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Abstract

Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, 
which involves storing, retrieving, organizing, and analyzing flow cytometry data using 
extensive computational resources and tools. Flow cytometry bioinformatics requires ex-
tensive use of and contributes to the development of techniques from computational sta-
tistics and machine learning. Flow cytometry and related methods allow the quantification 
of multiple independent biomarkers on large numbers of single cells. The rapid growth in 
the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, 
has led to the creation of a variety of computational analysis methods, data standards, 
and public databases for the sharing of results. Computational methods exist to assist in 
the preprocessing of flow cytometry data, identifying cell populations within it, matching 
those cell populations across samples, and performing diagnosis and discovery using 
the results of previous steps. For preprocessing, this includes compensating for spectral 
overlap, transforming data onto scales conducive to visualization and analysis, assessing 
data for quality, and normalizing data across samples and experiments. For population 
identification, tools are available to aid traditional manual identification of populations in 
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two-dimensional scatter plots (gating), to use dimensionality reduction to aid gating, and 
to find populations automatically in higher dimensional space in a variety of ways. It is also 
possible to characterize data in more comprehensive ways, such as the density-guided 
binary space partitioning technique known as probability binning, or by combinatorial 
gating. Finally, diagnosis using flow cytometry data can be aided by supervised learning 
techniques, and discovery of new cell types of biological importance by high-throughput 
statistical methods, as part of pipelines incorporating all of the aforementioned methods.
Open standards, data, and software are also key parts of flow cytometry bioinformatics. 
Data standards include the widely adopted Flow Cytometry Standard (FCS) defining how 
data from cytometers should be stored, but also several new standards under develop-
ment by the International Society for Advancement of Cytometry (ISAC) to aid in storing 
more detailed information about experimental design and analytical steps. Open data is 
slowly growing with the opening of the CytoBank database in 2010 and FlowRepository 
in 2012, both of which allow users to freely distribute their data, and the latter of which has 
been recommended as the preferred repository for MIFlowCyt-compliant data by ISAC. 
Open software is most widely available in the form of a suite of Bioconductor packages, 
but is also available for web execution on the GenePattern platform.

Flow Cytometry Data

Flow cytometers operate by hydrodynamically focusing suspended cells so that they sep-
arate from each other within a fluid stream. The stream is passed by one or more lasers, 
and the resulting fluorescent and scattered light is detected by photomultipliers. By using 
optical filters, particular fluorophores on or within the cells can be quantified by peaks in 
their emission spectra. This process is illustrated in Figure 1. Reporter molecules may be 
endogenous fluorophores such as chlorophyll or transgenic green fluorescent protein, 
or they may be artificial fluorophores covalently bonded to detection molecules such as 
antibodies for detecting proteins, or hybridization probes for detecting DNA or RNA. 

Figure 1.
Schematic diagram of a flow cytometer, showing focusing of the fluid sheath, laser, optics (in simplified form, omitting 
focusing), photomultiplier tubes (PMTs), analogue-to-digital converter, and analysis workstation.
doi:10.1371/journal.pcbi.1003365.g001

The ability to quantify these has led to flow cytometry being used in a wide range of appli-
cations, including but not limited to:
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1 .	 Monitoring of CD4 count in HIV [1]

2.	 Diagnosis of various cancers [2],[3]

3.	 Analysis of aquatic microbiomes [4]

4.	 Sperm sorting [5]

5.	 Measuring telomere length [6]

Until the early 2000s, flow cytometry could only measure a few fluorescent markers at 
a time. Through the late 1990s into the mid-2000s, however, rapid development of new 
fluorophores resulted in modern instruments capable of quantifying up to 18 markers per 
cell [7]. More recently, the new technology of mass cytometry replaces fluorophores with 
rare earth elements detected by time of flight mass spectrometry, achieving the ability to 
measure the expression of 34 or more markers [8]. At the same time, microfluidic qPCR 
methods are providing a flow cytometry–like method of quantifying 48 or more RNA mol-
ecules per cell [9]. The rapid increase in the dimensionality of flow cytometry data coupled 
with the development of high-throughput robotic platforms capable of assaying hundreds 
to thousands of samples automatically have created a need for improved computational 
analysis methods [7].

