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Andrographis paniculata is an important traditional medicinal
herb in South and Southeast Asian countries with diverse
pharmacological activities that contains various flavonoids and
flavonoid glycosides. Glycosylation can transform aglycones
into more stable, biologically active and structurally diverse
glycosides. Here, we report three glycosyltransferases from
the leaves of A. paniculata (ApUFGTs) that presented wide
substrate spectra for flavonoid glycosylation and exhibited
multi-site glycosylation on the substrate molecules. They
acted on the 7-OH position of the A ring and were able to
glycosylate several other different types of compounds. The
biochemical properties and phylogenetic analysis of these
glycosyltransferases were also investigated. This study provides
a basis for further research on the cloning of genes involved
in glycosylation from A. paniculata and offers opportunities for
enhancing flavonoid glycoside production in heterologous
hosts. These enzymes are expected to become effective tools
for drug discovery and for the biosynthesis of derivatives via
flavonoid glycosylation.

1. Introduction

Andrographis paniculata has various pharmacological properties,
including anti-inflammatory [1], antihyperglycaemic [2,3],
hepatoprotective [4,5], anti-cancer [6,7], antihyperlipidaemic
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[7,8], antioxidant [9,10], antimicrobial [11-13] and antiparasitic activities [14]. It is one of the most n
commonly used traditional medicinal herbs in South and Southeast Asian countries and has great
potential for further applications [15-17]. Flavonoids and their glycosides are among the predominant
secondary metabolites in A. paniculata and have a basic benzopyran ring nucleus skeleton formed by a
part of the phenylpropanoid metabolism network [18—-24]. Flavonoids in the form of glycosides play
pivotal roles in the growth and development of plants by regulating the homeostasis of auxin
hormones [25,26]. In recent years, increasing attention has been paid to the pharmacological activities
of flavonoid glycosides from A. paniculata including antiplatelet and antiproliferative activities, which
offered opportunities for further development and clinical application of this herb [15-17].
Glycosylation is the key modification step in various biological processes, especially in secondary
metabolic pathways. It changes the stability, polarity, solubility, bioactivity, toxicity and subcellular
localization of the substrate molecules [27-32]. Great progress has been made in chemical and
enzymatic glycosylation in recent decades. However, the chemical glycosylation reactions have some
limitations, such as redundant side reactions and intermediates, poor regio- and stereoselectivities,
low yields, limited solvent compatibility, complicated extraction and separation as well as tedious
protection—deprotection steps [33—-36].

The glycosylation of both natural and unnatural products by glycosyltransferases, which is a new field
of synthetic glycobiology, is more efficient in the production of glycosides than chemical approaches and
has developed quickly in recent years [37-46]. The discovery of novel glycosyltransferases is of great
value to the elucidation and prediction of glycoside biosynthetic pathways [29]. Glycosylation is the key
modification step in various biological processes that produce many natural products containing diverse
sugar moieties and increase drug availability. The enzymes that catalyse glycosylation reactions belong
to the glycosyltransferase superfamily. Glycosyltransferases (EC 2.4.x.y) catalyse the transfer of sugar
moieties from activated donor molecules to a wide range of acceptor molecules, such as sugars, lipids,
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proteins, nucleic acids, antibiotics and other small molecules, including plant secondary metabolites [47].

As of January 2019, 106 families of glycosyltransferases could be found in the Carbohydrate-Active
Enzymes Database (CAZy) (http://www.cazy.org/GlycosylTransferases.html). Among those families,
family 1 glycosyltransferases (GT1s) is the largest family in the plant kingdom [48]. GT1s are often
referred to as UGTs because they typically transfer a sugar residue from UDP-glucose donors to specific
acceptor molecules. UGTs contain a conserved PSPG (plant secondary product glycosyltransferase) box
in the C-terminus protein domain. It consists of 44 amino acid residues and functions as a nucleoside-
diphosphate-sugar binding site of the enzymes [49]. With the exception of the PSPG domain, UGTs
share relatively low sequence identity. However, their secondary and tertiary structures are usually
highly conserved. All these UGTs contain a GT-B fold, consisting of two separate Rossmann domains
with a connecting linker, where the activated donor binds to the C-terminal domain and the acceptor
binds to the N-terminal domain [50].

