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ABSTRACT 

Tile short term teleGOnnections ar ising from an individual tropical 

cyclone in the wes tern Pacific (typhoon Seth, October 1994) were exam ined 

using an operationa l global data assimilation system and numerical weather 

prediction mode l. Dur ing the data assimi lation, the model's initia l conditions 

were modified using a tropica l cyc lone tlogusing procedure that either 

maintained or el iminated the ind ividua l storm . These different in it ial 

conditions were used in six extended-range forecasts of about 3.5 weeks 

duration. Three of these forecasts simulated the atmosphere with the 

tropical cyclone and three without the storm. The ensemble average 

diffe rences between the forecasts with the storm and those without it were 

used to infer the global teleconnection response to the tropical cyclone . 

This response was dominated by a strong and persisten t Rossby 

wave train that extended from east Asia across the North Pac ific into North 

America. This wave train was initiated when an anticyc lonic circu lation 

formed near Japan as the tropical cyc lone approached the east Asian jet . 

The anticyclone formation was primar ily the result of two factors: (1) vortex 

stretching: and (2) absolu te vort icity advection as divergent outflow from 

the tropical cyclone crossed the large absolute vortic ity gradient 01 the east 

Asian jet . 

The wave response was quas i-stationary. However, the basic wave 



train (i.e., the teleconnection pattern) developed within a week due to a 

relatively rapid eastward propagation of wave energy across the North 

Pacific and North America. In regions of strong jet flow, this propagation 

tended to parallel the flow while in regions of weaker flow, the propagation 

had stronger poleward or equatorward components. The wave train 

intensified well after the t ropical cyclone and the initial wave format ion 

process had diss ipa ted. This growth appeared to be greater near areas of 

potential barotropic instability along the east Asian - North Pacific jet. The 

model atmosphere with the tropical cyclone showed a m id latitude jet and 

storm track t hat were markedly different from the jet and storm track seen 

in the model atmosphere without the tropical cyclone. 



The views expressed in th is thesis are those of the author and do not ref lect 
the offic ial policy or position of the Department of Defense or the U.S. 
Government. 
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L INTRODUCTION 

A. MOTIVATION FOR THIS STUDY 

Numerical weather prediction models are relatively skillful in the short

range (less than about five days). But the skill of these models diminishes 

ra pidly when they are used fo r medium· range (five to ten days) or long· 

ran ge (g reater than ten days) forecasts. Midlatitude weather systems, such 

as cold fronts, are embedded in and steered by large-scale quasistat ionary 

systems (Carlson 1991). These large , slowly evolving background systems 

may be significantly affected by remote tropical processes, such as tronica l 

cyclones (Chang and Lum 1985) and EI Nino events (Tribbia 1991). T hus, 

accurate med ium-range and extended · ra nge mid latitude forecasts depend, in 

part , on accu rate forecasting of tropica l events and of the interaction of 

these events with the mid lati tudes. 

The impacts of a rlisturbance in one nart of the atmosphere on 

another distant part of the atmosphere are described by the term 

teleconnections (Wa ll ace and Gutzler 1981). Teleconnections have become 

a central concept in the scientific search for an improved understanding of 

long distance linkages between weather and climate anomalies (Glantz, et 

al. 1991). The purpose of this study is to explore how individual tropical 

cyclones in the westem Pacific may generate short term (on e to three week) 

teleconnections. This stud y continues the work 01 Wall (1993) and Springer 



(1994). 

B. TELECONNECTIONS 

1 . Interannual teleconnections 

Large-scale, low-frequency weat her phenomena were f irst described 

by Sir Gilbert Walker. He observed correlations between the interannual 

fluctuations in sea-leve l pressure, surface air temperature , and precipitation 

in Darwin, Australia and Tahit i (Trenberth 1991). 

Bjerknes (1966) showed that weak or non -existent equatoria l easterly 

winds over the eastern and central Pac ific in late 1957 and early 1958 

brought about a brief cessation of equatoria l upwel ling . This caused above

norma l sea surface tempera tu res in the trop ical Pacific f rom the Amer ican 

coast westward to the dateline. This anomalous heat source for the 

atmosphere intensified the Had ley circulati on, especia lly in the w interti me 

(northern) hemisphere. 

Bjerknes (1972) showed that during periods of reduced upwelling, 

between 196 2 and 1967, in the equatoria l eastern Pacific, a feedback irom 

t he unusua lly wa rm ocean led to a reduction in atmospheric stability and an 

increase in precip itat ion . He noted t hat a side effect of the widesp read 

warming of the t ropical atmosphere was an increased exchange of angular 

momentum w ith the subtropics . As a res ult, the subtro pical westerly jet 

strengthened from the cent ral Pacific to the east ern Mediterranean. 



2. Intraseasonal teleconnections 

Kurihara and Tsuyuki (1987) found several occasions of intens ilied 

convection near the northern Philippines that were followed by eastward 

propagation, at about 10-12 mis, of middl e· and upper-t ropospll eric 

geopotent ia l height anomalies across the North Pacific to North America . 

Using a linear barotropic vortic ity mode l, they simulated these height 

anomalies as a barotropic Rossby wave tra in excited by tropical weste rn 

P<Jcific forc ing. 

Nitta (1987) correlated 5-day mean tropical cloud amounts and 500 

mb geopotential heights during the northern summers of 1978- 1984. He 

found that intense convective heating fluctuations near the Philipp ines th<J t 

were strong ly modulated by the intraseasonal variations were linked to a 

wavetrain -like pattern of mid-tropospheric height anoma li es over the North 

Pac ific. 

3 . Shan term teleconnections 

Chang and Lum (1985) examined cold surges and trop ical cyclones 

during the nortilern hemisphere winter and the response of the mid latitude 

Jet to variations in tropical convection . They found that the strengthening of 

upper- tropospheric divergence from a tropical heating source was 

associ<J ted w ith the s trengt hening of the nearby midlati tude west erly jet. 

The response of the westerly jet to the tropical forcing showed no 



discernab le time lag. These episodes of inc reases jet strength tended to be 

followed by a downst ream propagation of the jet, which was apparently the 

resu lt of self advection of t he zonal w ind since the tropical divergence 

center did not move sign ificantly during the ep isodes. Chang and lum 

concluded that these short-term intensifications of the midlatitude Jet were 

more likely the result, and not the cause, of tropical-extratropical 

interaction. They also inferred that large-scale tropical convective events in 

reg ions outside their normal locations may cause a significant longitudinal 

displacement of the east Asian jet streak, and theref ore the downstream 

weather. 

Hurre ll and V incent {1990} studied the correlation between low

lati tude heating and the strength of the subtrop ical westerly jet near 

Austra lia during January-March 1979. They found that episodes of strong 

divergent outf low associated with tropical convection correlated w ith the 

strengthening and eastward propagation of west erly wind maxima in t he 

subtropical jet. The response time between the upper-level t ropical outflow 

and subtropical westerly enhancement was about 12 hours. 

Hurrell and Vincent (1990) found that these westerly enhancements 

were driven ma inly by the Coriolis force acting on the diabatically driven 

n:eridional circulation. The larg~st positive tendencies due to this term were 

found in the entrance regions of the subtropical westerly jet . Divergent 



circulations accounted fo r neClrly ill l of the total i::lgeostrophic f low and that 

nei::lrly all of the divergent kinetic energy Wi::lS converted to zona l kinetic 

energy. T hey concluded that transient tropical heating events E'!nhance local 

meridional overturning in the atmosphere, which in turn strengthens the 

summer subtropical weste rly jet stream. 

Harr and Elsberry 11991) found that western Pacific tropica l cyclones 

may be associated with distinct large-scale flow anomalies. FurthermorE'!, 

Harr and Elsberry {1995) fo und that the large-scale anomalies over the 

tropical western Pacific that werE'! associated w ith an active monsoon trough 

were also associated with a wave train-l ike pattern of anomalous cyclonic 

and anticyc lon ic circulations at the 200 mb and 700 mb levels that 

stretchE'!d eClstward from east Asia to western North America (Figure 1). 

Periods during which there were few or no tropical cyclones hi::ld very 

different anomaly patterns {Figure 2). Their f indi ngs suggest that short 

term tropical disturbances, such i::lS tropici::ll cyclones, may have faHeaching 

effects on large-scale midlatitude circulations. 

Springer (1994) showed that data assimilation and modeling 

procedures can be successfully used to produce rea list ic simulations of the 

global mmosphcre w ith and w ithout an individui::ll typhoon. He showed that 

a typhoon may tr igger an upper-tropospher ic height response across t he 

NorUl Pacific - North American {NPNA) region that is strong and persistent, 



Figure 1. Composite of 200 mb streamfunction anomalies associated with 
an active monsoon trough and numerous recurving tropical cyclones in the 
western Pacific. The contour interval is 2.0 x 106 m 2 s·' . Negative contours 
are dashed. (from Harr and Elsberry 1995) 



Figure 2 . Composite of 200 mb stream function anomalies during periods 
associated w ith few or no tropical cyclones in the weste rn Pacific. The 
contour interval is 2.0 x 106 m 2 s-'. Negative contours are dashed. (from 
Harr and Elsbe rry 1995) 



lasting several days to more than a week. This response showed distinct 

Rossby-wave train characterist ics with eastward group velocities exceeding 

rela t ively slow eastward phase velocities. He fou nd that advection of 

relat ive vorticity by the upper-leve l d ivergent wind from the typhoon was 

important in initiating the wave response. He also found that subsequent 

growth and propagation of the wave response was not directly affected by 

the typhoon but was influenced by the extratropical jets. which acted to 

guide and amplify the response. 

C. DESIGN OF THIS STUDY 

This study builds on the methodology and analysis used by Woll 

(1993) and Springer (1994) to examine the impacts of a single typhoon on 

the global atmosphere. Woll (1993) studied typhoon Yuri (November

December 1991) while Springer (1994) examined typhoon Robyn (August 

1993). In t his study, we examined the impacts of Typhoon Seth (October 

1994). 

In this study. we investigated th ree main hypotheses. 

-~: Individual tropical cyclones can produce strong 

teleconnections. 

- 1:I.¥.QJllhe..s.is.2.: The development of t he te leconnection is strongly 

influenced by the waveglJiding and amplification effects of the mjdlatjtud~ 

westerly jet. 



