


Natural History Museum Library 

000170695 
k. 



' 



\ 



7 





PHILOSOPHICAL 

TRANSACTIONS 
OF THE 

ROYAL SOCIETY 

OF 

LONDON. 

(A.) 

FOE THE YEAE MDCCCXCII. 

VOL. 183. 

LONDON: 

PRINTED BY HARRISON AND SONS, ST. MARTIN'S LANE, W.C., 

printers in (Drbhtarg to f)a ^lajestjr. 

MDCCCXCIII, 



WORKS PUBLISHED BY THE ROYAL SOCIETY. 

PHILOSOPHICAL TRANSACTIONS. For prices of the parts remaining in print see last page of 

Wrapper. (The Memoirs are also published separately by Kegan Paul, Trench, Triibner, and Co.) 

INDEXES to the PHILOSOPHICAL TRANSACTIONS: from Yols. 1 to 120. Three Parts, 4to. 

Part I. 21s., Part II. 12s., and Part III. 5s. 

ABSTRACTS of the PROCEEDINGS of the ROYAL SOCIETY. Vols. 1 to 4, 8vo. at 7s. 6A; 

Vol. 5, 10s ; Yol. 6, 6s. 

PROCEEDINGS of the ROYAL SOCIETY of LONDON, being a continuation of the Series entitled 

“ Abstracts of the Papers communicated to the Royal Society of London.” Yols. 8, 11, 12, 13, 16 to 51, 

21s. each, cloth. Yol. 52 in course of publication. 

CATALOGUE OF THE SCIENTIFIC BOOKS IN THE LIBRARY OF THE ROYAL SOCIETY. 

Part I.—Containing Transactions, Journals, Observations and Reports, Surveys, Museums. 5s. 

Part II.—General Science. 15s. 

(This Catalogue is sold at a reduced price to Fellows of the Royal Society.) 

CATALOGUES of the MISCELLANEOUS MANUSCRIPTS and of the MANUSCRIPT LETTERS 

in the possession of the ROYAL SOCIETY. 8vo. 2s. 

CATALOGUE of the PORTRAITS in the possession of the ROYAL SOCIETY. 8vo., 1860. Price Is. 

LIST of PORTRAITS and BUSTS, and CATALOGUE of MEDALS in the possession of the Royal 

Society. 8vo.. 1892. Price Is. 

LIST of the FELLOWS of the ROYAL SOCIETY (Annual). 4to. Is. 

SIX DISCOURSES delivered at the Anniversary Meetings of the Royal Society on the Award of the 

Royal and Copley Medals : by Sir Humphry Davy, Bart., President. 4to. 3s. 

ASTRONOMICAL OBSERYATIONS made by the Rev. Thomas Catton, B.D., reduced and printed under 

the supeiintendence of Sir George Biddell Airy, Astronomer Royal. Price 2s., sewed. 

MARKREE CATALOGUE OF ECLIPTIC STARS. Four volumes, roy. 8vo. cloth. 5s. each. 

Published by Kegan Paul, Trench, Teubner, and Co. 

Royal 4to, pp. iv.—936, cloth. Price £3. 

A MONOGRAPH OF THE HORNY SPONGES. 
By R. von LENDENFELD. 

With 51 Litho graphic and Photographic Plates. 

A reduction of price to Fellows of the Royal Society. 

Published by Kegan Paul, Trench, Trubner, and Co. 

In 1 vol., 4to. Pp. 500. With 6 Chromolithographs of the remarkable Sunsets of 1883 and 

40 Maps and Diagrams. 

THE ERUPTION OF KRAKATOA AND SUBSEQUENT PHENOMENA. 
Report of the Krakatoa Committee of the Royal Society. 

Edited by G. J. SYMONS, F.R.S, 

Price 30s. To Fellows, 20s. 

SOLD BY HARRISON AND SONS, ST. MARTIN’S LANE, 

AND ALL BOOKSELLERS. 



PHILOSOPHICAL 

T RANSACTI 0 N 

OF THE 

ROYAL SOCIETY 

OF 

LONDON. 

(A.) 

FOR THE YEAR MDCCCXCII. 

VOL. 183. 

PRINTED BY HARRISON AND SONS, ST. MARTIN^ LANE, W.C., 

printers in (Drbinarg to fj*r UTajestg. 

MDCOCXCIIl. 





ADVERTISEMENT. 

The Committee appointed by the Royal Society to direct the publication of the 

Philosophical Transactions take this opportunity to acquaint the public that it fully 

appears, as well from the Council-books and Journals of the Society as from repeated 

declarations which have been made in several former Transactions, that the printing of 

them was always, from time to time, the single act of the respective Secretaries till 

the Forty-seventh Volume; the Society, as a Body, never interesting themselves any 

further in their publication than by occasionally recommending the revival of them to 

some of their Secretaries, when, from the particular circumstances of their affairs, the 

Transactions had happened for any length of time to be intermitted. And this seems 

principally to have been done with a view to satisfy the public that their usual 

meetings were then continued, for the improvement of knowledge and benefit of 

mankind : the great ends of their first institution by the Royal Charters, and which 

they have ever since steadily pursued. 

But the Society being of late years greatly enlarged, and their communications more 

numerous, it was thought advisable that a Committee of their members should be 

appointed to reconsider the papers read before them, and select out of them such as 

they should judge most proper for publication in the future Transactions; which was 

accordingly done upon the 26th of March, 1752. And the grounds of their choice are, 

and will continue to be, the importance and singularity of the subjects, or the 

advantageous manner of treating them ; without pretending to answer for the 

certainty of the facts, or propriety of the reasonings contained in the several papers 

so published, which must still rest on the credit or judgment of their respective 

authors. 

It is likewise necessary on this occasion to remark, that it is an established rule of 

the Society, to which they will always adhere, never to give their opinion, as a Body, 
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upon any subject, either of Nature or Art, that comes before them. And therefore the 

thanks, which are frequently proposed from the Chair, to be given to the authors of 

such papers as are read at their accustomed meetings, or to the persons through whose 

hands they received them, are to be considered in no other light than as a matter of 

civility, in return for the respect shown to the Society by those communications. The 

like also is to be said with regard to the several projects, inventions, and curiosities of 

various kinds, which are often exhibited to the Society : the authors whereof, or those 

who exhibit them, frequently take the liberty to report, and even to certify in the 

public newspapers, that they have met with the highest applause and approbation. 

And therefore it is hoped that no regard will hereafter be paid to such reports and 

public notices; which in some instances have been too lightly credited, to the 

dishonour of the Society. 



1893 

List of Institutions entitled to receive the Philosophical 

Proceedings of the Royal Society. 

Transactions or 

Institutions marked a are entitled to receive Philosophical Transactions, .Series A, and 1 roceedings. 
Series B, and Proceedings. 

Series A and B, and Proceedings. 

V Proceedings only. 

America (Central). 
Mexico. 

p. Sociedad Oicntilica “Antonio Alzate.” 

America (North). (See United States.) 

America (South). 
Buenos Ayres. 

ab. Museo Nacional. 

Caracas. 

b. University Library. 

Cordova. 

ab. Academia Nacional de Ciencias. 

Demerara. 

p. Royal Agricultural and Commercial 

Society, British Guiana. 

La Plata. 

p. Museo de La Plata. 

Rio de Janeiro. 

p. Observatorio. 

Australia. 
Adelaide. 

p. Royal Society of South Australia. 

Brisbane. 

p. Royal Society of Queensland. 

Melbourne. 

p. Observatory. 

p. Royal Society of Victoria. 

ab. University Library. 

Sydney. 

p. Geological Survey. 

p. Linnean Society of New South Wales. 

ab. Royal Society of New South Wales. 

AB. University Library, 

Austria. 
Agram. 

p. Jugoslavenska Akademija Znanosti i Uin- 

jetnosti. 

p. Societas Historico-Naturalis Croatica. 
Briinn. 

ab', Naturforschender Verein, 

Austria (continued). 

Gratz. 

ab. Naturwissenschaftlicher Verein fiir Steier- 

mark. 

Hermannstadt. 

p. Siebcnbiirgisclier Verein fur die Natur- 

wissenschaften. 

Innsbruck. 

ab. Das Ferdinandeum. 

p. Naturwissenschaftlich - Medicinischer 

Verein. 

Klausenburg. 

ab. Az Erdelyi Muzeum. Das Siebenbiirgiscbe 

Museum. 

Prague. 

ab. Kdnigliche Bohmische Gesellschaft der 

Wissenschaften. 

Trieste. 

b. Museo di Storia Naturale. 

p. Societa Adriatica di Scienze Naturali. 

Vienna. 

p. Antbropologische Gesellschaft. 

ab. Kaiserliche Akademie der Wissenschaften. 

p. K.K. Geographische Gesellschaft. 

ab. K.K. Geologische Reichsanstalt. 

b. K.K. Zoologisch-Botanische Gesellschaft. 

b, Naturhistorisches Hof-Museum. 

p. CEsterreicliische Gesellschaft fiir Meteoro- 

logie. 

Belgium. 
Brussels. 

B. Academie Roy ale de Medecine. 

AB. Academic Royale des Sciences. 

B. Musee Royal d’Histoire Naturelie de 

Belgique. 

p. Observatoire Royal, 

p. Societe Malacologique de Belgique, 

Ghent. 

ab. University. 
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Belgium (continued). 

Liege. 

An. Societe des Sciences. 

p. Societe Geologique de Belgique. 

Louvain. 

p. Laboratoire de Microscopie et de Biologie 

Cellulaire. 

ab. Universite. 

Canada. 

Hamilton. 

p. Hamilton Association. 

Montreal. 

ab. McGill University. 

p. Natural History Society. 

Ottawa. 

ab. Geological Survey of Canada. 

ab. Royal Society of Canada. 

Toronto. 

p. Astronomical and Physical Society. 

p. Canadian Institute. 

ab. University. 

Cape of Good Hope. 

A. Observatory. 

ab. South African Library. 

Ceylon. 

Colombo. 

b. Museum. 

China. 

Shanghai. 

p. China Branch of the Royal Asiatic Society. 

Denmark. 

Copenhagen. 

ab. Kongelige Danske Videnskabernes Selskab. 

England and Wales. 

Aberystwitb. 

ab. University College. 

Bangor. 

ab. University College of North Wales. 

Birmingham. 

ab. Free Central Library. 

ab. Mason College. 

p. Philosophical Society. 

Bolton. 

p. Public Library. 

Bristol. 

p. Merchant Venturers’ School. 

Cambridge. 

ab. Philosophical Society. 

p. Union Societv. 

Cooper’s Hill. 

ab. Royal Indian Engineering College. 

Dudley. 

p. Dudley and Midland Geological and 

Scientific Society. 

] 
England and Wales (continued). 

Essex. 

p. Essex Field Club. 

Greenwich. 

A. Royal Observatory. 

Kew. 

b. Royal Gardens. 

Leeds. 

p. Philosophical Society. 

AB. Yorkshire College. 

Liverpool. 

ab. Free Public Library. 

p. Literary and Pbilosopbical Society. 

a. Observatory. 

ab. University College. 

London. 

ab. Admiralty. 

p. Anthropological Institute. 

B. British Museum (Nat. Hist.). 

ab. Chemical Society. 

a. City and Guilds of London Institute. 

p. “ Electrician,” Editor of the. 

r>. Entomological Society. 

ab. Geological Society. 

ab. Geological Survey of Great Britain. 

p. Geologists’ Association. 

ab. Guildhall Library. 

A. Institution of Civil Engineers. 

p. Institution of Electrical Engineers. 

A. Institution of Mechanical Engineers. 

A. Institution of Naval Architects. 

p. Iron and Steel Institute. 

ab. King’s College. 

B. Linnean Society. 

ab. London Institution. 

p. London Librai’y. 

a. Mathematical Society. 

p. Meteorological Office. 

p. Odontological Society. 

p. Pharmaceutical Society. 

p. Physical Society. 

p. Quekett Microscopical Club. 

p. Royal Agricultural Society. 

p. Royal Asiatic Society. 

a. Royal Astronomical Society. 

b. Royal College of Physicians. 

B. Royal College of Surgeons. 

p. Royal Engineers (for Libraries abroad, six 

copies). 

ab. Royal Engineers. Head Quarters Library. 

p. Royal Geographical Society. 

p. Royal Horticultural Society. 

p. Royal Institute of British Architects. 
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England and Wales (continued). 

London (continued). 

ab. Royal Institution of Great Britain. 

b. Royal Medical and Cliirurgical Society. 

p. Royal Meteorological Society. 

p. Royal Microscopical Society. 

p. Royal Statistical Society. 

ab. Royal United Service Institution. 

ab. Society of Arts. 

p. Society of Biblical Archeology. 

p. Society of Chemical Industry (London 

Section). 

p. Standard Weights and Measures Depart¬ 

ment. 

AB. The Queen’s Library. 

AB. The War Office. 

AB. University College. 

p. Victoria Institute. 

b. Zoological Society. 

Manchester. 

ab. Free Library. 

AB. Literary and Philosophical Society. 

p. Geological Society. 

ab. Owens College. 

Netley. 

p. Royal Victoria Hospital. 

Newcastle. 

ab. Free Library. 

p. North of England Institute of Mining and 

Mechanical Engineers. 

p. Society of Chemical Industry (Newcastle 

Section). 

Norwich. 

p. Norfolk and Norwich Literary Institution. 

Oxford. 

p. Aslimolean Society. 

ab. Radcliffe Library. 

a. Radcliffe Observatory. 

Penzance. 

p. Geological Society of Cornwall. 

Plymouth. 

b. Marine Biological Association. 

p. Plymouth Institution. 

Richmond. 

a. “ Kew ” Observatory. 

Salford. 

p. Royal Museum and Library. 

Stonyliurst. 

p. The College. 

Swansea. 

ab. Royal Institution. 

Woolwich. 

ab. Royal Artillery Library. 
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Finland. 
Helsingfors. 

p. Societas pro Fauna et Flora Fennica. 

ab. Societe des Sciences. 

France. 
Bordeaux. 

p. Academic des Sciences. 

p. Faculte des Sciences. 

p. Societe de Medecine et de Chirurgie. 

p. Societe des Sciences Physiques et 

Natnrelles. 

Cherbourg. 

p. Societe des Sciences Natnrelles. 

Dijon. 

p. Academie des Sciences. 

Lille. 

p. Faculte des Sciences. 

Lyons. 

ab. Academie des Sciences, Belles-Lettres et Arts. 

p. Universite. 

Marseilles. 

p. Faculte des Sciences. 

Montpellier. 

ab. Academie des Sciences et Lettres. 

b. Faculte de Medecine. 

Paris. 

ab. Academie des Sciences de l’lnstitut. 

p. Association Francaise pour l’Avancement 

des Sciences. 

p. Bureau des Longitudes. 

a. Bureau International des Poids et Mesures. 

p. Commission des Annales des Ponts et 

Chaussees. 

p. Conservatoire des Arts et Metiers. 

p. Cosmos (M. l’Abb^ Vadette). 

ab. Depot de la Marine. 

ab. Ulcole des Mines. 

ab, Ecole Normale Superieure. 

ab. hlcole Polytechnique. 

ab. Faculte des Sciences de la Sorbonne. 

ab. Jardin des Plantes. 

a. L’Observatoire. 

p. Revue Internationale de l’Electricite. 

p. Revue Scientifique (Mons. H. de Vakigny). 

p. Societe de B.ologie. 

AB. Societe d’Encouragement pour lTndustrie 

Nationale. 

AB. Societe de Geographie. 

p. Societe de Physique. 

b. Societe Entomologique. 

ab. Societe Geologique. 

p. Societe Mathematique. 

p. Societe Metcorologique de France. 

Toulouse. 

ab. Academie des Sciences. 
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Prance (continued). 

Toulouse (continued). 

A. Faculte des Sciences. 

Germany. 

Berlin 

A. Deutsche Chemische Gesellschaft. 

A. Die Sternwarte. 

P- Gesellschaft fiir Erdkunde. 

AB. Konigliche Preussische Akadern 

A. 

Wissenschaften. 

Phvsikalische Gesellschaft. 

Bonn. 

AB. Universitat. 

Bremen. 

p. Natur wissenschaf tlicher Y erein. 

Breslau. 

p. Sclilesisehe Gesellschaft fiir Yaterlandisclie 

Kultur. 

Brunswick. 

p. Verein fiir Naturwissenschaft. 

Carlsruhe. See Karlsruhe. 

Danzig. 

ab. Naturforschende Gesellschaft. 

Dresden. 

p. Ye rein fiir Erdkunde. 

Emden. 

p. Naturforschende Gesellschaft. 

Erlangen. 

AB. Physikalisch-Medicinische Societiit. 

F rankfurt-am-Main. 

ab. Senckenhergische Na turf orschende Gesell¬ 

schaft. 

p. Zoologische Gesellschaft. 

Frankf urt-am- 0 dor. 

p. Naturwissenschaftlicher Yerein. 

Freiburg-im-Breisgau. 
O o 

ab. Universitat. 

Giessen. 

ab. Grossherzogliche Universitat. 

Gorlitz. 

p. Naturforschende Gesellschaft. 

Gottingen. 

AB. Konigliche Gesellschaft der Wissen¬ 

schaften. 

Halle. 

ab. Kaiserliche Leopoldino - Carolinische 

Deutsche Akademie der Naturforscher. 

p. Naturwissenschaftlicher Verein fiir Sach¬ 

sen und Thiiringen. 

Hamburg. 

p. Naturhistorisches Museum. 

ab. Naturwissenschaftlicher Vei’ein. 

Germany (continued). 

Heidelberg. 

p. Naturliistorisch-Medizinischer Yerein. 

ab. Universitat. 

Jena. 

AB. Medicinisch-Naturwissenschaftliche Gesell- 

schaft. 

Karl: sruhe. 

A. Grossherzogliche Sternwarte. 

P- Technische Hochschule. 

Kiel. 

P- Natur wissenscliaf tli ch er Yerei n fiir 

S chi es wig- Ho 1 stein. 

A. Sternwarte. 

AB. Universitat. 

Konigsberg. 

ab. Konigliche Phvsikalisch - Okonomische 

Gesellschaft. 

Leipsic. 

p. Annalen der Physik und Chemie. 

A. Astronomische Gesellschaft. 

ab. Konigliche Sachsische Gesellschaft der 

Wissenschaften. 

Magdeburg. 

p. Naturwissenschaftlicher Yerein. 

Marburg1. 

ab. Universitat. 

Munich. 

ab. Konigliche Bayerische Akademie der 

Wissenschaften. 

p. Zeitschrift fiir Biologic. 

Munster. 

ab. Konigliche Theologische und Philo- 

sophische Akademie. 

Potsdam. 

a. Astropkysikalisches Observatorium. 

Rostock. 

ab. U niversitat. 

Strasburg. 

ab. Universitat. 

Tubingen. 

ab. Universitat. 

W Urzburg. 

ab. Physikalisch-Medicinische Gesellschaft. 

Greece. 

Athens. 

A. National Observatory. 

Holland. (See Netherlands.) 

Hungary. 

Pesth. 

p. Konigl. Ungarische Geologische Anstalt. 

ab. A Magyar Tudos Tarsasag. Die Ungarische 

Akademie der Wissenschaften, 
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Hungary (continued). 

Schemnitz. 

p. K. Ungariscke Berg- und Forst-Akademie, 

India. 

Bombay. 

AB. Blpbinstone College. 

p. Royal Asiatic Society (Bombay Branch). 

Calcutta. 

ab. Asiatic Society of Bengal. 

ab. Geological Museum. 

p. Great Trigonometrical Survey of India. 

ab. Indian Museum. 

p. Tbe Meteorological Reporter to tbe 

Government of India. 

Madras. 

B. Central Museum. 

a. Observatory. 

Roorkee. 

p. Roorkee College. 

Ireland. 
Armagh. 

A. Observatory. 

Belfast. 

ab. Queen’s College. 

Cork. 

p. Philosophical Society. 

ab. Queen’s College. 

Dublin. 

a. Observatory. 

ab. Rational Library of Ireland. 

B. Royal College of Surgeons in Ireland 

ab. Royal Dublin Society. 

AB. Royal Irish Academy. 

Galway. 

ab. Queen’s College. 

Italy. 

Bologna. 

ab. Accademia delle Scienze dell’ Istituto. 

Florence. 

p. Biblioteca Razionale Centrale 

ab. Museo Botanico. 

p. Reale Istituto di Studi Superiori. 

Genoa. 

p. Societa Ligustica di Scienze Raturali e 

Geografiche. 

Milan. 

ab. Reale Istituto Lombardo di Scienze, 

Lettere ed Arti. 

ab. Societa Italiana di Scienze Raturali. 

Raples. 

p. Societa di Raturalisti. 

ab. Societa Reale, Accademia delle Scienze. 

b. Stazione Zoologica (Dr. Dohrn). 

MDCCCXCII.—A. I 
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Italy (continued). 

Padua. 

p. University. 

Pisa. 

p. Societa Toscana di Scienze Raturali. 

Rome. 

p. Accademia Pontificia de’ Ruovi Lincei. 

p. Rassegna delle Scienze Geologiche in Italia. 

A. Reale Ufficio Centrale di Meteorologia e di 

Geodinamica, Collegio Romano. 

ab. Reale Accademia dei Lincei. 

p. R. Comitato Geologico d’ Italia. 

A. Specula Vaticana. 

ab. Societa Italiana delle Scienze. 

Siena. 

p. Reale Accademia dei Fisiocritici. 

Turin. 

p. Laboratorio di Fisiologia. 

ab. Reale Accademia delle Scienze. 

Venice. 

p. Ateneo Veneto. 

ab. Reale Istituto Yeneto di Scienze, Lettere 

ed Arti. 

Japan. 

Tokio. 

ab. Imperial University. 

p. Asiatic Society of Japan. 

Java. 

Batavia. 

ab. Bataviaasch Genootschap van Kunsten en 

Wetenschappen. 

Buitenzorg. 

p. Jardin Botanique. 

Luxembourg. 

Luxembourg. 

p. Societe des Sciences Raturelles. 

Malta. 

p. Public Library. 

Mauritius. 

p. Royal Society of Arts and Sciences. 

Netherlands. 

Amsterdam. 

AB. Koninklijke Akademie van Wetenschappen. 

p. K. Zoologisch Genootschap ‘Ratura Artis 

Magistral 

Delft. 

p. Fcole Polytechnique. 

Haarlem. 

ab. Hollandsche Maatsckappij der Weten¬ 

schappen. 

p. Musee Teyler. 

Leyden. 

ab. University. 

ix 
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Netherlands (continued). 

Rotterdam. 

ab. Bataafsch Genootschap der Proefonder- 

vindelijke Wijsbegeerte. 

Utrecht. 

AB. Provinciaal Genootschap van Kunsten en 

W etenschappen. 

New Zealand. 

Wellington. 

ab. New Zealand Institute. 

Norway. 

Bergen. 

AB. Bergenske Museum. 

Christiania. 

AB. Kongelige ISTorske Prederiks Universitet. 

Tromsoe. 

p. Museum. 

Trondkjem. 

ab. Kongelige Norske Yidenskabers Selskab. 

Nova Scotia. 

Halifax. 

p. Nova Scotian Institute of Science. 

Windsor. 

p. King’s College Library. 

Portugal. 

Coimbra. 

ab. Universidade. 

Lisbon. 

ab. Academia Real das Sciencias. 

p. Sec^ao dosTrabalhos Geologicos de Portugal. 

Russia. 

Dorpat. 

ab. Universite. 

Irkutsk. 

p. Societe Imperiale Russe de Geographie 

(Section de la Siberie Orientale). 

Kazan. 

ab. Imperatorsky Kazansky Universitet. 

Kharkoff. 

p. Section Medicale de la Societe des Sciences 

Experimentales, Universite de Kharkow. 

Kieff. 

p. Societe des Naturalistes. 

Moscow. 

ab. Le Musee Public. 

B. Societe Imperiale des Naturalistes. 

Odessa. 

p. Societe des Naturalistes de la Nouvelle- 

Russie. 

Pulkowa. 

a. Nikolai Haupt-Sternwarte. 

St. Petersburg. 

ab. Academie Imperiale des Sciences. 

ab. Comite Geologique. 

] 
Russia (continued). 

St. Petersburg (continued). 

p. Compass Observatory. 

a. Observatoire Physique Central. 

Scotland. 

Aberdeen. 

AB. University. 

Edinburgh. 

p. Geological Society. 

p. Royal College of Physicians (Research 

Laboratory). 

p. Royal Medical Society. 

a. Royal Observatory. 

p. Royal Physical Society. 

p. Royal Scottish Society of Arts. 

ab. Royal Society. 

Glasgow. 

ab. Mitchell Free Library. 

p. Philosophical Society. 

Servia. 

Belgrade. 

p. Academie Royale de Serbie. 

Sicily. 

Acireale. 

p. Societa Italiana dei Microscopisti. 

Catania. 

ab. Accademia Gioenia di Scienze Naturali. 

Palermo. 

A. Circolo Matematico. 

ab. Consiglio di Perfezionamento (Societa di 

Scienze Naturali ed Economiche). 

A. Reale Osservatorio. 

Spain. 

Cadiz. 

a. Instituto y Observatorio de Marina de San 

Fernando. 

Madrid. 

p. Comision del Mapa Geologico de Espana. 

ab. Real Academia de Ciencias. 

Sweden. 

Gottenburg. 

AB. Kongl. Vetenskaps och Vitterhets Sam- 

halle. 

Lund. 

ab. Universitet. 

Stockholm. 

A. Acta Mathematica. 

ab. Kongliga Svenska Vetenskaps-Akademie. 

ab. Sveriges Geologiska Undersokning. 

Upsala. 

ab. Universitet. 

Switzerland. 

Basel. 

p. Naturforschende Gesellsckaft. 
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Switzerland (continued). 

Bern. 

ab. Allg. Schweizerische Gesellscbaft. 

2j. Naturfoi'schende Qesellschaft. 

Geneva. 

ab. Societe de Physique et d’Histoire Naturelle. 

ab. Institut National Genevois. 

Lausanne. 

p. Societe Yandoise des Sciences Naturelles. 

Neuchatel. 

p. Societe des Sciences Naturelles. 

Zurich. 

p. Astronomische Mittheilungen (Professor R. 

Wolf). 

ab. Das Schweizerische Polytechnikum. 

p. Naturforschende Gesellscbaft. 

Tasmania. 

Hobart. 

p. Royal Society of Tasmania. 

United States. 

Albany. 

ab. New York State Library. 

Annapolis. 

ab. Naval Academy. 

Baltimore. 

AB. Johns Hopkins University. 

Berkeley. 

p. University of California. 

Boston. 

ab. American Academy of Sciences. 

B. Boston Society of Natural History. 

A. Technological Institute. 

Brooklyn. 

ab. Brooklyn Library. ». 

Cambridge. 

AB. Harvard University. 

b. Museum of Comparative Zoology. 

Chapel Hill (N.C.). 

p. Elisha Mitchell Scientific Society. 

Charleston. 

p. Elliott Society of Science and Art of South 

Carolina. 

Chicago. 

ab. Academy of Sciences. 

v. Journal of Comparative Neurology. 

] 
United States (continued). 

Davenport (Iowa). 

p. Academy of Natural Sciences. 

Madison. 

pt. Wisconsin Academy of Sciences. 

Mount Hamilton (California). 

A. Lick Observatory. 

New Haven (Conn.). 

ab. American Journal of Science. 

AB. Connecticut Academy of Arts and Sciences. 

New York. 

p. American Geographical Society. 

p. American Museum of Natural History. 

p. New York Academy of Sciences. 

p. New York Medical Journal. 

p. School of Mines, Columbia College. 

Philadelphia. 

ab. Academy of Natural Sciences. 
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PHILOSOPHICAL TRANSACTIONS. 

I. On the Physics of Media that are Composed of Free and Perfectly Elastic 

Molecules in a State of Motion. 

By J. J. Waterston. 

Communicated by Captain Beaufort, R.N., F.R.S., etc. 

Received December 11, 1845,—Read March 5, 1846. 

[Plates 1, 2.] 

Introduction by Lord Rayleigh, Sec.R.S. 

The publication of this paper after nearly half a century demands a word of 

explanation; and the opportunity may be taken to point out in what respects the 

received theory of gases had been anticipated by AVaterston, and to offer some 

suggestions as to the origin of certain errors and deficiencies in his views. 

So far as I am aware, the paper, though always accessible in the Archives of the 

Royal Society, has remained absolutely unnoticed. Most unfortunately the abstract 

printed at the time (‘Roy. Soc. Proc.,’ 1846, vol. 5, p. 604; here reprinted as 

Appendix I.), gave no adequate idea of the scope of the memoir, and still less of the 

nature of the results arrived at. The deficiency was in some degree supplied by a 

short account in the ‘Report of the British Association’ for 1851 (here reprinted 

as Appendix II.), where is distinctly stated the law, which was afterwards to become 

so famous, of the equality of the kinetic energies of different molecules at the same 

temperature. 

My own attention was attracted in the first instance to Waterston’s work upon 

the connection between molecular forces and the latent heat of evaporation, and 

thence to a paper in the ‘Philosophical Magazine’ for 1858, “On the Theory of 

Sound.” He there alludes to the theory of gases under consideration as having been 

started by Herapath in 1821, and he proceeds : — 

“ Mr. Herapath unfortunately assumed heat or temperature to be represented by 
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the simple ratio of the velocity instead of the square of the velocity—being in this 

apparently led astray by the definition of motion generally received—and thus was 

baffled in his attempts to reconcile his theory with observation. If we make this 

change in Mr. IIerapath’s definition of heat or temperature, viz., that it is propor¬ 

tional to the vis viva, or square velocity of the moving particle, not to the momentum, 

or simple ratio of the velocity, we can without much difficulty deduce, not only the 

primary laws of elastic fluids, but also the other physical properties of gases enume¬ 

rated above in the third objection to Newton’s hypothesis. In the Archives of the 

Boyal Society for 1845-1846, there is a paper “ On the Physics of Media that 

consists of perfectly Elastic Molecules in a State of Motion,” which contains the 

synthetical reasoning upon which the demonstration of these matters rests. The 

velocity of sound is therein deduced to be equal to the velocity acquired in falling 

through three-fourths of a uniform atmosphere. This theory does not take account 

of the size of the molecules. It assumes that no time is lost at the impact, and that 

if the impacts produce rotatory motion, the vis viva thus invested bears a constant 

ratio to the rectilineal vis viva, so as not to require separate consideration. It also 

does not take account of the probable internal motion of composite molecules ; yet 

the results so closely accord with observation in every part of the subject as to leave 

no doubt that Mr. PIerapath’s idea of the physical constitution of gases approxi¬ 

mates closely to the truth. M. Kronig appears to have entered upon the subject in 

an independent manner, and arrives at the same result; M. Clausius, too, as we 

learn from his paper “ On the Nature of the Motion we call Heat” (‘Phil. Mag./ 

vol. 14, 1857, p. 108).” 

Impressed with the above passage and with the general ingenuity and soundness 

of Waterston’s views, I took the first opportunity of consulting the Archives, and 

saw at once that the memoir justified the large claims made for it, and that it marks 

an immense advance in the direction of the now generally received theory. The 

omission to publish it at the time was a misfortune, which probably retarded the 

development of the subject by ten or fifteen years. It is singular that Waterston 

appears to have advanced no claim for subsequent publication, whether in the Trans¬ 

actions of the Society, or through some other channel. At any time since 1860 

reference would naturally have been made to Maxwell, and it cannot be doubted 

that he would have at once recommended that everything possible should be done to 

atone for the original failure of appreciation. 

It is difficult to put oneself in imagination into the position of the reader of 1845, 

and one can understand that the substance of the memoir should have appeared 

speculative and that its mathematical style should have failed to attract. But it is 

startling to find a referee expressing the opinion that “ the paper is nothing but 

nonsense, unfit even for reading before the Society.” Another remarks “that the 

whole investigation is confessedly founded on a principle entirely hypothetical, from 

which it is the object to deduce a mathematical representation of the phenomena 

of elastic media. It exhibits much skill and many remarkable accordances with the 
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general facts, as well as numerical values furnished by observation.... The 

original principle itself involves an assumption which seems to me very difficult to 

admit, and by no means a satisfactory basis for a mathematical theory, viz., that the 

elasticity of a medium is to be measured by supposing its molecules in vertical motion, 

and making a succession of impacts against an elastic gravitating plane.” These 

remarks are not here quoted with the idea of reflecting upon the judgment of the 

referee, who was one of the best qualified authorities of the day, and evidently 

devoted to a most difficult task his careful attention ; but rather with the view of 

throwing light upon the attitude then assumed by men of science in regard to this 

question, and in order to point a moral. The history of this paper suggests that 

highly speculative investigations, especially by an unknown author, are best brought 

before the world through some other channel than a scientific society, which naturally 

hesitates to admit into its printed records matter of uncertain value. Perhaps one 

may go further and say that a young author who believes himself capable of great 

things would usually do well to secure the favourable recognition of the scientific 

world by work whose scope is limited, and whose value is easily judged, before 

embarking upon higher flights. 

One circumstance which may have told unfavourably upon the reception of 

Waterston’s paper is that he mentions no predecessors. Had he put forward his 

investigation as a development of the theory of D. Bernoulli, a referee might have 

hesitated to call it nonsense. It is probable, however, that Waterston was 

unacquainted with Bernoulli’s work, and doubtful whether at that time he knew 

that Herapath had to some extent foreshadowed similar views. 

At the present time the interest of Waterston’s paper can, of course, be little 

more than historical. What strikes one most is the marvellous courage with which 

he attacked cpiestions, some of which even now present serious difficulties. To say 

that he was not always successful is only to deny his claim to rank among the very 

foremost theorists of all ages. The character of the advance to be dated from this 

paper will be at once understood when it is realised that Waterston was the first to 

introduce into the theory the conception that heat and temperature are to he 

measured by vis viva. This enabled him at a stroke to complete Bernoulli’s expla¬ 

nation of pressure by showing the accordance of the hypothetical medium with the 

law of Dalton and Gay-Lussac. In the second section the great feature is the 

statement (VII.), that “ in mixed media the mean square molecular velocity is 

inversely proportional to the specific weight of the molecules.” The proof which 

Waterston gave is doubtless not satisfactory ; but the same may be said of that 

advanced by Maxwell fifteen years later. The law of Avogadro follows at once, 

as well as that of Graham relative to diffusion. Since the law of equal energies was 

actually published in 1351, there can be no hesitation, I think, in attaching Water¬ 

ston’s name to it. The attainment of correct results in the third section, dealing 

with adiabatic expansion, was only prevented by a slip of calculation. 

b 2 
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In a few important respects Waterston stopped short. There is no indication, 

so far as I can see, that he recognised any other form of motion, or energy, than the 

translatory motion, though this is sometimes spoken of as vibratory. In this matter 

the priority in a wider viewr rests with Clausius. According to Waterston the 

ratio of specific heats should be (as for mercury vapour) 1*67 in all cases. Again, 

although he was well aware that the molecular velocity cannot be constant, there 

is no anticipation of the law of distribution of velocities established by Maxwell. 

A large part of the paper deals with chemistry, and shows that his views upon 

that subject also were much in advance of those generally held at the time. 

The following extract from a letter by Professor McLeod will put the reader into 

possession of the main facts of the case:— 

“ It seems a misfortune that the paper was not printed when it was written, for it 

shadows forth many of the ideas of modern chemistry which have been adopted since 

1845, and it might have been the means of hastening their reception by chemists. 

“ The author compares the masses of equal volumes of gaseous and volatile elements 

and compounds, and taking the mass of a unit volume of hydrogen as unity, he 

regards the masses of the same volume of other volatile bodies as representing their 

molecular weight, and in the case of the elements he employs their symbols to indicate 

the molecules. 

“ In water he considers that the molecule of hydrogen is combined with half a 

molecule of oxygen, forming one of steam, and he therefore represents the com¬ 

pound as HOi. He does not make use of the term “ atom ” (although he speaks of 

atomic weight on p. 18, but thinks it divisible), and if he had called the smallest 

proportion of an element which enters into combination an atom, he would probably 

have been led to believe that the molecules of some of the simple bodies contain two 

atoms, and he might have adopted two volumes to represent the molecule, as is done 

at the present time. The author calls one volume or molecule of chlorine Cl, one 

volume or molecule of hydrogen H, and one volume or molecule of hydrochloric acid 

HiCh. If he had regarded the molecules as containing two indivisible atoms, these 

bodies would have been represented, as now, by the formulae Cl2, H3, and HC1 

respectively, all occupying two volumes. § 15 showos bow near he was to this 

conception. Gerhardt in the Fourth Part of his ‘ Traite de Chimie Organique,’ 

published in 1856, points out the uniformity introduced into chemical theory by the 

adoption of this system. 

“For carbon he makes C = 12, as now accepted, although I do not find how he 

arrives at this number. He seems to have anticipated one of Ramsay’s recent 

discoveries, that nitrous anhydride (hyponitrous acid, ON,, No. 26 in the table) 

dissociates on evaporation into nitric oxide (binoxide of nitrogen, No. 28) and nitric 

peroxide (nitrous acid, No. 25). 

“ The values for the symbols for sulphur, phosphorus, and arsenic taken from the 

vapour densities (and which are multiples of what are believed to be the true atomic 

weights), cause some complexity in the formulas of their compounds. 
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“ There seem to be errors in the formulae of alcohol and ether on p. 49, for they do 

not agree with those in the table. They ought probably to be written 

2 (HCJ + CL2EL and 4 (HC,) + 0,21b. 

« Considering how nearly Waterston approached what is now believed to be the 

true theory, it is disappointing to read his controversy with Odling in 1863 and 1864 

(‘Phil. Mag.,’ vols. 26 and 27), where he seems to oppose the new formula then being 

introduced. He is very dogmatic about the constitution of hydrate of potash : he 

very properly insists that we can only obtain a knowledge of the molecular weight of 

bodies that can be volatilized, and of which the vapour densities can be determined, 

but he does not see the analogy between the hydrate and oxide of potassium with 

alcohol and ether, probably because he regards these latter bodies as combinations of 

water with different quantities of olefiant gas. He writes water HCL = 9, alcohol 

CHJICL = 23, and ether C3H4.HOj = 37, whilst he considers potassic hydrate 

KO,. HCL = 56, and oxide of potassium KCL = 47, the hydrate having a higher 

molecular weight than the oxide. If we regard these compounds as derived from 

water by the replacement of hydrogen by ethyl and potassium respectively, the 

analogy between the two series is complete (ethyl was discovered in 1849 and is 

mentioned by Waterston). 

H30 = 18 HoO = 18. 

(C3H5) HO = 46 KHQ = 56. 

(C3H5)3 0 = 74 KoO =94. 

“ From a remark in the ‘ Phil. Mag.’ (vol. 26, p. 520), I imagined that Waterston 

had arrived at the double atomic weights of many of the metals now adopted, for he 

gives that of iron as 56 and that of aluminium as 27 calculated from their specific 

heats, but there is an error in his arithmetic, for 3'3 divided by the specific heat of 

iron ‘1138 gives 28098, and 3‘3 divided by the specific heat of aluminium ’214 3 

gives 15'399.” 

With the exception of some corrections relating merely to stops and spelling the 

paper is here reproduced exactly as it stands in the author’s manuscript.—Dec. 1891. 

[Authors Introduction.] 

Of the physical theories of heat that have claimed attention since the time of 

Bacon, that which ascribes its cause to the intense vibrations of the elementary parts 

of bodies has received a considerable accession of probability from the recent experi¬ 

ments of Forbes and Melloni. It is admitted that these have been the means of 

demonstrating that the mode of its radiation is identical with that of light in the 

quantities of refraction and polarization. The evidence that has been accumulated in 

favour of the undulatory theory of light has thus been made to support with a great 
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portion of its weight a like theory of the phenomena of heat ; and we are, perhaps, 

justified in expecting that the complete development of this theory will have a much 

more important influence on the progress of science, because of its more obvious 

connection and intimate blending with almost every appearance of Nature. Heat is not 

only the subject of direct sensation and the vivifier of organic life, but it is manifested 

as the accompaniment of mechanical force. It is related to it both as cause and effect, 

and submits itself readily to measurement by means of the mechanical changes that 

are among the most prominent indications of its change of intensity. The undulatory 

theory at once leads us to the conclusion that, inasmuch as the temperature of a body 

is a persistent quality due to the motion of its molecules, its internal constitution 

must admit of it retaining1 a vast amount of living force. Indeed, it seems to be 

almost impossible now to escape from the inference that heat is essentially molecular 

vis viva. In solids, the molecular oscillations may be viewed as being restrained by 

the intense forces of aggregation. In vapours and gases these seem to be overcome ; 

vibrations can no longer be produced by the inherent vis insita of the molecules 

struggling with attractive and repellant forces ; the struggle is over and the molecules 

are free; but they, nevertheless, continue to maintain a certain temperature; they 

are capable of heating and being heated; they are endowed with the quality heat, 

which, being of itself motion, compels us to infer that a molecule in motion without 

any force to restrain or qualify it, is in every respect to be considered as a free pro¬ 

jectile. Allow such free projectiles to be endowed with perfect elasticity, and 

likewise extend the same property to the elementary parts of all bodies that they 

strike against, and we immediately introduce the principle of the conservation of 

vis viva to regulate the general effects of their fortuitous encounters. Whether gases 

do consist of such minute elastic projectiles or not, it seems worth while to enquire 

into the physical attributes of media so constituted, and to see what analogy they 

bear to the elegant and symmetrical laws of aeriform bodies. 

Some years ago I made an attempt to do so, proceeding synthetically from this 

fundamental hypothesis, and have lately obtained demonstration of one or two points 

where the proof was then deficient. The results have appeared so encouraging, 

although derived from very humble applications of mathematics, that I have been 

led to hope a popular account of the train of reasoning may not prove unacceptable to 

the Royal Society.—Sept. 1, 1845. 

Section I. —Of a Homogeneous Medium and the Laws of its Elasticity. 

§ 1. The term medium is, perhaps, not quite appropriate to what is here intended 

to be signified. We speak of a resisting medium, of the medium of light, and in each 

expression something is referred to as intervening between bodies, and it is the 

quality of interposition that entitles it to the name. Here, for want of better, it is 

employed to denote a certain hypothetical condition of matter which it is the object 

of this Paper to show has physical properties that resemble those that have been 
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found to belong to aeriform bodies. Inasmuch, therefore, as the word may be applied 

to a simple unmixed gas so as to speak of it as an oxygen medium or a hydrogen 

medium, &c., so far we may be allowed the use of it in treating of a hypothetical 

medium, which we have carefully to refrain from assimilating to any known form of 

matter until, by synthetical reasoning, circumstantial evidence has been accumulated 

sufficient to prove or render probable its identity. 

To have a proper conception of what the medium is that forms the subject of 

speculation, we must imagine a vast multitude of small particles of matter, perfectly 

alike in every respect, perfectly elastic as glass or ivory—but of size, form and 

texture that requires not to be specified further than that they are not liable to 

change by mutual action—to be enclosed by elastic walls or surfaces in a space so 

much greater than their aggregate bulk as to allow them freely to move amongst 

each other in every direction. As all consideration of attractive forces is left out at 

present, it is obvious that each particle must proceed on a straight line until it strikes 

against another, or against the sides of the enclosure ; that it must then be reflected 

and driven into another line of motion, traversing backwards and forwards in every 

direction, so that the intestine condition of the multitude of these that form the 

medium may be likened to the familiar appearance of a swarm of gnats in a sunbeam. 

The quality of perfect elasticity being common to all the particles, the original 

amount of vis viva, or living, acting force, of the whole multitude must for ever remain 

the same. If undisturbed by external action it cannot, of itself, diminish or increase, 

but must for ever remain as unchanged as the matter that is associated with it and 

that it endows with activity. Such is the case if we view the whole mass of moving 

particles as one object, but each individual of the multitude must at every encounter 

give or receive, according to the ever-changing angle and plane of impact, some portion 

of its force, so that, considered separately, they are for ever continually changing 

the velocity and direction of their individual motions ; striking against and rebounding 

from each other, they run rapidly in their zig-zag conflict through every possible 

mode of concurrence, and at each -point of the medium we may thus conceive that 

particles are moving in every possible direction and encountering each other in every 

possible manner during so small an elapsed interval of time that it may be viewed as 

infinitesimal in respect to any sensible period. The medium must in this way become 

endowed with a permanent state of elastic energy or disposition to expand, uniformly 

sustained in every part and communicating to it the physical character of an elastic 

fluid. 

The simplicity of this hypothesis facilitates the application of mathematics in 

ascertaining the nature and properties of such media, and the study acquires much 

interest from the analogies that it unfolds. For if the reasoning is correct, the 

physical laws common to all gases and vapours—those laws, namely, that concern 

heat and pressure—do actually belong to such media, and may be synthetically 

deduced from the constitution which has now been assigned to them. 

The characteristic which renders a medium susceptible of mathematical treatment is 
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that of its being composed of particles perfectly alike in every respect, but it is chiefly 

their identity in weight or mass that is the important point of distinction. A 

particle thus conforms to the definition that the eminent physicist Ampere has given 

to the term molecule, which we may therefore adopt as a more significant name for 

the element of a medium. 

The first department of the subject must naturally be devoted to the consideration 

of the circumstances that determine the equilibrium of such a homogeneous medium 

considered by itself. Its density, by which is to be understood not its specific gravity 

but the number of molecules in a constant volume,# may be supposed to vary without 

disturbing its homogeneity. The mean square velocity of the molecules (which in 

any infinitesimal portion of the medium may be assumed as uniform) we also have to 

consider as a variable quantity, and the physical qualities of a medium being 

dependent on these two elements of its constitution, it is necessary to determine 

clearly them mathematical relations. 

§ 2. It is evident from the definition of the hypothesis, that the medium must 

exert some expansive force on the surface that encloses it; but the nature of the 

force is not strictly continuous, it is composed of a multitude of successive sti’okes. 

Nevertheless, their succession is certainly continuous, and it is not difficult to 

conceive how they may be sufficient to counterbalance and support a superincumbent 

weight. To obtain an exact idea of this, let us suppose that a small elastic plane 

whose weight is n times that of a molecule, is supported by a regular succession of 

such molecules striking its centre of gravity with a velocity v. We seek to knowT the 

condition of their mutual action when an equilibrium is maintained. 

The following are the well-known equations that express the law of elastic collision. 

They are necessarily the foundation of all reasoning on the effects of the mutual 

action of elastic bodies by impact. 

1. The Meeting Impact. 

Two molecules, B and D, meet directly in an intermediate point and strike each 

other with the respective velocities /3 and S. The velocities after impact are re¬ 

spectively 
„ n , 2(S + /3)D 
p0 = — p -1-vm. vv— ; and s0 = s- 

(B + D) 

the direction of D’s motion being reckoned positive. 

2 (8 + ft) E 
(B + D) 

2. The Overtaking Impact. 

The two molecules, B and D, with the same velocities, /3 and S, move in the same 

direction and I) overtakes B; the velocities after impact are respectively :— 

A — /3 + 
2 (S — 13) D 

and = 8 — 
2 (S — /3) B' 

(B + D) (B + D) 

the direction of D’s motion being reckoned positive. 

* [Attention should be directed to this use of the word “density.”—R.] 
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In the first of these let f30 = ft, S = v, B = nT> ; then shall 

2 (v + 0) 
£=-/3 + 

n + 1 
or ft = - * 

n 

which evidently expresses the upward velocity given to the plane by the impulse of 

one molecule when the velocity of incidence and reflexion is the same. The plane 

ascends and descends the height due to this velocity, and then encounters the next in the 

succession of molecular impacts without any transference of force taking place between 

them; and n being taken an indefinitely great number, (3 is infinitesimal in respect 

to v, and the height through which the plane traverses is also infinitesimal, so that it 

is supported as if by a continuous force of upward pressure. The time between each 

impact is, according to the law of falling bodies, equal to the time taken by the force 

of gravity to destroy and reproduce the infinitesimal velocity v/n. This is 2vjgn : the 

velocity which a free body gains or loses in a unit of time by the force of gravity 

being represented by g. The number of impacts in a unit of time is therefore 

gnj2v = A. This, then, is the relation between the weight of the plane, in terms of 

that of the molecule unity, and the rapidity of the succession of impacts necessary to 

support it in a condition of statical equilibrium. Now, if the plane forms part of 

the surface that encloses the medium and that counterbalances by its weight the 

effect of the impacts of the confined molecules, such effect must correspond with the 

succession represented by A; and we deduce that the elastic force of a medium, as 

represented by the weight or pressure required to confine it, is directly 'proportional to 

the number of molecular impacts that take place against a unit surface in a unit time 

with a constant velocity (or e = A, if v is constant).I. 

§ 3. Such being the nature of the elastic force, it will not be difficult to prove 

that it increases exactly as the density of the medium. The proposition stands thus : 

if the number of molecules in a volume of the medium be doubled, the number of 

impacts that take place on a constant surface in a constant time will also be doubled, 

the velocity being unchanged. 

Suppose the number octupled, the mean distance is reduced to one-half. If they 

were equidistant and moving in one direction with the constant velocity, it is evident 

that eight times the previous number would pass the same imaginary plane in the 

same time, and if the plane were solid that eight times the previous number would 

impinge against it. Now, although all do not move in one direction, yet in both 

cases the same proportion of the whole must in each case do so. Whatever may be 

the density no preference can be assigned to one direction more than to another in 

the molecular movements; they must in every case be equally distributed in every 

* [The case is that where the particle (mass 1) and the plane (mass n) hoth reverse their velocities at 

impact. The conservation of vis viva is thereby secured, and the condition of momentum gives at once 

n[3 - v. —R.] 

MDCCCXCII.—A. C 
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direction, and if the number is increased eight times in any one direction it must be 

so in every other. 

This may he viewed in another light. Suppose in both cases, the density being 

1 and 8 respectively, that the molecules are arrested in their motion. It is evident 

that opposite a unit of surface in density 8 there will, in the first row, be four times 

as many molecules as in density 1, and that the average distance between the rows 

is only one-half. Suppose the molecules to resume their motion, and compare density 8 

with density 1, it is obvious that in half the time four times the number will impinge 

on the unit of surface, and in the same time eight times the number. Now it has 

been shown (§ 2) that the elastic force is proportional to the number of molecular 

impacts made with a constant velocity against a unit of surface in a unit of time, 

hence we deduce that the elastic force (e) o f a medium with a constant mean molecular 

velocity (v) is proportional to its density (A3) (or e == A3, if v or v3 is constant). . II. 

§ 4. Hitherto the molecular velocity has been supposed constant. We have now 

to enquire how the elasticity of the medium is affected by a change in the velocity 

from v to mv. The intestine action of the medium may be viewed as the traversing 

of a certain mean distance, L, by the molecules in a given time, t; and in this time a 

certain mean number, A, of impacts take place against a unit of surface. If the 

velocity is increased m times, the distance L is traversed in l/mth the time t, or t/m, and 

in this reduced time the same number of impacts must take place as before took place 

in the time t; for there is nothing in the change of velocity simply that can alter the 

ratio that subsists between the mean distance traversed and the mean number of 

impacts, unless that ratio were subject to change without any change whatever in the 

medium, which is absurd; hence, in the original time, t, there is m times the original 

number of impacts, A.. 

It was shown in § 2 that if the weight of each of the molecules were represented 

by 1, their mean velocity by v, and weight of plane supported by their impinging 

action n, the number of impacts in a second or unit of time required to support the 

plane is fy = A, or n — yAv, and this equation must evidently be maintained in 

altering the value of the terms. Now, it has been shown that in changing v to mv in 

2 
a medium that does not alter its density we cause A to become mA, and - Av becomes 

2 2 0 0 
-Amvm — -Avm° = nm3. Hence n, the weight of the plane, or measure of tension, 
0 9 
must be increased m3 times so that it may continue to equilibrate the impinging 

action. Thus, we deduce that while the molecular velocity increases from v to mv, 

the elasticity increases from n to nvn or the elasticity of a medium having a constant 

density is proportional to the mean square molecular velocity or vis viva of the medium 

(or e == v3, when A3 is constant)*.III. 

* [II. and III. were given by D. Bernoulli. See 1 PoGG. Ann.,’ vol. 107, p. 490, 1859.—R.] 
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§ 5. Combining II. with III. it appears that when both the density and the vis 

viva are subject to change that the elasticity is equal to their product, or e = A'V’, 

and this is the law that includes all the conditions of equilibrium of an enclosed 

homogeneous medium. One other condition only remains to be specified. Under a 

constant pressure the density is inversely as the vis viva or mean square molecular 

velocity (A3 == if e is constant).IV. 

§ 6. In concluding this part of the subject, we cannot fail of being sensible of the 

analogies that subsist between these synthetical deductions and the chief properties 

that distinguish aeriform fluids. 

The first point that was inductively established is Mariotte’s law, viz. : at the 

same temperature the density of air is as its compression. This is analogous to the 

second deduction :—The square of the velocity being constant, the elastic force of a 

medium is proportional to its density. The accordance appears as complete as could 

be desired, and there is a residual evidence in favour of v2 being identical with 

temperature, or being a quality that varies simultaneously with it. 

The second point is Dalton and Gay-Lussac’s law of expansion. By experimenting 

upon the same weight of air at different temperatures under a constant pressure, these 

philosophers found that an increment of one degree caused always the same 

augmentation of bulk, and that this amounted to -j^-gth part of the space that it 

occupied at 32°. Thus, if the same law hold good at all temperatures, 480 cubic 

inches of air at this temperature should diminish one inch in bulk for every degree 

it was lowered in temperature, and would become zero in bulk at 480° below the 

freezing point of water, or ~ 448° on Fahrenheit scale. 

Now in IV. we had A3 = —, or v3 == -r, when e is constant; but — is the volume 
• v2 ‘A3 A3 

occupied by a constant number of molecules; hence with the same constant number 

of molecules the volume is as the mean square molecular velocity, and a constant 

increment of vis viva is followed by the same increment of volume under a constant 

pressure, and as the constant increment of volume (1 cubic inch) is to the constant 

increment of vis viva (1°) so is the volume (480 cubic inches) corresponding to a 

certain vis viva (32° Fahr.) to that vis viva (480°). 

The analogy therefore still holds good, and the evidence continues in favour of the 

absolute temperature being represented by v3. 

When air is not allowed to expand and heat is applied, the elastic force increases 

with the temperature, and a rise of 1° causes an absolute increase in the elasticity, 

which is the same at all temperatures, and corresponds with the increase of bulk it 

would assume if allowed freely to expand. This is analogous to III., where, the 

density being constant or bulk unchanged, the elasticity is shown to be proportional 

to the mean square molecular velocity. 

Thus, the laws of Mariotte and of Dalton and Gay-Lussac are represented by 
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the formula (448 -f- t) A3 = e ; in which t = temperature, Fahrenheit scale; A3 = 

density, and e = elasticity. 

The law of elasticity in the hypothetical medium is represented by the formula 

FA3 = e; in which v3 is the mean square molecular velocity ; A3 = density, and 

e = elasticity. 

The first expresses physical laws that have been found to belong to a certain 

existent form of matter. 

The second expresses physical laws that have been proved to belong to a certain 

possible form of matter. 

The cause of the effect represented by (448 + t) in the first is unknown, but has, at 

various times, by eminent authorities, been referred to molecular motion. 

The corresponding term, v3, of the second represents molecular motion. 

Section II.— On the Physical Pelations of Media that differ from each 

OTHER IN THE SPECIFIC WEIGHT OF THEIR MOLECULES. 

§ 7. The synthetical deductions of last section apply to a homogeneous medium 

without respect to the absolute weight of its molecules, if the weight of each molecule 

is the same. This weight, common to all, may be viewed as the specific molecular 

weight of the medium, and distinguishes it from any other medium with a different 

specific molecular weight. We have now to enquire into the relations that subsist 

between the density and molecular velocity of two such media that have the same 

elasticity, or that are in equilibrium of pressure and also of vis viva. 

We deduced from the law of impinging elastic bodies that if v represents the mean 

molecular velocity in feet per second, A the number of molecular impacts in a second 

upon a small elastic plane which is equal in weight to n molecules, then n — -Av. 

2 co 
Let oj represent the specific weight of the molecules, we have con — —Av = e = the 

elastic force exerted by the medium on a unit of surface and as this must in the 

present enquiry be assumed constant, we may easily remark how a change in to affects 

v and A. 

It is evident that since -^Au is a constant quantity and to, A, and v variable, we 

have Av = - ; but e = wA3p2(5 5) = Av, and, therefore, A°v = -A, or A = f~A^v, and 
‘to (J CJ 2 

Av — - = A3p3. Hence it is obvious that if A3, the density or number of molecules 
' O) • 

in a constant volume, as well as e, the tension, are constant, while the molecular 

* e is the absolute weight of tlxe small elastic plane that is supported by the succession of A number 

of molecular impacts per second, tbe weight of each of which is w, and their common impinging velocity 

v feet per second. 
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velocity and specific weight are variable, these variables are bound by the relation 

expressed by v3 = 1/w, which signifies that if two media are in equilibrium of pressure 

and have in the same volume of each the same number of molecules, the squares of 

their molecular velocities must be inversely as their specific molecular weights. 

Hence, we deduce that if any number of separate media have equal density and 

tension, the molecidar velocity of each must be 'proportional to the inverse square root 

of their specific molecidar weight, or to the inverse square root of the specific gravity 

of the media respect ively *.V. 

§ 8. But media may be in equilibrium of pressure without being of equal density, 

for a deficiency of density may be compensated by an excess in the molecular velocity. 

It is plain that if e and u3 are constant in any two media they may still be in 

equilibrium of pressure if w is proportional to 1/A3, or if the molecular weight of each 

medium is inversely as its density. If the specific molecular weights are in a constant 

ratio to each other and the tension and velocity also constant, the media must be kept 

in equilibrium of pressure if the density of each is reciprocally proportional to the 

specific molecular weight of the other. 

We have supposed hitherto that the media are separate while their respective 

elasticities are compared. Let us now enquire into the effects of allowing them to have 

access to each other. The united media immediately obtain a heterogeneous character, 

for it requires no demonstration to convince us that the molecules of each will 

permeate through the volume occupied by the other, the vacuities in the space 

occupied by each presenting no more obstacle to the motion of one set of molecules 

than it does to the other; and as collision must take place amongst them in every 

possible manner and direction, the common space of the united media are free alike to 

each individual molecule of both to range through in its zig-zag course. Consequently, 

media in contact with each other become gradually equally diffused through their 

common volume.VI. 

The internal condition of the mixture must after a time become settled so that 

in any infinitesimal portion the same mean velocity will be found proper to the 

molecules of each medium respectively. 

But as each of the two sets of molecules, although completely mixed together, 

preserve their specific weights, so must they have corresponding specific velocities 

that remain intact, notwithstanding that they as often impinge on molecules of the 

other set as on the molecules of their own kind. It is of consequence to settle what 

the ratio of these specific velocities is, for upon this point depends the nature of the 

vis viva equilibrium of different media, and we have to determine the relative 

condition of two media when they are in equilibrium both of pressure and of vis viva. 

* [The deduction of V. appears to be correct, though much embarrassed by the irrelevant g. In his 

first memoir on the Theory of Gases (‘ Pogg. Ann.,’ vol. 100, 1857), Clausius arrives at the same con¬ 

clusion. His assumption that the density (in Waterston’s sense) of various gases is the same, appears 

to have been made upon chemical grounds.—R.] 
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§ 9. We must now refer back to the equations of impact (§ 2). It is apparent 

that the sum of the impinging vis viva of both molecules does not alter in either 

the meeting or overtaking impact; what is gained by one is lost by the other, or 

/3-B + S2D = (3 02B + S02D = /3i2B + S12D. But in every case except one a trans¬ 

ference of vis viva must take place from the one to the other. 

The exception is found in the meeting impact when /3 == 1/B and & = 1/D ; then 

shall /30 = (3 and §0 = S, but at the same time /31 is not equal to (3, or S1 to S ; in every 

other case /30 is not equal to (3 nor to (3V nor is S0 equal to S or to S1. 

It can seldom happen that the molecules strike each other directly. In taking 

account of the collective result of their fortuitous concourse we must view the position 

of the plane of concurrence and the respective inclinations of the line of motion of 

each molecule to it as three independent variables. The incident velocity of each is 

the absolute velocity resolved perpendicular to the plane, and the equations apply to 

this portion only of the vis viva of the molecules. 

Although the variety in the mode of impact is infinite, it is certain that one 

direction of motion is as likely as any other, and hence, that the opposite of any 

direction is equally probabie to the direction itself. 

Let us confine our attention to any single case of impact and suppose that the 

directions of the motions of the two impinging molecules lie on one side of the plane 

of concurrence, then it appears that the nature of the impact must be overtaking. 

Again, let us suppose that they lie similarly disposed on the other side of the plane; 

the nature of the impact is again overtaking. Now, instead of having the opposite of 

both the original lines of motion, suppose the opposite of one only is taken ; it is clear 

that the nature of the impact is in this case of the meeting kind; and the opposite 

of the other line of motion being taken while the first is in its original position, the 

impact is again of the meeting kind. 

Each of these four cases are equally probable, and the resolved velocities, or the 

values of (3 and S, are the same in all, but two are meeting impacts and two are 

overtaking, each couple having perfectly distinct numerical equations to define the 

relation between the incident and reflected vis viva. 

We are thus obliged to infer that the intestine action of the medium must be 

viewed in this manner as divided into two kinds of impacts specifically distinct in the 

numerical relation that subsists between the velocity before and after concurrence, 

and when employing the equations for summing up the results of the whole indefinitely 

great multitude that take place in mixed media, the effect of any one meeting impact 

must be considered along with its counterpart overtaking impact with the same 

velocities. 

§ 10. We have remarked that it is only the resolved portion of the whole vis viva 

of a molecule that is dealt with by the equations—that forms the force of impact— 

and it may be questioned whether the mean ol these forces in each kind of molecules 

bears the same proportion to each other as the whole vis viva of each. That the ratio 
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is the same is best seen by the reductio ad absurdum method of reasoning. If the 

ratio is different, the motions of the heavier molecules must be resolved in a different 

way from those of the lighter, or the plane of concurrence must incline to one set of 

molecules in a different manner to that of the other set. Now any such effect is quite 

inconsistent with the fundamental hypothesis, and would require us to admit the 

influence of a modifying power whose nature and mode of bringing about the effect in 

question is unknown. 

The ratio p of the resolved to the absolute vis viva is actually one-third, and will 

become obvious in the next section, but it seems needless to require the demonstration 

in this place as all that we have to be assured of is the constancy of the ratio, whatever 

its actual value may be. 

In seeking to demonstrate the nature of the vis viva equilibrium, the solitary 

condition that we have to reason from is that the mean value of (/3y2 -f- fif) is equal 

to 2/32 (§ 2) and the mean value of (S02 + Sp) = 2S3 That this is a necessary 

condition is obvious, because if either were less there would be a continual transfer 

from the molecules B to the molecules D, or from D to B and vice versd. 

By squaring the equations in § 2 and adding, we have the following :— 

/V + A2 = 2{/33 - . p + _Ai_. (Sn + py 
B + D 

4D 

(B + D)3 

4B3 
v + V = 2{S2 - ^ • s* + (TT5? • (8* + /»•)}. 

If in any case it happens that /302 + /3p = /3'3, we shall have 

4D2 

(B + D)3 
(§3 + n 

or /32B = S2D, and 802 + Sp — 2S2. Hence, if the squares of the impinging velocities 

happen to be in the inverse ratio of the molecular weights, then in either molecule the 

sum of the vis viva of the twofold encounter (one meeting, the other overtaking with 

the same impinging velocities) before impact, or 2/33, is equal to the sum after impact, 

or to /302 + 

But this is only one case out of an infinite number where the ratio is different. 

Generally, we may express the equation thus : 

/V + Pi = 2/33 + p, and 802 + Sx3 = 2S3 + q. 

