  

Table 2.   PACOM FY15 Ocean Time Definite Delivery (TDD) Standards 
Source: Hiltz (2014). 

 
 

The Integrated Data Environment (IDE)/Global Transportation Network (IGC) 

ties together multiple databases to provide the customer with near real-time visibility 

(Assistant Secretary of Defense for Logistics and Materiel Readiness 2014). The 

Strategic Distribution Database (SDDB) provides retrospective performance data for 

analysis at various levels. The Defense Logistics Agency Office of Operations Research 

(DORRA) collects and consolidates the SDDB, and USTRANSCOM publishes it 

monthly. Despite the introduction of numerous tools throughout the last 15 years, the 
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DOD supply chain continues to experience inefficiencies and has drawn negative 

attention from various government agencies (Government Accountability Office [GAO] 

2015b).  

2. USTRANSCOM Sustainment Dashboard  

The Sustainment Dashboard, the current predictive tool, is based on performance 

averages and fails to consider the time necessary to complete the current sub-segment. 

For example, the requisition in Figure 2 is currently executing the Seaport of 

Embarkation (SPOE) Hold sub-segment, and the Sustainment Dashboard assumes the 

ocean phase begins tomorrow. It then adds the averages of the remaining sub-segments to 

estimate that the shipment will arrive in theater in 51 days. If this exceeds the TDD, the 

requisition will potentially be late. 

 

 
Figure 2.  USTRANSCOM Predictive Model Example Source: 

USTRANSCOM (2015). 

 

This model depends on two over-simplifications that can potentially lead to 

inaccurate predictions. First, it assumes the current sub-segment will end the following 

day without taking into consideration how long it has been in that sub-segment. If, on 

average, it takes 10 days to complete SPOE Hold and the shipment has been there only 

one day, the estimate will presumably be too small. Second, using average transit times 

for each of the sub-segments can also lead to inaccurate predictions. Savage (2009) points 
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out that plans based on averages often go wrong because they ignore the impact of 

variations, and instead, recommends replacing averages with frequency distributions.  

The GAO and the RAND Corporation flagged multiple inefficiencies within the 

distribution system ranging from ineffective organization to lack of asset visibility. As 

discussed in Chapter I, these issues promote a lack of warfighter confidence, which lead 

to negative behaviors such as hoarding and multiple ordering, which further confound the 

problem and degrade efficiency. The GAO placed the DOD supply chain on the GAO 

high-risk program list in 1990 where it currently remains today (GAO 2015a). 

B. REPORTS AND ANALYSIS 

This section of the chapter reviews reports from RAND Cooperation, the DOD 

Inspector General (IG) and the GAO to provide more background on the distribution 

problems the DOD currently faces.  

1. Effectively Sustaining Forces Overseas 

RAND conducted a supply chain study in 2006 focusing on distribution support 

of Operation IRAQI FREEDOM (OIF). This study looked at staging inventory at forward 

deployed distribution depots in order to offset transportation costs. The authors found that 

weight, rather than IPG, drove transportation mode selection. Peltz et al. (2006) 

recommended maintaining a healthy forward stock of approximately 20,000 different 

items. However, more inventory makes forces less mobile and requires a larger forward 

deployed support infrastructure.  

2. DOD Inspector General (IG) Report  

In 2007, the DOD IG released a report on Customer Wait Time (CWT) 

transactions for selected Army and USMC units to analyze the CWT effect on 

operational availability of equipment (Inspector General 2007). CWT is the response time 

metric for maintenance-specific organizations. The IG chose the Army and USMC 

because the Army made up 76 percent of all requisitions, and because the USMC 

averaged 36 days per maintenance requisition based on FY05 data. The Army reported an 

average of 24 days, and the FY05 CWT goal was 15 days. DOD officials attributed 



 10 

higher CWT averages to an increased demand due to OIF, and USMC officials attributed 

delays to improperly closed requisitions. The authors sampled the available data to 

conduct an independent analysis, resulting in a 90 percent confidence interval of 21.9 to 

26.8 days, which was still greater than the FY05 goal of 15 days.  

1. GAO reports  

Recent GAO reports highlight an inability to track the location and status of 

cargo, which has led to shortages of critical equipment and supplies in both Iraq and 

Afghanistan (GAO 2011). In 2011, GAO attributed inefficiencies to a fragmented chain 

of responsibility because no single entity oversees the entire system. USTRANSCOM 

oversees the Source, Supplier, and Transporter segments, while the geographic combatant 

commanders oversee the Theater segment. GAO argues this leads to inefficiencies within 

the process (GAO 2011). The 2011 report also highlights limited data reliability due to 

missing delivery information. In its most recent report, GAO highlighted a need for 

improvement in both the establishment and measurement of performance metrics (GAO 

2015b).  

C. ATTEMPTS AT SOLVING SIMILAR PROBLEMS 

The final section of this chapter includes highlights from scholarly papers 

reviewed prior to formulating the methodology outlined in Chapter III. The major areas 

we review range from using artificial neural networks (ANN) in supply chain planning to 

employing classification trees to reduce delivery variability to using distribution models 

and associate rules to determine optimal shipping combinations. These methods provide 

insight into solving similar problems and provide a baseline from which this thesis builds. 

1. Artificial Neural Networks (ANN) in Supply Chain Planning 

Chui and Lin (2004) use ANNs to model resource-oriented supply chain networks 

for assembly-to-order products with quick delivery lead times. The authors use three 

ANNs to map supply, production and delivery resources capable of meeting both 

customer and individual resource constraints and goals while also maximizing the global 

benefit to the supply chain. Decomposing the supply chain into smaller, more 
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manageable problems enabled complete fulfillment of all orders while significantly 

improving resource utilization rates throughout the supply chain.  

2. DOD Source of Supply and Carrier Effects on Shipping Timelines 

Sagara (2008) uses Poisson generalized linear models (GLM) to determine if 

source of supply and carrier impact shipping times of Navy IPG 1 requisitions processed 

by the Bremerton, WA Priority Material Office (PMO). He focuses on shipments to 

PACOM, United States Central Command (CENTCOM), United States European 

Command (EUCOM) and major fleet concentrations within the Continental United States 

(CONUS) from 2005 to 2008. His research concludes that carrier selection impacts 

shipping times and better performing carriers are often underutilized. Additionally, he 

notes statistically significant differences in processing times based on the assigned source 

of supply.  

3. Logistics Support for the Marine Corps Distributed Laydown  

The Center for Naval Analysis (CNA) reviews various aspects of the current 

Marine Corps Forces Pacific Command (MARFORPAC) logistics support system, 

including a supply support simulation model for Guam and Australia. Fredlake and 

Randazzo-Matsel (2013) look at the distribution of consumable items to simulate supplies 

issued daily by deployable supply units (DSU) utilizing military air (MILAIR) and 

commercial air networks. Figure 3 shows the model inputs and parameters used to 

determine the impact on total transportation costs and the percent of days the unit is at 

target inventory level. Using historical averages, the model estimates transportation time 

beginning when an item arrives at the port of embarkation (POE) until it is ready for 

pickup at the port of debarkation (POD). This covers the Transporter segment depicted in 

Figure 1.  

The model utilizes historical distributions to determine the source of supply as 

well as the time and cost of delivery. It limits transportation modes to air only despite 

utilizing supply sources both within and outside of the area of operations (AO) which 

often require the use of surface assets. The model bases supply effectiveness on the 

percentage of days the unit is at 95 percent of its target inventory level and reorder points 
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are based on the estimated lead times required to maintain these levels. Using average 

transportation times and limiting transit modes to air does not take into account the 

unpredictability of ocean transit times, thus providing optimistic estimated lead times and 

potentially setting the conditions for supply shortfalls. Further analysis of transportation 

times is required in order to provide realistic transportation expectations from this model. 

 

 

Figure 3.  Center for Naval Analysis Supply Model Overview Source: Fredlake 
and Randazzo-Matsel (2013) 

 

4. Logistics Data Mining to Improve Food Supply Chain Sustainability 

Ting, et al. (2013) use association and probability rules to determine the optimal 

red wine distribution network for an Italian-based wine producer. The decision support 

model for supply chain quality sustainability (QSDSS) includes transit time, storage 

temperature, and humidity among other input variables to determine the best 

combinations of factors that will result in delivery of the highest quality wines. The 

model’s first stage inputs basic logistics information to look for relationships among the 

combinations of shippers and receivers and outputs a ranked list of quality assurance 

settings. This becomes the input to the second stage, which returns an aggregated, ranked 

list of quality settings to determine optimal routes within the distribution network. Radio 

frequency identification (RFID) gathers point-to-point transactions and temperature 
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monitoring devices record climate data. This model uses probabilistic support rules to 

determine the likelihood of two events occurring in the same transaction in order to 

determine the best combination of shipping factors to maintain product quality during 

transit.  

5. Using Classification Trees for Amazon Inbound Shipments 

Chun (2014) uses a classification tree model based on key dates and basic 

shipment attributes to reduce the variation between the estimated and actual delivery 

dates to Amazon distribution centers. He uses the Kruskal-Wallis one-way Analysis of 

Variance (ANOVA) test to determine which shipping attributes reduce joint variation the 

most and uses these factors to produce a vector of prediction errors for various 

combinations of delivery dates, vendor codes, carrier codes and final destinations. He 

uses the resulting error distributions to generate new estimated delivery dates leading to a 

reduction in customer back orders, the consequence of late shipments. His use of 

classification trees and error distributions present a good starting point for the 

methodology development of the DOD distribution system model.  

