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PREFACE.

IN publishing the following work my principal

intention is to explain difficulties which may be

encountered by the student on first reading the

Principia, and to illustrate the advantages of a

careful study of the methods employed by Newton,

by shewing the extent to which they may be

applied in the solution of problems. I have also

endeavoured to give assistance to the student who

is engaged in the study of the higher branches of

Mathematics, by representing in a geometrical form

several of the processes employed in the Differential

and Integral Calculus, and in the analytical investi-

gations of Dynamics.

In my version of the first section and the begin-

ning of the second I have adhered as closely as

I could to the original form
; and, in the

.
cases

in which sections have been interpolated, or the

form of demonstration changed, I have indicated such

changes and interpolations by brackets.
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It is generally advisable not to deviate from

Newton's words in the demonstrations of the

Lemmas; but in many cases, I suppose purposely,

he expressed himself very concisely, as in Lemmas

iv. and x., and he was contented with simply giving

the enunciation of Lemma v.
;
therefore in these cases

interpolations have been made which, I believe, are

in accordance with Newton's plan of demonstration.

Throughout the Problems and Theorems which

depend upon the sixth proposition, the variations are

replaced by equations. By this method of treating

the subject I conceive that clearer ideas of the

meaning of each step are obtained by the student.

In this edition I have introduced some notes on

the geometrical solution of some problems relating

to maxima and minima, and I have placed the

investigations of the properties of the curves, which,

after the conic sections, are the best examples for

illustrating geometrical methods, in a more pro-

minent position, at the end of the first section.

I have derived great assistance in the preparation

of my notes from the study of Whewell's Method

of Limits, and from several early editions of Newton,

especially that of Carr.

With respect to the three Laws of Motion, I may
remark that I have not commenced the work by

enunciating and making observations upon them,

partly because I should only have been repeating
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what has been said so well by Thompson, Tait,

and Maxwell, whose works are in everybody's hands,

and partly because in the course of reading recom-

mended to students, for whose benefit my work

was especially intended, those laws will have been

already discussed in the elementary treatises on

Dynamics.

The Problems are principally selected from the

papers set in the Mathematical Tripos, and in the

course of the College Examinations, and I have

generally divided them into two portions, the

first of which contains those problems which are

capable of solution by more direct applications of

the propositions which they illustrate, and are

within the powers of a larger number of students

In both portions I have been careful to introduce

very few problems which are not capable of solution

by methods given in the work.

At the end of the work I have given hints for

the solution, and in many cases complete solutions,

of the problems ;
and in doing so I am acting in

direct opposition to my previously expressed opinion,

but additional experience of fifteen years has shewn

me that it a satisfaction to a student who has not

been able to solve a problem to see a solution of

it; and, even when he has been successful, to

compare his solution with that of an older hand.

The principal objection to the publication of solutions
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is that they are frequently referred to prematurely;

but a wise student will treat them only as a dernier

ressort.

In solving the Problems I have noticed two errors

which should be corrected as follows :

XIII. 12 half the chord. . . .is the harmonic mean, &c.

XXVIII. 6 velocity in a circle whose radius is the length
of the unstretched string, &c.

Two sets of Problems have been numbered

XXVII.
,
the second is written XXVII. Us in the

Solutions.

I take this opportunity to express my thanks

to Mr. Stearn, of King's College, for his kindness

in correcting the errors of the press and for many
valuable suggestions.

PERCIVAL FROST.

CAMBRIDGE,

February, 1878.
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NEWTON'S FIRST BOOK

CONCERNING THE MOTION OF BODIES.

SECTION I.

ON THE METHOD OF PRIME AND ULTIMATE RATIOS-

LEMMA L

Quantities, and the ratio of quantities, which, in any finite

time, tend constantly to equality, and which, before the

end of that time, approach nearer to each other than by

any assigned difference, become ultimately equal.

If not, let them become ultimately unequal, and let their

ultimate difference be D. Hence [since, throughout
the time, they tend constantly to equality], they
cannot approach nearer to each other than by the

difference D, contrary to the hypothesis [that they
approach nearer than by any assigned difference.

Therefore, they do not become ultimately unequal,
that is, they become ultimately equal].

Variable Quantities.

1. The Quantities, of which Newton treats in this Lemma,
are variable magnitudes, described by a supposed law of con-

struction, the variation of these magnitudes being due to the-

arbitrary progressive change of some element of the construc-

tion employed in the statement of the law.

When, in the progressive change of this element, it receives

the last value which is assigned to it in any proposition, the

hypothesis is said to arrive at its ultimate form, or to be

indefinitely extended.
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Thus, let ABP be a semicircle, A CB its diameter, BP any

arc, PM the ordinate perpendicular to AGB, then, as the arc

BP gradually diminishes, AM is a variable magnitude, con-

tinually increasing, and BP is the element of the construction,

to the arbitrary change of which the variation ofAM is due
;

and if BP may be made as small as we please, AM may be

made to approach to AB nearer than by any difference that can

be named, and the hypothesis approaches its ultimate form.

Again, if ABG be a triangle, and AB be divided into a

number of equal portions, Aa, ob, Jc, ..., and a series of parallelo-

grams be inscribed upon those bases, whose sides aa, 5$, 07, ...

are parallel to BC and terminated in AC, the sum of the areas

of the parallelograms will be a variable magnitude, defined by
that construction, and changing in a progressive manner, if the

number of parts into which AB is divided be continually
increased. In this case the number of parts is the variable

element of the construction. In the ultimate form of the

hypothesis, it will be shewn, Lemma II., that the sum of the

parallelograms is the area of the triangle when the number
is increased indefinitely.

2. The variation of a magnitude is continuous, when in the

passage from any one value to any other, throughout its change,
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it receives every intermediate value, without becoming infinite.

When this is not the case, the variation is discontinuous.

According to the hypothesis in the last illustration, the

number of parts into which AB is divided being exact, the

magnitude varies discontinuously, i.e. the sum of the areas does

not pass through all the intermediate values between any two

states of the progress.

If the hypothesis be changed, equal portions being set off

commencing from B, and Aa remaining over and above after

ba, the last of the portions for which there is room, these equal

portions could be made to diminish gradually, and the sum of

the areas would in that case vary continuously.

Tendency to Equality.

3. Quantities are ultimately equal, when they are ultimately

in a ratio of equality.

4. Quantities, which always remain finite, throughout the

change of the hypothesis by which they are described, tend

continually to equality, when their difference continually dimi-

nishes.

Thus, in fig. 1, page 2, let BQ be an arc, always in a given
ratio to BP, and let QN be the corresponding ordinate

;
a

BP continually diminishes, AM and AN remain finite, and,

since their difference continually diminishes, they tend con-

tinually to equality.

5. Quantities, which may become indefinitely small, or in-

definitely great, as the hypothesis is indefinitely extended, tend

continually to equality, when the ratio of their difference to

either of them continually diminishes.

To illustrate this test of a tendency to equality, let us

suppose, in fig. 1, page 2, that the arc BP is double of the arc

BQ; then, since (chdP)
2 = AB.BM, and (chd)

2 = AB.BN,
.-. BM :BN::

: (zrcBP}
2

: (zrcBQ)* : : 4 : 1 ultimately,

MN: BN::Z:l ultimately;
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hence, we observe that BM and BN have a difference, which

tends continually to become 32LV, the ratio of which to either

is finite, so that, although both tend to become indefinitely

small as the hypothesis tends to its ultimate form, BM and

BN do not satisfy the condition requisite for a tendency to

equality.

Observations on the Lemma.

6. We will now proceed to examine the force of the other

important terms employed in the statement of the first Lemma.

The expression
" in any finite time

"
(tempore quovis finito),

signifies what has been called the indefinite extension of the

hypothesis from some definite state to its ultimate form.*

The law of the variation of the magnitudes under considera-

tion is obtained by the examination of their construction while

the element, to which the change is due, is at a finite distance

from its final value, and the finite time is the supposed time

occupied in the passage from this definite to the ultimate state.

In the first illustration, Art. 1, it denotes the progressive

diminution of BP, from being a finite magnitude to the point

of evanescence.

In the second, the progress from any finite number of equal

portions to an indefinite number.

7. The expression
" which constantly tend

"
(quae constanter

tendunt) signifies that, from the commencement of the finite

time to the limit of the extension of the hypothesis, the dif-

ferences continually diminish.

To illustrate this mode of expression, let BC be a quadrant

WhewelTs Doctrine of Limits.
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of a circle whose bounding radii are OB, OC, and let BDA
be a straight line cutting the arc BDC and the radius OC in

D and A, and let OP be a radius revolving from OC to OB,
and cutting BA in Q, E the point of bisection of the arc BD.

OP and OQ twice tend to equality, viz. from OG to OZ)

and from OE to OJ?, and once from equality from OD to

OE; it is only from OE to 05 that OP" and OQ' tend to

equality constantly during the progress, and it is from some

position between OE and OB that the finite time must be con-

sidered to commence.

8.
" Before the end of that time

"
(ante finem temporis)

implies that, however small the given difference may be, a less

difference than that difference is arrived at, while the distance

from the ultimate state is still finite, however near to the final

state it may be necessary to proceed.

Thus, if,
in the last figure, the angle BOD be 60, the

radius one inch, and the given difference jofihny or T f ^ of

an inch, the difference PQ will be less than the given difference,

if the revolving radius be 2' or 1', respectively, from the ultimate

position ;
and so on, however small we choose the difference.

9. In the proof of the Lemma, if the ultimate difference be

D, the quantities cannot approach nearer than by that given

difference; otherwise, they would, in one part of the pro-

gression, have been tending from equality in order to arrive

ultimately at that difference, contrary to the statement of the

proposition in the words " ad aequalitatem constanter tendunt."

The nature of the proof, which is more difficult than may at

first sight appear, can be illustrated as follows, by examining
the effect of the omission of some of the points in the statement

of the Lemma.
Draw Oy, Ox at right angles, AB any straight line meeting

Oy in A, CED a curve touching AB in E and meeting Oy in

O, CD' another touching a straight line parallel to AB in
(7,

MQPP' a common ordinate.

As OM diminishes until it becomes indefinitely small,

MQPP' moves up to Oy.
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In both curves, the ordmates MQ and MP or MP' have an

ultimate difference CA, equal to D suppose.

Omit the word "
constanter," and the curve CED is admissi-

ble in a representation of the approach of the quantities ;
because

the ordinates approach, before the end of the time, nearer than

by any assignable difference, as at E
t although the condition of

continual tendency to equality is not satisfied.

Omit the words " ante finem temporis," and CD' will be suf-

ficient
; for, in this case, they tend continually to equality, but

before the end of the time they do not approach nearer than by
any assignable difference, and they are ultimately unequal.

In the case of the dotted line ARF touching AB at A, all

the conditions are satisfied. QM and EH tend continually to

equality, and their difference may be made less than any given
difference before OM vanishes.

Limit ofa Variable Quantity.

10. When a variable quantity tends continually to equality
with a certain fixed quantity, and approaches nearer to this

quantity than by any assignable difference, as the hypothesis

determining its variation is approaching its ultimate form, this

fixed quantity is called the Limit of the variable quantity.
The tests are : that there should be a tendency to equality ;

that this tendency should be continued from some finite

condition; and that the approach should, during the progres-
sion to the ultimate form, be nearer than by any assignable
difference.

Thus, as is mentioned in the Scholium at the end of the
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section, the variable quantity does not become equal to, or surpass

the limit, before the arrival at the ultimate form.

Limiting Ratio of Variable Quantities.

11. If two quantities continually diminish or increase, and

the ratio of these quantities tends continually to equality with

a certain fixed ratio, and may be made to differ from that ratio

by less than any assignable difference, as the hypothesis deter-

mining their variation is indefinitely extended, this fixed ratio

is called the limiting ratio of the varying quantities.

Ultimate Ratio of Vanishing Quantities.

12. When the ultimate form of the hypothesis brings the

quantities to a state of evanescence, they are called vanishing

quantities ; and the limiting ratio, or the limit of the ratio, is

the ultimate ratio of the vanishing quantities.

The expression
"
vanishing quantities

"
does not imply that

the quantities are indefinitely small while under examination, but

only that they will be so in the ultimate form
;
which observa-

tion implies that the ratio of the vanishing quantities is not an

equivalent expression with the ultimate ratio of the vanishing

quantities, the former being taken " ante finem temporis."
" Ultimas rationes illae quibuscum quantitates evanescunt, re-

vera non sunt rationes quantitatum ultimarum." See Scholium,
at the end of the section.

Thus, let GC, FG be two straight lines intersecting AB in

G, Fj and draw ADE, MPQ, perpendicular to AB.
Let a, /3 be the areas AMPD, AMQE, then it is easily found

C
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that a: &:: AD+MP: AE+MQ; now, let MPQ be sup-

posed to move up to ADE, then, in the ultimate form of the

hypothesis, a and ft vanish, and are called vanishing quantities

from this circumstance.

Also, the ultimate ratio of the vanishing quantities is

AD : AE.
In this case, since HP : MQ is not equal to AD : AE, the

ratio of the vanishing quantities, viz. AD + HP : AE-+ MQ,
is different from AD : AE, the ultimate ratio.

Orders of Vanishing Quantities.

13. When we have to consider various kinds of vanishing

quantities, it is necessary to consider their relative magnitudes,
and for this purpose if one of them be selected as a standard

of small quantities, this quantity, and all the vanishing quan-
tities of which the ultimate ratio to it is finite, are called

vanishing quantities of the first order.

If a, ft be any two vanishing quantities, and ft : a. vanish

in the limit, ft is said to be a vanishing quantity of a higher
order than a.

If a be of the first order, and ft : of be ultimately finite,

ft is called a vanishing quantity of the second order, and so on

for higher orders.

Trigonometrical functions give familiar illustrations of these

orders; let 6 be taken as the standard of vanishing quantities;

sin# tan2#, sin^0 are all of the first order, since their ratios

to 6 are ultimately 1, 2 and
; vers#, which is equal to

2sin
a

^0 is of the second order, tan#- Q and 6-smd are of

the third order.

Quantities which become infinite in the ultimate state are

also classified in a similar manner according to orders.

Prime, Ratios.

14. If the order of the change in the form of the hypo-
thesis be reversed, or the varying quantities be tending from

equality, having started into existence from the commencement
of the time, the quantities are called nascent quantities ; and the
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ratio with which they commence existence is called the prime
ratio of the nascent quantities.

(1) Limit of
-

,
as x gradually diminishes, and ulti-

2 x

Application of Lemma I to the investigation of certain Limits.

(1) Limit q

mately vanishes.

Since the difference between and - is
,
this

difference continually diminishes as x gradually diminishes, and,

by diminishing x sufficiently, may be made less than any

assignable difference.

1 -4- x
Hence,

- - will tend continually to equality with
,
if we

30

commence from some value of x less than 2, and the difference

may be made less than any assignable quantity ante finem tem-

poris, therefore | satisfies all the conditions of being the required

limit.

2 ~4- oc

(2) Limit of : ,
when x increases indefinitely.

t) "r o3C

Since the difference - =
-y- ,

which continu-
O *T" O32 O O ( ~f~ OJC\

ally diminishes as x increases, and may be made less than any

assignable difference
; therefore, as before, ^ satisfies all the con-

2 -f x
ditions of being a limit of .

O ~r oJC

(3) Tangents are. drawn to a circular arc, at its middle point,

and at its extremities. Shew that, when the arc diminishes, the

area of the triangle formed by the chord of the arc, and the twc

tangents at the extremities, is ultimately four times that of tht

triangle formed ly the three tangents.

Let C be the middle point of the arc, AB the chord, FA y

FB, DCE the three tangents, and the centre of the circle,

A FDE : A FAB : FC'2
: FG*.

Now FC(FC+2CO)=FA* = FO.FG-,

.'. FC:Fa::FO:FC+2CO',
C
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therefore, since FC vanishes in the limit, FC : FG ::CO:2CO
and FG = 2FC, ultimately ;

.-. &FDE: &FAB:\ 1 : 4.

(4) Limit of
--

,
when x differs from 1 by an indefinitely

small quantity, m being any number, integral or fractional, posi-

tive or negative.

First, where m is a positive whole number,

which may be made to differ from m by less than any assignable

difference by taking x sufficiently near to unity.

Next, let m = P ^, p, <?,
and r being positive whole

numbers, and let x=y
r

;

x-l y-\ y
r -i y

r-l

This may be made to differ from - "
or m by a quantity

less than any assignable quantity by taking x, and therefore y,

sufficiently near to unity; hence, whether it be integral or

fractional, positive or negative, m is the limit required.

When we divide the numerator and denominator byy- 1,

y is not equal to 1, the time chosen being ante finem temporis
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while the difference is finite. See the direction in the Scholium

referred to above :
" Cave intelligas quantitates magnitudine

determinatas, sed cogita semper diminuendas sine limite."

/ R \ T- -* /. ... , . , , . . .

(5) Limit of
-

p^j
--

,
when n is indefinitely in-

creased, p being any positive number.

Since this sum is the arithmetic mean of the n fractions

therefore, for all positive values of p, integral or fractional, it

(1

\
P

fn\
P

-'} and [
-

1 or 1, therefore its ultimate value lies
nj W

between and 1.

This being an important limit, we will investigate it first for

the particular case in which p is integral and positive, and then

generally when p is any positive quantity.

Let =lp + 2 p
+...4 n";

then #

If therefore we assume that

Sn
= An1*1 + Bnp +. . .4 Ln.+ M,

then S =^n + l

we obtain, by equating the coefficients, p + 1 equations for

determining the values of the p + 1 constants A, S}
... L, which

reduce the equation to an identity.

The first of these equations is 1 = (p + 1) A ;

/. 5. --i^.tif" + -&!+...,
p + 1

, S 1 B C M
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hence, if n be increased, since the number of the terms following
i Q 1

is finite, we may make the difference between J\ and
-

diminish until it becomes less than any assignable quantity ;

therefore is the limit required.
p + i

Next, let p be any positive quantity, and let I be the limit of

in which p -f 1, /S, 7... are in descending order, and ^I
7*

vanishes, when n is made infinitely large ;

...4 n+1' ==?/*+ l

-I -1

-+...;

n n

therefore, observing that, when n is increased indefinitely,

i+i-

IJI+ llmit of

where e, e',
... vanish ultimately. Let e

t
be the greatest of the

quantities e, e', ..., and let all the terms be positive, then

(1+ e) #/ + ... is less than (1 + e, (.Brf + 1
Cn7

+...) ,

and, since -5 , -5 ... are each less than 1,
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which vanishes in the limit, hence 1 = (p + 1) I ultimately ;

1

p +
therefore . is the limit required.p+l

COE. is evidently also the limit of the sum

,
since -^ vanishes in the limit.

,

(6) If a straight line of constant length slide with its ex-

tremities in two straight lines, which intersect at a given angle A,
and BC, be be two positions of the line intersecting in P, which

become, ultimately coincident, find the limits of the ratios Cc : Bb
andPC:PB.

By hypothesis, BC* = bc*,

but BC* = BA*'+CA*-2BA.CAcosA,
and Jc

2 = bA* +cA'- 2bA .cA cosA
;

.: Cc : Bb:: BA + bA- 2cA cosA : CA + cA- 2BA cosA

::BA- CA cosA :CA-BA cosA ultimately.

Draw CN, BM perpendicular to AB, A (7,
therefore the limit

of the ratio Cc : Bb is BN : CM.
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Again, let BQ, drawn parallel to A C, meet be in Q,

then PC: PB:: Cc : BQ;
also Cc : Bb :: BN : CM ultimately,

and Bb :BQ :: Ab : Ac;

.-. Cc:BQ:: BN.AB : CM.AC ultimately.

Draw AR perpendicular to BC, then BN.AB=BR.BC
and CM.AC=CR.BC-,

.: PC: PB::BR: CR',

.: PC=BR and PB=CR.

I.

1. ARE the limits of the ratios y* : x equal in any of the three

equations

when x is indefinitely diminished ?

2. Find the limit of
* + 3

(1) when x is indefinitely diminished,

(2) when x is indefinitely increased.

3. Find the ultimate ratio of the vanishing quantities ax + bx*,

Ix + ax*, when x is made indefinitely small.

4. Prove that a - Ix and I -ax tend to equality as x diminishes
to zero, and yet have not their limits equal.

5. BA C, IAc are two triangles, in which AB, Ab and AC, Ac
are coincident in direction, and BC, be intersect in P; prove that,
if the areas of the triangles be equal, as B, C and b, c approach,
each to each, P will be ultimately in-the point of bisection of BC.

6. APQ, ABC are two straight lines which are intersected by
two fixed lines BP, CQ, prove that, as APQ moves up to ABC,
PC and QB intersect in a point whose ultimate position divides BC
in the ratio of AB : AC.

7. Tangents are drawn to a circular arc at its middle point,
and at its extremities, and the three chords are drawn. Prove
that the triangle contained by the three tangents is ultimately
one-half of that contained by the three chords, when the arc is

indefinitely diminished.
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8. AP is a chord of a given circle, A Q a chord near AP, find

the position of the point of ultimate intersection of circles described

on AP, AQ as diameters, when AQ approaches to and ultimately
coincides with AP.

9. A circle passes through a fixed point, and cuts off from a

fixed line a chord PQ of constant length, prove that the chord

of ultimate intersection of two consecutive circles bisects PQ.

10. PN is an ordinate, and PT& tangent to an ellipse, cutting
the axis-major in N and T respectively ;

A being the vortex, shew
that as P approaches A, NT is ultimately bisected in A.

11. APQ is a parabola, PM, QN ordinates to the axis AMN,
with centres M and N and radii I'M, QN two circles are drawn

;

prove that, when N approaches indefinitely near to M, if the two
circles intersect, the distance of their point of intersection from PM
is ultimately equal to the semi-latus rectum. What is the condition

that the circles may intersect ?

n.

1. What is the test of tendency to equality? If two quantities
diminish so that their difference diminishes, prove that they will

tend to or from equality according as the ratio of their rates of

decrease is greater or less than the ratio of the greater to the less.

2. ABC is an isosceles triangle, base BC\ P, Q are points on
the straight lines CA, CB such that AP is always twice BQ;
prove that, if PQ and AB intersect in R, and R be the ultimate

position of R, when AP is indefinitely diminished,

KB : A C : : A C : 2BC - A C.

3. PMP' is a double ordinate of an ellipse, whose centre is (7;

R is the point of ultimate intersection of the circles described on
PP' and the next consecutive double ordinate respectively, and RT
is the ordinate of R. Shew that TM : CM: : BC Z

: AC 2
. What

is the condition that these circles may intersect ?

4. Two concentric and coaxial ellipses have the sum of the

squares of their axes equal; if the curves approach to coincidence

with each other, shew that the ratio of the distances of any one
of their points of intersection from the axes will be ultimately
equal to the inverse ratio of the squares of the axes.

5. If a triangle be inscribed in a given circle, prove that the

algebraic sum of the small variations of its sides, each divided by
the cosine of the angle opposite to it, will be equal to zero.
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6. ABC, APQ are drawn to cut a circle from an external

point A; BV, CT are tangents at B and C to the circle, meeting
APQ, in U, T; shew that the ultimate ratio of PU : QT, when
APQ moves up to ABC, is AB' : AC'.

7. BCRA is a diameter of a circle whose centre is C, and PRQ
is a chord in it perpendicular to BA. PR is bisected in S, and
CS meets the circle in S'. If tangents at P and S' meet BA in T
and T', shew that when P moves up to A, AT= 4AT' ultimately.

8. If the quadrilateral ABCD be slightly displaced in its own
plane, so as to occupy the position abCD, and be the point of
intersection of DA, CB, prove that the point of ultimate inter-

section of ab and AB will be the foot of the perpendicular from

upon AB.

9. PSp, QSq are focal chords of a parabola, prove that, ulti-

mately, when P moves up to Q,

PQ-.pq:: SP* : Sp*.

10. The extremities of a straight line slide upon two given
straight lines, so that the area of the triangle formed by the three

straight lines is constant
;

find the limiting position of the chord
of intersection of two consecutive positions of the circle described
about that triangle.
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LEMMA IL

If, in any figure AacE, bounded by the straight lines Aa, AE
ani the curve acE, any number ofparallelograms Ab, Be,
Gd, fyc. be inscribed upon equal bases AB, BO, CD, fyc.,

and having sides Bb, Cc, Dd, fyc. parallel to the side Aa
of thefigure ; and theparallelograms aKbl, bLcm, cMdn,
Sfc. be completed; then, if the breadth of these parallelo-

grams be diminished, and the number increased indefi-

nitely, the ultimate ratios which the inscribed figure

AKbLcMdD, the circumscribed figure AalbmcndoE, and
the curvilinear figure AabcdE have to one another, will

be ratios of equality.

For the difference of the inscribed and circumscribed

figures is the sum of the parallelograms Kl, Lm, Mn,
Do, that is (since the bases of all are equal) a paral-

lelogram whose base is Kb, that of one of them, and
altitude the sum of their altitude's, that is, the paral-

lelogram ABla. But this parallelogram, since its

breadth is diminished indefinitely [as the number of

parallelograms is increased indefinitely] becomes less

than any assignable parallelogram ; therefore, by
Lemma I., the inscribed and circumscribed figures,

and, a fortiori, the curvilinear figure, which is inter-

mediate, become ultimately equal.
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LEMMA III.

The same ultimate ratios are also ratios of equality, when

the breadths of the parallelograms AB, BC, CD, ... are

unequal, and all are diminished indefinitely.

Jt F C J)

For, let AF be equal to the greatest breadth, and the

parallelogram FAaf be completed. This parallelo-

gram will be greater than the difference between the

inscribed and circumscribed figures. But, when its

breadth is diminished indefinitely, it will become
less than any assignable parallelogram. [Therefore,
a fortiori, the difference between the inscribed and
circumscribed figures will become less than any
assignable areas. Hence, by Lemma I., the ultimate

ratios of the inscribed and circumscribed and the

curvilinear figure, which is intermediate, will be
ratios of equality.]

COR. 1. Hence the ultimate sum of the vanishing paral-

lelograms coincides [as to area] with the curvilinear

figure.

COR. 2. And, a fortiori, the rectilinear figure which is

bounded by the chords of the vanishing arcs ab, be,

cd, &c., ultimately coincides with the curvilinear

figure.

COR. 3. As also the rectilinear circumscribed figure,
which is bounded by the tangents at the extremities
of the same arcs.

COR. 4. And these ultimate figures, with respect to

their perimeters acE, are not rectilinear figures, but
curvilinear limits of rectilinear figures.
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Observations on the Lemmas II. and III.

15. The statements of the propositions concerning limits of

quantities and their ratios contain :

I. The hypothesis by which the quantities are defined.

II. The manner in which the hypothesis approaches its

ultimate form.

III. The ultimate property when the hypothesis is thus

indefinitely extended.

The strength of the proofs lies in the examination of the

quantities while the hypothesis is in a finite state, before arrival

at the ultimate form, and the deduction of properties by which

the relations of the quantities can be pursued accurately to the

ultimate state.

If in this manner we analyse the statement of Lemmas II.

and III., the hypothetical constructions are given in the manner

of describing the parallelograms; the extension of the hypo-
thesis towards its ultimate form is the continual increase of the

number of parallelograms ad infinitum ; the ultimate property is

the equality of the ratio of the sums of the parallelograms and

the curvilinear area.

In the proof of the Lemmas, the continual decrease of the

parallelograms Al or Af shews that the conditions of ultimate

equality of two quantities are all satisfied, viz., that the sums

of the two series of parallelograms, since they are finite, tend

continually to equality, and that they approach nearer to each

other than by any assignable difference " ante finem temporis,"

i.e.)
while the number of the parallelograms still remains finite.

Volumes of Revolution.

16. In a manner exactly similar to Lemma II. it may be

shewn that, if Aa be perpendicular to AE, and the whole

figure revolve round AE as an axis, the ultimate ratios, which

the sums of the volumes of the cylinders, generated respectively

by the rectangles Ab, Be, ... and aB, bC, ... and the volume

of revolution generated by the curvilinear area AEa will have

to each other, will be ratios of equality.
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The figure represents the cylinders generated by the in-

scribed rectangles.

Thus the difference of the cylinders generated by Ab and

aB is the annulus generated by the rectangle a5, and the

difference of the two series of cylinders, which have all equal

heights AH, J5(7, .., is the sum of such annuli, and is easily

seen to be the cylinder generated by aB, which, since the height

continually diminishes, may be made less than any assignable

volume, hence the conditions that the two series may have the

same limit are satisfied, and hence also the volume of revolution,

which is greater than one sum and less than the other, is

ultimately in a ratio of equality to either sum.

The same argument applies when the revolution is only

through a certain angle instead of being complete, in which

case the cylinders are replaced by sectors of cylindrical volumes.

Sectorial Areas.

17. The Lemmas may be extended to sectorial areas.

JL
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Thus, let SABCFbe a sectorial area, and let the angle ASF
be divided into equal portions ASB, BSC, ... and the circular

arcs Ah', aBc', bCd'j ... be drawn with centre S; then, since

the difference of the two series of circular sectors is the sum
of the areas ab\ be', ...,

it is equal to the difference of the

greatest and least of the sectors, viz. AGrSb'
;

therefore the

two areas SAb'Bc... and SaBbC... tend continually to equality
as the number of angles is increased and their magnitudes

diminished, and the ratios which these areas have to each other

and to the area SABF are ultimately ratios of equality.

Similarly, as in Lemma III., if ASB
: BSC, ... be unequal.

Surfaces of Revolution.

18. The following proposition is the extension of the prin-

ciples of the Lemmas to the determination of a method for

finding the area of a surface of a solid of revolution.

Let CD be a plane curve which generates a surface of revo-

lution by its revolution round AB, a line in its plane.

CD is divided into portions, of which PQ is one, PJf, QN
are perpendicular to AB

; Pp, Qq are drawn parallel to AB, and

each equal to PQ in length ; pm, gn are perpendicular to AB.
The surface generated by CD shall be the limit of the sum of

the cylindrical surfaces generated by such portions as Pp or Qq.

For, the cylindrical surfaces generated by Pp and Qq are

one less and the other greater than the surface generated by PQ

A. M j5T*w Ji

since every portion of Qq is at a greater, and every portion of

Pp at a less, distance from the axis than the corresponding

portions of PQ.
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But these surfaces are respectively ^trPM.Pp and 2irQN.Qq,
and their difference is 2?r

( QN- PM} PQ, and the ratio of this

difference to the surfaces themselves is QN-PM : PM or QN,
which ratio is ultimately less than any given ratio.

Hence the sums of the surfaces generated by the lines corre-

sponding to Pp and Qq have the ratio of their difference to either

sum less than the greatest value of the ratio QNPM: PM,
which may be made less than any finite ratio. Therefore the

sums of the cylindrical surfaces and the curved surface, which

is intermediate in magnitude to these sums, are ultimately in

a ratio of equality.

Centre of Gramty.

19. It is easily seen that the same methods are applicable to

the determination of the position of the centre of gravity of any

body, since it is known that, if a body be divided into any
number of portions, the distance of the centre of gravity of the

body from any plane is equal to the sum of the moments of all

the portions divided by the sum of all the portions.

General Extension.

20. The most general extension may be stated as follows :

If any magnitude A be divided into a series of magnitudes

A^At
...An,

each of which, when their number is increased indefi-

nitely, becomes indefinitely small, and two series of quantities

a
i
a*~'a aQd &A"A can be found such that

an > An
> bn,

and also such that each of the ratios a
l

b
l

: a
t ,

a
2
- 5

2
: a

a ,
...

becomes less than any finite ratio when the number is increased
;

then a
x -h a3 +...-f aB, \+ b

9+...+ tm and A will be ultimately
in a ratio of equality. For, let 1:1 be equal to the greatest
of the ratios a

t
-

b^ : a,, &c.
;

is a ratio less than 1 : 1, and may therefore be made less than
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any assignable ratio by increasing the number. Therefore the

two series 0^ + 0^4... and b
l
+ b

i +... tend continually to equality,

and the difference may be made, before the end of the time, less

than any assignable magnitude ;
therefore the three magnitudes

are ultimately in a ratio of equality.

21. COR. 1. "Omni ex parte" has not been adopted from

the text of Newton, because it requires limitation, for the

perimeters do not ultimately coincide with the perimeter of the

curvilinear area.

In the figure for Lemma II. the perimeter of the inscribed

series of parallelograms is

A+Kb + bL + Lc+...+DA = 2AK+ 2AD,

and the limit of this perimeter is 2Aa + 2AE.

The perimeter of the other series of parallelograms, being
2Aa + 2AE is constant throughout the change, and has properly
no limit.

COR. 2. The perimeter of the figure bounded by the chords

ab, be, ... ultimately coincides with that of the curvilinear figure.

This coincidence will be discussed under Lemma V.

COR. 3. The same is true for the figure formed by the

tangents.

COR. 4. Instead of "propterea," as in Newton, it is advisable

to state, as in Whewell's Doctrine of Limits, that, if a finite

portion of a curve be taken, and many successive points in the

curve be joined so as to form a polygon, the sides of which,

taken in order, are chords of portions of the curves, when the

number of those points is increased indefinitely, the curve will

be the limit of the polygon.

Application to the Determination of certain Areas, Volumes, &c.

(1) Area of a parabola bounded by a diameter and an ordinate.

Let AB, BC be the bounding abscissa and ordinate. Com-

plete the parallelogram ABCD.
Let AD be divided into n equal portions, of which suppose

AM to contain r, and MN to be the (r 4 l)
th

;
draw MP, NQ
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parallel to AB, meeting the curve in P, Q, and Pn parallel to

MN] the curvilinear area AGD is the limit of the sum of the

JL

series of parallelograms constructed, as PN, on the portions

corresponding to MN.
But parallelogram PJV : parallelogram ASCD

-.'.PM.MN'.CD.AD,

and, by the properties of the parabola,

PM:CD:: AM* :AD*::r*: n\

also MN:AD:: l:n;

.-. PM.MN:CD.AD::r*:n3

;

r*

therefore, parallelogram PN= -, x parallelogram ABCD ;

hence, the sum of the series of parallelograms

x parallelogram

and, when the number of parallelograms is increased indefinitely,

therefore, proceeding to the ultimate form of the hypothesis, the

curvilinear area ACD and the parabolic area ABO will be,

respectively, one-third and two-thirds of the parallelogram
ABCD.

Note 1. If we had inscribed the series of parallelograms in

ABC, AB being divided into n portions, we should have arrived

at the result

l* + 2*+...+ (ft-l)*

.**
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for the ratio of the series of parallelograms to the parallelogram

ABCD, which might thus have been directly shewn to be

ultimately f ;
but the former method is preferable, since the

proof of the value of the limit depends upon simpler principles.

Note 2. If BG had been divided into n equal portions, the

ratio of the parallelogram corresponding to PN to the parallelo-

gram ABGD would have been tf r
2

: w
2

,
and that of area ABG

to parallelogram ABGD the limit of

(2) Volume of a paraboloid.

Let ASH be the area of a parabola, cut off by the axis AH
!>

JT JL

and an ordinate HK, which by its revolution round the axis

generates a paraboloid.

Let AH be divided into n equal portions, and on MN the

(r + l)
th

,
as base, let the rectangle PRNM be inscribed.

Cylinder generated by PN : cylinder by AHKL
::PM\MN:HK\AH.

But PM2
: HK* :: AM : AH:: r : n,

and MN: AH:: 1 : w;

/. PM*.MN:HK\AH::r:n\

Hence cylinder generated by PN= x cylinder by AHKL ;

therefore the sum of the cylinders inscribed is

'"
x circumscribed cylinder,

and the paraboloid is the limit of the series of inscribed cylinders ;

hence the volume of the paraboloid is half that of the cylinder
on the same base and of the same altitude.
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(3) Volume of a spherical segment.

Let AHK generate, by its revolution round the diameter AB,
the spherical segment whose height is AH.

A MJDT X
Divide AH, as before, and make the same construction

;

then PM* =AM.(AB-AM)=-AH.AB--,AH\
fl ft

Volume of cylinder generated by PN=irPM'
t.MN

whence, as before, the limit of the sum

= TTAH* (\AB-lAH],
which is the volume proposed.

COE. If AH=\AB=A C, the segment is a hemisphere whose

volume is TrAC* (AC- %AC) = $7rAC
3

,
which is two-thirds of

the cylinder on the same base and of the same altitude.

(4) Area of the surface of a right cone.

As an illustration of the method of finding surfaces given

above, suppose AHK to be a right-angled triangle, which

revolves round AH, a side containing the right angle, then

the hypothenuse AK generates a conical surface.

Let MN be the (r + l)
th

portion of AH, after division into

n equal portions; MP, NQ ordinates parallel to UK] Pp, Qq
each equal to PQ and parallel to AH.
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The areas generated by Pp and Qq respectively are

2>rrPM.Pp and 2irQN.Q&
and PM:HK'.'.AM:AH'.:r:n,

QN: HK: : AN: AH-.ir + l : n,

PQ:AK::MN:AH:: l:n;

therefore the areas are -^.^irHK.AK and
T
- r̂-.

