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A sol–gel method is employed for preparing high quality lead-
free glass-ceramic samples (1− x)BCZT-xBBS—incorporating
Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powder and Bi2O3-B2O3-SiO2

(BBS) glass-doped additives with different values of x (x = 0,
0.05, 0.1, 0.15). Systematic investigations are performed to
comprehend the structural, dielectric and energy storage
characteristics using X-ray diffraction, field-emission scanning
electron microscopy, impedance and ferroelectric analyser
methods. With appropriate BBS doping (x), many fundamental
traits including breakdown strength, dielectric loss and energy
storage density have shown significant improvements. Low
doping-level samples x < 0.1 have retained the pure perovskite
phase while a second glass phase appeared in samples with x≥
0.1. As the doping level (0.1≥ x > 0) is increased, the average
grain size decreased to become better homogeneous materials
with improved breakdown energy strengths. Excessive addition
of BBS (x = 0.15) causes negative effects on microstructures and
other traits. The glass-ceramic sample 0.95BCZT-0.05BBS
exhibits excellent dielectric permittivity and temperature
stability, with the highest energy storage density of 0.3907 J cm−3

at 130 kV cm−1. These results provide good reference to
develop lead-free ceramics of high energy storage density.
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1. Introduction

With the recent developments in device miniaturization and high-power pulse technology, many dielectric
materials have attracted a great deal of interest due to their necessities in microelectronics for developing
high energy storage devices such as capacitors, sensors and actuators [1–4]. Lead-free ferroelectric
ceramics with environmental friendliness, such as TiO2-based [5–9], Ba0.94(Bi0.5K0.5)0.06Ti0.85Zr0.15O3 (BBK)
[10], CaCu3Ti4O12 (CCTO) [3,11] and BaTiO3-based ceramics [5–9], have become the focus of research in
recent years. Among these materials, the perovskite structure BaTiO3 is capable of high dielectric
constant, spontaneous polarization, low dielectric loss and ferroelectricity [12,13], and offered great
potentials in applications of high energy storage devices. The pure BaTiO3 has, however, disadvantages of
having low breakdown electric field (approximately 50 kV cm−1) and poor dielectric stability of
temperature. These characteristics have resulted in limited applications of BaTiO3 in the field of high
energy storage density of dielectric materials. The energy storage traits of BaTiO3-based ceramics can be
improved significantly by reducing porosity, tuning grain size, by glass additives and secondary phases, etc.

To improve the energy storage capabilities of BaTiO3-based ceramics, many methods have been
applied including ion doping [14], glass additives [15–17], and combining binary or multi-element
systems of solid solutions [18–20], etc. In order to simultaneously attain the high dielectric breakdown
strength, high energy density and high dielectric constant, a glass-ceramic concept has been devised.
In this approach, a high dielectric breakdown of linear dielectric (glass) material and a substance of
high dielectric constant with large polarization coefficient typical of ferroelectric ceramics are
combined in a nanostructured composite type. Prepared by solid phase method, the multi-element
system of Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) exhibited larger polarization coefficient and increased
breakdown electric field—it revealed, however, low energy storage density [13,21,22]. By doping
BCZT with Tb, Lu et al. could slightly improve the energy storage density of the samples, but not the
breakdown electric field [22]. The effects of NaBr, NaCl, KCl, Na2SO4 and NaCl-KCl on the structural
and polarization properties of BCZT revealed the decrease of both residual polarization and
breakdown electric fields [23]. By adding CaO-B2O2 glass powder into BCZT [21], Lai et al. improved
the energy storage density; however, the breakdown electric field of the samples remained low. Khalf
& Hall doped 0.546BaO-0.195B2O3-0.259SiO2 glass powder to pure BCZT [24] achieving a slight
improvement in the P-E loops and high energy storage density—its breakdown electric field was still
50 kV cm−1. Further improvements of BaTiO3-based ceramics by defect/domain/phase boundary
methods to achieve superior performances of the material have remained a challenge.