Now, suppose that in an indefinitely great multitude of impacts the sum of all the 

individual values of ftp -f- /3p and S02 -j- Sp are taken, we shall have the mean of the 

values of the first equal to in accordance with the necessary condition of per¬ 

manence noticed above (by (3mz we mean to denote the mean molecular vis viva or 
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mean square velocity of the B molecules, &c.). The mean value of /3~ + p is, there¬ 

fore, fifp, but the mean value of /33 is also evidently equal to fifip, as above; hence, 

the mean value ofy> is 0, or the positive values of p balance the negative values. In 

the same way, it may be shown that the mean of the values of q is also 0. Hence, 

we deduce that fifiB = Bm2D, or that in mixed media the mean square molecular 

velocity is inversely proportional to the specific iveight of the molecules * . VII. 

This is the law of the equilibrium of vis viva. 

§ 11. Thus, it appears that the inverse ratio of the specific molecular weight is 

that which is naturally assumed by the mean square molecular velocity of media in 

contact, and according to the foregoing reasoning (§ 10), this is also the ratio that 

ensures an equilibrium of pressure between media of the same density, or which have 

the same number of molecules contained in the same volume. Tims, by combining 

V. with VII. we deduce that media in equilibrium of pressure and vis viva are of 

equal density, or have specific gravities respectively proportional to their specific 

molecular weights.VIII. 

§ 12. We may likewise remark that as the mean value of the product /3~B is equal 

to the mean S3D, or B„3 = 8„3D, there is the same amount of vis viva or mechanical 

force contained in equal volumes of all media that are in equilibrium of pressure and 

vis viva.IX. 

§ 13. If different media are placed in contact they must diffuse themselves through 

their common volume with velocities proportional to their mean molecular velocity ; 

but this velocity being in each inversely as the square root of its specific molecular 

weight, which is equal to the square root of its specific gravity, we may deduce, by 

combining VI. with VII., that media in equilibrium of pressure and vis viva diffuse 

themselves through their common volume with velocities inversely proportioned to the 

square root of their specific gravity.X. 

§ 14. Such are the principal points by which different media are related to each 

other. Their analogies to the properties of gases may be stated as follows : 

(1.) The specific gravities of gases of the same temperature and pressure are respec¬ 

tively proportional to their atomic weight. [The combining equivalents or proportions 

may be viewed as simple multiples or divisors of the atomic weight or specific gravity.] 

This is analogous to tne VIII. deduction. Media in equilibrium of vis viva and 

pressure have specific gravities proportional to their molecular weight. It will be 

remarked that here again we have temperature represented by vis viva. 

(2.) It is considered as almost proved that gases in equilibrium of pressure and 

temperature have, in equal volumes, the same absolute quantity of heat. 

* [This is the first statement of a very important theorem. (See also ‘Brit. Assoc. Rep.,’ 1851). The 

demonstration, however, of § 10 can hardly be defended. It bears some resemblance to an argument 

indicated and exposed by Professor Tait (‘ Edinburgh Trans.,’ vol. 33, p. 79, 1886). There is reason to 

think that this law is intimately connected with the Maxwellian distribution of velocities, of which 

Waterston had no knowledge.-—R.] 
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We have deduced, in reference to media, that when they are in equilibrium of 

pressure and vis viva they have, in equal volumes, the same amount of vis viva. 

(3.) It is considered probable that the quantity of heat contained in equal volumes 

of all gases in equilibrium of pressure and temperature is proportional to their absolute 

temperature; and, in general, that equal increments of heat cause equal increments of 

temperature or expansion. 

In all media in equilibrium of pressure and vis viva the same increment of vis viva 

causes the same expansive effect. (See also § 6.) 

(4.) Gases, however different in specific gravity, when placed in connection diffuse 

themselves equally through each other; and according to the elegant induction of 

Dr. Graham (‘ Edin. Trans.,’ 1831) the velocity of diffusion is inversely as the square 

root of their specific gravity. 

This is very exactly responded to by the hypothesis. Dalton’s law of diffusion 

belongs to media as a necessary and the most obvious consequence of the constitution 

assigned to them (VI.) Dr. Graham’s law of diffusive velocity or volume applies 

also to media, because if placed in similar circumstances such an effect must depend 

on the molecular velocity, which, singularly enough, bears exactly the like ratio to 

their specific gravity (X.). 

§ 15. In the first point of analogy it was stated the atomic weight of a gas 

corresponded with its specific gravity, but with the reservation that the combining 

proportions are simple multiples or quotients of the same. This appears to me to be 

the fair statement of the remarkable connection that is always found between the 

combining volume and combining weight. It seems impossible that the fact of a 

volume of every gas containing the same number of molecules can ever be inductively 

established, but all analogy leads us to this conclusion. One volume of oxygen 

combines with two volumes of hydrogen to form two volumes of aqueous vapour. If 

we inferred from this that one molecule of oxygen combined with two molecules of 

hydrogen to form one of steam, we must admit that the molecule of steam occupies 

double the volume of a molecule of hydrogen or oxygen. If it is admitted, on the 

other hand, that the oxygen molecule is capable of disintegration, and that half a 

molecule combines with one of hydrogen to form one of steam, the bulk of the three 

molecules are equal. This last is the view that is responded to by the hypothetical 

media. The objection to it is plausible from the natural repugnance to the idea of 

dividing what has been considered as an ultimate element into parts, and of supposing 

it possible that an element should have a strong affinity to itself—for this point is 

also involved. Half molecules of oxygen must have a powerful attraction to each 

other as they never appear separate. It is the same with all the other simple gases 

and vapours that combine in half or other fractional volumes. We have an analogous 

example among the hydrocarburets. Methyl is half a molecule of olefiant gas, and 

enters into distinct combinations similar in ever}'' respect to those of olefiant gas, but it 

never appears in a separate form. Olefiant gas enters into combination with itself in 

MDCCCX'HT.—A. D 
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various proportions, forming etherine, ceten, elaen, &c., all of which are isomeric hut 

have different specific gravities as vapours. These the chemist is unable to form 

directly; they are organic products and show a great molecular capability that is 

undoubtedly common to all bodies. 

There has certainly as yet been no recognised example of a simple element appearing 

in the gaseous form with two specific gravities, but it would be rash to affirm that 

such was either impossible or absurd. Indeed, chlorine, bromine, iodine, and fluorine 

are so similar in their chemical qualities that it is not very unlikely they may be 

examples of isomeric combinations of one base in which condensation of atomic volume 

takes place simultaneously with increment of atomic mass. In the hydrocarburets, 

on the other hand, there is little, if any, condensation of atomic volume, their specific 

gravity in the liquid form being all nearly the same. 

A strong argument in favour of the physical origin of the law of volumes is to 

be obtained from the combination of acids with ether. Some of these rise up into 

vapour in the same state of chemical union as when liquid, while others quite similar 

are decomposed in the act of rising and occupy double the volume of the others. 

Even those that are fully combined when they first rise, by an increase of temperature 

not very considerable, are decomposed and immediately assume a double volume. 

Oxalic and nitrous ethers are examples of the last kind. Sulphate and nitrate of 

pyroxilic ether are examples of disunion in the act of rising. 

If the hypothetical law of volumes is true in all cases, we should have to distinguish 

between atomic weight and combining proportion. Thus, if the atomic weight of 

oxygen is 1 (or specific gravity of gas), its combining proportions are Ir, 1, 1^, 2, 

2-^, 3, 3| (?). If the atomic weight of hydrogen is 1, its ascertained combining 

proportions are 1, 1-|, 2, 3, 4, 5, 6, 8, 9, 16. If the atomic weight of nitrogen is 1, 

its combining proportions are ^ and 1. The same for chlorine is 1, ll?, 2, 2^; 

for bromine they are 1, 1^; for iodine, 1, 1^; for arsenic, 1; for sulphur, 

; for phosphorus, &c. These are necessarily derived from the specific gravity 

of the simple gases and of their compounds. 

The labours of Dumas, Mitscherlich, Regnault, and Bineau, have extended the 

list of gases and vapours, whose specific gravities have been accurately measured, to 

nearly 150. Such determinations throw a light upon the atomic constitution of 

compounds which it is impossible to obtain from their mere chemical analysis, and 

form an important guide to theoretical discussion, when the arithmetic of volumes is 

properly applied. 

Section III.—On the Phenomena that Attend the Condensing and Dilating 

of Media, and the Mechanical Value of their Molecular Vis Viva. 

§ 16. In the first section a distinct idea of the elastic force of the medium was 

obtained by viewing it as a rapid succession of impacts on the lower surface of a 
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gravitating elastic plane ; and the equilibrium as being maintained when the upward 

velocity given to the plane by the shock of one molecule was equal to the downward 

velocity given to it by gravity acting through half the infinitesimal portion of time 

that elapses between, two successive impacts. During the first half of this time 

gravity acts in destroying the upward velocity : during the second half it acts and 

generates the same velocity downwards, and by applying the equation for the meeting 

impact (§ 2) we found the relation between the pressure and the number of impacts in 

a given time. This relation is expressed by gn^lw = A, in which n is the number of 

molecules whose aggregate weight is the weight of the plane supported by A number 

of molecular impacts in a second of time : the impinging velocity being w, and g the 

accelerating force of gravity. It was also shown that the upward velocity given to 

the plane by one impact is tr/n, and this is likewise the descending velocity with 

which it encounters the molecular shock. 

We have now to examine the case where the encounter takes place with the plane 

at rest. Applying the equation for the meeting impact as in § 2, and putting 

e = /3 — 0 ; n — B; D = 1 ; io = S ; we have 

2w 
eo — Aj = n ^ = velocity upwards of the plane after the shock ; 

w0 = §o = w 
2 wn 

= — w + 
non to 

— w 
n + 1 1 n + 1 7i+l 

= velocity downwards of the molecules after the shock.'"' 

Thus, n being an indefinitely great number, we have the ascending velocity of the 

plane e0 = 2iv/n, being double what it was in the former case when the result of 

the impacts was statical equilibrium: and the decrement of molecular velocity 

= w — w0 = ivfn, which is a new and important feature. In the former case there 

was no decrement of molecular velocity : the molecule and plane continually meeting 

and retreating with velocity of impact and reflexion the same, and inversely 

proportional to their respective weight. 

With its velocity — the gravitating plane ascends to the height (-:) \g — 
9n 

2w2 
gn* 

SO 

that the weight of n molecules is raised through this height by the decrement 10/1% of 

the impinging velocity w of one molecule. Employing the differential notation, 

* [It is easy to see that in the case supposed nc0 = 2w, when n is great, so that the velocity of the plane 

is 2w/n; but in the next step there is an unfortunate error which runs through many of the subsequent 

deductions. 

WCi — Sr, = IV 
Itvn 

= — — w 
Awn 

n + 1 
= — [w — 

n + 1/ ’ 

not tv — 

2?y2/n.—R.] 

w \ m 
n ,p \ }• The vis viva expended in raising n to the height 2?y2/y?i2 is thus 4nv2/n, not 

D 2 
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dw = ivjn ; and 2dw w — 2nr/n = did1, the vis viva expended in raising n to the height 

2 vPjgn%. 

§ 17. If we recur to § 4 we may remark the necessity of considering molecular 

velocity in two points of view when applying the arguments of §§ 2 and 16 to an 

enclosed volume of a medium. The first point is that upon the molecular velocity of 

impact depends the intensity of the shock on the plane, the ascending velocity given 

to it, and therefore also the time between the impacts, if the weight of the plane is 

considered constant. Thus as any one velocity is to the time of ascent and descent 

of the plane caused by that velocity, so is the mean of the impinging velocities to the 

mean of the time intervals, or inversely as the number of impacts in a unit of time ; 

and the equilibrium does not require that the succession of impacts should be 

regular; the rapidity of the succession may fluctuate, but the average time and 

velocity must be constant. The second point is that any augmentation of velocity 

causes an increase in the frequency of the encounters (§ 4). In the equation ngj2w — A, 

if A were not a function of iv it would remain unchanged, if n and w increased or 

diminished in the same proportion ; but it was shown in § 4 that it was proportional 

to w, when A3, the density, is constant, and to A3 or n or c when w is constant; hence 

A — wc A3, in which c is a constant factor that has to be determined. We have also 

to determine the ratio between iv2, the mean square impinging velocity, and v:, the 

mean square absolute molecular velocity, in the equation ngj2w = A = wc A3, or 

2 
n = - wc A3. 

9 
Suppose the unit of volume in which the medium is confined to be a cube, the 

upper side of which is the plane n, and let v3 be the mean square velocity of the 

molecules, so that if the squares of the respective velocities of all the molecules be 

added together, the sum will at all times be equal to A3 t>3. Resolve the motion of 

each molecule at any instant into the six rectangular directions parallel to the side of 

the cube and add up the squares of the resolved velocities that are perpendicular to 

one side ; it is evident that the sum must be -jj A3 r3, as the force is equally distributed 

in every direction, and in the stratum of the medium next the plane n one-sixth of 

the force of the molecules that happen to be in the stratum at any given instant is 

directed perpendicularly upon the plane. Suppose the breadth of the stratum 

is 1/A, the number of molecules that at all times are to be found moving in it is A3, and 

half of these are diminishing their distance from the plane, and half increasing their 

distance with the mean square velocity g- u3. 

The molecules moving equally in every direction must necessarily impinge equally 

in every possible direction on the plane, so that if their lines of motion were brought 

from every point of the surface of the plane where they impinge and made to issue 

from one central point, they would radiate equally to every part of the hemisphere; 

and as soon as those belonging to any one direction have impinged and thus with¬ 

drawn from forming part of the constant aggregate force gv3 A3, their place is 
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immediately supplied by others of the same entering the stratum. The time taken 

by the set whose velocity is u and inclination to the plane 6 to traverse the breadth 

of the stratum is evidently as . , and in a unit of time the number of the impacts 

in the succession of these belonging to the set is proportional to u sin 6. But this 

is the value of the resolved velocity of the set. Referring back to the reasoning 

in §§ 2, 1G, the supporting effect of each impact on the heavy plane n was shown 

to be proportional also to the velocity of impact or molecular velocity resolved 

perpendicular to the plane. The supporting effect of each set in a unit of time is 

therefore as the square of the resolved or impinging velocity of the set. But the 

mean of all the square impinging velocities is jvz, and half the molecules in the 

stratum are continually approaching the plane ; the supporting effect of their con¬ 

tinuous action is therefore the same as would be derived from the medium reduced to 

half density advancing against the plane with the uniform velocity \/^v2. Now as A3 

represents the number of molecules in the cubical unit of volume, the side of the cube 

being the unit of length, and \/-\vl the number of such units traversed in a unit of 

time, the supporting effect of the medium on the heavy plane n in the unit of time, 

is the same as that derived from |>A3\/j$v2 molecules impinging with the velocity \f^v2. 

Hence it is obvious that A = -|A3\/\v2, and io = \/\v2, or c = and 3w2 = v2. Also 

2 „ o v* As o.3 0 
n—~ iv2c Ad = —— ; or v* A6 = 3an ; or v 

9 3 g ’ J = V 3 9 A3 

Thus we obtain an expression for the square root of the mean square molecuk 

velocity in terms of the height of a uniform atmosphere — , or what is the same, in 

terms of the ratio of the number of molecules in a column of the medium of the height 

of a uniform atmosphere to the number in the column of a unit height: and since 

V2gh expresses the velocity acquired by a body in falling through the height h, we 

arrive at the following deduction. The mean square molecular velocity of a medium 

is equal to the square of the velocity that a body acquires in falling through one-ancl- 

a-half times the height of a uniform atmosphere; if the pressure of the medium is 

estimated from the effects of the molecular impacts on a perfectly rigid and elastic 

surface. If it were estimated by the effect on molecular elastic surfaces, there is 

reason to believe that the mean square velocity is double the amount specified 

(see Sec. 4).XI.* 

§ 18. Suppose that the cubical volume of the medium receives such an increment erf 

vis viva that under the constant pressure n the volume from 1 becomes 1 + — : it 
cpr 

has been shown in § 5 that the molecular vis viva must also from 1 have become 

* [The author here ai’rives at the correct conclusion, 

= .fh. —R.l 
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1 + — that it may sustain the same pressure with the reduced density. But the 

molecular vis viva in the cubical volume is A3 v2 : hence we have the proportion 

1 : 1 : A3 id : A3 v2 ( 1 + ~) ; 
\ 9n J 

the increment of vis viva in the contained medium is thus A3 v~ —r. But it has been 
9n 

S'?2 v*1 
shown in § 17 that w2 = ^v2, and gn = \v2 A3, hence A3 v2 = —. 

Now in § 16 it was shown that to raise the weight of n molecules to the height 
2iv2jgn2 the vis viva expended was 2 w2/n = § v2/n; comparing this, the vis viva 
expended in the act of increasing the volume, with 2v2/n, the increment of vis viva 

required to support the increased volume, it is evident that the ratio is exactly 
one-third. Thus we deduce that to effect one increment of expansion in the volume of 

a medium subsisting under a constant pressure, four-thirds of an increment of vis 
viva are required: one of which thirds is expended in the act and does not appear in 

the medium: the remaining three-thirds, or one increment, appears in the medium and 
assists in sustaining its augmented volume#.XII. 

§ 19. This result is a necessary consequence of the perfect conservation of vis viva 
in the impinging action of perfectly elastic bodies. To enlarge a volume that is pressed 
upon is to raise a weight; is to expend mechanical force ; is to expend molecular vis 
viva, and the last train of reasoning has led us to the relation between the molecular 

force expended and the work performed by it. 
The mechanical value of the whole of the vis viva of the medium may be ascertained 

by the following proportion 

‘6n 

2o ?r 
A3 v- 

A3 v- 

gn ‘ 
But gn — ^-A3 v2, therefore 

A3 v2 

gn 

Thus the vis viva expended in raising n, or the constant pressure, through the in¬ 

crement of the unit of volume, is to that increment as the whole vis viva of the 
medium is to three units of volume. Hence we deduce that if a medium is supposed 
to expand to four times its original volume with its original tension undiminished, it 

will in doing so expend as much as the whole of its original molecular force. This 
may be more concisely expressed by : The molecular vis viva of a medium is equal to 

its tension acting through three times its volume+.XIII. 

* [The corrected version of XII. will be “ To effect one increment of expansion in the volume of a 

medium subsisting under a constant pressure, ^ire-thirds of an increment of vis viva are required; two 

of which thirds is expended in the act, and does not appear in the medium; the remaining three-thirds, 

or one increment, appears in the medium, and assists in sustaining its augmented volume.”—R,] 

t [This is the virial equation applicable under the supposed conditions.—R.] 
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§ 20. If a medium is not allowed to increase in volume while its vis viva is 

increasing, no force will of course be expended, and each increment of vis viva 

engenders a like increment of tension. Thus if ive compare the amount of vis viva 

required to produce an increment of molecular vis viva in the medium, in the two cases 

of constant pressure and constant volume; it is manifest that the ratio is 4 to 3, 

or 4/3".XIV. 

§ 21. If we suppose the heavy plane n instead of being raised by the medium to 

descend upon it through the same differential height 2w2jgn2, it is obvious that the 

same differential vis viva that was formerly abstracted is now communicated to the 

molecules of the unit volume. Force is exerted by the descending weight upon the 

medium and is transferred to its molecules.! Thus it is evident that the conversion 

of mechanical force into molecular vis viva is subject to the same law as the conversion 

of molecular vis viva into mechanical force. This law is expressed in XII. and XIV. 

The following is another form of annunciation which refers to an experimental method 

of ascertaining it if such media were actual existents. The ratio of the increment of 

vis viva evolved by a small condensation of a medium to the diminution of molecular 

vis viva required to maintain the same condensation under a constant pressure 

is H.XV. 

§ 22. If a medium is compressed or dilated and the molecular vis viva evolved in it 

or given out from it by the act of condensation and dilatation be retained, let us 

enquire into the ratio of the density to the pressure. The preceding reasoning has 

shown that the increment or decrement of vis viva is equal to one-third of the 

• , c . dv2 dA3 , 2 dv dA , . . . . 
increment or decrement or density, or — = —hence which being 

integrated gives v° = A. But -y3A3 = e, therefore A4 = e, and v2 = e. Thus we 

deduce that if a medium is compressed or dilated from a given condition of density 

and vis viva, the mean square molecular velocity varies as the fourth root of the 

tension or as the cube root of the density§.. XVI. [| 

§ 23. The tendency of media to have their vis viva augmented when being forced 

into smaller volume is very similar to the rise of temperature that appears in air 

when being condensed. Thus tinder may be inflamed by the sudden compression of 

a small quantity of air, and on charging an air gun the condenser and force pump 

become so hot as to be painful to touch. Again, mercury may be frozen if exposed to 

a jet of air escaping from a state of high compression and expanding against the 

* [The ratio of specific heats, commonly called 7, should be 5 : 3, not 4 : 3.—R.] 

t Note A (motion indestructible as matter). 

+ [This result also requires correction.—R.] 

§ Note B (vapours). 

|| [The corrected argument is—Since dr2/?;2 = dA3/A3, we get dvjv — 4A/A, or v == A. Accordingly 

v2 = A2 = (A3)§. But v2A3 = e; therefore, A5 = e, and v2 = eh Also e = (A3)h ov p =■ pV, where 

7 - 4--R-] 
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atmospheric pressure. Media also lose their vis viva if allowed to expand against 

pressure. 

Thus by XVI., if at 60° Fahr. a vessel containing air of double density is allowed 

to empty itself into the atmosphere, the decrement of temperature in the air that 

remains ought to be — 48° by the XVI. deduction. If on the contrary its density is 

suddenly increased from 1 to 2, its temperature ought to rise to 196°.'" 

Thus the analogy between media and gases and between vis viva and temperature is 

still maintained, and the phenomena of latent heat in gases appear also in media as 

the transference of force during a change of volume : out of the medium when it 

expands, and exerts, or gives out, mechanical force ; into the medium when it is 

compressed and acted upon, or receives mechanical force. 

The phenomena of latent heat thus appear to be the conversion of mechanical force 

into molecular vis viva; the visible into the invisible, as in condensation: and 

molecular vis viva into mechanical force; the invisible into the visible, as in 

expansion. 

It is a necessary consequence of the conservation of vis viva or indestructibity of 

force among perfectly elastic bodies. 

§ 24. Several experiments have been made on the ratio of the increment of 

temperature evolved by a small condensation of a volume of air to the diminution of 

temperature required to produce the same condensation under a constant pressure, and 

found it to be f. Mr. Ivory (‘ Phil. Mag.,’ 1827) has proved that this ratio is constant 

under every change of temperature or density so long as Dalton and Gay-Lussac’s 

law is maintained, or the air thermometer is an exact measure of heat. MM. Gay-¬ 

Lussac and Welter have also proved this experimentally for a considerable range. 

Mr. Ivory has also expressed his opinion that the nascent value of this ratio will be 

found to be b, and that the cause is probably connected with the proportion that 

subsists between the linear and the solid increments of expansion. 

The value of this ratio in all media, whatever may be their condition of density or 

vis viva, is j (§ 21); and the synthetical demonstration rests on the same fundamental 

principle that determines the proportion of linear to solid increments of expansion. 

This ratio ^ applies only to infinitesimal changes of volume, and it slowly increases 

with the amount of condensation. When the medium is compressed from 1 to 1 ‘20 

the ratio becomes f.t 

In the experiments of MM. Gay-Lussac and Welter referred to in the ‘Me- 

canique Celeste,’ the condensation did not exceed -^-th part of an atmosphere. 

The discrepancy may be exactly ascertained by performing the same experiments as 

it were on the medium by computation. The absolute temperature is denoted by v2 

* Note C (temperature of condensed air). 

t Note D (to find the compression that corresponds with a given ratio between latent and sensible 

heat.) 
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and the absolute zero corresponds to — 461° of Fahr. scale (taking Budberg’s constant 

of expansion, see § 6). By employing' the equation e = v2 A3 and (-j = y2 ; (XYJ), 

it is easy, by substituting the barometric height for e, to compute the result of any 

given experiment as if it had been performed on the hypothetical medium. This I 

have done in the case of MM. Clement and Desormes’ experiments. Beferring to 

the account given of them in the ‘ Mecanique Celeste,’ the minus interior pressure of 

the medium would have been 3'42 millims. ; the mean result is given as 3-61, the 

difference being only about ylryth part of an inch of mercury. If the experiment gave 

the nascent ratio, the minus pressure at the end would have been one-fourth of 

the minus pressure at the beginning, or 3'45 millims. In MM. Gay-Lussac and 

Welter’s experiments, the difference of pressure at the end was 4'44 millims. ; the 

nascent ratio in a medium would in a like experiment be 4'09 millims., the difference 

being about -yyth of an inch of mercury. 

The evidence afforded by these experiments may be summed up as follows :— 

The initial ratio of the increment of vis viva under a constant volume to the 

increment required to effect the same change of vis viva under a constant pressure in 

the medium is...1^3 • 

In air the same ratio of the increments of heat under the same circumstances by 

MM. Clement and Desormes’ experiments, is. 

In air the same ratio, by MM. Gay-Lussac and Welter’s experiments, is 

A difference in the reading of the height of the mercury in the manometer of y^th 

and -yyth part of an inch would bring the respective experiments to coincide with the 

theory.* 

§ 25. In the more recent of Mr. Joule’s physical researches that gentleman has 

applied mechanical force to the compressing of air surrounded with water, to collect 

the heat evolved, and has found that about 800 lbs. descending through the height of 

one foot increases the temperature of a pound of water one degree. The same result 

nearly was obtained by forcing water through narrow tubes. Mechanical force was 

expended, and the same proportionate amount of heat was produced in the water. It 

is remarkable that the same mechanical value was found for the heat generated by the 

magneto-electric machine. Such accordance in the results, as Mr. Joule remarks, 

seems strongly to favour the vis viva or vibratory theory of heat. 

If air is similar in its constitution to a medium we may employ the deductions of 

this section to determine the mechanical value of any quantity of heat applied to it, 

1 
1 ■ 3 51 

1 
1 -3 T 

* [The fair agreement of the erroneously deduced value of 7, viz., f, with observation, was doubtless 

the reason of the author not discovering his mistake of calculation. We know that upon his principles 

the calculated value should be ■§■, which accords much less well with the results observed for ordinary 

gases than does ■§■. It should be borne in mind that the observed value, 7 =l-40-5, has not, even at the 

piesent time, been reconciled with theory, although reasons may be given for a departure from 7 = -§. 

-R.] 

MDOCCXCII. -A. 
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and assuming the specific heat of air to be 0‘238 that of water,# we may ascertain the 

mechanical value of 1 applied to 1 lb. of water, which is equal to degree applied 

to 1 lb. of air. Since 820 cubic feet of air at 60° and 30 in. tension weigh as much as 
o 

one cubic foot of water, we have — 3444 cubic feet of air which, heated one 

degree without being allowed to change its volume, requires as much beat as one 

cubic foot of water to raise it one degree. The absolute temperature at 60° is 520°, 

and one degree added augments by part the absolute heat or molecular vis viva of 

the air. But the whole vis viva in 3444 cubic feet of air at the temperature 60° and 

pressure 30 in., is equal to the whole pressure of the atmosphere on a square foot, 

acting through three times 3444 feet in height, or 10,332 feet (XIII.). The pressure 

of a column of 30 inches of mercury on a base of 1 square foot or 144 square inches 

is equal to 14722 lbs. X 144 = 2120 lbs. This weight raised through 10,332 ft., 

corresponds to 21,904,000 lbs. raised one foot high, and 'part of this, or 

42,043 lbs., raised one foot high represents the absolute mechanical effect of 1° of 

heat applied to one cubic foot of water. Dividing this by 62^, the number of lbs. in 

a cubic foot of water, we get G73 lbs. raised one foot high equal to the mechanical 

effect corresponding to 1° of heat applied to 1 lb. of water. This compared with 

Mr. Joule’s result is not unsatisfactory considering the difficulties that attend the 

experiments that afford the data.tj 

Section IY.—On the Resistance op Media to a Moving Surface.^ 

26. The simplest case of resistance is that attending the motion of a rigid and 

perfectly elastic plane moving in the direction of its perpendicular. 

Let the velocity of its motion be z, which we must at first assume to be indefinitely 

smaller than v, the square root of the mean square molecular velocity. Let a molecule 

with velocity u, impinge on the front surface of the moving plane at an angle 6 ; 

the impinging velocity is u sin 6; and applying the formula for the meeting 

impact (§ 2) the velocity of reflexion is u sin 6 + 2z, and the square of this is 

u9 sin3 6 + u sin 0 4z fl- 4z2. The increment of molecular vis viva received from the 

* Xote E (specific heat of air). 

f Xote F (M. Clapeyron’s view of the motive power of lreat examined). 

X [This is an independent calculation of the mechanical equivalent of heat, quite distinct from that of 

Mayer.—R.] 

§ [The weak point in the argument of this section appears to he the neglect of the effect of the altered 

velocities of the reflected molecules in disturbing the condition of those about to impinge. The results 

can only apply when the dimensions of the obstacle are small in comparison with the free path of the 

molecules. 

The non-agreement of his theory with observations upon the resistance experienced by obstacles which 

do not comply with the above condition, unfortunately led the author to take the step in the wrong 

direction explained in §§ 27, 28. But it is proper to note that the author speaks with hesitation (§ 29). 

-R.] 
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plane is therefore u sin 6 4z. To find the increment given to the medium in a unit of 

time we have first to consider the number of impacts in the unit of time if the plane 

were at rest, and then the additional number owing to its motion. Preferring back to 

the reasoning in § 17, it has been shown that the impinging velocity u sin 6 is 

repeated u sin 6 times in a unit of time ; hence the increment of vis viva in the unit 

is u2 sin3 -6 4z, and as the mean of all the values of ud sin3 6 is w2 = ^v2, we have- 

following the reasoning in § 17, and supposing the surface of the plane to be equal to 

the side of the cube that contains A3 molecules—the increment of vis viva given to the 

medium by the front surface in a unit of time is jr A3 v2 4z. By applying the same 

reasoning to the back surface of the plane the same amount of vis viva is found to be 

taken from the medium on that side. 

We have now to consider the additional number of impacts due to the motion of 

the plane. Let us first suppose that no change of density is caused by the motion. 

The action of a medium on a surface at rest is the same as that of a uniform current 

of molecules whose mean distance is \/\ A3 and velocity w (see § 17), and in the same 

manner the surface meeting this current with the velocity 2, the effect is the same as if 

the velocity of the current were increased to w -j- z. The additional number of 

impacts due to the motion of the plane is therefore ^ A3 z, and the mean increment of 

vis viva to each being 4z, the whole increment in the unit of time is 2 A3 z2. The 

same reasoning applied to the action on the back surface shows that the diminution in 

the number of impacts is also ■§• A3 z, and the mean decrement of vis viva caused by 

each impact being also 4z, we have the decrement of vis viva in a unit of time also 

2 A3 z3. The sum of these 4 A3 z3 is the force required to move the plane with the 

velocity z. The weight n, whose pressure is equal to this force, is found as in the last 

equation of § 17 : there we had w2 A3 = ng, and in the same way here we have 
4 

4z3 A3 = n0g, or n0 = - z3 A3. 

This result differs very much from the actual resistance of a body moving in air as 

observed by Piobins and Hutton. In Hutton’s Dictionary it is mentioned that the 

resistance to a surface of one square foot, moving 20 feet per second, was found to be 

12 ozs., and that it increased as the square of the velocity. Now if we compute the 

resistance by the formula - z3 A:J — nQ, which is the common theory at low velocities, 

we shall find n0 to be 15 ozs. nearly, when z is 20 feet per second, the weight of a 

cubic foot of air being represented by -fe-T()- oz. 

Here then is a notable discrepancy ; the resistance of the medium that represents 

air in specific gravity and tension appears to be four times greater than it ought 

to be. 

§ 27. We have all along assumed, for the sake of simplicity and to avoid any 

addition to the fundamental hypothesis, that the surfaces upon which the medium 

acts are perfectly rigid as well as perfectly elastic, although no such surface, so far as 
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we know, exists in nature. If molecular vis viva is heat, the molecules of solids must 

be in motion as well as those of gases; and the nature of the motion must be such as 

to permit the equilibrium of vis viva to be established between them respectively. 

They must also be perfectly elastic ; but a surface composed of them cannot be 

assumed as perfectly rigid. 

The original hypothesis in respect to gases involves the necessity of making certain 

assumptions respecting the physical condition of the surfaces upon which media are 

supposed to act. 

(1.) That they are composed of molecules in a state of vibratory motion which results 

from the struggle that their vis insita makes with the attractive and repulsive forces 

of aggregation. 

(2.) The nature of these vibrations and forces may remain undefined, further than 

that the vis insita proper to a molecule is alternately destroyed at the extremities, 

and reproduced in the middle of each vibration when it and the surrounding 

molecules are in equilibrium of vis viva. 

(3.) The impact of the molecules of a medium on the molecules of the solid surface 

is that of perfectly elastic bodies, and enables the equilibrium of vis viva to be estab¬ 

lished between them. 

This equilibrium must be effected by a continual interchange of vis viva, the 

molecules of the solid giving to the molecules of the medium and vice versa. 

In the case of a heavy molecular plane supported by the elasticity of the medium, as 

detailed in § 2 and § 16, the impacts that take place on the lower surface, establish 

both the molecular vis viva equilibrium, and also the statical equilibrium of the heavy 

plane. 

Does this new condition of surface upon which the medium acts, make any change 

in the relation ng/2v = A, that was shown to subsist between the impinging velocity of 

succession, and weight supported when the surface was assumed as perfectly rigid ? 

Then, the molecules of the medium encountered at each impact the whole vis insita of 

the heavy plane and communicated directly to its centre of gravity a certain infini¬ 

tesimal velocity. Now, it strikes a vibrating molecule which afterwards communicates 

a certain effect or infinitesimal velocity on the centre of gravity of the molecular plane. 

Let us endeavour to gain a clear idea of the numerical relation between the effect 

and the cause that produces it, viz., the impinging force of the free molecule of the 

medium. 

The centre of gravity of the whole molecular plane being at rest while the centre of 

gravity of each of its molecules is in a state of intense vibration, it is evident that 

the track or orbit described by the centre of gravity of one of its molecules must be' 

exactly imitated but on an infinitely reduced scale and in a reverse direction by the 

motion of the centre of gravity of the remaining molecules of the plane. The action 

and reaction of the molecular forces are equal. At any point of the orbit of one of the 

lower molecules of the plane let a free molecule of the medium impinge. If they are 
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equal in mass they will exchange impinging’ velocities ; this interchange modifies the 

vibration and disturbs the harmony between the simultaneous motions of the centres 

of gravity above referred to ; the motion of the centre of gravity of the molecule 

changes suddenly, not so with the centre of gravity of the remainder of the plane. If 

the connection between the plane and the molecules wTere broken at the instant of 

impact, it is clear that the centre of gravity of the remaining molecules of the plane 

must continue to move in the direction and with the velocity it had at the instant. 

Now as the concurrence may take place at any part of the vibration, either going or 

returning, it is plain that the mean motion of the centre of gravity of the remainder 

of the plane caused by the transference of vis viva from the molecule of the plane to 

that of the medium is zero. But the centre of gravity of the remainder of the plane 

reciprocates the active effect of the molecular force on the new velocity until it is 

destroyed at the end of the first vibration; the molecular force acting as much on the 

remainder of the plane as upon the molecule. The destruction of this by the mutual 

binding force destroys in the opposite direction the same amount of vis insita in the 

plane, or generates it in the same direction, and as we have to attend only to the 

effect upon the centre of gravity of the plane made by the motion transferred from 

the medium to the molecule of the plane, the mean effect must be equal to the mean 

incident vis insita of the molecules of the medium; in short the same as if the striking 

molecule cohered to the plane after impact. This is the case if the plane is at rest 

when struck, but a condition of statical equilibrium requires that the infinitesimal 

descending motion by gravity should be equal to the ascending infinitesimal motion 

given by the impetus of the striking molecules. The upward velocity therefore given 

to the plane by this impetus is only one half what it would be if the plane were at 

. 2iV , V 
rest when struck (see § 2). Thus the expression -~+-~ (see § 2) becomes ——-, and 

vjn becomes vj2n, and gnj2v = A becomes gn/v = A. 

These alterations make no difference in the subsequent reasoning until we come to 

§ 17 where the equation for A is employed, and in consequence of its change of value 

the terminal equation A3 v2 = 3gn is changed to A3 id = 6gn. 

This alters the value of v from \/ ~s, the velocity acquired in falling through one 

and a half uniform atmospheres, to , the velocity acquired in falling through 

three uniform atmospheres, and the numerical value of v in the medium that corre¬ 

sponds with air at the temperature of melting ice is 2244 feet per second. 

§ 28. As this change in the value of v reconciles the discrepancy in the theory of 

resistance, and in the subjects of the two concluding sections, it may be proper to 

illustrate by diagram the general principle that the mean impinging effect of free 

molecules on a cluster of cohering molecules is the same as if the striking molecules 
o o 

cohered at the instant of impact. 
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Let P be the molecular plane consisting of (n — l) molecules, and Q one of its lower 

molecules at rest between attractive and repellent forces. 

G 

(1.) Let Q receive an impulse in the direction GQ, so that its initial velocity may be 

QE = v; it will proceed along the line QA until its motion is subdued at some point 

A by the molecular repulsive force ; at the instant when the centre of gravity of the 

molecule Q, and centre of gravity of P, are at their minimum distance both move 

together with the common velocity vjn, and this is the velocity communicated to their 

common centre of gravity, which is not disturbed further by their mutual action during 

the vibratory motion that ensues. In this case there is both molecular vis viva com¬ 

municated to Q, and also the velocity vjn to the common centre of gravity, and a free 

molecule of the medium has lost the velocity v. 

(2.) Suppose, in the next instance, that the centre of gravity of P + Q or n to be 

stationary, while Q is continuing its vibrations, and let it be struck when at the 

centre of its descending vibration by a free molecule having the same velocity QE. 

They will be reflected from each other without gain or loss of motion, and Q will move 

back towards A instead of forward to G. Here there is a loss of the down motion 

and the gain of an up motion. By the first (1.) the centre of gravity of P continues 

to ascend with the velocity-7 that it has at the instant of impact; and as the 
J n — I 

downward force of Q that subdued this is gone, the centre of gravity of the whole 

k + Q or n molecules acquires the permanent upward velocity v/n. By the second (2.) 

the same velocity vjn is given to the common centre of gravity by the gain of the up 

motion as in the first case of impact. The result of the second mode of impact is thus 

to communicate the velocity 2v/n to the common centre of gravity. 

(3.) If the same kind of impact takes place with Q in the middle of the ascending 

vibration, it is evident that the force of impact is zero at that point, and the upward 

velocity to the centre of gravity zero. Now + Oj -p 2 (impacts) = -. This result 

is more obvious if we assume the velocity of the free molecules v fi- X and that of Q = v. 

The result of the first of these is 
2v + \ 

, and of the second - . Plalf the sum of these 
n 
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is V - , and thus the mean result of these two equally probable impacts is the trans- 
n 

mission of the vis insita of the impinging molecule to the plane as if it cohered to it 

after impact. 

(4.) At either of the extremities of the vibration the same law obviously applies, but 

it is the two impacts where vis viva is taken from and again returned to Q whose effects 

ought to be viewed together. In the meeting impact let the velocity of Q from v 

change to u with a different direction ; then according to the second case of impact the 

upward effect on the plane is to give it the ascending velocity v + ^ - u, and the loss 

of velocity is v — u. Let this loss be returned in an overtaking impact so that v — u 

shall become v ; then according to the first case of impact the upward effect on the 

plane is ujn. In these two impacts Q returns to its original condition of motion, 

and the mean effect is v/n. A continual and equal interchange of vis viva being 

necessary to the persistent molecular condition of the plane and of the medium, the 

same is effected by means of impacts which take place equally in the ascending 

and descending vibration. This equality seems to be a necessary condition because 

the motions that are taken account of are the velocities of impact resolved in a vertical 

direction only, and the plane of impact cannot now be assumed always to be horizontal 

as in the case of the rigid plane; hence the absolute velocity in the vibration and the 

resolved impinging velocity are independent variables. 

§ 29. Such is the view of the phenomena which seems to authorise the change that 

has been imposed on the value of the mean square molecular velocity. It has no 

pretension to be considered as a demonstration, and we are therefore not permitted to 

make use of it as a synthetical deduction from the hypothesis. 

Nevertheless, if it is admitted as being probable, the probability is increased if it 

reconciles at once all the discrepancies that have been met with, and at the same 

time neither affects any one of the preceding deductions where the analogy to the 

properties of gases is perfect nor introduces any other point of discordance. 

If we now revise the mode of estimating the law of resistance in § 26 it is obvious 

that the mean increment of velocity communicated by the plane now considered as 

molecular to the free molecules of the medium is not 2z, but 2, and hence the mean 

increment of vis viva in each incident molecule is not 4z, but 2z, and the increment in 

a unit of time not 2A3 z2, but A3 z2. The sum of the front increment and back decre¬ 

ment is not 4A3 z2, but 2A3 z2; and as w2 A3 is no longer equal to ng, but to 2 ng, we have 

2A3z'2 — 2ng, or n = - , A3 z2, which is the equation derived from the common theory of 

the resistance of the atmosphere at low velocities. 

It will be remarked that the resistance is as much derived from the minus pressure 

behind as from the resistance in front, whereas the common theory only takes account 

of the inertia of the front which is assumed at low velocities as constituting the whole 
© 

of the resistance.'" 
* Note G- (objection to undulatory theory of heat). 
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Section V.—On the Vertical Equilibrium of a Medium, Supposing it to 

form the Atmosphere op a Planet. # 

§ 30. Suppose the height of the atmosphere AB to form the axis of a parabola of 

which the vertex A is at the summit. If a body begins to fall from A it is evident 

from the law of falling bodies that its acquired velocity at any point is porportional to 

the ordinate of the parabola at that point. 

Divide AB into an infinite number of parts so that the length of each shall be 

proportional to the ordinate of the parabola at that part. Suppose that in each of 

these parts one molecule is vibrating upwards and downwards, striking against the 

upper and lower molecules of the adjacent parts with a velocity proportional to the 

ordinate of the parabola and equal therefore to what a body would acquire in falling 

from the vertex. It is evident that each of the parts or infinitesimal divisions will be 

traversed in the same time dt by its molecule, and that the impinging velocities of 

each pair are equal, so that there is a perfect equilibrium and. constancy of phenomena ; 

but the upper impact of a molecule against the one above it is made with less velocity 

than the lower impact against the one below it, because the accelerating force of 

gravity increases the velocit}? during the interval of descent, and the acceleration is 

represented by the increment of the parabola’s ordinate in that interval. If g be the 

accelerating force of gravity, or velocity bestowed on a falling body every unit of time, 

the acceleration in each interval of descent, or infinitesimal division of the height AB, is 

evidently gdt. If this constant increment of velocity should by any cause be reduced 

in any given proportion, the aggregate effect must evidently be the same as if the 

force of gravity g were reduced in the same proportion. 

In such a vertical column of single molecules it is apparent that the equilibrium 

acquires! a continually increasing velocity in the molecular motion from the summit to 

the base ; and since the vis viva of a molecule is measured by the square of its velocity, 

it is also obvious that the molecular vis viva increases in the simple proportion of the 

distance from the summit. And knowing v2 the amount of vis viva in the molecules at 

the base, we also know the height of the column v2/2g, which is simply the height due 

to the molecular velocity. 

§ 31. In a medium the nature of the action that sustains the upper molecules must be 

the same. The mean of the upper molecular impacts of a stratum must have less force 

* [This section attempts to deal with one of the most difficult points in the theory. That the loss of 

velocity suffered by every ascending molecule will lead to a smaller mean velocity above than below 

seems, at first, sight, inevitable. This consideration was urged by Guthrie (‘ Nature,’ vol. 8, p. 67,1873) ; 

and, in his reply (p. 85), Maxwell narrates that a similar argument, which occurred to him in 1866, 

nearly upset his belief in calculation. Waterston’s result really depends upon an assumption that, at a 

given height, the molecular velocities are all the same; whereas, according to the true Maxwellian law, 

all velocities are to be found at all heights. The force of this consideration will be appreciated when it 

is remembered that those molecules which at any time move at a low level with low velocities, would not 

of themselves reach a high level at all.—R.] 

t [? requires.—R.] 
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than the mean of the lower, the difference being the accelerating effect of gravity in the 

breadth of the stratum. We have also to remember that the nature of the equi¬ 

librium of a medium requires that if the velocities of all the molecules that pass a 

horizontal or other plane in a given time are resolved perpendicular to that plane, the 

sum of the squares of these resolved velocities are equal in opposite directions. In a 

constant infinitesimal time the absolute acceleration of velocity is evidently greater 

with the vertically moving molecules than with those moving obliquely to the vertical; 

thus the aggregate effect of the accelerating force of gravity in increasing the molecular 

velocity must be less than if it acted upon them directly as in the vertical column (§ 30). 

The question is, how much less ? for in such proportion must we consider the force of 

gravity to be reduced, supposing it to act uniformly on all the molecules of the atmo¬ 

sphere. The retardation of the ascending molecules of a stratum is equal to the 

acceleration of the descending molecules. Let us consider the latter. 

We assume from the original hypothesis that in any infinitesimal area the lines of 

molecular motion lie equally in every direction, so that if supposed to issue from one 

point S, they would be directed equally to every point of the surface of a sphere of 

which S is the centre. Let SB represent one of these velocities and Bn the vertical 

Fisr. 2. 5 * ' 

acceleration by gravity in the infinitesimal time dt. With the radius SB describe a 

hemisphere having its base on the horizontal plane PS. It is evident that the locus 

of the point n is the surface of another hemisphere with its base at the distance of 

Bn below the plane PS, and that the area of the space between the bases is equal to 

the area between the surfaces of the hemispheres. Now, if gravity acted on each line 

of molecular motion, instead of acting only in the vertical, the common increment of 

velocity that would affect all is Bp = Bn = gdt; and this, when Bn/BS is infinitesimal, 

is equal to the quotient of the area between the concentric hemispheres qpf T, PBAR, 

by the surface of the inner hemisphere. But the actual increase of BS is 

nr = ?iS — BS, and the mean increment is found by adding up all the particular 

values of nr, and dividing the sum by the number of values, or, what amounts to the 

same thing, taking the quotient of the area between the equal hemispheres PBAB, 

cnfb by the surface of one of them. Now the first is equal to the area between the 

bases, which is equal to the product of a great circle by Bn, and the latter is well 

known to be equal to two great circles; therefore the quotient is \Bn. 

MDCCCXCII.—A. F 
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Thus, it seems to be clear that the molecules of a medium are collectively only half 

as much affected by gravity as if they all moved in vertical lines; but it has been 

shown (§ 30) that if they moved in vertical lines the height of the atmosphere would 

be the height due to the molecular velocity; but as the increments of their velocity by 

gravity is only one-half what they would receive if their motion were vertical, that 

height must be computed as if the force of gravity were only one-half the actual 

amount. Thus, if v~ be the mean square velocity at a depth H below the summit of 

the atmosphere, the height due to this with the full effect of gravity is v2j2g, and with 

half effect it is v^/g = H. Thus we arrive at the following deduction. The molecular 

vis viva increases simply as the depth below the summit of the atmosphere, and the 

height of the summit above any stratum is equal to the quotient of the mean square 

molecular velocity at that point by the accelerating force of gravity, or to double the 

height that a free and unresisted projectile would ascend if projected vertically with 

an initial velocity equal to the square root of the mean square molecular velocity in the 

stratum. .XVII. 

§ 32. To ascertain the law of density we have the equation in § 17, modified as in 

§27 to -g-Asu3 = gn, for the reasons given in last section. By this we have 

v^jg — Qn/A3 = H, which applies to any part of the atmosphere at all heights. 

Differentiating the equation = H, we have — cZH. But ~ is 

. , . , 7IT , 6n3dA 6n 3d A TT 3dA . „ 6dn Qn3dA 
evidently equal to did, and —= — X = Jd —therefore —-—— 

= dR = 6c/H — H ; or 
A 

3dA 

A 

5dE _ 

H ’ 
and by integration we have A3 = H5. 

Thus we deduce that the density of the medium at any depth below the summit of an 

atmosphere is proportioned to the fifth power of that depth.XVIII. 

§ 33. As we had u2 = II we may further deduce that u3A3 = H6, or that the elastic 

force of the atmospheric medium at any point is proportioned to the sixth power of the 

depth of that point below the summit and to the sixth pouter of the mean square 

molecular velocity.XIX. 

These deductions are all embraced by the equations v^jg — H = A% and 

riA3 _ H6 = 

§ 34. To compare these results with what is known of the physical condition of 

our atmosphere, we have first the obvious correspondence between the diminution of 

molecular vis viva and of temperature in ascending. No sufficient explanation of this 

has, I believe, been yet offered, for it is needless to attempt to do so by supposing the 

specific heat of air to increase as its density diminishes, as no difference of specific heat 

disturbs the equilibrium of the temperature of bodies placed in horizontal contact. 

The very fact of a gaseous atmosphere presenting a constant inequality of temperature 

at different elevations seems to prove that the law of the vertical equilibrium of tem¬ 

perature is essentially different from the law of horizontal equilibrium. 
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The actual rate of diminution is very fluctuating and uncertain, varying from 200 

to 500 feet for each degree. The formula of our hypothesis applies only to the con¬ 

dition of an atmosphere resting on a horizontal base ; such, indeed, as may be found 

onlv during; a balloon ascent. 

M. Gay-Lussac, in his celebrated ascent from the neighbourhood of Paris, found 

the depression amount to 72^° Fahr. in 7634 yards. This corresponds to 316 feet of 

elevation to 1°, if the rate is uniform. We have already determined (§ 27) the value 

of v in air at the temperature of melting ice to be 2244 feet per second; hence 

v2/g — 156,593 feet = H, the height of the atmosphere at this temperature (being 

nearly 30 miles). Now, taking Rudberg’s expansion of dry air, the value of v2 in 

degrees of Fahr. is 493° at this temperature, and = 317*6, which is the 

elevation that ought to correspond to 1° by the hypothesis, in which also the rate is 

uniform. If Dalton and Gay-Lussac’s constant of expansion is preferred, the eleva¬ 

tion for 1° is 328 feet. 

The hypothesis requires that the diminution of temperature should be uniform, and 

the best authorities agree that it approximates to uniformity at considerable eleva¬ 

tions. In M. Gay-Lussac’s table of observations taken during his ascent, the indi¬ 

cations of the thermometer are somewhat irregular, as might be expected from the 

manner of making the observations, and the formula (Laplace’s) employed to 

compute the elevations may not, perhaps, answer so well for balloon ascents as it has 

been found to do in mountainous elevations. We have also to keep in view that the 

atmosphere absorbs a large proportion of the Sun’s rays in their passage through, 

besides being supplied with heat from the ground irregularly according to the 

varying characteristics of its surface. Taking all these circumstances into account, 

the accordance between theory and M. Gay-Lussac’s extreme observations is nearer 

than might be expected, and probably will not be found so exact at lesser elevations. 

But the hypothesis admits of being tested without employing any empirical 

barometric formula, because, if it is correct, the tension as shown by the column of 

mercury ought to vary as the sixth power of the absolute temperature (from zero at 

— 461° Fahr.) (XIX). But the observations must be taken at stationary points 

during the ascent, so that time may be allowed for the thermometer to acquire the 

temperature of the stratum of air in which the balloon rests. Let z° be the absolute 

temperature of Fahr. zero; then for any two observations we ought to have 
6 e 

— 7 ; in which tx, ex, are the temperature and tension at any one altitude 

and t2, e2, the same at any other. The value of z eliminated from this equation ought 

to be 448 or 461. I have tried this with M. Gay-Lussac’s sixteenth and last 

observations, which appear to be the most favourable for accuracy, and z comes out 

equal to 467. The rate of diminution also in the interval of 1800 metres between 

these two observations agrees well with theory, being 310 feet for each degree Fahr.* 

# Note H (Formula for measuring beigbts by thermometer). 

F 2 

(z + 
\z + tj 
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§ 35. We must now endeavour to show that an atmosphere of mixed media follows 

exactly the same law of equilibrium. 

Atmospheres of different homogeneous media supposed separate from each other 

must evidently have the same height if the mean square molecular velocity at the 

base of each of them is the same, and, consequently, the molecular vis viva in each 

atmosphere will, at the same height, be proportional to the specific molecular weight of 

the medium. If, on the contrary, the molecular vis viva at the base of each is the 

same, then will the height which is proportional to the mean square molecular 

velocity follow the inverse ratio of the specific molecular weight, which is also equal 

to the direct ratio of the mean square molecular velocity (VII.). Thus, a hydrogen 

atmosphere ought to be four times the height of an oxygen atmosphere, &c. When 

mixed, the molecules of each of the media at the same height are necessarily in 

equilibrium of vis viva, and the mean space occupied by each molecule is therefore the 

same (§ VIII.). To see distinctly that the condition of the mixture is exactly that of 

a homogeneous medium of equal specific gravity, or, what is the same, whose specific 

molecular weight is equal to the sum of the products of the specific molecular weight 

of each by its proportionate volume—and thus having in equal volumes the same 

amount of vis viva as the mixture—we have only to recollect that a constant 

increment of descent in the atmosphere corresponds in all parts of it to the same 

constant increment of mean square molecular velocity, whatever the molecular velocity 

may be, or whatever the weight of the molecules with which it is associated, and the 

increment of vis viva in each medium for the same constant increment of mean 

square molecular velocity is as the product of its specific weight by its constituent 

volume. But the increment of mean square molecular velocity in the homogeneous 

being the same as in each of the constituents of the heterogeneous medium, and the 

product of its specific weight by its constituent volume being equal to the sum of the 

products of the specific wmight and constituent volume of each, it is obvious that for 

the same increment of descent through the atmosphere the increment of vis viva in 

the homogeneous is the same as in the mixed medium, and that generally the 

physical condition of an atmosphere consisting of various media mixed together is 

exactly the same as if it were composed of one homogeneous medium whose specific 

gravity is equal to that of the mixture. 

If each constituent of an atmosphere were supposed to form an atmosphere by 

itself, and ranged by each other side to side, and having all the same height, the 

ratio of their densities or proportional number of molecules in a constant volume 

would be the same at all heights, but the molecular vis viva would be respectively as 

the specific weight of each. If in this condition they were brought together so that 

all might occupy the space of one, an immediate change in the molecular vis viva of 

each medium would ensue, the heavy molecules losing and the light molecules gaining 

vis viva until the vis viva equilibrium is established ; and this, as well as their 

united density, corresponds with the same qualities of the homogeneous medium at 
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the same height. All this is an obvious corollary of what precedes. The vertical 

condition of equilibrium of an atmosphere is the same whether that atmosphere consists 

of one homogeneous medium or of a mixture of different media having the same specific 

gravity.XX. 

§ 36. The relation between the total height of an atmosphere of the medium to the 

height due to the molecular square velocity (XVII.) enables us easily to estimate the 

effect of diminished gravity, and assign the limits of temperature at the base, beyond 

which an atmosphere cannot be retained. 

If the force of gravity is constant, it has been shown that the height of the 

atmosphere is equal to the height a body would ascend with the molecular velocity, 

and supposed to be acted upon by half the force of gravity; but as it really 

R 
diminishes as we ascend, according to the ratio 

R + H 
(in which R is the radius of 

a l R 
with the variable half-force ^ 

the planet and H the height above its surface), the true height must be computed 
2 g 

n , r, TT ) , instead of with the constant half-force T 
2 \R + H/ 2 

Let v be the initial velocity of the vertical projectile at the surface of the planet, w 

its velocity at the height h; then shall — — dt, and dt f— = — dw — the 

retardation in the differential time. Substituting the value of dt, the differential of 

the time in this equation, we have — dw — 

have — 2w die = — dw2 = dhg 

dh g 

w 2 \R + h 
, and multiplying by 2iv we 

R + h 
Integrating this expression gives 

v3 — w2 = R</ (1 — 
R + h 

, so that when vr = 0, we have by eliminating h (which 

then represents the total height of the atmosphere) h = 
RA 

% - v 
-; being its value in 

terms of the radius of the planet, of the mean square molecular velocity at its 

surface, and of the force of gravity at its surface. In the former expression for H, 

where the force of gravity was supposed constant, we had H = v2jg, or v3 = </H. 

Substituting this value of v2 in the equation for h, we have h = 
H 

if H2/R is infinitesimal in respect to unity. 

Thus the correction to be applied for the diminishing power of gravity in ascending- 

increases as the square of the height, and employing the preceding data, the total 

height of the earth’s equilibrated dry atmosphere, considered as a medium at the 

temperature of melting ice, is by this theory 157,776 feet, being 1183 feet more than 

the last determination, with constant force of gravity ; and the correction to be 

added to the height computed with constant force of gravity is in feet 1‘2 X H2, the 

square of the height in miles. 

§ 37. We may express the last equation in a more general form with the molecular 

vis viva as the constant instead of the mean square molecular velocity. If the 
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specific weight of the medium that corresponds with air is taken as unity, and 

1 X vz is the value of the molecular vis viva at the surface of the planet: with any 

other medium whose specific weight is s, its mean square molecular velocity with 

the same vis viva is v2/s, (VII); and the absolute height of its atmosphere is 

Ry2 
li — ~~—~r This equation gives the absolute height of an atmosphere under every 

variety of condition, and determines the limit of vis viva at the surface of a planet 

beyond which the medium cannot be retained, for when h is infinite we have 

Ftps — v9j = 0 or v9/s= llg. With regard to the medium that represents the atmo¬ 

sphere of our planet, we have already determined the value of v2 to be (2244)2, when 

the absolute temperature is 493° and s = 1 ; consequently, when v2/s = Pig, the surface 

temperature must be 65,760° Fahr. for air, and 4556° for a hydrogen atmosphere 

whose specific weight s is ty\“3 2- At these surface temperatures such atmospheres 

would slowly evaporate into space.# 

At the surface of the Moon the limit of temperature for an atmosphere of air is 

3008° absolute or 2505° on Fahr. scale. For a hydrogen atmosphere it is 208° 

absolute or — 253° Fahr. But the proximity of the Earth reduces these limits 

respectively 100° and 7°, so that if the Moon’s surface had even a higher temperature 

than 2405°, the Earth, according to this theory, would then gradually withdraw the 

whole of any atmosphere of air that it might then have possessed. 

By employing the same equation, it appears that the temperature at the surface of 

a body like the Sun in magnitude and mass requires to be 13,400° to sustain an 

atmosphere identical in constitution and height to that of the Earth.! 

§ 38. It will not fail to be remarked that the positive evidence in favour of the 

reasoning of this section turns on one point. Does the law of vertical equilibrium of 

temperature correspond with the law of vertical equilibrium of vis viva ? We have 

seen that the correspondence is more exact than might be expected, although it is 

extremely difficult to put the question to the test of direct experiment. In a column 

of air 318 feet high the temperature at the bottom ought to be 1° higher than at the 

top in any state of the atmosphere. If air is made to circulate quickly in two tubes 

of this height lined with non-conducting material, the difference of temperature ought 

to be very distinctly shown by thermometers at the top and bottom. The quick 

motion of the air downwards and upwards may be expected to compensate for the 

disturbing effect of the sides of the tube, and even to cause then internal surface to 

assume the proper atmospherical gradient of temperature. 

The accuracy of the formula for measuring heights by the barometer, that may be 

derived from the deductions of this section depends on the integrity of the law of 

diminution of temperature, but as this varies from local causes, the theoretical rule 

does not seem to apply so well as those in common use, which are partly empirical. 

* Rote K (central heat), 

f Rote L (nebular hypothesis). 
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But a strictly theoretical formula may be deduced if it is permitted to assume that 

the change of temperature between two stations is uniform, whatever that difference 

may amount to, and likewise that the change of density is conformable.* 

Section YI.—On the Velocity with which Impulses are Transmitted 

THROUGH A MEDIUM.t 

§ 39. The reasoning on the subject of this section is founded on the principle that 

the velocity must correspond with the average velocity resolved through the medium 

in any one direction. 

We have seen in §jT7 that the mean square velocity resolved in one direction is 

equal to one-third of that mean square velocity, and it is easy to prove, if all the 

velocities of the molecules are equal, that the average resolved velocity in one direc¬ 

tion is equal to one-half the common velocity. 

As the equal lines representing the molecular velocities on one side of a plane may 

be assumed to radiate equally in every direction from one point, they will spread to 

every point of the hemisphere, resting on the plane; let perpendiculars be dropped 

from these points upon the plane. The quotient of the sum of these divided bj/ their 

number is equal to half the common length of the equal lines. The proof of this is 

derived from the integration of simple circular functions that give the quotient of the 

sum of the sines of a hemisphere divided by their number, or by the surface of the 

hemisphere, equal to half the radius. Thus, if 6 be the inclination of the radiating 

lines to the plane,- v d9 sin 9 cos 0 2-n- represents the aggregate of the perpendiculars 

upon the base of the hemisphere, and d6 cos 9 2-rr represents their aggregate number. 

Collecting the quotients of the first by the second for every value of 9 from 0° to 90°, 

or what is the same, integrating these functions, and dividing the first by the second, 

we have the quotient equal to \v, which is the mean velocity resolved perpendicular to 

the stratum when the molecular velocity v is constant. 

§ 40. But the hypothesis does not admit of the molecules having all the same 

* Note M (barometric formula). 

t [The idea of tbe direct connection between the velocity of sound and that of the molecules is of great 

interest, and leads at once to the conclusion that tbe velocity of sound is independent of density, but 

proportional to absolute temperature. The next person to raise the question was Stefan (‘ Pogg. Ann.’, 

vol. 118, 1863, p. 494), but his calculation is as defective as that of the author. On Waterston’s prin¬ 

ciples, the ratio of the velocity of sound to the molecular velocity of mean square should be \/5/3, as 

was shown by Maxwell (Preston, ‘ Phil. Mag.,’ vol. 3, 1877, p. 453). In the ‘ Philosophical Magazine’ 

for 1858 (vol. 16, p. 481) Waterston returned to the subject. It is curious that he regarded the ordi- 

nary hydrodynamical investigation, not merely as needlessly indirect, but as inconsistent with the 

molecular theory. A result in harmony with experiment cannot be obtained on the basis of a 

hypothetical medium constituted of elastic spheres, for such a medium would have a ratio of specific 

heats different from that observed in gases.—R.] 
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velocities ; we have therefore to enquire into the effects of this diversity upon the 

velocity of transmission. 

The molecules in a small sphere of the medium at any given instant may he classed 

in respect to their velocity into sets, and of each set we are allowed, by the hypothesis 

which we are following, to assume that there is an equal number moving in every 

direction, and that since continuous uniformity in the density requires that the 

number contained in the spherical space should be always the same, the exit of one 

of a set may be conceived to be immediately followed by the entrance of another of 

the same moving in the same direction and with the same velocity. One-half the 

number in a set is increasing their distance from a given plane, and the other half 

diminishing their distance. Let the motions of one of these halves be resolved in the 

direction perpendicular to this plane, and let us add together such resolved spaces as 

are described by all the molecules of the set that happen to be in the sphere during a 

constant time for so long as they remain in it, and divide by the constant number of 

molecules of the set in the sphere at all times; the quotient must evidently be the 

mean velocity in that direction and set, and must be the uniform rate with which an 

impulse is conveyed in one direction by means of an infinite series of impacts, the 

space between two impacts measured in the constant direction being the step forward 

made by the infinitesimal portion of the impulse contained in the traversing motion of 

the molecule from one of the impacts to the other. 

The number moving in any one direction with the velocity u is equal to the 

number moving in any other direction with the same velocity, and each of these 

numbers takes the same time to traverse the sphere. If we compare this time with 

that taken by the molecules of another velocity or set, it is obvious that these times 

must be inversely as the velocities, and the number that continuously pass th rough the 

sphere or any other constant space in a constant time must be as the velocity: for this 

may be estimated as if there were continuous currents of molecules moving in every 

possible direction with the respective velocities ; the encounters that may be imagined 

to interrupt this continuity being infinite in number do not alter the general average 

of velocity or direction or proportionate number, and therefore each velocity and 

direction may be taken as constant. Now, for any one velocity u viewed thus as 

constant, the mean resolved velocit}^ in one direction of all the molecules that happen 

to move with this velocity at any instant is, as above demonstrated, equal to \u; 

but if ive acid up the resolved spaces traversed by cdl the molecides that have been in 

the sphere with this velocity during a constant time, and divide by the constant number 

that are in the sphere at any instant, we require to multiply \u by a factor that is 

proportional to u, so that \id, the resulting product, is proportional to the mean 

distance traversed in a constant time by the molecules that have appeared in a 

constant space to move with this velocity during the constant time. 

