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ABSTRACT

The purpose of this paper is to continue to develop the

social welfare model of Brown and Johnson [ The American

Economic Review , March, 1969, page 119]. We introduce a

normal distribution (\i,o
2

) with mean u, variance a
2 as the

characterization of the risk that additively enters the product

demand function facing the firm. The optional price still

equals the short run marginal operating cost. We observe the

optimal output when the mean or variance of risk increases,

using the least-square method we estimate the linear relation

between the optimal output and mean or variance of risk.

In the second model we introduce the expected monopoly

profit and observe how both the optimal price and output

vary as the mean or variance of risk changes. As the final

step, we compare the results of two kinds of models, and find

that which is the least affected by risk.





TABLE OF CONTENTS

CHAPTER I . THEORY OF THE SOCIAL WELFARE FUNCTION 6

1.1. Introduction to Model of the Social Welfare
Function under Stochastic Demand 6

1.2. The Optimal Decisions under Deterministic Demand 8

1.3. The Optimal Decisions under Stochastic Demand
The Model with E(u) =0 11

1.4. The Model with E(u) = y 24

1.5. Extension of the Model in 1.4 27

CHAPTER II. NUMERICAL COMPUTATIONS AND GRAPHS 37

2.1. The Trend of Output When the Variance of Risk
Increases 37

2.2. The Trend of Output When the Mean of Risk
Increases 42

2.3. Consequence of Section 1.5 under the Linear
Demand Curve and Normal Distribution of Risk 4 5

2.4. Numerical Computations and Graphs 48

CHAPTER III. THEORY OF MAXIMIZATION OF THE EXPECTED PROFIT 52

3.1. The Model of Maximization of the Expected Profit — 52

3.2. The Optimal Point under the Varying of the Mean
and Variance of the Risk 57

CHAPTER IV. CONCLUSION 62

REFERENCES 64

INITIAL DISTRIBUTION LIST 65





CHAPTER I

THEORY OF THE SOCIAL WELFARE FUNCTION

1. 1 Introduction to the Models

When firms are competitive, the quantity of product is

set at an equilibrium point where the price is equal to the

marginal cost for each firm. But in the real world, there

is sometimes only a single firm producing a product or demands

of customers are not in steady state.

There is a respectably large body of economic literature

that presumes to establish a relationship between the polar

market structures of monopoly and pure competition and the

consequent industry performance. Almost all of this literature

considers only the case of a deterministic demand function.

This paper will consider what effect the introduction of a

stochastic demand function will have upon the predicted market

structure-performance correlation. Risk has been introduced

into economic considerations in several ways. The most common

device is to define the decision-makers 1 utility function in

terms of an expected utility hypothesis.

An alternative approach is to ignore the expected utility

hypothesis and treat the stochastic elements as strictly

limited to optimization in terms of operationally defined

economic variables. This latter approach will be followed.





*
Brown and Johnson introduced models of a firm's decision-

making process under uncertainty, and demand has generally

been defined only as a single product. Brown and Johnson

introduced two ways in which the risk enters the demand

function: As an additive random variable; and as a multi-

plicative random variable. We shall choose additive random

variable way since it facilitates analysis of the problem.

We extend the model of Brown and Johnson by introducing risk

when the mean is not equal to zero. Chapter I describes the

models with normal distribution (\i,o
2

) of risk. Chapter II

indicates the trend of the optimal output as the mean or

variance of risk increases. Chapter III introduces another

kind of model, maximization of the expected profit of a firm,

and derives the trend of output and price when the mean or

variance of risk increases . Chapter IV contains the

conclusions

.

We are interested in the social welfare function that we

develop and extend in Chapters I and II. Following Brown

and Johnson we define the social welfare function as the

difference between expected willingness to pay and expected

costs

.

In the model of maximization of the social welfare

function under linear demand, the optimal price will always

"Public Utility Pricing and Output under Risk," by
Gardner Brown, Jr. and M. Bruce Johnson, The American
Economic Review, March 1969, page 119-128.





be constant and lower than, and the optimal output will

generally be higher than, their counterparts in the riskless

model, regardless of the manner in which the risk term enters

the analysis.

In the model of Chapter III, the optimal price and output

are lower or higher than the price and output in the riskless

demand according to its mean and variance of risk.

1.2. Optimal Decisions under Deterministic Demand

Measure of welfare loss due to monopoly is consumer

surplus (shaded area 2*) . The monopoly profit would be

redistributed from the monopolist-producer to consumers by

a shift to competition.

consumer surplus

monopoly profits
or redistributed
economic welfare

Ac(mc)





MR

MC

marginal revenue

marginal cost

optimal output under monopoly operation

optimal price under monopoly operation

optimal output under competitive operation

Under deterministic demand, the aggregate social welfare

is expressed as the shaded area in Figure 1 below and that is

the sum of consumers ' surplus and redistributed economic

welfare. Assumed constant cost supply.