The aim of this work is to use a sol–gel method which is different from the conventional solid-state
sintering method to prepare first the BCZT powders and then add barium borosilicate (Bi2O3-B2O3-SiO2;
BBS) glass as a sintering aid in producing a set of (1− x)BCZT-xBBS ceramic samples with different BBS
components (x). The influence of BBS on the structural and electrical characteristics of BCZT ceramics are
presented by employing X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM),
precision impedance analyser and ferroelectric analyser. The ceramic samples with proper BBS
component exhibit excellent energy storage density, high breakdown electric field and lower sintering
temperature. The best sample of 0.95BCZT-0.05BBS ceramic has a slim P-E loop, high energy storage
density (0.3907 J cm−3) and relatively low sintering temperature (1175°C). Our results showed that
preparing high quality BCZT power by a sol–gel technique has effectively improved the performances
of lead-free glass-ceramics of (1− x)BCZT-xBBS with appropriate compositions. Comparing with
previous works by conventional solid-state sintering method [12,13,21–24], the samples we prepared
have the advantages of relatively high breakdown electric field and energy storage density and
relatively low sintering temperature. The improved densification behaviour in these material samples
has potential benefits in high-voltage insulation and engineering dielectric energy storage devices.
2. Experimental
2.1. Preparation of materials
By selecting appropriate raw materials including Ba(NO3)2 (purity: 99.99%), Ca(NO3)2•4H2O (purity:
99.99%), ZrOCl2•8H2O (purity: 99.99%), C16H36TiO4 (purity: 99.99%) and C6H2O7•H2O (purity:
99.99%), respectively we have used sol–gel method in preparing the Ba0.85Ca0.15Zr0.1Ti0.9O3

nanocrystalline powders. The raw materials are first dissolved to obtain mixed BCZT gel with pH
value adjusted approximately to 9. The BCZT solution is then stirred at 80°C and dried at 200°C for
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Figure 1. XRD patterns for the (1− x)BCZT-xBBS ceramics (x = 0, 0.05, 0.1, 0.15).
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720 min to form desiccated gels. After BCZT powders are obtained by calcining at 1000°C for 4 h, the BBS
glass as sintering additive is doped into BCZT with certain mass ratio and ground homogeneously. The
resulting powders are then pressed into cylindrical pellets under a pressure of 10 MPa using 5 wt%
polyvinyl alcohol (PVA) binder for 7 min. Finally, the (1− x)BCZT-xBBS samples with x = 0, 0.05, 0.01
and 0.15 are sintered, respectively at 1300°C, 1175°C, 1150°C and 1125°C in the atmospheric air.

2.2. Characterization methods
The density of (1− x)BCZT-xBBS ceramics is measured by Archimedes method. The crystal
microstructures are identified by X-ray diffraction (Brüker XRD D8 discover) with Cu-Kα radiation
wavelength λ = 1.5418 Å) at 40 kV and 40 mA with a scanning step size of 0.02° and counting time of
0.3 s/step. Microstructures of (1− x)BCZT-xBBS ceramics are characterized using a field-emission
scanning electron microscope (FE-SEM, Zeiss SUPRA 40). Ag electrodes are made on the surface of
the ceramics and heated at 600°C for 20 min. By changing temperatures from 25°C to 275°C, the
dielectric constant and dielectric loss of the (1− x)BCZT-xBBS ceramics are measured by a precision
impedance analyser (HP, 4294 A) in a frequency range of 102–106 Hz. The P-E loops are tested using a
ferroelectric analyser (TF-2000, aixACCT, Aachen, Germany) at a frequency of 10 Hz.

3. Result and discussion
3.1. XRD characterization
Figure 1 shows the crystalline structure of BCZT ceramics derived at room temperature (RT) by X-ray
diffraction (Brüker XRD, D8 discover) with Cu-Kα radiation wavelength λ = 1.5418 Å. The XRD patterns
of (1− x)BCZT-xBBS ceramics with different compositions (x = 0, 0.05, 0.1, 0.15) are displayed. It can be
noted that all samples with x < 0.1 possess pure perovskite structure, suggesting that Ca and Zr diffuse
into the BaTiO3 lattice to form a solid solution. As x≥ 0.1, the weak peak of the second phase begins to
appear, indicating that the glass starts to separate out independently. With the increase of x value, the
intensity of the (110) diffraction peak gradually decreases, the half-height width becomes wider, and the
peak position shifts to the lower angle, which reveals that the doping of BBS glass powder changes the
crystal structure of BCZT ceramics, and the lattice constant gradually increases. Doping of BBS glass into
BCZT ceramics results in a lattice deformation and the changes of phase composition. As the content of
BBS glass increases and the calcination temperature decreases, the electrical properties of (1− x)BCZT-xBBS
ceramics may be affected due to the change of crystal structure.