- ~.i.s...3: The flux of ambient absolute vorticity assoc iated with 

the divergent outflow from a tropical cyclone located near a jet may be an 

important mechanism for initiating a teleconnection response to the tropical 

cyclone. 

Our basic strategy was to use a data assimilation procedure to modify 

the representat ion of an individ ua l tropical cyclone in the initial conditions of 

a global operational forecast model. The model was then run for two to 

three weeks to simulate the global impacts of the tropical cyclone. The data 

assimilation process was used to: 

1. retain the trop ical cyclone in the model atmosphere, 

2 . remove the tropical cyclone from the model atmosphere. 

The methods used are described in Chapter II. The results are presented in 

Chapter III. Conc lusions and recommendations are given in Chapter IV. 

D. SUMMARY 

Teleconnections play an importa nt role in modifying weather and 

climate. Understa nding and forecasting their far fie ld impacts will help 

improve medium-range and long-range weather forecasts. This study, like 

those of Wall (1993) and Spr inger (1994), focuses on the short-term (One to 

two weeks) teJeconnel:tions associated with individua l tropical cyclones. 



II. DATA AND PROCEDURES 

Our work is a continuation of the studies of Woll (1993) and Springer 

(1994). In particular, we used similar data assimilation and modeling 

procedures to conduct an additional case study of the remote effects of an 

individual typhoon . This chapter summarizes the data assimilation and 

modeling procedures. More detailed explanations of these procedures can 

be found in Wall's and Springer's papers. 

A. TROPICAL CYCLONE SELECTION 

Wall (1993) and Springer (1994) discussed several factors which 

affect the ability of an individual tropical cyclone to generate a strong 

te leconnection response . These factors led them and us to select for our 

studies a tropical cyclone that was: 

strong during and soon after recurvature into the extratropics, 

located within or near the extratropical westerl ies, especially 

the mid latitude jet, 

relatively isolated from other tropical disturbances. 

accu rately simulated by the forecast model. 

Using these criteria, we selected for our study typhoon Seth, which 

occurred in the western Pacific in October 1994. Figure 3 shows the 

maximum sustained winds at selected positions along the Joint Typhoon 

Warning Center 's (JTWC) best track for typhoon Seth. 

10 
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Figure 3. The JTWC best track for typ~lOon Seth based on Seth's positions 
at six-hour intervals. At selected times and locations, Seth 's propagation 
speed and maximum sustained wind speeds (in nautical miles/hour) are 
shown. 

I I 



B. ATMOSPHERIC MODEL DESCRIPTION 

Our numerical weather prediction model was the U.S. Navy Global 

Atmospheric Prediction System (NOGAPS) Version 3.2. NOGAPS is a fu ll 

physics spectral mode l that uses a triangular 79 (T7 9) truncation, which 

corresponds to a 1 .5 degree la t itude-longitude transform grid. It has 18 

vertical levels and a time step of 30 minutes. NOGAPS uses the Arakawa

Schubert cumulus parameterization that includes the effects of downdrafts, 

latent heat of f usion, and evaporation of fa lli ng precipitation. The model 

equations are formulated in spherical coordinates and a hybrid vertical 

coordinate, 11, is used. An in-depth description of NOGAPS is contained in 

Hogan and Rosmond (1991). NOGAPS Version 3.2 was, unti l recently, the 

U.S. Navy's operational model for worldwide weather pred iction . The 

current operational model is a higher resol ut ion {T159} version. 

All of our model runs were conducted by Dr. J. Goerss at the Naval 

Research Laboratory (NRU in Monterey, California using the computing 

facilities at the Fleet Numeri ca l Meteorology and Oceanography Center 

(FNMOC) in Monterey. Postprocessing of the model output was done in the 

Interactive Digital Environmental Analysis (IDEA) Laboratory at the Nava l 

Postgraduate School in Monterey. 

12 



C. MODEL OUTPUT FielDS 

A number of standard NOGAPS globa l Olltput f ields were analyzed in 

t h is study. These fields were provided on a 1 .0 degree latitudf! - longitude 

grid, with output provided at DOZ and 12Z of each model day . The mode l 

runs lasted from 23 to 26 days. Our investigat ions focused on the following 

NOGAP$ f ields . 

, . Sea level pressure 

The sea-leve l pressure (SLP), in millibars (mb), provided information 

on the initial condit ions at th e start of each model run and was used to 

represent the model's prediction of the tropical cyclone track. 

2. 1000 mb geopotential height 

The 1000 mb geopotential he ight s ( <1>1000)' in gcopotcntial me ters 

(gpm), represent the structure of the lower troposphere. 

3. 1000 mb winds 

The 1000 mb horizontal w ind fi elds (VIOOO )' in m S - I, were used to represent 

th e circulation of the lower t roposphere . 

4 . Atmospheric latent heating 

The atmospheric healing (Ol), in Watts mol, is the latent heating of 

t he model's atm osphere, re present ing areas of convec.;tive systems . 

13 



5. Atmospheric sensible heating 

The atmospheric heating (Os), in Watts m- 2 , is the sensib le heating of 

the model 's atmosphere. 

6. 200 mb geopotential height 

The 200 mb geopotential heights (4)200)' in geopotential meters, were 

used to identify upper-tropospheric teleconnections and quasi-geostroph ic 

wave dynamics. 

7. 200 mb wind 

The 200 mb total horizontal wind field (V200 ), in m s· ' , was used to 

represent the circu lation of the upper troposphere. 

8. 200 mb velocity potential 

The 200 mb velocity potential C~2oo) fields, in m 2 s " were used to 

obtain the divergent wind (Vl ). The total horizontal wi nd is the sum of the 

divergent and rotational winds (V= Vl + V.). The divergent wind was used in 

the Rossby wave source calcu lations. It also provided an indicator of the 

t ropical cyclone's location in the upper troposphere. 

9. 200 mb streamfunction 

The 200 mb stream function ("'200) f ields, in m 2 S -l, were used to 

calculate the rotational wind (V. = k x V~). , w hich is then used to calculate 

the Rossby wave source. 

14 



10. 200 mb relative vorticity 

The 200 mb relative vorticity fields ((200) in m1 s' \ represent the 

relat ive cyclonic or anticyclonic flow of the atmosphere. They were used in 

the Rossby wave source calculations . 

D. TROPICAL CYCLONE BOGUSING PROCEDURES 

The spatial resolution of operational forecast mode ls is too coarse to 

accu rately depic t the mCSU$c<lle characteristics of individua l tropical 

cyclones . To improve the represen tation of the tropical cyclone in the 

forecast model initial conditions, synthetic data assimilation lbogusing) 

procedures have been added to some operational weather prediction 

systems. Goerss and Jeffries (1994) described the operational NOGAPS 

tropica l cyclone bogusing procedure and evaluated its impac ts on forec<lsts 

of w estern Pacific tropical cyclones, They showed that NOGAPS with 

tropical cyclone bog usin g generally does quite well at predicting storm 

intens ity and track when the cyclone is at or above tropical storm strength. 

In this study, we used the tropical cyclone bogusing procedure as an 

experimental tool to selectively <lIter the initial conditions tor Seth in runs ot 

the NOGAPS model. We used two types of bogusing techniques 

1 . POSITIVE bogus 

In the POSITIVE bogus procedure, synthetic d<lta were introduced to 

give a more realistic represelltation of the storm th<ln would otherwise be 

15 



possible. This POSITIVE bogus procedure is the operational procedure 

described by Goerss and Jeffries (1994). We used the mode l runs that 

were started from t he POSITIVE bogus initial co nd itions as our control 

representation of the atmosphere's development with the tropical cyclone 

included. 

2. NEGATIVE bogus 

The second bogusing procedure, referred to as the NEGATIVE bogus, 

removed the tropical cyclone from th e NOGAPS initial conditions. This 

procedure is described more fully in Woll (1993). Our model ru ns us ing the 

NEGATIVE bogus initia l conditions represent how the atmosphere might 

have evolved if the tropical cyclone had never occu rred. The differences 

between the output from the model runs using the POSITIVE and NEGATIVE 

bogusing procedures allowed us to infer the impact of the tropical cyclone 

on the atmosphere. We refer to these differences as the model respoflse to 

the presenc e of the tropical cyclone. Table 1 provides descriptions and 

explanations of these differences . 

E. MODEL RUNS AND ANALYSES 

We conducted a total of six forecast runs in our study of Seth. These 

six runs represent the two bog us types described above, and three different 

initia l ti mes. For each initial time, two forecast runs were done: one using 

initial conditions from the POSITIVE bogus procedure and one using initial 
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Model Run What it does What it describes 

simulates the globa l 
atmosphere w ith the tropical cyclone, 

POSITIVE tropical cyclone the globa l circulatio n, 
standard NOGAPS and t heir interactions 
bogusing in the data 
assimilation 

simulates the global the global circulation 
NEGATIVE atmosphere after the w ithout the t ropica l 

tropical cyclone has cyclone 
been removed during 
the data assim il ation 

displays the difference the features in the 
between the POSITIVE global c irculation that 

POSITIVE-NEGATIVE and the NEGATIVE result f rom the 
presence of the tropical 
cyclone in the 
POSITIVE runs 

Table 1. Overview of the model runs, according to the tropical cyclone 
bogusing procedure used to develop the model initial condit ions (first two 
rows of table). Overview of the model differences, according to the 
bogusing procedures (bottom row). 
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conditions from the NEGATIVE bogus procedure. This gave i::l total of six 

forecast runs. 

The in it ial times were near the time when Seth reache d its maximum 

intens ity and we re def ined to be 36 hours apart, at 12Z, 6 October 1994; 

aaz, 8 October 1994; and 12Z, 9 October 1994. 

The foll owing naming convention is used to distinguish the runs. 

The two runs started at 12Z, 6 October were called the 

Forecast 1 (Fl) runs. 

The two runs started at aaz, 8 October were called the 

Forecast 2 (F2) runs. 

The two runs started at 12Z, 9 October were called the 

Forecast 3 (F3) runs. 

Each of t he six model runs is ident ified by its initii::llization time and its 

bogusing procedure. For example, the run started at 12Z, 6 October 1994 

from the initial conditions developed from the POSITIVE bogusing procedure 

is ca lled the Forecast 1 POSITIVE run -- or the Fl POSITIVE run, for short. 

Note that the six model runs differed only in their initial conditions . Th ese 

initial condition differences represented t hree different start times and two 

different treatments of typhoon Seth during the data assimilation. The same 

NOGAPS model was used for all six runs. 