<2irHK.AK
n* n*

respectively ;
and the conical surface is intermediate in magni-

tude between

and <~H-*+..-

each of which has for its limit TrHK.AK, which is therefore

the area of the conical surface.

Note. The reader may notice the following method of

obtaining the conical surface by development, although it is

not related to the method of limits.

If a circular sector KAK\ traced on paper, be cut out, the

bounding radii AK, A K' can be placed in contact, so that the

boundary KLK' will form a circle.

The figure so formed will be conical, AK will be the slant

side, and HK in the last figure will be the radius of the circular

base, whose length will be the arc of the sector KAK'.

Hence, the area of the conical surface is equal to that of the

sector KAK' = \AK. ZirHK= irHK.AK.

(5) Mass of a rod whose density varies as ih mth
power of

the distance from one extremity.

Let AB be the rod, and let MNbe the (r-f l)
th

portion, when
its length has been divided into n equal parts; and let p.AM

m

be the density at Jf, or the quantity of matter contained in an

unit of length of the rod supposed of the same substance as the

rod at the point M.
The quantity of matter in MN is intermediate between

p.AM
m.MN and p.AN

m
.MN,
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and the ratio of the difference of these to either of them is less

than any assignable ratio when n is indefinitely increased.

Therefore, since AM=-AB, and MN=-AB, the mass

of the whole rod is the limit of

/ i Nth

= f
j

of the mass of a rod of length AB and of uniform

density equal to that of the rod AB at B.

(6) Centre ofgravity of the volume of a hemisphere.

Let CAB be a quadrant, which by its revolution round the

radius CA generates the hemisphere.

A. M JT

Let MR be the rectangle which generates the rtb inscribed

cylinder, so that CM=-xCA and MN= - xCA.
n n

If the mass of a unit of volume be chosen as the unit of

mass, the mass of the cylinder generated by MB will be

;n

hence, the mass of the series of inscribed cylinders will be

and the mass of the hemisphere

Again, the moment of the mass of the cylinder generated

by MRj with respect to the base of the hemisphere, will be
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which differs from TrPM*.MN.CM by a quantity which vanishes

compared with
it,

and is therefore ultimately (-* A irOA*^

therefore the moment of the hemisphere, with respect to its

base, is

(%-$TrCA\ or frCA
4

;

hence the distance of the centre of gravity of the volume of the

hemisphere from
(7,

which is the moment with respect to the

base divided by the mass, is f .(LI.

in.

1. Illustrate the terms "tempore quovis finite" and "constanter
tendunt ad sequalitatem

"
employed in Lemma I. by taking the

case of Lemma III. as an example.

2. Shew, from the course of the proof of Lemma II., that the
ultimate ratio of vanishing quantities may be indefinitely small or

great.

3. Shew that the ratio of the area of the parabolic curve, in

which PM3
QC AM, to the area of the circumscribing parallelogram,

of which one side is a tangent to the curve at A, is 3 : 4.

4. Shew that the volume of a right cone is one-third of the

cylinder on the same base and of the same altitude.

5. AUK is a parabolic area, AITihe axis, and UK an ordinate

perpendicular to the axis, AHKL the circumscribing rectangle.
Shew that the volumes generated by the revolution ofASK round

AH, KI/, AL, and UK are respectively i, |, |, and ^ of the

cylinder generated by the rectangle.

6. The volume of a spheroid is two-thirds of the circumscribing

cylinder.

7. Find the centre of gravity of the volume of a right cone

by the method of Lemma II.

8. Shew that the centre of gravity of a paraboloid of revolution

is distant from the vertex two-thirds of the length of the axis.

9. Find the mass of a rod whose density varies as the distance

from an extremity. Find also its centre of gravity, and shew that

it is in one of the points of trisection of the rod.
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10. The limiting ratio of an hyperboloid of revolution, whose
axis is the transverse axis, to the circumscribing cylinder is 1 : 2

when the altitude is indefinitely diminished, and 1 : 3 when it is

indefinitely increased.

IV.

1. Prove that the areas of parabolic segments, cut off by focal

chords, vary as the cubes of the greatest breadths of the segments.

2. Find the mass of a circle whose density varies as the *wth

power of the distance from the centre.

3. Shew that the abscissa and ordinate of the centre of gravity
of a parabolic area, contained between a diameter AB and ordinate

BC, are
3-AB and \BC respectively.

4. A number of equal squares in one plane with their centres

coincident are arranged consecutively, their sides making equal
small angles, each with the adjacent ones; prove that the limit

of the length of the serrated edge, when the number of squares
is indefinitely increased, is equal to the circumference of a circle

whose radius is a side of the square.

5. By supposing the axis of a parabola portioned off into suc-

cessive lengths in the ratio 1:3:5, &c., apply Lemma III. to find

the area contained by the curve and a double ordinate.

6. Find the volume generated by the revolution of an elliptic
disc about an axis parallel to its major axis, and at such a given
distance as not to intersect the disc.

7. In the curve A CD, BE is an ordinate perpendicular to AD,

and FC is the greatest value of BE, and ^ = sin\^n ) .

Shew that the area ABE varies as SG, where GK is the
ordinate equal to BE of the circle CH, whose centre is F and
radius FC.
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8. In the curve of the last problem shew that the ratio of the
area A CD to the triangle whose sides are AD, and the tangents
AT, DT at the extremities, is 8 : TT*.

9. In the curve APC, in which the relation between any
ON PM

rectangular ordinate PM and abscissa OM is OA log OA

prove that the area contained between the curve, the abscissa OB,
and ordinate J5C, is OA(BC-AO}.
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LEMMA IV.

If in two figures AacE, PprT there be inscribed (as in

Lemmas II., ///.) two series ofparallelograms, the num-

ber in each series being the same, and if, when the breadths

are diminished indefinitely',
the ultimate ratios of the

parallelograms in one figure to the parallelograms in the

other be the same, each to each, then the two figures

AacE, PprT will be to one another in that same ratio.

[Since the ratio, whose antecedent is the sum of the

antecedents, and whose consequent is the sum of the

consequents of any number of given ratios, is inter-

mediate in magnitude -between the greatest and least

of the given ratios, it follows that the sum of the

parallelograms described in AacE is to the sum in

PprT in a ratio intermediate between the greatest
and least of the ratios of the corresponding inscribed

parallelograms; but the ratios of these parallelograms
are ultimately the same, each to each, therefore the
sums of all the parallelograms described in AacE,
PprT are ultimately in the same ratio, and so the

figures AacE, PprT are in that same ratio
; for,

by Lemma III., the former figure is to the former
sum and the latter figure to the latter sum in a ratio

of equality.] Q. E. D.

COK. Hence, if two quantities of any kind whatever be
divided into any, the same, number of parts, and
those parts, when their number is increased and

magnitude diminished indefinitely, assume the same

given ratio each to each, viz. the first to the first,
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the second to the second, and so on in order, the

whole quantities will be to one another in the same

given ratio. For if, in the figures of this Lemma,
the parallelograms be taken each to each in the same
ratio as the parts, the sums of the parts will be always
as the sums of the parallelograms ; and, therefore,
when the number of the parts and parallelograms is

increased and their magnitude diminished indefi-

nitely, the two quantities will be in the ultimate

ratio of parallelogram to parallelogram, that is, (by
hypothesis) in the ultimate ratio of part to part.

Observations on the Lemma.

22. The general proposition contained in the Corollary may
be proved independently in the following manner :

Let A, B be two quantities of any kind, which can be

divided into the same number n of parts, viz. a,, a
2, 3

... B

and 5
t ,

5
2 ,

b
z
...bn respectively, such that, when their number is

increased and their magnitudes diminished
'

indefinitely, they
have a constant ratio L : 1 each to each, so that

a, : J,
: : L (1 -f a,) : I,

where a
t ,
a
2,

... vanish when n is increased indefinitely.

Then, a, + a
g +.,.: J

1
+ J

8 +... being a ratio which is inter-

mediate between the greatest and least of these ratios, each of

which is ultimately L : 1, we have, proceeding to the limit,

A'.Bi:L: 1;

that is,
A and B are in the ultimate ratio of the parts.

23. The proof given in the Prinripia is as follows :
"
For,

as the parallelograms are each to each, so, componendo, is the

sum of all to the sum of all, and so the figure AacE to the figure

PprT, for, by Lemma III., the former figure is to the former sum

and the latter figure to the latter sum in a ratio of equality."

The proof given in the text is substituted for this, because

the demonstration breaks down for any finite distance from the

ultimate form of the hypothesis.
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Application to the determination of certain Areas, Volumes, &c.

(1) Area of an ellipse.

Let ACa be the major axis of an ellipse, BC the semi-minor

axis, ADa the auxiliary circle, and let parallelograms be in-

scribed, whose sides are common ordinates to the two curves.

Let PMNR, QMNU be any two corresponding parallelo-

grams. The ratio of these parallelograms is PH : QM or

BC:AC.

Hence, area of ellipse : area of circle : : BC : AC, but area

of circle = TrA C'
2

;
therefore area of ellipse

= ITA C.BC.

(2) Area of a sector of an ellipse, pole in the focus.

If S be a focus of the ellipse, and SP, SQ be joined,

&SPM : &SQM : : BC : A C,

and area APM : area AQM :: BC: AC,

hence, area ASP : area A8Q : : BC : AC,
but area A8Q = &SCQ + sector ACQ

.'. area, ASP=$ {SC.PM+SC.arcAQ}.

(3) Area of a parabolic curve cut off by a diameter and
an ordinate to the diameter.

In the following investigation it is asserted that when a

chord PQ is drawn to a curve from a point P, as Q moves up
to P, PQ assumes as its limiting position that of the tangent
at P, which is deducible from the idea of a tangent being in the

direction of the curve at the point of contact.

Let AB, BC be the diameter and ordinate; AD the tangent
at A-, CD parallel to AB; P, Q points near each other;

PM, QN and Pm, Qn parallel respectively to AD and AB.
Let QP produced meet BA in T, and complete the parallelo-

grams TAmS, TAnU.
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Then, since QP is ultimately a tangent at P, AT=AM
ultimately, and the parallelogram PU is ultimately double of

T -A. M
the parallelogram Pn, and the complements PN, PU are equal ;

therefore the parallelograms PN, Pn are ultimately in the ratio

2 : 1.

Hence, in the curvilinear areas ABC, ACD two sets of

parallelograms can be inscribed which are ultimately in the ratio

2:1, each to each
;
therefore area ABC is ultimately double of

area ACD, and is therefore two-thirds of ABCD.

(4) Volume of a paraboloid of revolution.

Let AH be the axis of the parabola APK, AHKL the

circumscribing rectangle. Also let PN, Pn be rectangles in-

scribed in the portions AEK, AKL.

Volume generated by PN^irPM\MN=ir.PM.PN.
Volume generated by Pn = ITQN\AM--irPM*.AM

/. vol. by PN: vol. by Pn : : PM.PN: (QN+PM}.Pn,
but QN+PM=%PM and P2V=2Pw, as in (3), and therefore

vol. by PAr=vol. by Pn ultimately; hence, by Cor., Lemma IV.,

the volume of the paraboloid generated by AHK is half the

volume of the circumscribing cylinder generated by AKL.
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(5) Centre ofgravity of a paraboloid of revolution.

Since the volumes generated by PN and Pn are ultimately

equal, the moment of the volume generated by PN with respect

to the tangent plane at A : moment of that generated by Pn

: : AM : \Pm ultimately, i.e. : : 2 : 1
;

hence the moment of volume generated by AHK is twice that

of the volume generated by AKL, and the moment of the

paraboloid
= f moment of the cylinder

= | volume of cylinder x \AH= f volume of paraboloid x AH;
hence the distance of the centre of gravity of the paraboloid from

the vertex is two-thirds of the height of the paraboloid.

(6) Centre of gravity and mass of a rod whose density varies

as the distancefrom an extremity.

Let AB be the rod, MN a small portion of it,
then the

density at M"oo AM.

Construct on AB as axis an isosceles triangle CAD, whose

base is CD, and draw PMR, QNS parallel to CD; then PR,

QS, CD are proportional to the densities at M, N and B;
therefore the mass of MN is proportional to a rectangle inter-

mediate to the rectangles PR, MN and QSj MN, which are

ultimately in a ratio of equality.

Hence the mass of MN is ultimately proportional to the mass

of the rectangle PR, MN, supposed of uniform density, and the

moment of MN, with respect to the line CD, is proportional to

the moment of the same rectangle, since their distance is the

same
; hence, by the Lemma, the moment of the whole rod

: the moment of the triangle with respect to CD
: : the mass of the rod : the mass of the triangle ;
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therefore, the distances of the centres of gravity of the rod and

triangle from CD being the same, the centre of gravity of the

rod is at a distance \AB from B.

Also, the mass ofMN being proportional to the area PEN,
the mass of the rod is proportional to the area of the triangle

ACD, and the mass of a rod of uniform density equal to that

at B, and of length AB, being in the same proportion to the

rectangle AB, CD, is therefore double of the mass of the rod.

(7) Centre ofgravity of a circular arc.

Let be the centre of an uniform circular arc ABC, OB
the bisecting radius, aBc a tangent at B, OD parallel to ac,

and Aa, Cc parallel to OB.

Let QR be the side of a regular polygon described about the

arc, P the point of contact, Qq, Rr perpendicular to ac, and PM
to OB. Then, since OP, OB are perpendicular to QR, qr,

qr: QR::OM:OP::OM: OB-,

but, since OM, OB are the distances of the centres of gravity of

QR and qr from OD, and QR.OM=qr.OB, the moments of

QR and qr with respect to OD are in a ratio of equality, and

the same is true of every side of the circumscribing polygon ;

therefore, by Cor., Lemma IV., the moment of the arc, which is

ultimately that of the polygon, is equal to the moment of ac

= ac.OB= chord A C. radius OB.
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Hence, the distance of the centre of gravity of the arc from

radius x chord

(8) Surface of a segment of a sphere.

Let AKH be the portion of a circle which generates by
revolution round AH the spherical segment, the centre of

the circle, PQ the chord of a small arc, PMt QN perpendicular
to AH.

Let AOCD be the rectangle circumscribing the quadrant
and generating the circumscribing cylinder.

Produce 1/P, NQ, HK to meet CD in p, q, k. Since PQ
is in its limiting position a tangent at P, PQ is ultimately

perpendicular to the radius OP, also pq is perpendicular to MPj
.'. PQ:pq:: OP: PM ultimately,

and the surface generated by PQ is ultimately 2TrPM.PQj
Art. 18,

= 27r.0P.p2 == the surface generated

The same is true for each side of the inscribed polygon when

the number is indefinitely increased.

Hence the surface generated by AK, or the surface of the

spherical segment, is equal to the surface of the circumscribed

cylinder cut off by the plane of the base of the segment.

COR. Hence, also, the surface of any belt of a sphere cut off

by two parallel planes is equal to the corresponding belt of the

cylindrical surface.



LEMMA IV. 39

(9) Centre ofgravity of a belt of the surface of a sphere con-

tained between parallel planes.

The moment of the belt generated by PQ with respect to the

plane through A, perpendicular to AH, is evidently ultimately

equal to that of the belt generated by pq ;
therefore the moment

of any belt generated by K'K is equal to that of the cor-

responding belt generated by k'k.

Hence, the centres of gravity of the two belts are coincident,

viz. in the bisection of HH', that
is, the distance of the centre of

gravity of a spherical belt, contained between parallel planes, is

half-way between the two planes.

(10) Volume ofa spherical sector.

Let the spherical sector be generated by the revolution of the

sector A OP about A 0.

The volume of the spherical sector is equal to the limit of the

sum of a series of pyramids whose vertices are in 0, and the sum

of whose bases is ultimately the area of the surface of the seg-

ment
;

also the volume of each pyramid is ^ base x altitude.

Hence, the volume of the spherical sector is one-third of the

area of the surface of the spherical segment x radius

= $ . ZirAD.Dp .A =
ITTAM.AOi = lirA(? ver&POA.

(11) Centre ofgravity of a spherical sector.

If we suppose each of the pyramids on equal bases, they may
be supposed collected at their centres of gravity, whose distances

are \AO from ultimately, and they form a mass which may
be distributed uniformly over the surface of a spherical segment
whose radius is \AO, viz. that generated. by ar, whose centre

of gravity will be in the bisection of am, if rm be perpendicular

to AH.
Therefore the distance of the centre of gravity of the spherical

sector from = $ (
Oa + Om) = \OA. cos^POA.

If the angle POA become a right angle, the distance of the

centre of gravity of the corresponding sector, which in this case

will become the hemisphere, will be OA, as in page 29.

(12) To find the direction and magnitude of the resultant

attraction of a uniform rod upon a particle, every particle of the
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rod "being supposed to attract with a force which varies inversely

as the square of its distance from the attracted particle.

o

CD P <i A
Let AB be the attracting rod, the particle attracted by the

rod; draw 00 perpendicular to AB, join OA, OB, and let a

circle be described with centre and radius 00 meeting OA,
OB in a, b. Let OpP, OqQ be drawn cutting off the small

portions pq, PQ from the arc a Cb -and the rod, respectively,

and draw PR perpendicular to OQ.

Then PR : PQ : : 00 : OP ultimately,

and pq iPR:: Op : OP
;

.-. pq:PQ::0^: OP*
,

and, if aCb be of the same density as the rod and attract

according to the same law,

attraction ofpq on : attraction of PQ : :
pq .

PQ
ultimately.

Therefore the portions PQ, pq of the rod and arc attract

in the same direction with forces which are ultimately equal.

Hence, by Cor., Lemma IV., the resultant attraction of the

rod is the same as that of the arc aCb, which, by symmetry,
is in the direction OD, bisecting the angle A OB.

Again, draw qn perpendicular to OD, pr to qn] then, by
similar triangles, pqr, qOn,

pq : qr : : Oq : On
;

pq On
*'

0?
'

~0q

.

00*

that is, the resultant attraction ofpq in the direction OD is the
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same as that of qr at the distance OC] hence the whole re-

sultant attraction of AB is

where
//-

is the attraction of a unit of mass at the unit distance.

V.

1. Shew that the area of the sector of an ellipse contained

between the curve and two central distances varies as the angle
of the corresponding sector of the auxiliary circle.

2. Prove that the volumes of two pyramids will be equal if

they stand on the same base, and have their vertices in the same

plane parallel to the base.

3. Find the volume of a paraboloid by comparison with the

area of a triangle whose vertex and base are those of the generating
parabola.

4. Find the centre of gravity of the paraboloid by reference

to the same triangle.

5. Find the mass of a straight rod, whose density varies as the

square of the distance from one extremity, by comparison with
a cone whose axis is the rod.

6. Shew that the orthogonal projection of any plane area on
another plane is the given area x the cosine of the inclination of
the two planes.

As a first step, prove that, pqsr being the projection of the

inscribed parallelogram PQSR, pqsr : PQSR : : cosAC : 1.

7. Find the volume of a hemisphere by comparing the volumes

generated by the quadrantal sector and the portion of the circum-

scribing square which is the difference between the square and the

quadrantal sector.
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VI.

1. Find the volume of a paraboloid generated by the revolution

of a semi-cubical parabola, in which PM* oc AM 3

, by means of a

cone on the same axis.

2. Assuming that the area of a belt of a sphere cut off by two

parallel planes varies as the perpendicular distance between them,
find by the aid of Lemma IV. the area of any portion of the curve

of sines.

3. Prove that, if PQ be a small arc of an ellipse, and CD be

conjugate to CP, the limit of the sum of all the ratios PQ : CD,
taken over the whole perimeter of the ellipse, will be 2ir.

4. P is any point of a curve OP; OX, OF any lines drawn at

right angles through 0, PM, PN perpendicular to OX, OF respec-

tively. Prove that, if area 0PM : area OPN : : m : 1 always, and
the whole system revolve about OX, volumes generated by 0PM,
OPN will be as m : 2.

5. Prove that the surface generated by the revolution of a
semi-circle round its bounding diameter is to the curved surface

generated by the revolution of the same semi-circle round the

tangent at the extremity of the diameter in the ratio of the length
of the diameter to the length of the arc of the semi-circle.

6. Common ordinates MPP', NQQ are drawn to two ellipses
which have a common minor axis, and the outer of which touches
the directrices of the inner; shew that the area of the surface

generated by the revolution of PQ about the major axis bears a
constant ratio to the area MP'Q'N.

7. Prove that the area included between an hyperbola and the

tangents at the vertices of the conjugate hyperbola is equal to the
area included between the conjugate hyperbola and the tangents at

the vertices of the hyperbola.
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LEMMA V.

All the homologous sides of similar figures are proportional,
whether curvilinear or rectilinear, and their areas are in

the duplicate ratio of the homologous sides.

[Similar curvilinear figures are figures whose curved

boundaries are curvilinear limits of corresponding

portions of similar polygons.

Let SAB CD..., sabcd... be two similar polygons, of

which SA, AB, BC, ... are homologous to sa, db,

be, ... respectively.

Then ABiabiiSA: sa,

similarly, BC : be : : AB : ab : : SA : sa,

CD: cdnBC: be :: SA : sa,

therefore, componendo,

AB + BC + CD + ... :ab + bc + cd + ...:: SA: sa.

Now this, being true for all similar polygons, will be
true in the limit, when the number of the sides AB,
BC, ... and ab, be, ... is increased, and their lengths
diminished indefinitely; if, therefore, AE, ae be
curves which pass through the angular points A, B, ...

and a, b, ... of the polygons, these curves will be
curvilinear limits of AB + BC-\- ... and db + be + ...,
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and will be the boundaries of similar curvilinear figures;
therefore the curved line AE : the curved line ae

\: SA: sa:: SE : se.

Again, polygon SAB C. , . : polygon sale. . . : : SA* : sa8

,

and this is true in the limit
; hence, by Lemma III.

Cor. 2, curvilinear area SAE : curvilinear area sae

: : SA' :sa*:: AE* :ae*:: SE* : se*.

Q.E.D.]

Observations on the Lemma.

24. In order to deduce the properties of similar curves, it

is premised, as before mentioned under Cor. 4, Lemma III.,

that, if a finite portion of a curve be taken, and if a polygon
be inscribed in the curve, the sides of which are chords taken

in order of portions of the curve, and the number of sides of

the polygons be increased indefinitely, and the magnitudes a

the same time diminished indefinitely, the curve will be the limit

of the perimeter of the polygon.*
It is not assumed that each chord is equal to the corre-

sponding arc ultimately; this is afterwards proved for a con-

tinuous curve in Lemma VII.

Criteria of Similarity.

25. From the definition of similar curve lines, that they are

curvilinear limits of homologous portions of similar polygons,
the following criteria of similarity can be deduced, all of which

are very convenient in practice ; namely :

(1) One curve line is similar to another when, if any

polygon be inscribed in one, a similar polygon can be inscribed

in the other.

(2) If two curves be similar, and any point S be taken

in the plane of one curve, another point s can be found in the

plane of the other, such that, any radii SP, SQ being drawn in

the
first, radii sp, sq can be drawn in the second, inclined at

* Whewell's Doctrine of Limits.
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the same angle as the former, and such that the following

proportion will hold,

sp : sq : : SP : SQ.

(3) If two curves be similar, and in the plane of one

curve any two lines OX, Y be drawn, two other lines ox, oy
can be drawn in the plane of the other curve, inclined at the

same angle, having the property that the abscissa and ordinate

OM, MP of any point P in the first being taken, the abscissa

and ordinate om, mp of a corresponding point p in the second

will be proportional to the former, viz.,

om :mp:: OM : MP.

And the converse propositions can also be deduced, that if

these proportions hold, the curves will be similar.

26. In order to illustrate test (1), let the arcs AB, db of

two circles have the same centre C, and let the bounding radii

be coincident in direction.

Let ADEB be any polygon inscribed in AB, and let CD,
CE cut ah in d, e

; join ad, de, eb, these are parallel to AD,
DE, EB respectively, and ad : de : eb : : AD : DE : EB; hence

adeb is similar to ADEB; and therefore the arcs ab, AB are

similar.

27. Test (2) may be deduced as follows :

If ABCD..., abed..., fig. p. 43, be corresponding portions

of similar polygons, AB, BC, ... db, be, ... being homologous

sides, and AS, BS, ... be drawn to any point S, construct the

triangle sab equiangular with SAB, and join sc, sd, ....

Then sb : SB : : ab : AB ::lc: BC, and L SBC= L sic
;
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therefore SBC, sic are similar triangles;

hence sc : SC : : sb : SB : : sa : 8A
;

and similarly for sd, se, &c.

Hence, if two polygons be similar, and any point be taken

in one, another point can be found in the other, such that the

radii drawn to corresponding angular points will be propor-
tional and include the same angles.

If we now increase the number of sides indefinitely and

diminish their magnitude, the same property will hold with

respect to the curvilinear limit of the polygon.

Test (3) can be deduced from test (1) in a similar manner.

Centres of Similitude.

28. When two similar curves are so situated that a point

can be found, such that the radii drawn from that point, either

in the same or opposite directions, are in a constant ratio, such

a point is called a centre of similitude.

If the radii be measured in the same direction, the point

will be a centre of direct similitude, and of inverse similitude

if they be measured in opposite directions.

It is easily shewn that there can be only one centre of

similitude of one kind.

Properties of similar curves and application of tests of

Similarity.

(1) Similar conterminous arcs, which have their chords coin-

cident^ have a common tangent.

Let APB, Apb be similar conterminous arcs, ABb the line

of their chords, AQq, APp any straight lines meeting the

curves in Q, q and P, p respectively ;
then A will evidently

be a centre of direct similitude for the two curves; therefore

A Q : Aq : : AP : Ap ;
hence AP, Ap are similar portions of
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the curves, and arcAP: arcAp :: AP: Ap :: AS : Ab; there-

fore the arcs AP, Ap vanish simultaneously, or, when AP
assumes its limiting position AD for the curve APB, this is

also the limiting position of Ap for the curve Apb }
that

is,

the curves have a common tangent.

(2) To find the centres of direct and inverse similitude of any
two circles.

If one of the circles do not lie entirely within the other,

let >S be the intersection of two common tangents to the

circles which intersect in the produced line Cc joining their

centres, and let CQ, cq be radii to the points of contact.

Draw SpP through 8 cutting the circles in p, P, then cq

is parallel to CQ, and CP : cp : : CQ:cq:: CS:cS;
.'. CS: CP::cS:cp',

also GPS, cpS are each greater or each less than a right angle,

and CSP is common to the triagles CPS, cp8\ therefore the

triangles are similar, Euclid VI. 7, and the sides about the

angle CSP are proportional, that is, SP : Sp : : SC : Sc
;

therefore S is the centre of direct similitude.

Similarly, the intersection of two common tangents which

cross between two circles is the centre of inverse similitude.

(3) To find the condition of similarity of two conic sections.

Let the conic sections be placed so that their directrices



48 NEWTON.

are parallel and foci coincident, and let SpP be any line

through the focus meeting them in p, P; draw SaAD and

PQ perpendicular to the directrix DQ of AP, and join SQ,
and let pq, parallel to PQ, meet it in j, and draw gd per-

pendicular to SD.

Then Sd : SD : : Sq : SQ : : Sp : SP; and, if the curves

be similar, Sp : SP will be a constant ratio
;
therefore Sd : SD

is a constant ratio, and dq is a fixed straight line for all

positions of p ; also, since pq : Sp :: PQ : SP, pq : Sp is a

constant ratio
;

therefore qd is the directrix of ap, and, the

constant ratio being the same in both, the eccentricities are

the same.

(4) Instruments, like the Pantagraph and the Eidograpli, for

copying plans on an enlarged or reduced scale are founded upon
the properties of similar figures ;

as are also other methods of

copying, such as by dividing plans or pictures into squares.

The Pantagraph is an instrument for drawing a figure

similar to a given figure on a smaller or larger scale; one of

its forms is as in the figure. AD, EF, GO and AE, DQ, FG
are two sets of parallel bars, joined at all the angles by

compass-joints; at B is a point, which serves to fix the

instrument to the drawing board; at A is a point which is

made to pass round the figure to be reduced or enlarged; at

C is a hole for a pencil pressed down by a weight, and the

pencil traces the similar figure, altered in dimensions in the

ratio of SO : AS or BF: AD.
The similarity of the figure traced by the pencil is a eon-

sequence of continual similarity of the triangles ABD, BFC.
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By changing the positions of the pegs at F and G the figure

described by G may be made of the required dimensions.

For a description of the Eidograph, invented by Professor

Wallace, see the Transactions of the Royal Society of Edinburgh ^

vol. xin.

(5) Volume of a cone whose base is a plane closed Jiyure of

any form.

Let V be the vertex, AB the base, VH perpendicular to the

base from V; let VH be divided into n equal portions, of

which HN is the (r + l)
th

;
and let PQ be the section through M

parallel to AB.
Take VPA any generating line of the cone meeting the

section PQ and the base AB in PA respectively, then

PM-.AH:: VM: VH;
therefore PQ is similar to AB, M, H being similarly situated

points; and, by Lemma V.,

area PQ : areaAB :: r
2

: ri\

also MN: VH:: 1 :;
therefore the volume of the cylinder whose base is PQ and

r
2

height MN = x area AB. VH, and the volume of the cone,

by Lemma II., is one-third of the cylinder whose base is AB
and height VH.

VII.

1. Apply a criterion of similarity to shew that segments of

circles which contain equal angles are similar.

2. From the definition of an ellipse, as the locus of a point
the sum of whose distances from two fixed points is constant, shew
that ellipses are similar when the eccentricities are equal.
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3. Prove that the centre of an ellipse is a centre of inverse

similitude of two opposite equal portions of the circumference of

the ellipse.

4. Employ the properties of similar figures to inscribe a square
in a given semicircle.

5. Construct, by means of similar figures, two circles, each
of which shall touch two given straight lines and pass through a

given point.

6. Deduce the position of the centre of gravity of a circular

sector from that of a circular arc
; shew that the distance from

. 2 radius x chord
the centre is -

.
-

.

3 arc

7. If A be the vertex of a conical surface, G the centre of

gravity of the base, H that of the volume of the conical figure,
shew that AH

8. Find the centre of gravity of the surface of a right cone
on a circular base. Does the method apply to the surface of an

oblique cone?
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If any are ACE given in position be subtended ly a chord

AB, and if at any point A, in the middle of continuous

curvature, it be touched by the straight line AD produced
in both directions, then, if the points A, B approach one

another and ultimately coincide, the angle BAD contained

by the chord and tangent will diminish indefinitely and

ultimately vanish.

For, if that angle do not vanish, the arc ACB will

contain with the tangent AD an angle equal to a

rectilineal angle, and therefore the curvature at the

point A will not be continuous, which is contrary to

the hypothesis, that A was in the middle of con-

tinuous curvature.

Definitions of a Tangent to a Curve.

29. (1) If a straight line meet a curve in two points A, J9,

and if B move up to A, and ultimately coincide with A,
AB in its limiting position will be a tangent to the curve at

the point A.

If two portions of a curve EA and AB cut one another

at a finite angle in A, there will be two tangents AD, AD',
which will be the limiting positions of straight lines AB and

AE, when B and E move up to A along the different portions

EA and BA of the curve respectively. And, similarly, if there

be a multiple point in A, in which several branches of the cnrve

cut one another at finite angles.

(2) The tangent is the direction of the side of the polygon,
of which the curve is the curvilinear limit, when the number

of sides are increased indefinitely.
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This is founded on the same idea of a tangent as defini-

tion (1).

(3) The tangent to a curve at any point is the direction of

the curve at that point.

In order to apply geometrical reasoning to the tangent by

employing this definition, we are obliged to explain the notion of

the direction of a curve, by taking two points very near to one

another, and asserting that the direction of the curve is the

limiting position of the line joining these points when the

distance becomes indefinitely small, a statement which reduces

this definition to the preceding.

Observations on the Lemma.

30. " Curvatura Continua," if we consider curves as the

curvilinear limits of polygons, requires the curves to be limits

of polygons whose angles continually increase as the number of

the sides increase, and may be made to differ from two right

angles by less than any assignable angle before the assumption
of the ultimate form of the hypothesis.

If, however, as we increase the number of sides and diminish

their magnitude, one of the angles remains less than two right

angles by any finite difference, the curvature of the curvilinear

limit is discontinuous, and the form is that of a pointed arch, in

which the two portions cut one another at a finite angle.

A curve may be of continued curvature for one portion

between two points, while for another its curvature changes
"
per saltum."

Thus, if ABC be a curve forming at B a pointed arch, it

may be of continued curvature from B to A and from C to B,

though not from C to A.

In this case the tangents in passing from C to A assume all
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positions
intermediate to CT, Bt, and Bt', TA, but at B they

pass from Bt to Bt' without assuming the intermediate positions.

31. " In medio curvature continue," implies that the point

A in the enunciation of the Lemma is not such a point as B
in the last figure, but that, in passing from a point on one side

of A to another on the other side, the tangents pass through all

the intermediate positions.

The curvature is supposed to be in the same direction in

the figure of the Lemma, which in all curves of continuous

curvature is possible, if B be taken sufficiently near to A at

the commencement of the change in the construction.

If the point A be not " in medio curvatures continue," two

tangents AD, AD' may be drawn at A to the two parts of the

curve, and the curve BCA will make a finite angle with one of

the tangents AD'.

But, even in this case, the angle between the chord and

that tangent which belongs to the portion of the curve con-

sidered continually diminishes and ultimately vanishes.

The Sultangent.

32. DEF. The part of the line of abscissas intercepted be-

tween the tangent at any point and the foot of the ordinate

of that point is called the subtangent.

33. The subtangent may be employed as follows, to find a

tangent at any point of a curve.

Let OM, UP be the abscissa and ordinate of a point P in

a curve, and let Q be a point near P, ON, NQ its abscissa

and ordinate.
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Let QPU meet OX the line of abscissae in U; then, if PR
parallel to ON meet QN'm R,

PM : MU:: QB : PR :: QN-PM : ON- OM.

Now as Q approaches to P, the limiting position of QPU la

that of the tangent at P, viz. tPT, and PM : MT is the limiting

ratio of QN-PM: ON- OM.

The Polar Siibtangent and the Inclination of the Tangent to

the Radius Vector, at any Point of a Spiral.

34. DEF. Let S be the pole, PT the tangent to the curve at

any point P, and let ST, perpendicular to SP, meet PT in T;
then ST is called the polar subtangent at the point P.

35. To find the inclination of the tangent at any point of
a curve to the radius vector.

Let Q be a point near P, QM perpendicular to SP, pro-

duced if necessary, QR the circular arc, centre S, meeting
SP in E.

Let <>Pmeet ST'm U, then

SU: SP:: QM : PM,
and MR : QM:: QM: SM+SR,

Q

but, when Q approaches indefinitely near to P, QM vanishes

compared with SM+ SR ;
therefore MR vanishes compared

with QM or PM; therefore SU:SP:: QM: PR, ultimately;

therefore ST: SP is the limiting ratio of QR: PR; or

QR: SQ~ SP.
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Hence ST, and also the trigonometrical tangent of the angle
SPT between the tangent and the radius vector can be found.

Illustrations.

(1) If 8Y be the perpendicular on the tangent PY at P in

a curve, Y will trace out a curve, called the pedal of the original

curve; to shew that if YZ be a tangent to the locus of Y, SZ

perpendicular to
it,

SY*=SP.SZ.

Let P' be a point near P, SY' perpendicular on P'P, SZ
perpendicular on Y'Y.

Since angles SYP, SY'P are right angles, a semicircle on

SP will pass through Y, Y'; therefore the angles SY'Y, SPY
in the same segment will be equal; the right angles SZY',
SYP also are equal; therefore the triangles /SPY, SY'Z are

similar, and SZ : SY' :: SY: /SP; but, ultimately, asF moves

up to P, P'PY' becomes the tangent at P, and TYZ that at Y
to its locus, also SY' = SY-,

.-. SZ.SP=SY*.

(2) To find the subtanaent in the semi-cubical parabola.

In the semi-cubical parabola PM2
<x OM 3

;

... QN* _ pjp : pj/3
: : ON9- OM3

: OM3

,

but QN+PM=2PM,
and OJT-f ON.OM+ OM* = 30M'\ ultimately;

.-. QN- PM: \PM\\ ON-OM: OM ultimately,

and QN- PM: PM:: ON- OM= M.T\

therefore MTis two-thirds of OM.
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(3) To find the inclination of the tangent at any point of
a cardioid to the radius vector.

DEF. If BqpC be a circle, whose centre is 8 and diameter

BC, and pm be drawn perpendicular to BG\ then, if Sp be

produced to P, making SP=Bm, P will trace out a cardioid

APS.

.Making the same construction as before, in Art. 35,

8T : SP : : QR : SP- SQ ultimately.