3.2. Microstructures by SEM
Figure 2 displays SEM micrographs and grain size distribution of (1− x)BCZT-xBBS (x = 0, 0.05, 0.1, 0.15)
ceramics were counted from SEM images by the software named ‘Nano measurer’—providing
characteristics of the crystallite size and agglomerate particle size of samples with different composition.
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Figure 2. (a–d ) SEM images of (1− x)BCZT-xBBS (x = 0, 0.05, 0.1, 0.15) glass ceramics.
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Figure 2a reveals that pure BCZT ceramicwith x = 0, exhibits clear grain boundary havingmean grain size of
approximately 5.76 µm.With increase of composition x, the average grain size of (1− x)BCZT-xBBS ceramics
decreases rapidly from 5.76 µm to approximately 207 nm for x = 0.05 and 196 nm for x = 0.1, and uniformity
of the grain size increased according to figure 3. Figure 2d suggests that the excessive addition of BBS glass
powers is detrimental to the homogenization and grain size reduction. The 0.85BCZT-0.15BBS ceramic
sample shows large-size grains mixed with small-size grains, having an average size approximately
470 nm. Figures 2 and 3 have shown that the BBS glass additive has a great impact on the ceramic
micromorphology.

3.3. Dielectric properties
Figure 4a,b illustrates the changes in the dielectric constant and dielectric loss observed at RT as a function
of frequency (102–106 Hz) for the (1− x)BCZT-xBBS ceramics. As seen in figure 4a, the dielectric constants
of (1− x)BCZT-xBBS ceramics decrease rapidly from 3000 to 200 as x increased from 0 to 0.15. In the
frequency range of 102–106 Hz, the permittivity of four samples remains a good stability. In figure 4b,
the dielectric loss of three samples with x≤ 0.1 has good stability of frequency. Compared with the
pure BCZT, the dielectric loss of two samples with x = 0.05 and 0.1 is reduced by half which is kept
below 0.025. For 0.85BCZT-0.15BBS sample it shows, however, unstable frequency features where the
dielectric loss is high up to 0.055 at lower frequency (102–104 Hz) and decreases down to 0.025 at
higher frequency (105–106 Hz). It is to be noted that the 0.95BCZT-0.05BBS sample has a low dielectric
loss, a suitable dielectric constant and stable frequency dependence.

In figure 5, we have displayed the temperature dependence of dielectric constant and dielectric loss of
the (1− x)BCZT-xBBS ceramics at various frequencies. The pure BCZT ceramic exhibits a sharp phase
transition peak, suggesting that it is a normal ferroelectric and has a strong relaxation behaviour. With
the increase of x (x < 0.15), the relaxation dispersion shows a gradual increase and the Curie
temperature shifting to a lower temperature. At the measured frequencies, all samples exhibit good
temperature stability in the range of 27°C≤ T≤ 150°C. Beyond 150°C, the dielectric loss increases
gradually with the heating temperature. For the same sample, the higher the frequency, the better the
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temperature stability is. The permittivity and dielectric loss at high frequencies are more stable than at
low frequencies in the measured temperature range. Among others, the sample with x = 0.05 displays
a relatively good performance at temperatures below 100°C.

In typical dielectric materials, the relationships between phase transition, the dielectric permittivity
and temperature obeyed the following Curie–Weiss law [25],

1 ¼ C
T � TC

, ð3:1Þ
DT ¼ TCW � TC ð3:2Þ

and
1
1
� 1
1m

¼ ðT � TCÞy
C

, ð3:3Þ
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where, T is the testing temperature, TC is the actual Curie temperature, TCW is the theoretical fit
Curie temperature, ΔT is the difference between TCW and TC, ε is the permittivity and εm is
the maximum permittivity. The term C is a Curie–Weiss constant, and the magnitude of C is
approximately 104. The fitting results of the temperature dependence of dielectric content are shown
in figure 6. The (1− x)BCZT-xBBS ceramics exhibit a wide phase transition peak from cubic phase
to ferroelectric tetragonal phase [25,26]. The peak width is broadened, which may be due to the
disorder in the microstructure [27]. The Curie temperature, TC, decreases gradually and reaches the
minimum value of TC of 60.1°C as x = 0.1, which is consistent with the trend of the grain size
variation. On the contrary, the change of ΔT is exactly opposite to that of TC, obtaining the maximum
value at x = 0.05.

Figure 7 shows the comparison between experimental and simulated results of ln(1/ε− 1/εm) and
ln(T− Tm) for (1− x)BCZT-xBBS ceramics with different x values—exhibiting a linear relationship. The
result demonstrates that at x = 0.05, the linear correlation is the best. γ is an important parameter
describing the relaxation behaviour in ferroelectric materials. When 1≤ γ≤ 2, the material behaves as a
relaxed ferroelectric and has a complete diffusion phase transition. The value of γ of samples with
different BBS components are shown in table 1; all gradually decrease with increase of x, indicating
that the increase of BBS addition has more negative influence on the relaxation behaviour of
(1− x)BCZT-xBBS ceramics.