This literature review provides insight into solutions for related problems. The 

Amazon and Italian wine maker models use forms of In-Transit Visibility (ITV), which 

provides regular and accurate location updates, but is also very expensive and not widely 

used by DOD. Chui and Lin (2004) use machine learning algorithms to decompose their 

supply chain network, and Chun (2014) uses tree models to identify attributes that drive 

variability within the Amazon system. This research builds upon these concepts, among 

others, in order to provide a prediction tool utilizing the available databases. In Chapter 

III, we discuss how we use machine-learning algorithms to determine which predictors 

drive variability and develop models to predict late shipments.  
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III. DATA COLLECTION AND PREPARATION 

In preparation for analysis, we collect and format relevant data concerning the 

distribution system. This chapter provides a description of our data as well as the method 

we use to clean it. Section A gives an overview of the main dataset, and Section B 

provides an explanation of the process to prepare it for analysis. Section C describes the 

remaining variables, Section D highlights data quality issues and Section E describes the 

methodology of this research. We conduct all data cleaning in R, a statistical computing 

language (R Core Team 2015).  

A. DATA 

We download and combine 12 monthly iterations of the Strategic Distribution 

Database (SDDB), available to customers of the Joint Deployment and Distribution 

Enterprise (JDDE) via online resources. This database represents a comprehensive view 

of requisition-level data and provides JDDE customers a means to analyze the 

distribution system (Robbins et al. 2004). Additionally, USTRANSCOM also provided 

us with the 2015 Hawaii carrier schedules, which we use to compare trends in Hawaii 

requisitions, and further explain in Chapter IV. 

The SDDB includes information about all segments, sub-segments and modes of 

transportation. It consists of 227 variables from various data collection systems within the 

JDDE. The Defense Logistics Agency (DLA) Office of Operations Research and 

Resource Analysis (DORRA) consolidates data monthly and forwards it to the 

USTRANSCOM J4/J5. The J4/J5 provides additional data and data cleaning before 

making the database available online to the JDDE (Hiltz 2015). We could not find openly 

available information concerning the methods by which DORRA consolidates the SDDB. 

However, RAND originally developed the methodology, which eventually became a 

DORRA responsibility (Boren 2016). 

We begin with over 860,000 observations from United States Pacific Command 

(PACOM), spanning January to December 2015. Several variable name changes occurred 

in February 2015 that required significant data formatting and results in several missing 
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January observations. We filter the data to include only United States Marine Corps 

(USMC) requisitions shipped by ocean, leaving over 15,000 observations. We remove 

several variables including unique identifiers and those not applicable to ocean shipments 

or the Transporter segment. Additionally, we remove variables missing more than 60 

percent of observations because there is not enough information stored in these variables 

for modeling (Kelleher et al. 2015). This process results in 41 variables from which we 

chose 20 to begin analysis. Additionally, we create three more variables, which we 

describe in the next section. We use 20 percent of the data to create a test set, comprising 

of 3,045 observations, which we do not use in fitting the model. This leaves 12,184 

observations in the training set with which we begin our analysis.  

B. DATA PROCESSING  

The following list describes the steps to clean and prepare the final datasets:  

1. We create an “other” option for all categorical variables with levels 

containing fewer than 100 observations. Levels with few observations 

provide little insight into drivers of variability and further complicate the 

model. 

2. We consolidate location variables to represent geographic combatant 

commands instead of specific locations in order to reduce the number of 

categories. Hawaii destinations are the only exception because we 

encounter unique trends in the data, which we explain in Chapter IV.  

3. We create variables to represent the weekday, month, and quarter in which 

the Transporter leg began. 

4. We convert all blank spaces to “NA.” 

C. VARIABLES 

Our analysis begins with 5 different response variables and 18 independent 

variables, some of which we determine to be insignificant. Chapter IV provides details 

concerning variable significance. Table 3 provides a brief description of each variable 

remaining in our dataset, the variable type and the number of missing values per variable.  
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D. DATA QUALITY 

This section describes some of the data quality issues we encounter while working 

with the SDDB. 

Table 3.   Strategic Distribution Database (SDDB) Variables Retained for 

Analysis and Number of Missing Values per Variable. 

Variable Name Type Description #NA 

Sub-segment 1  
Integer Number of days origin line haul 1428 

(response variable) 

Sub-segment 2 
Integer 

Number of days seaport of 

embarkation (SPOE) hold 
1219 

(response variable) 

Sub-segment 3 
Integer Number days ocean transit 2193 

(response variable) 

Sub-segment 4 
Integer 

Number days seaport of debarkation 

(SPOD) hold 
4464 

(response variable) 

Sub-segment 5 
Integer Number of days destination line haul 5019 

(response variable) 

Afloat Binary 
1 = ship-based customer, 0 = not 

ship-based 
30 

Booking method  Categorical Booking method 785 

Carrier Categorical Contracted carrier 765 

Container Categorical Type of container 922 

Handling Categorical 
Shipment processing requirements 

due to size, weight or security 
2640 

Initial consolidation point Categorical 
Initial Consolidation Point 

organization 
64 

Integrated distribution lane Categorical 
Assigned integrated distribution lane 

(IDL) short name 
30 

Issue priority group Categorical Designates shipping priority 64 

Location Categorical Customer location 30 

Month Categorical Month Transporter leg initiated 958 

Quarter Categorical Quarter Transporter leg initiated 958 

Service terms Categorical Service terms of booking 30 

Shipping cost Continuous Cost to ship the item 500 

Supply class Categorical Class of supply 32 

Unit price Continuous Item cost 45 

Weekday Categorical Weekday Transporter leg initiated 958 

Weight  Continuous Shipping weight 280 
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1. Missing Values 

We encounter multiple missing values in this dataset even after reducing it to only 

a fraction of its original size. Missing values range from zero to 41 percent per variable, 

and we list the number of missing observations for each variable in Table 3. We provide 

a breakdown of missing percentages per variable in Chapter IV. Machine learning 

algorithms cannot train on missing values (Kelleher et al., 60). This dataset contains only 

4,919 complete cases, meaning that over 60 percent of this already reduced dataset does 

not have the information necessary to train accurate models capable of analyzing and 

predicting a complex system such as the DOD distribution pipeline. 

2. Erroneous Entries 

Missing values are easily identifiable data quality issues within the SDDB. 

However, we have no way of determining the quality of data available in the SDDB and 

must trust that it is high enough to support our analysis.  

USTRANSCOM provided a 5-year subset of the Integrated Mission Support for 

Surface Deployment and Distribution Command (iSDDC) dataset for this research. This 

information is specific to ocean shipments and serves as the source of sub-segment 

timestamps for the SDDB (USTRANSCOM 2015). However, the iSDDC tracks all 

classes of supply at the container level, while the SDDB focuses on sustainment materiel 

at the requisition level. The datasets do not directly compare, however, working with the 

iSDDC provides insight into the quality of data compiled into the SDDB. 

Focusing primarily on iSDDC timestamp data, we find that over 50 percent of 

recorded shipments in 2015 contain either erroneous entries or missing values. We define 

erroneous entries as negative travel times, ocean transit times of zero days, and sub-

segment lengths lasting longer than 365 days. The SDDB consolidation process omits 

most erroneous entries (Boren 2016). We suspect the SDDB does not accurately reflect 

the sustainment requisitions that pass through the system even before we remove missing 

values.  
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E. METHODOLOGY 

The following sections describe the methods we use to develop predictive models. 

Each sub-segment measures a different activity in the transportation process and requires 

a separate model for accurate prediction. We assume sub-segments to be independent and 

provide an explanation of this assumption in Chapter IV. Due to the significant 

differences in distance between Hawaii and other PACOM destinations, we create subsets 

to represent Hawaii and non-Hawaii observations and develop two different ocean transit 

models. Figure 4 illustrates the organization of the six models resulting from this 

research. We employ three different analytical methods to develop these models. The 

following sections describe these methods. 

 

 

Figure 4.  Predictive Model Organization by Segment. Adapted from 

USTRANSCOM (2015). 

 

1. Baseline Model 

As discussed in Chapter II, USTRANSCOM utilizes averages in their current 

prediction model, and this research seeks to improve upon performance of that model. 

We assume the average to be our baseline and use it to evaluate the performance of the 

models we discuss in Chapter IV.  

2. Multivariate Linear Regression  

Multivariate linear regression describes the expected value of the response 

variable as a linear function of independent predictor variables and fits a plane through 

the data in order to minimize the errors between the actual dependent variable values and 
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the values predicted by the model (Wackerly et al. 2008, 567). Linear regression requires 

errors with a normal distribution, constant variance and no unusual or overly influential 

observations (Faraway 2015, 73). Any violation of these assumptions can lead to 

problems with the model or its conclusions. Linear regression is the simplest of the 

techniques we employ and provides insight into the drivers of variability even if the 

model does not meet the required assumptions. 

We initially use bidirectional stepwise regression and choose the model that 

minimizes Akaike Information Criterion (AIC) to avoid overfitting. The AIC provides a 

balance between the model fit and simplicity (Faraway 2015, 154). We then use manual 

variable deletion based on a 0.05 p-value threshold to further tune our model. 

We use diagnostic plots to validate model assumptions. Patterns in plots of the 

fitted versus residual values indicate non-constant variance, which can reduce the 

accuracy of model inferences (Faraway 2015, 77). We use quantile-quantile (Q-Q) plots 

to validate the normality assumption, a lack of which reduces optimality in the estimates 

(Faraway 2015, 78–80).  

3. Regression Trees 

Regression trees use a recursive partitioning algorithm to split observations into 

tree nodes (Breiman et al. 1984). The model bases predictions on the average of the 

observations partitioned into each terminal node, and measures of impurity evaluate the 

overall performance of the tree, which the algorithm bases on the total sum of squares at 

each node (Faraway 2006, 252 and Grömpling 2013). Lower impurity values indicate 

better fitting models. Cost-complexity-pruning controls tree size using cross-validation 

thus preventing the tree from overfitting the training data, and the optimal number of 

splits provides the tree with the minimum cross-validated error (Faraway 2006, 252). 

Regression trees easily detect feature interactions and handle potential outliers better than 

linear regression. They split outliers into a different node thus reducing the node residual 

sum of squares (RSS) making trees more robust to outliers and a more effective analysis 

tool for this research (Breiman et al. 1984, 253). However, regression trees must still 
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meet the assumption of homoscedasticity of errors using the validation techniques 

previously described (Faraway 2006, 254).  