Let SQ meet the circle in q, and draw qn perpendicular

to BC,
then QR : pq : : SP : Sp ultimately,

also pq : mn :: Sp : pm ,

.-. QB:mn::SP:pm ;

but mn = Bm-Bn = SP- SQ ;

/. QR: SP-SQ:: SP : pm ultimately;

.-. ST: 8P::Bm:pm;
hence LPTS=LpBm = \LPSA^

and it follows that the cardioid cuts the axis SCA at right

angles, that it touches SB at #, and that it cuts the circle BDG
at an angle equal to half a right angle.
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If any arc, given in position, be subtended by the chordAB,
and at the point A, in the middle of continuous curvature,,
a tangent AD be drawn, and the subtense BD, then, when
B approaches to A and ultimately coincides with it, the

ulimate ratio of the arc, the chord, and the tangent to one

another, is a ratio of equality.

For whilst the point B approaches to the point A, let

AB, AD be supposed always to be produced to points
b and d at a finite distance, and bd be drawn parallel
to the subtense BD, and let the arc Acb be always
similar to the arc ACB, and have, therefore, ADd
for its tangent at A.

But, when the points B, A coincide, the angle IAd, by
the preceding Lemma, will vanish, and therefore the

straight lines Ah, Ad, which are always finite, and
the arc Acb, which lies between them [and is of con-

tinuous curvature in one direction, if the change
commence when B is near enough to A~\, will coin-

cide ultimately, and therefore will be equal.

Hence, also, the straight lines AB, AD and the inter-

mediate arc A CB, which are always proportional to

them, will vanish together, and have an ultimate

ratio of equality to one another.

COR. 1. Hence if BF be drawn through B parallel to

the tangent, always cutting any straight line AF
passing through A in F, then BF will have ulti-

mately to the vanishing arc AGB a ratio of equality,
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since, if the parallelogram AFED be completed, it

will always have a ratio of equality to AD.

7

COR. 2. And if through B and A be drawn many
straight lines BE, BD, AF, ACr cutting the tangent
AD and BF, parallel to it

;
the ultimate ratios of all

the abscissae AD, AE, BF, BCr and of the chord and
arc AB to one another will be ratios of equality.

COR. 3. And, therefore, all these lines in every argu-
ment concerning ultimate ratios may be used indif-

ferently one for the other.

Observations on the Lemma.

36. DEF. The subtense of the angle of contact of an arc is a

straight line drawn from one extremity of the arc to meet, at

a finite angle, the tangent to the arc at the other extremity.

This subtense is the secant which defines the limited line

called, in the Lemma,
" the tangent."

The chord is called by Newton the subtense of the arc, see

Lemma XI.

37. In the construction for this Lemma, BD must be a

subtense, i.e. inclined throughout the change of position at a

finite angle to the tangent, for, otherwise, the angles BAD
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and ADB being then both small, the ultimate ratio of the

chord to the tangent might be any finite ratio instead of

being one of equality.

This is the only limitation of the motion of BD
;
the figure

representing changes which may take place in the approach
towards the ultimate state of the hypothesis.

Here b, d are the distant points, that is, points at a finite

distance from A] BD, B'D', B"D" are consecutive positions

of the subtense, when B approaches towards A, and db, db', db"

are parallel to these, Acb', Ac"b" are the forms of Acb changed
so as to be always similar to the corresponding portion of ACB
cut off by the chord.

It should be remarked that the curve Acb is not inter-

mediate in magnitude to the two lines Ab, Ad, but only in

position; for example, Ab may be equal to Ad, if BD make

equal angles with the two lines, and the curve line will then

be greater than either Ab or Ad] but it becomes in all cases

less bent, until it is ultimately rectilinear; hence the three

Acb, Ab, Ad will be ultimately equal, the only alternative

being that the curve may become doubled up, as in the figure,

which is precluded by the supposition that the curvature near A
is continued in the same direction throughout the passage from

B to A.

38. The subtense ultimately vanishes compared with the arc.

For BD : A CB :: bd : Acb, and, since bd vanishes and Acb

remains finite in the limit, the ratio BD : ACB ultimately

vanishes. It will be afterwards seen that in curves of finite

curvature BD varies as the square of ACB ultimately.

The ultimate equality of the lines AD, AE with the chord

or arc, whatever be the direction of the subtense, is due to

the vanishing of BD, and therefore of DE with respect to AD.

39. If two curves of continuous curvature which do not inter-

sect have a common chord, the length of the exterior curve will be
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greater than that of the interior, provided that the curvature of
the interior be always in the same direction.

Let AcdeBj A CDEFB any two polygons, having a common
side AB

:
be such that the first lies entirely within the second

and that neither has internal angles, the perimeter of the first

is less than that of the second.

For, produce Ac, cd, de to meet the perimeter of the exterior

in c'
t d'j e'

;
then AC+ Cc > Ac'

;
/. ACDEFB> Ac'DEFB

;

similarly Ac'DEFB>Acd'EFB1
and on on;

/. a fortiori, ACDEFB> AcdeB.

And, since the same is true in the limit, when the nnmber

of sides is increased indefinitely, the curvilinear limits of the

polygons have the same property, and the proposition is proved.
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If two straight lines AR, BR make with the arc A CB, the

chord AB, and the tangent AD, the three triangles
RA CB, RAB and RAD, and the points A, B approach
one another ; then the ultimate form of the vanishing

triangles is one of similitude, and the ultimate ratio one

of equality.

For, whilst the point B is approaching the point A, let

AB, AD, AR be always produced to points b, d, r at

a finite distance, and rid be always drawn parallel to

RD, and let the arc Acb be always similar to the arc

ACB, and therefore have Dd for the tangent at A.

Then, when the points B, A coincide, the angle bAd will

vanish, and therefore the three triangles rAb, rAcb,
rAd will coincide, and will therefore in that case be
similar and equal. Hence also RAB, RA CB, RAD,
which are always similar and proportional to these,
will be ultimately similar and equal to one another.

COR. And hence, in every argument concerning ulti-

mate ratios, these triangles can be used indifferently
for one another.

Observations on the Lemma.

40. If RB throughout the change in the hypothesis make a

finite angle with RA, the three triangles rAb, rAcb, rAd will
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remain always finite, and will be ultimately identical and equal.

But, if the angle AEB be ultimately not finite, for example, if

EB revolve round a fixed point R, the three triangles rAB, ...

will become infinite, since r will move to r and so on to an

infinite distance, and there will be the same kind of objection

to dealing with these infinite triangles, as to reasoning im-

mediately upon the relation of the triangles BAB, BAD in

the former case.

In this case we can at once deduce the equality of the tri-

angles without producing AD to a point d at a finite distance.

For, the ratio of the difference of RAD and RAB to BAB is

BD : RB, which vanishes ultimately, since RB is finite in

this case; hence RAB and RAD and also the curvilinear

triangle, which is intermediate in magnitude to them, will be

ultimately in a ratio of equality.
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If a straight line AE and curve ABC, given in position, cut

one another in a finite angle A, and ordinates BD, CE bs

drawn, inclined at another finite angle to that straight

line, and meeting the curve in B, C ; then, if the pointe

B, C move up together to the point A, the areas of the

curvilinear triangles ABD, A CE will be ultimately to one

another in the duplicate ratio of the sides.

For, as the points B, C are approaching the point A,
let AD, AE\>Q always produced to the points d, e at

a finite distance, such that Ad : Aei: AD : AH] and

let the ordinates db, ec be drawn parallel to DB,
EC meeting the chords AB, A C produced in b, c.

Then [since Ab : AB ::Ad: AD :: Ae : AE : : Ac:AC
t

and therefore Ab : Ac : : AB : AC~] a curve Abe can
be supposed to be drawn always similar to ABC,
while B and C move up to A.

Let the straight line Ag be drawn touching both curves

at A, and cutting the ordinates DB, EC, db, ec in

f,0,f, 9 .

[Now areas ABD, Abd, by Lemma V., are always in the

duplicate ratio of AD, Ad, and areas ACE, Ace in the

duplicate ratio of AE, Ae, and AD : Ad :: AE : Ae
;

therefore ABD : Abd :: ACE: Ace,

and ABD : ACE:: Abd : Ace.]

If, then, the points B and C move up to A and ultimately
coincide with it, the angle cAg will ultimately vanish,
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and the curvilinear areas Abd, Ace will coincide with
the rectilinear triangles Afd, Age, and therefore will

be ultimately in the duplicate ratio A d, Ae.

But ABD, ACE are proportional to Aid, Ace always,
also, AD, AE are proportional to Ad, Ae

;
therefore

also areas ABD, A CE are ultimately in the duplicate
ratio of AD, AE.

Observations on the Lemma.

41. By a finite angle is to be understood an angle less than

two right angles, and neither indefinitely small nor indefinitely

near to two right angles.

The angles between AD and the curve and between AD
produced and BD are different finite angles, because otherwise

BD would not meet the curve.

42. If the angle DAF be greater than a right angle, the

figure may assume a form in which AD will lie below ABC',
in this case DB, EC, ... must be produced to meet the tangent,
and the argument may proceed in the same manner as before.

43. It is not necessary that d and e be fixed, but only that

they remain at a finite distance from A, and that the proportion
be retained

;
and the first part of this observation applies to

d in the previous Lemmas.

The student, by reference to Arts. 37 and 40, will be able to

exhibit the change in the figure which will correspond to a

change of the position of B and C in the progress towards the

ultimate position.

44. When the angle CACr vanishes, the curvilinear areas

Abd, Ace coincide with the rectilinear triangles Afd, Age, and

so are in the duplicate ratio of Ad : Ae. But if the angle
DAF be not finite, those triangles will not themselves be finite,

and the object aimed at by producing to a finite distance will

not be attained.

The fact
is,

that the triangle Adb is made up of the triangle

4df and the curvilinear triangle Afb, of which the latter is

indefinitely small ultimately, and the former is finite
; therefore,
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in the Lemma, Afb vanishes compared with Adf; but this will

not be so if Adf be indefinitely small, the ratio of the triangles

AFB, AGO must, therefore, be found by another process, and

it will be found, by referring to Lemma XL, that the ratio will

be ultimately that of the cubes of the arcs if the curvature of

the curve at A be finite.

VIII.

1. RQq is n, common subtense to two curves PQ, Pq, which
have a common tangent PR at P. When RQ,q approaches to P,

RQ, and Rq ultimately vanish; will the ratio RQ, : Rq be ulti-

mately a ratio of equality ?

2. If PY, a tangent to an ellipse at P, meet the auxiliary circle

in F, and ST be perpendicular to the tangent at Y, ST will vary
inversely as HP.

3. If a subtense BD be drawn to meet the tangent at A at

a finite angle a, which remains constant as B moves up to A, and
DB meet the normal at A in C, shew that the ultimate ratio of

EC to AB will be sec a.

4. In the curve in which the abscissa varies as the cube of

the ordinate, shew that the subtangent is three times the abscissa.

5. Prove that the extremity of the polar subtangent from the

focus of a conic section is always in a fixed straight line.

6. AB is a diameter of a circle, P a point contiguous to A,
and the tangent at P meets BA produced in T; prove that ulti-

mately the difference of BA, BP will be equal to one-half of TA.

7. In any curve, if Q be the intersection of perpendiculars to

two consecutive radii vectores through their extremities, and SY
be the perpendicular from the pole S on the tangent at P, prove
that ultimately SP' = SY.SQ.

PQ, pq are parallel chords of an ellipse whose centre is

that, if

ultimately eqm
shew that, if p move up to P, the areas CPp, CQq will be

iqual.

9. From a point in the circumference of a vertical circle a chord
and tangent are drawn, the one terminating at the lowest point,
and the other in the vertical diameter produced; compare the

velocities acquired by a heavy body in falling down the chord
and tangent when they are indefinitely diminished.

10. A point moves so that the product of its distances from two
fixed points is constant

;
shew that the normal to its path divides

the angle between the two radii into two whose sines are pro-

portional to the radii.
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IX.

1. On the radii vectores of a curve as diameters circles are

described
;
find their envelope.

2. If the intercept PQ between two curves of their common
radius vector OPQ be constant, and the normals at P and Q
intersect in N, ON will be at right angles to OPQ.

3. A right angle slides on any oval curve, so that the sides

containing the right angle always touch the curve
; shew that the

angle one tangent makes with the tangent to the locus of the

vertex is equal to that which the other tangent makes with
the chord of contact.

Hence shew that, if the oval be an ellipse, the locus of the

vertex will be a circle concentric with the ellipse.

4. A point moves so that the rectangle, whose sides are equal
to the distances of the point from a given point and a given
straight line, is equal to the square described on the perpendicular
from the given point on the given line. Find the position of

the point at which the tangent to the curve passes through the
fixed point.

5. Two points A, B describe two curves according to any
finite and continuous law. If A', B' be the consecutive positions of

A, ,
and ABC, A'B'C' be similar triangles, then the corre-

sponding sides of the two triangles will ultimately intersect in the

4 ^ t. v. .
AA'.BC BB'.CA CC'.AB

points P, Q, R, such that ^ = Rp =
p^ .

6. If SP* = AB.PM, where PM is perpendicular to a fixed

straight line, prove that the locus of the centre of the circle cir-

cumscribing the triangle formed by the tangent, the radius vector,
and the polar subtangent, will be a straight line.

7. In the figure on page 30 let FB' be taken equal to AB,
and let the corresponding ordinate to the curve be B'E

; prove
that the subtangent at E' varies inversely as that at E.

8. In the hyperbolic spiral, in which the radius vector varies

inversely as the spiral angle, prove that the subtangent is constant.

9. In the spiral of Archimedes, in which the radius vector

varies directly as the angle, prove that if a circle be described,
of which a radius is the radius vector of the sjiral, the polar

subtangent will be equal to the arc of the circle subtended by
the spiral angle.
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LEMMA X.

The spaces tvhich a body describes [_from resf] under the

action of any finite force, whether that force be constant

or else continually increase or continually diminish, are

in the very beginning of the motion in the duplicate ratio

of the times.

[Let the times be represented by lines measured from A,
along AK, and the velocities generated at the end
of those times by lines drawn perpendicular to AK.
Suppose the time represented by AK to be divided
into a number of equal intervals, represented by AB,

BO, CD, ..., let Bb, Cc, Dd, ...Kk represent the ve-

locities generated in the times AB, AC, ...^^respec-

tively, and let Abed be the curve line which always
passes through the extremities of these ordinates.

Complete the parallelograms Ab, Be, Cd, ....

In the interval of time denoted by CD, the velocity con-

tinually changes from that represented by Cc to that

represented by Dd, and therefore CD being taken

small enough, the space described in that time is

intermediate between the spaces represented by the

parallelograms DC and Cd; therefore the spaces
described in the times AD, AK are represented by
areas which are intermediate between the sums of

the parallelograms inscribed in, and circumscribed

about, the curvilinear areas ADd, AKk respectively.



68 NEWTON.

Therefore, by Lemma II., the number of intervals being
increased, and their magnitudes diminished indefi-

nitely, the spaces described in the times AD, AK
are proportional to the curvilinear areas ADk, AKk.

Now the force being finite, the ratio of the velocity to

the time is finite
;
therefore Kk : AK is a finite ratio,

however small the time is taken; hence, if AT be
the tangent to the curve line at A, "meeting Kk in T,
KT : AK will be a finite ratio

;
therefore the angle

TAK will be finite, or AK will meet the curve at a
finite angle.

Hence, by Lemma IX., if AD, AK be indefinitely

diminished, area ADd : area AKk : : AD* : AK*
;

therefore, in the beginning of the motion, the spaces
described are proportional to the squares of the times
of describing them. Q. E. D.]

COR. 1. And hence it is easily deduced that the errors

of bodies describing similar parts of similar figures
in proportional times, which are generated by any
equal forces acting similarly upon the bodies, and
which are measured by the distances of the bodies

from those points of the similar figures, to which the

same bodies would have arrived in the same propor-
tional times without the action of the disturbing

forces, are approximately as the squares of the times
in which they are generated.

COR. 2. But the errors which are generated by pro-

portional forces, acting similarly at similar portions
of similar figures, are approximately as the forces

and the square of the times conjointly.

COR 3. The same is to be understood of the spaces
which bodies describe under the action of different

forces. These are, in the beginning of the motion,

conjointly, as the forces and the squares of the times.

COR. 4. Consequently, in the beginning of the motion
the forces are as the spaces described directly, and
the squares of the times inversely.
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COR. 5. And the squares of the times are as the spaces
described directly and the forces inversely.

The proof given in the original Latin is as follows :

Exponantur tempora per lineas AD, AE, et veloci-

tates genitae per ordinatas DB, EC', et spatia, his

velocitatibus descripta, erunt ut areae ABD, ACE his

ordinatis descriptse, hoc est, ipso rnotus initio (per
Lemma IX.) in duplicata ratione temporum AD, AE.

Q.E.D.

45. This proof has been amplified in order to exhibit in

what manner the description of areas, by the flux of the ordi-

nates, corresponds to that of spaces by the velocities represented

by the ordinates
;
also to shew the propriety of the application

of the ninth Lemma by reference to the definition of finite force

which may be stated as follows : A force is finite when the ratio

of the velocity generated in any time to the time in which it is

generated, is finite, however small the time be taken.

Observations on the Lemma.

46. In the proof of this Lemma, time is represented by the

length of a straight line, and a distance traversed by a body is

represented by an area.

If the length of a straight line be always proportional to the

period of time elapsed, the straight line will be a proper repre-

sentation of the time. Thus a length of n inches has the same

ratio to one inch which an interval of n seconds has to one

second
;
and on this scale the length n inches is a proper repre-

sentation of n seconds.

If an area be always in the same ratio to the unit of area

that the length of a straight line is to the unit of length, the area

will be a proper representation of the length of the straight line.

Thus, if Ab be one foot, AB, n feet, Ac one inch, and AC,
t inches: complete the parallelograms ABDC, Abdc, and Bc

t

then ABCD will contain nt such areas as Abdc.

If now a particle move with a uniform velocity of n feet

a second, and A C represent t seconds, on the scale of one inch to
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a second, the parallelogram Be will represent the space travelled

over in the first second, since it contains n times the parallelo-

c t.

gram Abdc, and ABDG will represent the space travelled over

in t seconds.

There will be no difficulty in the representation of a period

of time by a line, or of a distance by an area, if the student

bear in mind that periods of time and lengths of lines, although

existing absolutely, are only estimated by their ratios to certain

standard periods, and standard lengths, and they are therefore

determined whenever these ratios are given, either directly in

numbers or by the comparison of any magnitudes whatever of
the same kind.

47. COR. 1,2. If bodies describe orbits under the action

of certain forces, and small forces, extraneous to those under the

action of which the orbits are described, be supposed to act upon
the bodies, the orbits will be disturbed slightly, and the errors

spoken of are the linear disturbances of the bodies, at any time,

from the positions which they would have occupied at that time,

if the extraneous forces had not acted.

Thus, in calculating the motion of the Moon considered as

moving under the attraction of the Sun and Earth, it is conve-

nient to estimate the motion which she would have, if subjected

to the attraction of the Earth alone, and then to calculate what

would be the disturbing effect of the Sun upon this orbit.

48. If AB be a portion of an orbit described by a body in

any time, A C the portion of the orbit described when a disturb-

ing force is introduced, BO is
"
quam proxime" the space which

would have been described in the same time from rest by the

action of the disturbing force alone. When the time is taken

small, but not indefinitely small, the expression in the statement
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of the corollaries, "approximately," is necessary for two reasons;

for, in the first place, the position of the body in space is not

the same at the end of any interval in the lapse of the time

as if the body had moved from rest under the action of the

disturbing force alone, and therefore the magnitude of the force

is not generally the same either in direction or magnitude ; and,

in the second place, since the force is not generally uniform, the

variation according to the duplicate ratio of the times is not

exact, except in the limit.

But, when the times are taken very small, the variation of

direction and magnitude of the force may be neglected, as an

approximation to the true state of the case.

49. Application of the method of Lemma X to determine

the space described in a finite timefrom rest by a particle under

the action of a constant force.

Let f be the measure of the acceleration caused by the

constant force, so that at the time t the velocity V=ft.
Since the velocity varies as the time, the curve Ak in the

figure of the Lemma is a straight line, dD : AD being constant.

Therefore the space which is described in the time
,

re-

presented by AK, is represented by the area of the triangle

AKk or \Kk.AK. The space described in time t from rest

is therefore \Vt = %ft\

50. General geometrical representation of the space described

by a body when it moves with a variable velocity for a finite

time.

PROP. If a curve be found, such that the ordinate at each

point represents the velocity corresponding to a time represented

by the abscissa, then the space described by the body will be

represented by the area bounded by the curve, the line of

abscissae, and the ordinates corresponding to the commencement

and end of the time of motion.

Let OA, OB represent the times at the commencement and

end of the interval during which the motion of the body is to

be examined. Let OM be any other time, and let A C, MP, BD^
perpendicular to OAB, represent the velocities at the ends of
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the times represented by OA, OM, OB CPD the curve which

passes through the extremities of all such ordinates as HP.

Let AB be divided into any number of small portions, such

as MN] and let NQ be the ordinate corresponding to ON.

Complete the parallelograms PMNq, QNMp, and suppose cor-

responding parallelograms to be constructed on all the bases

corresponding to MN.
The body during the time represented by MN moves with

a velocity, which, if MN be taken small enough, will be inter-

mediate in magnitude between the velocities represented by PM
and QN, and the space described during that time will be

intermediate in magnitude between the spaces which would have

been described with uniform velocity represented by PM and

QN, or between the spaces represented by the areas PA7

, QM.
Hence the whole space described in the interval of time

represented by AB is greater than that represented by the

inscribed series and less than that by the circumscribed series

of parallelograms, and each of these
is, by Lemma II., ulti-

mately equal to the area A CDB, when the number of portions
into which AB is divided is indefinitely increased, and their

magnitudes diminished
;
therefore the proposition is proved.

51. COR. 1. Since the area PMNQ is ultimately equal to

the rectangle PM.MN, it follows that the measure of the
velocity

at any time is the limit of the quotient of the space described after

that time by the time of describing it.

52. COE. 2. Let MR represent the unit of time, and com-

plete the parallelogram PMRr ;
then the area PMRr represents
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the space which would be described in an unit of time with a

velocity represented by PM\ whence it follows that the velocity

of a body at any instant may be measured by the space which it

would describe if it moved with that velocity unchanged for an

unit of time.

Measures of Variable Force, Kinetic Energy, Work of a Force.

53. When a particle of mass m is moving in a straight line

under the action of an uniform force F, if V, v be the velocities

at the beginning and end of the interval of time
t,

and s be

the space described in that time, the following equations will

hold : m (v
-
V) = Ft and \m (v'

-F2

)
= Fs.

These equations represent respectively that :

(1) The increase of momentum in a given time is equal to the

whole force which has acted during that time.

(2) Half the increase of vis viva, or the increase of the kinetic

energy in a given space is equal to the work of the force in that

space.

IfF be a variable force, and F^ F^ be its least and greatest

values during the time
t,
m (v

- F) will be greater than Ff and

less than F
2t,

each of which will become Ft ultimately when t

is indefinitely diminished
;
and similarly for \m (u

2 F2

).

Hence we obtain two measures of variable force in the form

of the two limits :

(1) The quotient of the increase of the momentum by the time,

when the time is diminished indefinitely.

(2) The quotient of the increase of the kinetic energy by the

space through which the force has acted, when that space is

diminished indefinitely.

54. In the velocity curve, Art. 50, the velocity Qq is added

in the time MN, the measure of the acceleration at the time OM
is therefore the limit of the ratio Qq : Pq, or the trigonometrical

tangent of the angle which the tangent at P to the velocity curve

makes with the line of abscissae.

55. Geometrical representation of the momentum generated
L
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by a finite and variable force acting for a finite time upon a

particle moving in the direction of the action of the force.

In the figure of p. 72, let OA, OB represent the times at

the commencement and end of the interval during which the

action of the force is considered.

Let AB be divided into any number of small portions, such

as MN, and let PM, QN, perpendiculars to AB, represent the

forces acting on the particle at the times OM, ON respectively,

and let parallelograms be constructed and the curve drawn as

in Art. 50.

The momentum generated in the time MN, ifMN be taken

small enough, will be intermediate between the momenta re-

presented by the parallelograms PN and QM ; therefore, by
Lemma II., the whole increase of momentum is represented

by the area A CDB bounded by the curve, the line of abscissae,

and the ordinates at the commencement and end of the finite

interval of time represented by AB.

56. As in Arts. 51, 52, the measure of force given in (1)

Art. 53 can be deduced
;

also that the force at any instant may
be measured by the momentum which would be generated if

the force were to continue unchanged for an unit of time.

57. Geometrical representation of the "kinetic energy generated

"by
a force which acts upon a particle moving in the direction

of the forceps action through a finite space.

Let OAB be the line of motion of the particle, and when

it arrives at M let PM perpendicular to OAB represent the

force, and let the construction be made as before.

The increase of kinetic energy in the passage from M to

N is intermediate between the work done by the forces re-

presented by PM and QN, i.e. it is represented by an area

which is intermediate between PN and QM; therefore, by
Lemma II, the increase of kinetic energy or the work of the

force during the motion from A to B is represented by the

ssx&ACDB.

-58. The measure of force given in (2), Art. 53, is deducible

as before, since PM.MN^&rea. PMNq ultimately.
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59. In rectilinear motion of a particle under the action of

any variable force, the sum of the kinetic and potential energies

is constant.

If the motion of the particle be considered only within the

limits A, B, the area PMBD represents the whole work which

the force will be able to do as the particle moves from M
to the end of its path ;

this work is called the Potential Energy,
and since the kinetic energy at M is represented by the area

CAMP, it follows that throughout the motion the sum of

the kinetic and potential energies is constant.

Application to the determination of the motion of a particle

under various circumstances.

(1) To find the space travelled over in a given time by a

"body moving with a velocity which varies as the square of the

time from the beginning of the motion.

Let AB represent the time, and let BG perpendicular to AB
represent the velocity at the end of that time.

Let AB be divided into any number of equal portions of

which MN is one, and let MP, NQ represent the velocities at

the ends of the times represented by AM, AN.

Then, since MP:NQ:BC:: AW : AN"2
: AB 2

,
a parabola

can be described touching AB and passing through P, Q, C
and the extremities of all ordinates by which velocities are

represented.

Hence the space described in the time represented by AB
is represented by the parabolic area ABG or ^AB.BG.

And ifp be the velocity at end of 1", p? will be that at
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the end of <"
;
therefore ^pt*. t= %pt

s
will be the space described

in the time t.

NOTE. The following method of representing the space
serves to illustrate Art. 46.

Join AC, and let pM) qN be the ordinates, and suppose
the figure to revolve round AB, pM generates a circle whose

area cc pM* cc AM* therefore this circle may be taken to

represent the velocity at the time corresponding to AM, and

the solid generated bypqNM represents the space described in

time MN. The whole space is therefore represented by the

cone generated by ABC) or ^AB.trBC
2

)
which gives the same

result as before.

(2) To find the space described from rest at any time by a

particle under the action of a force ichose accelerating effect

varies as the m^ power of the time.

This problem is more simply solved by applying directly

the method of summation, since in order to find the area of

the curve, constructed as in Lemma X., we should eventually

be obliged to have recourse to that method.

Let the time t be divided into n equal intervals, and let the

acceleration by the force at the time t be pt
m

j hence, at the com-

(rt\

m

J ,

and, if the force be continued uniform during this interval, the

velocity generated will be p (
j

.
-

,
and if the same arrange-

ment be made during each interval, the whole velocity generated

will be -
',!,.!

^
n

pt*
1

; hence, when the number of

intervals is increased indefinitely, it follows, by the reasoning

of Lemma II.. that the velocity at the time t=~ .

?w+ 1

In the same manner, if the velocity at the commencement of

each interval were continued uniform during the interval, the

space described could be shewn to be
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whence, proceeding to the limit, the space described in the

time t =
-,

^

(3) To find the velocity acquired from rest, when a body is

acted on by an attractive force whose accelerating effect vanes

as the distance from a fixed point.

Let S be the fixed point, A the point from which the motion

commences, and let AB, perpendicular to SA, represent the

accelerating effect of the force at A. Join SB, and let MP, per-

ff JIT

pendicular to SA, meet SB in P; then, since PM: BA\\ SM: SA,
PM represents the accelerating effect of the force at M, and the

square of the velocity acquired at M is represented, Art. 57, by
twice the area BAPM or SA.AB- SM.MP.

With centre S and radius 8A describe a circle AQR, and

let MPQ, NR be ordinates at Q,R', then, if fj.D be the measure

of the accelerating effect of the force at a distance D, (vel.)
a

at M= n (SA>- SM*} ;
therefore the velocity at M= V(/"*) QM.

(4) Time of describing a given space from rest under the

action of a force varying as the distance from a fixed point.

The time of describing MN is ultimately, when MN is in-

N QR 1j c i j- u j
indefinitely diminished, x circular

measure of QSR; therefore, if ^ be the time from ^4 to M
t

t V(A*) will be tae circular measure of ASQ.
Let &4= a, then the distance from S at the time t=a cos

{< V(/*}j

and the velocity
= a V(/*) sin hence, when t
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the particle will come to rest at the point A' on the opposite

side of Sj where SA' = SA, and, the time of oscillation from

rest to rest, being -r ,
will be independent of the distance

from which the motion commences.

(5) Simple harmonic motion.

DEF. The motion of a particle oscillating under the action

of a force tending to a fixed point, and varying as the distance

from
it, is called simple harmonic motion.

From the preceding propositions the following construction

for simple harmonic motion, which may also be taken as a

definition, is obtained.

When a point Q moves uniformly in a circle, and an ordinate

QM is drawn from its position at any instant to any diameter

AA, the motion of M, the foot of the ordinate, is simple
harmonic motion.*

DEF. The amplitude of a simple harmonic motion is the

range SA or SA on each side of the centre.

The period is the time which elapses from any instant until

the moving point again moves in the same direction through
the same position.

(6) A particle is subject to the action of a force, whose accele-

rating effect varies as the distance from a faced point, in the

direction of which it acts, the particle is projectedfrom a given

point in a direction perpendicular to the direction of the force at

that point, to find the path described by the particle.

Let the force tend to (7, and let A be the point of projection,

P the position of the particle at any time.

Let CB, perpendicular to CA, be the distance in which a

particle would be reduced to rest, if projected from C with the

velocity of projection ;
so that if V be the velocity of projec-

tion, and pCP be the accelerating efiect of the force at P,

F* = ^05* by (3).

* Thomson's and Tait's Natural Philosophy, Art. 53.
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Describe circles Bb, Aa having the common centre C, and

draw CpP' cutting the circles in p and P', and draw pn perpen-

dicular to CB, andpm, P'M to CA.

Referring to (4) supra, it will be seen that two particles start-

ing respectively one from rest at A and the other with the

velocity of projection at (7, under the action of the same force,

would arrive simultaneously at M and n, since the time in both

cases is proportional to the angle P' CA.

But the particle in the proposed problem is acted on at P by
a force which is represented by PC, whose accelerating effect

parallel to AC and CB is represented by HC and PM, there-

fore the acceleration in AC is the same as that of the particle

supposed to move in A C from rest, and the retardation parallel

to BO the same as that of the particle in CB, projected

from C, therefore P is in the intersection of np and MP
',
and

PM : P'M ::pm: FM ::Cp: CF ::CB:CA; therefore the re-

quired path of the particle is an ellipse whose semi-axes are

CA and CB.

COR. 1. Area ACP& area ACP'<x LACFcc time from A
to P, hence the area swept out by the radius vector is propor-
tional to the time.

COR. 2. The square of the velocity at P is the sum of the

squares the velocities of the particles at M and n=(JL.PM'2

+/j,.pri
t

^jM.CD*, where CD is the semi-diameter conjugate to CP.

(7) The space described by a body moving in a medium, in

which the resistance varies as the velocity, when no other force
acts on the body, varies as the velocity destroyed.
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Let the time AK be divided into equal intervals AB, BC,
CD, ...

;
and let Aa, Bb', ... be the velocities at the beginning

of the intervals, the space in time AK is represented by the

area a'AKk'.

JL Jt C J)

Suppose the force of resistance to be constant throughout the

intervals of time AB, BG, ..., and equal to the amount at the

commencement of each, and let Aa, Bb, ... be the measures of

the retarding effect of those forces, then the velocity destroyed
s represented by the limit of the sum of the parallelograms

aB, bO, ... or the area aAKk] hence the space described and

the velocity destroyed vary respectively as the areas a'AKk
and aAKk

; and, since the resistance varies as the velocity, the

ratios Aa : Aa, Bb' : Bb, &c., are all equal ; therefore, by
Lemma IV., the areas a'AKk', aAKk are in a constant ratio

;

hence the space described varies as the velocity destroyed.

X.

1. If the square of the velocity of a body be proportional to

the space described from, rest, prove that the accelerating force is

constant.

2. At what point of the proof of Lemma X. is it assumed
that the body starts from rest?

3. State the proposition by which Lemma X. is replaced, when
the body, instead of starting from rest, commences its motion with
a given velocity.

4. If a body move from rest under the action of a force which
varies as the square of the time from the beginning of the motion,
shew that the velocity at any time will vary as the cube of the

time, and the space described as the fourth power of the time.
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5. If the velocity after a time t from rest be equal to a (2t + *),

what will be the shape of the curve in the figure, and the space
described in any time ?

6. If the square of the velocity of a moving point vary as the

time, find the space which will be described in a given time; and
shew that the acceleration will vary inversely as the velocity.

7. If the curve employed in the proof of the Lemma be an
arc of a parabola, the axis of which is perpendicular to the straight
line on which the time is measured, prove that the accelerating
effect of the force will vary as the distance from the axis of the

parabola.

XI.

1. If in the velocity curve of Lemma X. there should occur

a point where the two parts of the curve cut one another at a
finite angle, what would be the interpretation of this singularity ?

Explain also what a point of inflexion would imply.

2. A particle is placed in the line joining two centres of

attracting force, the accelerating effect of each of which varies as

the distance, find the time in which the particle oscillates.

3. When a body moves from rest at A under the action of a force

which varies as the square of the distance from S (= p . SM* at Jf),
the square of the velocity at M= $p (SA

3 - SM 3

).

4. If a body be acted on from rest by a repulsive force which
varies as the distance from a fixed point, find the velocity when the

body arrives at any position.

5. Two points move from rest in such a manner that the ratio

of the times in which the same uniform acceleration would generate
their respective velocities at those times is constant. Shew that

their respective accelerations, at any time bearing that ratio, are

equal.

6. Two forces reside at S, one attractive and whose accelerating
effect on a particle varies as the distance from S, and the other
constant and repulsive ; prove that, if a particle be placed at S,
it will move until it be brought to rest at a point which is double
the distance from S at which it would rest in equilibrium under the
action of the forces.

7. A particle moves from rest at A under the action of a force

tending to S, and varying as the distance from S, and in its path
towards S it strikes another particle of equal mass at rest at B

;

prove that, if the particles be perfectly elastic, they will meet again
on the opposite side of S at a distance equal to SB, and continue
to impinge at B and B' for ever.

M
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LEMMA XL

The vanishing subtenses of the angle of contact, in all curves

which have finite curvature at the point of contact, are

ultimately in the duplicate ratio of the chords of the con-

terminous arcs.

Case 1. Let AB be the arc of a curve, AD its tangent at

A, BD the subtense of the angle of contact, BAD, per-

pendicular to the tangent, AB the chord of the arc.

Draw AG, EG perpendicular to the tangent AD and
the chord AB respectively, meeting in G

;
then let

the points Z>, B, G move towards the points d, I, g,
and let / be the point of ultimate intersection of the

lines BG, AG, when the points B, D move up to A.

It is evident that the distance GI may be made less

than any assigned distance by diminishing AB.

But, since the angles ABD and GAB are equal, and
also the right angles BDA, ABG, the triangles ABD,
GAB are similar; therefore BD : AB : : AB : AG,
or BD.AG = AB\ and, similarly, bd.Ag = Afr-,

.'. AB9
: AV = BD.AG : Id.Ag ;

therefore the ratio AB* : Atf is a ratio compounded
of the ratios ofBD : bd and AG : Ag.
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Bat, since GI may be made less than any assigned
length, the ratio AG : Ag may be made to differ from
a ratio of equality less than by any assigned dif-

ference
;
therefore the ratio A& : Atf may be made

to differ from the ratio BD : bd less than by any
assigned difference.

Hence, by Lemma I., the ultimate ratio AB* : Ab* is the
same as the ultimate ratio of BD : bd. Q. E. D.

Case 2. Let now the subtenses BD, bd' be inclined at

any given angle to the tangent; then, by similar

triangles D'BD, d'bd', BD' :bd' :: BD : bd, but ulti-

mately BD : bd :: AB* : Ab*
;

therefore ultimatelyBD :bd' :: AB* : Ab\ Q.E.D.

Case 3. And, although the angle D be not a given
angle, if BD converge to a given point, or be drawn

according to any other [fixed] law [by which the

angle D remains finite, since BD' is a subtense], still

the angles D', d', constructed by this law common
to both, will continually approach to equality and
become nearer than by any assigned difference, and
will be therefore ultimately equal, by Lemma I.,

and hence BD, bd' will be ultimately in the same
ratio as before. Q.E.D.

