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PREFACE.

Ix publishing the following work my principal
intention is to explain difficulties which may be
encountered by the student on first reading the
DPrincipie, and to illustrate the advantages of a
careful study of the methods employed by Newton,
by shewing the extent to which they may be
applied in the solution of problems. I have also
endeavoured to give assistance to the student who
is engaged in the study of the higher Lranches of
Mathematics, by representing in a geometrical form
several of the processes employed in the Differential
and Integral Calculus, and in the analytical investi-
gations of Dynamics.

In my version of the first section and the begin- .
ning of the second I have adhered as closely as
I could to the original form; and, in the_ cases
in which sections have been interpolated, or the
form of demonstration changed, I have indicated such
changes and interpolations by brackets.
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It is generally advisable not to deviate from
Newton’s words in the demonstrations of the
Lemmas; but in many cases, I suppose purposely,
he expressed himself very concisely, as in Lemmas
1v. and X., and he was contented with simply giving
the enunciation of Lemma v.; therefore in these cases
interpolations have been made which, I believe, are
in accordance with Newton’s plan of demonstration.

Throughout the Problems and Theorems which
depend upon the sixth proposition, the variations are
replaced by equations. By this method of treating
the subject I conceive that clearer ideas of the
meaning of each step are obtained by the student.

In this edition I have introduced some notes on
the geometrical solution of some problems relating
to maxima and minima, and I have placed the
investigations of the properties of the curves, which,
after the conic sections, are the best examples for
illustrating geometrical methods, in a more pro-
minent position, at the end of the first section.

I have derived great assistance in the preparation
of my notes from the study of Whewell’s Metiod
of Limits, and from several early editions of Newton,
especially that of Carr.

With respect to the three Laws of Motion, I may
remark that I have not commenced the work by
enunciating and making observations upon them,
partly because I should only have been repeating
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what has been said so well by Thompson, Tait,
and Maxwell, whose works are in everybody’s hands,
and partly because in the course of reading recom-
mended to students, for whose benefit my work
was especially intended, those laws will have been
already discussed in the elementary treatises on
Dynamics.

The Problems are principally selected from the
papers set in the Mathematical Tripos, and in the
course of the College Examinations, and I have
generally divided them into two portions, the
first of which contains those problems which are
capable of solution by more direct applications of
the propositions which they illustrate, and are
within the powers of a larger number of students
In both portions I have been careful to introduce
very few problems which are not capable of solution
by methods given in the work.

At the end of the work I have given hints for
the solution, and in many cases complete solutions,
of the problems; and in doing so I am acting in
direct opposition to my previously expressed opinion,
but additional experience of fifteen years has shewn
me that it a satisfaction to a student who has not
been able to solve a problem to see a solution of
it; and, even when he has been successful, to
compare his solution with that of an older hand.
The principal objection to the publication of solutions
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is that they are frequently referred to prematurely;
but a wise student will treat them only as a dernier
ressort. '

In solving the Problems I have noticed two errors
which should be corrected as follows:

XIIL 12. ....half the chord....is the harmonic mean, &c.

XXVIIL. 6. ....velocity in a circle whose radius is the length
of the unstretched string, &e.

Two sets of Problems have been numbered
XXVIIL, the second is written XXVII. &5 in the
Solutions.

1 take this opportunity to express my thanks
to Mr. Stearn, of King’s College, for his kindness
in correcting the errors of the press and for many
valuable suggestions.

PERCIVAL FROST.

CAMBRIDGR,
February, 1878,
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NEWTON'S FIRST BOOK

CONCERNING THE MOTION OF BODIES.

SECTION L
ON THE METHOD OF PRIME AND ULTIMATE RATIOS-

LEMMA L

Quantities, and the ratio of quantilies, whick, in any finite
time, tend constantly fo equality, and which, before the
end of that time, approach nearer to each other than by
any assigned difference, become ultimately equal.

Ifnot, let them become ultimately unequal, and let their
ultimate difference be D. Hence [since, throughout
the time, they tend constantly to equality], they
cannot approach nearer to each other than by the
difference D, contrary to the hypothesis Ehat they
approach nearer than by any assigned difference.
Therefore, they do not become ultimately unequal,
that is, they become ultimately equal].

Variable Quantities.

1. The Quantities, of which Newton treats in this Lemma,
are variable magnitudes, described by a supposed law of con-
struction, the variation of these magnitudes being due to the
arbitrary progressive change of some element of the construc<
tion employed in the statement of the law.

When, in the progressive change of this element, it receives
the last value which is assigned to it in any proposition, the
hypothesis is said to arrive at its ultimate form, or to be
indefinitely extended.

B



2 NEWTON.

Thus, let ABP be a semicircle, 4CB its diameter, BP any
arc, PM the ordinate perpendicular to 4CB, then, as the arc
BP gradually diminishes, A3 is a variable magnitude, con-
tinually increasing, and BP is the element of the construction,

)\

C M NB

to the arbitrary change of which the variation of A is due;
and if BP may be made as small as we please, 41/ may be
made to approach to 4B nearer than by any difference that can
be named, and the hypothesis approaches its ultimate form.
Again, if ABC be a triangle, and AB be divided into a
pumber of equal portions, Aa, ab, be, ..., and a series of parallelo-
grams be inscribed upon those bases, whose sides aa, 58, ¢y, ...
are parallel to BC and terminated in 4 C, the sum of the areas
of the parallelograms will be a variable magnitude, defined by
that construction, and changing in a progressive manuer, if the

[44

B d ¢ b a A4

number of parts into which AB is divided be continually
increased. In this case the number of parts is the variable
element of the construction. In the ultimate form of the
hypothesis, it will be shewn, Lemma II., that the sum of the
parallelograms is the area.of the triangle when the number
is increased indefinitely.

2. The variation of a magnitude is continuous, when in the
passage from any one value to any other, throughout its change,
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it receives every intermediate value, without becoming infinite.
When this is not the case, the variation is déscontinuous.

According to the hypothesis in the last illustration, the
number of parts into which AB is divided being exact, the
magnitude varies discontinuously, 7.e. the sum of the areas does
not pass through all the intermediate values between any two
states of the progress.

It the hypothesis be changed, equal portions being set off
commencing from B, and 4a remaining over and above after
ba, the last of the portions for which there is room, these equal
portions could be made to diminish gradually, and the sum of
the areas would in that case vary continuously.

Tendency to Egquality.

3. Quantities are ultimately equal, when they are ultimately
in a ratio of equality.

4. Quantities, which always remain finite, throughout the
change of the hypothesis by which they are described, tend
continually to equality, when their difference continually dimi-
nishes.

Thus, in fig. 1, page 2, let BQ be an arc, always in a given
ratio to BP, and let QN be the corresponding ordinate; a
BP continually diminishes, AM and AN remain finite, and,
since their difference continually diminishes, they tend con-
tinually to equality.

5. Quantities, which may become indefinitely small, or in-
definitely great, as the hypothesis is indefinitely extended, tend
continually to equality, when the ratio of their difference to
either of them continually diminishes,

To illustrate this test of a tendency to equality, let us
suppose, in fig. 1, page 2, that the arc BP is double of the arc
BQ; then, since (chd BP)'= AB.BM, and (chd BQ)* = 4B.BN,

». Bl : BN:: (chd BP): (chd BQ}®
i (arc BP)* : (arcBQ)' :: 4 : 1 ultimately,
<o MN: BN::3:1 ultimately;
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hence, we observe that BM and BN bave a difference, which
tends continually to become 3BXN, the ratio of which to either
is finite, so that, although both tend to become indefinitely
small as the hypothesis tends to its ultimate form, BM and
BN do not satisfy the econdition requisite for a tendency to
equality.

Observations on the Lemma.

6. We will now proceed to examine the force of the other
important terms employed in the statement of the first Lemma.

The expression “in any finite time ” (tempore quovis finito),
signifies what has been called the indefinite extension of the
hypothesis from some definite state to its ultimate form.*

The law of the variation of the magnitudes under considera-
tion is obtained by the examination of their construction while
the element, to which the change is due, is at a finite distance
from its final value, and the finite time is the supposed time
occupied in the passage from this definite to the ultimate state.

In the first illustration, Art. 1, it denotes the progressive
diminution of BP, from being a finite magnitude to the point
of evanescence.

In the second, the progress from any finite number of equal
portions to an indefinite number.

7. The expression “ which constantly tend ™ (quee constanter
tendunt) signifies that, from the commencement of the finite
time to the limit of the extension of the hypothesis, the dif-
ferences continually diminish.

To illustrate this mode of expression, let BC be a quadrant

B 7

* Whewell's Doctrine of Limits.
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of a circle whose bounding radii are 0B, OC, and let BDA
be a straight line cutting the arc BDC and the radius OC in
D and 4, and let OP be a radius revolving from OC to OB,
and cutting B4 in @, E the point of bisection of the arc BD.

OP and 0Q twice tend o equality, viz. from OC to OD
and from OFE to OB, and once from equality from OD to
OE; it is only from OE to OB that OP" and 0@" tend to
equality constantly during the progress, and it is from some
position between OF and OB that the finite time must be con-
sidered to commence.

8. “Before the end of that time” (ante finem temporis)
implies that, however small the given difference may be, a less
difference than that difference is arrived at, while the distance
from the ultimate state is still finite, however near to the final
state it may be necessary to proceed.

Thus, if, in the last figure, the angle BOD be 60°, the
radius one inch, and the given difference 153845 or 15384y of
an inch, the difference ¢ will be less than the given difference,
if the revolving radius be 2 or 1', respectively, from the ultimate
position; and so on, however small we choose the difference.

9. In the proof of the Lemma, if the ultimate difference be
D, the quantities cannot approach nearer than by that given
difference; otherwise, they would, in one part of the pro-
gression, have been tending from equality in order to arrive
ultimately at that difference, contrary to the statement of the
proposition in the words “ ad @qualitatem constanter tendunt.”

The nature of the proof, which is more difficult than may at
first sight appear, can be illustrated as follows, by examining
the effect of the omission of some of the points in the statement
of the Lemma.

Draw Oy, Oz at right angles, 4B any straight line meeting
Oy in A, CED a curve touching 4B in E and meeting Oy in
C, CD' another touching a straight line parallel to 4B in C,
MQPP' a common ordinate.

As OM diminishes until it becomes indefinitely small,
MQ@PP’ moves up to Oy.
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In both curves, the ordinates MQ and MP or MP' have an
ultimate difference C'4, equal to D suppose.

Onmit the word “ constanter;”” and the curve CED is admissi-
ble in a representation of the approach of the quantities; because
the ordinates approach, before the end of the time, nearer than
by any assignable difference, as at E, although the condition of
continual {endency to equality is not satisfied.

Omit the words “ ante finem temporis,” and CD' will be suf-
ficient; for, in this case, they tend continually to equality, but
before the end of the time they do not approach nearer than by
any assignable difference, and they are ultimately unequal.

In the case of the dotted line ARF touching AB at A4, all
the conditions are satisfied. QM and RM tend continually to
equality, and their difference may be made less than any given
difference before OM vanishes.

Limit of a Variable Quantity.

10. When a variable quantity tends continually to equality
with a certain fixed quantity, and approaches nearer to this
quantity than by any assignable difference, as the hypothesis
determining its variation is approaching its ultimate form, this
fixed quantity is called the Limit of the variable quantity.

The tests are: that there should be a tendency to equality;
that this tendency should be continued from some finite
condition; and that the approach should, during the progres-
sion to the ultimate form, be nearer than by any assignable
difference.

Thus, as is mentioned in the Scholium at the end of the
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section, the variable quantity does not become equal to, or surpass
the limit, before the arrival at the ultimate form,

Limiting Ratio of Variable Quantities.

11. If two quantities continually diminish or increase, and
the ratio of these quantities tends continually to equality with
a certain fixed ratio, and may be made to differ from that ratio
by less than any assignable difference, as the hypothesis deter-
mining their variation is indefinitely extended, this fixed ratio
is called the limiting ratio of the varying quantities.

Ultimate Ratio of Vanishing Quantities.

12, When the ultimate form of the hypothesis brings the
quantities to a state of evanescence, they are called vanishing
quantities ; and the limiting ratio, or the limit of the ratio, is
the ultimate ratio of the vanishing quantities.

The expression * vanishing quantities” does not imply that
the quantities are indefinitely small while under examination, but
only that they will e so in the ultimate form; which observa-
tion implies that the ratio of the vanishing quantities is not an
equivalent expression with the wltimate ratio of the vanishing
gquantities, the former being taken “ ante finem temporis.”

¢ Ultima rationes ille quibuscum quantitates evanescunt, re-
vera non sunt rationes quantitatum ultimarum.” See Scholium,
at the end of the section.

Thus, let @C, FC be two straight lines intersecting 4B in
G, F, and draw ADE, MPQ, perpendicular to AB.

Let a, B be the areas AMPD, AMQE, then it is easily found

(4
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that a: B8 :: AD+ MP: AE+ MQ; now, let MPQ be sup-
posed to move up to ADE, then, in the ultimate form of the
hypothesis, « and 8 vanish, and are called vanishing quantities
from this circumstance.

Also, the wltimate ratio of the vanishing quantities is
AD: AE,

In this case, since MP: M(Q is not equal to 4D : AE, the
ratio of the vanishing quantities, viz. AD+ MP: AE+ MQ,
is difterent from AD : AE, the ultimate ratio.

Orders of Vanishing Quantities.

13. When we have to consider various kinds of vanishing
quantities, it is necessary to consider their relative magnitudes,
and for this purpose if one of them be selected as a standard
of small quantities, this quantity, and all the vanishing quan-
tities of which the ultimate ratio to it is finite, are called
vanishing quantities of the first order.

If a, B be any two vanishing quantities, and 8 : a vanish
in the limit, B is said to be a vanishing quantity of a higher
order than a.

If a be of the first order, and B :a’ be ultimately finite,
B is called a vanishing quantity of the second order, and so on
for higher orders.

Trigonometrical functions give familiar illustrations of these
orders; let 6 be taken as the standard of vanishing quantities;
sinf tan26, sin}6 are all of the first order, since their ratios
to 6 are ultimately 1, 2 and }; versf, which is equal to
2sin’}6 is of the second order, tanf- 6 and f- sind are of
the third order.

Quantities which become infinite in the ultimate state are
also classified in a similar manner according to orders.

Prime Ratios.

14. If the order of the change in the form of the hypo-
thesis be reversed, or the varying quantities be tending from
equality, having started into existence from the commencement
of the time, the quantities are called nascent guantities ; and the
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ratio with which they commence existence i3 called the prime
ratio of the nascent quantities.

Application quemma 1 to the investigation of certain Limits.

(1) Limat qf

mately vanishes.

e gradually diminishes, and ulti-

- . 1+ 1 is 3x

Since the difference between e and = 5 2(2—), this
difference continually diminishes as = gradually diminishes, and,
by diminishing 2 sufficiently, may be made less than any

assignable difference.

Hence, ;i—z will tend continually to equality with }, if we

commence from some value of z less than 2, and the difference
mway be made less than any assignable quantity ante finem tem-
poris, therefore § satisfies all the conditions of being the required
limit.

(2) Limt qf

=& when x increases indcfinitely.

Since the difference »:{ ;~ - % = 3(0—13 Bk which continu-
ally diminishes as # increases, and may be made less than any
assignable difference ; therefore, as before, § satisfies all the con-

o . et 2+
ditions of being a limit of 5i3m

(8) Tangents are drawn to a circular arc, at dts middle point,
and at ts extremities. Shew that, when the arc diminishes, the
area of the triangle formed by the chord of the arc, and the twe
tangents at the extremities, ts ultimately four times that of the
triangle formed by the three tangents.

Let C be the middle point of the are, AB the chord, F4,
FB, DCE the three tangents, and O the centre of the circle,

AFDE: p FAB: FC* : FG*.
Now FC(FC+2C0)=FA4*=F0.FG;
FC:FG::FO: FC+2C0;
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while the difference is finite. See the direction m the Scholium
referred to above: * Cave intelligas quantitates magnitudine
determinatas, sed cogita semper diminuendas sine limite.”

14 P
(5) Limit of “AXTETH N | homn is andefiniely ine

creased, p being any posztwe number.
Since this sum i3 the arithmetic mean of the = fractions

I\? 2\? n\?
G GG
therefore, for all positive values of p, integral or fractional, it

2 1\° g o q 0
lies between (;) and (1;:) or 1, therefore its ultimate value lies

between 0 and 1.

This being an important limit, we will investigate it first for
the particular case in which p is integral and positive, and then
generally when p is any positive quantity.

Let S,=1°42"+...42";
then 8, ,=17+2"+...+ 7"+ (n+ 1);
n+1_S _(n+1)'

If therefore we assume that

8, =An"™" + Br® +...+ Ln+ M,
then 8, =4 ®+1"+Bn+1P+..+ L (n+1)+M;
. (r+1f=A{n+1)" -+ B{(n + 1F — 27} +...
=A{(p+1)w°+}(p+1)pn"" +...}
+B{pn™ + ip(p—-1) 2" +.0) 4o,
we obtain, by equating the coefficients, p+1 equations for
determining the values of the p + 1 constants 4, B, ... L, which

reduce the equation to an identity.
The first of these equations is 1=(p+1) 4;

S"_ﬁi .2+ Br® +...
S, 1 B C M

and 1‘2’" p+l+‘;l'+7'?'+-u+n';ﬁ,
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which vanishes in the limit, hence 1= (p + 1) [ ultimately;

therefore ——— is the limit required.
p+1

— is evidently also the limit of the sum

1o 4+ 2744 (n—1)»
np+1

Cog. L
P

, since — vanishes in the limit.
n

(6) If a straight line of constant length slide with its ex-
tremities in two straight lines, which intersect at a given angle A4,
and BC, be be two positions of the line intersecting in P, which
become. ultimately coincident, find the limits of the ratios Cc: Bb
and PC : PB.

By hypothesis, BC*=5c",
but BC*=BA*+(A4'—2BA.04 cos A,
and b =50A"+c4*~2bA.c4 cosd;

s CA*—cA’=bA'~BA*+2{BA(cA+Cc)~ (BA+Bb)ed} cos 4;
o Ce(CA+cA)=Bb(BA+bA)+2(BA.Cc—cA.Bb) cosA;
o Oc: Bbi: BA+b4—2cA cosd : CA+cA—-2BA cos4

1t BA- CA cosd : CA — BA cos 4 ultimately.

A N B b

Draw CN, BM perpendicular to 4B, AC, therefore the limit
of the ratio Cc: Bbis BN : COM.
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Again, let B, drawn parallel to 4 C, meet bc in @,

then PC: PB:: Cc : BQ;
also Cc: Bb :: BN : CM ultimately,

and Bb:BQ:: 4b : Ac;

». Cc: BQ:: BN.AB: CM.AC ultimately.

Diaw AR perpendicular to BC, then BN.4B=BR.BC
and CM.AC=CR.BC;
. PC:PB:: BR:CR;
». PC=BR and PB=CR.

I

1. Age the limits of the ratios y* : z equal in any of the three
equations
1) y*=az®, (2) y*=az=b, (3) y'=az-2
when z is indefinitely diminished ?

2. Find the limit of -+,
1+ 3z

(1) when # is indefinitely diminished,
(2) when z is indefinitely increased.

3. Find the ultimate ratio of the vanishing quantities az + 5%,
bz + az®, when z is made indefinitely small.

4. Prove that a - bz and b - az tend to equality as z diminishes
to zero, and yet have not their limits equal.

5. BAC, bAc are two triangles, in which 4B, 45 and AC, Ae¢
are coincident in direction, and BC, b¢ intersect in P; prove that,
if the areas of the triangles be equal, as B, C' and 5, ¢ approach,
each to each, P will be ultimately in.the point of bisection of BC.

6. APQ, ABC are two straight lines which are intersected by
two fixed lines BP, CQ, prove that, as 4PQ moves up to ABC,
PC and QB intersect in a point whose ultimate position divides BC'
in the ratio of 4B : AC.

7. Tangents are drawn to a circular arc at its middle point,
and at its extremities, and the three chords are drawn. Prove
that the triangle contained by the three tangents is ultimately
one-half of that contained by the three chords, when the arc is
indefinitely diminished.
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8. AP is a chord of a given circle, 4Q a chord near 4P, find
the position of the point of ultimate intersection of circles described
on AP, AQ as diameters, when 4Q approaches to and ultimately
coincides with 4P,

9. A circle passes through a fixed point, and cuts off from a
fixed line a chord PQ of constant length, prove that the chord
of ultimate intersection of two consecutive circles bisects P@Q.

10. PN is an ordinate, and P7 a tangent to an ellipse, cutting
the axis-major in &V and 7 respectively; 4 being the vertex, shew
that as P approaches 4, N7 is ultimately bisected in 4.

11. APQ is a parabola, PM, QN ordinates to the axis AMN,
with centres M and IV and radii /M, QN two circles are drawn;
prove that, when V approaches indefinitely near to A, if the two
circles intersect, the distance of their point of intersection from PM
is ultimately equal to the semi-latus rectum. What is the conditio
that the circles may intersect ? -

IL

1. 'What is the test of tendency to equality? If two quantities
diminish so that their difference diminishes, prove that they will
tend to or from equality according as the ratio of their rates of
decrease is greater or less than the ratio of the greater to the less.

2. ABC is an isosceles triangle, base BC'; P, Q are points on
the straight lines C4, CB such that 4P is always twice BQ;
prove that, if PQ and 42 intersect in R, and R’ be the ultimate
position of R, when 4P is indefinitely diminished,

RB:AC:: AC:2BC~ AC.

8. PMP’ is a double ordinate of an ellipse, whose centre is (';
R is the poict of ultimate intersection of the circles described on
PP’ and the next consecutive double ordinate respectively, and R7'
is the ordinate of R. Shew that 73 : CM:: BC*: AC*. What
is the condition that these circles may interseet ?

4. Two concentric and coaxial ellipses have the sum of the
squares of their axes equal; if the curves approach to coincidence
with each other, shew that the ratio of the distances of any one
of their points of intersection from the axes will be ultimately
equal to the inverse ratio of the squares of the axes.

5. If a triangle be inscribed in a given circle, prove that the
algebraic sum of the small variations of its sides, each divided by
the cosine of the angle opposite to it, will be equal to zero.






LEMMA 1I. 17

LEMMA II

1If, in any figure AacE, bounded by the straight lines Aa; AE
an the curve ack, any number of parallelograms Ab, Be,
0d, &c. be inscribed upon equal bases AB, BC, CD, &e.,
and having sides Bb, Ce, Dd, &e. parallel to the side Aa
of the figure ; and the parallelograms a KX bl, b Lem, c Mdn,
&e. be completed ; then, if the breadth of these parallelo-
grams be diminished, and the number increased indefi-
nilely, the ultimate ratios which the inseribed figure
AKbLeMdD, the cireumscribed figure AalbmendoE, and
the curvilinear figure AabedE have to one another, will
be ratios of equality.

A B c n F

For the difference of the inscribed and circumscribed
figures is the sum of the parallelograms K, Lm, Mn,
Do, that is (since the bases of all are equal) a paral-
lelogram whose base is K, that of one of them, and
altitude the sum of their altitudes, that is, the paral-
lelogram ABla. But this parallelogram, since its
breadth is diminished indefinitely [as the number of
parallelograms is increased indefinitely] becomes less
than any assignable parallelogram; therefore, by
Lemma I., the inscribed and circumscribed figures,
and, a fortiors, the curvilinear figure, which is inter-

mediate, become ultimately equal.
D
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LEMMA IIIL
The same ultimate ratios are also ratios of equality, when
the breadths of the parallelograms AB, BC, CL, ... are
unequal, and all are diminished indefinilely.

a U -

A B F € /) =

Tor, let AF be equal to the greatest breadth, and the
parallelogram FAaf be completed. This parallelo-
gram will be greater than the difference between the
1nscribed and circumscribed figures, But, when its
breadth is diminished indefinitely, it will become
less than any assignable parallelogram. [Therefore,
a fortiors, the difference between the inscribed and
circumseribed figures will become less than any
assignable areas. Hence, by Lemma I., the ultimate
ratios of the inscribed and circumseribed and the
curvilinear figure, which is intermediate, will be
ratios of equality.]

Cor. 1. Hence the ultimate sum of the vanishing paral-
lelograms coincides [as to area] with the curvilinear
figure.

Cor. 2. And, a fortiori, the rectilinear figure which is
bounded by the chords of the vanishing ares ad, ¢,
ed, &c., ultimately coincides with the curvilinear
figure.

Cor. 3. As also the rectilinear circumscribed figure,
which is bounded by the tangents at the extremities
of the same arcs.

Cor. 4. And these ultimate figures, with respect to
their perimeters acE, are not rectilinear figures, but
curvilinear limits of rectilinear figures.
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Observations on the Lemmas I1. and II1.

15. The statements of the propositions concerning limits of
quantities and their ratios contain:

1. The hypothesis by which the quantities are defined.

IL. The manner in which the hypothesis approaches its
ultimate form.

III. The ultimate property when the hypothesis is thus
indefinitely extended.

The strength of the proofs lies in the examination of the
quantities while the hypothesis is in a finite state, before arrival
at the ultimate form, and the deduction of properties by which
the relations of the quantities can be pursued accurately to the
ultimate state. N

If in this manner we analyse the statement of Lemmas IL.
and 111, the hypothetical constructions are given in the manner
of describing the parallelograms; the extension of the hypo-
thesis towards its ultimate form is the continual increase of the
number of parallelograms ad infinitum ; the ultimate property is
the equality of the ratio of the sums of the parallelograms and
the curvilinear area.

In the proof of the Lemmas, the continual decrease of the
parallelograms Al or Af shews that the conditions of ultimate
equality of two quantities are all satisfied, viz., that the sums
of the two series of parallelograms, since they are finite, tend
continually to equality, and that they approach nearer to each
other than by any assignable difference *ante finem temporis,”
7.e., while the number of the parallelograms still remains finite.

Volumes of Revolution.

16. In a manner exactly similar to Lemma IL it may be
shewn that, if da be perpendicular to AE, and the whole
figure revolve round 4E as an axis, the ultimate ratios, which
the sums of the volumes of the cylinders, generated respectively
by the rectangles 45, B, ... and aB, bC, ... and the volume
of revolution generated by the curvilinear area AFq will have
to each other, will be ratios of equality.
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The figure represents the cylinders generated by the in-
scribed rectangles.

—

Thus the difference of the cylinders generated by 4% and
aB is the annulus generated by the rectangle @b, and the
difference of the two series of cylinders, which have all equal
heights 4B, BC, ... is the sum of such annuli, and is easily
seen to be the cylinder generated by B, which, since the height
continually diminishes, may be made lcss than any assignable
volume, hence the conditions that the two series may have the
same limit are satisfied, and hence also the volume of revolution,
which is greater than one sum and less than the other, is
ultimately in a ratio of equality to either sum.

The same argument applics when the revolution is only
through a certain angle instead of being complete, in which
case the cylinders are replaced by sectors of cylindrical volumes.

Sectorial Areas.
17. The Lemmas may be extended to sectorial areas.
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Thus, let S4BCF be a sectorial area, and let the angle 4 SF
be divided into equal portions 48B, BSC, ... and the circular
arcs A¥, aBc, 5Cd, ... be drawn with centre S; then, since
the difference of the two series of circular sectors is the sum
of the areas ab, bc), ..., it is equal to the difference of the
greatest and least of the sectors, viz. 4GHY'; therefore the
two areas SAV'Bc'... and SaBbC... tend continually to equality
as the number of angles is increased and their magnitudes
diminished, and the ratios which these areas have to each other
and to the area SABF are ultimately ratios of equality.

Similarly, as in Lemma IIL, if 488, BSC, ... be unequal.

Surfaces of Revolution.

18. The following proposition is the extension of the prin-
ciples of the Lemmas to the determination of a method for
finding the area of a surface of a solid of revolution.

Let CD be a plane curve which generates a surface of revo-
lution by its revolution round 4B, a line in its plane.

CD is divided into portions, of which PQ is one, PM, QN
are perpendicular to 4B; Pp, @7 are drawn parallel to 4B, and
each equal to P@ in length; pm, gn are perpendicular to 4B.
The surface generated by CD shall be the limit of the sum of
the cylindrical surfaces generated by such portions as Pp or Qg.

For, the cylindrical surfaces generated by Pp and Qg are
one less and the other greater than the surface generated by PQ,

i

q [4]

Q

)

A mw B
since every portion of (g is at a greater, and every. portion of
Pp at a less, distance from the axis than the corresponding
portions of PQ.
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But these surfaces are respectively 27w PM. Pp and 27w QN. Qg,
and their difference is 27 (QN— PM) PQ, and the ratio of this
difference to the surfaces themselves is QN — PM : PM or QN,
which ratio is ultimately less than any given ratio.

Hence the sums of the surfaces generated by the lines corre-
sponding to Pp and (g have the ratio of their difference to either
sum less than the greatest value of the ratio QN— PM: PM,
which may be made less than any finite ratio. Therefore the
sums of the cylindrical surfaces and the curved surface, which
is intermediate in magnitude to these sums, are ultimately in
a ratio of equality.

Centre of Grawity.

19. It is easily seen that the same methods are applicable to
the determination of the position of the centre of gravity of any
body, since it is known that, if a body be divided into any
number of portions, the distance of the centre of gravity of the
body from any plane is equal to the sum of the moments of all
the portions divided by the sum of all the portions.

General Extension.

20. The most general extension may be stated as follows:
If any magnpitude 4 be divided into a series of magnitudes
AA,... A, each of which, when their number is increased indefi-
nitely, becomes indefinitely small, and two series of quantities
aa,...a, and bb,...5, can be found such that

a>A4>b,
a,>A4,>b,
a>A4 >b,
and also such that each of the ratios a,—5,:a, a,—-3,: a

2 2 2) *°°
becomes less than any finite ratio when the number is increased ;

then @, +a,+...4+ @, b,+b,+...+5, and 4 will be ultimately
in a ratio of equality. For, let 7: 1 be equal to the greatest
of the ratios a, — b, : a,, &c.;

. a,=b+a,-b+...:a,+a,+...
is 4 ratio less than 7: 1, and may therefore be made less than
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any assignable ratio by increasing the number. Therefore the
two series o,+a,+... and b, +5,+... tend continually to equality,
and the difference may be made, before the end of the time, less
than any assignable magnitude; therefore the three magnitudes
are ultimately in a ratio of equality.

21. Cor. 1. “Omni ex parte” has not been adopted from
the text of Newton, because it requires limitation, for the
perimeters do not ultimately coincide with the perimeter of the
curvilinear area.

In the figure for Lemma IL. the perimeter of the inscribed
series of parallelograms is

AR+ Kb+3L+ Lo+...+ DA=24K+ 24D,

and the limit of this perimeter is 24a +24E.

The perimeter of the other series of parallelograms, being
2A4a+2AE is constant throughout the change, and has properly
no limit,

Cor. 2. The perimeter of the figure bounded by the chords
ab, be, ... ultimately coincides with that of the curvilinear figure.
This coincidence will be discussed under Lemma V.

Cor. 3. The same is true for the figure formed by the
tangents.

Cor. 4. Instead of *propterea,” as in Newton, it is advisable
to state, as in Whewell's Doctrine of Limits, that, if a finite
portion of a curve be taken, and many successive points in the
curve be joined so as to form a polygon, the sides of which,
taken in order, are chords of portions of the curves, when the
number of those points is increased indefinitely, the curve will
be the limit of the polygon.

Application to the Determination of certain Areas, Volumes, &e.
(1) Area of a parabola bounded by a diameter and an ordinate.

Let AB, BC be the bounding abscissa and ordinate. Com-
plete the parallelogram ABCD.

Let AD be divided into » equal portions, of which suppose
AM to contain r, and MN to be the (r+1)®; draw MP, NQ
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parallel to 4B, meeting the curve in P, Q, and Pna parallel to
MN; the curvilinear area ACD is the limit of the sum of the

series of parallelograms constructed, as PN, on the portions
corresponding to MN.
But parallelogram PN : parallelogram 4BCD

:: PM.MN :CD.AD,
and, by the properties of the parabola,
PM:CD:: AM?: AD* :: #* : 0%,
also MN:AD::1: n;
oo PM.MN:CD.AD:: +: o’

2
therefore, parallelogram PN = r—s x parallelogram ABCD;
) P g =3 e 24 H

hence, the sum of the series of parallelograms

) 2 — 1)\
= 1+—2—+_;z S‘LL'L__I_)_ x parallelogram ABCD,

and, when the number of parallelograms is increased indefinitely,
P42+ (=1} 1
E— =35
therefore, proceeding to the ultimate form of the hypothesis, the
curvilinear area ACD and the parabolic area ABC will be,
respectively, one-third and two-thirds of the parallelogram
ABCD.

Note 1. If we had inscribed the series of parallelograms in
ABC, 4B being divided into n portions, we should have arrived
at the result

Hiott, .+ (-1
"
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for the ratio of the series of parallelograms to the parallelogram
ABCD, which might thus have been directly shewn to be
ultimately 2; but the former method is preferable, since the
proof of the value of the limit depends upon simpler principles.

Note 2. If BC had been divided into » equal portions, the
ratio of the parallelogram corresponding to PN to the parallelo-
gram ABCD would have been ' —7* : n%, and that of area ABC
to parallelogram ABCD the limit of

=140t =2t 0 — (n—1)

nS

(2) Volume of a paraboloid.
Let AKH be the area of a parabola, cut off by the axis AH

P 1 2
—]—3—=§.

L x
7 Q
”m 2 ey

A M N i

and an ordinate HK, which by its revolution round the axis
generates a paraboloid.
Let AH be divided into n equal portions, and on MN the
(r+ 1), as base, let the rectangle PRNM be inscribed.
Cylinder generated by PN : cylinder by AHKL
:: PM*.MN: HK* AH.
But PM*: HK*:: AM: AH::r:n,
and MN: AH::1:n;
. PM*MN: HE* AH::7r:n"

Hence cylinder generated by PN= ni‘ x cylinder by AHKL;

therefore the sum of the cylinders inseribed is
1+2+4..+(n—1)
ﬂ’
and the paraboloid is the limit of the series of inscribed cylinders;
hence the volume of the paraboloid is half that of the cylinder
on the same base and of the same altitude.

x circumscribed cylinder,

E
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(8) Volume of a spherical segment.
Let AHK generate, by its revolution round the diameter 4B,
the spherical segment whose height is A,

D
a
T

Amy T ¢ I

Divide AH, as before, and make the same construction;

2
then PM*=AM.(AB— AM)= " AH.AB- :'{ AR,

Volume of cylinder generated by PN == PM*. MN
w2 A (1, i AH) ;
n n n
whence, as before, the limit of the sum
=7 AH'(3AB-3}4H),
which is the volume proposed.

Cor. If AH=}A4B=AC, the segment is a hemisphere whose
volume is 7AC* (AC—3AC)= 3w AC?, which is two-thirds of
the cylinder on the same base and of the same altitude.

(4) Area of the surface of a right cone.

As an illustration of the method of finding surfaces given
above, suppose AHK to be a right-angled triangle, which
revolves round AX, a side containing the right angle, then
the hypothenuse AK generates a conical surface.

Let MN be the (r+1)™ portion of AZ, after division into

x
)
(IP
P
i N "

n equal portions; MP, NQ ordinates parallel to HK; Pp, Qq
each equal to PQ and parallel to AH.
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The areas generated by Pp and g respectively are
27 PM.Pp and 27 QN. (g,
and PM: HK :: AM: AH::r:n,
QN: HEK:: AN: AH::r+1:n,
PQ:AK:: MN: AH::1:n;

therefore the areas are 7%.21rHK.AK and %L?erK.AK

respectively ; and the conical surface is intermediate in magni-
tude between

o IIK. AK x i“’_‘*:n‘_;"ﬂ),

and 27HEK.AK x ﬂ:,—-"—n

?
each of which has for its limit wHK.AK, which is therefore
the area of the conical surface.

Note. The reader may notice the following method of
obtaining the conical surface by development, although it is
not related to the method of limits.

If a circular sector KAK', traced on paper, be cut out, the
bounding radii AK, AK' can be placed in contact, so that the
boundary KLK' will form a circle.

The figure so formed will be conical, AK will be the slant
gide, and HK in the last figure will be the radius of the circular
base, whose length will be the arc of the sector KAK".

Hence, the area of the conical surface is equal to that of the
sector KAK'=3AK.2nHK=nHK.AK.

(5) Mass of a rod whose density varies as th m™ power of
the distance from one extremity.