At present, few specific studies on flavonoid UDP-glycosyltransferases in A. paniculata (ApUFGTs) have
been reported. We performed time-coursed transcriptome sequencing with MeJA (methyl jasmonate)
treatment, three UGTs were identified to be capable of preferentially introducing a glucose on the 7-OH
group of flavonoids as well as catalysing the glycosylation of flavones, isoflavones, flavanones, flavonols,
dihydrochalcones and other small molecular aromatic compounds. The biochemical properties and
phylogenetic analysis of ApUFGTSs were also explored.

2. Material and methods

2.1. Chemicals and plant materials

Chemicals and reagents were purchased from Sigma-Aldrich (St Louis, MO, USA), ] & K Scientific Ltd
(Beijing, China), Chengdu Biopurify Phytochemicals Ltd (Chengdu, China) and BioBioPha (Kunming,
China). Andrographis paniculata seeds were purchased from Zhangzhou, Fujian Province, China. The
seeds were sterilized in 20% sodium hypochlorite solution containing 0.1% Triton X-100d for 10 min,
washed five times with sterilized water and seeded on MS medium containing 0.7% agar. Uniformly
sized two-week-old seedlings were supported on an adjustable plate and transferred to containers filled
with 11 Hoagland solution (pH 6.0), and grown in a controlled environment chamber, maintained at 25
(£2°C) under a 16/8 h (bright/dark) light cycle.
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Table 1. Primer sequences used for cloning the full-length gene of ApUFGTs.

name sequence (5'-3')
ApUFGTI-F  TCCAGGGGCCCGAATICGGAATGGAGAATATAACAAAGTTG
CMURGTIR  AGTGCGGCCGCAAGCTTGTTAGCTATATTTTTGTTGTAT
 MURGTZF TCCAGGGGCCCGAATICGGAATGTCGGCCGCCACCGCC
CMUFETZR  AGTGCGGCCGCAAGCTTGTTATTGTAACGATACAGCTC
1
 MURGBR  AGTGCGGCCGLAAGCTTGTTACTITGCTTCATITTTCTC

2.2. (DNA synthesis and gene cloning

UGTs were screened from A. paniculata transcriptome databases. To clone permissive ApUFGTs from
A. paniculata, leaves of A. paniculata were treated with MeJA for 48 h prior to RNA isolation. The extracted
RNA (Thermo Fisher Scientific, CA, USA) was used to synthesize cDNA using a PrimerScriptTM RT
Reagent Kit with gDNA Eraser (Takara, Dalian, China) according to the manufacturer’s protocol. Full-
length coding sequences of the selected UGTs were amplified by PCR using specific primers designed by
Primer Premier 5.0 software (table 1). PCR was performed in a 100 pl scale using KOD-Plus-Neo
(TOYOBO, Japan) at 94°C for 2 min; 35 cycles of 98°C for 10 s, annealing at 55°C for 30 s and extension at
68°C for 1 min; a final extension at 68°C for 5 min. PCR products were purified using a GeneJET Gel
Extraction Kit (Thermo Scientific, USA) and ligated into the N-terminal MBP fusion expression vector
HIS-MBP-pET28a (provided by Dr Xiaohong Zhang; HIS, histidine; MBP, maltose-binding protein) that
had previously been digested with the restriction enzymes BamHI and Sall according to the protocol
accompanying the pEASY-Uni Seamless Cloning and Assembly Kit (TransGen Biotech). The conjugates
were transformed into Transl T1 phage-resistant chemically competent cells (TransGen Biotech, Beijing,
China). The recombinant plasmids were obtained by screening positive clones and sequencing.