Q: quantity of output

P: unit price of output

C: unit cost of output

the monopoly social welfare

Figure 1





Assume the demand function is linear monotone decreasing

as P increases, and dif ferentiable, Q = X(P) . So the social

welfare function W should be expressed as a function ofo

quantity Q.

P = X"
1
(Q)

W =
o

/ X L
(Q) dQ c Q,

c = b + 3

where b,3 are constant and defined in
Section 1.3

Now we find the optimal price and quantity of output such

that the social welfare is maximized. The first conditions

are

:

8W

9Q~ 3Q,
X' 1

(Q) dQ - c =

= X 1
(QQ ) = c

=>

c = b + 3

Qo
= X(b+3)

10





The second order conditions

3 2wo a -i

^o

Since the function Q is assumed to be linear and negatively

sloping with respect to P, or, inversely, the function P is

linear and downward sloping with Q:

!£ < o
9Q

That is,

8X- 1(Q)

3Q

So that the welfare function is global maximum at (P_ Q) .o o

1.3. The Model with E(u) =

Uncertainty may enter the demand function in this way

D = X(P) + u additive model

P: price of production

X(P): function of P with certainty

u: continuous random variable

f(u): probability density fucntion of u

11





The following properties are attributed to f(u)

/ u f (u) du = ; F(a) = / f (u) du
•oo —oo

+ CO

/ U f (U) dU < «>

Suppose the plant manager arbitrarily chooses values P

and z before he knows the actual value of u. The actual

sales of the product are:

X(P) + u if z _> X(P)+u

S =

If z < X(P)+u

where z: capacity of production

X(P)+u : actual demand

The linear cost function is:

c = b E(S) + $z

b: constant marginal cost of producing output

3: constant cost for one unit of z during the demand
period

E(S'): expected sale quantity

12





The welfare function is composed of the expected value

of willingness to pay, the expected value of variable cost

and the capacity cost known with certainty so the welfare

function is chosen:

W, = E [willingness to pay] - E [average variable cost-sales]

- E [capacity cost].

Now the problem is to find out the optimum point (P*,z*)

of which the manager arbitrarily chooses before he knows an

actual value of u in order to maximize the welfare function W.

If the value of u is negative and large enough in absolute

value, demand will be less than or equal to the capacity of

the plant.

The area under the demand function is consumer's surplus.

The area for consumers ' surplus is equal to total revenue only

in the case of "perfect," or "first degree" price discrimination.

'(-«)

D r *UP
) + U

13





The shaded area is:

z-X(P)
A = / f (u)

X
1
(-u)

/ [X(t)+u]dt + P- [X(P)+u] du

When u takes on large positive values, the actual demand will

be greater than output z, the shaded areas are the consumers 1

surplus and total revenue.

I

M-u)

x'(z-u)
,

B = / f(u)
z-X(P)

X
1
(-u)

/ [X(t)+u]dt + P* [X(P)+u]

- [E(L
1

) + E(L
2 ) ]

du

14





X (z-u)
E(L,) = / f(u) / [X(t)+u-z] dt du

z-X(P) P

E(LO = / f(u) P'[X(P)+u-z] du
z-X(P)

for u > z-X(P)

L
1

: the losses in surplus

L
2

: the losses in revenue

The expected sales is equal to expected demand X(P)+u

over the entire range of random variable u such that

u <_ z-X(P) plus expected demand z over the range u >^ z-X(P)

z-X(P)
E[S] = / [X(P)+u] f(u) du + / z f(u) du

-co z-X(P)

Finally the welfare function is obtained

W
1

= A + B - C (Appendix 1)

Differentiate W.with respect to price and capacity, the

first order conditions for maximization of the welfare

function are

:

15





3W
j^i = PX' (P) F[z-X(P)] - bX' (P) F[z-X(P)] =0

8W -
I f (u) [X ^(z-u) -b] du - B =

92
z-X(P)

(Appendix 1)

and the second order conditions

8
2W

1
8 W—*=- < —— < (Appendix 2)

8P 8z

The simultaneous solutions of the two first-order conditions

indicate that price equals short run marginal operating cost,

and optimal capacity should be shosen such that marginal

capacity cost is equal to the truncated mean of the difference

between the willingness to pay and the actual price for the

marginal disappointed purchaser of the commodity.

The second order conditions are satisfied so the welfare

function is a global maximum at point (P, * z,*) the solutions

of the first order conditions.