COR. 1. Hence, since the tangents AD, Ad, the arcs

AB, Ab and their sines BC, be become ultimately

equal to the chords AB, Ab, their squares also will

be ultimately as the subtenses BD
}
bd.

COR. 2. The squares of the same lines also will be

ultimately as the sagittse of the arcs, which bisect

the chords, and converge to a given point; for those

sagitta3 are as the subtenses BD, bd.

COR. 3. And therefore the sagittse will be ultimately
in the duplicate ratio of the times in which a body
describes the arcs with a given velocity.

COR. 4. The rectilinear triangles ADB, Adb are ulti-

mately in the triplicate ratio of the sides AD, Ad
y
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and in the sesquiplicate ratio of the sides DB, db
;

since these triangles are in the ratio compounded of

AD : Ad and BD : bd. So also the triangles ABC,
Abe will be ultimately in the triplicate ratio of the

sides BC, be. The sesquiplicate ratio may be re-

garded as the subduplicate of the triplicate, or as

compounded of the simple and the subduplicate
ratios.

COR. 5. And, since DB, db are ultimately parallel and
in the duplicate ratio of AD, Ad [therefore, this

being a property of a parabola,] at every point at

which a curve has finite curvature an arc of a parabola
can be drawn which will ultimately coincide with the

curve
;
and the curvilinear areas ADB, Adb will be

ultimately two-thirds of the rectilinear triangles

ADB, Adb', and the segments AB, Ab the third

parts of the same triangles. And hence these areas

and these segments will be in the triplicate ratio as

well of the tangents AD, Ad as of the chords and
arcs AB, Ab.

SCHOLIUM.

But, in all these propositions, we suppose the angle of

contact to be neither infinitely greater nor infinitely
less than the angles of contact which circles have
with their tangents ;

that is, that the curvature at

the point A is neither infinitely great nor infinitely

small; in other words, that the distance AI is of

finite magnitude.

For DB might be taken proportional to AD3

,
in which

case no circle could be drawn through the point A
between the tangentAD and the curve AB, and the

angle of contact would be infinitely less than that

of any circle.

And, similarly, if different curves be drawn in which
DB varies successively as AD*, AIf,AD*, &c., a series

of angles of contact will be presented which may be

continued to an infinite number, of which each will
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be infinitely less than the preceding. And if curves

be drawn in which DB varies as AD*, AD$, AD
,

ADI, AD*, &c., another infinite series of angles of

contact will be obtained, of which the first will be
of the same kind as in the circle, the second infinitely

greater, and each infinitely greater than the pre-

ceding. But, moreover, between any two of these

angles an infinite series of other angles of contact

can be inserted, of which each may be infinitely

greater or infinitely less than any preceding; for

example, if between the limits AD2 and AD3
there

be inserted ADV,ADV t AD*, AD\ AD$, AD$,ADV,
AD, AD'*, &G. And, again, between any two angles
of this series there can be inserted a new series of

intermediate angles differing from one another by
infinite intervals. Nor does the nature of the case

admit any limit.

The propositions which have been demonstrated con-

cerning curved lines and the included areas are easily

applied to curved surfaces and solid contents.

These Lemmas have been premised for the sake of

escaping from the tedious demonstrations by the

method of reductio ad absurdum, employed by the old

geometers. The demonstrations are
certainty

ren-

dered more concise by the method of indivisibles
;

but, as there is a harshness in the hypothesis of indi-

visibles, and on that account it is considered to be
an imperfect geometrical method, it has been pre-
ferred to make the demonstrations of the following

propositions depend on the ultimate sums and ratios

of vanishing quantities and on the prime sums and
ratios of nascent quantities, i.e. on the limits of sums
and ratios

;
and therefore to premise demonstrations

of those limits as concise as possible. By these

demonstrations the same results are deducible as by
the method of indivisibles

;
and we may employ the

principles which have been established with greater

safety. Consequently, if, in what follows, quantities
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should be treated of as if they consisted of particles

[indefinitely small parts], or small curve lines should
be employed as straight lines, it would not be in-

tended to convey the idea of indivisible, but of

vanishing divisible quantities, not that of sums and
ratios of determinate parts, but of the limits of sums
and ratios

;
and it must be remembered that the force

of such demonstrations rests on the method exhibited
in the preceding Lemmas.

An objection is made, that there can be no ultimate

proportion of vanishing quantities ;
inasmuch as

before they have vanished the proportion is not

ultimate, and when they have vanished it does not
exist. But by the same argument it could be main-
tained that there could be no ultimate velocity of a

body arriving at a certain position at which its

motion ceases
;
for that this velocity, before the body

arrives at that position, is not the ultimate velocity ;

and that, when it arrives there, there is no velocity.
And the answer is easy : that, by the ultimate velo-

city is to be understood that, when the body is

moving, neither before it reaches the last position
and the motion ceases nor after it has reached it,

but at the instant at which it arrives
;

i. e. the very
velocity with which it arrives at the last position and
with which the motion ceases.

And, similarly, by the ultimate ratio of vanishing
quantities is to be understood the ratio of the quan-
tities, not before they vanish nor after, but with which

they vanish. Likewise, also, the prime ratio of nas-
cent quantities is the ratio with which they begin to

exist. And a prime or ultimate sum is that with ivhich

it begins to be increased or ceases to be diminished.

There is a limit which the velocity can attain at the
end of the motion, but cannot surpass. This is the
ultimate velocity. And the like can be stated of
the limit of all quantities and proportions com-

mencing or ceasing to exist. And, since this limit
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is certain and definite, to determine it is strictly a

geometrical problem. And all geometrical propo-
sitions may be legitimately employed in determining
and demonstrating other propositions which are

themselves geometrical.

It may also be argued that, if the ultimate ratios of

vanishing quantities be given, the ultimate magni-
tudes will also be given, and thus every quantity
will consist of indivisibles, contrary to what Euclui
has demonstrated of incommensurable quantities, in

his tenth book of the Elements.

But this objection rests on a false hypothesis. Those
ultimate ratios with which quantities vanish are not

actually ratios of ultimate quantities, but limits to

which the ratios of quantities decreasing without
limit are continually approaching ;

and which they
can approach nearer than by any given difference,

but which they can never surpass, nor reach before

the quantities are indefinitely diminished

The argument will be understood more clearly in the

case of infinitely great quantities. If two quantities,
of which the difference is given, be increased infi-

nitely, their ultimate ratio will be given, namely, a
ratio of equality, yet in this case the ultimate or

greatest quantities of which that is the ratio will

not be given.

In what follows, therefore, if at any time, for the sake

of facility of conception, the expressions indefinitely

small, or vanishing, or ultimate be used concerning

quantities, care must be taken not to understand

thereby quantities determinate in magnitude, but to

conceive them in all cases quantities to be diminished

without limit.

Curvature of Curves.

60. The curvature of a curve at any point is greater or less

as the amount of deflection from the tangent at that point, in

the immediate neighbourhood of the point, is greater or less.
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Two curves will have the same curvature at two points, taken

one in each, if at equal distances from the points of contact, in

the immediate neighbourhood of the points, they have the same

deflection from the tangents at those points.

61. An exact geometrical test of equality of curvature may
be obtained as follows :

If AB, ab be two curves which have the same curvature at

A, a respectively, draw the tangents AO, ac and take AC=ac.

A C ft- &

Draw subtenses BG, be inclined at equal angles to the tangents.
If BG and be were equal, for all equal values of AC, ac, the

curves would be equal and similar, if BG : be be ultimately
a ratio of equality, when AC, ac are taken indefinitely small,

the curves will have the same deflection from the tangents in the

immediate neighbourhood of A, a, or the curves will have the

same curvature at those points.

If the chords AB, ab be drawn, it will be an immediate con-

sequence that the ultimate ratio of the angles BA C, bac will be

a ratio of equality. These angles are called the angles of contact.

Hence, curves will have the same curvature at two points,

one in each, if, equal tangents being drawn at those points,

and subtenses inclined at any equal angles to the tangents, the

limiting ratio of the subtenses be a ratio of equality, or if the

limiting ratio of the angles of contact be a ratio of equality.

62. The curvature of one curve will be infinitely greater or

infinitely less than that of another if the limiting ratio of the

subtense of the first to that of the second be infinitely great
or infinitely small.

63. The ratio of the curvature ot one curve to that of

another at two points, or of the curvature of the same curve at

two different points, is the limiting ratio of the subtenses drawn
from the extremities of equal tangents and inclined at equal

angles to the tangents.
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64. The curvature of a curve is said to be finite, at any

point, when the ratio of the curvature at that point to that of

any circle whose radius is finite, is a finite ratio.

65. The curvature ofa circle is the same at every point.

Let A, a be any two points on a circle, AC, ac equal tan-

gents at A, a, Oft, cb subtenses perpendicular to the tangents,

OD, Od perpendicular to the subtenses produced; therefore

CD = cd, each being equal to the radius, and BD = bd] hence

BC=lc always, and therefore ultimately, when the arcs are

indefinitely diminished, BC : be is a ratio of equality ;
therefore

the circle has the same curvature at any two points.

66. In different circles the curvatures vary inversely as the

radii.

In the last figure, produce CB to the circumference in E.

Then, AC*=CB. CE] also, if A'C' be a tangent to another circle,

and A'C 1

be taken equal to A
(7,

and the same construction be

made, A'C'^^C'B'.C'E'
;

therefore CB.CE=C'B'.C'E\ and

CB-.C'B' :: C'E 1

: CE; and when AC, AC' are indefinitely

diminished, CE=%AO ;
therefore CB : C'B' :: A'O' : AO, ulti-

mately, or the curvatures are inversely proportional to the radii.

Measure of Curvature.

67. The curvature of a circle is the same at every point ;

the curvatures of different circles vary inversely as the diameters

N
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of the circles
;
and a circle can be constructed of any degree ?

finite curvature by varying the magnitude of the diameter.

Hence, a circle can always be found whose curvature at any

point is equal to that of a curve at a fixed point.

The curvature of a curve at any point is therefore completely
determined when the diameter of the circle is found, which has

the same curvature as the curve at the given point.

The diameter of the circle, which has the same curvature as

the curve at a given point, is called the diameter of curvature of
the curve at that point.

The chord of the circle, drawn in any direction, is called the

chord of curvature in that direction.

The circle itself is called the circle of curvature, and is the

circle which has the same tangent as the curve at any point, and

also the same curvature.

68. Any other curve might have been chosen to establish a

standard measure of finite curvature; but, since no curve but

the circle has the same curvature at every point, it would then

have been necessary, after selecting the curve, to specify the

point, the curvature at which might be made the measure of

curvature.

Thus, if the standard curve were a parabola, we must choose

the curvature of the parabola at the vertex or at the extremity

of the latus rectum or at some determinate point, by which to

obtain the measure.

The inconvenience is obvious.

General Properties of the Circle of Curvature.

69. If a circle be drawn touching a curve at a given point,

and cutting it at a second point, as the second point approaches

indefinitely near the point of contact, the circle will assume a

limiting magnitude, and will evidently satisfy the condition of

having the same curvature as the curve at that point.

70. Since a tangent at any point is the limiting position

of a side, terminated in that point, of a polygon inscribed in

the curve, when the number of sides is increased indefinitely,
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so the circle of curvature at any point is the limiting circle

which passes through three consecutive angular points of the

polygon, one of which coincides with the point.

71. No circle can be drawn whose circumference lies between

a curve and its circle of curvature, in the neighbourhood of the

point at which the circle of curvature is drawn.

For, let AQ be the arc of the curve, Aq of the circle of

curvature
;
and let, if possible, another circle be drawn, of which

the arc AS lies between the curve and circle, and having there-

fore the same tangent AR at A
;
and let R Q, the subtense per-

pendicular to the tangent, cut the circles in S, q.

Then SR : qR will be ultimately in the inverse ratio of the

diameters of the circles; therefore SR will be ultimately unequal
to qR; but, since qR and QR are ultimately in a ratio of

equality, ififi,
which is intermediate in magnitude, will be ulti-

mately equal to either, which is absurd
;

therefore no circle, &c.

This proposition corresponds to Euclid III., Prop. XVI.

72. The circle of curvature generally cuts the curve.

For the curvature of the curve at different points taken along
the curve continually increases or continually diminishes, until

it arrives at a maximum or minimum value.

If therefore the circle of curvature be drawn at any point,

on the side on which the curvature is increasing, as we proceed
from the point, the curve will lie within the circle, and on the

other side, on which the curvature is diminishing, the curve will

lie without the circle; which proves the proposition for the

general position of the point.

For the particular case, in which the point is at a position

of maximum or minimum curvature, as at the extremities of the

axes of an ellipse, if the curvature be a maximum the curvature

at adjacent points on either side will be less than that of the
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circle of curvature at the point under consideration
;

therefore

the circle will lie entirely within the curve on both sides near

the point of maximum curvature; and, similarly, it will lie

without the curve at points of minimum curvature.

We can illustrate this by reference to the polygon inscribed

in the curve
;
see the figure in the following page.

If, in the curve, equal chords AB, BC, CD, DEr .. be placed

in order, generally the angles ABC, BCD, CDEr .. will increase

or decrease, commencing from any point, which property of the

polygon will have in the curvilinear limit, when the chords are

diminished indefinitely, the corresponding property, that the

curvature decreases or increases continually.

Suppose the angles are increasing from Bj make the angles

CBA, CDE' equal to the angle BCD, and BA, DE' equal to

BC, CD...] then a circle through B, C, D will pass also through
A and E', and these points will be on opposite sides of the

perimeter of the polygon, whence, if we proceed to the limit,

the circle of curvature at a point in the middle of increasing

curvature will cut the curve.

If the angles ABC and DEF be each less than the angles

BCD, CDE, supposed equal, the curvature will decrease and

then increase, and the circle about BCD will pass through E,
and BA, EF will lie within the circle, and, proceeding to the

limit, the circle of curvature will lie without the curve, near

the point of minimum curvature,

Evolute of a Curve.

73. DEF. If the circles of curvature be drawn at every

point of a curve, the centres of those circles will lie in a curve

which is called the evolute of the proposed curve.

Properties of the Evolute.

74. The extremity of a string unwrapped from the evolute of
a curve traces out the curve.

Let ABODE be any equilateral polygon, and let a'a, Vb, c'c

dd be drawn perpendicular to the sides from the middle points
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a', &', &c., these intersect in the angular points abed... of another

polygon.
If a string were wrapped round a abed... the extremity a'

would as the string was unwrapped pass through the points

a'b'c'd".

Let now the number of sides of the polygon be increased and

the magnitude diminished indefinitely.

The points a'b'c... will be ultimately in the curve which is

the limit of the polygon, and since a, &, c... are the centres

of the circles described about ABC, BCD,... , a, &, c,... will be

ultimately the centres of the circles of curvature at a'b'c'...
,
and

the curve, which is the limit of the polygon abed..., will be the

evolute of the curve a'b'c...
,
and the property proved for the

polygons will be true for the limits of the polygons, therefore

the extremity of the string unwrapped from the evolute will

trace the curve of which it is the evolute. This property gives

rise to the name of evolute.

DEF. The curves formed by the unwrapping of a string

from a curve are called involutes.

75. The tangent to the evolute of a curve is a normal to the

curve.

Since b'b is ultimately the tangent to the evolute and is

perpendicular to BC, which is ultimately the tangent to the

curve a'b'c...
,
therefore the tangent to the evolute is a normal

to the curve.
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Propositions on Diameters and Chords of Curvature.

76. If a subtense le drawn from the extremity of an arc

of finite curvature, in any direction, the chord of curvature

parallel to that direction will be the limit of the third pro-

portional to the subtense and the arc.

Let PQ, Pq be arcs of a curve and its circle of curvature

at P, let PR be the common tangent, and RQq the direction

of a common subtense, meeting the circle in U.

Draw the chordPV parallel to E Q. Then, since Rq.R U=PIF,
RU is the third proportional to Rq and PR.

But, ultimately, when PQ is indefinitely diminished, RU=PV,
and PR = PQ, by Lemma VII. also, Rq = RQ\)j the property

of the circle of curvature.

Therefore PV is the limit of the third proportional to RQ
and PQ.

COR. The diameter of curvature is the limit of the thirdpro-

portional to the subtense perpendicular to the tangent and the arc.

77. The two chords of curvature at any point of a parabola
drawn through the focus, and in the direction of the diameter, are

each equal to four times thefocal distance of that point.

Let AP be a parabola, P any point, RQ a subtense parallel

to the diameter PMx, QM the ordinate at Q, S the focus.

Then, by a property of the parabola, QM* = SP.PM-, there-

fore 4&P is a third proportional to PM and QM, i.e. to RQ
and PR.

Hence, 4/SP is the limit of the third proportional to the
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subtense QR and the arc PQ, and is therefore equal to the

chord of curvature at P in direction of the diameter.

L y \
And, since PS, PM are equally inclined to the tangent at P,

the chords in those directions are equal ;
therefore the chord of

curvature through S is four times the focal distance SP.

78. One-fourth of the diameter of curvature at any point

of a parabola is a third proportional to the perpendicular from
the focus on the tangent at that point, and the focal distance of
that point.

For, draw SY, QR perpendicular to PR, and let PI be the

diameter of curvature at P.

Then PI. QR = P#2 = PB" ultimately,
= 4P. QE ;

.-. PI: ISP:: QR : QR :: SP: SY;
since the triangles SYP, QRR are similar; therefore |P7 is

a third proportional to SY and SP.

79. The chord of curvature at any point of an ellipse drawn

through the centre of the ellipse is a third proportional to the

diameter through that point and the diameter conjugate to it.

Let P be any point in an ellipse, PGG the diameter, DCD'

conjugate to it, Q any point near P, QR a subtense parallel

to CP, QM an ordinate parallel to DC, PV the chord of curva-

ture drawn through C.

Then PV. QR = PQ* = QM* ultimately,

and QM* : PM.MG ::CD*: CP2

;

.-. PV.QR : QR.MG :: CD2
: CP2

ultimately;
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.-. PF:2CP:: CD3
: CP* ultimately;

.-. PV.GP: CP* :: 2CZ7 1

: OP2

,

and PF.CP=2OD2

;

or PF is a third proportional to PG and DCD'.

80. !7^e cford of curvature at any point through tne j ocus is

a third proportional to the major axis, and the diameter parallel

to the tangent at that point.

Draw the focal distance SP cutting the diameter DCD' in E,
let PF' be the chord of curvature through 5, and draw the

subtense QR' parallel to SP.

Then PF' : PF: : QR : QR ultimately

: : CP : PE by similar triangles ;

.-. PV'.PE=PV.CP=2CD*;
.'. PF' is a third proportional to 2PE and DCD',

and 2PE is equal to the major axis.

Similarly for the other focus H.

81. The diameter of curvature at any point is a third pro-

portional to twice the perpendicular from the point on the diameter

parallel to the tangent and that diameter.

Draw QR' perpendicular to the tangent, and PF perpen-
dicular to DCD', and let PI be the diameter of curvature.

PI:PV:: QR : QR" :: CP: PF;
.-. P7.P/7=PF.<7P=2OZ)*;

/. PI is a third proportional to 2PFand DCD'.
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82. Since the chord of curvature in any direction varies

inversely as the subtense QR drawn in that direction, it is easily

seen that, if PL be the portion of the chord intercepted between

P and DCD1

,
the chord of curvature at P in the direction PL

will be the third proportional to 2PL and DCD'.

83. The propositions concerning the chords and diameter

of curvature of an ellipse may be proved in the same words for

the hyperbola, employing the following figure.

84. The radius of curvature at any point of a conic section

is to the normal in the duplicate ratio of the normal to the semi-

fatus rectum.

Let PK be the normal, PO the radius of curvature at P,
L the semi-latus rectum,

(i)
For the parabola,

PO:2SP:: SP: SY:: SY : SA;
.-. PO-.2SY:: SP : SA : : 1SP.SA : U;

but PK=2SY; .'. PK* = SP.SA-, .: PO : PK : : PK1
: L\

(ii)
For the ellipse or hyperbola,

PO.PF= CD' and PK.PF=BC*;
.-. PO : PK:-. CD* : BC* :: AC* : PF'-,

but PF.PK=C*=--L.AC; .: AC : PF:: PK : L;
.-. PO: PK::PK*: L\
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85. To find the chord common to a conic section and the

circle, of curvature at any point.

If a circle intersect a conic section in four points, as PQ UR^
and these points be joined in pairs by two lines, these lines will

be equally inclined to the axis of the conic section. Thus, in

the conic section, PQ, EU are equally inclined to the axis.

For, if UR, QP intersect in 0, OR.OU= OP.OQ, hence

the diameters of the ellipse parallel to UR, QP will be equal,

and therefore equally inclined to the axis.

Let Q and R move up to and ultimately coincide with P,

then the intersecting circle becomes the circle of curvature at P,

and PQ is in the direction PT of the tangent, ultimately, and

RU assumes the position of the chord common to the conic

section and the circle of curvature at P. Hence, if PV be

drawn at an equal inclination with PT to the axis, PV will be

the common chord required.

And, if VI be drawn perpendicular to PF", meeting the

normal at P in /, PI will be the diameter of curvature at P.

86. To find the radius of curvature of a curve defined by
the relation between the radius vector and the perpendicular from
the pole on the tangent.

Let PY", PP' Y' be the directions of consecutive sides of a

polygon inscribed in a curve, SY, SY' perpendiculars on these
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sides; draw PO, P'O perpendicular to the same sides, inter-

secting in 0, and P'U perpendicular to SP, and let SY, PY'

intersect in W.

A semicircle on SP as diameter passes through Y and Y'
;

.-. L YPW=Z. Y8Y' = LPOP', and L WYP=L OP'P',

therefore the triangles POP', WPY are similar;

.-. PO'.PF ::PW: YW,
also PP':SP::PU:PY,

by similar triangles P'UP, SY'P, and PW=PY' ultimately;

.% PO : SP:: PIT: YW:: SP ~ SP' : SY ~ SY' ultimately.

Also, if PV be the chord of curvature through S,

PV-.2PO:: SY: SP',

.'. PV: 2SY:: SP ~ SP' : SY ^ SY1

ultimately.

Observations on the Lemma.

87. In the proof of Lemma XI., AI is the limit of the

third proportional to BD and AS, hence it is the diameter of

curvature of the curve at A.

88. For an example of a law according to which, in Case 3,

the directions of the subtenses may be determined, we may
suppose that they always pass through a point given in position

at a finite distance from A, or that they always touch a given

curve; but it must be observed that the case in which they
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touch a curve which has the same tangent AD at A is excluded,
since in this case the angles D', d' do not in the limit remain

finite, a property required in the name subtense.

89. DEF. If a line be drawn from the middle point of an

arc of a curve, making a finite angle with the chord, the part

intercepted between the chord and the arc is called the sagitta

of the arc.

90. The sagitta of an arc is ultimately one quarter of the

subtense drawn at the extremity of the arc parallel to the sagitta.

Let the sagitta FE bisect the arc AB in E, and be pro-
duced to the tangent at A in G, and let BD be a subtense

parallel to FE.

9-

Then EG : BD :: AE* : AB* ultimately ;
.

also BD:FG::AD:AG::AB:AE ultimately ;

.. BD = 2FG = EG', hence FE=EG = %BD ultimately.

91. COR. 5. The parabola mentioned in this corollary is a

parabola of curvature at that point ; for, since DB is taken in

any given direction, the proportion BD : bd :: AD1
: Ad'2

proves

that the curve is ultimately in the form of a parabola, and that,

therefore, the line through A drawn in the given direction is the

corresponding diameter of the parabola of curvature.

Hence the axis of the parabola may be taken in any as-

signed direction.

If the subtenses be perpendicular to the tangent, the parabola

of curvature will be the parabola whose curvature at the vertex

will determine the curvature of the curve, since the axis will be

perpendicular to the tangent, and if 4/1
Z7,

in the figure page 104,

be the third proportional to the subtense and arc, the limiting

position of U will be the focus of the parabola.

By means of this corollary the proposition alluded to under

Lemma IX., Art. 44, is established
;

viz. that the ratio of the
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areas which takes place of the duplicate ratio, obtained in that

Lemma, is the triplicate ratio of the same lines, when the line,

AE, instead of cutting the tangent at a finite angle, coincides

with the tangent.

92. Scholium. Let AB, AC be two curves, having a

common tangent AD at A, and let subtenses DB, DBG of the

angles of contact be drawn from D at any point in the tangent
in the same direction, and let BD cc ADm

,
CD oc AD" in the

curves AB, AC respectively. Draw dbc a common ordinate

from a fixed point d, parallel to DBC. Then .
'

ADm
: Adm :: BD : Id,

and ADn
: Adn

:: CD : cd,

and if m be greater than n, =n + r suppose,

AD\ADr
: Adn.Ad T

:: BD : Id',

.: CD.ADr
: cd .Ad r

:: BD : Id

::BD.ADr
: ld.ADr

-,

.'. CD : BD :: cd .Adr
:: Id .AD",

and since b, c, d are fixed, and AD vanishes in the limit, there-

fore CD is indefinitely greater than BD
; also, since the angles

of contact BAD, CAD are ultimately proportional to BD, CD,
it follows that, if in two curves the subtenses vary according
to different powers of the arcs or tangents, the angle of contact

of that curve in which the index of the power is the least will

be infinitely greater than the angle of contact of the other.

Illustrations.

(1) Two tangents AT, BT are drawn at the extremities of
an arc AB, to prove that AT is ultimately equal to BT, when AB
is indefinitely diminished.
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Draw TGUV in any direction making a finite angle with the

tangents, and meeting the circles of curvature at A and B in UV.

Then since the circle of curvature at A is the limit of the circle

which passes through C and has the tangent AT at A
t
and

similarly for that at B, we have ultimately

TA* : TB*:: TO.TU: TO. TV,

and TU= TV ultimately ;
/. TA=TB ultimately.

COR. If BD be any subtense of the arc AB,

AT+TB=AB =AD ultimately ;

therefore AD will be ultimately bisected by the tangent BT.

(2) If BT be a tangent at 5, AB, BC equal chords of a

curve of finite curvature^ drawn from B^ and AB be produced
to c, making Bc = AB, and Cc be joined meeting BT in T,cT
will ultimately be equal to CTj when the arcs AB, GB are

diminished indefinitely.

Let A U be drawn parallel to CT, meeting the tangent at B
in Z7,

and let two circles touch UBT at B and pass one through

A and the other through C, and let BV, BV be chords of these

circles drawn parallel to AU or CT, then AU.BV=AB\ and



LEMMA XI. 103

CT.BV' = BC*; but BV=BV ultimately, since the two circles

are each ultimately the circle of curvature at B and AB=BC,
therefore A U= CT ultimately.

Through B draw RBR1

parallel to AC, meeting AU in R'

and Cc in R, then R'U=RT, therefore 2RT is the difference

between AU and CT, hence RT ultimately vanishes compared
with CT, and since CR = Re, therefore CT= Tc ultimately.

(3) If) from the point of contact of a curve with its tangent*

equal distances be measured along the curve and tangent, the line

joining their extremities will ultimately be parallel to the normal

at the point of contact.

In the last figure, let, BC, BT be equal distances, measured

along the arc and the tangent ; join CT, let the tangent at (7

meet ^Tin D, produce BT to ^making DF=DC, take BE=
the chord BC, and join EC, TC, and FG.

Since the arc BC is intermediate in magnitude between

BD + DC and BC, therefore, BT being equal to arc BC, the

point T lies always between E and F. But the triangles BCE,
DCF being both isosceles, each of the angles EEC, BFC will

ultimately be a right angle, therefore the angle BTC, which is

less than BEG and greater than BFC, will also ultimately be

a right angle.

Hence CT will ultimately be parallel to the normal at B.

NOTE. In order to shew the danger of falling into an error

by a careless employment of the propositions proved in the

first section, the following fallacious proof may be noticed of

the above proposition.

In the figure page 102, join BC, then BT: CB will be

ultimately a ratio of equality, by Lemma VII
;
therefore CBT

being an isosceles triangle ultimately, CT will be perpendicular

to the line bisecting the angle CBT, and therefore to the

tangent BT, since .Z?Tand BC will ultimately coincide with the

bisecting line.

The fact is that Lemma VII. only allows us to assert that

BT and the chord BC differ by a quantity Tt, which vanishes

compared with either of them, and therefore Tt may cc BC*;

but, by Lemma XI, CTcc BC2

;
hence Tt : CT may possibly
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be a finite ratio, or CT may be ultimately inclined at any finite

angle to BT, at least as far as the reasoning given in the above

proof is concerned.

(4) To construct for the focus of the parabola of curvature

whose axis is in a given direction.

C D

Let AB be a curve of finite curvature, BD, Id subtenses

parallel to AE the given direction. Draw A U perpendicular to

AD, and AS making angle UAS = UAE; then since ^^is a

diameter of the parabola by Art. 91, AS is in the direction of

the focus.

Also, if kAS be taken a third proportional to BD and AD,
the limiting position of S will be the focus of the parabola.

(5) To find the locus of thefocus of the parabola of curvature,

when its axis changes its direction.

Let BO be perpendicular to AD, and A 7 be chosen so that

4AU.BC = AC*, then the limiting position of Z7is the focus of

the parabola whose curvature at the vertex is the same as that

of the curve at A
; also, if S be the focus of the parabola whose

axis is parallel to DB, 4.AS.DB = AD' = AC3

, ultimately;

therefore AU: AS:: BD: BC, and / SAU = L DBG', hence

if we join SU, the triangles SAU, CBD will be similar, and

LASU=/.BCD = * right angle ;
therefore the locus of S is

a circle on A U as diameter.

(6) ABC is an arc offinite curvature, and is divided so that

AB : BC :: m : n, a constant ratio; join AB, AC, BC, and
shew that, ultimately, &ABC : segment ABC :: '6mn : (m -f n)*.
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For, by Cor. 5, Lemma XL

seg AB : seg ASC :: AB3
: ABC3

:: m* : (m + n?

seg BG : seg ABO :: n3
: (m + n)

3

;

.-. seg AB + seg BC : seg ABO :: m9 + n3
: (m + n)*,

and A A5<7 = seg AB<7 - seg AB -
seg 5(7;

.-. A ABO : seg ABO:: 3 (wi'n + win
2

)
: (m + rc)

3

:: Bmn : (m -f- w)*.

(7) To ^nc? $e cAorc? ofcurvature, at any point of the cardioid,

through the focus.

It is easily seen from p. 56 (3), that SY being perpendicular

to PT, the triangles PSY,pBm, and OBp are similar;

/. 8Y: SP:: Bm : Bp :: J?^ : 56T

;

.-. 8Y* : /S'P'
2

:: SP : ^(7, since 5w = 8P,

.-. SY*BC = SP3
,
and (SY

2 - SY'2

}
BO = SP3 - SP'3

;

/. SP~SP' : SY^SY' :: 2SY.BO : 3^P2

ultimately;

.'. by Art. 86, chord of curvature : 2SY:: 2SP: 3F;
therefore the chord of curvature through S = SP.

XII.

1. Prove that the focal distance of the point in the parabola at

which the curvature is one-eighth of that at the vertex is equal to

the latus rectum.
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2. Prove that the diameter of curvature at the vertex of the

major axis of an ellipse is equal to the latus rectum : and shew
that the ratio of the curvature at the extremities of the axes is that

of the cubes of the axes.

3. Shew that at no point of an ellipse will the circle of
curvature pass through the centre, if the eccentricity be less

than Vi-

4. Find for what point of au ellipse the circle of curvature

passes through the other extremity of the diameter at that point,
shew that the distance of this point from the centre is the side of

the square of which AB is the diagonal.

5. In a rectangular hyperbola, the diameter of curvature at any
point, and the chords of curvature through the focus and centre are

in geometrical progression.

6. Prove that at a point P in an ellipse for which the minor
axis is a mean proportional between the radius of curvature and
the normal, PC = AC - BG. Shew that this is impossible unless

AC^. 2BO.

7. If the radius of curvature for an ellipse at P be twice the

normal, prove that CP = CS.

If moreover AC=2BC, prove that CP == 3PM.

8. If the circle of curvature at a point P of a parabola pass
through the other extremity of the focal chord through P, and the

tangent at P meet the axis in T, prove that the triangle PST will

be equilateral.

9. Prove that the distance of the centre of curvature, at any
point of a parabola, from the directrix is three times that of the

point.

10. If the circle of curvature at a point on a parabola touch
the directrix, the focal distance of the point will be & of the latus

rectum.

11. PQ is a normal at a point P of a rectangular hyperbola,
meeting the curve again in Q, prove that PQ is equal to the
diameter of curvature at P.

12. Prove that the portion of the normal intercepted between
the line joining the extremities of the two chords of curvature through

2BC 1

the foci of an ellipse, and the point of contact P, is
pjf,

.
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13. A fixed hyperbola is touched by a concentric ellipse. If

the curvatures at the point of contact be equal, the area of the

ellipse will be constant.

14. Shew that the directrices of all parabolas touching a curve

of finite curvature at any given point, and having the same curvature

at that point as the curve, pass through a fixed point.

xni.

1. Prove that the chord of curvature through the vertex A
of a parabola : 2PT : : 2PY: AP, T being the intersection of the

tangents at P and A.

2. Apply the property that the radius of curvature at any point
of an ellipse is to the normal in the duplicate ratio of the normal to

the semi-latus rectum, to shew that the radius of curvature at the

extremity of the major axis is equal to the semi-latus-rectum.

3. Assuming only that a curve has a subnormal of constant

length, prove geometrically that its radius of curvature varies as

the cube of its normal.

4. If Pp be any chord of an ellipse, PT, pT tangents at P
and p, shew that the curvatures at P and p are as the cubes of pT
and PT.

5. Shew that the sum of the chords of curvature through a
focus of an ellipse at the extremities of conjugate diameters is

constant. Also, if p, a be the radii of curvature at those points,

prove that p* + ^ is constant.

6. Prove that the chords of curvature through any two points
on an ellipse in the direction of the line joining them are in the

same ratio~'as the squares on the diameters parallel to the tangents
at the points.

7. Prove that the distances of the centre of curvature at any
point of an ellipse and of that point from the minor axis are in the

duplicate ratio of the distances of the point and the directrix from
the same axis.

8. An hyperbola touches an ellipse, having a pair of conjugate
diameters of the ellipse for its asymptotes. Prove that the curves
have the same curvature at the point of contact.

9. Shew that, if D be the diameter of an ellipse parallel to the

langent at a point P, whose eccentric angle is 0, the length of the

chord common to the ellipse and circle of curvature at P will be
D sin 2>
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1 0. Determine a parabola of curvature in magnitude and position
for any point in a circle, when the subtenses are inclined at 45 to

the tangent.

11. If #, y be the coordinates of a point P of a curve OP,
passing through the origin 0, the diameter of curvature at will

3? + y*
be -. ultimately, a being the inclination of the tangent

at to the line of abscissae. Hence shew that, if the equation of

a curve, referred to rectangular areas, be y
2 + 2ay - 2ax = 0, the

radius of curvature at the origin will be 2 V2 . a.

12. A circle is a circle of curvature, at a fixed point in the

circumference, to an ellipse, one focus of which lies on the circle,

shew that the locus of the other focus is also a circle.

13. Prove that the chord of curvature at any point P of an

ellipse in any direction PQ is half the harmonic mean between the

two tangents drawn from P to the confocal conic that touches PQ,
the tangents being reckoned positive when drawn towards the

interior of the ellipse,

XIV.

1. If AEB be the chord, AD the tangent, and BD the subtense,
for an arc ACB of finite curvature at A, find the limit of the ratio

area A CBE : area A CBD, as B approaches A.

2. An arc of continuous curvature PQR is bisected in Q, PT is

the tangent at P
; prove that, ultimately, as R approaches P, the

angle HPT is bisected by PQ.

3. If AB be an arc of finite curvature bisected in C, and T be
a point in the tangent at A, at a finite distance from A, prove that

the angle BTC will be ultimately three times the angle CTA, when
B moves up to A,

4. Two curves touch one another, and both are on the same
side of the common tangent. If in the plane of the curves this

tangent revolve about the point of contact, or if it move parallel to

itself, the prime ratio of the nascent chords in the former case will

be the duplicate of their prime ratio in the latter case.

5. A CB is a small arc of finite curvature
; prove that the mean

of the distances of every point of the arc from the chord AB is

equal to f of the distance of the middle point of the arc from the

chord, and that the mean of the distances of every point of the arc

from the tangent at either extremity of the arc is equal to f of the

distance of the middle point of the arc from the same tangent.
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6. When on an arc of continuous curvature there is no point
where the curvature is a maximum or minimum, the circles of

curvature at the extremities of the arc cannot intersect.

7. If 8 be any point in the plane of a curve, P any point on
the curve, Fthe corresponding point on the pedal for which S is

the pole, V the point where PS cuts the circle of curvature at P,
V the corresponding point for the pedal, then 4&P.S F'= PF. TV.

8. The radius of curvature in a curve increases uniformly with
its inclination to a fixed radius. Prove that the area between the

curve, its evolute, and the two radii of curvature of lengths a, J,

which contain an angle $, is (a
2 + ab + J

2

) #.