Let 4B be the rod, and let N be the (r+ 1) portion, when
its length has been divided into = equal parts; and let p.AM™
be the density at M, or the quantity of matter contained in an
unit of length of the rod supposed of the same substance as the
rod at the point M

The quantity of matter in MN is intermediate between

p-AM™.MN and p.AN".MN,
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and the ratio of the difference of these to either of them is less
than any assignable ratio when 7 is indefinitely increased.

Therefore, since AM =£AB, and MN= %AB, the mass

of the whole rod is the limit of

p,ﬂ%ﬂ;j("__ﬂABme .1_1 x p.AB™

= (ﬁ)m of the mass of a rod of length 4B and of uniform

density equal to that of the rod 4B at B.

(8) Centre of gravity of the volume of o hemisphere.

Let CAB be a quadrant, which by its revolution round the
radius CA generates the hemisphere.

4 N H <
Let MR be the rectangle which generates the 7t inscribed

cylinder, so that CM= L xC4 and MN w ! x CA4.
; n n

If the mass of a unit of volume be chosen as the unit of
mass, the mass of the cylinder generated by MR will be

mPI MN = (A~ O) MN = (1~ —) moar

hence, the mass of the series of inscribed cylmders will be
wCA® — %‘_ﬂ w04’

and the masz of the hemisphere
=qCA’—ynCA®=3n CA".
Again, the moment of the mass of the cylinder generated
by MR, with respect to the base of the hemisphere, will be
wPM*.MN.} (CM+CN),
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which differs from wPM* MN.CM by a quantity which vanishes
compared with it, and is therefore ultimately (7% - %:) wC04*;

therefore the moment of the hemisphere, with respect to its
base, is

(3 —1)wCA4*, or }wCA*;
hence the distance of the centre of gravity of the volume of the
hemisphere from C, which is the moment with respect to the
base divided by the mass, is 3.C4.

III.

1. Tlustrate the terms ¢‘tempore quovis finito”’ and ¢‘constanter
tendunt ad sequalitatem’ employed in Lemma I. by taking the
case of Lemma III. as an example.

2. Shew, from the course of the proof of Lemma II., that the
ultimate ratio of vanishing quantities may be indefinitely small ox
great.

3. Shew that the ratio of the area of the parabolic curve, in
which PM*« AM, to the area of the circumscribing parallelogram,
of which one side is a tangent to the curve at 4, is 3 : 4.

4. Shew that the volume of a right cone is one-third of the
cylinder on the same base and of the same altitude.

5. AHK is a parabolic area, 4 H the axis, and ZTX an ordinate
perpendicular to the axis, 4 HKL the circumscribing rectangle.
Shew that the volumes generated by the revolution of 44X round
AH, KL, AL, and IIK are respectively %, £, %, and & of the
cylinder generated by the rectangle.

6. The volume of a spheroid is two-thirds of the circumscribing
cylinder.

7. Find the centre of gravity of the volume of a right cone
by the method of Lemma II.

8. Shew that the centre of gravity of a paraboloid of revolution
is distant from the vertex two-thirds of the length of the axis.

9. Find the mass of a rod whose density varies as the distance
from an extremity. Xind also its centre of gravity, and shew that
it is in one of the points of trisection of the rod.
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10. The limiting ratio of an hyperboloid of revolution, whose
axis is the transverse axis, to the ecircumseribing cylinder is 1: 2
when the altitude is indefinitely diminished, and 1 : 3 when it is
indefinitely increased.

IvV.

1. Prove that the areas of parabolic segments, cut off by focal
chords, vary as the cubes of the greatest breadths of the segments.

2. Find the mass of & circle whose density varies as the mth
power of the distance from the centre.

3. Shew that the abscissa and ordinate of the centre of gravity
of a parabolic area, contained between a diameter 4B and ordinate
BC, are 24B and $BC respectively.

4. A number of equal squares in one plane with their centres
coincident are arranged consecutively, their sides making equal
small angles, each with the adjacent ones; prove that the limit
of the length of the serrated edge, when the number of squares
is indefinitely increased, is equal to the circumference of a circle
whose radius is a side of the square.

5. By supposing the axis of a parabola portioned off into suc-
cessive lengths in the ratio 1 : 3 : 5, &ec., apply Lemma III. to find
the area contained by the curve and a double ordinate.

6. Find the volume generated by the revolution of an elliptic
disc about an axis parallel to its major axis, and at such a given
distance as not to intersect the dise.

7. In the curve 4CD, BE is an ordinate perpendicular to 4D,

3 BE . ndB
and FC is the greatest value of BE, and 7o = Hn (E)
Ly
(44
E
& BH ¢ F D

Bhew that the area 4BE varies as HG, where GK is the
m-gimat;v ;qual to BE of the circle CH, whose centre is F and
radius FC.
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8. In the curve of the last problem shew that the ratio of the
area ACD to the triangle whose sides are 40, and the tangents
AT, DT at the extremities, is 8 : #™

9. In the curve APC, in which the relation betweeanany

) 5 . OM M

rectangular ordinate PM and abscissa OM is m:log o4’
(/4

o ar n

prove that the area contained between the curve, the abscissa 0B,
and ordinate BC, is 04 (BC-A40).
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LEMMA IV.

If in two figures AacE, PprT there be inscribed (as in
Lemmas I1., IT1.) two series of parallelograms, the num-
ber in each series being the same, and if, when the breadths
are diminished indefinitely, the ullimate ratios of the
parallelograms in one figure to the parallelograms in the
other be the same, each fo each, then the two figures
AacE, PprT will be to one another in that same ratio.

E P /

4 T

[Since the ratio, whose antecedent is the sum of the
antecedents, and whose consequent is the sum of the
consequents of any number of given ratios, is inter-
mediate in magnitude between the greatest and least
of the given ratios, it follows that the sum of the
parallelograms described in AacZ is to the sum in
PprT in a ratio intermediate between the greatest
and least of the ratios of the corresponding inscribed
parallelograms; but the ratios of these parallelograms
are ultimately the same, each to each, therefore the
sums of all the parallelograms described in AacE,
PprT are ultimately in the same ratio, and so the
figures Aack, PprT are in that same ratio; for,
by Lemma IIL., the former figure is to the former
sum and the latter figure to the latter sum in a ratio
of equality.] qQ.E.D.

Cor. Hence, if two quantities of any kind whatever be
divided into any, the same, number of parts, and
those parts, when their number is increased and
magnitude diminished indefinitely, assume the same
given ratio each to each, viz. the first to the first,
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the second to the second, and so on in order, the
whole quantities will be to one another in the same
given ratio. For if, in the figures of this Lemma,
the parallelograms be taken each to each in the same
ratio as the parts, the sums of the parts will be always
as the sums of the parallelograms; and, therefore,
when the number of the parts and parallelograms is
increased and their magnitude diminished indefi-
nitely, the two quantities will be in the ultimate
ratio of parallelogram to parallelogram, that is, (by
hypothesis) in the ultimate ratio of part to part.

Observations on the Lemma.

22. The general proposition contained in the Corollary may
be proved independently in the following manner:

Let A, B be two quantities of any kind, which can be
divided into the same number n of parts, viz. a, a,, a,...a,
and b, b,, b,...b, respectively, such that, when their number is

increals:edﬂ asnd their magnitudes diminished ‘indefinitely, they
have a constant ratio L : 1 each to each, so that

a:b i L(l+a):1,
it L(l4a): 1,
........................... ]
where a,, a,, ... vanish when 7 is increased indefinitely.

Then, a,+a,+...t b, +b,+... being a ratio which is inter-
mediate between the greatest and least of these ratios, each of
which is ultimately L : 1, we have, proceeding to the limit,

A:B::L:1;
that is, 4 and B are in the ultimate ratio of the parts.

23. The proof given in the Principia is as follows: * For,
as the parallelograms are each to each, so, componendo, is the
sum of all to the sum of all, and so the figure dacE to the figure
PprT, for, by Lemma III., the former figure is to the former sum
and the latter figure to the latter sum in a ratio of equality.”

The proof given in the text is substituted for this, becanse
the demonstration breaks down for any finite distance from the
ultimate form of the hypothesis.

F
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Application to the determination of certain Areas, Volumes, de.

(1) Area of an ellipse.

Let A Ca be the major axis of an ellipse, BC the semi-minor
axis, 4Da the auxiliary circle, and let parallelograms be in-
scribed, whose sides are common ordinates to the two curves.

Let PMNR, QMNU be any two corresponding parallelo-
grams. The ratio of these parallelograms is PM: QM or
BC: AC.

R ¢ o 4
Hence, area of ellipse : area of circle :: BC: AC, but area
of circle =mA4C*; therefore area of ellipse =74 C.BC.

(2) Area of a sector of an ellipse, pole in the focus.
If 8 be a focus of the ellipse, and SP, SQ be joined,
ASPM: ASQM :: BC: AC,
and area APM : area AQM:: BC: AC,
hence, area ASP: area ASQ:: BC: AC,
but area 48Q = AS8CQ + sector ACQ
=3SC.QM+3AC.arc 4Q;
+. area ASP=13 {SC.PM+ BC.arc AQ}.

(8) Area of a parabolic curve cut off by a diameter and
an ordinate to the diameter.

In the following investigation it is asserted that when a
chord PQ is drawn to a curve from a point P, as @ moves up
to P, PQ assumes as its limiting position that of the tangent
at P, which is deducible from the idea of a tangent being in the
direction of the curve at the point of contact.

Let AB, BC be the diameter and ordinate; AD the tangent
at 4; CD parallel to AB; P, @ points near each other;
PM, QN and Pm, Qn parallel respectively to AD and 4B.

Let QP produced meet B4 in T, and complete the parallelo-
grams TAm S, TAnT.
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Then, since QP is ultimately a tangent at P, AT=AM
ultimately, and the parallelogram PU is ultimately double of

=il

the parallelogram Pn, and the complements PN, PU are equal;
therefore the parallelograms PN, Pn are ultimately in the ratio
2:1.

Hence, in the curvilinear areas ABC, ACD two sets of
parallelograms can be inscribed which are ultimately in the ratio
2 : 1, each to each; therefore area ABC is ultimately double of
area ACD, and is therefore two-thirds of 4ABCD.

(4) Volume of a paraboloid of revolution.

Let AH be the axis of the parabola APK, AHKL the
circumseribing rectangle. Also let PN, Pn be rectangles in-
scribed in the portions ALK, AKL.

Volume generated by PN=7wPM* MN=m.PM.PN.
Volume generated by Pn=m QN*. AM —wPM*. AM
=mAM.(QN+ PM).mn=m (QN+ PM).Pn;

I x
- Q
¥ /77 -p R

A L N 74

.~ vol. by PN : vol. by Pn:: PM.PN: (QN+PM).Pn,
but QN+ PM=2PY and PN =2Pn, as in (3), and therefore
vol. by PN=vol. by Pn ultimately; hence, by Cor., Lemma IV.,
the volume of the paraboloid generated by ALK is half the
volume of the circumscribing cylinder generated by 4KL.
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(5) Centre of gravity of a paraboloid of revolution.

Since the volumes generated by PN and Pr are ultimately
equal, the moment of the volume generated by PN with respect
to the tangent plane at 4 : moment of that generated by Pn

1t AM : 3 Pm ultimately, Z.e.::2: 13
hence the moment of volume generated by AHK is twice that
of the volume generated by AKL, and the moment of the
paraboloid = 2 moment of the cylinder
= £ volume of cylinder x § AH =2 volume of paraboloid x 4H;

hence the distance of the centre of gravity of the paraboloid from
the vertex is two-thirds of the height of the paraboloid.

(6) Centre of gravity and mass of a rod whose density vartes
as the distance from an extremity.

Let AB be the rod, MN a small portion of it, then the
density at Mo AM,

Construct on AB as axis an isosceles triangle 04D, whose
base is 0D, and draw PMRE, QNS parallel to CD; then PR,
Q8, CD are proportional to the densities at A, N and B;
therefore the mass of MN iz proportional to a rectangle inter-
mediate to the rectangles PR, MN and @S, MN, which are
ultimately in a ratio of equality.

Hence the mass of M.V is ultimately proportional to the mass
of the rectangle PR, MN, supposed of uniform density, and the
mowment of MN, with respect to the line CD, is proportional to
the moment of the same rectangle, since their distance is the
same; hence, by the Lemma, the moment of the whole rod

: the moment of the triangle with respect to CD

:: the mass of the rod : the mass of the triangle;
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therefore, the distances of the centres of gravity of the rod and
triangle from CD being the same, the centre of gravity of the
rod is at a distance $4B from B,

Also, the mass of MN being proportional to the area PEN,
the mass of the rod is proportional to the area of the triangle
ACD, and the mass of a rod of uniform density equal to that
at B, and of length 4B, being in the same proportion to the
rectangle AB, CD, is therefore double of the mass of the rod.

(7) Centre of gravity of a circular arc.

Let O be the centre of an uniform circular arc 4BC, OB
the bisecting radius, aBc a tangent at B, 0D parallel to ac,
and Ada, Cc parallel to OB.

Let QR be the side of a regular polygon described about the

A v
2 ¢
Xr
0 318
|
C <

arc, P the pomt of contact, Qg, Rr perpendicular to ac, and P
to OB. Then, since OP, OB are perpendicular to @R, gr,
gr: QR:: OM:OP:: OM: 0B;
but, since OM, OB are the distances of the centres of gravity of
QR and ¢r from OD, and QR.OM=gqr.0B, the moments of
QR and gr with respect to 0D are in a ratio of equality, and
the same is true of every side of the circumscribing polygon;
therefore, by Cor., Lemma IV., the moment of the arc, which is
ultimately that of the polygon, is equal to the moment of ac

=ac.0B=chord 4 C.radius OB,
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Hence, the distance of the centre of gravity of the arc from O

_ radius x chord
are

(8) Surface of a segment of a sphere.

Let AKH be the portion of a circle which generates by
revolution round A the spherical segment, O the centre of
the circle, PQ the chord of a small arc, PM, QN perpendicular
to AH.

Let AOCD be the rectangle circumscribing the quadrant
and generating the circumseribing cylinder.

Produce MP, NQ, HK to meet CD in p, ¢, k. Since PQ
is in its limiting position a tangent at P, PQ is ultimately
perpendicular to the radius OP, also pg is perpendicular to MP;

<. PQ: pq:: OP: PM ultimately,

and the surface generated by PQ is ultimately 2xPM.PQ,
Art. 18,=27.0P.pq = the surface generated by pg.

D ¥ i % c
i
P,
/ )
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The same is true for each side of the inscribed polygon when
the number is indefinitely increased.

Hence the surface generated by AK, or the surface of the
spherical segment, is equal to the surface of the circumscribed
eylinder cut off by the plane of the base of the segment.

Cor. Hence, also, the surface of any belt of a sphere cut off
by two parallel planes is equal to the corresponding belt of the
cylindrical surface.
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(9) Centre of gravity of a belt of the surface of a sphere con-
tained between parallel planes.

The moment of the belt generated by PQ with respect to the
plane through 4, perpendicular to AH, is evidently ultimately
equal to that of the belt generated by pg; therefore the moment
of any belt generated by K'K is equal to that of the cor-
responding belt generated by &'4.

Hence, the centres of gravity of the two belts are coincident,
viz. in the bisection of ZTH’, that is, the distance of the centre of
gravity of a spherical belt, contained between parallel planes, is
half-way between the two planes.

(10) Volume of @ spherical sector.

Let the spherical sector be generated by the revolution of the
sector AOP about 40.

The volume of the spherical sector is equal to the limit of the
sum of a series of pyramids whose vertices are in O, and the sum
of whose bases is ultimately the arca of the surface of the seg-
ment ; also the volume of each pyramid is 1 base x altitude.

Hence, the volume of the spherical sector is one-third of the
area of the surface of the spherical segment x radius

=1.274D.Dp. AO=3wAM. A0 =37 A 0® vers POA.

(11) Centre of gravity of a spherical sector.

If we suppose each of the pyramids on equal bases, they may
be supposed collected at their centres of gravity, whose distances
are 40 from O ultimately, and they form a mass which may
be distributed uniformly over the surface of a spherical segment
whose radius is 340, viz. that generated by ar, whose centre
of gravity will be in the bisection of am, if rm be perpendicular
to AH.

Therefore the distance of the centre of gravity of the spherical
sector from O =3 (Oa + Om)=40A4.cos’§POA.

If the angle POA become a right angle, the distance of the
centre of gravity of the corresponding sector, which in this case
will become the hemisphere, will be § 04, as in page 29.

(12) To find the direction and magnitude of the resultant
attraction of a uniform rod upon a particle, every particle gf the

[N
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rod being supposed to attract with a force which varies inversely
as the square of its distance from the atiracted particle.

0

n

b n

L

B ¢ D by q A
Let AB be the attracting rod, O the particle attracted by the
rod; draw OC perpendicular to 4B, join 04, OB, and let a
circle be described with centre O and radius OC meeting 04,
OB in a, b. Let OpP, Oq@Q be drawn cutting off the small
portions pg, PQ from the arc aCb and the rod, respectively,
and draw PR perpendicular to 0Q.
Then PR: PQ:: 0C: OP ultimately,
and pg : PR:: Op: OP ............ 3
% B @88 058 (G occorrroon 9
and, if aCb be of the same density as the rod and attract
according to the same law,

attraction of pg on O : attraction of PQ :: -gz, g 5107“ ultimately.

Therefore the portions PQ, pg of the rod and arc attract O
in the same direction with forces which are ultimately equal.
Hence, by Cor., Lemma IV., the resultant attraction of the
rod is the same as that of the arc a(b, which, by symmetry,
is in the direction OD, bisecting the angle 4 0B.
Again, draw g¢n perpendicular to OD, pr to gn; then, by
similar triangles, pgr, ¢On,
pgigr:: Og: On;
.2 On_ gr .
" Og " 0g= 0C
that is, the resultant attraction of pg in the direction OD is the

.
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same as that of ¢r at the distance OC; hence the whole re-
sultant attraction of 4B is

w.ab 2u
00 % 00
where p is the attraction of a unit of mass at the unit distance.

sin}40B,

V.

- 1. Shew that the area of the sector of an ellipse contained
between the curve and two central distances varies as the angle
of the corresponding sector of the auxiliary circle.

2. Prove that the volumes of two pyramids will be equal if
they stand on the same base, and have their vertices in the same
plane parallel to the base.

3. Find the volume of a paraboloid by comparison with the
area of a triangle whose vertex and base are those of the generating
parabola.

4. Find the centre of gravity of the paraboloid by reference
to the same triangle.

5. Find the mass of a straight rod, whose density varies as the
square of the distance from one extremity, by comparison with
a cone whose axis is the rod.

6. Shew that the orthogonal projection of any plane area on
another plane is the given area x the cosine of the inclination of
the two planes.

. As a first step, prove that, pgsr being the projection of the
inscribed parallelogram PQSR, pgsr: PQSR :: cosBAC: 1.

7. Find the volume of a hemisphere by comparing the volumes
generated by the quadrantal sector and the portion of the circum-

scribing square which is the difference between the square and the
quadrantal sector.

G
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1. Find the volume of a paraboloid generated by the revolution
of a semi-cubical parabola, in which PM? « AM°, by means of a
cone on the same axis.

2. Assuming that the area of a belt of a sphere cut off by two
parallel planes varies as the perpendicular distance between them,
find by the aid of Lemma IV. the area of any portion of the curve
of sines.

3. Prove that, if PQ be a small arc of an ellipse, and C'D be
conjugate to CP, the limit of the sum of all the ratios PQ : CD,
taken over the whole perimeter of the ellipse, will be 2x.

4. P is any point of a curve OP; OX, OY any lines drawn at
right angles through O, PM, PN perpendicular to 0X, O respec-
tively. Prove that, if area OPM : area OPN :: m : 1 always, and
the whole system revolve about OX, volumes generated by 0P,
OPN will be as m : 2.

5. Prove that the surface generated by the revolution of a
semi-circle round its bounding diameter is to the curved surface
generated by the revolution of the same semi-circle round the
tangent at the extremity of the diameter in the ratio of the length
of the diameter to the length of the arc of the semi-circle.

6. Common ordinates ¥ PP', NQQ' are drawn to two ellipses
which have a common minor axis, and the outer of which touches
the directrices of the inner; shew that the area of the surface
generated by the revolution of PQ about the major axis bears a
constant ratio to the area M/ P'Q'N.

7. Prove that the area included between an hyperbola and the
tangents at the vertices of the conjugate hyperbola is equal to the
area included between the conjugate hyperbola and the tangents at
the vertices of the hyperbola.
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LEMMA V.

All the homologous sides of similar figures are proportional,
whether curvilinear or rectilinear, and their areas are in
the duplicate ratio of the homologous sides.

[Similar curvilinear figures are figures whose curved
boundaries are curvilinear limits of corresponding
portions of similar polygous.

Let SABOD..., sabed... be two similar polygons, of
which SA, AB, BC, ... are homologous to sa, ab,
be, ... respectively.

D
x c

Then AB:ab:: S4: sa,
similarly, BC :bc :: AB: ab:: SA : sa,
CD:cd::BC: bc:: SA: sa,

therefore, componendo,
AB + BC+CD +...:ab + be + ed +...:: SA : sa.

Now this, being true for all similar polygons, will be
true in the limit, when the number of the sides 4B,
BC, ... and ab, be, ... is increased, and their lengths
diminished indefinitely; if, therefore, AE, ae be
curves which pass through the angular points 4, B, ...
and a, b, ... of the polygons, these curves will be
curvilinear limits of AB + BC + ... and ab+ b¢ + ...,
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and will be the boundaries of similar curvilinear figures;
therefore the curved line AE : the curved line ae

:: 84 :5a:: SE: se.
Again, polygon SABC... : polygon sabe... :: SA*: sa?,
and this is true in the limlt hence, by Lemma IIL,
Cor. 2, curvilinear area SAE : curvilinear area sae

i 8A:sa s AE*: aet :: SE° : s
Q.E.D.]

Observations on the Lemma.

24. In order to deduce the properties of similar curves, it
is premised, as before mentioned under Cor. 4, Lemma IIT,,
that, if a findte portion of a curve be taken, and if a polygon
be inscribed in the curve, the sides of which are chords taken
in order of portions of the curve, and the number of sides of
the polygons be increased indefinitely, and the magnitudes a
the same time diminished indefinitely, the curve will be the limit
of the perimeter of the polygon.*

It is not assumed that each chord is equal to the corre-
sponding arc ultimately; this is afterwards proved for a con-
tinuous curve in Lemma VIL

Criteria of Similarity.

25. From the definition of similar curve lines, that they are
curvilinear limits of homologous portions of similar polygons,
the following criteria of similarity can be deduced, all of which
are very convenient in practice; namely:

(1) One curve line is similar to another when, if any
polygon be inscribed in one, a similar polygon can be inscribed
in the other.

(2) If two curves be similar, and any point S be taken
in the plane of one curve, another point s can be found in the
plane of the other, such that, any radii SP, 8@ being drawn in
the first, radii sp, sg can be drawn in the second, inclined at

* Whewell's Doctrine of Limits,
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the same angle as the former, and such that the following
proportion will hold,
sp:sg:: SP: 8Q.

(8) If two curves be similar, and in the plane of one
curve any two lines OX, OY be drawn, two other lines oz, oy
can be drawn in the plane of the other curve, inclined at the
same angle, having the property that the abscissa and ordinate
OM, MP of any point P in the first being taken, the abscissa
and ordinate om, mp of a corresponding point p in the second
will be proportional to the former, viz.,

om:mp:: OM: MP.

And the converse propositions can also be deduced, that if
these proportions hold, the curves will be similar.

26. In order to illustrate test (1), let the arcs 4B, ab of
two circles have the same centre O, and let the bounding radii
be coincident in direction.

c b B

Let ADEB be any polygon inscribed in 4B, and let CD,
CE cut ab in d, e; join ad, de, b, these are parallel to 4D,
DE, EB respectively, and ad : de: ¢b :: AD : DE : EB; hence
adeb is similar to ADEB; and therefore the arcs ab, AB are
similar.

27. Test (2) may be deduced as follows:

If ABCD..., abed..., fig. p. 43, be corresponding portions
of similar polygons, 4B, BC, ... ab, be, ... being homologous
sides, and 48, BS, ... be drawn to any point S, construct the
triangle sab equiangular with S4B, and join sc, sd, ... .

Then sb: SB::ab: AB:: bc: BC, and 2 SBC= £sbc;
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therefore SBC, sbc are similar triangles;
hence sc: SC::sb: SB::sa: S4;
and similarly for sd, se, &c.

Hence, if two polygous be mmtlar, and any point be taken
in one, another point can be found in the other, such that the
radii drawn to corresponding angular points will be propor-
tional and include the same angles.

If we now increase the number of sides indefinitely and
diminish their magnitude, the same property will hold with
respect to the curvilinear limit of the polygon.

Test (3) can be deduced from test (1) in a similar manner.

Centres of Simalitude.

28. When two similar curves are so situated that a point
can be found, such that the radii drawn from that point, either
in the same or opposite directions, are in a constant ratio, such
a point is called a centre of similitude.

If the radii be measured in the same direction, the point
will be a centre of direct similitude, and of ¢nverse similitude
if they be measured in opposite directions.

It is easily shewn that there can be only one centre of
similitude of one kind.

Properties of similar curves and application of tests of
Stmilarity.

(1) Stmilar conterminous arcs, whick have their chords coin-
cident, have a common tangent.

2y

A B [

Let APB, Apb be similar conterminous arcs, ADBb the line
of their chords, AQq, APp any straight lines neeting the
curves in @, ¢ and P, p respectively; then 4 will evidently
be a centre of direct 51m111tude for the two curves; therefore
AQ:Aq:: AP: Ap; hence AP, Ap are similar portions of
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the curves, and arcAP: arcdp :: AP: Ap:: AB: Ab; there-
fore the arcs AP, Ap vanish simultaneously, or, when AP
assumes its limiting position 4D for the curve APB, this is
also the limiting position of Ap for the curve Apbd, that is,
the curves have a common tangent.

(2) 7o find the centres of direct and inverse similitude of any

two circles.
(4]
/M
C c ¥

If one of the circles do not lie entirely within the other,
let 8§ be the intersection of two common tangents to the
circles which intersect in the produced line Cc joining their
centres, and let (@, cg be radii to the points of contact.

Draw SpP through S cutting the circles in p, P, then cg
is parallel to CQ, and CP: cp:: CQ:cq:: CS: el

oo O8: OP::cS:cp;
also OPS, ¢pS are cach greater or each less than a right angle,
and CSP is common to the triagles CPS, cpS; therefore the
triangles are similar, BEuclid vI. 7, and the sides about the
angle OSP are proportional, that is, SP:Sp:: 8C: Sec;
therefore S is the centre of direct similitude.

Similarly, the intersection of two common tangents which
cross between two circles is the centre of inverse similitude.

(8) To find the condition of similarity of two conic sections.
Let the conic sections be placed so that their directrices

e
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are parallel and foci coincident, and let SpP be any line
through the focus meeting them in p, P; draw SzdD and
P@Q perpendicular to the directrix DQ of AP, and join S,
and let pg, parallel to P@Q, mecet it in g, and draw gd per-
pendicular to SD.

Then SZ:SD:: S87:8Q:: Sp: SP; and, if the curves
be similar, Sp : 8P will be a constant ratio; therefore Sd : 8D
is a constant ratio, and dg is a fixed straight line for all
positions of p; also, since pg: Sp:: PQ: SP, pg: Sp is a
constant ratio; therefore ¢d is the directrix of ap, and, the
constant ratio being the same in both, the eccentricities are
the same.

(4) Instruments, like the Pantagraph and the Eidograph, for
copying plans on an enlarged or reduced scale are founded upon
the properties of similar figures; as are also other methods of
copying, such as by dividing plans or pictures into squares.

The Pantagraph is an instrument for drawing a figure
similar to a given figure on a smaller or larger scale; one of
its forms is as in the figure. 4D, EF, GC and AE, D@, FC
are two sets of parallel bars, joined at all the angles by

compass-joints; at B is a point, which serves to fix the
instrument to the drawing board; at 4 is a point which is
made to pass round the figure to be reduced or enlarged; at
C is a hole for a pencil pressed down by a weight, and the
pencil traces the similar figure, altered in dimcnsions in the
ratio of BU: AB or BF: AD.

The similarity of the figure traced by the penc1l is a con-
sequence of continual similarity of the triangles 4ABD, BFC.
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By changing the positions of the pegs at I and G the figurc
described by C may be made of the required dimensions.

For a description of the Eidograph, invented by Professor
Wallace, see the Transactions of the Royal Society of Edinburg?,
vol. X111,

(8) Volume of a cone whose base s a plare closed figure of
any form.

Let V be the vertex, AD the base, VH perpendicular to the
base from V; let VH be divided into n equal portions, of

A
»
€
B

which JN is the {r+1); and let PQ be the section through M
parallel to AB.

Take VPA any generating line of the cone meeting the
section PQ and the base 4B in PA respectively, then

FM:All:: VM: VH;
therefore P@Q is similar to 4B, M, H being similarly situated
points; and, by Lemma V.,
area PQ : area AB :: r* : 0,
also MN:VH::1:n;
therefore the volume of the cylinder whose base is PQ and
beight MN = —; x area AB.VH, and the volume of the cone,

by Lemma II., is one-third of the cylinder whose base is AD
and height V.

VII.

1. Apply a criterion of similarity to shew that segments of
circles which contain equal angles are similar.

2. From the definition of an ellipse, as the locus of a point
the sum of whose distances from two fixed pomts is constant, shew
that ellipses are similar when the eccentricities are equal.

H
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LEMMA VI

If any are ACB given in position be subtended by & chord
ADB, and if at any point A, in the middle of continuous
curvature, it be touched by the straight line AD produced
i both directions, then, if the points A, B approach one
another and ultimately coincide, the angle BAD contained
by the chord and tangent will diminish indefinitely and
ultimately vanish.

For, if that angle do not vanish, the are ACB will
contain with the tangent AD an angle equal to a

_D’

n

7 2
z

rectilineal angle, and therefore the curvature at the
point A will not be continuous, which is contrary to
the hypothesis, that 4 was in the middle of con-
tinuous curvature.

Definitions of a Tangent to a Curve.

29. (1) If a straight line meet a curve in two points 4, B,
and if B move up to A, and ultimately coincide with 4,
ADB in its limiting position will be a tangent to the curve at
the point 4.

If two portions of a curve EA and 4B cut one another
at a finite angle in 4, there will be two tangents 4D, AD,
which will be the limiting positions of straight lines AB and
AE, when B and E move up to 4 along the different portions
EA and B4 of the curve respectively. And, similarly, if there
be a multiple point in 4, in which several branches of the carve
cut one another at finite angles.

(2) The tangent is the direction of the side of the polygon,
of which the curve is the curvilinear limit, when the number
of sides are increased indefinitely.
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This is founded on the same idea of a tangent as defini-
tion (1).

(8) The tangent to a curve at any point is the direction of
the curve at that point.

In order to apply geometrical reasoning to the tangent by
employing this definition, we are obliged to explain the notion of
the direction of a curve, by taking two points very near to one
another, and asserting that the direction of the curve is the
limiting position of the line joining these points when the
distance becomes indefinitely small, a statement which reduces
this definition to the preceding.

Observations on the Lemma.

30. *Curvatura Continua,” if we consider curves as the
curvilinear limits of polygons, requires the curves to be limits
of polygons whose angles continually increase as the number of
the sides increase, arid may be made to differ from two right
angles by less than any assignable angle before the assumptlon
of the ultimate form of the hypothesis.

If, however, as we increase the number of sides and diminish
their magnitude, one of the angles remains less than two right
angles by any finite difference, the curvature of the curvilinear
limit is discontinnous, and the form is that of a pointed arch, in
which the two portions cut one another at a finite angle.

A curve may be of continued curvature for one portion
between two points, while for another its curvature changes
“per saltum.”

Thus, if ABC be a curve forming at B a pointed arch, it

may be of continued curvature from B to A4 and from C to B,
though not from C to 4.
In this case the tangents in passing from C to 4 assume all
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positions intermediate to CT, Bt, and BY, T4, but at B they
pass from Bt to B¢ without assuming the intermediate positions.

31. “In medio curvatur® continuz,” implies that the point
A in the enunciation of the Lemma is not such a point as B
in the last figure, but that, in passing from a point on one side
of A to another on the other side, the tangents pass through all
the intermediate positions.

The curvature is supposed to be in the same direction in
the figure of the Lemma, which in all curves of continuous
curvature s possible, if B be taken sufficiently near to 4 at
the commencement of the change in the construction.

If the point 4 be not “in medio curvature continuz,” two
tangents 4D, AD' may be drawn at 4 to the two parts of the
curve, and the curve BCA will make a finite angle with one of
the tangents 4D’

But, even in this case, the angle between the chord and
that tangent which belongs to the portion of the curve con-
sidered continually diminishes and ultimately vanishes.

The Subtangent.

32. DEeF. The part of the line of abscisse intercepted be-
tween the tangent at any point and the foot of the ordinate
of that point is called the subtangent.

33. The subtangent may be employed as follows, to find a
tangent at any point of a curve.
Let 0, MP be the abscissa and ordinate of a point P in

v T o ar N x

a curve, and let @ be a point near P, ON, NQ its abscissa
and ordinate.
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Let QPU meet OX the line of abscissee in U; then, if PR
parallel to OM meet QN in B,
PM:MU:: QR : PR:: QN—PM : ON- OM.
Now as Q approaches to P, the limiting position of QPU is
that of the tangent at P, viz. tPT, and PM : MT is the limiting
ratio of QN —PI : ON— QM.

The Polar Subtangent and the Inclination of the Tangent to
the Radius Vector, at any Point of a Spiral.
34. Der. Let S be the pole, PT the tangent to the curve at
any point P, and let ST, perpendicular to SP, meet PT in T
then ST'is called the polar subtangent at the point P.

35. To find the inclination of the tangent at any point of
a curve to the radius vector.

Let @ be a point near P, QM perpendicular to SP, pro-
duced if necessary, QE the circular are, centre S, meeting
SP in R.

Let QP meet ST in U, then

SU: SP:: QM : PM,
and MRB: QM:: QM: SM+ SR,

Q

but, when @ approaches indefinitely near to P, QM vanishes
compared with SM+ SRE; therefore MR vanishes compared
with QM or PM; therefore SU: SP:: QM : PR, ultimately;
therefore S7': SP is the limiting ratio of QR: PR; or
QR : SQ - SP.
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Hence 87, and also the trigonometrical tangent of the angle
SPT between the tangent and the radius vector can be found.

Tllustrations.

(1) If 8Y be the perpendicular on the tangent PY at P in
a curvey, X will trace out a curve, called the pedal of the original
curve ; to shew that of YZ be a tangent to the locus of Y, 8Z
perpendicular to i, SY*= SP.8Z.

Let P' be a point near P, SY' perpendicular on P'P, SZ
perpendicular on Y'Y,

Since angles SYP, SY'P are right angles, a semicircle on
SP will pass through Y, Y”; therefore the angles SY'Y, SPY
in the same segment will be equal; the right angles SZY",
SYP also are equal; therefore the triangles SPY, SY'Z are
similar, and SZ: 8Y’ :: §Y : SP; but, ultimately, as P’ moves

up to P, P’PY" becomes the tangent at P, and Y"YZ that at ¥
to its locus, also 8Y'=8Y;

- 8Z.8P=8Y*,
(2) To find the subtangent in the semi-cubical parabola.
In the semi-cubical parabola PM* «« OM?;
». QN*— PM*: PM*:: ON*— OM*: OAF,
but QN+ PM=2PM,
and ON*+ ON.OM+ OM*=30M" ultimately;
~. QN- PM: }PM :: ON— OM: § OM ultimately,
and QN—PM: PM:: ON— OM=MT;
therefore MT is two-thirds of O
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(8) o find the inclination of the tangent at any point of
a cardioid to the radius vector.

Dzr. If BgpC be a circle, whose centre is S and diameter
B0, and pm be drawn perpendicular to BC; then, if Sp be
produced to P, making SP=Bm, P will trace out a cardioid
APS.

Making the same construction as before, in Art. 35,
S8T: SP:: QR : SP- SQ ultimately.
Let SQ meet the circle in ¢, and draw ¢n perpendicular
to BC,
then QR : pg:: SP: Sp ultimately,
also pg tmn:: Sp:ipm i, 0
S QRimn i SPipmoaanen..... 3
but mn=DBm ~Bn= 8P~ 8Q;
oo QR : SP—8Q:: SP: pm ultimately ;
o 8T: SP:: Bn: pm;
hence £ PTS=.pBm=4%¢PSA;

and it follows that the cardioid cuts the axis SCA at right
angles, that it touches SB at S, and that it cuts the circle BDC
at an angle equal to half a right angle.
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LEMMA VIL

If any are, given in position, be subtended by the chord AB,
and ot the pont A, in the middle of continuous curvature,
a tangent AD be drawn, and the subtense BD, then, when
B approaches to A and ultimately coincides with if, the
ulimate ratio of the are, the chord, and the tangent to one
another, 1s a ratio of equality.