16





Appendix 1 u s N(0 / a
2

)

z-X(P) X~ 1
(-u) z-X(P)

A= / f(u) / [X(t)+u]dtdu + / P- [x(P)+u]f (u)du
—oo p —oo

X (-u)
B= / f(u) / [X(t)+u]dtdu + / P* [X(P)+u]f (u)du

z-X(P) P z-X(P)

- E[L
1

] - E[L
2

]

A+B = J* f(u) / [X(t)+u] dtdu

+00

+ / P[X(P)+u]f (u)du - E[L
1

] - E[L
2

]

+ «> * 1
(-u)

A+B = / f(u) /
[X-(t)+u]dtdu + P-X(P)

- E[L
± ] - E[L

2 ]

W, = A+B-C

A + B - b E(S) - £z

17





Defined x-cp, - «pL < o

X»(P) = 3 x <p) = o

8P

Since X(P) is linear and downward sloping

(1)

+0O

/ f(u) /

X 1
(-u)

[X(t)+u] dtdu + P X(P)

(2) - / f(u)
z-X(P)

X x
(z-u)

/ [X(t)+u-z]dt + P[X(P)+u-z]
P

du

(3) -b
Z-X(P) oo

/ [X(P)+u]f (u)du + / z f(u) du
z-X(P)

-3z

W
1

= (1) + (2) + (3)

Assume (1) , (2) , (3) converge to some limit as u -*• °°

9(1)
8P

= / f (u) [-X(P)-u]du + X(P) + PX 1 (P)

= -X(P) + X(P) + PX 1 (P) = P X'(P)

18





9(2)
8P

/ f (u)

z-X(P)
-[X(P)+u-z] + X(P) + u - z + PX' (P) du

+ f(z-X(P))

X 1 (z-z+X(P)

)

[X(t)+z-X(P) ]dt + P[X(P)+z-X(P)-z

"(-X' (P))

/ PX' (P) f (u) du
z-X(P)

9(3)
8P

z-X(P)
/ X*(P)f(u)du+ [X(P)+z-X(P) ]

— CO

•f (z-X(P)) (-X(P)) - zf (z-X(P)) (-X' (P))

z-X(P)
= -b / X' (P) f (u) du

since

:

z-X(P) °°

/ [X(P)+u]f (u)du and / z f(u) du
z-X(P)

are assumed to converge to some value as u -*- °°

19





aw.

8~P~

8(1) . 8 (2) 9 (3)

8P 8P 8P

PX 1 (P) - / P X" (P) f (u) du
z-X(P)

z-X(P)
bX'(P) / f(u) du

_oo

z-X(P) z-X(P)
= P X' (P) / f (u) du - b X' (P) / f (u) du

—OO —00

8W.

w
z-X(P)

= (P - b) X 1 (P) / f (u) du

8(1) =
8z

8(2)
8z / f (u)

z-X(P)

X" 1
(z-u) -1

2>X
1
(z-u) - p

/ (-l)dt + [X(x" 1
(z-u)j+u-z]

du + f(z-X(P)J

X~ 1
(z-z+X(P)j

[X(t)+z-X(P)-z]dt

+ P [X(P)+z-X(P)-z]

P-l
/ f (u) [-X x

(z-u) + P - P] du
z-X(P)

/ X~
1
(z-u) f(u) du

Z-X(P)

20





A12> -
9z

= -b [X(P)+z-X(P)] f(z-X(P))

+ / f (u)du - z f (z-X(P))
z-X(P)

- 3

- b / f (u) du - 3
z-X(P)

9W

¥z~
9(1) + 9(2) + 9(3)
9z 9z 9z

/ X
1
(z-u) f(u) du

z-X(P)
b / f (u) du - 3

z-X(P)

2 W, oo

= f [X
x
(z-u) - b] f (u) du - 3dZ z-X(P)

21





Appendix 2

8W z-X(P)

jp± - / [P - b] X' (P) f (u) du [2]
— 00

The function [2] is converged as u * °° so we can take

derivatives

:

9
2W z-X(P)—t± f X' (P) f (u) du

8P
Z

+ [P - b] X' (P) f (z-X(P)

)

X' (P) < ; if P > b then

D
2W

9P^

8W
•%-* = / [X~

x
(z-u) -b] f (u) du - 3 [3]

32
z-X(P)

The function [3] is also converged when u -* °°

22





231 00

—^1 = / i- [X
1 (z-u)] f(u) du

8z
z z-X(P) dZ

- [x"
1 (z-z+X(P)-b] f(z-X(P)j

oo

/ It [X
_:L

(z-u)] f (u) du
z-X(P)

9Z

- [P-b] f(z-X(P)J

1^ [X
_1

(z-u)] <

the same explanation in section 1-2 if P ^. b then

2

7TT« °

8z

23





1.4. The Model with E(u) = y

In this section we introduce a random variable u with

nonzero mean, probability density function f(u) and finite

variance.