Now, suppose an impulse to be given to the medium at any point, and an 

indefinitely long cylinder of the medium to extend from this point ; the impulse 
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given to the molecules at its extremity can be conveyed through tire medium only by 

means of the molecular encounters, each of which contributes to this effect with 

different velocities resolved in the direction of the cylinder. It has been shown that 

the mean traversed distance in a given space during a given time due to any one 

molecular velocity is as the square of that velocity multiplied by the proportion of 

the number of molecules associated with it. Therefore, the united effect of all 

velocities must be equal to the sum of these products, and this sum is unity, or the 

whole medium multiplied by the mean square molecular velocity. But it was shown 

that if the molecular velocity were constant and ecpial to v, the absolute value of the 

mean resolved velocity, or traversed distance, during a constant time in one direction, 

would be v. Now, as the traversed distance or transmitting effect of this velocity 

in comparison to the other velocities u, &c., as they actually exist in the medium, is 

as -y3 to u2, &c., we arrive at the conclusion that \v is actually the uniform velocity with 

which an impulse is transmitted through a medium. 

§ 41. According to the reasoning in §§ 27 and 28, the value of v is the velocity 

acquired in falling through three uniform atmospheres. This gives \v = 1122 feet per 

second at the temperature of melting ice, and 1176 at the temperature of 80°, being 

an increase of fth of a foot for each degree. In the article, “ Acoustics,” ‘ Penny 

Cycl.,’ it is stated that 1125 feet per second at 62° accords nearly with the mean of 

the best experiments, and that the difference for 1° is f-ths of a foot. The velocity 

hy the hypothesis is therefore about ^ part greater than is found by observation, 

which, in a distance of 8 miles, amounts to a difference of one second in the time of 

travelling that distance. This is probably a greater difference than can be allowed 

between observation and a correct theory. M. Moll’s observations, which seem to 

be standard authority, were taken with such precautions that an error of 1 in 

40 seconds can hardly be admitted. They likewise agree remarkably well with 

Mr. Goldingham’s observations at Madras. 

In taking astronomical observations of the same kind with the same instrument, 

it has lately been discovered that two individuals differ sensibly from each other. 

This has led to the suspicion that in all observations there is a personal error due to 

some obscure physiological cause that allows a small interval of time between 

sensation and perception, or volition. If this were the same for the sense of hearing 

as for vision, it could not affect the results of experiments on sound ; but it is quite 

possible that it may be different, and the very fact that such personal errors do 

exist, may justify a suspicion that such an effect might interfere and prevent a 

perfect degree of accuracy from being obtained. 

We have made no hypothesis of the nature of the impinging surfaces of the 

molecules. May the discrepancy arise from something omitted in this ? 

In other media, according to this theory, the velocity varies as the inverse square 

root of their specific gravity, and at different temperatures as the square root of the 

absolute temperatures. It depends wholly on the thermometer, and is quite inde- 

MDCCCXCII.—A. G 
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pendent of the indications of the barometer. This accords with the generally 

received theory. The molecular velocity of watery vapour being to that of air as 

\/1 4-4 to v9, the moisture in the atmosphere ought to have the effect of accelerating 

the velocity about 4 feet per second in temperate latitudes and 10 feet in the tropics 

at a maximum. 

Notes. 

Note A.—Motion Indestructible as Matter. 

The force of the descending weight is apparently expended, but it is only trans¬ 

ferred to the medium. If the elements of matter are perfectly elastic, this kind of 

transference must be of general occurrence wherever force is exerted, because the 

exertion of force is then but its transference either from its invisible constant 

condition, as in the medium, to its visible transitory condition, as in the ascent of the 

weight, or vice versd. In the former case force exists in the matter of the medium 

without change ; in the latter it is being transferred to the agent of gravitation, so to 

speak, and apparently released and disconnected from matter. The force of a medium, 

when it equilibrates a force of gravity, is similar to the force of a wind or a current of 

water on a stationary surface. Is it not possible to view all forces as inseparable 

from some form of matter, and all the phenomena of nature, as not consisting of the 

creation and annihilation of force, but in its transference from one form of matter to 

the other ? 

Note B.— Vapours. 

This enables us conveniently to represent the relation between the density and the 

square root of the mean square molecular velocity of a medium while it is being 

dilated or compressed. 

Fig. 3. 

'Take Q as the origin of co-ordinates, and let QP represent v and PN the /^/-. 

Join NQ. If the medium is compressed so that \/\^ becomes TS, then shall v 

become QT, and if it dilates so that becomes UW, then shall v become QU. 
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Each point in the positive quarter of the co-ordinate axes represents a medium of 

a given density and temperature or vis viva; the sixth power of the ordinate x 

represents its density, and the square of its abscissa y its vis viva. Thus, xCly9- = e is 

the expression for the tension or elastic force of a medium whose point on this chart 

(as it may be called) is defined in position by the co-ordinates x, y. 

If e is supposed constant, x, y to vary, their locus traces out a hyperbolic curve 

(such as NPt) whose equation is xGyz = e. It is a curve of constant pressure, of which 

kind is STPC for one atmosphere drawn on the accompanying large chart of vapours 

(Plate 1). The sine of the inclination of its tangent to the axis of y is ^ xjy. Any gas 

expanding or contracting under a constant pressure traces out a curve of this kind 

with its varying density and vis viva. 

It is remarkable that if the points corresponding to the density and vis viva of a 

vapour in contact with its generating liquid are laid down on this chart (fig. 3), they 

range themselves in a straight line, such as TP, that issues from some point advanced 

on the axis QC. As this fact applies to all vapours that have been experimented 

upon, it seems to point to the true physical law of their equilibrium with the liquid. 

On the accompanying chart of vapours I have projected the points of several sets of 

experiments. It may be viewed as a portion of the fig. 3 enlarged, the point Q, 

or origin of co-ordinates, being about 40 inches to the left of the outer margin. 

The following details will be sufficient, with the chart, to enable any one to satisfy 

himself of the truth, and, if he pleases, to construct the formula of any new vapour by 

means of two simple experiments on its tension. 

In vapours, as well as gases, the pressure or tension being equal to the product of 

the absolute temperature or (t -fi 461) by the density, to find the latter we have only 

to divide the tabular tension (in inches of mercury) opposite f Falir. scale by the 

former. The sixth root of the quotient is the value of x, and the square root of 

(t + 461) is the corresponding value of y. In the accompanying chart I have 

projected several sets of tables of pressures in this way. The unit value of x is 

i lOx/To inches long, and the unit value of y, or square root of absolute temperature, 

is -6-ths of an inch in length. 

It will be remarked how nearly the experiments of Southern and the French 

Academy on steam range themselves in one line. To observe this more distinctly I 

have drawn the straight line SF through Southern’s pressure at 212°, and the 

French Academy s observation at 429’4. The divergence at the four lowermost 

experiments of Southern is more apparent than real, the greatest difference being 

equivalent to oidy yj^ths of an inch of mercury. 

The general equation for a straight line Tit (fig. 3) is x = (y — G) tan H, in which 

G = QT and H = ETC. Each vapour being represented by such a line with two 

constants G and H, to find these constants, which may be done by two experiments 

on any one vapour, let e0 be the tension at t0 temperature Fahr., and <q the 

tension at tL temperature; then since y02 = 461 -f f0 and y0~x0G = cv, we have 
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— ( „) = ?/o — G tan H, or tan H = V, 461 + t0 x 461 + t0 — G 
-; and by 2nd 

experiment tan H = 
461 + q V 461 + t1 —■ G 

From these we eliminate* 

G = 

-- 6 /4:6 1 “h tr\ 6\ /-—- 
v/461 + t 461 + q X 70 ~ V7461 + ^ + 

vimx -1 -1 461 + q 

From the two observations corresponding to the points S and F, I have computed 

the value of G = 19'4923 and tan FI = (P09230S, which define the equation for the 

steam line that best answers to the experiments of Southern and the French 

Academy combined. This equation is tan6 FI (y/461 + t — G)6 (461 + t) — e, or by 

putting cot H as the common denominator we have the following formula for the 

tension of steam at all temperatures :— 

+ t - 19-4923 

10-883 
(461 + t) = e (in inches of mercury). 

It is singular that the points of projection belonging to each of the many sets of 

experiments on steam range themselves in a line, but these lines do not coincide, 

except in the case of Southern and the French Academy. Each set is thus con¬ 

sistent with the general law, and on this account their want of accordance with each 

other is difficult to explain. It might be caused by an error of the standard scales, 

but this is hardly possible; or impurity of the water, which is not very likely where 

every precaution has been so carefully attended to. Dr. FTre’s line of observations 

is more inclined to the axis than SF, the cot II in the formula being 10'3 and G = 19*8. 

The line of the American Institute’s experiments has yet a greater elevation, the 

cot H being about 9'8. 

The other lines of vapour on the chart explain themselves. It will be remarked 

that the deflections from the straight are all of a zig-zag character, there is no general 

bending to one side or another, and this seems to show that there is some physical 

law upon which the equilibrium of vapours with their liquids is arranged that is 

represented by the above function of the temperature. As it seems to apply to all 

vapours, it is probably not beyond the grasp of physical research, if the vis viva 

theory is admitted, for it evidently does nut depend on the chemical qualities of 

the body any more than does the law of volumes in gases. 

It must be confessed that as yet we have but few materials wherewith to found a 

process of investigation. The fundamental point is the specific heat of steam. 

* [P determine.—R.] 

f If Dalton and Gay-Lussac’s constant of expansion is preferred, 448 is to be substituted in tbe place 

of 461. 
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If it is more than about one-third that of water, if for equal volumes it is not the 

same as that of air and the other gases, then is the theory incomplete and altogether 

defective. 

It is stated to be about 0‘84, but this requires confirmation. The specific heat of 

the vapour of alcohol ought to be only -g-th that of the liquid. The vapour of ether 

only yth that of the liquid. Vapour of etherine jfh. Vapour of sulphuret of carbon 

Tfh. Vapour of oil of turpentine xotli. Vapour of bromine ytli, &c. 

These are from MM. de la Rive and Marcel's experiments. 

Is there any direct evidence in favour of or against this view ? So far as I can 

discover, little, if any, on either side. It is quite undetermined as yet by experiment, 

and is so surrounded by practical difficulties that it will probably long remain so. 

But analogy favours it in so many ways as to make it highly probable. Liquid 

etherine has four times the specific heat that its vapour ought to have, judging from 

its specific gravity. Now, olefiant gas is isomeric with etherine, and its specific 

gravity is one-half that of etherine vapour. It can hardly be doubted that the 

specific heat of liquefied olefiant gas for equal weights is the same as that of etherine, 

which corresponds very nearly with naphtha, turpentine, and the other hydrocarburets. 

If it is so it will be double what it ought to be, if for equal volumes it is the same as 

that of air and the other gases. Now, the eminent French chemists who have at 

different times made experiments on the specific heat of this gas agree that it is 

nearly 1*5 times that of air, while Mr. Haycraft (‘ Edin. Trans.’), on the other hand, 

with his simple and apparently most efficient apparatus, found it to be the same as 

that of air, and accounts for the higher number of the French chemists by the great 

difficulty there is in freeing it from ethereal vapours. 

It is the same with carbonic acid gas (the only other exception to the law of equal 

specific heat for equal volumes). The French chemists agree that its specific heat lies 

between 1T75 and 1 ‘258 ; Mr. Haycraet, by many experiments, that if carefully 

dried, it offers no exception to the general law. Judging from the analogy of other 

similar binary compounds, there cannot be a doubt that the specific heat of liquefied 

carbonic acid is double, if not three times, that of the gas. 

It would be a most valuable addition to our knowledge if this great change in the 

specific heat of a body when it becomes vapour could be thoroughly established, and it 

is in vain to proceed with the subject of vapours until it is so. 

Sulphuric ether is probably better adapted for the experiment than any other body. 

Its boiling temperature is very low, and there is a vast disproportion between the 

specific heat of the liquid and what may be expected in the vapour. Suppose a volume 

of it and of air are maintained in equilibrium of pressure and temperature by means 

of a bent tube with mercury. If a sudden small and equal dilatation is made in both 

at the same instant, the difference of pressure that will then become apparent will 

indicate the value of the latent heat of the vapour in terms of its specific heat, and, 

as we know the value of the same in terms of the specific heat of water, we shall have 
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the ratio of the specific heat of the vapour to that of water. The air follows the line 

RQ (fig. 3) in its expansion, while the vapour is obliged to keep to its line R.T. 

The latent heat of vapours is another subject where there is room for much 

additional research. Dr. Ure, in his £ Dictionary of Chemistry,’ has given a table of 

eight vapours, but none of the liquids appear to have been pure. The ether boiled at 

112°, and the specific gravity of the alcohol was 0,825. If a correction is made for 

this want of purity, it is singular that the latent heat of each is almost exactly in the 

inverse ratio of the specific weight of its vapour. This may indicate that the heat 

required to vaporize a molecule of each of these bodies is the same, and amounts to 

3000°, referred to the constant specific heat of a gaseous molecule, which is the proper 

theoretical standard. 

Is this the measure of the force of liquid cohesion ? On the vis viva theory of heat 

this, for 1 lb. of water, amounts to the force required to raise 1 lb. to the height of 

about 680,000 feet. According to Mitscherlich, the vis viva generated by the union 

of the constituent elements of the same quantity of water amounts to ten times this 

force. 

Considerable attention has lately been given to thermo-chemistry ; but it is to 

be regretted that no notice lias been taken of the permanent change of specific 

gravity that is usually found to ensue in chemical mixtures that evolve heat. It 

would be interesting to ascertain if there is any harmonious connection between the 

quantity of heat evolved and the change of atomic volume. Dr. Ure has given a 

curious example of hydrated nitric acid, where the permanent change of volume 

appears to be the same as would be caused by a permanent change of temperature 

equal to the heat evolved. 

Since only two experiments are required to fix a line of vapour on the chart, it 

would not be a very arduous undertaking to accomplish this for all bodies that throw 

off vapours at accessible temperatures. We might then have the means of answering 

the various questions that cannot fail to suggest themselves on looking at the chart; 

and, first of all, do the vapours of arsenic, iodine, camphor, salts of ammonia, and the 

other solids that rise into vapour before becoming liquid, follow the general law ? 

This question has yet to be determined. 

How are the lines of vapour of the simple bodies related to each other ? We have 

only one example as yet, viz., the vapour of mercury by M. Avogadro. It will 

be remarked that the line drawn through MR, the third and the second last obser¬ 

vation, agrees very well with the position of the other points. This line produced 

meets the axis at 50°, which is certainly lower than the temperature assigned by 

Dr. Faraday’s delicate experiment as the point of no vapour. In judging of this 

discrepancy, however, we must recollect that the density is represented not by the 

ordinate to the line of vapour, but to its sixth power; hence, at the temperature 

of 75°, the density indicated by the line on the chart is only 12 o.o oUToiroth of the 
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density of an atmosphere. The formula that corresponds to this line has the constant 

G = 22-6065 and cot H = 20-0023. 
It will be remarked that the line for Dalton’s ether (which, from its low 

boiling point, must have been nearly pure), Thompson’s pyroxilic spirit, and the well 
determined line for steam, are nearly parallel; is this parallelism perfect ? It is also 
remarkable that the projection of two experiments by Dalton on aqueous ammonia is 

exactly parallel with the steam line, and further, that the same parallelism is 
maintained by the vapours of liquefied ammoniacal gas and carbonic acid (by 

Thilorier). It would be extremely desirable if Dr. Faraday’s experiments on 
chlorine and the other more condensible gases could be repeated on a large scale so as 
to determine their position on the chart, and by two or three observations on each to 

eliminate the constants G and H. It is by such experiments and those of 
M. Cagniard de la Tour, made at the other extremity of the scale of heat and 
pressure, and likewise by Mr. Perkins, all of which may be classed under the head of 

chemical physics, that we may expect to extort from nature some of her most hidden 

secrets, to come in sight of new continents in the world of natural science, not dreamt 
of in our philosophy, because removed beyond the bounds of suggestive analogy. 
Such pressures appear to us great, and are certainly dangerous to operate with, but in 

respect to those which exist in nature, and that everywhere surround us, restrained by 
internal forces, they can only be considered as infinitesimal. 

Note C.—Temperature of Compressed Air. 

These changes of temperature are certainly much greater than are said to have 
been observed by Darwin, Dalton, and others. Not having access to the original 
account of these experiments, I am unable to ascertain how far they accord with the 
theory; but the specific heat of air is so small in comparison to that of the materials 

of which thermometers are composed that the actual difference of temperature in 
a single condensation or dilatation must be much greater than what is indicated by 
any thermometric apparatus. 

A more effectual way of ascertaining this seems to be by continually and quickly 
repeating the same condensation with different portions of air, so that after some time, 
by proper care, the condensing syringe ought to exhibit the temperature of the air at 
its maximum tension. 

If air is a medium we have in XVI. the means of computing the temperature that 
ought to be shown by a thermometer placed at the bottom of the syringe. 

Thus, t0, eQ being the temperature and tension of the air outside, e1 the tension 

corresponding to the load on the eduction valve of the syringe ; then - = 
_ C0 

and (t0 461 ) ~ — 461 = tL, the temperature of the air when condensed. 

(t0 + 461Y 

U + 461/ ’ 
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The air engines of the atmospheric railway may perhaps afford the means of testing 

this equation. 

Note I).— To find the Compression that Corresponds to a Given Ratio of Latent to 

Sensible Heat. 

This may be computed by means of IY. and XVI. 

Suppose the medium is compressed so that the mean molecular distance changes 

CC X | - 3. • 
from 1 to ——, th vis viva increases from 1 to "—-— (XVI.), the increment being 

X i i- X 

1 jx — L. 

By withdrawing molecular vis viva under a constant pressure, let the mean 

X . 

distance change from 1 to-- ; the molecular vis viva must be diminished from 1 to 
& x + 1 

(IV.), the decrement being 
(x + l)3 — x3 

= K. The ratio K/L is given to find 
as+l/ ' 'n “““ " & (x + l)3 

x + 1\3 
— I , which is the amount of compression from unity that makes the ratio 
X J 

between the sensible and latent, or evolved vis viva, equal to K/L. 

If we put x/(x + 1) = y, the equation resolves itself into y?J +if + y = K/L = f 

in the case given. This equation may easily he solved by inspection of a table of square 

and cube numbers. 1 /ys is the compression from unity to give the ratio K/L of the 

sensible to the latent heat. 

Note E.—Specific Heat of Air. 

It is probable that the specific heat of mercury and water are better determined 

than that of any other bodies. Assuming that the specific heat of liquid mercury 

(0'033) is the same as that of its vapour, and that all gases and vapours have for the 

same volume the same specific heat when in equilibrio of pressure and temperature, 

the specific heat of air in terms of that of water is (P238. The mean experimental 

value is, according to the French chemists, (P2G7. Mercury is thus the only liquid, 

so far as is known, whose specific heat is the same as what it ought to be in the state 

of vapour, if it conforms to the general law. Water is nearly three times greater 

than steam ought to he. Alcohol five times that of its vapour. Ether seven times, 

&c. ; see Note B. 

This accordance of the specific heat of mercury with its vapour seems to prove that 

there is little or no part of the heat required to raise the temperature of the liquid 

absorbed in a latent form. This is an important point in the vis viva theory. 

It is remarkable that there is no instance, so far as yet known, of mercury 

combining in fractional parts of a volume. Arsenic, sulphur, phosphorus, and some 

others combine in fractional volumes, and their specific heat in the form of vapour by 
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the theory of gases is the same fractional part of the specific heat of the solid. This 

is somewhat confirmatory of the theoretical interpretation of the law of volumes 

(§ 15). The vaporous molecule of mercury is indivisible. The vaporous molecule 

of arsenic is divisible into four parts : of sulphur into six parts ; of phosphorus into 

four parts; of hydrogen into two parts ; of oxygen into two parts ; of water (042H4) 

into three parts; of alcohol (2(HC4) + 2H404) into five parts ; of sulphuric ether 

(4(HC4) + 2ll404) into seven parts ; sulphuric acid, anhydrous (304 + S.) into four 

parts ; etherine 4(HC4) into four parts, &c. We may thus predict the specific heat of 

pyroxilic spirit to be 0‘83, and of pyroxilic ether 0’72. 

Note F. —M. Clapeyron’s Fundamental Position. 

The density and tension of a medium expanding according to Marriotte’s law, are 

represented linearly by the co-ordinates to the common hyperbola CMEL referred to 

its asymptote AG; the abscissa AB, &c., representing the volume, and the oi’dinates 

BC, &c., the tension. 

We have shown that each incremental expansion is made at the expense of the 

molecular vis viva of the medium, so that to maintain the expansion, according to 

Marriotte’s law, the loss of vis viva must be continually made up ; and the amount 

required to be supplied for any given expansion, as from B to D, is to the constant 

Fig. 4. 

original amount as the area CEDB is to 3 CB.AB, or to the original tension CB 

acting through three times the original volume AB (XIII.). 

Suppose the medium to expand from B to H (against pressure) without having its 

loss of vis viva supplied; then, according to § 22, its tension from CB, or unity, 

becomes KH = CB. Assuming the original volume and tension as unity and 

BIT = y, we have KH = x = 

the asymptotal area CKHB. 
1+3/ 

and x dy = dy j = the differential of 

To integrate this put — = 1 -f- y, and differentiating gives dy = — ; and since 

MDCCCXCII.—A H 
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x = — ) = A4, we have ( x du = 3 — 3A = 3 — 7—--—— area CKHB in 
\i + y) J (i + yY 

terms of ABCN unity. In this, y being made infinite, we have the area of the whole 

asymptotal space = 3 ABCN, which accords with § 19, as the asymptotal area repre¬ 

sents the collective force of expansion from the original volume to infinity. 

If, daring the expansion from B to H, vis viva were supplied to the medium so as to 

maintain the original quantity unimpaired, the point K in the hyperbola x = 

would coincide with M, the point in the common hyperbola x = ^ -, or MH 

— th-CB. Now, it is evident that MH : KH : : -—— : \ : : 3 : —r—-—-1; 
ah 1 + y \1 + y) (1 +yY 

3 
but the preceding integral gave ^ ^ ^1 = 3ABCN — CKHB, therefore 

MH : KH : : 3AB.CB : 3AB.CB — CKHB = ratio of original vis viva of the 

medium to the force remaining after expansion from B to H. Thus, MH : MK : : 

original vis viva : decrement of vis viva owing to expansion; and three times the 

area KNAS is equal to the asymptotal area on the other side of KH. These 

relations evidently hold good in whatever part of the conic hyperbola the point C 

may be taken. 

Suppose the medium is maintained at its original vis viva while it expands from 

C to E, it will exert the mechanical force CEDB = p, and absorb the vis viva 

CEDB, the original quantity in the medium being 3AB.CB. From E let it expand to 

F without being supplied with vis viva; then, as before, FG — .ED and ~ is 
IG 

the proportion of original vis viva expended represented by EFGD = (m), its 

equivalent mechanical force exerted. Let it now be compressed from F to K, the vis 

viva communicated to the medium being continually withdrawn. The amount 

withdrawn and the force exerted is represented by the area FGHK = q. From K 

let the medium be compressed without withdrawing the vis viva generated until the 

original tension CB and density AB are regained. The force of compression and 

vis viva communicated to the medium in the last operation is represented by the area 

CKHB = n. For shortness put the area KQDH = s, CEFK = 8, and EQF = e. It 

is evident since the molecular vis viva through CEL is constant and through 
o O 

KQF constant, that 
LF MK 

LG “ ME 
and 

MH 

LG 

MK 

LF' 
Also, 

MH 

LG 

AG _ MK 

AH ~ LF5 

AG.LF — AH.MK = SK.MK = n = m. But q-\-e = s-\-m=s-\-n, and 

s + n + 8 — e = p. In this equation substitute for s + n its equal, q + e, and we 

have 5, + e-bS“e~9'+S=::P- Thus, the curvilinear area 8, or CEFK, is the 

excess of the force exerted by the medium expanding from C to E at the higher 

constant temperature, over the force exerted upon the same, compressing it from 

F to K at the lower. constant temperature. It is also the excess of the vis viva 

absorbed in the first part of the process over the vis viva given out in the last part. 
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This is the interpretation of M. Clapeyron’s fundamental position* applied to the 

hypothetical medium. M. Clapeyron assumes that the quantity of heat taken from 

the body A (p. 349, ‘ Taylor’s Memoirs ’) during the expansion from C to E is 

necessarily equal to the quantity given to the body B during compression from F 

to K, and that from E to F and K to C no heat is taken from or given to the volume 

of gas, a proportion only of the sensible heat being reduced to a latent form and 

again thrown out. Thus, there appears the anomaly of the mechanical force S being- 

exerted or generated without any loss of heat. M. Clapeyron’s view is here so much 

at variance with the vis viva theory of heat that it seemed proper to enter into a full 

explanation of the same condition in the hypothetical medium. The case is very 

instructive, and throws light on the vis viva theory, which is at the same time the 

means of clearing up the anomaly in causation of mechanical force seeming to be 

generated without expenditure of heat. M. Clapeyron’s conclusions, so far as gases 

are concerned, are quite independent of any hypothesis, and seem to be strictly 

deduced from the laws of Mariotte and Dalton and Gay-Lussac combined with 

the relation that has been found to subsist between simultaneous increments of 

sensible and of latent heat. It is satisfactory to observe that they agree, so far as 

■they go, with the physical properties of the medium. 

Note G.—Objection to Theory. 

The only difficulty I can discover in the vis viva theory of heat applies in some 

measure to the undulatory theory of light. The ethereal medium that transmits the 

undulations is affected by vibrations of the elements of matter, but there is not the 

least symptom of it affecting by its resistance the planetary motions, and yet theory 

shows that it must permeate through the very substance and heart of all bodies with 

such quick and subtle power as not in any sensible manner to be affected in its 

equilibrium by any part of their motion except what is vibratory. Now, the vis viva 

theory of heat shows that the greatest ordinary velocities of this vibratory motion 

do not much exceed 2000 feet per second, but the velocity of the earth in its orbit 

is upwards of 50 times this amount. In the first case, if a hot body were isolated 

from all surrounding matter, the whole of its motion -would be withdrawn from it in a 

very short time by the ethereal medium. This we can affirm inductively from the 

laws of the radiation of heat. In the second case not the slightest resistance is made 

manifest. The ether only affects and is affected by vibratory motion. Any other 

kind, however great, it neither affects nor is affected by. What are we to infer from 

this incongruity 1 If vibratory motion differed in no other point from the rectilinear 

and rotatory motion of masses of matter, than in the sudden change of direction, it is 

plain that if there was no resistance in the one case there could be no resistance in 

the other, and vice versa. We are, therefore, compelled to infer that the disturbance 

* Essay on the motive power of heat, ‘ Journ. Polyt.,’ translated in ‘ Taylor’s Memoirs,’ vol. 1, p. 349. 
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of the ethereal medium is not caused directly by the motion of material particles as 

with the grosser media of gases and liquids when affected by the motion of bodies 

passing through them. Something takes place in the vibratory motion of the 

elements of matter that does not take place in their collective motion. 

Molecular vibration consists in the struggle, as it were, between the vis insita of 

molecules and the forces that bind them together. It seems, therefore, as if the 

disturbance of the medium which answers to radiation of heat and light were 

derived from the disturbance of the molecular forces, and that when there was no 

such disturbance there was no resistance. 

But the difficulty yet remains of a body moving in a material medium without 

resistance. It is almost inconceivable in the present state of our knowledge of 

molecular physics. If it is at all possible (for there is almost an absurdity involved 

in asserting that it is possible) it can only be by means of a persistent or continuous 

relation of intense mutual organized activity between the ether and the perfectly 

elastic elements of matter, of which we can as yet have very little conception. 

The disturbance of molecular forces that allows the medium to absorb the vis insita 

of vibrating molecules may be likened to the ascent and descent of planetary bodies 

to and from the sun while revolving in elliptic orbits. There is a disturbance when 

the centripetal force on a body increases or diminishes, so that if a body revolved in a 

circle thei'e is no disturbance, no resistance, no absorption of its vis insita by the 

active medium, and if it revolves in an eccentric ellipse there is disturbance, resistance, 

and absorption. The number of luminous vibrations in a second is, by the undulatory 

theory, from 458 million million to 727 million million, and the vibrations that cause 

heat are probably not very different in the velocity of their succession. If a set of 

molecules thus vibrating in a perfectly cold region took one second to dissipate their 

molecular vis viva by radiation, this is sufficient time for so vast a multitude of 

revolutions in the molecular orbits that the loss of vis insita in our vibration is 

probably as infinitesimal as that of the planets during one revolution, and we might 

conjecture that this infinitesimal ratio was a function of the ratio of the elasticity of 

the ether to the molecular velocity of the vibrations, the elasticity of the ether 

being apparent only as an active centripetal force. Such a retardation would 

certainly follow if the velocity of the action of gravitation were not infinite, but there 

still remains to be suggested the physical condition of a medium that offers no 

resistance. Is such an entity possible ? 

Note H.—Formula for Measuring Heights by the Thermometer. 

The tension of the atmospheric medium varies, as we have seen, in the proportion 

of the sixth power of the depth below the summit, and the elasticity of steam varies 

as the sixth power of the ordinate to the line SF on the chart multiplied by the 

absolute temperature or square of the corresponding abscissa (see Note B). This 
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suggests a method of measuring heights by the thermometer that requires little or no 

computation. 

Let ST on the chart of vapours, which there represents the sixth root of the 

density of steam at 212°, be also taken to represent the whole height of the 

atmosphere above a point where the water boils at the temperature of 212°. Then 

from or, the ordinate to the steam line at 200°, draw zsq parallel to QS, the line 

of one atmosphere pressure, or rather, it ought to be converging to the point where 

the cord QS produced meets the axis. It is evident that SQ represents very nearly 

the height where water boils at 200°. Now, if such lines are drawn at each degree 

between 200° and 212°, they will divide S(/ into parts that are sensibly equal. 

The value of each of these parts depends on the value given to ST, which, 

according to our theory, is in feet 318 times the absolute temperature of the air at 

the station where water boils at the temperature corresponding to the square of the 

abscissa of the ordinate ST. 

The following is the accurate formula by the theory for any vapour of which the 

constant G (see Note B) is known :— 

317-6 
/y/r + 461 - G\ 

Wt + 461 - Gj 

/t + 461V 

\y + 461/ 
(T + 461) = h, 

in which T is the temperature of the air at the lower station, t = temperature at 

which the liquid boils at the lower station, r = temperature at which the liquid boils 

at the upper station (all expressed in degrees on Fahr. scale), G the first constant of 

the vapour (see Note B), and h the difference of height between the stations in feet. 

By boiling temperature is meant the temperature at which the tension of the vapour 

is the same as that of the external atmosphere. 

Let us apply the formula to the vapour of water, in which G is 19’4923, and let us 

take an example where T is 60°, t — 212°, and r = 211° ; the value of h is 528'6 feet. 

It will be found, by taking other values for T and r, that this elevation for 1° 

difference in the boiling point increases about |ths of a foot for each degree that r 

diminishes, and increases exactly 1 foot for every degree that T increases, and vice 

versd. 

Professor Forbes, who has discussed this subject fully in a recent paper, finds that 

his observations indicate a number between 540 and 550 feet. The accordance is 

thus satisfactory ; by the formula, 550 feet per 1° is the mean value for T = 75°, 

t — 212°, r = 202°, which corresponds with Professor Forbes’ mean ; and what it 

wants of uniformity is too small to be discovered in practice. 

Suppose that we wished to employ the vapour of sulphuric ether for this purpose. 

It boils at 96° under a pressure of 30 in. Dalton’s observation on this ether gives a 

line of vapour which has G = 16-86. Compute the above equation with this value of 

G, and t = 96°, r = 95°, T = 60°. The result is h = 568, being y^-th greater than in 

the former case of steam. 
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The less this ratio, the more exact, of course, is this method of estimating heights, 

and it depends greatly on the value of the constant H (see Note B), for the less the 

inclination of the line of vapour is to the axis the smaller is the height that 

corresponds to a difference of 1° in the boiling point. For mercury this is only 

248 feet, but the temperature is inconveniently high. 

Pure sulphuric ether appears to be the best adapted, as its boiling temperature is 

low, and the disadvantage of the great amount of the difference of elevation for 1" 

might, perhaps, be compensated for, by employing a very delicate alcohol thermometer, 

with the divisions of the scale large and extending only from 60° to 100°. The ether 

need not have access to the air; the equilibrium of pressure may be indicated by the 

rising of a thin metallic capsule air-tight and elastic. 

Such an instrument would require little more than the heat of the hand to bring it 

into action, and perhaps might be made sufficiently delicate to be used as a machine 

for taking levels and making sections of a country. 

Note K.—Central Heat. 

It is not difficult to compute the temperature that the atmosphere would have if it 

were supposed to be continued through a shaft to the centre of the earth. Suppose 

the force of gravity to diminish with the central radius, which is the case in a 

homogeneous sphere, the temperature of the air at the centre would be about 29,000°, 

and the density much greater than that of any known solid. 

Heat, if it is motion, cannot be propagated upwards without loss or conducted 

downwards without gain, any more than can a body when projected upwTards retain 

its original velocity without diminution, or when projected downwards without 

increase. 

The temperature in mines (according to M. Cordier) increases in descending at the 

rate of 1° to 50 or 60 feet. Is this the natural condition of vertical equilibrium of 

molecular vis viva within the crust of the globe ? If such were the case some regular 

difference might be found between the top and bottom temperatures in pillars or 

lofty buildings if precautions could be taken to prevent horizontal conduction. 

Note L.—Nebular Hypothesis. 

The vis viva theory appears to harmonize well with the Nebular Hypothesis of 

Laplace. The intense activity of the molecules of the Sun’s mass may be viewed 

as the result of, or to have been originally produced by, its centripetal force while 

condensing. The motion generated is not lost, as it is in appearance when inelastic 

bodies meet each other with equal momenta. The clashing together of the descending- 

elastic matter is followed by equal recoil in the opposite direction, and molecular 

vis viva is generated. We see this take place on a minute scale when metals are 
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hammered, or compressed, or rubbed. Friction and every other expenditure of 

mechanical force gives birth to heat or molecular vis viva, which is dissipated by 

radiation and conduction. 

The observations of Sir John Herschel and Professor Forbes with the actinometer 

(‘ Phil. Trans.,’ 1842) have recently supplied a knowledge of the absolute value of the 

solar radiation before it passes through the atmosphere. They have found it to 

amount to 38S'4 actines, each actine being one-millionth of a metre in thickness of ice 

melted per minute. This is equal to ] '835 ft. of ice melted in a mean solar day. 

Now, since it is known that ice requires 140° of heat to melt it, and the mechanical 

value of 1° in water is equal to the weight of the water raised through 673 feet 

against the force of gravity on the Earth’s surface (§ 25), we have the means of 

computing exactly the absolute mechanical power of the solar radiation—the absolute 

force thrown out by the Sun in a given time. 

There are various ways of reckoning this and obtaining a clear conception of it 

with reference to different standards. The fundamental principles are contained in 

Section 3, and an example of their application is given in detail in § 25. The results 

of four computations are as follows :— 

1. During one year the solar force upon a square foot at the Earth’s mean distance 

from the Sun is equal to 20 tons raised 20 miles, or to about one ton raised one mile 

per day, which is equivalent to ^th of a horse-power, according to engineers’ mode of 

reckoning;. 

2. At the Sun its amount in one year is equivalent to the descent of a stratum of 

the Sun’s surface (and of its mean density) 3^ miles thick through its own breadth. 

3. If the Sun is supposed to contract uniformly throughout its mass so that its 

radius becomes 3^- miles less in consequence of the general increase of density, the 

force generated is sufficient to supply the solar radiation for about 9000 years. 

4. If a mass equal to the Earth descended to the Sun’s surface from its mean 

distance, it would acquire a velocity of 390 miles per second, and the vis viva 

generated when it strikes the Sun would amount to the force thrown out by the Sun 

in 45 years. 

The density of the Sun being little more than that of water, it is possible that the 

mere gradual contraction of its bulk, or natural subsidence of the mass, may generate 

sufficient force to supply the amount of radiation without any diminution of tem¬ 

perature, and it would appear from the third computation that the decrement of the 

apparent diameter of the Sun owing to such condensation may not amount to more 

than -5-0-th of a second in 9000 years. 

Note M.—Barometric Formula. 

This may include the effect of aqueous vapour by the formula in Note B. Let 

r = mean dew point, t — mean temperature of the air at the two stations. Find 
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then 

p _ JVt + 461 - 19-736] ( 
S 10422 

(t + 461), 

H = (log B — log b) . - 
1 

1250801 

0-376 
2P 

I) + h 

/ 461 + t \ 
\9958 + t) 

is the correct theoretical formula, in which 

H = height in feet between the two stations. 

B = height of barometer at lower station. 

b = height of barometer at higher station brought to the same temperature as B. 

Addition to Notes B. and H. of the Paper, “ On the Physics of Certain Media ” 

recently submitted to the Royal Society. 

Received January 27, 1846. 

In Note B it was shown that the formula of a vapour might be obtained from two 

experiments on its tension, and in Note H, that the function which defines the law 

of density in vapours is analogous to what defines the law of tension in ascending the 

atmosphere, thereby enabling us to construct a rule for measuring heights by the 

thermometer. It may, perhaps, be useful to add what relates to the law of the tension 

of mixtures of air and vapour. 

In some cases it seems impossible to clear vapours entirely of permanently elastic 

matter, and it will be allowed to be very desirable, in a practical point of view, that 

we should be able to deduce the necessary constants from experiments made upon 

them in their usual state of commixture. It will be found, I believe, that this may be 

accomplished by means of the data afforded by not less than three experiments if the 

volume occupied by the gas and vapour remains constant, or if the proportionate changes 

in it are capable of being accurately determined. We do not require to know anything 

of the quantity of air enclosed with the vapour : this forms one of the three unknown 

quantities involved in the three equations afforded by the experiments ; the other two 

being the constants G and H that develop the law of density of the pure vapour. 

In the accompanying chart (Plate 2), which is drawn on the same scale as the general 

chart of vapours given in Note B, it may be remarked how the straight lines of vapour 

are transformed into a high order of hyperbolas when any permanently elastic matter is 

allowed to contribute its effect of tension. The mode of laying off the points is simply 

as follows. Suppose we wish to know the effect that air of y^tlis of an inch of tension 

at 51° has upon the chart line of aqueous vapour ; we have FG£ = F6 (51 -f- 461) = 0'06. 

From this we obtain the value of FG, which we employ in the general equation for such 

= e, or /y/.FG + mixtures, vi2;.,F°i + t 
\/t — G 

H 

yt - g\8 

\ H 
the ordinate 
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on the chart to the abscissa t. The curve traced out by these coordinates is one leg 

of a species of hyperbola. The apex of this hyperbola has its ordinate F'F' (see chart) 

ecpial to the element F in the equation, and the corresponding abscissa is G, which is 

equal to «Jt at this point which is the zero of the vapour. It makes —- —- = 0, 

As the tension of a vapour is excessively small for a considerable range of tempera¬ 

ture above its zero point, the curve, which begins at F', does not sensibly leave the 

tangent at its vertex, F'E,—which is also parallel to the axis at the distance from it, 

F,—for some distance beyond the point of contact. It then takes a sudden bend, 

having the greatest curvature at the point where the tension of the vapour is nearly 

one half the tension of the air, and ascends along the line of vapour converging towards 

it as an asymptote. This curve answers very well to the general run of the experi¬ 

ments on aqueous vapour at low temperatures, and those of Professor Magnus that 

have recently appeared in the 14th number of the ‘Scientific Memoirs’ correspond 

with it almost exactly. 

Are we then to infer from this coincidence that the general divergence from the 

straight at low temperatures is the effect of a minute portion of air that clings to the 

water, in spite of all the precautions taken to prevent it, and that it only becomes 

sensible when the tension of the vapour, per se, has descended to the same attenuated 

proportion ; or is the law that is represented by the general equation of Note B, 

defective to this trifling extent ? 

Although no attempt has yet been successful to give a physical interpretation of 

the function of the temperature that represents the density of a vapour, yet it must 

be considered as a circumstance favourable to the possibility of doing so on the vis 

viva theory, that it corresponds so far with several of the laws of gases or media as 

like them to involve the sixth power of an element of the temperature. Thus in 

XYI. (§ 22) it was shown that when a medium was compressed the vis viva increased 

as the mean molecular distance diminished, or, what is the same, that the sixth power 

of the molecular velocity increased in the same ratio as the density. This actually 

enables the condition of a gas in respect to density and temperature, while dilating or 

being compressed, to be represented on the chart of vapours, and has already been 

referred to in Note B. The physical demonstration of this peculiarity of function 

depends ultimately (as shown in Section III.) on the six rectangular directions of 

space. It seems highly probable, therefore, that the same primary cause shapes the 

function in the case of vapours, and we may thus be led to hope that in the liquid 

condition of bodies their molecules are arranged upon a plan more simple and less 

interwoven with the essential nature of the molecular forces than might otherwise 

have been anticipated. 

In the upper curve, FCS, the ordinates represent the sixth root of the respective 

MDCCCXCII.—A. 
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densities when the air and vapour are in equal proportion at the ordinary pressure of 

the atmosphere. The vapour is that of the sulphuret of carbon employed by M. Marx* 

(‘ Scient. Mem.,’ Part 14), which has 117°'12 as its boiling temperature. With half its 

volume filled with air it assumes the ordinary pressure of the atmosphere (30 inches) 

at 80°‘55. At this point it crosses the line of the constant pressure of one atmosphere 

(see Note B) as may be seen on the accompanying chart. It may also deserve to be 

remarked that the curve crosses this line in a much more sloping direction than the 

straight line of the pure vapour, and that, consequently, according to what is stated 

in Note H, such a mixture is so much better adapted to the measurement of heights 

by the thermometer, inasmuch as 1° represents a much less difference of height in the 

atmosphere when applied to mixtures of air and a vapour, than with the same vapour 

in its pure state. We may thus, perhaps, with such mixtures, be enabled to construct 

an instrument for measuring heights by means of the thermometer which will have all 

the advantages that are anticipated in Note H from employing the pure vapour of 

a volatile liquid with a chart line of density having the smallest possible inclination 

to the axis. 

As an example of this let us take the mixture represented by the upper line of 

density, FCS. 

At the temperature 80o,55 and the mercury in the barometer standing at 30 inches, 

a small quantity of air saturated with sulphuret of carbon is enclosed and at the 

lower temperature, 70°, the tension of the mixture of air and vapour reduced to 

26'76 ; it is required from these data to determine the height corresponding to a 

lowering of 1 degree in that temperature which brings the tension to an equilibrium 

with the external atmosphere. 

We have first to compute G by the formula given in Note B as follows :— 

x/h 

— 1 

in which t0 = 461 + 70, t1 = 461 -fi 80'55, e0 = 26‘76, ex — 30‘00. 

By this we obtain G = 8-742. It is making use of the small arc, CS, as if it were 

a straight line. 

Vfe have next to employ the value of G in the formula of Note H, viz.:— 

3176 
y/T — ( r 

y/1 — G 
• T = h. 

In this the absolute temperature at the lower of two stations is denoted by T, and t is 

the temperature at which the tension of the enclosed air and vapour equilibrates the 

atmospheric pressure at the lower station, the same at the upper station being r. 

* [? Magnus.—R.] 
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Suppose 

T = (461 + 60), t — (461 + 80-55), and r=(461+ 70); 

the formula computed gives li = 3127, which, divided by t — r = 10’55, gives 

296^ feet as the value of 1° in such an instrument. This amount varies but little, 

through a considerable range of temperature and pressure. 

This value may be obtained by observing the temperature at the bottom and at the 

summit of a known height, and dividing the elevation in feet between the two 

stations by the difference. Neither the law of the vapour nor the amount of air 

enclosed with it is required. 

What if we dismiss the vapour altogether and enclose dry air only ? It is evident 

that the line CS will then become parallel to the axis and distant from it F, the 

sixth root of FG, the density, which is constant. The element G becomes infinitely 

negative, and -— = 1, thus simplifying considerably the expression for h. which 
\/1 Ct 

is now converted into h = 317‘6 jl — (^''j j T. 

Let t — b6, and r = (6 — /3)6 '= b6 — 6b5(3, when (3jb is a small fraction. By division 

we have on this hypothesis jjt — 1 — 6 fi/b, and {r/t'f =1 — /3/b, which converts the 
ft ft . 

equation for h into h = 317’6 y T. To express j in terms of t and r, we have 

t —- t — 6//’/3, and 
t — T P 

b 
Hence, so long as this fraction is small in comparison 

to unity, we have the following simple expression for the height in terms of the indi 

cations of the thermometer :— 

This gives the nearly constant value, 53 feet, for each degree of Fahr. thermometer, 

at moderate elevations and ordinary temperatures. 

This is the lowest possible value for difference of temperature that can be obtained. 

In ascending through an increment of the height of the atmosphere, we experience 

one decrement of temperature, and five decrements of density, which, together, make 

six decrements of tension. These six decrements of tension must be effected in the 

enclosed air of the instrument before an equilibrium is established, and as the density 

is a constant quantity they must be produced by means of a lowering of temperature 

to the amount of six decrements. Thus, six decrements of temperature in the instru¬ 

ment correspond to the same differential height as one decrement of temperature in 

the atmosphere, or six degrees correspond to 317‘6 feet, the difference of height that 

causes a difference of 1° while in its natural condition of vertical equilibrium. 

It appears, therefore, that dry air is in every respect the best in theory for measuring 

heights with the thermometer by means of such an instrument as is referred to in 

Note H. The theory upon which its theory rests has been shown to agree with 

[ 2 
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M. Gay-Lussac’s observations during his balloon ascent, § 34, and also with 

Professor Forbes’s original determination of the nearly constant difference of level 

in the atmosphere that corresponds with the same constant difference in the boiling- 

point of water. 

Suppose, then, we take a small glass vessel, in which there is fixed a delicate ther¬ 

mometric apparatus with a large scale. We heat it to about 100°, and the inside 

being perfectly dry we close it and make it perfectly air-tight by means of a thin, 

finely polished silver capsule. From 100° down to 60° corresponds to an altitude of 

only about 2100 feet, so that for greater elevations or a greater range of the barometer 

we would require to seal it at a higher temperature, or what amounts to the same 

thing, partially exhaust the air while fixing the capsule. In afterwards employing 

this instrument the polished capsule will be a concave mirror so long as the pressure 

of the atmosphere exceeds the tension of the enclosed air. It will become a plane 

reflector when they are in equilibrium, and convex when the tension exceeds the 

atmospheric pressure. 

Now, the image of an object is so different in these three kinds of reflectors, that I 

conceive it will be possible to recognise the point of equilibrium with very considerable 

accuracy, or, perhaps, better by means of an eye-piece adjusted to a certain angle of 

reflection. 

The principal difficulty in such an instrument would probably be in getting the 

temperature of the air and of the thermometer to be perfectly the same at the instant 

of equilibrium. M. Brequet’s metallic spiral thermometer is, perhaps, the best 

adapted, and would make the apparatus very portable. But it is the practical artist 

only who can judge if such an instrument can be made effective. 

The annexed sketch is another form of the apparatus, to be used with a delicate 

mercurial thermometer that may show the temperature of the atmosphere at the 

station. Q is an air thermometer, with a bead of mercury as index, which, before 

observing with it, must be blown into the bulb by putting the finger upon the open 

end, a. 

The air in Q, having now the same temperature and density as the atmosphere 

outside the bead of mercury, is allowed to fall into the stem of the instrument, and 
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the reading of the scale marked off. Heat is then applied to the shut glass bottle, 

SS, that encloses Q, until the capsule, C, shows the equilibrium ; the air in Q, of 

course, has the same temperature, and has expanded accordingly against the constant 

pressure of the external atmosphere; the reading of the mercury in the scale, n, will 

now show the amount of expansion, and, therefore, the ratio of the constant density 

of the air enclosed in SS to the density of the atmosphere at the station. Thus, we 

ascertain the absolute temperature and absolute density of the atmosphere at every 

station from scales with as large a reading as we please. 

To obtain the law of tension of a vapour by three experiments made upon it at 

different temperatures when mixed with an unknown quantity of air, let tQ, t, tx be the 

three absolute temperatures found by adding 461 to the reading of Fahr. scale, and 

e0, e, ex the corresponding tensions. Also, let G and H represent the two unknown 

constants of the vapour, and F6 the constant that represents the quantity of the 

enclosed air, or number of gaseous molecules, which is the same at all temperatures, 

while the number of vaporous molecules 
y/t ~ G\° 

H 
changes with the temperature t. 

These expressions mean the number of molecules in a constant volume, so that the 

experiments require to be made with the enclosed volume over the liquid constant. 

The general expression for the observed tension is 

e =. t F6 + t V* - ay 
H / 

. (1). 

By eliminating F6 from each of the three experiments, we have 

JTG _ _ yAp - Ct\6 « 
H j t 

vA — G\c h AAi ~_G\G 
H H 

. (2). 

From the first and second of these, we have 

H6 (r-?) = (^“G)6“(^“G)6 • (3). 

From the second and third, we have 

H6 (!-*) = (^-G)6-(^o-G)" (4)- 

Dividing (3) by (4), we obtain a known ratio R, 

5 _ GA - G)6 - GA - G)6 
R = 

GA — G)6 — GA0 — ^-)6 
(5). 
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From this we may eliminate G by trial and error. The shortest way of making this 

computation is, perhaps, the following :— 

Assume any value A for G, and substitute it in (5), and compute the corresponding 

value of R, which let us denote by N. If we make the proportion, as the differential 

of N is to the differential of A, so is the difference between N and It to 8, the difference 

between A and G, we have 

i {(v+ - A)« - (A - A)°} - {(x/t - A)« - (xA, - A)6} R 

6 {(x/t - A)5 - (+q - A)5} N - IGA - A)5 - (A - A)G 
8, and A — 8 = A1? 

which approximates nearer to G. Substituting this value in the place of A in the 

above equation, we obtain the next value of 8, which call S1( and AY — — A2, which 

approximates still nearer to G. 

We arrive more quickly at the exact value of G by making A — - 8 = Al5 and 

N 
Al — —1 8j = A.z. Having thus found Al5 A.,, N, N1? Ns, we may lay off A as the 

_Llr 

ordinate to N, A: to Nl5 and A.2 to N2, then, drawing a curve through these points, 

the ordinate to it opposite It is G, which, in this way, may be obtained very exactly. 

As an example the following three observations are taken from Professor Magnus’s 

experiments on the elastic force of steam, that have recently appeared in the 

I4th number of the ‘Scientific Memoirs.’ 

e0= 0-178 t0=493 =(461 + 32) 

e = 3793 t = 585-1 = (461 + 124-1) 

e1 = 29-920 q = 673 = (461 + 212) 

Computing the preceding formulae with these data, a few trials give G = 19"625. 

Then, by (3) or (4), we get H = 10"62, and by (2), from the first experiment at the 

lowest temperature, we obtain the value of F6, and thence F6 (51 + 461) = 0"08, or 

3+§-th part of an atmosphere of permanently elastic matter at 51° Fahr. 

The line on the chart which answers to the experiments of Southern and the 

French Academy has G = 19"492, and H = 10"83. 

It is obvious that one of the experiments ought to be taken at as low a tempera¬ 

ture as possible, and that F6 should be computed from its data. 

The general formula for vapour, t = e’ *s eas7 f° compute when the 

tension for a given temperature is required ; but when the temperature that corre¬ 

sponds to a given tension is sought, the equation does not admit of direct solution. 

The following is, perhaps, the simplest method of overcoming the difficulty. It is 

founded on the property of the tangent to the curve of constant pressure, alluded to 

in Note B. 
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The length of that portion of it intercepted between the point of contact and the 

axis of the curve, is equal to three times the length of the abscissa. 

The tension given being e, and the corresponding absolute temperature r being 

required, assume any absolute temperature as near to r as may be guessed roughly; 

then, by the formula for the given vapour, t ———) = e, compute e. The value of 

r may then be found directly, with all necessary precision, by the following equation : 

f 4H -f 3G yt 

T=\vt^+S^ 

From this value of r subtract 461, and we have the temperature required on Fahr. 

scale that corresponds to the elastic force e. 

J. J. Waterston. 

December 15, 1845. 

Explanation of Table of Gases and Vapours. 

Received February 19, 1846. 

Having found the following Table useful to refer to while studying the subject of 

gases and vapours, I have been led to hope that it might be made available, so far as 

it goes, in shortening the labour of drawing up a complete view of their physical 

constants. That such a condensed view of their physical character and constitution 

is a desideratum will probably be generally admitted, and principally with reference 

to theoretical chemistry does it seem to be of importance to have their molecular 

characteristics placed before the eye in a clear and concise manner. 

The tables of this description that are usually inserted in chemical treatises do not, 

perhaps, give to the arithmetic of volumes all the clearness that it is susceptible of. 

This is a consequence of employing the chemical equivalent or lowest combining 

proportion as the unit, whether or not it happens to correspond with the specific 

gravity of the gas, and it is generally either half this ratio or, as in the case of 

sulphur, of phosphorus, and of arsenic, even a smaller fraction of it. 

Thus we have H + 0 the symbol for water. In Dr. Turner’s ‘Chemistry’ its 

constitution is thus defined : 1, or one equivalent of hydrogen, -j- 8; or one equivalent 

of oxygen, = 9 the equivalent of water; and, by volume, 100 of hydrogen combines 

with 50 of oxygen to form 100 of steam. If we take 16 as the equivalent of oxygen, 

which corresponds with its specific gravity, then HOj expresses distinctly the consti¬ 

tution of steam both by weight and volume. Another objectionable point may some¬ 

times be remarked though it has now almost disappeared, the combining ratio by 

volume is inserted before any determination of the fact has been made : thus 
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Dr. Turner defines the peroxide of hydrogen, 100 volumes, to consist of 100 oxygen 

-p 100 hydrogen, whereas, since the vapour has never been weighed, it is just as 

likely to consist of 50 volumes of each; both gases unite with others in several 

instances in half volumes, so that, until the experiment has been made, all that can 

be stated is that 17 by weight of the peroxide consists of 1 hydrogen + 16 oxygen. 

As soon as we have ascertained the space occupied by the 17 of the peroxide in 

comparison to the 1 of the hydrogen we can state its composition by volume, but 

it is surely confusing the subject of volumes altogether to infer this from the 

combining weights alone. 

In this Table the specific gravity of a simple gas in terms of hydrogen unity is 

taken as the value of its symbol (Col. 3, Part I.), and wdien this is inserted in 

parentheses (as from Nos. 10 to 20), it represents the value that has been assigned to 

the symbolical letter of the element in the compounds that follow, and indicates that 

it has not as yet been weighed in the simple vapour. 

Thus the value of C is 12, of F 19, &c., throughout the Table wherever these letters 

occur, and at the side these numbers are taken as unity in denoting the several 

proportions with which they have been found to combine in a single volume of 

compound gases and vapours. Opposite hydrogen, for example, we see numbers from 

up to 16, which informs us that from a volume up to 16 volumes of this gas 

enters into one volume of its compounds, and the same with regard to the others. 

These indicate in some degree the molecular capabilities of the element. They are 

ratios that have been taken from vapours that have actually been weighed as v7ell as 

analysed. A large proportion of them are of recent determination, and the original 

details of the experiments by Dumas, Mitscherlich, Regnault, Laurent, and Bjneau 

are to be found for the most part in the ‘ Anuales de Chimie ’; the reference to the 

volume and page of this invaluable work is given in parentheses after the name of the 

vapour, and the letter (m) is a reference to Mitscherlich’s ‘ Chemistry,’ where 

several specific gravities of vapour are given that are not to be found elsewhere. 

In the table of binary compounds a column is occujDied with the chemical 

constitution of a single volume of each in terms of volumes of its elementary 

components. Thus, nitric acid is represented by 02JSi, which means that one volume 

of nitric acid vapour is composed of 2^ volumes oxygen united to one volume nitrogen, 

and where a volume has not been weighed, although its constitution by weight is 

known, the symbol is within parentheses, thus [ ]. 

In the ternary and organic compounds the simple constitution of a volume is given 

in the first place, as with the binary, and in the next column the most probable 

arrangement of the constituents, when there is any ground for making a hypothesis. 

Thus we have oxalic ether, No. 114, evidently composed of one volume oxalic acid 

and one volume of sulphuric ether condensed into one volume. This also allows us 

to infer wfith great probability the specific gravity of oxalic acid vapour. The next is 

nitrous ether, No. 115, which is quite a similar compound in the liquid form, but it 
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will be remarked that in the act of rising into vapour it is decomposed, and what is 

one volume in the case of oxalic ether vapour is two volumes in the case of nitrous 

ether. Several other examples of this kind will be found. I have already referred 

to such facts as being favourable to the hypothesis of media which attributes a 

mechanical origin to the law of volumes, and have likewise referred to the remarkable 

circumstance that compounds which thus disunite in the act of vaporization neverthe¬ 

less obey the general law of vapours (see Note B). As it seems, from the nature of 

the function that expresses this law, that a mechanical origin may be found for it 

also, the investigation of the subject might, perhaps, be made easier if the chart lines 

of vapour were determined for mixtures of pure alcohol and water in all proportions, 

and also for mixtures of alcohol and ether. 

We should then, perhaps, discover the law of variation of the two constants G and 

H of the chart line, and this might provide us with a new condition or effect of the 

primary cause pointing to its origin from a new ground. 

The two last columns contain the constants G and H, referred to in Note B. ; 

where there are three places of decimals the numbers are nearly exact, when two only 

they are to be considered as approximate. 

Column No. 1 contains the temperature on Fahrenheit scale at which the vapour 

in contact with its generating solid or liquid equilibrates a pressure of 30 inches of 

mercury. 

Column No. 2 contains the specific gravity of the body in its usual liquid or solid 

form. 

Column No. 3 contains, as before mentioned, the specific gravity of the body in its 

gaseous form in terms of hydrogen unity. It expresses the weight of a molecule of 

the hypothetical medium that answers to the gas in its physical relations. 

Column No. 4 contains the inverse of the specific heat of the body in its usual 

liquid, solid, or gaseous form. The numbers are found by dividing the constant 3'2 

by the specific heat. This constant is the product of the specific heat of air by its 

specific gravity in terms of hydrogen unity, and to the same product of all gases that 

conform to the law of equal volumes having the same specific heat. It is likewise 

the product of the specific heat of mercury in its liquid form by the specific gravity of 

its vapour (Note E). In other elementary bodies this product is-a simple multiple of 

the same constant. In compounds the same product is also in most cases a simple 

multiple of the same constant. On the vis viva theory of heat the numbers in this 

column probably show the mean weight of the component parts of the gaseous 

molecule that have an independent motion when the body is in the liquid or solid 

form. Thus, No. 33, arsenious acid : the specific gravity of the vapour is 200 times 

that of hydrogen ; but its specific heat in the solid form is 8 times what it is in the 

state of vapour, if in this form it obeyed the law of the specific heat of gases. Hence 

25 is the number opposite in this column, which, since it goes 8 times in 200, shows 

that the molecule consists of about 8 parts, each of which has an independent 

MDCCCXCII.-A. K 
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motion. We see further that 03As expresses the constitution of one volume of this 

acid, and referring to As, No. 7, we find that its specific heat in the solid form is 

nearly 4 times greater than it ought to be in the vapour. 

The probable general inference is that such molecules consist of several parts, more 

or less free to move independently of each other, and that when they escape from the 

bonds of liquid cohesion and become free projectiles, these parts can no longer assume 

vis viva of their own, but are in subjection to the impressed condition of their common 

centre of gravity. 

The great question in this department is, Do such compound bodies which have so 

great a specific heat in the solid form have it all at once reduced in so vast a 

proportion when raised to vapour ? This interesting point, as remarked at length in 

Note B, has yet to be determined by an experiment made on the specific heat of 

sulphuric ether vapour, as being the most accessible, which, if these views are correct, 

ought to be only about -g-th of the specific heat of the liquid. 

Column No. 5 contains the quotient of the gaseous specific gravity by the specific 

gravity of the liquid or solid, and represents the relative size of the molecules. The 

subject of atomic volume has recently been the subject of interesting discussion by 

M. Kopp (‘Ann. de Chim.,’ vol. 75, 1840, p. 406), and, doubtless, will increase in 

importance as science advances. 

To these physical characteristics of gases it would be well if we could add the 

temperature of liquefaction, the latent heat of liquefaction, or the measure of the 

solid polar cohesion of molecules according to the vis viva theory, the differential of 

expansion through a range of temperature, and the latent heat of vapours or measure 

of liquid molecular cohesion. 

December 24, 1845. J. J. Waterston. 

This paper being the last in connection with the vis viva theory of gases that the 

writer is likely to have an opportunity of submitting to the Society, he begs, in 

taking leave of the subject, to express a hope that, although the nature of the 

fundamental hypothesis is likely to be repulsive to mathematicians, they will not 

reject it without a fair trial. The principle of the conservation of vis viva involves 

the indestructibility of force, and is a necessary consequence of the quality of perfect 

elasticity or reaction in the ultimate elements of matter : if this last is a universal 

property the first must also be of universal effect, and, as it does not admit of any 

diminution of force in nature, we may question whether, in such intense chemical 

action as the phenomena of combustion and explosion manifest, the sudden evolution 

of force is not merely an exhibition of its transference from one form of elastic matter 

to another. 

Are not the properties of aeriform fluids and of the medium of light glaring proofs 

of the widely spread existence of this quality of perfect elasticity, whatever may be 
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its essential mode of reaction; and do not they even demand of us a ready assent to 

its all-prevailing influence in the phenomena of Nature ? 

Although the utmost caution in adopting any hypothesis is the proper accompani¬ 

ment of a sober spirit of inquiry, it does not appear inconsistent with such a spirit to 

advocate the trial of these principles as a foundation for mathematical research in the 

several departments of molecular physics. 

It is the matured conviction of the writer that upon such foundation we shall have 

to build if we are destined ever to become acquainted with the secret mechanism of 

Nature. Would that his feeble voice could call attention to the subject, could direct 

upon it some portion of the vast mathematical talent that this country can now, more 

than at any former period, boast of. 

J. J. W. 

k 2 
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Appendix I. 

Extract from the Proceedings of the Royal Society (vol. 5, p. 604—March 5, 1846). 

On the Physics of Media that are composed of free and perfectly elastic Molecules in 

a state of Motion. By J. J. Wateeson (sic), Esq. Communicated by Captain 

Beaufort, R.N., F.R.S. 

This memoir contains the enunciation of a new theory of heat, capable of explaining 

the phenomena of its radiation and polarization, and the elasticity of various bodies, 

founded on the hypothesis of a medium consisting of a vast multitude of particles of 

matter endowed with perfect elasticity, and enclosed in elastic walls, but moving in 

all directions within that space, with perfect freedom, and in every possible direction. 

In the course of these motions, the particles must be supposed to encounter one 

another in every possible manner, during an interval of time so small as to allow of 

their being considered infinitesimal in respect to any sensible period ; still, however, 

preserving the molecular vis viva constant and undiminished. 

The author then enters into extensive analytical investigations; first, of the 

conditions that determine the equilibrium of such a homogeneous medium as is 

implied by the hypothesis, and of the laws of its elasticity; secondly, of the physical 

relations of media that differ from each other in the specific weight of their molecules ; 

thirdly, of the phenomena that attend the condensing and dilating of media, and of 

the mechanical value of their molecular vis viva; fourthly, of the resistance of media 

to a moving surface; fifthly, of the vertical equilibrium of a medium surrounding a 

planet and constituting its atmosphere; and lastly, of the velocity with which 

impulses are transmitted through a medium so constituted. 

In an Appendix, the author enters into a full explanation of a table of gases and 

vapours, drawn up with reference to the subjects discussed in his paper. 
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Appendix II. 

