
rsos.royalsocietypublishing.org
Research
Cite this article: Chou CT. 2018 Detection of

persistent signals and its relation to coherent

feed-forward loops. R. Soc. open sci. 5: 181641.

http://dx.doi.org/10.1098/rsos.181641
Received: 1 October 2018

Accepted: 8 October 2018
Subject Category:
Biochemistry and biophysics

Subject Areas:
systems biology

Keywords:
Coherent feed-forward loops, detection of

persistent signals, detection theory, likelihood

ratio, dynamical systems, time-scale separation
Author for correspondence:
Chun Tung Chou

e-mail: c.t.chou@unsw.edu.au
& 2018 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Detection of persistent
signals and its relation to
coherent feed-forward loops
Chun Tung Chou

School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

CTC, 0000-0003-4512-7155

Many studies have shown that cells use the temporal dynamics

of signalling molecules to encode information. One particular

class of temporal dynamics is persistent and transient signals,

i.e. signals of long and short duration, respectively. It has

been shown that the coherent type-1 feed-forward loop with

an AND logic at the output (or C1-FFL for short) can be

used to discriminate a persistent input signal from a transient

one. This has been done by modelling the C1-FFL, and then

using the model to show that persistent and transient input

signals give, respectively, a non-zero and zero output. The

aim of this paper is to make a connection between the

statistical detection of persistent signals and the C1-FFL. We

begin by first formulating a statistical detection problem of

distinguishing persistent signals from transient ones. The

solution of the detection problem is to compute the log-

likelihood ratio of observing a persistent signal to a transient

signal. We show that, if this log-likelihood ratio is positive,

which happens when the signal is likely to be persistent,

then it can be approximately computed by a C1-FFL.

Although the capability of C1-FFL to discriminate persistent

signals is known, this paper adds an information processing

interpretation on how a C1-FFL works as a detector of

persistent signals.
1. Introduction
By analysing the graph of the transcription networks of the

bacterium Escherichia coli and the yeast Saccharomyces cerevisiae,

the authors in [1–3] discovered that there were sub-graphs that

appear much more frequently in these transcription networks

than in randomly generated networks. These frequently

occurring sub-graphs are called network motifs. A particular

example of a network motif is the coherent type-1 feed-forward

loop with an AND logic at the output (or C1-FFL for short).

C1-FFL is the most abundant type of coherent feed-forward

loop in the transcription networks of E. coli and S. cerevisiae [4].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.181641&domain=pdf&date_stamp=2018-11-07
mailto:c.t.chou@unsw.edu.au
http://orcid.org/
http://orcid.org/0000-0003-4512-7155
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


input s(t)

output z(t)

X

Y

AND

x*(t)

x*(t) x*(t)

Z

input s(t)

log-likelihood
ratio

X

log-
likelihood
ratio
computation

y(t)

(b)(a)

Figure 1. (a) The coherent type-1 feed-forward loop with AND logic. (b) The detection theory framework.
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An example of C1-FFL in E. coli is the L-arabinose utilization system which activates the transcription of

the araBAD operon when glucose is absent and L-arabinose is present [5]. By modelling the C1-FFL with

ordinary differential equations (ODE), the authors in [2,4] show that the C1-FFL can act as a persistence

detector to differentiate persistent input signals (i.e. signals of long duration) from transient signals (i.e.

signals of short duration). The aim of this paper is to present a new perspective of the persistence

detection property of C1-FFL from an information processing point of view.

In information processing, the problem of distinguishing signals which have some specific features

from those which do not has been studied under the theory of statistical detection [6]. An approach to

detection is to formulate a hypothesis testing problem where the alternative hypothesis (resp. null

hypothesis) is that the observed signal does have (does not have) the specific features. The next step is

to use the observed signal to compute the likelihood ratio to determine which hypothesis is more

likely to hold. Since a C1-FFL can detect persistent signals, the question is whether the C1-FFL can be

interpreted as a statistical detector. We show in this paper that the C1-FFL is related to a detection

problem whose aim is to distinguish a long rectangular pulse (a prototype persistent signal) from a

short rectangular pulse (a prototype transient signal). In particular, we show that, for persistent input

signals, the output of the C1-FFL can be interpreted as the log-likelihood ratio of this detection

problem. This result therefore provides an information processing interpretation of the computation

being carried out by a C1-FFL.
2. Background
2.1. C1-FFL
The properties of coherent feed-forward loops have been studied in [2,4,7] using ODE models and

in [5] experimentally. Here, we will focus on the property of C1-FFL with AND logic to detect

persistent signals. We do that by using an idealized model of C1-FFL adapted from the text [7].

The model retains the important features of C1-FFL and is useful in understanding the derivation in

this paper.

Figure 1a depicts the structure of the C1-FFL. One can consider both X and Y as transcription factors

(TFs) which regulate the transcription of Z. The TF X is activated by the input signal s(t) which acts as an

inducer. We will denote the active form of X by X*. Following [4], we assume that the activation of X

(resp. the deactivation of X*) is instantaneous when the input signal is present (absent). The active

form X* can be used to produce Y if its concentration exceeds a threshold Kxy. We use [Y] to denote

the concentration of Y. We write the reaction rate equation for Y as

d[Y]

dt
¼ byu([X�] . Kxy)� ay[Y], ð2:1Þ
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Figure 2. How C1-FFL detects persistent signals.
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where by and ay are reaction rate constants, and u(c) is 1 if the Boolean condition c within the parentheses

is true, or is otherwise 0.

The transcription of Z requires the concentration of X* to be greater than Kxz and the concentration of

Y to be greater than Kyz, which corresponds to the AND gate in figure 1a . The reaction rate equation for

the output Z is:

d[Z]

dt
¼ bzu([X�] . Kxz)u([Y] . Kyz)� az[Z], ð2:2Þ

where bz and az are reaction rate constants.

We now present a numerical example to demonstrate how the C1-FFL can be used to detect persistent

signals. We assume the input signal s(t) consists of a short pulse of duration 3 (the transient signal)

followed by a long pulse of duration 40 (the persistent signal). We also assume that s(t) has an

amplitude of 1 when it is ON. The other parameter values are ay ¼ by ¼ 0.2, Kxy ¼ 0.6, az ¼ bz ¼ 1,

Kxz ¼ 0 and Kyz ¼ 0.5.

Since the activation of X or deactivation of X* is instantaneous, we assume [X*](t) ¼ s(t) for simplicity.

The time profile of s(t) ¼ [X*](t) is shown in the top plot in figure 2.