+co a

/ u f (u) du = y , F(a) = / f (u) du

°°
2

/ u f(u) du < °° y >

The sum of the areas A and B now becomes A'+B 1 and equals

A*+B'=A+B+ P

and the expected sales:

z-X(P)
E[S'] = / [X(P)+u] f(u) du + / z f(u) du

z-X(P)

The expression of the welfare function W is almost the

same as W, in the appendix 1

W
2

= A' + B' - bE[S] - 6z

24





w.

+ 00

/ f(u) /

X~ 1
(-u)

[X(t)+u] dtdu + P X(P) + yP

/ f (u)

z-X(P)

X 1
(z-u)

/ [X(t)+u-z]dt + P[X(P)+u-z]

L

du

-b
z-X(P)
/ [X(P)+u]f (u)du + / z f(u)du

z-X(P)
-3z

Take the first derivatives and set equal to zero:

3W,

w
z-X(P)

= (P-b) X' (P) / f (u) du =

3W
? <*, ,

jr-r = / [X
x
(z-u) -b] f (u) du - 3 =

oz
z-X(P)

(appendix 3)

and the second order conditions are the same expression in

appendix 2

d*w z-X(P)—
?f- = f X'(P)f(u)du+ [P-b]X* (P)f (z-X(P) )

if P > b then
3
2
W,

3P'

<

3 W °°—~= S ~ [X~
1
(z-u)) f(u) du - [P-b]f (z-X(P))

3z
2

z-X(P)
dz

P > b
8
2
W,

dz'

< .

The optimum price is independent with mean and variance of risk

25





Appendix 3

+00

(4) = / f(u)

X 1
(-u)

/ [X(t)+u]dtdu + P X(P) + yP

(5) = - / f(u)
z-X(P)

X
1
(z-u)

/ [X(t)+u-z]dt + P[X(P)+u-z] du

(6) = -b
z-X(P)
/ [X(P)+u]f (u)du + / z f(u) du

z-X(P)
- 3z

W
2

= (4) + (5) + (6)

8(4) _
+00

8P
= / f (u) [-X(P)-u]du + PX 1 (P) + X(P) + y

= -X(P) - y + P X 1 (P) + X(P) + y

= P X' (P)

8(5) , 8(6) . . .. - 8(2) , 8(3!and ——- are just the same expressions of r~ and
8P 8P BP 3P

respectively in appendix 1.

So that the first- and second-order conditions for maximiza-

tion of welfare function are the same expressions in appendix 1

and appendix 2.

26





1.5. Extension of the Model in Section 1.4

In the previous section we introduced u as a continuous

random variable with nonzero mean. Now we would like to move

the demand function upward a distance u, and random variable

u becomes random variable v with the probability density

function f (v) but the mean of v is equal to zero, and the

same variance with u.

+
00

/ v f (v) dv =

/ v f(v) dv <

If the value of v is negative, and large enough to make

demand smaller than the capacity z.

The area A" now equals

:

z-X(P)-y
A" / f(v) X

X"
1
(-y-v)

[X(t)+v+n]dt + P-[X(P)+y+v] dv

X(P)+y+V <_ Z

v < z-X(P)-y

27





If v is positive and large enough, demand will be greater

than z and area B" equals:

B" = / f(v)
z-X(P)-y

X"
1
(-y-v)

/
P

[X(t)+y+v]d.t + p[x(P)+y+v] dv

- EI^] - E[L
2

]

X
1
(z-y-v)

E[L,] = / f(v) /
z-X(P)-y P

[X( t)+y+v-z]dtdv

E[L
2

] = / P[X(P)+y+v-z] f(v) dv
z-X(P)- |4

28





>r'(rr-
v
)

A"+B" =
+00

/ f(v) /

X
1
(-y-v)

[X(t)+y+v] dtdv

+ P[X(P)+y] - E[L
1

] - E[L
2 ]

Expected sales equals:

z-X(P)-y
E[S" ] = / [X(P)+y+v]f (v)dv + / z f(v)dv

z-X(P)-y

The welfare function W^ is:

W
3

= A" + B" - b E[S" ] - 3z

29





The first-order conditions for maximization

aw
- • / [P-b] X 1 (P) f (v) dv =

9P z-X(P)-y

8W oo

*-= = / f (v) [X
x
(z-y-v) -b] dv - 3 =

dz z-X(P)-y
Appendix 4

The optimum price is still equal to b, independent of

any constant value that is added to X(P).

The second-order conditions are negative if P > b

82W 8
2W—^ < , —tt=- < Appendix 5

8z 9P^

30





Appendix 4

W
3

= A" + B" - b E[S] - £z

X
1
(-y-v)

(7) = /f(v) /
—oo p

[X(t)+y+v]dtdv + P[X(P)+y]

(8) = - / f (v)

z-X(P)-y

X
1
(z-y-v)

[X(t)+y+v-z] dt

+ P[X(P)+y+v-z] dv

(9) - b
z-X(P)-y
/ [X(P)+y+v] f(v)dv

+ / z f(v) dv
z-X(P)-y

- 3z

W
3

= (7) + (8) + (9)

Assume that all integrals involved in taking derivatives

exist when v increases toward infinity.

