
Front end architecture priorities,
findings and recommendations

Purpose
The document aims to provide a technical direction for our platform in order to drive our
products and technology forward to meet the goals of our Medium Term Plan.

It contains the findings of a collaborative review and analysis of the work and research
performed under the Platform Evolution Program over the past 2 years. Its development was
sponsored by the Core Platform Team and was created in collaboration with a consultant,
Mentrix, which began in Spring 2019 and concluded in June 2019.

The key result of this analysis is the identification of several key opportunities that provide
value to the WMF in supporting our goals, while at the same time requiring critical technical
work and decisions that will enable us to modernize our platform.

As a next step, the opportunities in this document should be used as the basis for establishing
a Front End Architecture Working Group to be sponsored by Technology and Product
department leadership. This working group will evaluate the five specific challenges laid out
below in order to generate solutions and well scoped projects to be developed by cross
functional teams selected from both Product and Technology staff.

Table of contents
Background
Scope

Introduction
Summary of challenges
Recommendations
Next steps
Success

Appendix

Background
Over the past two years, staff at the Wikimedia Foundation have been engaged in efforts to
modernize our platform in order to achieve our Movement Strategy as well as address long
standing issues facing our engineers. These efforts began with staff at the WMF and at WMDE
discussing priorities in the Audiences Technology Working Group (ATWG) which formed in the
Winter of 2017. These discussions led to the formation of both the Platform Evolution Program
(PE) and the Core Platform Team (CPT). Starting in Summer 2018, members CPT engaged in
consultations with staff, volunteers and community members to define our technical direction,
culminating with the first Wikimedia Technical Conference in Fall 2018. From there the CPT was
able to turn the work and feedback generated from all these stakeholders into goals for the PE
Program and input for the WMF Medium Term Plan and the Annual Plan for FY1920.

While it has been a long road, the result has been the comprehensive documentation of our
technical goals and priorities based on collaborative process involving a cross-section of
stakeholders both within and outside the WMF. The reason we have put so much effort into
creating these goals is so that we can now prioritize projects and make technical decisions
based on this shared understanding of our technical priorities.

The CPT has already begun the first phase of work based on these priorities, including building
a REST API in MediaWiki, Splitting RESTBase into separate components and beginning to
librarize MediaWiki into components. Other teams at the WMF have done the same… The
Product Department is leading the effort of unifying our parsers in order to simplify our
technology stack.

This document signifies the beginning of the next phase of work stemming from the PE
program and our shared priorities - work that truly drives our technology stack forward to meet
our Medium Term Plan goals and in order to achieve our organizational mission.

Scope
The scope of this document focuses on changes geared towards our user interface (“front
end”), the technical discussion and transformations that the recommendations will require us to
push forward our capabilities in both structured data and modularity. These two critical
capabilities enable better knowledge equity, mobile support, modern user experiences and
improvements to multimedia. This focus was chosen specifically because it provides visible
and immediate user value through modernizing our user experience (one of our Medium-Term
Goals). However, structured data and modularity also support our initiatives around machine
learning, meaning that we further our medium-term goals in this critical area as well simply by
making the architecture changes to improve our front end.

What this document is “not”
This document is focused on providing challenges to be solved that ultimately improve our
architecture in order to support our long term goals. However, it does not:

● Provide solutions to those challenges
● Discuss “illities” associated with any solutions, such as scalability, security,

maintainability, etc…
● Address constraints such as resourcing, time or budget.
● Community relations

While these considerations are important, they are not discussed in this document because
they fall within the scope of the proposed working group which will generate solutions and
must consider these and other potential impacts on our infrastructure, organization, community
and users.

Introduction

Priorities
The Wikimedia Foundation's medium-term plan includes interdependent priorities whose
success depends on modernizing the current system(s) architecture. Priorities include:

● Delightful UI experiences across all devices
● Integration of content from multiple projects (and other initiatives) to deliver new,

dynamic knowledge experiences
● Integration and discoverability of rich content including video, audio, and interactive

media, as well as the infrastructure to serve it with high performance, high redundancy,
and low latency to all parts of the world

Activities
The goal of this elaboration was to understand the current architectural impediments and
collectively move towards those priorities. This document highlights architectural patterns that
represent core challenges and opportunities. Activities we engaged in included:

1. Interviewing the internal engineering team
2. Reviewing previous documentation and discussions
3. Modeling of current business process flows
4. Discussing, debating and describing the findings
5. Recommending opportunities for growth

Questions
During the exploration, we had questions in mind like:

● How does content flow through the system now and where is it entangled? Where are
the sticking points when considering system-level change?