Each of the six forecasts were run out to aaz, 1 November 1994, 
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with model fie lds being output at aoz and 12Z of each model day. Figure 4 

is a schematic of the data assim il ation procedures ilnd the six model funs . 

F. ENSEMBLE AVERAGING OF MODEL OUTPUT 

For m any analyses of the model results, the model fields were first 

ensemble averaged (EA). This procedure averaged together the results from 

runs that involved the Silfn8 bog using procedure hut had different initial 

times. This averaging was done only at corresponding forecast times and 

dates from the different runs. Figure 5 gives a schematic description of the 

ensemble averaging process. 

The net effect of ensemhle averaging was a relative enhancf!ment of 

t he features that were common to all the forecasts being averaged, and a 

relative reduction of tile features U1at were different between the forecasts 

being averaged. The ensemble averaging procedure is explained more fully 

in Wall (1993). 

G. WAVE ENERGY AND INSTABILITY CALCULATIONS 

Hypothesis 2 proposes that the deve lopment of the telecon nection is 

strongly influenced by the waveguiding and amplificat ion effects of the 

extralropical westerly jets . To test this hypothesis and identify t ile 

mechanisms of the model's teleconn ections, the following diagnostic 

quantities were calculated using the model's 200 mb height and wind fields . 
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04 Oct 12Z 06 Oct 12Z 08 Oct OOZ 09 Oct 12Z 

~-4? ______ ~? ____ --J? 

I 
POSITIVE runs 

L _________ l' ____________________ L ____________________ ./' 

Normal Operational 
Data Assimilation 

Pos = POSITIVE Bogus 

Neg = NEGATIVE Bogus 

NEGATIVE runs 

Data Assimi lation 
with Bogusing 

Symbols 

start of forecast, all 
forecasts run out to 
1 November 1994 

Figure 4. Schematic of the data assimilation and tro pical cyclone bogusing 
procedures for the six model runs . Bogusing started when Seth's wind 
reached 18 m/s. Bogusing continued until the start of each model run. 
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SYMBOLS USED: F1 = FORECAST 1 
F2 = FORECAST 2 
F3 = FORECAST 3 

Figure 5. Schematic of six model runs conducted, showing standard data 
assimilation periods, modified dat a ass im ilation (i.e., bogusing) periods, 
forecast periods, and ensemble averaging periods. 
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Quasi-geostrophic wave activity flux vectors 

Quasi-geostrophic (QG) wave activity flux vectors lPlumb 1985). were 

used to track the quasi-geostrophic wave energy as it propagated through 

the model's upper-troposphere. These f lux vectors are parallel to the w ave 

energy propagation, and their magnitude is proportional to t he amount of 

propagating energy. Converging flux vectors indicate a wave energy sink, 

while diverging vectors denote a wave energy source. 

2. 200 mb potential barotropic instability 

Barotropic instability (BTl ) has been suggested as a probable 

mechanism in tropica l to midlatitude teleconnections (Simmons et al. 1983, 

Woll 1993). Woll 11993) concluded that areas of potential barotropic 

instab il ity contributed energy to the teleconnection response to Yuri. In our 

study, as in Woll (1 993) and Springer (1 994), areas of potentia l barotropic 

instability in the model were identified using the Rayleigh-Kuo criter ion (Kuo 

1949): 

a'" - - · .. 0 (1) 
By' 

Where 13 is the total derivative of the Coriolis parameter, :!£, and ~ is the 
dy oy1 

second meridional derivative of the 200 mb zonal w ind. Note that (1) is not 

exactly the Rayleigh-Kuo condition s ince the wind is not zonally symmetric. 

However, this asymmetry should not significantly alter the implications of 

the condition, if the wind changes relat ively slowly in the zo nal direction 
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i;!u 
(Branstator 1983). As in Wall (1993). we have smoothed the ~ - - fields 

ay' 
w ith (J weighted nine-point horizontal smoother before plotting them. 

it is important to note that (1) is a necessary, but not a $uffiGient. 

condition for barotropic instab ility . Thus(1) denotes possible wave energy 

source areas, where barotropic instability mechan isms might provide energy 

to the waves, but it rioes not guarantee that these are actually wave energy 

H. ROSSBY WAVE SOURCE 

1 . Motivation 

Many modeling and theoretical studies have indicated tha t it is very 

difficu lt. or impossible, for Rossby waves generated in the tropics to 

propagate through the trop ical easterlies and impact the extratropics (e.g., 

Tribb ia 1991). However, many studies have also shown that tropical 

disturbances do have extratropical impacts that appear as Rossby wave 

trains. Sardeshmukh and Hoskins (1988) noted that in many modeling and 

theoretical stud ies, the divergent portion of the horizontal w ind , Vt , had 

been ignored. Past studies assumed that Vt was insignif icant in the 

te leconnection process because , on large scales, Vt usually is much smaller 

than V" the rotational portion of the horizontal wind. 

Sardeshmukh and Hoskins (1988) showed that, nea r an extratropical 

jet, the advection ot abso lute vorticity by the divergent component of the 
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horizontal wind can be quite significant in generating Rossby waves. They 

defined a Rossby wave source in the absolute vorticity equation as the sum 

of two terms : the advection of absolute vorticity by the divergent horizontal 

wind term and the stretct1ing term . They showed that the effects of a 

Rossby wave source caused by a loca lized tropical disturbance can extend 

well beyond the disturbance and into the region of the extratropical jet 

(Figure 6). Figure 7 shows an example of a Rossby wave source computed 

by Sardeshmukh and Hoskins (1988) . Thus, they concluded that tropical 

disturbances may have an extratropical influence by ind irectly generating 

Rossby waves at an extratropical jet, rather than by directly propagating 

Rossby waves out of the tropics. 

Springer (' 993) fo und that fo r typhoons Yuri and Robyn the 

advection of absolute vorticity by the divergent horizontal wind (ADVDfV) 

appeared to initiate upper tropospheric wave train responses to these 

storms. In particular, ADVDIV produced a negative source that was 

associated with the development of an area of negative relative vorticity 

north of the storms and on the flank of the East Asian - North Pacific Jet. 

This negative vorticity region marked the southwestern end of the wave 

train responses. Springer (1994) suggested that the phasing of these wave 

train responses may hilVe been determined, at least initially, by the sign of 

the Rossby wave source difference. 
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Figure 6. Schematic of northern summer 500 mb height anomalies 
associated with inc reased convection over warmer than normal SST In the 
tropical western PacifIc. H denotes a positive height anomaly, L denotes a 
negative height anomaly (from Nitta 1987). 



Figure 7. Schematic of upper tropospheric Rossby wave sources due to 
advection of abso lute vorticity by steady dive rgent winds emanating from 
the equatorial western Pa ci fic. Wavy contours indicate upper tropospheric 
stream function . Vectors indicate divergent w ind (maximum wind is about 5 
m/s) Shading along subtropica l western Pacific jets indicates negative 
Rossby wave sou rces (from Sardeshmukh and Hoskins 1988). 
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2. Formulation of the Rossby wave source 

The Rossby wave source is contained in the absolute vorticity 

equat ion, shown below in isobaric coordinate lorm: 

(~+v ·\f)(e+!) "' S a, • [2) 

where ({ + f) is the absolute vorticity and S is the Rossby wave source, 

dclined as: 

[3) 

Expanding (3) gives: 

[4) 

Fu rther expansion gives: 

a{ al: au av 
s .. ~ [u~ a;. +vt ~-:- +v~ ~ +({ +!)(-;j; +-t)] [5) 

The first three terms on the right-hand side of (5) repre!Oent ADVDIV. The 

last term in (5) is the vortex -"tretching (or divergence) term. Rearrang ing 

{2) gives : 

[6) 

The left-hand term is the relative vorticity tendency and V. -'V(I: +f) is the 

advection 01 absolute vorticity by tile rotationa l part o f the hori20ntal wind 

(ADVROT) In component form, ADVROT is: 

[7) 

Notice that this is similar in form to ADVDIV, except that the rotational 
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horizontal wind is used in (7). 

The terms in (5) were calculated from the output fields for the Seth 

model ru ns. These calculations were made using f inite difference 

approximations to the deriva tives in (5) . 
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II I. RESULTS 

A. OVERV IEW 

The va lue of the resu lts fou nd in any study arc dependent upon the 

qual ity of the raw data and methods used in the study . The raw data used 

in t his study were t l18 f o recast resu lts f rom tbe six different model ru ns and 

the methods are those described in Chapter II. 

To assess these data and met hods, we appl ied t he fou r prerequis ites 

used by Wall (1993) and Sp ri nger (1994; : 

.E.r..e.r..e..os.i.tfL.L. The bog using procedure used during the data assimi lation 

mus t have a signifi cant effect on the mode l's init ial condi t ions on ly in the 

v icinity of t he trop ica l cyclone. 

p rerequ isi te 2 · The model runs that attempt to s im ulate the trop ical cyclone 

(i.e. , those for which the POS ITIVE bogus procedu re was used) must g ive a 

rela t ive ly accu rate s imulat ion of the typhoon ' s t rack and st rengt h . The 

mode l rUlls that attemp t to remove the t ropical cyc lone l rom the model 

atmosphere (i.e. , those for wh ich the NEGATIVE bogus w as used) mus t 

show, at mos t, only a v ery weak t rop ica l cyclone . 

.E.r..e.!..~;tq~ All tile mode l runs, rega rd less of the bog us prucedure used, 

must provide a realistic represent ation of basic cl imatolog ical f eatures . 
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~: When ensemble averaging is done, the major features of the 

individual forecasts be ing averaged must be preserved in the average. 

B. PREREQUISITE 1 - BOGUSING AND THE INITIAL CONDITIONS 

A POSITIVE and NEGATIVE bog using procedure was used in 

developing the initia l conditions for each of the model runs. The purpose of 

the POSITIVE bogus was to enhance the initial conditions for Seth. This 

was done to improve the model's ability to correctly forecast Seth's 

strength and track. The purpose of the NEGATIVE bogus was to remove 

Seth f rom t he initial condit ions so that the model forecasts would represent 

the evolution of t he global atmosphere without Seth. 