For whilst the point B approaches to the point 4, let
AB, AD be supposed always to be produced to points
b and d at a finite distance, and éd be drawn parallel
to the subtense BD, and let the arc Ach be always
similar to the arc 4CB, and have, therefore, 4.0d
for its tangent at A.

D <
AN
./
n

But, when the points B, 4 coincide, the angle 644, by
the preceding Lemma, will vanish, and therefore the
straight lines 44, Ad, which are always finite, and
the are Acb, which lies between them [and is of con-
tinuous curvature in one direction, if the change
commence when B is near enough to 4], will coin-
cide ultimately, and therefore will be equal.

Hence, also, the straight lines AB, AD and the inter-
mediate arec A CB, which are always proportional to
them, will vanish together, and have an ultimate
ratio of equality to one another.

Cor. 1. Hence if BF be drawn through B parallel to
the tangent, always cutting any straight line AF
passing through A in F, then BF will have ulti-
mately to the vanishing arc ACB a ratio of equality,

I
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since, 1if the parallelogram AFBD be completed, it
will always have a ratio of equality to A.D.

A F_D

Ee=l
7/ z
Cor. 2. And if through B and 4 be drawn many
straight lines BE, BD, AF, A cutting the tangent
AD and BF, parallel to it; the ultimate ratios of all
the abscisse AD, AE, BF, BG and of the chord and
arc A to one another will be ratios of equality.
Cor. 3. And, therefore, all these lines in every argu-
ment concerning ultimate ratios may be used indif-
ferently one for the other.

Olservations on the Lemma.

36. DEF. The subtznse of the angle of contact of an are is a
straight line drawn from one extremity of the arc to meet, at
a finite angle, the tangent to the arc at the other extremity.

This subtense is the secant which defines the limited line
called, in the Lemma, * the tangent.”

The chord is called by Newton the subtense of the arc, see
Lemma XI.

37. In the construction for this Lemma, BD must be a
subtense, <.e. inclined throughout the change of position at a
finite angle to the tangent, for, otherwise, the angles BAD

D L ) a
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and ADB being then both small, the ultimate ratio of the
chord to the tangent might be any finite ratio instead of
being one of equality.

This is the only limitation of the motion of BD; the figure
representing changes which may take place in the approach
towards the ultimate state of the hypothesis.

Here 3, d are the distant points, that is, points at a finite
distance from 4; BD, B'D', B"D" are consecutive positions
of the subtense, when B approaches towards 4, and db, db', db"
are parallel to these, ¢’y Ac"d" are the forms of Ach changed
so as to be always similar to the corresponding portion of 4CB
cut off by the chord.

It should be remarked that the curve Acb is not inter-
mediate in magnitude to the two lines 4b, Ad, but only in
position ; for example, 45 may be equal to Ad, if BD make
equal angles with the two lines, and the curve line will then
be greater than either 45 or Ad; but it becomes in all cases
less bent, until it is ultimately rectilinear; hence the three
Acb, Ab, Ad will be ultimately equal, the only alternative
being that the curve may become doubled up, as in the figure,

=

which is precluded by the supposition that the curvature near 4
is continued in the same direction throughout the passage from
B to 4.

38. The subtense ultimately vanishes compared with the arc.

For BD : ACB:: bd : Ach, and, since bd vanishes and Acb
remains finite in the limit, the ratio BD: ACB ultimately
vanishes. It will be afterwards seen that in curves of finite
curvature BD varies as the square of 4CB ultimately.

The ultimate equality of the lines 4D, AE with the chord
or arc, whatever be the direction of the subtense, is due to
the vanishing of BD, and therefore of DE with respect to 4D.

89. If two curves of continuous curvature which do not inter-
sect have a common chord, the length of the exterior curve will be
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LEMMA VIIL

If two straight lines AR, BR make with the are ACB, the
chord AB, and the tangent AD, the three triangles
RACB, RAB and RAD, and the points A, B approach
one another ; then the ultimate form of the vanishing
triangles is one of similitude, and the ultimate ratio one
of equality.

For, whilst the point B is approaching the point 4, let
AB, AD, AR be always produced to points &, d, r at
a finite distance, and rbd be always drawn parallel to
RD, and let the arc Acb be always similar to the arc
ACB, and therefore have Dd for the tangent at A.

/]

Then, when the points B, 4 coincide, the angle bAd will
vanish, and therefore the three triangles r48, rAcs,
rAd will coincide, and will therefore in that case be
similar and equal. Hence also RAB, RACB, RAD,
which are always similar and proportional to these,
will be ultimately similar and equal to one another.

Cor. And hence, in every argument concerning ulti-
mate ratios, these triangles can be used indifferently
for one another.

Observations on the Lemma.

40. If BB throughout the change in the hypothesis make a
finite angle with R4, the three triangles r.4d, rAch, rAd will
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LEMMA IX.

If a straight line AE and curve ABC, given in position, cut
one another in a fintte angle A, and ordinates BD, CE bs
drawn, inclined at another finite angle to that straight
line, and meeting the curve in B, C; then, if the pointe
B, C move up together to the point A, the areas of the
curvilinear triangles ABD, A CE will be ultimately to one
another in the duplicate ratio of the sides.

For, as the points 3, (' are approaching the point 4,
let AD, AE be always produced to the points &, e at
a finite distance, such that Ad : de:: AD : AE; and

let the ordinates db, ec be drawn parallel to DB,
EC meeting the chords 4B, AC produced in 3, c.

Then [since Ab: AB :: Ad: AD :: Ae: AE:: Ac: AC,
and therefore 4% : Ac:: AB: AC] a curve Abc can
be supposed to be drawn always similar to ABC,
while B and € move up to 4.

Let the straight line 4g be drawn touching both curves
at 4, and cutting the ordinates DB, EC, db, ec in
¥, G, f 9.

[Now areas 4BD, Abd, by Lemma V., are always in the
duplicate ratio of 4D, Ad, and areas 4 CE, Acein the
duplicate ratio of A, Ade, and AD : Ad :: AE : de;

therefore ABD : Abd :: ACE : Ace,
and ABD : ACE :: Abd : Ace.]

If, then, the points B and €'move up to 4 and ultimately
coincide with it, the angle ¢4g will ultimately vanish,
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and the curvilinear areas 454, Ace will coincide with
the rectilinear triangles 4fd, Age, and therefore will
be ultimately in the duplicate ratio 4d, Ae.

But ABD, ACE are proportional to Abd, Ace always,
also, AD, AE are proportional to Ad, de; therefore
also areas ABD, ACL are ultimately in the duplicate
ratio of AD, AFE.

Observations on the Lemma.

41. By a finite angle is to be understood an angle less than
two right angles, and neither indefinitely small nor indefinitely
near to two right angles.

The angles between 4D and the curve and between AD
produced and BD are different finite angles, because otherwise
BD would not meet the curve.

42. If the angle DAF be greater than a right angle, the
figure may assume a form in which 4D will lie below 4BC;
in this case DB, EC, ... must be produced to meet the tangent,
and the argument may proceed in the same manner as before.

43. It is not necessary that d and e be fixed, but only that
they remain at a finite distance from 4, and that the proportion
be retained; and the first part of this observation applies to
d in the previous Lemmas.

The student, by reference to Arts. 37 and 40, will be able to
exhibit the change in the figure which will correspond to a
change of the position of B and C in the progress towards the
ultimate position.

44, When the angle CAG vanishes, the curvilinear areas
Abd, Ace coincide with the rectilinear triangles Afd, Age, and
so are in the duplicate ratio of Ad: de. DBut if the angle
DAF be not finite, those triangles will not themselves be finite,
and the object aimed at by producing to a finite distance will
not be attained.

The fact is, that the triangle .4db is made up of the triangle
A4df and the cuarvilinear triangle Afb, of which the latter is
indefinitely small ultimately, and the former is finite; therefore,
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in the Lemma, Afb vanishes compared with Adf; but this will
not be so if Adf be indefinitely small, the ratio of the triangles
AFB, AGC must, therefore, be found by another process, and
it will be found, by referring to Lemma XI., that the ratio will
be ultimately that of the cubes of the arcs if the curvature of
the curve at 4 be finite,

VIII.

1. RQqg is & common subtense to two curves PQ, Py, which
have a common tangent PR at P. When RQqg approaches to P,
RQ and Rg ultimately vanish; will the ratio 2Q: Rg be ulti-
mately a ratio of equality ?

2. If PY, a tangent to an ellipse at P, meet the auxiliary circle
in ¥, and S7 be perpendicular to the tangent at ¥, SZ7' will vary
inversely as ZZP.

3. If a subtense BD be drawn to meet the tangent at 4 at
a finite angle @, which remains constant as B moves up to 4, and
DB meet the normal at 4 in C, shew that the ultimate ratio of
BC to AB will be seca.

4. In the curve in which the abscissa varies as the cube of
the ordinate, shew that the subtangent is three times the abscissa.

5. Prove that the extremity of the polar subtangent from the
focus of a conic section is always in a fixed straight line.

6. AB is a diameter of a circle, P a point contiguous to 4,
and the tangent at P meets B4 produced in 7’; prove that ulti-
mately the difference of B4, BP will be equal to one-half of 7°4.

7. In any curve, if @ be the intersection of perpendiculars to
two consecutive radii vectores through their extremities, and S¥
be the perpendicular from the pole S on the tangent at P, prove
that ultimately SP*=SY.SQ.

8. PQ, pq are parallel chords of an ellipse whose centre is (';
shew that, if » move up to P, the areas CPp, CQg will be
ultimately equal.

9. From a point in the circumference of a vertical circle a chord
and tangent are drawn, the one terminating at the lowest point,
and the other in the vertical diameter produced; compare the
velocities acquired by a heavy body in falling down the chord
and tangent when they are indefinitely diminished.

10. A point moves so that the product of its distances from two
fixed points is constant; shew that the normal to its path divides
the angle between the two radii into two whose sines are pro-
portional to the radii.

K
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IX.

1. On the radii vectores of a curve as diameters circles are
described ; find their envelope.

2. If the intercept PQ between two curves of their common
radius vector OPQ be constant, and the normals at P and @
intersect in ¥, ON will be at right angles to 0PQ.

3. A right angle slides on any oval curve, so that the sides
containing the right angle always touch the curve; shew that the
angle one tangent makes with the tangent to the locus of the
vertex is equal to that which the other tangent makes with
the chord of contact.

Hence shew that, if the oval be an ellipse, the locus of the
vertex will be a circle concentric with the ellipse.

4. A point moves so that the rectangle, whose sides are equal
to the distances of the point from a given point and a given
straight line, is equal to the square described on the perpendicular
from the given point on the given line. Find the position of
the point at which the tangent to the curve passes through the
fixed point.

5. Two points 4, B describe two curves according to any
finite and continuous law. If A4', B’ be the consecutive positions of
A, B, and ABC, A'B'C’' be similar triangles, then the corre-
sponding sides of the two triangles will ultimately intersect in the

. AA'"BC BB.CA CC.AB
points P, @, R, such that =

QR RP PQ

6. If SP*=4B.PM, where PM is perpendicular to a fixed
straight line, prove that the locus of the centre of the circle cir-
cumscribin§ the triangle formed hy the tangent, the radius vector,
and the polar subtangent, will be a straight line.

7. In the figure on page 30 let FB’ be taken equal to 4B,
and let the corresponding ordinate to the curve be B'E'; prove
that the subtangent at E’ varies inversely as that at E.

8. In the hyperbolic spiral, in which the radius vector varies
inversely as the spiral angle, prove that the subtangent is constant.

9. In the spiral of Archimedes, in which the radius vector
varies directly as the angle, prove that if a circle be described,
of which a radius is the radius vector of the sjiral, the polar
subtangent will be equal to the arc of the circle subtended by
the spiral angle.
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LEMMA X.

The spaces which a body describes [ from rest] under the
action of any finite force, whether that force be constant
or else continually increase or continually diminisk, are
in the very beginning of the motion in the duplicate ratio
of the times.

[Let the times be represented by lines measured from 4,
along AK, and the velocities generated at the end
of those times by lines drawn perpendicular to AK.
Suppose the time represented by AKX to be divided
into a number of equal intervals, represented by 4B,

710
L—T
d
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£
A B ¢ D K

B0, 0D, ..., let Bb, Cc, Dd, ... Kk represent the ve-
locities generated in the times AB, A0, ... AK respec-
tively, and let Abcd be the curve line which always
passes through the extremities of these ordinates.
Complete the parallelograms 45, Be, 04, ... .

In the interval of time denoted by €D, the velocity con-
tinually changes from that represented by Ce to that
represented by Dd, and therefore €D being taken
small enough, the space described in that time is
intermediate between the spaces represented by the
garallelograms D¢ and Cd; therefore the spaces

escribed in the times AD, AK are represented by
areas which are intermediate between the sums of
the parallelograms inscribed in, and circumscribed
about, the curvilinear areas A DJ, A Kk respectively.
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Therefore, by Lemma II., the number of intervals being
increased, and their magnitudes diminished indefi-
nitely, the spaces described in the times 4D, AK
are proportional to the curvilinear areas ADk, AKF.

Now the force being finite, the ratio of the velocity to
the time is finite ; therefore K% : AK is a finite ratio,
however small the time is taken; hence, if AT be
the tangent to the curve line at 4, 'meeting K% in T,
KT : AK will be a finite ratio; therefore the angle
TAK will be finite, or AKX will meet the curve at a
finite angle.

Hence, by Lemma IX., if AD, AK be indefinitely
diminished, area ADd : avea AKk :: AD': AK*;
therefore, in the beginning of the motion, the spaces
described are proportional to the squares of the times
of deseribing them. Q.E.D.]

Cor. 1. And hence it is easily deduced that the errors
of bodies describing similar parts of similar figures
in proportional times, which are generated by any
equal forces acting similarly upon the bodies, and
which are measured by the distances of the bodies
from those points of the similar figures, to which the
same bodies would have arrived in the same propor-
tional times without the action of the disturbing
forces, are approximately as the squares of the times
in which they are generated.

Cor. 2, But the errors which are generated by pro-
portional forces, acting similarly at similar portions
of similar figures, are approximately as the forces
and the square of the times conjointly.

Cor 3. The same is to be understood of the spaces
which bodies describe under the action of different
forces. These are, in the beginning of the motion,
conjointly, as the forces and the squares of the times.

Cor. 4. Consequently, in the beginning of the motion
the forces are as the spaces described directly, and
the squares of the times inversely.
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Cor. 5. And the squares of the times are as the spaces
described directly and the forces inversely.

The proof given in the original Latin is as follows:
Exponantur tempora per lineas 4D, AE, et veloci-
tates genitze per ordinatas DB, EC; et spatia, his
velocitatibus descripta, erunt ut arese ABD, ACE his
ordinatis descriptae, hoc est, ipso motus initio (per
Lemma IX.) in duplicata ratione temporum AD, AE.
Q.E.D.

45. This proof has been amplified in order to exhibit in
what manner the description of areas, by the flux of the ordi-
nates, corresponds to that of spaces by the velocities represented
by the ordinates; also to shew the propriety of the application
of the ninth Lemma by reference to the definition of finite force
which may be stated as follows: A force is finite when the ratio
of the velocity generated in any time to the time in which it is
generated, is finite, however small the time be taken.

Observations on the Lemma.

46. In the proof of this Lemma, time is represented by the
length of a straight line, and a distance traversed by a body is
represented by an area.

If the length of a straight line be always proportional to the
period of time elapsed, the straight line will be a proper repre-
sentation of the time. Thus a length of n inches has the same
ratio to one inch which an interval of n seconds has to one
second ; and on this scale the length n inches is a proper repre-
sentation of 7 seconds.

If an area be always in the same ratio to the unit of area
that the length of a straight line is to the unit of length, the area
will be a proper representation of the length of the straight line.

Thus, if .45 be one foot, AB, n feet, Ac one inch, and 4C,
¢ inches: complete the parallelograms ABDC, Abde, and B,
then ABCD will contain nt such areas as Abdec.

If now a particle move with a uniform velocity of n feet
a second, and 4 C represent ¢ seconds, on the scale of one inch to
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a second, the parallelogram Be will represent the space travelled
over in the first second, since it contains » times the parallelo-

124 n

4 3 B

gram Abde, and ABDC will represent the space travelled over
in ¢ seconds.

There will be no difficulty in the representation of a period
of time by a line, or of a distance by an area, if the student
bear in mind that periods of time and lengths of lines, although
existing absolutely, are only estimated by their ratios to certain
standard periods, and standard lengths, and they are therefore
determined whenever these ratios are given, either directly in
numbers or by the comparison of any magnitudes whatever of
the same kind.

47. Cor. 1, 2. If bodies describe orbits under the action
of certain forces, and small forces, extraneous to those under the
action of which the orbits are described, be supposed to act upon
the bodies, the orbits will be disturbed slightly, and the errors
spuken of are the linear disturbances of the bodies, at any time,
from the positions which they would have occupied at that time,
if the extraneous forces had not acted.

Thus, in calculating the motion of the Moon considered as
moving under the attraction of the Sun and Earth, it is conve-
nient to estimate the motion which she would have, if subjected
to the attraction of the Earth alone, and then to calculate what
would be the disturbing effect of the Sun upon this orbit.

48. If AB be a portion of an orbit described by a body in
any time, 4 C the portion of the orbit described when a disturb-
ing force is introduced, BC is “ quam proxime’ the space which
would have been described in the same time from rest by the
action of the disturbing force alone. When the time is taken
small, but not ndefinitely small, the expression in the statement
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of the corollaries, “approximately,” is necessary for two reasons;
for, in the first place, the position of the body in space is not
the same at the end of any interval in the lapse of the time
as if the body had moved from rest under the action of the
disturbing force alone, and therefore the magnitude of the force
is not generally the same either in direction or magnitude; and,
in the second place, since the force is not generally uniform, the
variation according to the duplicate ratio of the times is not
exact, except in the limit.

But, when the times are taken very small, the variation of
direction and magnitude of the force may be neglected, as an
approximation to the true state of the case.

49. Adpplication of the method of Lemma X to determine
the space described in a finite time from rest by a particle under
the action of a constant force.

Let f be the measure of the acceleration caused by the
constant force, so that at the time ¢ the velocity V=£.

Since the velocity varies as the time, the curve Ak in the
figure of the Lemma is a straight line, dD : AD being constant.

Therefore the space which is described in the time ¢, re-
presented by AK, is represented by the area of the triangle
AKFE or 3Kk.AK. The space described in time ¢ from rest
is therefore §Vi=1f"

50. General geometrical representation of the space described
by a body when it moves with a variable velocity for a finite
time. :

Prop. If a curve be found, such that the ordinate at each
point represents the velocity corresponding to a time represented
by the abscissa, then the space described by the body will be
represented by the area bounded by the curve, the line of
absciss®, and the ordinates corresponding to the commencement
and end of the time of motion.

Let OA, OB represent the times at the commencement and
end of the interval during which the motion of the body is to
be examined. Let OM be any other time, and let A C, MP, BD,
perpendicular to OAB, represent the velocities at the ends of
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the times represented by 04, O3, OB; COPD the curve which
passes through the extremities of all such ordinates as J/P.

D
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Let AB be divided into any number of small portions, such
as MN; and let NQ be the ordinate corresponding to ON.
Complete the parallelograms PMNg, QNMp, and suppose cor-
responding parallelograms to be constructed on all the bases
corresponding to J/N.

The body during the time represented by MN moves with
a velocity, which, if MN be taken small enough, will be inter-
mediate in magnitude between the velocities represented by PM
and QN, and the space described during that time will be
intermediate in magnitude between the spaces which would have
been described with uniform velocity represented by PJ and
@N, or between the spaces represented by the areas PN, QJ.

Hence the whole space described in the interval of time
represented by AD is greater than that represented by the
inscribed series and less than that by the circumscribed series
of parallelograms, and each of these is, by Lemma IL, ulti-
mately equal to the area 4 CDB, when the number of portions
into which 4B is divided is indefinitely increased, and their
magnitudes diminished ; therefore the proposition is proved.

51. Cor. 1. Since the area PMNQ is ultimately equal to
the rectangle P}M.MN, it follows that the measure of the velocity
at any time 1s the limit of the quotient of the space described after
that time by the time of describing <.

52. Cor. 2. Let MR represent the unit of time, and com-
plete the parallelogram PMEr; then the area PMRr represents
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the space which would be described in an unit of time with a
velocity represented by PM; whence it follows that the velocity
of @ body at any instant may be measured by the space which it
would describe tf it moved with that velocity unchanged for an
unit of time.

Measures of Variable Force, Kinetic Energy, Work of a Force.

53. When a particle of mass m is moving in a straight line
under the action of an uniform force F, if V, v be the velocities
at the beginning and end of the interval of time ¢, and s be
the space described in that time, the following equations will
hold: m (v—V)=Ft and §m (v'—V?) = Fs.

These equations represent respectively that:

(1) The <ncrease of momentuin in a given time is equal to the
whole force which has acted during that time.

(2) Half the increase of vis viva, or the dncrease of the Kinetic
energy in a given space is equal to the work of the force in that
space.

If F be a variable force, and F}, F, be its least and greatest
values during the time ¢, m (v—V') will be greater than F¢ and
less than Fj¢, each of which will become F¥ ultimately when ¢
is indefinitely diminished ; and similarly for {m (+* — V7).

Hence we obtain two measures of variable force in the form
of the two limits:

(1) The quotient of the increase of the momentum by the time,
when the time 7s diminished indefinitely.

(2) The quotient of the increase of the kinetic energy by the
space through which the force has acted, when that space s
diminished indefinitely.

54. In the velocity curve, Art. 50, the velocity Qg is added
in the time MN, the measure of the acceleration at the time OM
is therefore the limit of the ratio Qg : Py, or the trigonometrical
tangent of the angle which the tangent at P to the velocity curve
makes with the line of abscisse.

55. Geometrical representation of the tum generated
L
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by @ finite and varioble force acting for a finite time upon «
particle moving in the direction of the action of the force.

In the figure of p. 72, let 04, OB represent the times at
the commencement and end of the interval during which the
action of the force is considered.

Let AB be divided into any number of small portions, such
as MN, and let PM, QN, perpendiculars to ADB, represent the
forces acting on the particle at the times OM, ON respectively,
and let parallelograms be constructed and the curve drawn as
in Art. 50. .

The momentum generated in the time MN, if N be taken
small enough, will be intermediate between .the momenta re-
presented by the parallelograms PN and QM; therefore, by
Lemma II., the whole increase of momentum is represented
by the area 4 CDB bounded by the curve, the line of abscisse,
and the ordinates at the commencement and end of the finite
interval of time represented by 4B.

56. As in Arts. 51, 52, the measure of force given in (1)
Art. 53 can be deduced ; also that the force at any instant may
be measured by the momentum which would be generated if
the force were to continue unchanged for an unit of time.

57. Geometrical representation of the kinetic energy generated
by a force which acts upon a particle moving in the direction
of the force’s action through a finite space.

Let OAB be the line of motion of the particle, and when
it arrives at M let PM perpendicular to OAB represent the
force, and let the construction be made as before.

The increase of kinetic energy in the passage from M to
N is intermediate between the work done by the forces re-
presented by PM and QN, ‘.. it is represented by an area
which is intermediate between PN and @QJM; therefore, by
Lemma II, the increase of kinetic energy or the work of the
force during the motion from 4 to B is represented by the
area ACDB.

-58. The measure of force given in (2), Art. 53, is deducible
as before, since PM. MN = area PMNy ultimately.
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59. In rectilinear motion of a particle uider the action of
any variable force, the sum of the kinetic and potential energies
s constant.

If the motion of the particle be considered only within the
limits 4, B, the area PMBD represents the whole work which
the force will be able to do as the particle moves from 3/
to the end of its path; this work is called the Potential Energy,
and since the kinetic energy at M is represented by the area
CAMP, it follows that throughout the motion the sum of
the kinetic and potential energies is constant.

Application to the determination of the motion of & particle
under various circumstances.

(1) To find the space travelled over in a given time by a
body moving with a velocity which varies as the square of the
time from the beginning of the motion.

Let AB represent the time, and let BC perpendicular to 4B
represent the velocity at the end of that time,

n C
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Let AB be divided into any number of equal portions of
which JIN is one, and let MP, NQ represent the velocities at
the ends of the times represented by AM, AN.

Then, since MP: NQ: BC:: AM®: AN*: AB’, a parabola
can be described touching AB and passing through P, @, C
and the extremities of all ordinates by which velocities' are
represented. ;

Hence the space described in the time represented by 4B
is represented by the parabolic area ABC or $4B.BC.

And if p be the velocity at end of 17, p¢* will be that at
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the end of ¢'; therefore 3pt’.t=1p# will be the space described

in the time .

Nore. The following method of representing the space
serves to illustrate Art. 46.

Join AC, and let pM, gN be the ordinates, and suppose
the figure to revolve round AB; pM generates a circle whose
area o« pM*oc AM*; therefore this circle may be taken to
represent the velocity at the time corresponding to AXM, and
the solid generated by pgNM represents the space described in
time MN. The whole space is therefore represented by the
cone generated by 4BC, or $AB.wBC* which gives the same
result as before.

(2) To find the space described from rest at any time by a
particle under the action of a force whose accelerating effect
varies as the m™ power of the time.

This problem is more simply solved by applying directly
the method of summation, since in order to find the area of
the curve, constructed as in Lemma X., we should eventually
be obliged to have recourse to that method.

Let the time ¢ be divided into » equal intervals, and let the
acceleration by the force at the time ¢ be p¢™ ; hence, at the com-

"
mencement of the (r+1)t interval, the acceleration will be p (%t) )
and, if the force be continued uniform during this interval, the
velocity generated will be p (%t) 7—t1 ,and if the same arrange-

ment be made during each interval, the whole velocity generated

174 2% o ((z - l)mPtm

will be e '; hence, when the number of

intervals is increased indefinitely, it follows, by the reasoning
M1

of Lemma II., that the velocity at the time t= ﬁ’tﬁ’
In the same manuer, if the velocity at the commencement of
each interval were continued uniform during the interval, the
space described could be shewn to be
1M1+ 2"+1+.'.+ ("_l)ﬁil pﬂl ]
" ‘m+1’
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whence, proceeding to the limit, the space described in the
5 e . ptﬂl+2
time ¢= —————(m+ 1) (m_+ Ok
(8) To find the wvelocity acquired from rest, when a body s
acted on by an attractive force whose accelerating ¢ffect varies
as the distance from a fixed point.
Let S be the fixed point, 4 the point from which the motion
commences, and let AB, perpendicular to S4, represent the
accelerating effect of the force at 4. Join SB, and let MP, per-

I
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pendicular to S4, meet SBin P; then, since PM: BA:: SM: 84,
PJM represents the accelerating effect of the force at M, and the
square of the velocity acquired at M is represented, Art. 57, by
twice the area BAPM or SA.AB— SM.MP.

With centre S and radius S4 describe a circle 4QR, and
let MP(Q), NR be ordinates at @, R; then, if uD be the measure
of the accelerating effect of the force at a distance D, (vel.)*
at M=pu (SA*~ SM*); therefore the velocity at M= /(u) QM.

(4) Time of describing a given space from rest under the
action of a force varying as the distance from a fixed point.
The time of describing MN is ultimately, when MN is in-
S LR e S B x circular
» V(W) QI = ) 5Q = Vg)
measure of QSR; therefore, if ¢ be the time from 4 to M
t &/(1) will be the circular measure of 45¢Q. )
Let SA=a, then the distance from § at the time t=a cos ¢ 4/(u},
and the velocity =a #/(u) sin{¢ 4/(u)}; hence, when ¢ y/(x) =,

indefinitely diminished
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the particle will come to rest at the point .4’ on the opposite
side of 8, where S4'=84, and, the time of oscillation from

rest to rest, being ﬁ, will be independent of the distance
from which the motion commences.

(5) Simple harmonic motion.

Der. The motion of a particle oscillating under the action
of a force tending to a fixed point, and varying as the distance
from it, is called sémple harmonic motion.

From the preceding propositions the following construction
for simple harmonic motion, which may also be taken as a
definition, is obtained.

When a point Q moves uniformly in a circle, and an ordinate
QM is drawn from its position at any instant to any diameter
AA'y the motion of M, the foot of the ordinate, is simple
harmonic motion*

DEer. The amplitude of a simple harmonic motion is the
range SA or SA' on each side of the centre.

The period is the time which elapses from any instant until
the moving point again moves in the same direction through
the same position.

(6) A particle is subject to the action of a force, whose accele~
rating effect varies as the distance from a fixed point, in the
direction of which it acts, the particle is projected from a given
point in a dirvection perpendicular to the direction of the force at
that point, to find the path described by the particle.

Let the force tend to C, and let 4 be the point of projection,
P the position of the particle at any time.

Let CB, perpendicular to CA4, be the distance in which a
particle would be reduced to rest, if projected from C with the
velocity of projection; so that if V be the velocity of projec-
tion, and wCOP be the accelerating effect of the force at P,
V*=puCB* by (3).

* Thomson’s and Tait's Natural Philosophy, Art. 53.
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Describe circles Bb, Aa having the common centre C, and
draw CpP' cutting the circles in p and P’, and draw pn perpen-
dicular to CB, and pm, P'Mto CA.

a,
.B\P’

2
y P

[4 my M A

Referring to (4) supra, it will be seen that two particles start-
ing respectively one from rest at 4 and the other with the
velocity of projection at C, under the action of the same force,
would arrive simultaneously at M and =, since the time in both
cases is proportional to the angle P'CA4.

But the particle in the proposed problem is acted on at P by
a force which is represented by PC, whose accelerating effect
parallel to AC and OB is represented by MC and P, there-
fore the acceleration in AC is the same as that of the particle
supposed to move in 4 C from rest, and the retardation parallel
to' BC the same as that of the particle in CB, projected
from @, therefore Pis in the intersection of np and MP, and
PM:PM:pm:PM:Cp:CP ::CB:04; therefore the re~
quired path of the particle is an ellipse whose semi-axes are

CA and CB.

Cor. 1. Area ACPx area ACP'«c LACP' c time from 4
to P, hence the area swept out by the radius vector is propor-
tional to the time.

Cor. 2. The square of the velocity at P is the sum of the

squares the velocities of the particles at M and n=p. P M +p . pn*
= p.CD? where CD is the semi-diameter conjugate to CP.

(7) Tke space described by a body moving in a medium, in
which the resistance varies as the velocity, when no other force
acts on the body, varies as the velocity destroyed.
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Let the time AK be divided into equal intervals 4B, BC,
CD, ...; and let A/, BY, ... be the velocities at the beginning
of the intervals, the space in time AXK is represented by the
area d AKV'.

i

b

/v\

A4 1 (24

Suppose the force of resistance to be constant throughout the
intervals of time 4B, BC, ..., and equal to the amount at the
commencement of each, and let Aa, Bb, ... be the measures of
the retarding effect ot those forces, then the velocity destroyed
s represented by the limit of the sum of the parallelograms
aB, b0, ... or the area adK%; hence the space deseribed and
the velocity destroyed vary respectively as the areas a’AKk
and a4K%; and, since the resistance varies as the velocity, the
ratios Aa’: Aa, BV : Bb, &c., are all equal; therefore, by
Lemma IV., the areas o’ AKXk, aAKk are in a constant ratio ;
hence the space described varies as the velocity destroyed.

X.

1. If the square of the velocity of a body be proportional to
the space described from rest, prove that the accelerating force is
constant.

2. At what point of the proof of Lemma X. is it assumed
that the body starts from rest?

3. State the proposition by which Lemma X. is replaced, when
the body, instead of starting from rest, commences its motion with
a given velocity.

4. If a body move from rest under the action of a force which
varies as the square of the time from the beginning of the motion,
shew that the velocity at any time will vary as the cube of the
time, and the space described as the fourth power of the time.
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5. If the velocity after a time ¢ from rest be equal to a (2¢ + %),
what will be the shape of the curve in the figure, and the space
described in any time?

6. If the square of the velocity of a moving point vary as the
time, find the space which will be described in a given time; and
shew that the acceleration will vary inversely as the velocity.

7. If the curve employed in the proof of the Lemma be an
arc of a parabola, the axis of which is perpendicular to the straight
line on which the time is measured, prove that the accelerating
effect of the force will vary as the distance from the axis of the
parabola.

XI.

1. If in the velocity curve of Lemma X. there should occur
a point where the two parts of the curve cut one another at a
finite angle, what would be the interpretation of this singularity ?
Explain also what a point of inflexion would imply.

2. A particle is placed in the line joining two centres of
attracting force, the accelerating effect of each of which varies as
the distance, find the time in which the particle oscillates.

3. When a body moves from rest at 4 under the action of a force
which varies as the square of the distance from §(=p.SM* at M),
the square of the velocity at M = 3u (S4° - SM?).

4. If a body be acted on from rest by a repulsive force which
varies as the distance from a fixed point, find the velocity when the
body arrives at any position.

5. Two points move from rest in such a manner that the ratio
of the times in which the same uniform acceleration would generate
their respective velocities at those times is constant. Shew that
their respective lerations, at any time bearing that ratio, are

equal.

6. Two forces reside at S, one attractive and whose accelerating
offect on a particle varies as the distance from S, and the other
constant and repulsive; prove that, if a particle be placed at 8,
it will move until it be brought to rest at a point which is double
the distance from § at which it would rest in equilibrium under the
action of the forces.

7. A particle moves from rest at 4 under the action of a force
tending to S, and varying as the distance from S, and in its path
towards § it strikes another particle of equal mass at rest at B;
prove that, if the particles be perfectly elastic, they will meet again
on the opposite side of S at a distance equal to SB, and continue
to impinge at B and B’ for ever.

M
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LEMMA XI

The vanislhing subtenses of the angle of contact, in all curves
which have finite curvature at the pownt of contact, are
ultimately in the duplicate ratio of the chords of the con-
{erminous ares.

Case 1. Let AB be the arc of a curve, 4D its tangent at
A, BD the subtense of the angle of contact, BAD, per-
pendicular to the tangent, A.B the chord of the arc.

Draw A6, BG perpendicular to the tangent 4D and
the chord AB respectively, meeting in G'; then let

4

L4 2,
ﬂ\dﬁn 3
O

¢ B8

the points D, D, G move towards the points d, 3, g,
and let 1 be the point of ultimate intersection of the
lines BG, AG, when the points B, D move up to 4.
It is evident that the distance G'J may be made less
than any assigned distance by diminishing AB.
But, since the angles ABD and GAB are e(}ual, and
also the right angles BDA, AB(, the triangles ABD,
GAB are similar; therefore BD : AB:: AB: AG,
"or BD.AG = AB’, and, similarly, bd.Ag = Ab;
o AB': AV = BD.AG :bd. Ag;
therefore the ratio AB*: A% is a ratio compounded
of the ratios of BD : bd and AG : Ag.
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But, since GI may be made less than any assigned
length, the ratio A G : Ag may be made to differ from
a ratio of equality less than by any assigned dif-
ference; therefore the ratio AB*: AY may be made
to differ from the ratio BD : bd less than by any
assigned difference.

Hence, by Lemma I., the ultimate ratio AB*: 45* is the
same as the ultimate ratio of BD : bd. Q.E.D.

Case 2. Let now the subtenses BD, &d’ be inclined at
any given angle to the tangent; then, by similar
triangles D'BD, d'bd’, BD':bd':: BD: bd, but ulti-
mately BD :bd:: AB': AF; therefore ultimately
BD :bd :: AB": AV, Q.E.D.

Case 3. And, although the angle D' be not a given
angle, if BI converge to a given point, or be (i‘awn
according to any other [fixed] law [by which the
angle D' remains finite, since B2 is a subtense], still
the angles D, &', constructed by this law ecommon
to both, will continually approach to equality and
become nearer than by any assigned difference, and
will be therefore ultimately equal, by Lemma I.,
and hence BD/, bd’ will be ultimately in the same
ratio as before. Q.E.D.

Cor. 1. Hence, since the tangents 4D, Ad, the arcs
AB, Ab and their sines BC, bc become ultimatel
equal to the chords 4B, 45, their squares also wiﬁ
be ultimately as the subtenses BD, bd.

Cor. 2. The squares of the same lines also will be
ultimately as the sagittee of the ares, which bisect
the chords, and converge to a given point; for those
sagitte are as the subtenses BD, bd.

Cor. 3. And therefore the sagitte will be ultimately
in the duplicate ratio of the times in which a body
describes the ares with a given velocity.