31





8(7)
8P

+«
/ f (v) [-X(P)-y-v]dv + X(P) + \i + P X 1 (P)

= P X 1 (P)

8P
/ f (v)

z-X(P)-y
- [X(P)+y+v-z] + X(P) + y + v - z

+ P X' (P)

+ f(z-X(P)-y)

dv +

/
X

1 (z-y-z+X(P)+y)=P
[X(t)+y+z-X(P)-y-z]dt

+ P[X(P)+y+z-X(P)-y-z] (-X 1 (P)

)

/ P X' (P) f (v) dv
z-x(P)-y

3(9) _
dP

= -b
z-X(P)-y
/ X'(P)f(v)dv+ [X(P)+y+z-X(P)-y]

f (z-X(P)-y) (-X' (P)) - zf (z-X(P)-y). (-X- (P))

z-X(P)-y
b / X' (P) f (v) dv
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9W.

9P~
9(7) 9(8) 9(9)
9P 9P 9P

PX' (P) - / PX' (P) f (v) dv
z-X(P)-y

z-X(P)-y
b V X' (P) f (v) dv

— oo

9W z-X(P)-y^ - / [P-b] X' (P) f (v) dv =

9(7)
9z

9(8)
3z

=

/ f (v)

z-X(P)-y

x" 1
(z-y-v)

-1 dt

+ [X(X -""(z-y-v)) + y + v - z] -P dv

+ f (z-X(P)-y)

P-lX ^(z-y-z+X(P)+y)=P
/ [X(t)+y+z-X(P)-y-z]dt

+ P[X(P)+y+z-X(P)-y-z]

= / X 1
(z-y-v) f(v) dv

z-X(P)-y
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|i22-- -b
8z

[X(P)Y+z-^( p )~y] f(z-X(P)-y)

+ / f( v ) dv - z f(z-X(P)-y) - 3

z-X(P)-y

-b / f(v) dv - 3

z-X(P)-y

aw.
9(7) + 9(8) + 3(9)

9z 9z 9z 9z

f X~ 1
(z-y-v)f (v)dv

z-X(P)-y
b / f(v)dv

z-X(P)-y
- 3

9W oo

/ [X
L
(z-y-v) - b] f(v) dv - 3 =

dz z-X(P)-y
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Appendix 5

8W z-X(P)-y
r~- = / [P-b] X' (P) f (v) dv

This integral exists when v increases toward infinity

so we can take the derivative

8
2W z-X(P)-y
5^= / X'(P)f(v)dv+ [P-b] X'(P) f (z-X(P)-y) • (-X 1 (P)

)

8P —oo

z-X(P)-y
/ X'(P)f(v)dv- [P-b] (X'(P))^ f(z-X(P)-y)

•oo

X' (P) < if P > b then

2
8 W

<

3P
2

9W «.

T~ = / [X
X
(z-y-v) -b] f(v) dv - 3dZ z-X(P)-y

Assume this integral exists when v + » then:
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2
d W °°

—5^= / |- [X"
1 (z-y-v) -b] f(v) dv

dz* z-X(P)-y dZ

- [X
_1

(z-y-z+X(P)+y) -b] f(z-X(P)-y)

/ |- [X
_1

(z-y-v) -b] f(v) dv
z-X(P)-y dz

- [P-b] f(z-X(P)-y)

8
2
W.

dz'

< if P > b .
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CHAPTER II

Numerical Computations and Graphs

2.1. The Trend of Output when Variance of Risk Increases

In the general case, demand function has a linear form,

downward sloping.

X(P) = a + cP

a: a constant (> 0)

c: a constant (< 0)

P: unit price of output

b,$: are positive constants and are defined in the
previous section

Under the stochastic demand, we see that the optimum

price always equals b, the short run marginal operating cost,

and is independent of the mean and variance of risk. But

the optimum output z is dependent on the mean and variance of

risk. Now we study the optimal output z when variance of

risk increases.

It is easier when we use the model in Section 1.3,

E[u] =

The optimum point:

P* = b

Z,* such that;
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-1 '

/ [X
L
(z *-u) -b] f(u) du - 3 = (2)

z *-X(b)

u = N(0,a 2
)

2
_ 1 u

f(u) = e

a/27

X(P) = a + cP

~ j v~l/ \
z-u-a

and X (z-u) =

Substituting in (2) :