The energy storage density and efficiency of the ceramics are considered to be the most important
properties in the energy storage devices. They can be calculated by using the following equations:

Wcharge ¼
ðPmax

0
EdP, ð3:4Þ

Wdischarge ¼
ðPmax

Pr
EdP ð3:5Þ

and h ¼ Wdischarge

Wcharge
� 100%, ð3:6Þ
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Table 1. The fitting parameters by the Curie–Weiss law and quadratic law for the (1− x)BCZT-xBBS ceramics with different x
values at 105 Hz.

sample TC (°C) TCW (°C) ΔT (°C) C (104) γ

0% BBS 101.1 114.8 13.7 13.96 0.9771

5% BBS 79.1 121.3 42.2 5.95 0.8644

10% BBS 60.1 97.8 37.7 3.61 0.8197

15% BBS 98.0 108.0 10.0 1.33 0.7192
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where E is the actual electric field intensity, P is the polarization intensity, Pr is the residual polarization
value, Pmax is the saturated polarization value, Wcharge is the energy storage density at the time of
charging, Wdischarge is the energy storage density at the time of discharge and η is energy storage
efficiency.

Figure 8 shows the P-E loops of (1− x)BCZT-xBBS ceramics at room temperature. Obviously,
(1− x)BCZT-xBBS ceramics have a slim P-E loop and the better ferroelectric properties. It has a
positive effect on the increase of breakdown electric field to add proper amount of BBS glass powder.
The relationship between breakdown electric field and doping amount is consistent with the trend of
Curie temperature variation described above. When x = 0.1, the maximum breakdown electric field
(141 kV cm−1) is obtained. The increase of the breakdown electric field may be attributed to the
decrease of grain size. However, the addition of BBS sharply reduces the saturation polarization values.

The energy storage density is determined by P-E loops. The measured values of Pmax, Wdischarge, E
and η for all (1− x)BCZT-xBBS ceramics are presented in table 2. Proper addition of BBS can certainly
improve the energy storage density of BCZT ceramics. The Wdischarge of BCZT ceramics with BBS glass
addition of x = 0.05 and 0.1 are obviously higher than that of pure BCZT ceramics. The maximum
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Table 2. The parameters obtained from ferroelectric properties and piezoelectric properties.

sample
density
(g cm−3)

Wdischarge

(J cm−3)
η
(%)

Pmax
(C cm−1)

Pr
(C cm−1)

E
(kV cm−1)

0% BBS 5.55 0.1286 55.44 16.17 4.85 40

5% BBS 4.66 0.3907 67.57 8.76 1.30 130

10% BBS 4.25 0.2072 62.40 4.17 0.71 141

15% BBS 4.05 0.0904 39.70 3.40 1.10 105
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energy storage density reaches 0.3907 J cm−3 at electric field of 130 kV cm−1 as x value is 0.05, which is
consistent with the variation of ΔT. Clearly, the energy storage efficiency and energy storage density also
have the same variation tendency, reaching the maximum value at x = 0.05. It is found that the overall
performance of 0.95BCZT-0.05BBS glass-ceramics is the best. Figure 9b gives the energy storage
density and energy storage efficiency as a function of different values of electric field at x = 0.05. This
helps us understand the dependence between E and η more clearly. It is observed that the energy
storage density increases but the efficiency of energy storage deteriorates slowly with the increase of
electric field. This is possibly caused by the increase of residual polarization value.
4. Conclusion
In this work, we have systematically investigated the effects of BBS glass additive on the dielectric,
ferroelectric and energy storage properties of (1− x)BCZT-xBBS lead-free ceramics. In samples with
x≤ 0.1, as the BBS contents are increased, the grain sizes are obviously reduced and the
microstructures of the samples become more uniform. Consequently, the relaxation diffusion degree
increases gradually, and frequency and temperature stability of dielectric properties are improved. If
the appropriate addition of BBS decreases, the dielectric loss and the energy storage density increases.
The maximum energy storage density of 0.3907 J cm−3 is obtained at 130 kV cm−1 for x = 0.05. This
lead-free 0.95BCZT-0.05BBS glass-ceramic has the advantages of high energy storage density, low
energy loss and the lower sintering temperature, which has important applications in the micro high
energy storage devices.
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