9. A curve is such that the radius vector makes half the angle
with the normal that it does with a fixed line; find the chord of

curvature through the pole.

10. In a segment of an arc of finite curvature a pentagon is

inscribed, one side of which is the chord of the arc, and the remaining
sides are equal. Shew that the limiting ratio of the areas of the

pentagon and segment, when the chord moves up towards the

tangent at one extremity, is 15 : 16.

11. APQ, is a curve of continued and finite curvature, P and Q
are two points in it, whose abscissae along the normal at A are

always in the ratio m : 1, and from
, C, two points in the normal,

straight lines BPb, CPc, BQb', CQc' are drawn to meet the tangent
at A. Shew that, when P and Q move up to A, the areas 01

the triangles bPc, b'Qc' are ultimately in the ratio m* : 1.

12. AB is an arc of finite curvature at A, and a point P is

taken such that AP : PB is in the constant ratio of m : n. Tangents
at A and B intersect the tangent at P in T and R, and AB is

joined. Prove that the ultimate ratio of the area ATRB to the

segment APB, as B moves up to A, is 3 (m
2 + mn + nz

) : 2 (m + n)
a
.

13. The tangent to a curve at a point B meets the normal at

a point A in T, C is the centre of curvature at A, and a point
on AC; prove that, in the limit, when B moves up to A, the

difference of OA and OB bears to AT the ratio OC : OA.

14. is a point within a closed oval curve, P any point on the

curve, QPQ' a straight line drawn in a given direction, such that

QP = PQ? = PO; prove that, as P moves round the curve, Q, Q;

trace out two closed loops, the sum of whose areas is twice the area
of the original curve.
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NOTE ON MAXIMA AND MINIMA.

93. When a variable magnitude changes its value in con-

sequence of the change of some element of its construction,

the law of its variation can be graphically represented by the

form of a curve in which the ordinate and abscissa of every

point represent respectively the corresponding values of the

variable magnitude and of the element on which it depends.

Examples of this mode of representation have been given
in Arts. 55 and 57, in which the time or space is the element

upon which depends the velocity or kinetic energy, which are

the variable magnitudes respectively considered.

94. This graphic representation enables us to obtain a

property of any maximum or minimum value of a variable

magnitude which is applicable to the solution of a variety
of problems.

For, let Ox be the line of abscissae and B a point in the

auxiliary curve at which the tangent RBS to the curve is

parallel to Ox, and let the abscissa OA represent the corre-

sponding value of the element, then the ordinate AB is a

maximum or minimum according as the portion of the curve

PBQ in the neighbourhood of B is concave or convex to

the line Ox.

Let a chord PQ be drawn parallel to the tangent RBS,
the two points P and Q one on each side of B have equal
ordinates 1/P, NQ, which, as PQ moves up to and continues

parallel to the tangent, become nearer and nearer and are

ultimately equal to the maximum or minimum value, while

the difference between the corresponding abscissae ultimately

vanishes.

Hence is derived the following theorem :

If a variable magnitude have a maximum or minimum value

there icill be two values of the element of construction, one greater

and the other less than the critical value^ which will give equal

values of the variable magnitude.
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95 Stationary value of a magnitude.

Let the equal ordinates MP, NQ be produced to meet the

tangent in R and S, then by Lemma XI., PR and QS vanish

compared with AM or AN^ and the ratio of the rates of

increase of the ordinate to that of the abscissa, which is gene-

rally finite, vanishes for the critical case of a maximum or

minimum
;
on this account the magnitude is said to have a

stationary value.

One or two examples are sufficient to shew the application

of this method.

96. To find at what point on the bank of an oval pond a

person must land in order to pass from a given point on the

pond to a given point on the bank in the shortest possible time,

having given the ratio of his rates by land and by water.

Let A, B be the two given points, P the point at which he

must land, and let nv, v be the velocities by water and along
the bank. On opposite sides of P there are two points Q, R at

which if he land the time to B will be the same, in AR
take AM= A Q, then MR in water and QR on land are

described in the same time, therefore n.QR = MR, which is

true, however near Q and R may be to P; therefore cos< =
w,

where
(j>

is the angle between AP and the tangent at P; whence,
when the exact form of the oval is given, the position of P
can be found.

97. To find the chord of an oval, which, drawn through a

given point, cuts off a maximum or minimum segment.

Through the fixed point A it is possible to draw two chords

PA Q and pAq, one on each side of the required chord, for

which the areas cut off are exactly equal; take away the

common part, and the remainders PAp, QAq are equal ;
there-

fore, ultimately, when the angle between them vanishes,

PA.pA = QA.qA, and the chord which cuts off a maximum
or minimum area must be bisected by the fixed point.

98. If a triangle of constant shape be described about a given

triangle, prove that when the area is a maximum the normals to
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the sides of the circumscribed triangle at the angular points of the

given triangle will meet in a point.

Let ABG be the given triangle, a/3y, a.'j3'y' two positions

of the circumscribing triangle whose areas are equal, the

triangle of maximum area being intermediate in position.

. Since the angles at a, a' are equal, the points a, a' lie in

the same segment of a circle whose base in j(7, and the angles

a(7a', ctBa! are equal. Hence the triangles a(7a', $(7/3', ftA/3't

yAy, &c., are ultimately proportional to Gd\ <7/3
2

,
....

But the sum of the areas a(7a', ftAft', 7^7' are ultimately

equal to the sum of ft Oft', yAy, aBa,

.'. aC* - 30* + &A* - yA' + yB* - aB2 = 0.

Let the normals at A and C meet in JV;

.-. *C2

-ftC
2 = aN2

-ftN*,

ftA3 - yA* = JV - yN* ;

.-. aB2 -
yft

2 = aN 2 - 7^ = aD* - yD'\

if ND be perpendicular to ay ;

/. aB-yB=QLD-yD; .: BD = Q,

which proves the proposition.

XV.

1. In an arc AS of continuous curvature n points Pv P2 , . .

are taken so that the polygon AP^PZ
. .B has a maximum area ;

prove that, when the arc AB is indefinitely diminished, the arcs
APV P,P2 , . . are all equal.

2. Find the greatest rectangle which can be inscribed in a

triangle, one side of which is on a side of the triangle.

3. Prove that the diagonals of the greatest rectangle which can
be inscribed in an ellipse, having its sides parallel to the axes, are
the equi-conjugate diameters.

4. Prove that the parallelograms of smallest area which can be
described about a given ellipse are those which have their sides

parallel to conjugate diameters.

5. A point is taken on the major axis AA' of an ellipse

produced, and a line is drawn through cutting the ellipse in the

points P and P. Prove that when the area of the quadrilateral
APPA' is a maximum the projection of PP' upon AA is equal to
the semi-axis-major.
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6. Prove that the quadrilateral of maximum area that can be
formed with four straight lines AB, BC, CD, DA, of given lengths
is such that a circle can be described about it. Hence prove that

the curve of given length which on a given chord encloses a
maximum area is an arc of a circle.

7. From a point Ton the exterior of two oval curves tangents
TP, TQ are drawn to the inner; shew that, when the arc PQ is a
minimum or maximum, the radii of curvature at P and Q are in

the ratio TP sec a : TQ sec/3, where a, /3 are the angles which TP,
TQ respectively make with the normal at T.

8. Find the ultimate intersection of the chords common to an

ellipse and two consecutive circles of curvature, and shew that when
the common chord attains its maximum length for a given ellipse,
it cuts the ellipse at angles whose tangents are as 1 : 3.

9. A triangle inscribed in a closed oval curve moves so that two
of its sides cut off constant areas. Prove that when the area cut

off by the third side is stationary the three lines formed by joining
each angular point of the triangle to the intersection of tangents
at the other two points are concurrent.

10. Any two normal chords of an ellipse at right angles to each

other cut off equal areas from the curve. Hence find the position
of the normal chord which cuts off the minimum area.

11. An endless string just reaches round the circumference of

an oval, and when it is cut at any point it is unwrapped until it

becomes a tangent at the point of section
; shew that the involute

so formed will have a maximum or minimum length if the point
of section be chosen so that the length of the oval shall be equal
to the circumference of the circle of curvature at that point.
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DIGRESSION

ON THE PROPERTIES OF CERTAIN CURVES.

THE CYCLOID.

99. DBF. If, in one plane, a circle roll along a straight

line, any point on its circumference will describe a curve called

a Cycloid.

Let C, D be the points where the tracing point P meets the

straight line, on which it rolls
;
A the point where it is furthest

from CD, AB being the corresponding diameter of the circle.

The rolling circle is called the generating circle, AB is called

the axis, A the vertex, CD the base, and C, D the cusps.

100. Let EPS be the generating circle in any position, then,

since the points of the base and circle come successively in

contact without slipping, CS=arc PS, CB and BD are each

half of the circumference of the circle, and S= &rc HP.

101. To draw a tangent to a cycloid.

Let the generating circle be in the position EPS, then, con-

sidering a circle as the limit of a regular polygon of a large

number of sides, it will roll by turning about the point of con-

tact, which will be at rest for an instant, being an angular point

of the polygon ;
therefore for an instant P will move per-

pendicular to SP, or in the direction PE of the supplemental

chord, which will therefore be the tangent to the cycloid at P.

If A QB be the circle on AB as diameter, PQM an ordi-

nate perpendicular to AB, the tangent at P will be parallel to

the chord QA.

102. To find the length of the arc ofa cycloid.

Let EPS be the position of the generating circle corre-

sponding to the point P in the cycloid, PE being the tangent
at P.
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When the circle has turned through any angle POp the

centre will have moved through a distance equal to Pp,
and the motion of the generating point will be the resultant

V C

of Pp due to the rotation, and pP = Pp parallel to the base

due to the translation of the centre of the circle
;
and PP

will ultimately coincide with PR. Draw pn perpendicular to

PR, then, since Pp = Pp, PP' = 2Pn = 2 (RP- Rp] ultimately.

Hence the arc of the cycloid measured from the vertex increases

twice as fast as the chord of the generating circle, which is a

tangent to the cycloid, and they vanish simultaneously, therefore

the arc of the cycloid is double of the chord of the generating

circle, or referring to the circle on the axis AB as diameter,
the arc AP is double of the corresponding chord A Q.

103. To find the relation between the arc and abscissa.

Let AM be the abscissa of the point P, then

AM-.AQ:: AQ : AB-,

104. To shew that the evolute of a given cycloid is an equal

cycloid, and that the radius of curvature of a cycloid is twice the

normal.

Let APG be half the given cycloid, AB the axis, A the

vertex, and BO the base. Produce AB to 0', making BC' equal

to AB, and complete the rectangle BCBC\ and let the semi-

cycloid C'P'C be generated by a circle, whose diameter is equal

to that of the generating circle of the given cycloid, rolling on

C'B'
;
C being the vertex, CB' the axis of this cycloid.

Let SPR, SPR' be two positions of the respective gene-

rating circles, having their diameters RS
}
SR' in the same



116 NEWTON.

straight line, P, P being the corresponding points of the

cycloids; join SP, PR and JSP', PR.

By the mode of generation, arc SP=SC, and arc SPB=BC',

.'. L PSR = L PSR
;
and PSP is a straight line.

Also, arcP5=arcPS; .-. chd.P'S=chd.PS;

.-. PSP=2P'S=P'Cr

thecycloidalarc;

also PSP touches the cycloid C'PCat P';

therefore, a string fixed at
(7',

and wrapped over the arc of

the semicycloid, will, when unwrapped, have its extremity in

the arc of the given cycloid ; hence, the evolute of a semi-

cycloid is an equal semicycloid, and the radius of curvature at

P is 2PS or twice the normal. If another equal semicycloid be

described by the circle rolling on B'C' produced, the extremity
of the string wrapped on this curve will trace out the remainder

of the given cycloid.

Thus a pendulum may be made to oscillate in a given

cycloid.

105. To find the area of the cycloid.

Let P, P be two points very near each other in a cycloid,
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Q, C$ corresponding points in the generating circle, p, p' in the

evolute, Rj R' the intersections of the base with normals Pp }

Pp'j T, 8 the intersections of SQf and Pp' with PQ. Then

pR = PR = BQ, and &p'PS=&p'RR ultimately =4A BQT-
therefore trapezium PUR'S= 3&BQT ultimately, and the same

being true for all the inscribed triangles and trapeziums, whose

sums are ultimately the areas of the semicircle and semicycloid,

therefore, by Cor., Lemma IV., the area of the cycloid is three

times that of the generating circle.

106. The following method of finding the area of a cycloid

is independent of the properties of the evolute.

In the figure of Art. 1 04 let P' be any point in the cycloid

CPC', PS the chord of the generating circle which touches

the cycloid, and let Q' be a point in the cycloid near P', then

the arc PQ' ultimately coincides with PS. Let Q'N
1

, Q'N
be the complements of the parallelogram whose diagonal is

jF/S, and sides parallel and perpendicular to the base, these are

equal ultimately ; therefore, by Lemma IV., the cycloidal area

CNP = circular segment SPN'.
The exterior portion CB'G' is equal to the area of the

semicircle, and the whole parallelogram BCB' 0' is the rectangle
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under the diameter and semi-circumference of the generating

circle, and is equal to four times the area of the semicircle;

therefore the cycloidal area CC'J? is three times the area of the

semicircle.

107. All cycloids are similar.

Let two cycloids APG, Ape be placed so that their vertices

are the same, and their axes coincident in direction, and describe

circles on the axes AB, Ab as diameters. Draw AqQ cutting

the circles in q, Q. Then, since the segments Aq, AQ are

similar, arc Aq : arc A Q : : Aq : A Q ; and, if mqp, MQP be

ordinates to the cycloids, arcs Aq, AQ = qp, QP respectively ;

therefore qp : QP::Aq:AQ, and ApP is a straight line.

Also Ap : AP:: Aq : AQ :: Ab : AB, a constant ratio; hence

the cycloids satisfy the condition of similarity, and in this

position of the cycloids the point A is a centre of direct

similitude.

108. To construct a cycloid which shall have its vertex at a

given point, its base parallel to a given straight line, and which

shall pass through a given point.

Let A be the given vertex, AB perpendicular to the given

line, P the given point. In AB take any point b, and with

the generating circle, whose diameter is Ab, describe a cycloid

Ape, join AP intersecting this cycloid in^>.

Take AB a fourth proportional to Ap, AP, and Ab
;
then

AB will be the diameter of the generating circle of the required

cycloid ; for, since Ap : AP : : Ab : AB, and all cycloids are

similar, P is a point in the cycloid whose axis is AB.
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109. A particle slides down the, smooth arc of a cycloid,

whose axis is vertical, and vertex downwards, to find the time

of an oscillation.

Let AB be the vertical axis of the cycloidal arc APL, L the

point from \\hich the particle begins to move, PQ a small arc of

its path, LR, PM, QN perpendicular to AB] and take Al, Ap,

Aq on the tangent at A respectively equal to AL, AP, A Q.

Suppose a point to move from I to A in the same time as

the particle moves on the cycloid from L to A, their velocities

being always equal at equal distances from A.

Let v be the velocity at P or p, and T the time of falling

from B to A, so that v' = ^gBM and 2AB= gT*-, therefore

tfT*= AB.RM= kAB.AR - AB.AM=AU- AP\ Art. 103,
= AF-A/.

Describe a circle with centre A and radius Al, and draw the

ordinates pt, qu, then AP Ap*=ptf, and^ = VjT; and if T be

the time from P to Q, PQ =pq = vr ultimately, hence

tu : Al : : pq : pt : : r : T;

therefore, if a point move in the circle from I with uniform

Al
velocity -^ ,

the point moving in IA will always be in the

foot of the ordinate and the motion in IA or LA will therefore

be a simple harmonic motion, by (5) page 78.

The time from L to A is the time of describing the quadrant

\ -rrAl with velocity ,
= \irT= |TT
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The length of the string which, by the contrivance of Art. 104,

makes a particle oscillate in this cycloid is 2AB=l suppose;

therefore the time of the oscillation of a cycloidal pendulum

of length I from rest to rest = TT . /- .V 9
ATt

9
110. We can shew that the motion on the cycloid is a

simple harmonic motion by the first definition, (5) page 78
; for,

referring to the figure, page 115, since the tangent at P is

parallel to AQ, the acceleration along the curve at P iis

A.O A.P
varies as -^ ""! bv (

4
) Pa&e 77 tne

time from L to A is obtained.

111. To find the time of a very small oscillation of a simple

pendulum suspendedfrom a point.

A simple pendulum is an imaginary pendulum consisting of

a heavy particle called the 505, suspended from a point by means

of a rod or string without weight.
In this case the pendulum describes the small arc of a circle

which may be considered the same as a cycloidal arc, the axis

of which is half the length I of the pendulum, therefore the

time of oscillation from rest to rest is TT . /- .V 9

112. To count the number of oscillations made by a given

pendulum in any long time.

In consequence of the liability to error in counting a very

great number of oscillations, since in the case of a seconds pen-
dulum there would be 3600 oscillations for each hour, it becomes

necessary to adopt some contrivance for diminishing the labour.

For this purpose the pendulum is made to oscillate nearly in the

same time as that of a clock; it is then placed in front of

that of the clock, so that when they are simultaneously near

their lowest positions the bob of the pendulum and a cross

marked on the pendulum of the clock may be in the field of

view of a fixed telescope.
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Suppose that after n oscillations of the given pendulum

they are again in coincidence close to the same position ;
if

there be m such coincidences in the whole time of observation,

the number of oscillations in that time will be mn
;

thus the

only labour has been to count the n oscillations, and to estimate

the number of the coincidences before the last one observed.

113. To measure the accelerating effect of gravity by means

of a pendulum.

Let g be the measure of this effect or the velocity generated

by the force of gravity in a second.

Let I be the length of a simple pendulum which makes n

oscillations in m hours, then = number of seconds in one
n

oscillation =ir . /-; therefore g= . . 2 ^, in whatever unit

of length I is estimated.

This would be a very exact method of determining g, if we
could form a simple pendulum ;

but it is impossible to do this,

and it is only by calculations of a nature too difficult to be

explained here that it can be shewn how to deduce the length of

the simple pendulum, which would oscillate in the same time as

a pendulum of a more complicated structure.

114. The seconds pendulum at any place is the simple pen-
dulum which at the mean level of the sea at that place would

oscillate in one second.

If L be the length of the seconds pendulum, I the length

of a pendulum making n oscillations in m hours,

? 3600m , 1L _ rfl~' and
*Vr * '' 'WS-

115. To determine the height of a mountain by means of a

seconds pendulum^ the force ofgravity at any point being supposed
to vary inversely as the square of the distancefrom the centre of
the earth.

Let L be the length of a seconds pendulum, x the height
of the mountain above the mean level of the sea, a the radius

R
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of the earth, all expressed in feet
;
and let n be the number of

seconds lost in 24 hours by the pendulum at the top of the

mountain.

Ifg be the measure of the accelerating effect of gravity at

the mean level of the sea, then *- ^ will be its value at

the top of the mountain, and the time of oscillation at the top

11 u I(L fa+ x\*} a + x , . /L
will be TT . / -I I I > , or seconds, since TT . / = 1 ;N \9\ a J ) a V
hence, writing N for 24x60x60, (N-n)- = N, and

x N n r? a a,

a = 4000 x 1760 x 3 and N= 24 x 60 x 60, therefore the height

of the mountain will be 244'4n + '0027n
2

; thus, if n = 10, the

height will be 2444'7 feet.

NOTE. The attraction of the mountain would make a sensible

variation from the law of the inverse square, this law being true

only if the earth consisted of homogeneous spherical strata.

116. To find the number of seconds lost in a day, in con-

sequence, of a slight error in the length of the seconds pendulum ;

and conversely.

Let N be the number of seconds in a day, L the length of

the seconds pendulum, L + \ that of the incorrect pendulum,Nn the number of its oscillations in a day;

,, L X 2n~ '* =

THE EPICYCLOID AND HYPOCYCLOID.

117. DEF. The curve traced out by a point on the cir-

cumference of a circle, which rolls upon that of a fixed circle,

is called an Epicycloid if the concavities of the two circles be

in opposite directions, a Bypocycloid if the concavities be in

the same direction.
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118. To shew that the evolute of an epicycloid is a similar

epicycloid.

Let FA be the fixed circle, APE the rolling circle in any

position, P the generating point, CAE a line drawn through

the point of contact, meeting the rolling circle in A, E] and

let GPF be the epicycloid, of which PA and PE will be a

normal and tangent.

Draw the chord EQ parallel to PA and join CQ meeting
PA produced in 0. Since EQ is parallel to AO,

CO: CQ:: CA : CE;

therefore and Q describe similar figures. But Q, being the

other extremity of the diameter through P, will describe an

epicycloid similar and equal to GPF, being at its cusp when

P is at G the greatest distance from C.

Draw Oa parallel to QA and therefore perpendicular to P0
1

meeting CA in a, then generates an epicycloid fF by the

rolling of a circle AOa, whose diameter is Aa, on a fixed

circle of radius Ca.
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Also PO the normal to GF is perpendicular to aO and is

therefore a tangent tofF, hencefF is the evolute of the given

epicycloid and is a similar epicycloid.

Let a, b be the radii of the fixed and rolling circles for the

given epicycloid, then

Aa: CA:: OQ: CQ::AE: CE :: 25 : a + 25;

therefore Aa : AE : : a : a + 2&, and if a = co
,
Aa = AE, and

AFj af become straight lines, whence the evolute of a cycloid

is an equal cycloid.

119. Since AO : PA : : A : EQ : : CA : CE, therefore

PO : PA : : 2 (a + b] : a + 25, which gives PO the radius of

curvature at P of the given epicycloid; this will be found

independently of the evolute in Art. 121 below.

120. To find the length of any arc of the epicycloid.

By the properties of the evolute, see the last figure, the

arc OF of the evolute =OP=2AP.
J^^,

and the arc of the

epicycloid generated by Q, measured from Q to the highest

point, =OF^^-=2AP. 5L*
;

therefore the arc GP from

the highest point G of the epicycloid GPF= 2EP.
a-^

.

121. To find the radius of curvature at any point of an

epicycloid.
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Let AB, BC be consecutive sides of a fixed regular polygon
of m sides, AB, Be sides of another regular polygon of n sides

equal to those of the former, on the outside of which it rolls,

in a position in which two sides are coincident.

Let P be any angular point of the rolling polygon ;
P will

generate a figure composed of a series of circular arcs such

as PP', P' being the position of P when Be coincides with BC.
Produce P4, P'B to meet in 0.

Then APB=-, and LPBP' = LcBC= 4 Jn m n

.'. PO: PB::sin27r (- + -}: sinirf- + -
}.

\m n) \m n)

When the number of sides is indefinitely increased, the

polygons ultimately become circles, the curve traced out by P
becomes an epicycloid, and PO the radius of curvature at P.

If a, b be the radii of the fixed and rolling circles m.AB= Sira

and n.AB=2'jrbj ultimately ;
therefore m : n : : a : 5;

.-. POiPAn 2 (- + -}:- + -:: 2 (a + b}:a + 2b:
\m nj m n

therefore the radius of curvature is 2PA. --, where PA

is the part of the normal intercepted between the generating

point and the point of contact.

If a = co
,

or the fixed circle become a straight line, the

epicycloid will become a cycloid, and the radius of curvature

will be twice the normal, as in Art. 104.

122. To find the area of an epicycloid.

In the last figure, area APP'B= APAB+ sector PBP'-j now

sector PBP' = ^PB\27r(-+-} and ^PAB^^PB2
sin- :

\m n) n 1

.'. area APP'B= APAB l + ultimately ;

hence, by Lemma IV. Cor., the area of the segment of the
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epicycloid included between two normals and the fixed circle

is (3 H
J
x the corresponding segment of the rolling circle.

Compare Art. 105.

123. The corresponding properties of the hypocycloid may
be proved in a similar manner; and the results obtained will

be the same as for the epicycloid, if in the latter the sign

of b be changed.

Thus, if the diameter of the fixed be double that of the rolling

circle, the L/pocycloid will become a straight line, which agrees
with the result of Art. 121, since a + 2& = 0, and therefore the

radius of curvature at every point will be infinite.

THE EQUIANGULAR SPIRAL.

124. DEF. The equiangular spiral is a curve which cuts

all the radii drawn from a fixed point at a constant angle.

125. If a series of radii 8A, SB, SO, ... be drawn inclined

at equal angles, and AB, BG, CD, ... make equal angles SAB,
SBC

t
... with these radii respectively, the curvilinear limit

of the polygon ABCD
..., when the equal angles ASB,

BSC
t

... are indefinitely diminished, will be an equiangular

spiral.

126. To find the length of an arc of an equiangular spiral

contained between two radii.

Let a be the constant angle SAB, and let SL be the nth
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radius from 8A
; then, since the triangles ASB, BSC, ... are

similar, 8A : SB : : SB : SG ... .

Let 8B=\.8A, then BC=\.AB, CD=X\AB...FL=\n
-\AB-,

.-. AB+BC+...+ FL:AB:: 1 + X+...+X"-
1

: 1::1-X": 1-X
:: SA-\*.SA : SA-SB:: SA-SL: SA-SB,

but AB cosa = 8A - SB cozASB= SA - SB ultimately, and

AB+BC+... is ultimately the arc of the spiral; therefore

arcAL= (SA-SL) sec a.

127. To find the area of an equiangular spiral bounded ly
two radii.

Employing the same construction as above,

:: 1-X8
": 1-X*:: SA'-SL2

: 8A*-8B>,

.: SA2 - SB2= 4 AASB x cot a, ultimately ;

/. area A8L = (8A*- SU] tana.

128. To find the radius and chord of curvature through the

pole at any point of an equiangular spiral.

Let SP
t SQ be radii drawn to two points P and Q, near to

one another, let PR, QR, tangents to the spiral at P and <?,

intersect in R, and let the normals PO, QO intersect in O'
t

join OR, SR.
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Then, since angles SQR, 8PR are equal to two right angles,

and each of the angles OQR, OPR is a right angle, the circle

which passes through P, R, and Q will also pass through S
and 0, and OR will be its diameter

;
therefore L OSR is a

right angle. Hence, proceeding to the limit, O is the centre

of the circle of curvature at P, and OSP is a right angle.

Therefore if a be the angle of the spiral, OP= SP cosecoc will

be the radius of curvature, and 2SP the chord of curvature

through the pole.

129. The following is an illustration of Art. 86.

IfPV be the chord of curvature through 8t

SY'-SY: SP'-SP::2SY:PV;
but in the equiangular spiral ST : SY' :: SP: SP'

;

.-. 8Y'-8Y:SP'-8P::8Y: SP; whence PV= 2SP.

THE CATENARY.

130. DBF. The Catenary is the curve in which a uniform

and perfectly flexible string, of which the extremities are sus-

pended at two points, would hang under the action of gravity,

supposed to be a constant force acting in parallel lines.

The directrix is a horizontal straight line whose depth below

the lowest point is equal to the length of string whose weight is

equal to the tension at the lowest point.

The axis is the vertical through the lowest point.

131. The tension at any point of the catenary is equal to the

weight of the string which, if suspended from that point, would

extend to the directrix.

Let A be the lowest point of a uniform and perfectly flexible

string hanging from two points under the action of gravity,

P any other point, AO the length of string whose weight is

equal to the tension of the string at A. Take a point B in OA,
and let OM, BO drawn horizontally meet a vertical PM in

M and C.

If a string pass round smooth pegs at APCB, it is evident

that there will be a position of equilibrium whatever be the
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length of the string, or the position of BC, and for some length
and some position of BC the tangent at A will be horizontal.

T O

Also, since BDC will hang symmetrically, the tensions of

the string at B and C will be equal, and BDG may be removed

and replaced by equal lengths BO, CM of the string, without

disturbing the equilibrium of AP, therefore the tension of the

catenary at P is equal to the weight of a string of length PM.

132. The proposition of the preceding article may be proved

by considering the catenary as the limit of the polygon formed

by a series of equal rods of the same substance jointed freely

at the extremities and suspended from two fixed points, when

the length of the rods is indefinitely diminished.

The equilibrium will be undisturbed if each rod be replaced

by two weights at the extremities, each equal to half that of

the rod, connected by a rod without weight.

Let AB, BC be two consecutive positions of the rods,

S
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weights equal to those of the rods being placed at A, B, Oj let

AM be vertical and BM horizontal, and produce CB to meet

AM in D
;
draw DN perpendicular to AB.

The forces which keep B in equilibrium act in the directions

of the sides of the triangle ABD, and are proportional to them.

Therefore the difference of the tensions of AB and BC is

to the weight of the rod AB as AB- ED : AD, that is, ulti-

mately, as AN: AD or AM: AB; hence the difference of the

tensions is the weight of a rod of length AM.
Therefore, proceeding to the limit, the difference of tensions

at any two points of the catenary is equal to the weight of

string, which is equal in length to the vertical depth of one

point below the other, whence the truth of the proposition.

133. P is a point in a catenary, PM perpendicular to the

directrix, PT a tangent at P, MU perpendicular to PT; to

shew that PU is equal to the arc measured from the lowestpoint,

and that MU is constant.

Let PT, fig. for Art. 131, meet the direction OM in T, and

let A be the axis, then since the arc AP supposed to become

rigid is in equilibrium mider the action of the tensions at

A and P and the weight, and these forces are in the directions

of the sides of the triangle TPM,
.-. AP: AO:PM::PM:MT: TP :: PU : MU : PM,

by similar triangles TPM, MPU-,
/. PU=AP and MU=AO.

134. To draw a tangent to a catenary at any point.

"With centre M and radius equal to A describe a circle, and

draw PU touching this circle in U] then, since MU, which is

perpendicular to PU, is equal to A 0, PU will be the tangent

at P.

135. If a rectangular hyperbola be described, having centre

and semi-transverse axis OA, the ordinate of the hyperbola

will be equal to the arc of the catenary.

For, let AE be the hyperbola, therefore

RX* = ON*- OA*=PM 2 - UM*= PU*- /. BN=PU=AP.
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136. To find the radius and vertical chord of curvature of
a catenary.

Let PQ be a small arc of a catenary, RSPT, QS tangents at

Pand Q, PM, ^ ordinates, TOM the directrix.

T O M. N
Since QRS is a triangle of the forces acting upon P$,

tension at P : weight of PQ :: RS: QR,

/. PM :PQ::RS:QR:: %PQ : QR, ultimately;

therefore 2PM is the vertical chord of curvature, and PG, the

part of the normal intercepted between the point P and the

directrix is equal to the radius of curvature at P.

Also PG : PM :: PT: TM : : tension at P : tension at A
: : PM : A 0, therefore the radius of curvature is a third pro-

portional to A and PM.

THE LEMNISCATE.

137. PEF. The Lemniscate is the locus of tne feet of the

perpendiculars drawn from the centre of a rectangular hyperbola

upon the tangent.

138. To find the inclination to the tangent at any point of
the radius from the centre of the lemniscate.

Let CY be perpendicular on PT the tangent at the point P
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in the hyperbola, then CY.CP=PF.CD = AC*, since AC=SG
and CP^CD'm the rectangular hyperbola.

Draw the ordinate PN, then CT.CM=AC*=CY.CP;
.-. CY: CT:: CM: CP-,

and CMP, CYTare right angles; therefore LPCM=L TOY.
Draw CZ perpendicular on the tangent at Yto the lemniscate

;

then ZCY and YCP are similar triangles, see page 55
;

.-. L ZYC= LCPY= complement of twice L YCA.

139. To find the perpendicular on the tangent at any point

of the lemniscate.

CZ.CP=CY*, and CY.CP=AC*;
.-. CZ: CY:: CY* : AC*-,

=CY\

140. To find the chord of curvature through the centre^ and the

radius of curvature at any point of the lemniscate.

Let YV be the chord of curvature
;

.-, YV: 2CZ:: CY- CY' : CZ-CZ', ultimately, Art. 86,

and

.% CY-CY' : CZ-CZ' :: AC* : ZCY* :: CY: 3CZ-,

/. FF=CF, or the chord of curvature through the centre

ia two'thirds of the radius vector,
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Also, the radius of curvature : ^ YV
::CY:CZ::AC*: CY* ::CP: CY,

hence the radius of curvature is ^CP, or of the radius at

the corresponding point of the hyperbola.

141. Poles of the lemniscate.

Let S, H\)& the foci of the hyperbola, *, h the middle points
of CS and CH] s,

h are called the poles of the lemniscate.

<P

Draw SY'
}
EZ perpendicular to the tangent to the hyper-

bola at Pj and let SY' meet the auxiliary circle again in Z',

and join sY', sZ', sF, AY, and JiZ.

Since Cs = sS, the perpendicular from s on YY' bisects it
;

therefore sY' = sY, similarly hY=hZ=sZ'.

Now B0.8B = l8G* = AC* = 8Y'.8Z'i

therefore a circle can be drawn circumscribing CsY'Z'; there-

fore z.Y'sZ' = /.Y'CZ'; also A Y'sZ' = %& Y'CZ', since the

altitude of Y'CZ' is double of that of Y'sZ';

therefore sY. 7iY=^CA*) which is the property of the poles of

the lemniscate.

For this proof I am indebted to Prof. Tait.

XVI.

1. If a line move parallel to the base of a cycloid, find the
limit of the ratio of the segment of the cycloid to the corresponding
segment of the generating circle, when the line becomes indefinitely
near to the tangent at the vertex.
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2. A balloon was found to be sailing steadily before the wind
at an invariable elevation above the earth. A seconds pendulum
suspended to the car was observed to make 2997 oscillations in

50 minutes
;
shew that the height of the balloon was 4 miles and

7 yards nearly, the radius of the earth being 4000 miles.

3. If a particle be made to oscillate in a cycloid on a smooth
inclined plane, whose inclination to the horizon is 30, and the

base of the cycloid be horizontal, find the radius of the generating
circle in order that the particle may perform a complete oscillation

in n seconds.

4. IfP be a point in a cycloid, and the corresponding position
of the centre of the generating circle, shew that PO will touch
another cycloid of half the dimensions.

5. Shew that the limit of the whole length of an epicycloid
or hypocycloid, corresponding to a complete revolution of the

generating round the fixed circle, is eight times the radius of

the latter, when that of the former is indefinitely diminished.

6. Prove that the epicycloid of one cusp is the pedal of a circle

referred to a point in its circumference.

7. Shew that the evolute of an equiangular spiral is a similar

spiral, and that the extremities of the diameters of curvature lie

in a similar spiral.

8. An equiangular spiral rolls along a straight line, shew that

its pole describes a straight line.

9. Prove that, if a catenary roll on a fixed straight line, its

directrix will always pass through a fixed point.

10. If ST be drawn perpendicular to the tangent to a lemniscate

at a point P, and SA be the greatest value of SP, prove that

SP3 = SA\SY; S being the centre.

xvn.

1. From the consideration that the diameter of curvature is the

limit of the third proportional to the subtense perpendicular to the

tangent and the arc, prove that the radius of curvature of a cycloid
at any point is twice the normal cut off by the base.

2. On the normal to a cycloid a constant length is measured
both inwards and outwards; find the area included between, the

loci of the points so obtained.



THE LEMNISCATE. 135

3. P, Q are consecutive points on an epicycloid of two cusps ;

from p, q, the corresponding points of contact of the rolling with
the fixed circle, pm, qn are drawn perpendicular to the cusp-line ;

prove that the elementary area PQpq is twice the elementary area

pmnq. Heace find the area of the epicycloid and of its evolute.

4. Prove that the diameter through the point of a rolling circle

which generates an epicycloid always touches another epicycloid

generated by a circle oi half the dimensions.

5. A hypocycloid of n cusps has at any point a tangent drawn,
prove that the length of the tangent, intercepted between the gene-
rating circle and the point of contact, is to the arc measured from
the point to the vertex of the branch in which the point is taken,
as n : 2(n-l).

6. A bead slides on a hypocycloid being acted on by a force

which varies as the distance from the centre of the hypocycloid and

tending to it
; prove that the time of oscillation will be independent

of the arc of oscillation.

7. If, along the several normals to an epicycloid, a system of

particles move from the curve under the action of a force, tending
to the centre of the fixed circle, and varying as the distance, prove
that they will all arrive at the fixed circle at the same instant.

8. A plane curve rolls along a straight line, shew that the
radius of curvature of the path of any point, fixed with respect to

A2

the curve, is =
,
r being the distance of the fixed point from

r -p sm< '

the point of contact, $ the angle between this line and the fixed

line, and p the radius of curvature of the curve at the point of
contact.

9. In an equiangular spiral, which is its own evolute, the area
included between the curve and PQ, the radius of curvature at P
touching the evolute in Q, is P<2

3

tana, where a is the angle of
the spiral, and PQ is supposed not to cut the curve between P
and Q.

10. Prove, by the method of Lemma IV., that the area included
between a catenary, the axis, the directrix, and the ordinate at any
point P is twice the area of the triangle formed by the axis, the

tangent at the vertex, and the straight line drawn perpendicular to
the tangent at P from the point of intersection of the axis and
directrix.



SECTION II.

CENTRIPETAL FORCES.

PROP. I. THEOREM I.