2.3. Sequence alignment and phylogenetic analysis

DNAMAN software was used to carry out the multiple alignment. Clustal W analysis software was used
to compare the amino acid sequences of the flavonoid glycosyltransferases from other plant sources, and
a phylogenetic tree was constructed using MEGA 7.0 software. Branch support was evaluated using
bootstrap analysis with 1000 replicates [51].

2.4. Heterologous expression and affinity purification of ApUFGTs

The recombinant plasmids were transformed into Escherichia coli Transetta (DE3) expressing competent cells
(TransGen Biotech, Beijing, China). The monoclonal colonies were identified and transferred to Luria—
Bertani (LB) medium containing kanamycin (50 wg ml ™ Y). When the density of the host bacteria (ODggo)
reached 0.6-1.0 following incubation at 37°C, an appropriate IPTG inducer (final concentration of approx.
1 mM) was added to induce culturing at a low temperature (16°C) for 12 h. The samples were subjected to
centrifugation at 4°C for 20 min, suspension in lysis buffer (50 mM PBS (pH 7.4), 1 mM EDTA, 10%
glycerol and 1 mM PMSEF), disrupted by sonication in an ice bath (ultrasonic power 5s, interval 5s,
continuous for 10 min) and followed by centrifugation at 10 000 for 10 min. The crude proteins were
filtered through a 0.45 pm membrane, transferred to an Ni-NTA agarose affinity column (Qiagen, WI,
USA) and rotated at 4°C for 2 h to allow the Ni-NTA to fully bind to the protein. The samples were eluted
with different concentrations of imidazole/PB buffer (0.02 M Na,HPO,—NaH,PO, (pH 7.4) and 0.5 M
NaCl with imidazole concentrations of 50, 100, 200, 300 and 500 mM). The proteins were then concentrated
by Amicon Ultra-30 K filters (Millipore, USA), and finally, the buffer was changed to desalting buffer
(50 mM Tris—HCI, pH 7.4). The protein concentrations were determined using a modified Bradford protein
assay kit (Sangon Biotech, Shanghai, China), and the purified proteins were validated by SDS-PAGE.

2.5. Enzyme assays

The reaction system for the ApUFGT activity assay was as follows: a total volume of 100 pl containing
50 mM Tris—HCI (pH = 8.0), 8 ug purified proteins, 320 puM aglycone and 3200 uM UDP-glucose.
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Table 2. UPLC methods used in this study.

analysis
method solvent A solvent B flow rate gradient substrates
A 0.1% formic acid CH;(N 0.4 ml min~" 95-83% A (0—3 min), 1-3,
83—65% A (3—12 min), 12-14
65-40% A (12—14.5 min)
B 0.1% formic add ~ CHyN O4mimn~'  95-75%A(0-6min),  4-1

75-60% A (6—15 min)

The reaction was conducted at 40°C for 6 h and twice the volume of methanol was added to terminate the
reaction; the mixture was shaken well, centrifuged at 12 000g for 10 min, and then the supernatant was
filtered through a 0.22 pm filter and subsequently analysed. The chromatographic analyses were
conducted using a Waters Acquity UPLC-I-Class system (Waters Corp., Milford, MA, USA) with an
Acquity UPLC BEH C18 column (1.7 wm, 2.1 x 50 mm). Gradient programmes were used to analyse
the reaction mixtures (table 2). The PDA (photo-diode array) scanned from 190 to 400 nm. The total
conversion rate was calculated to be 1% of the sum of the peak areas of the substrate and product(s).
The glycosylated products were separated on a Waters UPLC system coupled with a Xevo G2-S
QTOF-MS (Waters Micromass, Manchester, UK) with an Acquity BEH C18 column (50 x 2.1 mm,
1.8 um). The following Q-TOF-MS parameters were used: ESI (4) ionization mode; scan range, 50—
1500 Da; scan time, 0.2's; cone voltage, 40 V; source temperature, 100°C; dissolved gas temperature,
450°C; cone gas flow rate, 50 1 h™!; desolvation flow rate, 9001 h™!; and collision energy, 20-50 V. The
mass accuracy was corrected by a lock spray with leucine enkephalin (200 pg pwl™!, 10 pl min~') as the
reference (m/z 556.2766 ESI (+)). Data were analysed using MassLynx™ software (v. 4.1, Waters Co.,
Milford, MA, USA).