We use variable importance rankings to gain insight into the significant drivers of 

variability. Variable importance is indicative of the splitting power of the variable and 

measures the decrease in impurity produced by the best split on a variable at each node 

(Breiman et al. 1984, 147) 

4. Random Forests 

Random forests fit several regression trees on the same dataset and average the 

outcome (Breiman 2001). The model chooses a random subset of the training data for 

each tree and a random predictor without replacement at each split. This results in 

reduced correlation among trees, and averaging uncorrelated trees reduces overall 

variation (Grömping 2013). Averaging many trees also reduces the effect of non-

normality and heteroscedasticity of errors, and unlike regression trees, random forests 

will not over-fit the data even as the number of trees increases (James et al. 2015, 320).  

We determine the number of splits by dividing the total number of predictors by 

three and then fit 1000 trees (Welling et al. 2016). The model omits out-of-bag (OOB) 

observations, approximately 37 percent of the training data, from each tree, and then uses 

these observations to calculate cross-validated predictions (Welling et al. 2016). We tune 

the model by adjusting the number of trees and random splits based on the OOB error 

estimates. Random forests evaluate variable importance based on the average increase in 

accuracy of OOB estimates as well as the total decrease in node purity resulting from 

splits on that feature (Louppe et al. 2013).  

We utilize feature contribution plots to visualize the structure and variable 

interactions of our random forest models. Welling et al. (2016) find individual feature 

contributions to be additive within the random forest model. They sum the local 

increment, a scalar that describes the relationships between the predictor and response 

variables, which results from each split within the random forest for each predictor 

variable (Welling et al. 2016). We utilize forestFloor to plot the feature contributions of 

OOB observations and use different color schemes to identify feature interactions 
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(Welling 2016). Feature contributions enable analysis of significant variables in the 

model and their impacts on predictions (Palczewska et al. 2013). Variable importance 

assesses the average importance of each variable within the model, and the percent 

increase in mean square error (MSE) shows how much the MSE increases by removing 

the feature (Breiman 2001).  

5. Model Evaluation 

Because our models are error-based, we utilize root mean square error (RMSE) 

and mean absolute error (MAE) to evaluate performance. RMSE sums the square of the 

actual minus predicted values and then takes the square root of that value. The result is in 

the same units as the response, making it more desirable than other metrics such as MSE 

(Kelleher et al. 2015, 444). Because RMSE squares errors, it weights larger errors more 

than smaller ones. Therefore, we also use MAE as a performance metric; this is also in 

the same units as the response variable, but weights all errors proportionally to their size 

(Kelleher et al. 2015, 444). MAE will always be smaller than RMSE, but RMSE provides 

a more pessimistic metric making it more desirable for estimating model performance 

(Kelleher et al. 2015, 446). 

We apply these techniques to our SDDB training dataset and evaluate their 

performance using our test set. Chapter IV outlines the development and evaluation of 

each model.  
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IV. MODEL ANALYSIS AND EVALUATION 

This chapter covers the analysis and evaluation of the methods described in 

Chapter III and focuses on sub-segment 3, the ocean transit sub-segment. We cover both 

the Hawaii and non-Hawaii subset models in this chapter and detail the remaining sub-

segment models in Appendices C through F. We conduct all analysis using R, a statistical 

computing language (R Core Team 2015).  

F. DATA EXPLORATION 

This section includes a brief overview of the 2015 Strategic Distribution Database 

(SDDB) dataset. We discuss descriptive statistics and the assumption of independence 

between all sub-segments. We use our training set, consisting of 12,184 observations, to 

fit all models described in the following sections. 

1. Descriptive Statistics  

Sub-segment length serves as the dependent variable for each model, and Figure 5 

shows a boxplot of each of the sub-segment lengths for which we build a model. We 

model them separately because each measures a different part of the Transporter process. 

We discuss the independence of each sub-segment later in this chapter. Additionally, we 

model Hawaii and non-Hawaii transit times separately to account for the difference in 

travel distance. Table 4 lists the summary statistics for each sub-segment. The means we 

list in this table serve as our baseline models. Figure 5 shows long tails in most sub-

segments, which indicate skewed distributions. This suggests the average is not an 

appropriate method for predicting sub-segment length. Figure 6 shows a histogram of the 

logarithmic transformation of each sub-segment, which we use as the our response 

variable. 
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Table 4.   SDDB Descriptive Statistics of Transporter Sub-Segments in Days. 

  

Sub-

Segment 

1 

Sub-

Segment 

2 

Sub-

Segment 

3 Hawaii 

Sub-

Segment 

3 Non-

Hawaii 

Sub-

Segment 

4 

Sub-

Segment 

5 

Min 0 0 1 9 0 0 

1st 

Quartile 0 4 2 16 4 0 

Median 0 6 4 17 6 0 

Mean 1.5 6.1 3.8 17.5 7.8 0.3 

3rd 

Quartile 1 8 5 19 12 0 

Max 129 47 24 56 37 58 

Stan. 

Dev 4.8 4.3 2.2 2.8 5.9 1.2 

 

 

Figure 5.  Length of Transporter Sub-Segments Measured in Days 
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Figure 6.  Logarithmic Transformation of Length in Days per Model Sub-

Segment. 

 

2. Independence Assumption 

We use a pairs plot and correlation table to determine independence between each 

of the sub-segments, without which we could not model sub-segments separately. Figure 

7 illustrates the pairs plot of each sub-segment. We observe no significant visual 

indications of correlation between sub-segments. We use a correlation table (Table 5) to 

verify these results. Based on both the pairs plot and the correlation table, we assume 

independence between the sub-segments and model them separately. 



 26 

 

Figure 7.  Pairs Plot of SDDB Transporter Leg Sub-Segments/  

Table 5.   SDDB Transporter Leg Sub-Segments Correlation Table.  

  Segment1 Segment2 Segment3 Segment4 Segment5 

Segment1 1 –0.08 0.13 –0.10 –0.08 

Segment2 –0.08 1 0.20 –0.08 –0.15 

Segment3 0.13 0.20 1 0.17 –0.55 

Segment4 –0.10 –0.08 0.17 1 –0.22 

Segment5 –0.08 –0.15 –0.55 –0.22 1 

 

 

3. Data Quality 

As discussed in Chapter III, we encounter data quality issues that influence the 

outcome of our models. Table 6 shows the proportion of missing values per variable. 

Table 7 shows the number of complete cases available for analysis per sub-segment 

model. Figure 8 shows the total number of missing values across all variables per month.  

When we remove incomplete cases from the dataset, we also remove all observations 

from units afloat. Additionally, missing values influence the significance of some 

predictor variables, which we discuss later in this chapter. We suspect that missing data 

affects our ability to accurately model each sub-segment as some sub-segment models 
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lose over 60 percent of observations due to low data quality. Additionally, we currently 

possess no way to gauge the quality of the data available within this dataset. 

Table 6.    Proportion of Missing Values per SDDB Variable. 

  # NA 
percentage 

missing 

Sub-segment 1 1428 12% 

Sub-segment 2 1219 10% 

Sub-segment 3 2193 18% 

Sub-segment 4 4464 37% 

Sub-segment 5 5019 41% 

Issue priority group 30 0% 

Weekday    958 8% 

Month     958 8% 

Quarter   958 8% 

Integrated distribution 

lane     
30 0% 

Supply class    32 0% 

Carrier   765 6% 

Weight     280 2% 

Booking method    785 6% 

Container  922 8% 

Shipping cost  500 4% 

Location  30 0% 

Initial consolidation point    64 1% 

Service terms    30 0% 

Handling  2640 22% 

Origin  1961 16% 

Afloat   30 0% 

Unit price   45 0% 
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Table 7.   Number of Complete Cases and Percentage of Missing Cases per 

Sub-Segment Model. 

  
# complete 

cases 

percentage 

missing  

Sub-segment1 7722 37% 

Sub-segment2 7502 38% 

Sub-segment 3 Hawaii 1079 66% 

Sub-segment 3 Non-

Hawaii 
5515 38% 

Sub-segment4 5243 57% 

Sub-segment5 4981 59% 

 

 

Figure 8.  Total Number of Missing Observations across All Variables per 

Month. 

 

G. HAWAII SEGMENT 3 MODEL ANALYSIS 

In this section, we apply the techniques covered in Chapter III to the Hawaii 

subset of the SDDB. The model uses the length of sub-segment 3, measured in days, as 

the dependent variable and begins with the remaining SDDB variables described in 
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Chapter III as the independent variables. We present the results of each technique 

followed by model comparison and discussion of significant findings.  

1. Baseline Model 

We use the mean of the response variable as a baseline model from which to 

compare subsequent models. As discussed in Chapter II, the current USTRANSCOM 

prediction tool uses only the mean to predict shipment timelines. The mean ocean transit 

length, as shown in Table 6, is 3.8 days. We use the baseline model to predict sub-

segment length on the test set and list the root mean square error (RMSE) and mean 

absolute error (MAE) in Table 12.  

2. Multivariate Linear Regression Analysis 

We use the logarithmic transformation of the response variable to reduce the 

skewed distributional effects previously discussed. Sub-setting the data into Hawaii and 

non-Hawaii observations and eliminating incomplete cases reduces integrated 

distribution lane, origin, and afloat to only one factor level, so we exclude them from the 

linear regression model. We also eliminate location because of uneven representation of 

factor levels following the removal of incomplete cases. Kaneohe Bay has 1041 

observations and Pearl Harbor has only 38 observations.   

Using bidirectional stepwise regression, we fit an initial model and then use 

manual deletion based on a 0.05 p-value threshold to develop the final linear regression 

model. Table 8 shows the coefficients of the significant predictor variables as well as 

their associated standard errors and p-values, and Table 9 shows the model goodness of 

fit metrics resulting from this model.  
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Table 8.   Hawaii Linear Regression Model Coefficients. 