1. SLP initial condition 

Figure 8 shows tt18 sea-level pressure initial conditions for the F2 

POSITIVE, NEGATIVE, and POSIT IVE - NEGATIVE runs. Figure 8a and Figure 

8b are very similar except for the area in the tropical west Pacific, east of 

China. In this area, Figure 8a shows a well developed low, while Figure 8b 

shows a much weaker low. Figure 8e highlights ttlis difference and 

indicates t hat the NEGATIVE bog using procedure largely succeeded in 

removing Seth from the initia l conditions. 

Figure 8c also shows a small SlP difference in the southern 

hemisphere at approximately 70S, 150E. Wall (1993) and Springer (1994) 

found s im ilar weak SLP d iffe rences in the southern hemisphere, and 
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Figure B. Sea level pressure initial conditions for Forecast 2; la) Positive 
Bogus, (b) Negative Bogus, (e) Positive - Negative Bogus. Contour interval 
is 4 mb . Zero contou r omitted . 
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suggested that these remote differences might be an artifact of the 

horizontal truncation 

The SLP difference fields for Fl and F3 runs also show a clear 

POSI TIVE - NEGATIVE difference at the location of Seth with no remote 

differences. 

2. Conclusion for prerequisite 1 

The main SlP differences for F1 , F2, and F3 were centered on Seth's 

location. Remote SLP differences were much weaker. Thus, we conclude 

that p rerequ isite 1 was met. 

C. PREREQUISITE.2 - TYPHOON TRACK AND INTENSITY 

In order to test our hypotheses, our data assimilation and modeling 

methods needed to give a reasonably accurate prediction of Seth's track 

and intensity in the POSITIVE runs. In addition, our methods needed to 

eliminilte Seth from the NEGATIVE runs, Thus, we compared the trac k and 

minimum SLP fO f Seth in the POSITIVE runs with the analyzed track and 

SLP provided by JTWC. We also examined the western North Pacific SLP in 

the NEGATIVE runs for indica t ions of a residual Seth. 

1. Typhoon track 

The position of the SLP minima at selected times for the F3 POSITIVE 

and NEGATIVE runs are shown in Figures 9 and 10. The JTWC best track 
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Figure 9. Sea-level pressures in the western Pacific at selected times for 
Forecast 3 POSITIVE run. Contour interval is 4 mb. Bold line is th e 
recurving port ion of the JTWC best track. The bold dot is the JTWC best 
track pOSition for that date and t ime. 
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Figure 10. Sea-level pressures in the western Pacific at selected times for 
Forecast 3 NEGATIVE run. Contour interval is 4 mb. Bold line is the 
recurving portion of the JTWC best track. The bold dot is the JTWC best 
track position for that date and time. 
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for Seth is superimposed in these f igures as a bold curved -line, with Seth's 

position at the indicated time shown by a bold dot. 

The SLP minima corresponding to Seth in the F3 POSITIVE run was 

well defined and traced a track that was very similar to the JTWC best track 

during most of Seth's existence (Figure 9). However, the model Seth's 

track speed was less than that of the actual SeUl, so that by aoz, 13 

October 1994, tt18re was a conside rable lag between th e two (Figure 9h). 

The SLP minima for the F1 and F2 POSITIVE runs (not shown) were 

less successful in t rac king Seth than those for the F3 POSITIVE fun. These 

two runs generated tracking speeds that were TOO slow. The Fl POSITIVE 

run did not recurve. In the F2 POSITIVE run, the rec urvature occurred 

several days too late. 

The SLP minima fo r the F3 NEGATIVE run (Figure 10) clearly showed 

the effects of bogusing out Seth in the model initia l conditions. At 12Z, 9 

October 1994, the model had a weak low in the vicinity of the actual Seth 

position (Figure lOa). During 10-12 October 1994, the m odel generated a 

weak trough near the position of the actual Seth (Figure lOb-f). This t rough 

merged with a mid latitude Iowan about 12Z October 1994 (Figure 109). 

Figure 10 shows that in the F3 NEGATIVE run, Seth was largely. bUT not 

entirely, eliminated. 
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The SLP m inima for the Fl and F2 NEGATIVE runs (not shown) were 

similar to those for the F3 NEGAT IVE run (Figure 10). However, f or these 

two runs the in itial low near the position of t he actual Seth location did not 

extend itself in to the subtropics and midlatitudes. 

2. Typhoon intensity 

We also used the SLP minima as a measure of the model storm's 

intensity. Table 2 lists the SLP minima f rom the F3 POSITIVE and 

NEGATIVE bogus runs. Table 2 also lists the best track minimum SLP 

calculated using JTWC maximum sustained surface w inds and the Atkinson 

and Holliday (1977) method for calculating the minimum SLP from those 

winds. 

The SLP minima for the F3 POSITIVE run were notably higher than 

the best t rack SLP. This proba bly occurred for two main reasons. First, 

NOGAPS, like other numerical weather prediction models, has prob lems 

deepening a typhoon 'S central SLP w ithout adversely affecting other, more 

pertinent. physical va riables. Second, NOGAPS has limited reso lution which 

makes it difficu lt to resolve tile small scale central low pressure area. Th e 

SLP minima for the F3 NEGATIVE bogus were higher than f or the 

co rresponding POSITIVE run and the JTWC-based values. Similar results 

were found for the minima SLP's for the F1 and F2 POSITIVE and 

NEGATIVE ru ns (not shown) . 
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Date Time (1994) POSITIVE JTWe 

09 Oct 122 991 24N 123E 938 24N144E 

10 Oct 002 993 25N 123E 94826N 123E 

10 Oct 12Z 99626N 123E 958 27N 123E 

110ctOOZ 99727N 124E 967 30N 124E 

11 Oct 12Z 1000 28N 124E 97632N 125E 

12 Oct OOZ 1000 32N 126E 98036N 129E 

12 Oct 12Z 998 36N 128E 984 42N 134E 

13 Oct OOZ 995 41N 133E 987 47N 140E 

Table 2. Strength and location of the typhoon Seth minimum sea level pressure 
(SLP minima). in mb. for the Forecast 3 POSITIVE run and the JTWC best 
estimates of minimum SLP at the specified times. SLP were derived from JTWC 
Maximum Sustained Surface Winds and equivalent minimum SLP (Alkinson and 
Holliday 1977). 
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3. Conclusion for prerequisite 2 

The F3 POSITIVE runs gave rela t ively accurate depictions of Seth ' s 

t rac k and intens ity. The Fl and F2 POSITIVE runs did not do nearly as well 

as the F3 POSITIVE run in predicting the typhoon track, although they did 

as we ll as F3 in predicting the minimum SLP. Thus, we concluded ttlat, 

overall, prerequisite 2 was essentially met. This is discussed further in 

section E. 

o. PREREQUISITE 3 - COMPARISONS WITH CLIMATOLOGY 

To estimate the overall accuracy of the NOGAPS forecasts, we took 

the mode ls ensemble averaged forecasts from aDZ, 10 October to aDZ, 30 

October, averaged them togetl1er, then compared this result with the 

corresponding observed month ly mean fields for October 1994. 

1. 200 mb geopotential heights 

The 20-day average 200 mb heights for the F3 POSITIVE and 

NEGATIVE runs are shown in Figure 11. The major features to note in both 

the POSITIVE and NEGATIVE runs are the strong jets over the northwest 

Pacific and the area of difluence just east of these jets. The other major 

features are the jet and diff luent regions over the North Atlantic and much 

of the southern hemisphere. These features are simi lar to those observed 

during October 1994 (ct . Kousky 1994). In the North Pacific North 

American (NPNA) region, the POSITIVE results are noticeably more realistic 
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Figure 11 . 20-day average 200 mb geopotential heights for Forecast 3 
POSITIVE (ai, and NEGATIVE (b) bogus. Contour interval is 100 gpm. 
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than the NEGATIVE results (ct. Kousky 1995). The corresponding heights 

from the F1 and F2 runs (not shown) were quite similar to those shown for 

the F3 runs. 

2. Conclusion for prerequisite 3 

Both POSITIVE and NEGATIVE 200 mb geopotential 20-day averages 

portrayed reasonable mean flows when compared to observed values. 

Thus, we concluded that prerequisite 3 was met. 

PREREQUISITE 4 - EFFECTS OF ENSEMBLE AVERAGING 

Ensemble averaging of the three POISITIVE runs and of the three 

NEGATIVE runs was used to minimize transient features and accentuate the 

more persistent features associated with significant teleconnectio ns . 

However, to check that th is averaging did not eliminate important features 

in the individ ual runs or create spurious features , we reviewed the indiv idual 

200 mb height forecasts from the POSITIVE and NEGATIVE runs and 

compared these with their respective ensemble average 200 mb heights. 

The fi rst common time between the F1, F2, and F3 runs was OOZ, 10 

October 1994. We review first the heights trom the three POSITIVE runs 

and the POS IT IVE ensemble average, and then the heights f rom the 

NEGATIVE runs and the NEGATIVE ensemble average . The features we are 

most interested in are the series of truughs and ridges in the NPNA regiun. 

40 



These f eatures are related to the expected teleconnectiorls- (ct. Nitta 1987, 

Harr and. Elsberry 1994, Woll 1993, Springer 1994) 

Positive 200 mb heights 

TIle discuss ion in this sect ion of the POSITIVE 200 mh heights and 

their ensemble average refers to the following set of figures : 

Fl : 

F2 : 

F3: 

Ensemble Averilge : 

Figure 12 

Figure 13 

Figure 14 

Figure 15 

OOZ, 10 October 1994: Al l three POSITIVE runs showed a series of 

r idges ami troughs across the NPNA region. These included a ridge over 

Asia, a flat trough extending across the central Pacific, and a ridge over 

central North America. 

OOZ, 12 October 1994" The west Pacific ridge and the central Pacific 

tough have moved eastward. The North American ridge has weakened 

considerab ly. A new ri dge was developing in the east Pacific. This ridge 

was most noticeable in the F2 and F3 runs . 

ODZ, 14 October 1994: The w est Paci l ic ridge has moved to 

Kamchatka, th e central Pacific trough has become considerably deeper and 

more 10Cil lized, and the east Paci fic ridge hilS amplified. 
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Figure 12. 200 mb geopotential heights at selected t imes for Forecast 1 
POSITIVE run. Contour Interval is 100 gpm. Zero contour omitted. 
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Figure 12. (Continued). 
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Figure 13 . 200 mb geopotential heights at selected times for Forecast 2 
POSITIVE run . Contour Interval is 100 gpm. Zero contour omitted. 