Extract from the Report of the 21st Meeting of the British Association, Ipswich, 

1851. (Transactions of the Sections, p. 6.) 

On a General Theory of Gases. By J. J. Waterston, Bombay. 

The author deduces the properties of gases, with respect to heat and elasticity, from 
a peculiar form of the theory which regards heat as consisting in small but rapid 
motions of the particles of matter. He conceives that the atoms of a gas, being 

perfectly elastic, are in continual motion in all directions, being restrained within a 

limited space by their collisions with each other, and with the particles of surrounding 
bodies. The vis viva of those motions in a given portion of gas constitutes the 
quantity of heat contained in it. 

He shows that the result of this state of motion must be to give the gas an 

elasticity proportional to the mean square of the velocity of the molecular motions, 

and to the total mass of the atoms contained in unity of bulk; that is to say, to the 

density of the medium. This elasticity, in a given gas, is the measure of temperature. 

Equilibrium of pressure and heat between two gases takes place when the number of 

atoms in unity of volume is equal, and the vis viva of each atom equal. Temperature, 

therefore, in all gases, is proportional to the mass of one atom multiplied by the mean 

square of the velocity of the molecular motions, being measured from an absolute zero 
491° below the zero of Fahrenheit’s thermometer. 

If a gas be compressed, the mechanical power expended in the compression is 
transferred to the molecules of the gas, increasing their vis viva; and conversely, 
when the gas expands, the mechanical power given out during the expansion is 
obtained at the expense of the vis viva of the atoms. This principle explains the 
variations of temperature produced by the expansion and condensation of gases—the 
laws of their specific heat under different circumstances, and of the velocity of sound 
in them. The fall of temperature found on ascending in the atmosphere, if not 
disturbed by radiation and other causes, would correspond with the vis viva necessary 
to raise the atoms through the given height. 

The author shows that the velocity with which gases diffuse themselves is propor¬ 
tional to that possessed by their atoms according to his hypothesis. 
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II. On the Time-relations of the Excursions of the Capillary Electrometer, ivith a 

Description of the Method of Using it for the Investigation of Electrical Changes 

of Short Duration. 

By George J. Burch, B.A., Oxon. 

Communicated by Professor Bartholomew Prtce, F.R.S. 

Received September 3,—Read November 19, 1891. 

[Plates 3-6.] 

In a preliminary note “ On a Method of Determining the Value of Rapid Variations 

of a Difference of Potential by Means of the Capillary Electrometer,” I indicated 

briefly the results of an investigation of the time-relations of the excursions of the 

capillary electrometer. The object of the present paper is to give further details 

concerning the method of measurement which I then put forward, and to describe the 

experiments which led to it. 

The theory of the instrument has been treated by Lippmann, Hermann, and others, 

mainly from a mathematical stand-point, and the phenomena have been ascribed to 

polarization, but no adequate attempt appears to have been made to establish by 

actual measurement the accuracy of the formula for the time-relations, nor to ascertain 

whether there were any other influences at work besides those assumed in stating the 

problem. Poiseuille’s experiments on the velocity of the flow of liquids through 

capillary tubes seem to have been overlooked, and no sufficient investigation made of 

the effect of the form and dimensions of the tubes upon the rate of movement of the 

meniscus. 

It seemed, therefore, that there was scope for a thorough examination of the 

problem by the experimental method, with a view, not only to the further elucidation 

of the theory, but also to the discovery of the best manner of using the instrument so 

as to render available those special properties which make it unlike any other form of 

electrometer or galvanometer. 

In the course of the investigation, which has occupied more than three years, over 

a hundred electrometers were made, besides many additional capillaries- used in 

preliminary experiments. 

MDOCCXCII.—A. M 6.4.92. 
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General Data with respect to the Time-Relations of an Excursion. 

(1.) Dilution of the acid beyond a certain point was found to lessen the rapidity 

of an excursion without altering the extent of it. This indicated that the velocity of 

the movement was affected by electrical resistance. 

A similar result was also produced by the introduction of 100,000 ohms into the 

external circuit. 

(2.) Shortening the capillary so as to reduce the length of the acid column made 

the instrument act more quickly, but in this case the mechanical friction, as well as 

the electrical resistance, was lessened. 

(3.) The shape of the tube, where it tapers to form the capillary, was found to have 

a marked effect; the motion of the meniscus being much more sluggish if this part 

was made too long. In this case the increase of electrical resistance must be com¬ 

paratively trifling, and the result is to be ascribed mainly to friction and eddy 

currents. 

(4.) The same may be said of the orifice, a clean-cut capillary being usually much 

quicker in its action than a splintered one. 

These things may be taken as indicating the action of both mechanical friction and 

electrical resistance in determining the rate of movement of the meniscus. 

The next step was to ascertain whether there was any latent period before the 

commencement of the rise or fall. This was done by photography. 

A difference of potential was suddenly communicated to the instrument by striking- 

open a short-circuiting key, the end of which projected across the slit upon which the 

image of the mercury column was thrown, and so gave upon the sensitive plate, as it 

passed rapidly behind it, a record of the exact instant at which the current was 

allowed to act upon the electrometer. In no case could the smallest interval be 

detected between the opening of the key and the commencement of the excursion, 

even when the difference of potential employed was very small. 

The converse of this was found to be true under ordinary circumstances, that is to 

say, the meniscus ceases to move the moment the source of electromotive force is 

withdrawn. In other words, the electrometer is practically dead-beat. It has been 

generally held to be perfectly so, but this is not the case. If the instrument is one 

that has been specially designed to act with great rapidity, it will be found, on com 

municating to it a fairly strong charge from a condenser of not more than one-third of 

the capacity of the electrometer, that the meniscus will start suddenly forward, and 

then slowly return, perhaps as much as one-tenth of the distance it has traversed. 

But this overshooting is entirely prevented by the introduction of an external 

resistance of, say, 50,000 ohms. Apparently the reason why this phenomenon has not 

been noticed is, that experimenters have contented themselves with observing the 

effect of suddenly breaking the circuit during an excursion; but in so doing, they 

have introduced an infinite resistance. In the case of the condenser experiment, there 
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is, as it were, a reservoir on each side of the electrometer, which acts as a spring, 

permitting a certain oscillation of the charge. A far more severe test is to preserve 

the electrometer circuit unbroken, and to remove the source of electromotive force, 

by breaking the primary circuit of the rheochord. This I have done, and the result¬ 

ing photographs show the effect of overshooting to be, for the same velocity of the 

meniscus, nearly twice as great. But it can still be overcome by external resistance, 

and is only noticeable when the difference of potential is two or three times as great 

as it ever is in physiological experiments, and even then I have not found it exceed 

2 per cent, of the length of the complete excursion, with no external resistance. 

It remains true, therefore, that with an ordinarily quick electrometer, under the 

conditions which obtain in practical work, the meniscus ceases to move the instant the 

source of electromotive force is withdrawn. 

The velocity of the movement is also greatest at the first, and there is no portion 

of the normal photographic curve, even at its commencement, concave to the 

asymptote, except in those cases in which overshooting may occur. Under such 

circumstances, slight signs of increase of the velocity are sometimes just discernible. 

But this was only detected in three cases, when the currents used were as great as 

the electrometer would bear without injury. 

These facts, implying the absence of acquired “ momentum,” seemed to indicate 

that in ordinary working the velocity of the meniscus at any moment must be some 

function of the accelerating force at that moment, in the sense that it is independent 

of any previous motion, and can contribute nothing—or practically nothing—to the 

velocity with which it moves during the next interval. 

In order to determine experimentally the form of this function, I arranged a 

rheotome in the derived circuit of a rheochord in such a way that any desired difference 

of potential could be introduced into the electrometer circuit for an accurately measured 

period of from '005 sec. to about '6 sec. This rheotome, which was upon the principle 

of a drop-shutter, acted by first snatching open a short-circuiting key, and then after 

the required interval, breaking the circuit on both sides of the electrometer simul¬ 

taneously—this arrangement being necessary, in order that the meniscus might stop 

suddenly without running back to zero. A specially sensitive electrometer was used, 

having a long range, and with no tendency to “ creep.” It was less rapid in its action 

than those usually employed in the laboratory for physiological work, being selected 

on this account so that the time-measurements might be more accurately made. The 

insulation was so good that no appreciable return of the meniscus took place during 

10 minutes after the circuit was broken. 

The experiments were conducted as follows :—Having found the total length of the 

excursion produced by a difference of potential derived from 150 millims. of the rheo¬ 

chord wire to be 126 divisions of the eye-piece micrometer, the rheotome was set so 

as to check the meniscus exactly in the middle of the excursion, namely, at 63 divisions 

from zero. This required a closure of '414 sec. The rider of the rheochord was then 

M 2 
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shifted to 50 millims., when the complete excursion was found to be 42 divisions, and 

that given with the rheotome, 21 divisions. On further reducing’ the length of rheo- 

chord wire to 25 millims., the full excursion being 21 divisions, the meniscus shot up, 

when the rheotome was used, through 10'5 divisions of the eye-piece micrometer and 

there stopped. That is to say, with only one-sixth part of the original difference of 

potential, the middle point of the excursion was reached in exactly the same time, 

namely '414 sec. In other words, the mean velocity of the meniscus during the first half 

of a normal excursion was found to be proportional to the total length of it. Further 

experiments showed that the same w7as true of other fractions besides the half, as for 

instance, one-fifth, one-third, and three-fourths, but in these cases the measurements 

were less reliable, owing to purely instrumental difficulties. 

From these data I concluded that the velocity with which the meniscus moved at 

any instant during a normal excursion, must be proportional to its distance from the 

final position of rest at that time. 

Fig. 1. 

Fig. 1 represents the curve of a normal excursion photographed upon a plate 

moving with constant velocity horizontally from right to left. 

The asymptote AB is taken as the axis along which the time t is measured. 

Let P be a point on the curve 

y = PN — the vertical ordinate through P. 

Then, if u denote the velocity of the meniscus in the capillary 

But, according to the experimental results, 

u varies as y, 



EXCURSIONS OF THE CAPILLARY ELECTROMETER. 85 

so that 

Integrating 

or, 

= — whence — celt = —. 
dt’ y 

ff*=1° Si=-Ct’ 

y = ae d. 

It is obvious that any curve having this equation can easily be recognised in either 

of two ways. The tabular logarithms of a series of ordinates corresponding to equal 

time-intervals, are in arithmetical progression. This method was used in verifying 

the hypothesis as to the time-relations of the normal excursion. The second is a 

graphic method depending on the fact that the subtangent NT (fig. 1) of a logarith¬ 

mic curve, or intercept, upon the asymptote between the tangent and ordinate to any 

point upon the curve, is of constant length. This property affords a means of finding 

the position of the asymptote when only a portion of the excursion has been included 

in the photograph. Two points are chosen some distance apart, and the tangent and 

ordinate drawn to each. The level is then found by trial, at which the horizontal 

distance between the one tangent and its ordinate is equal to that between the other 

and its ordinate, or, in other words, the level is found at which the subtangents are 

constant. 

The possibility of doing this in the case of the normal curve suggested the method 

of analyzing other curves propounded in my preliminary note. If, as my experiments 

have indicated, the velocity of the meniscus at any moment is due solely to the 

difference of potential between the terminals of the electrometer at that moment, and 

is not influenced in any way by its motion at any previous time, and adds nothing to 

its velocity at any subsequent time—in other words, if the electrometer is perfectly 

dead-beat—then the rate of movement at any given instant, during an irregular 

change of electromotive force, must be exactly the same as would be communicated to 

the meniscus by a permanent difference of potential equal to the electromotive force 

acting at that instant. That is to say, the tangent to a given point on the curve pro¬ 

duced by any excursion must coincide in direction with that of the commencement of 

the normal curve given by the difference of potentied still existing between the terminals 

of the electrometer. If, therefore, the length of the constant subtangent to the normal 

curve is known, the length of the ordinate for that particular inclination of the tan¬ 

gent can be determined, and it will show how far the meniscus has still to move 

before reaching the position in the capillary corresponding to the difference of 

potential to which its velocity is due at the time in question. If the mercury is at 

zero, the length of the ordinate thus determined will represent the actual electro¬ 

motive force at that instant. If it is not at zero, the distance it has already travelled 
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must be added to or subtracted from the ordinate, according as its sign, and that of 

the ordinate, is positive or negative. 

In this way an excursion may be analyzed. Points are taken on the curve at 

intervals of 005 or more, and the tangent and ordinate drawn to each and produced, 

upwards if the curve is rising, and downwards if it is falling, until the horizontal dis¬ 

tance between them is equal to the subtangent of the normal curve taken through 

the same resistance. The ends of all the ordinates are joined, and the curve so pro¬ 

duced represents, on the same scale as the ordinary readings of the electrometer, the 

total difference of potential during each instant of the experiment. 

It may be useful to note that the ordinates of the original curve give the integral 

of the quantity of electricity that has passed at any instant. 

Further Investigation of the Formula for the Time-Relations of the Normal Excursion. 

Having ascertained, by measuring a number of photographed excursions, that the 

formula y — ae ~ct would hold for some instruments and not for others, I proceeded 

to investigate the causes of these divergences. 

There are two things which may modify the time-relations of the movement—the 

one accidental, and the other essential. The first is that the instrument may not be 

of equal sensitiveness throughout the part used. Obviously this difficulty may be 

got over by selecting a suitable electrometer. The second source of error cannot be 

so eliminated. It is that the internal resistance varies with the position of the 

meniscus in the capillary. 

(1.) Calibration Error.—This has a twofold effect. It alters the electrical value of 

the scale-readings, and it has also a powerful influence upon the velocity of the 

movement. The greater the range of the excursion for a given difference of potential, 

the slower is the action of the instrument—not only relatively, but absolutely. The 

relation between the sensitiveness of an electrometer, and the time of half-charge, 

could not be determined directly by experiment, owing to the difficulty of making 

two capillaries sufficiently alike in all other respects; but from a large number of 

observations it is evident that the time of half-charge increases much more rapidly 

than the sensitiveness. I found by experiment that the electrical capacities of 

electrometers, with capillaries of the same internal diameter, are in direct proportion 

to the lengths of the excursions produced in them respectively by the same small 

difference of potential, and that the capacity is within wide limits independent of the 

difference of potential. As, therefore, the same change of surface-tension has to force 

the mercury column through distances proportional to the sensitiveness, and a 

quantity of electricity has to flow which is also proportional to the same thing, 

it seems probable that the time of half-charge may vary according to the square 

of the sensitiveness. 

Further experiments will be made with regard to this. The important point, 
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established by a number of observations, is that the calibration error has a much 

greater effect upon the rapidity of the movement of the meniscus than upon the scale 

readings. In most cases the sensitiveness of an electrometer increases as the 

meniscus approaches the tip of the capillary, and its rapidity of action becomes less. 

But this calibration error is entirely under the control of the maker of the 

instrument. 

(2.) Changes of Resistance.—The principal seat of electrical resistance is in the 

slender column of dilute acid between the meniscus and the end of the capillary. 

But since the length of this varies continually during an excursion, it follows that the 

resistance must also vary, and with it, the velocity of the movement, which must 

increase as the meniscus approaches the end of the capillary, where the resistance is 

least. This variation was investigated in a series of experiments. 

A special electrometer was prepared, with a very long capillary, of exactly equal 

sensitiveness for a considerable distance from the tip—twice as much as was required 

for the experiments. It was extremely slow in its action, but was otherwise a very 

fine instrument. 

Fig. 2. 

To measure the time-relations of the excursion the following simple and inexpensive 

rheotome was devised. Upon a base-board A, fig. 2, clamped to the bench so as to 

project beyond it, are fixed two upright pieces B, between which the bar C swings until 

it comes in contact, as it assumes a vertical position, with the cross-bar G, making 

connection in so doing between the terminals H and /, with which it is connected by 

a fine wire. As it is necessary that the circuit should be broken on both sides of the 

electrometer, to prevent “ creeping,” a light wire K, balanced by the counterpoise P, 

is attached to C, and moves with it. This wire is bent so as to dip into two pools of 

mercury, in the block of paraffin L, thus making a connection between the terminals 

M and N, about ’01 sec. before the bar C comes in contact with G. The weight A, 

which is a disc of lead weighing a couple of pounds, is attached, in the manner shown, 

to a string D, passing through a loop on the end of the bar C, over the rod on which 

it swings, to a cleat F. The weight E being drawn forward and then let go, carries 



88 MR. G. J. 'BURCH ON THE TIME-RELATIONS OF THE 

the bar sharply up against the stop G, and then swings under the table, oscillating 

about the loop at the end of C, as a centre. On its return, as it passes the vertical, 

the contact is broken, first at G, which determines the period of closure, and 

immediately after, before the electrometer has time to creep, at L, on the other 

side of the circuit. It is then caught in the hand of the operator. The closure may 

be maintained during any odd number of swings by pressing the thumb upon the 

bar C, directly it has made contact, so as to hold it firmly against the stop, releasing 

it directly the weight has passed under the table for the last time, thus leaving 

it free to break contact on its return. The duration of a single swing is calculated 

by taking the time of 50 complete oscillations with the aid of a stop-watch. By 

suitably regulating the length of the string D, the time of closure can be adjusted to 

any desired period from -4 sec. to 10 secs. The accuracy of the instrument was 

verified by comparing the results obtained with different lengths of string. 

The object of the experiments was three-fold, viz. :— 

(A.) To compare the time-relations of charge and discharge. 

(B.) To ascertain the difference, if any, of the rate of movement when the meniscus 

was made to rise, i.e., to advance towards the tip of the capillary, and when it was 

caused to fall, i.e., to recede from the tip. 

(C.) To measure the effect of the change of internal resistance during an excursion. 

As the instrument was one of constant sensitiveness, this could be done by 

comparing the ratios of successive ordinates corresponding to the equal time-intervals 

given by 1, 3, 5, 7, etc., swings of the pendulum-rheotome, the mean of a number of 

observations being taken in each case. 

The rheochord was set so as to give an excursion as near as possible of the full 

length of the scale of the eye-piece micrometer—50 divisions—and the capillary wras 

fixed so that a mark 20 divisions from the tip coincided with the top of the scale. 

A low power was used, and the actual range of the movement was much greater than 

is employed in physiological work. One series of observations was taken with an 

added external resistance of 60,000 ohms. For measuring the rate of discharge, the 

rheotome was made to close a short circuit between the terminals of the electrometer. 

In the following experiments, 

l = the distance of the meniscus from the tip of the capillary, in divisions of the 

eye-piece micrometer. 

y = the distance of the meniscus from its final position of rest after a closure 

of infinite duration. 

The period of closure is expressed in swings of the pendulum rheotome. 

The last column shows the ratio of each value of y to the one preceding it. 

“ Up,” means an excursion towa.rds the tip of the capillary. 

“ Down,” signifies an excursion away from the tip of the capillary. 
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1. Charge. No External Resistance. Down. 

Period of a single swing of the rheotome = *36 sec. 

Swings. l. y- Ratio. 

1 30 40 
3 41 29 1-38 
5 48-5 21-5 1-35 
7 54 16 1-34 

2. Charge. No External Resistance. Up. 

Period of a single swing of the rheotome = ‘36 sec. 

Swings. l. y- 

1 
Ratio. 

1 63 44 
3 55 36 117 
5 49 30 1-20 
7 43 24 1-25 

3. Discharge. No External Resistance. Down. 

Period of a single swing of the rheotome = 77 sec. 

Swings. l. y- Ratio. 

1 34-5 35-5 
3 51-5 18-5 1-92 
5 60 10 1-85 
7 64 6 1-67 

4. Discharge. No External Resistance. Up. 

Period of a single swing of the rheotome = 77 sec. 

Swings. l. y■ Ratio. 

1 56 36 
3 45 25 1-44 
5 36 16 1-56 
7 30 10 1-60 
9 26 6 167 

N MDCCCXCII.—A. 
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5. Charge. External Resistance = 60,000 ohms. Up. 

Period of a single swing- of the rheotome = ‘77 sec. 

Swings. l y■ Ratio. 

1 62-5 42-5 
3 51 31 1-37 
5 44-4 22-4 1-38 
7 36 16 1-40 
9 31 11 1-45 

N.B.—In the last three series of observations the period of the swing of the rheo¬ 

tome was made longer, in order to effect a better distribution of the measured points. 

On plotting the results of identical excursions, the curves were found to coincide with 

those obtained with a swing of '36 sec., proving the accuracy of the method to be 

sufficient for the purpose of these experiments. 

The above experiments indicate— 

(a.) That*the time-relations of charge and discharge are practically alike, as is 

shown also by the analysis of the photographed excursions. 

(b.) That, in this particular instrument, the meniscus moved more quickly away 

from the tip of the capillary than towards it. No such difference could be detected 

in the case of electrometers of ordinary quickness of action, and the phenomenon 

appears to be peculiar to those of great sensitiveness and slow action. In some 

instruments it was reversed, and the mercury would only recede when assisted by 

tapping the stand, though it would advance freely with a small difference of potential. 

(c.) That the change of the length of the acid column during an excursion lias 

a measurable effect upon the time-relations of the movement, which, however, is much 

less than it would be if the normal velocity were conditioned simply by the internal 

electrical resistance of the electrometer. It was found by experiments with more than 

twenty instruments that the effect of an added external resistance in increasing the 

time of “half-charge” was such, that they might be assumed to have an internal 

resistance of the form 

R = r(L + Z), 

where l = the distance of the meniscus at any moment from the tip of the capillary, 

and L is a constant of the particular instrument employed. In practice, L is many 

times greater than the maximum values of l, so that the variation of the speed-ratio 

from this cause is less than 3 per cent, over the entire width of the negatives referred 

to in this paper, and consequently not more thnnUrper cent, in the physiological 

curves to which the method of analysis was applied. 

To sum up :— 

The two causes which modify the time-relations of an excursion, act in opposite 

ways. 
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The decrease of internal electrical resistance as the meniscus approaches the tip of 

the capillary, tends to increase its velocity, while the increase of sensitiveness makes 

it move more slowly. But the latter has a much more powerful effect than the former, 

and may practically neutralize it, or even overpower it, without introducing a calibra¬ 

tion error great enough to make an appreciable difference between the scale readings 

and the true value of an excursion. 

The time-relations of the movement are conditioned partly by electrical resistance, 

but mainly by some other cause—probably mechanical friction. 

The Production and Analysis of Photographs of the Excursions of the Capillary 

Electrometer. 

The rapid movement of the sensitive plate required to bring out the details of the 

electric phenomena of muscle and nerve, necessitated an alteration in the form of 

the apparatus. The ingenious arrangement devised by the Rev. F. G. Smith for 

producing a rectilinear motion of uniform velocity was inapplicable, owing to lack 

of space in the dark room. I therefore made an apparatus, the details of which will 

be described at length elsewhere, in which the sensitive plate was caused to describe 

an arc of a circle. The dark-slide containing it was attached to a kind of balanced 

pendulum, which carried it, at a uniform velocity, past the slit on which the magnified 

image of the column of mercury was thrown. The requisite velocity was given to the 

pendulum by a weight which, as in Atwood’s machine, was caught by a stop just before 

the plate reached the slit. The return of the pendulum after the exposure was 

prevented by a catch, and the key producing the excursion was actuated at the right 

moment by an arrangement of electromagnets. Time was recorded upon the plates 

by a magnetic vibrator placed in front of the slit, and driven by a tuning-fork in the 

usual way. 

The exact instant of excitation was recorded by the signal-key before referred to, 

which was also placed in front of the slit. 

With this arrangement the normal curve is most easily expressed in polar coordi¬ 

nates. 

Time being recorded upon a circular arc, 

t becomes 6. 

Instead of the rectilinear asymptote, there is an asymptotic circle of radius = R. 

The expression for the radius vector is 

r = R ± y, 

the equation connecting y and 6 being 

y — ae~cd. 

N 2 
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This change necessitated a reconsideration of the method of analysis. The curve is 

a variety of the logarithmic spiral, but the intercept between the tangent and the radius 

vector on the asymptotic circle—the line corresponding to that which I had employed 

in the case of the rectilinear motion, is not constant, and not of a form convenient to 

use. There is, however, another property of polar coordinates which is at once 

available; namely, that the expression for the polar sub-normal is 

dr 

In this case 
dr dy 

To ~ ~~ d~0 ~ cy’ 

so that this property enabled me to analyze the curves with remarkable ease, and I 

propose to abandon rectilinear motion for the plates in future.* 

Fig. 3. 

~7 

Fig. 4. 

The problem of the analysis of a photographed excursion resolves itself therefore 

into the determination of the length of the subnormals of a sufficient number of 

points upon the curve, together with the measurement of the distances of these points 

from the circle corresponding to the position of the meniscus for zero potential. 

These measurements are most easily made upon the instrument represented in fig. 3. 

The negative is fixed to a carrier B, pivoted at 0, on the base-board A, in which a 

* See Williamson’s ‘ Differential Calculus,’ 7th edition, p. 223, from which I got the clue while trying 

to elaborate a roundabout method of reproducing the polar curve in rectangular coordinates, so that I 
might analyze it. 
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hole is cut so that the photograph can be examined by transmitted light. The radius 
of the carrier is exactly equal to that of the pendulum on which the plate was 
exposed, and a fine wire or piece of horsehair is stretched from D to 0, passing close 
underneath the glass without touching it, which serves as a radial line of reference. 

An index fixed to the carrier B, passing over a scale upon A, enables small angular 
displacements of the carrier to be accurately measured, thus determining the time 

intervals, and the ordinates are found by laying a graduated rule upon the negative 
just over the radial line DO, using as a reference circle the edge of the photograph, 
which is always well defined. The length of the subnormal is found by means of the 

flat rod, E, which carries at one end the glass plate, F, shown on a larger scale in 
fig. 4. On this plate is ruled a fine line, a, cq, continuous with the edge of E, but 

broken for a distance of about 2 millims. at about the middle. Through the gap thus 

left passes the tangent line, b, exactly at right angles to a, cq. When this line b, at 

the part where it is intersected by a, cq, is placed as a tangent to the curve which is 
to be analyzed, at the point where it is cut by the radial line, DO, the length cut off 

by the rod, E, upon the graduated rule, C, which is permanently fixed at right angles 
to DO, is the subnormal to the curve at that point. The plate carrier is then shifted 

through an angle corresponding to a known interval of time, as determined from the 

time record upon the photograph, and the subnormal measured again for the part 
of the curve thus brought over the radial line, DO. This process is repeated at 

sufficiently close intervals throughout the curve, the corresponding ordinates being 
measured, taking the edge of the photograph as a reference circle. 

For the application of this method it is first necessary to analyze a normal curve 

produced under the exact conditions, as to resistance, of the experimental photo¬ 
graphs. With a suitable instrument, the subnormal is practically a constant multiple 
of y, the distance of the meniscus from its point of rest, and the value of this 
constant multiplier has to be found. 

The following example of the analysis of the normal curve of the electrometer used 
in the physiological experiments described by Professor Burdon Sanderson in a 

paper on the “ Photographic Determination of the Time-relations of the Changes which 
take place in Muscle during the period of so-called Latent Stimulation,” (‘ Proceedings,’ 

vol. 48, p. 14), will serve to show how this is done. In this particular case, as the 
curve was obtained for the purpose of analyzing the physiological photographs which 
we had taken, the circuit was led through the non-polarizable electrodes and the 
muscle exactly as it had been arranged for those experiments. An equivalent 

metallic resistance was then substituted for the preparation, and several other photo¬ 
graphs of the normal excursion were secured. But the resulting curves were found 

to give identical results and, therefore, the details of this one only are inserted here. 

First, the ordinates corresponding to time-intervals of •001 sec. were measured with 
an ivory rule, graduated very finely in millimetres, the tenth of a millimetre being 
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estimated with the aid of a lens. As a check, three different reference lines were 

taken on successive days, and the results so obtained were found to be identical. 

The next stage of the operation consisted in the determination of the asymptotic 

circle. In so short a period as that comprised between the passage across the slit 

of an eight-inch plate, the mercury has not time to reach its final position, which must 

therefore be found by calculation. Assuming for the time-relations of the excursion 

the simplest formula, given in my preliminary note, viz.:— 

y — ae~d, 

we may write for the distances from any reference circle of three points corresponding 

to equal intervals of time, 

A = n + y, 

B = n + Ty, 

C = n + T 2y, 

where n = the distance of the reference circle from the asymptotic circle, and T is 

some function of t. 
Whence 

C-B 

B - A 

B - A 

t — i y ’ 

A — y — n. 

Selecting three points as far apart as possible, I found the position of the 

asymptotic circle and reduced the observed readings of the ordinates to the values of 

y measured from it, which were as follows :— 
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Analysis of Normal Carve No. 289, fig. 5, Plate 4. Upward excursion equivalent 

to the difference of potential given by 83 centims. of the rheochord wire with 

1 Callaud cell. Resistance in circuit, a gastrocnemius preparation with non- 

polarizable electrodes. Total length of the excursion = 31‘7 millims. 

Found. Calculated. Difference. 

millims. millims. millim. 
*y = 28-000 28-800 

24-900 24-855 + -045 
21-400 21-451 - -051 
18-500 18-513 - -013 
16-000 15-978 + -022 
13-800 13-789 + -Oil 
11-900 11-901 - -001 
10-200 10-271 - -071 
8-900 8-864 + -036 
7-650 7-650 

The column of calculated values is a series in geometrical progression, inserted 

between the first and the last terms. It will be seen that the error is in all cases 

well within the limit of accuracy of the measurements. 

Having thus determined the position of the asymptotic circle, i.e., the position of 

the meniscus when y — 0, on the assumption that the formula y = ae~d was exact, 

the next step was to try whether any traces could be discovered of the influence of 

change of resistance, or of the sensitiveness of the capillary, during the excursion. 

In other words, I had to determine whether these errors were due to inaccuracies of 

measurement or of the formula assigned to the curve. If the latter were the case, 

then there must be some value of n which would make T increase or decrease with 

some approach to regularity from one end of the curve to the other, and we should 

have approximately 

log (n + yx) — log (n + y2) = log T, 

log (n -f y2) - log (n + y3) = log (T + b), 

log (n + ys) — log (n + 2/4) = log (T + 2b), 

and so on. On assuming trial values for n, however, the discrepancies seemed only 

to increase, and, after a somewhat laborious investigation, I concluded that in this 

particular instrument the effect of diminished resistance was practically balanced by a 

slight increase of sensitiveness towards the tip of the capillary—the one tending to 

increase, and the other to diminish, the velocity of the meniscus, so that the equation 

y = ae~d represents very closely the time-relations of the excursion. The process 

* These ten points correspond to intervals of '01 sec., as given by the time-tracing. That is why the 

first one is some 3 millims. from the commencement of the curve. 
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above described is necessary with every new electrometer, in order to determine its 

constants. When the equation of the curve has thus been determined once for all 

the process is much more simple. The position of the asymptotic circle is found by 

direct measurement upon a screen placed in the position of the sensitive plate, and a 

single normal excursion of known value is taken through the resistance used in 

the experiments to which the method of analysis is to be applied. Two or three 

ordinates with their corresponding subnormals are then measured, and the ratio of 

each ordinate to its subnormal is determined. 

The mean of these ratios is taken as the value of the constant multiplier. 

Measurement of the Subnormal of Normal Curve No. 289. 

The curve was spoilt for this purpose by the presence of small undulations in two 

places caused by some jar to the apparatus ; these only interfered with the measure¬ 

ment of y at one point, where, however, it was easy to take the mean position 

between them. But in order accurately to place the fine line upon the glass plate of 

the measuring rod as a tangent to the curve, it was necessary that this should be 

perfect for some little distance on each side of the point of contact. The two most 

favourable positions were near the beginning and the end of the curve, and these 

gave for the value of C respectively 

C = 8-50, 

C = 8-51. 

Two other positions, not so well situated, gave C = 8‘40 and C = 8‘43. The 

remaining readings were less reliable on account of the undulations referred to, and 

a short piece where the definition of the photograph was defective. The mean of the 

four measurements is C = 8‘46 ; but 8'50 is probably nearer the true reading. 

With this instrument, therefore, a difference of potential due to 83 centims. of the 

rheochord wire gave an excursion of 31'7 millims. on the sensitive plate. With a 

resistance in circuit equal to that of an ordinary physiological preparation, the sub¬ 

normal to the curve at its commencement was 26 '945 centims. 

Whence 

and 

83 
1 centim. on the subnormal = ———centims. = 30’8035 on the rheochord, 

2b-945 

26-946 
1 centim. on the rheochord = —r—- centims. = ‘32464 on the subnormal. 

1 OO 

Comparison with other Normal Excursions. 

In order to show that the method may be relied on to give constant results, the 

following experiments are quoted. The circuit was the same as for Curve No. 289, 
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and the value of each excursion, as measured by its subnormal, may be compared with 

that obtained by calculation. 

No. 290.—Rider of the rbeocbord set at 67 centims. Muscle-current = 42 Jcentims., giving an 

effective difference of potential of 25 centims. Subnormal at tbe commencement of the excursion 

= 8'19 centims. Calculated 

83 : 25 :: 26'945 : 8T2. 

No. 292.—The difference of potential was simply that due to the muscle-current, which had fallen to 

37 centims. The excursion was therefore in tbe opposite direction. Subnormal at tbe commencement 

of tbe excursion = 11'955 centims. Calculated 

83 : 37 :: 26'945 : 12-01. 

These results agree fairly well. For greater accuracy, the actual measurement of 

the subnormal was made in all cases at a point from 2 millims. to 5 millims. from the 

commencement, and the difference of the ordinates of the measured point and of the 

zero line, multiplied by the constant factor 8 "5, added to the result. Hence the 

number of places of decimals. (See Part II., p. 101.) 

The muscle was then removed from the circuit, and the following experiments made. 

No. 294.—Upward excursion (towards tbe tip of tbe capillary) given by 80 centims. of tbe rbeocbord 

wire. No external resistance. Subnormal at tbe commencement of tbe curve = 28'2 centims. 

No. 295.—Upward excursion given by 80 centims. of tbe rbeocbord wire. External resistance 

= 1000 ohms. Subnormal at the commencement of the curve = 28'04 centims. 

No. 296. Downward excursion given by 80 centims. of tbe rbeocbord wire. External resistance 

= 1000 obms. Subnormal at tbe commencement of tbe curve = 28'14 centims. 

These results show the identical character of the upward and downward excursions, 

and also that the introduction into the circuit of 1000 ohms makes no very marked 

difference ; they do. however, indicate the effect of taking away the resistance of the 

muscle and its electrodes, in that the value of the constant multiplier has risen from 

8'5 to about 9'2. 

Artificial Spikes. 

This name was given to the curves obtained by photographing the excursions 

produced by means of two currents in opposite directions, each lasting about ’005 sec. 

It was intended to imitate as nearly as possible the effect produced by the excitation 

of muscle, with differences of potential of known value and duration, so as to 

determine whether the capillary electrometer was capable of distinguishing between a 

current of definite strength suddenly thrown into it, and a more or less gradual rise 

of a difference of potential, extending over a period of equal duration. That it can 

do so was shown beyond a doubt. To produce these artificial spikes, the wires from 

the electrometer were joined up through the derived circuits of two rheochords, 

A and B, each of which was provided with a separate battery. These were connected 

MDCCCXCII.—A. o 
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with a rheotome furnished with four adjustable break-keys of the tip-over type. 

The first of these, when struck, opened a short circuit on the primary of A, allowing 

the current to act upon that rheochord. The second broke the battery circuit of A, 

and at the same instant the third in like manner opened a short circuit on the 

primary of the second rheochord B, in which the current circulated in the opposite 

direction. About ’005 sec. later the battery of B was thrown out of action by the 

fourth key, thus checking the excursion produced by the second current. It will be 

observed that the electrometer circuit remained unbroken throughout the experiment. 

Unfortunately the short-circuit contacts were not good, so that a certain amount of 

current passed, rendering it impossible to ascertain the exact value of the differences 

of potential which acted upon the electrometer, in several cases—and, moreover, the 

Daniell’s cells used were not sufficiently steady during the operations, which took 

a long time, to enable all the results to be compared with those previously obtained. 

The experiments were varied by reversing the direction of both currents, and 

sometimes omitting the second. 

No. 306. Fig. 6, Plate 3.—“ Artificial Spike,” produced by two short currents of opposite direction. 

Up, '0055 sec.; subnormal = 50 centims. Down, '0045 sec.; subnormal = 60 centims. 

It will be observed that the effect of the second current was to bring the meniscus 

back almost exactly to its former level, and that both the rise and fall commenced 

and ended suddenly, indicating, as do also the measurements of the subnormal at 

close intervals throughout the curve, that it was produced by the introduction of 

differences of potential which remained constant while they lasted. But the move¬ 

ment was in each case only about one-tenth of the full excursion for that difference of 

potential, and the quantity of electricity received as “ charge,” viewing the electro¬ 

meter as a condenser, is approximately proportionate to the product of the time 

into the difference of potential, or what comes to the same thing, the subnormal, i.e.:— 

'0055 x 50 = '275 for tbe upward movement. 

'0045 x 60 = '270 for tbe downward movement. 

But these “ charges may be measured in another way. The electrical capacity of 

an electrometer is perfectly definite in amount, being conditioned by the shape and 

size of the capillary, and perfectly independent of the difference of potential. The 

quantity received by an instrument from any current is therefore proportional to the 

product of its capacity (which is constant throughout the part of the capillary used) 

into the distance l, through which the meniscus is moved by it. The effect of two 

successive charges of equal quantity, but opposite in sign, must be to leave the 

mercury ultimately at zero, as was the case here. Not only was there this close 

correspondence between the values obtained in these two ways for the “ charge,” but 

the Total Indicated Differences of Potential, calculated from the subnormals, were 

within one per cent, of the values found by comparing the two rheochords emploj^ed, 

with that used for Curve No. 289. 
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The following1 curves are given as examples of the effects of overshooting. The 

actual difference of potential employed was not ascertained owing to the instrumental 

difficulties referred to, which were not noticed till the conclusion of the experiments. 

No. 305. Fig. 7, Plate 3.—Artificial spike, given by an upward excursion lasting O'0052 sec., followed 

by a downward excursion lasting 0'004 sec. 

The second phase is slightly rounded at the beginning, showing that the full 

velocity was not attained immediately. The slight pause at the end of the fall, before 

the slow return to zero, is probably due to “ stickiness ” of the tube. (Compare also 

No. 299 where there is evidence of <£ stickiness ” during the swiftest part of the 

movement). 

No. 307. Fig. 8, Plate 3.—Artificial spike, as before, but in the reverse direction. 

In this case, the second phase begins sharply at its full velocity, but at the end of 

it the mercury has continued to move, not so rapidly as when the current was on, but 

still, more quickly than it would have done had the electrometer been simply 

discharging itself. 

No. 309. Fig. 9, Plate 3.—Excursion produced by a single current lasting 0'006 sec. 

Here the meniscus overshot the mark to the extent of 07 millim. in an excursion, 

the full height of which would have measured 80 millims. on the photograph, and 

which had only risen 7 millims. when the current was checked. The analysis shows 

that the second rheochord somehow became connected and furnished a current in the 

opposite direction of about one-fourth of the difference of potential of the first— 

possibly one of the leads might have touched the rheotome. 

It will be noticed that even this overshooting is under 1 per cent, of the total 

normal excursion, and that the time which elapsed between the withdrawal of the 

electromotive force and the cessation of the movement, was only about 0‘002 sec. 

These three jahotographs illustrate the form of overshooting, which I consider to be 

due to the elasticity of the meniscus, for, if it were true overshooting of the column, 

then the retardation of the return movement should be visible in the case of the 

reversed spike (No. 307, fig. 8) ; but this was only seen with much stronger currents. 

On the other hand, the sudden checking of an upward excursion, about three times the 

size of this, caused the meniscus to throw off a globule of mercury. 

In the preceding experiments, there was no external resistance. The effect of 

introducing a coil of 10,000 ohms is shown in the next example. 

No. 299. Fig. 10, Plate 3.—Downward excursion produced by a single current of short duration. 

External resistance = 10,000 ohms. 

In spite of the difference of potential being greater than in any of the preceding 

experiments, there is practically no overshooting, and the curve of discharge is 

perfectly normal. The subnormal to the curve was too great to be measured on the 

o 2 
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machine. The slight notch about the middle of the descent, indicates a “ sticky ” 

place in the capillary. (Compare fig. 7.)# 

A companion photograph, in which the excursion was upward, did not develop 

sufficiently dense to print, but was similar in character, the upward overshooting 

being very slight. 

These photographs show, that without external resistance in the circuit, the effect of 

overshooting, and especially of that form of it which is due to the elasticity of the 

meniscus, interferes seriously with the application of this method of analysis, unless the 

differences of potential concerned are small, but that these difficulties vanish on the 

introduction of a moderate resistance, not sufficient to make the movements of the 

electrometer sluggish. With suitable precautions, the variations of a difference of 

potential may be determined for each two-thousandth part of a second, and under 

favourable circumstances, with an error of not more than one per cent. 

Part II. 

Application of the Method to the Study of the Electrical Variations of Muscle. 

In a paper by Professor Burdon Sanderson, entitled “Photographic Determina¬ 

tion of the Time-relations of the Changes which take place in Muscle during the 

Period of so-called ‘ Latent Stimulation (‘ Boy. Soc. Proc.,’ vol. 48, p. 14), it was 

stated that in the gastrocnemius of the Frog the electrical response to an instantaneous 

stimulus, as investigated with the aid of the capillary electrometer, is indicated by a 

sudden movement of the mercurial column of very short duration, and that the photo¬ 

graphic expression of that movement shows that between the contacts two electrical 

changes of opposite sign, and not more than one two-hundredth of a second in 

duration, have immediately followed each other, or, more explicitly, that the spot 

excited became for about 0‘005 sec. first negative, then for a similar period positive, 

to the other contact. 

This statement relates exclusively to the case in which the effect is led off to the 

electrometer by two electrodes of which one (f) is placed on the tendon, and the 

other (m) is on the belly of the muscle. In this case, the photographic record of the 

electrical response to a single excitation of the nerve, resembles the record obtained, 

when in a circuit of the same resistance as the muscle, two currents of the same 

duration follow one another in opposite directions. 

This resemblance between the two cases is, however, only general, for whereas in 

the artificial effect the difference of potential between the two terminals of the electro¬ 

meter remains the same during each phase, changing sign at the moment that the 

first is followed by the second, the difference of potential between the Two spots to 

* [This notch has not been reproduced in the figure. It can easily be seen in the negative even 

without a lens. March 3, 1892. G. J. B.] 
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which the electrodes are applied gradually rises to a negative maximum during the 

first phase, is reversed, and then, having become positive, gradually subsides. 

My present purpose is to show in what way the method of analysis described can be 

applied to the photographic records of the electrical response (which I shall hereafter 

speak of as the record or curve), so as to determine the exact time-relations of the 

changes above described. 
O 

With this view I propose to present to the Society certain specimen records, and to 

state the results obtained by the analysis of each. This result will be best expressed 

by a graphic denoting the actual differences of potential between (in) and (f) at suc¬ 

cessive times during the period of electrical change. 

It may be convenient at this point to describe in detail the method of analyzing 

such records as muscle curves, in which the electrical variations are of brief duration 

and not necessarily of constant intensity or of the same sign. 

It has been shown in the first part of this paper that it is not difficult to procure 

an electrometer of which the time-relations may be expressed by the formula y = ae~ct, 

and that, with a circuit of suitable resistance, the movement of the meniscus will 

commence the instant that a difference of potential is communicated to the terminals, 

and cease the instant it is withdrawn. With such an instrument under such con¬ 

ditions, as was stated in my preliminary note “ On a Method of Determining the 

Value of Rapid Variations of a Difference of Potential by means of the Capillary 

Electrometer” (‘ Roy. Soc. Proc.,’ vol. 48, p. 92), “ the velocity with which the meniscus 

is moving at any instant is that with which it would start if the zero-line were moved 

to the level then occupied by the meniscus, and the difference of potential existing 

at the time between the terminals of the electrometer were suddenly introduced 

and made permanent. Thus, the total indicated difference of potential is made up 

of two parts, viz., the difference represented by the distance through which the 

meniscus has already moved, and that indicated by the velocity with which it is still 

moving.” 

In the analysis of muscle curves, as will be seen, the latter is usually many times 

greater than the former, except at the beginning, middle, and end of the curve where 

the tangent is at right angles to the radius vector, and the subnormal is zero. 

The method of analysis set forth in my preliminary note is, in consequence of the 

change in the apparatus already referred to, whereby the sensitive plate is made to 

describe an arc of the circle instead of travelling in a straight line, superseded by the 

far simpler one given in the present paper. The subnormal to the normal curve— 

and, consequently, to any curve—is a constant multiple of y, the distance of the menis¬ 

cus from the point of rest corresponding to the difference of potential existing at the 

time between the terminals of the electrometer. 

As has been already said, the value of this constant multiplier is influenced by the 

resistance of the circuit in each experiment, and the first step is to determine it for 

the particular resistance used. This was done for the muscle curves of which the 
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analysis is appended, the normal excursion photographed for the purpose being 

No. 289 (fig. 5), and the value of the constant multiplier was 8’5. 

The next step is to place the glass negative of the muscle-curve upon the measuring 

instrument (fig. 3), carefully centreing it so as to ensure its occupying a position 

exactly corresponding to that in which it was placed on the pendulum of the photo¬ 

graphic apparatus. If this is not done, the results will be falsified. The rate of 

movement has then to be determined. When, as in the cases given here, the angle 

subtended by the entire excursion is small, no appreciable error is introduced by 

employing a tangent scale instead of measuring the arc. This being so, a very simple 

method is available, whereby the hundredths of a second, given by the time-record on 

the photograph, can be subdivided into thousandths of a second. The index of the 

carrier (fig. 3), is a straight edge fixed radially, and the tangent scale, which is 

divided into millimetres, is placed at such a distance from the centre 0, that ten of 

its divisions shall be passed over by the index when the carrier is shifted through a 

space corresponding to one-hundredth of a second, as indicated by the coincidence of 

two successive apices of the time-record on the photograph with the radial line DO. 

The scale having been fixed in this position, the actual measurements are proceeded 

with. The instant of excitation, marked by the upward movement of the signal arm, 

is taken as the zero of time. This portion of the photograph is brought over the line 

DO, and the reading of the tangent scale is noted. The distance of the electrometer 

record at that time from the circular edge of the photograph is measured ; this gives 

the position of zero potential. The next thing is to find the time at which the menis¬ 

cus began to move. For this purpose, the rod E is laid along the line DO, and the 

line aa, on the glass plate F, placed accurately as a tangent to the curve. The 

carrier is then shifted until a point is reached when the curve commences to rise, and 

the time at which this takes place is noted on the scale. 

Next, the carrier is further shifted in the same direction through a space corre 

sponding to O’OOOS sec. 

There are now two operations to be performed : — 

(a.) To measure the subnormal of the curve at this point. The method of doing 

this has been already described. The result may be written 

Subnormal = cy. 

(b.) To measure how far the meniscus has moved from its original zero position 

for t — 0. 

This is done by taking the distance of the curve at this point from the edge of the 

photograph, which is used as a reference circle, and subtracting the result from the 

zero distance already ascertained. The difference may be written 

Movement = l. 

It is most convenient to express the total indicated difference of potential in terms 
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of the subnormal—reducing it subsequently to decimals of a volt. The total indi¬ 

cated difference of potential will therefore be 

± cy dz cl. 

Attention must be paid to the sign of both y and l. In the examples given, an 

upward excursion is produced by the negative variation, so that the formula for the 

first phase will be 
— cy — 8’51. 

At the apex the subnormal passes through zero, but the total indicated potential is 

not yet zero, being indicated truly by the distance of the meniscus from the zero line, 

i.e., the actual height of the excursion. This, expressed on the same scale as before, is 

- 8-51. 

During the second phase, or descending portion of the curve, the subnormal is 

positive, and we must write 
-f- cy — 8'o/. 

If, as sometimes happens, the meniscus should descend below the zero line, l also 

becomes positive, and we have 
T* cy -)- 8 'oh 

It is unnecessary to describe minutely the arrangement of the physiological prepara¬ 

tions. The photographic curves of which the analysis is given are some of those 

obtained in the experiments in which I assisted Professor Burdon Sanderson, to 

whose kindness I am indebted for permission to make use of them in this, the first 

application of the method of analysis which this paper describes. 

Non-polarizable electrodes were employed, one (f) placed on the tendon, and the 

other (m) on the belly of the muscle, unless otherwise stated. The muscle was kept 

stretched by a weight, not greater than could be lifted by a moderate contraction. 

The exciting electrodes were applied to the nerve, the exact instant of the stimulus 

being marked by the upward movement of the arm of the signal-key, the shadow of 

which is recorded on the plate. This key, which has been already referred to, was 

placed in the primary circuit of the induction-coil, and by its use, all possibility of 

delay in registering the instant of the induction shock was eliminated, save that due 

to the induction coil itself. 

No. 287. Fig. 11, a, Plate 4.—Gastrocnemius of U. esculenta. Exciting electrodes placed at tlie 

extreme end of tlie prepared nerve, as far as possible from the muscle. 

The muscle current was balanced by the difference of potential derived from 42 centims. of the wire of 

the rheochord. The analysis of this curve is given in fig. 11. The excursion is not large, but the 

negative variation is sudden, and remains tolerably constant for some time. The positive variation is 

not great, but the return to the original zero is slow. 

The relative value of the muscle current is shown by the dotted line, which represents the true zero 

potential. 
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Immediately after this experiment, without altering the electrometer circuit, the normal excursion, 

No. 289, was photographed for the determination of the constant multiplier used in this and the remain- 

ing illustrations. 

No. 270. Fig. 12, a, Plate 5.—Gastrocnemius. Exciting electrodes as far as possible from the muscle. 

No. 271. Fig. 12, b.—The same muscle. Exciting electrodes as close as possible to the muscle. 

No. 272. Fig. 12, c.—The same muscle. Exciting electrodes as close as possible to the muscle as in 

No. 271, but the leading-off electrode (to) shifted from its previous position to a point 12 millims. nearer 

the tendon electrode (/). 

These three curves were analyzed, and the results plotted together in fig. 12, Plate 5. 

It will be observed that the two former, though somewhat different in the first 

phase, are fairly alike in the second, the delay of the electrical response, in conse¬ 

quence of the greater length of nerve through which the excitation was transmitted 

in the case of No. 270, being well shown. 

It is interesting to note that the analysis of No. 272 approaches more nearly in 

shape to that of an “ artificial spike.” The rise of the electromotive force is fairly 

rapid, and it remains nearly constant for a considerable part of each phase. But 

neither the rise nor the fall is so sudden as in the case of Curve No. 306, although, 

as the difference of potential is less and the resistance of the circuit greater, any error 

due to overshooting of either kind is quite out of the question. 

No. 274. Fig. 13, a.—Gastrocnemius. Exciting electrodes placed on tbe nerve, close to its insertion 

in tbe muscle. Leading-off electrode (/) attached to the tendon ; electrode (to) on the side of the muscle, 

nearly at its thickest part. 

No. 276. Fig. 13, b.—The same muscle. Exciting electrodes as before. Leading-off electrode (m) 

shifted into the normal position on the belly of the muscle. 

No. 277. Fig. 13, c.—The same muscle. Exciting electrodes as before. Leading-off electrode (to) 

placed so close to the tendon electrode (/) as to give a scarcely visible excursion of the meniscus upon 

excitation. 

The analyses of these three curves were plotted together in fig. 1 3, Plate 6. 

They all cross the zero line within a remarkably small space. The first two differ 

slightly in the negative phase, but are tolerably similar in the positive, which is well 

developed. In both there is a second rise of the positive variation, reaching a 

maximum about 0-023 sec. after the excitation. This rise is, however, too small to be 

discernible from the photograph, and is made manifest only by the method of analysis. 

It does not come within my province to discuss the physiological questions arising 

out of these results, which I desire to leave entirely in the hands of Professor Burdon 

Sanderson, to whom I am deeply indebted for permission to make use of these photo¬ 

graphs, taken in the course of the research in which I had the honour of assisting 

him, in order to illustrate the method of analysis which I now bring forward. 

My sole object has been to show that the capillary electrometer can be employed to 

obtain measurements which hitherto could only be effected by a process open to some 

objections. 

The repeating rheotome, introduced by Professor Bernstein for the same purpose, 
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although it has many advantages, can only give the average time-relations of a 

number of electrical variations due to a rapid succession of stimuli, and is inapplicable 

in any case in which changes may occur in the preparation from fatigue. Moreover, 

my experience of rheotomes leads me to believe that it is much more difficult than is 

sometimes supposed to obtain very short closures of constant duration. The photo¬ 

graphic records given by the capillary electrometer are free from both these objections. 

They show the result of a single stimulus or of a number in rapid succession, and the 

circuit remains unbroken and therefore constant. 

Hitherto no means by which these indications could be quantitatively interpreted, 

except in the case of slow changes, has been in the hands of experimenters. I have 

endeavoured to supply this lack, and in doing so, to represent the capillary electro¬ 

meter in its true light as a measuring instrument, not indeed equal to the galvano¬ 

meter in delicacy, nor in durability, nor, perhaps, in accuracy ; but far excelling it 

and all other electrical measuring instruments in the one property which is peculiar 

to it, namely, rapidity of action. 

Probably in this way the electrometer may be made to serve other purposes than 

those of physiological research ; and I foresee that this method of analysis may be 

applicable to other instruments than the electrometer. 

All the photographs and many of the experiments described in this paper were 

made in the Physiological Laboratory, Oxford, and my thanks are due to Professor 

Bukdon Sanderson for his help and counsel, without which I could not have com¬ 

pleted the research. I have also to thank Mr. C. Crump, of the Record Office, for 

his valuable assistance in discussing the mathematical parts of the problem. The 

complete method of applying the corrections for calibration error and change of 

resistance I had hoped to give with his aid, but it was found that some further 

experiments would be necessary to furnish the requisite data. The treatment of this 

part of the subject therefore must be deferred. In the instrument which was used 

for nearly all the photographs these errors were not sensible. 

[Note.—The curves were analysed by measuring the negatives, and the results 

plotted from left to right. The photographs having been reproduced as prints, must 

be read in the reverse direction, from right to left. March 3, 1892. G. J. B.] 

MDCCCXCII.—A. JP 





No. 299. 

West. Newman Iitl 



* 



f
 V

&
rU

n
cx

Jb
 

so
c
H

g
’ 

-r
e
x

L
ir

c
e
rL

 t
o
 

2
 
th

x
u

b
 
o
f 

F
~

lc
j 

. 
2

1
, c

u,
 )

 
Burch. Phil, TransXmZ.K.PlaU 1. 

West,Newman, lith. 

N
o

. 2
8

9
. 

N
o
.'
Z

S
l 





Burchj. Pint.Trans. 1892.A.Plxtfe 5. 

3t, Newman,hth. 

N
o

.'Z
lO

. 
N

o.
 27

7
 



' t 



s
c
x

x
L

&
 
T

'e
F

b
u
^
c
e
F

b
 
to
 

2
 

th
c
c
t,
 
o
f
 F

ig
s
. 

1
3

, 
c
u

, 
b

yc
,,

 

Burcfv. PhlL. Transr. 1892A/W/' f> 

West ,]N ewm an. litli 

*
°
U
 

. 
’9

L
Z
 °K
 

V
I.Z

 °N
 





[ 107 ] 

III. On some of the Properties of Water and of Steam. 

By William Ramsay, Ph.D., F.P.S., and Sydney Young, D.Sc. 

Received November 5,—Read December 10, 1891. 

[Plate 7.] 

The work of which an account is given in the following pages was carried out in the 

winter of 1887-88, and forms a sequel to much of a similar character already pub¬ 

lished by the authors, on methyl, ethyl, and isopropyl alcohols, on ethyl oxide, on 

acetic acid, and on a mixture of alcohol and ether (‘ Phil. Trans.,’ 1886, Part I., 

p. 123; 1887, A., p. 57; 1887, A., p. 313; 1889, A., p. 137; * Chem. Soc. Trans.,’ 

1886, p. 790 ; 1887, p. 755). 

The apparatus with which it was carried out has been fully described in the memoir 

on ether (loc. cit.). The only important change was in the nature of the glass tubes 

used to contain the liquid under experiment. While, in the case of the alcohols, 

ether, &c., lead glass proved the best material for tubes, it is too easily attacked by 

water. At comparatively low temperatures it becomes etched, and it is impossible to 

take readings. Moreover, the water dissolves a not inconsiderable quantity of 

potassium silicate; tubes of green boiler-gauge glass were, therefore, substituted for 

tubes of lead glass. This glass consists of a silicate of calcium and potassium, con¬ 

taining a trace of ferrous iron (Si03= 71'20 ; CaO=14'99; K20 = 13'19 ; Total, 99’38.) 

They withstand a higher pressure than lead-glass tubes, and they are attacked with 

difficulty. Even after an exposure of several days to liquid water at 280° C., only 

0'7 per cent, of residue remained on evaporating the water. Inasmuch as some of the 

material of the glass is dissolved, however, the water cannot be considered to be 

absolutely pure, but the results may be given as the best attainable with water in 

contact with glass. 

It may be advisable to state here again, that the pressures were read from gauges 

containing dry air, kept at a known temperature by jackets of running water; and 

that they are corrected for deviation from Boyle’s law by help of experiments made 

by Amagat (* Compt. Rend.,’ vol. 99, p. 1153); that the temperatures are those of 

an air-thermometer, and that they were secured by jacketing the tube containing the 

water with the vapours of pure chlorobenzene, bromobenzene, aniline, methyl-salicylate, 

or bromonaphthalene, of which the vapour-pressures corresponding to known tempera- 

P 2 26.4.92 
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tures have been determined by us (‘Chem. Soc. Trans./ vol. 47, p. 640). By causing 

one or other of these liquids to boil under definite known pressures, any desired 

temperature, within certain limits, was attainable ; and, as a small alteration of tem¬ 

perature corresponds to a considerable alteration of pressure, it may be taken for 

certain that the temperatures are practically correct. The expansion of the glass 

made use of for the volume tube was carefully determined, and a correction was in all 

cases applied, so that the apparent volumes are reduced to real volumes. No correc¬ 

tion, however, was applied for the alteration in the volume tube due to internal 

pressure, because an estimation of its amount showed it to be much within the error 

of reading volume. 

The results may be classified under three heads :— 

I. Expansion of liquid water. 

II. Vapour-pressures. 

Ill Density of unsaturated and saturated steam. 

I. Expansion of Liquid Water. 

For these experiments, the tube was two-thirds filled with water freed from air by 

boiling in vacuo. That no air was present was often proved during the experiments 

by condensing a bubble of steam; condensation always took place without appreciable 

rise of pressure. The weight of water taken was deduced from observations of its 

volume at the ordinary temperature, both before and after experiment. The results 

are as follows :— 

Temperature. Divisions of tube. Volume at 4 and weight. 

o c.c. or grm. 

i 12-25 246-75 1-1054 

1 L12-40 246-90 1-1060 

J r 15-7 246-20 1-1031 

1 L17-9 246-25 1-1035 

The first pair of readings wras taken before the commencement of the experiments ; 

the second pair after the expansions had been measured. The small difference is 

probably due to adherence of liquid to the lower portions of the tube, which had 

become etched during the experiments. 

The mean result, from which the following Table is calculated, is D1045 c.c. at 

4°, or IT045 grm :— 
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Temperature. 

Volume of 1 grm. in c.cs. 

Temperature. 

Volume of 1 grm. in c.cs. 

Observed. Smoothed. Observed. Smoothed. 

C 

100 1-0432 1-0432 

o 

190 1-1412 1-1407 

110 1-0510 1-0513 200 1T567 1T566 

120 1-0594 1-0592 210 1T734 1-1733 

130 1-0678 1-0678 220 1-1915 11914 

140 1-0791 1-0772 230 1-2122 1-2112 

150 1-0880 1-0878 240 1 2319 1-2320 

160 1-0996 1-0995 250 1-2516 1-2533 

170 1-1124 1-1124 260 1-2750 1-2755 

180 1-1260 1-1260 270 1-3000 1-2985 

Note.—The pressures are here nearly those of the vapour at the respective temperatures. 

The volumes of 1 grm. of water have been measured by Mendel^eff (‘ Liebig’s 

Annalen,’vol. 119, 1861, p. 10), and by Hlrn (‘Annales de Chimie’ [4], vol. 10, 

1866, p. 32). The following short Table shows that Hern’s results agree very closely 

with those given by us :— 

Temperature. 

Volume of 1 grm. 

MENDELtEFF. Hirn. R. and Y. 

o 

100 1-0428 1-04315 1-0432 
120 • » 1-05992 1-0594 
131 1-0722 # # # # 
140 . . 1-07949 1-0791 
156-8 1-1016 . , # # 
160 . , 1-10149 1-0996 
180 . , 1-12678 1-1260 
200 1-15900 1-1567 

The compressibility of water was measured at 190° and at higher temperatures. 

The results are as follows :— 
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Temperature. 
Volume of 

1 grm. 
Pressures of 

mercury. 
Temperature. 

Volume of 
1 grm. 

Pressures of 
mercury. 

cub. centims. millims. cub. centims. millims. 
190 11412 9,837 230 1-2122 21,085 

1T408 12,813 1-2101 31.745 
1T386 30,029 1-2079 42,249 
1Y365 39,904 

240 1-2319 25,276 
200 1T567 15,014 1-2300 32,452 

1T559 18,695 1-2282 41,614 
1Y538 30,513 
1T516 43,901 250 1-2516 30,059 

1-2508 36,040 
210 1T734 14,404 1-2490 43,925 

IT 732 17,488 
1T710 31,467 260 1-2750 35,028 
1T689 43,405 1-2735 40,210 

220 1-1915 17,622 
1-1905 27,251 
1-1884 39,432 

II. Vapour-pressures. 

The pressures of the vapour were read from experiments with a larger quantity of 

water in the tube, as well as when the quantity was small ; but uniform results were 
not obtained. The vapour-pressure of water, unlike that of other liquids, depends to 

some extent on the amount of substance present.'" This is to be attributed to the 
fact, that with only a small amount of liquid present, a relatively large surface of the 
tube is exposed to the vapour, and, as there can be no doubt that the vapour adheres 
to the surface, the pressure is lowered to a certain extent. The results, with the 
larger quantity, are therefore given as probably more correct. Each pressure is the 

mean of some seven or eight readings in which the relative volumes of water and 
steam were altered within the greatest limits which the tube allowed. 

The pressures are, as before stated, corrected for deviations from Boyle’s law. 

To facilitate comparison, the results obtained by Regnault and others are placed 
in juxtaposition with ours ; and also columns showing the differences between our 

results and those obtained in other ways. The columns are distinguished as fol¬ 
lows :— 

“ R. and Y. ” stands for Ramsay and Yoitng. 

“ Reg. curve” stands for Regnault’s copper-plate curves, given in the ‘ Memoires 

de l’Academie,’ vol. 26. 
“ Reg. H.” and “Reg. F.” signify Regnault’s results calculated by Biot’s formula, 

log p — a + baf + c/T, using the constants marked H and F respectively. 
“ Reg K. ” signifies Regnault’s formula K, viz., p — aa*l{l + rnx) 

* See Appendix, pp. 120 and 121. 
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“ Unwin” (‘Phil. Mag.,’ 1886, p. 299). His formula is logy> = 7‘5030_7'679//lU 

“ Antoine ” refers to the last formula given by Ch. Antoine (‘ Annales de Chimie,’ 

1891, vol. 22,’ p. 283). It is logy) = 7' 921-1638/< + 225. It has the merit of allowing 

temperature to be calculated from pressure, as easily as the converse; the results, 

however, calculated in each way, are not absolutely the same, but do not differ to any 

important extent. 