  Estimate Std. Error P-value 

Intercept 0.83 0.06 < 2e-16 

Feb 0.20 0.13 0.12 

Mar –0.05 0.05 0.39 

Apr 0.78 0.06 < 2e-16 

May 0.27 0.06 0.00 

Jun –0.09 0.06 0.15 

Jul 0.03 0.07 0.63 

Aug –0.70 0.07 < 2e-16 

Sep –1.38 0.07 < 2e-16 

Oct –1.08 0.08 < 2e-16 

Nov –0.44 0.06 0.00 

Dec –0.92 0.06 < 2e-16 

Handling B: High 

sensitivity category I, 

heavy lift (HL)* 0.60 0.04 < 2e-16 

Handling G: High 

sensitivity category I 

confidential, HL* 0.59 0.06 < 2e-16 

Handling N: low 

sensitivity category IV, 

outsize dimension 

(OD)* 0.59 0.05 < 2e-16 

Handling: Other 0.88 0.08 < 2e-16 

Handling R: No special 

handling, OD* 0.30 0.09 0.00 

Handling Z: No special 

handling, HL and OD* 0.29 0.03 < 2e-16 

Tue –0.06 0.05 0.28 

Wed 0.70 0.03 < 2e-16 

Thu 0.30 0.03 < 2e-16 

Fri 0.64 0.03 < 2e-16 
*Source: Defense Transportation Electronic Business Reference Data 
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Table 9.   Hawaii Linear Regression Model Goodness-of-Fit Performance 

Metrics Using the Logarithmic Transformation of the Response.  

Metric Value 

Residual Standard Error 0.19 

R Squared 0.88 

Adjusted R Square 0.88 

Degrees of Freedom 1054 

 

We use residual plots and quantile-quantile (Q-Q) plots to verify the assumptions 

of the model, both of which are shown in Appendix A. The model violates the 

homoscedasticity and normal errors assumptions, but still provides useful insight into the 

drivers of variability, which we will discuss in a later section.  

3. Hawaii Regression Tree Model 

We use the rpart package in R to implement regression trees as described in 

Chapter III and the rpart.plot package to plot the results (Therneau, Atkinson, Ripley 

2013 and Milborrow 2015). This model uses the same response variable as the linear 

regression model. We grow a full regression tree and then prune it to the optimal number 

of splits based on the complexity parameter (cp) with minimum cross-validated error. 

This occurs at cp = 0.004 and results in 10 splits. We show the regression tree in 

Appendix A, and Table 10 lists the resulting variable importances.  

4. Random Forest Analysis 

We use the randomForest package to fit an initial model with 1000 regression 

trees, each with six random splits (Cutler et al. 2015). This method averages the 

outcomes of the trees to determine variable importance and explains variation in the 

response as a function of the predictors. We eliminate afloat, origin, booking method, 

carrier, supply class, issue priority group, unit price, and shipping cost because their 

presence in the model did not increase model performance. We fit our final model with 

only two random splits per tree. Table 11 lists the percent increase in mean square error 

(MSE) that would result from removing each of the remaining variables.  
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The random forest model yields new insights into the drivers of variation in the 

distribution system. All three models find month, handling, and weekday highly 

significant, but the random forest model also finds service terms significant.  

Table 10.   Hawaii Regression Tree Model Variable Importance Table. 

  Variable Importance 

Month 293.01 

Handling 216.74 

Weekday 146.45 

Container 102.72 

Shipping cost 43.73 

Weight 30.36 

Unit price 12.03 

Location 10.55 

Service terms 9.11 

Issue priority group 8.14 

Initial consolidation 

point 
2.45 

Supply class 1.04 

Carrier 0.46 

 

Table 11.   Hawaii Random Forest Variable Importance Table. 

  % Inc MSE 

Month 116.39 

Handling 81.15 

Weekday 61.64 

Service terms 37.9 

 

5. Hawaii Model Evaluation 

Comparing the performance of all models on estimating the ocean transit sub-

segment length, we find that the regression tree model has a slightly lower MAE, 

however regression trees can over-fit the training data. Both the regression tree and 
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random forests models perform significantly better than linear regression and the baseline 

model, the current USTRANSCOM basis for predictive analysis. Table 12 lists the 

performance metrics for each Hawaii model when applied to the test set. 

Table 12.   Hawaii Model Test Set Performance Metrics Measured in Days. 

  Root Mean Square Error Mean Absolute Error 

Baseline 1.54 1.42 

Linear Regression 0.71 0.31 

Regression Tree 0.19 0.03 

Random Forest 0.18 0.06 

 

All models find month to be a significant driver of variability and we suspect its 

importance is artificially inflated by removing missing observations. We ran simple linear 

regressions on two subsets of the data. Model A uses a complete cases subset, the same 

response variable and month as the only predictor variable, which results in an R Square 

of 0.79. Model B uses a subset including incomplete cases and results in an R Square of 

0.37, a decrease in over 40 percent of variation explained. Poor data quality negatively 

affects the ability to accurately analyze the performance of the distribution system. 

We utilize forestFloor to decompose our random forest model and better 

understand the relationship between our predictor and response variables (Welling et al. 

2016). As discussed in Chapter III, the OOB feature contribution is the sum of all local 

increments per variable, and the local increment is a scalar that describes the relationship 

between the predictor and responses variables at each split in the forest (Welling et al. 

2016). Each point on the plot in Figure 9 represents one OOB observation that falls into 

one of the feature categories shown on the x-axis. The vertical position represents the 

random forest’s estimate of the effect of the variable, or its feature contribution. 

ForestFloor computes feature contributions by summing the OOB local increments and 

dividing by the number of times that observations fell out of the bag (Welling et al. 

2015). The colors on each graph reflect the month in which the observation began the 

Transporter segment and enables us to visualize feature interactions such as those in 
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Figures 10 and 11. We jittered both the horizontal and vertical scales to make the 

individual points easier to discern. The smooth line represents trends associated with each 

group of observations across each feature level (Welling et al. 2016).  

Table 11 shows that month is the main contributor to variance in our model and 

removing it would result in over 100 percent increase in MSE. Figure 9 suggests that 

requisitions beginning the Transporter segment in January through July experience longer 

ocean transit times than those beginning in August through December because the 

January to July shipments have a positive relationship with the response variable. Our 

feature contributions plots enable us to see that a requisition beginning the Transporter 

segment on a Thursday in January and shipped under code B handling conditions will 

take longer to complete the ocean transit segment due to the feature contributions of 

variables at the stated levels. We show these relationships in Figures 9, 10 and 11.  

Figure 10 confirms the regression tree splits for handling, which indicate that 

handling codes 9 and N lead to shorter transit times. The blue shaded points represent 

requisitions beginning Transporter in the second half of 2015, and most indicate 

decreasing transit times except for potential outliers in category B. 

We encounter an interesting relationship between the feature contributions of 

month and weekday. Weekday significantly contributes to variation in all models, and 

Figure 11 shows the interaction between the two variables. Royal blue points represent 

shipments beginning Transporter in December and they perform better on Mondays and 

Tuesdays than later in the week.  
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Figure 9.  Random Forest month Feature Contribution. 

 

      

Figure 10.  Hawaii Random Forest handling Feature Contribution. 
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Figure 11.  Hawaii Random Forest weekday Feature Contribution. 

 

We create Table 13 to further explore the interaction between month and weekday 

and find that shipments do not begin the Transporter segment on Tuesdays during most 

months in 2015. We use the carrier schedules described in Chapter III to look for patterns 

in shipping schedules that could potentially provide insight into this relationship. Table 

14 shows the schedules for carriers departing the west coast for Hawaii broken down by 

month and weekday. While we cannot attribute any direct causes to the Tuesday effect 

found in Table 13, we see an uneven distribution between the days of the week in which 

carriers leave port. 

Lastly, the random forest model provided intuitive results concerning service 

terms. Shipments with multiple stops prior to their final destination take longer than those 

shipped via other service terms. Based on the results in Table 12, we determine that the 

random forest provides the most insight and thus the best predictive results for this sub-

segment.  
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Table 13.   Hawaii Shipments Broken Down by Month and Weekday the 

Transporter Segment Began. 

  Sun Mon Tue Wed Thu Fri Sat 

Jan 0 0 45 1 0 0 0 

Feb 0 1 1 0 0 1 0 

Mar 0 16 0 11 83 5 0 

Apr 0 97 0 0 0 0 0 

May 0 27 0 14 56 0 0 

Jun 0 1 0 121 0 51 0 

Jul 0 2 0 0 14 26 0 

Aug 0 71 0 0 1 1 0 

Sep 0 43 0 0 1 253 0 

Oct 0 0 0 4 6 1 0 

Nov 0 17 17 0 18 0 0 

Dec 0 0 8 0 47 18 0 

 

Table 14.   2015 Hawaii Carrier Schedule Broken Down by Month and 

Weekday the ship departed the Seaport of Embarkation. 

  Sun Mon Tue Wed Thu Fri Sat 

Jan 37 0 8 31 6 26 15 

Feb 26 6 12 17 8 19 12 

Mar 47 5 10 13 8 18 10 

Apr 38 8 10 17 6 15 11 

May 49 7 12 13 8 18 2 

Jun 39 11 25 14 6 18 14 

Jul 8 14 9 28 6 16 19 

Aug 8 20 6 28 8 12 33 

Sep 8 19 10 30 7 11 29 

Oct 53 0 6 43 0 25 0 

Nov 60 0 5 37 0 23 0 

Dec 37 0 6 42 0 19 17 

 

H. NON-HAWAII SEGMENT 3 ANALYSIS 

We utilize the same modeling techniques and variables for this model, but use the 

non-Hawaii subset of the training data. We explain each of the four models separately, 
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compare their performance and provide a brief analysis of the resulting significant 

variables in the following sections.  

1. Baseline Model 

The baseline model uses only the average transit time of 17.5 days, as listed in 

Table 5, to predict performance. We use this outcome to gauge the improvement of our 

subsequent models. Table 19 lists the model performance metrics against the test set. 