Cor. 4. The rectilinear triangles ADB, Adb are ulti-
mately in the triplicate ratio of the sides 4D, 4d,
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and in the sesquiplicate ratio of the sides DB, db;
since these triangles are in the ratio compounded of
AD: Ad and BD : bd. So also the triangles ABC,
Abe will be ultimately in the triplicate ratio of the
sides BC, be. The sesquiplicate ratio may be re-
garded as the subduplicate of the triplicate, or as
compounded of the simple and the subduplicate
ratios.

Cor. 5. And, since DB, db are ultimately parallel and
in the duplicate ratio of 4.0, Ad [therefore, this
being a property of a parabola,] at every point at
which a curve has finite curvature an are of a parabola
can be drawn which will ultimately coincide with the
curve; and the curvilinear areas A DB, Adb will be
ultimately two-thirds of the rectilinear triangles
ADB, Adb; and the segments AB, Ab the third
parts of the same triangles. And hence these areas
and these segments will be in the triplicate ratio as
well of the tangents 4D, Ad as of the chords and
arcs AB, Ab.

SCHOLIUM.

But, in all these propositions, we suppose the angle of
contact to be neither infinitely greater nor infinitely
less than the angles of contact which ecircles have
with their tangents; that is, that the curvature at
the point A is neither infinitely great nor infinitely
small; in other words, that the distance AZ is of
finite magnitude.

For DB might be taken proportional to 40 in which
case no circle could be drawn through the point 4
between the tangent 4D and the curve 4B, and the
angle of contact would be infinitely less than that
of any circle.

And, similarly, if different curves be drawn in which
DB varies successively as AL, AD*, AD’, &c., a series
of angles of contact will be presented which may be
continued to an infinite number, of which each will
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be infinitely less than the preceding. And if curves
be drawn 1n which DB varies as AD", AD}, AD,
ADA, AD:, &c., another infinite series of angles of
contact will be obtained, of which the first will be
of the same kind as in the circle, the second infinitely
greater, and each infinitely greater than the pre-
ceding. But, moreover, between any two of these
angles an infinite series of other angles of contact
can be inserted, of which each may be infinitely
greater or infinitely less than any preceding; for
example, if between the limits AD* and AL there
beinserted AD¥, ADY, AD%, AD%, AD:, ADY, AD?,
AD¥,ADY,&c. And, again, between any two angles
of this series there can be inserted a new series of
intermediate angles differing from one another by
infinite intervals. Nor does the nature of the case
admit any limit.

The propositions which have been demonstrated con-
cerning curved lines and the included areas are easily
applied to curved surfaces and solid contents.

These Lemmas have been premised for the sake of
escaping from the tedious demonstrations by the
method of reductio ad absurdum, employed by the old
geometers. The demonstrations are certainly ren-
dered more concise by the method of indivisibles;
but, as there is a harshness in the hypothesis of indi-
visibles, and on that account it is considered to be
an imperfect geometrical method, it has been pre-
ferred to make the demonstrations of the following
propositions depend on the ultimate sums and ratios
of vanishing quantities and on the prime sums and
ratios of nascent quantities, 7.e. on the limits of sums
and ratios; and therefore to premise demonstrations
of those limits as councise as possible. By these
demonstrations the same results are deducible as by
the method of indivisibles; and we may employ the
principles which have been established with greater
safety. Consequently, if, in what follows, quantities
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should be treated of as if they consisted of particles
[indefinitely small parts], or small curve lines should
be employed as straight lines, it would not be in-
tended to convey the idea of indivisible, but of
vanishing divisible quantities, not that of sums and
ratios of determinate parts, but of the limits of sums
and ratios; and it must be remembered that the force
of such demonstrations rests on the method exhibited
in the preceding Lemmas.

An objection is made, that there can be no ultimate

proportion of vanishing quantities; inasmuch as
before they have vanished the proportion is not
ultimate, and when they have vanished it does not
exist. But by the same argument it could be main-
tained that there could be no ultimate velocity of a
body arriving at a certain position at which its
motion ceases ; for that this velocity, before the body
arrives at that position, is not the ultimate velocity ;
and that, when it arrives there, there is no velocity.
And the answer is easy: that, by the ultimate velo-
city is to be understood that, when the body is
moving, neither before it reaches the last position
and the motion ceases nor after it has reached it,
but at the instant at which it arrives; 4.e. the very
velocity with which it arrives at the last position and
with which the motion ceases.

And, similarly, by the ultimate ratio of vanishing

quantities is to be understood the ratio of the quan-
tities, not before they vanish nor after, but with wkich
they vanish. Likewise, also, the prime ratio of nas-
cent quantities is the ratio with whick they begin to
exist. And a prime or ultimate sum is that with which
it begins to be increased or ceases to be diminished.

There is a limit which the velocity can attain at the

end of the motion, but cannot surpass. This is the
ultimate velocity. And the like can be stated of
the limit of all quantities and proportions com-
mencing or ceasing to exist. And, since this limit
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is certain and definite, to determine it is strictly a
geometrical problem. And all geometrical propo-
sitions may be legitimately employed in determining
and demonstrating other propositions which are
themselves geometrical.

It may also be argued that, if the ultimate ratios of
vamishing quantities be given, the ultimate magni-
tudes will also be given, and thus every quantity
will consist of indivisibles, contrary to what Euclid
has demonstrated of incommensurable quantities, in
his tenth book of the Elements.

But this objection rests on a false hypothesis. Those
ultimate ratios with which quantities vanish are not
actually ratios of ultimate quantities, but limits to
which the ratios of quantities decreasing without
limit are continually approaching; and which they
can approach nearer than by any given difference,
but which they can never surpass, nor reach before
the quantities are indefinitely diminished

The argument will be understood more clearly in the
case of infinitely great quantities. If two quantities,
of which the difference is given, be increased infi-
nitely, their ultimate ratio will be given, namely, a
ratio of equality, yet in this case the ultimate or
greatest quantities of which that is the ratio will
not be given.

In what follows, therefore, if ut any time, for the sake
of facility of conception, the expressions indefinitely
small, or vanishing, or ullimate be used concerning
quantities, care must be taken not to understand
thereby quantities determinate in magnitude, but to
conceive them in all cases quantities to be diminished
without limit.

Curvature of Curves.
60. The curvature of a curve at any point is greater or less
as the amount of deflection from the tangent at that point, in
the immediate neighbourhood of the point, is greater or less.
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Two curves will have the same curvature at two points, taken
one in each, if at equal distances from the points of contact, in
the immediate neighbourhood of the points, they have the same
deflection from the tangents at those points.

61. An exact geometrical test of ejuality of curvature may
be obtained as follows:

If AB, ab be two curves which have the same curvature at
A4, a respectively, draw the tangeants 4C, ac and take 4C=ac. .

A C a

S /

Draw subtenses BC, e inclined at equal angles to the tangents.

If BC and bc were equal, for all equal values of AC; ac, the
curves would be equal and similar. 1f BC: ¢ be ultimately
a ratio of equality, when AC, ac are taken indefinitely small,
the curves will have the same deflection from the tangents in the
immediate neighbourhood of 4, a, .or the curves will have the
same curvature at those points.

If the chords AB, ab be drawn, it will be an immediate con-
sequence that the ultimate ratio of the angles BAC, dac will be
a ratio of equality. These angles are called the angles of contact.

Hence, curves will have the same curvature at two points,
one in each, if, equal tangents being drawn at those points,
and subtenses inclined at any equal angles to the tangents, the
limiting ratio of the subtenses be a ratio of equality, or if the
limiting ratio of the angles of contact be a ratio of equality.

62. The curvature of one curve will be infinitely greater or
infinitely less than that of another if the limiting ratio of the
subtense of the first to that of the second be infinitely great
or infinitely small.

63. The ratio of the curvature ot one curve to that of
another at two points, or of the curvature of the same curve at
two different points, is the limiting ratio of the subtenses drawn
from the extremities of equal tangents and inclined at equal
angles to the tangents.
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64. The curvature of a curve is said to be finite, at any
point, when the ratio of the curvature at that point to that of
any circle whose radius is finite, is a finite ratio.

65. The curvature of a circle 1s the same at every point.

Let 4, a be any two points on a circle, AC, ac equal tan-
gents at A4, a, Cb, cb subtenses perpendicular to the tangents,
OD, Od perpendicular to the subtenses produced; therefore
CD =cd, each being equal to the radius, and BD =>5d; hence
BC=bc always, and therefore ultimately, when the arcs are
indefinitely diminished, BC : bc is a ratio of equality ; therefore

the circle has the same curvature at any two points.

65. In different circles the curvatures vary inversely as the
radii.

In the last figure, produce OB to the circumference in E.
Then, AC*=CB.CE} also, if A’C’ be a tangent to another circle,
and A4'C’ be taken equal to 4 C, and the same construction be
made, 4'C*=C'B'.C'E’; therefore CB.CE=C'B'.C'E’, and
CB:C'B':: C'E': CE; and when AC, A'C’ are indefinitely
diminished, CE=240; therefore CB: O'B :: A0’ : A0, ulti-

mately, or the curvatures are inversely proportional to the radii.

Measure of Curvature.
67. The curvature of a circle is the same at every point;
the curvatures of different circles vary inversely as the diameters
N
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of the circles; and a circle can be constructed of any degree of
finite curvature by varying the magnitude of the diameter.

Hence, a circle can always be found whose curvature at any
point is equal to that of a curve at a fixed point.

The curvature of a curve at any point is therefore completely
determined when the diameter of the circle is found, which has
the same curvature as the curve at the given point.

The diameter of the circle, which has the same curvature as
the curve at a given point, is called the diameter of curvature of
the curve at that point.

The chord of the circle, drawn in any direction, is called the
chord of curvature in that direction.

The circle itself is called the circle of curvature, and is the
circle which has the same tangent as the curve at any point, and
also the same curvature.

68. Any other curve might have been chosen to establish a
standard measure of finite curvature; but, since no curve but
the circle has the same curvature at every point, it would then
have been necessary, after selecting the curve, to specify the
point, the curvature at which might be made the measure of
curvature.

Thus, if the standard curve were a parabola, we must choose
the curvature of the parabola at the vertex or at the extremity
of the latus rectum or at some determinate point, by which to
obtain the measure.

The inconvenience is obvious.

General Properties of the Circle of Curvature.

69. If a circle be drawn touching a curve at a given point,
and cutting it at a second point, as the second point approaches
indefinitely near the point of contact, the circle will assume a
limiting magnitude, and will evidently satisfy the condition of
having the same curvature as the curve at that point.

70. Since a tangent at any point is the limiting position
of a side, terminated in that point, of a polygon inscribed in
the curve, whean the number of sides is increased indefinitely,
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s0 the circle of curvature at any point is the limiting circle
which passes through three consecutive angular points of the
polygon, one of which coincides with the point.

71. No circle can be drawn whose circumference lies between
a curve and 1ts circle of curvature, in the neighbourkood of the
point at which the circle of curvature is drawn.

For, let AQ be the arc of the curve, Ag of the circle of
curvature ; and let, if possible, another circle be drawn, of which
the arc 48 lies between the curve and circle, and having there-
fore the same tangent AR at 4; and let BQ, the subtense per-
pendicular to the tangent, cut the circles in S, ¢.

A B

Q
ny
9

Then SB : gR will be ultimately in the inverse ratio of the
diameters of the circles; therefore SE will be ultimately unequal
to ¢gR; but, since gR and QR are ultimately in a ratio of
equality, SR, which is intermediate in magnitude, will be ulti-
mately equal to either, which is absurd; therefore no circle, &e.

This proposition corresponds to Euclid 111., Prop. XVI.

72. The circle of curvature generally cuts the curve.

For the curvature of the curve at different points taker along
the curve continually increases or continually diminishes, until
it arrives at a maximum or minimum value.

If therefore the circle of curvature be drawn at any point,
on the side on which the curvature is increasing, as we proceed
from the point, the curve will lie within the circle, and on the
other side, on which the curvature is diminishing, the curve will
lie without the circle; which proves the proposition for the
general position of the point.

For the particular case, in which the point is at a position
of maximum or minimum curvature, as at the extremities of the
axes of an ellipse, if the curvature be a maximum the curvature
at adjacent points on either side will be less than that of the
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circle of curvature at the point under consideration; therefore
the circle will lie entirely within the curve on both sides near
the point of maximum curvature; and, similarly, it will lie
without the curve at points of minimum curvature.

We can illustrate this by reference to the polygon inscribed
in the curve; see the figure in the following page.

If, in the curve, equal chords 4B, BC, CD, DE,... be placed
in order, generally the angles ABC, BCD, CDE,... will increase
or decrease, commencing from any point, which property of the
polygon will have in the curvilinear limit, when the chords are
diminished indefinitely, the corresponding property, that the
curvature decreases or increases continually.

Suppose the angles are increasing from B; make the angles
CBA', CDE' equal to the angle BCD, and BA') DE" equal to
BC, CD...; then a circle through B, C, D will pass also through
A" and E'y and these points will be on opposite sides of the
perimeter of the polygon, whence, if we proceed to the limit,
the circle of curvature at a point in the middle of incrcasing
carvature will cut the curve.

If the angles ABC and DEF be each less than the angles
BCD, CDE, supposed equal, the curvature will decrease and
then increase, and the circle about BCD will pass through E,
and B4, EF will lie within the circle, and, proceeding to the
limit, the circle of curvature will lie without the curve, ncar
the point of minimum eurvature.

Evolute of a Curve.

73. Der. If the circles of curvature be drawn at every
point of a curve, the centres of those circles will lie in a curve
which is called the evolute of the proposed curve.

Properties of the Evolute.
74. The extremity of a string unwrapped from the evolute of
@ curve traces out the curve.

Let ABODE be any equilateral polygon, and let a'a, 83, ¢'c
d'd be drawn perpendicular to the sides from the middle points
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', ¥, &ec., these intersect in the angular points abed... of another
polygon.

If a string were wrapped round a'abed... the extremity o
would as the string was unwrapped pass through the points
ab'cd.

Let now the number of sides of the polygon be increased and
the magnitude diminished indefinitely. '

The points a'd'c’... will be ultimately in the curve which is
the limit of the polygon, and since a, b, c... are the centres
of the circles described about ABC, BCD,..., a, b, ¢,... will be
ultimately the centres of the circles of curvature at a'0'c..., and

e ___é;i/ {/;‘

the curve, which is the limit of the polygon abed..., will be the
evolute of the curve a'b'c’..., and the property proved for the
polygons will be true for the limits of the polygons, therefore
the extremity of the string unwrapped from the evolute will
trace the curve of which it is the evolute. This property gives
rise to the name of evolute.

Der. The curves formed by the unwrapping of a string
from a curve are called nvolutes.

75. The tangent to the evolute of a curve s a normal to the
curve,

Since 5% is ultimately the tangent to the evolute and is
perpendicular to BC, which is ultimately the tangent to the
curve a'b'c'... , therefore the tangent to the evolute is a normal
to the curve.
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Propositions on Diameters and Chords of Curvature.

76. If a subtense be drawn from the extremity of an are
of finite curvature, in any direction, the chord of curvature
parallel to that direction will be the limit of the third pro-
portional to the subtense and the arc.

Let PQ, Pq be arcs of a curve and its circle of curvature
at P, let PR be the common tangent, and RQqg the direction
of a common subtense, meeting the circle in UL

Draw the chord PV parallel to RQ. Then, since Rq.RU=PE?,
RU is the third proportional to Eg and PR.

P R

;@

[/a
But, ultimately, when PQ is indefinitely diminished, U= PV,
and PR = PQ), by Lemma VIL also, Bg=RQ by the property
of the circle of curvature.
Therefore PV is the limit of the third proportional to EQ
and PQ.

CoRr. The diameter of curvature is the limit of the third pro-
portional to the subtense perpendicular to the tangent and the arc.

77. The two chords of curvature at any point of a parabola
drawn through the focus, and in the direction of the diameter, are
each equal to four times the focal distance of that point.

Let AP be a parabola, P any point, £Q a subtense parallel
to the diameter PMz, QM the ordinate at @, S the focus.
Then, by a property of the parabola, QM*=48P. PM; there-
fore 48P is a third proportional to PM and QM, t.e. to RQ
and PR.

Hence, 4SP is the limit of the third proportional to the
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subtense QRF and the arc PQ, and is therefore equal to the
chord of curvature at P in direction of the diameter.

A 8 s

And, since PS, PM are equally inclined to the tangent at P,
the chords in those directions are equal; therefore the chord of
curvature through S is four times the focal distance SP.

78. One-fourth of the diameter of curvature at any point
of « parabola is a third proportional to the perpendicular from
the focus on the tangent at that point, and the focal distance of
that point.

For, draw SY, QR' perpendicular to PR, and let PI be the
diameter of curvature.at P.

Then PI. QR = PQ’ = PR® ultimately, =48P. QR;
<o PI:4SP:: QR: QR':: SP: SY;
since the triangles SYP, QR'R are similar; therefore }PI is
a third proportional to SY and SP.

79. The chord of curvature at any point of an ellipse drawn
through the centre of the ellipse is a third proportional to the
diameter through that point and the diameter conjugate to .

Let P be any point in an ellipse, PC@ the diameter, DCD’
conjugate to it, @ any point near P, QR a subtense parallel
to CP, QM an ordinate parallel to DC, PV the chord of curva-
ture drawn through C.

Then PV.QR=PQ' = QM* ultimately,
and QM*: PM.MG ::CD': CP*;
<. PV.QR: QR.MG :: CD*: CP® ultimately;
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. PV :2CP:: CD*: CP* ultimately;
s PV.CP: CP*::2C0D*: CP?,
and PV.CP=20D;

D

x
HC\

N

or PV is a third proportional to PG and DCD'.

80. The chord of curvature at any point through tne ,ocus is
a third proportional to the major axis, and the diameter parallel
to the tangent at that point.

Draw the focal distance SP cutting the diameter DCD' in E,
let PV’ be the chord of curvature through S, and draw the
subtense QR' parallel to SP.

Then PV': PV:: QR : QR ultimately
:: OP: PE by similar triangles;
.. PV'.PE=PV.CP=2CD*;
.. PV’ is a third proportional to 2P£ and DCD',
and 2PF iz equal to the major axis.
Similarly for the other focus Z.

81. The diameter of curvature at any point is a third pro-
portional to twice the perpendicular from the point on the diameter
parallel to the tangent and that diameter.

Draw QR" perpendicular to the tangent, and PF perpen-
dicular to DCD', and let PI be the diameter of curvature.

B PRV QRSSO R A C R VP
.. PI.PF=PV.CP=2CD’;
» PI is a third proportional to 2PF and DCD'.
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82. Since the chord of curvature in any direction varies
inversely as the subtense QR drawn in that direction, it is easily
seen that, if PL be the portion of the chord intercepted between
P and DCD', the chord of curvature at P in the direction PL
will be the third proportional to 2PL and DCD'.

83. The propositions concerning the chords and diameter
of curvature of an ellipse may be proved in the same words for
the hyperbola, employing the following figure.

/g [ as K
84. The radius of curvature at any point of a conic section
13 to the normal in the duplicate ratio of the normal to the semi-
latus rectum. )
Let PK be the normal, PO the radius of curvature at F,
L the semi-latus rectum.
(i) For the parabola,
BOLI2SE s SPE 8V 8Ya: 84y
. PO:28Y :: SP: SA::48P.84 : I*;
but PK=28Y; .. PK*=48P.84; ... PO: PK:: PK*: I’
(ii) For the ellipse or hyperbola,
PQO.PF= CD' and PK.PF=BC*;
RO RRRGA G)S - BCR 5 ACY : PR,
but PF.PK=B(C*=L.AC; .. AC: PF:: PK: L;
B ORVPR 3 P o I
0



98 NEWTON.

85. To find the chord common to a conic section and the
circle of curvature at any point.

If a circle intersect a conic section in four points, as PQUR
and these points be joined in pairs by two lines, these lines will

be equally inclined to the axis of the conic section. Thus, in
the conic section, PQ, RU are equally inclined to the axis.

For, if UR, QP intersect in O, OR.OU= OP.0@, hence
the diameters of the ellipse parallel to UR, QP will be equal,
and therefore equally inclined to the axis.

Let @ and B move up to and ultimately coincide with P,
then the intersecting circle becomes the circle of curvature at P,
and PQ is in the direction PT of the tangent, ultimately, and
RU assumes the position of the chord common to the conic
section and the circle of curvature at P. Hence, if PV be
drawn at an equal inclination with PT to the axis, PV will be
the common chord required.

And, if VI be drawn perpendicular to PV, meeting the
normal at Pin I, PI will be the diameter of curvature at P.

86. To find the radius of curvature of a curve defined by
the relation between the radius vector and the perpendicular from
the pole on the tangent.

Let PY, PP'Y’ be the directions of consecutive sides of a
polygon inscribed in a curve, 8Y, SY' perpendiculars on these
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sides; draw PO, P’O perpendicular to the same sides, inter-

NE
Y/ LAY
S
0

secting in O, and P'U perpendicular to SP, and let SY, PY’
intersect in W.
A semicircle on SP as diameter passes through ¥ and Y3

o LYPW=,Y8Y'=¢POP', and £ WYP=. OP'P;
therefore the triangles POP’, WPY are similar;
s PO: PP :: PW: YW,
also PP': 8P:: PU: PY',
by similar triangles P'UP, SY'P, and PW=PY" ultimately;
. PO:SP:: PU: YW :: SP~ SP': 8§Y ~ 8Y' ultimately.
Also, if PV be the chord of curvature through 8,
PV:2P0;: SY: 8P;
o PV:28Y:: SP~ SP': SY ~ SY’ ultimately.

Observations on the Lemma.

87. In the proof of Lemma XI., AI is the limit of the
third proportional to BD and AB, hence it is the diameter of
curvature of the curve at 4.

88. For an example of a law according to which, in Case 3,
the directions of the subtenses may be determined, we may
suppose that they always pass through a point given in position
at a finite distance from 4, or that they always touch a given
‘curve; but it must be observed that the case in which they
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touch a curve which has the same tangent 4D at 4 is excluded,
gince in this case the angles D', d’ do not in the limit remain
finite, a property required in the name subtense.

89. Der. Ifa line be drawn from the middle point of an
arc of a curve, making a finite angle with the chord, the part
intercepted between the chord and the arc is called the sagitta
of the arc.

90. The sagitia of an arc is ultimately one quarter of the
subtense drawn at the extremity of the arc parallel to the sagitta.
Let the sagitta FE bisect the arc AB in E, and be pro-
duced to the tangent at 4 in @, and let BD be a subtense
parallel to FE.
a G D
~S
B
Then EG: BD :: AE*: AB® ultimately; ... BD=4EQ,

also BD: FQ:: AD: AG :: AB: AE ultimately;
». BD=2FG@=4EQG; hence FE=EG =}BD ultimately.

9L. Cor. 5. The parabola mentioned in this corollary is a
parabola of curvature at that point; for, since DB is taken in
any given direction, the proportion BD : bd :: AD" : Ad” proves
that the curve is ultimately in the form of a parabola, and that,
therefore, the line through A4 drawn in the given direction is the
corresponding diameter of the parabola of curvature.

Hence the axis of the parabola may be taken in any as-
signed direction.

If the subtenses be perpendicular to the tangent, the parabola
of curvature will be the parabola whose curvature at the vertex
will determine the curvature of the curve, since the axis will be
perpendicular to the tangent, and if 447, in the figure page 104,
be the third proportional to the subtense and arc, the limiting
position of ‘U will be the focus of the parabola.

By means of this corollary the proposition alluded to under
Lemma IX., Art. 44, is established; viz. that the ratio of the
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areas which takes place of the duplicate ratio, obtained in that
Lemma, is the triplicate ratio of the same lines, when the line,
AE, instead of cutting the tangent at a finite angle, coincides
with the tangent.

92. Scholium. Let AB, AC be two curves, having a
common tangent 4D at 4, and let subtenses DB, DBC of the

D a
P7a b
c

angles of contact be drawn from D at any point in the tangent
in the same direction, and let BDoc AD", CD o« AD" in the
curves AB, AC respectively. Draw dbc a common ordinate
from a fixed point d, parallel to DBC. Then .
AD": Ad™ :: BD : bd,
and AD" : 4d" :: CD: cd,
and if m be greater than n, ==+ suppose,
AD"AD : Ad".dd":: BD : bd;
o CD.AD : ed .Ad":: BD : bd
22 BD . AD :bd.ADr;
s CD:BD::cd .Ad":: bd .AD,
and since b, ¢, d are fixed, and AD vanishes in the limit, there-
fore CD is indefinitely greater than BD; also, since the angles
of contact BAD, CAD are ultimately proportional to BD, 0D,
it follows that, if in two curves the subtenses vary according
to different powers of the ares or tangents, the angle of contact
of that curve in which the index of the power is the least will
be infinitely greater than the angle of contact of the other.

Illustrations.
(1) Two tangents AT, BT are drown at the extremities of

an arc AB, to prove that AT is ultimately equal to BT, when AB
is indefinitely diminished.
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Draw TCUV in any direction making a finite angle with the
tangents, and meeting the circles of curvature at 4 and B inUV.
D

T

e
Then since the circle of curvature at 4 is the limit of the circle
which passes through C and has the tangent AT at A, and
similarly for that at B, we have ultimately

T4*: TB*:: TC.TU: TC.TV,
and 7U= TV ultimately; .. T'4 = 7'B ultimately.

Cor. If BD be any subtense of the arc AB,

AT+ TB=AB=AD ultimately;
therefore 4D will be ultimately bisected by the tangent BT.

(2) If BT be a tangent at B, AB, BC equal chords of a
curve of finite curvature, drawn from B, and AB be produced
to ¢, making Be=AB, and Cc be joined meeting BT in T, cT
will ultimately be equal to CT, when the arcs AB, CB are
diminished indefinitely.

Let AU be drawn parallel to CT, meeting the tangent at B
in U, and let two circles touch UBT at B and pass one through

c
A% 7 5

4 and the other through C, and let BV, BV" be chords of these
circles drawn parallel to AU or C7, then AU.BV=AB’, and
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CT.BV'=BC*; but BV= BV ultimately, since the two circles
are each ultimately the circle of curvature at B and 4B=B(,
therefore A U= CT ultimately.

Through B draw RBR' parallel to 4C, meeting AU in E'
and Cc in B, then B'U=RT, therefore 2RT is the difference
between AU and C7, hence BT ultimately vanishes compared
with CT) and since CR = R, therefore CT'= T¢ ultimately.

(8) If, from the point of contact of a curve with its tangent?
equal distances be measured along the curve and tangent, the line
joining their extremities will ultimately be parallel to the normal
at the point of contact.

In the last figure, let, BC, BT be equal distances, measured
along the arc and the tangent; join CT, let the tangent at ¢
meet BT in D, produce BT to F making DF= DC, take BE =
the chord BC, and join EC, T'C, and FC.

Since the arc BC is intermediate in magnitude between
BD+DC and BC, therefore, BT being equal to arc BC, the
point 7 lies always between K and F. But the triangles BCOE,
DCF being both isosceles, each of the angles BEC, BFC will
ultimately be a right angle, therefore the angle BTC, which is
less than BEC and greater than BFC, will also ultimately be
a right angle.

Hence CT will ultimately be parallel to the normal at B.

Note. In order to shew the danger of falling into an error
by a careless employment of the propositions proved in the
first section, the following fallacious proof may be noticed of
the above proposition.

In the figure page 102, join BC, then BT: (B will be
ultimately a ratio of equality, by Lemma VII; therefore CBT
being an isosceles triangle ultimately, CT will be perpendicular
to the line bisecting the angle CBT, and therefore to the
tangent BT, since BT and BC will ultimately coincide with the
bisecting line.

The fact is that Lemma VIL only allows us to assert that
BT and the chord BC differ by a quantity 7%, which vanishes
compared with either of them, and therefore 7% may «« BC*;
but, by Lemma XI, 0T «c BC®; hence T¢: CT may possibly
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be a finite ratio, or CT' may be ultimately inclined at any finite
angle to B7, at least as far as the reasoning given in the above
proof is concerned.

(4) To construct for the focus of the parabola of curvature
whose axis is in a given direction.

N

'E U

Let 4B be a curve of finite curvature, BD, bd subtenses
parallel to AE the given direction. Draw AU perpendicular to
AD, and AS making angle UAS = UAE}; then since AEis a
diameter of the parabola by Art. 91, A4S isin the direction of
the focus.

Also, if 448 be taken a third proportional to BD and 4D,
the limiting position of S will be the focus of the parabola.

(5) o find the locus of the focus of the parabola of curvature,
when its axis changes its direction.

Let BC be perpendicular to 4D, and AU be chosen so that
44U.BC = AC? then the limiting position of U is the focus of
the parabola whose curvature at the vertex is the same as that
of the curve at 4; also, if S be the focus of the parabola whose
axis is parallel to DB, 448.DB = AD' = AC*, ultimately;
therefore AU: AS:: BD: BC, and £ SAU = £ DBCj; hence
if we join SU, the triangles SAU, CBD will be similar, and
¢ ASU = ¢ BCD = a right angle ; therefore the locus of § is
a circle on AU as diameter.

(6) ABC s an arc of finite curvature, and s divided so that
AB: BC::m: n, a constant ratio; join AB, AC, BC, and
shew that, ultimately, AABC : segment ABC :: 3mn : {m + n).
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For, by Cor. 5, Lemma XI.

seg AB:seg ABC:: AB’: ABC":: m*: (m + n)®

seg BC: seg ABC :: n*: (m + n)*;
s.seg AB 4 seg BCO:seg ABC :: m® + o : (m + n)’,
and A ABC = seg ABC — seg AB — seg BC;
. A ABC:seg ABC:: 8 (m'n + mn®) : (m + n)*
22 3mn : (m + n)t
(7)o find the chord of curvature, at any point of the cardioid,
through the focus.

It is easily seen from p. 56 (3), that SY being perpendicular
to PT, the triangles PSY, pBm, and CBp are similar;

T

TS RS BB e Bk e B RB
»~ 8Y*: 8P :: SP: BC, since Bm = SP,

o 8Y*BC = SP°, and (SY* — SY”) BC = SP° — SP”;
o SP~SP': 8Y~8Y'::28Y.BC: 3SP” ultimately ;
.~ by Art. 86, chord of curvature : 28Y :: 28P: 38Y;

therefore the chord of curvature through S = §SP.

XIIT.

1. Prove that the focal distance of the point in the parabola at
which the curvature is one-eighth of that at the vertex is equal to
the latus rectum.

P
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2. Prove that the diameter of curvature at the vertex of the
major axis of an ellipse is equal to the latus rectum: and shew
that the ratio of the curvature at the extremities of the axes is that
of the cubes of the axes.

8. Shew that at no point of an ellipse will the circle of
curvature pass through the centre, if the eccentricity be less
than v3.

4. Find for what point of an ellipse the circle of curvature
passes through the other extremity of the diameter at that point,
shew that the distance of this point from the centre is the side of
the square of which 4B is the diagonal.

5. In a rectangular hyperbola, the diameter of curvature at any
point, and the chords of curvature through the focus and centre are
in geometrical progression.

6. Prove that at a point P in an ellipse for which the minor
axis is a mean proportional between the radius of curvature and
the normal, PC'= AC - BC. Shew that this is impossible unless
4Cs 2BC.

7. If the radius of curvature for an ellipse at P be twice the
normal, prove that CP = C8.
If moreover 4C = 2BC, prove that CP = 3PIL

8. If the circle of curvature at a point P of a parabola pass
through the other extremity of the focal chord through P, and the
tangent at P meet the axis in 7, prove that the triangle P87’ will
be equilateral.

9. Prove that the distance of the centre of curvature, at any
point of a parabola, from the directrix is three times that of the
point.

10. If the circle of curvature at a point on a parabola touch
the directrix, the focal distance of the point will be % of the latus
rectum.

11. PQ is a normal at a point P of a rectangular hyperbola,
meeting the curve again in @, prove that PQ is equal to the
diameter of curvature at 2.

12. Prove that the portion of the normal intercepted between

the line joining the extremities of the two chords of curvature through
H

the foci of an ellipse, and the point of contact P, is 2_’%61 5
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13. A fixed hyperbola is touched by a concentric ellipse. . If
the curvatures at the point of contact be equal, the area of the
ellipse will be constant.

14. Shew that the directrices of all parabolas touching a curve
of finite curvature at any given point, and having the same curvature
at that point as the curve, pass through a fixed point.

XTII.

1. Prove that the chord of curvature through the vertex 4
of a parabola : 2PY :: 2PY : AP, Y being the intersection of the
tangents at P and A.

2. Apply the property that the radius of curvature at any point
of an ellipse is to the normal in the duplicate ratio of the normal to
the semi-latus rectum, to shew that the radius of curvature at the
extremity of the major axis is equal to the semi-latus-rectum.

3. Assuming only that a curve has a subnormal of constant
length, prove geometrically that its radius of curvature varies as
the cube of its normal.

4. If Pp be any chord of an ellipse, PZ, pT tangents at P
and p, shew that the curvatures at P and p are as the cubes of p7
and PT.

5. Shew that the sum of the chords of curvature through a
focus of an ellipse at the extremities of conjugate diameters is
constant. Also, if p, o be the radii of curvature at those points,

prove that p' + of is constant.

6. Prove that the chords of curvature through any two points
on an elligse in the direction of the line joining them are in the
same ratio'as the squares on the diameters parallel to the tangents
at the points.

7. Prove that the distances of the centre of curvature at any
point of an ellipse and of that point from the minor axis are in the
duplicate ratio of the distances of the point and the directrix from
the same axis.

8. An hyperbola touches an ellipse, having a pair of conjugate
diameters of the ellipse for its asymptotes. Prove that the curves
have the same curvature at the point of contact.

9. Shew that, if D be the diameter of an ellipse parallel to the
tangent at a point P, whose eccentric angle is ¢, the length of the
chord common to the ellipse and circle of curvature at P will be
D sin2¢
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10. Determine a parabola of curvature in magnitude and position
for any point in a circle, when the subtenses are inclined at 45°to
the tangent.

11. If 2z, y be the coordinates of a point P of a curve OP,
passing tlzxrou*gh the origin 0, the diameter of curvature at O will
2+

————————— ultimately, a being the inclination of the tangent
& slna ~ ¥ co8a

at O to the line of abscissee. Hence shew that, if the equation of
a curve, referred to rectangular areas, be y*+ 24y -2az=0, the
radius of curvature at the origin will be 2 v2.a.

12. A circle is a circle of curvature, at a fixed point in the
cirecumference, to an ellipse, one focus of which lies on the circle,
shew that the locus of the other focus is also a ecircle.

18. Prove that the chord of curvature at any point P of an
ellipse in any direction P@ is half the harmonic mean hetween the
two tangents drawn from P to the confocal conic that touches P@Q,
the tangents being reckoned positive when drawn towards the
interior of the ellipse,

XI1V.

1. If AEB be the chord, 4D the tangent, and BD the subtense,
for an arc 4 CB of finite curvatnre at A4, find the limit of the ratio
area 4 CBE : area ACBI), as B approaches 4.

2, An arc of continuous curvature PQR is bisected in @, P7 is
the tangent at 2; prove that, ultimately, as B approaches P, the
angle BPT is bisected by PQ.

3. If AB be an arc of finite curvature bisected in C, and 7 be
a point in the tangent at 4, at a finite distance from 4, prove that
the angle B7'C will be ultimately three times the angle 74, when
B moves up to 4.

4. Two curves touch one another, and both are on the same
gide of the common tangent. If in the plane of the curves this
tangent revolve about the point of contact, or if it move parallel to
itself, the prime ratio of the nascent chords in the former case will
be the duplicate of their prime ratio in the latter case,

5. ACB is a small arc of finite curvature; prove that the mean
of the distances of every point of the arc from the chord 423 is
equal to 4 of the distance of the middle point of the arc from the
chord, and that the mean of the distances of every point of the arc
from the fangent at either extremity of the arc is equal to 4 of the
distance of the middle point of the are from the same tangent.
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6. When on an arc of continuous curvature there is no point
where the curvature is a maximum or minimum, the circles of
curvature at the extremities of the arc cannot intersect.

7. If S be any point in the plane of a curve, P any point on
the curve, Y the corresponding point on the pedal for which § is
the pole, 7 the point where PSS cuts the circle of curvature at P,
V" the corresponding point for the pedal, then 4SP.SV'=PV.YV".

8. The radius of curvature in a curve increases uniformly with
its inclination to a fixed radius. Prove that the area between the
curve, its evolute, and the two radii of curvature of lengths 4, 3,
which contain an angle ¢, is 2 (a®*+ ab + 5%) ¢.