“ Buff ” (‘Liebig’s Annalen,’ Suppl. 2, 1862-3, p. 137) uses the formula 

logP = log o^3 + log (273 + t) + 

a = 0-06479 + 0'0001722 t 

log (273 + t) — log 373 

a 

— o-ooooooi t\ 

Rankine” (‘ Steam Engine,’ 9th Ed., p. 237) gives the formula 

, * , B , c 
lo gp = A + - + 

‘ Broch ” (‘ Travaux et Memoires du Bureau Internat. des Poids et Mesures,’ 

vol. 1, p. 19, et seq.). His formula is 

P = a. 10 
It + ct2 + dt3 + et* + ft& 

1 + a.t 

M. Broch has undertaken a most laborious investigation of the formulae employed 

for the calculation of the vapour-pressures of water, adopting finally the one given in 

the table. The utmost care was taken to obtain the best possible results from the 

data taken; but, unfortunately, M. Broch has accepted Regnault’s conclusion that 

the curve representing the vapour-pressures of ice is continuous with that obtained 

from the vapour-pressures of water, and he has employed the whole of the data from 

— 32° to 100°. By the method of calculation of the constants for the formula, this 

source of error has been to a certain extent eliminated, as is shown by the comparison 

(p. 31) of Regnault’s individual observations with the pressures calculated from the 

formula. In this table it is seen that below — 5°, out of 31 comparisons, the 

calculated pressures are higher than those observed in every case but one. The 

error is, however, only partially eliminated, and this probably explains the fact that 

the formula, with the constants given, will not bear extrapolation above 100° even to 

120°, though it is supposed to hold good through a range of 132°. 

It is to be feared that the results between 0° and 100° may even be to some extent 

vitiated by this source of error—a most unfortunate circumstance, considering the 

enormous amount of labour bestowed on the work, and the fact that the pressures 

calculated from the formula have received the imprimatur of the Bureau Inter¬ 

national. 

It is to be noticed that Regnault’s formula K gives results nearest the truth, but 

that fairly approximate results are also obtainable by the use of Unwin’s and of 

Antoine’s formulae. These formulae, it need hardly be remarked, are all empirical. 
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III. The Densities of the Saturated and Unsaturated Vapour of Water at Different 

Temperatures and Pressures. 

The method pursued was (1) to find the weight of the small quantity of water in 

the tube by ascertaining the values of the products of pressure and volume at large 

volumes and at high temperatures. If these products, for slight decrease of volume, 

and at any one temperature, were sensibly constant, and if the products at different 

temperatures bore to one another the same ratio as that between the absolute 

temperatures, it was assumed that the vapour-density of the steam was normal; if 

hydrogen be taken as unity, the density is nine. The weight could then be calculated 

by the equation given in the Appendix, p. 122. (2) The volume of the gas was then 

diminished by regular decrements at temperatures rising by 10° at a time, and the 

pressure corresponding to each volume was read. From these data the volume of 

1 grm. in cubic centimetres could be calculated. When the volume was sufficiently 

diminished condensation ensued. 

Two distinct sets of experiments were made : one with a large tube at low 

temperatures, and one with a strong pressure tube at high temperatures. The actual 

experimental data for high temperatures (120° to 270°) are given on pp. 124-127 

of the Appendix ; those at low temperatures on pp. 128-130. Reasons are there 

adduced to show that when the pressure approaches the vapour-pressure condensation 

on the glass occurs. This causes the pressure to be lower than it should be for a 

given volume, and renders the results very difficult to interpret. Such adhesion 

appears to be slight at large volumes where the vapour is unsaturated; but, as it 

occurs gradually, the effect is that on decreasing volume some water is left below the 

mercury, and as there is no clue to the amount thus trapped the weight is diminished 

by an unknown amount. But it is reckoned as undiminished, and hence in calcu¬ 

lating the volume of 1 grm. from the actual measurements the volume ascribed is 

too small, and too small by an unknown quantity. At the same time the pressure is 

lowered by the adhesion to the glass, and so the curve is distorted as it approaches 

the pressure of the saturated vapour. 

Under the circumstances it appeared best to follow the experimental results as 

closely as possible. However interesting from a theoretical point of view the 

absolute expansion of water-gas may be, in practice it is always in contact with a 

surface ; and although it is probable that the material, as well as the extent of the 

surface, would influence the amount of adhesion, yet an indication of the behaviour of 

steam in contact with glass cannot fail to be of use in considering the practical case 

of steam in contact with iron. Moreover, the error is to a great extent eliminated by 

making use of the volumes of 1 grm. of saturated steam calculated from Regnault’s 

heats of vaporization. 

MDCCCXCII.—A, 
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Rankine (‘ Edinb. Trans./ vol. 23, Part I., 1862, p. 147) discusses the want of 

concordance between the volumes of saturated steam observed by Fairbairn and 

Tate, and those calculated from Regnault’s observations on the beats of vaporization ; 

and suggests a difference in molecular condition between steam at rest, as in 

Fairbairn and Tate’s experiments, and in motion, as in Pegnault’s. It can 

scarcely be doubted that the true reason of the discrepancy is to be found in the 

adhesion of steam to glass. It is obvious that in Regnault’s experiments this source 

of error would be absent, inasmuch as the weight of water was simply that which 

entered the calorimeter. 

Three sets of isothermal curves were drawn in which the experimental numbers 

were closely followed, the only adjustment being that of rendering the curves as 

smooth as possible, and of making use of the mutual relations between the curves, so 

as to smooth out the irregularities of each individual one. These curves were pro¬ 

longed to the points calculated from Regnault’s observations by the formula 

. _ LJ ■ 
5l T dp/dt S’2’ 

where sL and s2 are respectively the volumes of saturated vapour and liquid, L the 

heat of vaporization, J the mechanical equivalent of heat, T absolute temperature, 

and dpjdt the differential of pressure in degrees with respect to temperature. 

By help of this formula the following table was calculated :— 
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VAPOUR-Densities (Saturated) of Water from Regnault's Heats of Vaporization. 

t.° c. T.°abs. 
* 

dp/dt. L (total). Q. 
Ht. of 

Yap. L. S1 ~ s2- *i- v.d. 

0 273 4-600 0-329 606-5 0 606-5 211,130 211,131 8-74 
10 283 9-165 0-609 609-5 10 599-5 108,730 108,731 8-83 
20 293 17-39 1-074 612-6 20 592-6 58,867 58,868 8-89 
HO 303 31-55 1-81 615-7 30 585-7 33,384 33,385 8-94 
40 313 54-91 2-93 618-7 40-1 578-6 19,722 19,723 8-98 
50 323 91-98 4-58 621-7 50-1 57P6 12,078 12,079 9-04 
60 333 148-8 6-91 624-8 60-1 564-7 7,671 7,672 9-06 
70 343 233-1 10-11 627-8 70-2 557-6 5,026 5,027 9-10 
80 353 354-6 14-40 630-9 80-3 550-6 3,386 3,387 9-13 
90 363 525-4 20-01 633-9 90-4 543-5 2,339 2,340 9T8 

100 373 760-0 27-14 637-0 100-5 536-5 1,657 1,658 9-20 
110 383 1,075 36-27 640-0 110-6 529-4 1,191 1,192 9-29 
120 393 1,491 47-35 643-1 120-8 522-3 877-4 878'5 9-32 
130 403 2,030 60-90 646-1 1310 515-1 656-1 657"2 9-39 
140 413 2,718 77-06 649-2 141-2 508-0 499-0 500-1 9-44 
150 423 3,581 96-17 652-2 151-5 500-7 384-7 385-8 9-52 
160 433 4,652 118-5 655-3 161-7 493-6 300-7 301-8 9-58 
170 443 5,962 144-1 658'3 172-1 486-2 238-1 239-2 9-65 
180 453 7,546 173-4 661-4 182-4 479-0 190-6 191-7 9-73 
190 463 9,443 206-5 664-4 192-8 471-6 154-2 155-3 9-81 
200 473 11,689 243-4 667-5 203-2 464'3 126-1 127-3 9-88 
210 483 14,325 284-4 670-5 2137 456-8 104-0 105-2 9-96 
220 493 17,390 329-4 673-6 224-2 449 -4 86-50 8770 10-05 
230 503 20,926 378-5 676-6 234-7 441-9 72-54 73-76 10-13 

p, Regnault’s formula H ; dp/dt from same formula; L (total), Q and L from Regnault. 

As PtEGNAULT’s measurements do not extend beyond 230° the higher isothermals 

were smoothed as well as possible and made to cut the vapour-pressure lines at 

certain points, to which we were guided to some extent by their own regularity, and 

to some extent by extending the curve drawn to pass through the points representing 

the volumes of 1 grm. of saturated vapour. The results cannot be far from the truth. 

The next table shown was constructed by reading the pressures and temperatures 

corresponding to equal volumes. 

Q 
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The vapour-clensities and volumes of a gramme of saturated vapour can be given 

at temperatures above 230°. They are as follows :— 

Temperature. Pressure. Vol. of 1 grm. Vapour-density (H = 1). Vol. of 1 grm. ; 

O millims. c.c. read. smoothed. recalculated. 
230 20936 73-00 10-23 10-22 73-06 
240 25019 60-65 10-51 10-40 61-28 
250 29734 50-30 10-87 10-63 51-43 
260 35059 42-40 11-14 10-94 4319 
270 41100 37-20 11-04 11-36 3615 

There is very great difficulty in reconciling the results given by Regnault at the 

highest temperatures with our own direct measurements. Regnault’s results inter¬ 

preted as vapour-density obviously increase at too slow a rate above 210°, while 

ours appear to increa.se too rapidly at 240°, 250°, and 260°. We therefore constructed 

a curve showing the relationship of vapour-densities from all sources to temperature ; 

the numbers given as “ smoothed ” are read from the curve, and the volumes of 1 grm. 

were again calculated. 

In a series of papers published in the ‘Philosophical Magazine’ (1887, vol. 27, 

pp. 196 and 435), we showed that for ether, ethyl alcohol, and carbon dioxide, the 

pressures of the vapours of these substances for constant volumes are, within limits 

of experimental error, a rectilinear function of the temperature, or p = bt — a, where 

a and b are two constants, depending on the volume, and t is the absolute temperature. 

Carl Barus, as the result of experiments with other substances, has confirmed the 

statement, both for liquid and gas. He states (‘Phil. Mag.,’ 1890, vol. 30, p. 358) 

that “below 1000 atmospheres, the curves for ether, alcohol, thymol, diphenylamine, 

and toluidine, are so nearly linear that they may be accepted as such with an error no 

larger than 2 or 3 degrees at 1000 atmospheres.” He also found that in the case of 

water the rectilinear relation does not hold. 

If an isochoric diagram be constructed from the results given on p. 116, it will be 

seen that, except at small volumes, the isochoric lines are approximately straight, but 

curve considerably on approaching the condensation points. The lines should probably, 

as Bares found, be curved throughout, but no considerable error is introduced in con¬ 

sidering them as straight during the major part of their course. Indeed, accepting 

Regnault’s determinations as correct, it would appear that at temperatures above 

140°, the curvature cannot be due to premature condensation, since the isothermal 

curves given in the diagram have been drawn, as already stated, to coincide with the 

results of Regnault’s work on the heats of vaporization, and yet coincide with our 

experimental results, except at volumes very close to those at which liquefaction takes 

place; and at such small volumes, surface condensation is unmistakeable. 

On reference to the Appendix, p. 128, an account of experiments at much lower 
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temperatures will be found. These show that the relative effect of surface condensa¬ 

tion is much more marked at low than at high temperatures. Thus, at about 30 millims. 

pressure the vapour-density calculated at 75° is 9'01 ; at 50°, 9'46 ; at 40°, 9'90 j and 

at 30°, 10'70. An increase of pressure does not appear to raise the apparent vapour- 

density to the same extent as a fall of temperature. This may explain why an 

increase of pressure, at high temperatures, does not influence surface condensation 

appreciably, except very close to the point of condensation. 

In addition to the work of Regnault, that of Fairbairn and Tate on the densities 

of unsaturatecl and saturated steam may be mentioned. As their results were given 

in English units, we think it well to reproduce them here in the same form as has 

been adopted in this paper. It will be seen that the densities of the saturated vapour 

show a gradual rise with increase of temperature, although the results of individual 

experiments are far from regular. 

Fairbairn and Tate, ‘Phil. Trans.,’ 1860, pp. 218, 219. Quoted by Ranktne in 

Fahr. degrees and cubic feet per lb. 

T. ° C. T. 0 Abs. Volume of 1 gTm. Pressure. Vapour-density. 

58-20 331-20 
c.cs. 

8275-3 
millims. 

135-9 9-15 
68-51 341-51 5333-5 218-9 9-09 
70-75 343-75 4920-2 240-0 905 
77-18 350-18 3722-6 316-7 9-23 
77-49 350-49 3715-1 320-3 9-15 
79-40 352-40 3438-1 346-0 9-21 
83-50 356-50 3051-0 406-7 8-93 
86-83 359-83 2623-4 466-4 9-14 
92"65 365-65 2149-5 581-1 9-10 

117-16 390-16 943-12 1361-7 9-44 
118-23 391-23 908-03 14101 9-49 
118-45 '391'45 892-54 1419-6 9-60 
124-16 397-16 759-44 1697-7 9-57 
128-41 401-41 649-24 1935-4 9-93 
130-67 403-67 635-30 2070-8 9-54 
131-77 404-77 605-65 2138-9 9-71 
134-86 407-86 584*44 2342-6 9-26 
13405 407-05 543-17 2287-9 10-18 
137-45 410-45 514-98 2529-8 9-79 
139-21 412-21 497-25 2655-2 9-70 
141-80 414-80 458-30 2864'6 9-82 
144*74 417-74 433-12 3105-1 9-65 
142-36 415-36 449-62 2901-9 9-89 
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Fairbairn and Tate. Superheated Steam. ‘Edinb. Trans.,’ vol. 23, 18G2, p. 147. 

Results arranged in isotherms, and Pressures and Y.D.’s corrected for vapour 

pressure of mercury, using (1) Pressures used by Rankine, (2) Pressures by 

Ramsay and Young. 

Tempera¬ 
ture. 

Tempera¬ 
ture. Weight. Volume. Pi- P3. V. D. (1.) V. D. (2.) 

0 F. °C. grms. c.cs. millims. millims. 
302-88 150-5 0-01845 197-3 132 3 134-0 9-31 9-19 

0-02625 197-3 184-6 186-3 9-48 9-39 
0-03530 197-3 250-4 252-1 9-41 9-34 
003435 197-3 242-0 243-7 9-46 9-40 
0-05670 197-3 408-6 410-3 9-25 9-22 

251-64 122-0 0-01845 197-2 123-8 124-7 9-29 9-22 
0-02625 197-2 171-5 172-4 9-53 9 48 
0-03530 197-2 234-0 234-9 9-39 9-36 
0-03435 197-2 226-1 227-0 9'46 9-42 

11 0-05670 197-2 381-6 382-5 9-25 9-23 
200-74 93-75 0-01845 1971 114-7 115-1 9-31 9-28 

0-02625 197-1 159-9 160-3 9-49 9-47 
0-03530 197-1 217-1 217-5 9-41 9-39 
0-03435 197-1 210-0 210-4 9-46 9-44 
0-05670 197-1 353-2 353-6 9-28 9-27 

180-72 82-6 0-04670 197-0 340-2 340-5 9-35 9-34 
165-45 74-15 0-03435 197-0 197-3 197-5 9-53 9-52 

0-05670 197-0 259-3 259-5 11-98 11-97 
150-18 65"65 0-01845 196-9 105-7 105-9 9-34 9-32 

55 0-02625 196-9 147-6 147-8 9-50 9-49 
55 003530 196-9 176-1 176-3 10-72 10-71 
55 0-03435 196-9 177-1 177-3 10-37 10-35 

100-0 37-75 0-01845 196-8 44-6 44-7 20-3 20-3 

Hirn, in his ‘ Theorie Mecanique de la Chaleur,’ vol. 1, 3rd Ed., p. 468, gives a 

table of the densities of saturated vapour at various temperatures, ranging from 98° 

to 196°. As these agree absolutely with the results calculated from Regnault’s 

measurements, and as neither the method adopted by Hirn, nor his individual obser¬ 

vations would appear to lead one to anticipate such concordance, we would suggest 

that it may be attributed to the “ trace de sentiment” with which he credits the 

assistant who interpreted his results. 

In conclusion, it may be noted that Regnault made experiments on the densities 

of saturated steam at low temperatures for hygrometric purposes, and has shown that 

it is practically normal at temperatures between 0° and 27° (‘ Annales de Chimie ’ [3], 

vol. 15, 1845, p. 129, et seq.). 

Note.—In Plate 7 the curves representing the relations of temperature, pressure, and volume of 

unsaturated and saturated steam are given on a scale large enough, we hope, to prove of practical use. 
For this purpose they have been divided into three sets, a different scale, however, being applied to each 

set. The pressures are given in metres of mercury; the volumes, in cubic centimetres per gramme. 

The heavy line shows the volumes of saturated vapour, and may be termed the orthobaric line. 
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Appendix. 

Volumes (Vapour pressures) and Compressibility of Liquid Water at various 

Temperatures. 

Tempera¬ 
ture. 

Divisions 
of tube. Pressure. Actual 

volumes. 
Tempera¬ 

ture. 
Divisions 
of tube. Pressure. Actual 

volumes. 

O millims. cub. centime. o millims. cub. centims. 1 
100 256-85 760 1-1503 210 288-00 17,488 1-2937 

256-50 19,651 1-1488 287-50 31,467 1-2912 
110 258-80 1,073 1T546 287-00 43,405 1-2888 
120 260-95 1,484 1 1682 220 292-30 17,622 1-3138 
130 263-10 2,019 1-1775 } • 292-00 27,251 1-3128 
140 265-70 2,694 1-1900 291-50 39,432 1-3105 
150 268-25 3,568 1-1998 230 297-00 21,085 1-3367 
160 271-05 4,652 1-2126 296-50 31,745 1-3343 
170 274-00 5,937 1-2267 296-00 42,249 1-3319 
180 277-10 7,478 1-2416 240 302-00 25,276 1-3584 
190 280-60 9,837 1-2583 301-50 32,452 1-3563 

280-50 12,813 1-2579 301-00 41,614 1-3543 
280-00 30,029 1-2555 250 307-20 30,059 1-3801 
279-50 39,904 1-2532 307-00 36,040 1-3793 

200 284-20 15,014 1-2755 306-50 43,925 1-3773 
284-00 18,695 1-2746 260 313-40 35,028 1-4059 
283-50 30,513 1-2723 31300 40,210 1-4043 

210 
283-00 
288-05 

43,901 
14,404 

1-2698 
1-2942 

270 319-50 43,433 1-4334 

Vapour-pressures of Water.—Individual Observations. 

Temperature. Pressure. 
Mean 

corrected.* Pressure.f Temperature. Pressure. Mean 
corrected.* Pressure.f 

o millims. 'millims. millims. millims. millims. millims. 
120 1,482 140 2,691 

1,484 2,701 
1,483 1,484 1,445 2,703 2,694 2,658 
1,493 2,695 
1,483 2,700 

130 2,024 150 3,555 
2,022 (Jacket 3,552 
2,021 2,019 1,950 C6H5 Br) 3,559 3,553 3,475 
2,018 3,558 
2,022 3,569 

* For deviation from Boyle’s law, and for vapour-pressure of mercury. In previous work the measure¬ 

ments of pressure were made rapidly ; after the volume had been increased to its maximum, it was 

diminished by stages, and pressure was read at each stage. The correction for vapour-pressure of mercury 

is in such a case not admissible. But in this research the temperature was allowed to remain constant 

for at least an hour before taking the first reading. 

t Observed with a much smaller quantity of liquid present—nearly all vapour. 
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Vapour-pressures of Water.—Individual Observations—(continued). 

Temperature. Pressure. 

1 

Mean 
I corrected. Pressure. 

0 
150 

(Jacket 
CfiH5NH2) 

millims. 
3,580 
3,580 
3,588 
3,590 
3,594 

millims. 

3,581 

millims. 

160 4,656 
4,648 
4,660 
4,668 
4,671 

4,652 4,609 

> 

170 5,958 
5,958 
5,939 
5,966 
5,966 

5,937 5,889 

180 
(Aniline) 

7,549 
7,559 
7,547 
7,552 
7,581 
7,536 
7,519 
7,480 
7,539 
7,578 

7,518 7,493 

180 
(Methyl Sali¬ 

cylate) 

7,423 
7,453 
7,446 
7,449 
7,467 
7,457 
7,457 
7,452 
7,474 

7,437 

190 9,425 
9,418 
9,431 
9,425 
9,456 
9,469 
9,484 
9,462 

9,403 9,374 

200 11,679 
11,685 
11,674 
11,708 
11,705 

11,625 11,564 

Temperature. Pressure. Mean 
corrected. Pressure. 

o 
210 

millims. 
14,338 
14,329 
14,320 
14,343 
14,383 

millims. 

14,241 

millims. 

14,197 

210 14,337 
14,346 
14,342 
14,382 
14,377 

14,255 

210 14,324 
14,321 
14,326 

14,223 

220 17,484 
17,468 
17,490 

17,329 / 17,472* 
\ 17,426 

220 
(End of work) 

17,498 
17,519 
17,541 
17,582 
17,632 

17,401 

230 21,059 
21,175 
21,163 
21,158 
21,152 

20,936 20,879 

240 25,296 
25,294 
25,340 
25,399 
25,393 

25,019 f 24,803* 
t 25,040 

250 30,150 
30,130 
30,142 
30,214 
30,272 

29,734 f 29,527* 
1 29,687 

260 35,644 
35,630 
35.649 
35,654 
35.650 

35,059 35,036 

270 41,913 
41,890 
41,869 
41,864 
41,861 
41,821 

41,101 / 40,956* 
141,149 

* Determinations with two separate quantities, one of which was larger than the other. 

MDCCCXCII.—A. R 
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Volumes of 1 grin, of Steam, at Various Temperatures and Pressures. 

I. High Temperatures. 

Two series of experiments were made. The weight of the water in the tube was 

ascertained by determining the products of pressure and volume, altering the volumes ; 

and this was repeated at different temperatures. Assuming that if these products for 

any one temperature were constant, the density of the steam was constant, viz., the 

theoretical density, 9, the weight could be ascertained by the equation 

_ V.D. x p.v x 273 

W “ 11-1636 x 1000 x 760 x (273 + t)' 

This expression simplifies to 

log W = log p.v. + 4’46179 — log (273 + t). 

During the progress of the experiments it happened that a trace of water passed 

up the tube, adding itself to that already present. This, of course, increased the 

weight, hence new measurements were made to determine the amount of the increase. 

These weights were obtained from the following readings :—- 

Determination of the Weight of the Smallest Quantity of Water. (A.) 

Temperature. Volume. Pressure. p.v. W eight. Mean -weight. 

' 

O cub. centims. millims. grm. grm. 
220 1-7147 2528 4335 0-002546 

1-5565 2770 4311 0-002533 
1-4080 3060 4308 0-002531 
1-2592 3435 4325 0-002541 • 

1-1072 3893 4310 0-002532 0-002536 

o
 

C
O

 
C

M
 1-7151 2585 4434 0-002553 

1-5569 2820 4391 0-002529 
1-4084 3119 4393 0-002529 
1-1579 3815 4417 0-002543 0-002538 

General mean, 0"002537. 

Here some water rose in the tube and increased the weight. ' 

230 1-7151 2633 4516 0-002600 
1"5569 2879 4482 0-002581 
1-4084 3153 4441 0-002587 0-002579 

240 1-7156 2697 4627 0-002612 
1-5573 2948 4591 0-002598 
1-4087 3253 4583 0-002587 
1-1582 3964 4591 0 002592 0-002597 

250 1-5064 3097 4665 0-002582 
1-4091 3310 4664 0-002581 
1-1585 4026 4664 0-002581 0-002581 

! 

1 
General mean, 0 002587. 
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Determination of the Weight of the Smallest Quantity of Water. (A.)—(continued). 

Temperature. Volume. 
‘ 

Pressure. p. V. Weight. Mean weight. 

1 1 

Here more water rose in the tube and increased the weight. 

O cub. centims. millims. g-rms. grm. 
250 1-7160 2819 4837 0-002679 

1-5577 3114 4851 0-002686 
1-4091 3403 4795 0-002655 
1-1585 - 4155 4813 0-002665 0-002671 

260 1-7165 2872 4930 0-002678 
1-5580 3144 4899 0-002662 
1-4094 3478 4902 0-002663 
1-1588 4220 4890 0-002657 0-002665 

270 1-7169.. 2918 5010 0-002672 
1-5585 3196 4981 0-002657 
1-4099 3529 4975 0-002654 
1-1591 4283 4964 0-002648 0-002656 

General mean, 0'002664. 

These results can be verified by taking the weight at 270° as a standard, and calcu¬ 

lating the smaller weights by the equation 

p.v. p'vf 
273 + t : 273 + t' 

W : W' 

identical numbers with those found are obtained. 

Hence the largest weight at 250°, 260°, and 270° is 0'002664 grm. ; 

the second weight at 250°, 240°, and 230° is 0*002588 grm.; 

the first weight at 220° and 230° is 0‘002547 grm. 

The first weight holds also for lower temperatures. 

These data are adduced as a proof of the relative accuracy of the determinations 

which follow. 
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Volumes of 1 grm. of Steam and Vapour-densities. 

Temperature. Pressure. Volume of 
1 grm. p. V. 

V apour- 
density 
H = 1. 

Remarks. 

millims. c.c. 
120 1,448 602-0 , , , , Condensed 

1,450 545-2 Condensed 

130 1,930 622-7 Condensed 
1,953 563-7 Condensed 

140 2,093 661-7 1,384,900 9-268 
2,245 609-9 1,369,200 9-374 
2.449 551-7 1,351,100 9-500 
2,620 453-6 1,188,400 10-800 
2,645 338-3 894,810 Condensed 
2,650 107-1 •• Condensed 

150 2,147 661-8 1,420,900 9-251 
2,309 610-0 1,408,500 9-333 
2,550 551-8 1,407,100 9-343 
3,068 453-7 1,392,000 9-445 
3,280 415-2 1,361,900 9-654 
3,442 353-9 , . Condensed 
3,475 241-5 Condensed 

150 2,149 661-8 1,422,200 9-243 - 
2,310 610-0 1,409,100 9 329 
2,547 551-8 1,405,400 9-354 

160 2,211 662-0 1,463,700 9-193 
2,382 610-2 1,453,500 9-258 

[ 2,633 552-0 1,453,400 9-259? 
3,182 453-8 1,444,000 9-319 
3,997 3541 1,415,300 9-509 
4,571 241-6 Condensed 

170 2,267 662-2 1,501,200 9-171 
2,447 ,, 610-3 1,493,400 9-219 
2,705 552-1 1,493,500 9-219 
3,271 453-9 1,484,700 9-273 
4,172 354-1 1,477,300 9-364 
5,603 252-7 1,415,900 9-722 ■ y 

180 2,330 662-4 1,543,400 9-122 
2,509 610-5 1,531,800 9-193 
2,771 552-2 1,530,100 9-200 
3,356 454-0 1,523,600 9-240 
4,271 354-2 1,512,800 9-306 
5,854 252-8 1,479,900 9-512 ' 
7,296 192-5 1,404,500 10-025 
7,444 152-3 , . Condensed 
7,471 1121 Condensed 

190 2,387 662"6 1,581,600 9-098 
2,576 610-7 1,573,200 9-147 
2,842 552-4 1,569,900 9-172 
3,441 454-2 1,562,900 9-208 
4,385 354-3 1,553,600 9-261 
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Volumes of 1 grm. of Steam and Vapour-densities—(continued). 

Temperature. Pressure. Volume of 
1 grm. p. y. 

Vapour 
density 
H= 1. 

. 

Remarks. 

millions. c.c. 
190 6,057 252-9 1,531,800 9-393 

(continued) 7,839 192-5 1,509,000 9-534 
9,254 152-3 1,409,400 10-207 
9,337 112-2 •• Condensed 

200 2,458 662-7 1,628,900 9-024 
2,655 610-8 1,621,700 9-065 
2,930 552-5 1,618,800 9-080 
3,546 454-2 1,610,600 9-126 
4,516 354-4 1,600,400 9-185 
6,276 253-0 1,587.800 9-260 
8,107 192-6 1,561,400 9-738 

10,004 152-4 1,524,600 10-246 
11,505 112-2 •• •• Condensed 

210 2,525 662-9 1,673,300 8-989 
2,723 611-0 1,663,800 9-023 
3,000 552-7 1,658,100 9-053 
3,652 454-4 1,659,500 9-048 
4,646 354-5 1,647,000 9T14 
6,437 253-1 1,629,200 9-214 
8,371 192-6 1,612,300 9-309 

10,331 152-4 1,574,400 9-533 
13,538 112-2 1,519,000 9-880 
14,102 92-2 1,300,200 11-548 

220 2,585 6630 1,713,800 8-939 
2.782 611-1 1,700,100 9-012 
3,072 552-8 1,698,200 9-022 
3,734 454-5 1,697,100 9-029 
4,758 354-6 1,687,300 9-082 
6,601 253-1 1,670,700 9-171 
8,580 192-7 1,653,400 9-268 

10,649 152-4 1,622,900 9-438 
14,073 112-2 1,579,000 9-699 
16,458 92-2 1,517,400 10-098 
17,165 72-2 •• Condensed 

220 2,529 675-9 1,709,400 8"964 Weight altered 
2,770 613-5 1,699,400 9-016 
3,060 555-0 1,698,300 9-022 : 3,435 496-3 1,704,800 8-986 
3,894 436-4 1,699,400 9-016 i 
4,493 376-2 1,690,300 9-064 
5,685 294-3 1,673,100 9-136 
7,114 235-8 1,677,500 9-134 

. 8,575 193-4 1,658,400 9-237 
J 10,638 153-0 1,627,600 9-411 

14,032 112-7 1,581,400 9-690 
16,641 . 92-6 1,541,000 9-948 
17,476 72-5 1,267,000 10-059 

230 2,585 676-1 1,747,700 8-945 
I 

2,820 613-7 1,730,700 9-033 
1 
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Volumes of 1 grm. of Steam and Vapour-densities—(continued). 

Temperature. Pressure. 
Volume o f 

1 grm. 
p. V. 

Vapour- 
density 
H = 1. 

Remarks. 

millims. c.c. 
230 3,119 555 1 1,731,400 9-028 

(continued) 3,615 477-9 1,727,600 8978 
4,840 356-1 1,723,500 9-070 
6,725 254-1 1,708,800 9-146 • 
8,815 193-5 1,705,700 9-165 

10,887 153-1 1,666,800 9-380 
14,430 115-1 1,660,900 9-633 
17,148 92-6 1,587,900 9-847 
20,662 72-5 1,498,000 10-433 
20,884 52-5 • ' Condensed 

230 
(repeated) 

2,633 
2,879 
3,153 

664-5 
603-2 
545-7 

1.749.600 
1.736.600 
1.720.600 

8- 934 
9- 002 
9-086 

1 Taken as normal; 
| weight altered 

240 2,697 . 664-7 1,792,700 8-691 Doubtful 
2,948 603-4 1,778,900 8-973 
3,253 545-8 1,775,500 8-980 
3,964 448-7 1,778,600 8-963 
5,053 350-1 1,769,000 9-012 
7,002 249-9 1,749,800 9-112 
9,158 190-2 1,741,900 9170 

11,395 150-5 1,715,000 9-151 
15,084 110-8 1,671,300 9-296 
17,998 91-0 1,637,800 9-559 
21,336 71-3 1,524,100 9-732 
22,162 61-4 1,360,700 10-480 
25,049 41-7 •• Condensed 

250 3,097 583-6 1,807,400 8-992 
3,310 545-9 1,806,900 8-995 
4,027 448-8 1,807,300 8-993 

250 2,819 644-2 1,816,000 8-951 
(repeated) 3,114 584-7 1,820,800 8-927 

3,403 528-9 1,799,800 9-030 
4,155 434-9 1,807,000 8-996 
5,290 339-3 1,794,900 9"056 

. .; . 7,367 242-2 1,784,300 9-110 
9,560 184-4 1,762,900 9-222 

11,907 145-9 1,737,300 9-359 
15,852 107-4 1,702,500 9-547 
18,897 88-2 1,666,700 -9-751 
23,594 69-1 1,630,400 9-970 
26,395 59-5 1,570,500 10-343 
29,473 50-0 1,473,600 11034 
29,696 31-0 •• Condensed 

260 2,872 644-3 1,850,400 8-952 
3,144 584-9 1,838,900 9-008 
3,479 529-1 1,840,800 9-000 
4,225 435-0 1,837,900 9-013 
5,409 339-4 1,835,800 9-045 
7,521 242-2 1,821,600 9093 
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Volumes of 1 grm. of Steam and Vapour-densities—(continued). 

Temperature. Pressure. 
Volume of 

1 gran p. V. 
Vapour 
density 
H = l. 

Remarks. 

millims. c.c. 
260 9,811 184-4 1,809,100 9-177 

(continued) 12,164 145-9 1,774,800 9-334 
16,228 107 4 1,741,800 9-501 
19,326 88-2 1,704,600 9-714 
23,886 69-1 1,650,500 10-034 
27,193 59-6 1,620,700 10-229 
31,142 50-0 1,571,000 10-640 
35,040 31-0 Condensed 

270 2,918 644-5 1,880,700 8-973 
3,196 585-0 1,869,700 9-025 
3,529 529-2 1,867,600 9-036 
4,288 435-1 1,865,700 9-045 
5,486 339-5 1,862,600 9-062 
7,664 242-3 1,857,000 9-088 
9,974 184-4 1,839,200 9-173 

12,392 145-9 1,808,000 9-331 
16,519 107-5 1,775,800 9-507 
19,729 88-3 1,742,100 9-691 
24,427 69-1 1,687,900 9-993 
27,813 59-6 1,657,700 10-185 
31,958 50-0 1,597,900 10-560 
37,862 40-5 1,533,400 11-010 
40,854 29-1 • • Condensed 
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II. Low Temperatures. 

(a.) Weight of water in the modified Hofmann’s apparatus (described with a 

wood-cut in ‘ Phil. Trans./ 1887 A., p. 59). 

0-20087 grm. 

Readings commenced at largest volume, and vapour then compressed. 

Tempei-a- 
ture. Pressure. Volume. 

V apour 
Density 

Tempe ra- 
ture. Pressure. Volume. 

Vapour 
Density 

(H = 1). (H = 1). 

O millims. c.c. O millims. c.c. 
75 23-35 150'5 8-83 40 19-15 149-1 9-78 

23-40 148-5 8-93 21-2 135-7 9-71 
23-65 146-3 8-97 23-15 122-3 9-86 
25-80 134-9 8-92 26-0 109-0 9-85 
27-4 125-9 8-99 29-2 96-54 9-90 
29-6 116-4 9-01 33-75 83-07 9-96 
32-2 106-2 9-08 39-3 71-10 9-99 
35-3 96-36 9-13 48-45 55-90 10-31 
39-95 86-52 8-98 52-2 49-66 10-77 
45-7 74-78 9-08 54-1 42-05 12-27 

30 18-05 154-9 9-66 

75 
(repeated) 

236 
24-1 
30-3 
47-65 

146-9 
141-2 
111-9 

72-17 

8- 96 
9- 12 
9-16 
9-03 

18-9 
20-1 
22-1 
24-45 

145-2 
134-5 
122-0 
109-0 

9-85 
10-00 
10-03 
10-14 

57-7 
79-2 

58-12 
42-76 

9-26 
9-17 

26-7 
29-9 
31-05 

96-72 
84-50 
68-61 

lO"46 
10-70 

(12-69) 
31-35 55-0 Condensed 
31-45 43-0 

50 20-35 153-0 9-25 
21-8 140-5 9-40 25 17-25 154-2 9-99 
23-4 130-5 9-43 18-0 144-8 10-20 
26-95 113-2 9-45 19-25 134-4 10-27 
33-25 v 91-35 9-49 20-35 123-1 10-62 
42-1 71-82 9-53 21-8 111-6 10-93 
54-75 54-49 9-66 22-4 99-32 11-95 
70-75 42-52 9-58 23-35 86'5 „ (13-16) 

It is to be noticed that four readings are required for each pressure, so that at the 

lowest pressure an error of 1 per cent., or say 0‘2 millim., is not excessive. 

In considering these results it is seen that, as a ride, the density increases on 

diminishing volume. This, however, cannot be ascribed to real increase of density, 

but to diminution of the actual weight of the water present in the state of vapour 

through adhesion of water to the surface of the tube. That this explanation is the 

correct one is seen from the following considerations. 

At 75° very little rise of vapour-density is to be observed, although there is a 

slight tendency towards a higher value at the smallest volumes. The pressure was 

never near the vapour-pressure, which at this temperature is 288 ‘5 millims. 
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At 50°, at which the vapour-pressure is 92 millims., the vapour-densities are all 

high, but do not rise rapidly after the first one. The highest pressure registered 

(7075) approached the vapour-pressure. 

At 40° the vapour-pressure is 54"9 ; the highest pressure read was 54T. The rise 

of vapour-density is slow at first, and afterwards more rapid. 

At 30° the vapour-pressure is 31'55 millims., while the highest pressure read was 

3T05 millims. The vapour-densities are very high, and rise rapidly with decrease of 

volume; and at 25° the vapour-pressure is 23'55 millims., the highest pressure read 

being 23'35. Again, there is a rapid increase of density with diminishing volume. 

These pressures are all somewhat lower than the values given by Regnatjlt. 

(b). Weight = 0'00295 grm. 

The tube was heated to 100°. 

Tempera¬ 
ture. Pressure. Volume. 

Vapour- 
density. 

o millims. c.c. 
100 25-1 152-4 8-94 

287 131-3 9-08 
34-1 110-4 9-08 
41-45 9113 9-05 
52-4 72-34 9-02 

The tube was then cooled with the mercury at the same height as at the last 

reading, and then, without drawing down the mercury, the tube was heated to 40°. 

In this case there was no possibility of condensation of vapour on the lower part of 

the tube, while previously, when readings were begun at the largest volume, con¬ 

densation might have taken place on the lower part of the tube. If, therefore, the 

high vapour-densities are due to adhesion and condensation, the value of this reading 

at 40° should be lower than it was found in the first series. This is in fact the case, 

as is shown by the following determinations :— 

Tempera¬ 
ture. 

Pressure. Volume. V apour- 
density. 

o millims. C.C. 

40 42-05 71-7 9-52 
45-75 64-63 9-70 
51-6 55-41 10-04 
53-95 49-83 10-67 
54-8 42-0 Condensed. 

In the first series, at volume 71*1 cub. centims., the vapour density was 9'99, as 

against 9'52 in the second at volume 71'7 cub. centims. The largest volume in the 

mdcccxcii.—a. s 
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first series, 149*1, is a little more than twice as great as the largest volume in the 

second; therefore, as the tube was cylindrical, the surface on which condensation 

could take place was about twice as great. If the condensation is not much affected 

by the rise of pressure from 194 5 millims. at the largest volume of the first series to 

42’05 millims. at the largest volume of the second, and if the high vapour-density is 

entirely due to condensation, we should expect the error to be about half as great 

in the second as in the first series, and this is approximately the case. It will be 

noticed that the weight of the water in both sets is nearly the same. 

The tube was again heated to 100°, and the external pressure so arranged that the 

volume of vapour remained about 56 cub. centims. After cooling, the tube was 

again heated to 40°, and a reading was taken with the following results :— 

Tempera¬ 
ture. 

Pressure. Volume. Vapour- 
deusity. 

o millims. c.c. 
40 52-3 54-87 10-00 

The result is not much lower than at the corresponding volume in the last 

experiment, but the gain of surface was not very great, and the pressure, 52*3 millims., 

was very near the condensing pressure, 54*9 millims. ; and it is to be noticed that 

the vapour-density rises rapidly as this pressure is approached. At the same pressure 

in the first series, the vapour-density observed was 1047—a much higher value, 

The experiments show that the high vapour-densities are due to condensation on 

the walls of the tube, and that the error due to this cause may vary considerably, 

especially at pressures near the true vapour pressures. 

Similar experiments were not made at high pressures, but on constructing isothermal 

curves, it is seen that as the volume diminishes, and as the vapour-pressure is 

approached, the curves instead of cutting the vapour-pressure line so as to form an 

angle, as is the case with the other liquids which we have examined, gradually turn 

and run nearly parallel to the vapour-pressure line at a somewhat lower pressure. 

When a considerable amount of liquid has condensed, the true vapour-pressure is 

reached. This behaviour is analogous to that of a mixture of a condensible vapour 

with a gas like air; but it caunot be attributed to such admixture, for the last 

bubble of steam left on raising pressure wras easily and quickly absorbed, and without 

any perceptible rise of pressure. Its cause must, as already explained, lie in the 

adhesion of the vapour to the glass, causing condensation before the true vapour- 

pressure is reached. 
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IV. Comparison of Simultaneous Magnetic Disturbances at Several Observatories. 

By Professor W. Grylls Adams, D.Sc., F.R,S. 

Received June 11,—Read June 18, 1891. 

[Plates 8, 9.] 

In my former papers on Magnetic Disturbances and Earth Currents, which were 

read at the meetings of the British Association at Swansea in 1880 and at York in 

1881, a comparison was made of the declination and the horizontal force traces 

given by the self-recording instruments at five European stations, also at one station 

in India, one in China, and one in Australia. An attempt was made to determine the 

relative amounts of the simultaneous changes at the several observatories by com¬ 

paring them with one another by means of the scale values of the instruments 

employed, which were all of the pattern of the self-recording instruments at the Kew 

Observatory. It was found on comparison that there were great differences in the scale 

values of the instruments of the same kind at the different observatories, and in some 

cases there "was great uncertainty as to the scale values, because no determination of 

them had recently been made. Hence great difficulty was found in arriving at the 

true meaning of the records which were taken regularly at the different observatories. 

The comparison was sufficient to show the great importance of adopting the same 

scale values for the like instruments at all observatories. In my paper a recom¬ 

mendation was made that for horizontal force records a scale value of '0005 millimetre- 

milligramme for a difference of scale reading of 1 mm. should be adopted as being the 

most convenient. The same scale value was recommended by Dr. Wild, of the St. 

Petersburg Observatory, and for the vertical force magnetometer the same scale 

value might conveniently be adopted. With this scale value the instruments would 

be sufficiently sensitive to give for a considerable magnetic disturbance changes 

which are capable of being measured, but yet would not be so sensitive as to send 

the spot of light off the photographic paper, even in a violent magnetic storm. 

A violent magnetic storm was experienced in August, 1880, and the records from 

these observatories, viz., Kew, Stonyhurst, Lisbon, Vienna, St. Petersburg, Bombay, 

S 2 17 6.92 
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Zi-ka-wei, and Melbourne, as well as those from the Toronto Observatory in Canada, 

were compai'ed and discussed in the paper read before the British Association at 

York in 1881, and printed among the Beports of that year. 

During the last ten years the number of self-recording magnetic observatories 

where Kew instruments are used has increased to 8 in Europe, 3 in Asia, 1 at the 

Mauritius, 1 at Melbourne, and 2 in the United States of America, whilst there are 

self-recording instruments of a different type at Greenwich, Paris, Utrecht, and 

Toronto. 

For the bifilar magnetometer or horizontal force instrument a scale value not 

greatly differing from '0005 millimetre-milligrammes of horizontal force for 1 mm. of 

scale has been adopted at Kew, St. Petersburg, Vienna, Wilhelmshaven, Lisbon, 

San Fernando, Colaba, and Batavia, and the satisfactory nature of the results now 

obtained at these observatories clearly shows that it would greatly advance the study 

of terrestrial magnetism if the same scale value were adopted at other observatories. 

Nearly the same scale value is adopted for the balance or vertical force magnetometer 

at Kew, St. Petersburg, Lisbon, Batavia, and Mauritius, but at nearly all other 

observatories the instruments are considerably less sensitive, and their indications in 

ordinary magnetic disturbances are too small to be of much service for comparison or 

measurement of the amount of change of the magnetic forces or of the magnetic 

potential of the earth. 

Thus in the disturbances on August 11th, 1880, at the beginning of the magnetic 

storm at 10.20 a.m.,G.M.T., the disturbance of horizontal force is measured at Colaba 

(Bombay) by a rise of 3 mm., at Toronto by 7 mm., at Zi-ka-wei by 19 mm., and at 

Vienna by 13 mm. ; but, as appears from Table I., the values of these deflections are 

very nearly the same, viz., a change of about '005 millimetre-milligramme. With 

the scale value recommended, the measurements for this disturbance would have been 

from 10 to 12 mm. 

>' Table I. 

Scale value for Deflection at Value in Deflection at Value in 
1 mm. 10.20 A.M. mm.-mgr. 11.30 A.M. mm.-mgr. 

mm. mm. 

Kew. •00127 - 7 •00889 
Vienna. •00051 +13 •0066 -25 •01275 
St. Petersburg .... •00029 + 24 •00696 -55 •01595 
Colaba. ■00167 + 3 •00501 - 5 •00835 
Melbourne. •00066 + 6 •00396 -12 •00792 
Zi-ka-wei. •00025 + 19 •00475 -43 •0108 
Toronto. •00072 + 7 •00504 + 13 •00936 

Thus the sudden changes of force at stations widely separated over the Earth’s 
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surface do not differ very greatly from one another. A direct comparison of the 

several photographic records reduced to Greenwich mean time shows in a very marked 

manner that the character of a disturbance is the same over a very wide area of the 

Earth’s surface, and that the different phases of the disturbances take place at the 

different stations at the same instant of time. 

In .the present paper a comparison is made of more recent magnetic disturbances in 

June, 1885, at ten other observatories in addition to the seven observatories whose 

records were previously compared. 

Quite recently two additional sets of Kew magnetic self-recording instruments 

have been set up in the United States of America, at Washington and at Los Angeles, 

and the first Report from Washington, which has just been published and gives a 

record of work done in 1889, is very satisfactory, and should stimulate older magnetic 

observatories to bring their results into a state in which they will be more useful than 

at present and to publish them. It is satisfactory to find that the scale values 

adopted at Washington are nearly the same as the scale values which have been 

adopted at St. Petersburg, Vienna, Wilhelmshaven, Kew, and some other magnetic 

observatories. The importance of adopting as nearly as possible the same scale values 

for the similar instruments at different observatories cannot be too strongly enforced 

in the interest of the study of terrestrial magnetism. 

An attempt has also been made to apply the Gaussian analysis to the simultaneous 

magnetic disturbances in order to discover the amount of change in the magnetic 

potential of the Earth, which would be sufficient to account for these sudden magnetic 

disturbances. 

The large increase in the number of magnetic observatories with self-recording 

instruments seemed to warrant this attempt, but great difficulty has been experienced 

because we have scarcely yet arrived at the state foreshadowed by Gauss fifty years 

ago, “ when trustworthy and complete observations from all parts of the Earth shall 

be obtained.” 

For the complete solution of the problem, we should require records from Africa, 

from the continents of North and South America, and from Siberia, similar to those 

which are already obtained in Europe and Asia. 

In order to obtain some fair approximation to the changes of magnetic potential, 

necessary to give rise to the magnetic disturbances, I have collected photographic 

records of the traces given by the self-recording instruments for June 24th and 25th, 

1885, and for other more recent storms, from the observatories whose positions are 

given in Table II. 

The following tables give (1) the positions of these observatories, (2) the absolute 

values of the magnetic elements, (3) the comparative scale-values of the self-recording 

instruments for June 24th, 1885, as far as it has been possible to arrive at them ; 

(4) the values, in metric units, of certain magnetic disturbances. From these it will 
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be seen that the instruments of the same type at the different observatories still have 

very different degrees of sensitiveness. 

In some cases the scale-values of the magnetic instruments have not been deter¬ 

mined, especially in the case of vertical force instruments. Hence the number of 

stations to which Gauss’s method is applicable is very limited. 

On June 24th, 1885, a magnetic storm began quite suddenly at 10.32 P.M., Green¬ 

wich mean time, in which there were several well-marked features. 

At 3.48 A.M., on June 25th, there was a sudden and very great disturbance; at 

10.20 A.M., there was another characteristic, but rather small disturbance, and a larger 

disturbance at 12.15 p.m. The storm continued until about 8 A.M., on June 26th. 

The values of certain sudden changes in the magnetic elements and the comparative 

scale-values of the self-recording instruments are given in Table III., except in cases 

where they are too small, or where there are no means of determining them. From this 

table it will be seen that at several European stations the sudden change in the 

horizontal force, at the beginning of the storm, is nearly the same ; also the change in 

the horizontal force at 3.48 a.m., on June 25th, is nearly the same in amount at 

European stations, and at Colaba and Batavia. 

The disturbance at Toronto is very abnormal in all the magnetic elements, and far 

greater than at any other station. 

In Plates 8, and 9, the curves have been carefully traced from the photographic 

records, and set to Greenwich mean time, and grouped so as to bring out prominently 

the common features from widely distant stations. 
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With regard to the scale values in Table III., we may note that the values of H.F. 

and V.F. in metric units, for 1 mm. of height of scale, and the values of H.F. and 

Y.F. in centimetre-gramme-second units for 1 cm. of height of scale, are expressed by 

the same number. Thus, in the Kew curves, the values of H.F. and V.F. in metric 

units for 1 mm. of height of scale is '0005 unit, and the values of H.F. and V.F., for 

1 cm. of height of scale is '0005 in c.g.s units. 

Hence, in comparing past measurements in metric units, with 1 mm. for unit of 

height, with measurements in c.g.s. units, taking 1 cm. as unit of height, there will 

be very little trouble, as the scale values in the two sets of units are expressed by the 

same number. 

Hence, in future, it will be advisable for the sake of comparison, and, at the same 

time, more in accordance with the c.g.s. system of units, to state the scale values under 

the form, 1 cm. = '0005 c.g.s. units. 

On comparing the traces for H.F. from different observatories (see Plate 8) it will 

be seen that the trace from Stonyhurst shows what may at first be regarded as a very 

slight disturbance, and, at 3.48 A.M., the maximum disturbance appears to be com¬ 

paratively small, but from Table III., it will be seen that the actual disturbance is as 

large, or even larger, than at any other station except Toronto. 

There is every reason to suppose that the trace at Stonyhurst would have shown 

the individual features of the storm quite as well as the Colaba, or the Kew, or the 

Lisbon traces, if the scale value, '0005, had then been in use instead of the scale 

value '0022, and the measurements could then have been made with much greater 

accuracy. On the other hand, the vertical force magnetometer at Stonyhurst is very 

much more sensitive than that at any other station, and the trace is very similar in 

character to the St. Petersburg V.F. trace. At 3.48 a.m. there is very little disturb¬ 

ance at Kew, and a small disturbance in y.F. at Stonyhurst, viz., a fall of '001 metric 

unit. 

The y.F. trace for Batavia is placed near to the Stonyhurst trace in Plate 8, but, 

as is shown in Table III., the sudden fall in y.F. at Batavia, at 10.32 p.m., on the 24th, 

is nearly four times as great; and at 3.48 A.M., on the 25th, is more than four times 

the corresponding fall in y.F. at Stonyhurst. 

As Batavia is south of the equator, a diminution of the vertical force means a 

change in the direction of the needle corresponding to an increase of dip of the pole 

pointing towards the north ; hence, for comparison with stations in the northern 

hemisphere, the Batavia y.F. trace inverted is also given in Plate 8. 
The disturbance in V.F. is very much smaller than the disturbance in H.F., at all 

stations except Toronto, Batavia, and Melbourne. At Utrecht, the disturbance in 

y.F. nearly resembles the disturbance in declination, and is much greater apparently 

than the y.F. disturbances at Wilhelmshaven, or at any other observatory in 

the north-west of Europe. Unfortunately, the photographic paper on which the 

traces are taken is too narrow, and so the H.F. trace passes off the paper during the 
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great magnetic disturbances, but there is a great resemblance between the traces 

given by the three Utrecht instruments. This resemblance is due to the fact that the 

horizontal and vertical force changes are given by means of deflecting magnets and 

iron induction bars according to Lamont’s plan ; hence, the horizontal and vertical 

force needles are affected by changes in declination, and the vertical force trace is also 

affected by changes in horizontal force. 

Thus the change in horizontal force in metric units 

SX = -000376 (pj -p), 

where px and p are the changes in ordinates of horizontal force and declination 

expressed in millimetres. 

If SZ be the increase of vertical force, and p2 the change in the ordinate of the 

vertical force in millimetres, then 

SZ = -00326 (p2 - p) + -00172 (p1 - p). 

Thus, at 10*32 p.m. on June 24, p = — 6"4 mm., 

px — -j- 15"5 mm. and p2 = — 13"6 mm. 

Hence 

SX = -000376 (15-5 + 6'4) = -0082 metric unit, 

and 

SZ = -00326 (— 13-6 + 6-4) + -00172(15-5 -f 6’4) = ’0142 metric unit. 

Plate 9 contains only traces of horizontal force for June 25, 1885, from mid-day 

until 8 p.m. From 2.10 p.m. there is a large and continuous well-marked period of 

disturbance, beginning with an increase of force varying from -006 to -01 metric unit, 

followed by a decrease of very neaidy the same amount at '3 P.M. 

Another similar period of disturbance, well-marked at Melbourne, Batavia, and 

Bombay, as well as throughout Europe, occurs between 5.30 p.m. and 6.30 p.m. on 

the same day. 

The values of these changes in metric units are given in Table IV. 
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Table IV.—Changes in Horizontal Force on June 25, 1885. 

At 2.10 p.m. 

(G.M.T.). At 3 p.m. At 5.10 p.m. At 5.30 p.m. At 6.20 p.m. 

St. Petersburg .... •0075 - -0070 •0005 - -008 - -010 
Stonyburst. •0088 - -0066 •Oil - -on - -009 
Wilhelmshaven. . •0090 - -0075 ■0062 - -009 + -on 
Utrecht. •0056 - -0056 •0056 - -003 - '006 
Kew. •0060 - -0050 •0080 - -008 - -oio 
Vienna. •0055 - -0050 •0033 - -003 - -005 
Lisbon. •0027 - -0022 •0033 - -002 - -003 
San Fernando .... •0012 - -0012 ■0025 - -ooi - -002 
Colaba. •0015 - -0015 •0010 - -ooi 
Batavia. •0014 - -0014 •0010 - -ooi - -001 
Melbourne. •0037 - -0022 •0030 - -003 — -004 

There is some little uncertainty as to the values at the four last stations in this 

table, because the measurements to be made are very small. This reduces the 

number of observatories at which the Gaussian analysis can be applied with 

advantage to too small a number to determine the Gaussian coefficients for this 

storm. 
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Y. On the Locus of Singular Points and Lines which occur in connection with the 

Theory of the Locus of Ultimate Intersections of a System of Surfaces. 

By M. J. M. Hill, M.A., Sc.D., Professor of Mathematics at University College, 

London. 

Communicated by Professor Henrici, F.R.S. 

Received October 5,—Read November 19, 1891. 

INTRODUCTION. 

In a paper “ On the c- and ^-Discriminants of Ordinary Integrable Differential 

Equations of the First Order,” published in vol. 19 of the ‘ Proceedings of the London 

Mathematical Society,’ the factors which occur in the c-discriminant of an equation of 

the form f(x, y, c) — 0, where f{x, y, c) is a rational integral function of x, y, c, 

are determined analytically. 

It is shown* that if E = 0 be the equation of the envelope locus of the curves 

f(x, y, c) — 0 ; if N = 0 be the equation of their node-locus ; if C = 0 be the equation 

of their cusp-locus, then the factors of the discriminant are E, Ny C3. 

The singularities considered are those whose forms depend on the terms of the 

second degree only, when the origin of coordinates is at the singular point. 

The object of this paper is to extend these results to surfaces. 

It is well known that if the equation of a system of surfaces contain arbitrary 

parameters, and if a locus of ultimate intersections exist, then there cannot be more 

than two independent parameters. 

Hence the investigation falls naturally into two parts: the first is the case where 

there is only one independent parameter, and the second is the case where there 

are two. 

The investigation given in this paper is limited to the case in which the equation is 

rational and integral, both as regards the coordinates and the parameters.! 

* The theorem was originally given by Professor Cayley in the ‘Messenger of Mathematics,’ vol. 2, 

1872, pp. 6-12. 

f An abstract of the contents of this paper has been printed in the Proceedings, vol. 50, pp. 180-186. 

A table of contents will be found below, pp. 274-278. 

21,6,92. 
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PART I.—THE EQUATION OF THE SYSTEM OF SURFACES IS A RATIONAL INTEGRAL 

FUNCTION OF THE COORDINATES AND ONE ARBITRARY PARAMETER, 

Section I. (Arts. 1-6).—The factors of the Discriminant which in general 

CORRESPOND TO ENVELOPE AND SINGULAR LlNE LOCI. 

Art. I.—2b show that if E = 0 he the equation of the Envelope Locus, the Discrimi¬ 

nant contains E as a factor. 

Let the equation be 
f{x, y, z, a) = 0.. (1), 

where x, y, z ai'e the coordinates, a the parameter, and f is supposed to be a rational 
integral function of x, y, z, a. 

Denoting partial differentiation when x, y, z, a are treated as independent variables 
by D, the locus of ultimate intersections can be obtained by eliminating a between 
(1) and 

D/(r,?/, z,a) _ . 

La . 

Let the roots of (2) treated as an equation in a be cq, a2, . . . , which will at first 
be supposed to be all different, so that they do not make 

D3/ (x> y,z,a) _ 
W ~ 

Then if K be a factor introduced to make the discriminant A, obtained by 

eliminating a between (1) and (2) of the proper order and weight, 

A = 11/(x, y, z, a1)f(x, y, z, az) . . . (3). 

Let x — f y — y, z = £ satisfy (!) and (2) when a = a. 

Suppose that cq becomes a, when x = y — y, z = £, 
therefore, 

/(£ i?, i, °0 = o ..(4), 

- d! =°.F»- 

Now in A put x = f y — y, £ = £; and consequently oq = a, therefore f (x, y, z, cq) 
becomes /(f, y, £, a) and consequently vanishes. 

Therefore A vanishes when x = / y = y, z = 
The next step is to show that the locus of ultimate intersections is the envelope. 
Write, for brevity, 

A = Q f(z, y, z, cq) = Qf.(6). 
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Now denoting differentiation when x, y, z are the only independent variables by 0, 

0A _ 0Q ^ , n /HA , HA d*i 
dx dx ^ \Dx Dcq dx 

Hence, since a — ax satisfies (2) 

0A 
dx 

0M 
dx + 4 Dx (?)> 

assuming that D/JDa1 dajdx vanishes when DA/Doq vanishes. 

Now when x — y = y, z = £, jA = 0, therefore 

0A 
dx Q Dx 

X= f 

y = v 

z = { 
■ W- 

Hence when x = tj,y = r),z=L, 

•0A/HA 
0X / Dx 

0A /HA _ 0A 

0y / % — 03 / D. 
(9). 

Now the tangent plane to the surface 

/(x, y, z, a) = 0 

at the point a? = £ y = y, z = £ is 

(X-f)^ + (Y-,)| + (Z-i)|(=0. 

■ (10) 

(11). 

Now D//D£ stands for D/(x, y, z, a)/Da?, when x — y — y, z = £. And the 

value of DA/Da?, be., DA(ay y, z, aq)/Da?, when x = £, y — y, z — £, and, therefore, 

oq — a is the same as the value of Df{x, y, z, a)/Dx, when x = y = y, z — £. 

This may be expressed thus 

0A fDf _ 0A /Df _ 0A /H/ 
0£/ D£ — 0t? / Dt? ” 0f / Df' 

Hence the tangent planes to the surfaces A = 0, /(a?, y, 2, a) = 0 at the point 

A y, £ coincide. 

This proves the envelope property in general for the locus of ultimate inter¬ 

sections. 

Hence A vanishes, if in it x, y, z be made respectively equal to £•, y, £, the coordi¬ 

nates of any point on the envelope-locus. 

Therefore A contains E as a factor. 
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But the conclusion fails if 

w 
I>£ 

= 0. (12). 

Hence the work itself suggests the examination of this exceptional case, i.e., where 

a locus of singular points or lines exists. 

Example 1.—Envelope Locus. 

Let the surfaces be 

[<£ {x, y, z) — of + y (x, y, z) = 0. 

(A.) The Discriminant. 

The discriminant is found by eliminating a between the above equation, and 

— 2 [</> (x, y, z) — a] = 0. 

Hence the discriminant is y(a?, V’ z)- 

Hence the locus of ultimate intersections is 

X (x> V> z) = o. 

(B.) The envelope locus is y [x, y, z) = 0. 

For let 7], £ be any point on y (x, y, z) = 0. 

Let a = y, £), and consider the single surface 

[(f) (x, y,z) — cf) (£ 7j, £)]3 + x (x> V> z) = °- 

Put x = £ +X, y = 7} + Y, z = C + z. 

Then the lowest terms in X, Y, Z are 

X * _P Y ^ -f Z 
dr) 

Hence the surface considered touches y (x, y, z) — 0 at y, £, 

Hence y (x, y, z) = 0 is the envelope. 

It touches the surface at every point of the curve 

y (x, y, z) = 0, 

<f)(x, y, z) = (f> (£ 7), £). 

Hence this curve is the characteristic. 
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irt. 2.—To prove that the Locus of Conic Nodes of the Surfaces f(x, y, z, a) — 0 is 

a Curve, not a Surface. 

At every point of the locus of conic nodes the equations 

f(x,y,z,a) = 0.(13), 

D/ (x, y, z, a) _ 

Dx 
(14), 

D/Qe, y, X, a) 

Dy (15), 

D/ (x, y, z, a) 

Vz 
= 0 (16), 

are simultaneously satisfied. 

In general these are satisfied by a finite number of values of x, y, z, a only. Hence 

there are only a finite number of conic nodes. 

The next case is that in which equations (13)-(16) are equivalent to three indepen¬ 

dent equations only, and then it is possible to satisfy them by relations of the form 

x=<f>(a), y — ia), z = x(a).(17). 

In this case there is a curve locus of conic nodes. But as such a locus is defined 

by two equations, it cannot be determined by equating a factor of the discriminant 

to zero. 

The next case is that in which equations (13)—(16) are equivalent to two indepen¬ 

dent equations only. Eliminating a between these, the equation of a surface is 

obtained. This is the case which will be further examined, and it will be shown that 

the tangent cone at every conic node must break up into two planes, i.e., the conic 

node becomes a binode.# 

Let £ rj, C be the conic node on the surface (10). 

Let £ -f- S£, r) + 8y, £ -f- Sf be the conic node on the consecutive surface 

J {x, y, z, ct + Sa) = 0.(18). 

Then 

/(£i?,O) = 0.(19), 

D/ (£ v> £ «) (20), 

* In this connection may be noticed Art. 11, in which it is proved that if a surface have upon it a 

line at every point of which there is a conic node, then the tangent cone at every conic node must break 

up into two planes so that the line is a binodal line. 
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P/(£q, g, «) 
Y)rj 

ty (-??, £«) 

~ ur 

= o 

= 0 

• • (21), 

, . (22), 

and the equations obtained from (19)-(22) by changing i, 77, £, a into £ + Sf, 77 + 817, 

£ -f- S£, a + 8a respectively. 

Denoting differential coefficients by brackets containing the independent variables, 

with regard to which the differentiations are performed, these last equations become 

by means of (19)-(22) 

[a] (Sa) = 0.(23), 

By (23), 

[£ m + [£ V] (817) + [£ £] (8£) + [£ «] (Sa) = 0 

lv> £] (8f) + b, T?] (817) + [17, £] (S£) + [77, a] (8a) = 0 

[£> £] (8f) + [£, 77] (877) + [£, £] (S£) + [£, a] (Sa) = 0 

t] = 0 

• (24), 

• (25), 

• (26). 

at every point of the conic node locus. Hence the co-ordinates of every point on the 

conic node locus satisfy the equation of the locus of ultimate intersections.* 

Further, since [a] = 0 at every point on the conic node locus, the corresponding 

equation is satisfied at the conic node on the surface (18). 

Hence 

[a, (Si) + [a, 77] (877) + [a, £] (S£) + [a, a] (Sa) = 0 . . . (27). 

Since equations (24)-(27) must give consistent values for S£ : 877 : S£ : Sa, it follows 

that the Jacobian 

DjffiH. [awi _ 0 ■ (28). 

* I am indebted to Dr. Forsyth for the following example:— 

Let the surfaces be 

(cc — a)2 + (y — a)2 — /r2(z — af = 0. 