2. Multivariate Linear Regression Analysis 

Using the same methodology and variables previously described, we fit a linear 

regression model for the complete cases of the non-Hawaii subset all remaining 

categorical variables have two or more factor levels, so we do not remove variables 

before fitting the initial model. Table 15 lists the significant variables in the linear 

regression model, and Table 16 lists the goodness of fit metrics.  

 We use residual and Q-Q plots to verify that the model does not meet 

homoscedasticity or normal errors assumptions. We show these plots in Appendix B.  

3. Regression Tree Analysis 

We fit a regression tree using the training set and, the minimum cross-validated 

error for our regression tree occurs at cp = 0.00029. This results in a tree with 75 splits, 

which is too large to plot. Table 17 lists the variables in order of importance in this 

model. Table 19 lists the evaluation metrics for this model.  

4. Random Forest Analysis 

We initially fit a random forest with all potential predictor variables and remove 

insignificant variables to develop the final prediction model. We define insignificant 

variables in this model as those with less than 0.01 on the variable importance table. We 

remove six predictor variables so the subsequent model fits 1000 trees with four random 

splits. This model results in 92.3 percent of variation explained when applied to the test 

set. Table 18 lists the model variables in order of importance. This model indicates that 

removing month will increase MSE by almost 300 percent.  
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Table 15.   Non-Hawaii Linear Regression Model. 

  Estimate Std. Error P-value 

(Intercept) 2.55 0.01 < 2e-16 

Feb –0.04 0.01 0.00 

Mar 0.18 0.01 < 2e-16 

Apr 0.04 0.00 < 2e-16 

May –0.11 0.00 < 2e-16 

Jun –0.15 0.00 < 2e-16 

Jul –0.04 0.01 0.00 

Aug –0.06 0.01 < 2e-16 

Sep –0.10 0.00 < 2e-16 

Oct –0.12 0.00 < 2e-16 

Nov –0.04 0.01 0.00 

Dec –0.12 0.01 < 2e-16 

Carrier: MAEU 0.03 0.01 0.00 

Carrier: MATS 0.16 0.06 0.01 

Carrier: OTHER –0.13 0.03 0.00 

Booking: IBS 0.14 0.02 0.00 

Booking: Old Method 0.74 0.03 < 2e-16 

Booking: Unknown 0.29 0.02 < 2e-16 

Handling B: High sensitivity category 

I, HL*  0.17 0.03 0.00 

Handling G: High sensitivity category I 

confidential, HL* 0.08 0.01 0.00 

Handling N: low sensitivity category 

IV, OD* 0.24 0.01 < 2e-16 

Handling O: Highest sensitivity 

category I classification secret, OD*  0.10 0.01 < 2e-16 

Handling: Other 0.02 0.01 0.02 

Handling R: No special handling, OD*  0.10 0.01 < 2e-16 

Handling W: Highest sensitivity 

category I classification secret, HL and 

OD*  –0.02 0.01 0.00 

Handling Z: No special handling, HL 

and OD* 0.06 0.00 < 2e-16 

Location: Okinawa 0.32 0.01 < 2e-16 

Location: Other 0.01 0.05 0.90 

*Source: Defense Transportation Electronic Business Reference Data 
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Table 16.   Non-Hawaii Linear Regression Model Goodness-of-Fit Performance 

Metrics Using the Logarithmic Transformation of the Response. 

Metric Value 

Residual Standard Error 0.09 

R Square 0.64 

Adjusted R Square 0.64 

Degrees of Freedom 6829 

 

Table 17.   Non-Hawaii Regression Tree Variable Importance Table. 

  Variable Importance 

Month 54.16 

Location 43.10 

Weekday 24.88 

Handling 20.57 

Carrier 20.47 

Quarter 18.74 

Booking 16.15 

Container 12.79 

Shipping cost 9.34 

Origin 6.39 

Weight 6.05 

Unit price 4.59 

Supply Class 4.14 

Initial consolidation 

point 1.85 

Issue priority group 1.49 

Service terms 0.48 

Integrated 

distribution lane 
0.01 
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Table 18.   Non-Hawaii Random Forest Variable Importance Table. 

  % Inc MSE 

Month 294.35 

Location 198.31 

Weekday 142.77 

Handling 88.52 

Container 76.73 

Service terms 28.69 

Booking 28.46 

Weight 26.75 

Carrier 24.58 

 

5. Non-Hawaii Model Evaluation 

Requisitions traveling to non-Hawaii destinations have a greater chance of 

stopping in multiple locations before reaching their endpoints thus creating a dataset with 

more noise. However, the models still perform relatively well against the test set. Table 

19 lists the performance metrics for each model on the test set.  

We find month, handling, location and carrier to be among the top predictors in 

each model. Again, we fit simple regression models for month using both a complete and 

an incomplete cases subset of the data. Model A, the complete cases subset, produces an 

R square of 0.27, and model B produces an R square of 0.07. Again, we find that the 

effect of month is artificially inflated because of low data quality. We also compare 

simple linear regressions of handling, location and carrier. We find higher R squares for 

all complete cases subsets; however, the location R Square is over 15 percent higher in 

the complete cases subset. This leads us to conclude that low data quality has a negative 

effect on our ability to accurately model the DOD distribution system.  

Using forestFloor, we decompose our random forest model to evaluate the effects 

of the main contributors to variation (Welling et al. 2016). Figure 12 shows the feature 

contributions of each month along the y-axis, and we plot each month in a different color. 

We find that requisitions beginning Transporter in March have higher transit times than 

other months throughout the year. We did not find any significant weekday interactions.  
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The random forest model also identifies location, carrier and handling as 

significant variables, which confirms the linear regression findings we list in Table 15. 

Additionally, different handling requirements based on security or size also influence 

transit times. From our linear regression results, we find that handling code W has a 

negative relationship with sub-segment time indicating highly sensitive, outsize 

dimension cargo arrives faster than other handling codes. The random forest model also 

identifies container, service terms and weight as contributors to variation. Surprisingly, 

the method by which the shipment is booked also effects ocean transit times. Specifically, 

requisitions booked via the “Old Method” take longer to complete this sub-segment than 

requisitions booked by other means as shown in Figure 13. 

Table 19.   Non-Hawaii Model Test Set Performance Metrics measured in Days. 

  Root Mean Square Error Mean Absolute Error 

Baseline 2.93 1.92 

Linear Regression 2.27 1.24 

Regression Tree 1.49 0.42 

Random Forest 1.08 0.44 
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Figure 12.  Non-Hawaii Random Forest month Feature Contribution. 

 

 

Figure 13.  Non-Hawaii Random Forest booking method Feature Contribution. 
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I. TOTAL PERFORMANCE 

We explain the details of the remaining sub-segment models in Appendices C 

through F, but list their test set performance metrics in Table 20. We convert these 

metrics back to days, the original sub-segment units, and highlight the lowest RMSE and 

MAE for predicting sub-segment lengths using the test set.  

Table 20.   Test Set Performance Metrics for All Transporter Sub-Segments 

Measured in Days. 

  Root Mean Square Error Mean Absolute Error 

  Base 

Lin. 

Reg.  

Reg. 

Tree 

Ran. 

Forest Base 

Lin. 

Reg.  

Reg. 

Tree 

Ran. 

Forest 

Sub-Segment 

1 4.94 3.69 1.7 1.55 1.93 1.08 0.48 0.41 

Sub-Segment 

2 3.94 3.55 2.01 1.47 2.59 2.06 0.85 0.53 

Sub-Segment 

3a 1.54 0.71 0.19 0.18 1.42 0.31 0.03 0.06 

Sub-Segment 

3b 2.93 2.27 1.49 1.61 1.92 1.24 0.42 0.56 

Sub-Segment 

4 6.2 3.93 2.3 1.46 5.05 2.95 1.33 0.87 

Sub-Segment 

5 0.77 1.05 1.01 1.03 0.42 0.15 0.06 0.06 

 

Although regression tree models perform slightly better in some instances, we 

recommend the random forest models because each is a collection of 1000 regression 

trees and provides results that are more robust. All of our models show significant 

improvement over the baseline models except sub-segment 5. In this case, the baseline 

model provides a better RMSE. As discussed in Chapter III, RMSE provides a more 

pessimistic evaluation, so we recommend the baseline model to predict sub-segment 5.  

We suspect our results are artificially good. All literature reviewed suggest that 

random forests are less prone to overfitting because of aggregating the outcomes of many 

trees. Our models fit our data well, but the information in our dataset is not necessarily 

representative of what actually flows through the system. As discussed in Chapter III, 

SDDB consolidation filters erroneous entries, and we further filter missing observations 
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in preparation for our analysis. As a result, we suspect only the highest quality data 

remains, which is not necessarily representative of shipments that traverse the system. 

The performance metrics listed in Table 20 indicate that our models successfully fit this 

dataset. However, in this chapter we present evidence to suggest that low data quality 

artificially inflates the significance of some variables. Furthermore, we have preliminary 

indications that our models perform poorly on 2016 data.  

Surprisingly, few models found IPG to be a significant driver of variability. As 

described in Chapter II, IPG 1 requisitions should take less time to complete the 

Transporter segment than IPG 3. However, the results of the model indicate no 

significant difference in average delivery time of IPG codes.  

J. SUMMARY 

In this chapter, we describe the analysis and findings of two of our six models. 

We provide the detailed explanations of the remaining models in the appendices. Because 

we assume independence among each of the sub-segments, we add the predictions 

resulting from each model to estimate the length of the Transporter segment. Table 21 

lists the actual sub-segment lengths and predicted sub-segment lengths of five randomly 

selected requisitions from our test set using the random forest model. We add the sub-

segment lengths to calculate the total Transporter transit time. 

Table 21.   Actual verses Predicted Total Transporter Time in Days. 