Steps in Computational Flow Cytometry Data Analysis

he process of moving from primary FCM data to disease diagnosis and biomarker discov-
ery (illustrated in Figure 2) involves four major steps:

Figure 2.
An example pipeline for analysis of FCM data and some of the Bioconductor packages relevant to each step.
doi:10.1371/journal.pcbi.1003365.g002 

1.	 Data preprocessing (including compensation, transformation, and normalization)
2.	 Cell population identification (a.k.a. gating)
3.	 Cell population matching for cross-sample comparison
4.	 Relating cell populations to external variables (diagnosis and discovery)
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Saving of the steps taken in a particular flow cytometry workflow is supported by some 
flow cytometry software, and is important for the reproducibility of flow cytometry experi-
ments. However, saved workspace files are rarely interchangeable between software [10]. 
An attempt to solve this problem is the development of the Gating-ML XML-based data 
standard (discussed in more detail in the data formats and interchange section), which is 
slowly being adopted in both commercial and open-source flow cytometry software [11].

Data Preprocessing

Compensation
When more than one fluorochrome is used with the same laser, their emission spectra fre-
quently overlap. Each particular fluorochrome is typically measured using a bandpass optical 
filter set to a narrow band at or near the fluorochrome’s emission intensity peak. The result is 
that the reading for any given fluorochrome is actually the sum of that fluorochrome’s peak 
emission intensity, and the intensity of all other fluorochromes’ spectra where they overlap 
with that frequency band. This overlap is termed spillover, and the process of removing spillo-
ver from flow cytometry data is called compensation [12].

Compensation is typically accomplished by running a series of representative samples 
each stained for only one fluorochrome, to give measurements of the contribution of 
each fluorochrome to each channel [12]. The total signal to remove from each channel 
can be computed by solving a system of linear equations based on this data to produce a 
spillover matrix, which when inverted and multiplied with the raw data from the cytometer 
produces the compensated data [12], [13]. The processes of computing the spillover matrix, 
or applying a precomputed spillover matrix to compensate flow cytometry data, are stand-
ard features of flow cytometry software [14].

Quality Control
Particularly in newer, high-throughput experiments, there is a need for visualization 
methods to help detect technical errors in individual samples. One approach is to 
visualize summary statistics, such as the empirical distribution functions of single 
dimensions of technical or biological replicates to ensure they are the similar [22]. For 
more rigor, the KolmogorovSmirnov test can be used to determine if individual samples 
deviate from the norm [22]. The Grubbs test for outliers may be used to detect samples 
deviating from the group.

A method for quality control in higher-dimensional space is to use probability binning 
with bins fit to the whole dataset pooled together [23]. Then the standard deviation of the 
number of cells falling in the bins within each sample can be taken as a measure of multi-
dimensional similarity, with samples that are closer to the norm having a smaller standard 
deviation [23]. With this method, higher standard deviation can indicate outliers, although 
this is a relative measure as the absolute value depends partly on the number of bins.

With all of these methods, the cross-sample variation is being measured. However, this 
is the combination of technical variations introduced by the instruments and handling, 
and actual biological information that is desired to be measured. Disambiguating the 
technical and the biological contributions to between-sample variation can be a difficult 
to impossible task [24].
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Normalization
Particularly in multicenter studies, technical variation can make biologically equivalent 
populations of cells difficult to match across samples. Normalization methods to remove 
technical variance, frequently derived from image registration techniques, are thus a criti-
cal step in many flow cytometry analyses. Single-marker normalization can be performed 
using landmark registration, in which peaks in a kernel density estimate of each sample 
are identified and aligned across samples [24].

Identifying Cell Populations

A critical step in analysis of flow cytometric data is the identification of multidimensional 
regions that contain functionally and phenotypically homogeneous groups of cells for 
further analysis [27].

Gating
The data generated by flow cytometers can be plotted in one or two dimensions to produce 
a histogram or scatter plot. The regions on these plots can be sequentially separated, based 
on fluorescence intensity, by creating a series of subset extractions, termed “gates.” These 
gates can be produced using software, e.g., FlowJo [28], FCS Express [29], WinMDI [30], Cy-
toPaint (aka Paint-A-Gate) [31], VenturiOne, CellQuest Pro, Cytospec [32], or Kaluza [33].