The discriminant is 

-2(2* _ * _ yy + (,2 _ 2) (a - yf. 

Hence the locus of ultimate intersections consists of the two planes 

k(2z — «—*?/) = ± ^2 — k~(x — y). 

These planes intersect in the straight line * = y = 0, which is the locus of conical poiuts of the 

surfaces. 



AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES. 147 

If this were the only relation between these equations, they would determine the 

ratios 8^: By : 8£ : 8a. 

Hence there would be a curve locus, not a surface locus of conic nodes. 

If, then, there be a surface locus, equations (24)-(27) must be equivalent to two 

independent equations only. 

Expressing that (24)-(26) are equivalent to two independent equations only, it 

follows that 

p m m, cal 
D{£ v, ?} 

(29). 

But this is the condition that the tangent cone at the conic node should break up 

into two planes, and then the conic node becomes a binode. 

Hence there cannot be a surface locus of conic nodes, unless the conic nodes become 

binodes. 

Since equations (13)-(16) are equivalent to two independent equations only, every 

point on the intersection of the surfaces represented by (13) and (14) is a binode on 

the surface (13). 

Hence the surface (13) has a binodal line. 

The locus of these binodal lines is a surface at every point of which equations (l) 

and (2) are satisfied, hence it is a part of the locus of ultimate intersections, and its 

equation can be determined by equating a factor of the discriminant to zero. 

Art. 3.—To find the conditions which hold at every point on a Surface Locus of 

Binodcd Lines. 

In this case (29) holds. 

Hence, in order that (24)-(26) may give finite values for : S17 : S£ : 8a, 

p m ivi mi = 0 = p m w, hi 

pm [vi [?]} = 0 = p([a. [a. hi 
a {£?.«} 

p m> m> mi = 0 = p i m, [a, hi 
P {v, £ P {|> v, £} 

(30) , 

(31) , 

(32) . 

Now (30) shows that (27) depends on (24) and (25). Hence, in this case, the four 

equations (24-27) are equivalent to two independent equations only, which is obvious 

since (13-16) are equivalent to two independent equations only. 

u 2 
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Art. 4.—To find the conditions which hold at every point on a Surface Locus of 

Unodal Lines. 

At such a point the tangent cone, whose equation is 

R f] (X - f)« + Ii, ,,] (Y - -nf + R, {] (z - If 

2Ha(Y-’7)(Z-0+2B.f](Z-0(X-f)+2[f,,](X-f)(Y-,) = D'33), 

breaks up into two coincident planes. 

Hence 

[£ G: K vl ■■ [£ £] 
= bh £]: bh vl: bi> Q 
= K, f| : [C, y] : [l, £].(34). 

Of the four equations (24)-(27), which are satisfied when there is a surface locus of 

binodal lines, it has already been shown that only two are independent. The same 

equations hold when there is a locus of unodal lines. 

Multiply (24) by [17, £], (25) by [£, f], subtract and use (34). Then, 

(8a) {[77, f] [£ a] — [£ £] bl> “]} = 0.(35), 

therefore, 

bly £] [£ a] — B> £] by a] — 0.(36). 
Similarly 

[U]K«]-[^J[U] = 0.(37). 

By (34) and (36) it follows that (25) depends on (24). 

By (34) and (37) it follows that (26) depends on (24). 

By (34), (36), (37), it follows that, if the values of Sf : S77 : S£ : Sa satisfying 

(24)—(27) are finite, then (27) depends on (24), and the following ratios hold :— 

tt : K v] ■■ K i] : [£ «] 

= by f] : by v] : by G '■ by a] 

= B. G: B> G ■■ by G: B,«] 
= [«, G ■ [a, y] ■ la>G : [a, a].(38). 

In this case, then, (24)-(27) are equivalent to one independent equation only. 

It may be noticed that in the case in which 

[“. £] = 0, [a, >)] = 0, [a, J] = 0 (39), 
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in order that (27) may be satisfied, 

[a, a] = 0.. . . (40). 

And now (27) becomes an identical equation. It does not depend on (24). 

Art. 5.—Examination of the Discriminant A, and its Differential Coefficients, when a 

Surface Locus of Binodal Lines exists. Proof that A contains B2 as a factor. 

Let 77, £ be a point on the binodal line on the surface (10). 

Then when x = £ y = 77, z = £, 

/i = 0, 

Hence by (6) and (7), when x = f y — 77, z = £, 

Similarly 

A = 0, |=0. 

rv - V, ^ - U. 

oy 02 

Hence if B = 0 be the equation of the surface locus of binodal lines, A contains B2 

as a factor. 

Example 2.—Locus of Binodcd Lines. 

Let the surfaces be 

[(/> (x, y, z) - af + x (x, y, *) j> (d y, 2)]2 = 0. 

A. The Discriminant. 

This is found bv eliminating a between the above, and 

— [2 <t> (x> y, z) — a] = 0. 

Hence the discriminant is y {%> y> 2) [i/f (x, y, z)f. 

Hence the locus of ultimate intersections is 

X (x, y, z) [tf, (x, y, z)f — 0. 

B. The Locus of Binodal Lines is xp (x, y, z) = 0. 

Let £, 77, £ be any point on the surface xp (x, y, z) = 0, 
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Take « = <£(£ 77, Q and consider the single surface 

[<t> fa y, z) - <f> (£ y, i)J + x (x> y>z) [V» (*» y> Z)J = °- 

Put *=f-fX,i/=))-fY1z = ^+Z. 

Then the lowest terms in X, Y, Z are 

X| + Y| + Zlj + x (£ v> 0 x}+4t+zSC 
This breaks up into two factors of the first degree in X, Y, Z. 

Hence £ 77, £ is a binode on the surface considered. Now the only relation 

satisfied by £ 77, £ is «/»(£ 77, £) = 0. 

Hence any point £ 77, £, on the surface if, (x, y, z) = 0, is a binode on 

[cf>(x, y,z) - <f> (£ 77, £)]2 + X y, z) y, z)J = 0. 

Hence every point of intersection of the surfaces 

«/»y>z) = o, 
and 

[<£ (®, y>z) - aJ + x (*» y>z) (x> y> z)l = °> 

is a binode on the latter surface. 

The equations of the binodal line of this surface are, therefore, 

if, (as, y, z) = 0, 

<£ (x, y, z) = a. 

This accounts for the occurrence of the factor [1fj (x, y, z)f in A. 

C. The Envelope Locus is y (x, y, z) = 0. 

This may be proved as in Example 1. 

Art. 6.—Examination 0/ the Discriminant A, and its Differential Coefficients, when 

a Surface Locus of Unodal Lines exists. Proof that A contains U3 as a factor. 

Differentiating (7) with regard to x and y, 

__ f S^Q 0Q fDf Lf Baf 
Ox1 ^1 Bx2 Bx \ Dm Da, Bx) "3_ 

Did > 
Da’ Da, Bx j (41), 
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_ , 33Q 3Q /I)/i D/, 3*A 3_Q D/, Q ( Dyt D2/, 3a,\ , , 

3^03/ ^ 0a;0?/ 0c \D*/ Dcq 3y/ 3y lAc 0 \D.cD_y D^Dcq 3y) ' 

To find 3ajdx, dajdy it is necessary to use the equation 

Df(x, y, z, «i) _ Q 

This gives 

_»5L + 5A^_0 (44) 
DiDj, t Do,* . h 

= 0.(45). 
D// Dcq Dfq2 3y ' ' 

Now reserving the case, according to the remarks in the Abstract (‘ Proc. Roy. 

Soc., vol. 50, p. 180) and Art. 1, in which 

b|=0.(46>- 

for further consideration, because, in this case, dajdx, 3cq/3y, both become infinite or 

indeterminate, it follows that 

^ = .U7) 
dx D/c DaJ Dtq2 ' ’ 

sJh = _ _d%_ m (48) 
dy Dy Do,/ Do,!.' 

Hence 

3JA _ 3/Q , 3Q 5A 0{Dy, D% _ / py, 71 /EA U9) 
da? dx3 Jl T 3o! Do; T Do,! ^ Da,/ J / Do,s.K >’ 

= s/Q f , 3QM , 3Qw, , 0f py, d% _ py py, 1 /py ,.n) 
dxdy dxdy^1 dx Dy 3y Dx \DxDy Dcq2 Da; Dcq Dy DcqJ / Dcq2 ' 

Hence, if rj, £ be a unode on the surface (10), and cq become equal to a when 

x = £, y = rj, 2 = £, then by means of (38), 

32A 32a 
— 0 -= 0 

3H ’ 3x dy ’ 
when x — y = y, 2 = £. 

Similarly all the other second differential coefficients of A with regard to x, y, z 

vanish when x = £, y = rj, z — £. 

Hence, if U = 0 be the equation of the surface locus of unodal lines, A contains U3 

as a factor. 
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Example 3.—Locus of Unodal Lines. 

Let the surfaces be 

[<f> (x> y>z) - aT + [x (x> y> Z)J = o. 

(A.) The Discriminant. 

The discriminant is found by eliminating a between the above and 

— 2 [<f> (x, y, z) — a] = 0. 

Hence it is 

[x (x> y> z)J- 

Hence the locus of ultimate intersections is 

lx (x> y> Z)J = °- 

(B.) The Locus of Unodal Lines is y (x, y, z) = 0. 

Let f y, £ be any point on the locus y (x, y, z) = 0. 

Let a — <f> (£, y, £), and consider the single surface 

[(f) (x, y, z) — (f) (£, y, £)]3 + [y (x, y, z)J = 0. 

Put a? = £ + X, y = y -p Y, z = £ -}- Z ; then the lowest terms in X, Y, Z ar 

d(j) 

dr) + Z 
d(j) 2 

' 

Hence y, £ is a unode on the surface 

[(f) (x, y, z) — (f) (ij, y, £)]3 + [x y> Z)J = 0. 

Lienee y (x, y, z) = 0 is the locus of unodal lines on the surfaces 

[(f) (x, y, z) — aj 4- [y (x, y, z)]3 = 0. 

The unodal line on any one of the surfaces is given by the equations 

y (x, y, z) = 0, 

(f) (x, y, z) = a. 

This accounts for the occurrence of the factor [y (x, y, z)]3 in the discriminant. 
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Section II. (Arts. 7-9).—Consideration of the Cases reserved in which two 

ROOTS OF THE EQUATION DfjDct = 0 BECOME EQUAL AT ANY POINT ON THE 

Locus of Ultimate Intersections. 

Art. 7.—Consideration of the exceptional case of the Envelope Locus, in which two 

consecutive characteristics coincide. 

(A.) It will be shown that this is the case reserved in Art. 1, viz., where 

D^/Dcq2 = 0. The geometrical meaning of the condition will first of all be 

determined. 

The surface 
/ (x, y, z, a) = 0 

intersects the surface 

f(x, y,z,a + 8a) = 0, 

where 8a is indefinitely small in the curve whose equations are 

/(x, y,z, a) = 0 , 

D/ (x, y, z, a) _ 

Da 

This curve is called a characteristic. The equations of the next characteristic are 

obtained by changing a into a -\- 8a in the above. Hence they are 

f(x,y,z, a) + (8a) 
D/ (x. y. 3, a) _ 

Da 
0, 

D/fc y,% “) D~y Qg, y, z, «) _ 0 
Da Da3 

Now, if the two consecutive characteristics coincide, 

f(x, y, z, a) = 0 , 
D/(.r, y,z, a) _ 

D« 

v*f(x,y,z, et) _ 
Da2 

at every point of the coinciding characteristics. 

Hence, the characteristic counts three times over as an intersection of the envelope 

and the surface, instead of twice as in the ordinary case. 

(B.) It is now necessary to repeat the investigation in the case in which equation 

(2) has equal roots when x — £, y = rj, z = (, the co-ordinates of a point on the locus 

of ultimate intersections. 

MDCCCXCII.—A. X 



154 PROFESSOR M. J. M. HILL OH THE LOCUS OF SINGULAR POINTS 

In this case, A may be written 

R/ (x, y, z, o.l)f(x, y, z, a2) = K/,/2 
• • • • (51) 

where a„ a.2 are the roots of (2) which become equal when x = £ y = y, z = £. 

Therefore, 

, a/-® , I?9! 
dx ~ + Uj2 \Dx + Da, dx fR/l 

1 /„N 
Dx+Da.,dxj ' ' (5 '* 

13 f Cd 
Now if it be assumed (see immediately below, under C) that the terms f2 

|~w» 0(/^ 
f, 2 0 2 vanish, then when x — y = y, z = £, it follows that a, = a2 = a, and, 

therefore,/, = 0,f2= 0, and = 0. 

Cl- -1 1 3a 0A Smnlarlv, x- = 0, x- = 0. 
dv ■ dz 

Therefore, A contains E3 as a factor. 

(C.) Examination of the term f 
v ' J Da, dx ’ 

Taking 3a,/dx from (47) this term becomes 

Now f is of the form 

DA Df_ /pyt 

Da, Da,Dx/ Da,2 ' 

A (a — a,) (a — a2) (a — a3), 

where a„ a2, a3 all become equal to the same thing as a]f a2 when x = y = y, z — £. 

Hence, taking as infinitesimal of the first order the difference in the values of the 

parameter a at the points £ y, £ and £ -f- 8^, y -j- Sy, £ + 8£, it follows that f2 is of 

the third order of small quantities, Df/Da, of the second, and D'fjDaf of the first. 

Hence, assuming that Dy/DcqDa: is not infinite, it follows that the term under 

investigation is of the fourth order, and therefore vanishes ultimately. 

Example 4.-—Envelope Locus when two consecutive Characteristics coincide. 

Let the surfaces be 

</> (a, y, z) + bp (x, IJ, z) — aj = 0. 

(A). The Discriminant. 

The discriminant is found by eliminating a between the above and 

■— 3 [x// (cc, y, z) — «]3 = 0, 

Hence it is [f (x, y, z)]3. 
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Hence the locus of ultimate intersections is 

[</> y> z)J = o. 

(B). The Envelope Locus such that two consecutive Characteristics coincide is 

</> (x, y,z) = °- 

Let £ y, C be any point on if) (x, y, z) = 0. 

Take a = (£, y, £), and consider the single'surface 

<f> (x, y, z) + l> (x, y,z) — xfj (£ y, £)]3 = o. 

Put X = £ + X, y = 7) + Y, 2 = i + Z : then the lowest terms in X, Y, Z are 

i1+’i!+zS 
Hence the tangent plane to the surface at g, tj, £ is also the tangent plane to 

{x, y, z) — 0. 
Hence </> (x, y, z) — 0 is the envelope, and the equations of the line of contact are 

<f) (x, y, z) = 0, xj/ (x, y,z) = \ji (£, y, £). 

Now the equations corresponding tof=0, Df/Da = 0, D^Da3 = 0 are 

<£ (x, y, z) + [iji (x, y, z) — of = 0, 

- 3 [xjt (x, y, z) — af = 0, 

6 [xfj (x, y, z) — a] = 0. 

These are all satisfied by the coordinates of any point on the line of contact. 

Hence two consecutive characteristics coincide. This accounts for the factor 

[j> (x, y, z)]2 in the discriminant. 

Art. 8.— Consideration of Loci of Binodal Lines, which are also Envelopes, 

(A.) It wall be shown that this is the case reserved in Art. 1, viz., where 

Ds/i/Dcq2 = 0. 

The equation of the biplanes is 

K f] (X - ff + b, r,-] (Y - vf + [£, £] (Z - if 

+ 2b.a(Y-,)(Z-£) + 2[£,f](Z-£)(X-f) + 2[f,,](X-f)(Y-,)^0 (53). 

This breaks up by (29) into the two planes 

x 2 
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K f] (b. £] (X - 0 + [v, v] (Y - v) + fo, Q (Z - 01 

+ { - [£ l\ ± v/ [£ ^]' — [£ £] t7?* ^]} {[£ £] (X — |) + [£ 17] (Y — 77) 

+ [££](z-£)} =0 . (54). 

Now since equation (27) depends on (24) and (25), therefore 

[£f] [M [£ *] 
bi> f] lv> y] lv>a] 

[a,7?] [a, a] 

Putting [a, a] = 0, this becomes 

[“» vJ [£ £] — 2 [a> [«> £] [£ v] + [«> fp lv> vl = 0 • • • (56)- 
Therefore 

[a> = {[£ v~\ ± V[€, vJ — [£ £] L7?? v]}l[£> £] • • • (57)- 

Hence the equation of one of the biplanes is 

[«. f] {[£ VI (X - f) + h, >)] (Y - ,) + [£,,] (Z - £)} 
-[M]®fl(X-f) + [G](Y-l) + B£](Z-OS = 0. . (58). 

Now if £ + 8^, 77 + 877, £ + S£ be a point on the locus of binodal lines near to 

££ 77, £, it follows by (24) and (25) that 

[“. f] i[f. v\ (§f) + Ly, 'll (S'?) + [£, 1?] (8£)} 
- U y] {[£ f] m + [f. vl (S'?) + LI £] (8£)} = 0.(59). 

Hence the tangent plane to the locus of binodal lines takes the same form as (58). 

Hence the tangent plane to the locus of binodal lines is the same as one of the 

biplanes. 

Hence the locus of binodal lines is also an envelope. 

(B.) The converse proposition, viz., that if the locus of binodal lines be also an 

envelope, then \u, a\ = 0, will now be proved. 

As before, the equations of the biplanes are given by (54), and the tangent plane 

to the locus of binodal lines takes the same form as (58). If, then, the locus of 

binodal lines be also an envelope 

therefore 
{- Li, y] ± Ai v? - [#. f] Ly, I?]} /Li, f] = - [«, ??]/[*, f] • • (60). 

[“. yf [f, f ] — 2 [a, 1?] [a, i ] [I, 1?] + [a, if [l?, 1?] = 0 . . . (61). 
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The equation (61) is the same as (56). 

Comparing it with (55), which holds when a locus of binodal lines exists, it follows 

that 

{[£ V~] — [£ vf] [«> “] = 0.(G^- 
Hence [a, a] = 0, or 

[££] [^] - [^? = 0.(63). 

If (63) hold, then by (61) 

[a, ^] [££] = [«, 

therefore 

[£ mi v] = k vViv, vi = [«, s/o. vi 

Making use of these with (24) and (25), it follows that each of these fractions is 

equal to [£, Q/[rj, £]. 

Hence (24) and (25) are equivalent to one equation only. 

But it was shown that (26) and (27) depend on (24) and (25). Hence (25), (26), 

(27) all depend on (24). 

Hence the ratios (38) hold, and therefore there is a locus of unodal lines. But this 

is not the case under consideration, for it is supposed that there is a locus of binodal, 

not unodal, lines. 

Hence (63) is not satisfied, and, therefore, [a, a] = 0. 

(C.) In this case the values of dctjdx, dajdy, given by (47) and (48), are really 

infinite, for D^f1JDa1 Dx does not vanish necessarily, but D'^fJDa^ = 0. 

Consequently the differential coefficients of A require further examination. 

Now 

D2/j da, _ / D!/j y /Did 

Dcq Dx dx ' ' \Daj Dx) / Dap 

Since D~fl/Da1 Dx does not necessarily vanish, it must be shown that f2 

at points on the locus of binodal lines ; i. e., 

1®% _ = 0 

/(x, y, 2, or2) 
/D2/ (x, y, z, ad 

/ Dad 

when x = £ y = y. z = £, the coordinates of any point on the locus of binodal lines. 

Now cq, cq are the roots of 

Df(x, y, z, a) 

Da 
= 0. 

which become equal when x — y — y, z — £. 

In this case f(x, y, z, a) = 0 is an equation for a, such that three values become 

equal when x = f, y = y, z = £. (They become equal to the same value as oq, cq.) 
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Put, therefore, 

f = R {a — eq) (a — a2) (a — ot3).(64), 

where cq, a3, a3 become equal when x — £ y = 17, 2 = £. 

Therefore 

P/ 
Da 

DR/ \ / x / \ 
— (a - (a - ar) (a - a3) 

+ H [(« — ai) (a — a3) + (a “ *3) ia — ai) + (a — «i) (a — a2)} . (65), 

L2 

Da2 
D2R 

Da2 
(a — ai)(« ~ aa) (a ~ as) 

DTI 
+ 2 ((« “ ai) (a — «s) + (a — a3) (a — cq) + (a — aL) (a — a3)} 

“h 2Pt {(a — eq) -f- (a — «3) -p (a — a3)}.(66). 

Now, at a point on the locus of binodal lines, the two equal values of a which make 

1)//Da = 0, become equal to the same thing as cq, a2, a3. 

Hence /(x, y, z, a2) = (R') (a3 — eq) (a3 — a3) (a3 — a3), where R' is what R becomes, 

when a is changed into a0. 

Hence f(x, y, z, a2) is of the third order of small quantities ; but D~f(x, y, z. a1)/Da12 

is of the first order, for the most Important term in it is 

Hence 

2 (R) [(oq cq) -|- (cq — eq) -f- (cq — a3)]. 

/(*, y> 
n. \ /D2/(x, y, z, ax) 

a‘>! iv “ 
(67) 

at points on the locus of binodal lines. 

In like manner 

but 

f[x, y, z, a 
•VF^}‘=0 

f(x, y, z, a2) / [D2/(x- y, «i) 

/ 1 IV 

3 
^0 

(68), 

(69) 

at points on the locus of binodal lines. 
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(D). It should be noticed that in the preceding section (C), the infinitesimal 

of the first order is the increment in the value of a, a root of Dfix, y, z, a)/Da = 0, 

when £, y, £ receive increments S£, By, S£ respectively; and in particular that it is not 

of the same order as S£, By, S£. 

For if 3a be the increment in the value a, then 

[a> (S£) + [a, y] (By) + [a, £] (S£) + [a, a] (3a) 

[«, £ C] (S£)3 + K v> vl (&vY + [«, C> C] (SC)3 + [«, «, «] (Sa)2 

+ 2 
+ 2 [a, >7, £] (Sr;) (S£) + 2 [a, £, £] (S£) (S£) 4- 2 [a, £, 77] (S£) (St;) 

+ 2 [a, a, £] (8a) (S£) + 2 [a, a, 17] (8a) (Sr;) + 2 [a, a, £] (8a) (S£) 

+ • = 0. 

Now because [a, a] = 0, this equation can be written in the form 

ul + u.2 + 2y1 (8a) -j- (Sa)3 = 0, 

where the suffixes denote the order of the terms, when (S£), (By), (S£) are taken to 

be of the first order. 

Hence, if e denote an infinitely small quantity of the first order in (S£), (By), (S£), 

then 8a is of the order e1/2. 

And now f (x, y, z, a2), when a? = £ + S£, y — y By, z = £ + 8£, and a2 = a + 3a, 

becomes 

/(£ % C a) + [fl (S£) + M (St;) + [£] (S£) + [a] (3a) 

[£ fl (S£)3 + [rj, v] W + [C, £] (SC)3 + [«, *] (S«)3 • 

2 + 2 Lffi C] (Sr;) (3£) + 2 [£, £] (S£) (8£) + 2 [£, r;] (S|) (Sr;) 

_+ 2 [a, £] (Sa) (S£) -f 2 [a, r;] (Sa) (By) + 2 [a, £J (8a) (S£) 

+ 

[I, a (S£)3 -f l*h vl (H2 + [C, C] (SO3 

2 +2 [r;£] (Sr;) (S£) 4- 2 [£, £] ($£) (S£) 4- 2 [£, >;] (S£) (By) 

„-f 2 [a, £] (Sa) (S£) + 2 [a, y] (Sa) (Sr;) -f 2 [a, £] (Sa)( S£) 

Hence f (x, y, z, a2) is of the order es/2 when X — £ -j- 8£, y — y -j- By, z — £ + BL 

In like manner, when x — £ + S£, y = y 4- By, z — £ 4- 3£, ax — a -f Sa', 
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+ [«, I] (S£) + [a, f\ (8y) -f [a, a, Q (8Q + [a, «, «,] (S“) 

+ • • • 

Now 8a' can be shown to be of the order eI/2, in the same way that 8a was shown 

to be of this order. 

Hence Df(x, y. z, af)[Da? is of the order e1/2. 

Hence the same results as those given in (67), (68), (69) follow. 

(E.) Examination of the Differential Coefficients of A. 

Differentiating (52) with regard to x, 

(70). 

Hence the term 

vanishes by (67) at points on the locus of binodal lines. 

Hence d2A/dx* = 0 at points on the locus of binodal lines, if it be assumed that 

D fi/Dx is finite. 

This assumption can be made if av be finite. 

Again, differentiating (70) with regard to x, 

(71). 
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In this case the infinite quantity da}/dx occurs in the term 

, i , 
^ dx \ D./J2 Dx I)«: ox J 

0 pm Dy; _ / pyt y\ /d&1 

^'30x|\Dx2 Daj2 \D* Doj/ // Deq2] 

_D r /D^ ny _ / i>y y\ /Dyx 1 
D«[\Da;2 Dcq2 yLLcDflq/ // Dap/ 

/2 _ iteite, d f/py, py _ / i>y y\ /py 1 
D3/i UcqlVDic2 D^2 // Dap/ 
Dap 

/• _ o A EA_ I)3A 
/2 D.D Dyj D.r Doj Dx2 Dtq 

Dtp2 

, o /» f PlA Y D3/! / D2/a V D:y, 
/p8/i\8 \D*D«i/ /D2/i\3 \ D.r Da, / Daf5 

W/ W/ 

/ 

Now it has been shown in (67)-(69) that 

/(Eh 

/Eh 
V I)rq2 °T1U j2j [Da* d/2 

//EA 

Daf 
does not vanish at points on the locus of binodal lines. 

Hence f2 i (Eh i p3/i 
dx \ D*2 Dx Dcq dx 

does not vanish. 

Similarly fx ^ 
0 /D2/„ D2/2 0a2 

+ 
dx\Dx2 1 DxDa3 dx 

The order of the term 

does not vanish. 

D/2 D~/1 dav 

Dx Dx Dcq dx 

both vanish, but 

cannot be determined in a perfectly general way, for although Df^/Dx vanishes, yet it 

contains dajdx, dct.Jdx, dct.Jdx, which may be infinite, since a1? a2, a3 are irrational 

functions of the coordinates. 

These results point to the conclusion that dsA/dxs does not vanish at all points on 

the locus of binodal lines. This is readily proved in particular cases. (See Example 5 

below.) 

Hence, at points on the locus of binodal lines, A = 0, 0A/dx = 0, d~±/dx~ = 0; but 

d3A/dx3 0. 

Hence, if B = 0 be the equation of the locus of binodal lines, when that locus is 

also an envelope, A contains B3 as a factor. 

mdcccxcii.—A Y 
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Example 5.— Locus of Binodal Lines which is also an Envelope. 

Let the surfaces be 

[</> {x, y, z)J + (f) (x, y, z) [ijj (x, y, z) — a] + [xjj (x, y, z) — a]3 = 0. 

(A.) The Discriminant. 

The discriminant is found by eliminating a between the above and 

<f> {sc, y, z) + 3 [xfj (x, y, z) — cif = 0. 

The last equation gives 

*// {sc, y, z) — a = ± y{ — i <f> {sc, y, z)). 

Hence the eliminant is 

{[(f) {x, y, z)J + | f {x, y, z) y - ± f (x, y, z)} 

X {[(f) {x, y, z)J - f <j) (x, y, z) x/ - ± $ (x, y, z)) 

= W> {d y, 2)]3 [f {sc, y, z) + -if]. 
Hence the locus of ultimate intersections is 

[(f) {x, y, z)J [f {x, y, z) + 2V] = 0. 

(B.) The locus of Binodal Lines {which is also an Envelope) is f{x, y, z) = 0. 

For let 7], l be any point on cf) {x, y, z) = 0. 

Take a = \f> {£, y, £), and consider the single surface 

[f {x, y, z)J + <f> {sc, y, z) [xfj {x, y,z)-xp(g, y, £)] + [xfj {x, y, z) - xfj {£, y, f)]3 = 0. 

Put a? = £ -j- X, y = y Y, z = £ -\- Z ; then the lowest terms in X, Y, Z are 

X| + Y8-+Z| + Yd + zf + (x^ + Y?A + zt£)l. 
07] c£J V of 07 o?/ J 

Hence the origin is a binode. 

Hence (f> {x, y, z) = 0 is the locus of binodal lines. 

Further, because the biplanes are, when the origin is at the binode, 

xgf+ Yfi + Zff = 0’ 
X| + Y| + Z|) + (X| + Y| + Z| = 0. 
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The first of these touches the locus of binodal lines. Hence the locus of binodal 

lines is also an envelope. 

Hence the factor [</> (x, y, z)]3 of the discriminant is accounted for. 

(C.) The Surface </> (x, y, z) + -f- = 0 is an Envelope. 

For seeking its intersection with 

{x, V, + (p {x, y, z,) [iff (x, y, z) — a] + [v/i (x, y, z) — of = 0, 

it follows that 

bp {x, V, z) - aj — -TT (X, y,z) — a] + ffy = 0. 

Put 

therefore 

therefore 

xfj (x, y, z) — a — 77/9, 

y3 — \2r) + 16 = 0, 

(y — 2Y (y + 4) = 0, 

i.e., (9 [xb (x, y, z) - a] — 2}3 (9 [xjj (x, y, z) — a] + 4} = 0. 

Consider now any point g, 77, £ on the surface 

for which 

and 

[<j> (x, y, z)J + cj) (x, y, z) [xjj (x, y, z) — a] + (x, y, z) — a]3 = 0, 

<f> (€, y, £) 4- A = 0, 

4 (g, y, £) — a — f = 0. 

The equation of the tangent plane at such a point is 

[2(p (g, r), £) + 4 (g, y, £) — «] 

+ {<£ {g, y, £) + 3 [i/z (g, rj, £) — a]3} 

This reduces to 

C(f> | /A7. N 00 , /r7 

(X - + (Y - vPi + (Z - = 0. 

(X-0| + (Y-,)| + (Z-C)| 

0</> 

= 0. 

which is equivalent to 

c 
(X - f)s+ (Y - v)g + (z - £) 1} [<Mf, £) + *] = 0. 

9 
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Hence it touches the surface <f> (x, y, z) + 2-7 = 0. 

Hence <f> (x, y, z) + -2-7- = 0 is an envelope. 

This accounts for the factor <f> (x, y, z) + -2-7- in the discriminant. 

(D). Examination of the term D2fl/DxDa1 for this example. 

The equation Df/Da = 0 is, in this case, 

<P {x, V, 2) H bP {x, y, z) — aj = 0. 
Hence a1 satisfies 

<P (x= y> z) + 3 [> (x; y, z) — aff = 0, 

and dafdx is determined by 

0(f) 

dx 
+ 6 [xp (x, y, z) — = 0. 

Hence, at a point on the locus of binodal lines, i.e., where <f>(x, y, z) — 0, 

xp (x, y, z) — oq, it follows that da1/dx is infinite. 

Calculating D f/Dx Da, it follows that it is 

cd) r I r \ n 04r 
-Sx->i»(x,y,z)-a]-d-. 

Hence, \}fljDxDal is equal to the value of —dcp/dx at the point on a locus ol 

binodal lines. Hence it is finite. 

(E). Examination of the values of f2 

In this case ax, a.z are the roots of 

im 

/ 

<P {£, y, C) + 3 [xp (£ y, £) — aj = 0. 

Therefore, 

ai — 'Pity, 0 — v7{— £)}> 

% = ’A (£ y> C) + a/I — s <P (£ y, £)}■ 
Hence 

f(x, y, z, a2) = [<f> (£ 7], £)]2 + <j> (£ y, £) [xp (£ y, £) — af\ + [xp (£ y, £) — o2]3 

= [<£ (£ ^5 £)]2 ~ I (£ 0 v7! — i <£ (£ *?> 01 

1 >ytey,,,a,) = 6w(fj^0 - a,] = 6v/{- i</> (f,,,{)}. 

(£ ^ 0 

3/2 

— £ <P (£ ^ £) 

1 2 <M£ ??> 0 + — £)}■ 

v7 -r- 6 
0T/a + 

1 
10V 

Hence 
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Hence, at points on the locus of binorlal lines, i.e., when <£(£17, £) = 0 ; 

, /EA 
/2/ d«j2 = /a 10 8* 

Art. 9.— Consideration of Loci of Unodal Lines which are also Envelopes. 

(A.) It will be shown that this is the case reserved in Art. 1, viz., where 

Xd-ffDaf = 0. 

For if Dyj/Dnp = 0, i.e., [a, a] — 0, be substituted in the ratios (38), it follows 

that 

[a, £] = 0, [a, rf -- 0, [a, £] = 0. 

Substituting these in (24)-(26), it follows that 

K £] m + [£ (h) + [£ C] (H) = 0.(72), 

($£) + bu y] (&n) + lv> £] (§0 = 0.(73), 

[£, £] m + [£, vl (*v) + K, £] (SO = 0.(74). 

Now (72)-(74) are equivalent to one equation only by (38). Hence the tangent 

plane to the locus of unodal lines is 

[£ fl (X - O + [£ v] (Y - v) + [£ 0 (Z - 0 = 0. 

Now the tangent cone at f rj, £ is given by (53). 

The left-hand side of its equation is by (38) a perfect square. 

Hence the uniplane is 

Kfl(X-f) + [f,,](Y-,) + [a](Z-i)=0 . . . (75). 

Hence the uniplane is the same as the tangent plane to the locus of unodal lines. 

Hence the locus of unodal lines is also an envelope. 

(B.) The converse proposition, viz., that if the locus of unodal lines be also an 

envelope, then [a, a] = 0, will now be proved. 

If £ + §£, p + Btj, £ + S£ be a point on the locus of unodal lines near to £ 17, £, 

then the equations (24)-(27) hold. 

If the locus of unodal lines be also an envelope, then the equation of the uniplane 

(75) is satisfied by the values X = £ + Sf Y = 77 + Z = £ + S£. 

Therefore 

[ft f] (Sf) + [ft >;] (8,) + [ft £] (Si) = 0. 



166 PROFESSOR M. J. M. HILL ON THE LOCUS OF SINGULAR POINTS 

Comparing this with (24), it follows that 

Hence, by (38), 

[*, f] = 0 

[a, a] = 0. 

(C.) In this case, the values of dajdx, dajdy given by (47), (48), are indeterminate. 

For, because [a, a] = 0, it follows by (38) that [a, f] = 0, [m, y j = 0, [a, £] = 0. 

Hence, to determine dajdx, it is necessary to differentiate (44) with regard to x. 

Therefore 

[&£«] +2 [£«,a]^ + [a, «, a] • (76). 

Hence, because [a, a] = 0, and assuming that d2ajdxd is finite, dajdx satisfies the 

equation 

+[«,«, a] = 0 • • ■ (77) 
\ 0a 

Similarly dajdx satisfies (77). 

Hence, when x = g, y — y, z = £, aq = a2 = a, it follows that dajdx, dajdx are 

roots of the same quadratic. 

They are finite provided 

WfJUaJ fO.(78). 

The case excluded is that in which Df(x, y, z, a)/Da = 0 is satisfied by three equal 

values of a, when x = y = y, z = £. This case might be investigated in a similar 

manner to the case in which the above equation is satisfied by only two equal values 

of a, when x = y = y, z = £. 

D. Examination of the Differential Coefficients of A. 

In this case A and its differential coefficients are given by equations (51), (52). 

(70), and (71). From these it can be seen, without solving the quadratic (77) for 

da]/dx, dajdx, that A, dA/dx, d~Ajdx2, 03A/0x3 all vanish, when x = £, y = y, z = £. 

In like manner it can be shown that all the third differential coefficients of A 

vanish ; and, therefore, if U = 0 be the equation of the locus of unodal lines which is 

also an envelope, A contains U4 as a factor. 

Example 6.—Locus of Unodal Lines which is also an Envelope. 

Let the surfaces be 

l<f> (z, y, Z)J - bl* (x> y, z) — «]3 = 0. 
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(A.) The Discriminant. 

The discriminant is found by eliminating a between the above equation and 

3 [xjj (x, y, z) — a]'2 = 0. 

Hence it is [ (f> (x, y, z)]4. 

Hence the locus of ultimate intersections is 

[<t>{x, y, Z)J = °- 

(B.) The locus of Unodal Lines which is also an Envelope is <f> (x, y, z) — 0. 

For, let g, y, C be any point on the surface <f> (x, y, z) = 0. Take a — \p(g, y, £), and 

consider the single surface 

But 

[(f) (x, y, z)J — [ift (;x, y, z) — xjj (£ y, £) f = 0. 

x = g + X, y = y -j- Y, z = it, -f- Z. 

Then the lowest terms in X, Y, Z are 

X34 + y/ 
Cp or] + Z 

3? 

Hence g, y, £ is a unode on the surface 

[f (x, y, z)J - [ifj (x, y, z) - xfi (g, y. £)]H = 0. 

Hence the locus of unodal lines of the surfaces under consideration is (f) (x, y, z) — 0. 

Moreover, the uniplane 

is also a tangent plane to the locus of unodal lines. 

Hence the locus of unodal lines is also an envelope. 

Hence the factor [<f> (x, y, z)]4 in the discriminant is accounted for. 

Section III. (Arts. 10-11).—Supplementary Remarks. 

Art. 10.—Further remark on the case in which VhfgDag = 0. 

This condition indicates in general that the equation D/j/Dcq = 0 has two equal 

roots, but if/) be of the second degree in a}, D/^/Da, is of the first degree in cq, and 

hence it has either one root in av or is satisfied by an infinite number of values of av 

It is desirable to notice the latter case, because it corresponds to an important case 

treated in Part II., Section IV., of this paper. 
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Let f = U«2 + 2Ya + W = 0, where U, V, W are rational integral functions 

of x, y, z. 

Then the conditions f— 0, D/’/Da = 0, D2//D«2 — 0 are equivalent to 

Ua2 + 2Va +W = 0, 

U a + V =0, 

U =0, 

at all points of the locus of ultimate intersections. 

Hence U = 0, V = 0, W = 0 at all such points. 

Hence unless IT, V, W have a common factor, which could in that case be removed 

from the equation f — 0, the locus of ultimate intersections is not a surface, and hence 

its equation cannot be obtained bj equating a factor of the discriminant to zero. 

Hence this case need not be further considered. 

Art. 11.—If the surface f(x, y, z) = 0 have upon it a curee at every point of which 

there is a conic node, then the tangent cones at the co?iic nodes must break up 

into two planes* 

Let £, 7), £; f + ££ y 4* Sy, £ + S£ ; be neighbouring points on the curve. 

Then since there is a conic node at y, Cl 

M V. £) = 0, D//Df = 0, D//D, = 0, D//D£ = 0. 

And since there is a conic node at £ -f- S£, y -f Sy, l + §£, four other equations hold, 

which by means of the above give 

k a w + h, y] (w2 + k a m* 
+ 2h, a (&?) (SO + 2[c, fl (80 (§i) + 2[i, y] (so (Sv) + . . =0, 

Kf](8f) + [^]W + KCl(8£)+ ..... =0, 

[yi £] (§£) + [y> y] (°y) + [y, £] (H) +.= °> 

fl (§0 + [£ (&?) + [£, a (§0 +.=0. 

Retaining only the principal terms in the last three equations, it follows that 

* The geometry of a surface of continuous curvature shows at once that there cannot be a curve of 

conical points on a surface. 
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[6 f) (§0 + [£ 0 (SO + [0 Q (so = o, 

bi> 0 ) + bi> 0 (SO + bi, 0 (SO = o, 
ft « (sO + ft 0 (§0 + ft Q (SO = o. 

These equations must be consistent, and therefore 

ptcmo. mi _( 
d[ ?, v, n ~ 

This is the condition that the tangent cone at 0 77, 0 viz. :— 

k f] (x - fr + [,.,] (y - ,)* + [c g (z - if 
+ 2[,,Q(Y-,) (Z-£) + 2[{, f] (Z-0(X-f) + 2[f.7](X-f)(Y-,) = 0, 

may break up into two planes. 

PART II.—THE EQUATION OF THE SYSTEM OF SURFACES IS A RATIONAL INTEGRAL 

FUNCTION OF THE COORDINATES AND TWO ARBITRARY PARAMETERS. 

Section I. (Art. 1).—Preliminary Theorems. 

Art. 1. (A.) If 0 7], £ are the coordinates of any 'point on the locus <p (x, y, z) = 0 

(where <f> is a rational integral indecomposable function of x, y, z), and if the 

substitutions x = £, y — r\, z — £ make \p (x, y, z) and all its partial differential 

coefficients with regard to x, y, z up to the n1h order vanish, and if they also make 

any one of the partial differential coefficients of the (n + l)ih order vanish, they 

will also make cdl the partial differential coefficients of the (n + \)<h order vanish 

(ip being a rational integral function of x, y, z, but not in general indecom¬ 

posable). 

Suppose that when x = £ y = y, z = 0 

dn + 1\p' 
dxr +1 dys 0,j" - r - j 

where 3 denotes partial differentiation when x, y, z are independent variables. 

To prove that the same substitutions make 

and 

8,i+1^ _ 0 
dxrdys^1dzn-r~s * 

3,i + 1 -Jr -r-— a 
dxrdysdzn-r~s+1 

MDCCCXCII.—A. Z 
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It is given that all the values of x. y, z which make <f>(x, y, z) = 0, also make 

0” + 1 'yjr 

dxr + 1 dys dzn~T~s 

Now let £ + S£, y + &y, £ + §£ be a point near to £, y, £ on <f> (x, y, z) = 0. 

Therefore <f> (£, y, £) = 0. 

(f + y 4- l + K) — °.' ■ (!)• 

And since £ y, £ make 

0,l + 1 i|r 

d£r+1 dr)sd£“- 
= 0 

0” yfr 

dxr dys 02”" 
0, 

(2). 

for this is a differential coefficient of the nth order, £ + S£ 77 + By, £ + S£ must also 

do the same. 

Hence 

(§0 
0” +1 

dgr + 1 dyS a;-, + (sv) 
0" +1 -<|r 

0£r 0??s + 1 d£‘ 
UAA + (S0 

0»+i ^ 

d£rdr/sd£’‘- -s +1 
= 0. 

Also from (1) 

(«) | + (&») | + (»»| = 0- 

Since this is the only relation between 8£, 817, §£, it follows that 

/ cu + 1 \fr \ / d>l+1 ifr \ / 0” + 1 y/r \ 

\0p+10j^0f“-r_7 _ \0£r 0/?s+1 d£n'~r~s) _ \8|y 077* 8g”~r~*+1/ 

“ST="IT-=' m 
Hence, by means of (2), 

dn + l yjr 0” + 1i/r 

d£rdr)s+1d£n~r~s ~ ’ 0|r 0>f 0£''i~r-,s + 1 ~ 

In this way it is possible to pass from any one partial differential coefficient of 

order (n + l) by successive steps to any other of order (n + 1); at each step always 

diminishing by one the number of differentiations with regard to one variable, and 

increasing by one the number of differentiations with regard to another variable. 

Hence all the differential coefficients of the (n -f- l)th order vanish when x = £, 

y=zy,z=£. 
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(B.) (i.) If £ y, l are the co-ordinates of any 'point on the locus (f> (x, y, z) — 0 

[where <f> is a rational integral function of x, y, z which contains no repeated 

factors), and if the substitutions x = £, y = rj, z = £ make xp (x, y, z) = 0 [where 

xp is a rational integral function of x, y, z), then xp contains the first power of <f> as 

a factor. 

(ii.) If x = y = 77, z = £ make xp = 0, ~~ = 0, then \Jj contains the second power of 

<p as a factor. 

0-v/r 0^ • 
(iii.) If x = y = rj, z = £ make xp = 0,-fi = 0, . . . = 0, then xp contains <f>m 

as a factor. 

To prove (i.) suppose first that (p is indecomposable. It is obvious that xfj cannot 

be of lower dimensions than <f> in any one of the variables ; if it were, then all the 

values of x, y, z which make (p = 0 would not make xp = 0. 

It may happen that cf> does not contain all the variables x, y, z. But it must 

contain one of them ; suppose it contains x. 

If (f> be not a factor of xfj, proceed as in the process for finding the common factor of 

highest dimensions in x of (f) and xfj; and if, at any step of the process, fractional 

quotients in which the denominators are functions of y, z are obtained, let the 

denominators be removed in the usual way by multiplication throughout by a factor. 

Then either the process will terminate, or there will at last be a remainder, which 

is a function of y, z only, not x. 

In the first case <f> and xfj will have a common factor, and (f> will be decomposable, 

which is contrary to the hypothesis. 

In the second case a relation of the form 

A xfi = B cf> -j- C 

exists, where A, B, C are rational integral functions of y, z only. In this case, since 

all the values of x, y, z which make <j> = 0, also make xfj = 0, therefore they make 

C — 0. But C is a function of y, z only, not x. Now, the values under consideration 

are values of x, y, z. This is impossible. Hence this alternative does not hold. 

Hence </> must be a factor of xfj. 

If (f> be decomposable, its indecomposable factors may be taken separately, and 

shown as above to be factors of xfj. 

As it is further supposed that <£ contains no repeated factors, it follows that xfj 

contains (f) as a factor. 

To prove (ii.). 

By the same argument as in (i.) it follows that xfj contains (f> as a factor. Let 

xp — Pup. 

Z 2 
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Therefore, 
00 _ 
dx 

/ 9R , -n 30 

Now the substitutions x — y = y,z=£ make 0 = 0, 0 = 0, dxp/dx = 0. 

Therefore they make 

R 
00 

dx 
= 0. 

Now all the values of x, ■y, z which make 0=0 cannot make d(f>/dx = 0. Hence 

x — y = y, z — £ must make R vanish. 

Therefore R is divisible by 0 without remainder. 

Therefore 0 is divisible by 03 without remainder. 

To prove (iii.) proceed by induction. 

Suppose that the theorem is true for a given value of m. viz., that if x = £, y = y, 

z—t, make 0 = 0, dxfj/dx = 0, . . . dm~l 0/dxm~l = 0, then 0 contains 0"' as a factor. 

Let it now be given that x = £, y — y, z = £ also make dm \p/dxm = 0. 

Then by the assumption 

0 = p.0™, 

where p is some rational integral function of x, y, z. 

Therefore 

0™0 _ 0™0"' 0p 0™“10™ 
0a;™ ^ dxm m dx dxm ~1 

0™ 0™ 
=p + fo- 

where y is some rational integral function of x, y, z. 

Now 

dm 0™ 
hr™ 

= m ! + 0-°‘> 

where o- is some rational integral function of x, y, z. 

Therefore 

I} = m'-p^£) +*o><r+x)- 

Hence the substitutions x — y = y, z — l, make 

but they do not make d(f)/dx = 0. 
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Therefore they make p — 0. 

Therefore p contains (/> as a factor. 

Therefore \Jj contains <f>m + 1 as a factor. 

Hence, if the theorem is true for a special value of m, it is true for the next value. 

But it has been proved true when m = 2, hence it is true in general. 

(C.) If u, v be determined as functions of other quantities by the equations 

(f)(u, v) = 0, ifj(u, v) = 0, 

ivhere 6 and ifi are rational integrcd functions of u, v and the other quantities; then, 

if two systems of common values of u, v become equal, they will also satisfy the equation 

D [<fr> -f] 
D \_u, v] 

= 0. 

Conversely, if values of u, v can be found to satisfy at the same time the three 

equations 

(f) (u, v) = 0, xfj (u, v) = 0, B [0. _ ( ) 
D [u, v] 

then these values count tivice over among the common solutions of the equations 

<f) (w, v) — 0, xjj (u, v) ■= 0, 

except in the case ivhere (f> and xJj are of the first degree in u and v; and then the two 

equations have an infinite number of solutions in common. 

To prove this, let u, v represent the coordinates of a point in a plane. Then 

(f> (u, v) = 0, xJj(u, v) = 0 are the equations of two algebraic curves. 

The values of u, v which satisfy at the same time both equations are the coordinates 

of the points of intersection of the two curves. 

Let u = a, v = f3 be the coordinates of one point of intersection. The tangents to 

the curves at a, /3 are 

/TJ \ ((*’ ft) I /-XT p\ )Ci’ ft) A 

(U - a) + (V _ /3) d±^ll = o, 

where U, V are current coordinates. 

The two tangents will coincide, i.e., the curves have two coincident points of 

intersection, if 

0<£ («, /3) 3-v/r (a, /3) d(f) (a, yd) d\fr (cc, f3) 
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i.e., if u = a, v = /3 satisfy 

D [fajr] __ 

D [u, v] 

In the case where <f>, xft are each of the first degree in u, v, then the theorem 

requires to he specially interpreted, the interpretation corresponding to the fact that 

if two straight lines have two points in common, they have an infinite number of 

points in common. Hence, in this case, the two equations have an infinite number of 

solutions in common. (This particular case is of great importance in Section IV. of 

this investigation.) 

(D.) To determine the conditions that the equations cf>(u, v) = 0, xfj (u, v) = 0, may 

he satisfied by three coinciding systems of common values. 

In this case, considering as in (C) that u, v represent the coordinates of a point, the 

curves </> (u, v) = 0, xp (u, v) = 0 must have contact of the second order. 

Now 

00 dcf> dv  

du dv du 

Therefore 

d2cf> drcp dv d2cf> /diA3 dcf> d2v   

du2 du dv dv, dv2 ) dv du2 

d2v _ d2cf> fdcfifi ^ dcf) dcf) d2cp fdcfrf 

du2 du2 \dv du dv du dv dv3 \0% 
d±\~* 
dv, 

Hence, equating the values of d2v/du2 for the two curves, there is obtained the 

further condition 

/0<f>\-3 (fif> /0</>\3 2 d2<f) dcf) d(f> d2cf> /dcf) 

du? [dv) du dv du dv dv2 [du dv 

d^yfr /d\fr\' d2\fr d\fs d\fs d2\fr /0i|r\® /d\]r\^ 3 

_du2 [dv ) dudv du dv dv2 [du ) [dv 

Section II. (Arts. 2-12).—The Factors or the Discriminant, which in 

GENERAL CORRESPOND TO ENVELOPE AND SINGULAR POINT LOCI. 

Art. 2.—The Fundamental Equations. 

Let the equation of the system of surfaces be 

f(x, y, 2, a, h) — 0 (3), 
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where a, b are independent arbitrary parameters, and f is a rational integral 

indecomposable function of x, y, 2, a, b. 

The locus of ultimate intersections is obtained by eliminating a and b between 

(3) and 

D/ (x, y, z, a, h) _ 

Da 

D/ {x, y, z, a, b) _ 

D6 ~ 

where D denotes partial differentiation when x, y, z, a, b are treated as independent 

variables. 

Let the result of the elimination be A = 0, then A is called the discriminant. 

If x, y, z are chosen so as to make any factor of the discriminant vanish, it indicates 

in general that it is possible to satisfy equations (3), (4), (5) by the same values 

of a, b. Hence x, y, z can be expressed as functions of a, b. 

In this case x — cp {a, b), y = ip (a, b), 2 = x (a> &)• 

Eliminating a and b a surface locus is obtained. 

This is the general case. The exceptional cases are noticed in Section VI., Art. 30. 

(5), 

Art. 3.—The Loci of Singular Points of the System of Surfaces, 

The equation of the locus of singular points on the surfaces (3) can be obtained by 

eliminating a and b, between (3), and 

D/ (a. y, 2, a, b) _ 
Dx ~ 

Df (pc, y, g, a, b) . 

% ~~ 

D/ (a;, y, z, a, b) _ 

I)z ~ 

The singular points are in general conic nodes. 

The locus of conic nodes is therefore a curve, whose equations are given by 

eliminating a, b between (3), (6), (7), (8). 

It follows, also, by eliminating x, y, z between the same equations, that there is a 

definite relation between a, b. 

If y, t, be the coordinates of the conic node on the surface 

(8). 

(6), 

f{x, y, z, a, 0) = 0 (9)> 
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and f -f- S£, y + &y, £ -f S£ the coordinates of the conic node on the surface 

f(x, y, z, a + 8a, (3 + 8/3) = 0.(10), 

then the following1 equations all hold at the same time, 

/(£ V, l a, (3) = 0.(11), 

D/(£ v> & a> ft) _ a /io\ 

p/(g, V, K, «, ft) 
T (13). 

D/(f, 1, f. «, ft 
D? 

• (14), 

and four other equations, which, by means of the above, become 

§£ (s«> + H m = o.(is), 

[?, fl(Sf) + [f, ,](&,) + [f, £](§{) +[f, a](Sa) + [f, /3](8/3) = 0 . (16), 

h> f](8f) + fo> >)](8i7) + fo, (1(S£) + [>), a] (8a) + [j), /3](S£) = 0 . (17), 

[£, fl (Sf) + [£, ,] (8,) + [£, (] (8Q + [{, a] (8a) + [£, /3] (8/3) = 0 . (18). 

If 8a, 8/3 be eliminated from (15)-(18), the ratios : 817 : 8£ are determined. These 

ratios determine the tangent line to the curve locus of conic nodes. 

If /3 be determined as a function of a, so that (11)—(14) can be satisfied by the 

same values of y, £, then the equations (11) and (15) show that the locus of conic 

nodes is a curve lying on one of the general integrals of the partial differential 

equation of the surfaces (3). 

Example 1. Curve Locus of Conic Nodes. 

Let the surfaces be 

x2 + e (y — ^ of + (2 — ^ 8)2 — cx + a + b = 0 . . . . (19), 

where e, c are fixed constants; a, b the arbitrary parameters. 



AND LTNES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES. 177 

(A.) The locus of conic nodes is the straight line. 

x = \c, V + 2 = £ c3- 

To find this locus it is necessary to eliminate a, h between (19) and 

^ — 2x — c = 0.(20), 
Vx 

‘2e(y- | a) = 0.(21), 

g=2(2-i6) = 0.(22). 

Therefore 

x = \ c, y — \a, z — \b, y + z — \c2. 

Hence the locus of ccnic nodes is the straight line, 

x = ^c, y + z = ic2.(23). 

(B.) The locus of conic nodes lies on the general integral of the partial differential 

equation of the surfaces (19) obtained by putting b — \ c2 — a. 

To determine this general integral take the values of x, y, z from (20)-(22), and 

substitute in (19). This gives a + b = ^ c3. 

Hence the general integral is obtained by eliminating a from 

a;2 + e (y — i«)3 + (z + 4 a — | c2)2 — cx + \c2 = 0, 

and 
“ e (y - \ a) + (z + £ a — | c2) = 0. 

Hence it is 

e {y + 2 “ i C~Y + (1 + e) (x - \ c)2 = 0. 

It contains the locus of conic nodes, whose equations are given in (23). 

(C.) The locus of conic nodes does not lie on the locus of ultimate intersections. 

For the equation of the locus of ultimate intersections is obtained by eliminating 

a, b between 

f — x2 e {y — \ a)2 + (2 — ^ b)2 — cx + a + b = 0, 

Df 
Da = - e (y - £ ®) + 1 = 0, 

g=-(*-H)+i = o. 

2 A MDCCCXCII.—A. 
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It is therefore 

xz — cx + 2w + 2z — 1-= 0. 
e 

This does not contain the locus of conic nodes. 

It is an envelope touching f at the two points 

V = ha + ~- 

z = fi) -f- 1. 

Art. 4.—Investigation of the conditions which are satisfied at any point on the Locus 

of Conic. Nodes. 

In the preceding article it was shown that the surfaces (3) have in general a curve 

locus of conic nodes. 

If, how'-ever, every one of the surfaces (3) has a conic node, then equations (3), (6), 

(7), (8) are equivalent to three independent equations only, and the locus of conic 

nodes is a surface, whose equation is obtained by eliminating a and h between any 

three of the four equations (3), (6), (7), (8). 

It will be proved that such a surface locus of conic nodes is a part at least of the 

locus of ultimate intersections. 

With the notation of the last article, equations (11)-(18) hold ; but now there is no 

relation between a and f3. 

There is a conic node on the surface 

f{x, y, z, a + 3a, /3) = 0.(24). 

Hence (15) must hold when S/3 = 0. 

Hence 

D//Da = 0.(25). 

Similarly 

D//D£=0.(26). 

Since (11), (25), and (26) hold at all points of the conic node locus, it follows that 

the conic node locus is a part, at least, of the locus of ultimate intersections. 

The position of the tangent plane to the conic node locus may be obtained from 

(16)-(18) by eliminating 8a, S/3 ; and then using the relations 
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8?1 _ 8% 
X - | = Y -v ~ Z - £ 

(27). 

where X, Y, Z are current coordinates. 
Since (25) and (26) are satisfied at all points of the conic node locus, they are 

satisfied when 7/, £, a, /3 are replaced by £ + S£ rj + 877, £ -f S£, « + 8a, /3 + S/3 
respectively. 

Hence 

[a, £] (S£) + [a, 77] (S77) + [a, £] (8£) + [a, a] (8a) + [a, ftftSft = 0 . (28). 

[ft £] (8£) + [ft 77] (877) + [ft £] (S£) 4- [ft a] (Sa) 4- [ft ft] (8ft = 0 . (29). 

Now (28) and (29) are not independent of (16)-(18). 
For if Sa, 8/3 are definite infinitely small quantities, then (16)—(18) determine the 

values of 8^, 877, S£ corresponding to the conic node on the surface (10). Substituting 
these values in (28) and (29), and observing that Sa, 8/3 being independent may be 
supposed to vanish separately, the following relations are obtained (using the usual 
notation for Jacobians) :— 

^ii|],M,m.H]==0.(30), 
u L z . v , S - * J 

D[[g.M, [a im = 
D [ £ > v » f, « ] 

WMIMJ-n ' /,o) 
D[ f, V, K, B ]“u. 

Other similar relations exist which may be found by taking any four of the 
expiations (16), (17), (18), (28), (29), putting any one of the five quantities 8£, 877, S£, 
8a, 8/3 equal to zero, and expressing that the equations give consistent values for the 
four quantities which remain. 

Hence any minor of the fourth order of the Jacobian 

[g,H>[/3]i 
h[£, 77 , £ , « , /? ] 

vanishes. 

Art. 5.-—Investigation of the conditions which are satisfied at any point on the Locus 
of Biplanar Nodes. 

The equation of the tangent cone which, in this case, becomes the equation of the 

biplanes, at the singular point is 
2 A 2 
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[£ f] (X ~ f )* + [V, r,} (Y - yjf + [{, Q (Z - £)* 

+ 2[v,t](Y-v)(Z-£) + 2[lJ](Z-0(X-f) + 2[£,v](X-£)(Y-v)=.0 . (33) 

This breaks up into factors, linear with regard to X — Y — rj, Z — £. 

Therefore 

DIHIMjrn _ 0 

viz, v, n . 
(34). 

Now if in (16)—(18), S/3 be put equal to zero (which is possible, since there is by 

hypothesis a biplanar node on the surface (24)), the values of S£/Sa, Srj/Sa, Si,/Sot must 

be finite. 

But the denominators of the values of these expressions vanish by (34). Hence 

their numerators also vanish. 

Therefore 

P[[BM»H] = PLIB M. [fl ] _ 0 
h[?.^. n P[ £ , v , * ] 

p[[a ra. r«n = p[[a. w, rai = 0 
p [£>*?» £ ] p[^.?>«] 

p[w. Mi = p[ca w. mi = o 
p[ f, v, r ] p[, r, «i 

(36), 

(37). 

And similarly it can be shown that the following equations obtained by changing 

into /3 in the above also hold good :— 

pliB m. [j3u = pitaM [fl] = f) 
P[ £, V , i ] P[ £ , v , /3 1 

p[[fl, ca pa]} = p[[g. w, mi = 0 
p[ fm d[ *, r, i3] 

p[[iy].m. [0] = pnaM_m ] = 0 
P[ f , *?, M D[ 17, ?, £ ] 

From these it follows that (1G)-(18) are equivalent to two 

only in this case. 

Now consider equations (16), (17), (28). 

The equation (35) makes the determinant formed from the coefficients of S£, 8rj, Si, 

in them vanish. Hence it bears to them the same relation that (34) bears to 

(16), (17), (18). 

Therefore (16), (17), (28) are equivalent to two independent equations only. 

.(38), 

.(39), 

.(«). 

independent equations 
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In like manner (36) shows that (16), (18), (28) are equivalent to two independent 

equations only. 

Also (37) shows that (17), (18), (28) are equivalent to two independent equations 

only. 

Hence (28) and any two of the equations (16), (17), (18) are equivalent to two 

independent equations only. 

Similarly, by means of (38)-(40), it can be shown that (29), and any two of 

the equations (16), (17), (18) are equivalent to two independent equations only. 

Hence the five equations (16), (17), (18), (28), (29) are equivalent to two inde¬ 

pendent equations only in this case. 

Since (16), (28), (29) are not independent, it follows that (amongst other relations) 

and 

DJIB. W> 08]] 

D[ f, «, P ] 
(41), 

P[[fl, M. 08]] = D[[q], [«], Q8]] 

D [ v , a > 0 ] H [ £ . * , 0 ] 

Art. 6.—Investigation of the conditions which are satisfied at any point on the Locus 

of Uniplanar Nodes. 

In this case, the left-hand side of the equation (33) becomes a perfect square. 

Therefore 

- [y, a 

= K, a 

K’?] 

ly> y] 

K. y] 

[^] 

ly> Q 

& a- (43). 

Now, multiplying (16) by [y, £], (17) by [£ £], and subtracting 

(»«) {[f.»] h. f] - h.«] a. a + m {[f.« h, f] - h. P] [ft f]} = o. (44). 

Now, there is a uniplanar node on the surface (24), hence S/3 may be made to 

vanish. 

Therefore 

Similarly 

Therefore 

&«][?. a-fo.«][£a = o.(45). 

K ft fo. fl - lv, ft [£ fl = o. 

K a / b. a = [£ «] / «] = K ft/ lv> ft.(4(;). 

Now (43) and (46) show that (16) and (17) are equivalent to one independent 
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equation only. Similarly (J6) and (18) are equivalent to one independent equation 

only. 

H ence the following ratios hold 

[£ : K y\ ■■ [£ a : [£ «] : K P] 

= bh f\ ■ [y> y\ '■ [y, Q ■ [y>a] : iy> P\ 

— [£> £] ; [L y]: [£, £] ■ [£, «]: [£, P] ...... (47). 

Applying (47) to (16) and (28), it follows that these two are equivalent to one 

independent equation only. 

Similarly (16) and (29) are equivalent to one independent equation only. 

Hence the five equations (16), (17, (18), (28), (29), are equivalent to one indepen¬ 

dent equation only, and, therefore, the following ratios hold 

K a K Q [£ «] 
= [>?. a [y> y] Iv, a Ab a] [>?> A] 

= k, a [£. y\ [£> Q [£> a] K. /3] 

= o, a [«> 17] [*» £3 [a, a] [a, /3] 

= [p a [A y] [A a [A a] :[AA • 

Art. 1 .-—Examination of the Form of the Discriminant, and Calculation of its 

Differential Coefficients of the First and Second Orders. 

Let a}, bl; a2, b2; ... be the common roots of (4) and (5), and let it be supposed, 

in the first instance, that at points in the loci considered these sets of common roots 

are all distinct. 

Then if 
A = Af(x, y, 2, a„ b1)f(x, y, z, a2, b.2) . . . (49), 

where A is a factor introduced to make the discriminant of the proper order and 

weight, the result of eliminating a and b between (3), (4), and (5) is 

A = 0. 
Writing for brevity 

A — Rf(x, y, X, &]) = B/.(50), 

3a _ 0R f -p (W , ff , Vf &A . 
ox ox J 1 \] ),x I )c, ?jx L)bl dx) 

To determine dajdx, dbjdx there are the equations 

jy 
Dcq 

- 0, 
1)/ 

= o (51). 
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These give 

[*, «.] + K. «,] ^ + [a„ 6,] 3a; 

[*. M + K, 4 J I1+ [«-!, &i]f£ 

= 0 

= 0 

(52). 

Similar equations exist for finding 

3a, 36, , da, db, 
^ ~ cUI Cl 5 • 
dy dy dz d: 

These, however, are not jet required, it being seen at once that, in general, 

3A_3R „ p Df 

dx ~ dfJ + U \ h: (S3). 

[For a case of exception, in which yp- p1 -fi 1 ~ ^ does not vanish, see Art. 19, 

Ex. LI, E.] 