The middle plot of figure 2 shows [Y ](t). Since [X*](t) . Kxy when the input s(t) is ON, the production

of Y occurs during this period. When the pulse is short, the amount of Y being produced is limited

and the maximum [Y] is below Kyz, which is indicated by the dashed red horizontal line in the

middle plot. Since the production of Z requires both [X*] . Kxz and [Y] . Kyz (i.e. the AND gate) but

the latter condition is not satisfied, therefore no Z is produced when the pulse is short. The bottom

plot shows [Z ](t) is zero when a short pulse is applied. However, when the pulse is long, the

concentration of [Y] is given enough time to increase beyond the threshold Kyz and as a result we see

the production of Z, as shown in the bottom plot. Note that when the pulse is long, the production of

Z only starts after a delay; this is because the AND condition for the production of Z in equation (2.2)

does not hold initially. This example shows that, for an ideal C1-FFL, a transient input will produce a

zero output and a persistent input will give a non-zero output.

2.2. Detection theory
Detection theory is a branch of statistical signal processing. Its aim is to use the measured data to decide

whether an event of interest has occurred. For example, detection theory is used in radar signal

processing to determine whether a target is present or not. In the context of this paper, the events are

whether the signal is transient or persistent. A detection problem is often formulated as a hypothesis

testing problem, where each hypothesis corresponds to a possible event. Let us consider a detection

problem with two hypotheses, denoted by H0 and H1, which correspond to, respectively, the events
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of transient and persistent signals. Our aim is to decide which hypothesis is more likely to hold. We

define the log-likelihood ratio R:

R ¼ log
P[measured data jH1]

P[measured data jH0]

� �
, ð2:3Þ

where P[measured data jHi] is the conditional probability that the measured data are generated by the

signal specified in hypothesis Hi. Note that we have chosen to use the log-likelihood ratio, rather than

the likelihood ratio, because it will enable us to build a connection with C1-FFL later on. Intuitively, if

the log-likelihood ratio R is positive, then the measured data are more likely to have been generated

by a persistent signal or hypothesis H1, and vice versa. Therefore, the key idea of detection theory is

to use the measured data to compute the log-likelihood ratio and then use it to make a decision.
R.Soc.open
sci.5:181641
3. Connecting detection theory with C1-FFL
We will now present a big picture explanation of how we will connect detection theory with C1-FFL. The

signal x*(t) in figure 1a is the output signal of Node X in the C1-FFL. We can view the C1-FFL as a two-

stage signal processing engine. In the first stage, the input signal s(t) is processed by Node X to obtain

x*(t) and this is the part within the dashed box in figure 1a. In the second stage, the signal x*(t) is

processed by the rest of the C1-FFL to produce the output signal z(t). We will now make a connection

to detection theory. Our plan is to apply detection theory to the dashed box in figure 1a. We consider

x*(t) as the measured data and use them to determine whether the input signal is transient or

persistent. Detection theory tells us that we should use x*(t) to compute the log-likelihood ratio. This

means that we can consider the two-stage signal processing depicted in figure 1b where the input

signal s(t) generates x*(t) and the measured data x*(t) are used to calculate the log-likelihood ratio.

If we can identify the log-likelihood ratio calculation in figure 1b with the processing by the part of

C1-FFL outside of the dashed box, then we can identify the signal z(t) with the log-likelihood ratio.
4. Detection of persistent signals
4.1. Defining the detection problem
We first define the problem for detecting a persistent signal using detection theory. Our first step is to

specify the signalling pathway in Node X, which consists of three chemical species: signalling

molecule S, molecular type X in an inactive form and its active form X*. The activation and

inactivation reactions are:

Sþ X!kþ Sþ X� ð4:1aÞ

and

X� !
k�

X, ð4:1bÞ

where kþ and k2 are reaction rate constants. Let x(t) and x*(t) denote, respectively, the number of X and X*
molecules at time t. Note that both x(t) and x*(t) are piecewise constant because they are molecular

counts. We assume that x(t) þ x*(t) is a constant for all t and we denote this constant by M.

We assume that the input signal s(t), which is the concentration of the signalling molecules S at time t,
is a deterministic signal. We also assume that the signal s(t) cannot be observed, so any characteristics of

s(t) can only be inferred.

We model the dynamics of the chemical reactions by using the chemical master equation [8]. This

means that x*(t) is a realization of a continuous-time Markov chain. This also means that the same

input signal s(t) can result in different x*(t).
The measured datum at time t is x*(t). However, in the formulation of the detection problem, we will

assume that at time t, the data available to the detection problem are x*(t) for all t [ [0, t]; in other words,

the data are continuous in time and are the history of the counts of X* up to time t inclusively. We will use

X�(t) to denote the continuous-time history of x*(t) up to time t inclusively. Note that even though we

assume that the entire history X�(t) is available for detection, we will see later on that the calculation

of the log-likelihood ratio at time t does not require the storage of the past history.
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The last step in defining the detection problem is to specify the hypotheses Hi (i ¼ 0, 1). Later on, we

will identify H0 and H1 with, respectively, transient and persistent signals. However, at this stage, we

want to solve the detection problem in a general way. We assume that the hypothesis H0 (resp. H1) is

that the input signal s(t) is the signal c0(t) (resp. c1(t)) where c0(t) and c1(t) are two different

deterministic signals. Intuitively, the aim of the detection problem is to use the history X�(t) to decide

which of the two signals, c0(t) or c1(t), is more likely to have produced the observed history.
4.2. Solution to the detection problem
Based on the definition of the detection problem, the log-likelihood ratio L(t) at time t is given by:

L(t) ¼ log
P[X�(t) jH1]

P[X�(t) jH0]

� �
, ð4:2Þ

where P[X�(t) jHi] is the conditional probability of observing the history X�(t) given hypothesis Hi. We

show in appendix A 1 that L(t) obeys the following ODE:

dL(t)
dt
¼ dx�(t)

dt

� �
þ

log
c1(t)
c0(t)

� �
� kþ(M� x�(t))(c1(t)� c0(t)),

ð4:3Þ

where [w]þ ¼ max (w,0). We also assume that the two hypotheses are a priori equally likely, so L(0) ¼ 0.

Since x*(t) is a piecewise constant function counting the number of X* molecules, its derivative is a

sequence of Dirac deltas at the time instants that X is activated or X* is deactivated. Note that the

Dirac deltas corresponding to the activation of X carry a positive sign and the [ ]þ operator keeps only

these. Figure 3 shows an example x*(t) and its corresponding [dx*(t)/dt]þ. We remark that the

derivation of equation (4.3) requires that both c0(t) and c1(t) are strictly positive for all t, otherwise

(4.3) is not well defined.

Note that a special case of equation (4.3) with constant ci(t) and M ¼ 1 appeared in [9]. An equation of

the same form as equation (4.3) is used in [10] to understand how cells can distinguish between the

presence and absence of a stimulus. A more general form of equation (4.3) which includes the

diffusion of signalling molecules can be found in [11].