In datasets with a low number of dimensions and limited cross-sample technical and biolog-
ical variability (e.g., clinical laboratories), manual analysis of specific cell populations can 
produce effective and reproducible results. However, exploratory analysis of a large num-
ber of cell populations in a high-dimensional dataset is not feasible [34]. In addition, manual 
analysis in less controlled settings (e.g., cross-laboratory studies) can increase the overall 
error rate of the study [35]. In one study, several computational gating algorithms performed 
better than manual analysis in the presence of some variation [26] (illustrated in Figure 3). 
However, despite the considerable advances in computational analysis, manual gating 
remains the main solution for the identification of specific rare cell populations that are not 
well-separated from other cell types.

Figure 3.
Comparison of consensus of eight independent manual gates (polygons) and automated gates (colored dots).
The consensus of the manual gates and the algorithms were produced using the CLUE package [25]. Figure reproduced 
with permission from [26]. doi:10.1371/journal.pcbi.1003365.g003 
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Gating guided by dimension reduction.

As the number of markers measured by flow cytometry increases, the number of scatter 
plots that need to be investigated increases exponentially (some markers need to be 
investigated several times for each group of cells to resolve high-dimensional differ-
ences between cell types that appear to be similar in most markers) [36]. To address this 
issue, principal component analysis has been used to summarize the high-dimensional 
datasets using a combination of markers that maximizes the variance of all data points 
[37]. However, PCA is a linear method and is not able to preserve complex and non-line-
ar relationships. More recently, two-dimensional minimum spanning tree layouts have 
been used to guide the manual gating process (illustrated in Figure 4). Density-based 
down-sampling and clustering was used to better represent rare populations and control 
the time and memory complexity of the minimum spanning tree construction process [38]. 
More sophisticated dimension reduction algorithms are yet to be investigated [39].

Figure 4.
Cell populations in a high-dimensional mass-cytometry dataset manually gated after dimension reduction using 2-D 
layout for a minimum spanning tree. Figure reproduced from the data provided in [40].
doi:10.1371/journal.pcbi.1003365.g004

Automated gating
Developing computational tools for identification of cell populations has been an area of 
active research only since 2008. Many individual clustering approaches have recently 
been developed, including model-based algorithms (e.g., flowClust [41] and FLAME [42]), 
density-based algorithms (e.g., FLOCK [43] and SWIFT), graph-based approaches (e.g., 
SamSPECTRAL [44]), and, most recently, hybrids of several approaches (flowMeans [45] 
and flowPeaks [46]). These algorithms are different in terms of memory and time com-
plexity, their software requirements, their ability to automatically determine the required 
number of cell populations, and their sensitivity and specificity. The FlowCAP (Flow 
Cytometry: Critical Assessment of Population Identification Methods) project, with active 
participation from most academic groups with research efforts in the area, is providing a 
way to objectively cross-compare state-of-the-art automated analysis approaches [26].
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Probability Binning Methods
Probability binning is a non-gating analysis method in which flow cytometry data is split into 
quantiles on a univariate basis (shown in Figure 5) [47]. The locations of the quantiles can then 
be used to test for differences between samples using the chi-squared test [47].

Figure 5.
An example of probability binning, created using the flowFP Bioconductor package. The dots represent individual events 
in an FCS file. The rectangles represent the bins. doi:10.1371/journal.pcbi.1003365.g005

This was later extended into multiple dimensions in the form of frequency difference 
gating, a binary space partitioning technique in which data is iteratively partitioned along 
the median [48]. These partitions (or bins) are fit to a control sample. Then the proportion of 
cells falling within each bin in test samples can be compared to the control sample by the 
chi-squared test.

Finally, cytometric fingerprinting uses a variant of frequency difference gating to set bins 
and measure for a series of samples how many cells fall within each bin [23]. These bins 
can be used as gates and used for subsequent analysis similarly to automated gating 
methods.

Combinatorial Gating
High-dimensional clustering algorithms are often unable to identify rare cell types that are 
not well separated from other major populations. Matching these small cell populations 
across multiple samples is even more challenging. In manual analysis, prior biological 
knowledge (e.g., biological controls) provides guidance to reasonably identify these 
populations. However, integrating this information into the exploratory clustering process 
(e.g., as in semi-supervised learning) has not been successful.