When a body revolves in an orbit, subject to the
^

action of

forces tending to a fixed point, the areas which it de-

scribes by radii drawn to the fixed centre of force, are in

one fixed plane, and are proportional to the times of

describing them.

Let the time be divided into equal parts, and in the

first interval let the body describe the straight line

AB with uniform velocity, being acted on by no
force. In the second interval it would, if no force

acted, proceed to c in AB produced, describing Be
equal to AB

;
so that the equal areas ASB, BSc de-

scribed by radii AS, BS, cS drawn to the centre S,
would be completed in equal intervals.

But, when the body arrives at B, let a centripetal
force tending to S act upon it by a single instanta-
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neous impulse, and cause the body to deviate from
the direction Be, and to proceed in the direction BC.

Let cC be drawn parallel to BS, meeting BC in C, then,
at the end of the second interval, the body will be
found at C, in the same plane with the triangle
ASB, in which Be and cC are drawn. Join SO]
and the triangle SBC, between parallels SB, Cc,
will be equal to the triangle SBc, and therefore
also to the triangle SAB.

In like manner, if the centripetal force act upon the

body successively at C, D, E, &c., causing the body
to describe in the successive intervals of time the

straight lines CD, DE, EF, &c., these will all lie

in the same plane ;
and the triangle SOD will be

equal to the triangle SBC, and SDE to SCD, and
SEF to SDE.

Therefore equal areas are described in the same fixed

plane in equal intervals; and, componendo, the
sums of any number of areas SADS, SAFS, are to

each other as the times of describing them.

Let now the number of these triangles be increased,
and their breadth diminished indefinitely ;

then their

perimeter ADF will be ultimately a curved line
;
and

the instantaneous forces will become ultimately a

centripetal force, by the action of which the body is

continually deflected from the tangent to this curve,
and which will act continuously; and the areas

SADS, SAFS, being always proportional to the times
of describing them, will be so in this case. Q.E.D.

COR. 1. The velocity of a body attracted towards a

fixed centre in a non-resisting medium is recipro-

cally proportional to the perpendicular dropped
from that centre upon the tangent to the orbit.

For the velocities at the points A, B, C, D, E are as

the bases AB, BO, CD, DE, EF of equal triangles,

and, since the triangles are equal, these bases are

reciprocally proportional to the perpendiculars from



138 NEWTON.

S let fall upon them. [And the same is true in the

limit, in which case the bases are in the direction

of tangents to the curvilinear limit, therefore the

velocity, &c.]

COR. 2. If on chords AB, EC of two arcs described in

equal successive times in a non-resisting medium by
the same body the parallelogram ABCV be com-

pleted, and the diagonal BV of this parallelogram
be produced in both directions in that position which

it assumes ultimately when those arcs are diminished

indefinitely, it will pass through the centre of force.

COE. 3. If, on AB, EC and on DE, EF chords of arcs

described in a non-resisting medium in equal times,
the parallelograms ABCV, DEFZ be completed,
the forces at B and E will be to one another in the

ultimate ratio of the diagonals B V, EZ, when the

arcs are indefinitely diminished.

For the velocities of the body represented by EC, EF
in the polygon are compounded of the velocities

represented by Be, BV and Ef, EZ; and those re-

presented by BV, EZ, which are equal to cC,fF, in

the demonstration of the proposition were generated

by the impulses of the centripetal force at B and E,
and are thus proportional to those impulses. [And
the same is true in the limit, in which case the ulti-

mate ratio of the impulses at any two points is the
ratio of the continuous forces at those points].

COR. 4. The forces by which any bodies moving in

non-resisting media are deflected from rectilinear

motion into curved orbits, are to one another as

those sagittse of arcs described in equal times, which

converge to the centre of force and bisect the chords,
when those arcs are indefinitely diminished.

For the diagonals of the parallelograms ABCV, DEFZ
bisect each other, and these sagittse are halves of the

diagonals B V, EZ when the arcs are indefinitely
diminished. [And the same will be true whether
ABC and DEFbe parts of the same or of different
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orbits described by bodies of equal mass, if the arcs
be described in equal times].

COK. 5. And therefore the accelerating effects of the
same forces are to that of the force of gravity as

those sagittse are to vertical sagittas of the parabolic
arcs which projectiles describe in the same time.

COR. 6. All the same conclusions are true by the

Second Law of Motion, when the planes, in which
the bodies move together with the centres of force

which are situated in those planes, are not at rest,

but are moving uniformly and parallel to themselves.

The statement of the proposition in the original Latin
is,

"
Areas, quas corpora in gyros acta radiis ad immobile
centrum virium ductis describunt, et in planis imrno-

bilibus consistere, et esse temporibus proportionates."

Observations on the Proposition.

142. In all cases of motion of bodies it is of great importance
for the student to distinguish between the forces themselves

under the action of which the bodies may be moving, and the

effects which these forces produce.

It is only by an examination of the motion of a body that

we are able to infer that it is, or is not, acted on by any force
;

if we find that the body is moving with uniform velocity in a

straight line, we infer that it
is, during such motion, acted upon

by no force, or that the forces which are acting upon it are in

equilibrium ;
if we find that there is any change of direction or

velocity, gradual or abrupt, we infer that the body is moving
tinder the action of some force or forces; if the change be

gradual, we infer that such forces are finite, by which we mean

that the forces require a finite time to produce a finite change

whether of direction or velocity ; if,
on the contrary, the change

be abrupt, we infer that the forces are what are called impulsive,

that is, such as produce a finite change in an instant.

Since then, in order to make any inference with respect to

the forces supposed to act, a clear conception of the motion of
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a body must be first attained, it becomes necessary for the

student to be able to describe the motion of a particle of matter

as he would that of a point, independently of the causes of such

motion.

In doing this he must give a geometrical description of the

line traced by the point either in a plane or in space, and then

he must describe the rate, uniform or variable, with which this

line is traversed.

He may then proceed to attribute any change of direction or

velocity to the action of forces upon the particle whose motion

he has been examining.

143. In accordance with this method of separating the geo-

metry of the motion from the causes of the deviations, the first

proposition would be stated in such a manner as the following :

" When a point moves in a curve, in such a manner that the

accelerations at every point are in the direction of a fixed point,

the areas, which it describes by radii drawn to the fixed point to

which the accelerations tend, are in one fixed plane, and are

proportional to the times of describing them."

And, generally, if the words force and body, employed by

Newton, be replaced by acceleration and point, the resulting

statements will be in accordance with this geometrical method

of description. It will then be easy to use such terms in the

proofs as will not imply, in the manner of expression, the action

of force
; thus, instead of saying

"
let a centripetal force tending

to S act upon the body by a single instantaneous impulse,"
we may use the words "

let a finite velocity be communicated

to the point in the direction of S."

144. It should be carefully observed that, before proceeding
to the limit, it is proved that any polygonal areas SADS,
SAFSj are proportional to the times of description of their

perimeters; so that ultimately these areas become finite curvi*

linear areas, described infinite times.

145. In proceeding to the ultimate state of the hypothesisi
it is concluded readily from Lemmas II. and III. that the

curvilinear areas are the limits of the polygons ;
but a greater
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difficulty arises in the transition from the discontinuous motion

under the action of instantaneous impulsive forces to the con-

tinuous motion under the action of a continuous force tending
to S. For, in the curvilinear path of the body which is the

limit of the perimeter of the polygon, the direction of the motion

at the angular points of the polygon is different, and also the

deflection from the direction of motion is twice as great in the

polygon as it is in the curve.

Now, although we may assume that the curvilinear limit of

the perimeter of the polygon may be described under the action

of some force, is that force the same which is the limit of the

series of impulses?

The centripetal force supposed to act with a simple in-

stantaneous impulse,
"
impulsu unico et magno," is supposed

to generate a finite velocity at once, which effect a finite force

cannot produce.

If, instead of this imaginary impulse, we suppose a force

finite, but very great, and acting for a very short time, the

effect upon the figure would be to round off the angular points

of the polygon.
The transition from the impulses to the continuous force, in

the ultimate form of the hypothesis, must be considered as

axiomatic, like the ultimate equality of the ratio of the finite

arc to the perimeter of the inscribed polygon.

146. We can, however, shew that if the curvilinear limit of

the polygon be described under the action of some continuous

force tending to S, the effect of this force, estimated by the

quantity of motion generated in the interval between the im-

pulses, will be ultimately the same as that generated by the

impulse.

Consider first the geometrical properties of the limit of the

polygonal perimeter. Let BT, CU be tangents at B, C to the

curvilinear limit, and let Cc intersect BT'm T, fig. page 136.

Now, since Cc ultimately vanishes compared with Be, BG
and Be or AB and BG are ultimately in a ratio of equality,

and Cc is ultimately bisected by BT, by (2) page 102; also,

CU=BU=UT ultimately, by (I) page 102.
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Consider next the effects produced by the different kinds of

force which act in the two cases.

In the polygonal path, the impulsive force at B generates

a velocity with which the body describes Cc in the time t in

which AB or BG is described, the measure of the effect of the

Cc
impulse is therefore the velocity .

In the curvilinear path, the deflection from the direction BI
at B, in the same time

t,
is TC, by means of the continuous

action of finite forces, and if we suppose the force ultimately

uniform in magnitude and direction, the measure of the ac-

2TO
celerating effect of the force will be ^~ ,

and the velocity

2TC Cc
generated in that time will be -, .= .

t t

Hence the effects of the finite and impulsive forces, measured

by the quantity of motion produced, are the same.

147. We can also shew that a continuous force, which gene-
rates the same quantity of motion as the impulse at B in the

time from B to C, would cause the body on arriving at C to

move in the direction of the tangent to the curvilinear limit of

the perimeter.

For the velocity due to the action of the finite force at the

2 TC
end of time t being ultimately in the direction TC, and

BT 2 TTT
that in the direction BT being =

;
therefore TC, UT

represent the velocities in those directions
;

therefore UC is the

direction of motion at
(7,

that
is, the body moves in the direction

of the tangent at C.

148. COR. 1. The corollary may be proved directly from
the proposition, for the proportionality of the areas to the times

of describing them will be true if the force suddenly cease to act,
in which case the body will proceed in the direction of the tangent.

Let V be the velocity at the point A, ASB the curvilinear
area described in any time T, AT=V.T the space described
if the force cease to act. Job ST and draw SY perpendicular
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to AT, then area ASB= triangle SAT=$V.TxSY, also
area ASBcc T-, therefore F varies inversely as SY.

Again, if h be twice the area described in the unit of time

employed in estimating the accelerating effect of the force tend-

ing to S and the velocity of the body,

2.area4=Ar; .-. h=V.SY.

By the use of this area the proportions employed in subse-

quent propositions by Newton may be converted into equations,
for the convenience of calculation.

If bodies move in curves for which the areas, described in

the same time, are not equal, Foe
~y..

149. COR. 4. The statement in this corollary requires modi-

fication, for, unless the forces be considered only with reference

to their accelerating effects, or unless the bodies be supposed of

equal mass, the forces will not be proportional to the sagittae.

150. COR. 5. The object of this corollary is to determine

the numerical measure of the central force which governs the

motion of a body, when the circumstances of the motion are

known
;
for it supplies us with the ratio of this force to the force

of gravity on the same body at any place, the measure of which

can be determined by experiment.

Applications of ike Proposition.

151. PROP. When the force, instead of tending to a fixed

point, acts in parallel lines, the property of the motion enunciated
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in teh proposition may be replaced by tte property that the

resolved part of (he space described perpendicular to the direc-

tion of the force is proportional to the times.

This is immediately deducible from the second law of motion,

since there is no force in the direction perpendicular to that of

he forces, and the velocity in that direction is uniform.

That this is the result of the properties in the proposition

may be shewn by removing the centre of force to an infinite

distance.

S

Let 8 be the centre of force, AMN perpendicular to SB, the

area ABCS is proportional to the time of describing A C, and

the areas AMNS and ABCS are ultimately equal when S is

removed to an infinite distance in BMS, hence the triangle ASN
is proportional to the time, and therefore the base AN, which

varies as the triangle ASN, is also proportional to the time,

and therefore, since CN is ultimately perpendicular to AN,
the proposition is proved.

152. PROP. If a body describe a curvilinear orbit about a

force tending constantly to a fixed point, the area described in a

given time will "be unaltered, if the force be suddenly increased

ar diminished, of if the body be acted on at any moment by an

impulsive force tending to that point.

For, if in the polygon the impulse at any point B be in-

creased or diminished by any force tending to or from S, the

only effect will be to remove the vertex C of the triangle SBC to
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some other point in the line cG parallel to 8, hence the area
will be unaltered, and the argument which establishes the

equality of polygonal areas in a given time will proceed as

before. Hence in the limit the curvilinear areas described in

a given time will be unaltered.

If the new force introduced at S be impulsive, the angleABC will remain less than two right angles when we proceed
to the limit, and the two parts of the curve will cut one another
at a finite angle.

Hence, in any calculation made upon supposition of such

changes of force, the value of h, Art. 148, will be the same
before and after the change of the force.

Apses.

153. DBF. In any orbit described under the action of a

force tending to a fixed centre, a point at which the direction

of the motion is perpendicular to the central distance is called

an apse, the distance from the centre is called an apsidal

distance, and the angle between consecutive apsidal distances

is called an apsidal angle.

Thus, in the ellipse about the centre, the four extremities of

the axes are apses; there are two different apsidal distances,

and every apsidal angle is a right angle.

In the ellipse about a focus, the apses are at the greatest and

least distances, and the apsidal angle is two right angles.

154. In a central orbit described under the action offorces

tending to a fixed point, each apsidal distance will divide the orbit

symmetrically, if the forces be always equal at equal distances.

It is easily shewn that, in any orbit described by a body
under the action of forces tending to a fixed point, the forces

depending only upon the distance, if a second body be projected

at any point with the velocity of the first in the opposite direc-

tion, it will proceed to describe the same orbit in the reverse

direction, under the action of the same forces.

For, let ABC be a portion of the polygon whose limit is

the curvilinear path of the body, and produce AB to c, and

CB to a, making Be = AB, and Ba = CB.

U
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The impulse at B is measured by cG when the body de-

scribes ABC, and if the motion be reversed, the same impulse

at B would cause the body to move in BA, with the velocity

which it had in AB, since aA = cC. And the same is true

throughout the polygonal path, hence the assertion is true for

the whole path, described under the action of impulses which

are always the same at the same points, and therefore, proceed-

ing to the limit, the statement made for any orbit is proved.

Hence, since the forces are equal at equal distances on

both sides of the apse, the path of the body from an apse

being similar and equal to the path which would be described

if the velocity were reversed at the apse, is similar to the path

described in approaching the apse; whence the proposition is

established.

155. There are only two different apsidal distances, and

all apsidal angles are equal.

For, after passing a second apse, the curve being symme-
trical on both sides, a third apse will be in such a position that

the apsidal distance is the same as for the first apse, and all the

apsidal angles are shewn similarly to be equal.

156. COR. Hence a central orbit can never re-enter itself

unless the ratio of the apsidal angle to a right angle be com-

mensurable, and if it be so, the curve will always re-enter.

Illustrations.

(1) If a body describe an ellipse under the action of a force

tending to one of the foci, the square of the velocity varies inversely
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as the distance from that focus, and directly as the distance from
the other.

For BC* : SY* :: HZ: SY :: HP: P;

(2) The velocity is greatest when the lody is at the extremity

of the major axis which is nearer to the focus to which the force

tends, and least at the other extremity.

For SY'is the least in the first and greatest in the second

position.

(3) The velocity at an extremity of the minor axis is a

geometric mean between the greatest and least velocities.

For at this point HZ=BC, and at the extremities of the

major axis the values of HZ are Sa and SA, and BC* = SA.Sa.

(4) In the equiangular spiral described under the action of a

force tending to the focus ,
the velocity cc -~_.

For, Foc SP.

(5) If the force tend to the centre of the elliptic orbit described

by a body, the time between the extremities of conjugate diameters

will be constant.

For the area PCD is constant.

(6)
The velocity at any point of an ellipse about a force tend-

ing to a focus is compounded of two uniform velocities, one

perpendicular to the radius vector, and the otherperpendicular to the

major axis.

Let S be the centre of force, SY, EZ perpendiculars on the

tangent at P, join SP, CZ. Then HZ, ZC parallel to PS, and
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CH are perpendicular to the three directions; therefore the

velocity represented by HZ in magnitude is the resultant of

the two represented by CZ and EC', but the velocity perpen-

dicular to HZ= -

Sy=p -HZ
'->

therefore the velocities perpen-

dicular to EC and CZ are ^ ae and 75 a.

XVIII.

1. If different bodies be projected with the same velocity from

a given point, all being attracted by forces tending to one fixed

point, shew that the areas described by the lines drawn from the

fixed point to the bodies will be proportional to the sines of the

angles of projection.

2. When a body describes a curvilinear orbit under the action

of a force tending to a fixed point, will the direction of motion or

the curvature of the orbit at any point be changed, if the force at

the point receive a finite change ?

3. A body moves in a parabola about a centre of force in the

vertex, shew that the time of moving from any point to the vertex

varies as the cube of the distance of the point from the axis of the

parabola.

4. In a parabolic orbit described round a force tending to the

focus, shew that the velocity varies inversely as the normal at any
point. Shew also that the sum of the squares of the velocities ta

the extremities of a focal chord is constant.

5. If the velocity at any point of an ellipse described about
the centre can be equal to the difference of the greatest and least

velocities, the major axis cannot be less than double of the minor.

6. If an ellipse be described under the action of a force tending
to the centre, shew that the velocity will vary directly as the
diameter conjugate to that which passes through the body; also

that the sum of the squares of the velocities at the extremities of

conjugate diameters will be constant.

7. In an ellipse described round a force tending to the focus,

compare the intervals of time between the extremities of the same
latus rectum, when AC =208.

8. In the ellipse described about the focus S, ASHA being the

major axis, time in AB : time in BA' : : TT - 2e : IT + 2e.
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9. If the velocities at three points in an ellipse described by
a particle, the acceleration of which tends to either of the foci, be
in arithmetical progression, prove that the velocities at the opposite
extremities of the diameters passing through these points will be
in harmonica! progression.

10. If v2 be the velocities at the extremities of a diameter
of an ellipse described about the focus, and u the velocity at either
of those points when it is described about the centre, prove that
u (v l

+ 2)
will be constant.

11. In a central orbit, the velocity of the foot of the perpen-
dicular from the centre of force on the tangent varies inversely as
the length of the chord of curvature through the centre of force.

12. A particle is describing a parabola about its focus S; if P
and Q be two points of its path, shew that its velocity at Q will
be compounded of the velocity at P and a velocity which will be
constant if the angle PSQ be constant.

XIX.

1. A body describes a parabola about a centre of force in the
focus ; shew that its velocity at any point may be resolved into

two equal constant velocities, respectively perpendicular to the axis

and to the focal distance of the point.

2. A body describes an ellipse under the action of a central

force tending to one of the foci
;
shew that the sum of the velocities

at the extremities of any chord parallel to the major axis varies

inversely as the diameter parallel to the direction of motion at

those points.

3. A body moves in an ellipse under the action of a force

tending to the centre ; shew that the component of the velocity at

any point perpendicular to either focal distance is constant
; and

that the sum of the squares of the velocities, at the extremities

of any pair of semi-conjugate diameters, resolved in any given
direction is constant.

4. In an ellipse described about a focus, the time of moving
from the greatest focal distance to the extremity of the minor axis

is m times that from the extremity of the minor axis to the least

focal distance ;
find the eccentricity, and shew that, if there be

a small error in m, the corresponding error in the eccentricity will

vary inversely as (1 + m}
z
.

5. If the velocity of a body in a given elliptic orbit be the same
at a certain point, whether it describe the orbit in a time t about



150 NEWTON.

one focus, or in a time t' about the other, ^prove
that, 2a being the

major axis, the focal distances will be ,
and -- .

6. A body describes a parabola about the focus; if the seg-
ments PS, Sp of the focal chord PSp be in the ratio n : 1, prove
that the time inpA : time in AP : : 3n + 1 : n2

(n + 3).

7. If Fbe perpendicular to the tangent to a curve at P, and
P and Fboth move as if under the action of a central force tending
to S, prove that the radius of curvature at P will vary as SY.

8. If P, Q be any two points in an ellipse described by a

particle under the action of a force tending to the centre, prove
that the velocity acquired in passing from P to Q will be in the

direction QP', where P' is the other extremity of the diameter

through P.

9. Two points P, P' are moving in the same ellipse, in the

same directions, with accelerations tending to the centre C\ shew
that the relative velocity of one with regard to the other is parallel
and proportional to CT, where T is the point of intersection of the

tangents at P and P'. If the points move in opposite directions,

what will be their relative velocity ?

10. Two particles revolve in the same direction in an oval

orbit round a centre of force S, which divides the axis unequally,

starting simultaneously from the extremities of a chord PQ, drawn

through S. Prove that, when they first arrive in positions JR, T
respectively, such that the angle ST is a minimum, the time from
R to the next apse will be an arithmetic mean between the times

from P to the next apse and to Q from the last apse.

11. Two equal particles are attached to the extremities of a

string of length 21, and lie in a smooth horizontal plane with the

string stretched
;

if the middle point of the string be drawn with
uniform velocity v in a direction perpendicular to the nitial direc-

tion of the string, shew that the path of each particle will be a

cycloid, and that the particles will meet after a time
-5-

.

12. If the velocity in a central orbit can be resolved into two
constant components, one perpendicular to the radius vector, and
the other to a fixed straight line, shew that the curve must be
a conic.

13. The velocity in a cardioid described about a force tending
to the pole varies in the inverse sesquiplicate ratio of the distance.

14. The velocity in the lemniscate varies inversely as the cube
of the central distance, when a particle moves in the curve round
a force tending to the centre.
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PROP. II. THEOREM II.

Every body, which moves in any curve line described in a

plane, and describes areas proportional to the times of
describing them about a point either fixed or moving
uniformly in a, straight line, by radii drawn to that

point, is acted on by a centripetal force tending to the

same point.

Case 1. Let the time be divided into equal intervals,
and in the first interval let the body describe AB
with uniform velocity, being acted on by no force

;

in the second interval it would, if no force acted, pro-
ceed to c in AB produced, describing Be equal to AB\
and the triangles ASB, BSc would be equal. But

when the body arrives at B, let a force, acting upon
it by a single impulse, cause the body to describe

BC in the second interval of time, so that the tri-

angle BSC is equal to the triangle ASB, and there-

fore also to the triangle BSc
;

therefore BSC and

BSc are between the same parallels, hence BS is
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parallel to cC, and therefore US was the direction of

the impulse at B.

Similarly, if at C, Z>, ... the body be acted on by im-

pulses causing it to move in the sides CD, DE, ... of

a polygon, in the successive intervals, making the

triangles CSD, DSE, ... equal to ASB and BSC, the

impulses can be shewn to have been in the directions

CS, DS, .... Hence, if any polygonal areas be de-

scribed proportional to the times of describing them,
the impulses at the angular points will all tend to S.

The same will be true if the number of intervals be
increased and their length diminished indefinitely,
in which case the series of impulses will approximate
to a continuous force tending to S, and the polygons
to curvilinear areas, as their limits. Hence the pro-

position is true for a fixed centre.

Case 2. The proposition will also be true if S be a

point which moves uniformly in a straight line, for,

by the second law of motion, the relative motion will

be the same, whether we suppose the plane to be at

rest, or that it moves together with the body which
revolves and the point $, uniformly in one direction.

COR. 1. In non-resisting media, if the areas be not

proportional to the times, the forces will not tend
to the point to which the radii are drawn, but will

deviate in consequentid, i.e. in that direction towards
which the motion takes place, if the description of
areas be accelerated

;
but if it be retarded, the devi-

ation will be in antecedently.

COR. 2. And also in resisting media, if the description
of areas be accelerated, the directions of the forces
will deviate from the point to which the radii are
drawn in that direction towards which the motion
takes place.

SCHOLIUM.

A body may be acted on by a centripetal force com-
pounded of several forces. In this case, the meaning
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of the proposition is, that that force, which is the
resultant of all, tends to S. Moreover, if any force

act continually in a line perpendicular to the plane
of the areas described, this force will cause the body
to deviate from the plane of its motion, but will

neither increase nor diminish the amount of area

described, and therefore must be neglected in the

composition of the forces.

Observations on the Proposition.

157. The description of an area round a point in motion

may be explained by the following construction for the relative

orbit, in the case of motion about a point which is itself moving

uniformly in a straight line.

Let SS' be the line in which S moves uniformly, and let the

body move from A to B in the same time that S moves from 8
to S', and let P, <r be simultaneous positions of the body and of S.

A.

If PP' be drawn equal and parallel to a-8, and the same

construction be made for every point in the path of the body,

the curve AP'B\ which is the locus of P', will be the orbit which

the body would appear to describe to an observer at S, who

referred all the motion to the body ;
for SP will be equal and

parallel to o-P, and therefore the distance of the body, and the

direction in which it is seen, will be the same in the two cases.

If
<), Q' be corresponding points near P and P', and the force

at a- be supposed to act impulsively, the relative motion round <r

will be unaltered if we apply to both P and <r velocities equal to

x
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that of ff and in a contrary direction, but in this case a- will

be reduced to rest and the velocity of P will be the velocity

relative to o-. Take PQ and
<r<r',

which are described in the

same time, to represent the velocities of P and
<r,

and let Qq be

equal and parallel to o-V, then Pq represents the velocity of P
relative to <r; and, since Q'q = Sff a<r = P'P, P' Q is equal

and parallel to Pq, and therefore the velocity in the orbit Aff

about S at rest is equal to the relative velocity about S in

motion.

158. COR. 1. Reverting to the polygonal area, if the tri-

C'

angle SBC' be greater than the triangle SAB, the impulse at B
will not be in the direction BS, but BU, parallel to c(7', that is,

if the areas be not proportional to the times but be in an

increasing ratio, the direction of the force will deviate towards

the direction in which the description of areas is accelerated;

and vice versd, when the description is retarded.

159. COR. 2. The effect of a resisting medium is to retard

the motion, or, supposing it the limit of a series of impulses, we
must conceive an impulse at B, in the case of the polygon, in the

direction BA
;

if therefore the description of areas be accelerated,

the impulse applied at B in the direction BU' must act still

further in consequenttd than that in BU, in order that, with the

impulse corresponding to the resistance of the medium, it may
produce a resultant impulse in the direction of BU. The effect

of the resistance alone is to retard the description of areas.

If the force act in consequentid, the resultant of this force
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and the resistance of the medium may act in the direction B8,
and the proportionality of the areas to the times be preserved.

160. PROP. Let ABODE be any plane curve, 8 any point
in the plane, to shew that, generally, the curve can be described

under the action of a force tending to or from 8, with finite velo-

city, the velocity at any given point being any given velocity.

For arcs AB, BO, ... can be measured from any point A,
along the curve, such that the areas SAB, SBC,... are all equal,

and of any magnitude. Also a body can be made, by some force

to move along the curve with finite velocity, so as to describe the

arcs AB, BO, ... in equal times, unless the tangent to one of

the arcs, as DE, pass through S, in which case, if the arcs be

indefinitely diminished, DE, AB will not be finite ultimately.

Hence by Prop. II. a body can move with finite velocity

under the action of some force tending to or from 8, generally.

161. NOTE 1. Since in making the motion of the body such

that it shall describe equal areas in equal times we are only con-

cerned with the ratio of the velocities, the velocity at any point

A may be any given velocity.

162. NOTE 2. Or if we please we may suppose the force at

any point any given force
; for, in the case of the polygon, the

velocity generated by the impulse at B is to the velocity in AB
as cCto Be, hence the impulse at B may be of any magnitude
if we choose the velocity in AB properly.

163. NOTE 3. The ratio of the velocities will be the same

at two given points, for all forces tending to a given centre,

under the action of which the curve can be described.
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164. NOTE 4. Hence a body can move throughout any

ellipse under the action of a centripetal force tending to the

centre or focus, the force depending only on the distance, since

in these cases the curve is symmetrical on opposite sides of any

apse ;
or about any point within the ellipse, if the forces do not

depend only on the distance, since no point within an ellipse lies

on any tangent.

165. NOTE 5. In the case of an oval, S being an external

point, a body can move with finite velocity under the action of

a force tending to the point S, in the portion which is concave to

S, and from S, in that which is convex to S, but not from one

portion to the other.

XX.

1. If an ellipse be described so that the sum of the areas

swept out by radii drawn to the vertices is proportional to the
times of describing them, prove that the resultant acceleration

will tend to the centre.

2. A body is moving in a parabola, and the time from the
vertex to any point varies as the cube of the ordinate ; shew that
this motion could be caused by the action of a central force.

3. A body was moving in a circle, and it was observed that the
time of describing any arc from a fixed point varied as the sum of
the arc and the perpendicular distance from one extremity of the
arc on the diameter through the other

; shew that the body was
acted on by a central force.

4. A heavy particle falls from the cusp to the vertex of a
cycloid, whose axis is vertical

; shew that a particle could describe
the cycloid in the same manner under the action of a constant force
directed to a certain moving point.

5. From the centre of a planet a perpendicular is let fall upon
the plane of the ecliptic ; prove that the foot of this perpendicular
will move as if it were a particle acted on by a force tending to the
Bun's centre.
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PROP. III. THEOREM III.

Every body, which describes areas proportional to the times

of describing them by radii drawn to the centre of another

body which is moving in any manner whatever, is acted on

by a force compounded of a centripetal force tending to

that other body, and of the whole accelerating force which
acts upon that other body.

Let the first body be L, the second T, T moves under
the action of some force P, L under the action of

another force F. At every instant apply to both
bodies the force P in the contrary direction to that
in which it acts, as represented by the dotted arrows.

L will continue to describe about T, as before, areas

proportional to the times of describing them, and
since there is now no force acting on T, T is at rest

or moves uniformly in a straight line.

Therefore, by Theorem II.
,
the resultant of the force F

and the force P applied to L tends to T.

Hence Fis compounded of a centripetal force tending to

T, and of a force equal to that which acts on T. Q.E.D.

COR. 1. Hence, if a body L describe areas proportional
to the times of describing them by radii drawn to

another body T] and from the whole force which
acts upon L, whether a single force or compounded of

several forces, be taken away the whole accelerating
force which acts upon the other body T\ the whole
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remaining force, which acts upon L, will tend to the

other body T as a centre.

COR. 2. And if these areas be very nearly proportional
to the times of describing them, the remaining force

will tend to the other body very nearly.

COR. 3. And, conversely, if the remaining force tend

very nearly to the other body T, the areas will be

very nearly proportional to the times.

COR. 4. If the body L describe areas which are very
far from being proportional to the times of describing

them, by radii drawn to another body T, and that

other body T be at rest, or move uniformly in a

straight line, then either there will be no centripetal
force tending to that other body T, or such centri-

petal force will be compounded with the action of

other very powerful forces, and the whole force com-

pounded of all the forces, if there be many, may^ be
directed towards some other centre fixed or moving.

The same will hold, when the other body moves in any
manner whatever, if the centripetal force spoken of

be understood to be that which remains after taking

away the whole force acting upon the other body T.

SCHOLIUM.

Since the equable description of areas is a guide to the
centre to which that force tends, by which a body is

principally
acted on, and by which it is deflected

from rectilinear motion, and retained in its orbit, we
may, in what follows, employ the equable description
of areas as a guide to the centre, about which all

curvilinear motion in free space takes place.

Illustration.

166. As an illustration of the last propositions and their

corollaries, we may state some of the observed facts in the

motion of the Moon, Earth, and Sun, and make the deductions

corresponding to them.
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Suppose the Moon's orbit relative to the Earth to be nearly

circular, and let ABCD be this orbit, E the Earth.

(1) The areas described by the radii drawn from the Moon
to the Earth are nearly proportional to the times of describing ;

hence the resultant force on the Moon tends nearly to E.

(2) If ES the line joining the centres of the Earth and Sun
meet the Moon's relative orbit about the Earth in A, (7, and

DEB be perpendicular to DS, the description of areas will be

accelerated as the Moon moves from D to A and from B to (7,

and retarded from A to B and from C to D
;
hence the direction

of the resultant force on the Moon in the positions M^ M^
J/

3 ,
Jf

4 ,
will be in the directions of the arrows slightly inclined

to the radii drawn to E.

From these observed facts, we see that when the force, under

the action of which E moves, is applied to the Moon in the

contrary direction, the remaining force tends in the directions

of the arrows.

By the supposition that the Earth and Moon are acted on

by forces tending to the sun, whose distance compared with EM
is very great, and that the differences of the forces on these

bodies are not very great, the accelerating effect of the force on

the Moon in DAB being greater than that on the Earth, and in

BCD less, the circumstances of the description of areas in the

motion of the Moon are accounted for.
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PROP. IV. THEOREM IV.

The centripetal forces on equal bodies, which describe dif-

ferent circles with uniform velocity, tend to the centres of
the circles, and are to each other as the squares of arcs

described in the same time, divided by the radii of the

circles.

The bodies move uniformly,
therefore the arcs described

are proportional to the times of describing them ;
and

the sectors of circles are proportional to the arcs on
which they stand, therefore the areas described by
radii drawn to the centres are proportional to the

times of describing them
; hence, by Prop. II., the

forces tend to the centres of the circles.

Again, let AB, ab be small arcs described in equal times,

AD, ad tangents at A, a; ACSG, acsg diameters

through A, a. Join AB, ab, and draw BC, be per-
pendicular to A Gr, ag.

When the arcs AB, ab are indefinitely diminished, since

AC, ac are sagittae of the double of arcs AB, ab
described in equal times, they are ultimately, by
Prop. L, Cor. 4, as the forces at A and a.

But AC.AG = (cMABf and ac.ag =
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.*. force at A : force at a :: AC : ac ultimately,

.. (cbdABf (didab)* (sicAB)* (area*)" .~~ *- ^~
:
~~

'
Lem -VIL

Take AE, ae two arcs described in any equal finite
ti fiies, then AE: ae:: AB : ab, since the bodies move
uniformly, and this is also true in the limit

;

.*. force at A : force at a :: 7-73 : . O.E.D.AS as

COR. 1. Since these arcs are proportional to the velo-
cities of the bodies, the centripetal forces will be in
the ratio compounded of the duplicate ratio of the
velocities directly, and the simple ratio of the radii

inversely.
That is, if F, v be the velocities in the two circles, R, r

the radii, JT,/the centripetal forces, AE: ae::V:vj

..-..
COR. 2. And since the circumferences of the circles are

described in their periodic times, the velocities are in

the ratio compounded of the ratio of the radii directly
and the ratio of the periodic times inversely ;

hence
the centripetal forces are in the ratio compounded
of the ratio of the radii directly, and of the ratio of

the squares of the periodic times inversely.

If P, p be the periodic times in the two circles re-

spectively,
2>rrr R r

R

COR. 3. Hence, ifthe periodic times be equal, and there-

fore the velocities proportional to the radii, the cen

tripetal forces will be as the radii
;
and conversely.
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IfP=j, then V\ v:: R:r;

,.*:,::? .*,*,,

COR. 4. Also ifthe periodic times be in the subduplicate
ratio of the radii, the centripetal forces will be equal.

That is, if P2
: / : : R : r, then F=f, by Cor. 2.

COR. 5. If the periodic times be as the radii, and

therefore the velocities equal, the centripetal forces

will be reciprocally as the radii
;
and conversely.

COR. 6. If the periodic times be in the sesquiplicate

ratio of the radii, and therefore the velocities recipro-

cally in the subduplicate ratio of the radii, the cen-

tripetal forces will be reciprocally as the squares of

the radii
;
and conversely.

That is,

COR. 7. And, generally, if the periodic times vary as

any power R" of the radius R, and, therefore, the velo-

city vary inversely as the power 7T'
1

, the centripetal
force will vary inversely as 7T

1'1

;
and conversely.

COR. 8. All the same proportions can be proved con-

cerning the times, velocities, and forces, by which
bodies describe similar parts ofany figures whatever,
which are similar and have centres of force similarly

situated, if the demonstrations be applied to those

cases, uniform description of areas being substituted for

uniform velocity, and distances of the bodies from the

centres offorce for radii of the circles.

Let AE, ae be similar arcs of similar curves described

by bodies about forces tending to similarly situated

points S, s; and let AB, abbe small arcs described
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in equal times
; BD, Id subtenses parallel to SA, sa

A V
y
av chords of curvature at A, a, so that

AV: av::AS: as.

J5

D ^
A

T ^r

Then, force at A : force at a : : DB : db
} ultimately,

AB* ab* AB* ab* ...
: : -r-~ : : :

-n -r- :
, ultimately ;A V av SA sa
' J '

and if V
9
v be the velocities at A, a since AB, ab are

described in equal times, AB : ab :: V: v, ultimately;

F2
tf

.'. force at A : force at a :: -^-r : , as Cor. 1.
8A sa

1

Again, ifAB, ab be small similar arcs described in times

T, t, instead of being arcs described in equal times,
and P, p be the times of describing similar finite

arcs AE
y
ae

t

T:P:: QXQQ.ASB : area ASE :: areaasb : axeaase \\t\p\

therefore, when AB, ab are indefinitely diminished,
T: tr.P:p.