The importance of equation (4.3) is that, given the measured data x*(t), we can use it together with

ci(t) to compute the log-likelihood ratio L(t). We will use an example to illustrate how equation (4.3) can

be used to distinguish between two signals of different durations. This example will also be used to

illustrate what information is useful to distinguish such signals.
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4.2.1. Example: using the log-likelihood ratio to distinguish between a long and a short pulse

In this example, we consider using equation (4.3) to distinguish between two possible input signals s0(t)

and s1(t). Both s0(t) and s1(t) are rectangular pulses where s1(t) has a longer duration than s0(t). For

simplicity, we assume that the reference signals c0(t) ¼ s0(t) and c1(t) ¼ s1(t).
In order to perform the numerical computation, we assume kþ ¼ 0.02, k2 ¼ 0.5 and M ¼ 100. The

time profiles of s0(t) and s1(t) are shown in figure 4a. The durations of s0(t) and s1(t) are, respectively,

10 and 40 time units. The amplitude of the pulses when they are ON is 10.7 and it is 0.25 when they

are OFF.

We use simulation to produce the measured data x*(t). We first use the input s0(t) together with the

Stochastic Simulation Algorithm [12] to simulate the reactions (4.1). This produces the simulated x*(t) in

the top plot of figure 4b. After that, we do the same with s1(t) as the input and this produces the simulated

x*(t) in the bottom plot of figure 4b. It is important to point out that although we have plotted s0(t), s1(t)
and the two time series of x*(t) in figures 4a,b using the same time interval, we are performing two

separate numerical experiments: one with s0(t) as the input and the other with s1(t) as the input.

The log-likelihood ratio calculation in equation (4.3) uses the reference signals c0(t) and c1(t). We see

from equation (4.3) that these two reference signals are used to form two weighting functions, log(c1(t)/
c0(t)) and (c1(t) 2 c0(t)). By using the assumed time profiles of c0(t) and c1(t), we can compute these two

weighting functions and we have plotted them in figure 4c. It can be seen that both weighting functions

are non-zero in the time interval [10, 40) but are otherwise zero. This means that the computation of L(t)

is only using the measured data in the time interval [10, 40) to determine whether the input signal is c0(t)

or c1(t). This is because, outside of the time interval [10, 40), the two data series x*(t) generated by s0(t)

and s1(t) have the same statistical behaviour and therefore there is no information outside of [10, 40) to

say whether the input is long or short. Hence, a lesson we have learnt from this example is that the

informative part of the data is when the long pulse is expected to be ON and the short pulse is

expected to be OFF.
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We first use the x*(t) generated by s0(t), together with the time profiles of c0(t) and c1(t), to compute

the log-likelihood ratio L(t) by numerically integrating equation (4.3). The resulting L(t) is the red curve in

figure 4d. Similarly, the blue curve in figure 4d shows the L(t) corresponding to the input s1(t). We can see

distinct behaviours in the two L(t)’s in the time intervals [0, 10), [10, 40) and t�40. The behaviour in the

time intervals [0, 10) and t�40 is simple to explain because dL/dt ¼ 0 in these time intervals.

We next focus on the time interval [10, 40). We first consider s1(t) as the input. In this time interval, a

large s1(t) means the activation X continues to happen: see the bottom plot of figure 4b. The activation of

X contributes to an increase in L(t) due to the first term on the right-hand side (RHS) of equation (4.3).

Although the second term of equation (4.3) contributes to a decrease in L(t) via (M 2 x*(t)), which is the

number of inactive X, the contribution is comparatively small. Therefore, we see that the log-likelihood

ratio L(t), which is the blue curve in figure 4d, becomes more positive. Since a positive log-likelihood ratio

means that the input signal is more likely to be similar to the reference signal c1(t), this is a correct

detection. In a similar way, we can explain the behaviour of the red curve in figure 4d when s0(t) is

applied.

A lesson that we can learn from the last paragraph is that, if our aim is to distinguish a persistent

signal from a transient one accurately, then we want the persistent signal to produce a large positive

L(t). Since the positive contribution of L(t) comes from the first term on the RHS of equation (4.3), we

can get a large positive L(t) by making sure that a persistent signal will produce many activations.

This occurs when a persistent signal has a duration which is long compared with the time-scale of the

activation and deactivation reactions (4.1)—we will make use of this condition later.
5. Connecting the log-likelihood calculation to C1-FFL
5.1. Choosing detection problem parameters to match the behaviour of C1-FFL
The detection problem defined in §4 is general and can be applied to any two chosen reference signals

c0(t) and c1(t). In order to connect the detection problem in §4 to the fact that C1-FFL is a persistence

detector, we will need to make specific choices for c0(t) and c1(t). In this paper, we will choose the

reference signals c0(t) and c1(t) to be rectangular (or ON/OFF) pulses. Furthermore, we assume that

when the reference signal is ON, its concentration level is a1; and when it is OFF, its concentration

level is at the basal level a0 with a1 . a0 . 0. The temporal profile of ci(t) (where i ¼ 0, 1) is:

ci(t) ¼
a1 for 0 � t , di

a0 otherwise,

(
ð5:1Þ

where di is the duration of the pulse ci(t). In particular, we assume that the duration of c1(t) is longer than

c0(t), i.e. d1 . d0. We can therefore identify c0(t) and c1(t) as the reference signals for, respectively, the

transient and persistent signals.

We remark that there may be other choices of reference signals that can connect the detection problem

in §4 to the one solved by C1-FFL; we will leave that for future work.

Remark 5.1. We would like to make a remark on the detection problem formulation. In this paper,

we have chosen to formulate the detection problem by assuming that each hypothesis H0 and H1 consists

of one reference signal. Such hypotheses, which consist of only one possibility per hypothesis, are known

as simple hypotheses in the statistical hypothesis testing literature [6]. We know from [6] that if both

hypotheses are simple, then the solution of the detection problem is to compute the likelihood ratio

(2.3). In this paper, we have chosen to use simple hypotheses for H0 and H1 so as to make the

problem trackable. In order to understand that, let us explore an alternative detection problem

formulation.

An alternative formulation would be to assume that H0 (resp. H1) consists of all rectangular pulses

with duration less than (greater than or equal to) a pre-defined threshold d0. In this case, both H0 and

H1 are known as composite hypotheses. To the best of our knowledge, there are no standard

solutions to the hypothesis testing problem with composite hypotheses at the moment. Although the

text [6] presented two methods to deal with composite hypotheses, neither of them appears to be

trackable because the Bayesian approach requires the evaluation of an integral and the generalized

likelihood ratio test requires the solution to two optimization problems. Therefore, we have not

considered them in this paper.
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5.2. Computing an intermediate approximation

Our ultimate goal is to connect the computation of the log-likelihood ratio L(t) in equation (4.3) to the

computation carried out by C1-FFL. We will first derive an intermediate approximation for equation (4.3).