/ [
^—-^ - b] f(u) du - =

z-a-cb

1 u 2 ID 2

2? , 1
du - a

D f^T° |/17

= D / —L^ - e
2 ^ du - a —i- e

2 a - c£ =0 (3)

where: D = z-a-cb

The function (3) is an implicit function of z and a

3Z fg

8a fz

fa: derivative of (3) with respect to

fz: derivative of (3) with respect to z
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1 D
1 "2 a

e

2

8z /2tT5— =
i
—-2 > appendix 6

/ 11 2 o^ ,
J — e duD

V2tt ff"

u > z-a-cb

9 25— > for any original point (z,a),
do

that means that when a increases then z increases, or a and

z vary in the same direction.
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Appendix 6

Call

,21 u 1 u z

oo —

—

..,*- oo —
i i

-x

f(oz) = D / "7z=r pr e du - / ~zzz" n e du - cp =
D \f2F ° D fW

/ -1- H e
2 a

du = a / -J- Xe
2

dX
D \[2tT D/a \|2tt

1 D 2

1 2 a7
"

= a e
^/"2T

1 u 2
1 D 2

f (o,z) = D / —^— i e
2 ° du - a —— e

2 a
- c3 =

D \[2tT s/ItT

D = z-a-cb

, 3f(g,z)
dZ

1 u 2
1 D 2 1 D 2

= T-i-ie" 2 ^du - D^ie 2 ^ -_£_(-*! (2D) >e
2 ^

D Nf2V
° ^ ° \^f 2o
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1 u :

fz = /
11 2 a— e du

D /2F °

fz > for any D .

fo =
8f (g,z)

8a

= D /
D v/2tT

[- ~r e
a

1 u 2

2 a"
2
"

1 u 2

4 a"
2
"

] du

1 D 2

2 a"
2
"

\T2tT

1 D 2

1 D 2 "2 a"
e

ttT a

-fa -*/
° D VI7

1 u 2 1 v 2
1 17, D

r

°°
1 ~2 X

, ve du - — / —-—— e dX
a D/a ^2T

1 D 2

2 7
\f27

1 D 2

2 7
\[2tT

>

1 D 2

2 a

8z _ -fg _ \|2tt

8a fz
c

/

1 u z

1 1 2 a"
2"

-,— e du
tf!7 °

> o

9z
8a

>
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2.2. The Trend of Output When Mean of Risk
Distribution Increases

When the mean of risk distribution is not equal to

zero, the optimum decisions are the solutions of the first-

order conditions in section 1.4.

p
2
* = b

z~* such that:

00

f(y,z) = / [X~
1
(Z *-u) -b] f(u) du - 3 =

z
2
*-X(b)

u ~ N(y,a 2
) a:constant

1/ U-y .

2

f (u) = - - e

with the same demand function in section 2.1. The implicit

function f(y,z) becomes:

f(y,z) = D J* f(u) du - / u f (u) du - c£ =
D D

, , v D-y , 1 2
v

a ' a 2
v a '

D _
f (y,z) = ——- I -—z: e du - -—^ e - c3 =

D \[2tT \[2tT

D -• z-a-cb
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3z
37

IE
fz

fy
3f (U,z)

9p

where

fz
9f (u,z)

3z

And, as appendix 7 shows:

9z
3y

= 1 > o

So that the optimum output increases the same amount as

the mean of risk distribution increases, or decreases the

same amount of the mean of risk distirbution decreasing.

* /I

A •• cc^S'Adn~t

r
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Appendix 7

£(!!.*> = ^ /
4<^> 2

e du
D \J~27 V17

- c$ =

_1

,

U-y ,

2

f z = _ f —-—- e du + —= (-
a D V27"

a

1
e 2

(

a
}

}

V27

1,D-Uv2
D-y, ,1* 2 l

a '

V 2it

(. 1 2 C^tL) (i)

fz =

1 /U-u.

2

00 -— ( H)

— / e du >

D V27

fz >

fu = -i/
a D V2T

i-e 2
°

}

du +
D1]i/

D ^27 a

1/ U-y x

2

l/D-y x 2

e
"2 (

a » du _ _^ e
"2 (

a ' .
D^

-1/U-U>

2

i / -±- e
2 ° du + S^i. /

a D N/TT ° D \[2^

1 ,U-

a

l(HZii) 2

.

7
° du - 231 A_ e

2 a

4(H3i)2
— / ——— e u du
a D vf2T

15. = l£l = 1 >
8y fz
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2.3. Consequence of Section 1.5

If u is normally distributed with mean y and variance

a 2
, and v is also normally distributed with mean zero and

variance a
2
, the same variance as u.

