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ABSTRACT 
 
 
 

In this thesis, a wavelet-based prediction method is developed for concealing 

packet-loss effects in wireless channels. The proposed method utilizes a wavelet 

decomposition algorithm in order to process the data and then applies the well known 

linear prediction technique to estimate one or more approximation coefficients as 

necessary at the lowest resolution level. The predicted sample stream is produced by 

using the predicted approximation coefficients and by exploiting certain sample value 

patterns in the detail coefficients.  In order to test the effectiveness of the proposed 

scheme, a wireless channel based on a three-state Markov model is developed and 

simulated. Simulation results for transmission of image and speech packet streams over a 

wireless channel are reported for both the wavelet-based prediction and direct linear 

prediction. In all the simulations run in this work, the wavelet-based method 

outperformed the direct linear prediction method.  
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EXECUTIVE SUMMARY 
 

 
 

The demand for multimedia applications, such as voice, image and video, has 

grown significantly over the last decade. Increasingly, multimedia information is being 

transmitted over packet switched networks. A more recent development is multimedia 

transmission over wireless packet switched networks. During transmission, some of the 

packets belonging to a frame of voice signal or image may be lost due to channel errors 

or overflow in networks buffers, thereby leading to quality degradation. Linear 

prediction, a method that makes use of the past data to predict future (missing) data, can 

be used to estimate lost packets, thereby providing error concealment to improve the 

quality of received signals. The work reported in this thesis comes under a broader effort 

of the application of advanced signal processing techniques for packet stream processing 

(versus the traditional sample stream processing).  

When the transmitted signal samples are not highly correlated or when they 

contain high frequencies, the performance of the linear prediction is poor [3], making 

concealment of errors due to lost packets from the end user somewhat ineffective. In an 

effort to overcome this limitation, in this thesis, we propose the use of a wavelet-based 

prediction scheme for concealment of effects due to lost packets in speech and image 

packet streams. The proposed method utilizes a wavelet decomposition algorithm to 

preprocess the available parameter values from the past packets in the stream and then 

applies one of the well-known linear prediction techniques (covariance method) to 

estimate one or more approximation coefficients as necessary at the lowest resolution 

level. The parameter values corresponding to the lost packets are obtained by using the 

predicted approximation coefficients and by exploiting certain sample value patterns in 

the detail coefficients in the wavelet synthesis structure.   

In order to test the effectiveness of the proposed scheme, a wireless channel based 

on a three-state Markov model is developed and simulated. The model simulates the lossy 

conditions of packet stream transmission over a wireless channel. The model consists of a 

“Good” state, where an error-free transmission is assumed; a “Bad” state, where there is a 

 xv



probability of single data packets being dropped; and a “Bursty” state, where consecutive 

packets may be dropped.  

Simulation experiments of image and speech packet stream transmission over the 

three-state Markov wireless channel are conducted and results reported for both the 

wavelet-based prediction and direct linear prediction. An objective of these simulation 

experiments is to compare the error concealment performance of the wavelet-based 

method with that of the direct linear prediction method; in all simulation runs conducted 

in this work, the wavelet-based method outperformed the direct linear prediction method. 

The reasons for improved performance can be attributed to the following. First, the 

wavelet method results in a smaller prediction error than the direct linear prediction since 

prediction is carried out on signal components at low frequencies. Second, the role that 

the prediction error plays in the estimation of the missing parameter values is weighted 

down by using known past approximation and detail coefficients and known future detail 

coefficients as derived from the patters in the wavelet decomposition. 

During the course of this work several topics for possible future efforts were 

considered. Suggestions for future work include utilizing both forward and backward 

linear prediction, which may help improve the accuracy of prediction. Also 

recommended is a more in-depth investigation to develop rigorous mathematical basis in 

an effort to generalize the proposed approach to other classes of wavelets. 

 

 

 xvi



I. INTRODUCTION 

A. BACKGROUND 
The demand for multimedia applications, such as voice, image and video, has 

grown significantly over the last decade. Increasingly, multimedia information is being 

transmitted over packet switched networks. A more recent development is multimedia 

transmission over wireless packet switched networks.  

During transmission, some of the packets belonging to a frame of voice signal or 

image file may be lost due to channel errors or overflow in network’s buffers. The lost or 

missing packets and the possible data misalignment that results in the receiver lead to 

quality degradation. Furthermore, in real-time voice and video transmission, delay is an 

important factor. This additional constraint significantly affects the quality of the 

reconstructed bitstream; also, the delay constraint does not permit the use of ARQ 

techniques. Nevertheless, other techniques, such as error correction, error resilience and 

error concealment, can be applied to the received signal in order to enhance its quality 

[17]. 

Linear prediction can be used to estimate lost packets, thereby providing error 

concealment to improve the quality of received signals. Linear prediction makes use of 

the known data from past packets in order to predict the values of missing packets.  

When the transmitted signal samples are not highly correlated or when they 

contain high frequencies, the performance of the linear prediction is poor [3]. Since high 

correlation among samples is not assumed for many practical signals and given that 

errors are inevitable in hostile environments, such as wireless channels, linear prediction 

is not robust enough to hide or correct the errors due to lost packets from the end user.  

B. THESIS OBJECTIVES 
The objective of this thesis is to investigate the use of wavelet-based linear 

prediction for concealment of effects due to lost packets in speech and image packet 

streams. In this method the received data is processed through a wavelet decomposer, and 
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then the low frequency part of the signal is fed to a linear predictor in order to estimate 

the parameters of the missing packets. 

Another objective is to develop a three-state Markov model to simulate the lossy 

conditions of data transmission over a wireless channel. The model consists of a “Good” 

state, where an error-free transmission is assumed; a “Bad” state, where there is a 

probability of single data packets being dropped; and a “Bursty” state, where consecutive 

packets may be dropped.  

The proposed scheme will be applied on images and real-time voice packet 

streams, both uncompressed and compressed. The error concealment performance of this 

scheme will be compared with that of linear prediction through simulation results. 

C. RELATED WORK 
Depending on the type of information they exploit, concealing techniques are 

divided into source coder-independent and source coder-dependent schemes [17]. Source 

coder-independent schemes are further subdivided into sender-receiver-based schemes 

and receiver-based schemes, linear prediction being one of them [17]. Linear prediction, 

a method of predicting a present sample when a sufficient number of past samples is 

known [6], can be used to estimate parameters in a lost packet in order to conceal the 

packet-loss effects.  

Wavelet analysis can be used to decompose an image or a speech signal into 

multiple resolution versions of the same signal, i.e., decompose a given signal into 

multiple (typically, non-overlapping) frequency bands or components [3], [9]. Wavelets 

have been successfully applied to many signal processing applications, such as image [3] 

and speech [18] compression and transient signal analysis [19]. To the best of the 

author’s knowledge, the wavelet analysis has not been applied to prediction for 

concealment applications.  

A two-state Markov model has been thoroughly analyzed and successfully used to 

model the lossy conditions of data transmission in a wireless channel [10], [11], [12]. In 

this work, the two-state model has been extended to a three-state model to account for the 

 2



bursty packet losses, which for example is a suitable way to express the loss of 

macroblocks in image packet transmission. 

D. THESIS ORGANIZATION 
This thesis is organized into six chapters and two supporting appendices. Chapter 

II provides an overview of the wavelet theory. Chapter III provides a quick overview of 

the principles of linear prediction focusing on the modified covariance method. A 

wavelet-based prediction method is introduced in this chapter. Chapter IV presents a 

three-state Markov representation to model a wireless channel. In Chapter V, simulation 

results of linear prediction and the wavelet-based prediction applied to image and voice 

packet streams are presented. 

Chapter VI presents a summary of the work done in the thesis and includes 

conclusions and recommendations for further research. Appendix A contains the Matlab 

code of prediction algorithms using various wavelet families and the simulated wireless 

channel. Appendix B presents additional simulation results for images.  

 3
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II. WAVELETS 

This chapter provides an overview of the wavelet theory. In the following 

chapters, wavelet decomposition is used to improve the prediction performance for 

application to conceal the effects of information loss in packet switched networks.  

A. WAVELETS  
The wavelet transform provides the time-frequency representation of a signal 

simultaneously. Most wavelets are based on a single function called the mother wavelet 

ψ(t), which is a function with some special properties [2]. For example, a wavelet ψ(t) is 

a function having zero average value: 

∫
+∞

∞−

= 0)( dttψ          (2.1) 

The function ψ(t) can be scaled by replacing t with αt , where α is a parameter that 

regulates the amount of scaling [3]. Scaling or dilation means shrinking as well as 

stretching of ψ(t) along the time axis. The square of the norm of )(tψ  is given by: 

∫
+∞

∞−

= dttt )()( 22 ψψ         (2.2) 

The squared norm of a scaled function is: 

22
2

)(tdttt ψα
α

ψ
α

ψ =





=






 ∫

+∞

∞−

      (2.3) 

In order to keep the same norm for the scaled function, the scaled function must be 

multiplied by α1 . 

A translation of the mother wavelet ψ(t) is obtained by replacing t with t-b, or t+b, 

depending on whether the mother wavelet is moved to the right or to the left on the time 

axis. Consequently, the normalized, scaled and translated versions of the mother wavelet 

ψ(t) are given by [3]: 







 −=

α
ψ

α
ψα

bttb
1)(,         (2.4) 
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For different values of α and , a group of shifted and scaled functions forms a wavelet 

basis. For each wavelet, there can be a different basis, and even for the same wavelet 

there can be multiple bases depending on the translations chosen.  

b

B. DISCRETE WAVELET TRANSFORM 
In order to go from the continuous to the discrete representation of the mother 

wavelet ψ(t), the following transformation is used [3]: 

j

j

kbb −

−

=

=

00

0

α
αα

                            (2.5) 

where the widely used choices for 0α and are 0b 20 =α and  [3]. Substituting (2.5) 

into (2.4) yields: 

10 =b

)2(2)( 2
, ktt jj
kj −= ψψ                    (2.6) 

where j is the parameter of the scale (or resolution level) and k the shift, and both take 

only integer values.  