Actual Predicted 

  S1 S2 S3 S4 S5 Total S1 S2 S3 S4 S5 Total 

1 1 9 20 4 0 34 1 8 18 3 0 29 

2 1 6 21 5 0 33 1 7 20 6 0 33 

3 0 6 16 5 0 27 0 6 17 2 0 25 

4 0 11 17 5 0 33 0 7 16 13 0 36 

5 1 7 16 4 0 28 1 6 16 4 0 27 
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V. SUMMARY AND RECOMMENDATIONS 

This chapter provides a summary of the techniques we utilized and the results 

discussed in previous chapters. We also include recommendations and identify areas for 

future research.  

A. SUMMARY 

The goal of this research was to develop a statistical model capable of predicting 

late shipments based on historical performance. We created a model for each of the five 

sub-segments within the Transporter leg of the DOD distribution process and addressed 

these questions in our research: 

 What factors drive variability within the distribution system? 

 Can a more accurate predictive tool be developed in order to inform 

decision makers of late shipments prior to shipments missing the RDD? 

To support our research, we utilized a subset of data from the SDDB, which we 

cleaned and reduced to 23 variables. We created three different models for each sub-

segment including a linear regression model, regression tree model, and a random forest 

model. Our research found that the random forest model resulted in the lowest RMSE and 

MAE for most sub-segments when applied against the test set—not involved in fitting the 

models—and that most of our models perform better than the baseline model. 

Additionally, we found that the weekday and month in which requisitions begin the 

Transporter segment significantly influences many of the sub-segment lengths. However, 

preliminary trials suggest that the models perform poorly on 2016 data. 

Missing values significantly degrade our ability to properly analyze the system. 

Kelleher et al. (2015) suggest that any variable missing 60 percent or more observations 

does not have enough information stored to support modeling. Only 40 percent of our 

training data contains complete cases observations. While this is enough information to 

complete a model, it is not enough information to assess performance.  
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B. RECOMMENDATIONS 

In this section, we provide recommendations to improve the distribution system as 

well as recommendations for future work. RAND developed the current SDDB 

consolidation process over 10 years ago as an in-house analysis tool, and SDDB 

consolidation later became a DORRA responsibility (Boren 2016). We recommend 

USTRANSCOM re-evaluate the data collection and consolidation process and take over 

responsibility of the SDDB as the distribution process owner. Maintaining the process 

within USTRANSCOM will enable fluid changes and adaptations as the distribution 

system changes. We also recommend implementing accountability procedures to ensure 

proper timestamp entries for each segment and sub-segment in the distribution process, as 

these are the most important data for timeline prediction. Then this analysis should be 

repeated using random forests with a higher quality dataset.  

 In order to build on this research, we recommend applying the same algorithms to 

a multi-year dataset thus enabling better analysis of the monthly trends we highlight in 

Chapter IV. Additionally, we recommend developing geographic combatant-command-

specific predictive tools inclusive of all modes of transportation. Lastly, we recommend a 

detailed analysis of data quality within the SDDB and how the quality level influences 

distribution system analysis. 
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APPENDIX A. HAWAII MODEL 

             In this section, we provide details on linear regression model diagnostics as 

well as our regression tree model.  

A. LINEAR REGRESSION DIAGNOSTICS 

As discussed in Chapter III, our linear regression model must meet model 

assumptions in order to provide accurate predictions. We use a residual versus fitted 

values plot and a quantile-quantile (Q-Q) plot to verify the model does not meet these 

assumptions. Figure 14 indicates unequal variances in the residuals, which reduces the 

accuracy of model inferences.   

Figure 14.  Hawaii Model Residuals versus Fitted Plot. 

Figure 15 shows the model violates the normal errors assumption, which also 

reduces the accuracy of model inferences. 



 50 

 

Figure 15.  Hawaii Model Quantile-Quantile (Q-Q) Plot. 

 

Residuals still show evidence of long tails even after transforming the response 

variable. We conclude that the structure of the linear regression model does not support 

prediction, but does provide insight into variation within the distribution process.  

B. REGRESSION TREE MODEL 

Figure 16 shows the Hawaii model regression tree. We follow each branch to the 

terminal node in order to predict future performance of shipments. Regression trees 

model variable interactions far better than linear regression. Each split beyond the main 

one indicates an interaction between two or more variables. We follow the branches to 

the terminal node, which lists the average number of days per shipment that meet branch 

characteristics.  



 51 

 
 

Figure 16.  Hawaii Regression Tree Model. 
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APPENDIX B. NON-HAWAII MODEL 

In this section, we provide an overview of the non-Hawaii linear regression model 

diagnostics.  

Figure 17 shows the model has non-constant variance, which can negatively 

influence model predictions, and Figure 18 indicates a long-tailed distribution, which we 

discuss in Chapter IV. This can negatively influence confidence intervals. We conclude 

that the linear regression model does not support accurate prediction, but does 

supplement our understanding of variation in the distribution system. 

 

 

Figure 17.  Non-Hawaii Residuals versus Fitted Values Plot. 
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Figure 18.  Non-Hawaii Quantile-Quantile (Q-Q) Plot. 
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APPENDIX C. SUB-SEGMENT 1 MODEL AND EVALUATION 

In this section, we provide an overview of the development and evaluation of the 

sub-segment 1 model. We utilize the techniques outlined in Chapter III and employ the 

entire training set. 

A. BASELINE MODEL 

Origin line haul describes the time from which the carrier picks up a shipment 

from a supplier until it reaches the seaport of embarkation (SPOE), which takes an 

average of 1.5 days, as shown in Table 4. We use this average as a baseline from which 

to evaluate our models. 

B. MULTIVARIATE LINEAR REGRESSION 

We begin this model with all predictor variables described in Chapter III, and use 

the logarithmic transformation of the sub-segment length as our response variable. We 

show our results in Tables 22 and 23. 

We use Figures 19 and 20 to verify model assumptions. Figure 19 confirms the 

presence of heteroscedasticity due in part to the discrete nature of the response, an 

attribute visible in the diagonal lines. Figure 20 confirms non-normal errors. We conclude 

that the linear regression does not support accurate prediction, but use its results to gain 

further insight into variation within the distribution system. 

Table 22.   Sub-Segment 1 Linear Regression Coefficients. 

  Estimate 
Std. 

Error 
P-value 

(Intercept) 0.99 0.02 < 2e-16 

Tue 0.18 0.02 < 2e-16 

Wed 0.09 0.02 0 

Thu 0.48 0.02 < 2e-16 

Fri 0.44 0.02 < 2e-16 

Feb –0.62 0.04 < 2e-16 

Mar –0.78 0.03 < 2e-16 
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  Estimate 
Std. 

Error 
P-value 

Apr –0.48 0.03 < 2e-16 

May –0.93 0.03 < 2e-16 

Jun –0.73 0.03 < 2e-16 

Jul -0.7 0.03 < 2e-16 

Aug –0.66 0.03 < 2e-16 

Sep –0.65 0.02 < 2e-16 

Oct –0.72 0.03 < 2e-16 

Nov –0.48 0.04 < 2e-16 

Dec –0.45 0.03 < 2e-16 

Carrier: HRZD 1.07 0.1 < 2e-16 

Carrier: MAEU –0.01 0.04 0.8 

Carrier: MATS –0.54 0.02 < 2e-16 

Carrier: OTHER –0.55 0.23 0.02 

Booking: IBS 1.92 0.14 < 2e-16 

Booking: Old 

Method 
–0.56 0.21 0.01 

Booking: Unknown 0.14 0.13 0.29 

Table 23.   Sub-Segment 1 Linear Regression Goodness of Fit Metrics Using 

the Logarithmic Transformation of the Response. 

Metric   

Residual Standard Error 0.55 

R Square 0.40 

Adjust R Square 0.40 

Degrees of Freedom 7696 
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Figure 19.  Sub-Segment 1 Residual versus Fitted Values Plot. 

 

Figure 20.  Sub-Segment 1 Quantile-Quantile (Q-Q) Plot. 

 

C. REGRESSION TREE MODEL 

Using the training set, we grow a full tree and prune it to the minimum cross-

validated error which occurs at complexity parameter (cp) = 0.00057. This produces a 
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tree too large to plot. Table 24 lists the important variables in the regression tree model, 

and Table 26 lists the model performance metrics when applied against the test set. 

Table 24.   Sub-Segment 1 Regression Model Variable Importance. 

  Variable Importance 

Month 1173.04 

Weekday 940.76 

Location 465.99 

Carrier 431.95 

Service terms 410.05 

Handling 397.10 

Integrated distribution 

lane 382.30 

Container 366.75 

Weight 197.04 

Shipping cost 187.38 

Unit price 132.46 

Supply class 48.82 

Booking 39.53 

Initial consolidation 

point 35.64 

Issue priority group 28.95 

origin 10.81 

 

D. RANDOM FOREST MODEL 

We remove supply class, issue priority group, initial consolidation point, 

booking, origin, quarter, and afloat from our model because they do not improve 

performance. We fit our final random forest model with 1000 trees and four random 

splits per tree. Table 25 lists the percent decrease in MSE from removing each variable 

from the model, and Table 26 shows the performance metrics of the random forest model 

on the test set. 

  



 59 

Table 25.   Sub-Segment 1 Random Forest Percent Increase Mean Square Error. 

  %IncMSE 

Weekday 300.37 

Month 241.55 

Carrier 34.11 

Weight 73.20 

Container 122.32 

Shipping cost 91.40 

Location 37.33 

Service terms 29.57 

Handling 82.73 

Unit price 64.09 

 

E. SUB-SEGMENT 1 MODEL EVALUATION 

We find the random forest model provides the lowest root mean square error 

(RMSE) and mean absolute error (MAE). Table 26 lists the RMSE and MAE for all 

models. 

Table 26.   Sub-Segment 1 Test Set Performance Metrics Measured in Days. 

  RMSE MAE 

Baseline 4.94 1.93 

Linear Regression 3.69 1.08 

Regression Tree 1.7 0.48 

Random Forest 1.55 0.41 

 

Our random forest model confirms the relationship between sub-segment length 

and weekday suggested by our linear regression model in Table 22. Linear regression 

results indicate a positive relationship for all weekdays except for Monday, and Figure 21 

confirms this. Figure 21, which plots the feature contribution on the y-axis, highlights 

poor performance for shipments initiating Transporter on Thursdays in January, but also 

shows that the other days of the week in January perform better than most other 
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combinations of month and weekday. Each color in Figure 21 represents a different 

month. 