9. A curve is such that the radius vector makes half the angle
with the normal that it does with a fixed line; find the chord of
curvature through the pole.

10. In a segment of an arc of finite curvature a pentagon is
inscribed, one side of which is the chord of the arc, and the remaining
sides are equal. Shew that the limiting ratio of the areas of the
pentagon and segment, when the chord moves up towards the
tangent at one extremity, is 15 : 16.

11. A4APQ is a curve of continued and finite curvature, P and Q
are two points in it, whose abscissze along the normal at 4 are
always in the ratio m : 1, and from B, C, two points in the normal,
straight lines BPb, CPe, BQY, CQ¢ are drawn to meet the tangent
at 4. Shew that, when P and @ move up to 4, the areas or

the triangles P, & @' are ultimately in the ratio mi: 1,

12. 4B is an arc of finite curvature at 4, and a point 2P is
taken such that 4P : PB is in the constant ratio of m : n. Tangents
at 4 and B intersect the tangent at P in 7 and R, and 4B is
joined. Prove that the ultimate ratio of the area 47RB to the
segment 4PB, as B moves up to 4, is 3 (m* +mn +n*) : 2(m +n)*

13. The tangent to a curve at a point B meets the normal at
a point 4 in 7, C is the centre of curvature at 4, and O a point
on AC; prove that, in the limit, when B moves up to 4, the
difference of 04 and OB bears to AT the ratio 0C': 04.

14. O is a point within a closed oval curve, P any point on the
curvé, QP Q' a straight line drawn in a given direction, such that
QP=PQ@ =PO; prove that, as P moves round the curve, @, @
trace out two closed loops, the sum of whose areas is twice the area
of the original curve.
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NOTE ON MAXIMA AND MINIMA.

93. When a variable magnitude changes its value in con-
sequence of the change of some element of its coustruction,
the law of its variation can be graphically represented by the
form of a curve in which the ordinate and abscissa of every
point represent respectively the corresponding values of the
variable magnitude and of the element on which it depends.

Examples of this mode of representation have been given
in Arts. 55 and 57, in which the time or space is the element
upon which depends the velocity or kinetic energy, which are
the variable magnitudes respectively considered.

94. This graphic representation enables us to obtain a
property of any maximum or minimum value of a variable
magnitude which is applicable to the solution of a variety
of problems.

For, let Ox be the line of abscissee and B a point in the
auxiliary curve at which the tangent EBS to the curve is
parallel to Ox, and let the abscissa OA represent the corre-
sponding value of the element, then the ordinate 4B is a
maximum or minimum according as the portion of the curve
PBQ in the neighbourhood of B is concave or convex to
the line Ow.

Let a chord PQ be drawn parallel to the tangent RBS,
the two points P and @ one on each side of B have equal
ordinates MP, N, which, as PQ moves up to and continues
parallel to the tangent, become .nearer and nearer and are
ultimately equal to the maximum or minimum value, while
the difference between the corresponding abscissz ultimately
vanishes.

Hence is derived the following theorem :

If a variable magnitude have a maximum or minimum value
there will be two values of the element of construction, one greater
and the other less than the critical value, which will give equal
values of the variable magnitude.
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95. Stationary value of a magnitude.

Let the equal ordinates MP, NQ be produced to meet the
tangent in B and S, then by Lemma XI., PR and @S vanish
compared with AM or AN, and the ratio of the rates of
increase of the ordinate to that of the abscissa, which is gene-
rally finite, vanishes for the critical case of a maximum or
minimum; on this account the magnitude is said to have a
stationary value.

One or two examples are sufficient to shew the application
of this method.

96. To find at what point on the bank of an oval pond a
person must land in order to pass from a given point on the
pond to a given point on the bank in the shortest possible time,
having given the ratio of his rates by land and by water.

Let A4, B be the two given points, P the point at which he
must land, and let 27v, v be the velocities by water and along
the bank. On opposite sides of P there are two points @, R at
which if he land the time to B will be the same, in AR
take AM=A¢Q, then MR in water and QR on land are
" described in the same time, therefore n.QR = MR, which is
true, however near  and B may be to P; therefore cos¢p =n,
where ¢ is the angle between AP and the tangent at P; whence,
when the exact form of the oval is given, the position of P
can be found.

97. To find the chord of an oval, whick, drawn through a
given point, cuts off a maximum or minimum segment.

Through the fixed point 4 it is possible to draw two chords
PAQ and pAg, one on each side of the required chord, for
which the areas cut off are exactly equal; take away the
common part, and the remainders PAp, @Aq are equal; there-
fore, ultimately, when the angle between them vanishes,
PA.pA=QA.qgA4, and the chord which cuts off a maximum
or minimum area must be bisected by the fized point.

98. If a triangle of constant shape be described about a given
triangle, prove that when the area is a maximum the normals to
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the sides of the circumscribed triangle at the angular points of the
given triangle will meet in a point.

Let ABC be the given triangle, aBy, a'8'y' two positions
of the circumscribing triangle whose areas are equal, the
triangle of maximum area being intermediate in position.

Since the angles at a, a" are equal, the points a, o' lie in
the same segment of a circle whose base in BC, and the angles
aCdy aBa are equal. Hence the triangles aCa', 8CB', BAS,
Ay, &ec., are ultimately proportional to Co?, OB ....

But the sum of the areas aCa', 843, yBy' are ultimately
equal to the sum of BCB', y4dy, aBd,

s aC?=B8C+ BA -y A+ y B~ aB*=0.
Let the normals at 4 and C meet in N;
s al® -BC0=aN® — BN7,
BA*—qyA*=BN* - yN*;
coaB—yf=aN*— yN*=aD’ - 4D’
if ND be perpendicular to ay;
s aB—yB=aD—4D; . BD=0,
which proves the proposition.

XV.

1. In an arc 4B of continuous curvature n points P, P, ..
are taken so that the polygon 4P P,..B has a maximum area;
prove that, when the arc 42 is indefinitely diminished, the arcs
AP, PP, .. are all equal.

2. Find the greatest rectangle which can be inscribed in a
triangle, one side of which is on a side of the triangle.

- 8. Prove that the diagonals of the greatest rectangle which can
be inscribed in an ellipse, having its sides parallel to the axes, are
the equi-conjugate diameters.

4. Prove that the parallelograms of smallest area which can be
described about a given ellipse are those which have their sides
parallel to conjugate diameters.

5. A point O is taken on the major axis 4.4'of an ellipse
produced, and a line is drawn through O cutting the ellipse in the
points P and P. Prove that when the area of the quadrilateral
4PP 4'is a maximum the projection of PP' upon 44’ is equal to
the semi-axis-major.
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6. Prove that the quadrilateral of maximum area that can be
formed with four straight lines 4B, BC, CD, DA, of given lengths
is such that a circle can be described about it. Hence prove that
the curve of given length which on a given chord encloses a
maximum area is an arc of a circle.

7. From a point T on the exterior of two oval curves tangents
TP, TQ are drawn to the inner; shew that, when the arc PQis a
minimum or maximum, the radii of curvature at P and @ are in
the ratio 7P seca : T'Q secf3, where a, 3 are the angles which 7P,
TQ respectively make with the normal at 7.

8. Find the ultimate intersection of the chords common to an
ellipse and two consecutive circles of curvature, and shew that when
the common chord attains its maximum length for a given ellipse,
it cuts the ellipse at angles whose tangents are as 1 : 3.

9. A triangle inscribed in a closed oval curve moves so that two
of its sides cut off constant areas. Prove that when the area cut
off by the third side is stationary the three lines formed by joining
each angular point of the triangle to the intersection of tangents
at the other two points are concurrent.

10. Any two normal chords of an ellipse at right angles to each
other cut off equal areas from the curve. Hence find the position
of the normal chord which cuts off the minimum area.

11. An endless string just reaches round the circumference of
an oval, and when it is cut at any point it is unwrapped until it
becomes a tangent at the point of section; shew that the involute
so formed will have a maximum or minimum length if the point
of section be chosen so that the length of the oval shall be equal
to the circumference of the circle of curvature at that point.
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DIGRESSION
ON THE PROPERTIES OF CERTAIN CURVES.

THE CYCLOID.

99. Der. If, in one plane, a circle roll along a straight
line, any point on its circumference will describe a curve called
a Cyclovd.

Let C, D be the points where the tracing point P meets the
straight line, on which it rolls; A the point where it is furthest
from CD, AB being the corresponding diameter of the circle.

The rolling circle is called the generating cirele, AB is called
the axis, 4 the vertex, CD the base, and C, D the cusps.

100. Let RPS be the generating circle in any position, then,
since the points of the base and circle come successively in
contact without slipping, C'S=arc PS, CB and BD are each
half of the circumference of the circle, and BS=arc RP.

101. 7o draw a tangent to a cycloid.

Let the generating circle be in the position RPS, then, con-
sidering a circle as the limit of a regular polygon of a large
number of sides, it will roll by turning abont the point of con-
tact, which will be at rest for an instant, being an angular point
of the polygon; therefore for an instant P will move per-
pendicular to SP, or in the direction PR of the supplemental
chord, which will therefore be the tangent to the cycloid at P.

If AQB be the circle on 4B as diameter, PQM an ordi-
nate perpendicular to 45, the tangent at P will be parallel to
the chord Q4.

102. To find the length of the arc of a cycloid.
Let RPS be the position of the generating circle corre-

sponding to the point P in the cycloid, PR being the tangent
at L.
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When the circle has turned through any angle POp the
centre O will have moved through a distance equal to Pp,
and the motion of the generating point will be the resultant

el B b ¢
- Q
I
0 7, [P
I7op
A n

of Pp due to the rotation, and pP’' = Pp parallel to the base
due to the translation of the centre of the circle; and PP
will ultimately coincide with PR. Draw pn perpendicular to
PR, then, since Pp=P'p, PP'=2Pn=2(RP- Rp) ultimately.
Hence the arc of the cycloid measured from the vertex increases
twice as fast as the chord of the generating circle, which is a
tangent to the cycloid, and they vanish simultaneously, therefore
the arc of the cycloid is double of the chord of the generating
circle, or referring to the circle on the axis 4B as diameter,
the arc AP is double of the corresponding chord 4 Q.

103. 7o find the relation between the arc and abscissa.
Let A2 be the abscissa of the point P, then
AM: AQ:: AQ: AB;
s APP=4AQ'=4A4AB. AM.

104. 7o shew that the evolute of a given cycloid s an equal
cycloid, and that the radius of curvature of a cycloid is twice the
normal.

Let APC be half the given cycloid, AB the axis, 4 the
vertex, and B the base. Produce 4B to C', making B(C" equal
to 4B, and complete the rectangle BUB'C', and let the semi-
cycloid C"P'C be generated by a circle, whose diameter is equal
to that of the generating circle of the given cycloid, rolling on
C'B’; C being the vertex, CB' the axis of this cycloid.

Let SPR, SPR' be two positions of the respective gene-
rating circles, having their diameters RS, SEK' in the same
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straight line, P, P' being the corresponding points of the
cycloids; join SF, PR and SP', P'E.

' B

c '
/ ,
7 Q' nj
B e c
M Q
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By the mode of generation, arc SP=SC, and arc SPR=DBC;
<. arcPR=BS=C'R'=arcP'R;
# LPSR=r PSR'; and PSP is a straight line.
Also, arcP’S=arcPS; ... chd. P'S=chd.PS;
». PSP=2P'S= P (C the cycloidal arc;
also PSP touches the cycloid C'P'C at P';

therefore, a string fixed at (', and wrapped over the arc of
the semicycloid, will, when unwrapped, have its extremity in
the arc of the given cycloid; hence, the evolute of a semi-
cycloid is an equal semicycloid, and the radius of curvature at
Pis 2PS or twice the normal. If another equal semicycloid be
described by the circle rolling on B’C’ produced, the extremity
of the string wrapped on this curve will trace out the remainder
of the given cycloid.

Thus a pendulum may be made to oscillate in a given
cycloid.

105. To find the area of the cycloid.
Let P, P be two points very near each other in a cycloid,
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@, @ corresponding points in the generating circle, p, p’ in the
evolute, B, I’ the intersections of the base with normals Fp,

pr
- =X o
T Q@
\/ \/,
/Q’ gL
A D

Py, T, S the intersections of B and P’p’ with PQ. Then
pR=PR=BQ, and 2p'PS=44p'RR ultimately =44 BQT;
therefore trapezium PRR'S=34BQT ultimately, and the same
beiug true for all the inscribed triangles and trapeziums, whose
sums are ultimately the areas of the semicircle and semicycloid,
therefore, by Cor., Lemma IV., the area of the cycloid is three
times that of the generating circle.

106. The following method of finding the area of a cycloid
is independent of the properties of the evolute.

In the figure of Art. 104 let P’ be any point in the cycloid
CP' (', P'S the chord of the generating circle which touches
the cycloid, and let @' be a point in the cycloid near P, then
the arc P'Q' ultimately coincides with P'S. Let Q'N', @¢N
be the complements of the parallelogram whose diagonal is
P'S, and sides parallel and perpendicular to the base, these are
equal ultimately ; therefore, by Lemma IV., the cycloidal area
CONP = circular segment SP'N'.

The exterior portion CB'C’ is equal to the area of the
semicircle, and the whole parallelogram BCB'C' is the rectangle
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under the diameter and semi-circumference of the generating
circle, and is equal to four times the area of the semicircle;
therefore the cycloidal area CC'B'is three times the area of the
semicircle.

107. AU cyclovds are similar.

Let two cycloids APC, Apc be placed so that their vertices
are the same, and their axes coincident in direction, and describe

B

]

N

as
v, y

A

circles on the axes AB, Ab as diameters. Draw 4¢Q cutting
the circles in g, Q. Then, since the segments Ag, 4Q are
similar, arcAg:arcAQ:: Ag: AQ; and, if mgp, MQP be
ordinates to the cycloids, arcs dg, 4Q=qp, QP respectively;
therefore gp: QP:: Ag: AQ, and ApP is a straight line.
Also dp: AP:: Ag: AQ:: 4b: AB, a constant ratio; hence
the cycloids satisfy the condition of similarity, and in this
position of the cycloids the point 4 is a centre of direct
similitude.

108. To construct a cycloid which shall have its vertex at a
given point, dts base parallel to a given straight line, and which
shall pass through a given point.

Let 4 be the given vertex, 4B perpendicular to the given
line, P the given point. In AD take any point &, and with
the generating circle, whose diameter is 45, describe a cycloid
Ape, join AP intersecting this cycloid in p.

Take AB a fourth proportional to Ap, AP, and Ab; then
AB will be the diameter of the generating circle of the required
cycloid; for, since Ap: AP:: Ab: AB, and all cycloids are
similar, P is a point in the cycloid whose axis is AD.
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109. A particle slides down the smooth arc of a cycloid,
whose axis is vertical, and vertex downwards, to find the time
of an oscillation.

Let AB be the vertical axis of the cycloidal arc APL, L the
point from which the particle begins to move, PQ a small arc of

w
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its path, LR, P}, QN perpendicular to AB; and take Al, Ap,
Ag on the tangent at 4 respectively equal to AL, AP, AQ. -

Suppose a point to move from ! to 4 in the same time as
the particle moves on the cycloid from L to 4, their velocities
being always equal at equal distances from 4.

Let v be the velocity at P or p, and 7' the time of falling
from B to 4, so that v"=29RM and 24B=gT"; therefore
v 1"=4AB.EM=4AB. AR - 4AB. AM= AL~ AP, Art. 103,
= AP~ Ap".

Describe a circle with centre 4 and radius 47, and draw the
ordinates pf, qu, then Al — Ap*=pt*, and pt=vT; and if T be
the time from P to @, PQ=pg=vr ultimately, hence

tu: Al::pg:ptii7: T
therefore, if a point move in the circle from I with uniform
velocity %f, the point moving in 14 will always be in the

foot of the ordinate and the motion in 4 or LA will therefore
be a simple harmenic motion, by (5) page 78.

The time from L to 4 is the time of describing the quadrant
24B

3 m Al with velocity ‘—é—f y=3rT=4%nr ;
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The length of the string which, by the contrivance of Art. 104,
makes a particle oscillate in this cycloid is 24B=1 suppose;
therefore the time of the oscillation of a cycloidal pendulum
of length Ifrom rest to rest = /\/ % o

Note. The time from L to Pis 2A__§ x cos™ L
g AL

110. We can shew that the motion on the cycloid is a
simple harmonic motion by the first definition, (5) page 78; for,
referring to the figure, page 115, since the tangent at P is
parallel to 4Q, the acceleration along the curve at P s

g- ﬁ—g:_q. %%,which varies as AP, and, by (4) page 77, the

time from L to 4 is obtained.

111. 7o find the time of a very small oscillation of a simple
pendulum suspended from a point.

A simple pendulum is an imaginary pendulum consisting of
a heavy particle called the bob, suspended from a point by means
of a rod or string without weight.

In this case the pendulum describes the small arc of a circle
which may be considered the same as a cycloidal arc, the axis
of which is half the length 7 of the pendulum, therefore the

time of oscillation from rest to rest is = \/ ;—

112. To count the number of oscillations made by a given
pendulum in any long time.

In consequence of the liability to error in counting a very
great number of oscillations, since in the case of a seconds pen-
dulum there would be 3600 oscillations for each hour, it becomes
necessary to adopt some contrivance for diminishing the labour.
For this purpose the pendulum is made to oscillate nearly in the
same time as that of a clock; it is then placed in front of
that of the clock, so that when they are simultaneously near
their lowest positions the bob of the pendulum and a cross
marked on the pendulum of the clock may be in the field of
view of a fixed telescope,
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Suppose that after n oscillations of the given pendulum
they are again in coincidence close to the same position; if
there be m such coincidences in the whole time of observation,
the number of oscillations in that time will be mn; thus the
only labour has been to count the % oscillations, and to estimate
the number of the coincidences before the last one observed.

113. To measure the accelerating effect of gravity by means
of a pendulum.
Let g be the measure of this effect or the velocity generated
by the force of gravity in a second.
Let { be the length of a simple pendulum which makes n
3600m

oscillations in m hours, then - h——number of seconds in one
ST ln* ! 5
oscillation = —; therefore g = @oooymt? @ whatever unit

of length 7 is estimated.

This would be a very exact method of determining g, if we
could form a simple pendulum; but it is impossible to do this,
and it is only by calculations of a nature too difficult to be
explained here that it can be shewn how to deduce the length of
the simple pendulum, which would oscillate in the same time as
a pendulum of a more complicated structure.

114. The seconds pendulum at any place is the simple pen-
dulum which at the mean level of the sea at that place would
oscillate in one second.

If L be the length of the seconds pendulum, ! the length
of a pendulum making 7 oscillations in m hours,

l _ 3600m L n*l
77'/\/;="'n"“— d‘ﬂ'/\/g I, ..L=m.

115. To determine the keight of a mountain by means of a
seconds pendulum, the force of gravity at any point being supposed
to vary inversely as the square of the distance from the centre of
the earth.

Let L be the length of a seconds pendulum, z the height
of the mountain above the mean level of the sea, ¢ the radius

R
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of the earth, all expressed in feet; and let n be the number of
seconds lost in 24 hours by the pendulum at the top of the
mountain.

If g be the measure of the accelerating effect of gravity at

will be its value at

g2
the mean level of the sea, then @+

the top of the mountain, and the time of escillation at the top

2 ;
will be 7 /\/{é (ﬁ) } , or ate seconds, since 7:'/\/£ =1
g\ a a

hence, writing N for 24x60x 60, (N—n )‘Eﬂ—N and

1+— N Sl L o G

N- N NP CUUTTN V‘
a=4000 x 1760 x 8 and IN=24x 60 x 60, therefore the height
of the mountain will be 244-dn 4 -00272%; thus, if n =10, the
height will be 2444°7 feet.

n*, nearly, but

NotEe. The attraction of the mountain would make a sensible
variation from the law of the inverse square, this law being true
only if the earth consisted of homogeneous spherical strata.

116. To find the number of seconds lost in a day, in con-
sequence of a slight error in the length of the seconds pendulum ;
and conversely.

Let N be the number of seconds in a day, L the length of
the seconds pendulum, L+ that of the incorrect pendulum,
N—n the number of its oscillations in a day;

L+x o L. A_2n p
. (N—n) Yy =]\.7r«/§, % z—wneally.

THE EPICYCLOID AND HYPOCYCLOID.

117. Der. The curve traced out by a point on the cir-
cumfercnce of a circle, which rolls upon that of a fixed circle,
is called an Fpicycloid if the concavities of the two ecircles be
in opposite directions, a Iypocycloid if the concavities be in
the same direction.
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118. To shew that the evolute of an epicycloid ¥s a similar
epicycloid.

Let F'4 be the fixed circle, APE the rolling circle in any
position, P the gencrating point, CAE a line drawn through

C

the point of contact, meeting the rolling circle in 4, E; and
let GPF be the epicycloid, of which P4 and PE will be a
normal and tangent.

Draw the chord EQ parallel to PA and join CQ meeting
P4 produced in 0. Since EQ is parallel to 40,

CO:0Q:: CA: CE;
therefore O and @ describe similar figures. But @, being the
other extremity of the diameter through P, will describe an
epicycloid similar and equal to G'PF, being at its cusp when
Pis at @ the greatest distance from C,

Draw Oa parallel to @4 and therefore perpendicular to PO,
meeting CA in @, then O generates an epicycloid fF by the
rolling of a ecircle 40a, whose diameter is Aa, on a fixed
circle of radius Ca. ~
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Also PO the normal to GF is perpendieular to a0 and is
therefore a tangent to fF, hence fF' is the evolute of the given
epicycloid and is a similar epicycloid.

Let a, b be the radii of the fixed and rolling circles for the
given epicycloid, then

a: CA4::0Q:CQ:: AE: CE:: 2b: a+2b;
therefore Ada: AE::a:a+2b, and if a=w, da=AE, and
AF, af become straight lines, whence the evolute of a cycloid
is an equal cycloid.

119. Since AO0: PA:: AO: EQ:: CA: CE, therefore
PO:PA::2(a+bd):a+2b which gives PO the radius of
curvature at P of the given epicycloid; this will be found
independently of the evolute in Art. 121 below.

120. 7o find the length of any arc of the epicycloid.

By the properties of the evolute, see the last figure, the
arc OF of the evolute =0P=24P. a+bb, and the arc of the
epicycloid generated by @, measured from @ to the highest

a+ 2b _ b; therefore the arc G'P from

a+b
aQ

point, = OF

the highest point G of the epicycloid GPF=2EP,

121. To find the radius of curvature at any point of an
epicycloid.
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Let AB, BC be consecutive sides of a fixed regular polygon
of m sides, AB, Be sides of another regular polygon of = sides
equal to those of the former, on the outside of which it rolls,
in a position in which two sides are coincident.

Let P be any angular point of the rolling polygon; P will
generate a figure composed of a series of circular arcs such
as PP'; P' being the position of P when Bc coincides with BC.
Produce P4, P'B to meet in O.

Then 2APB="T, and 2 PBP'=1cBC=2" 4 2™,
n m n

m n

-~ LPOB=2x (ﬂiﬁ%) _gﬂ(z +_1_);

». PO: PB::sin2r (-1- +l) 3 sinw(—2 + 1).
m - n m - n
‘When the number of sides is indefinitely increased, the
polygons ultimately become circles, the curve traced out by P
becomes an epicycloid, and PO the radius of curvature at P.
If a, b be the radii of the fixed and rolling circles m.48=27a
and n.4 B=2xb, ultimately ; therefore m : 2 :: a:b;

P0:PA::2(1+1):3 L i2(atb)at2b;
m n) m n
therefore the radius of curvature is 2P4. ::“fb’ where PA

iz the part of the normal intercepted between the generating
point and the point of contact.

If a=w, or the fixed circle become a straight line, the
epicycloid will become a cycloid, and the radius of curvature
will be twice the normal, as in Art. 104,

122. To find the area of an epicycloid.
In the last figure, area APP'B= n PAB+ sector PBP'; now
sector PBP' = 4 PB*. 2 (% A l) and APAB=}PFsin”;

n

.~ area APP'B=APAB {1 + g_(_m—__,”;i-n)} ultimately ;

hence, by Lemma IV. Cor., the area of the segment of the
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epicycloid included between two normals and the fixed circle
is 3+%b x the corresponding segment of the rolling circle.
Compare Art. 105.

123. The corresponding properties of the hypocycloid may
be proved in a similar manner; and the results obtained will
be the same as for the epicycloid, if in the latter the sign
of & be changed.

Thus, if the diameter of the fixed be double that of the rolling
circle, the Liypocycloid will become a straight line, which agrees
with the result of Art. 121, since a+2b=0, and therefore the
radius of curvatare at every point will be infinite,

THE EQUIANGULAR SPIRAL.

124. Der. The equiangular spiral is a curve which cuts
all the radii drawn from a fixed point at a constant angle.

125. If a series of radii 84, SB, 8C; ... be drawn inclined
at equal angles, and 4B, BC, CD, ... make equal angles S4B,
SBC, ... with these radii respectively, the curvilinear limit

g 2
of the polygon ABCD ..., when the equal angles A48B,

BSO0, ... are indefinitely diminished, will be an equiangular
spiral.

126. To find the length of an arc of an equiangular spiral
contained between two radii.

Let o be the constant angle S4B, and let SL be the ntt
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radius from 84 ; then, since the triangles 4SB, BSC, ... are
similar, S4 : SB:: SB: SC....
Let SB=\.S4, then BC=\.AB, CD=\".4B...FL=\"".4B;

o AB+BC+.. A FL: AB:: 14 4. 4211101 =A" 1A
1t 8S4-N".S4: 84—-8B:: SA— SL: SA- 8B,
but AB cosa= 84—~ SBcosASB=.84 - SB ultimately, and

AB+ BC+... is ultimately the arc of the spiral; therefore
arcAL= (84 — SL) seca.

127. To find the area of an equiangular spiral bounded by

two radii.
Employing the same construction as above,
AASB+ ABSC+ AC0SD +...: AASB:: 14N ... +A"?: 1
1t 1=AN" 1 =N 84— SLF: S4%- 8B
but 8B*= S4*—284 . ABcosa +AB*and A ASB=}84.4Bsina;
o~ 8A4*— 8B"=41ASB x cota, ultimately ;
*. area ASL =1} (S4*— SL*) tana.

128. To find the radius and chord of curvature through the
pole at any point of an equiangular spiral.
Let 8P, 8Q be radii drawn to two points P and @, near to

kK
\

0

one another, let PR, QR, tangents to the spiral at P and ¢,
intersect in R, and let the normals PO, QO intersect in O;
Jjoin OR, SR.
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Then, since angles SQR, SPR are equal to two right angles,
and each of the angles OQR, OPR is a right angle, the circle
which passes through P, R, and @ will also pass through §
and 0, and OR will be its diameter; therefore £ OSE is a
right angle. Hence, proceeding to the limit, O is the centre
of the circle of curvature at P, and OSP is a right angle.
Therefore if a be the angle of the spiral, 0.P= 8P coseca will
be the radius of curvature, and 28P the chord of curvature
through the pole.

129. The following is an illustration of Art. 86.
If PV be the chord of curvature through S,

8Y'~8Y: SP'—8P::28Y: PV;
but in the equiangular spiral SY : S§Y"':: SP: 8P';
o 8Y'—8Y: SP'— 8P:: SY : SP; whence PV=2SP.

THE CATENARY.

130. DEr. The Catenary is the curve in which a uniform
and perfectly flexible string, of which the extremities are sus-
pended at two points, would hang under the action of gravity,
supposed to be a constant force acting in parallel lines.

The directriz is a horizontal straight line whose depth below
the lowest point is equal to the length of string whose weight is
equal to the tension at the lowest point.

The axis is the vertical through the lowest point.

181, The tension at any point of the catenary is equal to the
weight of the string which, if suspended from that point, would
extend to the directriz.

Let A be the lowest point of a uniform and perfectly flexible
string hanging from two points under the action of gravity,
P any other point, 40 the length of string whose weight is
equal to the tension of the string at 4. Take a point B in 04,
and let OM, BC drawn horizontally meet a vertical P} in
M and C.

If a string pass round smooth pegs at APCB, it is evident
that there will be a position of equilibrium whatever be the
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length of the string, or the position of BC, and for some length
and some position of BC the tangent at 4 will be horizontal.

i P B
==
(13
B 4
A
§ ar
T O

Also, since BDC will hang symmetrically, the tensions of
the string at B and C will be equal, and BDC may be removed
and replaced by equal lengths BO, CM of the string, without
disturbing the equilibrium of AP, therefore the tension of the
catenary at P is equal to the weight of a string of length P,

132. The proposition of the preceding article may be proved
by considering the catenary as the limit of the polygon formed
by = series of equal rods of the same substance jointed freely
at the extremities and suspended from two fixed points, when
the length of the rods is indefinitely diminished.

4

C

The equilibrium will be undisturbed if each rod be replaced
by two weights at the extremities, each equal to half that of
the rod, connected by a rod without weight.

Let AB, BC be two consecutive positions of the rods,

S
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weights equal to those of the rods being placed at 4, B, C; let
AM be vertical and BM horizontal, and produce CB to meet
AM in D; draw DN perpendicular to 4B.

The forces which keep B in equilibrium act in the directions
of the sides of the triangle 4BD, and are proportional to them.

Therefore the difference of the tensions of AB and BC is
to the weight of the rod AB as AB- BD : AD, that is, ulti-
mately, as AN : 4D or AM: ABj; hence the difference of the
tensions is the weight of a rod of length 431,

Therefore, proceeding to the limit, the difference of tensions
at any two points of the catenary is equal to the weight of
string, which is equal in length to the vertical depth of one
point below the other, whence the truth of the proposition.

133. P ds a point in a catenary, PM perpendicular to tle
direetriz, PT a tangent at P, MU perpendicular to PT; to
shew that PU s equal to the arc measured from the lowest point,
and that MU is eonstant.

Let PT, fig. for Art. 131, meet the direction O} in T, and
let 40 be the axis, then since the are AP supposed to become
rigid is in equilibrium wnder the action of the tensions at
A and P and the weight, and these forces are in the directions
of the sides of the triangle TPM,

o AP: AO: PM:: PM: MT: TP:: PU: MU : PM,
by similar triangles 7P}, MPU,
o PU=AP and MU=A40.

134. Tb draw a tangent to a calerary at any point.

‘With centre M and radius equal to 4O describe a circle, and
draw PU touching this circle in Uj then, since J/U, which is
perpendicular to PU, is equal to 40, PU will be the tangent
at P.

135. If a rectangular hyperlola be described, having centre
O and semi-transverse axis OA, the ordinate of the hyperbola
will be equal to the arc of the catenary.

For, let AR be the hyperbola, therefore

RN*=0N*- 04*= PM*— UM*=PU*; . RN=PU=AP.
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136. To find the radius and vertical chord of curvature of
a catenary.

Let PQ be a small arc of a catenary, RSPT, QS tangents at
Pand @, PM, QN ordinates, TOM the directrix.

A

VA o M N ¢
Since QRS is a triangle of the forces acting upon PQ,
tension at P: weight of PQ:: BS: QR, .

o PM:PQ:: RS: QR :: 3PQ: QR, ultimately;
therefore 2PM is the vertical chord of curvature, and P@, the
part of the normal intercepted between the point P and the
directrix is equal to the radius of curvature at P.

Also PG : PM:: PT: TM :: tension at P : tension at A

3t PM: AO, therefore the radius of curvature is a third pro-
portional to 40 and PM.

THE LEMNISCATE.

137. DEer. The Lemniscate is the locus of the feet of the
perpendiculars drawn from the centre of a rectangular hyperbola
upon the tangent.

138. Tb find the inclination to the tangent at any point of
the radius from the cenire of the lemniscate.

Let CY be perpendicular on PT the tangent at the point 2
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Also, the radius of curvature : 3 YV
2:0Y:0Z2:: AC*: CY* :: OP: 07,
hence the radius of curvature is §CP, or 4 of the radius at
the corresponding point of the hyperbola.

141. Poles of the lemniscate.

Let S, H be the foci of the hyperbola, s, % the middle points
of 08 and CHj s,k are called the poles of the lemniscate.

Draw 8Y', HZ perpendicular to the tangent to the hyper-
bola at P, and let SY' meet the auxiliary circle again in Z’,
and join sY', sZ', sY, kY, and 2Z.

Since Cs=s8, the perpendicular from s on YY" bisects it;
therefore sY' =sY, similarly 2 Y =%kZ=sZ".

Now S8C.8=48C*=AC*=8Y'.8Z';
therefore a circle can be drawn circumscribing OsY'Z’; there-
fore £Y'sZ'=1Y'CZ'; also AY'sZ'=%0Y'CZ', since tho
altitude of Y'0Z’ is double of that of Y'sZ’;
. 8Y'.s2'=30Y'.0Z' =4 C4%
therefore sY.2Y =4 CA’, which is the property of the poles of
the lemniscate.
For this proof I am indebted to Prof. Tait.

XVI.

1. If a line move parallel to the base of a cycloid, find the
limit of the ratio of the segment of the cycloid to the corresponding
segment of the generating circle, when the line becomes indefinitely
near to the tangent at the vertex.



134 NEWTON.

2. A balloon was found to be sailing steadily before the wind
at an invariable elevation above the earth. A seconds pendulum
suspended to the car was observed to make 2997 oscillations in
50 minutes; shew that the height of the balloon was 4 miles and
7 yards nearly, the radius of the earth being 4000 miles.

8. If a particle be made to oscillate in a eycloid on a smooth
inclined plane, whose inclination to the horizon is 30°, and the
base of the cycloid be horizontal, find the radius of the generating
circle in order that the particle may perform a complete oscillation
in # seconds.

4. If P be a pointin a cycloid, and O the corresponding position
of the centre of the generating circle, shew that 20 will touch
another cycloid of half the dimensions.

5. Shew that the limit of the whole length of an epicycloid
or hypocycloid, corresponding to a complete revolution of the
generating round the fixed circle, is eight times the radius of
the latter, when that of the former is indefinitely diminished.

6. Prove that the epicycloid of one cusp is the pedal of a circle
referred to a point in its circumference.

7. Shew that the evolute of an equiangular spiral is a similar
spiral, and that the extremities of the diameters of curvature lie
in a similar spiral.

8. An equiangular spiral rolls along a straight line, shew that
its pole describes a straight line.

9. Prove that, if a catenary roll on a fixed straight line, its
directrix will always pass through a fixed point.

10. If SY be drawn perpendicular to the tangent to a lemniscate
at a point P, and S4 be the greatest value of SP, prove that
SP%= 84 8Y; S being the centre.

XVII.

1. From the consideration that the diameter of curvature is the
limit of the third proportional to the subtense perpendicular to the
tangent and the are, prove that the radius of curvature of a cycloid
at any point is twice the normal cut off by the base.

2. On the normal to a cycloid a constant length is measured
both inwards and outwards; find the area included between the
loci of the points so obtained.
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3. P, Q are consecutive points on an epicycloid of two cusps;
from p, ¢, the corresponding points of contact of the rolling with
the fixed circle, pm, ¢gn are drawn perpendicular to the cusp-line;
prove that the elemeutary area P@Qpq is twice the elementary area
pmng. Hence find the area of the epicycloid and of its evolute.

4. Prove that the diameter through the point of a rolling circlo
which generates an epicycloid always touches another epicycloid
generated by a circle ot half the dimensions.

5. A hypocycloid of » cusps has at any point a tangent drawn,
prove that the length of the tangent, intercepted between the gene-
rating circle and the poiunt of contact, is to the arc measured from
the point to the vertex of the branch in which the point is taken,
asz:2(n-1)

6. A bead slides on a hypocycloid being acted on by a force
which varies as the distance from the centre of the hypocycloid and
tending to it; prove that the time of oscillation will be independent
of the arc of oscillation.

7. If, along the several normals to an epicycloid, a system of
particles move from the curve under the action of a force, tending
to the centre of the fixed circle, and varying as the distance, prove
that they will all arrive at the fixed circle at the same instant.

8. A plane curve rolls along a straight line, shew that the
radius of curvature of the path of any point, fixed with respect to
the curve, is FR T r being the distance of the fixed point from
the point of contact, ¢ the angle between this line and the fixed
line, and p the radius of curvature of the curve at the point of
contact.

9. In an equiangular spiral, which is its own evolute, the area
included between the curve and PQ, the radius of curvature at P
touching the evolute in Q, is }PQ’ tana, where a is the angle of
Lh(:l spiral, and PQ is supposed not to cut the curve between P
and Q.

10. Prove, by the method of Lemma IV., that the area included
between a catenary, the axis, the directrix, and the ordinate at any
point P is twice the area of the triangle formed by the axis, the
tangent at the vertex, and the straight line drawn perpendicular to
:.lhe tangent at P from the point of intersection of the axis and

irectrix.