In order to motivate why this intermediate approximation is necessary, one first needs to know that the

C1-FFL realizes computation by using chemical reactions, and research from the molecular computation

in synthetic biology has taught us that some computations are difficult to carry out by chemical reactions

[13]. For equation (4.3), the difficulties are: (i) the log-likelihood ratio can take any real value but chemical

concentration can only be non-negative; and (ii) it is difficult to calculate derivatives using chemical

reactions. The aim of the intermediate approximation is to remove these difficulties. In addition, we want

the computation to make use of x*(t) (number of active species X*) instead of M 2 x*(t) (number of

inactive species X) because signalling pathways typically use the active species to propagate information.

In order to analytically derive the intermediate approximation, we will need to assume that the input

signal s(t) has a certain form. Our derivation assumes that the input s(t) is a rectangular pulse with the

following temporal profile:

s(t) ¼
a for 0 � t , d
a0 otherwise,

(
ð5:2Þ

where d is the pulse duration, and a is the pulse amplitude when it is ON where a . a0. Note that the

parameters a and d are not fixed; and we will show that the intermediate approximation holds for a range

of a and d.

In appendix A 2, we start from equation (4.3) and use a time-scale separation argument to derive the

intermediate approximation L̂(t). The intermediate approximation L̂(t) has the following properties: if the

input signal s(t) is persistent, then L̂(t) approximates the log-likelihood ratio L(t); if the input signal s(t) is

transient, then L̂(t) is zero. Note that the latter property is consistent with the behaviour of the ideal C1-FFL

which gives a zero output for transient signals. The time evolution of L̂(t) is given by the following ODE:

dL̂(t)
dt
¼ x�(t)� {k�p(t)[f(s(t))]þ}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼h(t)

ð5:3Þ

where f(u) ¼ log
a1

a0

� �
� a1 � a0

u
, ð5:4Þ

p(t) ¼
1 for d0 � t , d1

0 otherwise

(
ð5:5Þ

and

L̂(0) ¼ 0: ð5:6Þ

The behaviour of the intermediate approximation L̂(t) depends on the duration d of the input signal

s(t). Two important properties for L̂(t), which are discussed in further detail in appendix A 2, are:

(1) If d , d0, then L̂(t) is zero for all t.
(2) If d � d0 and if the duration d 2 d0 is long compared to 1/kþa þ 1/k2, then L̂(t) � L(t) for

0 � t , min {d, d1} where L(t) is given in equation (4.3).

We can consider those input signals s(t) whose duration d is less than d0 as transient signals. The first

property says that these signals will give a zero L̂(t). Note that for the ideal C1-FFL considered in

§2.1, a transient signal gives a zero output.

Those signals whose duration d is greater than or equal to d0 are considered to be persistent. The

second property concerns persistent signals with the property that the duration d and amplitude a
have to be such that d 2 d0 is long compared to 1/kþa þ 1/k2, which is the mean time between two

consecutive activations of an X molecule. The physical effect of these signals is to produce a large

number of activations and deactivations when the input signal s(t) is ON. We argue in appendix A 2

that, if these conditions hold, then it is possible to use L̂(t) in (5.3) to approximate the log-likelihood

L(t) in the time interval 0 � t , min {d, d1}.

We discussed in §4.2.1 that the detection of a persistent signal is best if there are many activations and

deactivations when the persistent signal is ON. Fortunately, this is exactly the condition required for the

second property to hold. Note that in the analysis of the ideal C1-FFL in [2,4,7] and in §2.1, both the
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Figure 5. Numerical results for intermediate approximation.
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activation and deactivation reactions (4.1) are assumed to be instantaneous, which can be viewed as kþ
and k2 being very large. This assumption can be justified from the fact that for C1-FFL, the molecule

species S and X can be considered to be, respectively, an inducer and a transcription factor. It is

known that the activation and deactivation dynamics of transcription factors are fast, see [7,

Table 2.1]. Hence this assumption is not stringent and we will assume that reactions (4.1) are fast for

the rest of this paper.

We remark that the second property does not cover all the persistent signals. For example, signals

with a small amplitude a which do not produce a large enough number of activations and

inactivations are not covered. These signals are persistent but are hard to detect.

At the beginning of this section, we mentioned some difficulties in realizing the computation of L(t) in

equation (4.3) using chemical reactions. We note that those difficulties are no longer present in the

computation of L̂(t) using (5.3). In particular, we note that L̂(t) is always non-negative and can be

interpreted as a log-likelihood ratio when the input is persistent.

5.2.1. Numerical illustration

We will now use a few numerical examples to illustrate that the intermediate approximation L̂(t) is

approximately equal to the log-likelihood ratio L(t) for persistent signals. For all these examples, we

choose kþ¼ 0.02, k2¼ 0.5, d0 ¼ 5, d1 ¼ 60, a0 ¼ 0.25 and a1 ¼ 10.7.

For the first example, we choose d ¼ 70 and a ¼ a1 for the input signal s(t). We use the Stochastic

Simulation Algorithm to obtain a realization of x*(t). We then use x*(t) to compute L(t) and L̂(t). The

results are shown in figure 5a. We can see that the approximation is good. We next generate 100

different realizations of x*(t) and use them to compute L(t) and L̂(t). Figure 5b shows the mean of

jL(t)� L̂(t)j over 100 realizations, as well as one realization of L(t) and L̂(t). It can be seem that the

approximation error is small. In figure 5b, we have also plotted the mean of L̂(t) obtained by solving

the following system of ODEs:

d�x�(t)
dt
¼ kþs(t) (M� �x�(t))� k��x�(t) ð5:7Þ
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and

d�L(t)
dt
¼ �x�(t)� k�p(t)[f(s(t))]þ, ð5:8Þ

where �x�(t) and �L(t) are, respectively, the mean of x*(t) and L̂(t). It can be seem that a realization of L̂(t) is

comparable to its mean.

We repeat the numerical experiment for d ¼ 40 and a ¼ a1. Figure 5c shows a realization of L(t), a

realization of L̂(t), mean of jL(t)� L̂(t)j over 100 realizations, as well as the mean of L̂(t). We can see

the approximation holds up till time t ¼ 40, which is min {d, d1}. The purpose of this example is to

illustrate why we need to include the condition t � min {d, d1}. This is because L(t) and L̂(t) behave

differently for t . min {d, d1} if d , d1. For L(t), it falls after t ¼ 40 because from this time onwards, the

input signal s(t) being used is small; this leads to a small number of activations and consequently a

negative RHS for equation (4.3). However, for L̂(t), the RHS of equation (5.3) is zero because a small

s(t) makes [f(s(t))]þ zero.

We have so far used a ¼ a1 and two different durations d. We now illustrate that the approximation

holds for a different amplitude a. For the next numerical experiments, we keep d ¼ 40 and use a ¼ 37.5.

The results are shown in figure 5d. We can see the approximation holds up till time min {d,d1}.