Another function that needs to be introduced is the scaling function )(tφ . A 

weighted sum of the translated versions of the scaling function can be used to represent a 

function x(t) [3]: 

∑
+∞

−∞=

−=
k

k kttx )()( φµ        (2.7) 

where kµ  are the weights of this representation. Similar to (2.6), scaled and translated 

versions of the scaling function, in different resolution levels, can be represented as 

follows: 

)2(2)( 2
, ktt jj
kj −= φφ        (2.8) 

A function x(t) can be represented as a weighted sum of a low-pass scaling 

function, or a version of it, and a band-pass wavelet function, i.e.,  scaled and translated 

versions of the wavelet and the scaling function, given by [3]: 

∑ ∑∑
+∞

−∞=

+∞

=

+∞

−∞=

+=
k jj

kjkj
k

kjkj tdtctx
0

00
)()()( ,,,, ψφ .                     (2.9) 
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where )(, tkjψ  is given in (2.6) and nj ,0
φ (t) is given in (2.8); the wavelet or detail 

coefficients d  and the scaling or approximation coefficients  are defined as [3]: kj , kjc ,

∫
+∞

∞−

= dtttxd kjkj )()( ,, ψ        (2.10) 

∫
+∞

∞−

= dtttxc kjkj )()( ,, φ          (2.11)  

The scaling function )(tφ  can be represented in terms of its dilated versions at a 

higher resolution level: 

∑
+∞

−∞=

=
k

kk tht )()( ,1φφ                  (2.12) 

where  are the low-pass filter or scaling function coefficients. By using (2.8), for 

, the preceding equation becomes: 

kh

1=j

                                                          ∑
+∞

−∞=

−=
k

k ktht )2(2)( φφ        (2.13) 

which is known as the multiresolution analysis (MRA) equation [3]. 

 The set of all functions that can be obtained as a linear combination of the set 

{ )( kt − }φ  is called { })(span , tkjφ  and is denoted as: 

)}({ , tSpanV kjj φ=     (2.14) 

A function  at resolution j can also be described as spanning two subspaces at 

the next lower resolution level, represented as: 

jVtx ∈)(

11 −− ⊕= jjj WVV     (2.15) 

where  is an orthogonal compliment of  V . Since the subspaces V  and W  

resolve back into V , no information is lost in the process [5]. 

1−jW 1−j 1−j 1−j

j

The wavelet )(tψ can also be represented as a weighted sum of scaled versions of 

)(tφ  at resolution : 0j

 7



∑
+∞

−∞=

=
k

kjk twt )()( ,0
φψ                   (2.16) 

where  are the high-pass filter or wavelet coefficients. As done earlier, by substituting 

(2.8) into (2.16), for , we have: 

kw

1=j

∑
+∞

−∞=

−=
k

k ktwt )2(2)( φψ       (2.17) 

The wavelet and scaling coefficients satisfy the following conditions [3]: 

kN
k

k hw −−−±= 1)1(        (2.18) 

where N is a even integer number. Equation (2.18) shows that the low-pass filter or 

approximation coefficients and the high-pass filter or detail coefficients are related to 

each other. Another condition is: 

02 =∑
+∞

−∞=
−

k
jkk wh       (2.19) 

which shows that the low-pass filter or approximation coefficients and the high-pass filter 

or detail coefficients are orthogonal to each other [8]. The following equation:  

0=∑
+∞

−∞=k
kw        (2.20) 

shows that the sum of all wavelet coefficients w  is zero. In order for a set of scaling 

coefficients h , to support a solution, the coefficients must satisfy the linear equation [8]: 

k

k

2=∑
+∞

−∞=k
kh        (2.21) 

Furthermore, the sum of the squares norm of the scaling coefficients, h , must be unity 

[8]: 

k

12 =∑
+∞

−∞=k
kh        (2.22) 

 

Another condition: 
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j
k

jkk hh δ=∑
+∞

−∞=
−2       (2.23)   

states that the scaling coefficients h  are orthogonal to themselves after decimation by 

two [8]. Finally, the individual sum of the odd terms of  is 

k

kh 21  [8]: 

2
1

12 =∑
+∞

−∞=
+

k
kh       (2.24)  

C. COMPUTATION OF APPROXIMATION AND DETAIL COEFFICIENTS 
A more efficient way to perform the discrete wavelet transform is to compute the 

approximation and detail coefficients. Substituting  in (2.13) yields: ktt j −= 2

∑
+∞

−∞=

+ −−=−
n

j
n

j nkthkt )22(2)2( 1φφ      (2.25) 

By setting m , (2.25) becomes: nk += 2

∑
+∞

−∞=

+
− −=−

m

j
km

j mthkt )2(2)2( 1
2 φφ                 (2.26) 

Substituting (2.26) into (2.8) yields [3]: 

                       (2.27) ∑
−∞=

+−=
0

,12,

m

m
kjkmkj chc

and similarly, the detail coefficients are given by: 

           (2.28) ∑
−∞=

+−=
0

,12,

m

m
kjkmkj cwd

where the filters h and w must satisfy the equations (2.18)-(2.24) and are known as 

quadrature mirror or perfect reconstruction filters [5].  

In Figure 2.1, the wavelet decomposition structure is shown. Given a signal  

at a resolution 2 , we can obtain the approximation coefficients set c  or the low 

frequency version of the signal. In order to do that the signal is filtered by a low-pass 

filter with impulse response . Then the filtered signal is downsampled by 2 to obtain 

the approximation coefficients at a lower resolution level 2 . By sending the original 

)(tx
1−j

j

kh
j
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signal through a high-pass filter with impulse response  and downsampling by 2, the 

detail coefficients  at the same resolution are obtained, which consist of the high 

frequency components of the signal  that are missing from the approximation 

coefficients [5]. Since no information is lost in the process, the reconstruction will be 

perfect when going from a lower to a higher resolution level. This process can be 

continued in order to obtain the approximation and the detail coefficients of a higher level 

or lower resolution, each time by using the approximation coefficients of the previous 

level as input until the approximation coefficients obtained consist of only one sample. 

kw

jd

)(tx

k

k

 

 

 

c j-1
kw

2 

2 

2

2

2 

2 

c 
j 

d j 

d
j+2 

cj+2 

V 0 

V1 

V 
2 

V3

W 
1

W2

W 3c j+1

d j+1 w

kwkh

h

kh

Figure 2.1. Wavelet Decomposition Structure. 
 

The same structure shown in Figure 2.1 can also be illustrated in a signal flow 

form in Figure 2.2, where the original signal is decomposed into its approximation, left 

column, and detail coefficients, right column. Figure 2.3 illustrates the wavelet 

decomposition of an actual signal, which in this case is a noisy sinusoid. The signal is 

decomposed and its detail and approximation coefficients:  and c  that 

consist of different components of the original signal  in different frequency bands, 

are obtained. 

4321 ,,, dddd 4

)(tx
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Figure 2.2. Wavelet Decomposition Tree. 
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Figure 2.3. Four-Level Decomposition of a Noisy Sinusoid. 
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In order to reconstruct the original signal ( ),x t  given the approximation and detail 

coefficients, the exact opposite procedure is followed. Each time the approximation and 

detail coefficients of the same level of decomposition j are combined in order to 

reconstruct the approximation coefficients of the next higher resolution j-1. From 

equation (2.9) and from the analysis filter bank representation [3], if ,  can 

be represented in terms of V , or as [3]:  

1)( +∈ jVtx )(tx

jjj VW ⊕=+1

∑∑
+∞

−∞=

+∞

−∞=

−+−=
k

jj
kj

k

jj
kj ktdktctx )2(2)2(2)( 2

,
2

, ψφ      (2.29) 

Substituting (2.13), (2.17) and (2.26) into the preceding equation, yields: 

∑ ∑∑ ∑
+∞

−∞=

+∞

−∞=

+
−

+∞

−∞=

+∞

−∞=

+
− 







 −+






 −=
k m

j
mk

j
kj

k m

j
mk

j
kj mtwdmthctx )2(22)2(22)( 1

2
2

,
1

2
2

, φφ   

Multiplying on both sides by  and integrating, yields [3]: )2( 1 mtj −+φ

∑∑
−∞=

−
−∞=

−+ +=
00

,2,2,1

m

m
mjmk

m

m
mjmkkj dwchc       (2.30) 

Figure 2.4, shows an implementation of (2.30). At each level, the approximation 

and detail coefficients c  and  are first upsampled by two and filtered using filters 

with impulse responses h  and  respectively. The output of the two filters is added, 

thus obtaining the approximation coefficients of the next level. The reconstruction 

continues by applying the same procedure to the detail and the approximation coefficients 

at successive levels, until the signal in its original form is obtained.  

2+j

k

2+jd

,kw
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Figure 2.4. Wavelet Reconstruction Structure. 
 

A signal flow representation of the reconstruction procedure can be seen in Figure 

2.5, where the approximation and detail coefficients of each level are combined in order 

to obtain the approximation coefficients of the next lower level. The procedure continues 

until the original signal  is reconstructed. Figure 2.6 illustrates such a reconstruction 

procedure. The combined approximation and detail coefficients c  and d  yield , the 

approximation coefficient set of the next level, which in turn, is combined with detail 

coefficient set .  If we continue combining the approximation and detail coefficients, 

the noisy sinusoid, decomposed in Figure 2.3, can be reconstructed. 

)(tx

4 4 3c
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Figure 2.5. Wavelet Reconstruction Tree. 
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Figure 2.6. Reconstruction of a Noisy Sinusoid. 
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D. SUMMARY 
In this chapter, we discussed the concepts of wavelets and described how the 

operations of wavelet decomposition and reconstruction of a signal  work. The 

wavelet function 

)(tx

( ),tψ  the scaling function )(tφ  and their scaled and translated versions 

can be used to decompose a signal  into orthogonal components at successively 

lower resolutions.  The wavelet decomposition and reconstruction is a lossless process, 

which means that a signal  can be perfectly reconstructed if approximation and detail 

coefficients from a lower resolution are known. In the following chapter, the wavelet 

decomposition will be used in combination with linear prediction to enhance the 

prediction performance. 

)(tx

)(tx
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III. PREDICTION USING WAVELET DECOMPOSITION 

Linear prediction can be used to predict lost data in order to conceal the effects of 

loss on the signal’s perceptual quality. In this chapter, a wavelet based linear prediction 

technique will be developed in an effort to improve the prediction performance.  