● How do we want to build user interfaces and how is that different from what we are
doing now?

● How do we make it easier for engineers to scale, maintain and test Wikimedia software
projects and products?

● What changes enable us to deliver more features and adjustments in less time?

This document does not try to answer these questions in isolation but instead, establishes a
foundation that supports the upcoming Working Group. They will dive deeper into the
highest-priority patterns.

https://meta.wikimedia.org/wiki/Wikimedia_Foundation_Medium-term_plan_2019

Summary of challenges
Many of the challenges the WMF faces when modernizing their system(s) are shared across the
industry. Three are relatively unique and the most essential challenges for the Working Group
to work through:

A “Front End" must be defined
Although we do and will have front ends on many clients apps, voice assistants and otherwise,
it is useful to think of the front end from the browser perspective as it helps us define what we
need to make these different experiences available to all.

In the browser context, the front end can be described as:

Anything the browser touches. What a user sees, clicks or taps as well as what may be
running invisibly within the browser.

This definition of a “front end” can be easily extended to our other experiences by generalizing
it to:

Anything the client touches. What a user sees, clicks or taps as well as what may
be running invisibly within the client.

This gives us a good starting place. We can further delineate our front ends by the experience
of the user. In this light, there are five different front ends that Wikimedia project user
experience:

● Reading: A highly-cached, quickly-loaded displayer of pages front end. This category
could be broken down into desktop, phone and app reader front ends because they are
not the same.

● Editing: A composition front end that provides tools like Visual Editor, Wikitext editor
and Content Translation

● Curating: A workflow-driven front end that uses a suite of tools to interact with content
and content events. Currently implemented in various WMF and community developed
tools such as: Watchlists, bots, gadgets, special pages, etc…

● Discussing: A conversational front end providing users a means to interact with other
readers, editors, and curators. Currently implemented with Talk Pages and Flow.

● Administrating: A set of tools that allows administrators to setup and run a wiki. This is
mostly implemented in scripts, command line utilities and some special pages.

While these front ends sometimes overlap and conflated, true power comes from establishing

clear boundaries between each. With such encapsulation, we can create more powerful
interfaces by composing them in different ways (Such as overlaying Discussing on top of
Reading).

In addition to how you use it, the front end is also defined by how you build it. A front end can
be defined by the workflow of front end developers, though that flow differs depending on
whether you are an on-wiki, tool or platform developer. Most importantly to our discussion,
there is an emerging definition of front end that defines front end as “products built without
building a new backend.” This type of front end depends on a modern software and/or
systems architecture.

Building modern software tools that improve one of those experiences complicates others. A
challenge for the Working Group will be to balance the needs of these “front ends”, identify the
highest-value modernization opportunities and outline the tradeoffs.

Systems of software must be intentionally designed
The Wikimedia Foundation's projects are systems of software. Integrating multi-project content
and building new product UI experiences depend on communication between parts of the
system(s). The primary impediment to this communication is that many of these “parts” are
entangled within the mechanics of the software itself. These entangled mechanics are both
necessary and constraining.

To move forward, the Working Group will explore opportunities for modularization,
disentangling software from system capabilities. The goal is to map a progressive evolution
towards better communication between projects and within the system itself. What roadmap
for change delivers software parts that interact more easily with each other? What bridges
between them need to be built?

Software patterns don't (always) scale. Wikitext, for example, works well for the software but
does not structure data for healthy system-level communication. Also, software activities are
designed to react when pages change, whereas system activities can happen anytime for
many reasons, including when embedded content or data from another page changes.
Communication between software components, in their own time, is critical. The Working
Group should consider ways to improve system communication while respecting the integrity
of the software.