The demand function is just the same as in the previous

section,

X(P) = a + cP

so the solutions of section 1.4 become:

p
2
* = b

z * is the solution of this equation
2

-I(Hlii) 2 -I(DzE) 2

f (y,z) = (D-y) / -J— i e
2 a

du — e
2 a - c3 =

D \f2T
°

\J~2tT

D = z-a-cb (appendix 7)

_l
(

D-y
}

2

f (y,z) = (D-y) [1 - *(2lH)
]

— e
2 ° - c(3 =

° \f2lT

and the solutions of section 1.5 are the same solutions of

section 1.4 above (Appendix 8)
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Thus the demand under normal distribution of risk with

mean \i and variance a 2 is the same as adding a positive

constant y to the demand and the risk becomes normally

distributed with mean zero and the same variance; or the

second model in sections 1.4 and 1.5 are just the same under

those conditions above.
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Appendix 8

The first-order conditions of section 1.5 are

p
3
* = b

z * is the solution of equation f*(yz)

-1
f*(yz) = / [X

-L
(z-y-v) -b] f (v) dv - 3 =

z-X(P)-y

CO °°

f*(y,z) = / (D-y) f(v) dv - / v f(v) dv - c6 =

D-y D-y

_l,D-y
)

2

= (D-y) [1 - <M-£-tl
) ] e - cB =

V27T

-±4
1

a '
J

.r=- a
e av

D- Z?-a,-c-*
-oo v 2tt

u - 3

These solutions are the same as the solutions in section

1.4.
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2.4. Numerical Computations and Graphs

a = 10 units

c = -1

X(P) = 10 - P

b = $2

3 = $1

Use the model in section 1.3 with mean of risk distribution

equal to zero; the optimum output z is the solution of this

equation

:

°°
1

D / —i-

D \[2^

1— e
a

1 u 2

2 T2
"

du -

1 D 2

2 T7
"

- c3 =

There are many optimum output z when variance a 2 has some

special values, keeping the mean constant and equal to zero

7 .5

7.1 1

7.32 1.5

7.615 2

8 2.5

8.42 3

8.88 3.5

9.375 4

9.9 4.5

... —

The relationship between z* and a is expressed by the implicit

function above. Now we try to express z as a linear function

of a.

z = a + Ba
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Using the least squares method, we can obtain the value

of a and B:

a = 6.3163

b = .745

z = 6.3163 + .745a

This function is upward sloping with o, so z increases as

the value of a increases:
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Now we hold the variance o
2 constant and equal to 1.

Let the mean of risk distribution vary and observe the

optimum output z*. Under these conditions the optimum output

z* is the solution of the equation f(y,z) = in section 2.2.

We rewrite that equation as the following:

f(p,z) = (D-y) / -i- I e
2 a du

D ^27 °

e
2

° - c$ =

\f2~i

or:

D-y .

4(^) 2

(D-y) [1- *(^) ] - —*z
\T2T

- c$ =

These are the solutions of z in the case variance a is equal

to 1.

z* V

7.1

7.6 .5

8.1 1

8.6 1.5

9.1 2

9.6 2.5

10.1 3

10.6 3.5

11.1 4

We can express z as a linear function of y, this function is

upward sloping with y.

z = 7.1 + y .
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CHAPTER III

THEORY OF MAXIMIZATION OF THE EXPECTED PROFIT

3.1. The Model of Maximization of Profit

In this model, we also set the quantity z and price P

before we know the actual demands. Demand is a random

variable, and it is a function of P and u:

Demand = X(P) + u

where u is normally distributed with mean y and variance a 2

The expression of profit is:

n = pq„ - cz

where: Q = the actual sales
s

Qs
= min[X(P) + u, z]

c' = cost per unit in production

Therefore:

n = P[X(P) + u] - c'z if X(P) + u < z

II
2

= Pz - c'z if X(P) + u >_ z

z-X(P)
E[n] = / n f(u) du + / n- f(u) du

z-X(P)
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Our problem is to try to maximize the expected profit .

The first-order conditions for maximization are:

-- Y 2

ll
{]l) = [X(P) + P X' (P) - z + y] $(Y) + z 2_ e

2 =

Y = z~x ( p )-y

^
E(II) = P[l - $(Y) ]

- C ' =
o Z

Appendix 9

The second-order conditions for maximization are:

2
d E

^
n) = 2X' (P) $(Y) + [X(P) + P X' (P) - z + y] f (z-X(P))

8P
2

1 y2

(-X' (P)) - X' (P) Y • —— e
2

VTfT

8 E
^
n) = -P f (z-X(P)) < o

Appendix 9

z-X(P)
where: $(Y) = / f(u) du

— 00

In our model with the linear demand X(P) = 10 - P,

u is normally distributed (p,c 2 ). Substituting in the

expressions above:
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2
8

^
(IT) = -2 $(Y) - P f (Y) <

9P

So that the solutions of the first-order conditions are the

global maximum solutions of the problem.
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Appendix 9

«-X(P)

E[n] = / P[X(P) + u] -c'z f(u) du

+ / [P-c']z f(u) du
z-X(P)

8E(n) =
9P

z-X(P)
X(P) + u + P X 1 (P) f(u) du

P[X(P)+z-X(P) ] - c'z f(z-X(P)) (-X' (P))