44 



EQU~~~~~~~~~~ 

:::~. 1NovOOZ 

30N I'~ C' 

EQU 1'1~" -._ . 
1DOE 140E 180 140W WOW 

Figure 13. (Continued). 
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Figure 14. 200 mb geopotential heights at selected times for Forecast 3 
POSITIVE run. Contour Interval is 100 gpm. Zero contour omitted. 
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Figure 14. (Continued). 
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Figure 15. 200 mb geopotentia l heights at selected times for Ensemble 
Average POSITIVE run. Contour Interval is 100 gpm. Zero contour omitted. 
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Figure 15. (Continued). 
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Through 14 October 1994, the differences between F1, F2, and F3 

POSITIVE runs were very small. However, after this, the differences grew. 

This growth in the differences may have been partially the result of the 

differences in the tracking of Seth by the Hlree POSITIVE runs. 

OOZ, 16 October 1994: The west Pacific ridge in the Fl run has 

moved to the central Pacific, while it is still in the west Pacific in t he F2 and 

F3 runs . The Fl central Pacific trough and east Pacific ridge have also 

moved ahead of those in F2 and F3. 

OOZ 18 October 1994: The F1 ridge-traugh-ridge system has moved 

further east than in F2 and F3 . The Fl trough is not as long as those in F2 

and F3 . The F3 trough has been replaced by a ri dge extend ing northward 

over Alaska. The F2 and F3 runs developed a short trough in the central 

North Pacific south of Alaska that was not present io the Fl run. 

The eastward movement of the troughs and ridges continued 

throughout the remainder of the three forecast periods. Differences 

between the Fl, F2, and F3 runs were apparen t through the end of the 

ensemble average period on 1 November, especial ly on 24 and 28 October. 

However, there were many similarities between the large scale features in 

the three runs which were well represented in the ensemble average (e.g., 

the trough-ridge-trough-ridge·trough pattern that extended eastward from 

east Asia into North America on 1 November). 
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2. Standard deviation of the POSITIVE runs 

To summaril.e the similarities and d ifferenc es between the individual 

runs and their ensemble average, we calculated the standard dev iation o f 

the POSITIVE 200 mb runs with respect to thei r ensemble average. This 

standard dev iat ion was then averaged ove r the NPNA area (20N-70N, 120E-

SOW) to give an area average standard deviation for each forecast output 

time: 

[ tIFlkl,,-EA,/]' 
so · H~'-~' ---O:ln:---1;;-1-- IB) 

In this equation : i and j are zona l and meridional indices, respectively; k is 

the forecast number index; n is the total number of forecast runs; F(k) is 

the 200 mb height for the kth forecast; and EA is the ensemble average 200 

mb height . 

As expected from the results shown in Figures 12-15, the standard 

deviation of the POSIT IVE runs was small through 14 October increased 

sharp ly during 16-20 October and then leveled olf at about 170 gpm {Figure 

16). Plots of the differences between the individual forecasts and the 

ensemble averag e (not shown) indicate that that the F2 run was the most 
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Figure 16. Standard dev ia tion of the POSITIVE runs in the NPNA region 
(20N - 70N, 120E - SOW). 
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similar to the ensemble average. while the Fl (F3) run tended to be the least 

similar during the early (later) part of the averaging period. 

3. Summary of POSITIVE ensemble averages 

In summary, all three of the POSITIVE runs showed clear and similar 

200 mh heights patterns across the NPNA region dur ing most of the 

ensemb le averaging period (Figures 12- 14) . These common patterns we re 

captured in the ensemble average 200 mb heights (Figure 15) , However, 

some strong and persistent features in the individual funs were only weakly 

represented in the ensemble average (e.g., the high amplitude ridge over the 

northeastern Pacific and northwestern North America in the F3 run during 

20-26 October). This suggests that the individual runs m<Jy contain some 

information about the responsp. to Seth that is not well represented in the 

ensp.mble (]verage. Tilis issue is examined in more detail in Chapter IV. 

4. Negative 200 mb heights 

Tile discussion in this section of the NEGATIVE 200 mb heights and 

their ensemble average refers to the following set of l igures: 

F1 : 

F2 : 

F3: 

Ensemble Average: 

Figu re 17 

Figure 18 

Figure 19 

Figure 20 
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Figure 17. 200 rnb geopotentia l heights at selected t imes for Forecast 1 
NEGATIVE run. Contour Interva l is 100 gpm. Zero con tour omitted. 
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Figure 17. (Cont inued) . 
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Figure 18. 200 m b geopotential heights at selected times for Forecast 2 
NEGATIVE run. Contour Interval is 100 gpm. Zero contour omitted . 
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Figure 18. (Continued) . 



Figure 19. 200 mb geopotential heights at selected times for Forecast 3 
NEGATIVE run. Contour Interval is 100 gpm. Zero contour omitted. 
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Figure 19. (Continued) . 
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Figure 20. 200 mb geopotential heights at selected times for Ensemble 
Average NEGATIVE run. Contour Interval is 100 gpm. Zero contour 
omitted. 
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Figure 20. (Continued). 
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OOZ, 10 Octooer 1994: The ridges and troughs in all three 

NEGATIVE runs were very similar to those in the POSI TIVE runs (Figures 

12a, 13a, 14a) . The F3 NEGATIVE run was slightly different in the central 

Pacific where t here was a weak t rough compared to a closed low in the 

same area in F3 POSITIVE run (Figure 14a). 

OOZ, 12 October 1994: A ridge had developed in t he western Pacific, 

the shallow extended trough filled t he central Pacific, and a ridge overlay 

western Canada. The three NEGATIVE forecasts had a similar trough-ridge 

pattern wh ich was roughly sim ilar to that in t he correspond ing POSITIVE 

OOZ, 14 October 1994: All three NEGATIVE runs had a trough in the 

mid-Pacific, as in the POSITIVE runs. The troughs in the F1 POSITIVE and 

F1 NEGATIVE runs were more spread out than in the correspond ing F2 and 

F3 runs . 

OOZ, 16 October 1994: The differences between the F1, F2, and F3 

NEGATIVE runs were more noticeab le. F1 had a well defined ridge t ilted 

southwest to northeast in the west ern Pacific, a sha rp t rough in t he central 

Pacific, and a broad ridge over western North America. F2 and F3 also had 

western Pac ific ridges but with tilts oppos ite to that in F1 . 

After 14 October, these ridge-trough patterns in t he three NEGATIVE 

runs became increasingly different from each other, primari ly due to the 
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phase differences. For example, on 22 October 1994, the ridge that was 

ov er the northeastern Pacific - western North America region on 16 October 

in all three runs was about 15 degrees of longitude f urther to the east 

(west) in the Fl and F3 (F2) runs on 22 October. By the end of the runs on 

2 November, all three NEGATIVE runs had developed some type of ridQ8 in 

the central Pacific, a tough in the eastern Pacif ic, and a ridge over western 

North America 

5. Standard deviation of the NEGATIVE Runs 

Figure 21 summarizes the results shown in Figures 17-19 by showing 

the standnrd deviation 01 the NEGATIVE runs with respect to their ensemble 

average for the NPNA reg ion (20N-70N. 120E-80W). As expected f rom the 

results shown in Figures 17-20, the standard devi(ltion of the NEGATIVE 

runs was small through 14 October increased sharply during 16-20 October 

<lnd then leveled off at about 130 gpm. These resu lts are very similar to the 

standard deviation of the POSITIVE runs (Figure 16). 

6. Summary of NEGATIVE ensemble averages 

In summary, the three NEGATIVE runs showed similar initia l patterns 

of zon(ll and ridge-trough features across the NPNA region. The differences 

between Hle individu<J1 NEGATIVE runs were small initial ly, grew during 14-

20 October and then leve led off or even declined during 20 October 2 

November . Comparisons of the individual resu lts (Figures 17-19) and the 
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Figure 21. Standard deviation of the NEGATIVE runs in the NPNA region 
(20N 70N, 120E - BOW). 

64 



ensemble aver(lge results (Figure 20) show that the ensemble i:lverage 

genera lly give::; a good represe nta tion of the major NPNA leatures. The 

same is tr ue to r other regions of the world (not shown). Comparisons of the 

POSITiVE and NEGATIVE runs SllOW that the results were initia lly similar but 

developed quite differently after a few days. These differences are 

d iscussed fu rthe r later in this chapter. 

7. Conclusion for prerequisite 4 

Ensemble averaging the t hree forecast POSITIVE and NEGATIVE funs 

produced results that were very similar to the ind iv idual runs until about 16 

October 1994. From then on, the ensemble averaging procedure averaged 

features that were, at t imes, out of phase or that existed in only one or two 

of the runs. Howeve r, the ensemble average stil l contained the common 

major featu res of the individual runs, although ill a somewhat weakened 

form. The standard deviations of the POSITIVE and NEGATIVE runs in the 

NPNA region show that the F1, F2, <:Ind F3 runs diverged f rom each other, 

as expected for forecasts starting from quite different in t ial condition::; . 

However, the::;e standard deviations leveled off at moderate levels by the 

middle of the ensemble <lveraging period. In addition, the standard 

deviations tended to be several t imes sma ller than the dillerem:es between 

th e POSITIVE and NEGATIVE run::; in t he NPNA region, as will be shown in 
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the following section. Thus, we concluded that the ensemble averaged 

fie lds were useful represen tations of the ind ividui'll forecast fields. 

The POS ITIVE ensemble i'lveraged 200 mb height f ie lds represent, in 

part, the effects of the model's representation of Seth on the upper

troposphere in the NPNA region. However, as d iscussed earlier in t his 

chapter, Seth evolved differently in the three POSITIVE run s, with the 

simulation of Seth being least realist ic in the F1 POSITIVE run and most 

realistic in the F3 POSITIVE run. This suggests that the ensemble average 

representatio n of Seth's remote effects may be less real istic than the 

effects derived from the most realistic run, F3 POSITIVE . This issue is 

discussed further in Chapter IV. However, the overall similarity of the 

ensemble average to the individual results led us to use th e ensemb le 

average results when estimating t he teleconnections due to Seth. The 

remaining results, which examine the hypotheses described in Chapter I, w ill 

primarily be derived from t he ensembl e averaged forecasts . 