These examples demonstrate that, for persistent signals, the approximation L̂(t) � L(t) holds for

different values of input duration d and amplitude a.

We also want to point out that the behaviour of L̂(t) for transient and persistent signals is consistent with

that of the ideal C1-FFL discussed in §2.1. We have already pointed out that this is true for transient signals.

For persistent signals, L̂(t) is zero initially and then followed by a non-zero output, i.e. there is a delay before

L̂(t) becomes positive and this also holds for the ideal C1-FFL: see the bottom plot in figure 2. We will now

map the intermediate approximation equation (5.3) to the reaction rate equations of a C1-FFL.

Remark 5.2. We want to remark that in the above formulation and numerical examples, the input

signal s(t) is allowed to differ from the two reference signals c0(t) and c1(t). Since the decision of the

detection problem is based on the log-likelihood ratio in equation (4.2), we can interpret the detection

problem as using the history X�(t) (which is generated by s(t)) to decide which of the two signals,

c0(t) or c1(t), is more likely to have produced the observed history. Furthermore, consider the case that

s(t) is parameterized by positive parameters a and d as in (5.2), then it can be shown that a small

change in a or d will produce a small change in the mean of L(t) and L̂(t).
5.3. Using C1-FFL to approximately compute L̂(t)
The aim of this section is to show that the C1-FFL can be used to approximately compute the

intermediate approximation L̂(t) in equation (5.3). Recall that the C1-FFL in figure 1a transforms

the signal x*(t) into the output signal z(t) using the the following components: Nodes Y and Z, and

the AND logic. We will model these components using the following chemical reaction system:

dy(t)
dt
¼

hyx�(t)ny

Kny
y þ x�(t)ny|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Hy(x�(t))

�dyy(t) ð5:9aÞ

and

dz(t)
dt
¼ x�(t)�

hzy(t)nz

Knz
z þ y(t)nz|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Hz(y(t))

, ð5:9bÞ

where hy, ny, Ky, etc. are coefficients of the Hill functions. We assume that the initial conditions are y(0) ¼

z(0) ¼ 0. Note that these two equations are comparable to the ideal C1-FFL model in §2.1. In particular, if

we replace the u-function in (2.1) by a Hill function, then it becomes (5.9a). Also, if we choose Kxz ¼ 0 and

az ¼ 0, and replace the u-function in z(t) by a Hill function in (2.2), then it becomes (5.9b).

By comparing the RHSs of the equations (5.3) and (5.9b), we see that the intermediate approximation

L̂(t) and the output of the C1-FFL z(t) can be made approximately equal if k2p(t)[f(s(t))]þ( ¼ h(t)) in (5.3)

and Hz(y(t)) in (5.9b) are approximately equal. We argue in appendix A 3 that it is possible to choose the

parameters in (5.9) such that h(t) � Hz(y(t)) in the time interval [0, min {d,d1}). The argument consists of

two parts, for the two time intervals [0, d0) and [d0, min {d,d1}).



40 80

input amplitude a

0

500

1000

10050

time

0

5000

10 000

20 400

2000

0 20 40 60 80 100 120 140 160
–1000

0

1000

2000

3000

4000

5000

6000

L̂ 
/C

1F
FL

 o
ut

pu
t

L̂
(t

)/
C

1-
FF

L
 o

ut
pu

t

 L̂
( t

)/
C

1F
FL

 o
ut

pu
t

L̂
(t

)/
C

1F
FL

 o
ut

pu
t

L̂(t), d = 20

L̂(t), d = 50

L̂(t), d = 90

C1-FFL, d = 20

C1-FFL, d = 50

C1-FFL, d = 90

L̂(t), d = 20

L̂(t), d = 50

L̂(t), d = 90

C1-FFL, d = 20

C1-FFL, d = 50

C1-FFL, d = 90

L̂(t)
C1-FFL

L̂(t)
C1-FFL

(a) (b)

(c) (d)

Figure 6. Numerical results on C1-FFL. (a) Comparing L̂(t) to C1-FFL output, a ¼ 5.4; (b) comparing L̂(t) to C1-FFL output, a ¼
40.2; (c) comparing L̂(t) and C1-FFL output for different pulse input amplitudes; (d ) comparing L̂(t) and C1-FFL output for a
triangular pulse.

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:181641
11
A major argument made in appendix A 3 is to match h(t) and Hz(y(t)) in the time interval

[d0, min {d,d1}) for persistent signals. We show in appendix A 3 that this matching problem can be

reduced to choosing the parameters in (5.9) so that the following two functions in a: k2[f(a)]þ and

Hz((1/dy)Hy(Mkþa/(kþa þ k2))) are approximately equal for a large range of a where a, as defined in

§5.2, is the amplitude of the input s(t) when it is ON. We note in appendix A 3 why these two

functions in a can fit to each other.

5.4. Numerical examples
We now present numerical examples to show that C1-FFL can be used to compute L̂(t). We use the same

kþ, k2, M, a0 and a1 values as in §5.2.1. We choose d0 ¼ 10 and d1 ¼ 80. We use parameter estimation to

determine the parameters in equation (5.9) so that the C1-FFL output z(t) matches L̂(t) for a range of a.

The estimated parameters for the C1-FFL are: hy ¼ 1.01, Ky ¼ 8.04, ny ¼ 2.26, dy ¼ 0.24, hz ¼ 10.6, nz ¼

5.84 and Kz ¼ 5.43. In this section, we will compare L̂(t) from (5.3) with z(t) from (5.9) assuming the

x*(t) in these two equations is given by �x�(t) in (5.7).

Figure 6a compares L̂(t) and z(t) for input s(t) with a ¼ 5.4 and three different durations d ¼ 10, 30 and

70. When d ¼ 10, the output of the C1-FFL is small. For d ¼ 30 and 70, the C1-FFL output matches well

with L̂(t). To show that the match is also good for a different value of the input amplitude a, we show the

results for a ¼ 40.2 and d ¼ 20, 40 and 90 in figure 6b. For the case of d ¼ 90, we see that the match is good

till [0, d1) because d . d1.

We have demonstrated that z(t) matches L̂(t) for two different values of a. We can show that the match

is good for a large range of a. We fix the duration d to be 70 but vary the amplitude a from 2.7 to 85.7.

Figure 6c compares L̂(t) and z(t) at t ¼ 70. It can be seen that the C1-FFL approximation works for a wide

range of a.

The previous examples show that we can match the C1-FFL output z(t) to the intermediate

approximation L̂(t) for pulse input s(t) of different durations and amplitudes. We can also show that
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the match extends to slowly-varying inputs. In this example, we assume s(t) is a triangular pulse with

s(0) ¼ 0 and rises linearly to s(40) ¼ 42.8 and then decreases linearly to s(80) ¼ 0. Figure 6d shows the

time responses z(t) and L̂(t), and they are comparable.