SECTION IL
CENTRIPETAL FORCES.

PROP. I. THEOREM L

When a body revolves in an orbit, subject to the action of
Jorces tending to a fived point, the areas which it de-
scribes by radii drawn to the fized centre of force, are in
one fived plane, and are proportional to the fimes of
describing them.

Let the time be divided into equal parts, and in the
first interval let the body describe the straight line

S 7

AB with uniform velocity, being acted on by no
force. In the second interval it would, if no force
acted, proceed to ¢ in AB produced, describing Be
equal to AB; so that the equal areas ASB, BSe de-
scribed by radii 4.8, BS, ¢S drawn to the centre S,
would be completed in equal intervals.

But, when the body arrives at B, let a centripetal
force tending to S act upon it by a single instanta-
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neous impulse, and cause the body to deviate from
the direction Be, and to proceed in the direction BC.

Let ¢C'bedrawn parallel to BSS, meeting B(Cin C, then,
at the end of the second interval, the body will be
found at €, in the same plane with the triangle
ASB, in which Be and ¢C are drawn. Join SC;
and the triangle SBC, between parallels SB, Ce,
will be equal to the triangle SBe, and therefore
also to the triangle SAB.

In like manner, if the centripetal force act upon the
body successively at C, D, E, &ec., causing the body
to describe in the successive intervals of time the
straight lines CD, DE, EF, &c., these will all lie
in the same plane; and the triangle SCD will be
equal to the triangle SBC, and SDE to SCD, and
SEF to SDE.

Therefore equal areas are described in the same fixed
plane in equal intervals; and, componendo, the
sums of any number of areas SADS, SAFS, are to
each other as the times of describing them.

Let now the number of these triangles be increased,
and their breadth diminished indefinitely ; then their
perimeter A.DF will be ultimately a curved line; and
the instantaneous forces will become ultimately a
centripetal force, by the action of which the body is
continually deflected from the tangent to this curve,
and which will act continuously; and the areas
SADS, SAFS, being always proportional to the times
of describing them, will be so in this case. Q.E.D.

Cor. 1. The velocity of a body attracted towards a
fixed centre in a non-resisting medium is recipro-
cally proportional to the perpendicular dropped
from that centre upon the tangent to the orbit.

For the velocities at the points 4, B, C, D, E are as
the bases 4B, BC, CD, DE, EF of equal triangles,
and, since the triangles are equal, these bases are
reciprocally proportional to the perpendiculars from

: T
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S let fall upon them. [And the same is true in the
limit, in which case the bases are in the direction
of tangents to the curvilinear limit, therefore the
velocity, &ec.]

Cor. 2. If on chords ADB, BC of two arcs described in
equal successive times in a non-resisting medium by
the same body the parallelogram ABCV be com-
pleted, and the diagonal BV of this parallelogram
be produced in both directions in that position which
it assumes ultimately when those ares are diminished
indefinitely, it will pass through the centre of force.

Cor. 8. If, on AB, BC and on DE, EF chords of arcs
described in a non-resisting medium in equal times,
the parallelograms ABCV, DEFZ be completed,
the forces at 2 and £ will be to one another in the
ultimate ratio of the diagonals BV, EZ, when the
arcs are indefinitely diminished.

For the velocities of the body represented by BC, EF
in the polygon are compounded of the velocities
represented by Be, BV and Ef, EZ; and those re-
presented by BV, EZ, which are equal to ¢C, /7, in
the demonstration of the proposition were generated
by the impulses of the centripetal force at B and E,
and are thus proportional to those impulses. [And
the same is true in the limit, in which case the ulti-
mate ratio of the impulses at any two points is the
ratio of the continuous forces at those points].

Cor. 4. The forces by which any bodies moving in
non-resisting media are deflected from rectilinear
motion into curved orbits, are to one another as
those sagittee of arcs described in equal times, which
converge to the centre of force and bisect the chords,
when those arcs are indefinitely diminished.

For the diagonals of the parallelograms ABCV, DEFZ
bisect each other, and these sagitte are halves of the
diagonals BV, EZ when the arcs are indefinitely
diminished. [And the same will be true whether
ABC and DEF be parts of the same or of different
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orbits described by bodies of equal mass, if the arcs
be described in equal times].

Cor. 5. And therefore the accelerating effects of the
same forces are to that of the force of gravity as
those sagittee are to vertical sagittee of the parabolie
arcs which projectiles describe in the same time.

Cor. 6. All the same conclusions are true by the
Second Law of Motion, when the planes, in which
the bodies move together with the centres of force
which are situated in those planes, are not at rest,
but are moving uniformly and parallel to themselves.

The statement of the proposition in the original Latin is,

¢ Areas, quas corpora in gyros acta radiis ad immobile
centrum virium ductis describunt, et in planis immo-
bilibus consistere, et esse temporibus proportionales.”

Observations on the Proposition.

142. In all cases of motion of bodies it is of great importance
for the student to distinguish between the forces themselves
under the action of which the bodies may be moving, and the
effects which these forces produce.

It is only by an examination of the motion of a body that
we are able to infer that it is, or is not, acted on by any force;
if we find that the body is moving with uniform velocity in a
straight line, we infer that it is, during such motion, acted upon
by no force, or that the forces which are acting upon it are in
equilibrium ; if we find that there is any change of direction or
velocity, gradual or abrupt, we infer that the body is moving
under the action of some force or forces; if the change be
gradual, we infer that such forces are jinite, by which we mean
that the forces require a finite time to produce a finite change
whether of direction or velocity; if, on the contrary, the change
be abrupt, we infer that the forces are what are called impulsize,
that is, such as produce a finite change in an instant.

Since then, in order to make any inference with respect to
the forces supposed to act, a clear conception of the motion of
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a body must be first attained, it becomes necessary for the
student to be able to describe the motion of a particle of matter
as he would that of a point, independently of the causes of such
motion.

In doing this he must give a geometrical description of the
line traced by the point either in a plane or in space, and then
he must describe the rate, uniform or variable, with which this
line is traversed.

He may then proceed to attribute any change of direction or
velocity to the action of forces upon the particle whose motion
he has been examining.

143. In accordance with this method of separating the geo-
metry of the motion from the causes of the deviations, the first
proposition would be stated in such a manner as the following :

“YWhen a point moves in a curve, in such a manner that the
accelerations at every point are in the direction of a fixed point,
the areas, which it describes by radii drawn to the fixed point to
which the accelerations tend, are in one fixed plane, and are
proportional to the times of describing them.”

And, generally, if the words force and Jody, employed by
Newton, be replaced by acceleration and point, the resulting
statements will be in accordance with this gcometrical method
of description. It will then be easy to use such terms in the
proofs as will not imply, in the manner of expression, the action
of force; thus, instead of saying ‘let a centripetal force tending
to S act upon the body by a single instantaneous impulse,”
we may use the words “let a finite velocity be communicated
to the point in the direction of S.”

144. Tt should be carefully observed that, before proceeding
to the limit, it is proved that amy polygonal areas SADS,
SAFS, are proportional to the times of description of their
perimeters; so that ultimately these areas become finite curvi
linear areas, described in finite times.

145. In proceeding to the ultimate state of the hypothesis,
it is concluded readily from Lemmas II. and IIL that the
curvilinear areas are the limits of the polygons; but a greater
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difficulty arises in the transition from the discontinuous motion
under the action of instantaneous impulsive forces to the con-
tinuous motion under the action of a continuous force tending
to 8. For, in the curvilinear path of the body which is the
limit of the perimeter of the polygon, the direction of the motion
at the angular points of the polygon is different, and also the
deflection from the direction of motion is twice as great in the
polygon as it is in the curve.

Now, although we may assume that the curvilinear limit of
the perimeter of the polygon may be described under the action
of some force, is that force the same which is the limit of the
series of impulses ?

The centripetal force supposed to act with a simple in-
stantaneous impulse, “impulsu unico et magno,” is supposed
to generate a finite velocity at once, which effect a finite force
cannot produce.

If, instead of this imaginary impulse, we suppose a force
finite, but very great, and acting for a very short time, the
effect upon the figure would be to round off the angular points
of the polygon. .

The transition from the impulses to the continuous force, in
the ultimate form of the hypothesis, must be considered as
axiomatic, like the ultimate equality of the ratio of the finite
arc to the perimeter of the inscribed polygon.

146. We can, however, shew that if the curvilinear limit of
the polygon be described under the action of some continuous
force tending to S, the effect of this force, estimated by the
quantity of motion generated in the interval between the im-
pulses, will be ultimately the same as that generated by the
impulse.

Consider first the geometrical properties of the limit of the
polygonal perimeter. Let BT, CU be tangents at B, C to the
curvilinear limit, and let Cc intersect BT in 7} fig. page 136.

Now, since Co ultimately vanishes compared with Be, BC
and Be or AB and BC are ultimately in a ratio of equality,
and Ce is ultimately bisected by BZ) by (2) page 102; also,
CU=BU="UT ultimately, by (1) page 102.
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Consider next the effects produced by the different kinds of
force which act in the two cases.

In the polygonal path, the impulsive force at B generates
a velocity with which the body describes Cc in the time ¢ 1
which 4B or BC is described, the measure of the effect of the

: .. C
impulse is therefore the velocity tc 5

In the curvilinear path, the deflection from the direction BT
at B, in the same time ¢, is 7°C, by means of the continuous
action of finite forces, and if we suppose the force ultimately
uniform in magnitude and direction, the measure of the ac-

. g 27 .
celerating effect of the force will be TO , and the velocity
. . 0 27C
generated in that time will be —pt= g; .
Hence the effects of the finite and impulsive forces, measured

by the quantity of motion produced, are the same.

147. We can also shew that a continuous force, which gene-
rates the same quantity of motion as the impulse at B in the
time from B to C, would cause the body on arriving at C to
move in the direction of the tangent to the curvilinear limit of
the perimeter.

For the velocity due to the action of the finite force at the
21;0 in the direction 7C, and

that in the direction BT being %-T= —2%1—(-] ; therefore TC, UT

end of time ¢ being ultimately

represent the velocities in those directions; therefore UC is the
direction of motion at C, that is, the body moves in the direction
of the tangent at C.

148. Cor. 1. The corollary may be proved directly from
the proposition, for the proportionality of the areas to the times
of describing them will be true if the force suddenly cease to act,
in which case the body will proceed in the direction of the tangent.

Let V be the velocity at the point 4, 4SB the curvilinear
area described in any time 7, AT=V.7T the space described
if the force cease to act. Join ST and draw SY perpendicular
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to A7, then area ASB=triangle SAT=}V.Tx SY, also
area ASBoc T'; therefore ¥ varies inversely as SY.
Again, if 4 be twice the area described in the unit of time

T
B

s Y

employed in estimating the accelerating effect of the force tend-
ing to S and the velocity of the body,

2.area SAB=HRT; .. h=V.8Y.

By the use of this area the proportions employed in subse-
quent propositions by Newton may be converted into equations,
for the convenience of calculation.

If bodies move in curves for which the areas, described in

. h
the same time, are not equal, V'« ST

149. Cor. 4. The statement in this corollary requires modi-
fication, for, unless the forces be considered only with reference
to their accelerating effects, or unless the bodies be supposed of
equal mass, the forces will not be proportional to the sagittz.

150. Cor. 5. The object of this corollary is to determine
the numerical measure of the central force which governs the
motion of a body, when the circumstances of the motion are
known ; for it supplies us with the ratio of this force to the force
of gravity on the same body at any place, the measure of which
can be determined by experiment.

Applications of the Proposition.

151. Pror. Whken the force, instead of tending to a fixed
point, acts in parallel lines, the property of the motion enunciated
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in teh proposition may be replaced by the property that the
vesolved part of the space described perpendicular to the direc-
tion of the force is proportional to the times.

This is immediately deducible from the second law of motion,
since there is no force in the direction perpendicular to that of
he forces, and the velocity in that direction is uniform.

That this is the result of the properties in the proposition
may be shewn by removing the centre of force to an infinite
distance.

5

Let S be the centre of force, AMN perpendicular to SB, the
area ABCS is proportional to the time of describing 4 C, and
the areas AMNS and ABCS are ultimately equal when S is
removed to an infinite distance in BALS, hence the triangle 4 SN
is proportional to the time, and therefore tke base AN, which
varies as the triangle ASN, is also proportional to the time,
and therefore, since CN is ultimately perpendicular to AN,
the proposition is proved.

152. Prop. If a body describe a curvilinear orbit about a
Jorce tending constantly to a fixed point, the area described in a
given time will be unaltered, if the force be suddenly increased
ar diminished, of if the body be acted on at any moment by an
impulsive force tending to that point,

For, if in the polygon the impulse at any point B be in-
creased or diminished by any force tending to or from S, the
only effect will be to remove the vertex C of the triangle SBC to
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some other point in the line ¢C parallel to BS, hence the area
will be unaltered, and the argument which establishes the
equality of polygonal areas in a given time will proceed as
before. Hence in the limit the curvilinear areas described in
a given time will be unaltered.

If the new force introduced at B be impulsive, the angle
ABC will remain less than two right angles when we proceed
to the limit, and the two parts of the curve will cut one another
at a finite angle.

Hence, in any calculation made upon supposition of such
changes of force, the value of A, Art. 148, will be the same
before and after the change of the force.

Apses.

153. DEF. In any orbit described under the action of a
force tending to a fixed centre, a point at which the direction
of the motion is perpendicular to the central distance is called
an apse, the distance from the centre is called an apsidal
distance, and the angle between consecutive apsidal distances
is called an apsidal angle.

Thus, in the ellipse about the centre, the four extremities of
the axes are apses; there are two different apsidal distances,
and every apsidal angle is a right angle.

In the ellipse about a focus, the apses are at the greatest and
least distances, and the apsidal angle is two right angles.

154. In a central orbit described under the action of forces
tending to a fixed point, each apsidal distance will divide the orbit
symmetrically, if the forces be always equal at equal distances.

It is easily shewn that, in any orbit described by a body
under the action of forces tending to a fixed point, the forces
depending only upon the distance, if a second body be projected
at any point with the velocity of the first in the opposite direc-
tion, it will proceed to describe the same orbit in the reverse
direction, under the action of the same forces.

For, let ABC be a portion of the polygon whose limit is
the curvilinear path of the body, and produce 4B to ¢, and
CB to a, making Bc=AD, and Ba=CD.

U
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The impulse at B is measured by ¢C when the body de-
scribes ABC, and if the motion be reversed, the same impulse
at B would cause the body to move in B4, with the velocity
which it had in 4B, since ad=cC. And the same is true

throughout the polygonal path, hence the assertion is trne for
the whole path, described under the action of impulses which
are always the same at the same points, and therefore, proceed=
ing to the limit, the statement made for any orbit is proved.
Hence, since the forces are equal at equal distances on
both sides of the apse, the path of the body from an apse
being similar and equal to the path which would be described
if the velocity were reversed at the apse, is similar to the path

described in approaching the apse; whence the proposition is
established.

155. There are only two different apsidal distances, and
all apsidal angles are equal.

For, after passing a second apse, the curve being symme-
trical on both sides, a third apse will be in such a position that
the apsidal distance is the same as for the first apse, and all the
apsidal angles are shewn similarly to be equal.

156. Cor. Hence a central orbit can never re-enter itself
unless the ratio of the apsidal angle to a right angle be com-
mensurable, and if it be so, the curve will always re-enter.

Tllustrations.

(1) If a body describe an ellipse under the action of a force
tending to one of the foct, the square of the velocity varies inversely
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as the distance from that focus, and directly as the distance from
the other.
For BC*: 8Y*:: HZ: 8Y :: HP: SP;
1 Hp
57 §P*

(2) The velocity is greatest when the body 1s at the extremity
of the major axis which is nearer to the focus to which the force
tends, and least ot the other extremity.

For SY is the least in the first and greatest in the second
position.

o (vel)?ec

(8) The welocity at an extremity of the minor axis s a
geometric mean between the greatest and least velocities.

For at this point HZ=DB(, and at the extremities of the
major axis the values of HZ are Sa and S4, and BC* = S4. Sa.

(4) In the equiangular spiral described under the action of a
Sorce tending to the focus, the velocity o —‘Sl’ P
For, SY« SP.

(5) If the force tend to the centre of the elliptic orbit described
by a body, the time between the extremities of conjugate diameters

will be constant.
For the area PCD is constant.

(8) The velocity at any point of an ellipse about a force tend-
ing to a focus is compounded of two uniform velocities, one
perpendicular to the radius vector, and the other perpendicular to the
major axis.

Let S be the centre of force, Y, HZ perpendiculars on the
tangent at P, join SP, CZ. Then HZ, ZC parallel to PS, and




148 NEWTON.

CII are perpendicular to the three directions; therefore the
velocity represented by HZ in magnitude is the resultant of
the two represented by CZ and HC'; but the velocity perpen-

dicular to HZ= ;’ v B .HZ; therefore the velocities perpen-

dicular to ZC and CZ are ;i, ae and bﬁ’ a.

XVIIL

1. If different bodies be projected with the same velocity from
a given point, all being attracted by forces tending to one fixed
point, shew that the areas described by the lines drawn from the
fixed point to the bodies will be proportional to the sines of the
angles of projection.

2. When a body describes a curvilinear orbit under the action
of a force tending to a fixed point, will the direction of motion or
the curvature of the orbit at any point be changed, if the force at
the point receive a finite change ?

3. A body moves in a parabola about a centre of force in the
vertex, shew that the time of moving from any point to the vertex
varies as the cube of the distance of the point from the axis of the
parabola.

4. In a parabolic orbit described round a force tending to the
focus, shew that the velocity varies inversely as the normal at any
point. Shew also that the sum of the squares of the velocities ta
the extremities of a focal chord is constant.

5. If the velocity at any point of an ellipse described about
the centre can be equal to the difference of the greatest and least
velocities, the major axis cannot be less than double of the minor.

6. If an ellipse be described under the action of a force tending
to the centre, shew that the velocity will vary directly as the
diameter conjugate to that which passes through the body; also
that the sum of the squares of the velocities at the extremities of
conjugate diameters will be constant.

7. In an ellipse described round a force tending to the focus,
compare the intervals of time between the extremities of the same
latus rectum, when 4 C'=20CS.

8. In the ellipse described about the focus S, 48774’ being the

major axis, time in 4P : timein BA :: w-2¢: =+ 2. \
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9. If the velocities at three points in an ellipse described by
a particle, the acceleration of which tends to either of the foci, be
in arithmetical progression, prove that the velocities at the opposite
extremities of the diameters passing through these points will be
in harmonical progression.

10. If v, v, be the velocities at the extremities of a diameter
of an ellipse described about the focus, and « the velocity at either
of those points when it is described about the centre, prove that
% (v, +v,) will be constant.

11. In a central orbit, the velocity of the foot of the perpen-
dicular from the centre of force on the tangent varies inversely as
the length of the chord of curvature through the centre of force.

12. A particle is describing a parabola about its focus §; if P
and @ be two points of its path, shew that its velocity at @ will
be compounded of the velocity at P and a velocity which will be
constant if the angle PSQ be constant.

XIX.

1. A body describes a parabola about a centre of force in the
focus; shew that its velocity at any point may be resolved into
two equal constant velocities, respectively perpendicular to the axis
and to the focal distance of the point.

2. A body describes an ellipse under the action of a central
force tending to one of the foci; shew that the sum of the velocities
at the extremities of any chord parallel to the major axis varies
inversely as the diameter parallel to the direction of motion at
those points.

3. A body moves in an ellipse under the action of a force
tending to the centre; shew that the component of the velocity at
any point perpendicular to either focal distance is constant; and
that the sum of the squares of the velocities, at the extremities
of any pair of semi-conjugate diameters, resolved in any given
direction is constant.

4. In an ellipse described about a focus, the time of moving
from the greatest focal distance to the extremity of the minor axis
is m times that from the extremity of the minor axis to the least
focal distance; find the eccentricity, and shew that, if there be
a small error in m, the corresponding error in the eccentricity will
vary inversely as (1+ m)?

5. If the velocity of a body in & g'iven elliptic orbit be the same
at a certain point, whether it describe the orbit in a time ¢ about
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one focus, or in a time ¢ about the other, prove that, 2z being the
2at’ 2at
major axis, the focal distances will be ﬁt—’ and %, 5
6. A body describes a parabola about the focus; if the seg-
ments P8, Sp of the focal chord PSp be in the ratio »: 1, prove
that the time in p4 : time in AP :: 3n+ 1 : n*(n+3).

7. If 8Y be perpendicular to the tangent to a curve at P, and
P and ¥ both move as if under the action of a central force tending
to S, prove that the radius of curvature at P will vary as SY.

8. If P, Q be any two points in an ellipse described by a
particle under the action of a force tending to the centre, prove
that the velocity acquired in passing from P to Q will be in the
direction QP', where P’ is the other extremity of the diameter
through P.

9. Two points P, P' are moving in the same ellipse, in the
same directions, with accelerations tending to the centre C; shew
that the relative velocity of one with regard to the other is parallel
and proportional to €7, where 7' is the point of intersection of the
tangents at P and P'. If the points move in opposite directions,
what will be their relative velocity ?

10. Two particles revolve in the same direction in an oval
orbit round a centre of force S, which divides the axis unequally,
starting simultaneously from the extremities of a chord P@, drawn
through S. Prove that, when they first arrive in positions R, 7'
respectively, such that the angle RS7 is a minimum, the time from
R to the next apse will be an arithmetic mean between the times
from P to the next apse and to @ from the last apse.

_11. Two equal particles are attached to the extremities of a
string of length 2/, and lie in a smooth horizontal plane with the
string stretched; if the middle point of the string be drawn with
uniform velocity v in a direction perpendicular to the nitial direc-
tion of the string, shew that the path of each particle will be a

c . : g b
cycloid, and that the particles will meet after a time 5: o
12. If the velocity in a central orbit can be resolved into two
constant components, one perpendicular to the radius vector, and
the other to a fixed straight line, shew that the curve must be
a conic.

13. The velocity in a cardioid described about a force tending
to the pole varies in the inverse sesquiplicate ratio of the distance.

14. The velocity in the lemniscate varies inversely as the cube
of the central distance, when a particle moves in the curve round
a force tending to the centre.
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PROP. II. THEOREM II.

Lvery body, which moves in any curve line described in a
plane, and describes areas proportional to the times of
describing them about a point either fived or moving
uniformly in a straight line, by radic drawn fo that
point, is acted on by a centripetal foree tending to the
same point.

Case 1. Let the time be divided into equal intervals,
and in the first interval let the body describe 4B
with uniform velocity, being acted on by no force;
in the second interval it would, if no force acted, pro-
ceed to ¢ in AB produced, describing Be equal to AB;
and the triangles ASB, BSc¢ would be equal. But

when the body arrives at B, let a force, acting upon
it by a single impulse, cause the body to describe
BC’in the second interval of time, so that the tri-
angle BSC is equal to the triangle 488, and there-
fore also to the triangle BSc; therefore BSC and
BSc are between the same parallels, hence BS is
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parallel to cC, and therefore BS was the direction of
the impulse at B.

Similarly, if at €, D, ... the body be acted on by im-
pulses causing it to move in the sides €D, DE, ... of
a polygon, in the successive intervals, making the
triangles CSD, DSE, ... equal to ASD and BSC, the
impulses can be shewn to have been in the directions
0S8, DS, .... Hence, if any polygonal areas be de-
seribed proportional to the times of describing them,
the impulses at the angular points will all tend to S.

The same will be true if the number of intervals be
increased and their length diminished indefinitely,
in which case the series of impulses will approximate
to a continuous force tending to S, and the polygons
to curvilinear areas, as their limits. IHence the pro-
position is true for a fized centre.

Case 2. The proposition will also be true if .S be a
point which moves uniformly in a straight line, for,
by the second law of motion, the relative motion will
be the same, whether we suppose the plane to be at
rest, or that it moves together with the body which
revolves and the point S, uniformly in one direction.

Cc¢r. 1. In non-resisting media, if the areas be not
proportional to the times, the forces will not tend
to the point to which the radii are drawn, but will
deviate in consequentid, i.e. in that direction towards
which the motion takes place, if the description of
areas be accelerated ; but if it be retarded, the devi-
ation will be i antecedentid.

Cor. 2. And also in resisting media, if the deseription
of areas be accelerated, the directions of the forces
will deviate from the point to which the radii are
drawn in that direction towards which the motion
takes place.

SCHOLIUM.

A body may be acted on by a centripetal force com-
pounded of several forces. In this case, the meaning
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of the proposition is, that that force, which is the
resultant of all, tends to S. Moreover, if any force
act continually in a line perpendicular to the plane
of the areas described, this force will cause the body
to deviate from the plane of its motion, but will
neither increase nor diminish the amount of area
described, and therefore must be neglected in the
composition of the forces.

Observations on the Proposition.

157. The description of an area round a point in motion
may be explained by the following construction for the relative
orbit, in the case of motion about a point which is itself moving
uniformly in a straight line.

Let 88’ be the line in which S moves uniformly, and let the
body move from 4 to B in the same time that S moves from §
to &, and let P, o be simultaneous positions of the body and of 8.

If PP’ be drawn equal and parallel to ¢S, and the same
construction be made for every point in the path of the body,
the curve AP B', which is the locus of P’, will be the orbit which
the body would appear to describe to an observer at S, who
referred all the motion to the body; for SP will be equal and
parallel to oP, and therefore the distance of the body, and the
direction in which it is seen, will be the same in the two cases.

If Q, @ be correspending points near P and P, and the force
at o be supposed to act impulsively, the relative motion round &
will be unaltered if we apply to both P and o velocities equal to

X
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that of ¢ and in a contrary direction, but in this case ¢ will
be reduced to rest and the velocity of P will be the velocity
relative to 0. Take PQ and od’, which arc described in the
same time, to represent the velocities of Pand o, and let Qg be
equal and parallel to o’o, then Py represents the velocity of P
relative to o; and, since Q'g=8o—dc'c=P'P, P'¢ is equal
and parallel to Pg, and therefore the veloeity in the orbit A5’
about S at rest is equal to the relative velocity about § in
motion.

158. Cor. 1. Reverting to the polygonal area, if the tri-

angle SBC" be greater than the triangle S4B, the impulse at B
will not be in the direction BS, but BU, parallel to ¢C', that is,
if the areas be not proportional to the times but be in an
increasing ratio, the direction of the force will deviate towards
the direction in which the description of areas is accelerated;
and vice versd, when the description is retarded.

159. Cor. 2. The effect of a resisting medium is to retard
the motion, or, supposing it the limit of a series of impulses, we
must conceive an impulse at B, in the case of the polygon, in the
direction B4 ; if therefore the description of areas be accelerated,
the impulse applied at B in the direction BU' must act still
further #n consequentid than that in BU in order that, with the
impulse corresponding to the resistance of the medium, it may
produce a resultant impulse in the direction of BU. The effect
of the resistance alone is to retard the description of areas.

If the force act én consequentid, the resultant of this force



PROP. II. THEOREM II 155

and the resistance of the medium may act in the direction BS,
and the proportionality of the areas to the times be preserved.

160. Prop. Let ABODE be any plane curve, 8 any point
in the plane, to shew that, generally, the curve can be described
under the action of a force tending to or from 8, with finite velo-
city, the velocity at any given point being any given velocity.

For arcs 4B, BC, ... can be measured from any point 4,
along the curve, such that the areas S4B, SBC,... are all equal,

and of any magnitude. Also a body can be made, by some force
to move along the curve with finite velocity, so as to describe the
arcs AB, BC, ... in equal times, unless the tangent to one of
the arcs, as DE, pass through &, in which case, if the arcs be
indefinitely diminished, DE, 4B will not be finite ultimately.
Hence by Prop. IL. a body car move with finite velocity
under the action of some force tending to or from S, generally.

161. NotEe 1. Since in making the motion of the body such
that it shall describe equal areas in equal times we are only con-
cerned with the ratio of the velocities, the velocity at any point
4 may be any given velocity.

162. Notk 2. Or if we please we may suppose the force at
any point any given force ; for, in the case of the polygon, the
velocity generated by the impulse at B is to the velocity in 4B
as ¢C to B, hence the impulse at B may be of any magnitude
if we choose the velocity in 4B properly.

163. Note 3. The ratio of the velocities will be the same
at two given points, for all forces tending to a given centre,
under the action of which the curve can be described.
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164. Note 4. Hence a body can move throughout any
ellipse under the action of a centripetal force tending to the
centre or focus, the force depending only on the distance, since
in these cases the curve is symmetrical on opposite sides of any
apse; or about any point within the ellipse, if the forces do not
depend only on the distance, since no point within an ellipse lies
on any tangent.

165. NotE 5. In the case of an oval, S being an external
point, a body can move with finite velocity under the action of
a force tending to the point S in the portion which is concave to
S, and from S, in that which is convex to S, but not from one
portion to the other.

XX.

1. If an ellipse be described so that the sum of the areas
swept out by radii drawn to the vertices is proportional to the
times of describing them, prove that the resultant acceleration
will tend to the centre.

2. A body is moving in a parabola, and the time from the
vertex to any point varies as the cube of the ordinate; shew that
this motion could be caused by the action of a central force.

3. A body was moving in a circle, and it was observed that the
time of describing any arc from a fixed point varied as the sum of
the arc and the perpendicular distance from one extremity of the
arc on the diameter through the other; shew that the body was
acted on by a central force.

4. A heavy particle falls from the cusp to the vertex of a
cycloid, whose axis is vertical; shew that a particle could describe
the eycloid in the same manner under the action of a constant force
directed to a certain moving point.

5. From the centre of a planet a perpendicular is let fall npon
the plane of the ecliptic; prove that the foot of this perpendicular
will move as if it were a particle acted on by a force tending to the
sun’s centre.
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PROP. TII. THEOREM III.

LEvery body, which describes areas proportional to the times
of describing them by radii drawn to the centre of another
body which is moving in any manner whatever, is acted on
by a force compounded of & centripetal force tending to
that other body, and of the whole accelerating force which
acts upon that other body.

Let the first body be Z, the second 7, 7' moves under
the action of some force P, L under the action of

s
/ =

another force 7. At every instant apply to both
bodies the force P in the contrary direction to that
in which it acts, as represented by the dotted arrows.

L will continue to describe about 7| as before, areas
proportional to the times of describing them, and
since there is now no force acting on 7, 7'is at rest
or moves uniformly in a straight line.

Therefore, by Theorom II., the resultant of the force #'
and the force P applied to L tends to 7.

Ience #'is compounded of a centripetal force tending to
T, and of a force equal to that which actson 7. Q.E.D.

Cor. 1. Hence, if a body L describe areas proportional
to the times of describing them by radii drawn to
another body 7'; and from the whole force which
acts upon L, whether a single force or compounded of
several forces, be taken away the whole accelerating
force which acts upon the other body 7'; the whole
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remaining force, which acts upon Z, will tend to the
other body 7' as a centre.

Cor. 2. And if these areas be very nearly proportional
to the times of describing them, the remaining force
will tend to the other body very nearly.

Cor. 3. And, converself, if the remaining force tend
very nearly to the other body 7', the areas will be
very nearly proportional to the times.

Cor. 4. If the body L describe areas which are very
far from being proportional to the times of describing
them, by radii drawn to another body 7, and that
other body 7" be at rest, or move uniformly in a
straight line, then either there will be no centripetal
force tending to that other body 7, or such centri-
petal force will be compounded with the action of
other very powerful forces, and the whole force com-
pounded of all the forces, if there be many, may be
directed towards some other centre fixed or moving.

The same will hold, when the other body moves in any
manner whatever, if the centripetal force spoken of
be understood to be that which remains after taking
away the whole force acting upon the other body 7'

SCHOLIUM.

Since the equable description of areas is a guide to the
centre to which that force tends, by which a body is
principally acted on, and by which it is deflected
from rectilinear motion, and retained in its orbit, we
may, in what follows, employ the equable description
of areas as a guide to the centre, about which all
curvilinear motion in free space takes place.

Illustration.

166. As an illustration of the last propositions and their
corollaries, we may state some of the observed facts in the
motion of the Moon, Earth, and Sun, and make the deductions
corresponding to them.
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Suppose the Moon’s orbit relative to the Earth to be nearly
circular, and let ABCD be this orbit, & the Earth.

wr L
My
E
s | @
EA
B

(1) The arcas described by the radii drawn from the Moon
to the Earth are nearly proportional to the times of describing;
hence the resultant force on the Moon tends nearly to E.

(2) If ES the line joining the centres of the Earth and Sun
meet the Moon’s relative orbit about the Earth in 4, C, and
DEB be perpendicular to DS, the description of areas will be
accelerated as the Moon moves from D to 4 and from B to C,
and retarded from 4 to B and from C to .D; hence the direction
of the resultant force on the Moon in the positions 34, M,
M,, M, will be in the directions of the arrows slightly inclined
to the radii drawn to E.

From these observed facts, we see that when the force, under
the action of which E moves, is applied to the Moon in the
contrary direction, the remaining force tends in the directions
of the arrows.

By the supposition that the Earth and Moon are acted on
by forces tending to the sun, whose distance compared with ZM
is very great, and that the differences of the forces on these
bodies are not very great, the accelerating effect of the force on
the Moon in DAB being greater than that on the Earth, and in
BCD less, the circumstances of the description of areas in the
motion of the Moon are accounted for.
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PROP. 1V. THEOREM IV.

The centripetal forces on equal bodies, which describe dif-
ferent circles with uniform velocity, tend fo the centres of
the circles, and are to each other as the squares of arcs
described in the same time, divided by the radii of the
circles.

The bodies move uniformly, therefore the arcs described
are proportional to the times of deseribing them ; and
the sectors of circles are proportional to the arcs on
which they stand, therefore the areas described by
radii drawn to the centres are proportional to the
times of describing them; hence, by Prop. II., the
forces tend to the centres of the circles.

Again, let AB, ab be small arcs described in equal times,
d
: b\

/| ~*

g

@
e

3

AD, ad tangents at 4, a; ACSG, aesy diameters
through 4, a. Join AB, ab, and draw B0, bc per-
pendicular to 4G, ag.

When the ares AB, abare indefinitely diminished, since
AC, ac are sagitte of the double of arcs AR, ab
described in equal times, they are ultimately, by
Prop. I, Cor. 4, as the forces at 4 and a.

But 40.4G = (chd AB)' and ac.ag = (chdab)';
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.+, forceat A : force at a :: AC': ac ultimately,
hd AB) (chdab) AB) ( *
::(c 4G ) :(CI &) ::(arc ) :(arcab) , Lem. VII,

ag AG ag

Take AE, ae two arcs deseribed in any equal finite
times, then A% ae:: AB : ab, since the bodies move
uniformly, and this is also true in the limit;

. . .. AE” . ae’

.. force at A : force at a :: AR

Cor. 1. Since these arcs are proportional to the velo-
cities of the bodies, the centripetal forces will be in
the ratio compounded of the duplicate ratio of the
velocities directly, and the simple ratio of the radii
inversely.

That is, if V, » be the velocities in the two circles, &, r
the radii, 7, f the centripetal forces, AE:a¢::V : v;

Q.E.D.

Vo
SRR Y

Cor. 2. And since the circumferences of the circles are
described in their periodic times, the velocities are in
the ratio compounded of the ratio of the radii directly
and the ratio of the periodic times inversely ; hence
the centripetal forces are in the ratio compounded
of the ratio of the radii directly, and of the ratio of
the squares of the periodic times inversely.

If P, p be the periodic times in the two circles re-
spectively,

V:v::QWR‘Q—W“R'r'

T.p."P.Z_)"
VG v R
..F'f“-_l_{";nﬁ.}?.

Cor. 8. Hence, if the periodic times be equal, and there-
fore the velocities proportional to the radii, the cen-
tripetal forces will be as the radii; and conversely.

T
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If P=p, then V:iv:: R:r;
F:f::f:;::R:r.

Cor. 4. Alsoifthe periodie times be in the subduplicate
ratio of the radii, the centripetal forces will be equal.
That is, if P*: p* :: R : r, then F'=f; by Cor. 2.

Cor. 5. If the periodic times be as the radii, and
therefore the velocities equal, the centripetal forces
will be reciprocally as the radii; and conversely.

Cor. 6. If the periodic times be in the sesquiplicate
ratio of the radii, and therefore the velocities recipro-
cally in the subduplicate ratio of the radii, the cen-
tripetal forces will be reciprocally as the squares of
the radii; and conversely.

That is, if P*: p* s B': 7,

7% . at e ‘)".T’..l-l.
then V*: v Bt At
7y 1 1
.. F.f..?l,’.';.-j'—iz.;;.