F. HYPOTHESIS 1 - TELECONNECTIONS ASSOCIATED WITH SETH 

Comparison of Figures 12-14 w ith Figures 17-19, or of Figure 15 with 

Figure 21, shows that the 200 mb height fields for the POSITI VE and 

NEGATIVE runs became increasing ly different as the forecast time 

increased . These differences represent the teleconnection impacts of Seth . 

They are more clearly seen by calcu lating the ensemble average 200 mb 
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height response, which is the POSITIVE ensemble average height for a 

particula r t ime minus tile NEGATIVE ensemble average height for thcH time . 

As in the previous section, <Jnd as in Wo1l11993) and Springer (1994), our 

ana lysis at the model's response to Seth is focused on the NPNA region 

1 . Ensemble average djfferences in 200 mb geopotential height 

Figure 22 shows tile POSITIVE - NEGATIVE ensemble average 

differences in the 200 mb height f ields . We tracked the evolution of the 

height differences in Figure 22 by identify ing the major difference features, 

labeling them with the symbols Hand L !for highs and lo ws), and 

numbering them acco rding to the order in which they first appeared . When 

a m ajo r difference fe ature split into two features, or when two major 

difference features merged, the two pinent, o r di.llJghter, features were 

labeled "a" and "b" (e.g. , L 1 a and L 1 b). The five major heigh t d ifference 

fe atures of interest in Figure 22 are li sted below in the orde r of the ir 

appearance. 

Hl, t he first major positive difference, which appeared just south of 

southern Japan on 10 October 19941Figure 22a); 

L 1, the f irst major negative difference, which appeared southeast at 

Kamch atka on 11 October 1994 (cl. Figure 22b); 

H2, tl,e second major pos itive difference, appeared south of Alaska 

on 11 October 1994 (ct. Figure 22b); 
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Figure 22. EA differences (POSI TIVE - NEGATIVE) in he igh ts at selected 
timcs. Red (blue) contours repr esent pos it ive (negat ive) height di llerences; 
contour intcrval is 50 gpm. Zero contour omitted. 





Figure 22. (Continued!. 
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L2, the second major negative difference, which appeared as a very 

weak low just off the west coast of North America on 13 October 

1994 (cf. Figure 22c, ell; 

H3, the third major positive difference, appeared over central North 

America on 13 October 1994 let. Figure 22c). 

Hl formed south of Japan slightly, about 775 km northeast of where 

the ensemble average POSITIVE runs positioned Seth. Hl then 

strengthened and expanded to the east-northeast (Figure 22a-e) until 20 

Octoher 1994, when it cont racted to a central location over southern Japan 

where it rema ined for the rest of its existence (Figure 22f-h). 

Soon after Hl formed , L 1 a formed to the east-northeast of H 1 (Figure 

22b) and moved to the east-northeast, where it was absorbed by L 1 b. 

H2 formed to the east-northeast of II a and south of Alaska on 1 1 

Octo her 1994 iFigurf! 22h). Throughout its existence, H2 stayed in the 

general northeast Pacific-southern Alilska region where its strength 

increased, reaching over 150 gprn during 14-22 October 1994 (Figure 22c 

hi . 

l2 formed on 13 October 1994 off the west coast of North America 

but was too weak to appear in Figure 20 until 16 October 1994 lFigu re 22 

dl. It moved slowly northward and eastward into North America, reaching 
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the Great Lakes reg ion by 2 November. It reached a peak strength of (-) 

400 gprn on aoz, 28 October 1994 (Figure 22j). 

H3 first appeared on 13 October 1994 over central North America (ef. 

Fig ure 22cl. It broadened and slowly moved to t he east and slightly to t he 

south (Figu re 22c-l). H3 reached a maximum strength of over 200 gpm on 

t he 19 October 1994 (not shown). On 30 October 1994, H3 merged with a 

higher-latitude height difference and formed a ridge over eastern North 

America. 

L 1 b, the large, weak low Just east of the Sea of Okhotsk on 14 

October 1994 (Figure 22c), grew rapidly and eventually absorbed L 1 aLl b 

moved east-southeastward into the central North Pacific during 17 24 

October 1994 (Figure 22e-h). 

II c formed over Kamchatka on about 28 October 1994 (Figure 22j). 

IT then deepened rapidly and moved southward into the centra l North 

Pacific. By 29 October 1994, it had absorbed L 1 b and deepened to abou t 

(·)250 gpm (Figure 22k). By 2 NovembN, it had deepened to (-)350 gpm 

(Figure 221). 

2. Conclusion for hypothesis 1 

The strong ann persistent height differences shown in Figure 22 

represent a significant teleconnection response to Seth, which supports 

Hypothesis 2. 
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The pattern of highs and lows shown in Figure 22 are also seen in the 

corresponding ensemble averaged SLP difference fields Inot shown}. This 

indicates that the response to Seth is equivalent barotropic, as found in 

many other teleconnections studies (Tribbia 1991, Woll 1993, Springer 

1994) . The overall 200 mb height response pattern (Figure 22) is also 

similar to the northern summer teleconn ection response to tropical western 

Pacif ic heat ing anomalies fo und by Nitta (1987) IFigure 6). 

Springer 11994) found that the 200 mb height response to typhoon 

Robyn first developed in the western part of the NPNA region, along the 

East Asian jet. He also found that the area in which the largest height 

differences occurred was located progressively farther to the east, and that 

eastward propagation speeds of the site at which new height differences 

formed. and of the area in which the largest he ight differences occu rred , 

were much fas ter t han the eastward propagat ion speeds of the height 

differences themselves. This suggested that the eastward motion of the 

te leconnect ion response was dominated by Rossby wave group propagation, 

occurring at relatively fast eastward speeds. The individual height 

differences moved at a much slower eastward phase speed. Figure 22 

shows simi lar group and phase propagation results for the response to Seth. 

Figure 22 also shows that most of the growth in the ind ividual height 

differences occurred well after the demise of Seth and fa r from Seth. 
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Springer (1994) had a similar findi ng. This suggests that the growth of the 

individual height differences was not a simple and direct respo nse to the 

heating differences associated with Seth and/or to simple RosslJy wave 

energy propagation. 

G. HYPOTHESIS 2 - THE JET'S ROLE IN TELECONNECTIONS 

Hypothes is 2 proposes that the development of the teleconnection 

response is strongly influenced by the waveguiding and amplification effects 

of til e mid latitude jet . Th is can be expressed in terms of the following 

components : 

the teleconnection response , defined by the 200 rnb height 

differences, has a characteristic relationship to the jet. 

the jet acts as a wavegu ide for QG wave energy propagation ; 

and 

areas of potential BTl associated with the jet may be important 

wave energy sources (Wall, 1993) . 

The jets were identified from the ensemble averaged 200 mb U and V 

winds from the POSITIVE runs. T he jet axes were def ined as the regions in 

which the tota l wind speed was greater than or equal to 30 m/s. We used 

the POSITJVE runs to ident ify the jets because these rUrlS reflect the 

conditions under which tile response to Seth developed . 
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200 MB Height differences and the jets 

Figure 23 is the same as Figure 22 except that t he 200 mb jet axes 

have been superimposed over the ensemble ave rage POSIT IVE - NEGATIVE 

200 mb height differences. 

The first positive he ight difference, Hl, appeared on 9 October 1994 

south of Japan and the east Asian jet (Figure 23a). By 10 October 1994, 

H1 and the jet had shifted to the north, with the jet occurring along the 

north side of Hl . 

By 14 October 1994, the jet had strengthened, w ith H1 j ust south of 

the jet and L 1 b at a similar longitude and just north of the jet. H2 was 

centered just south of the jet in the central North Pacific. From east Asia 

eastward to the east coast of North America, the jets arced northward, with 

large height differences on or just south of the arcs. 

This pattern persisted through 18 October 1994 (Figure 23d-e), but 

with an intensification of the negative height differences which tended to be 

located on the north s ides of the jets (e.g., over the North Pacific on 18 

October 1994, Figu re 23e). 

This pattern of positive differences on the south side of the Jet and 

negative di fferences on the north side was also seen by Wall (1993) and 

Springer (1994). However, this pattern is general ly less c lear in our study 

after 18 October 1994 (Figure 23f-l), except for the leading edge (i.e., the 
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Figure 23. (Continued). 
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eastern portion) of the response . This response is evident over North 

America on 20-29 October 1994 (Figure 23f-j). 

2. The 200 mb wave energy response 

In this section, we analY7e the quasi-geostrophic (OG) wave activity 

flux vectors (Plumb 1985) associaterJ with the 200 mb height re.<;ponse to 

Seth. Figure 24 shows the wave activity flux vectors calculated from the 

ensemble average 200 mb height differences in Figure 23 with jet locations 

superimposed. 

The followi ng discussion is based on Figure 24. 

10 October 1994: H 1 and L 1 a were still weak, so the wave ac tivity 

flux vectors were also weak. 

12 October 1994: The flux vectors were still re latively weak, with the 

strongest ones near Hl where t hey were directed eastward and roughly 

aligned with the east Asian jet. The divergence of these vectors indicated a 

wave energy source near H1. The vectors near H2 in the northeast Pacific 

also pointed eastward and parHllel to the jet in that region . 

14 October 1994: The strongest vectors were roughly al igned with 

the loca l jets. Wave energy sources were indicated by divergent vectors 

over th e Cf)rltrai North Pacific, the northeast Pacif ic along ttle jet, and over 

the western and central US nea r t he jet. 
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Figure 24. EA differences (POSIT IVE - NEGATIVEI in QG wave act ivity 
f luxes at selected t imes. So lid th ick lines show jet axes ( > 30 m /sl. 
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Figure 24 . (Continued) 
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16 October 1994: The magnitude of the vectors increased 

substantially but they were still roughly para))!'!) to the jets. There we re 

large sources just north of the east Asian jet and near the jet over the North 

Pacific. 

18-24 October 1994' The pattern seen on 16 October 1994 

persisted with a general eastward propagation of the strongest source 

regions (e.g., to the northeast Pacific on 24 October 1994). 

26-28 October 1994: The vector patterns were smal ler scale but 

with the major energy sources still associated with the jets. 

30 October 1994 - 2 Novemher 1994: The vectors showed relatively 

large scale patterns with sources associated with the jets. On 2 November 

, 994, there was a larg e source just downstream of the east Asian-North 

Pacific jet, with large po leward and equatorward components 01 energy 

pro pagation in the exit of this jet and along the arcing jet over the northeast 

Pac ifi c. 