2.6. Effects of temperature and pH on enzyme activities

The assays of the biochemical properties of temperature and pH were performed by changing each of the
reaction conditions. To determine the optimal reaction temperature, the reaction mixtures were incubated
at different temperatures (20, 30, 40, 50 and 60°C). To study the optimal pH, the enzymatic reactions were
performed in various reaction buffers with pH values in the range of 4.0-11.0 (pH 4.0-7.0, citric acid-
sodium citrate buffer; pH 7.0-9.0 Tris—HCI buffer; and pH 9.0-11.0, Na,CO3-NaHCO; bulffer). All
experiments were performed with UDPG as the donor and wogonin (10) as the acceptor in a total
volume of 100 wl as described above. All experiments were carried out in triplicate. The mixtures were
analysed by UPLC analysis as described in table 2. The total conversion rate was calculated to be 1%
of the total peak area of the substrate and product.

3. Results

3.1. (DNA doning of ApUFGTs

The three ApUFGTSs, namely, ApUFGT1 (GenBank accession MH379334), ApUFGT2 (GenBank accession
MH379339) and ApUFGT3 (GenBank accession MH379336), were deduced to code for a 485-amino acid
protein (Mw: 54.669 kDa; pl: 5.03), a 479-amino acid protein (Mw: 51.561 kDa; pl: 6.20) and a 463-amino
acid protein (Mw: 52.290 kDa; pl: 5.26), respectively (figure 1). A BLASTP procedure was used to find
homologous genes with ApUFGTs, and these UGTs were aligned using DNAMAN software. ApUFGT1
has a high homology with a UGT from Olea europaea (GenBank accession XP_022868976) and with a UGT
from Strobilanthes cusia (GenBank accession AZL90047). These genes all belong to the UGT86 family, and
their homologies with ApUFGT1 were 53% and 52%, respectively. In addition, ApUFGT1 showed 50%
homology with a UDP-glycosyltransferase from Prunus yedoensis (GenBank accession PQQO03238).
ApUFGT2 has high homology with a UDP-glucuronosyl and a UDP-glucosyl transferase from
Handroanthus impetiginosus (GenBank accession PIN09068) and the homologies were 66%. A flavonol 3-O-
glucosyltransferase from Cicer arietinum (GenBank accession XP_004516861) and a UDP-glycosyltransferase
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Figure 1. SDS—PAGE of recombinant ApUFGTs purified by affinity chromatography. M, standard protein markers (Thermo Scientific).
1, ApUFGTT; 2, ApUFGT3; 3, ApUFGT2.
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Figure 2. Phylogenetic tree of ApUFGTs and other plant UGTs. The tree was constructed using MEGA 7.0 software with a 1000
bootstrap value. Clusters (I, Il, lll and IV) are shown in boldface letters. ApUFGT1, ApUFGT2 and ApUFGT3 are shown with red
triangles. All the GenBank accession numbers of the sequences used in the phylogenetic analysis are indicated in table 3.

from O. europaea (GenBank accession XP_022869837) also showed high homologies with ApUFGT?2; these
genes belong to the UGT89 family, and their homologies were 51% and 63%, respectively. ApUFGT3
showed a homology of 52% with a UDP-glycosyltransferase from Lycium barbarum (BAG80541). In
addition, ApUFGT3 has a high homology with a UGT from Citrus clementina (GenBank accession
XP_006447932) and a UGT from Morus notabilis (GenBank accession XP_010095580), both of which belong
to the UGT74 family. Their homologies with ApUFGT3 were both 51%.