 Unlike many of our other models, month is not the most significant  driver of 

variation in this random forest model. Figure 22 indicates constant performance for many 

months throughout the year with the exception of an increasing relationship in January 

and many better performing Friday requisitions in March and August. The linear 

regression model uses January as the base case, and Figure 22 shows requisitions 

beginning Transporter in January take longer to complete this sub-segment. Each color in 

Figure 22 represents a different weekday. This explains why all other months have a 

decreasing relationship with the response in the linear regression results.  

 

 

Figure 21.  Sub-Segment 1 Random Forest weekday Feature Contribution. 
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Figure 22.  Sub-Segment 1 Random Forest month Feature Contribution. 
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APPENDIX D. SUB-SEGMENT 2 MODEL AND EVALUATION 

In this section, we cover the model development and analysis of sub-segment 2 

using the techniques outlined in Chapter III.  

A. BASELINE MODEL 

Sub-segment 2 accounts for the holding time between dropping the shipment off 

at the seaport of embarkation (SPOE) and the beginning of the ocean transit sub-segment. 

This takes, on average, 6.1 days, as shown in Table 4. We use this as a baseline from 

which to compare our models.  

B. SUB-SEGMENT 2 MULTIVARIATE LINEAR REGRESSION 

We begin this model with all variables described in Chapter III and utilize the 

logarithmic transformation of sub-segment 2 as the response variable. Tables 27 and 28 

list the results of our linear regression model. 

We use a residual versus fitted values plot and a quantile-quantile (Q-Q) plot to 

verify model assumptions. Figure 23 indicates heteroscedasticity due in part to the 

discrete nature of the response, visible in the diagonal lines. Figure 24 indicates non-

normal errors, both of which negatively affect the predictive capabilities of the model. 

Table 27.   Sub-Segment 2 Linear Regression Coefficients. 

  
Estimate 

Std. 

Error P-value 

(Intercept) 1.58 0.02 < 2e-16 

Tue –0.15 0.02 0.00 

Wed –0.18 0.02 < 2e-16 

Thu –0.14 0.02 0.00 

Fri 0.05 0.02 0.01 

Feb –0.06 0.04 0.09 

Mar 0.40 0.03 < 2e-16 

Apr 0.24 0.02 < 2e-16 

May 0.33 0.02 < 2e-16 

Jun 0.43 0.02 < 2e-16 
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Estimate 

Std. 

Error P-value 

Jul 0.26 0.02 < 2e-16 

Aug 0.51 0.02 < 2e-16 

Sep 0.15 0.02 0.00 

Oct 0.27 0.03 < 2e-16 

Nov 0.13 0.03 0.00 

Dec 0.53 0.03 < 2e-16 

Carrier: HRZD –2.05 0.08 < 2e-16 

Carrier: MAEU –0.14 0.03 0.00 

Carrier: MATS –0.66 0.02 < 2e-16 

Carrier: OTHER -1.38 0.14 < 2e-16 

Handling B: High sensitivity 

category I, HL* 0.66 0.04 < 2e-16 

Handling G: High sensitivity 

category I confidential, HL* 0.47 0.03 < 2e-16 

Handling N: low sensitivity 

category IV, OD* 0.30 0.04 < 2e-16 

Handling O: Highest sensitivity 

category I classification secret, 

OD* –0.07 0.04 0.07 

Handling: Other 0.28 0.05 0.00 

Handling R: No special 

handling, OD* 0.24 0.04 0.00 

Handling W: Highest 

sensitivity category I 

classification secret, HL and 

OD* 0.15 0.04 0.00 

Handling Z: No special 

handling, HL and OD* 0.24 0.02 < 2e-16 
*Source: Defense Transportation Electronic Business Reference Data 

Table 28.   Sub-Segment 2 Linear Regression Goodness of Fit Metrics Using 

the Logarithmic Transformation of the Response. 

Metric Value 

Residual Standard Error 0.45 

R Square 0.41 

Adjust R Square 0.41 

Degrees of Freedom 7468 
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Figure 23.  Sub-Segment 2 Residual versus Fitted Values Plot. 

 

Figure 24.  Sub-Segment 2 Quantile-Quantile (QQ) Plot. 

 

C. REGRESSION TREE MODEL 

Using the training set, we grow a full tree and prune it to the minimum cross-

validated error which occurs at complexity parameter (cp) = 0.00011. This results in a 

tree too large to plot. Table 29 lists the regression variables in order of importance.  
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Table 29.   Sub-Segment 2 Regression Tree Variable Importance. 

  Importance 

Carrier 755.34 

Month 738.76 

Service terms 717.69 

Location 708.99 

Weekday 621.35 

Handling 620.26 

Integrated 

distribution lane 600.99 

Container 123.57 

Shipping cost 77.41 

Supply class 49.23 

Unit price 44.55 

Issue priority group 28.63 

Booking method 18.59 

Initial consolidation 

point 10.64 

Origin 1.20 

 

D. RANDOM FOREST MODEL 

We remove supply class, issue priority group, initial consolidation point, booking 

method, quarter, origin, and afloat because presence does not improve the performance 

of the random forest model. Our final model fits 1000 regression trees with four random 

splits. Table 30 lists the percent increase in error that would results from removing each 

variable, and Table 31 lists the performance metrics when applied against the test set. 

Table 30.   Sub-Segment 2 Random Forest Percent Increase Mean Square Error. 

 
%IncMSE 

Weekday 220.17 

Month 285.39 

Integrated 

distribution lane 15.32 

Carrier 30.67 

Weight 66.65 
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%IncMSE 

Container 75.70 

Shipping cost 80.63 

Location 25.25 

Service terms 27.84 

Handling 98.92 

 

E. SUB-SEGMENT 2 MODEL EVALUATION 

We find the random forest model performs better than all other models, and 

performs significantly better than the baseline model. Table 29 lists the root mean square 

error (RMSE) and mean absolute error (MAE) of each model when applied against the 

test set.  

Table 31.   Sub-Segment 2 Test Set Performance Metrics Measured in Days. 

  RMSE MAE 

Baseline 3.94 2.59 

Linear Regression 3.55 2.06 

Regression Tree 2.01 0.85 

Random Forest 1.47 0.53 

 

The linear regression model uses January as the base case and all months, except 

February, have a positive relationship with the response variable. Figure 25 plots each 

OOB observation in a different color to represent each weekday and suggests that 

February has better performing shipments on Mondays and fewer poor performing 

weekday and month combinations relative to other months. Requisitions shipped on 

Fridays in July and September complete this sub-segment in less time whereas 

requisitions shipped on Mondays in August appear to take longer to complete this sub-

segment than any other month and weekday combination. Interestingly, our regression 

tree finds carrier more significant than month. Figure 26 shows the relationship between 

carrier and month and indicates requisitions shipped by Horizon Lines, LLC (HRZD) and 

“other” carriers perform better than the other listed carriers, American President Lines 

(APLS), Maersk Line (MAEU) and Matson, Inc (MATS). MATS acquired parts of 
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HRZD in May 2015, and HRZD is no longer an operational ocean carrier (Horizon Lines, 

LLC 2014).  

 

 

Figure 25.  Sub-Segment 2 Random Forest month Feature Contribution. 

 

 

Figure 26.  Sub-Segment 2 Random Forest carrier Feature Contribution. 
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APPENDIX E. SUB-SEGMENT 4 MODEL AND EVALUATION 

In this section, we cover the development and analysis of the sub-segment 4 

models. We employ the techniques outlined in Chapter III.  

A. BASELINE MODEL 

Sub-segment 4 measures the holding time at the seaport of debarkation (SPOD) 

between the completion of the ocean transit segment and before beginning destination 

line haul. We use the average, 7.8 days, as a baseline from which to compare the 

performance of our models.  

B. MULTIVARIATE LINEAR REGRESSION MODEL 

Using the predictor variables previously described, we fit a linear regression 

model to estimate length of sub-segment 4 and use the logarithmic transformation of sub-

segment 4 as the response variable. Tables 32 and 33 list the regression coefficients and 

goodness of fit metrics, respectively. 

We use a residual versus fitted values plot and a quantile-quantile (Q-Q) plot to 

verify the linear regression model assumptions described in Chapter III. Figure 27 

confirms non-constant variance, and Figure 28 confirms non-normal errors, both of 

which negatively affect model inferences.  

Table 32.  Sub-Segment 4 Linear Regression Coefficients. 

Estimate Std. Error P-value 

(Intercept) 1.15 0.06 < 2e-16 

Tue –0.13 0.02 0.00 

Wed –0.13 0.02 0.00 

Thu –0.13 0.02 0.00 

Fri –0.42 0.02 < 2e-16 

Feb 0.76 0.07 < 2e-16 

Mar 0.51 0.03 < 2e-16 

Apr 1.28 0.03 < 2e-16 

May 1.08 0.03 < 2e-16 
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Estimate Std. Error P-value 

Jun 0.52 0.03 < 2e-16 

Jul 0.10 0.03 0.00 

Aug 1.00 0.03 < 2e-16 

Sep 0.95 0.02 < 2e-16 

Oct 1.29 0.03 < 2e-16 

Nov 1.53 0.04 < 2e-16 

Dec –0.03 0.04 0.48 

Carrier: HRZD –0.64 0.11 0.00 

Carrier: MAEU –0.34 0.04 0.00 

Carrier: MATS 0.52 0.09 0.00 

Carrier: OTHER –1.59 0.18 < 2e-16 

Location: Kaneohe –1.09 0.09 < 2e-16 

Location: Okinawa 0.12 0.03 0.00 

Location: Other –1.60 0.18 < 2e-16 

Handling B: High sensitivity 

category I, HL* 0.16 0.08 0.04 

Handling G: High sensitivity 

category I confidential, HL* –0.01 0.05 0.81 

Handling N: low sensitivity 

category IV, OD* 0.51 0.05 < 2e-16 

Handling O: Highest sensitivity 

category I classification secret, 

OD* 0.14 0.07 0.05 

Handling: Other 0.36 0.06 0.00 

Handling R: No special handling, 

OD* 0.17 0.05 0.00 

Handling W: Highest sensitivity 

category I classification secret, 

HL and OD* 0.07 0.06 0.24 

Handling Z: No special handling, 

HL and OD* 0.32 0.04 0.00 
*Source: Defense Transportation Electronic Business Reference Data
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Table 33.   Sub-Segment 4 Linear Regression Goodness of Fit Metrics Using 

the Logarithmic Transformation of the Response. 