A. LINEAR PREDICTION 

Given the past values of a signal , the current sample 

 can be predicted as a linear combination of these past samples as [6]: 

][].....2[],1[ pnxnxnx −−−

][nx

][......]3[]2[]1[][ˆ 321 Pnxanxanxanxanx P −−−−−−−−−=      (3.1)    

where  are the prediction filter coefficients. The objective is to find the coefficients 

 that would minimize the error between the original and the 

predicted value, which is defined as [6]: 

ia

a ,2 Paaa −−−− ,....., 31

][ˆ][][ nxnxn −=ε          

There are several methods available in the literature of estimating the 

aforementioned coefficients, such as autocorrelation, covariance and the modified 

covariance method [6]. In this work, the modified covariance approach is used in which 

the criterion for estimating the prediction filter coefficients is the minimization of the 

sum of the squared forward and backward errors [6]: 

22 bfbS εε +=         (3.2) 

where 2ε  and 
2bε  are the squared forward and backward error terms, respectively. 

The squared error terms are defined as: 

XaXa TT=2ε         (3.3)  

and 

aXXa TTb ~~2
=ε         (3.4) 

where  
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      ]......1[ 1 Paa=Ta

is the prediction filter coefficient vector,  P is the order of the filter,  



















+−−

+−+
+−−

=

]1[.....]1[][
....................

]2[.....][]1[
]1[.....]1[][

Pnxnxnx

Pnxnxnx
Pnxnxnx

FFF

III

III

X        (3.5) 

is the data matrix, n  and  are the initial and final sample indices that define the 

interval over which to perform the minimization, and 

I Fn

X~  is the reverse data matrix given 

by: 

     



















−−

−−−−
−−

=

][]1[.....][
....................

]1[]2[.....]1[
][]1[.....][

~

III

FFF

FFF

nxnxPnx

nxnxPnx
nxnxPnx

X

Minimization of Equation (3.2) yields the equation for estimating the prediction filter 

coefficient vector a : 

( )
fb

T T

fb

S

S

 
+ =  

 
 

=  
 

0

0

% %X X X X a

Ra
             (3.6) 

Multiplying both sides of (3.6) with the inverse of R yields the vector .  a

The modified covariance method has two advantages. First, twice as much data is 

used upon which the estimation is based. Second, no choice has to be made on whether to 

choose the forward or backward covariance method, which provide different but equally 

efficient estimations [6].  

B. WAVELET BASED PREDICTION 
In this thesis a wavelet-based method that improves the results of linear prediction 

is developed. In wavelet-based linear prediction, a signal  is first decomposed into 

its approximation and detail coefficients as shown in Figure 3.1. The number of 

)(nx
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decomposition levels depends on the number of samples that needs to be available for 

linear prediction at the lowest level of resolution. After the approximation coefficients are 

obtained at the desired decomposition level, linear prediction is applied on them. Since 

the approximation coefficients, for example c  in Figure 3.1, represent the lowest band 

of the signal spectrum, the prediction performance is expected to be better than that 

applied to the original signal. 

2+j

2 

  

 

  

c j-1 
kw

2

2

2 

2

2

c j

d j 

d 
j+2 

c j+2 

V 0 

V 1 

V 2

V 3 

W1 

W 2 

W3 
c j+1 

d j+1kw

kwkh

kh

kh

Figure 3.1. Wavelet Decomposition Structure. 

 

1. Patterns of Approximation and Detail Coefficients  
There is a certain pattern in the approximation and detail coefficients, observed 

when using wavelets for the decomposition of any signal ( ),x n  that can be further 

exploited in wavelet-based prediction. In order to demonstrate this pattern, consider the 

wavelet analysis scheme shown in Figure 3.1. In this work, we mainly focus on using 

Haar’s wavelet because of its simplicity. This approach, however, can be extended to 

other families of wavelets. The lowpass and highpass filter coefficients for Haar’s 

wavelet analysis are given by: 

2
1,

2
1},,{ 1010 === hhhhkh                              (3.7)  

2
1,

2
1},,{ 1010 =−== wwwwkw       (3.8) 

respectively. 
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In order to estimate the approximation and detail coefficients of a given signal 

 the signal is first convolved, as shown in Figure 3.2, with . The result is then 

downsampled by two, thus obtaining the first level decomposition coefficients. In order 

for the successive decomposition coefficients to have an appropriate number of samples, 

zero-padding must take place as shown in Figure 3.3.  

),(nx kh

 

 
 

2h 1h
 

Figure 3.2. 

 

Con
volution between a Signal x(n) and Haar's Wavelet.  
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Figure 3.3. Decomposition Diagram Indicating the Number of Decomposition 
Sample Values at Successive Resolution Levels. 

 

For a better understanding of the preceding procedure, Figure 3.4 illustrates the 

decomposition sample sizes and the necessary zero-padding for example input signal 

sizes of , 18, 19 and 20, where it is shown that each time an odd-numbered sample 

set is decomposed, zero-padding takes place. 

17=n
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17 

9 8 0 

5 4 0 Zero padding 

3 2 0 

18

9 9 

5 4 0 Zero padding 

3 2 0 

19 

10 9 0

5 5 Zero padding

3 2 0 

20

10 10

5 5 Zero padding

3 2 0 

(a) (b) 

(c) (d) 

 
Figure 3.4. Decomposition Diagram Indicating the Number of Decomposition 

Sample Values at Successive Resolution Levels for Different Input 
Signal Sizes of (a) , (b) , (c) , (d) . 17n = 18n = 19n = 20n =

 

In the following, we will show that the approximation coefficient sets of the same 

level for two signal sizes of n and n+1 samples, respectively, are exactly the same with 

the exception of the very last sample.  

Consider two signal vectors  and  that differ from one another only in the 

last sample: 

nx 1+nx

1 2 3 2 1

1

1 2 3 2 1 1

[ , , ,......., , , ]
[ ]
[ , , ,...., , , ]

n n n

n

n n n

x x x x x x
x

x x x x x x

− −

+ +

− − +

=
=
=

M
n

n 1 n

x
x x  

Let the filter response be: 
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],[ 21 hh=nh           

By convolving  and  with , the resulting signals will be: nx 1+nx nh

],,,...,,[
],,,...,,[

12211121122111

21212211122111

++−++

−−−

+++=∗=
+++=∗=

nnnnn

nnnnn

xhxhxhxhxhxhxhxh
xhxhxhxhxhxhxhxh

nnn

nnn

hxy
hxy

11

 

For n even, downsampling  and  by 2 yields: ny 1+ny

1 1 1 3 2 2 1 1 2 2 2 2[ , ,..., , ] [ ], 1
2n n n n
nh x h x h x h x h x h x h x− −= + + =( )

1 ( 2) Me

e

n
nc z +  values     (3.9) 

1 1 1 3 2 2 1 1 2 1 1 2[ , ,..., ] [ ], 1
2n n n n
nh x h x h x h x h x h x h x+

+ += + + = +( 1)
1 ( 2) Me

e

n
nc z + values        (3.10) 

For n odd, downsampling  and  by 2 yields: ny 1+ny

2
1],[],,...,,[ )(1213221223111

+=+++= +−−−
nxhxhxhxhxhxhxh nnnn 21

)(
1 o

o
n

n zc  values   (3.11) 

1 1 1 3 2 2 1 2 1 2 1 ( ) 2 1
1[ , ,..., , ] [ ], 1

2n n n n
nh x h x h x h x h x h x h x+

− + + +
+= + + =( 1)

1 1 2 Mo

o

n
nc z + values  (3.12) 

From (3.9)-(3.12), we observe the pattern that the decomposed values of  and  

differ only in the last sample of the approximation coefficients. We will exploit this 

pattern in wavelet-based linear prediction. 

nx 1+nx

 

Example 3.1 

Consider a signal given by: 

)()2sin(10)( twttx += π  

where  is zero-mean white Gaussian noise with variance . Let us 

construct four signal vectors of size 17-20 as follows: 

)(tw 285.02 =σ

                                                          ],...,,[ 1721 xxx=17x

1 2 17 18 18[ , ,..., , ] [ ]x x x x x= =18 17 Mx x            

1 2 18 19 19[ , ,..., , ] [ ]x x x x x= =19 18 Mx x          

1 2 19 20 20[ , ,..., , ] [ ]x x x x x= =20 19 Mx x        
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The first level approximation coefficients are obtained from (3.9)-(3.12): 

=(17)
1c [1.5491,3.1829,5.3555,5.8636,9.1067,10.3957,11.4955,12.4582,14.7135] 

=(18)
1c [1.5491,3.1829,5.3555,5.8636,9.1067,10.3957,11.4955,12.4582,14.5117] 

=(19)
1c [1.5491,3.1829,5.3555,5.8636,9.1067,10.3957,11.4955,12.4582,14.5117,15.2920] 

=(20)
1c [1.5491,3.1829,5.3555,5.8636,9.1067,10.3957,11.4955,12.4582,14.5117,14.2501] 

We may observe that successive approximation coefficient vectors differ from 

each other only in the last sample value. Continuing with the second and third level 

decomposition for , the approximation and detail coefficients of Tables 

3.1, 3.2, 3.3 and 3.4 are obtained.  

20191817 xxxx ,,,

 
 1st Level Detail Coefficients 

(17)
1d  -0.3052  -0.5128  -0.7090  -0.2939  -0.9653   0.5954 -1.3221  -0.8489        0 

(18)
1d  -0.3052  -0.5128   -0.7090  -0.2939  -0.9653   0.5954  -1.3221  -0.8489   0.2018 

(19)
1d  -0.3052  -0.5128  -0.7090  -0.2939  -0.9653   0.5954  -1.3221  -0.8489   0.2018        0 

(20)
1d  -0.3052  -0.5128  -0.7090  -0.2939  -0.9653   0.5954  -1.3221  -0.8489   0.2018   1.0420 

 
Table 3.1. First Level Detail Coefficients. 

 

 2nd Level Detail Coefficients 
(17)
2d  -1.1553   -0.3593   -0.9114   -0.6807         0 

(18)
2d  -1.1553   -0.3593   -0.9114   -0.6807         0 

(19)
2d      -1.1553   -0.3593   -0.9114   -0.6807   -0.5517 

(20)
2d      -1.1553   -0.3593   -0.9114   -0.6807    0.1850 

 
Table 3.2. Second Level Detail Coefficients. 
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 3rd Level Detail Coefficients 
(17)
3d  -3.2436   -2.2257         0 

(18)
3d  -3.2436   -2.2257         0 

(19)
3d  -3.2436   -2.2257         0 

(20)
3d  -3.2436   -2.2257         0 

 
Table 3.3. Third Level Detail Coefficients. 

 

 3rd Level Approximation Coefficients 
(17)
3c  7.9756   21.7280   29.4270 

(18)
3c  7.9756   21.7280   29.0234 

(19)
3c  7.9756   21.7280   29.8037 

(20)
3c  7.9756   21.7280   28.7618 

 
Table 3.4. Third Level Approximation Coefficients. 