3.2. Phylogenetic and sequence analysis of ApUFGTs

A phylogenetic tree was constructed using MEGA 7.0 by a neighbour-joining distance analysis based on
the deduced amino acid sequences of the three ApUFGTs and other flavonoid glycosyltransferases
downloaded from NCBI (https://www.ncbinlm.nih.Gov/) (figure 2 and table 3). ApUFGT2 was
clustered with the 17 other UFGTs in cluster III. ApUFG1 and ApUFG3 were both clustered with the
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Table 3. Sequences information used in phylogenetic tree in figure 2.

gene name

versacr AAP31923 Arabidopsis thaliana flavonol 7-0-rthamnosyltransferase -
“ AtF7GT - AKQ76388 o Arabidopsis tha/lana - “ﬂavonmd 7- 0 -glucosyltransferase -
CUGT73AS (CABS623T * Dorotheanthus betanidin 5-0- glucosyltransferase -

bellidiformis
DcF3GT BADSZOO4 Dlanthus caryophyllus - .ﬂavonol 3- 0 glucosyltransferase -
 FiF3GT AAD21086 N Forsyth/a Intermed/a A ﬂavon0|d 3 0 qucosyItransferase R
. .GelF7GT - BAC78438 .Glycyrrhlza echlnata R |soﬂavon0|d 7 0- qucosyItransferase” -
CGmF7GT NP001235161 - Glycine max ~ isoflavonoid 7- 0 qucosyItransferase -
. .PfF3GT BAA19659 - .Per/lla frutescens - .ﬂavon0|d 3- 0- glucosyltransferase -
- PHASGT BAA3G421 Perilla frutescens var. ‘ anthocyanln 5-0- qucosyItransferase “““
aispa

PH3GT BAAS9003  Petunia hybrida A ' anthoﬁyanin 3-0-bgrlucosyltranéferaée '
”PhASGT ”””””BAA89009 mmmvaed/cago truncatula e anthocyanm509|ucosyltransferase
 PHASGRT CCAASO376  Petumia hybrida  anthocyanidin 3-O-glycoside

rhamnosyltransferase
“ SbF7GT BAAS3484  Satellaria be ba/calenﬂs © flavonoid 7- Oglucosyltransferase .
ThASGT ey hybr/da S ”anthocyanm 0. glucosyltranSferase” e
; VhA5GT MHHMBAA36423‘ mVerbena hybr/da ”m”“anthocyamn5og|uc05y|t,ansferase“'”"”'”‘
- VvGTI B wn/fera o 3og|u(05y|transferase e
CMFRRt AAM6S321 AI’abIdOpSIS tha/lana‘ ~ flavonoid 3-0—glucbsyltrénsfera5e -
. '(pF3T B paradlse e 3Oglucosyltran5ferase e
CGUGTZ8AT4  AL019888  Camellia sinensis a ﬂannbid 3-0—glucbsyltfénsferéée - ‘
mAtUGT74F7 MWHNP973682 ”ArabldopSIS thal/ana' T glycosyltranSferase an
HFGGU h ‘02V6J9 F'Fragana ananassa ~ flavonoid 3- Oglucosyltransferase
AtF3G7GT ””092095 B Arab/dopﬂs thal/ana . .ﬂavonol 3 0 glyc05|de 7 0 glucosyltransferase
“ Z/UGTUZZ  KP4l0264 Lotus;apon/cusﬂavonmd glycosyltransferase
GmF76T - WNP001235161 - .Glycme mx isoflavone 7-0- glucosyltransferase .
CFaGTs ”02V6K0 - ‘Fragana anandssa © flavonoid 3- Oglucosyltransferase .
R ””'AAL06646”'Wmm”(:trus madng e 2rhamnosyltranSferase'”mm
” bAtA3GZXy/T O NP00217 ‘Arab/dopSIs tha/lana © flavonoid 3- 0 glucosyltransferase -
. .CmF7GIZRT O AALOGGSS  Citrus maxima - ”ﬂavon0|d 1- 2 rhamnosyltransferase. -
| IpA3 6267 BADSS882 /pomoea Purpurea ' anthocyanldln 3-glucoside 2'-0- '
glucosyltransferase

