A simplified look at bike roll rate with Euler's Equations for 3D rigid body motion:

$$
\begin{aligned}
& \sum M_{x}=I_{x x} \dot{\omega}_{x}-\left(I_{y y}-I_{z z}\right) \omega_{y} \omega_{z} \\
& \sum M_{y}=I_{y y} \dot{\omega}_{y}-\left(I_{z z}-I_{x x}\right) \omega_{z} \omega_{x} \\
& \sum M_{z}=I_{z z} \dot{\omega}_{z}-\left(I_{x x}-I_{y y}\right) \omega_{x} \omega_{y}
\end{aligned}
$$

Use a right-hand coordinate system such that x and y axes define the ground plane with y in the direction the bicycle is traveling, and the z axis is vertical. Then some terms
 immediately cancel:

The friction of the wheels on the ground prevents rotation about the vertical axis so $\omega_{z}=0$ and its rate of change $\dot{\omega}_{z}=0$.

Further simplification can also be made, without loss of generality, by letting the wheel spin rate be constant so its rate of change $\dot{\omega}_{x}=0$.

That leaves just:

$$
\sum M_{x}=0, \quad \sum M_{y}=I_{y y} \dot{\omega}_{y}, \quad \sum M_{z}=-\left(I_{x x}-I_{y y}\right) \omega_{x} \omega_{y}
$$

Then let the center of mass be half way between the front and rear wheel and $z_{c m}$ off the ground. The moment about the y-axis due to gravity on the center of mass will be $m g z_{c m} \sin \theta_{y}$ and the moment about the z-axis due to tire friction will be equal to or less than $\frac{1}{2} \mu m g y_{\text {wheelbase }}$. So finally:

$$
\sum M_{y}=I_{y y} \dot{\omega}_{y}=m g z_{c m} \sin \theta_{y}, \quad \sum M_{z}=-\left(I_{x x}-I_{y y}\right) \omega_{x} \omega_{y} \leq \frac{1}{2} \mu m g y_{\text {wheelbase }}
$$

The moment about the y-axis is due only to gravity, the lean angular rate, $m g z_{c m} \sin \theta_{y} / I_{y y}$, is independent of the wheel spin rates, and the bike simply tips over as if the wheels were not spinning at all.