 

The results in the tables exhibit two patterns. One, the last value of the 

approximation coefficients changes as the size of the signal vector increases. Two, the 

last values of the detail coefficients consist of alternating zero and non-zero values. 

Figure 3.5 shows plots of the last values of approximation and detail coefficients for 

signal vectors of sizes 17-40. 
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Figure 3.5. Pattern of Approximation and Detail Coefficients for Third Level 
Wavelet Decomposition. 

 

C. WAVELET BASED PREDICTION ALGORITHM 
The wavelet-based prediction consists of three steps. First, the given signal 

samples are wavelet decomposed to the desired resolution level. Second, the last sample 

of the highest-level approximation coefficients is predicted using the modified covariance 

method. Third, the detail coefficients at different resolution levels are zero-padded as 

necessary, and the signal is reconstructed. The reconstructed signal has all the original 

samples and a new predicted sample.  

Let us assume that a signal  is given and that we wish to predict the next 

sample . First, the signal is wavelet decomposed to the  resolution level. The 

appropriate level of resolution is based on the length of the original signal . 

nx

]1[ +nx thj

nx
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Using k approximation coefficients of the highest level of decomposition j, the 

coefficient  is predicted and appended at the end of the set. In order to do that, a 

matrix C on the lines of (3.5) is constructed. The filter order P depends on the number k 

of the available approximation coefficients. Using (3.6) of the modified covariance 

method, the filter coefficients  are obtained and then used in (3.1) to obtain .  

]1[ˆ +kc j

ia ]1[ˆ +kc j

After having predicted , one zero is padded at the end of the detail 

coefficient set in each level of decomposition, since the approximation and detail 

coefficient sets in each level must consist of the same number of elements. The sample 

 is obtained by reconstructing the signal using the newly constructed 

approximation and detail coefficient sets. The procedure is further explained in Example 

3.2. 

]1[ˆ +kc j

]1[ˆ +nx

 

Example 3.2 

Assume that the first 48 values of the signal in Example 3.1 are known, and the 

goal is to predict the 49th value. For the purposes of the example, a three level wavelet 

decomposition is used.  

Recall that, for successive signal vector sizes, only the last value of each 

coefficient set changes. The difference between the signal vector  and the signal 

vector  is in the 7

48x

49x

[ˆ3c

49x

th value of the 3rd level approximation coefficient set, as shown in 

Figure 3.6. Decomposing  yields 6 samples in each coefficient set at level 3, as shown 

in Figure 3.6(a). To predict the 49

48x
th sample , we need to predict the 749x̂ th sample at level 

3 as shown in Figure 3.6(b) and zero-pad the detail coefficients at all levels.  Applying 

the modified covariance method on the third level approximation coefficient set, the 

sample  is predicted. The detail coefficient sets remain the same with the only 

difference being the padded zero at the end of each set in order to have the same number 

of samples in the approximation and detail sets of each level. The 49

]7

th sample of signal 

vector  is obtained by performing the wavelet reconstruction procedure using the 
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structure in Figure 3.6(b). Upon reconstruction, we have 49 values and the 49th sample is 

the predicted sample . ˆ[49]x

24 

12 

25 

13 

(a)   Deco

(b)   Reco

 
 

48

 

12 

6 6 

24

49

 7th value is predicted

? 

12 0 

6 6 0 

24 0 

mposition of signal vector 48x  

nstruction of signal vector 49x  

Figure 3.6. Decomposition Sample Sizes for Signal Vectors  and . 48x 49x
 

The wavelet-based prediction method has two advantages. The first is the 

reduction of the prediction error, since prediction is carried out on signal components of 

low frequencies, which is the highest-level approximation coefficient set. Secondly, the 

role that the prediction error plays in the estimation of the  sample is weighted ]1[ˆ +nx
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down by using the known past values of the approximation and detail coefficient sets and 

the known future values, i.e., the zeros padded at the end of the detail coefficient sets. 

D. EXPERIMENTAL RESULTS 
In order to have a better understanding of how the quality of the wavelet based 

prediction scheme is affected by either the available number of samples of the 

approximation coefficient set or the level of the wavelet decomposition, simulations were 

run for several signals. The parameters of these experiments, such as the number of past 

values used and the number of the predicted values or the level of the wavelet 

decomposition, were changed. For the results shown in the following figures, the signal 

of Example 3.1 was used. The plots shown are based on averaging results from six 

simulation runs. 

At the beginning we attempted to predict groups of 4, 8, 12 and 16 consecutive 

future samples using 48, 96, 144, 192 and 240 signal samples. In order to do that, both 

linear prediction and a third level wavelet-based prediction were used. From Figure 3.7, 

we can see that the performance of both the linear prediction and the wavelet-based 

prediction is proportional to the number of the samples used. Furthermore, the 

performance of both is inversely proportional to the number of consecutive future values 

predicted. Therefore, the more future values there are to predict, the worse the 

performance becomes. This is due to the fact that the prediction of future values is based 

upon erroneous previously predicted values, and the error accumulates. The metric used 

in the figure is the mean squared prediction error (MSE): 
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ii xx
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D        (3.13) 

where N is the number of signal samples,  are the original samples and  are 

recovered samples.  

ix ix̂

Figure 3.8 indicates that the wavelet-based prediction performs better than linear 

prediction as the number of the consecutive predicted future samples increases. This is 

expected since the error that accumulates each time another consecutive sample is 

predicted is larger in the case of linear prediction. The fact that the performance of the 
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wavelet-based prediction is worse than that of the linear prediction when the number of 

the previous samples used is small is because after the wavelet decomposition is 

performed, the number of samples in the approximation coefficient set available for 

linear prediction is very small. For example, for a 48-point signal, after a 3-level 

decomposition, there are only 6 values upon which the linear prediction would be based. 

As the number of previous samples increases, the wavelet method performs better than 

the direct method. 

 

  (a) Linear Prediction            (b) Wavelet-Based Prediction 
 

Figure 3.7. Mean Squared Prediction Error versus the Number of Signal 
Values Used for Prediction. 

 

The performance of the wavelet-based prediction improves as the level of 

decomposition increases as shown in Figure 3.9. Again, there is a constraint based on the 

number of samples in the approximation coefficient set, which are available at each 
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decomposition level. For this reason, the error for the 3-level decomposition, shown in 

Figure 3.9, is larger than that of the 2-level decomposition when only 48 points are used. 

 

 
Figure 3.8. Performance Comparison between Direct Linear Prediction and 

Wavelet-Based Prediction for (a) 4 Future Values, (b) 8 Future 
Values, (c) 12 Future Values, and (d) 16 Future Values 
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Figure 3.9. Mean Squared Prediction Error for Different Decomposition 

Levels. 
 

E. SUMMARY 
Linear prediction works well with highly correlated signal samples. However, 

when a signal consists of high frequencies, the performance of the linear prediction 

degrades. In this chapter, a method that excludes the high frequencies in a given signal by 

using wavelet decomposition was examined. First, the signal is wavelet decomposed to 

the desired resolution level. Next, the last sample of the highest-level approximation 

coefficients is predicted using linear prediction and then the detail coefficients at different 

resolution levels are zero-padded as necessary. Finally, the signal is reconstructed having 

all the original samples and a new predicted sample.  

In the next chapter, a three-state Markov model will be developed. This model 

will be used to simulate a wireless channel and the losses that it introduces in a 

transmitted signal.  
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IV. WIRELESS CHANNEL MODEL  

In this chapter a two-state Markov model of a wireless channel will be examined, 

and then a three-state Markov model will be developed. The purpose of this model is to 

simulate both single and burst-packet errors that a wireless channel introduces in a 

transmitted packet stream. 

A. TWO-STATE MODEL  
When data is transmitted through a mobile radio channel, absorption, reflection, 

diffraction and scattering are the cause of degradation of the received signal quality. 

There may be obstacles, such as buildings between the transmitter and the receiver, 

which cause further degradation in signal quality. Also, weather conditions may lead to 

burst errors, which in turn make the received signal quality unacceptable. A two-state 

Markov representation of the wireless channel, shown in Figure 4.1, can be used to model 

the preceding conditions [11], [12]. In the “Good” state, no losses occur while in the 

“Bad” state, the probability of error can be significant. The transition probabilities  

represent the probability of state transition from state i to state j. 

ijP
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Figure 4.1. Transition Diagram for the Two-State Markov Model. 
 

The transition matrix that describes the channel is given by: 









=
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0100

PP
PP

P                      (4.1) 
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where P00 and P11 are the probabilities of the channel remaining in the same state as 

before, and the rest are the transition probabilities that the channel changes from a given 

state to another state. In (4.1), “0” indicates the “Good” state and “1” the “Bad” state. The 

steady state probabilities jπ  of this model are given by [13]: 

,
1

0
∑

=

=
i

ijij Pππ  for j=0,1                    (4.2) 

∑
=

=
1

0
1

i
iπ           (4.3) 

Solving these equations yields: 
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0 PP
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1 PP

P
+

=π                      (4.5) 

From the principle of total probability, the probability of channel error can be expressed 

as: 

=eP Pr[error | Good state]Pr[Good state]+ Pr[error | Bad state]Pr[Bad state] 

      10 ππ BG PP +=                           (4.6) 

where  and  are the probabilities of an error occurring in the “Good” and the “Bad” 

state, respectively. A Venn-diagram representation of  is shown in Figure 4.2. 

GP BP

eP

 Figure 4.3 shows plots of the probability of channel error, , as a function of the 

probability of error in the “Bad” state,  for theoretical and simulated two-state 

channels. The probability of error for the theoretical channel is given by (4.6) with 

 and various values of . Using these same values, the channel is 

simulated in Matlab. The simulation results shown are based on averaging the results 

from six simulation runs. 

eP

,BP
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Figure 4.2. Average Error Probability of a Two-State Channel. 

 

 

 
Figure 4.3. Probability of Channel Error  for Theoretical and Simulated 

Channels as a Function of the “Bad” state Probability, . 
eP

BP
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B. THREE-STATE MODEL  
In this thesis, the preceding two-state model is extended to a three-state Markov 

channel as shown in Figure 4.4. The three possible states of the channel are the “Good” 

state, where packets are dropped with probability , the “Bad” state, where packets are 

dropped with probability  and the “Bursty” state, where packets are dropped with 

probability . The channel transition matrix that characterizes the channel is given by: 

GP

BP

MP
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Figure 4.4. Transition Diagram for the Three-State Model. 
 