Cor. 7. And, generally, if the periodic times vary as
any power 1" of the radius R, and, therefore, the velo-
city vary inversely as the power £, the centripetal
force will vary inversely as R”"; and conversely.

Cor. 8. All the same proportions can be proved con-
cerning the times, velocities, and forces, by which
bodies describe similar parts of any figures whatever,
which are similar and have centres of force similarly
situated, if the demonstrations be applied to those
cases, uniform description of areas being substituted for
uniform veloctty, and distances of the bodies from the
centres of force for radii of the circles.

Let AE, ac be similar arcs of similar curves described
by bodies about forces tending to similarly situated
points S, s; and let AB, ab be small arcs described
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in equal times; BD, bd subtenses parallel to S4, sa;
AV, av chords of curvature at 4, a, so that

AV :av:: AS: as.

E
D e
=X
ny T 4 s 3 a@

Then, force at A : force at @ :: DB : db, ultimately,
LAB AR b

TAV Tav T SA  sa

and if 7, » be the velocities at 4, a since AB, ab are
described in equal times, AB: ab::V: v, ultimately;

, ultimately ;

Ve v
.. force at A : force at a :: A e ™ Cor. 1.

Again, if AB, ab be small similar arcs deseribed in times
T, ¢, instead of being arcs described in equal times,
and P, p be the times of describing similar finite
arcs AL, ae,

T:P:: arecaASB : area ASE :: arcaash : areaase :: : p;

therefore, when AB, ab are indefinitely diminished,
13 388 IR 8

vV* o AB* ol

Hence, F.f.. IS,Z . -6:5 88 m : m

. S4 sa  SA sa

R iE

Cor. 9. It follows also from the same proposition, that

the arc which a body, moving with uniform velocity

ina circle under the action of a given centripetal force,

describes in any time, is a mean proportional be-

tween the diameter of the circle, and the space

through which the body would fall from rest under
the action of the same force and in the same time.

ultimately,

, as Cor. 2.
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For, let A Lbe the space described from rest in the same
time as the-arc AE, then since, if BD be perpendi-
cular to the tangent at 4, BD will be ultimately the
space described by the body, under the action of the
force at 4, in the time in which the body describes
the arc A B,and the times are proportional to the arcs;

o AL:BD :: AE*: AD;
.. AL.AG : BD.AG :: AE*: AB*;
and BD.AG=(chdAB) =(arcAB), ultimately;
thereforc AL.AG=AE", or AL: AE:: AL : AG.
Q.E.D.

SCHOLIUM.

The case of the sixth Corollary holds for the heavenly
bodies, and on that account the motion of bodies acted
upon by a centripetal force, which decreases in the
duplicate ratio of the distance from the centre of force,
is treated of more fully in the following section.

Morcover, by the aid of the preceding proposition and
its corollaries, the proportion of a centripetal force
to any known force, such as gravity, can be obtained.
For, if a body revolve in a circle concentric with
the carth by the action of its own gravity, this
gravity is its centripetal force.

But, from the falling of heavy bodies, by Cor. 9, both
the time of one revolution and the ares described in
any given time are determined.

And by propositions of this kind Huygens, in his ex-
cellent tract, De Ilorologio Oscillatorio, compared the
force of gravity with the centrifugal force of re-
volving bodies.

The preceding results may be proved in this manner,
In any circle let a regular polygon be supposed to
be described of any number of sides. And if a body
moving with a given velocity along the sides of the
polygon be reflected by the circle at each of its
angular points, the force with which it impinges on



PROP, 1V. THEOREM IV. 165

the circle at each of the reflections will be propor-
tional to the velocity ; and therefore the sum of the
forces, in a given time, will vary as the velocity and
the number of the reflections conjointly. But if the
number of sides of the polygon be given, the velo-
city will vary as the space described in a given
time, and the number of reflections in a given time
will vary, in different circles, inversely as the radii of
the circles, and, in the same circle, directly as the
velocity. Hence, the sum of the forces exerted ina
given time varies as the space described in that time
increased or diminished in the ratio of that space to
the radius of the circle; that is, as the square of
that space divided by the radius, and therefore, if
the number of sides be diminished indefinitely so
that the polygon coincides with the circle, the sum
of the forces varies as the square of the arc described
in the given time divided by the radius.

This is the centrifugal force by which the body presses
against the circle, and to this the opposite force is
equal, by which the circle continually repels the
body towards the centre.

Symbolical representation of Areas, Lines, dc.

167. In the statement of the proposition the words  arcuum
quadrata applicata ad radios,” in the text of Newton, is rendered
tlie squares of arcs divided by the radii. Such expressions as
Z%— may be regarded as representations of lines (eg. this
expression denotes 4 C) whose lengths are determined by such
constructions as the following :

To AQG apply a rectangle whose area is that of the square on
AB, and let AC be the side adjacent to A@; AC is thus
obtained by applying the square on AB to AG@. The propricty

of the symbol %% employed to represent a line 4G, assumed

from algebra, is obvious, since the number of units of area in
the square on AB and in the rectangle whose sides are AG,
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AC are the same; hence, if m, n, » be the number of umts of
2

0 m
length in these lines, m*=nxr and r= pc

AB
44
manner as a fraction, we may ecither treat them numerically,
considering AB* to represent the number of units of area con-
tained in the square on A B, and A as the number of units of
length in A @, and thus apply the rules of Arithmetical Algebra;
or we may look upon AB* as the absolute representation of an

168. If symbols of this kind, viz. , be nsed in the same

y 1% would have

no meaning except by interpretation. In this interpretation we
are guided by the principles upon which Symbolical Algebra is
applied to any science, the laws of operation by symbols being
the same in Arithmetical and Symbolical Algebra, and the
symbols being interpreted so that these laws are not contra-
dicted. Thus if, in the application to Geometry, the symbol 4
be supposed to denote an area equal to that of a rectangle whose
sides are represented by « and &, the assumption that 4 =abd
or ba will imply that ab=da, lience the laws remain the same

area, and A @ as that of a line, in which case

o . 4 . .
as in Arithmetical Algebra, and o= b3 30 that the interpretation
is legitimate, that, if a rectangle be applied to a, whose area is 4,

%will denote the other side of the rectangle.

Observations on the Proposition.

169. In the statement of the proposition the word ¢equal’
has been inserted before ‘bodies’ in order to make the theorem
correct, whether we suppose the centripetal force to be estimated
with reference to the momentum or the velocity generated. -

It would, perhaps, be better to state the proposition as
follows: * The resultant of the forces, under the action of which
bodies describe different circles with uniform velocity, are centri-
petal and tend to the centres of the circles, and their accelerating
effect are to each other, &e.,” for it is not known, prior to the
proof, that the forces are centripetal.
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170. Cors. 1 and 9. The first corollary asserts that the

centripetal forces on bodies moving in different circles vary as
V: g
R but the ninth shews that the accelerating effects of the
2
centripetal forces are in each circle equal to —2— c
For, if V be the velocity, F the accelerating effect of the
force in any circle, 7" the time of describing any arc, V7 will be
the length of the arc, 77" will be the space through which
the body would move under the action of the same force con-
tinued constant, in the same time in which the arc is described,

o 3FT*:VT:: VI:2R; . V*=FR,

171. Scholium. In uniform circular motion the centripetal
force is employed in counteracting the tendency of the body to
move in a straight line, which it would do, according to the first
law of motion, with the uniform velocity which it has at any
point of the circle, if the centripetal force were suddenly to cease
to act. This tendency to recede is called a centrifugal force
improperly; for the effect of a force being to accelerate or
retard the motion of a body, or to alter its direction, if the
tendency could properly be termed a force and the centripetal
force which counteracts it were removed, it would accelerate or
retard the motion of the body, or alter its direction, which it
does mnot.

The only sense in which the term centrifugal force can be
used with propriety as a force may be obtained by the con-
sideration of relative equilibrium, in which case, if the same
centripetal force acted on the body, the centrifugal force would
keep it in equilibrium, supposing the body were at rest as
it would appear to be to an observer moving with it.

Thus, if a body be supported on the surface of the earth,
since the body describes a circle about the axis of the earth
with uniform velocity, the pressure of the support and the
attraction of the earth must have a resultant, whose direction
will pass through the centre of this circle, and whose magnitude
will be such as would cause the body to describe it; this re-
sultant and the centrifugal force will be in statical equilibrium.
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172. In this case of circular motion the force is exerted
not in accelerating or retarding the motion, but in changing its
direction.

Thus, referring to the figure of Prop. I, if the direction of
the impulse at B bisect the angle A4BC, the triangle CBc will
be isosceles, and BC= Bc=_AB; therefore the velocities in BC
and 4B will be equal, and the effect of the impulse has been to
change the direction without altering the velocity of the body.

Hence, the regular polygon inscribed in a circle, centre S, can
be described with uniform velocity under the action of impulses
tending to the centre; and, by similar triangles SBC, CBc,

Cec:BC:: BC: BS.

And if V be the uniform velocity in the polygon, 7' the
72
time in a side BC, BC=V.T'; therefore Cc= }ng

If now the number of sides be indefinitely increased, Cc will
be ultimately twice the space through which the body will be
drawn from the tangent by the continuous force, see Art. 146;

2
therefore - g = gS will be the measure of the accelerating effect

of the centrlpetal force tending to the centre of the circle.

Tllustrations of Circular Motion.

(1) A4 small body s attached by an inelastic string to a
point on a smooth horizontal table, to determine the tension of the
string when the body describes a circle.

If the body be set in motion by a blow perpendicular to the
string, the string will remain constantly stretched, and the only
force which acts on the body in the horizontal plane being in the
direction of the fixed point, the areas described round this point
will be proportional 1o the time, and the body will move in a
circle with uniform velocity.

Let v be the velocity of projection, and I the length of the
string, then the accelerating eftect of the tension of the string

I
l ; that is, 7 is the velocity which would be geuerated in an
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unit of time from rest by the action of this tension continued

constant, therefore the tension of the string : the weight of the
2

v
body :: 79
Ex. If a velocity of two feet a second be communicated

perpendicular to a string whose length is a yard,
vilgiid:i3x82: 124,

. .1 o
hence the tension is -ﬂth of the weight, and the time of

"

revolution is evidently E’Ll seconds =6—;—=9'4“, nearly.

(2) If a particle be attached by a strmg of given length to a
point in arough horizontal plane, and a given velocity be communi-
cated to it, perpendicular to the string supposed tight, find the
tension of the string at any time, the time in which it will be
reduced to rest, and the whole arc described.

Let V'be the velocity of projection, I the length of the string
in feet, v the velocity at any time ¢ Since the particle describes
a small arc ultimately with uniform velocity the accelerating

2
effect of the tension at the time ¢ is % Again, if p be the

coefficient of friction, the retarding effect of friction is #g, which
is constant, hence the velocity destroyed in the time ¢ since
friction is the only force acting in the direction of the tangent
is pgt, and v=V— pgt. 2

Therefore the particle comes to rest in 7 seconds after

descri
The tensmn of the string at tbe time ¢: the weight of the

2

particle :: 3 g (V_ ,u.qt) : g; therefore the tension o¢ (P_I;— )

o« the square of the txme which will elapse before the particle
comes to rest.

(3) Supposing that the Moon describes a circle with uniform
velocity about the centre of the Earth as its centre, to find the ratio
of the centripetal acceleration of the Moon’s motion to gravity at

the Earth’s surface.
z
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Let n= number of seconds in the Moon’s periodic time,
R = the radius of the Moon’s orbit in feet; therefore the velocity

3
of the Moon is g:—@ and —11?, o (%TR) is the measure of the acce-~

lerating effect of the force exerted on the Moon, and the measure
of the same for gravity at the Earth’s surface =32.2; hence,
the ratio required is 47°R : 32.22%

(4) A body is suspended by a string from a fixed point, and
being drawn out of the vertical is projected horizontally so as to
describe a horizontal circle with uniform wvelocity. Find the
velocity and the tension of the string.

Let A be the point of suspension, BC the radius of the circle
described ; therefore, the circle being described uniformly, the
resultant force on the body tends to the centre B, and the
measure of the accelerating effect of this resultant force is EV;»

]
in the direction CB. Let 7, W be the tension of the string and
the weight of the body, acting in CA and parallel to 4B
respectively, therefore 7': Wi C4: AB;

g.BC*
AB?

and, if CD be perpendicular to AC, BC*=AB.BD; and the
velocity will be that due to falling through the space 3 BD.

also, BE(;' 1g::CB: AB) Art. 171, . V=

XXI.

. L. Ifthe cube of the velocity, in circles uniformly described, be
inversely proportional to the periodic time, shew that the law of
force will vary inversely as the square of the radii.
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2. Compare the areas described in the same time by the
planets, supposed to move in circular orbits about the Sun’in the
Egutre exerting a force which varies inversely as the square of the

istance.

3. If the forces by which particles describe circles with uniform
velocity vary as the distance, shew that the times of revolution will
be the same for all.

4. If the velocity of the Earth’s motion were so altered that
bodies would have no weight at the equator, find approximately the
alteration in the length of a day, assuming that, before the altera-
tion, the centrifugal force on a body at the equator was to its
weight :: 1 : 288.

5. A particle moves uniformly on a smooth horizontal table, being
attached to a fixed point by a string, one yard long, and it makes
three revolutions in a second. Compare the tension of the string
with the weight of the particle.

6. A body moves in a circular groove under the action of a
force to the centre, and the pressure on the grcove is double the
given force on the body to the centre, find the velocity of the body.

7. If a locomotive be passing a curve at the rate of twenty-four
miles an hour, and the radius of the curve be }} of a mile, prove
that the resultant of the forces which retain it on the line, viz. of
the action of the rails on the flanges of the wheels, and the horizontal
part of the forces which act perpendicular to the inclined road-way,
will be 137 of the weight of the locomotive, nearly.

8. If a body be attached by an extensible string to a fixed
int in a smooth horizontal table, find the velocity with which the
ody must move in order to keep the string constantly stretched
to double its length. | L
If 7 be the weight of the body, and /7 be the weight which if
suspended at the extremity of the string would just double its length,
Ithe length of the string, shew that the square of the required
velocity = 2nlg.

9. A man stands at the North Pole and whirls 241bs. troy
weight on a smooth horizontal plane by a string a yard long at the
rate of 100 turns a minute; he finds that the difference of the
forces which he has to exert according as he whirls it one way or
the opposite is roughly 39 grains; find the period of the rotation of
the earth.

10. Two equal bodies lie on a rough horizontal tabl.e, and are
connected by a string which passes through a small ring on the
table; if the string be stretched, find the greatest velocxty.wnth
which one of the bodies can be projected in a direction perpendicular
to its portion of the string without moving the other body.
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perpendiculars DM, DN on the tangents. Join XY,
MM, then, since SX : Y :: DM: DN and the angles
XS8Y, MDN are equal, therefore the triangles X,
MDXN are similar; therefore SX:DM:: XYV: MN
2 XT: MT, and the angles SXT, DMT are right
angles; therefore, S, D, T are in the same straight
line. Similarly S, E, V are in the same straight
line, and therefore the centre S is the point of
intersection of 7D, VE. q.E.D.

XXII.

1. If 4B, BC, CD, the three sides of a rectangle, be the
directions of the motion of a body at three points of a central orbit,
and the velocities be proportional to these sides respectively, prove
that the centre of force will be in the intersection of the diagonals
of the rectangle.

2. If the velocities at three points of a central orbit be respec-
tively proportional to the opposite sides of the triangle formed
by joining the points, and have their directions parallel to the same
sides, prove that the centre of force will be the centre of gravity of
the triangle.

3. Three tangents are drawn to a given orbit, described by a
particle under the action of a central force, one of them being parallel
to the external bisector of the angle between the other two. If the
velocity at the point of contact of this tangent be a mean propor-
tional between those at the points of contact of the other two, prove
that the centre of the force will lie on the circumference of a

certain circle.

4. TIf the velocities be inversely proportional to the sides of the
triangle formed by the tangents at the three points, the centre of
force will be the point of concourse of the straight lines joining each
an angular point of this triangle to the intersection of the tangents
to its circumseribing circle at the ends of the opposite side.

5. If the velocity of a particle describing an ellipse under the
action of a centre of force vary as the diameter parallel to the
direction of its motion directly, and as its distance from one of
the axes inversely, prove that the centre of force will be at an

infinite distance.
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the area described in an unit of time. Then area
PSQ = Lkt, Prop. 1., also, since triangle PSQ
=38P.QT,andarea PSQ =triangle P.S @, ultimately,
Lemma VIIL, therefore 4T = SP.QT, ultimately ;

QOB _2 QR
™ =8P Q1"
Cor.2. Draw SY perpendicular on PR. Then, a PSQ
=a PSR = {SY.PR;
< hT=8Y. PR=SY. PQ, ultimately;
QR _ 9% QR
T8V P
Cor. 3. Ifthe orbit have finite curvature at P, and PV

be the chord of the circle of curvature whose direction
passes through S, PV.QR =P, ultimately ;

hence, ultimately, F=

hence, ultimately, F=2

o O
= sy ey
Cor. 4. If V be the velocity at P, then V=PTQ, and
2QR 2QR (P@Q\ ..
F=" ™ =pE- (—T) , ultimately ;
27 . rv
*a F=-P—V, or V'=2F. 5

that is, the velocity at any point of a central orbit
at which the curvature is finite is that which would
be acquired by a body moving from rest under the
action of the central force at that point continued
constant, after passing through a space equal to a
quarter of the chord of curvature at that point drawn
in the direction of the centre of force.

Cor. 5. Hence, if the form of any curve be given, and
the position of any point S, towards which a centri-
petal force is continually directed, the law of the
centripetal force can be found, by which a body will
be deflected from its direction of motion, so as to
remain in the curve. Examples of this investiga-
tion will be given in the following problems.
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Observations on the Proposition.

178. In Newton's enunciation of the proposition, the sagitta
of the arc, which bisects the chord and is drawn in the direction
of the centre of force, is employed instead of the subtense used
in the text, but these are ultimately proportional by Art. 90.

The variations by which Newton expresses the results of the
first three corollaries are replaced by equations, in order to
facilitate the comparison of the motion of bodies in different
orbits and the forces acting upon them.

174. The figure employed in proof of the proposition is
drawn upon supposition that the force is attractive, the orbit
being concave to the centre of force; the same proof will apply
also to the case of a repulsive force, if the curve be drawn in
the dircction of the dotted line PQ’ and the same comstruction
be made.

The exception, however, should be made, that the method fails
in the particular positions in which the body is at the points of
contact of tangents drawn from the centre of force to the curve;
in such cases QI does not ultimately meet the tangent at a finite
angle or is not a subtense ; the result of the proposition is there-
fore not demonstrated for these particular positions. A further
discussion of the case is given on the next proposition.

175. In the proof it is assumed that the body moves ulti-
mately in the same manner as if the force P remained constant
in magnitude and direction, in which case the body would
describe a parabola, whose axis is parallel to PS, and which is
evidently the parabola which has at P the same curvature as
the curve. By this consideration the proposition contained in
Cor. 4 can be readily proved. For, since the body moves in
a parabola under the action of a constant force in parallel lines,
the velocity at P is that acquired by falling from the directrix
under the action of the force at P, continued constant, <.e.
through a space equal to the distance of the focus of the
parabola, which is equal to a quarter of the chord of curvature
at P, drawn through S.
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176. The supposition that the force at P continued constant
in magnitude and direction, causes the body to move in a curve
which is ultimately coincident with the path of the body, may be
justified by considering that if PQ)’ be the arc of the parabola
described on this supposition in the same time as the arc PQ
actually described, the error ¢'Q is due to the change in the
magnitude of the forces and the direction of their action in the
two cases ; now, the greatest difference of magnitude varies as the
difference of SP and SQ ultimately, and the ratio of the error
from this cause to @'I vanishes ultimately; also, since 2 PSQ
vanishes ultimately, the ratio of the error, arising from the change
of direction, to 'L vanishes ; therefore, ¢/Q : Q'R vanishes, and
the curves may be considered ultimately coincident.

177. Tt is evident that the results of the Proposition and of
the fourth corollary are true of the resultant of any forces, under
the action of which any plane orbit is described, for this resultant
may be supposed ultimately constant in direction and magnitude,
in which case the curve described is a parabola. Hence, as in
Art. 175, if F' be the accelerating effect of the resultant of the
forces, QR the subtense parallel to the direction of the resultant,

oo PV .. oR
V —2F.T, and F_211m1tT.

Homogeneity.

178. Cor. 1, 2. In the expressions for  obtained in these
corollaries, it is of great importance to observe the dimensions
of the symbols. Thus 27" represents an area and 4 is of two
dimensions in linear space and of — 1 in time; therefore 2".QR
is of five in space, and of —2 in time, and SP.QT" of four

c g 27", g ] G
dimensions in space; hence, YIZXIVE is of one dimension in

space and of —2 in time, and represents either twice the.. space
through which a force would draw a body in an unit of time, or
the velocity generated by the force in an unit of time, either of
which may be taken as the measure of the accelerating effect (:;f
the force ; moreover, this unit is the same by which the magni-

tude of % is determined.
AA
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Hence, if the actual areas, lines, &c., be represented by the
gymbols, and not the number of units, as mentioned in Art. 168,
every term of an equation or of a sum or difference must be
homogeneous, or of the same number of dimensions, both in space
and time; for example, PQ+ V.1 representing a line, ¥ must
be of —1 dimensions in time.

Tangential and Normal Forces.

179. To find the accelerating effect of the components of the
forces, under the action of which a body describes any plane curve,
taken in the directions of the normal and tangent at any point.

Let PQ be a small arc of the curve described under the
action of any forces, 7} N the measures of the accelerating effect
of these forces, in the direction of the tangent and perpendicular
to it. Then, if V be the velocity at P, ¢ the time of describing
P(Q), the forces may be supposed ultimately to remain constant;
therefore, if QR be perpendicular to PIPR, we shall have
ultimately QR =3N.&% and PR=V.t+3T.£'=V.t since tho
ratio of 7.¢ : V't vanishes ultimately; hence, if p be the radius
of curvature at I, 2p= G o1 ultimately ; therefore z will

heAp QRN Y3 )
be the measure of the normal acceleration estimated towards
the centre of curvature.

Again, if V' be the velocity at @, V' will be ultimately the
component of the velocity in the direction PRj; thercfore, by
Art. 53, we obtain two measures of the tangential acceleration,

-V d V-V
P Th s et

180. To find the velocity at any point of an orbit described
under the action of any forces in one plane.

Let AB be any arc of an orbit, ¥V, » the velocities at 4 and
D, and suppose the arc 4B divided into a large number of small
portions, of which PQ is one, v,, ,,, velocities at P and @, T the
accelerating effect of the tangential component of the forces at P,

v, — v’ =2T.PQ ultimately,
and o'~ V* is obtained by taking the limit of the sum of the
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magnitudes 27.P@Q corresponding to the different arcs when
their number is indefinitely increased.

That this is rigidly correct may be shewn by considering that
v, —v": 2T.PQis ultimately a ratio of equality; therefore, by
Cor., Lemma 1V., or Art. 22, the limiting ratio of the sums is
also a ratio of equality.

In the case of a central force, whose accelerating effect is F,
T=F cosRPS;

© v, — v =2F.,PQ cos RPS=2F (SP— SQ) ultimately,
whence v* — V% if F depend only on the distance.

Radial and Transversal Forces.

181. To find the accelerating effect of the components of
force, under the action of whick a body describes any plane curve,
taken in the direction of a radius vector drawn from a fixed
point, and perpendicular to it.

Let PQ be a small arc described in the time T'; QRU,
PU parallel and perpendicular to SP; P, @ the measures of the
accelerating effects of the components in PS and PU; PR a

Lif,
R,
2 i
4
s

tangent at P. If V be the velocity at P, make PT=V.T,

draw TN perpendicular to SP, and let Qg be the arc of a

circle, centre S. )
Since the forces may be considered ultimately constant in

2
magnitude and direction, $P.T"=Nn= Ng+ % ultimately.
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Let % be twice the area which would be described in an
unit of time by radii from S, if the transverse force ¢ ceased
to act, then Qn.SP=TN.SP=h.T; thercfore »QQg,l =-§S~%‘,
ultimately; and if P’ be the measure of the accelerating effect
of a force, under the action of which the body would move
in PS, so that its distance from S would be always equal to
that of the body in PQ at the same time, $P'.7%= Ng ulti-
]9
bJ)S

Again, if at Q % correspond to &, A’ — &, the increase of £,
will be due to the inercase of velocity in direction 2U, which
1s equal to Q.7 u]tim'\tely; therefore (A’ - &) T= Q.T". SP

mately ; therefore P=P"+

~h ultimately.

ultimately ; hence Q-— S[‘ 7

Angular Velocity.

182. DEF. Angular velocity of a point moving about a fixed
point is the rate at which angles are deseribed by radii drawn
to the fixed point.

Tniform angular velocity is measured by the angle described
in an unit of time.

Variable angular velocity is measured by the angle which
would be described by a radius in an unit of time, if moving with
uniform angular velocity equal to the angular velocity at the
time under consideration; this is the limit of the angle, described
in a time 7 divided by 7, when 7'is indefinitely diminished.

183. Tb find the angular velocity in a central orbit.

Let PQ be a small arc described in the time 7, draw QN
perpendicular to SP, then 4. T'=twice the area PSQ= QN.SP
ultimately ; and, if the angles be supposed estimated in circular

weasure, £ PSQ = % gp ultimately ; therefore the angular
VB]OCify, Wl]ich ’SLEA;,Q ultlmately, - S];“ .
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therefore the tension of the string : the weight of the body
ww'—29.CA+39.CM: g.CA.

Nortk 1. In order that the complete circle may be described,
since the string must be stretched at the highest point where
—04 must be written for CM, u’= or >59.C4, and if the
circle be just described, the tension at the lowest point will be
gix times the weight.

NotEe 2. If the body oscillate, the extent of the oscillation
will be given by the consideration that at the extremity P’ of
the arc of oscillation there will be no velocity, therefore
w'=2g.AM') and AM’ is less than AC, otherwise the string
would not be stretched, so that the tension at 4 : the weight
1224M'+ AC: AC.

(2) Find the force under the action of whick a body may
describe the equiangular spiral uniformly.

The velocity being constant, there is only a normal force
V*sina
spP

(8) Find the force tending to the pole of the cardioid, under
the action of which the curve is described.

measured by (vel.)’ +radius of curvature = , Art. 128,

. . &  RBC
Since PV = 48P, and (vel.) =gyi= —gp¥ » %ee page 105,
. . 8R.BC 1
therefore the accelerating effect of the force is 28p < TP

(4) Two equal rings P, Q slide on a string whick passes round
two fixed pegs A, B in a smooth horizontal plane; the rings are
brought together, and then projected with equal velocities, so as to
keep the string stretched symmetrically. Shew that the tension of
he string varies inversely as the distance AP.

n__A C ¢ 5
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The figure represents the position of the system at any time.
Let CR bisect 4B and PQ, and let DE be drawn parallel to
CR, so that EP=PA, then EPR=AP+ PR is constant;
therefore DE is fixed, and P moves in a parabola whose focus
is 4 and directrix DE.

Also, the tensions of the string in P4, PQ being equal, and
equally inclined to the tangent to P’s path, the resultant of these
tensions, which are the only forces acting in the plane of the
curve, acts in the normal, hence the rings move with uniform
velocity equal to the velocity of projection V) and if 7' be the

measure of the accelerating effect of the tension, PG the normal,
2

p the radius of curvature, 27 cos APG = % , and 2p cos APG

= chord of curvature through 4 =4PA4; therefore
Ve 1
T=1p2* Pi-

(5) A body revolves in a smooth circular tube under the action
of a force tending to any point in the circumference, and varying
as the distance from that point. Find the pressure on the tube, and
the point where there is mo pressure, the motion commencing from
a given point.

Take A the centre of force, C that of the circle; let B be the
point of starting, PQ a small arc, BD, P}, QN ordinates to the

a

D B

I P
Y=

A
diameter through the centre of force, Am, @n perpendicular on
CP; let . P4 be the measure of the accelerating effect of the
force at P; therefore p.mA, p.Pin are those of the tangential
and normal forces, = u. PM and p. 4 M respectively.
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(vel.)® at Q—(vel.)* at P=2u. PM.PQ=2p.CP.MN ultimately,
see Art. 179, whence, taking the limit of the summation for all
the small arcs in BP, (vel.)* at P=2u.CP.DM.

(vel.)* at P

Also, * o
pressure of the tube, the upper or lower sign being taken
according as the pressure is from or towards C; therefore the
pressure on the tube has for the measure of its accelerating effect

+p(AM—-2DM)=1 (3AM-24D);
hence the pressure is outwards from I3 until AM=34D, at
which point there is no pressure, and inwards from that point to
the corresponding one on the opposite side, baving its greatest
value at 4, and the outward pressure at B is half the inward
pressure at 4.

=pn. AM7T the accelerating effect of the

(6) If in a smooth elliptic tube a particle be placed at any
point, and be acted on by two forces which tend to the foci and
vary tnversely as the square of the distances from those points,
shew that the pressure at any point will vary as the curvature.

Let O be the point of starting, PQ a small arc described by
the body, @7, QU perpendiculars on SP, IIP.

Take %, 7?13,, R, as the measures of the accelerating
effects of the forces, and of the pressure of tube outwards.

Then, employing the usual letters for the lines of the figure,
the accelerating effect of the tangential component of force
to S is

p PT_p(SP-8Q) p B .

B PQ ™ SP.8Q.PQ - PQ.5Q ~ PQ.Sp "Mimately;

B/)Q

A K3 [aNVA4 u @

and similarly for the force tending to If;
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. (vel.)* at P—(vel)* at Q= (% = %’%) = ( g% - %) ;

. 2 2 2u | 2
Lo 1) at P= -0 _ 200 _ A 4K
(vel)*at P= 71~ 715~ 50 * §p°

vel.)® at P g PF . .
Also, (“)P = ( B’fP—‘ + _—SI}“) PE” R, if p be the radius
PF _20D* 28P.HP
of curvature at P, and 2p. PE= PV = a0 =40}

w.SP w HP 20 2u 24 2

dc.HPT A0 5P~ HP st Ot S0

=,2“_'+%_JL_L~<"'SO+I‘_H« 0_)L
"m0 T80~ 4c~ ac=\mo * 50 ) A0

which is constant ; therefore R varies as the curvature,

ot R.p:

XXITIT.

1. A body is attached to a point by a thread, and is projected so
as to describe a vertical circle, prove that, if T}, 7, be the tensions
of the string at the extremities of any diameter, the arithmetic mean
between 7], 7, is independent of the position of the diameter, and
that 7~ 7] is six times the component of the weight in the direction
of the diameter.

2. A string of given length [ is capable of sustaining a weight 7.
One end is fixed, and a given weight P less than 7, attached to the
other end, oscillates in a vertical plane, find the greatest arc through
which the weight can oscillate without breaking the string.

3. A ring slides on a string hanging over two pegs in the same
horizontal line, find the tension of the string at the lowest point, if
the ring begin to fall from the point in the horizontal line through

the pegs, the string being stretched.

4. AR is the vertical axis of a cycloid, 4 the highest point,
AM, AN are the abciss® of points at which a body begins to slide
down the arc of the cycloid, and at which it leaves the curve; prove
that IV is the middle point of MB.

5. Ifin a central orbit the direction of motion change uniformly,
prove that the normal force will vary as the radius of curvature.
BB
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6. Given the Sun’s motion in longitule at apogee and periges
to be 57" 10" and 61’ 10”; find the eccentricity of the Earth’s orbit,
supposed to be an ellipse about the Sun in one of the foci.

7. Prove that the angular velocity of a projectile about the
focus of its path varies inversely as its distance from the focus.

8. A particle, constrained to move on an equiangular spiral, is
attracted to the pole by a force proportional to the distance, prove
that, at whatever point the particle be placed at rest, the times of
describing a given angle about the contre of force will be the same.

9. A body sliles down a smooth cycloidal are, whose axis is
vertical and vertex downwards, find the pressure at any point of the
cycloid, and shew that, if it fall from the highest point, the pressure
at the lowest point will be twice the weight of the body.

10. Find the law of force, tending to the centre, under the
action of which a lemniscate can be described.

XXIV.

1. Two straight lines 4B and B areunited at B; A B revolves
about 4, and B about B with the same uniform angular velocity ;
shew that the acceleration on C tends to 4 and varies as C.{.

2. A particle describes an ellipse, the centre of force being
situated at any point within the figure. Shew that at the point
where the #rue angular velocity is equal to the mean angular
velocity, tho radius vector is a mean proportional between the
semiaxes.

3. A particle begins to move from any point of a smooth
parabolic tube, being attracted to the focus by a force which varies
inversely as the square of the distance; find the greatest pressure.

4. If SY be the perpendicular on the tangent at a point P of
an orbit, described about a centre of force S, prove thut the
acceleration at P will be equal to the product of the velocities of P
and Y divided by SY.

5. A smooth cone is placed with its axis vertical and vertex
upwards, shew that there is a certain portion of the surface upon
which a particle can describe a circle, if properly projected and
acted on by gravity and by a force tending to the vertex and
varying as the distance.
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6. Shew that the force required for the description of an ellipse
about the vertex 4 varies as 5153 , where PX is the perpendicular

on the axis.

7. If a particle describe an ellipse under the action of a force
tending to any fixed point 0, the force will vary aso‘lg%s , where
P is the position of the particle, PP’ the chord through 0, and
DD’ the diameter parallel to this chord.

8. Shew that in the elliptic orbit described under the action of
a force tending to a focus, the angular velocity round the other
focus varies inversely as the square of the diameter parallel to the
direction of motion.

9. A particle moves in a circular tube, under the action of a
force which tends to a point in the tube, and whose accelerating
effect varies as the distance, shew that, if the particle begin to move
from a point at a distance from the centre of force equal to the
radius, there will be no pressure on the tube at an angular distance
from the centre of force equal to cos™3.

10. A particle moves in a smooth elliptic groove, under the
action of two forces tending to the foci and varying inversely as the
squares of the distances, the forces being equal at equal distances.
Prove that, if the velocity at the extremity of the axis major be to
that at the extremity of the axis minor as 4 C to BC, then the
velocity at any point will vary inversely as the normal ; find the
pressure on the tube.

11. Determine the relation between p and X and the velocity of
projection, in order that an ellipse ‘may be described under the

action of forces S“]‘Sg, jIFPQ to the foci and A. CP to the centre, acting
simultaneously.

12. A particle is attached to a point C by a string, and is
attracted by a force which tends to a point S, and varies inversely as
the square of the distance from S. Find the least velocity with
which the particle can be projected from a point in ¢S, or CS pro-
duced, so as to describe a complete circle. Iéi] CISbbe less t:hanmthz

+h of the string, prove that the tension e a maximum a
S’;)%int D, where SgD }i)s perpendicular to CS, and that if CS be half

the length of the string, the two minimum and the maximum
tensions will be as 0, 4 and 3 V3.
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Cor. 1. Hence, if the given point S to which the
centripetal force tends, be situated on the circum-
ference of the circle, ¥ will coincide with §, and F
vary inversely as SP”.

Cor. 2. The force, under the action of which a body
P revolves in a circle APTV, is to the force, under
the action of which the same body P can revolve in
the same cirele in the same periodic time about an
other centre of force R, as RP*.SP to G, SG being
a straight line drawn from the first centre S, parallel
to the distance RP of the body from the second
centre of force R, to meet P @, a tangent to the circle.

For, by the construction of this proposition, since the
periodic times are the same, the areas described in

a given time are the same; therefore, % is the same
for both centres, hence, if PRT be the chord through
R, the force to S: the force to R :: RP:*PT®
SP:.PV?% but, by similar triangles TPV, GSP,
PT:PV::8P: SG; therefore force to S : force to B
:: RP*.8P*: SP*.8G" :: RP*'SP : 8@

Cor. 3. The force, under the action of which a body
P revolves in any orbit about a centre of force S, 18
to the force, under the action of which the same
body P can revolve in the same orbit in the same
periodic time about any other centre of force R, as
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RP*.8Pto SG", SG being the straight line drawnfrom
the first centre of force S, parallel to BRI the distance
of P from the second centre of force R, to meet PG
the tangent to the orbit.

For, in cach case, the body may be supposed for a
short time to be moving in the circle of curvature,
and the forces are the same as those which would
retain the body in the circular orbit; therefore,
since the areas described in a given time are equal,
the ratio of the forces is RP.SP : SG".

Observations on the Proposition.

185. Tn the figure employed in the proposition, the force is
supposed to be attractive, but the investigation of the law
of force applies also to the case in which the centre of force

1D

(4

S is exterior to the circle, in which case the force is repulsive
through the arc BC, which is convex to the centre of force, and
contained between the tangents drawn from S to the circle.

