Limits and Continuity

June 12, 2014

A Strange Function

Let $f(x)= \begin{cases}\frac{|x|}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0 .\end{cases}$

Limits

The limit of $f(x)$ as x tends to a is written as $\lim _{x \rightarrow a} f(x)$.
If it exists, it is the number that $f(x)$ gets arbitrarily close to as x approaches a.

Importantly, it is completely independent of $f(a)$, since it only involves values of x which are extremely close to a : $\lim _{x \rightarrow a} f(x)$ can exist even if a is not in the domain of f !

Example

What is $\lim _{x \rightarrow 1} x^{2} ?$

Example

What is $\lim _{x \rightarrow 1} x^{2} ?$

Continuity

Notice that in the previous example, we had

$$
\lim _{x \rightarrow 1} f(x)=1=f(1)
$$

where $f(x)=x^{2}$.

Continuity

Notice that in the previous example, we had

$$
\lim _{x \rightarrow 1} f(x)=1=f(1)
$$

where $f(x)=x^{2}$.
Since the limit at the point equals the function evaluated at the point, we say f is continuous at $x=1$.

Continuity

Notice that in the previous example, we had

$$
\lim _{x \rightarrow 1} f(x)=1=f(1)
$$

where $f(x)=x^{2}$.
Since the limit at the point equals the function evaluated at the point, we say f is continuous at $x=1$.
A function f is continuous if it is continuous at every point in the domain.

Non-example

What is $\lim _{x \rightarrow 0} \frac{|x|}{x}$?

Example

What is $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}$?

Practical Stuff

How do we calculate a limit at a ?

Practical Stuff

How do we calculate a limit at a ?

- If the function is continuous and defined at a, just evaluate $f(a)$ (but people are mean, so this doesn't happen very often).

Practical Stuff

How do we calculate a limit at a ?

- If the function is continuous and defined at a, just evaluate $f(a)$ (but people are mean, so this doesn't happen very often).
- If a is not in the domain of f, at this stage it's usually because you're dividing by 0 . Try factorising and simplifying to make it work: graphically, all that's happening is that there is a 'hole' in the domain (remember the previous example).

Practical Stuff

How do we calculate a limit at a ?

- If the function is continuous and defined at a, just evaluate $f(a)$ (but people are mean, so this doesn't happen very often).
- If a is not in the domain of f, at this stage it's usually because you're dividing by 0 . Try factorising and simplifying to make it work: graphically, all that's happening is that there is a 'hole' in the domain (remember the previous example).
- Substitute something very close to a into the equation with your calculator. (Only use this if you have to, since it's extremely barbaric.)
- If you get a sensible answer doing this, go back and try to get the same answer another way.