Differentiating again with regard to x, 

a^_3[R 

he2 ~ d.j? J + 

0r iy 
dr, Dx 

+ R 
!>/ , D3/ da, D2/ 86, 
Dor I)./; Da, 0a; D.i D6, dx _ 

92A _ 3R D/ 0R D/ T Dy_ D;/ 8a, 

3./; 3y dxdyJ dx Dy Dy Dx [_D.c Dy Da; Da, 3y 

D2/ 36 

Da: D6, 3// _ 

Hence, bj (52), 

32A 32R 3R Df 
D 

Bx> - a-sjf+ 2 a. n- + l! 3.i Do: 

py iy D/n 
;d 

p/ D fl 

Dx ’ Da, ’ D6, / 
/ 

Da, D6, 

D [r, a„ 6,] D [a, 

(54), 

. (55). 

(56), 

D 
32a _ sry 3r iy 3r d/ 

0.i dxdy' 3./; Dy 3y Do; ^ D [«, a„ 6,] 

iy D/1 
/ D 

p/ iy~ 
Da, D6, ./ Da, D6, 

D [a„ 6,] 
■ (57). 

Art. 8.—Proof of the Envelope Property. 

Let 7], £ be a point on the locus of ultimate intersections, and let the values of 

ci, b satisfying the equations (3), (4), (5) when x = £, y — rj, z = £. be a, yd. [It 

will be supposed first of all, that only one value of a exists, viz., a, and only one value 

of b exists, viz., /3. But the following cases will afterwards be noticed, viz., (1) 
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where more than one system of distinct values of a, b exist, and (2) the particular 

case of the preceding in which two systems of values of a, b exist which coincide.] 

In this case equations (11), (25), (26) are satisfied. 

Hence when x = £, y — 77, 2 = £, 

A = 0 

and 

a a 

dx 
becomes 

* = f 

y = v 

Hence when x = £, y = y, z = £, 

3 A/g/ _ 3A/p/_ 3A/!)/ 
0.r / Dx dy / Dy dz J Dz • • • • • \ 

Hence the tangent planes to A = 0,f(x, y, 2, a, /3). = 0, coincide at £ y, £. This 

proves that the locus of ultimate intersections is generally an envelope. 

It should be noticed that the proof shows that the locus of ultimate intersections 

touches in general at each point on it one of the infinite number of surfaces of the 

system passing through that point. This will be referred to in future, to distinguish 

it from more complicated cases, as a case of the ordinary envelope. 

It should also be observed that the above conclusion cannot be drawn if 

x = £j, y = y, z = £ make D//D.r = 0, DfjJdy = 0, Df/Dz = 0. 

Hence the investigation itself suggests the examination of the case in which a locus 

of singular points exists. 

Art. 9.—To prove that if E = 0 be the equation of the Envelope Locus, A contains 

E as a factor once and once only in general. 

(A). If x = £ y = y, z = £ be a point on the envelope locus, then suppose that 

the values of a, b satisfying (11), (25), (26), are a, 

Then one of the systems of values of a, b satisfying (4) and (5), must become equal 

to a, /3 when x = y = y, z = £. 

Suppose that ax becomes a, bx becomes /3. 

Hence A becomes Kf(^,y,C,«-,/3), where IT is what B, becomes, and therefore 

A vanishes. 

Hence by Art. 1, Preliminary Theorem B, A contains E as a factor. 

Further, A does not contain E more than once as a factor in general, for the value 

of 3 A/dx given by (53) does not in general vanish. But it would vanish if A con¬ 

tained a power of E above the first as a factor: for suppose A = E“. i|/, where m is a 

positive integer greater than unity, and \p some rational integral function of x, y, 2. 



AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES. 185 

Therefore 
0A 

dx 
mE m-1 

0E 
^ + E 

Hence when x = g, y — 17, 2 = £, 9 A/S.r = 0. 

Consequently, A contains E once, and once only in general as a factor. 

(B). It is necessary to examine the cases of exception. 

(i). If equations (11), (25), (26) are satisfied by more than one set of distinct values 

of a, b ; take, for example, the case where there are two sets of solutions, oq, {3^ ; a2, (3.2. 

Let cq, 61? a.2, b2 become cq, «3, (32 respectively, when x = f, y — 77, z = £. 

Putting 

A = R'/(®, y, 2, oq, Zq) /(a, y, z, a2, b2). . . 

/ P/ (*> &i) 
^ = y> z’ ai’ 2A 2:5 a2> ^ + R 

+ R/(*, y, z, als Zq) 

Da? 

D/ (.z, ?/, 2, cq, &„) 

. . (59). 

/(*, y, z, «2, 62) 

. . . (GO). 

Now, when £C = £, y = 17, z = £, 

/(a?, y, z, oq, Zq) becomes/(£ 17, £, a1? /3X) and vanishes, 

/(#, y, 2, cq, Zq) becomes /(f, 77, £, a2, (32) and vanishes. 

Hence dA/dx vanishes. Similarly oA/dy, dA/dz vanish. Therefore A contains E3 

as a factor. 

Similarly if there be p distinct sets of values of cq b satisfying (11), (25), (26), 

it can be shown that all the partial differential coefficients of A up to the (p — l)th 

order vanish. Hence A will contain E^ as.a factor. (See examples 4 (C.), 5 (C. ii.), 

6 (C.) in Arts. 10, 11, 12 respectively.) 

(ii.) The case in which two of the systems of values of the parameters satisfying 

equations (11), (25), (26) coincide, is dealt with in Arts. (12)-(25). The case, in 

which more than two systems of values of the parameters satisfying equations (11), 

(25), (26) coincide, may be treated in a similar manner. 

Example 2.—Ordinary Envelope. 

Let the surfaces be 

2 + (* — a) (y — b) = 0. 

(A.) The Disci 'iminant. 

A — 2. 

(B.) The Envelope Locus is 2 = 0. 

Every point on 2 = 0 is the point of contact of one only of the surfaces. Hence 

2 occurs as a factor once only on the discriminant, 

MDCCCXCII.—A. 2 B 
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It may be noticed that z — 0 touches each of the surfaces at one point only, 

x = ct, y — b. This result may be compared with the next example. 

Example 3. — Ordinary Envelope. 

Let the surfaces be 
z + (x — a) (x~ -f y~ — b) — 0. 

(A.) The Discriminant. 
A = z. 

(B.) The Envelope Locus is z — 0. 

Every point on z = 0 is the point of contact of one only of the surfaces. Hence 

z occurs as a factor once only in the discriminant. 

It may be noticed that z = 0 touches each of the surfaces at two points, viz., 

x = a, y = ± y/(b — a2). 

Art. 10.—To prove that if C = 0 be the equation of the Conic Node Locus, A contains 

C2 as a factor in general. 

Let f, y, £ be a point on the conic node locus, then equations (11) —(14) are satisfied. 

Hence, by (50), the substitutions x — y = rj, z = £, make A = 0 ; and, by (53), 

they also make 3A/3a: = 0. 

By symmetry they also make 3A/3y = 0, 3A/dz = 0. 

Hence, by Art. 1, Preliminary Theorem B, A must contain C2 as a factor. 

Example 4.—Locus of Conic Nodes. 

Let the surfaces be 

a (x — a)3 + fi (y — b)z + 6m (x — a) (y — b) + y-2 = 0, 

where a, ft, y, m are fixed constants, a, b are the arbitrary parameters. 

(A.) The Discriminant. 

To eliminate a and b between f — 0, D//Da = 0, D//D5 = 0, is, in this case, the 

same as eliminating x — a, y — b between 

f =z 0 —--— = 0 — = 0 • 
J ’ D O -a) 5 D {y - h) 

i.e., making the equation homogeneous by putting 

x — a — X/Z, y — b = Y/Z, 

it is necessary to find the discriminant of 

<*X3 + /3Y3 + 6mXYZ 4- yz2Z3 = 0. 



AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES. 187 

The invariants will in this, and in several of the examples which follow, be calcu¬ 

lated from the results given in Salmon’s ‘ Higher Plane Curves,’ Second Edition, 

Arts. 217-224. 

The invariant S = mafi-yz2 — to4. 

The invariant T = a2/33y2z4 — 20 m?Jafiyz~ — 8to6. 

Hence A = T2 + 64S3 = ctfiyz- (afiyz2 -{- 8w3)3. 

(B.) The Conic Node Locus is z = 0. 
•r 

Transforming the equation to the new origin a, b, 0, the lowest terms are of the 

second degree. 

Hence the new origin is a conic node on the surface. 

Hence z = 0 is the conic node locus. 

Hence A contains z2 as a factor. 

(C.) Three non-consecutive Surfaces of the System touch each of the planes 

z = dz ( — 8m3/a/3y)m at each point. 

To prove this, the tangent planes to the surfaces which are parallel to the plane 

2=0 will be found. 

The tangent plane to the surface 

a (x — a)3 + ft (y — bf + Gto (x —a) (y — h) -f yz~ = 0 
at £ y, £ is 

(* — f)[3“(f — «)'! + 6m (v — 0] + (y — v)l*fHv — + 6m (f —«)] 
+ (z - Q 27C = 0. 

If it be parallel to z = 0, the coefficients of x and y must vanish, but the coefficient 

of z must not vanish. 

Therefore, 
a (g — af + 2to (y — b) = 0.(61), 

ft (y — bf + 2to (£ —a) = 0.(62). 

From these, and from the condition that y, £ lies on the surface, 

2to (i — a) (y — b) + y£2 = 0.(S3). 

If these be satisfied, and £ do not vanish, the tangent plane is z = £. 

The solutions of (61), (62), (63) are 

?-a= 0, y — b ■= 0 , £=0. ..... (64), 

£■ — a = — 2ma-2/3/3“1/3, y — 6 = — 2ma~1/3/3-2/3, £ = ffi (— 8TO3/a/3y)l/2 (So), 

£ — a = — 2mcua"2/3j8_1/3 , y — b = — 2ma>2a-]/3/3~2/3, £ = ffi ( — 8TO3/a/8y)1/2 (66), 

£ — Cl = — 2m<u2a-2 3/3“1/3, ^ — b = — 2TOwa_1/3 /3~2/3, £ = d; (— 8TO3/a/3y)1/2 (67), 

where cu is an imaginary cube root of unity. 

2 B 2 
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The solution (64) corresponds to the locus of conic nodes. 

In the case of the solutions (65)-(67) the tangent plane at 77, £ is 2 = £. 

Hence either of the planes 2 — ± (— 8m3/a/3y)]/2 touches at any given point on it 

three of the surfaces of the system, viz., those whose parameters are given by the 

equations 

a = £ + 2ma-2/3 /3~y3, b = 77 + 2ma_13 y3~-3; 

a = ^ + 2nt(ua"2/3 /3_l/3, £> = 77 + 2m&j2a-]/3 y6“2/3; 

a = £ + 2maru~~ri /3“1/3, 6 = 77 + 2ma>a~113 /3~2/3 

Hence by Art. 9, B (i.), each of the factors 

z±(- 8m3/a/3y)1/2 

may be expected to occur three times in the discriminant. 

This accounts for the presence of the factors 

{2 ~b (— 8m3/a/3y)1/2}3 . {z — (— 8m3/a/3y)1/2}3 

i.e., 

(zz + 8m3/a/3y)3 

in the discriminant. 

Art. 11.—To 'prove that if B = 0 be the equation of the Biplanar Node Locus, 

A contains B3 as a factor in general. 

Let £ 77, £ be a point on the biplanar node locus. Then equations (11)—(14), (41), 

(42) are satisfied. 

The argument of the preceding article applies so far as A and its first differential 

coefficients are concerned. 

But further the values of 82A/3x2, 02A fxdij, given by (56), (57) vanish, in virtue of 

the above mentioned equations, except in the case (to be considered presently) where 

the substitutions x — y = 77, 2 = £ make 

i.e., 

D ~J)f W' 
_Dcq ’ Dij _ 

L> [cq, 5j] 
= 0, 

B [[«].[£]] (68). 

From the symmetry of the variables it follows that all the other second differential 

coefficients of A also vanish when x=£,y = r),z=£, (or the same results follow by 

Art. 1, Preliminary Theorem A). 

Hence by Art. 1, Preliminary Theorem B, it follows that A contains B3 as a factor. 
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Example 5.—Locus of Biplanar Nodes. 

Let the surfaces be 

a (x — of + a (y — 6)3 + 6m (x — a — z) (y — b — z) = 0, 

where a, m are fixed constants; a, b the arbitrary parameters. 

(A.) The Discriminant. 
r 

With the notation of the last article, the discriminant is the same as that of the 

equation 

aX3 + aY3 + 6m (X - zZ) (Y -zZ)Z = 0. 

Therefore 

S = 2m2aV — m4. 

T = 36m2a4z4 — 64m3a3z3 -f* 24m4a2z2 — 8m6. 

A = 16m4a3z3 (9az + 4m) (3a2^2 — 6maz + 4m2)2. 

(B.) The Biplanar Node Locus is z = 0. 

Transforming the equation by the substitutions x = a + X, y = b + Y, z — Z, it 

becomes 

«X3 + aY3 + 6m (X - Z) (Y - Z) = 0. 

Hence the new origin is a biplanar node on the surface. Hence z = 0 is the locus 

of biplanar nodes. 

(C.) (i.) The Ordinary Envelope is 9az + 4m = 0. 

(ii.) The Envelope such that every point on it is the point of contact of two 

non-consecutive Surfaces is 3a2z2 — 6maz + 4m2 = 0. 

To prove these statements it is necessary to find the tangent planes parallel to the 

plane z = 0. 

Hence it is necessary to have 

x.e., 

j = 0, D//Dx = 0, Df/Oy = 0, Df/Dz =f= 0, 

a (x — a)3 + a (y — 6)3 + 6m (x — a 

a (x — a)2 + 2m (y — b — z) 

a (y — 6)2 -f 2m (x — a — z) 

) (y - b - z) = ° . ■ (69). 

= 0 . ■ (70). 

= 0 . • (71). 

0 . ■ (72). x — a — z -\- y — b — z 
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From (70) and (71) either 

x — a — y — b . 

or 
a (x — a) + a (y — b) — 2m . 

(73) , 

(74) . 

(i.) Taking (73), and eliminating 2 and (y — b) from it and (69), (70), it follows 

that 
(x — a)3 (x — ad- 4m/3a) = 0. 

Now, if x — a = 0, then y — b = 0 by (73), and 2 = 0 by (69). 

Hence (72) is not satisfied. This solution corresponds to the biplanar node locus. 

But if 
x — ci— — Am/Za, 

y — b = — 4m/3a by (73), 
and 

2 = — 4 m/9 a by (70). 

These values satisfy (69)-(72). 

Hence 2 = — 4m/9a is an envelope. Each point £, 77, — 4m/9a on it is the point of 

contact of one surface of the system whose parameters are 

a = f + Am/Sot, b = 7] + 4?n/3a. 

Hence 9a2 fi- 4m = 0 is an ordinary envelope. 

(ii.) Taking (74), and eliminating (x — a) and (y— b) from it and (69), (70), it 

follows that 

3a222 — 6maz -f- 4m2 = 0.(75). 

The corresponding values of (x — a), (y — b) are determined by (74) and 

a (x — a)2 — 2m (x — a) — 2mz -f- 4m2/a = 0. 

These values satisfy (69)-(73). 

Hence each point rj, £ on the imaginary locus (75) is the point of contact of two 

surfaces of the system, whose parameters a, b are determined by the equations 

a2 (£ — a)2 — 2ma (£ — a) — 2ma£ + 4m2 = 0, 

a (£ — a) fi- a (y — b) — 2m = 0, 

where £ is one of the roots of (75), 

This accounts for the factor 

(3a222 — 6maz d- 4m2)2 

in the discriminant. 
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Art. 12.—To prove that if U = 0 be the equation of the Locus of Uniplanar Nodes, 

A contains U6 as a factor in general. 

(A.) Amongst the conditions satisfied at every point of the uniplanar node locus, 

will be found the following, see the ratios (48) :— 

[a, a] [/3, /3] — [a, /3]3 = 0.(76). 

Now, by Art. 1, Preliminary Theorem C, this means that the equations 

DfjDa = 0, Df/Db = 0 

are satisfied by two systems of values of the parameters which become equal when 

x = £ y = 77, z = £, the coordinates of a point on the uniplanar node locus. 

[It must be remembered that the theorem has to be specially interpreted for the case 

in which Df/Da, Df/Db are both of the first degree in a, b, i.e., for the case in which 

/is of the second degree in a, b. This is done in Section IV.]. 

Now this is the case previously reserved in Art. 7, Art. 9 (the second case of 

exception), and Art. 11 (condition (68)). 

As there are, in this case, two equal values of each of the parameters, a, b, it may 

be expected that there will be two (not necessarily equal) values of da/dx, 8 b/8x. 

It will appear presently that in some cases 8a/8x, 8b/8x may become infinite, but 

this is not the case for the uniplanar node locus, in which the values of dafdx, 8bf 8x 

as given by (52), become indeterminate, because the conditions (48) are satisfied. 

Differentiating (52) again with regard to x, it follows that 

[x, x, af\ -j- 2 [x, rij, +2 o> «i. 6i] 
06, 

8x 

+ 2 [«!, ®i. 6,] (!“') (fj + [«„ h, M (fr) + [<*i> “J + [“!• \ll -0 • 

O. *, M + 2 [*, «„ 6,] + 2 [x, blt &,] | + 0„ «„ 6,] (|Y 

(77), 

+ 2KKM(f)If) + Pi,K6.](IT + [«.,+ Pi,Mai = 0 • (78). V 8x 8x2 

Multiplying (77) by [0,, bf\, (78) by [oq, b{], subtracting, putting x = £ y = 17, 2 = £, 

and therefore cq = a, 6, = (3, and using (76), it follows that 
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[£ £ a] [ft ft - [£ £ ft [a, ft 

+ 2 | {[#, a, a,] [fi, 13] - [f, «, /3] [a, /3]) + 2 | ([#, a, /3] [fi, /3] - [f, fi, /3] [a, /3]} 

+ (|t) {[a, a, a] [/3, /3] — [a, a, fi] [a, /3]} 

+ 2 (|) (!){[«, «, /3] [yS, 13] - [a, 13,13] [a, /3]] 

+ (|)"{[“.Affl[A«-[A/3,/3][a,^]j = 0.(79), 

and this equation with either of the equations derived from (52) by changing therein 

x into £ y into y, z into £ and therefore ax into a, bx into ft determines in general two 

values for 3<x/0£ and two corresponding values for 0/3/3£ 

The second of equations (52) gives 

[/3,f] + [«,ffl| + [A/3]| = 0.(.80). 

Eliminating 0/3/0£ between (79) and (80), it foliows that 

0«\2 

a* 

+ 2 

[a, a, a] [ft ft3 — 3 [a, a, ft [ft ft3 [a, ft+ 3 [a, ft ft [ft ft [a, ft2—[ft ft ft [a, ft3 

[£ a] [ft ft3 — 2 [£ a, ft [ft ft2 [a, ft + [£ ft ft [ft ft [a, ft2 

- [a, a, ft [ft ft2 [ft £] + 2 [a, ft ft [ft ft [a, ft [ft ft - [ft ft ft [a, ft2 [ft ft 

+ 
[£ £ a] [ft ft3 — [£ £ ft [ft ft2 [a> P] 

-2 [£ a, ft [£ ft [ft ft2 + 2 [£ ft ft [£ ft [ft ft [a, ft 

+ [£ ft3 [«, ft ft [ft ft - [£ ft2 [(8, ft ft [*, ft = 0 (81). 

This is in general a quadratic for 8a/8£ 

The two corresponding values of 3ft3£ are given by (80). 

The case of exception, when the quadratic for 3a/3£ reduces to an equation of the 

first degree, viz., when 

[a, a, a] [ft ft3 — 3 [a, a, ft [ft ft2 [a, ft+3[a, ft ft [ft ft [a, ft2 — [ft ft ft [a, ft3=0, 

will now be considered. 

(B.) The meaning of the condition may be determined by means of Art. 1, Pre- 

iminary Theorem D. 
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Put therein <f> (u, v) — Df/Du, xjj (u, v) = Df/Dv. 

Then the condition of Preliminary Theorem C, which also holds, is 

Dy Wf _ / py y 
Dm2 Di?2 Dv) 

The condition of Preliminary Theorem D is equivalent to 

py/ py 
D id \ Du Dv 

Dy dy py py /pyy 
DADw Dm Dv Dm2 D« Dv2 \Dm2/ _ 

pyy 
D v*J 

py /py\3_ o py py py , py / py 
Dv? Dv \Dv2/ ~ 2 Du Dv2 Dv2 Dm Du + Dv> \DtiP-, 

py y 
DwDvJ 

Dividing out by (D~f[Du Du)3 the last equation becomes, by the preceding, 

Dy/pyy o d3/ d2/ /d2A2 py / Dyyp2/ py / Dy \3 

Did \Dv2/ _ 3 Dm2 Do Du Dv [d?J + 3 pk pD \Dm Dv) Dv2 ~ Dv3 \DmD«/ 

Now in the former part of this article, a and /3 correspond to u and v. 

Hence the condition that the equations D//Da = 0, Djf/D6 = 0 may have three 

coinciding systems of common roots is 

[a, a, a] [/3, /3]3 — 3 [a, a, /3] [/3, [a, /3] + 3 [a, /3, fi ] [/3, /3][a, /3J — [/3, /3, £] [a, /3]3 = 0. 

This fact must be taken account of in forming the discriminant, and the whole of 

the work must be modified in accordance with it. But this case will not be further 

discussed. 

(C.) It has now been shown how to determine the values of da/dx, db/dx, when 

x = £, y = rj, z — £, the coordinates of a point on the uniplanar node locus. 

Now, when x — g, y = rj, z == £, 

rt 7 \ df (x,y, z, avl J 
/ (a y, 2, oq, A), -^- 

both vanish. 

dy (x, y, a, a 1,bl) d /df(x, y, z, av 6J 

Hence when x = A y = rj, z = 

MDCCCXCII.—A. 

0£ 9a: 

_ 0 /D/ Q, y, z, av p) 

dx ^ Dx 

r- —| |—■ -. dll. . r 7 0k 
= [x, x] -p [x, Gq] 0^ + \_X, A] 0-p . 
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i.e., 

^ ^ ^comes [f, f] + [f, a] | + [f, /3] || 

[||] {[£, 0] + [«, /3] | + [/3, /3] || by (48), 

therefore S'2/ (x, y, z, ax, bfjdx2 vanishes by (80). 

In like manner S f (x, y, z, a.2, b^/dx2 also vanishes when x = y = y, z — £. 

Now writing A = It//, for brevity, and forming all the differential coefficients up 

to the fifth order inclusive, each term in any of these differential coefficients is the 

product of terms, one of which is / or f2 or a first or second differential coefficient 

of/i or/2. 

Hence when x = y — y, z — £, all the differential coefficients up to the fifth order 

vanish, and, therefore, by Art. 1, Preliminary Theorem B, A contains U6 as a factor. 

Example 6.—Locus of Uniplanar Nodes. 

Let the surfaces be 

a (x — a)3 + /3 (y — bfJ -f 3 [c (x — a) -f- t/z]'- = 0 

where a, /3, c, p' are fixed constants; a, b the arbitrary parameters. 

(A.) The Discriminant. 

The discriminant is the same as that of the equation 

aX3 + /3Y3 + 3Z (cX + gzZf = 0. 

Hence 

S = 0 

T = a/32/z3 (Qap'Z — 4c3) 

A = a2/3t/z6 (9agz — 4c3)2. 

(B.) The Locus of Unodes is z — 0. 

For putting r = a -|- X, y =6 + Y, z = Z, the equation becomes 

aX3 + /3Y3 + 3 (cX + r/Z)2 = 0. 

Hence the new origin is a unode. There are no other singular points on the 

surface. 

Hence the locus of unodes is z = 0. 

(C.) The Envelope such that every 'point on it is the point of contact of two non- 

consecutive Surfaces is 9agz — 4c3 = 0. 

To prove this it is necessary to find the tangent planes parallel to z — 0. 
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Hence it is necessary to find x, y, z, so that 

f=rx(x — af + /3 (y — 6)3 -f 3 [c (,x - a) + gzf = 0 . . 

Therefore 

therefore 

3 7T. = a (x ~ aY + 2c [c (x ~ «) + 9*] 

N fjf = 2 9[o(x~a) + gz] 

y — b, 
a(x — of -f 3 [c (x — a) + gzf — 0, 

a (x — a)2 + 2c [c {x — a) + gz] = 0 ; 

[c (x — ci) + gz] [c (x — a) + 3gz] = 0. 

The solution c (x — a) + gz = 0 is inconsistent with (85). 

Hence it is necessary to take 

c (x — a) + 3gz = 0. 

Substituting in (83), 

(9gaz — 4c3) = 0. 

= 0 . 

= 0 . 

#0 . 

■ (82), 

• (83), 

• (84), 

, (85). 

The solution z— 0, gives x = a, y — b, and therefore belongs to the unode locus. 

The solution 9gaz — 4c3 = 0 

gives 
ct. {x — ct)' -f- 2c~ {x — ct) -fi 8cY9a —— 0, 

and therefore 

x — a — — 4c~/3a, 

or 
x — a — — 2o3/3a. 

Hence at every point y, 4c3/9ya on this locus, the locus is touched by two non- 

consecutive surfaces of the system, viz., those whose parameters are given by 

ci = £ + 4c3/3a, b — y; 

and 
a = ^ + 2c2/3a, b = y. 

This accounts for the factor 

(9 gaz — 4c3)3 
in the discriminant. 

2 c 2 
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Example 7.—Locus of Uniplancir Nodes. 

Let the surfaces be 

a (x —■ of + fi (y — bf — 3n (z — ax1 -f- by)2 = 0, 

where a, fi, n are fixed constants, and a, b are the arbitrary parameters. 

(A.) The Disci -iminont. 

Putting £ = z — x2 -f- if, the equation is 

a(x — cif + fi(y — b)s — 3n {£ + x (x — a) — y (y — b)}~ = 0. 

Hence the discriminant is the same as that of the equation 

aX3 + fiY* - 3nZ (£Z + xX - yY)2 = 0. 

Therefore 

S = rdafixy'Q 

l1 = 9n2a2/P£4 + 4n3a/3£3 (fix* — ay3). 

Therefore 

A = ?d'a3/32£G [{9a/3£ + 4n (fix* — ay3)}2 -f* 64?ra/3x3y3]. 

In order to show the way in which the factor £G arises in the discriminant, the dis¬ 

criminant will now he calculated. 

It is known to be the result of eliminating X, Y, Z from Df/D% = 0, D//DY = 0, 

D//DZ =• 0, i.e., from 

aX3 — 2nxZ (£Z + xX —■ yY) = 0 , ■ (86), 

y8Y2+2nyZ(£Z+xX-yY) = 0 ...... . (87), 

(£Z + xX - yY) (3£Z + xX - yY) = 0 . . . . (88). 

From (86) and (87) 

Y = ±xv/(-|). . (89). 

Substituting in (86) 

aX3 - - 2nxXZ jx T y \/( - “) } - 2w(Z3 = 0. 

Put 

X — <
*

 
I 

^1
4 II jfrv
 

+
 

<<
 1 II -p
 

Then two of the values of X/Z are found from 

aX2 — 2 nx^XZ — 2 »x£Z2 = 0 (90), 
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and then 

y = + xa/(-|.) • 
and the remaining two values from 

«X2 — 2nxyXZ — 2 nxtJZ? = 0 

and then 

(91) ; 

(92) , 

(93) . 

Take the factors of the left-hand side of (88) separately, and form first of all the 

part of the discriminant depending on 

CZ + xX- yY, 

Let the roots of (90) be X1/Zi and X2/Z3; then the corresponding values of Y by 

(91) are 

W(-!) “d 
Hence 

azx + xX, - yY,) az, + -yY,) 

= «Z, + £X,) (£Z2 + £X2) 

= ZA(f+{f^ + |) + f|g 

= ZA {1% 

In like manner, taking the roots corresponding to (92) and (93), 

aZ3 + a>X3 - yY,) (£Z4 + *X4 - yY,) = Z3Z4<* 

Next, taking the other factor of the left-hand side of (88), the part of the dis¬ 

criminant corresponding to the roots of (90) and (91) is 

(3% + xX, - yY,) (3£Z2 + ^X2 - yY,) 

= (3CZ1 + fX1)(3CZa +W 

= ZlZi(^ + 3ff(| + |)+f-||) 

= ZlZi (g{* + ^^), 

In like manner the roots of (92) and (93) give rise to the following part of the 

discriminant:—■ 
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Hence the roots of (90) and (91) give rise to the portion 

(W(9£ + ^)f, 

and the roots of (92) and (93) to 

Hence the discriminant is 

(Z,z»wp(8H? + + ,») + i'iAIA 

(zww («ip+ :'£ (/3*s - «j/8) + “y’y 

Z1Z2Z3Z t \ r r 

*/9 
£,; [{9a/3£ + 4n (fix6 — a?/3)}2 -f 64?i2«/Trk/3]. 

This agrees with the result previously stated. 

Returning now to the part of the discriminant arising from the two systems of roots 

of (90) and (91), it will be shown that the factor £3 arises entirely from one of the 

systems only. 

Consider, in fact, 

(£Zi + xXx - 2/Yi) (HZ, + xX1 - yYJ, 

which is the part of the discriminant due to the system of roots X1? Y1} Zv 

It is equal to 

where 

Therefore 

(£Zi + &,) (3CZ, + £X,) = Zf2 {3? + 4ft (Xj/Zj) + f (X^Zj)2} 

« {XJZ{f — Znxi; (Xj/Zj) — 2??x£ = 0. 

<£Z, + - j/Yj) (S{Z, + xX, - !/¥,) = S{» + ■A'S? + A (4ft + AA3 

Now, 
X1 __ nxg_ y/(nhsg2 + 2nxu%) 
rj —-I... 

yyf ny| r «£ __ 2 »3£3 
« « | ~ 2 ?ivc2£1 2 

If the root corresponding to the positive sign be taken, then 

(£Zi + ajXx — yYj) (3£Zi + xXY — yYx) 
is not divisible by £, 
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If, however, the root corresponding to the negative sign be taken, i.e., 

Z, If 

then 

(£Zj + xXj - yYf (3£Z, + xXx - yYx) 

Hence the factor £3 arises exclusively from the substitution in f of one system of 

values of the parameters satisfying both the equations D//Da = 0, D//D6 = 0. 

A similar demonstration shows that the solution 

will also give rise to the factor £3. 

Now it will be shown presently that £ = 0 is the unode locus, 

on the unode locus, 

Y V 
A3 = 0 ±3 
Z3 ’ z3 

0. 

Hence at any point 

Hence, at such a point there are two values of x — a and two of y — b which 

vanish. Hence two systems of values of a, b, satisfying both the equations Df/Da = 0, 

D//D6 = 0 become equal; viz., the two values of the parameter a become equal to 

the ^-coordinate of the point, and the two values of the parameter b become equal 

to the y-coordina.te of the point. 

(B.) The Locus of Uniplanar Nodes is £ = 0. 

To find the singular points, it is necessary to find values of x, y, z satisfying all the 

equations 

a {x — a)3 + /3 (y — 6)3 — 3n (z — ax -f- byf = 0, 

a (x —• a)2 + 2na (z — ax + by) = 0, 

/3 (y — b)3 — 2nb (z — ax + by) = 0, 

z — ax + by — 0. 

The only solutions of which are 

x — a, y = b, z = a2 — b2. 
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Now, transforming the equation by means of the substitutions x = a + X, 

y = b -|- Y, 2 = cr — 62 4- Z, it becomes 

«X3 + /3Y3 - 3n (Z - «X + 6Y)2 = 0. 

Hence, the new origin is a unode. 

Hence the locus of unodes is 2 = x2 — y2, i.e., £ — 0. 

(C.) The Envelope Locus is 

{9ay8£ + 4n (/3z3 - a?/3)}2 + 64a/Sn2a;V = 0 .... (94). 

On examining the manner in which the discriminant was formed it can be seen 

that the factor corresponding to the envelope focus is obtained from (86), (87), and 

3£Z + aX - yY = 0. 

Hence it is the result of eliminating X, Y, Z from 

£Z -j- xX. — yY — 

aX2 + AnxtJZL = 

/3Y2 - 4n«/£Z2 = 

2£Z' 

0 

0 

(95). 

To prove that (94) is an envelope locus, it is necessary to show that if <f> be the 

left-hand side of (94), and f = 0 he the equation of the system of surfaces, then it is 

possible to find values of x, y, z which satisfy at the same time all the equations— 

f — 0, <j> = 0 

iy /fy _ Df /ty _ Iff /fo b 

D xj dx D yj oy D zj 3z j 

(96). 

Changing the independent variables from x, y, 2 to x, y, £, then, if § denote partial 

differentiation when x, y, £ are independent variables, equations (96) are equivalent to 

i.e 

/=0, cf) — 0 

/H>_ _ §f /%4> _ 3/ /8j> 
bx/ bx ~ by I by ~ bz/ bz ’ 

3a (x — a)2 — 6?i (2x — a) [% -I- (x — a)x — (y —b) y] 

24n/3x2 [9«/9£ + 4?t (/9a;s — a?/3)] + ld2n2a^x2yi 

3/9 (?/ — b)2 + (2?/ •—&)[£ + (x ~ a) x ~ (y —b) y\ 

— 24/ia?/3 [9a/9£ -)- 4w (/9x3 — c«/3)] + 19’2n2u/3x?y2 

— 6w [^ + a; (cc — a) — y (y — 6)] 



AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES. 201 

or, putting x — a = X/Z, y — b = Y/Z, 

aX2 - 2n (xZ + X) (£Z + xX - yY) 

24:nfix- [9a/3£ + (/3Y5 + ay3)] 

_ /3Y2 + 2?i (yZ + Y) (gZ + .rX - yY) 

— 24nocy2 [9a/3£ — 4?i (/3xi3 + at/3)] 

- 2tiZ (gZ + xX - yY) 

18a/3 [9a/3f + 4ti (/3Y5 — ay3)] 

It will now be shown that the values of x, y, z which satisfy (95) also satisfy 

these equations. 

For substituting from (95), these equations become 

aX2 + 4?i£Z (xZ + X) 

Anfix- [9a/3f + An(fixs + at/3)] 

These reduce further to 

/3Y2 - 4n£Z (yZ 4- Y) 

— 4na.y~ [9a/3£ — 4n (fix* + ay3)] 

_4n£Z2_ 

oa.fi [9a/3£ + 4ti (/3»3 — ay3)] 

i.e., 

_4?t£ZX_ _ — 4n£'ZY 

Anfix1 [9«/8C + An(fix* + «y3)] — 4?iay2 [9a/3£ — 4?t (/3.x3 + ay3)] 

__UtfZ2_ 

3a/3 [9a/3£" + 4?i (/3a;-3 — ay3)] ’ 

_X_Y_ 

Anfix" [9a/3£ + 4n (fix3 + ay3)] 4?tay2 [9a/3f — 4?i (/3ar3 + ay3)] 

_ Z_ 

3a/3 [9a/3£ + 4n (fix* — ay3)] 

Now the relations (95) satisfy (94). 

Further (94) can be written in either of the forms 

[9a/3£ + 4n (fix3 -f a2/3)]' = 1AAnccfi^y3, 

[9a/3£ — An (fix3 -f ayz)J — ~ lAAnafi-^x3. 

Hence it is necessary to show that 

_X_Y__Z_ 

48nafix2y \/(nfiy£) 48nafixy2 \/( — notx£) 2An»fixy ^/(— afixy) 

i.e., 
X2/Z2 = — Axilla. 

Y 2/Z3 = 4 nylffi, 

and these are true by (95). 

Further, <£ = 0, _/= 0 are both consequences of (95). 

Hence all the equations (96) are satisfied by the same values of x, y, z. 

MDCCCXCII.—A. 2 D 



202 PROFESSOR M. J. M. HILL ON THE LOCUS OF SINGULAR POINTS 

Section III. (Arts. 13-15).—Consideration of the cases reserved in the 

PREVIOUS SECTION, IN WHICH TWO SYSTEMS OF VALUES OF THE PARAMETERS 

SATISFYING THE EQUATIONS, Df/Da = 0, Df/Db = 0, COINCIDE AT A POINT ON 

the Locus of Ultimate Intersections. 

The interpretation of the condition 

[a, oc] [(3, (3] — [a, /3]2 = 0, 

which is marked (76), when the equation of the system of surfaces is of the second 

degree in the parameters, is different from its interpretation when it is of a higher 

degree. 

It will be supposed, in this section, that the degree of the equation of the. system 

of surfaces in the parameters is higher than the second. 

Art. 13.—To prove that if each Surface of the System have Stationary Contact with 

the Envelope, then A contains E3 as a factor. 

(A.) It will be shown that when the condition (76) holds in the case of an envelope 

locus, the curve of intersection of the envelope with each surface of the system has a 

double point at tlm point of contact, such that the two tangents coincide. [Such 

contact is called stationary (see Salmon’s ‘ Geometry of Three Dimensions,’ 3rd 

Edition, Arts. 204, 300).] 

To prove this, it is necessary to find the direction of the tangents to the curve of 

intersection of the envelope and one of the surfaces of the system at the point of 

contact. 

Let £ y, £, be a point on the envelope. Let the surface touching the envelope at 

this point be 
f(x, y, z, a, (3) — 0, 

which has been marked (9). 

Then equations (11), (25), (26) hold. 

Let £ + S£ y + S17, £ + be a point near to 77, £, which lies on the curve of 

intersection of the surface (9) and the envelope. 

Since it is on the envelope, it will be the point of contact of one of the surfaces of 

the system. 

Suppose it is the point of contact of the surface (10). 

Then 

f f + §£ V + S-*7» £ + a, /3) = 0.(97), 

and the equations obtained from (11), (25), (26) by changing £, 77, £, a, [3 into £+ 

y + &y> £ + S£, a + Sa, (3 + S/3. 
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Then, from (97) 

[f] (Sf) + M (3tj) + [f] (Sf) 

r K f] (Sf)3 + [v, y] (Sy)1 + [f, f] (Sf)2 -I 

5 l + 2 [y, a (Sy) (SO + 2 [o f] (SO (Sf) + 2 [f, ,] (Sf) (S,) J 

-}- terms of the third and higher orders = 0 . .(98), 

and by means of the substitutions in (II), (25), (26), 

/(£ v> £> P) 

+ [f] (Sf) + M (§0 + ra (SO + [a] (Sa) + [0 (S/3) 

[f> f] (Sf)3 + fo, 0 (S# + ft a (SO3 

4- 2 [v, 0 (8,) (SO 4- 2 [0 £] (SO (SO + 2 [0 o (SO (SO 

+ 2 [0 a] (SO (SO 4 2 [77, a] (S77) (Sa) + 2 [0 a] (SO (8a) 

+ 2 [0 0 (SO (h0) + 2 [77, (3] (SO (878) + 2 [0 0] (SO (S/3) 

+ [a, a] (Sa)3 + 2 [a, /3] (8a) (S/3) + [/3, 0] (S/3)3 

+ terms of the third and higher orders = 0 (99), 

[«] + [a, O (SO 4 [a, O (SO + [a, 0 (SO + [«, *] (Sa) + [a, 0 (S/3) 

4- terms of the second and higher orders = 0 . (100), 

C/3] + C/3, 0 (SO 4- C/3, 0 (SO + [A 0 (SO 4- [A «] (SO 4 [A /3] (S/3) 

4- terms of the second and higher orders — 0 . . . . (101). 

Making use of (11), (25), (26), (98), equations (99)—(101) become 

[f, “] (Sf) (Sot) + [y, ot] (Sy) (Soc-) + [f, 01] (Sf) (Sot) 

4- [f, A] (Sf) (S13) + [,, /3] (Sy) (8/3) + [£, /3] (Sf) (S/3) 

+ i [a, a] (Sot)2 + [ot, /3] (Sot) (S/3) + I [A /3] (S/3)2 

4- terms of the third and higher orders = 0 (102), 

[«. f] (Sf) + [«, y] (Sy) + [a, f] (Sf) + [ot, «] (Sa) + [a, 0] (S/3) 

4- terms of the second and higher orders — 0 . (103), 

[A f ] (Sf) + [A y] (Sy) + [A f] (S() + [A a] (Sa) + [A /3] (S/3) 

4 terms of the second and higher orders = 0 . (104). 

2 d 2 
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By (102), (103), and (104) it follows that 

l[a, a] (8a)3 + [a, /3] (Sa) (8/3) + \ [/3, /3] (8/3f 

+ terms of the third and higher orders = 0 
Hence ultimately 

[a, a] (Sa)3 + 2 [a, /3] (8a) (S/3) + [(3, f3] (S/3)3 = 0. 

This determines the two values of the ratio 8/3/Sa. 
Then to determine 8^, Sy, S£ there are the following equations obtained from (98), 

(103), (104), by retaining only the principal terms. 

[£] (S0 + M (fy) + [£] (S£) — 0.(105), 

[a, £] (S£) + [a, 77] (877) + [a, £] (S£) + [a, a] (Sa) -f [a, /3] (8/3) = 0 . (106), 

[A £] (S£) + 1/3, 17] (S77) + [/3, £] (SC) + [/3, a] (Sa) + [/3, £] (8/3) = 0 . (107). 

Hence the ratios S£ : S77 : SC can be determined. 

Hence the directions of the tangents to each of the branches of the curve of inter¬ 

section of the envelope and the surface (9) can be determined. 

If, now, the condition (76) hold, the two values of S/3/Sa become equal, and, there¬ 

fore, the two tangents at the double point of the curve of intersection coincide, and 

therefore, the contact is stationary. 

Further, because in this.case the values of 8/3/Sa both become equal to 

— [«, a] / [a, P\ = — [«. £] / [A £]> 

therefore (106) and (107) become 

[a, £] (8|) + [a, 77] (877) + [a, £] (S£) = 0, 

[ft £] (sO + [ft i\ (%v) + [ft Q ft7?) — °- 

From these two equations and (105) it follows that the coinciding tangents at the 

double point of the curve of intersection lie in the tangent planes to the surfaces 

D//Da = 0, D/7 D/3 = 0,/= 0. 

(B.) In this case 
A = Bf (x, y, z, cq, b1)f(x, y, Z, %, b2) 

= W3.. (108). 

Hence A = 0, dA/Sx = 0 ; for fx ~ 0,/3 — 0 at every point on the envelope locus. 

Hence A contains E3 as a factor. 
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Example 8.—Envelope Locus, each Surface of the System having Stationary Contact 

with the Envelope. 

Let. the surfaces be 

a{x — a)3 + 0 {y — bf + 3 [y (a? — a) + 8 (y — b)J + 22 — c2 = 0, 

where a, /3, y, 8, c are fixed constants ; a, b the arbitrary parameters. 

(A.) The Discriminant, 

It is the same as that of the equation 

aX3 + /3Y3 + 3Z (7X + SY)2 + (22 - c2) Z3 = 0. 
Therefore 

S = a/3yS (z~ — c~), 

T = (z3 - c3) [a2/32 (z2 - C3) + 4 (aS3 - /3y3)3]. 

Therefore 

A = (z3 — c3)3 [{a2/32 (z3 — c2) -j- 4 (aS3 — /3y3)3)3 + 64a3/33y3S3 (z3 — c2)]. 

(B.) The Envelope, swcA that each Surface has Stationary Contact with it, is z~ — c~ = 0. 

Transform the equation by means of the equations £C = « + X, y=bfY, 2=io-f Z, 

and it becomes 
aX3 + /3Y3 + 3 (yX + SY)2 + Z3 ± 2cZ = 0. 

The tangent plane at the new origin is Z = 0 ; it cuts the surface in the curve 

aX3 + /3Y3 + 3 (yX + SY)2 = 0} 

which has a cusp at the origin. 

Hence the contact is stationary. 

Hence the factor (z3 ~~ c3)2 in the discriminant is accounted for. 

(C.) The Locus 

[a3/33 (z3 - c3) + 4 (*S3 - /3y3)2}2 + 64a3/33y3S3 (z3 - C3) = 0 

is an ordinary envelope. 

This may be proved by finding the tangent planes parallel to the plane 2=0. 

It is necessary to satisfy at the same time 

a (a _ af + /3(y - 5)3 + 3 [y (x - a) + S (y - 6)]3 + ** - c3 = 0 . (110) 

a (# — a)2-T 2y [y (it — a) -j- 3 (y — 6) | — 0 

S (y 3)2 -h 28 |y (<£ " «) -j- 8(y — 0)] - o (HI)* 

22 zh 0 
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From the above 

[y (x — a) + h{y — b)J + (s2 - c3) — 0, 

therefore 

y(x — a) + S (y - b) =v/(c3 — z~) . 

Hence by (111) and (112) 

x-a = ± \/{-(V-0',!} 

y-b = ± 

(112) 

Substituting in (112), 

±y -\/{“ =4cW)l,2}± 
therefore 

{-a(«+S±2r® 
therefore 

therefore 

7° 

|8/ 
+ ^l±2rS a/ 

4yS 

«/3 
(c~ - 22) 1 2 

4 (y3/3 4~ S3a)2 -j- 16a/3y3S3 4: 1 6 (y3/3 4" S3a) a1" /31 2 y3/2 S3 2 = a2/32 (c3 — 22). 

Therefore 

| a2/32 (z2 — C2) d~ 4 (y3/3 4" 8'V/)' 4~ 16«/3y3S3]2 = 2Soapy 'S3 (y3/3 4" 83a)2. 

This reduces to 

[a2/32 (z2 - c2) 4- 4 («S3 - (Sy3)2]2 4- 64a383y383 (z2 - c2) = 0. 

This accounts for the remaining- factor in the discriminant, 

ordinary envelope. 

It corresponds to an 
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Art. 14.—To prove that if the Conic Node Locus be also an Envelope, A contains C3 

as a factor. 

(A.) It will be shown that when the condition (76) holds, in the case of a conic 

node locus, then the conic node locus is also an envelope. 

In this case, from (28) and (29), by means of (76), it follows that the equation of 

the tangent plane to the conic node locus is 

[A a] {[a, £] (X - |) + [a, r,] (Y - V) + [a, £] (Z - Q} 

- [a, a] m f] (X - £) + C/3, 17] (Y - 17) + [A £] (Z - 0} = 0 (113). 

This will touch the tangent cone (33) at the conic node, if 

[££l [£*7] [££] 

bi>i] tv,v\ bh£] 

Hi] Hv\ [U] 

j[A«][«,f| ] j[A«]M] ] f[A«][«>£] ] 
— [a, a] [/S, J | —[a,a] [/3,77] J 1 — [a, a] [/3, £]j 

This can be written 

[Aa] [a, f] ~ [a,a] [A £] 
1/3, a] [a, 17] —[a, a] [A 17] 

[A a] [a, £] — [a,a] [A Q 

(114). 

Hi] [£^7] 

bi, f] [>?> 

K, i] K. ^ 

f[A «] [«, i] 1 
J L 

([A a] [*> 

“ [a, «] [A f]j 1 - [a, «] [A 17]' 

[£fl [£*7] 

tv, fl bh y] 
[£ fl [£ ^ 

I [A «] [«, f] 1 j[Aa][a>’?] j 

I ~ [*, «] [A f]l | - 0, a] [A 17]! 

[££] [*> a 

tv, ti 0> v] 

[£ £] [*» £] 

|[Aa][«A] ) j [A «] [«, a] 

1 — [a, a] [A £]j 
► 5 

1 — [“, a] [A a. 

[££] [a a 

h, a [A t?] 

K. £] [A £] 

j[A «][«, £] j j[A «] [«» Z3] 
— [a, a] [£, £] 1 1 — [a, a] [£, /3]j = 0 

(115). 

For the constituent in the fourth row and column of the last determinant vanishes 

by (76); and the constituent in the fourth row and column of the preceding 

determinant is identically zero. 

Hence the condition becomes 
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r/3- a]'2 
hi tn. [«]} 

— 2 [/3, a] [a, a] 

B {?> v> C, a) 

hi [a w} 

B {£ v, c, 

, r Tvm[V],[nm ft 
+ [a> “] “IUUU3” - 0 

(116). 

And this is satisiied, because (30)—(32) hold. 

Hence if (76) hold, the tangent plane to the conic node locus touches the tangent 

cone at the conic node. 

Therefore the conic node locus is also an envelope. 

(B.) Conversely, if the tangent plane to the conic node locus always touch the 

tangent cone at the conic node, then the condition 

[a, a] [/3, /3] — [a,- /3J = 0 

is satisfied at every point of the conic node locus. 

To determine the position of the tangent plane to the conic node locus, it is 

sufficient to eliminate Sa, S/3 from any three of the equations (16), (17), (18), (28), 

(29), and then to use the relations (27). 

Suppose that the values of S£, Sr/, SC, which satisfy (16), (17), (18), (28), (29), are 

S£ = Xl Sa -f X2 S/3 

Sr/ = Sa -f p-2 S/3 > 

SC = r, Sa tq S/3 

Then the tangent plane to the conic node locus is 

(117). 

(X — f) (/X,+ (Y — t]) (i^X, — 1-oX,) + (Z — Q — Xj/nJ = 0 . (118). 

The condition that this may touch the tangent cone (33) is 

[£ f] 5?» £] K. f] Mffis — W 

[£ y\ lv> y] 

[££] h. G [C, a ^C<ul 

[X^Vo - 0 

It will now be proved that the same condition can be obtained by substituting the 

values of (S£), (§>7), (SQ from (117) in 
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k f] <8f r-+h.,] (hr- + K, a m1 

+ 2 h, (] (8,) (Si) + 2 B, f] (SO (Sf) + 2 [(,,] (Sf) (8,) = 0 . . (120). 

and then making the roots of the resulting quadratic in Sa/S/3 equal. 

For making the substitution, the result is 

(§a)2 {[£ £] Xf + [77, Tj] pp + [£, Q v{2 + 2 [77, Q PiJq + 2 [£, £] jqXj + 2 [£ 77] X^} 

+ 2 (Sa) (S/3) 
[£ £] XiXe + bi> y] MiM2 + [£> Q v\v2 

+ bi> £] (/lmj + w\) + [£. f\ biK + + [£ yl (^2 + \*/*i) 

+ (<W {[£ £] V + bi> v] ixi+F£> £] vi + 2 [17, C\ p^ + 2 [£. £] ^.2x, + 2 [£ 77] x2p*} = °- 

Now putting 

Li = [£ f] xi + [£ mi + [£ £] *q, 

Mi = b> £] xi + b)> y\ \x 1 + bh Q v\-. 
Ni = [£, £] + [£> >?] /l + [£> C] vx, 

and similar expressions for L2, M2, N2, the condition for equal roots can be written 

XlLi + pjMj + *qNi X]L2 -b p^3 iqN2 j 

I X2Lx ~b p2Mi + voN^ X,L, + p2M2 + e2N2 — 0. 

It remains to show that this will be satisfied if (119) be satisfied. 

Now 

K £] a Rfl Ml^2 “ P2z'l Xi F-i 0 

l&y] h> >7] It U EjX2 — a2Xj 
X 

Xo /L ^2 0 

BC] b, C] [t £] ^•l/x2 0 0 1 0 

txlv2 ~ lx2v\ Z^q^-p X]p2 ^2pl 0 0 0 0 I 

Mi Ni 0 Mi 0 

L2 m3 n2 0 
X 

X2 p 2 ^2 0 1 

[t« K,^] k. a ^•j/A2 X,pi 0 0 1 0 

Pl^o — Po^ ^1X2 1 ^2^1 Xp^Xo ^2/^1 0 0 0 0 1 

X1L1 -fi pjlVIj jqNj X^L, -b p^l\f2 -b iqN2 N^ 0 

XoLj + p2Mi + zqNi X,L3 ~b p2]\I2 + zqNg N3 0 

[£> £] ^#2 — X2^1 

^■l/x2 ® 

XlL2 + pxM2 + *qN2 

X L, fi- p0M2 + t'gNg I 

Nn 

(X1P2 “ x2Mi)' 

N2 

0 

X1L1 + /.q Mj -b ^Nx 

X2Lx ~b p2X 1 y -b zqNj 
2 E MDCCCXCII.—A. 
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Hence dividing out by (X^ — )3, it follows that the left-hand side of equation 

(119) is equal to 

X^ 4- ju,1M1 + zqN4 XlL3 4* p-4~ tqHh I 

XoL^ 4~ p^M-l 4- ^2-^1 X^Lj "4” d'2^-2 4“ ^£-^2 

Hence if the left-hand side of equation (119) vanish, so also does 

XjLj 4- p-iMj -f- vlNl XlL3 4" iqN2 

XoL^ 4“ /u-gM] 4" i X2L2 4" p^Mi2 ~b 

which was to be shown. 

Hence either method of proceeding will lead to the condition that the tangent 

plane to the conic node locus should touch the tangent cone at the conic node. 

The second method being simpler in this case will now be adopted. 

Multiply (1G) by Si, (17) by Sy, (18) by S£, (28) by — (Sa), (29) by — 8/3, 

and add. 

Hence 

[££] (Sl^ + fo1?]^)3+ [£>£] (S£)"-f 2 [7], £] (8r))(8£) + 2[£, i] (S£) Si) 4- 2 [i, y](Si)(Sy) 

= [a, «] (Sa)" 4- 2 [a, ft] (Sa) (8/3) 4- [ft, ft] (Sft)2. 

Hence the result of substituting the values of Si, Sr7, SC, which satisfy (16), (17), 

(18), (28), (29) in (120) is 

[a, a] (Sa)3 -f 2 [a, ft] (Sa) (Sft) -f [ft, ft] (Sft)2 = C. 

Forming the condition that the roots of this quadratic in Sa/Sft should be equal, it 

follows that 

[a, a] [ft. ft] — [a, ft]2 = (). 

It will be proved in Art. 27 (see the equations (19G)) that the common tangent line 

to the conic node and the conic node locus is in this case given by the equations 

[a, f] (X - i) 4- [«, vl (Y - V) + [a, £] (Z - £) = 0, 

[ft, f] (X - i) 4- [ft, v] (Y - v) + [P> Q (Z - 0 = 0. 

Hence the common tangent line to the conic node and the conic node locus lies on 

the tangent planes to the surfaces Df/Da. = 0, I)//Dft = 0 ; and it lies obviously on 

the tangent cone to the surface f = 0. 

(C.) In this case equations (108) and (109) hold. 

Also differentiating (109) 
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I f /p2/i , D2/i 9% , D!/j 9&i\ 
p2\Ite2 DarDtq 3x D&DJj 0,/7 

, „ D/i D/. 
+ R 2 Da Da 

_i_ - OK , py, ^ , _P%_9^\ 
^1 \D.b D.rDa, 0* D.rD&2 0se/ 

. . . (121). 

Substituting the values of dctjdx, dbjdx from (52), there is in d':A/dx2 the term 

^f-2 

[x, x] \x, a{\ \x, 5J 

Ov«i] [«n «i] K- 

l>> &i] Oi> M [&i, &J 

[«n «i] [«n &i] 

[ch> 9J [9l5 5]] 

which requires examination when x = £, y = 7), z = £, the coordinates of a point on 

the conic node locus. 

Now in this case ctv bl are roots of D/j/Dcq = 0, I)f1/Dbl = 0. 

Hence 

[a, £] (30 + [a, V] (St;) + [a, £] (80 + [a, a] (8a) + [a, (8/8) 

4* terms of the second and higher orders in Sf, St;, S£, Sa, S/3 = 0 . (122) 

[A £] (§0 + [/3, 7}] (St;) + [/3, Q (SO + [A a] (Sa) + [/3, /3] (S/3) 

+ terms of the second and higher orders in S^, St;, S£, Sa, S/3 = 0 . (123). 

Multiply (122) by [a, /3,], (123) by [a, a] and subtract, the terms of the first order 

in Sa, S/3 disappear, and the equation obtained is of the form :— 

(terms of the first order in S£, St;, S£) 

+ (terms of the second and higher orders in S^, St/, S£, Sa, S/3) = 0. 

Hence if S^, St;, S£ are of the order of the infinitely small quantity e; then Sa, S/3 
are of the order of eh 

Hence the principal terms in (122) and (12.3) are [a, a] (Sa) -f- fa, /3] S/3 and 

[/3, aj (Sa) -f- [/3, /3J (S/3) respectively. 

Moreover by (122) and (123), although Sa, 8/3 are of the order e% yet 

[a, a] Sa -f [«, /3] S/3 being ultimately equal to — {[a, £] (S£) + [«, 1;] St; fi- [a, £] S£] 
is of the order e. 

Similarly [/3, a] Sa -j- [/3, /3] S/3 is of the order e, 
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Next, when x = Or y = y, z = 0 a2 = a + Sa', b2 = /3 + S/3', 

y(a?, y, z, a2, +) becomes 

/(£ y, L v-, (3) 

+ [f] (§0 + M (&?) + [£] + [“] (Sa') + [Z3] (W 

+ 1 
2 

[£ £] (8£)2 + b’ (§7?)2 + [£> £] (802 
+ 2 fo, {] (&,) (so + 2 [0 0] (so (80+ 2 [0, (so (so 

+ 2 (SoO {[£ «] ($£) + [y, «] (%y) + [£> «] (§01 
+ 2 (S/3) {[0 /3] (SO + [17, £] (SO + [0 £] (SOI 

+ [a, a] (Sa)3 + 2 [a, /3] (Sa) (3/3') + [/3, /3] (S/3')2 

+ terms of the third and higher orders in SO By, SO Sa', S/3' 

(terms of the second order in SO, Sr;, SO 

+ (Sa') (terms of the first order in SO, Sr;, SO 

+ (S/3') (terms of the first order in SO, Sr;, SO 

+ 2^0d * ^a’ ^ + ta» W2 

+ terms of the third and higher orders in SO, Sr;, SO Sa', S/S'. 

Now, the terms of the second order in SO, Sr;, S£ are of order eh 

The terms containing Sa' or S/3', multiplied by terms of the first order in SO, Sr;, SO 

are of order e8/h 

The terms - 7- 
2 [«, « 

[a, a] (Sa') + [a, /3] (S/S') is of order e, by the same argument as the one which was 

applied to show that [a, a] (Sa) -fi [a, /3] (S/3) was of order e. 

The most important terms of the third and higher orders in SO, Sr;, SO Sa', S/S' are 

of order e3/3. 

Hence f (x, y, z, a2, b2) is of order e3/3, when x = 0, y — y, z — 0 the coordinates of 

a point on the conic node locus. 

F urther 

K, K, &]] 

! [fti> ^1] [^n ^1] 
becomes 

1 
{[a, a] (Sa') + [a, f3] S/3' are of order e3, since 

[a, a] [a, /3] 

[a, /SJ [(3, /S] | 

20 
Dr, + (K) 

10 

cr 
+ (Sa) 

D 

D ct 

[a, a] [a, /3] 

[a, /S] [/3, /3] 

+ terms of the second and higher orders in SO, Sr;, SO Sa, S/S. 
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Hence, when x = £, y = rj, z = £, 

[«i, Oq] [<21} &i] 

[an ^1] [^n ^1] 
is of order e1'*. 

Hence 

[ax, oq] [«!, ^i] 

[ai> ^1] [^n -fi] 

is of order e, and therefore vanishes at points on the conic node locus. 

Similarly it can be shown that the term 

j [cc2, a2] [%, /a] 

/j/ 
vanishes at points on the conic node locus. 

Therefore A, dA/dx, 32A/3x2 all vanish on the conic node locus. 

Therefore A contains C3 as a factor. 

Example 9.—Conic Node Locus which is also an Envelope. 

Let the surfaces be 

a (x — a)3 + S/3 (y — bf 3y(x ~ a) z ~j~ Sz'2 = 0, 

where a, /3, y, S are fixed constants ; a, b the arbitrary parameters. 

(A.) TheD iscriminant. 

It is the same as that of the equation 

aX3 + 3/3Y2Z + SyzXZ2 + SYZ3 = 0. 

Therefore 
S = afLyZ, 

T = 4«2/33 Sz2. 

Therefore 
A = 164/38z3 (aS2Z fi- 4y3). 

(B.) The Conic Node Locus, which is cdso an Envelope, is z — 0. 

To prove this, transform the equation by means of x = a 4 X, y = b 4 Y) £ = Z. 

It becomes 
aX3 4 3/3Y3 4 3yXZ 4 8Z3 = 0. 

Hence the new origin is a conic node, and one of the tangent planes of the conic 

node is Z = 0. 

Hence the conic node locus is % — 0, and it is also an envelope. 
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(C.) rlhe Locus a.8~z -fi 4y3 = 0 is an Ordinary Envelope. 

This can be proved by finding the tangent planes parallel to 2=0. 

Hence it is necessary to satisfy at the same time 

a (x — af ~b 3/3 (y — b)': ~f 3y (x — a) z + S' d = 0, 

« {x — af ~b y2 = 0, 

y — b = 0, 

Hence 

3y (x — a) ~b 2 £2 f 0 

therefore 

11 0
- 

a. (x — a)3 ~b 3y (x — a) z -b Sz2 = 0, 

a (x —- a)2 4- yz =0. 

Hence 

2y (x — a) z -fi S23 = 0. 

(124). 

The solution 2 = 0 of the last equation makes x — a, and does not satisfy (124). 

Hence it is necessary to take 

2y (x — a) + 8z = 0. 

This gives 

Hence, when 

scS32 -fi 4y3 = 0. 

X = a -b 2y3/aS, y = b, Z = —= 4y3/aS', 

the tangent plane is parallel to the plane 2=0. It touches all the surfaces of the 

system. 

Hence 
% = — 4y3/ctS- 

is an ordinary envelope, 

Art. 15.—To prove that if the. Edge of the Biplanar Node always touch the Biplanar 

Node Locus, then A contains B3 as a factor. 

(A.) It will be shown that when the condition (76) holds in the case of a biplanar 

node locus, then the edge of the biplanar node always touches the biplanar node locus. 

The equation of the biplanes is given by (33). 

Now, if the left-hand side of (33) break up into two linear factors, then the two 

planes, whose equations are given by equating the two linear factors to zero, will 

intersect in the straight line whose equations are given by any two of the three 

equations;— 
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[£ I] (X - i) + [£ r,] (Y - 77) + [£ £] (Z - 0 = 0, 

bl, £| (X - 0 + fo, 7?] (Y — 7?) + [77, Q (Z - 0 := 0, 

B> f] (X - £) + [£, ^ (Y - 77) + [c, (3(z-£) = o . . . (125). 

To find the tangent plane to the binode locus, proceed thus :— 

The condition (41) gives 

[£ f] (K a] [A Z3] — [«> A]'2} 
— | £ a]2 [(3, /3J + 2 [£ a] [£ /3] [a, /3] — [£ /3]': [a. a] = 0, 

which, by means of (76), can be written 

[£ a]2 [«, Z3]2 — 2 [£ a] [£ Z3] [a> Z3] [a, a] + [£ Z3]2 [a, «]’ = 0. 

Therefore 
[£ a] [a, fi] — [£ /3] [a, a] = 0. 

Similarly 

[77, a] [a, /3] — [77, /3] [a, a] = 0, 

B» a] [a> z3] — B» z3] [«> a] = °- 
Hence 

VIA _ M [&"] -[«.«] . D8.«] 7! 

[£/3] H,/3] [?,/3] [«,/?] [ft/3].1 

Now, multiplying (16) by [77, a], (17) by [£ a] and subtracting 

[77, a] {[£ f] (SO + [£ 77] (S77) + [£ Q (SC)} 

— [£ a] [C7?; £] (S0 + [>, b] (§7?) + [v> £] (H)} 
+ (SZ3) i[V’ a] [£ Z3] — bi, Z3] [£ a]} = °- 

Now, by (126), the coefficient of S/3 vanishes, and the equation of the tangent 

plane to the binode locus is 

R «] SR f] (X - () + R,] (Y - ,) + R 0 (Z - £)} 

-E«]{[,,f](X-f) + [„](Y-,) + [,,i](Z-£)) = 0 . (127). 

Hence the tangent plane to the binode locus passes through the intersection of 

two of the planes (125), and, therefore, through the edge of the binode. 

Hence the edge of the binode always touches the binode locus. 