An alternative to high-dimensional clustering is to identify cell populations using one 
marker at a time and then combine them to produce higher-dimensional clusters. This 
functionality was first implemented in FlowJo [28]. The flowType algorithm builds on this 
framework by allowing the exclusion of the markers [49]. This enables the development of 
statistical tools (e.g., RchyOptimyx) that can investigate the importance of each marker 
and exclude high-dimensional redundancies [50].
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Diagnosis and Discovery

After identification of the cell population of interest, a cross-sample analysis can be per-
formed to identify phenotypical or functional variations that are correlated with an external 
variable (e.g., a clinical outcome). These studies can be partitioned into two main groups:

Diagnosis
In these studies, the goal usually is to diagnose a disease (or a sub-class of a disease) us-
ing variations in one or more cell populations. For example, one can use multidimensional 
clustering to identify a set of clusters, match them across all samples, and then use su-
pervised learning to construct a classifier for prediction of the classes of interest (e.g., this 
approach can be used to improve the accuracy of the classification of specific lymphoma 
subtypes [51]). Alternatively, all the cells from the entire cohort can be pooled into a single 
multidimensional space for clustering before classification [52]. This approach is particular-
ly suitable for datasets with a high amount of biological variation (in which cross-sample 
matching is challenging) but requires technical variations to be carefully controlled [53].

Discovery
In a discovery setting, the goal is to identify and describe cell populations correlated with an 
external variable (as opposed to the diagnosis setting in which the goal is to combine the 
predictive power of multiple cell types to maximize the accuracy of the results). Similar to the 
diagnosis use case, cluster matching in high-dimensional space can be used for explorato-
ry analysis, but the descriptive power of this approach is very limited, as it is hard to charac-
terize and visualize a cell population in a high-dimensional space without first reducing the 
dimensionality [52], [54]. Finally, combinatorial gating approaches have been particularly suc-
cessful in exploratory analysis of FCM data. Simplified Presentation of Incredibly Complex 
Evaluations (SPICE) is a software package that can use the gating functionality of FlowJo 
to statistically evaluate a wide range of different cell populations and visualize those that are 
correlated with the external outcome. flowType and RchyOptimyx (as previously discussed) 
expand this technique by adding the ability of exploring the impact of independent markers 
on the overall correlation with the external outcome. This enables the removal of unnec-
essary markers and provides a simple visualization of all identified cell types. In a recent 
analysis of a large (n = 466) cohort of HIV+ patients, this pipeline identified three correlates 
of protection against HIV, only one of which had been previously identified through exten-
sive manual analysis of the same dataset (as illustrated in Figure 6) [49].
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Figure 6.
Overview of the flowType/RchyOptimyx pipeline for identification of correlates of protection against HIV.
First, tens of thousands of cell populations are identified by combining one-dimensional partitions (panel 1). The cell pop-
ulations are then analyzed using a statistical test (and Bonferroni’s method for multiple testing correction) to identify those 
correlated with the survival information. Panel 3 shows a complete gating hierarchy describing all possible strategies for 
gating that cell population. This graph can be mined to identify the “best” gating strategy (i.e., the one in which the most 
important markers appear earlier). These hierarchies for all selected phenotypes are demonstrated in panel 4. In panel 5, 
these hierarchies are merged into a single graph that summarizes the entire dataset and demonstrates the trade-off be-
tween the number of markers involved in each phenotype and the significance of the correlation with the clinical outcome 
(e.g., as measured by the KaplanMeier estimator in panel 6). Figure reproduced in part from [49] (public domain) and [50].
doi:10.1371/journal.pcbi.1003365.g006

Data Formats and Interchange

Flow Cytometry Standard
Flow cytometry data is typically saved for analysis in the form of an array, with fluores-
cence and scatter channels represented in columns and individual “events” (most of 
which are cells) forming the rows, as shown in Figure 7. The number of events acquired 
from each sample usually ranges between the low thousands and the low millions.

Figure 7.
Representation of flow cytometry data from an instrument with three scatter channels and 13 fluorescent channels.
Only the values for the first 30 (of hundreds of thousands) of cells are shown.
doi:10.1371/journal.pcbi.1003365.g007

The first version of a Flow Cytometry Standard (FCS) was developed in 1984 [55]. Since 
then, FCS has become the standard file format supported by all flow cytometry software 
and hardware vendors. FCS is a binary file format with three main segments: a text 
segment containing metadata in keyword/value pairs structures, a data segment usually 
containing a matrix of detected expression values (so-called list mode format), and a rare-
ly used analysis segment. The FCS specification has traditionally been developed and 
maintained by the International Society for Advancement of Cytometry (ISAC) [56].