:::::
^,

as Co, 2.

COR. 9. It follows also from the same proposition, that

the arc which a body, moving with uniform velocity

ina circle under the action ofa given centripetal force,

describes in any time, is a mean proportional be-

tween the diameter of the circle, and the space

through which the body would fall from rest under

the action of the same force and in the same time.
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For, let AL be the space described from rest in the same
time as the arc AJE, then since, if BD be perpendi-
cular to the tangent at A, BD will be ultimately the

space described by the body, under the action of the

force at A, in the time in which the body describes

the arc AB, and the times are proportional to the arcs
;

.-. AL-.BDi: AE': AB*
;

.-. AL.Aa : BD.AG :: AE* : AB*',

and BD.AG = (cMABJ
t = (aTcAB)

i

, ultimately;

therefore AL.AG = AE\ or AL : AE :: AE : AG.

Q. E. D.

SCHOLIUM.

The case of the sixth Corollary holds for the heavenly
bodies, and on that account the motion of bodies acted

upon by a centripetal force, which decreases in the

duplicate ratio of the distance from the centre offeree,
is treated of more fully in the following section.

Moreover, by the aid of the preceding proposition and
its corollaries, the proportion of a centripetal force

to any known force, such as gravity, can be obtained.

For, if a body revolve in a circle concentric with
the earth by the action of its own gravity, this

gravity is its centripetal force.

But, from the falling of heavy bodies, by Cor. 9, both
the time of one revolution and the arcs described in

any given time are determined.

And by propositions of this kind Huygens, in his ex-

cellent tract, De Horologio Oscillatorio, compared the
force of gravity with the centrifugal force of re-

volving bodies.

The preceding results may be proved in this manner.
In any circle let a regular polygon be supposed to

be described of any number of sides. And if a body
moving with a given velocity along the sides of the

polygon be reflected by the circle at each of its

angular points, the force with which it impinges on
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the circle at each of the reflections will be propor-
tional to the velocity ;

and therefore the sum of the

forces, in a given time, will vary as the velocity and
the number of the reflections conjointly. But if the
number of sides of the polygon be given, the velo-

city will vary as the space described in a given
time, and the number of reflections in a given time
will vary, in different circles, inversely as the radii of

the circles, and, in the same circle, directly as the

velocity. Hence, the sum of the forces exerted in a

given time varies as the space described in that time
increased or diminished in the ratio of that space to

the radius of the circle
;
that is, as the square of

that space divided by the radius, and therefore, if

the number of sides be diminished indefinitely so

that the polygon coincides with the circle, the sum
of the forces varies as the square of the arc described

in the given time divided by the radius.

This is the centrifugal force by which the body presses

against the circle, and to this the opposite force is

equal, by which the circle continually repels the

body towards the centre.

Symbolical representation of Areas, Lines, &c.

167. In the statement of the proposition the words " arcuum

quadrata applicata ad radios," in the text of Newton, is rendered

the squares of arcs divided by the radii. Such expressions as

A
^ may be regarded as representations of lines (e.g.

this

expression denotes AC) whose lengths are determined by such

constructions as the following :

To A G apply a rectangle whose area is that of the square on

AB, and let AC be the side adjacent to AQ", AC is thus

obtained by applying the square on AB to A G. The propriety

of the symbol 4? employed to represent a line AC, assumed
A (JT

from algebra, is obvious, since the number of units of area in

the square on AB and in the rectangle whose sides are AG,
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A C are the same
; hence, if m, w, r be the number of units of

length in these lines, m* = nxr and r = .

7i

AH2

168. If symbols of this kind, viz. -j-^ ,
be used in the same

manner as a fraction, we may either treat them numerically,

considering AB* to represent the number of units of area con-

tained in the square on AB, and AG as the number of units of

length in A r, and thus apply the rules of Arithmetical Algebra ;

or we may look upon ABi
as the absolute representation of an

AB*
area, and AG as that of a line, in which case

-r^,
would have

no meaning except by interpretation. In this interpretation we
are guided by the principles upon which Symbolical Algebra is

applied to any science, the laws of operation by symbols being
the same in Arithmetical and Symbolical Algebra, and the

symbols being interpreted so that these laws are not contra-

dicted. Thus
if,

in the application to Geometry, the symbol A
be supposed to denote an area equal to that of a rectangle whose

sides are represented by a and &, the assumption that A = ab

or la will imply that ab = 5a, hence the laws remain the same

as in Arithmetical Algebra, and =
5; so that the interpretation

is legitimate, that, if a rectangle be applied to a, whose area is A,
^

will denote the other side of the rectangle.

Observations on the Proposition.

169. In the statement of the proposition the word '

equal
'

has been inserted before ' bodies
'

in order to make the theorem

correct, whether we suppose the centripetal force to be estimated

with reference to the momentum or the velocity generated.
It would, perhaps, be better to state the proposition as

follows :
" The resultant of the forces, under the action of which

bodies describe different circles with uniform velocity, are centri-

petal and tend to the centres of the circles, and their accelerating
effect are to each other, &c.," for it is not known, prior to the

proof, that the forces are centripetal.
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170. CORS. 1 and 9. The first corollary asserts that the

centripetal forces on bodies moving in different circles vary as
F*

-g~
,
but the ninth shews that the accelerating effects of the

centripetal forces are in each circle equal to
-^-

.

For, if V be the velocity, F the accelerating effect of the

force in any circle, Tthe time of describing any arc, FT will be
the length of the arc, \FT* will be the space through which
the body would move under ihe action of the same force con-

tinued constant, in the same time in which the arc is described,

: VT:: VT: 2R- .-. V*= FR.

171. Scholium. In uniform circular motion the centripetal
force is employed in counteracting the tendency of the body to

move in a straight line, which it would do, according to the first

law of motion, with the uniform velocity which it has at any

point of the circle, if the centripetal force were suddenly to cease

to act. This tendency to recede is called a centrifugal force

improperly; for the effect of a force being to accelerate or

retard the motion of a body, or to alter its direction, if the

tendency could properly be termed a force and the centripetal

force which counteracts it were removed, it would accelerate or

retard the motion of the body, or alter its direction, which it

does not.

The only sense in which the term centrifugal force can be

used with propriety as a force may be obtained by the con-

sideration of relative equilibrium, in which case, if the same

centripetal force acted on the body, the centrifugal force would

keep it in equilibrium, supposing the body were at rest as

it would appear to be to an observer moving with it.

Thus, if a body be supported on the surface of the earth,

since the body describes a circle about the axis of the earth

with uniform velocity, the pressure of the support and the

attraction of the earth must have a resultant, whose direction

will pass through the centre of this circle, and whose magnitude
will be such as would cause the body to describe it; this re-

sultant and the centrifugal force will be in statical equilibrium.
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172. In this case of circular motion the force is exerted

not in accelerating or retarding the motion, but in changing its

direction.

Thus, referring to the figure of Prop. I., if the direction of

the impulse at B bisect the angle ABC, the triangle CBc will

be isosceles, and BC=Bc = AB" therefore the velocities in BG
and AB will be equal, and the effect of the impulse has been to

change the direction without altering the velocity of the body.

Hence, the regular polygon inscribed in a circle, centre $, can

be described with uniform velocity under the action of impulses

tending to the centre
; and, by similar triangles SBCj CBc

t

Cc : BC :: BC : BS.

And if V be the uniform velocity in the polygon, T the

V**/*
time in a side BC, BC= V. T; therefore Cc= ^~ .

If now the number of sides be indefinitely increased, Cc will

be ultimately twice the space through which the body will be

drawn from the tangent by the continuous force, see Art. 146;
Cc F 2

therefore - = ^~ will be the measure of the accelerating effect

of the centripetal force tending to the centre of the circle.

Illustrations of Circular ^lotion.

(1) A small body is attached by an inelastic string to a

point on a smooth horizontal table^ to determine the tension of the

string when the body describes a circle.

If the body be set in motion by a blow perpendicular to the

string, the string will remain constantly stretched, and the only
force which acts on the body in the horizontal plane being in the

direction of the fixed point, the areas described round this point

will be proportional to the time, and the body will move in a

circle with uniform velocity.

Let v be the velocity of projection, and I the length of the

string, then the accelerating effect of the tension of the string

is
j ;

that
is, j is the velocity which would be generated in an
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unit of time from rest by the action of this tension continued

constant, therefore the tension of the string : the weight of the

body ::^-:^.

Ex. If a velocity of two feet a second be communicated

perpendicular to a string whose length is a yard,

v
2

: Ig :: 4: 3x32 :: 1 : 24,

hence the tension is th of the weight, and the time of

O -7 / //

revolution is evidently seconds = =
9-4", nearly.

(2) If a particle be attached by a string ofgiven length to a

point in a rough horizontal plane, and a given velocity be communi-

cated to it, perpendicular to the string supposed tight, find the

tension of the string at any time, the time in which it will be

reduced to rest, and the whole arc described.

Let Fbe the velocity of projection, Z the length of the string

in feet, v the velocity at any time t. Since the particle describes

a small arc ultimately with uniform velocity the accelerating

effect of the tension at the time t is
-j

. Again, if p, be the

coefficient of friction, the retarding effect of friction is fig, which

is constant, hence the velocity destroyed in the time t since

friction is the only force acting in the direction of the tangent

is figt, and v =V figt.

Therefore the particle comes to rest in seconds after

p W
describing the arc - feet.

*W
The tension of the string at the time t : the weight of the

particle : : j : g : :
- ~~!^ : g ;

therefore the tension cc ( 1\

oc the square of the time which will elapse before the particle

comes to rest.

(3) Supposing that the Moon describes a circle with uniform

velocity about the centre of the Earth as its centre, to find the ratio

of the centripetal acceleration of the, Moon's motion to gravity at

the EartJis surface.
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Let n= number of seconds in the Moon's periodic time,

R = the radius of the Moon's orbit in feet
;
therefore the velocity

of the Moon is and -== . ( )
is the measure of the acce-

n H \ n I

lerating effect of the force exerted on the Moon, and the measure

of the same for gravity at the Earth's surface = 32.2
; hence,

the ratio required is kifR : 32.2n*.

(4) A body is suspended by a string from a fixedpoint, and

being drawn out of the vertical is projected horizontally so as to

describe a horizontal circle with uniform velocity. Find the

velocity and the tension of the string.

Let A be the point of suspension, BC the radius of the circle

described
; therefore, the circle being described uniformly, the

resultant force on the body tends to the centre B, and the

F*
measure of the accelerating effect of this resultant force is -^r
in the direction CB. Let T, Tfbe the tension of the string and

the weight of the body, acting in CA and parallel to AB
respectively, therefore T: W:: CA: AB;

F* a
also, -^j

: g :: CB : AB, Art. 171, /. F* =^

and, if CD be perpendicular to AC, BC1= AB. BD-, and the

velocity will be that due to falling through the space \BD.

XXI.

1. If the cube of the velocity, in circles uniformly described, be
inversely proportional to the periodic time, shew that the law of
force will vary inversely as the square of the radii.
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2. Compare the areas described in the same time by the

planets, supposed to move in circular orbits about the Sun in the
centre exerting a force which varies inversely as the square of the
distance.

3. If the forces by which particles describe circles with uniform

velocity vary as the distance, shew that the times of revolution will

be the same for all.

4. If the velocity of the Earth's motion were so altered that
bodies would have no weight at the equator, find approximately the
alteration in the length of a day, assuming that, before the altera-

tion, the centrifugal force on a body at the equator was to its

weight : : 1 : 288.

5. A particle moves uniformly on a smooth horizontal table, being
attached to a fixed point by a string, one yard long, and it makes
three revolutions in a second. Compare the tension of the string
with the weight of the particle.

6. A body moves in a circular groove under the action of a

force to the centre, and the pressure on the groove is double the

given force on the body to the centre, find the velocity of the body.

7. If a locomotive be passing a curve at the rate of twenty-four
miles an hour, and the radius of the curve be of a mile, prove
that the resultant of the forces which retain it on the line, viz. of

the action of the rails on the flanges of the wheels, and the horizontal

part of the forces which act perpendicular to the inclined road-way,
will be iko of the weight of the locomotive, nearly.

8. If a body be attached by an extensible string to a fixed

point in a smooth horizontal table, find the velocity with which the

body must move in order to keep the string constantly stretched

to double its length.
If W be the weight of the body, and nWbe the weight which if

suspended at the extremity of the string would just double its length,

I the length of the string, shew that the square of the required

velocity
=

Inlg.

9. A man stands at the North Pole and whirls 24lbs. troy

weight on a smooth horizontal plane by a string a yard long at the

rate of 100 turns a minute; he finds that the difference of the

forces which he has to exert according as he whirls it one way or

the opposite is roughly 39 grains ;
find the period of the rotation of

the earth.

10. Two equal bodies lie on a rough horizontal table, and are

connected by a string which passes through a small ring on the

table; if the string be stretched, find the greatest velocity with

which one of the bodies can be projected in a direction perpendicular

to its portion of the string without moving the other body.
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PROP. V. PROBLEM I.

Having given the velocity with which a body is moving at

any three points of a given orbit, described by it under

the action of forces tending to a common centre, to find

that centre.

Let the three straight lines PT, TQV, VR, touch the

given orbit in the points P, Q, R respectively, and

let them meet in T and F.

T

Draw PA, QB, EC perpendicular to the tangents, and

inversely proportional to the velocities of the body
at the points P, Q, R. Through A, B, C draw AD,
DBE, CE at right angles to PA, QB, EC meeting in

D and E. Join TD, VE; TD and F# produced, if

necessary, shall meet in S the required centre offeree.

For, the perpendiculars SX, SY, let fall from S on the

tangents PT, TQ V, are inversely proportional to the

velocities at P, Q (Prop. i. Cor. 1), and are therefore

directly as the perpendiculars AP
9 BQ, or as the
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perpendiculars DM, DN on the tangents. Join XY,
MN, then, since SXiSY:: DM: DN and the angles
XSY, MDN are equal, therefore the triangles SXY,MDN are similar; therefore SX-.DM:: XY:MN
\\XT\MT, and the angles SXT, DMT are right
angles ; therefore, 8, D, T are in the same straight
line. Similarly S, E, V are in the same straight
line, and therefore the centre is the point of
intersection of TD, VE. Q. E. D.

xxn.
1. If AB, EC, CD, the three sides of a rectangle, be the

directions of the motion of a body at three points of a central orbit,
and the velocities be proportional to these sides respectively, prove
that the centre of force will be in the intersection of the diagonals
of the rectangle.

2. If the velocities at three points of a central orbit be respec-
tively proportional to the opposite sides of the triangle formed
by joining the points, and have their directions parallel to the same
sides, prove that the centre of force will be the centre of gravity of
the triangle.

3. Three tangents are drawn to a given orbit, described by a

particle under the action of a central force, one ofthem being parallel
to the external bisector of the angle between the other two. If the

velocity at the point of contact of this tangent be a mean propor-
tional between those at the points of contact of the other two, prove
that the centre of the force will lie on the circumference of a
certain circle.

4. If the velocities be inversely proportional to the sides of the

triangle formed by the tangents at the three points, the centre of

force will be the point of concourse of the straight lines joining each

an angular point of this triangle to the intersection of the tangents
to its circumscribing circle at the ends of the opposite side.

5. If the velocity of a particle describing an ellipse under the

action of a centre of force vary as the diameter parallel to the

direction of its motion directly, and as its distance from one of

the axes inversely, prove that the centre of force will be at an

infinite distance.
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PROP. VI. THEOREM V.

If a lody revolve about a fixed centre of force, in any orbit

whatever, in a non-resisting medium, and if, at the ex-

tremity of a very small arc, commencing from any point
in the orbit, a subtense of the angle of contact at thatpoint
be drawn parallel to the radius from that point to the

centre offorce, then the force at that point tending to the

centre will be ultimately as the subtense directly and the

square of the time of describing the arc inversely.

Let PQ be the small arc, PS the radius drawn from P
to S, the centre of force. RQ the subtense of the

angle of contact at P, parallel to PS. T the time of

describing PQ. F the accelerating effect of the

force at P.

Then, when the body leaves P, it would, ifnot acted on

by the central force, move in the direction PR, and if

the force F continued constant in magnitude and
direction throughout the time T, QR would be the

space through which it would have been drawn by F
2O7? OK

in that time; therefore ultimately, F= --X.-ac ^'
COR. 1. Draw ^perpendicular to SP, and let h= twice
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the area described in an unit of time. Then area
PSQ =

\hi, Prop, i., also, since triangle PSQ= SP. QT, andaiezPSQ= trianglePSQ, ultimately,Lemma VIII., therefore hT = SP.QT, ultimately
/~\ T) o L* /~\ jy

hence, ultimately, JP=2~ = .
~

J ' fTi'i O p* f\ fjl ' *

COR. 2. Draw/ST perpendicular on PR. Then, &PSQ

.'. hT= SY. PR= 8Y. PQ, ultimately ;

hence, ultimately, P=2

COR. 3. If the orbit have finite curvature at P, and PV
be the chord ofthe circle of curvature whose direction

passes through S, PV.QR= PQ*, ultimately;

F- W~
SY'.PV

COR. 4. If Fbe the velocity at P, then F=^, and

2QX 2QR (PQ\*
1
= ~

>
ultimatel75

that is, the velocity at any point of a central orbit

at which the curvature is finite is that which would
be acquired by a body moving from rest under the

action of the central force at that point continued

constant, after passing through a space equal to a

quarter of the chord of curvature at that point drawn
in the direction of the centre of force.

COR. 5. Hence, if the form of any curve be given, and
the position of any point 8, towards which a centri-

petal force is continually directed, the law of the

centripetal force can be found, by which a body will

be deflected from its direction of motion, so as to

remain in the curve. Examples of this investiga*
tion will be given in the following problems.
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Observations on the Proposition.

173. In Newton's enunciation of the proposition, the sagitta

of the arc, which bisects the chord and is drawn in the direction

of the centre of force, is employed instead of the subtense used

in the text, but these are ultimately proportional by Art. 90.

The variations by which Newton expresses the results of the

first three corollaries are replaced by equations, in order to

facilitate the comparison of the motion of bodies in different

orbits and the forces acting upon them.

174. The figure employed in proof of the proposition is

drawn upon supposition that the force is attractive, the orbit

being concave to the centre of force
;

the same proof will apply

also to the case of a repulsive force, if the curve be drawn in

the direction of the dotted line PQ' and the same construction

be made.

The exception, however, should be made, that the method fails

in the particular positions in which the body is at the points of

contact of tangents drawn from the centre of force to the curve
;

in such cases QR does not ultimately meet the tangent at a finite

angle or is not a subtense
;
the result of the proposition is there-

fore not demonstrated for these particular positions. A further

discussion of the case is given on the next proposition.

175. In the proof it is assumed that the body moves ulti-

mately in the same manner as if the force P remained constant

in magnitude and direction, in which case the body would

describe a parabola, whose axis is parallel to PS, and which is

evidently the parabola which has at P the same curvature as

the curve. By this consideration the proposition contained in

Cor. 4 can be readily proved. For, since the body moves in

a parabola under the action of a constant force in parallel lines,

the velocity at P is that acquired by falling from the directrix

under the action of the force at P, continued constant, i.e.

through a space equal to the distance of the focus of the

parabola, which is equal to a quarter of the chord of curvature

at P, drawn through S.
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176. The supposition that the force at P continued constant

in magnitude and direction, causes the body to move in a curve

which is ultimately coincident with the path of the body, may be

justified by considering that if PQ' be the arc of the parabola
described on this supposition in the same time as the arc PQ
actually described, the error Q'Q is due to the change in the

magnitude of the forces and the direction of their action in the

two cases
; now, the greatest difference of magnitude varies as the

difference of SP and SQ ultimately, and the ratio of the error

from this cause to Q'R vanishes ultimately ; also, since L PSQ
vanishes ultimately, the ratio of the error, arising from the change
of direction, to Q'R vanishes

; therefore, Q'Q : Q'R vanishes, and

the curves may be considered ultimately coincident.

177. It is evident that the results of the Proposition and of

the fourth corollary are true of the resultant of any forces, under

the action of which any plane orbit is described, for this resultant

may be supposed ultimately constant in direction and magnitude,

in which case the curve described is a parabola. Hence, as in

Art. 175, if F be the accelerating effect of the resultant of the

forces, QR the subtense parallel to the direction of the resultant,

V = *F.?, and ^= 2 limit -P-

Homogeneity.

178. COR. 1, 2. In the expressions for F obtained in these

corollaries, it is of great importance to observe the dimensions

of the symbols. Thus TiT represents an area and h is of two

dimensions in linear space and of - 1 in time
;
therefore h*. QR

is of five in space, and of -2 in time, and SP*.QT* of four

dimensions in space ; hence, $p*yr Is of one dimension in

space and of 2 in time, and represents either twice the space

through which a force would draw a body in an unit of time, or

the velocity generated by the force in an unit of time, either of

which may be taken as the measure of the accelerating effect of

the force
; moreover, this unit is the same by which the magni-

tude of h is determined.
AA
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Hence, if the actual areas, lines, &c., be represented by the

symbols, and not the number of units, as mentioned in Art. 168,

every term of an equation or of a sum or difference must be

homogeneous, or of the same number of dimensions, both in space

and time; for example, PQ + V.T representing a line, V must

be of 1 dimensions in time.

Tangential and Normal Forces.

179. To find the accelerating effect of the components of the

forces, under the action of which a body describes any plane curve,

taken in the directions of the normal and tangent at any point.

Let PQ be a small arc of the curve described under the

action of any forces, T, N the measures of the accelerating effect

of these forces, in the direction of the tangent and perpendicular

to it. Then, if V be the velocity at P, t the time of describing

PQ, the forces may be supposed ultimately to remain constant
;

therefore, if QR be perpendicular to PR, we shall have

ultimately QR = %N.t\ and PR=V.t + \T.t*=V.t since the

ratio of T.t* : Vt vanishes ultimately; hence, if p be the radius

PR* 2V V
of curvature at P, 2p = _ =

j=- ultimately ;
therefore will

be the measure of the normal acceleration estimated towards

the centre of curvature.

Again, if V be the velocity at Q, V will be ultimately the

component of the velocity in the direction PR
; therefore, by

Art. 53, we obtain two measures of the tangential acceleration,

yiv _y* y _y
the limits of

180. To find the velocity at any point of an orbit described

under the action of any forces in one plane.

Let AB be any arc of an orbit, F, v the velocities at A and

B, and suppose the arc AB divided into a large number of small

portions, of which PQ is one, v
r ,
v
r+l

velocities at P and Q, T the

accelerating effect of the tangential component of the forces at P,

wm - Vr
2= 2T.PQ ultimately,

and v
8 - F* is obtained by taking the limit of the sum of the
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magnitudes 2T.PQ corresponding to the different arcs when
their number is indefinitely increased.

That this is rigidly correct may be shewn by considering that

vr+* vr

2
: 2 T.PQ is ultimately a ratio of equality ; therefore, by

Cor., Lemma IV., or Art. 22, the limiting ratio of the sums is

also a ratio of equality.

In the case of a central force, whose accelerating effect is F,

T=FcosRPS;
... v

*

r+i
_

Vr
= 2F.PQ cosEPS = 2F (SP- SQ) ultimately,

whence v* F2

,
if F depend only on the distance.

Radial and Transversal Forces.

181. To find the accelerating effect of the components of

force, under the action of which a body describes any plane curve,

taken in the direction of a radius vector drawn from a fixed

point, and perpendicular to it.

Let PQ be a small arc described in the time T; QRU,
PU parallel and perpendicular to SP', P, Q the measures of the

accelerating effects of the components in PS and PUj PR a

tangent at P. If V be the velocity at P, make PT=V.T,

draw TN perpendicular to SP, and let Qq be the arc of a

circle, centre S.

Since the forces may be considered ultimately constant in

magnitude and direction, ^P.T = Nn = NoL + jj ultimately.
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Let h be twice the area which would be described in an

unit of time by radii from S, if the transverse force Q ceased

to act, t\ienQn.SP=TN.SP=h.T; therefore
|#-

=
-|P

ultimately ;
and ifP be the measure of the accelerating effect

of a force, under the action of which the body would move

in PS, so that its distance from S would be always equal to

that of the body in PQ at the same time, ^P'.T^^Nq ulti-

7i
2

mately ;
therefore P P' -f -^-3

.

Again, if at Q h' correspond to A, h' h, the increase of #,

will be due to the increase of velocity in direction PU, which

is equal to Q. T ultimately; therefore (h
1 -

h} T= Q.T*.SP

ultimately ;
hence Q --, ultimately.

Angular Velocity.

182. DEF. Angular velocity of a point moving about a fixed

point is the rate at which angles are described by radii drawn

to the fixed point.

Uniform angular velocity is measured by the angle described

in an unit of time.

Variable angular velocity is measured by the angle which

would be described by a radius in an unit of time, if moving with

uniform angular velocity equal to the angular velocity at the

time under consideration; this is the limit of the angle, described

in a time T, divided by T, when T is indefinitely diminished.

183. To find the angular velocity in a central orbit.

Let PQ be a small arc described in the time T, draw QN
perpendicular to SP, then h.T= twice the area PSQ= QN.SP
ultimately ; and, if the angles be supposed estimated in circular

measure, L PSQ = ~ =
-j^ ultimately ;

therefore the angular

P>QS) T

velocity, which is L ~
ultimately,

= -^ .
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184. To find the angular velocity of the perpendicular on the

tangent from the centre offorce.

Draw SY perpendicular on the tangent PY", and let PV be
the chord of curvature through S.

The angle described by SY in the time T is equal to the

angle between the tangents at P and (), or to twice the angle

PVQ', therefore angular velocity of SY : angular velocity of

SP::2LPVQ:^PSQ::2SQ:QV ultimately; hence the

angular velocity of SY = py sp
-

Illustrations.

(1) To find the tension of a string by which a body is attached

to the centre of a vertical circle in which it revolves.

Let P be the position of the body at any time, (?P, GA
radii drawn to P and the lowest point, and let v, u be the

velocities at P and A. Draw PM perpendicular to GA. Then

u* v* = 2g.AM and -~-r is the accelerating effect of the forces
C.4

in the direction P(7, viz. the tension of the string and the com-

ponent of the weight of the body. Let T be the tension of

the string and m the mass of the body ;
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therefore the tension of the string : the weight of the body

:: M* - 2g.CA + Sg.CM : g.CA.

NOTE 1. In order that the complete circle may be described,

since the string must be stretched at the highest point where

CA must be written for CM, u*=or>5g.CA, and if the

circle be just described, the tension at the lowest point will be

six times the weight.

NOTE 2. If the body oscillate, the extent of the oscillation

will be given by the consideration that at the extremity P of

the arc of oscillation there will be no velocity, therefore

u
2 = 2g.AM', and AM' is less than AC, otherwise the string

would not be stretched, so that the tension at A : the weight

::2AM'+AC:AG.

(2) Find the, force, under the action of which a body may
describe the equiangular spiral uniformly.

The velocity being constant, there is only a normal force

measured by (vel.)
2

-r- radius of curvature =
<cp ,

Art. 128.

(3) Find the force tending to the pole of the cardioidj under

the action of which the curve is described.

Since PV= |SP, and (vel.)* see page 105,

07 S
-DQ I

therefore the accelerating effect of the force is
'

p4
oc -^^ .

(4) Two equal rings P, Q slide on a string which passes round

two fixed pegs A, B in a smooth horizontal plane ; the rings are

brought together, and then projected with equal velocities, so as to

keep the string stretched symmetrically. Shew that the tension of
he string varies inversely as the distance AP.

J) A C
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The figure represents the position of the system at any time.

Let CR bisect AB and PQ, and let DE be drawn parallel to

CR, so that EP=PA, then EPR = AP+PR is constant;
therefore DE is fixed, and P moves in a parabola whose focus

is A and directrix DE.

Also, the tensions of the string in PA, PQ being equal, and

equally inclined to the tangent to P's path, the resultant of these

tensions, which are the only forces acting in the plane of the

curve, acts in the normal, hence the rings move with uniform

velocity equal to the velocity of projection F, and if T be the

measure of the accelerating effect of the tension, PGr the normal,
F 2

p the radius of curvature, 2TcosAPG= ,
and 2p cosAPG

= chord of curvature through A = PA
;
therefore

F2
1T= IPA* PA'

(5) A body revolves in a smooth circular tube under the action

of a force tending to any point in the circumference, and varying

as the distancefrom that point. Find the pressure on the tube, and

the point where there is no pressure, the motion commencing from,

a given point.

Take A the centre of force, C that of the circle
;

let B be the

point of starting, PQ a small arc, BD, PM, QN ordinates to the

diameter through the centre of force, Am, Qn perpendicular on

OP] let }L.PA be the measure of the accelerating effect of the

force at P; therefore p.mA, p.Pm are those of the tangential

and normal forces, =p.PM and p.AM respectively.
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(vel.)
2
at -(vel.)

2
at P=2fi.PM.PQ=2fi.CP.MN ultimately,

see Art. 179, whence, taking the limit of the summation for all

the small arcs in BP, (vel.)* at P=2p.CP.DM.
'vel )

2
at P

Also,
-

4fp
= fj,.AM+t\iG accelerating effect of the

pressure of the tube, the upper or lower sign being taken

according as the pressure is from or towards (7; therefore the

pressure on the tube has for the measure of its accelerating effect

/i (AM- 2DM) = (BAM- 2AD] ;

hence the pressure is outwards from B until AM= $AD, at

which point there is no pressure, and inwards from that point to

the corresponding one on the opposite side, having its greatest

value at A
t
and the outward pressure at B is half the inward

pressure at A.

(6) If in a smooth elliptic tube a particle be placed at any

point, and be acted on by two forces which tend to the foci and

vary inversely as the square of the distances from those points ,

shew that the pressure at any point will vary as the curvature.

Let be the point of starting, PQ a small arc described by
the body, QT, QU perpendiculars on SP

t
HP.

Take ^, -^p, -R, as the measures of the accelerating

effects of the forces, and of the pressure of tube outwards.

Then, employing the usual letters for the lines of the figure,

the accelerating effect of the tangential component of force

to 8 is

j^ PT_n(SP-SQ)_ n
SP*'PQ SP.SQ.PQ~ PQ.SQ PQ.SP tey '

and similarly for the force tending to H;
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Also, . p + -*, if p be the radius

of curvature at P, and 2P .

** = PF=

'p AC.HP + AC.SP HP SP^HO
_ 2/4' 2/4 p /* ffl'SO flHO\~
Hd + &o~Ac"Ac =

(-Ho
+
~so) :

which 18 constant
;
therefore R varies as the curvature.

XXIII.

1. A body is attached to a point by a thread, and is projected so
as to describe a vertical circle, prove that, if Z

7

,,
T

z
be the tensions

of the string at the extremities of any diameter, the arithmetic mean
between T

t , T2
is independent of the position of the diameter, and

that TV~>TI is six times the component of the weight in the direction

of the diameter.

2. A string of given length I is capable of sustaining a weight W.
One end is fixed, and a given weight P less than W, attached to the

other end, oscillates in a vertical plane, find the greatest arc through
which the weight can oscillate without breaking the string.

3. A ring slides on a string hanging over two pegs in the same
horizontal line, find the tension of the string at the lowest point, if

the ring begin to fall from the point in the horizontal line through
the pegs, the string being stretched.

4. AB is the vertical axis of a cycloid, A the highest point,

AM, AN are the abcissse of points at which a body begins to slide

down the arc of the cycloid, and at which it leaves the curve; prove
that JVis the middle point of MB.

5. Ifin a central orbit the direction of motion change uniformly,

prove that the normal force will vary as the radius of curvature.

BB
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6. Given the Sun's motion in longttuie at apogee and perigee
to be 57' 10" and 61' 10"

;
find the eccentricity of the Earth's orbit,

supposed to be an ellipse about the Sun in one of the foci.

7. Prove that the angular velocity of a projectile about the

focus of its path varies inversely as its distance from the focus.

8. A particle, constrained to move on an equiangular spiral, is

attracted to the pole by a force proportional to the distance, prove

that, at whatever point the particle be placed at rest, the times of

describing a given angle about the centre of force will be the same.

9. A body slides down a smooth cycloidal arc, whose axis is

vertical and vertex downwards, find the pressure at any point of the

cycloid, and shew that, if it fall from the highest point, the pressure
at the lowest point will be twice the weight of the body.

10. Find the law of force, tending to the centre, under the

action of which a lemniscate can be described.

XXIV.

1. Two straight lines AB and BC are united at B
; A B revolves

about A, and BC about B with the same uniform angular velocity ;

shew that the acceleration on C tends to A and varies as CA.

2. A particle describes an ellipse, the centre of force being
situated at any point within the figure. Shew that at the point
where the true angular velocity is equal to the mean angular
velocity, the radius vector is a mean proportional between the

3. A particle begins to move from any point of a smooth

parabolic tube, being attracted to the focus by a force which varies

inversely as the square of the distance
;
find the greatest pressure.

4. If SY be the perpendicular on the tangent at a point P of

an orbit, described about a centre of force S, prove that the

acceleration at P will be equal to the product of the velocities of P
and T divided by ST.

5. A smooth cone is placed with its axis vertical and vertex

upwards, shew that there is a certain portion of the surface upon
which a particle can describe a circle, if properly projected and
acted on by gravity and by a force tending to the vertex and
varying as the distance.
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6. Shew that the force required for the description of an ellipse

about the vertex A varies as ^ -y-a >
where PN'vs, the perpendicular

on the axis.

7. If a particle describe an ellipse under the action of a force

tending to any fixed point 0, the force will vary as
^ p2 ~,3 ,

where

P is the position of the particle, PP the chord through 0, and
T)D' the diameter parallel to this chord.

8. Shew that in the elliptic orbit described under the action of

a force tending to a focus, the angular velocity round the other

focus varies inversely as the square of the diameter parallel to the

direction of motion.

9. A particle moves in a circular tube, under the action of a

force which tends to a point in the tube, and whose accelerating
effect varies as the distance, shew that, if the particle begin to move
from a point at a distance from the centre of force equal to the

radius, there will be no pressure on the tube at an angular distance

from the centre of force equal to cos"
1

! .

10. A particle moves in a smooth elliptic groove, under the

action of two forces tending to the foci and varying inversely as the

squares of the distances, the forces being equal at equal distances.

Prove that, if the velocity at the extremity of the axis major be to

that at the extremity of the axis minor as AC to EC, then the

velocity at any point will vary inversely as the normal ;
find the

pressure on the tube.

11. Determine the relation between /z
and X and the velocity of

projection,
in order that an ellipse -may be described under the

action of forces^ ,

pz
to the foci and X. CP to the centre, acting

simultaneously.

12 A particle is attached to a point C by a string, and is

attracted by a force which tends to a point 8, and varies inversely as

the square of the distance from 8. Find the least velocity with

which the particle can be projected from a point in CS, or Cb pro-

duced, so as to describe a complete circle. If CS be less than the

length of the string, prove that the tension will be a maximum at

a point D, where 82) is perpendicular to CS, and that if CS be half

the length of the string, the two minimum and the maximum

tensions will be as 0, 4 and
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PROP. VII. PROBLEM II.

A body moves in the circumference of a circk, to find the law

of the centripetalforce, tending to any given point in the

plane of the circle.

Let AP Fbe the circumference of the circle, $the given

point to which the centripetal force tends, P V the

chord of the circle drawn through S from P, the

position of the body at any time, and VGA the

diameter through F. Join PA, and draw SY
perpendicular to PYj the tangent to the curve at P.

By Prop. vi. Cor 3, if F be the measure of the accele-

2A
1

rating effect of the centripetal force, F =
,

and, since the angles SPY, VAP are equal, and also

the right angles PYS, APF, the triangles SPY,
VAP are similar, and SY : SP : : PV : FA

;

2/f.VA*
~
SP*.PV*'

therefore, since h and VA are given, F varies

inversely as SP\PV\
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COR. 1. Hence, if the given point S to which the

centripetal force tends, be situated on the circum-

ference of the circle, V will coincide with 8, and F
vary inversely as SP*.

COR. 2. The force, under the action of which a body
P revolves in a circle APTV, is to the force, under
the action of which the same body P can revolve in

the same circle in the same periodic time about any
other centre of force R, as RP\SP to SG\ SG being
a straight line drawn from the first centre S, parallel
to the distance HP of the body from the second

centre offeree R, to meet PG
t
a tangent to the circle.

For, by the construction of this proposition, since the

periodic times are the same, the areas described in

a given time are the same ; therefore, h is the same

for both centres, hence, ifPRT be the chord through

R, the force to S : the force to R : : RP*.PT3

/SjP.PF
8

; but, by similar triangles TPV, GSP,
PT - P V: : SP : SG

;
therefore force to S : force to R

: : RP'.SP* : SP\SG3
: : EP'8P :

COR. 3. The force, under the action of which a body

P revolves in any orbit about a centre of force 8, is

to the force, under the action of which the same

body P can revolve in the same orbit in the same

periodic time about any other centre of force R, as
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RP*.SPto SG-
3

,
SG being the straight line drawnfrom

the first centre offeree S, parallel to RP the distance

of P from the second centre of force R, to meet PG
the tangent to the orbit.