Remark 5.3. We finish this section by making a number of remarks.

— Note that we have not included the degradation of Z in (5.9b) so that we can match it to L̂(t), which

does not decay. It can be shown that if we add a degradation term 2az(t) to the RHS of (5.9b)

and �aL̂(t) to the RHS of equation (5.3), the resulting z(t) will still be matched to L̂(t).
— Equation (5.9b) is not the most general form of C1-FFL. In the general form of equation (5.9b), which is

presented in [4], the factor x(t) is replaced by a Hill function of x(t). We conjecture that it is possible to

generalize the methodology in this paper to obtain the general case and we leave it as future work.

— The intermediate approximation L̂(t) is derived under the assumption that s(t) is a rectangular pulse.

Future work is needed to better understand the behaviour of the intermediate approximation L̂(t)
when this assumption does not hold.

— Although we have shown that the approximate positive log-likelihood ratio in equation (5.3) can be

computed by a C1-FFL, it is certainly not true that any C1-FFL can be used to realize equation (5.3).

This can be seen from the fact that the C1-FFL model in (5.9) has seven parameters while the log-

likelihood ratio calculation in equation (5.3) has only four parameters. A research question is

whether any C1-FFL that can detect persistent signals has a corresponding log-likelihood ratio

detector equation (5.3). We can answer this question by first characterizing the C1-FFL that can

detect persistent signals and check whether such a correspondence exists. This is an open research

problem to be addressed.

— We have so far assumed that c0(t) and c1(t) are strictly positive for all t by assuming that a0 . 0. If a0 ¼ 0,

then the log-likelihood ratio is no longer well defined because both (4.2) and (5.3) diverge. However, we

can compute a shifted and scaled version of the log-likelihood ratio whose intermediate approximation

for persistent signals is:

dL̂(t)
dt
¼ x�(t)� p(t):

It is still possible to use this intermediate approximation to detect persistent signals. This intermediate

approximation can also be approximated by a C1-FFL. Details are omitted and will be studied in

future work.

6. Conclusion and discussion
In this paper, we study the persistence detection property of C1-FFL from an information processing

point of view. We formulate a detection problem on a chemical reaction cycle to understand how an

input signal of a long duration can be distinguished from one of short duration. We solve this

detection problem and derive an ODE which describes the time evolution of the log-likelihood ratio.

An issue with this ODE is that it is difficult to realize it using chemical reactions. We then use time-

scale separation to derive an ODE which can approximately compute the log-likelihood ratio when

the input signal is persistent. We further show that this approximate ODE can be realized by a C1-

FFL. It also provides an interpretation of the persistence detection property of C1-FFL as an

approximate computation of the log-likelihood ratio.

The concept of the log-likelihood ratio (or a similar quantity) has been used to understand how cells

make a decision in [9,10]. The paper [10] considers the problem of distinguishing between two

environment states, which are the presence and absence of stimulus. It derives an ODE of the log-odds

ratio and uses the ODE to deduce a biochemical network implementation in the form of a

phosphorylation-dephosphorylation cycle. In this cycle, the fraction of phosphorylated substrate is the

posteriori probability of the presence of stimuli. The paper [9] considers the problem of distinguishing

between two different levels of concentration using the likelihood ratio. It also presents a molecular

implementation that computes the likelihood ratio. This paper differs from [9,10] in one major way. We

make a crucial approximation by considering only the positive log-likelihood ratio and ignoring the

negative log-likelihood ratio. We are then able to connect the computation of the positive log-likelihood

ratio with the computation carried out by a C1-FFL. This work therefore provides a connection between

detection theory and C1-FFL using the positive log-likelihood ratio as the connecting point.
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The computation of the positive log-likelihood ratio by C1-FFL, which is the key finding of this paper,

is an example of using biochemical networks to perform the analog computation. There are a few other

examples. The incoherent type-1 feed-forward loop, which is another network motif, is found to be able

to compute fold change [14]. Allosteric protein is found to be able to compute logarithm approximately

[15]. In addition, there is also work on using synthetic biochemical circuits to do analog computation

[16,17].

In this paper, we use a methodology which is based on three key ingredients—statistical detection

theory, time-scale separation and analog molecular computation—to derive a molecular network that

can be used to discriminate persistent signals from transient ones. A possible application of the

methodology of this paper in molecular biology is to derive the molecular networks that can decode

temporal signals. According to the review paper on temporal signals in cell signalling [18], only some

of the molecular networks for decoding temporal signals have been identified. In fact, the authors of

[18] went further to state that ‘Identifying the mechanisms that decode dynamics remains one of the

most challenging goals for the field.’ In [19], we used a methodology—which is similar to the one

used in this paper and is based on the same three key ingredients — to derive a molecular network to

decode concentration modulated signals. The derived molecular network was found to be consistent

with the Saccharomyces cerevisiae DCS2 promotor data in [20], which were obtained from exciting the

promotor by using various transcription factor dynamics, e.g. concentration modulation, duration

modulation and others. Another possible application of the methodology of this paper is in synthetic

biology. For example, in [21] we used a methodology—which is similar to the one used in this paper

and in [19]—to derive a de novo molecular network for decoding concentration modulated signals. We

remark that the molecular networks in [19,21] can be interpreted as an approximate log-likelihood

detector of concentration modulated signals.

A recent report [22] considers the problem of determining the biochemical circuits that can be used to

distinguish between a persistent and a transient signal. By searching over all biochemical circuits with a

limited complexity, the authors find that there are five different circuits that can be used. One of these is

C1-FFL. An open question is whether one can use the framework in this paper to deduce all circuits that

can detect persistent signals. If this is possible, then it presents an alternative method to find the

biochemical circuits that can realize a function.
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Appendix A. Proof and derivation

A.1. Proof of (4.3)
Recalling that X�(t) is the history of x*(t) in the time interval [0, t]. In order to derive (4.3), we consider the

history X�(tþ Dt) as a concatenation of X�(t) and x*(t) in the time interval (t, t þ Dt]. We assume that Dt is

chosen small enough so that no more than one activation or deactivation reaction can take place in (t, t þ
Dt]. Given this assumption and right continuity of continuous-time Markov Chains, we can use x*(t þ Dt)

to denote the history of x*(t) in (t, t þ Dt].
Consider the likelihood of observing X�(tþ Dt) given hypothesis Hi:

P[X�(tþ Dt) jHi] ðA 1Þ
¼ P[X�(t) AND x�(tþ Dt) jHi] ðA 2Þ
¼ P[X�(t) jHi]P[x�(tþ Dt) jHi,X�(t)] ðA 3Þ
¼ P[X�(t) jHi]P[x�(tþ Dt) jHi,x�(t)] ðA 4Þ

where we have expanded X�(tþ Dt) in equation (A 1) using concatenation and used Markov property to

go from equation (A 3) to equation (A 4).