CMFSGT  AAM9T686 ‘Afdbidabs‘is thaliana ~ flavonoid 5- Oglucosyltransferase “““
g e ArabldopSIS thal/ana e rhamnosyltranSferasé B
N6T3 BABSS934  Micotiana tabacum - glucosyltransferase -
e e ”m”Lyc/um barbarum e
T ‘Ly(lum barbarum e glucosyltransferase e
s s mm”mmLyaum barbarum B
MUGT7307 s H‘”‘Lyaum o glucosyltransferase -

accession/number

species

function
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eight other UFGTs in cluster II. At their C-terminal ends, the ApUFGTs and the other UGTs grouped
in the same cluster all contain the conserved PSPG domain that has been proposed to be a
nucleoside-diphosphate-sugar binding site (figure 3).
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Figure 3. The amino acid sequence alignment of ApUFGTs and other plant UGTs. The multiple alignment was performed using
DNAMAN software. The identified UGTs in multiple alignment are AtF7GT (AAL90934), UGT73A5 (CAB56231), UGT75A2

(AB360613), GT75L5 (AB360620) and AtF5GT (AAM91686). The green line indicates the conserved region of PSPG motif.

3.3. Study on the catalytic promiscuity of ApUFGTs

Several drug-like compounds with different types of structures were selected as substrates, including
flavones (1-6), a flavonol (7), a flavanone (8), isoflavones (9 and 10), a dihydrochalcone (11), a coumarin
(14) and other small molecular aromatic compounds with —-OH and —NH, groups (12 and 13) (figure 4b).
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Figure 4. Exploring the catalytic promiscuity of the recombinant ApUFGTs. (a) Per cent conversion of glycosylated products catalysed
by the ApUFGTs. The colour in the bar graphs (Prod. a, Prod. b, Prod. ¢, Prod. d and Prod. e) represent different ratios of diverse
glycosylated products in the total product yield of each compound. Error bars used in the figure indicate + s.d.s. The asterisks (*)
represent the glucosylated products which were confirmed to be 7-O-glucosides by authentic standards. N.D. means no products
detected. (b) Structures of the library members and corresponding glucosylated products.
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Figure 5. Effects of temperature on enzyme activity of ApUGT1 (a), ApUGT2 (b) and ApUGT3 (c).

The scopes of the substrates tolerated by the three recombinant ApUFGTs were systematically studied. For
the same substrate, the types and conversion rates of the glycosylation products catalysed by the three
glycosyltransferases are different (figure 4a), illustrating the diversity of plant secondary metabolic
glycosyltransferases in A. paniculata. For the flavonoids in A. paniculata (1, 2 and 3), the three ApUFGTs all
exhibit glycosylation activity and can glycosylate multiple types of hydroxyl groups on certain substrates
(1 and 3); there were at least two products in the glycosylation reaction of the two substrates. For certain
flavonoids (2, 4, 5 and 6), the three ApUFGTs all exhibit strong positional selectivity, resulting in only one
glycosylation product. Other flavonoids can be converted into different multi-site glycosylated products
(7-11). Interestingly, for a non-natural (synthetic) substrate (13), ApUFGT1 and ApUFGT2 can catalyse
the formation of N-glycoside bonds, highlighting the potential of these enzymes as multifunctional
glycosylation tools.