The steady state probabilities are determined by extending (4.2) and (4.3) for , 1, 2 

where 0, 1, 2 correspond to “Good”, “Bad” and “Bursty” states, respectively. By solving 

these extended equations, we have the steady state equations: 

0=j

210 1 πππ −−=                   (4.8) 

1
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1 −−

−−−
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PP
PPP ππ           (4.9) 
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The channel error probability is then given by: 

=eP Pr[error | Good state]Pr[Good state]+ Pr[error | Bad state]Pr[Bad state]  

                                            + Pr[error | Bursty state]Pr[Bursty state]              

     πππ MBG PPP 210 ++=           (4.11)  

where ,  and  are the probabilities of an error occurring in the “Good”, the 

“Bad” and the “Bursty” state, respectively. A Venn-diagram representation of  is 

shown in Figure 4.5. 
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Figure 4.5. Average Error Probability of a Three-State Channel. 

 

The actual channel that was used for the simulations, shown in Figure 4.6, was a 

simplified version of the channel shown in Figure 4.4. The difference between the two 

channels is that in Figure 4.4, a transition from any state to any state could be made 

regardless of the current state. On the other hand, in the simplified model of Figure 4.6, 

the state transitions are somewhat restrictive. Transitions could only occur between 
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adjacent states as illustrated in Figure 4.6. This is achieved by setting  in 

Figure 4.4. Consequently, the transition matrix becomes: 

02112 == PP
















=

2220

1110

020100

0
0

PP
PP

PPP
P                   (4.12) 

 

 

38

Figure 4.7 shows plots of the probability of channel error, , as a function of the 

probability of error in the “Bad” state,  for theoretical and simulated three-state 

channels. The probability of error for the theoretical channel is given by (4.15) for three 

different sets of values for . Using these same values, the channel 
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Figure 4.6. Transition Diagram for the Simplified Three-State Channel. 

 

Equations (4.9) and (4.10) are correspondingly simplified to: 
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Additionally, in the simplified model, we assume that no transmission errors occur in the 

“Good” state; therefore, from (4.11) the channel error probability simplifies to: 

21 ππ MBe PPP +=                   (4.15) 

 



is simulated in Matlab. The simulation results shown are based on averaging the results 

from six simulation runs. 

 
 
Figure 4.7. Probability of Channel Error  for Theoretical and Simulated 

Channel as a Function of the “Bad” state Probability, . Curve (a) 
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C. SUMMARY 
In this chapter, a two-state Markov model was examined and a three-state Markov 

model was developed. The three possible states of data transmission are the “Good” state, 

where an error-free transmission occurs, the “Bad” state, where single packets are 

dropped and the “Bursty” state, where consecutive packets are dropped. This model will 

be used to simulate transmission of various kinds of data, including images and 
 39



uncompressed and compressed speech signals. After receiving the packet stream with 

missing packets, both linear prediction and the wavelet-based prediction will be applied 

in an effort to recover missing information, thereby concealing the effects of packet loss 

from the end user. This technique applies only to signals that are error tolerant, e.g., 

video, image and speech signals. Applications, such as file transfer, typically require 

error-free transmission. In such applications, other techniques, such as automatic repeat 

request (ARQ), are appropriate.  

The next chapter presents simulation results of image and speech transmission 

over wireless channels using the technique developed in Chapter III and the three-state 

model developed in this chapter. 
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V. SIMULATION RESULTS 

Simulation results of the image and voice packet stream transmission over a 

wireless channel implemented using a three-state Markov model are presented in this 

chapter. The received packet stream at the receiver (i.e., at the output of the channel) has 

missing packets due to channel errors (and possibly buffer overflows). Direct and 

wavelet-based linear prediction algorithms are applied on the received packet stream in 

order to recover the information in the lost packets. Since both image and speech signals 

are loss tolerant, the objective is to recover enough information to conceal the effects of 

loss in a way that the perceptual signal quality is acceptable to the end user. Results of 

both direct and wavelet-based prediction are compared for image and voice packet 

streams. 

The simulation scheme can be illustrated as shown in Figure 5.1. The transmitter 

packetizes the image or speech signals and transmits a packet stream over the channel. 

The prediction algorithms reside in the receiver. All blocks are implemented in Matlab. 

Appendix A contains some of the Matlab code developed. 

 

end user 
Prediction 
Algorithms 

Erroneous 
Channel 

Receiver  
Circuits 

Transmitter 
Circuits  

Processing/ 
Packetization 

Image/speech 
signal 

 
Figure 5.1. Block Diagram of the Simulation Scheme. 

 
A. UNCOMPRESSED SPEECH SIGNAL 

The speech bit stream was packetized into packets of size 48 bytes each. These 

packets are then transmitted through the channel as illustrated in Figure 5.1. The speech 
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signal is sampled at 8000 samples/sec with 8 bits/sample; thus each packet corresponds to 

a 6 msec time duration.  

In the channel, whenever the transmission took place in the “Good” state, an 

error-free transmission was assumed; in the “Bad” state, a single packet was lost; and in 

the “Bursty” state consecutive packets were lost. The transition probabilities chosen for 

the simulations regulated the total number of consecutive packets that were dropped. 

In order to recover the lost packets, both the direct and the wavelet-based linear 

prediction were applied. The modified-covariance prediction algorithm with a filter order 

of 18 was used for direct and wavelet-based methods. Through experimentation, a filter 

order of 18 was found to provide, on average, the best results. For the wavelet approach, 

a 2-level decomposition using Haar wavelets is implemented. 

Figure 5.2 shows the plot of signal distortion versus packet loss probability . 

The plots are based on averaging results from six simulation runs. The distortion is 

measured using: 

BP
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where N is the number of speech samples,  are the original samples and  are the 

recovered samples. The three curves in the figure indicate distortion in the received signal 

(dotted line), distortion in the signal with linear prediction based error recovery (dashed 

line) and distortion with the wavelet approach (solid line). As packet loss increases, the 

linear prediction method performs worse than the received signal, i.e., it seems to 

introduce additional distortion for the range of packet loss probability used in this 

simulation. Better signal quality is observed by the author for the wavelet method through 

listening tests of sample speech signals. 

ix ix̂
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Figure 5.2. Distortion versus Packet Loss Probability for Speech Packet 
Stream. 

 

B. CELP CODED SPEECH SIGNAL TRANSMISSION 
In many applications, compression of speech signals is needed. For example, in 

digital cellular technology, where the bandwidth is limited, compression allows more 

users to share the system. The digital speech signals are typically sampled at a rate of 

8000 samples/sec and 8 bits/sample. Code Excited Linear Prediction (CELP) is one of the 

widely used methods for speech compression. This synthesis-by-analysis coder 

essentially consists of a stochastic codebook, an adaptive codebook, and a linear 

prediction filter, as shown in Figure 5.3. The adaptive and stochastic codebooks provide 

the excitation that is driven through the linear prediction filter for reconstructing the 

original speech [3]. By comparing the synthesized speech with the original speech, the 

excitation that produces the minimum error is chosen. 
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Figure 5.3. Basic CELP Coder. 
 

Compression is achieved by transmitting the parameters of the prediction filter 

and the codebook indices and gains. The filter parameters are represented using the line 

spectrum pairs (LSP), which are obtained by transformation of the filter coefficients [3]. 

In CELP, the speech is fragmented into 30-ms frames, and the frames are further divided 

into four subframes, each 7.5 ms long. Each frame is coded into 144 bits; thus CELP 

provides an overall bit rate of 4.8 kbps. The manner in which these bits are allocated is 

shown in Table 5.1. Frames of 144 bits in CELP coded speech contain 10 line spectrum 

pair values (30-ms long), and four sets of codebook indices and gains (each 7.5-ms long). 
 

Parameters Number of Bits 

Line Spectrum Pair 
Pitch Prediction Filter 

Codebook Indices 
Gains 

Synchronization 
Forward Error Correction 

Future Expansion 

34 
48 
36 
20 
1 
4 
1 

Total 144 

 
Table 5.1. Bit Allocation in CELP. 
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Each CELP frame is packetized into one packet and transmitted over the 

simulated wireless channel (see Figure 5.1). When the transmission takes place in the 

“Good” sate, no packets are dropped; when the erroneous channel states are used, single 

or consecutive packets are dropped with a probability  or , respectively. BP MP

In a lost CELP frame, the following parameters are estimated through direct and 

wavelet-based prediction: 

• 10 line spectrum pair coefficients (30 ms) 

• 4 stochastic codebook indices, one in each subframe (7.5 ms) 

• 4 stochastic gains, one in each subframe 

• 4 adaptive codebook indices, one in each subframe 

• 4 adaptive gains, one in each subframe 

A prediction filter of order five was used for both direct and wavelet-based methods. 

Parameter values from nine previous packets were used, leading to a delay of 270 msec. 

Using additional past packets would lead to higher delay, which may not be acceptable 

for real-time applications. 

Figure 5.4 shows plots of distortion versus packet loss probability  of the 

“Bad” state for the received signal without error recovery (dotted line), direct prediction 

method (dashed line) and wavelet-based method (solid line). The wavelet-based method 

consistently produced better performance than the direct method. 

BP
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Figure 5.4. Distortion versus Packet Loss Probability for CELP-Coded Speech 

Packet Stream. 
 
C. TRANSMISSION OF IMAGE DATA  

The given image was packetized into 8  blocks and then transmitted through 

the three-state channel as illustrated in Figure 5.1. In the channel, whenever the 

transmission took place in the “Good” state, an error-free transmission was assumed; in 

the “Bad” state, an  block was lost; and in the “Bursty” state consecutive packets, 

forming  macroblocks, were lost. A block and a macroblock are illustrated in 

Figure 5.5.  The transition probabilities chosen for the simulations regulated the total 

number of the consecutive packets that were lost. 

8×

88×

1616 ×

In order to recover the lost packets, both the direct and the wavelet-based linear 

prediction were applied. The modified-covariance prediction algorithm with a filter order 

of 18 was used for direct and the wavelet-based methods. Since image transmission is not 

a case of real-time transmission, there is flexibility concerning the number of previous 

samples that can be used. In the simulations, 12 previous blocks or 96 previous data 
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samples were used. For the wavelet approach, a 3-level decomposition using Haar 

wavelets was implemented. 