Essential note: Most individual MediaWiki software instances (3rd party use cases) do not
share these challenges. The Working Group will need to define the tradeoffs between software
simplicity serving those use cases and engineering modern architectural enhancements that
can improve Wikimedia's systems and products in order to enable leadership to make the best
possible decisions in these cases.

Page content must be modularized and compose-able
The priorities, challenges and modernizations discussed here depend on one thing above all
else: the ability to “build” or compose a page of content from blocks of various content.

At present a rendered page is a blend of content, sometimes from different sources, but the
current software architecture displays a fully-rendered page originating (wholly) from Wikitext.
There are not component parts to break up a “page” into smaller parts that can be shared.
Practically this means the full content of our articles, whether it be text, media or data are
“trapped” inside Wikitext. When rendering a page on a desktop this isn’t problematic.

However, when features or products require modularity, semantic meaning or structured data,
they become much harder to develop, more prone to errors or even worse, impossible to
create. This is in part due to Wikitext not being easily interpreted by machine learning apps or
content layout tools, and these use cases often require time intensive brute force techniques
and unscalable heuristics to overcome. This limitation has impacted the development of
modern UI features such as responsive layout, creating stackable content such as page
summaries, and structured data use cases such as Structured Data on Commons.

Wikitext has been critical to the proliferation of Wikimedia content by empowering hundreds of
thousands of editors to publish millions of high quality articles on Wikipedia and other projects.
Wikitext as a markup language has many upsides, but its use to manage layout and data have
come with tradeoffs that have much deeper implications in 2019 than they did in 2009. To be
successful with our recommendations, we need to always keep in mind our users and the need
to provide them great authoring tools as we make architectural changes in pursuit of the goals
of the Medium Term Plan.

This is an essential area of focus. Recommendations for the Working Group include multiple
ways to experiment with decomposing a page without starting with a “Major Overhaul of
Everything”.

Recommendations

Desired qualities
The goal of these recommendations is to develop three essential qualities in the system:

Modularity

● There is some separation of concerns and activities.
● Boundaries between software and bridges between software are defined. (See Systems

of software above.)
● Changes can be made to one area without impacting other areas.

● Data shared between parts can be decomposed, pulled apart, and composed, put back
together based on the context. The process scales, new combinations can be made
without writing more software.

● Enables things like libraries, stores, encapsulation, services etc

Just-enough coupling

● Currently, the architecture is highly coupled, which is another way of saying entangled.
Decoupling is not an event but a process, a series of steps that change the overall
pattern.

Timing: reduce temporal coupling

● Create less procedural, sequential control of relationships and communication.
● Page generation is a nondeterministic activity by nature. Communication generally

requires more ability to predetermine responses.

Exploration Areas
Our elaboration effort exposed five areas of potential exploration. We recommend these areas
of focus for the Working Group. They satisfy valuable priorities, test the waters for further
disentanglement, and/or raise issues that need to be resolved, regardless of the path chosen.

1. Develop <FEATURE X> using modern front end tooling
This effort is focused on two important goals for product development: The ability to build
delightful, dynamic user interfaces - and providing an architecture which enables front end
engineers to quickly develop new user interfaces which are decoupled from the platform and do
not require knowledge of how the platform works internally.

An essential discussion point for both “defining the front end” and modularization is how to
untangle Javascript and bring it into the front end. How do we enable Javascript developers to
keep the code as close to the browser as possible and reuse common functions? OOUI
enables the integration of MediaWiki with Javascript enhancements but because it was
developed prior to the current set of industry frameworks, it conceptually differs in fundamental
ways from those tools.

These architectural differences mean that MediaWiki is not easily integratable with industry
standard frameworks and also make it difficult to share the localization and accessibility
advances that have gone into OOUI with those engineers attempting to use frameworks like
Vue and React. Figuring out how to align with industry standards while integrating the work
that has gone into OOUI represents a huge opportunity for Wikimedia to contribute to
localization and accessibility of modern JS development for the web.

This area of focus lays the groundwork for moving further towards “front end”. The Working
Group will need to explore how the code contribution process might work, among other

factors, which will engage Javascript developers in the architecture process.