+ / z f(u) du - [P - c']z f (z-X(P) ) (-X' (P)

)

z-X(P)

[X(P) + P X'(P)] $(
{

' &) + f u f(u) du
a

+ z[l - M 2" X(P)^ )]

8E(n)
8P

4y 2

[X(P) + P X' (P) + y - z] $(Y) + z 2__ e =

f27
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8E(n)
8z

z-X(P)
/ -c' f (u) du + P(X(P) + z - X(P) ) - c'z

. f(z-X(P)) + / [P-c'] f(u) du - [P-c'] z f(z-X(P))
z-X(P)

3E(n)
8z

= P[l - $(Y)] - c' =

2 z-X (P

)

9
f

(II) = [X' (P) +X'(P)] / f(u) du + [X(P) +PX'(P)-z+y]
8P

f (z-X(P)j(-X' (P)) -

_1 z-X(P)-y 2

x , (p)(
z-X(P)-

y) _l__
e

2
(

a

2X'(P) $(Y) + [X(P) +PX'(P)+y-z] f(z-X(P))

_1 Y 2

1 2- X 1 (P) Y -~— e *

V 2-TT

8 E(H) = 2X , (p) $(y) + [x(p)+px . (P)+p_ z] f ( z -x(P)) (-X 1 (P))
3P

1 2

- x* (P) Y —

—

e
2

VTTT

8
2
E(n)

8z
2

= -P f (z-X(P) ) <
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3.2 . The Optimal Point (P*,z*) under a Change in
Mean and Variance of the Distribution u

We introduce the same demand function, and the same

value of a, c, b, £ .

X(P) = a + cP

where: a = 10 b = 2

c = -1 6 = 1

c' = b+3 = 3

The first-order conditions now become:

(5) [a + 2cP + y - z] $(Y) + z — e = n

VTfT

(6) P[l - $(Y) ]
- c' =

Now we keep the mean constant and equal to zero. The

following results are the solutions of equations (5) and (6)

according to each value of variance a
2

.

y =a P* z*

.5 6.41 3.63

1 6.32 3.745

1.5 6.22 3.847

2 6.11 3.935

2.5 6 4

3 5.88 4.03

3.5 5.75 4.0575

4 5.61 4.04
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As variance increases, the price slowly decreases, and

the optimum output increases a little.

Using least squares, we can find the function z*(a) , and

P*(a) as the linear function of a:

z
±
* = S

1
+ B

]
_a V =

*2 + B
2
a

a, = 3.6 4 a
2

= 6.55
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5.C

iiS (T

Now keep the variance a constant and equal to 1. The

solutions of equation (5) and equation (6) are tabulated

as follows:

.5

1

1.5

2

2.5

3

3.5

4

P*

6.6

6.84

7.1

7.35

7.61

7.87

8.12

8.38

a = 1

4.015

4.315

4.595

4.88

5.15

5.43

5.71

6.
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When y increases, both price and optimum output increase

We can estimate the linear relationship between z* and y,

P* and y.

z 3* = g
3

+ B
3

J*

P * = a\ + B
4 /*

S
3

= 3.745 a
4

= 6.335

S, 1A5 + .
5**

f
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CHAPTER IV

CONCLUSION

We have developed two kinds of models, the first is to

maximize the expected social welfare, the second is to

maximize the expected monopoly profit; both models involve

random demand. There are three essential factors in

determining the optimal price and production level decisions

for a firm.

a) the shape of the demand curve

b) the manner in which risk enters the demand function

c) the distribution of risk u.

Under riskless demand, the optimum price and output for

maximization of the welfare function are determined. Adding

risk to the demand function X(P) reduces the optimum price.

If the mean and variance of risk u are allowed to vary,

the optimal price P* remains constant and equals the short

run marginal operating cost, but the optimal output varies

directly with mean or variance of risk u. Also, the optimal

output under risk is greater than the equilibrium output in

the deterministic model.

When the variance of risk stays constant and equals one,

the optimal output varies directly and the same scale with

the mean of risk u.

The optimal solutions are the same when the random linear

demand curve X(P) + u with normal distribution (\i,a
2

) of
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risk u is shifted upward a distance y with normal distribution

(0,a 2
) of risk u.

It is easy to understand this effect because of the

symmetry property of normal distributions. In Chapter III

the demand function and the risk u for the expected profit

model are the same as in Chapters I and II. With the mean

of risk set equal to zero and allowing the variance to

increase, the optimum price decreases slowly and the optimum

output increases slowly.

Allowing the mean to vary while the variance is set to

one causes optimal price and output to vary directly but very

little. Therefore, this model is less sensitive to risk than

the models of Chapters I and II. If the demand curve is not

linear downward sloping and additively separable in P and u

or risk has a complicated distribution, then it is difficult

to draw conclusions for operating the firms.
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