https://github.com/ctchou-unsw/c1ffl-journal
https://github.com/ctchou-unsw/c1ffl-journal
https://doi.org/10.5061/dryad.20md774
https://doi.org/10.5061/dryad.20md774
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By using (A 4) in the definition of the log-likelihood ratio, we can show that:

L(tþ Dt) ¼ L(t)þ log
P[x�(tþ Dt) jH1,x�(t)]
P[x�(tþ Dt) jH0,x�(t)]

� �
ðA 5Þ

The value of the expression P[x�(tþ Dt) jHi,x�(t)] depends on whether x*(t þ Dt) is one greater than, one

less than or equal to x*(t). These cases correspond, respectively, to the event that an X molecule had been

activated, an X* molecule had been deactivated, or there had been no change in the state of the molecules

in the time interval (t, t þ Dt]. Under the hypothesis Hi, which means the input signal is assumed to be

ci(t), the activation and deactivation rates are, respectively, kþ(M 2 x*(t))ci(t) and k2x*(t) when the

number of X* molecules is x*(t). We can therefore write the expression P[x�(tþ Dt) jHi,x�(t)] as:

P[x�(tþ Dt) jHi,x�(t)] ¼ dx�(tþDt),x�(t)þ1kþ(M� x�(t))ci(t)Dt
þ dx�(tþDt),x�(t)�1k�x�(t)Dt
þ dx�(tþDt),x�(t)(1� kþ(M� x�(t))ci(t)Dt� k�x�(t)Dt), ðA 6Þ

where da,b is the Kronecker delta which is 1 when a ¼ b.

Note that P[x�(tþ Dt) jHi,x�(t)] in (A 6) is a sum of three terms with multipliers dx*(tþ Dt),x*(t) þ 1, dx*(tþ

Dt),x*(t) 2 1 and dx*(tþ Dt),x*(t). Since these multipliers are mutually exclusive, we have:

log
P[x�(tþ Dt) jH1,x�(t)]
P[x�(tþ Dt) jH0,x�(t)]

� �

¼ dx�(tþDt),x�(t)þ1 log
kþ(M� x�(t))c1(t)Dt
kþ(M� x�(t))c0(t)Dt

� �

þ dx�(tþDt),x�(t)�1 log
k�x�(t)Dt
k�x�(t)Dt

� �

þ dx�(tþDt),x�(t) log
1� kþ(M� x�(t))c1(t)Dt� k�x�(t)Dt
1� kþ(M� x�(t))c0(t)Dt� k�x�(t)Dt

� �

� dx�(tþDt),x�(t)þ1 log
c1(t)
c0(t)

� �
� dx�(tþDt),x�(t)kþ(M� x�(t))(c1(t)� c0(t))Dt, ðA 7Þ

where we have used the approximation log(1 þ fDt) � fDt to obtain (A 7). Note also that the above

derivation requires that both c0(t) and c1(t) must be strictly positive for all t.
By substituting equation (A 7) into equation (A 5), we have after some manipulations and after taking

the limit Dt! 0:

dL(t)
dt
¼ lim

Dt!0

dx�(tþDt),x�(t)þ1

Dt
log

c1(t)
c0(t)

� �
� dx�(tþDt),x�(t)kþ(M� x�(t))(c1(t)� c0(t)): ðA 8Þ

In order to obtain equation (4.3), we use the following reasoning. First, the term

limDt!0 (dx�(tþDt),x�(t)þ1=Dt) is a Dirac delta at the time instant that an X molecule is activated. Second,

the term dx*(tþ Dt),x*(t) is only zero when the number of X* molecule changes but the number of such

changes is countable. In other words, dx*(tþ Dt),x*(t) ¼ 1 with probability one. This allows us to drop

dx*(tþ Dt),x*(t). Hence equation (4.3).
A.2. Derivation of (5.3)
The aim of this appendix is to derive the intermediate approximation (5.3). We will split the derivations

into two parts, depending on the length of the duration d relative to d0. We first consider the case where

the input signal s(t) has a duration longer than or equal to d0, which is also the more important case for

the derivation because it deals with persistent signals.

Our aim is to find an approximation of the log-likelihood ratio L(t) given in (4.3). Our strategy is to

divide time into intervals such that, in each time interval, each of the time profiles of c0(t), c1(t) and s(t) is

a constant.

The first time interval is [0, d0) where c0(t) ¼ c1(t) ¼ a1 and s(t) ¼ a. Since L(0) ¼ 0 and dL(t)/dt ¼ 0 in

this time interval, therefore L(t) ¼ 0 in this time interval.
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The next time interval to consider is [d0, min {d,d1}) where c0(t) ¼ a0, c1(t) ¼ a1 and s(t) ¼ a. For

t [ [d0, min {d,d1}), the log-likelihood ratio L(t) in (4.3) can be written as L(t) ¼ L1(t) þ L2(t) where

L1(t) ¼ log
a1

a0

� �ðt

d0

dx�(t)
dt

� �
þ

dt|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
A(t)

ðA 9Þ

and

L2(t) ¼ �kþ(a1 � a0)

ðt

d0

(M� x�(t)) dt: ðA 10Þ

We first consider finding an approximation of the integral A(t) in (A 9), and the aim is to replace the

positive derivative of x*(t) by some other arithmetic operations which can be computed by using

chemical reactions. The integral A(t) can be interpreted as the number of times that X is activated in

the time interval [d0, t). For an X molecule, the time between two consecutive activations is a random

variable with mean m and variance s2 where:

m ¼ 1

kþa
þ 1

k�
ðA 11Þ

and

s2 ¼ 1

(kþa)2
þ 1

k2
�
: ðA 12Þ

This is because we can model the activation and deactivation of X by a two-state continuous-time Markov

chain with transition rates kþa and k2.

We will now make a time-scale separation assumption by assuming that the duration (t 2 d0) is much

bigger than m, i.e. t 2 d0�1/kþa þ 1/k2. This assumption can be met by having a sufficiently long

duration d and large amplitude a. If this time-scale separation assumption holds, then there are many

activations in the time interval [d0, t). In this case, using the renewal theorem [23] to approximate A(t),

we have:

mean(A(t)) �M
t� d0

m
ðA 13Þ

and

var(A(t)) �M
s2

m3
(t� d0), ðA 14Þ

which implies that ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(A(t))

p
mean(A(t))

� s

m
ffiffiffiffiffi
M
p ffiffiffiffiffiffiffiffiffiffiffiffi

t� d0

p : ðA 15Þ

This means we can approximate A(t) by its mean and the error decreases with the reciprocal of the square

root of the duration t 2 d0. By using this approximation, we have:

L1(t) � log
a1

a0

� �
M
m

(t� d0): ðA 16Þ

The time-scale separation assumption also implies that the ensemble average of x*(t) can be treated as a

constant in the time interval [d0, t); we will denote this average by x*,a where

x�,a ¼
Mkþa

kþaþ k�
: ðA 17Þ

This ensemble average is related to mean inter-activation time m in (A 11) by:

x�,a ¼
M

mk�
: ðA 18Þ
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By using this relationship in (A 16), we have:

L1(t) � k�x�,a log
a1

a0

� �
(t� d0), ðA 19Þ

which means L1(t) can be computed from the ensemble average x*,a. We will return to this expression

shortly after studying the approximation of the integral in L2(t) in (A 10).