2. Create a service for rendering components from template content
Templates in the MediaWiki ecosystem are overloaded with different use cases: they provide
content structure, reusable components, and allow contributors to modify the display of content
with custom logic. This recommendation has strong potential for creating modularization that
benefits the system as a whole. It is tricky to discuss though, because "templates" mean
different things to different people and have different use cases.

In this case, we don't mean Mustache templates that govern look and feel. We mean
encapsulating the "boxes" of content that are added to pages. These may (or may not) take
parameters defining some of their content. A first step for the Working Group will be to define
what is included in this "template" modularization effort and what isn't.

These “boxes” are an ideal focus area for creating modularity. They represent self contained
features and also an opportunity to enable equitable sharing of user features across projects
and languages be establishing a cross-project service to share templates. This project will also
force us to consider how to handle content layout and structure separately from composable
pieces content.

The patterns architected during this initiative will inform other types of modularization (libraries
for front end enhancements, for example).

3. Build a non-page based watchlist using APIs
The Watchlist page does not rely on content pages (or need to break them down) but instead,
reports on changes to pages. Curators are interacting with that page in ways that are ideal for
prototyping a "front end" tool that communicates with the system but does not need to be
enmeshed into it. The stakeholder group is smaller and eager to provide feedback.

This area of focus lays the groundwork for architectural patterns that can apply to special
pages and gadgets in general.

4. Introduce page summaries as distinct, editable and curate-able content
In order to lay the groundwork for structured data in articles, we should develop a feature that:

● Will use all the multiple types of data storage, such as text and images.
● Are composed from different sources, such as Wikipedia and Wikidata
● For which we can easily generate and populate content
● Have an immediate benefit for our product plans

Page summaries are designed to be an easily distributable “block” of content which can
represent the full content of a page and can be displayed in different contexts. They are
currently generated via a hardened, well tested service. The content from summaries can be
used to create Open Graph markup to make our content machine readable to power machine

learning applications.

Moreover, page summaries are currently only generated heuristically and are not able to be
defined or modified by editors. Creating a modular architecture to store and curate summaries
establishes a pattern that can apply to other elements of the page.

Summaries also begin the conversation with the community about the types of modernization
inherent in the medium-term plan. These changes will eventually require socio-technical
process for change management as they introduce new types of curatable content. This
recommendation gives the Working Group an opportunity to consider and architect people
processes that enable their technology strategies. And include staff who are especially skilled
at this aspect.

5. Introduce topic maps to ontologically categorize content
Categories have been used by contributors in order to create a taxonomy of pages for years.
They use them as a means to tag content for discovery or curation or other patrolling activities.
This has been accomplished by adding Wikitext markup causing semantic meaning has been
embedded within the content. This also means that categories have no inherent structure or
hierarchy and are not able to be used across projects.

Topic maps present a new way to separate the taxonomy of the content from the content itself
providing structure to our wealth of content and enabling new means of discovery. With this
first project we could establish a means to tag to pages and other types of content with
editable, curatable, standardized metadata as well as machine generated metadata.

Next steps

Forming a Front End Architecture Working Group
The recommendations above are intended to drive the planning of the architecture changes
needed to modernize our platform and serve the known and unknown use cases of the
WIkimedia ecosystem for the next decade. As a next step, it is recommended that a Front End
Architecture Working Group is formed to further elaborate and scope each of the five
explorations. Thoughtful composition, processes and facilitation will be critical to the Working
group’s success. These will be developed and defined in a document in order to provide
structure to the work and help guide the group towards impactful outcomes.

Generating project proposals
The first goal of the working group should be to generate a proposal to solve one of the five
explorations with the output being a well scoped project plan. The proposal should have full
project plan with product and technical requirements, as well as resources, milestones, risks
and tradeoffs. Aspects of performance, scalability and security should be accounted for in

solutions. Metrics should be established to measure success. Projects should be focused on
delivering a user facing feature and also be as short as possible (no longer than 3 months) to
ensure they can be accomplished. The exact format and content of a proposal will be specified
in another document.

Developing and delivering a project
For each proposal, a cross functional team from the staff of the Product and Technology
Departments should be created. Team members should be chosen for not only their skills, but
also their enthusiasm to exploring new ideas, eagerness to push the boundaries of our
technology and focus on delivering value to our end users and community. These teams will
focus on delivering the solution proposed by the working group and will work exclusively on the
project for the duration. The result of the project should be a shippable user facing feature or
product. This focus on delivery is important as it keeps the team driving towards real needs and
real users.