Metric Value 

Residual Standard Error 0.43 

R Square 0.63 

Adjusted R Square 0.63 

Degrees of Freedom 5209 

 

 

 

Figure 27.  Sub-Segment 4 Residual versus Fitted Values Plot. 
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Figure 28.  Sub-Segment 4 Quantile-Quantile (Q-Q) Plot. 

 

C. REGRESSION TREE MODEL 

Using our training set, we grow a full regression tree and prune it to the minimum 

cross-validated error which occurs at complexity parameter (cp) = 0.0002. This results in 

a tree with 112 splits, which is too large to plot. Table 34 lists the regression tree variable 

importances. 

Table 34.   Sub-Segment 4 Regression Tree Variable Importance. 

  Importance 

Month 1155.86 

Handling 523.04 

Location 459.38 

Service terms 349.73 

Integrated 

distribution lane 321.44 

Weekday 315.19 

Container 244.59 

Carrier 221.63 

Shipping cost 93.68 

Weight 90.46 

Unit price 65.81 
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D. RANDOM FOREST MODEL 

We eliminate supply class, issue priority group, initial consolidation point, 

booking method, origin, afloat and quarter because their presence does not improve 

model performance. We fit a random forest model with 1000 regression trees, each with 

four random splits. Table 35 lists the percent increase in error resulting from removing 

each variable. 

Table 35.   Sub-Segment 4 Random Forest Percent Increase in Mean Square 

Error. 

  %IncMSE 

Month 552.82 

Handling 141.99 

Shipping Cost 118.67 

Weight 111.55 

Unit price 97.04 

Location 84.68 

Integrated 

distribution lane 25.54 

 

E. SUB-SEGMENT 4 MODEL EVALUATION 

The random forest model performs best against the test set. Table 36 lists the root 

mean square error (RMSE) and mean absolute error (MAE) of each model measured in 

days.   

Table 36.   Sub-Segment 4 Test Set Performance Metrics Measured in Days. 

  RMSE MAE 

Baseline 4.94 1.93 

Linear Regression 3.69 1.08 

Regression Tree 1.7 0.48 

Random Forest 1.55 0.41 
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Figure 29 plots each month in a different color and displays a wide range of 

feature contributions from month to month. Our linear regression model indicates better 

performance in December because of the negative relationship with the response. The 

model uses January as the base case for month and every other month has an increasing 

relationship with the response except for December. Our random forest model confirms 

this relationship. Additionally, our regression tree model indicates that removing months 

would result in a 500 percent increase in mean square error (MSE), which would raise the 

error from approximately one and a half days to almost eight days for this sub-segment.  

Figure 30 shows various interactions between location and month. Specifically, 

requisitions beginning Transporter in May going to Kaneohe Bay appear to take less time 

than any other combination of month and location.  

Kaneohe Bay performs the best in comparison to other locations in the model, and 

confirms the negative relationship between Kaneohe Bay requisitions and SPOD holding 

time we find in our linear regression results. Figure 31 shows several interactions 

between location and handling code and indicates better performance from Okinawa in 

many handling categories including 9, G, R and W. This is counterintuitive because 

Figure 30 shows Kaneohe Bay performs better overall, so we expect to find better 

Kaneohe Bay performance in one or more handling categories.   
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Figure 29.  Sub-Segment 4 Random Forest month Feature Contribution. 

 

 

Figure 30.  Sub-Segment 4 Random Forest location Feature Contribution. 
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Figure 31.  Sub-Segment 4 Random Forest handling Feature Contribution. 
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APPENDIX F. SUB-SEGMENT 5 MODEL AND EVALUATION 

In this section, we cover the development and evaluation of the sub-segment 5 

model. We use the techniques described in Chapter III. 

A. BASELINE MODEL 

Sub-segment 5 covers the destination line haul time, which accounts for the time 

until the requisition completes the Transporter segment. We use the average completion 

time, 0.3 days, to compare the performance of our models.  

B. MULTIVARIATE LINEAR REGRESSION MODEL 

We fit a linear regression model using the predictor variables described in Chapter 

III to determine their relationship with the sub-segment length and use the logarithmic 

transformation of sub-segment 5 as the response variable. Table 37 lists the regression 

coefficients of our model, and Table 38 lists the goodness of fit metrics.  

We use a residual versus fitted values plot and a quantile-quantile (Q-Q) plot to 

verify the model assumptions discussed in Chapter III. Figure 32 verifies the presence of 

heteroscedasticity, and Figure 33 verifies the presence of non-normal errors. 

Heteroscedasticity and non-normal errors negatively affect model inferences.  

Table 37.   Sub-Segment 5 Linear Regression Model Coefficients. 

  Estimate Std. Error P-value 

(Intercept) 0.00 0.01 0.94 

Carrier: HRZD 0.00 0.03 0.98 

Carrier: MAEU 0.77 0.01 <2e-16 

Carrier: MATS 0.59 0.01 <2e-16 

Carrier: OTHER –0.01 0.07 0.93 

Handling B: High sensitivity 

category I, HL* –0.49 0.03 <2e-16 

Handling G: High sensitivity 

category I confidential, HL* 0.58 0.02 <2e-16 

Handling N: low sensitivity 

category IV, OD* –0.26 0.02 <2e-16 
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  Estimate Std. Error P-value 

Handling O: Highest sensitivity 

category I classification secret, OD* –0.01 0.03 0.84 

Handling: Other 0.02 0.02 0.46 

Handling R: No special handling, 

OD* 0.01 0.02 0.71 

Handling W: Highest sensitivity 

category I classification secret, HL 

and OD* –0.01 0.02 0.67 

Handling Z: No special handling, 

HL and OD* 0.00 0.01 0.87 

*Source: Defense Transportation Electronic Business Reference Data 

Table 38.   Sub-Segment 5 Linear Regression Model Goodness of Fit Metrics 

Using the Logarithmic Transformation of the Response.  

Metric Value 

Residual Standard Error 0.17 

R Square 0.78 

Adjust R Square 0.78 

Degrees of Freedom 4968 

 

 

Figure 32.  Sub-Segment 5 Residual versus Fitted Values Plot. 
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Figure 33.  Sub-Segment 5 Quantile-Quantile (Q-Q) Plot. 

 

C. REGRESSION TREE MODEL 

Using our training set, we grow a full tree and prune it to the minimum cross-

validated error, which occurs at complexity parameter (cp) = 0.0012. This results in a tree 

too large to plot. Table 39 lists the resulting variable importances.  

Table 39.   Sub-Segment 5 Regression Tree Variable Importance. 

  Importance 

Carrier 419.93 

Location 375.64 

Service terms 344.34 

Integrated 

distribution lane 305.68 

Handling 303.14 

Month 141.52 

Weekday 129.68 

Container 40.96 

Supply class 20.94 

Weight 14.35 

Booking 8.26 

Shipping cost 3.05 
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  Importance 

Unit price 2.37 

Issue priority 

group 0.17 

Origin 0.06 

 

D. RANDOM FOREST MODEL 

We remove supply class, issue priority group, initial consolidation point, booking 

method, origin, afloat, weight, unit price, and shipping cost because these variables do 

not improve the performance of our final model. Our random forest model fits 1000 trees 

each with three random splits. Table 40 lists the percent increase in mean square error 

(MSE) resulting from removing each variable from the model.   

Table 40.   Sub-Segment 5 Random Forest Percent Increase in Mean Square 

Error.  

  %IncMSE 

Weekday 33.94 

Month 47.69 

Integrated 

distribution lane 14.49 

Carrier 45.75 

Container 32.38 

Location 34.39 

Service terms 25.19 

Handling 45.17 

 

E. SUB-SEGMENT 5 MODEL EVALUATION 

The random forest model has the lowest mean absolute error (MAE), but, 

surprisingly, the baseline model has the lowest root mean square error (RMSE). RMSE 

penalizes larger errors more than smaller ones, so this suggests the baseline model 

produces fewer large errors than the other models. The MAE weights all errors equally, 

and the random forest model results in the lowest MAE. Both models produce errors of 
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approximately one day. However, as previously discussed, RMSE provides a more 

pessimistic response, so we recommend the baseline model in this case. Based on the 

summary statistics listed in Chapter IV, this sub-segment has the lowest variation and a 

small difference between the mean and the median, so using the mean to predict 

performance presents less risk than using the mean to predict the other sub-segments. 

Table 41 lists the RMSE and MAE for each model when applied to our test set.  

Table 41.   Sub-Segment 5 Test Set Performance Metrics. 

  RMSE MAE 

Baseline 0.77 0.42 

Linear Regression 1.05 0.15 

Regression Tree 1.01 0.06 

Random Forest 1.03 0.06 

 

Figure 34 shows Maersk Line (MAEU) and Matson Inc. (MATS) have higher 

destination line haul times than the other carriers, which confirms the results of our linear 

regression model. Additionally, Figure 35 shows all carriers take more line haul time for 

handling code G requisitions, which also confirms our linear regression results. This is an 

intuitive result as handling code G shipments are highly sensitive and require heavy lift 

capabilities.  
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Figure 34.  Sub-Segment 5 Random Forest carrier Feature Contribution. 

 

Figure 35.  Sub-Segment 5 Random Forest handling Feature Contribution. 
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