3.4. UPLC-Q-TOF-MS confirmation of glycosylation products

The structures of the glycosylated products were verified using UPLC-Q-TOF-MS analysis by comparing
the retention time (f), UV (Amax) and parent ions ([M + H]") of the glycosylated products with the
corresponding standards (electronic supplementary material, figures S1-S15). Product peak 1c was
confirmed as apigetrin, namely, apigenin 7-O-glucoside. Product peak 7d was identified as populnin,
namely, kaempferol-7-O-B-D-glucopyranoside. Product peak 8a was identified as prunin, naringenin-
7-O-B-p-glucoside. Product peak 9a was identified as daidzin, namely, daidzein 7-O-B-p-glucopyranoside.
Product peak 10b was identified as genistin, namely, genistein 7-O-glucoside.

3.5. Biochemical properties of ApUFGTs

Temperature and pH are two of the most important factors affecting enzymatic activity. The effects of
different reaction temperatures (20-60°C) on the glycosylation of wogonin catalysed by ApUFGTs
were investigated. The results showed that the three ApUFGTs all exhibited the highest enzymatic
activity at 40°C. When the reaction temperature exceeded 40°C, the enzymatic activity decreased
rapidly with increasing temperature, while the enzymatic activity remained low when the reaction
temperature was below 30°C (figure 5). Therefore, the optimum temperatures of the ApUFGTs were
all approximately 40°C. In the range of pH 7-8, the ApUFGTs all had higher enzymatic activities, but
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when the pH of the reaction system was below 6 or above 8, the activity decreased significantly (figure 6).
Therefore, the optimum pH values for ApUFGTSs were all approximately 8.0.

4. Discussion

Glycosyltransferases bear considerable importance owing to the fact that glycan moiety forms a
necessary element of the plant secondary metabolisms, and can alleviate these disadvantages of
chemical glycosylation [30]. With the progress in next-generation sequencing technologies and the
reduction in the cost of sequencing, transcriptome analyses have become an important method for
identifying the genes that participate in the biosynthesis of natural products, which can provide
genetic information, gene expression levels and the basis for subsequent screens of candidate genes
[52]. To identify the enzyme responsible for the glycosylation of flavonoids in A. paniculata, time-
coursed transcriptome sequencing with MeJA treatment was performed, which may be a powerful
tool for the further characterization of UGTs or other genes involved in secondary metabolisms.

Although significant progress has been made recently in the identification of putative UGT genes of
many plant species, reports that documented the characterization of UGT family proteins with catalytic
promiscuity remain relatively small. Here, we report a total of three UGTSs from the leaves of A. paniculata,
which exhibited broad substrate tolerance towards multiple flavonoids and could glycosylate various
hydroxyl sites on flavonoids in vitro to preferentially form 7-O-glucoside products. The phylogenetic
and sequence analysis of ApUFGTs reflect the diversity of glycosyltransferases in the same plant.
With the continuous mining of glycosyltransferases in A. paniculata, novel enzymes with glycosylation
activity will be identified, and the biosynthetic pathway of active components in A. paniculata will also
be elucidated.

5. Conclusion

Using transcriptome sequencing, we identified and characterized three glycosyltransferases from
A. paniculata (ApUFGTs), all of which could glycosylate flavonoids with various structures
and preferentially glycosylate the 7-OH of their A ring. These enzymes also exhibited catalytic
promiscuity in the glycosylation of different hydroxyl groups on flavonoids. In addition, ApUGT1
and ApUGT?2 were capable of catalysing O-, and N-glycosidic bond formation. Biochemical properties
and phylogenetic analysis of ApUFGTs were also investigated. These three glycosyltransferases
could be effective enzymatic tools for the synthesis of flavonoid glycosides with different types of
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structures. This study not only holds considerable promise for the resource development of A. paniculata, [ 11 |
but also facilitates further enzyme engineering in drug design and the discovery of new active
leading compounds.
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