In summary, the wave activity flux vectors indicate the energy 

associated with the response to Seth propagated approximately along the 

mid latitude jets . The genera l vic inity of the jets were important sources of 

energy for the response. Simi lar results were found by Wall (1993) and 

Springer (1994). The growth of the height responses through time, with the 

areas of growth propagating eastward fastf!f than the height responses 
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themselves (see the discussion of Figure 22), indicates thaf the energy 

propagation (see the flux vectors, Figure 24) was faster than the phase 

propagation. 

3. Barotropic instability 

The association of the wave energy sources wi t h the jets (F igure 25) 

suggests that BTl along the jet flanks may playa role in providing energy to 

the 200 mb height response (Figure 22) . Thus, we calculated t he Rayleigh

Kuo (Kuo 1949) condition for barotropic instabilitY for the ensemble average 

POSITIVE - NEGATIVE 200 mb wi nd (see Chapter Ii) . Figu re 25 shows the 

regions where this condit ion is met (i.e., ~ - Uyy = 0 ). 

The areas whe re the potential for barotropic instability existed were 

generally along the jet flanks (e .g., Figure 23a-b). However, these regions 

were very extensive, so that it is d ifficult to identify a clear and simple 

association of the energy source regions (Figure 4) w ith barotropically 

unstable regio ns . That is because the sources w ere always in or near 

regions of potential instabil ity. But since these regions were so common 

and extensive, t hey were equally well associated with energy sink regions 

and with neutra l regions. 

4. Conclusion tor hypothesis 2 

The wave energy fluxes indicate that the response was gu ided by 

the jets and rece ived energy from the jets through barotrop ic instability 
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Figure 25. (Continued). 





mechanisms. However, a second test. the Rayleigh-Kuo condition for 

barotropic instability analyses, gave no clear support or challenge to this 

hypothesis. Thus, this hypOtt18Sis is partially supported by these results. 

The instability analyses f rom Wall (1993) and Springer ( '994) were also 

somewhat equivocal, but less so than for our resu lts . This equivocation 

probably reflect:> the weakness of the Rayleigh-Kuo condition as a 

diagnostic tool, especially wilen applied to rea listically wavy flows such as 

H. HYPOTHESIS 3 - THE ROLE OF ROSSBY WAVE SOURCES IN 

TElECONNECTIONS 

In this section, we investigate the possibility that Rossby wave 

sources contributed to the teleconnections caused by Seth. 

The Rossby wave source 

The ensemble average POSITIVE · NEGATIVE 200 mb divergence field 

IFigure 26) shows the upper- leve l divergence difference that resulted from 

the presence and location of SeHl in the POSITIVE runs. This divp.rgence 

difference is also a fCictor in prodUCing the POSITIVE - NEGATIVE 

differences in the Rossby wave sources (Figure 27). The 200 mb height 

responses to Seth over the western North Pacific are shown in Figure 28. 

Comparisons of Figures 26-28 give an indication of how Seth and its 

associated Rossby wave sources may have been related to the in itiation of 

84 





Figure 26 . EA diffe rences (POSITIVE - NEGATIVE) in 200 rnb divergence at 
selected t i me~. Red (b lue) contours re present pos it ive (negative ) d ivergence 
differences; contou r interva l is 5 x ,O-R 5 -1 
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Figure 27. EA differences (POSITIVE - NEGATIVE) in 200 mb Aossby wave 
sources at selected times. Red (blue) contours represent posit ive (negat ive) 
source differences; minimum contour is .05 x 1 D-H S-2; contour interval is 
.05 x 10-8 S-2. 
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Figure 28. EA differences (POS ITIVE - NEGATIVE) in heinhts at selected 
t imes to correspond with the times shown in subsequent plots. Red (b lue) 
conto urs represent positive Inegative) height differences; contou r interval is 
50 gpm. Zero contour om itted . 
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the 200 mb height response. The following descript ion of these fields refers 

to these t hree figu res . 

12Z. 9 October 1994: Seth was just east of Taiwan, the re was a 

negative source difference region east and north of Taiwan, and a wea k 

positive height response just no rtheast of Taiwan (too weak to show up in 

Figure 28al. 

aoz, 10 October 1994: Seth was located east and north of Taiwan, 

there was a negative source difference region just no rth of that whic t) 

extended northward to Korea and southern Japan. The height response 

was collocated with the negative sou rce. 

12Z, , 0 Octob(;!r 1994: Seth was located between Ta iwan and 

Japan, with t he negative source difference and the height response at and 

to the north of th is area . 

aoz, 11 October 1994 - DDZ, 13 October 1994: Sim ilar relationships 

between the locations of Seth, the nega t ive Rossby wave source difference, 

and the tleight response pers isted thro ugh this period, as Seth t ravelled 

north and northeastward over the Sea of Japan. 

TIle positive height difference corresponds to a negative vortic ity 

difference which is consistent w ith a negative Rossby wave source 

difference. Thus, the collocation of patterns in Figures 26-28 suggest that 

t he height response (figures 22 and 28) may have been initiated by the 
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Rossby wave source mechanism. That is, the upper- level divergent w ind 

associated with the occurrence of Seth in the POSITIVE runs may have 

generated a Rossby wave response through the advection of abso lute 

vorticity by the divergent wind and through vortex stretching. 

2. The Rossby wave source components 

To examine this possibility f urther, we calculated the ensemb le 

average POSITIVE - NEGATIVE differences in th is advection term (ADVDIV, 

Figure 29) and the stretching term (F igure 301. The corresponding 

differences in the divergent wind, with jets overlaid, are shown in Figure 31. 

These w ind differences and jets give a rough indication of the areas in 

which the advection term was strong. T he advection term (Figure 29) and 

stretch ing term (Figure 30) had the same magn itude in the general vicinity 

of Seth (Figure 26). But the stretching term was generally about twice as 

large in the area of the negative source (Figure 27) previously identified w ith 

the initiation of the height response near southern J apan (Figure 28). This 

suggests that the major initiation was caused by the vortex stretching 

associated directly with Seth, but that the advection by the divergent wind 

was also important in th is initiation. 
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Figure 29. EA differences (POSITIVE - NEGATIVE) in 200 mb Rossby wave 
source ADVDIV component at se lected t imes. Red (blue) contours 
represent positive (negative) ADVDIV differences; minimum contour is .05 
x 10-ij S-2; contour interva l is .05 x 10-9 S -2, 
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Figure 30. EA differences WOSITIVE - NEGATIVE) in 200 mb Rossby wave 
source stretching component ~t selected times. Red (blue) contours 
represent positive (negative) st retching di fferences ; minimum contour is .05 
x 10-8 s' '' ; contour interval is .05 x 10.8 S-2, 
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Figure 31. EA differences (POSITIVE NEGATIVE) in 200 mb divergent 
w inds. Solid th ick lines show jet axes (> 30 m/s), 
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3 . Comparison of the Rossby wave sources for Yuri, Robyn and 

Seth 

The Rossby W<lve source results for Set h show that th is wave 

generation process played a role very similar to that seen in the 

development of t he wave responses to Yuri and Robyn (Springer 1994). 

Comparisons between t he Rossby wave source differences can be made by 

referring to Springer (1994). The following is a list of figure numbers ttl''It 

re fer to the Rossby wave source and 200 mb height difference figures for 

Yuri, Robyn, and Seth. 

_ .Spinger (1994) _ 

Vuri Robyn Seth 
Figure numbers for 
Rossby wave source: 36 42 26 

Figure numbers for 
200 mb height differences: 37 43 25 

For all three storms, negative source difference fea tu res occurred 

near and especially to the north of the storm, along the south f lank of the 

east Asian jet. The initial 200 mh height d iffere nces were positive and 

deve loped over t hese negative source differences. The sign of this initia l 

wave response was consistent with the sign of the source difference. That 

is, a negative source corresponded to a height response with negative 

vorticity. This suggests that the phasing of the wave response w"s 

governed, at least initially, by the sign of S. In turn, the sign of S was 
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determined by the sign of the divergent wind and the sign of t he relative 

vortici ty gradient along the jet. 

Some differences hetween Seth and Yuri/Robyn are noteworthy. For 

Yur i and Robyn, the advection term was the la rger t erm in the Rossby wave 

sou rce, while in Seth the vortex stretching te rm was la rger . Thf! Yuri and 

Robyn Rossby wave sources were stronge r and better defined than for Seth. 

4. Conclusion for hypothesis 3 

The association of a negative Rossby wave source with the initial 

posit ive height response is cons istent with the wave response to Seth being 

initiated by the advection and stretching processes. T hus , hypothesis 3 is 

supported by our resu lts. 
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IV. CONCLUSIONS 

A. SUMMARY 

The purpose of our study was to examine the remote extra tropical 

response to a single western Pacific typhoon. We fol lowed the methods 

used in Wall (1993) and Springer (1994), using the NOGA PS globa l data 

assim ilation. with tropical cyclone bogusing, and the NOGAPS numerical 

weather pred iction mode l to simulate the atmosphere with and without 

typhoon Seth. To ensure the validity and applicabili ty of our results fo r 

Seth. we applied th e four prerequ isites (see the beginn ing of Chapter III) and 

three hypotheses (see the end of Chapter I) used in Wal l (1993) for typhoon 

Yuri and in Springer (1994) fo r typhoon Robyn . 

The prerequ isite tests gave the following results. 

Prerequisite 1: The tro pic al cyclone bog using procedures had a large 

impact on the m odel' s init ial cond itions only near the in itia l location of Seth, 

with Seth being clearly present in the POSITIVE runs and effectively 

eliminated from the NEGATIVE runs . 

Prereq uis ite 2: The forecast model maintained a reasonable 

representation of Seth in al l the POSITIVE runs. The POSITIVE Forecast 1 

ru n was the least successful in simulating Seth, while the POSITIVE 

Forecast 3 run was most sllccessfu l. In all the NEGATIVE ru ns, Seth was 

absent. 
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Prerequisite 3: The model runs, especially the POSITlVE runs, gave a 

good representation of the monthly mean 200 mb circulation fo r October 

1994. 

Prerequisite 4: For most of the ensemble averaging period, the large

scale, low-f requency featu res of the 200 mb circu lation were similar in all 

the POSITIVE runs. The same was true for all the NEGATIVE ru ns. Thus, 

the ensemble averaging process gave a good representation of the individual 

These results indicat e that the data assimilation and model fields 

satisfied the prerequisites. The tests of the hypotheses gave the following 

res ults. 