Figure 5.6 shows plots of peak signal-to-noise ratio (pSNR) versus packet loss 

probability . The plots are based on averaging results from six simulation runs. The 

peak signal-to-noise ratio, in dB, is measured using: 

BP
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where D is the mean squared error between the original pixel values  and the 

recovered pixel values  given by: 
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and M and N are the number of rows and columns, respectively, of the transmitted image.  

The three curves in Figure 5.6 indicate the peak signal-to-noise ratio of the 

received image (dotted line), the image with linear prediction based error recovery 

(dashed line) and the wavelet approach (solid line). The wavelet-based method performs 

better than direct linear prediction throughout the loss probability range used in the 

simulations. Appendix B contains additional results on images. 

In Figure 5.7, the original image, the received image without error recovery, the 

recovered image using direct linear prediction and the recovered image using the 

wavelet-based scheme are shown. 
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Figure 5.5. Blocks and Macroblocks in an Image. 

 
Figure 5.6. Signal-to-Noise Ratio versus Packet Loss Probability  for Image 

Packet Stream. 
BP
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Figure 5.7. (a) Original Image, (b) Image without Error Recovery, (c) 

Recovered Image Using Linear Prediction, (d) Recovered Image 
Using Wavelet Based Scheme. 

 

D. WAVELET-BASED PREDICTION WITH DAUBECHIES’ WAVELETS 
Using the simulation scheme shown in Figure 5.1, the wavelet-based method was 

successfully extended to Daubechies wavelets. Exploiting properties such as compact 

support, averaging, orthogonality, and regularity [15], several wavelets of the Daubechies 

family were successfully applied to implement wavelet-based prediction. For the 

following results, Daubechies wavelet “db10,” the scale and wavelet function of which 

are shown in Figure 5.8, was used. 
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Figure 5.8. Scaling and Wavelet Function of Daubechies Wavelet “dB10”. 

 

The three curves in Figure 5.9 indicate peak signal-to-noise ratio of the received 

image (dotted line), the image with linear prediction based error recovery (dashed line) 

and the wavelet approach (solid line). The wavelet-based method performed better than 

direct linear prediction over the loss probability range used in the simulations.  

In Figure 5.10, the original image, the received image without error recovery, the 

recovered image using direct linear prediction and the recovered image using the 

wavelet-based prediction are shown. The performance of the wavelet-based prediction 

using Haar wavelet is better than the one using Daubechies wavelets. 
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Figure 5.9. Signal-to-Noise Ratio versus Packet Loss Probability  for Image 

Packet Stream. 
BP
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(d) (c) 

(b) (a) 

Figure 5.10. (a) Original Image, (b) Image without Error Recovery, (c) 
Recovered Image Using Linear Prediction, (d) Recovered Image 
Using Wavelet Based Scheme. 
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E. DENOISING 
When noise is present in a signal, denoising is used to reduce the effects of noise 

in wavelet-based analysis. After the approximation and detail coefficients have been 

computed, they are subjected to a threshold, thus removing all coefficients below a 

certain value. The energy of a signal is typically concentrated in a small number of 

coefficients. These coefficients have larger values than the ones due to a noise or other 

distortion that spreads its energy over a large number of coefficients [9]. Removing the 

coefficients that do not exceed the set threshold and reconstructing the signal from the 

remaining coefficients eliminate much of the noise. In this process, some information will 

be lost, but the overall signal-to-noise ratio will be improved. 

There are two thresholding options called hard and soft thresholding. In this work 

hard thresholding was used, as given by [9]: 
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where  is the thresholding function, x is the value of the coefficient that is examined 

and T is the threshold value, given by [9]: 

md

))(log(log2 22 nnT =        

where n is the length of the signal. 

1. Implementation using Prediction and Denoising 

The given image was packetized into 8  blocks and then transmitted through 

the channel (see Figure 5.1) as described in the previous section. In order to conceal the 

packet-loss effects, two different approaches were attempted. In the first approach, after 

the image was received, shown in Figure 5.11 (a), denoising was applied to it 

(predenoising), shown in Figure 5.11 (b), and then the missing blocks were predicted 

using both the direct and the wavelet-based scheme (Figures 5.11 (c) and (d)). In the 

second approach, after the image was received, shown in Figures 5.12 (a) and (d), the 

missing blocks were predicted using both the direct and the wavelet-based scheme, 

shown in Figures 5.12 (b) and (e), and then denoising was performed (postdenoising), see 

8×
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Figures 5.12 (c) and (g). In both cases, the plots are based on averaging results from six 

simulation runs.  

As shown in Table 5.2, predenoising performs marginally better than 

postdenoising, and improves the peak signal-to-noise ratio by approximately 1.5-2 dB. 

The wavelet-based prediction provides just a fraction of an improvement over linear 

prediction; the main reason of quality degradation is the additive noise and not the lost 

packets. 

 
  Image with 

Missing Blocks 
LP 

Method 
Wavelet-based 

Method 
Before 

Denoising 
20.1251 ---------- ---------- PREDENOISING 

After 
Denoising  

20.9728 21.6971 21.8332 

Before 
Denoising 

20.1251 20.7707 20.8693 POSTDENOISING 

 
 

pSNR 
(dB) 

After 
Denoising  

---------- 21.5357 21.6500 

 

Table 5.2. Comparison between Predenoising and Postdenoising. 
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 (d) (c) 

(b) (a) 

 
Figure 5.11. Predenoising:  (a) Noisy Image Without Error Recovery, (b) 

Denoised Image Without Error Recovery, (c) Recovered Image 
Using Linear Prediction, (d) Recovered Image Using Wavelet-
Based Scheme. 
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(b) (c) 

(d) (e) (f) 

(a) 

 
Figure 5.12. Postdenoising:  (a) Noisy Image Without Error Recovery, (b) 

Recovered Image Using Linear Prediction, (c) Denoised Image, (d) 
Noisy Image Without Error Recovery,  (e) Recovered Image using 
Wavelet-Based Prediction, (f) Denoised Image. 

 
F. SUMMARY 

In this chapter, simulation of speech and image packet stream transmission is 

implemented in order to compare the performance of the direct and wavelet-based linear 

prediction. After receiving the packet stream with the missing packets, both methods 

were applied in an effort to conceal the effects of packet loss from the end user. The 

wavelet-based prediction was found to perform consistently better than direct linear 
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prediction. Application of denoising to error recovery only provided marginal 

improvement in peak signal-to-noise ratio for image packet streams.  
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VI. CONCLUSIONS 

The objective of this thesis was to investigate a new prediction scheme that 

utilizes the wavelet decomposition in linear prediction and compares its performance 

with that of direct linear prediction. The two methods are used for concealing packet-loss 

effects when transmitting packet streams over wireless channels and their performance 

compared through simulation results based on image and speech packet streams.  

A. SIGNIFICANT RESULTS 
From the simulation results shown in Chapter V, the superior performance of the 

wavelet-based approach over direct linear prediction was demonstrated. The wavelet 

method results in a smaller prediction error than the direct linear prediction. This may be 

attributed to the fact that prediction in the wavelet method is carried out on signal 

components of low frequencies. The role that the prediction error plays in the estimation 

of the  sample is weighted down by using the known past values of the 

approximation and detail coefficient sets and the known future values of the detail 

coefficients, i.e., the zeros padded at the end of the detail coefficient sets. The wavelet 

prediction method has been successfully extended to Daubechies wavelets. Denoising of 

wavelet coefficients only provided marginal improvement in signal quality. 

]1[ˆ +nx

A three-state Markov model that simulates a wireless channel was developed. 

From the plots shown in Chapter IV, we remark that the model provides an accurate 

representation of a lossy wireless channel. 

B.  FUTURE WORK 
Two families of wavelets were used in this thesis: Haar wavelet and Daubechies. 

A more in-depth investigation is required in order to generalize the proposed method to 

other wavelets.  

Although the wavelet-based prediction was experimentally shown to perform 

better than linear prediction, rigorous mathematical support was not provided in this 

thesis. A future effort may focus on developing a rigorous mathematical basis for this 

work. 
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The prediction method did not work well when packet losses caused a loss of 

information in the high frequency region of the bitstream; for example, in regions where 

an abrupt change in pixel values occurs in an image. A possible solution may consider 

first determining where this change takes place and then using forward prediction for the 

part of the block where the values are highly correlated and backward prediction for the 

rest of the block, as shown in Figure 6.1. This way the known data to the left and to the 

right of the missing block would be better exploited. 

 
Figure 6.1 Application of Forward and Backward Linear Prediction in the 

High Frequency Region of the Image. 
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APPENDIX A.  MATLAB CODES 

 
A. BURST NOISE CHANNEL 

1. Two-State Channel 
  

221 p−

11p

111 p−

22p

Bad Good 

 

 

 

 

 

 

 

%The following code simulates a channel that alternates between two states 

%according to a binary Markov process. 

% p11 = prob. of staying in the bad channel 

% p22 = prob. of staying in the good channel 

% Pe1 = prob. of error in the bad channel 

% Pe2 = prob. of error in the good channel. 

 

clear 

clc 

S=[];S1=[];S2=[]; 

 

s=[];s2=[];s4=[];s5=[];s6=[]; 

for Pe1=0:0.001:.01 

    Pe1 

    s3=[]; 

    s=[s,Pe1];     

    TOTAL_lost_packet_rate=[]; 
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    for times=1:100 

        times 

        total_packets=10000; 

        p11=10^-2; 

        p22=0.991; 

          

        mu=[0.1,0.9];                     % Initial distribution 

        P=[[p11 1-p11];[1-p22 p22]];     % Transition matrix 

        n=total_packets;                  % Number of time steps to take 

        state=zeros(1,n);  

        t=1:n;                            % Time indices 

        state(1)=rando(mu);             % generate first x value (time 0, not time 1),if state(1)=2  

                                          % I am in the Bad channel else in the Good 

        lost_blocks=[]; 

         

        if state(1)==1 

            lost_blocks=[lost_blocks,1]; 

        end 

        for i=1:n-1 

            state(i+1) = rando(P(state(i),:));      % Pr(same state or transition) 

            if state(i+1)= =1 

                [error]=error_probab(Pe1);          % if it goes to the bad state.... 

                if error= =1                        

                    lost_blocks=[lost_blocks,i+1]; 

                end 

            end 

        end 

        plot(t, state, '*'); 

        axis([1 n 0 (length(mu)+1)]); 

        lost_blocks  ; 
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        total=size(lost_blocks);  

        how_many=total(2);  %how many blocks are lost 

        s3=[s3,how_many]; 

        lost_packet_rate=how_many/total_packets; 

        TOTAL_lost_packet_rate=[TOTAL_lost_packet_rate,lost_packet_rate]; 

    end                     % of times=1:10 

     

    TOTAL_lost_packet_rate_2=mean(TOTAL_lost_packet_rate); 

    s5=[s5,TOTAL_lost_packet_rate_2]; 

    avg=mean(s3); 

    s2=[s2,avg]; 

 

    % THEORETICAL PROBABILITY 

 

    Pb_theor=((1-p22)/((1-p22)+(1-p11)))*Pe1; 

    s6=[s6,Pb_theor]; 

    how_many_theor=Pb_theor*total_packets; 

    s4=[s4,how_many_theor]; 

     

end % of Pe1=0.1:0.1:1 

 

S=[S,s];S1=[S1,s5];S2=[S2,s6]; 

figure(27) 

semilogx(S,S1,'b*-',S,S2,'ro-'),grid   % x axis: function of Pe1,y axis: Average error 

probability 

legend('Simulated Channel','Theoretical Channel') 

xlabel('Probability of error in the "bad" channel - P_B') 

ylabel('Average error probability - (P_e)_{avg}') 
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2. Three-State Channel 
 

23p

331 p−

21p

111 p−

11p 22p 33p

BurstyGoodBad 

 

 

 

 

 

 

 

%The following code simulates a channel that alternates between two states 

%according to a binary Markov process. 