For, in each case, the body may be supposed for a

short time to be moving in the circle of curvature,

and the forces are the same as those which would

retain the body in the circular orbit; therefore,

since the areas described in a given time are equal,

the ratio of the forces is RP\SP : SG*.

Observations on the Proposition.

185. In the figure employed in the proposition, the force is

supposed to be attractive, but the investigation of the law

of force applies also to the case in which the centre of force

8 is exterior to the circle, in which case the force is repulsive

through the arc 5(7, which is convex to the centre of force, and

contained between the tangents drawn from 8 to the circle.

It is important, however, to observe that this problem is to

find what would be the law of force tending to 8, under the

action of which a body would be moving, supposing that it

could move in the circle, or any portion of the circle, under the

action of such a force, but it does not assert the possibility of

such a motion, which is considered in Art. 165.
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111 fact, the complete description of a circle AB C, under the

sole action of a central force tending to an external point S, is

impossible, because, as the body approaches the point B, the

component of the velocity perpendicular to SB remains finite

however near the body approaches B, and since there is no

force to generate a velocity in the opposite direction, the body
must proceed to describe an arc SZJon the opposite side. SB
would be a tangent to both curves, because the velocity in

direction BS becomes larger than any finite quantity, as the body

approaches B, and therefore the angle between BS and the

direction of motion is indefinitely small at B.

That a finite velocity in the direction perpendicular to SB
could remain up to B, may be shewn by producing SB to T
in the tangent PY at P; then the -component of the velocity

7 OV" 7, I

at P perpendicular to SB is -^ . ^ =^ = ^ ,
when the

body arrives at a point very near to B.

186. The force at a point indefinitely near to B cannot be

properly determined by the method of Prop. VI., because the

lines parallel to the direction of the force from which the mea-

sures of the force are obtained are not subtenses, or sagittas,

since they are in this case not inclined at a finite angle to the

tangent.
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But it can be seen in another manner from the polygon of

Prop. I,
that the force is infinitely great, when the distance from

B becomes infinitely small.

Thus, if CDEF be a portion of the polygon whose limit

touches the radius from S between D and E, the angle between

DE and DS or ES may be made as small as we please compared
with the angle between CD and DE, hence the velocity

generated by the impulse in the directions DS and SE will

become infinitely great compared with the velocities in CD
and EF. In the figure, the impulses at D and E, whose

directions are denoted by the arrows, have corresponding to them

in the limit the forces on opposite sides of the tangent, which

are attractive and repulsive respectively.

187. COR. 1. For the reasons given above, a limitation

should be made, viz., when P is at a finite distance from S. In

.

this case PV= SP and F=
-gp- ,

R being the radius of the

circle.

We may also observe here that the possibility of a description

of a circle is not asserted, but only the law of force required

in case of description of any portion of the circle. The complete

description of the single circle is, in fact, impossible, for, under

the action of the force obtained, the body would pass to the other

side of the tangent on arriving at $, then proceed to describe

another equal circle, and, on arriving again at $, return into the

original circle.

188. COR. 2. The orbit being the same, and also the

periodic times about S and H being equal, the value of
,
in

the two cases, is the same; also, the force tending to S for

the orbit being of the same magnitude at P as that under the

action of which the circle of curvature would be described, and

SY, PV being the same in the orbit and the circle, h is also

the same, Prop. VI. Cor. 3
; and, similarly, h is the same in the

circle and orbit described about R
;
therefore it is the same in

the circle described about S and R as centres of force, and hence

Cor. 2 applies.
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Absolute Force.

189. If the force upon a body placed at any distance from

the point S vary inversely as the wth power of that distance,
the magnitude of the force, or its ratio to any given force,

as that of gravity, will be determined when the distance SP is

given. The measure of the accelerating effect of the force is

written -^ ,
where p the constant part of this measure is an

algebraical symbol of n + 1 dimensions in linear space. If the

unit of space
=

a, n is the measure of the accelerating effect of

the force on a body at an unit of distance, and p is called the

Absolute Force, being the measure of the accelerating effect of

the force at an unit of distance x the nth power of that unit.

The absolute force is not the measure of the accelerating effect

of any force, unless the symbols be treated numerically, in which

case fju
is twice the number of units of space through which a

constant force, equal to the force at an unit of distance, would

draw a body from rest in an unit of time.

Law of Force in a Circular Orbit.

190. The law of force may be expressed in terms of the

distance SP, for SD, Sd being the greatest and least distances

of the body from 8, SD.Sd= SP.SV-, see figure, page 188.

+ or according as S is within or without the circle
;

'' Jf

-(8P
r

~8I>.Sd)*'

If 8 be on the circumference Sd = 0, therefore F

If 8 be exterior to the circle, SD.Sd = SB\ and the lower

2h*AV?
.

sign must be taken
;
therefore JJ =

Tp* _ g

Velocity in the Circular Orbit.

191. To find the velocity in the circular orbit described

under the action of a force tending to any point in the plane of

the orbit.

CC
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h h SP h VA I
The velocity at P= ^= ^.^= ^. -^cc -^-^

CoR. If S be in the circumference of the circle, and -

be the accelerating effect of the force, n = WSA* ;

hence the velocity at P=
-'gpr

=
(j ^p

Or, we may employ the result of Prop. VI., Cor. 4,

V*- F PV_J^_ SP. . r_/M* J.* J_
'

sf "SP"' 2 ' "W'SP* &P*'

Periodic Time.

192. To ^n^ <Ae periodic time in a circular orbit described

tinder the action of a force tending to a point in the circumference.

Let P be the periodic time, It the radius of the circle, and

let ^5 be the measure of the accelerating effect of the force at

P, then h.P= twice the area of the circle =

and p = 2^M^ = 8h*fi*
;

.-. P =

193. 7b compare the periodic times in the same circle when

described under the action of a force tending to a point in the

circumference, and a force tending to the centre, of the same

magnitude as that of the first force at a distance equal to the radius

of the circle.

Let P* be the periodic time, and V the uniform velocity in

the circle in the second case, V*=~ . R
;
/. F=^ ,

and P'. 7 ..

At* 2V2

Illustrations.

(1) When the force in a circular orbit tends to a point within
the

circle, to find the pointat which the true angular velocity is

equal to the mean angular velocity.
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The true angular velocity = -^p ,
the mean =~=2ir.

therefore at the required point SP= 22, or the perpendicular from
the required point upon the line joining S to the centre of the
circle bisects OS.

(2) A body describes a circle under the action of a force

tending to a point within
Y, the measure of whose accelerating

effect at the greatest and least distances SD and Sd are the radius
and twice the diameter respectively ,

the unit of time being a second;

find the number of seconds in passingfrom D to d.

TO q
and the number of seconds from Dtod= f- = -

h 4

XXV.

1. If
p.
be the absolute force in a circular orbit described under

the action of a force tending to a point in the circumference, prove
that the time in a quadrant commencing from the extremity of the
diameter through the centre of force will be (T + 2) .S

3

(/*)"*.
In what unit of time is the result expressed ?

2. A point describes a circle, with an acceleration tending to any
point within the circle. Prove that, if three points be taken at

which its velocities are in harmonical progression, the velocities at

the other extremities of the diameters, passing through those points,
will also be in harmonical progression.

3. In the case of a centre of force S within a circle, if two points
Z, If be taken, such that LS, MS make equal angles with the

diameter through S, and on the same side of it, then the forces at

Z and M will be to each other in the inverse ratio of the squares on
OL and OH.

4. The sum of the reciprocals of the velocities at the extremities

of any diameter is independent of the position of the centre of force,

and varies as the periodic time.

5. Prove that, when a circular orbit is described about an in-

ternal point, the sum of the square roots of the accelerations at the

extremities of any chord passing through that point varies inversely
as the square root of the length of the chord.
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6. Prove that, if the law offeree tending to 8, a point without a

circle, be the law of force under which part of the circle can be de-

scribed, the body will move near B as if acted on by a force tending
to B and varying inversely as the cube of the distance from B.

7. OE is a radius perpendicular to the diameter through 8 in a
circular orbit about a central force tending to a point S within the

circle, SB an ordinate, perpendicular to OS, shew that, if the force

at B be an arithmetic mean between the forces at the greatest and
least distances, OE* --= SB . SE2

.

8. Prove that, if a circle be described about a force tending to a

point in the circumference, and PQ be a chord parallel to the dia-

meter through that point, the times of describing equal small arcs

near P and Q will differ by a quantity which varies as PQ.

9. "When a particle is describing a circle under the action of a
central force, shew that at every instant the angular velocities

about all points in the circumference are the same.

10. The period in an orbit described under the action of a central

force, whose accelerating effect is pr" is given to be \a
m

-f- ^i, a be-

ing a line and X a number, find n.

11. Apply the proposition contained in Cor. 3, to prove that if

in an elliptic orbit described under the action of a force tending
to the centre, the force vary as the distance from the centre, then
the force tending to the focus will vary inversely as the square of
the focal distance.

12. Deduce, by Cor. 3, the law of force, when a parabola is

described under the action of a force tending to the focus, from the
constant force parallel to the axis, under the action of which the
same parabola may be described.

13. Shew, by the method of projections, that the centripetal
force at any point P tending to a fixed point in the axis major
of an ellipse under which the ellipse can be described, varies as

. OP, POQ being the chord of the ellipse through 0.
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PEOP. VIII. PROBLEM III.

A body moves in a semicircle PQA under the action of a

force tending to a point S so distant that the lines PS, QS
drawn from the body to that point may be considered

parallel; to find the law offorce.

Let CA be a semidiameter of the semicircle drawn from
the centre perpendicular to the direction in which the

force acts, cutting PSt QS inM and N, and join CP.

Let PRZ^Q the tangent at P, ZQT perpendicular to

PMS, meeting PRZ in Z, and let SNQ meet PRZ
in R.

Then the force at P= ultimately, if the arc
.-

PQ be indefinitely diminished, and SP may be con-

sidered constant
; also, by Euclid in. 36,

and, since RQ is parallel to PT, and the triangles

PZT, CPM are similar,

RP: QT:: ZP : ZT :: CP :

A
~QR

=RP '~QR

ultimately ,-

2PM

hence force at P = -
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Aliter.

In fig. page 190 draw OE a semidiameter perpen-
dicular to SDj and let the distance SP cut the

circle in F", and OE in M, then, by the pre-
Q IV T>*

ceding proposition, F =
^p* py> >

and, # & ^e

very distant, the ratio PM : SM or SO will vanish
;

therefore, SP= SO ultimately, and PV is ulti-

mately perpendicular to OE and equal to 2PM
;

__##*_ 1
' *

PM*'

SCHOLIUM.

A body moves in an ellipse, hyperbola or parabola,
under the action of a force tending to a point so

situated and so distant that the lines drawn from
the body to that point may be considered parallel,
and perpendicular to the major axis of the ellipse,
the axis of the parabola or the transverse axis of

the hyperbola. To shew that the force varies

inversely as the cube of the ordinates.

Let AMGr be the axis to which the direction of the

forces may be considered perpendicular, PM, PGr

the ordinate and normal, PO the diameter of

curvature, and PFthe chord of curvature in direc-

tion PA^.
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ThcnP-SY\PV~ SP\P
PC? pg3

* ^*
.P F PM3.PO PM 3 '

since POoc P#3

,
Art. 84.

Observations on the Proposition.

194. It lias been shewn in Art. 151, that the equable de-

scription of areas may, in the case of forces acting in parallel

lines, be replaced by the uniformity of the resolved part of the

velocity in the direction perpendicular to that of the forces. In

the proof given in the text, when S is removed to an infinite dis-

tance, h and SP are both infinite magnitudes, but the expression

^p is finite, for area SPQ described in the time T is ultimately

equal to area SMN, whose base is equal to u T, u being the com-

ponent of the velocity perpendicular to the direction of the

forces; therefore hT=uT.SP ultimately, and
^p^

=w8

,
hence

the acceleration due to the force, when a body describes the
2
Tpa

semicircle, is
-^-^

.

195. The accelerating effect of the force, acting in parallel

lines, may be obtained directly from the proposition of Art. 151,

as follows.

Let u be the constant component of the velocity F, perpen-

dicular to the direction of the force, and let ^be the accelerating

2F2 F*
effect of the force, therefore F= - = --J

also V.u-nCP: PM;

Extension of Scholium.

196. When a lody describes any curve under the action of a

force tending to a point S, so distant that the lines drawnfrom S
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to the body may "be considered parallel ; to find the law of force

and the velocity at any point.

Let AP be any curve, AMG the line to which the forces are

perpendicular, PM, PG the ordinate and normal at the point P,

PV the chord of curvature in the direction of the force, PO the

diameter of curvature.

Let F be the accelerating effect of the force at P, u the

component of the velocity Fin the direction AMG]
.-. V:u::PG:PM,

also PV-.PO:: PM-.PG;
PO 2u*.PG*_ _~~ PV~ PM\PO' PV~ PO.PM*'

PG
and the velocity

= u. .,.

Illustrations.

(1) A cycloid is described by a particle, under the action of a

force acting in a direction parallel to the axis ; find the accelera-

tion and the velocity at any point.

In the cycloid P0 = 4P, and PM.AB= PGP, AB being
the length of the axis

;

""' F==
~~PW~

' PO
=
spur Po3 '

and the velocity at P=u.
-^-.

=u. -^ cc -^ .

(2) A particle moves in a catenary under the action offorces

acting in vertical lines ; find the accelerating effect of the force
and the velocity at any point.

Let AM be the directrix, AB the ordinate at the lowest

point.

Then PG : PM:: PM : AB and P0 = 2P#;
u\PM

PG PM
and the velocity at P= w. -, = u. - or PM.
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XXVI.

1. A body is moving in a semicircle under the action of a force

tending to a point, so distant that the lines drawn from the body
to that point may be considered parallel ;

if the centre of force be
transferred to the centre of the circle, when the direction of the

body's motion is perpendicular to that of the force, its magnitude
at that point being unaltered, prove that the body will continue to
move in the circle.

2. If a cycloid be described under the action of forces in the
direction of the base, the force at any point will vary inversely as

AM.IfQ-, AM, MQ being the abscissa and ordinate of the cor-

responding point of the generating circle.

3. A catenary is described under the action of a horizontal

force, prove that the force varies as the distance from the directrix

directly, and the cube of the arc from the lowest point inversely.

4. If the same parabola be described by particles when the

force tends to the focus, and when it is parallel to the axis, the

velocities will be equal at the points at which the forces are equal.

5. A parabola having its vertex at A and its Axis coincident

with AB the diameter of a semicircle, is described so as to cut the

semicircle in P
; prove that, if a body move in the semicircle under

the action of a force perpendicular to AB, the time of moving from

A to P will vary as the difference between AB and the latus rectum.

Prove also, that if a second body move from A to P in the parabola
in the same time under the action of a force perpendicular to its

axis, and the velocities in the two curves at P be equal, the latus

rectum of the parabola will be \AB.

DD
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PKOP. IX. PROBLEM IV.

If a "body revolve in an equiangular spiral, required the

law of centripetal force tending to the pok of the spiral.

Draw SY from S, the pole of the spiral, perpendicular
to the tangent PF, and let PV be the chord of

curvature at P, whose direction passes through $;
then F\ the measure of the accelerating effect of

2h*
the force tending to the pole, is ~y ,

y\ but, if

a be the angle of the spiral, SY=SP sin a and
P V=2SP, Art. 128;

F- * *
c~

3 ~' 3

197. To find the velocity of a body describing an equiangular

spiral under the action of aforce tending to the pole.

If
-^p,

be the accelerating effect of the force tending to S
t

198. To find the time of describing any arc of the equi-

angular spiral.

Let AL be any arc, SA, SL bounding radii, P the time of

describing the arc. Then area&!.= (SA*~ Z/)tana, Art. 127
;

2 x area SAL SA* - SL* A SA* ~ SU
.*. P= 7

= , ---- tana= -.
n 2n 2/4* cosa

199. In any orbit, described under the action of aforce tending

to any point $, when the angle between the tangent PY and the

radius SP is a maximum or minimum^ the velocity is equal to

the velocity in a circle at the same distance about the sameforce
in the centre.

For, the curve, near this point, may be considered an equi-

angular spiral ultimately, since the angle is constant for a short

2SP, and V*=F.SP
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xxvn.

1. In different equiangular spirals, described under the action

of forces tending to the poles which are equal at equal distances,
shew that the angular velocity varies at any point as the force and
the perpendicular on the tangent conjointly.

2. The angular velocity of the perpendicular on the tangent ia

equal to that of the radius.

3. The velocity of approach towards the focus, called the para-
centric velocity, varies inversely as the distance.

4. A body is describing a circle, whose radius is a, with uniform

velocity, under the action of a force, whose accelerating effect at

any distance r is p . Prove that, if the direction of its motion be

deflected inwards through any angle ft without altering the velocity,

the body will arrive at the centre of force after a time
2 h ^ . .

5. Deduce from the time in an equiangular spiral the time of

passing from one point to another, when a body moves along a

straight line with a velocity which varies inversely as the distance

from a fixed point in that line.

6. A body describes an equiangular spiral in a resisting
medium with uniform angular velocity under the action of a

force tending to the pole ; prove that the force to the pole varies

as the distance and the resistance as the velocity.

7. Two particles of equal mass m, and at a distance 2 apart,

are projected simultaneously with velocity V in the same direction

perpendicular to the line joining them, the only force acting is a

mutual force of attraction varying inversely as the cube of the

distance between the particles, and equal at the distance 20 to mf.

Prove that, if after a time -/ft .
-

^2~_^ \ one of ^ particles be

stopped and kept at rest, the other will proceed to describe an

equiangular spiral about it as pole.

8. Three particles A, B, C start from rest and move with

uniform velocities, A always directing its course towards B,

B towards C, and C towards A. Prove that if their velocities

be proportional to b'*c, c*a, cfl, where a, b, c are the initial distances

of B from C, C from A, and A from B respectively, they will

describe similar equiangular spirals, with a common pole.
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PROP. X. PROBLEM V.

If a "body "be revolving in an ellipse, to find the law of

centripetalforce tending to the centre of the ellipse.

Let OA, CB be the semiaxes of the ellipse, P the

position of the body at any time, PCG, DCD
conjugate diameters, Q a point near P, QTy

PF
perpendiculars from Q and P on PC, DD

'

draw

QU an ordinate to PCG, QR a subtense parallel
to CP.

Then jp= ultimately.

But, by similar triangles QTU, PFC,

QT^ __
PF 3

QU* _ CD*

QU*
-
CP3 >

and PU.UG
~

CP* ;

QT* PF\CI? AC\BC*
'

CP* CP*

ultimately, and PU=QR-,
QT* AC'.BC*

therefore the force is proportional to the distance
from the centre.
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Aliter.

Let CY be perpendicular on the tangent at P, andPV be the chord of curvature at P which passes

through the centre = -^, Art. 79.

COR. 1. And conversely, if the force be as the
distance, a body will revolve in an ellipse having
its

Centre in the centre of force, or in a circle,
which is a particular kind of ellipse.

COR. 2. And the periodic times will be the same in
all ellipses described by bodies about the same
centre of force.

For the periodic time in any ellipse

_2 x area of ellipse _ 2irA C. BC
~h~ ~h '

and the forces, at different distances in the same
or different ellipses, vary as the distance

; therefore

AC* BC*~* *S ^e same in different ellipses,

therefore the periodic times in different ellipses

is the same, and =-
7-.
\V

SCHOLIUM.

If the centre of an ellipse be supposed at an infinite

distance, the ellipse will become a parabola, and
the body will move in this parabola ;

and the force,
now tending to a centre at an infinite distance,
will be constant and act in parallel lines. This
theorem is due to Galileo. And, if the parabola
be changed into an hyperbola, by the change of

inclination of the plane cutting the cone, the body
will move in this hyperbola under the action of a

repulsive force tending from the centre.
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200. To find the velocity in the elliptic orbit under the action

of aforce tending to the centre, the measure of whose accelerating

effect is fAX distance.

The vebeity at P-
-*?

Aliter.

(Vel.)
a
at P=F.~= fji.CP.^ ;

.-. vel. at P= Jp.OD.

201. If a hyperbolic orbit be described under the action of

a repulsiveforce tendingfrom the centre, the force will vary as the

distance, and the velocity at any point as the diameter of the

conjugate hyperbola parallel to the tangent at the point.

This may be proved exactly as in the case of the ellipse,

employing the proper figure.

202. To find the time in any arc of an elliptic orbit about a

force tending to the centre.

If Pbe any point of the orbit, Q the corresponding point in the

auxiliary circle, time in AP cc area A CPcc areaA CQ cc LACQ ;

therefore time in AP : periodic time::
<j>

: 2ir, if < be the

2ir
circular measure of LACQ, and periodic time =-, ;

therefore

-f-
v/*

time in AP= --
.

203. If, at a given point, the velocity of a body be knoum
t

and the direction of its motion; to determine the curve which

the body will describe under the action of a given centripetal

force., which varies as the distance from the point to which it

tends.

Let Pt be the direction of motion at P, V the velocity at P,

ft .CP the measure of the accelerating effect of the force tending
to G. On PC produced, if necessary, take PV equal to four

times the space through which a body must move from rest,

under the action of the force at P continued constant, in order

to acquire the given velocity 7j so that V* =
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Draw CD parallel to Pt, a mean proportional to CP and

F, and let an ellipse be constructed with OP, CD as semi-

conjugate diameters, then PV is the chord of curvature at P
through C.

MA.

In this ellipse let a body revolve under the action of a

force tending to 0, whose magnitude at P is that of the given

force, see Arts. 160, 162, then, when it arrives at the point P,
it will be moving in the direction

Pfc, also the square of the

velocity at P= p,.CD'
t = ^.CP.^PV^V\ or the velocity at P,

in the constructed ellipse, is F. Hence the body revolving
in this ellipse is under the same circumstances as the proposed

body, in all respects which can influence the motion of a body ;

therefore the proposed body will describe the ellipse constructed

as above.

A direct solution of the problem, which is solved syntheti-

cally in this Article, is given in pages 78 and 79.

204. Geometrical construction for the position and magnitude

of the axes of the elliptic orbit, described by a body about the centre,

when the velocity at a given point is known
t
and also the direction

of motion.

Produce CP to R, making PR a third proportional to CP and

CD; bisect CR in
Z7,

and draw UC perpendicular to CR
t

meeting the tangent at P in 0, and with centre describe a

circle passing through C, R, and cutting the tangent in 2"and f ;

.-. PT. Pt = CP.PR = CD2

j
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Let TC intersect the ellipse in A, A, and draw PM parallel

to the diameter conjugate to A CA'
;

then PT* : CD* :: TA. TA' : CA*

r.CT*-CA*:CA*;
.'. PT* : PT.Pt :: CT*-CT.CM\ CT.CM;

.'. PT : Pt :: NT : CM-,

hence CT is parallel to P3/, and CT, Ct are in the directions of

conjugate diameters; but TCt is a right angle, therefore CT,
Ct being in the direction of perpendicular conjugate diameters,

are the directions of the axes of the ellipse, and if PM^ Pm be

perpendiculars from P upon these directions, the semiaxes are

mean proportionals between CJ/, CT, and CTH, Ct. Q.E.P.

205. Equations for determining the position and dimensions

of the orbit.

Let fi.R be the measure of the accelerating effect of the force

at the distance CP=R, Fthe velocity, a the angle between CP
and the direction of motion at the given point P. Let a, b be

the semiaxes of the ellipse, v: the angle which CP makes with

the major axis.

Then V* = p.GD
t and CD1 + CP8 = a* + b*

;

V*
.: a* + b* = + R* (ll

P>

Also V.R since = & = *Jp.ab ;

ab =
V'R 8inct

(<2\

and, by the properties of the ellipse,

rn TM* *'
1

(3).

The equations (1), (2), and (3) determine a, 5, and
r, whence

the magnitude and position of the ellipse is determined.

We can obtain an equation for w, immediately in terms of

the data, as follows :

by (3),
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^ + y = cosec'a
(l+^ , by (t) and

(2),

*
uIP

m
^v^ w 04XJ. UJ

'^ =
r^

=

cosV sin*

cosec
2
a ( 1 + ^-J 2

.'. cot 2or = - tan a ( cot*a
- 1 + cosec

s
a. ~

= cot 2a + cosec 2a.p .................(4);

whence ts is known immediately from the initial circumstances of

the motion.

206. If the force be repulsive, the equations for determining

a, &,w will be

...................... (1),

VR sin a

and 5 cos'-or
-^-

ain*cr = 1 .......... . ..... (3).

The direction and magnitude of the axes of the hyperbola

may be determined geometrically, by observing that the

asymptotes are the diagonals of the parallelograms of which the

conjugate semi-diameters are sides, and that the axes bisect the

angles between the asymptotes.

207. When a particle is acted on ly any number of forces,

'which tend to different centres^ and vary as the distancesfrom those

centres
t

to find the resultant attraction.

El
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Let /i. R, /A'. R be the magnitudes of two of the forces at the

distance R, A, B the centres to which they tend, P the position

of a particle acted on by the forces.

Let O be the centre of gravity of two particles at A and B
whose masses are in the ratio of fi to

/*', join PA, PB, PQ.
The components of the force fJ-.PA, in the directions PG,

GA, are p. PG and p. GA, and those of the force /*'. PB, in the

directions PG, GB, are fi'.PG, and p'.GB, but p..GA = p. GB,
therefore the resultant of the forces tending to A and B is

(ft + fj.') PG, which is a single force of magnitude (/* -f //) -K, at

the distance R, tending to the centre of gravity of masses
/*, /*'

placed at A and B.

Let //'.B be the magnitude of a force at the distance R,

tending to C, the resultant attraction is that of a force tending

to the centre of gravity H of particles at C and G, whose masses

are in the ratio /u." : /A + /*',
which varies as the distance from H,

and whose magnitude at the distance R is (/A + /H' + /A") 72.

And generally, the resultant of any number of forces is a

single force, tending to the centre of gravity of a system of

particles, placed at the different centres, whose masses are

proportional to the magnitudes of the forces at the unit distance,

and whose magnitude at any distance is the sum of those of the

forces at the same distance.

208. COB. 1. If every particle of a solid of any form attract

with a force which varies as the mass of the particle and the

distance conjointly, the resultant attraction of the solid upon
any body will be the same as that of the whole mass of the solid
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collected into its centre of gravity and attracting according to the

same law.

209. COR. 2. If any of the forces be repulsive, as that

whose centre is B, G will lie in AB or BA produced, according
as fi is greater or less than /*, and the resultant of the forces,

tending to A and from B, will be (/*-/&) PQ from (?, or

(p,- p!}PG towards G.

Illustrations.

(1) A body revolves in. a circular orbit about a force which

varies as the distance, and tends to the centre of the circle, and the

centre offorce is suddenly transferred to a point in the radius

which at the moment of change passes through the body ; to find
the subsequent motion of the body.

Since the force varies as the distance, and is attractive, the

orbit will be an ellipse. And, since the force is a finite force,

the body will move in the same direction as before, at the

moment of the change. Also, the velocity will, for the same

reason, be unaltered at that moment.

Let CA be the radius passing through the body at the

moment of change, CB perpendicular to CA, p.GA the force

at distance CA
t
V the velocity in the circle.

Then F* = fj,.CA.CA = /*.(L4
2

;
and if S, the new point to

which the force tends, be in CA, let AB' be the ellipse described,

SA will be one of the semi-axes of the ellipse,
sinee A is an
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apse, and, SB being the other, if a body revolved in this ellipse

round S, p. 8B" would be the square of the velocity at -4, that

is, /*. SB" = p. CA*, and therefore 8B=GA=CB] hence the

magnitude and position of the two semi-axes SA and SB' are

known, and the ellipse is completely determined.

The ellipse lies without the circle at A, because, the velocity

being unaltered, the force has been diminished in the ratio of

SA : CA, and therefore the curvature diminished in that ratio.

If S had been in AC produced, as at
/JT,

the force would

have been increased, and the orbit AB" would be within the

circle near A.

The greatest distance from CA which the body reaches is in

all cases the same for this law of force, because the component of

the force perpendicular to CA is the same at the same distance

from CA in whatever curve the body moves
; therefore, in each

orbit, the velocity being the same at -4, the velocity perpen-
dicular to AC is destroyed by the force at the same distance

from AC.

(2) A body is describing a circle about a force which varies as

the distance and tends to the centre ; if the centre to which the

force tends be suddenly transferred to a point in the circumference^

at an angular distance of 60 from the position of the particle at

any time, to determine the orbit described.

The orbit is an ellipse, since the force is attractive.

Let P be the position of the body at the instant the centre of

force is transferred from (7, the centre of the circle, to 5, where
8CP is an equilateral triangle.
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The velocity at P is *Jp.CP= Jp.SP; and, since it is un-
altered by the change of the centre of force, the semi-diameter

conjugate to SP is equal to SP.

Draw DSD' perpendicular to CP, meeting it in F, and take
SD = SD' = SP. Construct an ellipse having SP, SD as equal

conjugate semi-diameters
; 4, SB the semi-axes bisect the angles

PSD, PSD.' The ellipse so described will be the orbit required.
Prove the following construction :

On CP as diameter describe a circle cutting SD in B'
t
A'

SA, SB' are the lengths of the semi-axes.

Explain why the orbit is exterior to the circle.

(3) Two bodies whose masses are m, m' revolve in an ellipse
under the action of a force tending to the centre; shew that, if

they be at one time at the extremities of two conjugate diameters

they will always be so, and in this case find the locus of their

centre of gravity.

Let P, D be their positions at any time, CP, CD being

semi-conjugate diameters. Let the ordinates MP, ND, meet

the auxiliary circle in Q and R.

Since the angles A CQ, A CR are always proportional to the

times, RCQ will always be a right angle; therefore the bodies

will always be at the extremities of conjugate diameters.

A W C It

Let GH be the ordinate of their centre of gravity.

Join RQ and produce HG to meet RQ in JOT;

.-. KB: GE= QM : PM, a constant ratio,

also, RK:KQ = DG: GP, ;

hence CK is constant, or the locus of K is a circle, and the

locus of G is an ellipse, whose axes are proportional to those

of APD.
Shew that the semi-major axis : CA :: (m

f
-H!*)* : m + m'.
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(4) A body is composed of matter which attracts with a

force varying as the distance / shew that, however a particle be

projected, unless it strike the body, it will describe its orbit in

the same periodic time.

This is obvious immediately from Art. 208, relating to the

resultant of attracting forces.

(5) A body moves in an ellipse under the action of a force

varying as the distance ; if the velocity at any point be slightly

increased in the ratio 1 + n : 1, find the consequent changes in the

axes of the ellipse.

If, when the change takes place, the body be at the end of one

of the equal conjugate diameters, shew that the eccentricity will be

unaltered, and that the apse line will regrede through a small anglet

whose circular measure is _ .

When V is changed to (1+n) V, CD is changed to

(1 + n) CD
;

let the corresponding changes of a, b and CT be

oa, /S5 and 7 ; a, /3, 7, and n being so small that we may neglect
their squares. Then by the equations of Art. 205,

.-. aa' + ^'^n. CD\

Again (1 -f a)a. (1 + @}b = (1 + n) CD.R&ma.= (t +n)a&;
.-. a + =

n, and a(a
8 -

CD*} = /3 (
Cl? - 2

),

a ff n

In the particular case 2^!l = at + J
t

,
.*. a = /3 = n, hence,

a and b being altered in the same proportion, the eccentricity
will be unaltered.

R* H?
Also, cos* (si + 7) + r^ sin

2

(r + 7)
= 1 + n

and 5 cos*r + -^
sinV = 1

;

'I?
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and, since the axes bisect the angles between equal conjugate

diameters, aJ = .KVm2t3-, therefore 7, being expressed in circular

nab
measure, = t

(6) In any position of a particle describing an ellipse, under

the action of a force tending to the centre, the centre of force is

suddenly transferred to the focus, find the axes of the new orbit

and shew that its major-axis bisects the angle between the focal
distance and the major-axis of the given ellipse.

Employing the equations of Art. 205, if a, fi be the semi-

axes of the new orbit, P the position of particle when the centre

s transferred to S, since the semi-diameter conjugate to SP in

the new orbit will be equal to CD,

and SY* : BC* :: SP: HP:: SP* . CD";

.-. a&=CD.SY=b.SP;
...

(
a _ )

= 4 (a
2 -

V] SP\ and a
2 -& = 2aeSP

t

.'. a
2 = a(i+e) P,and/3

2 = a (l-e) 8P.

SP2 SP* .

Also r cosOT + --surG7 = l,

a l ~ 6^ =
(1
-

e) cosV + (1 4 e) sinV = 1 - e cos 2*7 ;

therefore 2cr = zP&4, or the major-axis of the new orbit

bisects the angle between PS and the major-axis of the

original orbit.

NOTE. By the construction of Art. 204, since PR is a third

proportional to SP and CD, and therefore is equal to HP, the

circle which determines T and t passes through H, and the arcs

HT, TR are equal, that is, ST bisects the angle PSA.

XXVII.

1 . Shew that the Telocity in an ellipse about the centre is the

game at the points whose conjugate diameters are equal as that in

a circle at the same distance.
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2. A body is revolving in a circle under the action of a force

tending to the centre, the law of force at different distances being
that the force varies as the distance ;

find the orbits described when
the circumstances are changed at any point as follows :

i. The force is increased in the ratio of 1 : n.

ii. The velocity is increased in the ratio 1 : n.

iii. The force becomes repulsive, remaining of the same mag-
nitude.

iv. The direction is changed by an impulse in the direction of

the centre, measured by the velocity equal to that in the circle.

3. If a body be projected from an apse, with a velocity double of

that in a circle at the same distance, find the position and magnitude
of the axes of its orbit.

4. A particle is revolving in a circle acted on by a force which
varies as the distance ;

the centre of force is suddenly transferred

to the opposite extremity of the diameter through the particle
and becomes repulsive ;

shew that the eccentricity of the hyperbolic
orbit = V5.

5. A body is moving under the action of a force tending to a
fixed centre, and varying as the distance. The force suddenly
ceases, and after an interval commences to act again. Prove that

the radii of curvature of the orbit at the points where the body
ceases and recommences to be attracted are equal.

6. A body moves in an ellipse about a centre of force in the

centre, and its velocity is observed when it arrives at its greatest
distance, and again after a lapse of one-third of its periodic time.
If these velocities be in the ratio of 2 : 3, prove that the eccentricity
of the ellipse will be V*.

7. The particles of which a rectangular parallelepiped is com-

posed attract with a force which varies as the distance, and a body is

projected so as to describe a curve on one of the faces supposed
smooth ; find the periodic time.

8. An elastic ball, moving in an ellipse about the centre, on
arriving at the extremity of the minor axis strikes directly another
ball at rest ; find the orbits described by both bodies.

9. A body is projected in a direction making an angle cos"1 --

with the distance from a point to which a force tends, varying as
the distance from it, and the velocity = V x velocity in the circle at
the same distance

; prove that one axis is double of the other and
that the inclination of the major axis to the distance is J cos

1

"!-
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10. From points in a line CA between C and A particles are

projected at right angles to CA with velocities proportional to their

distances from A, C being a centre to which the force tends, and
the force varying as the distance

;
find the ellipse of greatest area

which is described.

11. Two particles are projected in parallel directions from two

points in a straight line passing through a centre of force, the
acceleration towards which varies as the distance, with velocities

proportional to their distances from that centre. Prove that all

tangents to the path of the inner cut off, from that of the outer,
arcs described in equal times.

12. An hyperbola and its conjugate are described by particles
round a force in the centre. They are at an apse at the same
instant ;

shew that they will always be at the extremities of con-

jugate diameters. Also if v, v' be their velocities, oz
-v'* = ft (a

2 - 5
2

).

13. An ellipse and an hyperbola have the same centre and foci.

They are described by particles, under the action of forces in the

centre of equal intensity. If a, a
1

be their semi-transverse axes,

the square of the velocity of each body at a point where the curves

cut will be n a~ - a'
2

).

14. If any number of particles be moving in an ellipse about a

force in the centre, and the force suddenly cease to act, shew that,

after the lapse of ^ of the period of a complete revolution,

all the particles will be in a similar, concentric, and similarly

situated ellipse.

15. A particle is describing an ellipse under the action of a

force tending to the centre. Prove that its angular velocity about

a focus is inversely proportional to its distance from that focus.

xxvin.

1. CX, C'Fare straight lines inclined at any angle, and a force

tends to C, and varies as the distance from C. If from various

points in CT different particles are projected parallel to CX at the

same moment, and with the same velocity, they will all arrive at

CX at the same time and place ;
and they will also do so, it the

force cease to act for any interval of time.

2 A number of particles move in hyperbolas, under the action

of the same repulsive force from their common centre. Shew that,

if the transverse axes coincide, and the particles start from the

vertex at the same instant, they will always he in a straight line