Retro and repeat
This is a living document and the recommendations within it represent our best current
understanding. As we build, we learn and this document should be updated to reflect those
changes in understanding. Following the delivery of a project, both the working group and
leadership should perform retrospectives on the process. Improvements and changes should be
suggested. New projects should be proposed, existing projects should re-evaluated and the
next exploration should be chosen. At this point new working group members can rotate. This
template should be followed until all five explorations have been researched and solutions have
been developed.

Success
The success of this initiative is measured by the change in our architecture, products and
processes. We should see real changes in engineer productivity (which we will likely need a
way to quantify), we should see real value delivered to users as measured by the metrics we
develop, and we should establish new ways for our engineering teams to work together by
experimenting with cross functional teams.

Appendix

Further Details
This section includes further discussion of areas mentioned above and a summary of patterns
identified during interviews.

Challenges shared by the team (and the world)
We asked everyone about their day-to-day challenges. How do you continue to deliver
emerging, interdependent products that serve users all over the world, on a multitude of
devices, without adding undue complexity? Interviews with the team highlighted the challenges
and informed the recommendations mentioned above, Javascript being the most often
mentioned issue.

Other challenges are not unique to Wikimedia; they are increasingly commonplace.
Open-source communities, including Drupal and Wordpress, are grappling with similar
roadmaps. The core design of web applications are changing. Originally created to deliver web
“pages”, content software must now interact with other platforms and data structures.
Activities within the system are designed to happen at “page load” time, the emerging need to
interact during other types of events is daunting. Control over styling and page structure,
needed to build products, isn't easily separated because the content itself is not structured for
sharing.

Further challenges include:

● Sociotechnical integration: The organizational boundaries designed to define
“ownership” of technology parts aren’t mirrored in the system itself. There is more
enmeshment in the technology itself than there is between people building it. These
communication challenges increase and as complexity increases. Historical attempts at
change has eroded trust in decision making. (<-- This is the most common
organizational challenge.)

● Performance variations: Architectures that delivers fast results for anonymous users
struggle to make changes that deliver fast results to logged in users. The reliance on
caching is both a blessing and a blocker.

● Reliability tradeoffs: Changes to the software system increasingly rely on
“workarounds”. These nonconventions inadvertently create more sprawl and less
predictability. Modularization will alleviate this but introduce new debugging challenges.

● Core technologies are changing: What is the future role of Javascript (especially for
the Wikimedia community)? As Javascript frameworks and microservices proliferate,
the adoption process is still shaky and risky for many use cases.

● Development times can be unpredictable and long: The amount of effort to ship a

feature is unpredictable and delays in the process are frequent due to both architecture
and process issues

● Editors have a deep attachment to their workflow: And want control over
presentation. They are valuable to the mission and change averse.

● Transformations are people intensive: There are not enough people to do the work
and there is a constantly-expanding list of new skillsets required. They also require a
tremendous amount of proactive communication.

● Systems are emerging: Monolithic software architectures are being replaced by
multi-platform, systems architecture. The tradeoffs aren't universal though, they are
unique to each situation. As complexity shifts from the software to the system, a whole
new set of architectural challenges arise.

Emerging definition of “front end"
We do not want to define what a front end should look like, the right blend will evolve as the
priorities are defined. Industry-wide, there is a conceptual definition of front end emerging, as
software becomes decoupled parts. It includes:

● Owns the display: look and feel standards are defined by the front end.
● Componentized: builds page “blocks” of its own choosing, can vary what to show or

hide. Thus, it relies on composition and (to some extent) on decomposition in the
backend.

● Multisource: can asynchronously fill component “blocks” from various content
sources.

● Emergent: does not stand alone as a single piece of software but represents a sum of
relationships with collective value. The sum is greater than the parts.

● Guides the user journey: the front end is the map followed by users to their goals or
destinations.

● Provides interaction: being closest to the browser, it structures user interaction and its
relationships to other software supports this.