% p11 = prob. of staying in the bad channel 

% p22 = prob. of staying in the good channel 

% p21 = prob. of transition from the good to the bad channel 

% p23 = prob. of transition from the good to the bursty channel 

% p33 = prob. of staying in the bursty channel 

% Pe1 = prob. of error in the bad channel 

% Pe2 = 0 ==> there are NO errors in the good channel. 

% Pe3 = prob. of error in the bursty channel 

% p_g = steady state probability of being in the good channel 

% p_b = steady state probability of being in the bad channel 

% p_m = steady state probability of being in the burst channel 

 

% LTJG Anastasios Garantziotis (Hellenic Navy) 

% April 2002 

 

clear 

clc 
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S=[];S1=[];S2=[]; 



 

 

s=[];s2=[];s4=[];s5=[];s6=[]; 

 

for Pe1=0:0.001:.01 

    Pe1 

    s3=[]; 

s=[s,Pe1];     

TOTAL_lost_packet_rate=[]; 

 

    for times=1:10 

        times 

total_packets=10000; 

block_counter=0;        %******************** 

help=[];                %******************** 

COUNTER=[];             %******************** 

burst=0;                %******************** 

p11=10^-8; 

p22=0.8; 

p33=0.5; 

p21=0.198; 

p23=0.002; 

Pe3=1; 

    

mu=[0.85,0.1,0.05];%initial distribution   

P=[[p22 p21 p23];[1-p11 p11 0];[1-p33 0 p33]];% transition matrix 

   

n=total_packets;% number of time steps to take 

state=zeros(1,n); % clear out any old values 

t=1:n;          % time indices 
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state(1)=rando(mu); % generate first x value (time 0, not time 1),if state(1)=2, I am in the     

          %Bad channel else in the Good 

lost_blocks=[]; 

 

if state(1)==2 | state(1)==3 

    lost_blocks=[lost_blocks,1]; 

end 

 for i=1:n-1, 

    state(i+1) = rando(P(state(i),:));      % check whether it will stay in the same state or it  

%will go to the other state 

    if state(i+1)==2 

        block_counter=block_counter+1;                % SINGLE ERRORS  

        [error]=error_probab(Pe1);              % if it goes to the bad state.... 

        if error==1                       % then the probability that the packet will be lost is..... 

            lost_blocks=[lost_blocks,i+1]; 

        end 

    elseif state(i+1)= =3 

        help=[help,i+1]; 

        [error]=error_probab(Pe3);              % if it goes to the bursty state.... 

        if error= =1                       % then the probability that the packet will be lost is..... 

            lost_blocks=[lost_blocks,i+1]; 

        end 

    end 

end 

 

 

% ******* This part gives me the number of single and  ************ 

% *********                  burst errors                                   *********** 

for i=2:max(size(help))                                                                        
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    counter=help(i)-help(i-1);                                                                 

    COUNTER=[COUNTER,counter];                                                                 

end                                                                                            

for i=2:max(size(COUNTER))                                                                     

    if (COUNTER(i)==1) & (COUNTER(i-1)~=1)                                                     

        burst=burst+1;                                                                         

    end                                                                                        

end                                                                                            

Single_blocks__bursts=[block_counter,burst] 

 

total=size(lost_blocks);  

how_many=total(2);  %how many blocks are lost 

s3=[s3,how_many]; 

 

lost_packet_rate=how_many/total_packets; 

TOTAL_lost_packet_rate=[TOTAL_lost_packet_rate,lost_packet_rate]; 

%TOTAL_lost_packet_rate; 

 

end % of times=1:10 

 

TOTAL_lost_packet_rate_2=mean(TOTAL_lost_packet_rate); 

s5=[s5,TOTAL_lost_packet_rate_2]; 

avg=mean(s3); 

s2=[s2,avg]; 

 

% THEORETICAL PROBABILITY 

 

q1=p23-(p23*p11); 

q2=p21*(1-p33); 

q3=(p11-1)*(p33-p23-1); 
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p_m=q1/(q2+q3); 

p_b=(-p21+(p21*p_m))/(p11-p21-1); 

p_g=1-p_b-p_m;                   % this is not needed since there are no errors in the good 

state 

Pb_theor=p_b*Pe1+p_m*Pe3; 

s6=[s6,Pb_theor]; 

how_many_theor=Pb_theor*total_packets; 

s4=[s4,how_many_theor]; 

 

end % of Pe1=0.1:0.1:1 

 

S=[S,s];S1=[S1,s5];S2=[S2,s6]; 

figure(27) 

semilogx(S,S1,'b*-',S,S2,'ro-'),grid   % x axis: function of Pe1,y axis: Average error 

probability 

legend('Simulated Channel','Theoretical Channel') 

xlabel('Probability of error in the "bad" channel - P_B') 

ylabel('Average error probability - (P_e)_{avg}') 

 

B. PROPOSED SCHEME 

1. Wavelet-Based Prediction Algorithm 
function [photo4,photo5,photo99]=photo_pred(photo,x_start,x_end,y_start,y_end,Points) 

 

% INPUT 

% photo=Original Photo 

% x_start=Start of missing block for rows 

% x_end  =End of missing block for rows 

% y_start=Start of missing block for columns 

% y_end  =End of missing block for columns 

% OUTPUT 
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% photo_4=prediction of the missing block using LPC 



% photo_5=prediction of the missing block using Wavelets 

 

x_zero=max(size(x_start:x_end)); 

y_zero=max(size(y_start:y_end)); 

photo3=photo; 

photo3(x_start:x_end,y_start:y_end)=zeros(x_zero,y_zero); 

% ********************************************** 

%       Determining if the Missing Block                * 

%          is Low or High Frequency                        * 

% ********************************************** 

Mean_of_Block=(mean(photo(x_start-y_zero:x_end-y_zero,y_start-y_zero:y_end-

y_zero)'))'; % For each row 

Total_mean=mean(Mean_of_Block); 

Difference=Mean_of_Block-Total_mean; 

     

% ********************************************** 

%       Prediction using LPC and Wavelets                 * 

% ********************************************** 

%photo4=photo3; 

%photo5=photo3; 

photo4=[]; 

photo5=[]; 

photo99=[];    

 

% ********************************************* 

%     Prediction Using Modified Covariance           * 

% ********************************************* 

filter=18; 

%count_x=x_start;  

count_x=1;         
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for i=1:x_zero         

    Row=[]; 

    Prediction1=photo(count_x,y_start-Points:y_start); 

    Prediction1=double(Prediction1); 

    for j=1:y_zero    % So many predictions per row 

        [a1,S1,R1]=mcovar(Prediction1',filter); 

        estim1=-a1(2:filter+1)'*Prediction1(end:-1:end+1-filter)'; 

        Prediction1=[Prediction1(2:end),estim1]; 

        Row=[Row,estim1]; 

    end 

%    photo4(count_x,y_start:y_end)=Row;    

    photo4(count_x,1:y_zero)=Row;          

    count_x=count_x+1; 

end 

photo0=double(photo); 

photo44=double(photo4); 

Error=[(photo0(x_start:x_end,y_start:y_end)-photo44).^2]; 

Error=(sum(Error'))'; 

[Min_Error,Min_Row_Error]=min(Error); 

Row_Error_LPC=Error; 

 

% ************************************** 

%      Prediction Using Wavelets             * 

% ************************************** 

 

count_x=1;              

for k=1:x_zero         

    Prediction2=photo(count_x,y_start-Points:y_start);  

    Prediction2=double(Prediction2); 

    wav_row=[];             
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    wav_row99=[];    

    total=y_zero/4;        % How many times I will perform the wavelet prediction 

    for i=1:total          % So many times I will predict in groups of 4 

        for j=1:4 

            wav_final=[];         

            [pred_value]=wav_pred3(Prediction2,Points,3,1); 

            wav_final=[wav_final,pred_value]; 

            Prediction2=[Prediction2(2:end),pred_value]; 

        end 

        wav_row=[wav_row,wav_final];         

         

             

         

         

        [wav_final,CXD,LXD] = wden(wav_final,'sqtwolog','s','one',5,'db4'); 

        wav_row99=[wav_row99,wav_final];    

    end 

    photo99(count_x,1:y_zero)=wav_row99;             

    photo5(count_x,1:y_zero)=wav_row;         

    count_x=count_x+1;  

end 

Mean_of_Block2=(mean(photo5'))'; % For each row 

Total_mean2=mean(Mean_of_Block2); 

if Difference<10 

    scale=Total_mean/Total_mean2; 

else  

    scale=1; 

end 

photo5=scale*double(photo5); 

photo99=scale*double(photo99);               
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photo0=double(photo); 

photo55=double(photo5); 

photo999=double(photo99);              

Error2=[(photo0(x_start:x_end,y_start:y_end)-photo55).^2]; 

Error2=(sum(Error2'))'; 

[Min_Error2,Min_Row_Error2]=min(Error2); 

Row_Error_Wavelet=Error2; 

 

Error29=[(photo0(x_start:x_end,y_start:y_end)-photo999).^2];   

Error29=(sum(Error29'))';                                      

[Min_Error29,Min_Row_Error29]=min(Error29);                    

Denoising_Error=Error29;                                       