Since the Markov chain describing the reaction cycle of X and X* is ergodic, the time average in (A 10)

can be approximated by its ensemble average. By using the ensemble average x*,a in (A 17), we can show

that:

L2(t) � �k�x�,a
(a1 � a0)

a
(t� d0): ðA 20Þ

Since L(t) ¼ L1(t) þ L2(t), it follows from (A 19) and (A 20) that:

L(t) � k�x�,a log
a1

a0

� �
� (a1 � a0)

a

� �
(t� d0), ðA 21Þ

in the time interval [d0, min {d,d1}).

We can re-write the results that we have for the time interval [0, min {d,d1}) in differential form, as

follows:

dL(t)
dt
� k�x�(t) log

c1(t)
c0(t)

� �
� (c1(t)� c0(t))

s(t)

� 	
, ðA 22Þ

The derivation so far has shown that the ODEs (A 22) and (4.3) are approximately equal for t in

[0, min {d,d1}). We will consider t � min {d,d1}. We need to split this into two cases: d � d1 and d , d1.

For the first case, the time interval concerned is t � d. It can be verified that the RHSs of (A 22) and

(4.3) are both zero for this time interval. Thus, if d � d1, then L̂ � L(t) for all t. We will consider the

second case, where d , d1, in the next paragraph.

If d , d1, then the time interval [d, d1) is non-empty. In this interval, we have s(t) ¼ a0, c0(t) ¼ a0 and

c1(t) ¼ a1, which means the term in curly brackets in (A 22) is equal to log(a1/a0) 2 (a1 2 a0)/a0. Since

a1 . a0, this term is negative. As a result, this may result in a negative L(t). Although we learn from

the research on a synthetic analog computation using chemical reactions [13] that it is possible to

handle negative numbers using chemical reactions, the research also tells us that this is inherently a

difficult process and the complexity is high. Therefore, we will use an approximation that does not

result in a negative log-likelihood ratio. By adding the [ ]þ operator, where [w]þ ¼ max (w,0), to the

term in curly brackets in (A 22), we arrive at:

dL̂(t)
dt
� k�x�(t) log

c1(t)
c0(t)

� �
� (c1(t)� c0(t))

s(t)

� �
þ

� 	
: ðA 23Þ

The addition of the [ ]þ operator does not affect what happens in the time interval [0, min {d,d1}).

However, it means that the RHS of (A 23) does not equal the RHS of (4.3) in the time interval [d, d1);

in fact, this is the only time interval when the RHSs of (A 23) and (4.3) are not approximately equal.

This also means that, for input signals whose duration d is less than d1, the approximation L̂(t) � L(t)
only holds in the time interval [0, min {d,d1}).

Our next step is to show that (A 23) can be written as (5.3). By using the form of c0(t) and c1(t), we can

show that

log
c1(t)
c0(t)

� �
¼ log

a1

a0

� �
p(t) ðA 24Þ

and

c1(t)� c0(t) ¼ (a1 � a0)p(t): ðA 25Þ

By substituting (A 24) and (A 25) into (A 23), we arrive at

dL̂(t)
dt
¼ x�(t)� k�p(t) log

a1

a0

� �
� a1 � a0

s(t)

� �
þ

� 	
, ðA 26Þ

which is the same as (5.3).
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We conclude the derivation of L̂(t) by showing that L̂(t) ¼ 0 for all t for input signals s(t) whose

duration d is less than d0. This can be done by showing that the RHS of (5.3) is zero for all t. Since

p(t) is only non-zero in the time interval [d0, d1), we only have to consider this time interval. In this

time interval, we can show that [log(a1/a0) 2 (a1 2 a0)/s(t)]þ is zero because s(t) ¼ a0.

A.3. Matching (5.3) to (5.9)
The aim of this appendix is to explain why it is possible to use the C1-FFL system in (5.9) to realize the

intermediate approximation in (5.3). By comparing the RHSs of (5.3) and (5.9b), our aim is to show that,

by using an appropriate choice of parameters in (5.9), k2p(t)[f(s(t))]þ( ¼ h(t)) and Hz(y(t)) can be made

to be approximately equal in the time interval [0, min {d,d1}). We will consider the time intervals [0, d0)

and [d0, min {d,d1}) separately.

We first consider the time interval [d0, min {d, d1}). It is sufficient to consider only persistent input

signals. Within this time interval, the persistent input s(t) has an amplitude of a. Since we assume that

the input s(t) is long compared to the time-scale of the activation and deactivation reactions, therefore

the mean of x*(t) is a plateau (see the bottom plot of figure 4b) whose height is Mkþa/(kþa þ k2).

Consequently, the time profiles of both h(t) and y(t) also contain a period of time that they plateau.

The plateau in h(t) contributes to the ramp-like increase in L̂(t) in figure 5.

This means that, if we want to match (5.3) and (5.9) in the time interval [d0, min {d,d1}), we need to

match the values of h(t) and Hz(y(t)) at their plateau. Since the amplitude of the input s(t) when it is

ON is a, the heights of the plateau of h(t) and Hz(y(t)) are, respectively, k2[f(a)]þ( ¼ f1(a)) and Hz((1/

dy)Hy(Mkþa/(kþa þ k2)))( ¼ f2(a)), and we want f1(a) � f2(a) for as large a range of a as possible. Note

that for all a such that f1(a) . 0, both functions f1(a) and f2(a) are strictly increasing, and both f1(1) and

f2(1) are constants. Therefore, we can choose the Hill function coefficients to fit f2(a) to f1(a). This

argument takes care of the case when s(t) is a persistent input which requires us to implement the

function f(.) in (5.3) using the Hill functions in (5.9). We remark that we need to include the

requirement f1(a) . 0 in the above argument because f1(a) is not strictly increasing when f1(a) ¼ 0. This

can be seen from the fact that there is a range of a such that f(a) , 0, which means that there is a

range of a such that f1(a) ¼ 0, which in turn means that f1(a) is not monotonically increasing in this range.

We now consider the time interval [0, d0). In this time interval, L̂(t) ¼ 0 due to p(t). This is a feature

shared by the ideal C1-FFL model in [7]. The book [7] shows that this can be realized by choosing a big

enough Kz in equation (5.9b) so that the production rate of z(t) is small initially.
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