Hypothes is 1: The mode l's 200 mb he ight responses showed that 

Seth initiated a strong teleconnection ac ross the NPNA reg ion. These 

responses were strong, persisted for more than a week, and showed 

distinct Rossby wave tra in characteristics, wi th eastward group ve loci ties 

exceed ing relat ively slow eastward phase velocities. 

Hypothesis 2: The init iation and development of the teleconnection 

respo nse was strongly influenced by the interactions of Seth, and the wave 

response to Seth, with the east Asian - North Pacific jet. The jet acted as a 

guide for the wave energy . Areas of barotropic instability along the jet may 

have provided energy to the wave response . Thus, the jet appears to have 
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guided and amplified tlle response to Seth . 

Hypothesis 3: The wave response was apparently initiated by the 

induction of Rossby waves as divergent flow f rom Seth crossed the jet's 

region of high abso lute vorticity gradient . 

These results g ive substantial support for the three hypotheses. 

8 . COMPARISONS WITH OBSERVED ANOMALIES 

The model responses to Seth are very s imil ar to those from 

observational stunies (e.g .. Harr ami Elsberry 1995. Nitta 1987, and Kousky 

1994, which are represented by Figures 1, 6, and 32, respectively, in this 

study) . Comparisons of the model's 200 mb height response to Seth (e .g., 

Figure 22h, k) and the observed 200 mb streamfuoction anomaly field for 

October 1994 (Figu re 32) show a number of similarities in the NPNA region. 

In particular, both the model response and the ohserved anoma lies OIre 

negative over much of China, positive over northeastern Asia, negative over 

the central North Pacific, positive over the northeastern Pacific, negative 

ove r western North Amer ica, and pos itive over eastern North America. This 

suggests that the telecrmnect ion mechanisms represented by the mode l 

response to Seth may have been important in the rea l atmosphere during 

October 1994. 
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Figure 32. Anomalous 200 mb stream function for October 1994. Contour 
interval is 5 x 10 6 m 2 S· l . Negative (positive) values are indicated by dashed 
(solid) lines and the zero line is indicated by the heavy solid li ne. Positive 
(negative) anomalies correspond to positive (negative) geopotentia l height 
anomalies in the northern hemisphere and to negative (positive) height 
anomalies in the southern hemisphere. (from Kousky 1994). 
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C. IMPLICATIONS FOR EXTENDED-RANGE FORECASTING 

This stuoy, along w ith the Wall (1993) and Springer (1994) 5tudies, 

indica tes that strong interactions may occur hetween tropical cyclones over 

the western north Pacific and the east Asian - North Pacific jet. These 

inte ractions may lead to strong and persistent downstream impacts over the 

NPNA region. These impacts include significant alterations in the east Asian 

- North Pacific Jet itself and in the jet f low farther to the east. especially in 

the NPNA region. Since the jets act as the steering flow for m idl atitude 

synoptic weather systems, it appears that trop ical cyclones may have a 

significant impact on midlatitudc synoptic weather far from the t ropical 

storm's locat ion. Thus, <I better understanding of how tropical cyclones 

interact w ith jets , llnd wrlich tropical cyclone and jet situations are most 

like ly to lead to rem ote impacts, could help improve extended-range 

mid latitude weather forecasts. 

To illustrate these midl<ltitude wellther implications, Figure 33 shows 

schematically the ensemble average east Asian - North Pacific jet ne<lr the 

ends of the POSITIVE and NEGATIVE runs. Note the relatively zonal jet that 

developed over the NPNA reg ion when Seth W<lS present (Figure 33a) and 

the much more diffluent flow over the eastern North Pacific and North 

AmeriClln region when Seth was absent (Figure 33b). These two different 

jet pattems represent distinctly different synoptic weather patterns, with the 
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Figure 33 . Schematic of the ensemble average 200 mb jet after about 2.5 
weeks of the: (a) POSITIVE runs , (b) NEGATIVE runs. 
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differences bf:!ing due to the occurrence of Seth in the trOprcal western 

Pac ific two to th ree weeks ea rli er. 

D. RECOMMENDATIONS FOR FUTURE WORK 

1. Further analysis of Seth results 

Prerequ isite 2 required t hClt the model accurate ly forecast the typhoon 

trac k Clnd intens ity . This stu dy evaluated the mode ls typhoon intensity by 

converting the JTWC Maximum Sustained Surfa ce Winds to estimated 

minimum sea lev el pressure using the Alkinson and Holliday (1997) 

equivalent minimum SLP method. A more accurate mf:!thod m ight in volve 

using t he radius of maximum wi nd s, as is done operationally at JTWC. 

The differences between the individual POSITIVE runs and hetween 

tr18 ind ividua l NEGATIVE ru ns made the usc of the ensemble average 

procedu re somewhat p roblematic . In parti cular, the ensemble average 

res ponse may give a picture of the model response that is too weak or that 

distorts some aspects of the wave initiation, gu id ing, or ampl ifi cation. 

These possibilit ies led us to conduct a preliminary invest ig at ion o f the 

responses found in individual model run differences. For th is, we chose the 

F3 POSITIVE - NEGATIVE run difference, si nce the F3 POSITIVE gave the 

best simulat ion of Seth. To produce a relative ly smooth response from 

whiGh to caiGulate derivative quant ities (e.g., the Rossby wave source, the 

wave activity flux), we t ime averaged t he F3 height response to produce a 
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48-hour running time mean response (Figure 34) . Thus, for example, the 

response at OOZ, 22 October 1994 is the average of the responses at: OOZ, 

21 October; 12Z, 21 October; OOZ, 22 October; 12Z 22 October; OOZ, 23 

October; and 12Z, 23 October. This time averaging makes the response in 

Figure 34 slightly smoother but has no effect on the basic pattern of strong 

and persistent positive and negative height responses across the NPNA 

region. 

These responses are very similar to the ensemble average responses 

(compare Figures 22 and 34) and to the resu lts in previous studies (e.g., 

Nitta 1987, Kousky 1994, Ma lsick 1995). However, t here are some 

significa n t d ifferences. In part icular, the F3 responses are much larger and 

the overall arci ng and zonal patterns are more pronounced. For example, 

during 18 October-2 November (Figure 34e-I) , the F3 response shows a 

m uch more c lear arcing pattern over the NPNA reg ion. This pattern is 

especially distinct on 20 October (Figure 34f) and indicates a strong wave 

activity flux arcing out of the tropics and into the extratropics. These time 

averaged respo nses suggest that the identification of the teleconnection 

mechanisms involved in the response to Seth may be aided by a further 

analysis of the differences between individua l pairs of POSIT IVE and 

NEGATIVE runs. 

In addition, more analysis of the significance of the mode l responses 
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Figure 34 . Differences in 200 rnb geopotential heigh ts (F3 POS ITI VE ru n 
F3 NEGATiVE run). Fields shown <Ire the 48-how running t ime mean 
diffe ren ces. Contou r Interval is 50 gpm. Zero contour om itted . 
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Figure 34. (Continued). 
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wou ld be helpful. Th is might include an est imate of the model's 

characteristic variability in the NPNA region during October, and a 

comparison of that va riability with the magnitude and locat ion of the major 

response features. 

The model f ields should also be further ver ified by comparisons w ith 

analyzed fields. This would include applyinrJ the diagnostic tools, such as 

the wave activity flux and the Rossby wave source calcu lations, to the 

October 1994 analyzed fields (e.g., to the 200 mh height anomalies). These 

comparisons would help answer questions such as: Are the POSITIVE runs 

more accurate than the NEGATIVE runs? How do the inaccuracies of both 

sets of runs compare witt) the response patterns? How relevant is th e 

mode l' s response to what actually happened in October 1994 or what might 

be expected f rom cases simila r to Seth 's? 

2. Additional case studies 

Several key features of the teleconnection mechanisms iden t ilied in 

this study occur on relat ively small space sca les (e.g., the divergent outflow 

from the typhoon, the init iation of the Rossby wave response, some aspects 

of the wave amplification and wave guiding) . Thus , it wo uld be helpfu l to 

use a regional forecast mode l in tandem with NOGAPS . The Navy 

Operational Regional Atmospheric Prediction System (NORAPS). o r it's 

successor, the Coupled Ocean Atmospheric Mesoscale Prediction System 
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(COAMPS)' are two such regional models that might be linked to NOGAPS. 

For example, this linkage might occur by using NOGAPS forecast fi elds as 

the initial cond itions for NORAPS runs . 

This study and those by Woll (1993) and Springer (1994) used sim ilar 

procedures and models. Additional case studies using different models or 

b lends of models would be useful. Some possible options are listed be low. 

Different operational data assimilation and forecast models have 

different characteristics, such as different biases and systematic errors that 

can become especially s ign if icant during extended-ranQe fo recasts . Thus, it 

would be useful to rerun the Yuri, Robyn, and/or Seth POSITIVE and 

NEGATIVE forecasts using different models and compare the results with 

those from Woll (1993), Springer (1994), and/or this study . This 

comparison would help c larify the sensitivity of t he results to the model. 

Tropical cyclones often occur simultaneously. Thus, it would be 

helpfu l to examine the teleconnect ion response to two or more simultaneous 

tropical cyclones. It would be especially interesting to determine if the 

responses to the different storms interfere, const ructively or destructively, 

with each other. 

Additional case studies should be careful to avoid situations in which 

the model has diff icu lty forecasting the tropical cyclone's intensitY and 

approach toward the jet These two features of the storm, especially the 
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approach. seem to hr. critical in initiating the response to the storm. Thus, a 

useful simulation of the telcconncction response requires that at le<lst this 

initi<ll portion of the storm's development be relatively well forecast. 

E. INTERNET MOVIES 

Computer movies of the teleconnection responses generated by 

typhoons Yuri (Wall 1993), Robyn ISpringer 1994), and Seth (tIlis study) 

can be viewed on the Internet. These movies can be accessed via lile N,lVal 

Postgraduate School home pilg8 cit http://www.met.nps.navy.milf. Under 

tl18 research topics heading, select "Teleconnections" and then follow the 

instructions. 

Readers of this study <He encouraged to ask questions or offer their 

comments by sending e-mail to Professor Tom Murphree <It: 

murphree@osprey.met.nps.navy.mil. 
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