Over the years, updates have been incorporated to adapt to technological advancements 
in both flow cytometry and computing technologies.

In 1990, FCS 2.0 was introduced [57]. Features introduced in FCS 2.0 included the option 
of multiple datasets within a data file, the use of different byte orders accommodating 
hardware variations on different computing platforms, and basic compensation and scal-
ing information. FCS 2.0 was followed by FCS 3.0 in 1997, which introduced the possibili-
ty of storing datasets larger than 100 MB [58].
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The latest version, FCS 3.1, was introduced in 2010 [59]. It retains the basic FCS file struc-
ture and most features of previous versions of the standard. Changes included in FCS 3.1 
address potential ambiguities in the previous versions and provide a more robust stand-
ard. They include simplified support for international characters and improved support 
for storing compensation. The major additions are support for preferred display scale, a 
standardized way of capturing the sample volume, information about the origins of the 
data file, and support for plate and well identification in high-throughput, plate-based 
experiments.

FCS used to be the only widely adopted file format in flow cytometry. Recently, additional 
standard file formats have been developed by ISAC.

netCDF
ISAC is considering replacing FCS with a flow cytometry–specific version of the Network 
Common Data Form (netCDF) file format [60]. netCDF is a set of freely available software 
libraries and machine-independent data formats that support the creation, access, and 
sharing of array-oriented scientific data. In 2008, ISAC drafted the first version of netCDF 
conventions for storage of raw flow cytometry data [61].
Archival Cytometry Standard (ACS)

The Archival Cytometry Standard (ACS) is being developed to bundle data with different 
components describing cytometry experiments [62]. It captures relations among data, 
metadata, analysis files, and other components, and includes support for audit trails, 
versioning, and digital signatures. The ACS container is based on the ZIP file format with 
an XML-based table of contents specifying relations among files in the container. The 
XML Signature W3C Recommendation has been adopted to allow for digital signatures 
of components within the ACS container. An initial draft of ACS was designed in 2007 and 
finalized in 2010. Since then, ACS support has been introduced in several software tools 
including FlowJo and Cytobank.

Gating-ML
The lack of gating interoperability has traditionally been a bottleneck preventing repro-
ducibility of flow cytometry data analysis and the usage of multiple analytical tools. To 
address this shortcoming, ISAC developed Gating-ML, an XML-based mechanism to 
formally describe gates and related data (scale) transformations [10]. The draft recommen-
dation version of Gating-ML was approved by ISAC in 2008, and it is partially supported 
by tools like FlowJo, the flowUtils library in R/Bioconductor, and FlowRepository [62]. It 
supports rectangular gates, polygon gates, convex polytopes, ellipsoids, decision trees, 
and Boolean collections of any of the other types of gates. In addition, it includes dozens 
of built-in public transformations that have been shown to be potentially useful for display 
or analysis of cytometry data. In 2013, Gating-ML version 2.0 was approved by ISAC’s 
Data Standards Task Force as a Recommendation. This new version offers slightly less 
flexibility in terms of the power of gating description; however, it is also significantly easier 
to implement in software tools [11].

Classification Results (CLR)
The Classification Results (CLR) File Format [63] has been developed to exchange the 
results of manual gating and algorithmic classification approaches in a standard way in 
order to be able to report and process the classification. CLR is based on the commonly 
supported CSV file format with columns corresponding to different classes and cell values 
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containing the probability of an event being a member of a particular class. These are 
captured as values between 0 and 1. Simplicity of the format and its compatibility with 
common spreadsheet tools have been the major requirements driving the design of the 
specification. Although it was originally designed for the field of flow cytometry, it is appli-
cable in any domain that needs to capture either fuzzy or unambiguous classifications of 
virtually any kinds of objects.

Public Data and Software

As in other bioinformatics fields, development of new methods has primarily taken the 
form of free open-source software, and several databases have been created for deposit-
ing open data.