It is important, however, to observe that this problem is to
find what would be the law of force tending to S, under the
action of which a body would be moving, supposing that it
could move in the circle, or any portion of the circle, under the
action of such a force, but it does not assert the possibility of
such a motion, which is considered in Art. 165.
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In fact, the complete description of a circle ABO, under the
sole action of a central force tending to an external point S, is
impossible, because, as the body approaches the point B, the
component of the velocity perpendicular to SB remains finite
however near the body approaches B, and since there is no
force to generate a velocity in the opposite direction, the body
must proceed to describe an arc BU on the opposite side. SB
would be a tangent to both curves, because the velocity in
direction .BS becomes larger than any finite quantity, as the body
approaches B, and therefore the angle betwecen BS and the
direction of motion is indefinitely small at B.

That a finite velocity in the direction perpendicular to SB
could remain up to B, may be shewn by producing SB to T
in the tangent PY at P; then the .component of the velocity

J S h
at P perpendicular to SB is SY° 8T = 87~ 8B’ when the
body arrives at a point very near to B.

186. The force at a point indefinitely near to B cannot be
properly determined by the method of Prop. VI., because the
lines parallel to the direction of the force from which the mea-

i

sures of the force are obtained are mot subtenses, or sagitte,
since they are in this case not inclined at a finite angle to the
tangent.
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But it can be seen in another manner from the polygon of
Prop. 1, that the force is infinitely great, when the distance from
B becomes infinitely small.

Thus, if CDEF be a portion of the polygon whose limit
touches the radius from S between D and E, the angle between
DE and DS or ES may be made as small as we please compared
with the angle between CD and DE, hence the velocity
generated by the impulse in the directions DS and SE will
become infinitely great compared with the velocities in CD
and EF. In the figure, the impulses at D and E, whose
directions are denoted by the arrows, have corresponding to them
in the limit the forces on opposite sides of the tangent, which
are attractive and repulsive respectively.

187. Cor. 1. For the reasons given above, a limitation

should be made, viz., when Pis at a finite distance from S. In
D2

this case PV= SP and F=%§—£—,R being the radius of the

circle.

We may also observe here that the possibility of a description
of a circle is not asserted, but only the law of force required
4n case of description of any portion of the circle. The complete
description of the single circle is, in fact, impossible, for, under
the action of the force obtained, the body would pass to the other
side of the tangent on arriving at S, then proceed to describe
another equal circle, and, on arriving again at S, return into the
original circle.

188. Cor. 2. The orbit being the same, and also the
periodic times about S and E being equal, the value of %, in
the two cases, is the same; also, the force tending to S for
the orbit being of the same magnitude at P as that under the
action of which the circle of curvature would be described, and
SY, PV being the same in the orbit and the circle, % is also
the same, Prop. vi. Cor. 3; and, similarly, % is the same in the
circle and orbit described about B; therefore it is the same in
the circle deseribed about S and R as centres of force, and hence
Cor. 2 applies.
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Absolute Force.

189. If the force upon a body placed at any distance from
the point S vary inversely as the nth power of that distance,
the magnitude of the force, or its ratio to any given force,
as that of gravity, will be determined when the distance SP is
given. The measure of the accelerating effect of the force is

written ',L;j,,, where p the constant part of this measure is an

I
algebraical symbol of n+1 dimensions in linear space. If the

unit of space = a, ;—‘,', is the measure of the accelerating effect of

the force on a body at an unit of distance, and u is called the
Absolute Force, being the measure of the accelerating effect of
the force at an unit of distance x the nth power of that unit.
The absolute force is not the measure of the accelerating effect
of any force, unless the symbols be treated numerically, in which
case p is twice the number of units of space through which a
constant force, equal to the force at an unit of distance, would
draw a body from rest in an unit of tiwe.

Law of Force in a Circular Orbit.

190. The law of force may be expressed in terms of the
distance SP, for SD, Sd being the greatest and least distances
of the body from S, SD.Sd=SP.S8V; see figure, page 188.

. 8P.PV=8P*+8D. Sd,
+ or — according as S is within or without the circle;
o BHLAVSP
T T (8PP 8D. S
. o2k AS*
If 8 be on the circumference Sd =0, therefore F'= —gp

If S be exterior to the circle, SD.Sd =SB and the lower

2n*AV*. 8P
sign must be taken ; therefore I'= (SP=RB}"

Velocity in the Circular Orbit.
191. To find the welocity in the circular orbit described
under the action of a force tending to any point in the plane of

the orbit.
CcC
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k .
—2_7'711’,’ ’
therefore at the required point SP= R, or the perpendicular from
the required point upon the line joining S'to O the centre of the
circle bisects OS.

(2) A body describes a circle under the action of a force
tending to a point within 4t, the measure of whose accelerating
effect at the greatest and least distances SD and Sd are the radius
and twice the diameter respectively, the unit of timebeing a second;
Jfind the number of seconds in passing from D to d.

8K R* 8K'R*

: k 2
The true angular velocity = P the mean= T’; =27,

Since 577 v = B gz par =483
<. 8D=28d, and 38d=Dd=2R; ... h=2R.Sd=4L*;
and the number of seconds from D to d= "TTR" = %’r .
XXYV.

1. If 4 be the absolute force in a circular orbit described under
the action of a force tending to a point in the circumference, prove
that the time in a quadrant commencing from the extremity of the
diameter through the centre of force will be (x + 2) R® (3p) %

In what unit of time is the result expressed ?

2. A point describes a circle, with an acceleration tending to any
point within the circle. Prove that, if three points be taken at
whieh its velocities are in harmonical progression, the velocities at
the other extremities of the diameters, passing through those points,
will also be in harmonical progression.

3. In the case of a centre of force S within a circle, if two points
L, M be taken, such that ZS, S make equal angles with the
diameter through &S, and on the same side of it, then the forces at
Z and M will be to each other in the inverse ratio of the squares on
OL and 011,

4. The sum of the reciprocals of the velocities at the extremities
of any diameter is independent of the position of the centre of force,
and varies as the periodic time.

5. Prove that, when a circular orbit is described about an in-
ternal point, the sum of the square roots of the accelerations at the
extremities of any chord passing through that point varies inversely
as the square root of the length of the chord.
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6. Prove that, if the law of force tending to S, a point without a
circle, be the law of force under which part of the circle can be de-
scribed, the body will move near B as if acted on by a force tending
to B and varying inversely as the cube of the distance from B.

7. OF is a radius perpendicular fo the diameter through Sin a
circular orbit about a central force tending to a point .S within the
circle, SB an ordinate, perpendicular to 0S, shew that, if the force
at B be an arithmetic mean between the forces at the greatest and
least distances, OE°= SB.SE*

8. Prove that, if a circle be described about a force tending to a
point in the circumference, and P@ be a chord parallel to the dia-
meter through that point, the times of describing equal small ares
near P and @ will differ by a quantity which varies as PQ.

9. When a particle is describing a circle under the action of a
central force, shew that at every instant the angular velocities
about all points in the circumference are the same.

10. The period in an orbit described under the action of a central
force, whose accelerating effect is ur” is given to be Aa™ -+ p}, g be-
ing a line and X a number, find 2.

11. Apply the proposition contained in Cor. 3, to prove that if
in an elliptic orbit described under the action of a force tending
to the centre, the force vary as the distance from the centre, then
the force tending to the focus will vary inversely as the square of
the focal distance.

12. Deduce, by Cor. 3, the law of force, when a parabola is
described under the action of a force tending to the focus, from the
constant force parallel to the axis, under the action of which the
same parabola may be described.

13. Shew, by the method of projections, that the centripetal
force at any point P tending to a fized point O in the axis major
of an ellipse under which the ellipse can be described, varies as

0
(I—J—g) . OP, POQ being the chord of the ellipse through 0.
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PROP. VIII. PROBLEM IIL

A body moves in a semicircle PQA under the action of
Joree tending to a point S so distant that the lines PS, QS
drawn from the body fo that point may be considered
parallel ; to find the law of force.

Let CA be a semidiameter of the semicircle drawn from
the centre perpendicular to the direction in which the
force acts, cutting P8, @S in M and WV, and join CP.

z

W s

Let PRZ be the tangent at P, ZQT perpendicular to
PMS, meeting PRZ in Z, and let SNQ meet PRZ

in R.
_ QR
Then the force at P= SP. QT

PQ be indefinitely diminished, and SP may be con-

sidered constant; also, by Euclid 1. 36,
QR.(RN+ QN)=RD',

and, since BQ is parallel to PT, and the triangles

PZT, CPM are similar,

RP: QT:: ZP: ZT:: CP : PM;
QI* QT RP_PrM*

ultimately, if the are

o ST SR NS RN O]
- om = pp gr = oprENTEN)
=25277”, ultimately ;

P — M o ____1_._
hence force at P = SPPIC % P
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Aliter.

In fig. page 190 draw OF a semidiameter perpen-
dicular to SD, and let the distance SP cut the
circle in 7, and OF in M, then, by the pre-

g onc 8K ;
ceding proposition, F= v, and, if S be
very distant, the ratio P : SM or SO will vanish;
therefore, SP=.S80 ultimately, and PV is ulti-
mately perpendicular to OF and equal to 2PM;

. F= R 1
=50 Pir” Part

SCHOLIUM.

A body moves in an ellipse, hyperbola or parabola,
under the action of a force tending to a point so
situated and so distant that the lines drawn from
the body to that point may be considered parallel,
and perpendicular to the major axis of the ellipse,
the axis of the parabola or the transverse axis of
the hyperbola. To shew that the force varies
inversely as the cube of the ordinates.

Let AMG be the axis to which the direction of the
forces may be considered perpendicular, PM, PG

P
A i
v o
.S

the ordinate and normal, PO the diameter of
curvature, and PV the chord of curvature in direc-
tion PS.
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__ 2% _ 9 PG®- 8P Pg
Then F=sv=pv= 57757 7o~ 5v=Par’
PR Pg '
Ea oC

P pv* P PO® POre
since PO« PG, Art. 84.

Oservations on the Proposition.

194. Tt has been shewn in Art. 151, that the equable de-
scription of areas may, in the case of forces acting in parallel
lines, be replaced by the uniformity of the resolved part of the
velocity in the direction perpendicular to that of the forces. In
the proof given in the text, when § is removed to an infinite dis-
tance, h and SP are both infinite magnitudes, but the expression
5 P is finite, for area SPQ described in the time 7' is ultimately
equal to area S, whose base is equal to «7) u being the com-
ponent of the velocity perpendicular to the direction of the

forces; therefore AT=uT. SP ultimately, and 3 P’ =% hence

the acceleration due to the force, when a body describes the
icircle. is u'R'
semicircle, is 775 -

195. The accelerating effect of the force, acting in parallel
lines, may be obtained directly from the proposition of Art. 151,
as follows.

Let u be the constant component of the velocity V, perpen-
dicular to the direction of the force, and let F'be the accelerating

2 2
effect of the force, therefore F= TJILV IZI Te

also V.u::CP: PM; . F= %E

Euxtension of Scholium.

196. When a body describes any curve under the action of a
Sorce tending to a point S, so distant that the lines drawn from 8



200 NEWTON.

to the body may be considered parallel ; to find the law of force
and the velocity at any point.

Let AP be any curve, AMG the line to which the forces are
perpendicular, PM, PG the ordinate and normal at the point P,
PV the chord of curvature in the direction of the force, PO the
diameter of curvature.

Let F be the accelerating effect of the force at P, u the
component of the velocity ¥ in the direction A3 G ;

o Viuz PG : PM,
also PV: PO:: PM: PG;
2V* 2w’ PG PO 24 PG°

~ I'= By = P3P0 PV = P0.PM*’
. ra
and the velocity = . I

Lllustrations.

(1) 4 cycloid s described by a particle, under the action of a
Sorce acting in a direction parallel to the axis ; find the accelera-
tion and the velocity at any point.

In the cycloid PO=4P@, and PM.AB=PQR*, AB being
the length of the axis;

- Fe 2. PG PG u'.AB 1

TP PO T epi* * POV
E PG AB 1

and the velocity at P=u. =" Pa < Po

(2) 4 particle moves in a catenary under the action of forces
acting in vertical lines ; find the accelerating effect of the force
and the velocity at any point.

Let AM be the directrix, AB the ordinate at the lowest
point.

Then PG : PM:: PM: AB and PO=2PQ;

2 3 2
o p= 2B B P PO,

q PG PM
and the velocity at P=u. =% A% PM.
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XXVI.

1. A body is moving in a semicircle under the action of a force
tending to a point, so distant that the lines drawn from the body
to that point may be considered parallel; if the centre of force be
transferred to the centre of the circle, when the direction of the
body’s motion is perpendicular to that of the force, its magnitude
at that point being unaltered, prove that the body will continue to
move in the circle.

2. If a cycloid be described under the action of forces in the
direction of the base, the force at any point will vary inversely as
AM.MQ; AM, MQ being the abscissa and ordinate of the cor-
responding point of the generating circle.

8. A catenary is described under the action of a horizontal
force, prove that the force varies as the distance from the directrix
directly, and the cube of the arc from the lowest point inversely.

4. If the same parabola be described by particles when the
force tends to the focus, and when it is parallel to the axis, the
velocities will be equal at the points at which the forces are equal.

5. A parabola having its vertex at 4 and its .axis coincident
with 4B the diameter of a gemicircle, is described so as to cut the
semicircle in P; prove that, if a body move in the semicircle under
the action of a force perpendicalar to 4B, the time of moving from
A to P will vary as the difference between 4B and the latus rectum.
Prove also, that if a second body move from 4 to P in the parabola
in the same time under the action of a force perpendicular to its
axis, and the velocities in the two curves at P be equal, the latus
rectum of the parabola will be §4 5.

DD
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PROP. IX. PROBLEM 1V.

If a body revolve in an equiangular spiral, required the
law of centripetal force tending to the pole of the spiral.

Draw SY from S, the pole of the spiral, perpendicular
to the tangent PY, and let PV be the chord of
curvature at P, whose direction passes through §;
then F', the measure of the accelerat.ing effect of

c q 2k 9
the force tending to the pole, is STV but, if
a be the angle of the spiral, SY=_8P sina and
PV=28P, Art. 128;
3 u 1
F= 08P = 8P SP*
197. To find the velocity of a body describing an equiangular
spiral under the action of a force tending to the pole.

Ifﬁ):l be the accelerating effect of the force tending to S,

VP =F4PV=L.5P; - V=12,
sp SP
198. To find the time of describing any arc of the equi-
angular spiral.
Let AL be any arc, S84, SL bounding radii, P the time of
describing the arc. Thenarea SAL=1(S4*~ SL*)tana, Art.127;

. P 2 xarea SAL _ SA’ ~ _S_L’t S4* ~ SL*

13 2h S Topt cosa

199. In any orbit, described under the action of a force tending
to any point S, when the angle between the tangent PY and the
radius SP is a maximum or minimum, the velocity is equal to
the velocity in a circle at the same distance about the same force
in the centre.

For, the curve, near this point, may be considered an equi-
angular spiral ultimately, since the angle is constant for a short
time ; therefore the chord of curvature is =2SP, and V*=F.SP



PROP. IX. PROBLEM IV. 203

XXVIIL

1. In different equiangular spirals, described under the action
of forces tending to the poles which are equal at equal distances,
shew that the angular velocity varies at any point as the force and
the perpendicular on the tangent conjointly.

2. The angular velocity of the perpendicular on the tangent is
equal to that of the radius.

3. The velocity of approach towards the focus, called the para-
centric velocity, varies inversely as the distance.

4. A body is describing a circle, whose radius is a, with uniform
velocity, under the action of a force, whose accelerating effect at

any distance r is f—, Prove that, if the direction of its motion be
deflected inwards through any angle 3 without altering the velocity,
2
the body will arrive at the centre of force after a time —;i.— 3
2% sin 3
5. Deduce from the time in an equiangular spiral the time of
passing from one point to another, when a body moves along a

straight line with a velocity which varies inversely as the distance
from a fixed point in that line.

6. A body describes an equiangular spiral in a resisting
medium with uniform angular velocity under the action of a
force tending to the pole; prove that the force to the pole varies
as the distance and the resistance as the velocity.

7. Two garticles of equal mass m, and at a distance 2z apart,
are projected simultaneously with velocity 7 in the same direction
perpendicular to the line joining them, the only force acting is a
mutual force of attraction varying inversely as the cube of the
distance between the particles, and equal at the distance 2a to mf.

. q a V*-2af
Prove that, if after a time (7 L —VT-_af_')
stopped and kept at rest, the other will proceed to describo an.
equiangular spiral about it as pole.

one of the particles be

8. Three particles 4, B, C start from rest and move with
uniform velocities, 4 always directing its course towards B,
B towards C, and C towards 4. Prove that if their velocities
be proportional to &%, ¢a, 4’6, where 4, b, ¢ are the initial distances
of B from C, C from 4, and 4 from B respectively, they will
describe similar equiangular spirals with a common pole.
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PROP. X, PROBLEM V.

If a body be revolving in an ellipse, fo find the law of
centripetal force tending to the centre of the ellipse.

Let 0A, CB be the semiaxes of the ellipse, P the
position of the body at any time, PCG, DCD
conjugate diameters, @ a point near P, QT, PF
perpendiculars from @ and P on PO, DD'; draw
QU an ordinate to PCG, QR a subtense parallel
to CP.

914

28 QR
CP" QT
But, by similar triangles Q7'U, PFC,
QI" PF? QU oD
= ™ Froe= op
. _QT*  PF.CD'_ AC'.BC*
T PU.UG Pt —  op !
UG@=2CP ultimately, and PU=QR;
%: A—UO—}EE— ultimately ;
RE.QR _ K.CP
CP'.QT* ™ AC*. BC*
therefore the force is proportional to the distance
from the centre.

Then F=

ultimately.

< F=limit of

« CP;
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Aliter,

Let CY be perpendicular on the tangent at P, and
PV be the chord of curvature at 2 which passes

20D

P Art. 79,
28 K.CP 3

oY PV = PFe.ep ™ Aov pov O = 0P

Cor. 1. And conversely, if the force be as the
distance, a body will revolve in an ellipse having
1ts centre in the centre of force, or in a circle,
which is a particular kind of ellipse.

Cor. 2. And the periodic times will be the same in
all ellipses described by bodies about the same
centre of force.

For the periodic time in any ellipse

_2xarea of ellipse 274C. BC

' A M h 2
and the forces, at different distances in the same
or different ellipses, vary as the distance; therefore

through the centre =

Then F=

A0 Boe=" is the same in different ellipses,

therefore the periodic times in different ellipses

is the same, and =2'7I.

Vi

SCHOLIUM.

If the centre of an ellipse be supposed at an infinite
distance, the ellipse will become a parabola, and
the body will move in this parabola; and the force,
now tending to a centre at an infinite distance,
will be constant and act in parallel lines. This
theorem is due to Galileo. And, if the parabola
be changed into an hyperbola, by the change of
inclination of the plane cutting the cone, the body
will move in this hyperbola under the action of a
repulsive force tending from the centre.
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200. To find the velocity in the elliptic orbit under the action
ofa farce tending to the centre, the measure of whose accelerating
effect is p X distance.

The velocity at P= L w—- S =4/p.CD.

Alter.

(Vel.)! at P= F.TP— =u.CP.—%; . vel.at P=yu.CD.

CP po
201. If a kyperbolic orbit be described under the action of
a repulsive force tending from the centre, the force will vary as the
distance, and the velocity at any point as the diameter of the
conjugate hyperbola parallel to the tangent at the point.
This may be proved exactly as in the case of the ellipse,
cmploying the proper figure.

202. To find the time in any arc of an elliptic orbit about a
Jorce tending to the centre.

If Pbe any point of the orbit, @ the corresponding point in the
auxiliary circle, time in AP oc area ACP o area dCQoxc L ACQ;
therefore time in AP : periodic time :: ¢ : 27r, if ¢ be the

circular measure of £ ACQ, and periodic time =~ ; therefore

V 7
time in 4AP= ¢ 0
Vi

203. If, at a given point, the welocity of a body be known,
and the direction of its motion; to determine the curve which
the body will describe under the action of a given centripetal
force, whick varies as the distance from the point to whick it
tends.

Let Pt be the direction of motion at P, V the velocity at P,
. CP the measure of the accelerating effect of the force tending
to C. On PC produced, if necessary, take PV equal to four
times the space through which a body must move from rest,
under the action of the force at P continued constant, in order
to acquire the given velocity V'; so that V*=2uCP.1PV.
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Draw CD parallel to Pt, a mean proportional to CP and
3PV, and let an ellipse be constructed with P, CD as semi-
conjugate diameters, then PV is the chord of curvature at P
through C.

In this ellipse let a body revolve under the action of a
force tending to O, whose magnitude at P is that of the given
force, see Arts. 160, 162, then, when it arrives at the point P,
it will be moving in the direction P, also the square of the
velocity at P=u.CD'=pu.CP.JPV=V" or the velocity at P,
in the constructed ellipse, is 7. Hence the body revolving
in this ellipse is under the same circumstances as the proposed
body, in all respects which can influence the motion of a body ;
therefore the proposed body will describe the ellipse constructed
as above.

A direct solution of the problem, which is solved syntheti-
cally in this Article, is given in pages 78 and 79.

204, Geometrical construction for the position end magnitude
of the axes of the elliptic orbit, described by a body about the centre,
when the velocity at a given point is known, and also the direction
of motion.

Produce OPto R, making PR a third proportional to CP and
CD; bisect CR in U, and draw UC perpendicular to CER,
meeting the tangent at P in O, and with centre O describe a
circle passing through C, B, and cutting the tangent in 7 and ¢;

o PT.Pt=CP.PR = CD";
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Let TC intersect the ellipse in 4, 4’, and draw PM parallel

to the diameter conjugate to 4C4’;

then PT*: CD*:: TA.TA': C4*

1 T —04%: 04%
o PT*: PT.Pt:: CT*-CT.CM: CT.CM;
o PT: Pr:: MT: CM;

hence CT is parallel to P}, and CT, Ct are in the directions of
conjugate diameters; but 7°Ct is a right angle, therefore C7)
Ot being in the direction of perpendicular conjugate diameters,
are the directions of the axes of the ellipse, and if PM, Pm be
perpendiculars from P upon these directions, the semiaxes are
mean proportionals between C3, CT, and Cm, Ct. Q.E.F.

205. Eguations for determining the position and dimensions
of the orbit.

Let 4. R be the measure of the accelerating effect of the force
at the distance CP= R, V the velocity, a the angle between CP
and the direction of motion at the given point P. Let a, b be
the semiaxes of the ellipse, = the angle which CP makes with
the major axis.

Then V*=pu.CD* and CD’+CP'=a’+b';
2
e @B b B (1),
7
Also V.R sina=h=+pu.ad;

V.R sina
= ceeeieens TTSTTTPPIIN 2

T @)
and, by the properties of the ellipse,

ab

f‘i: cos’m + % 8in'm =l..eveeerernennnen, (3).

The equations (1), (2), and (8) determine a, 4, and =, whence
the magnitude and position of the ellipse is determined.

We can obtain an equation for =, immediately in terms of
the data, as follows:

(% - 1) sin'e = (1 - %—:) cos’a, by (3),
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R R’

it = cosec’z (l +‘“T/If') » by (1) and (2),
R .
= cosec’a. b,Y (2,

s (1—;:—1) (l—g) = cot’a;

cos'm _ sin*w _ sinw cosw
R‘_ = R cota
b Ta

cos’sr — sin’ar N
R‘ 3
¢ 2 & )
0sec’o (1 + 7 2

1 ul’
. cot = o N
cot 2= 2tana(cota 1+ cosec’a. V’)

= cot 2a + cosec 2a. Iﬁ ................. 4);

whence = is known immediately from the initial circumstances of
the motion.

206. If the force be repulsive, the equations for determining
a, by= will be

‘V!
d-b0'=1 ——; ...................... (1),
VRsina
ab= T o (2),
2
and — 0 c05w—%smr.r—l ................ (8).

The direction and magnitude of the axes of the hyperbola
may be determined geometrically, by observing that the
asymptotes are the diagonals of the parallelograms of which the
conjugate semi-diameters are sides, and that the axes bisect the

angles between the asymptotes.

207. Whken a particle is acted on by any number of forces,
which tend to different centres, and vary as the distances from those

centres, to find the resultant atéraction.
EE
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Let p. B, . R be the magnitudes of two of the forces at the
distance R, 4, B the centres to which they tend, P the position
of a particle acted on by the forces.

4 G B

Let @ be the centre of gravity of two particles at 4 and B
whose masses are in the ratio of u to u', join P4, PB, P@.

The components of the force u.PA, in the directions P&,
GA, are p. PG and p. G4, and those of the force p'. PD, in the
directions PG, @B, are p'.P@, and u'.GB, but p.GA=y'. GB,
therefore the resultant of the forces tending to 4 and B is
(# 4 ¢') PG, which is a single force of magnitude (u + u') R, at
the distance R, tending to the centre of gravity of masses u, u'
placed at 4 and B.

Let u"R be the magnitude of a force at the distance R,
tending to C, the resultant attraction is that of a force tending
to the centre of gravity Z7 of particles at € and &, whose masses
are in the ratio u” : u + p', which varies as the distance from H,
and whose magnitude at the distance 2 is (u + p'+p") L.

And generally, the resultant of any number of forces is a
single force, tending to the centre of gravity of a system of
particles, placed at the different centres, whose masses are
proportional to the magnitudes of the forces at the unit distance,
and whose magnitude at any distance is the sum of those of the
forces at the same distance.

208. Cor. 1. If every particle of a solid of any form attract
with a force which varies as the mass of the particle and the
distance conjointly, the resultant attraction of the solid upon
any body will be the same as that of the whole mass of the solid
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collected into its centre of gravity and attracting according to the
same law,

209. Com. 2. If any of the forces be repulsive, as that
whose centre is B, ¢ will lie in 4B or BA produced, according
as p' is greater or less than w, and the resultant of the forces,
tending to 4 and from B, will be (u'—p) P@ from G, or
(v - w) PG towards @G.

Illustrations.

(1) 4 body revolves in a circular orbit about a force which
varies as the distance, and tends to the centre of the circle, and the
cenire of force is suddenly transferred to a point in the radius
which at the moment of change passes through the body ; to find
the subsequent motion of the body.

Since the force varies as the distance, and is attractive, the
orbit will be an ellipse. And, since the force is a finite force,
the body will move in the same direction as before, at the
moment of the change. Also, the velocity will, for the same
reason, be unaltered at that moment.

Let CA be the radius passing through the body at the
moment of change, CB perpendicular to C4, u.UA the force
at distance C4, V the velocity in the circle.

:B”

e
v

Then V?=p.04.0A=p.CA%; and if 8, the new point to
which the force tends, be in C4, let ADB' be the elllpse described,
SA4 will be one of the semi-axes of the ellipse, sinee 4 is an
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apse, and, 8B’ being the other, if a body revolved in this ellipse
round S, x. SB” would be the square of the velocity at 4, that
i8, p. SB” = p. C4’, and therefore SB'= CA = CB; hence the
magnitude and position of the two semi-axes S4 and 8B’ are
known, and the ellipse is completely determined.

The ellipse lies without the circle at 4, because, the velocity
being unaltered, the force has been diminished in the ratio of
SA4: CA, and therefore the curvature diminished in that ratio.

If S had been in AC produced, as at S, the force would
have been increased, and the orbit 48" would be within the
circle near 4.

The greatest distance from CA which the body reaches is in
all cases the same for this law of force, because the component of
the force perpendicular to CA is the same at the same distance
from C4 in whatever curve the body moves; therefore, in cach
orbit, the velocity being the same at A4, the velocity perpen-
dicular to AC is destroyed by the force at the same distance
from AC.

(2) A body 7s describing a circle about a force which varies as
the distance and tends to the centre ; if the centre to which the
Jorce tends be suddenly transferred to a point in the circumference,
at an angular distance of 60° from the position of the particle at
any time, to determine the orbit described.

The orbit is an cllipse, since the force is attractive.

D

A

Let P be the position of the body at the instant the centre of
force is transferred from C, the centre of the circle, to S, where
BCPis an cquilateral triangle.
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The velocity at P is #/u.CP=u.8P; and, since it is un-
altered by the change of the centre of force, the semi-diameter
conjugate to SP is equal to SP.

Draw DSD' perpendicular to CP, meeting it in F, and take
8D =8D'= SP. Construct an ellipse having SP, 8D as equal
conjugate semi-diameters ; SA4, SBthe semi-axes bisect the angles
PSD, PSD." The ellipse so described will be the orbit required.

Prove the following construction :

On CP as diameter describe a circle cutting SD' in B, 4’
SA', SB' are the lengths of the semi-axes,

Explain why the orbit is exterior to the circle.

(8) Two bodies whose masses are m, m' revolve n an ellipse
under the action of a force tending to the centre; shew that, if
they be at one time at the extremities of two conjugate diameters
they will always be so, and in this case find the locus of their
centre of gravity.

Let P, D be their positions at any time, CP, CD being
semi-conjugate diameters. Let the ordinates MP, ND, meet
the auxiliary circle in @ and I.

Since the angles ACQ, ACR are always proportional to the
times, RCQ will always be a right angle; therefore the bodies
will always be at the extremities of conjugate diameters,

B
Q

P
4 N ¢ I m4
Let G'H be the ordinate of their centre of gravity.
Join E@Q and produce H@G to meet BQ in K;
+. KH: GH= QM : PM, a constant ratio,
also, RK: KQ=DG: GP, .cevvcverrirnnnnn. 3

hence CK is constant, or the locus of K is a circle, and the

locus of @ is an ellipse, whose axes are proportional to those

of APD. ) e ’
Shew that the semi-major axis : C4 :: (" 4+ m™)t ; m +m'.
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(4) A4 body is composed of matter whick atiracts with a
force varying as the distance ; shew that, however a particle be
projected, unless it strike the body, it will describe its orbit in
the same periodic time.

This is obvious immediately from Art. 208, relating to the
resultant of attracting forces.

(5) 4 body moves tn an ellipse under the action of a force
varying as the distance ; if the velocity at any point be slightly
encreased in the ratio L+n i 1, find the consequent changes in the
axes of the ellipse.

If, when the change takes place, the body be at the end of one
of the equal conjugate diameters, shew that the eccentricity will be
unaltered, and that the apse line will regrede through a small angle,

. . nab
whose circular measure is pe 1

When V is changed to (1+2) V, CD is changed to
(1+n) CDj let the corresponding changes of a, b and = be
aa, Bb and v; a«, B, v, and = being 20 small that we may neglect
their squares. Then by the equations of Art. 205,

(1+afa’+ 1+ Bt =(1+n)'CD + R*=a’+b*+2n0D";

. aa’+ Bbt=n. CD"
Again (1+a)a. (1+B8)b=(1+n) CD.Bsina= (1 +n)ab;
<. a+ B=n,and a(a’ - CD*) = B(CD* -7,
) a _ B _ =
‘@-R TR0 o -b

In the particular case 2R'=d*+3% .. a=QB=}n, hence,
a and b being altered in the same proportion, the eccentricity
will be unaltered.

R JiP
Also, = cos (w + ) + B gin* (w+q)=1+n
and i—i: cos'w + Ibi: sin'm =13
PLA AR g
(b_" - b—") {sin® (@ + ¢) — sin’&} = n;

n Ry . g
(-17, —?) sin (2@ + §)siny=n;
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and, since the axes bisect the angles between equal conjugate

diameters, ab = I2* sin2a, therefore «, being expressed in circular
nab

=0’

(6) In any position of a particle describing an ellipse, under
the action of a force tending to the centre, the centre of force is
suddenly transferred to the focus. Find the axes of the new orbit
and shew that its major-axis bisects the angle between the focal
distance and the major-axis of the given ellipse.

Employing the equations of Art. 205, if a, B be the semi-
axes of the new orbit, P the position of particle when the centre
s transferred to S, since the semi-diameter conjugate to SP in
the new orbit will be equal to CD,

o'+ 8= CD* + SP*= SP. HP+ SP*=2a. SP,
and SY*: BC*:: SP: HP:: SP*: CD;
<. aB=CD.SY=0b.8P;
o (oF =B =4 (&= ") SP’ and o’ — B° =2aeSP,
o od'=a(l+e) SPand B*=a (1—¢) SP.

measure, =

2
Also S_l: cos’w + SI:: sin*w = l,
o B
—
» a(IISPe )=(1_e)cos'ﬁ,+(1+ e)sin‘mw=1—¢cos2w;

therefore 2w =, PSA4, or the major-axis of the new orbit
bisects the angle betwcen PS and the major-axis of the
original orbit.

NoTe. By the construction of Art. 204, since PR is a third
proportional to SP and OD, and therefore is equal to HP, the
circle which determines 7"and ¢ passes through H, and the arcs
IIT, TR are equal, that is, ST bisects the angle PSA.

XXVIL

1. Shew that the velocity in an ellipse about the centre is the
same at the points whose conjugate diameters are equal as that in
a circle at the same distance.
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2. A body is revolving in a circle under the action of a force
tending to the centre, the law of force at different distances being
that the force varies as the distance; find the orbits described when
the circumstances are changed at any point as follows :

i. The force is increased in the ratio of 1 : 5.
ii. The velocity is increased in the ratio 1 : n.

iii. The force becomes repulsive, remaining of the same mag-
nitude.

iv. The direction is changed by an impulse in the direction of
the centre, measured by the velocity equal to that in the circle.

3. If a body be projected from an apse, with a velocity double of
that in a circle at the same distance, find the position and magnitude
of the axes of its orbit.

4. A particle is revolving in a circle acted on by a force which
varies as the distance; the centre of force is suddenly transferred
to the opposite extremity of the diameter through the particle
and becomes repulsive ; shew that the eccentricity of the hyperbolic
orbit=4v5.

5. A body is moving under the action of a force tending to a
fixed centre, and varying as the distance. The force suddenly
ceases, and after an interval commences to act again. Prove that
the radii of curvature of the orbit at the points where the body
ceases and recommences to be attracted are equal.

6. A body moves in an ellipse about a centre of force in the
centre, and its velocity is observed when it arrives at its greatest
distance, and again after a lapse of one-third of its periodic time.
If these velocities be in the ratio of 2 : 3, prove that the eccentricity
of the ellipse will be vi.

7. The particles of which a rectangular parallelepiped is com-
posed attract with a force which varies as the distance, and a body is
projected so as to describe a curve on one of the faces supposed
smooth ; find the periodic time.

8. An elastic ball, moving in an ellipse about the centre, on
arriving at the extremity of the minor axis strikes directly another
ball at rest; find the orbits described by both bodies.

9. A body is projected in a direction making an angle cos™ 713

with the distance from a point to which a force tends, varying as
the distance from it, and the velocity = v x velocity in the circle at
the same distance; prove that one axis is double of the other and
that the inclination of the major axis to the distance is } cos'§.
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10. From points in a line C4 between C and A particles are
projected at right angles to C'4 with velocities proportional to their
distances from 4, C being a centre to which the force tends, and

the force varying as the distance; find the ellipse of greatest
which is described. ’ & ke

_11. Two particles are projected in parallel directions from two
points in a straight line passing through a centre of force, the
acceleration towards which varies as the distance, with velocities
proportional to their distances from that centre. Prove that all
tangents to the path of the inner cut off, from that of the outer,
arcs described in equal times.

12. An hyperbola and its conjugate are described by particles
round a force in the centre. They are at an apse at the same
instant; shew that they will always be at the extremities of con-
jugate diameters. Alsoif v, v’ be their velocities, v* - v = (a* - &%).

13. An ellipse and an hyperbola have the same centre and foci.
They are described by particles, under the action of forces in the
centre of equal intensity. If @, ¢’ be their semi-transverse axes,
the square of the velocity of each body at a point where the curves
cut will be p a*=a").

14. If any number of particles be moving in an ellipse about a
force in the centre, and the force suddenly cease to act, shew that,

1
after the lapse of o of the period of a complete revolution,

all the particles will be in a similar, concentric, and similarly
situated ellipse.

15. A particle is describing an ellipse under the action of a
force tending to the centre. Prove that its angular velocity about
a focus is inversely proportional to its distance from that focus.

XXVIIL.

1. CX, CY are straight lines inclined at any angle, and a force
tonds to C, and varies as the distance from C. If from various
points in CY different particles are projected parallel to CX at the
same moment, and with the same velocity, they will all arrive at
CX at the same time and place; and they will also do so, if the
force cease to act for any interval of time.

9. A number of particles move in hyperbolas, under the action
of the same repulsive force from their common centre. Shew that,
if the transverse axes coincide, and the particles start from the
vertex at the same instant, they will always liein a straight line

FF