LPC_Error__Wavelet_Error=[Row_Error_LPC,Row_Error_Wavelet,Denoising_Error]  

 

% ********************************************************************* 

function [pred_value]=wav_pred3(signal,k,m,n) 

 

% Inputs 

% signal= signal that will be wavelet decomposed 

%   k   = the number of signal points counting from the end  

%         that will be used 

%   m   = level of decomposition 

%   n   = number of the consequtive lost packet from the 'Errors.m' 

% Output 

% pred_value= the next 4 predicted values of the signal 

 

 

help=1;%rem(n,2); 

pred_value=[]; 

mm=1:m; % used in the detcoef 
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s1=signal(end-k+1:end); 

[c,l] = wavedec(s1,m,'db1');            % wavelet decomposition 

ca3 = appcoef(c,l,'db1',m);             % approximation coefficients at level 2 

[cd1,cd2,cd3] = detcoef(c,l,mm);   % Extract detail coefficients at levels 1, 2  

 

if size(ca3)>20 

    order1=18; 

else 

    order1=5; 

end 

 

if size(cd2)>20 

    order2=18; 

else 

    order2=5; 

end 

 

if size(cd1)>20 

    order3=18; 

else 

    order3=5; 

end 

 

% PREDICTION 

 

% APPROXIMATION 3 ********************************************* 

for j=ceil((k+1)/8)     % these are the coefficients I want to estimate (of the lost frame) 

   [signal_estim1_a3]=Predict2(ca3,j,order1); 

end  % end j=25:28 

ca3=[ca3,signal_estim1_a3]; 
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% ***************************************************************** 

% DETAIL 3 ******************************************************** 

if help==1 

    cd3=[cd3,0];  

else 

    for j=ceil((k+1)/8) 

        [signal_estim1_d3]=Predict2(cd3,j,order1);  

    end 

    cd3=[cd3,signal_estim1_d3];    

end 

% *********************************************************** 

% DETAIL 2 ***************************************************** 

    for j=ceil((k+1)/4) 

    [signal_estim1_d2]=Predict2(cd2,j,order1); 

end 

D2=[cd2,0];                   % corresponds to the 49th & 50th point 

cd2=[cd2,signal_estim1_d2];   % corresponds to the 51st & 52nd point 

% ***************************************************** 

% DETAIL 1 ******************************************** 

for j=ceil((k+1)/2) 

    [signal_estim1_d1]=Predict2(cd1,j,order2); 

end 

D1=[cd1,0];                   

cd1=[cd1,signal_estim1_d1];    

for j=ceil((k+2)/2) 

    [signal_estim1_d1]=Predict2(cd1,j,order2); 

end      

D11=[cd1,0];                   

cd1=[cd1,signal_estim1_d1];    

% ***************************************************** 
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% RECONSTRUCTION*********************************** 

Rec1=[ca3,cd3,D2,D1];L1=[ceil((k+1)/8),ceil((k+1)/8),ceil((k+1)/4),ceil((k+1)/2),k+1]; 

Rec2=[ca3,cd3,D2,cd1];L2=[ceil((k+1)/8),ceil((k+1)/8),ceil((k+1)/4),ceil((k+1)/2),k+2]; 

Rec3=[ca3,cd3,cd2,D11];L3=[ceil((k+1)/8),ceil((k+1)/8),ceil((k+1)/4),ceil((k+2)/2),k+3]; 

Rec4=[ca3,cd3,cd2,cd1];L4=[ceil((k+1)/8),ceil((k+1)/8),ceil((k+1)/4),ceil((k+2)/2),k+4]; 

X1= waverec(Rec1,L1,'db1'); 

X2= waverec(Rec2,L2,'db1'); 

X3= waverec(Rec3,L3,'db1'); 

X4= waverec(Rec4,L4,'db1'); 

pred_value=[pred_value,X1(end),X2(end),X3(end),X4(end)]; 

2. Wavelet-Based Prediction with Pre-Denoising 
 

%function 

[TOTAL_lost_packet_rate,PSNR_BLOCK,PSNR_LPC,PSNR_WAVELETS,PSNR_DE

NOISING]=lena_transmit_noise(p22,p11,point) 

 

% Input  

% p22=probability to stay in the good channel 

% p11=probability to stay in the bad channel 

% point=just a number in order to get the figures numbered 

% Output 

% pretty obvious 

 

%      PREDENOISING 

%      FIRST DENOISING THEN PREDICTION  

 

clc 

clear 

repetition=5;point=240; 

load('photo','photo') 
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load('photo3','photo3') 



load('x_start','x_start') 

load('x_end','x_end') 

load('y_start','y_start') 

load('y_end','y_end') 

load('how_many','how_many') 

figure(1)     

imshow(photo)            

 

% ************************************** 

%       DENOISING THE IMAGE                       *     

% ************************************** 

% First I denoise the image that I inserted noise in and then I'll 

% use the output XC in order to make the predictions 

 

xxx=double(photo3); 

[THR,SORH,KEEPAPP] = ddencmp('den','wp',xxx) 

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',xxx,'db3',10,33,SORH,KEEPAPP); 

X=uint8(XC); 

LPC_photo=X; 

Wavelet_photo=X; 

figure(repetition+14) 

imshow(X),title('Denoised Picture') 

 

% ************************************** 

%            PREDICTED BLOCKS                       * 

% ************************************** 

% First Predicted Block 

for i=1:how_many 

    photo_1=[];photo_11=[]; 

 [photo_1,photo_11,photo_99]=photo_pred(X,x_start(i),x_end(i),y_start(i),y_end(i),96);  
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    LPC_photo(x_start(i):x_end(i),y_start(i):y_end(i))=photo_1; 

    Wavelet_photo(x_start(i):x_end(i),y_start(i):y_end(i))=photo_11; 

    Denoising_photo(x_start(i):x_end(i),y_start(i):y_end(i))=photo_99;   

end 

% *************************************************************** 

figure(repetition+7+point) 

imshow(LPC_photo)%,title('Predicted Image using Linear Prediction') 

figure(repetition+13+point) 

imshow(Wavelet_photo)%,title('Predicted Image using Wavelets') 

 

% PSNR 

psnr_miss_block=psnr(photo,photo3) 

psnr_miss_block_denoised=psnr(photo,X) 

psnr_LPC=psnr(photo,LPC_photo) 

psnr_Wavelet=psnr(photo,Wavelet_photo) 

 

3. Wavelet-Based Prediction With Post-Denoising 
 

%function 

[TOTAL_lost_packet_rate,PSNR_BLOCK,PSNR_LPC,PSNR_WAVELETS,PSNR_DE

NOISING]=lena_transmit_noise(p22,p11,point) 

%      POSTDENOISING 

%      FIRST PREDICTION THEN DENOISING   

% Input  

% p22=probability to stay in the good channel 

% p11=probability to stay in the bad channel 

% point=just a number in order to get the figures numbered 

% Output 

% pretty obvious 

 

clc 
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clear 

repetition=5;point=240; 

load('photo','photo') 

load('photo3','photo3') 

load('x_start','x_start') 

load('x_end','x_end') 

load('y_start','y_start') 

load('y_end','y_end') 

load('how_many','how_many') 

 

figure(1)     

imshow(photo)            

LPC_photo=photo3;          

Wavelet_photo=photo3;      

figure(repetition+14)     

imshow(photo3 

% ************************************** 

%            PREDICTED BLOCKS                 * 

% ************************************** 

% First Predicted Block 

for i=1:how_many 

    photo_1=[];photo_11=[];  

[photo_1,photo_11,photo_99]=photo_pred(photo3,x_start(i),x_end(i),y_start(i),y_end(i),

96); 

    LPC_photo(x_start(i):x_end(i),y_start(i):y_end(i))=photo_1; 

    Wavelet_photo(x_start(i):x_end(i),y_start(i):y_end(i))=photo_11; 

    Denoising_photo(x_start(i):x_end(i),y_start(i):y_end(i))=photo_99;   

end 

% **************************************************************** 

figure(repetition+7+point) 
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imshow(LPC_photo),title('Predicted Image using Linear Prediction') 

[psnr_noise_LPC,psnr_Denoising_LPC]=denoise(photo,LPC_photo,repetition)   

figure(repetition+13+point) 

imshow(Wavelet_photo),title('Predicted Image using Wavelets') 

[psnr_noise_Wavelet,psnr_Denoising_Wavelet]=denoise(photo,Wavelet_photo,repetition

+4) 

 

% PSNR 

psnr_miss_block=psnr(photo,photo3) 

%psnr_LPC=psnr(photo,LPC_photo) 

%psnr_Wavelet=psnr(photo,Wavelet_photo) 
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APPENDIX B.  SIMULATION RESULTS FOR VARIOUS IMAGES 

A. WAVELET-BASED PREDICTION USING HAAR WAVELET 
In order to show that the wavelet-based prediction performs better than direct 

linear prediction, independent of the type of image used, the simulations described in 

Chapter V are carried out on a variety of images. The results of these simulations indicate 

that the wavelet-based prediction performs better than the direct prediction in all cases.  

In the following figures, the original image, the received image without error 

recovery, the recovered image using direct linear prediction and the recovered image 

using the wavelet-based prediction are shown. The three curves shown in the plots 

indicate peak signal-to-noise ratio of the received image (dotted line), the image with 

linear prediction based error recovery (dashed line) and the wavelet prediction (solid 

line). All results are based on averaging six simulation runs. 
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(d)(c)

(b)(a)

Figure B.1. (a) Original Image, (b) Image without Error Recovery, (c) 
Recovered Image Using Linear Prediction, (d) Recovered Image 
Using Wavelet Based Prediction. 
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Figure B.2. Peak Signal-to-Noise Ratio versus Packet Loss Probability  for 
Image Packet Stream. 

BP
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(b) 

(d) (c) 

(a) 

Figure B.3. (a) Original Image, (b) Image without Error Recovery, (c) 
Recovered Image Using Linear Prediction, (d) Recovered Image 
Using Wavelet Based Prediction. 
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Figure B.4. Peak Signal-to-Noise Ratio versus Packet Loss Probability  for 
Image Packet Stream. 
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(b)

(d)(c)

(a)

 
Figure B.5. (a) Original Image, (b) Image without Error Recovery, (c) 

Recovered Image Using Linear Prediction, (d) Recovered Image 
Using Wavelet Based Prediction. 
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Figure B.6. Signal-to-Noise Ratio versus Packet Loss Probability  for Image 

Packet Stream. 
BP
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