Bioconductor
The Bioconductor project is a repository of free open-source software, mostly written in 
the R programming language [64]. As of July 2013, Bioconductor contained 21 software 
packages for processing flow cytometry data [65]. These packages cover most of the 
range of functionality described earlier in this article.

GenePattern
GenePattern is a predominantly genomic analysis platform with over 200 tools for analy-
sis of gene expression, proteomics, and other data. A web-based interface provides easy 
access to these tools and allows the creation of automated analysis pipelines enabling re-
producible research. Recently, a GenePattern Flow Cytometry Suite has been developed 
in order to bring advanced flow cytometry data analysis tools to experimentalists without 
programmatic skills. It contains close to 40 open-source GenePattern flow cytometry 
modules covering methods from basic processing of flow cytometry standard (i.e., FCS) 
files to advanced algorithms for automated identification of cell populations, normaliza-
tion, and quality assessment. Internally, most of these modules leverage from functionali-
ty developed in Bioconductor.

Much of the functionality of the Bioconductor packages for flow cytometry analysis has 
been packaged up for use with the GenePattern [66] workflow system, in the form of the 
GenePattern Flow Cytometry Suite [67].

Public Databases
The Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) requires that 
any flow cytometry data used in a publication be available, although this does not include 
a requirement that it be deposited in a public database [68]. Thus, although the journals 
Cytometry A and B, as well as all journals from the Nature Publishing Group require 
MIFlowCyt compliance, there is still relatively little publicly available flow cytometry data. 
Some efforts have been made toward creating public databases, however.

Firstly, CytoBank, which is a complete web-based flow cytometry data storage and 
analysis platform, has been made available to the public in a limited form [69]. Using the 
CytoBank code base, FlowRepository was developed in 2012 with the support of ISAC 
to be a public repository of flow cytometry data [70]. FlowRepository facilitates MIFlowCyt 
compliance [71], and as of July 2013 contained 65 public datasets [72].
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Datasets
In 2012, the flow cytometry community started to release a set of publicly available 
datasets. A subset of these datasets representing the existing data analysis challenges 
is described below. For comparison against manual gating, the FlowCAP-I project has 
released five datasets, manually gated by human analysts, and two of them gated by 
eight independent analysts [26]. The FlowCAP-II project included three datasets for binary 
classification and also reported several algorithms that were able to classify these sam-
ples perfectly. FlowCAP-III included two larger datasets for comparison against manual 
gates as well as one more challenging sample classification dataset. As of March 2013, 
public release of FlowCAP-III was still in progress [73]. The datasets used in FlowCAP-I, 
II, and III either have a low number of subjects or parameters. However, recently several 
more complex clinical datasets have been released including a dataset of 466 HIV-infect-
ed subjects, which provides both 14 parameter assays and sufficient clinical information 
for survival analysis [50], [74]–[76].

Another class of datasets are higher-dimensional mass cytometry assays. A representa-
tive of this class of datasets is a study that includes analysis of two bone marrow sam-
ples using more than 30 surface or intracellular markers under a wide range of different 
stimulations [8]. The raw data for this dataset is publicly available as described in the 
manuscript, and manual analyses of the surface markers are available upon request from 
the authors.

Open Problems
Despite rapid development in the field of flow cytometry bioinformatics, several problems 
remain to be addressed.

Variability across flow cytometry experiments arises from biological variation among 
samples, technical variations across instruments used, as well as methods of analysis. 
In 2010, a group of researchers from Stanford University and the National Institutes of 
Health pointed out that while technical variation can be ameliorated by standardizing 
sample handling, instrument setup, and choice of reagents, solving variation in analysis 
methods will require similar standardization and computational automation of gating 
methods [77]. They further opined that centralization of both data and analysis could aid in 
decreasing variability between experiments and in comparing results [77].

This was echoed by another group of Pacific Biosciences and Stanford University 
researchers, who suggested that cloud computing could enable centralized, standard-
ized, high-throughput analysis of flow cytometry experiments [78]. They also emphasized 
that ongoing development and adoption of standard data formats could continue to aid 
in reducing variability across experiments [78]. They also proposed that new methods will 
be needed to model and summarize results of high-throughput analysis in ways that can 
be interpreted by biologists [78], as well as ways of integrating large-scale flow cytometry 
data with other high-throughput biological information, such as gene expression, genetic 
variation, metabolite levels, and disease states [78].��
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