Benefits of focusing on abstracting the functionality of page
components and content layout from templates
We've recommended focusing on the “boxes” of content that are added to the body of pages
as a stepping stone to modularization. Here are some reasons why:

● Creates a mechanism to make templates equitable, sharable and localizable across
wikis.

● Structures the right discussions - the architectural design exercise is valuable because

it’s inherently modular. The team as a whole will be thinking in the right direction.
● Because they are valuable to most projects, the work can’t be architected in a silo. The

working group's work will encourage sociotechnical integration.
● Improves the architecture for all users (eventually) without impacting anyone initially.
● Users can continue to use the software as it is, adoption is optional.
● The stakeholders are primarily the “core” team.
● Establishes patterns that can be (potentially) used for further decoupling. Gadgets?

Libraries?
● Cleans up “core” content.
● Cache purging can become more efficient and discreet.
● This creates the potential to move -some- composition up the stack, which is a linchpin

for front end changes.

Here's a look at how it might work ...

lucidchart link

https://www.lucidchart.com/documents/edit/6800f1e0-06e1-4588-9255-4cc6ef14233a#

Process models
The following models show, at a high-level, how critical activities trigger technological
decisions and interactions. There are many more process models that might be valuable to the
Working Group. Here, we hope to establish core activities and a foundational practice for
modeling that -- above all - enables cross-functional discussion about changes. We’ve focused
specifically on Wikipedia for illustrative purposes.

Predominantly, we are interested in differences. Reading a page on a phone is different from a
desktop. Reading an English page is different from a German page, which is significantly
different from a Chinese page, from the system’s point of view. The goal is to call out these
differences in ubiquitous language because wherever the flow of business logic branches, or
relies on different workflows, is where the challenge to change lives.

The models shown below are static versions. Click the lucidchart links for a bigger, clickable
versions.

Read page

Read an English Wikipedia page

lucidchart link

https://www.lucidchart.com/documents/edit/64409784-c502-4ca8-b490-98a4bc6e298f/0

Read an English Wikipedia page on desktop

lucidchart link

Read an English Wikipedia page on mobile

Lucidchart link

https://www.lucidchart.com/documents/edit/64409784-c502-4ca8-b490-98a4bc6e298f/1
https://www.lucidchart.com/documents/edit/64409784-c502-4ca8-b490-98a4bc6e298f/2

Read an English Wikipedia page in the app (android)

lucidchart link

Other languages: Reading a German Wikipedia page

https://www.lucidchart.com/documents/edit/bb08412e-d523-4e3b-b8be-19fa64b4c737/0

lucidchart link

Read German desktop page

Read German mobile page

https://www.lucidchart.com/documents/edit/317ecd1f-b808-41b5-bc2a-7d75f5e3a672/0

Edit page

lucidchart link

Edit an English Wikipedia page using the edit tab

lucidchart link

https://www.lucidchart.com/documents/edit/b05788f1-a56b-499d-91a2-07340e338688/0
https://www.lucidchart.com/documents/edit/b05788f1-a56b-499d-91a2-07340e338688/1

Edit an English Wikipedia page using Visual Editor

lucidchart link

Moderate an English Wikipedia page

Lucidchart link

https://www.lucidchart.com/documents/edit/b05788f1-a56b-499d-91a2-07340e338688/2
https://www.lucidchart.com/documents/edit/960b19af-d92f-433a-9303-b3dcc97ca8ad#

How system components interact to create pages (all cases)

Lucidchart link

Different language wikis
Each language has its own Wiki, in that all the configurations, content and adaptations are
unique to it. The differences between English and German are highlighted. See the differences
in components here.

https://www.lucidchart.com/documents/edit/15abb35f-e248-4103-8ab6-f288c0e06647

Non-wikitext pages

Watchlist page

Lucidchart link

https://www.lucidchart.com/documents/edit/40d6abaf-1e36-4e0b-96b4-349ffd393a69/0

Recent changes data

Lucidchart link

https://www.lucidchart.com/documents/edit/40d6abaf-1e36-4e0b-96b4-349ffd393a69/1

Page rendering process (aka Daniel's whiteboard)

lucidchart link

https://www.lucidchart.com/documents/edit/c4165271-8033-4372-9eb0-0aea58120cdb/0