It may be noticed, further, with respect to the edge of the binode, since equations 

(28) and (29) depend on (LG) and (17), that since it is the intersection of the planes 

(125) it lies also on the planes 
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[a, £] (X — £) + [a. 77] (Y — rj) + [a, £] (Z — £) = 0, 

[Af](X-f) + [A,](Y-,) + [A £] (Z-O = o. 

(These planes, it may be noted, coincide in this case by (126).) 

Hence che edge lies on the tangent planes to the surfaces D/'/Da = 0, D//D/3 = 0, 

and it is obviously a tangent to the surface f — 0. 

(B.) Conversely, if the edge of the binode always touches the binode locus, then 

the condition (76) holds at every point of the binode locus. 

The equation of the edge is given by any two of the three equations (125). 

Hence, if the edge is a tangent line to the locus of binodes, the equations (125) will 

be satisfied by putting 

X = f+8£ Y = .7 + 877, Z = £ + §£, 

the coordinates of a binode near to 77, £, which lies on the edge of the first binode 

and infinitely near to it. 

Hence 

K i] m + [£ A (*n) + [6 fl (K) = o,“ 
bh £] (s0 + bn, n\ An) + bn, t] At) = 0, > 
It, f] At) + It, n] An) A A C] (S£) = 0. - 

(128). 

But equations (16), (17), (18), (28), (29), also hold. 

Hence, by (128) it follows that (16), (17), (18) become 

[£ «] Aa) + [£ fi] (S/3) =0.(129), 

[77, a] (8a) + [77, fi] (S/S) = 0.(130), 

It, a] (Sa) + [t, 78] (878) = 0 .., (131) 

Hence 

[£ “]/[£ Z3] = [>7> «]/[>?, Z3] = [£, «]/[£, /3].(132). 

Now only two of the five equations (16), (17), (18), (28), (29) are independent 

Suppose that (16), (17) are independent. 

Then, since (28), (29) depend on these, relations exist of the form 

[£ al — x [£ £] + P [£ v] ’ 

[77, a] = X [f, 77] + fi [77, 77] , 

[£> a] = ^ [£ t] + P [£, 1?] , 

[a, a] = X [£ a] + g [a, 77] , 

[a, /S] t= A [£, /3] + /x [/?, 77] 

[£ Z3] = /> [£ f\ + & [i, 77] , 

[77, /3] = p [£ 77] + cr [77, 77] , 

It, fi] — P [£ £] + cr [77, £] , 

[a. yS] = p [£ a] + cr [77, a] , 

[fi &] = p A, fi] + cr [77, /3] . 
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Hence, by (132), 

x [£ £1 + /* H v] _ x [£ v] + p [v> v\ _ x [f ?] + p [y, n _ 
P [£ £] + O' [& /> [ft -v] + O- [>, *?] p [£ ?] + O- [«7, f] 

Therefore 
[Xo- — /xp] {[£ [77, 77] - [£ T7]3} = 0, 

and 

[Xo- - ftp] {[£ £] [77, {] — [£ 17] [£ £]} = 0. 

Hence, unless Xcr — /xp = 0, it is necessary to have both 

[£ £] ~ [£ vJ = °> 
and 

k a ^ a - [f, v] 11 q = 0. 
Hence 

k s/k = it, ^ ^ = k aiv> a 

But if these results hold, the two equations taken to determine the edge of the 

binode would be the same, and would not determine it. Supposing then that those 

two equations have been selected, which are independent, this alternative cannot 

hold, and therefore 
Xcr — /xp = 0. 

Therefore 

[£ «] _ [>7. »] _ [£ «] _ [«, «] _ [«, /3] _ x 

[£ /3] “ [v, f3] ~ [£ /3] - [a, /3] “ [& /3] p 

Hence the equations (126) are satisfied, and in particular 

[a, a] [/3, (3] — [a, (3J = 0. 

Hence, if the edge of the binode always touch the binode locus, the condition (76) 

holds. 

(C.) In this case A is given by (108). 

Let £,77, {be any point on the binode locus. 

Then when x = £ y = 77, 2 = {, 

cq = cq — a of surface having a binode at 77, {, 

bl — b2 = b of surface having a binocle at 77, {. 

J3f/Dx = 0, D/]/Dy = 0, D/^/Ds = 0, when x — y = rj, z — 

DfJDx = DfJDx, when 2: = y = 77, 2 = {. 

Therefore, D/o/Tte = 0, and similarly D/3/Dy = 0, D/0/D2 = 0, when = £, y = 77, 

* = C 

2 F MDCCCXCII.-A. 
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Now if each of the differential coefficients of A be formed up to the third order, then 

every term in the result will contain as a factor one of the following quantities :— 

fi or f-2 or a first differential coefficient off or f2. 

Hence, wdien x = £ y = 77, 2 = £, A and all its differential coefficients up to the 

third order vanish. 

Hence, if B = 0 be the equation of the binode locus, such that the edge of the 

binode always touches the binode locus, A contains B4 as a factor by Art. 1, Pre¬ 

liminary Theorem B. 

Example 10.—Locus of Biplanar Nodes such that the Edge of the Biplanar Node 

always touches the Biplanar Node Locus. 

Let the surfaces be 

a (x — a)3 + f3 (y — 6)3 + 3 [c (x — a) -f e (y — b) + gzf — h2z2 — 0, 

where a, (3. c, e, g, h are fixed constants ; a, b are the arbitrary parameters. 

(A.) The Discriminant. 

It is the same as that of the equation 

<*X3 + /SY3 + 3Z (cX + eY + gzZf - /tVZ3 = 0. 
Hence, 

S = — afice (g2 + /r) z3, 

T = or/33 {2>g2 — Id)2 + 4a/3y (ae3 4- /Sc3) (3Id — g'2) z3 — 4h2 (ote3 — (3o3)3z2. 

Therefore, 

~{(oc/32) (3 g2 - h2)2 z3 + 4ra(3g (ae3 + /Sc3) (3/r - f)z - 4/P (ae3 - /Sc3)3)2 

^ — 64a3/33c3e3 (p2 + /i2)3 z3 

In order to show the way in which the factor z4 arises, the method in which the 

discriminant is formed will now be examined. 

It may be obtained by eliminating X, Y, Z from 

(cX + eY + gzZ) (cX + eY + 3gzZ) - h2z2Z2 = 0 ... (133), 

aX3 + 2cZ (cX + eY + gzZ) = 0 

/8Y2 + 2eZ (cX + eY + r/zZ) = 0 

Hence, 

Y = ± X /(ea/c/3). 

(134) , 

(135) . 
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Representing both values of Y by Y = XX, it follows that 

aX3 + 2c (c + eX) XZ + 2cgzZ2 = 0. 

Therefore, 

X/Z = - - (c + eX) ± - [cHc + eX)3 - 2c*qz}v\ 

Hence, 

x — a — — - (c +cX) ± ~ (c3(c + eX)3 — 2cagz}y2 .... (13G), 

y-b = X j—^(c+cX)dh;{c3(c + cX)3-2c«9z}1/3j . . . (137). 

These give the values of a, b which, when substituted in the equation of the 

surfaces, give the discriminant. 

The values of a, b corresponding to a point £, rj, £ on the binode locus, will now be 

found. 

It will be shown presently that z = 0 is the binocle locus. 

Hence £ = 0, and therefore 

£ — a — — ~~ (c + eX) dz " (c + eX), 
CL CL 

V - h = X j- ^ (c+ eX) ± ^(c + eX)j. 

Hence, for each value of X, one of the values of a is £, and one of the values of 

b is 7]. 

Hence there are two sets of values of a, b satisfying Df/Da = 0, Df/Db = 0, which 

become equal when x = y = 77, 2 = 0. 

These two sets of values both give a — b = 17. 

It will now be shown that the substitution of each of these systems of values of 

a, b in /, will give rise to the factor z3 in A. 

Now 

Y = XX, X = pZ, 

where 

X = ± \/{ea/cf3), 

g = — (c + eX) d= ~ {c3 (c d- eX)2 — 2cagz}1/2. 

Substituting these in the left-hand side of (133), it becomes 

[(cp d~ eXp -T (72) (cp d- cXp -f 3^2) -- AV] Z3, 

i.e., 

[p3 (c d~ eXf + 4yp (c + eX) z + (3/ — A3) 23] Z3. 

2 f 2 
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Although, to find the discriminant in the usual way, it is necessary to substitute 

each set of values of X, p in this expression, and then to multiply the results together, 

it is possible to determine more readily which value of p will lead to the factor z2 by 

expanding p in ascending powers of 2. 

Now 

p — -— (c + eX) ± - (c + eX) | 1 — 
afjZ 

c (c + e\)3 2 c2 (c + eX)* 

Taking the upper sign 

c + eX 2c (c + eX)3 

Substituting this value of p in 

[p3 (c + eX)2 + 4yp (c + eX) 2 + (3g2 — h2) 23] Z2, 

the coefficient of 22 in the bracket is (— h2), there being no lower power of 2. 

This being true for each value of X, the factor 24 is accounted for. 

The other value of p will lead to a factor, in which there is a term independent of 2. 

The elimination will now be completed. 

It is necessary to substitute the values of X and p from 

k = dr 

and 

ap2 + 2c (c -f eX) p + 2cgz — 0, 

in 

p2 (c + eX)3 + 4yp (c + cX) 2 + (3g2 — A2) z2. 

Substituting first for p3, and multiplying by a, this becomes 

p (c + eX) [— 2c (c + cX)3 + 4gaz] + [— 2cgz (c + eX)2 -j- az2 (3g2 — A2)]. 

Substituting both values of p in this, multiplying the results together, and multi¬ 

plying by a, the result is 

2cgz (c -j- eX)3 [—2c (c + eX)3 + 4^a2]3 

— 2c (c + eX)2[— 2c (c + eX)2 -f- 4got.z] [— 2cgz (c + eX)2 + az2 (3g2 — A2)] 

+ a [— 2cgz (c +eX)3 + az2 (3g2 — A2)]2. 

This reduces to 
— 4c2aA2(c 4- eX)iz2 

4- 4cpa3 (3A2 — g2) (c 4- eX)2 z3 

p a3(3g2- Wfz\ 
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Putting X3 — ea/c/3, and multiplying by /33/a, this becomes 

a~/3: (3p2 — A2)2 z4 + 4pa/3 (3Jr — p2) (ae3 fi- ./3c3) z3 — 4A2z2 (ae3 — /3c3)2 

— 32ae3/3c3A3z2 + 8c3e/3X [pa/3z3 (3A"3 — p2) — 2A3z2 (ae3 -f- /Sc3)]. 

Substituting for X its two values dz x/faffi), multiplying the results together, and 

reducing, it becomes 

{a2/33 (3p2 - A2)3 z2 + 4a/3p (ae3 + /Sc3) (3A2 - p3) 2 - 4 A3 (ae3 -/Sc3)2}2 

- 64a3/SW(p3 + A2)3 22 

This is the same value as before for the discriminant. 

(B.) The Surface z = 0 is a Binode Locus such that the Edge of the Binode touches 

the Binode Locus. 

Transforming the equation by means of x = a + X, y = h + Y, 2 = Z, it becomes 

aX3 -f- |SY3 + 3(cX + eY -f gZ)2 - h2Z2 = 0. 

Hence the new origin is a binode. 

Hence the binode locus is 2 = 0. 

The biplanes are 
3*(cX + eY + gZ) - hZ = 0. 

3“ (cX + eY + gZ) + liZ = 0. 

The equations of the edge are therefore 

cX + eY=0, Z=0. 

It lies therefore in the plane Z = 0, i.e., in the plane 2 = 0. 

Hence it may be considered to touch the binode locus. 

The condition (76) is satisfied at every point on the binode locus. 

Hence the factor z4, is accounted for. 

(C.) The Surface 

{a3/33 (3p2 — A2)2 z2 -j- 4pa/3 (ae3 + /3c3) (3h2 — p3) z — ill2 (ae3 — /Sc3)3}2 

— 64 a3/33c3e3 (p3 -fi A2)3 z2 = 0 

is an ordinary Envelope. 

This may be proved by finding the tangent planes parallel to the plane 2 = 0. 

Hence it is necessary to satisfy at the same time 
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a (x — a)3 + P(y — b)s -f 3 [c (x — ci) + e(y - -b) + gzf - - hh2 = 0 (138), 

a(x — af + 2c [c (x — a) + e (y — b) + gz] = 0 (139), 

P(y - ■bf + 2e [c {x — a) 4- e (y — h) + gz] = 0 (140), 

3 g [C (x - a) + e(y - ■ 6) + gz] - - h2z (1«). 

or putting x — a = X/Z ,y I C
-1 II Is
i 

c+
- 

rD
 

s equations (138)— (140) become the same as 

(133), (134), (135). 

Hence the result of the elimination will be the same as in the previous case. It is 

only necessary to show that (141) is satisfied. 

Multiplying (139) by (x — a), (140) by (y — b) and subtracting from (138), it 

follows that 

[c (x — a) -f e (y — b) + gz] [c (x — a) + e (y — b) + 3gz] — hh2 — 0. 

Therefore 

[c (x — «) + e (y — b) + gzf + 2gz [c (x — a) -f e (y — b) + gz] — hh3 = 0. 

Therefore 
c (x — a) + e (y — b) + gz = — gz ±2 \/((/3 + ^2). 

Hence (141) is not satisfied unless z — 0. 

Now 2 = 0 makes c (x — a) + e (y — b) + gz — 0. 

Therefore x = a by (139) and y = b by (140). 

This solution corresponds to the binode locus. 

It may therefore be excluded. 

Hence the factor of the discriminant under discussion corresponds to an envelope 

locus, touching all the surfaces ; it consists of four planes parallel to 2=0, whose 

equations are independent of the arbitrary parameters. 

Section IV. (Arts. 16-25).—Consideration of cases reserved from the previous 

section. The degree of f (x, y, z, a, b) in a, b is now the second, and the 

equations Dfi/Da = 0, Df/Db = 0 are indeterminate equations for the 

PARAMETERS AT POINTS ON THE LOCUS OF ULTIMATE INTERSECTIONS. 

It was supposed in the previous section that the degree of/(x, y, z, a, b) in a, b was 

higher than the second ; for if the degree were the second, and the analytical condition 

satisfied which expresses that at a point on the locus of ultimate intersections, two 

systems of values of the parameters, which satisfy D/’/Do = 0, Df/Db = 0, become 

equal, then this analytical condition requires to be specially interpreted. 

For now Df/Dct = 0, Df/Db = 0 are two simple equations in «, b. Hence they are 

either satisfied by one value of a and one of b, or else are indeterminate. But since 

the condition 
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EiEf_ ( py y_ 0 
Da3 D63 \DaDbJ 

holds, they are indeterminate. 

In this case the discriminant cannot be formed as in the previous section. 

There are not two coinciding systems of values of the parameters to consider. It is 

shown that there is one system which can be determined. 

There is also the additional peculiarity that the rationalising factor introduced to 

make the discriminant of the proper order and weight always vanishes at a point on 

the locus of ultimate intersections. Hence, on account of it, the equation of an 

envelope or singular point locus may be expected to enter into the discriminant one 

or more times. As this number cannot be determined in a general way, it is better 

to express the equation of the system of surfaces as a quadric function of the para¬ 

meters, and form the discriminant in the usual way. 

Art. 16.—The Discriminant and its Differential Coefficients as far as the third order. 

Let the equation of the system of surfaces be 

aa2 + 2Wah -fi vh2 -j- 2Va + 2U6 + w = 0 . . . . (142). 

To find the discriminant, solve for a, h, the equations 

wa + Wfc + V = 0.(143). 

Wa -f vh + U =■- 0.(144), 

obtaining hence 

a = 

b = 

wu - «v 1 
uv — W2 I 

WV-tiU 

uv - 

(145). 

Now substitute these values of a, h in the left-hand side of (142). 

The result is 

The rationalising factor is 

Hence the discriminant 

u w V 

W V u 

Y u w 

u w 

W V 
* 

u W 

W v 

A = 

u W V 

W V U 

Y U u 

(146). 
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Therefore 
w. V, u w y u w y 

A, = w V u -L 1 W. u. + W r u 
y U w V u iv y. u. 

(147) 

XX Vxx 

A^ — W V U + 
V u w 

u w y 
+ 2 w. vx u. + 2 

y. u. 

W y u W y 
Vxx u„ + W V u 
u w y 

v XX 

w* Vx Ux w. v* 

V u + 2 w* v* u* 
u. Wx V u w 

(148). 

^ try w vv y* u w V u w V 
A,, = w V u + W,y Vxy u ^ xy + w V u 

y u IV V u 10 y v ay Wry Way 

Uy V^y Vy uy Wy "W ' 

+ < W, W# TX# + W V U 

y U ar Ua: ^ Vx 

War W* Wr w w y 

+ < Wy ^y Uy + W^y Vy XJ y > 

_ y U w; VX U X Wx 

r- 

«x wx y. u w y 

+ < W V U + W, Vx U, > 

yy Uy Wy Wy Wy wy J 
(149). 

11XXX w« v«. 
W V u 
V U w 

two similar terms 

+ 3 < 

+ 6 

r V>xx XV xx V xx ^tra: XV aa Vaar 

-< W, «, U, + W w U >> 

y U ty yar XJa V)x 

> -j- two similar terms 

ux W, Vx 

W, vx .U, 

V, u, w. 

(150). 
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^ xxy - 

'U'xxy w v v xxy 
y v xxy 

w V U 
y u w 

+ two similar terms 

' 
Uxx w y v XX y« Uxx by,. V* 1 

+ < w. vy u. + w V u > 

- y U w v. u. ivy - 

'U'xy W yv xy 
Y v xy 'U'xy W ,y Y ¥ *y 

- 

+ 2 < by. vx u. + w V u > 

y U tv V. u. wx 
- 

-4- two similar terms 

> + two similar terms 

uy Wj yy ux by x y2 Mi’ by, ya; 

+ 2 W, v* U, + 2 Wy Vy XJ y + 2 by, vx u. 

y , U x W, y, bT, tVx ~Vy bJ y Wy 

(151). 

u 

&xyz — 

xys 

w 
y 

w xyz 

V 

u 

v * xyz 

u 
w 

+ two similar terms 

+ 

+ 

+ 

+ 

Uy Uy W, yy Uz by, y2 

by. vx u. + bv2 u. + by. u. 
y2 U2 tv. V, u. w. Uy Wy 

by. V, i\ix by. y. by. V, 

Uy + bly + by. u2 
y. u. wx y. u. w2 yy Uy Wy 

UXy by YV Xy Y v xy 'V'xy by,y Y v xy uz by. y. 

W2 vz u. + by V u + W ay Vxy Uay 

y U w y2 U2 wz y u W 

u bV y uz wz y2 u bV y 

if 
■S

 Vxy u„. + by V u + W; U, 

v. u. tv, Y * ay U*y Way Y v xy Uay tVxy 

4- six determinants, w?hich can be obtained from the last six by interchanging 

x and z 

+ six determinants, which can be obtained from the same six determinants 

by interchanging y and 2 ............. (152). 

mdcccxcii.—a. 2 a 
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Art. 17.—The relations ivliich hold good at points on the Locus of Ultimate Intersections. 

(A.) The analytical condition (76) which holds, becomes with the notation of this 

section 

uv — W2 =0.(153). 

Hence the values of a, h given in (145) are either infinite or indeterminate. 

Excluding the cases where they are infinite, it is necessary to have 

WD - vY = 0 ) 

WV - uJJ = 0 J 

Again, by substituting from (143) and (144) in (142), it follows that 

Ya + U6 -f- w — 0.(155). 

Solving (144) and (155) for a, b, it follows that 

a = 

b = 

vw — U2 

WU - Yv 

uv - Ww 

WU - Yv 

(156). 

J 

Hence by (154) these values will be infinite unless 

Hence by (153), (154), (157) 

vw — U2 = 0 

UV - Ww = 0 

u : W : Y 

= W : V : U 

= V : U : w 

(157). 

(158). 

Now if P = 0, Q = 0 represent any two of the five equations (153), (154), (157), 

then these are satisfied at every point of the locus of ultimate intersections. 

Let £ g, C and £ + g + hrj, £ + S£ be neighbouring points on the locus of 

ultimate intersections. 

Then 

0Q 

0£ 

0P 

0? 

0Q 

0C 

S£ = 0, 

sc = o 
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Now the only relation between §£, Sr), S£ is that which expresses that the point 

g -f- S£, r) -f- Sr), £ + S(, is on the tangent plane to the locus of intersections at £, 17, £. 

Hence 

0P /HQ_HP /0Q_0P /0Q 

9£/ S% ~ Sv/ Srj ~ S£l S£ 

It is now possible to determine the values of a, b which are indeterminate as given 

by (145). 

For, representing the value of a in (145) by the equation 

a P/Q, 

it follows that the true value of a is the limit to which the expression 

Q + lsf+a>+a> 

approaches, when Sr), S£ vanish. 

Now P = 0, Q = 0; hence by (159) the true value of a is equal to any one of the 

three ratios in (159). 

Besides the values of a, b given in (145), (156), other forms may be obtained from 

equations (143), (155). 

Putting these together 

WU - ?;V _ mo - U2 UY - Ww 

— uv _ W2 — WU -Vv~ WV - Uu [ 

WY - uU UV - Ww uw - V2 ( 

— uv - W2 — WU — Yv WV - Uu j 

(160). 

All these values are indeterminate. 

Now although the value of each of these fractions can be found by differentiating 

numerator and denominator with regard to any the same variable, yet they will not 

all lead to the true value of a, b, because the true values of a, b are found by 

solving the equations ua + Wb + V = 0, W« + vb U = 0, and finding what the 

values approach to as the coordinates approximate to the coordinates of a point on 

the locus of ultimate intersections. Now at points not on the locus of ultimate inter¬ 

sections, the values of a, b do not satisfy Ya + U6 + w — 0. Hence the true values 

of a, b cannot in general be found by solving this last and either of the preceding 

equations, and then finding the values to which these approach as the coordinates 

approximate to the coordinates of a point on the locus of ultimate intersections. 

The true values are obtainable only from the solutions (145). 

2 G 2 
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(B.) If there be a conic node locus, then, besides equation (142), the following 

must be satisfied— 

+ 2Wxab + vxb2 + 2Yxa + 2Uxh -j- wx = 0 . . . . (161), 

Uyd3 2Wydb -j- Vyb" -j" 2 Yyd -f" 2Uyb -j- Wy = 0 . . . . (162), 

u.a2 + 2W,cib + vjr + 2Yza + 2U.6 wz — 0 . . . . (163). 

(C.) If there be a biplanar node locus, then the equations (126) are satisfied as well 

as the preceding. 

In this case these are 

2 (uxa + Wxb + Yx): 2 (uya + Wyb + Yy): 2 (uza + W:b + Y,): 2 u : 2W j 

= 2 (Wxa + vxb + U,): 2 (Wya -f vyb + Uy) : 2 (Wza + vzb + U*): 2W : 2vJ ^ ^ 

From these, the following may be deduced. 

Introducing a quantity \, such that 

uxa + Wxb -fi Yx = Xu.(165), 

it follows by (164) that 

Wxa -j- vxb 4- IT* = \W.(166). 

From (165) and (166) 

uxa2 4- 2 Wxab + vxb2 4- aV* + b\Jx = X(au 4" bW). 

Hence by (143) and (161) 

Y.ra 4- Uxb 4- wx = XV.(167). 

Similarly, quantities /x, v exist, such that 

and 

Uyd 4" W yb 4" Yy = 1-lU 1 

W yd 4" Vyb 4" Uy ~ fx\\ t 

Yyd 4- 11yb 4- Wy = l-i \ J 

uza 4- WM 4- V* = vu ~| 

Wza + vjb 4- U, = vW > 

V.a + U -j- w. = i\ 

(16S), 

(169). 

Consider now the equations (143), (144), (155), (165), (166), (167); multiply (143) 

by — vx, (144) by W.r, (165) by — v, (166) by W, and add. 

Therefore 

a (2WW* — uvx — vux) — Yvx 4- U W,. — vYx 4- WU* = A. (W2 — uv). 
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Hence, at points on the biplanar node locus, 

a ~c (uv - W3) = 5 (U W - Yv).(170). 

Again, multiplying the same equations by W.r, — ux, W, — u in order and adding, 

it follows that 

4(»-^=|(yw-n.).(i7i). 

Again, multiplying (144), (155), (166), (167) by — XJx, vx, — U, v in order and 
adding, it follows that 

a ( - WU,. + Yvx - UW, + vVx) + (vwx + wvx - 2UU,) = X (vV - UW). 

Hence 

a^(VW-vV) = l(vw-U‘).(172). 

Again, multiplying the same equations by Vx, — Wx, V, — W in order and adding, 
it follows that 

6|(UW-9V) = t(UV-,„W).(173). 

Again, multiplying (143), (155), (165), (167) by Ur, — W(., U, — W in order and 
adding, it follows that 

a (uUx - VW,. + Uux - WVX) + (VU* - wWx + UV, - Wwx) = \ (uU - VW). 

Therefore 

« l (VW - «U) = l (UV - »W).(174). 

Again, multiplying the same equations by Y:c, — ux, Y, — u in order and adding, it 
follows that 

6|(VW-«U) = |(«»-V»).(175). 

Further comparing the three equations (168) or the three equations (169) with 

equations (l65)—(167), it is evident that it is possible in any one of the equations 
(170)-(175) to replace x by either y or 2. 

It will be noticed that in the case of the biplanar node locus, the true values of the 
parameters may be found from any one of the ratios in (160). 
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(D.) If there be a uniplanar node locus, then in addition to the results obtained in 

(B) and (C), it follows by (48) that 

Vjr:ro?' -fi . . . ; Vj:rijOj~ ~b ... i U, -Ci'~b . • • ’ 2 (7ixci -J- AVrZ) -b V.?-) • 2 (Wxa -|- vxb -j- PR) 

— UTyCl>~ -}"•••• UyyQ/ d~ • • • • UyM~ -j~ • • • ' 2 (XtyCl -f- W yb fi- V y) t 2 (W yCl -j- Vyb -(- By) 

= uxza2 + . . . : uyza2 + . . . : uzza2 + . . . : 2 (uza + Wzb -b Yz) : 2 (W.a + v2b + Uz) 

= 2 (uxa + AYxb + V.r) : 2 (uya 4- Wvb + Vy) : 2 (u.a + Wzb -f Yz) : 2u : 2W 

= 2 (AY^n -f- vjo -f- U*) : 2 (AYy<x -j- Vyb ~b Uy) : 2 (AYzn -b vzb -b Uz) ‘ 2AY : 2v (176). 

(E.) (i.) The following equations will be useful in the case of biplanar and 

uniplanar node loci:— 

p R Q V R Q «* w. Y* 

w. Vx u. + AY V u + R q P 

V U w V, u. wx Y u w 

u AY V ux AY., Y.r u AY Y 

R q P + AY V U + w. vx u. 

Y, u. wx Q P V Q P r 

= (pa2 -b 2Bab + qb° + 2Qa + 2P6 + r) £ (uv - AY2). . . (177). 

For the first and second determinants 

= V l — Us) + E l (UV - W„.) + Q | (WU - Yv). 

The third and fourth determinants 

= Ra^(UV - W«) + (uw - V*) + P^(WV - u«). 

The fifth and sixth determinants 
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Hence in the case of biplanar and uniplanar node loci, these six determinants are 

by (170)—(17 5) 

= (pa3 + 2Ra& + qb2 + 2Qa + 2Pb + r) ^ (uv — W3). 

(ii.) ux w. V. 
w. v* u. 
V, u. 

W3) . 

ux W, <1 *4 Wf ctux -f- + V* 
w, u. = w * Vx «w, + + U, 
v, u. wx y* u, + b\jx -f- wx 

ux w. u 

= X w. v* w 
V, u. y 

ux 

W, 

w, 

aux + bWx + V, aW, + bvx + XL 

u 

W 

au -f- bW V 

(178) 

ux w. 
w. w 

w 0 

= X2 ( - u,W3 + 2ttWW.« - u%) 

= X3 ( — uxuv + 2wWW, — u2vx) 

= - \2u ~ (uv - W3). 

w. V vy % w VV y V v Ujt w, V, 
w. u. + w* Vg u2 4- w. TT, 
y* U, «y2 v« v< iL V, u. “V 

ux w. v= ux w* v. w. V, 
w. u. + w. % U, 4- w. a 

V, u. Wx v2 u2 U, Wy 

- fyvu ~ (uv - W3) - 2i/\w ^ (w - W3) - 2\/xu ~ (uv - W3) . (179). 
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For multiplying the first column in each of these determinants by a, the second by 

b, and adding to the last they become 

uy W, [XU Uy yU u. w2 vu 

w. vx xw + w2 vz vW + w. vx XW 

V, vz vY v. vx XV V, Vy ^xV 

u. ws vu ux w. Xu ux wx Xu 

w vv y vy /xW + w„ Vy /xW + w, vz vW 

vx u. XV V, Vz vY u. y\ 

The coefficient of X is 

Uy W, 0 u~ Wz u u. w: w 

Wz Vz w + w; Vz W + W , 0 
Vz u. V u, 0 V, u. V 

The coefficient of /x is 

w* w. u v x W.E w u. w; 0 

W. w + w , V; 0 + w. P.r w 

v* Vz 0 V, u. V V, H, V 

The coefficient of v is 

Uy wy Uy w„ U W* W.t 0 

W, 0 + ' y w + W, Vy w 

V, u. V V., u. 0 Uy V 

The coefficient of /x can be obtained from that of X by changing 2 into x and y 

into z. 

The coefficient of v can be obtained from that of X by changing y into x and z 

into y. 

Hence it is sufficient to calculate the coefficient of X. 

The coefficient of X, viz. :— 
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Uy w VV y 0 uz w2 u uz w. u 

wz vz w + W VV y Vy 0 + w, vz W 

Yz vz Y Y, u~ Y Yy 0 

Uy W, 0 uz ws u uz wz u 

W; vz w + W W y 
vy 0 + w, V, W 

v. u* Y Yz Vz Y JUM - ClUy - bWy yW - - ClWy — bVy 0 

= !x 

u, W, u 

W, vz W 

u W 0 

+ uy {Yvz - WU; - a (WWZ - uvz)} 

+ W, |WV; - 2YW. + uUz - b (WW: - uvz) - a (uWz - Wuz)} 

+ Vy {Yu, - uYz - b (uWz - Wus)} 

= - fa (uv ~ W3) 

+ uy {vz (ciu + Y)-W (aWz + U*)} 

+ Wy (W (auz + Yz) — Wz (au + bW + 2Y) + u (bv, -f- U.)} 

+ vy {uz(bW +Y)-u (bWz + V,)} 

= ~ Pl%(uv ~ W2) 

~\~Uy (— Z/W2) + Wy (2VUW) + Vy (~ VU~) 

= - jxu ^ (uv - W2) - m ~ (uv - W2). 

Hence the coefficient of y. obtained from this by changing z into x, and y into z ; 

and, therefore, v into X, and /r into v, is 

vu ^ (uv — W2) — \u (uv — W~). 
dz 

And the coefficient of v, obtained by changing, in the coefficient of X, y into x, and 

2 into y, and therefore, /r into X, and v into /r, is 

- ku^(uv - W2) - fiu ~ (uv - W~). 

From these the equation (179) follows. 

MDCCCXCTI.-A. 2 H 
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Art. 18.—To prove that under the conditions stated at the head of this Section, every 

Surface of the System touches the Locus of Ultimate Intersections along a Curve. 

Consider the surface (142), the values of a, b being now supposed to he fixed. 

Consider any point y, £ on the curve in which the surface (143) meets the locus 

of ultimate intersections; then, by (158), these coordinates also satisfy the surfaces 

(144), (155). 

Multiplying (143) by a, (144) by b, (155) by 1, and adding, it follows that these 

coordinates also satisfy (142). 

Hence any point on the curve of intersection of (143) with the locus of ultimate 

intersections lies on (142) and (144) also. 

Hence the surfaces represented by the three fundamental equations meet the locus 

of ultimate intersections in the same curve. 

It is necessary to prove that the surface of the system (142) will touch the locus of 

ultimate intersections along this curve. 

N o w, 

D 

Dx 
(uaz + 2Wab + vbz -f- 2Ya + 2U b -f w) 

JD 

D,r 
-{(ua + Wb + V)2 -f bz (uv - W2) + 2b (Uu - VW) + (uw - V2)} 

- {(ua + Wb + Vf + IT (uv - W2) + 2b (Uw - YW) + (uw - V2)} 

+ - 12 (ua + Wb + V) ~ (ua + Wb + V) 
T)x 

+ U Lp; (uv - W2) + 2b // (Uw - YW) + ~ (uw - Y2) 
D,r 

Hence, at a point on the locus of ultimate intersections, this is equal to 

1 

u 
W2) + 2b £ (Uu - YW) + (uw 

Hence the tangent plane to the surface at the point x, y, z is 

(X - x) | U ^ (uv - W2) + 2b ~ (Uw - VYV) + ~ (uw ~ Y2) j 

+ (Y - v) {^21 (uv - W2) + 2b | (Uw - YW) 4- | (uw - V2)} 

4- (Z - z) j&2fy (uv - W2) 4- 2b~ (Uw - YW) 4 | (uw - \~) j = 0. 
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Now this, by (159), reduces to 

(X - x) | (uv - W3) + (Y — y) | (uv - W3) + (Z - z) | (uv - W3) = 0, 

which is the equation of the tangent plane to the locus of ultimate intersections, since 

uv — W2 = 0 at every point of the locus of ultimate intersections. 

Hence each surface of the system touches the locus of ultimate intersections along 

a curve. 

Art. 19.—To prove that under the conditions stated at the head of this Section, there 

are in general at every point of the Locus of Ultimate Intersections two Conic 

Nodes; and if C = 0 he the equation of the Locus of these Conic Nodes, A con¬ 

tains C2 as a factor. 

(A.) To prove that there are in general two conic nodes it is necessary to show that 

there are in general two distinct sets of values of a, b, which satisfy (142), (161), 

(162), (163). 

These will be satisfied if (143), (161), (162), (163) be satisfied. 

Eliminating b from (143) and (161) the result is 

a2 (W- 2wWW.r + v-xu%) + 2a (iNvx - VWW, + W2Y, - WwU,) 

+ (Nvx - 2WVU, + W*wx) = 0. 

Hence by (153), (154), (157), after division by u, it follows that 

a21 (uv - W2) + 2a|- (Nv - UW) + (vw - U2) = 0 . . (180).'" 

And in like manner by eliminating a between the above equations 

62| (uv _ w2) + 26 J^(Uu ~ VW) + 9- (uw - V2) = 0 . . (181).t 

Further, by means of (159), it is possible in these equations to change x into y or 

into z. 

These equations will be called the parametric quadratics. 

Hence choosing a and b to satisfy (143) and (161), they will also satisfy (143) and 

(162), and (143) and (163), 

Hence it is possible in general to find two distinct systems of values of a and b 

which satisfy (142), (161), (162) and (163), at points on the locus of ultimate 

intersections. 

* The mean of the values of a satisfying (1£0) is the value of a given by (170). 

t The mean of the values of b satisfying (181) is the value of b given by (171). 

2 H 2 
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Hence there are in general two conic nodes at every point of the locus of ultimate 

intersections. 

(B.) It follows from (146) and (147) by means of (158) that A, dA/dx both vanish 

at points on the locus of ultimate intersections. 

By symmetry 0A/dy, dA/dz also vanish. 

Hence A contains C3 as a factor. 

Example 11.—Locus of two Conic Nodes. 

Let the surfaces be 

(aC + S3-£2) (* — «)3 + 2 (/3£ + Sexy) (x — a) (y — b) + (y£ + ezy2) (y — bf 

+ 2gC (x — a) + 2hi (y — b) + Tct? = 0, 

where £ = z — cx — dy ; and a, /3, y, S, e, c, d, g, h, k are fixed constants; a, b the 

arbitrary parameters ; n = 1 or 2. 

(A.) The Discriminant. 

This can be formed by solving the equations 

(a£ + §3^3) (a; — a) -f (/3£ + Sexy) (y — b) + gl= 0, 

+ Sexy) (x — a) + (y£ + Cy2) (y — b) + h'C, = 0, 

for a, b ; and substituting in 

gl (x — a) + hi (y — b) + Ku. 

The values of a, b are (after removing the factor £ which makes them indetermi¬ 

nate) given by 

_ __ (h/3 — gy) £ + ey (hdx — gey) 

X a ~ («7 - /32) £ + (uehf - 2/3Sexy + 7SW) ’ 

, _ (r//3 — 7a) £ — 3.i' (hSx — gey) 

J (a7 — /32) £ + (o>.e~if — 2j3hexy + ySh;2) 

Substituting these values, and multiplying by the rationalising factor 

uv — w2 = £ [(ay — /32) £ + (aeh/2 — 2/3Sexy -f- ySar3)] 
the result is 

« (ay - y83) £" + 2 + k (aeV “ 2/dSe.tt/ 4. y3V) £’+ 1 

— (a/r — 2,8gh + yf) £3 — {hSx — geyf £2. 

This might also have been obtained from the form (146). 
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(B.) 1'he Locus of two Conic Nodes is 4 = 0, and if n = 2 there is cdso a Curve 

Locus of Conic Nodes. 

The singular points are determined by finding solutions of f — 0, BfjBx = 0, 

Df/Dy = 0, Bf/Dz = 0. 

But since D/’/D £ = DfjDz, the equations 

/= 0, Df/Dx = 0, D//Dy = 0, D//D£ = 0 

may be used instead, where a;, y, £ are now the independent variables, so that the 

meaning of the symbol of differentiation D is changed. 

The equations to be satisfied are 

(«£ + W) (x — af + 2 (/3£ + Sea:y) (a: — a) (y — 8) 4- (y£ + e2y2) (y ~ 

+ 2y£ (a; - a) 4- 2A£ (y — 6) + A£* = 0, 

[&» (a; — a) + ey (y — 6)] 8 (2a: — a) + £ [a (x — a) + /3 (y -- 8j + y] = 0, 

[Sa: (a: — o) + ey (y — 8)] e (2y — 8) + £ [/3 (a: — a) + y (y — h) + A] = 0, 

a(x — df +2/3 (a: — a) (y —- 8) + y (y — &)2 4 2y (a1 — a) + 2A (y — 8) + nkfl~l = 0. 

From these it follows that 

[8a: (a: — a) + ey (y — 8)]2 -f 8(I — «) £f< = 0. 

(i.) One method of solving the above equations is to take 

£ = o, 
8a: (x — a) + ey (y — 8) = 0, 

a (a: -- a)2 + 2/3 (a — a) (y — 8) -f y (y — 8)2 4- 2y (a: — a) 4- 2A (y — 8) 4* ^£"“1 s= 0. 

Hence whether n— 1 or 2, there are two values of 8, and tw*o corresponding values 

of a. Hence there are two conic nodes. Hence £ — 0 is a locus of two conic nodes, 

(ii.) Another method of solving the equations is to take 

8 (2x — a)_ u (x ~ a) 4 /8 (y b) + g 

e (2y -b) ~~ /3 (a - a) + y {y -b) + li' 

[Sa: (ix — a) + ey (y — 8)] 8 (2a: — a) 4- £ [a (a — a) 4' (3 (y — 8) 4- g] — 0, 

a(x — af 4 2/8 (x — a) (y — 8) 4- 7 (y ~ fy2 + 2g (x — a) 4- 2h (y — 8) 4- nk£n~x = 0, 

[8a- (a: - «) f ty (y - 8)]2 4- A (1 - ?i) £" = 0, 
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If' n = 1, then Sx (x -- a) -J~ ey (y — b) = 0, 

Hence £ = 0, and this is the same solution as in (i.). 

If, however, n — 2, there are four equations to be satisfied by x, y, £. Eliminating 

x, y, £ it is necessary that a certain relation should be satisfied by a, b, in order that 

the equations may be consistent. 

From the above equations (when n = 2) 

§x (x —■ a) -j- ay (y — b) = \/ k £ 

v/k S (2x — a) 4 a (x — a) 4 /3 (y ~ b) 4 g = 0, 

rejecting a solution £ = 0. 

v/k e (2y — b) -f A (a? — a) 4 y (y — 6) + h — 0, 

a(x — af + 2ft(x — a) {y — 6) 4 y (y — 6)2 + 2g (cc — a) 4 2/? (y — 6) 

4 2 v/k [Sas (& — a) 4 ey (y — Z/)] = 0. 

Hence 

0 (a* — a) + A (*/ — 6) + v7* [Sa (a; - - n) 4 eb (y — 6)] = 0. 

Hence 

(x — a) (a 4 2S\/k) 4 (y — b) ft 4 (g 4 ah\/k) = 0, 

~ a) ft (y ~ b) (y ~f- 2e\/k) 4 (A 4 b&\/k) — 0, 

(« — a) (</ 4 aS\/*) 4 (y Z>) (A 4 bey/k) = 0. 

Hence 

a 4 2S\/k /S 

£ y 4 2e\/k 

g 4 ctS\/k h 4 be\/k 
i.e., 

(g 4 a S\/k)2 (y 4 2ev/#c) —• 2/3 4 a Sv7k) (li 4 bey/,k) 

4 (h 4 be\/k)~ (a 4 2 Sv/k) = 0. 

Hence only when this relation holds between a, b, will there be any conic node on 

the surface which is not also on the locus £ = 0. 

As in the general theory explained in Art. 3, this leads to a curve locus of conic 

nodes. It need not therefore be further considered.’ 

Hence the only locus of conic nodes that need be considered in the discussion of the 

discriminant is £ = 0. 

Now, whether n = 1 or 2, the lowest power of £ in the discriminant is £2 ; hence 

this factor is accounted for. 

g 4 oSv/ k 

h 4 be\/k 

0 = 0, 
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(C.) The Locus 

k£p (ay — (32) -j- kQl~l (ae~y~ — 2/38exy 4~ yS^x2) 

— £ (ah2 — 2/3gh + yg2) — (hSx — gey)2 = 0 
is an Ordinary Envelope. 

The condition uv — w2 = 0, 

£ [(ay — /32) £ + (aeh/2 — 2/3 8eXy + y S’x3)] = 0, 

is not fulfilled at every point of this locus. 

To prove that it is an envelope it will be sufficient to show that if x, y, £, be chosen 

so that 
(a£ *T S^x2) (x — a) + (/3£ + Sexy) (y — h) + y£ = 0, 

(P£ + (x — a) + (y£ + ehy2) (y — b) + h£ = 0, 

</£ (x — a) + lit, (y — b) + Kn = 0, 

then the surface 

ktp (ay — /32) -j- k£ll~x (ae2y2 — 2/38exy -j- yS2x2) 

— £ (ah2 — 2/3gli + yg2) — (hSx — yey)2 = 0 
touches the surface 

(a£ + S2x3) (x — a)2 + 2 (f3i + Sexy) (x — a) (y — h) + (y£ + e3y2) (y — 6)3 

+ 2y£ (x — a) + 2A£ (y — fr) + &£" = 0. 

Calling the last two equations <f>= 0,f= 0 respectively, the conditions for contact 

may be expressed thus. 

The same values of x, y, £, must satisfy 

P — ffi /= 0 

/ ny / p/ = / d/ 
Ite / Da- Dy / Dy D? / I>£ ’ 

where x, y, £ are the independent variables. 

The values chosen for x, y, £ obviously make f = 0. 

Also eliminating x — a, y — 6, the result is £2<£ = 0. 

Hence the values of X, y, £ can be chosen so as to make </> = 0. 

Next 

?/ 
D.r 

23 (x — a) [Sx (x — a) + ey (y — 6)] 

+ 2 [(a£ + S2x2) (x — a) + (/3£ + Sexy) (y — 8) + y£] 

= 2 S(x a) [Sx (x — a) -f- ey (y — 6)] 

for the above values of x, y, £. 
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Similarly 

Hence 

if 

2e (y - b) [Sar ( x - a) + ey (y - b)] , 

| ^ = 2K.£n~l (ySvr — fiSey) — 2/^S (ASx — pey) , 

= 2^’C"-1 (ae33/ - P$cx) + 2#e (A&c - gey). 

DJ> / f]/ _ / HZ 
D.c / Ite Dy / I)?/ ’ 

(a — «) [&£"_1 (aey — £Sz) + # (AS® — ^ey)] 

= (y - b) \k£n~l (ySx - fey) - h (hSx - gey)]. 

Making use of the values of a: — a, y — b, which satisfy the equations which have 

been taken to determine them, and which are solved above in (A), it is necessary to 

show that 

[(A/3 — gy) £ + ey (hSx — gey)] [k£u~l (aey — fex) + g (hSx — gey)] 

= [(gfi — ha) £ — Sx (hSx — gey)] \Jc£n~l (ySx — fey) — h (hSx — gey)], 

i.e., to show that 

Kn [(A/3 - gy) (aey - fex) - (g/3 - ha) (ySx - fey)] 

+ k£n~l (hbx — gey) [aeh/2 — 2feexy + ySbc3] 

— £ (hBx - gey) (ah3 — 2/3gh + yg2) — (h$x — geyf = 0, 

^.e., 

(hSx - gey) </> = 0. 

Hence this is satisfied. 

Therefore 
Dip / Df _ D<f> / W 
Dx / I)x Dy / % 

It remains to prove that each of the equal quantities 

(x — a) [&c (x — a) + ey (y — 6)1 (;y — b) [&c (x — a) + ey (y — 6)] 

k£n~J (ySx — fiey) — li (hSx — gey) k£n~l {aey — fex) + g (hSx — gey) 

is equal to 

a(x — «)2 + 2/3 {x — a) {y — b) + y (y — b)2 + 2g (x — a) + 2h(y — b) + nk£n~l 

nk£,l~l (ay — fe) + (n — 1) k£n~2 («e2y3 — 2fthexy + yS2x2) — (ah2 — 2{3gh -f- yg2) 

Multiply numerator and denominator of the first ratio by §x, of the second by ey, 
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of the third by £, and form a new ratio by addition of the numerators and deno 

minators. 

Then each of these ratios must be equal to 

«K ~ of + 2/3£ Q - a) (y — b) + y£ (y — b)2 + 2(x — a) + 2h£ (y — b) + nl^“ + [&c (x — a) + ey(y — b)]- _ 

nJc£n (ay—/32) + nk£H ~1 (ae2y3 — 2/3Sexy + yS2x2) — £ (a/r — 2/3gh + yg2) — (h8x — gey)2 

Hence, by means of the equations f — 0, <f> = 0, each of the ratios must be 

equal to 

(n — 1) lc£n /\_(n — l)k£n (ay — /32) + (n — l)&£"-] (ae2y2 — 2/38exy -f- yS2x2)] 

X.C. 

£/[£(ay — /32) + (a e2y2 — 2/3Sexy -f- yS2X2)]. 

Hence it will be sufficient to prove 

(,r — a) [&c (x - «) + ey (y - &)] _f_ 

lcQl~l (ySx — /3ey) — h (h8x — gey) £(ay — (32) + (ae2y2 — 2/3Sexy + yS2x2) 

Now using the values of a; — a, y — b given above in (A), 

[Sx (x — a) + ey (y — 6)] [£ (ay — /33) + (ae2y2 — 2/3Sexy + yS2x2)] 

= £ [&» (^ - gy) + ey (y/3 - ha)]. 

Hence, using the value of (x — a), it is necessary to prove that 

[(h/3 - gy)£ + ey (hhx - gey)] [Sx (h/3 - gy) + ey (g/3 - lia)] 

= [(ay — /32) £ -|- (ae2y2 — 2/3Sexy -f- yS2x2)] (ySx — /3ey) — h (hBx — yey)]. 

Hence it is necessary to show that 

(ySx — f3ey) \k£,n (ay — /32) + kt,n~l (ae2y2 — 2/3Sexy -f- yS2x2)] 

= £ [A (ay — /33) (ASx — yey) — y (7?/3 — gy) (ySx - f3ey) + h (h/3 — gy) (/3Sx - aey)] 

+ (hSx — yey) \]i (ae2y2 — 2/3Sexy + yS2x2) — yey (ySx — /3ey) -J- hey (/3Sx — aey)], 

i.e., 
(ySx — /3ey) (f> = 0. 

Hence this is satisfied. 

Hence the conditions for contact are satisfied. 

Since uv — wz = 0 is not satisfied at all points of the locus <f>= 0, the factor of 

the discriminant corresponding to it occurs only once. 

MDCCCXCII.—A. 2 I 
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(D.) It wili be verified that the mean of the values of the parameter b, which 

correspond to the two surfaces having conic nodes, at a point on the locus £ = 0, 

is the same as the value of the parameter b, which is used to form the discriminant. 

The values of the parameters corresponding to the conic node are given by 

£ = 0, Bx (x — a) + ey (y — b) = 0, 

a (x — a)2 -4- 2/3 (x — a) (y — b) -f- y (y — b)2 + 2g {x — a) -f- 2h («/ — &) + nk(,a~1 = 0. 

Hence 

(y — b)3 (ae3y3 — 2/3Bexy + yBrx2) -f 2 (y — b) Bx (hBx — cjey) -f nkB2x2£>‘l ~ 1 = 0. 

Hence the mean of the values of y — b is 

Bx {gey — hBx)/(a.e2y2 — 2/3Bexy -j- yB~x2). 

Now putting £ = 0 in the value of y — b, given above in (A), the same result is 

obtained. 

(E.) This example is a case in which the assumption equivalent to that of Art. 7, 

viz., that 
D/ Ba D/ 35 

Da Bz 1)5 Bz 

at points on the locus of ultimate intersections cannot be made. 

The equations Df/Da = 0, Df/Db = 0 are given in (A). 

Hence Ba/Bz,. Bb/Bz are given by 

(«£ + B2x2) ^ + (PC + Sexy) ^ = a (x - a) + £ (y - b) + g, 

(/3£ + Bexy) + (y£ + e3/) ^ = ft {x — a) + y {y — b) + h. 

Denoting for brevity 

a (x — a) + /3 {y — b) + g by G, 

f3 (x — a) + y (y — b) + h by H, 

£3 (ay — /33) + £ (ae3?/3 — 2/3Bexy + yS%3) by K, 

Bx {x — a) ey {y — b) by L, 

it follows that 

0“ = | [G (yi + «V) -H(M + Sexy)l 

| = |[H (a£ + 8%*) -G(K+ Se-n,)]. 
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Therefore 
_ I /^/ 0a D/ 05\ 

2 \Da 02 D& 02/ 

= i (G£ + LSx) [G (yi + ey) - H (/3£ + Sexy)] 

+ i (H£ + Ley) [H («£ + 8V) - G (Pi + Sexy)]. 

Hence, dividing numerator and denominator by £, and then putting £ = 0, 

l/jy 0® I 5/ 0J\_ (Gey - H&c)2 + LSa? (Gy - H/3) + Le7 (Ha - 0/3) _ 
2 \Da 02 + J)b 02/ «e2y2 - 2(38exy + 78V 

Now, in the case n— 2, there is a conic node when x — a,y = b, £ = 0, and then 

G = g, H = h, L = 0. 

Hence 
j /D/ 0a D/ 0&\   (yeZ> — hBa)2 

2 \Da 02 D& 02/ ae2&2 — 2(38eab + 782a2 ' 

Hence 

D/ 0a D/ 06 

Da 02 D6 02 
does not vanish, 

Art. 20.—To 'prove that under the conditions stated at the head of this Section, if 

the two Surfaces having Conic Nodes coincide, then they are replaced, by a single 

Surface having a Biplanar or a Uniplanar Node. 

If the condition be expressed that the roots of either parametric quadratic be equal, 

then the roots of the other parametric quadratic must also in general be equal ; for 

treating the parameters as coordinates of points in a plane, this amounts to expressing 

that the straight line (143) touches the conic (161). 

In this case then, the two surfaces having conic nodes coincide, and if a, b be the 

values of the parameters corresponding to them, they may be found by finding the 

points of contact of the straight line (143) Avith the conic (161). 

They are therefore given by the equations 

uxa + WJ) + V,, Wxa + vxb + Ux V,.a 4- VJ> + wx 

u W V 

Now, since the equation (161) may be replaced by (162) or (163), it follows that 

in the above x may be changed into y or z. Hence 

uxa + WJo + Vx : uya + Nf> + Vy : um + W.b + V. : u : W 

= Wxa + vJj -f U„ : Wya + vyb + Uy : Wza + vdj + IJ~ : W : v. 

2 I 2 
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Hence the conditions (164) are satisfied. 

Hence there is in general a biplanar node. 

But as a particular case there may be a uniplanar node. 

Art. 21.—If the two Conic Nodes are replaced by a single Biplanar Node, and if 

B — 0 be the equation of the Biplanar Node Locus, and if the Edge of the Biplanar 

Node touch the Biplanar Node Locus, A contains B3 as a factor. 

It follows as in Art. 19 (B.) that A, dAjdx, 0A/dy, 0Ajdz all vanish on the biplanar 

node locus. 

Consider now 03A/0x3 as given in (148). 

The first three determinants vanish by (158). 

To calculate the next three, put in (177) 

p = ux, q — vx, r — wx, P = U,, Q = V„ R = W,;. 

Hence these three determinants 

Pi 

= (a2uv + 2abWx + b2vx + 2aNx -f- 25IJ, + wf) {uv — W2) = 0 

by (161). 

Next consider 02A/0x dy as given in (149). 

The first three determinants vanish by (158). 

To obtain the next six, put in (177), 

P = Uy, q = Vy, r — Wy, P = Uy, Q = Yy, R = Wy. 

Hence their value is 

(cduy + 2abWy + bzvy + 2aVy + 2bJJy + wy) (uv — W2) = 0 

by (162). 

Hence by symmetry all the second differential coefficients of A vanish. 

Therefore A contains B3 as a factor. 

Example 12.-—Locus oj Biplanar Nodes, such that the Edges of the Biplanar Nodes 

always touch the Biplanar Node Locus, the equation of the Surfaces of the System 

being of the Second Degree in the Parameters. 

Let the surfaces be 

(bx — ay + czf — y2z2 — 2mz (x — a) (y — b) — 0, 

where c. g, m are fixed constants ; a, b are the arbitrary parameters. 
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(A.) The Discriminant. 

\y2 — xy — mz (m — c) yz 

A = | — xy — mz x2 (m + c) xz 

\(m — c) yz (m + c) xz (c2 — g2) z2 — 2m xy z 

= mz3 {2(/2«y — (c2 — e/2) mz}. 

The way in which the factor z3 arises will now be examined. 

The discriminant is found by eliminating a, b between 

(bx — ay + cz)2 — </2z2 — 2m (x — a) (y — b)z = 0 . . . . (a), 

— 2y (bx — ay + cz) + 2m (y — b)z — 0 . . (ft), 

2x (bx — ay + cz) + 2m (x — a) z = 0 . (y). 

By means of (/3), (y), it follows that (a) can be written 

(bx — ay + cz) cz — #2z2 — mz (2xy — bx — ay) = 0 . . . . (8). 

The values of a, b, satisfying (ft) and (y) are 

1 

— xy — mz (m — c) yz 

x2 (m + c) xz 

(m — c) yz y~ 

Therefore 

(m + c)xz — xy — mz\ — xy — mz 

b 1 

xy — mz 

x2 

■mxz {2xy + (m + c) z} — myz {2xy + (m — c) z} — mz (2xy + mz) 

Now it will be shown that on the binode locus z = 0 ; therefore the values of a, b 

become indeterminate on the binode locus. 

But they may be determined by dividing out by the factor z, which vanishes on the 

binode locus, and then 

a = x(l ~b r—--\ 
\ 2 xy + mz) 

cz 

2 xy + mz 

Hence if y, 0 be any point on the binode locus, then at this point the values of 

the parameters are a = £, b = y. 

Hence there is a single set of values of the parameters satisfying the equations 

Df/Da = 0, Df/Db = 0 at points on the binocle locus, which has been determined. 
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There is not a double set of equal values as in Art. 15 (see especially Example 10 

of that article), where the degree of the equation of the system of surfaces in the 

parameters is higher than the second. 

If the values given above for a, b be substituted in the left-hand side of (8), and 

the result multiplied b}^ the rationalising factor uv — W3, which in this case is 

— (2xymz fi- m2z2), the result is 

r oY) l 
— (2xymz + m¥) j —--—- — g2z2 l = m23 {2g2xy — (c2 — g2) mz}, 

I *4” oibz 

which is the same value for the discriminant as before. 

It will be noticed that the factor 2 enters once through the rationalising factor, and 

twice from the remaining part. 

(B.) The Node Locus is 2=0. 

Substituting a? = a + X, y = b Y, 2 = Zin the equation, it becomes 

(bX - al + cZ)3 - g2Z2 - 2mXYZ = 0. 

Hence the new origin is a binode. There are no other singular points on the 

surface. 

The biplanes are bX. — aY cZ E gZ = 0. 

They intersect in the straight line 6X — aY = 0, Z = 0. 

Hence the binode locus is 2 = 0, and the edge of the binode, which lies in the 

binode locus, satisfies the condition for contact with the binode locus. 

(C.) The Locus (c3 — g2) mz — 2g2xy = 0 is an Ordinary Envelope. 

To prove this it is necessary to satisfy at the same time 

(bx — ay + cz)2 — g2z3 — 2mz {x — a) (y — b) = 0 . . . . (a), 

(c3 — g2) mz — 2g2xy =0.(e), 

2b {bx - ay + cz) — 2m {y — b)z — 2a (bx — ay + cz) — 2vi (x — a) z 

- 2ghy ~ - 2(fx 

2c (bx — ay + cz) — 2glz — 2m (x — a) (y — b) / n 

m (c2 - g2) ’ ' ' 

Multiplying numerator and denominator of the first ratio in (£) by x, of the second by 

y, and of the third by 2 ; adding the numerators to form a new numerator, and the 

denominators to form a new denominator, and reducing by (a) and (e), each of the 

above ratios 
2 (xy — ab) 
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Equating the third ratio of (£) to this, and substituting for 2 from (e), and putting 

a/x = £, b/y = 77, the result is 

m (m — c) £ + m (m -f- c) 77 + 2 (g3 — m3) = 0.(77). 

In like manner, from the first and third ratios of (£), 

m3 (c3 — g2) yf + 4m (m + c) /q + 4 (gd — m3/) 

-f- £ {— m3 (c3 + /) 17 + 2m/ (m — c)} = 0 . . . (0). 

Substituting for £ from equation (77), this reduces to 

mcr)'2 + rj (g2 — cm) = 0. 

Hence 77 = 0, 77 = 1 — (g2jcm). 

Substituting in equation (77) the corresponding values of £ are 

, _ 2 (m3 - f) 
m (to — c) ’ 

I = 1 + (//cm). 

It remains to prove that one of the two systems of solutions will satisfy the equa¬ 

tion obtained from the second and third ratios of (£). 

This equation is 

m3 (c3 — /) £3 + 4m (m — c) + 4 (g^ — m2g2) 

+ 77 [ — m3 (c3 + /) £ + 2m/ (m + c)] = 0. 

Substituting for 77 from equation (77), this reduces to 

mc£3 — £ (cm + /) = 0. 

Therefore 

£ = 0, £ = 1 + (//cm). 

Hence the solutions 

x = acm/(cm + /), 

y = hem I {cm — p'2), 

« = 2a6c3/m/{(c3m3 — p'4) (c2 — /)}, 

satisfy all the equations. 

Hence the surface (e) is an envelope. 

(D.) It will now be verified that the values of b given by (181), and the equations 

obtained by changing £ into 77 and £, become equal in this case. 
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The equation 

U^(uv - W2) + 2b |>U - VW) + ^ (uw - V2) = 0 

is the only one that need be considered, because the others are identically satisfied. 

In this case 

uv — W~ = — 2xymz — m2z2 

uJJ — VW = myz {2xy + (m — c) z} 

uw — V3 = (— m2 H- 2me — gf t/222 — 2mxyh. 

Hence if 77, 0 be any point on the binode locus, 

0 
^l(uv ~ W2) = — 2m£r), 

~(uU - VW) = 27n^\ 

^ (uw — V2) = — 2mtjrf. 

Hence the equation for b is 

— 2m^rj (b — 77)2 = 0. 

Hence both values of b become equal to 77. 

Art. 22.—If the two Conic Nodes are replaced by a single Uniplanar Node, and if 

U = 0 be the equation of the Uniplanar Node Locus, then A contains U4 as a 

factor. 

It follows, as in Art. 19 (B), and Art. 21, that A and all its differential coefficients of 

the second order vanish. 

Next take the value of 33A/ffr3 from (150). 

The first three determinants vanish by (158). 

To calculate the next set of terms, put in (177) 

P 'U'zx, q — vxx, r — wxx, P — Uxx, Q = V xx, It — W xx. 

Hence they are equal to 

3 (a/-uxx + 2abWxx + b2vxx + 2aVxx + 2b\Jxx + wxx) ~ (uv — W2) 
a 
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The last determinant by (178) is equal to 

- 6Xzu ~ {uv -W2). 

Hence 03A/0a;3 = 0. 

Next take the value of 03A/0x202/ from (151). 

The first three terms vanish by (158). 

The next three terms by (177) are equal to 

+ «-) l (- - W=) 

= 2\*U ^ {uv ~ W2). 

The next three terms by (177) are equal to 

0 

2 {a?uxy 2ctb~Wxy -f- b~vxy -f- 2ccV xy -f- 2bXJ xy -f- wxy) ^ {uv — "W ~) 

= 4:\[xu {uv — W2). 

The next three terms may be obtained from (179) by changing z into x, and, 

therefore, v into A. They are therefore equal to 

— 4c\[jlu ■— {uv — W2) — 2\zu {uv — W2). 

Hence 03Ajdx^by = 0. 

Next take 03A/0cc0y0z from (152). 

The first three determinants vanish by (158). 

The next six are by (179) 

0 
LLVU 

The next six are by (177) 

= {<^uxy + 2abWxy + b2vxy + 2aVxy -f 2bVxy + wxy) I {uv — W2) 

= 2Afiu y {uv — W2). 

Hence, the next six are 

= 2^vu 51 (uv ~ w)> dx 

2 K MDCCCXCII.—A. 
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and the next six are 

Hence, B3\jBx 3y Bz = 0. 

= 2v\u (uv — W~). 

Hence, by symmetry, all the third differential coefficients of A vanish. 

Hence, A contains U4 as a factor. 

Example 13.—Locus of Uniplanar Nodes when the equation of the System of Surfaces 

is of the Second Degree in the Parameters. 

Let the surfaces be 

(bx — ay -\- zf — z3 — 2mz (x — a) (y — b) = 0. 

(A.) The Discriminant. 

It is 

r ! a
 1 s
 

(to — 1) yz 

- xv — mz 
0 

ar (to + 1) xz 

(to — l)yz (to + 1) xz z2 — z3 — 2mxyz 

= toz4 (2 xy + mz - - to). 

To show the origin of the factor z4, the formation of the discriminant will be 

examined. 

The equations DfJDa = 0, Df /Db = 0 are, in this case 

ay2 — b (xy + mz) + (to — 1) yz — 0, 

— a (xy + mz) -f bx2 + (to + 1) xz = 0. 

Therefore 

a b 1 

— mxz (2xy + (rn + 1) z} — myz {2xy + (m — 1)2} — mz (2xy + mz) ’ 

Now, it will be shown presently that z — 0 is the uniplanar node locus. Hence, 

a, b become indeterminate on the uniplanar node locus. But, removing the factor 

— mz, which vanishes on this locus, 

2 xy + mz 

Hence, at any point, £ y, 0 on the uniplanar node locus, a = ^, b — y. 

Again, substituting the above values of a, b in 

(bx — ay -f- z)2 — z3 — 2mz (x — a) (y — b), 

a — x 1 -(-7 
2 xy + mzj’ 

b-y 
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the result is 
m23 o 

- — z6. 
2 xy + mz 

If this be expanded in ascending powers of z, the lowest is the third power. 

But the rationalising factor applied to form the discriminant, viz. — mz (2xy -j- mz) 

contains the factor z. Hence, the factor z4 is accounted for. 

The discriminant is as before 

mz4 (2xy -j- mz — m). 

(B.) The Uniplanar Node Locus is z — 0. 

Put x = a + X, y = b + Y, 2 = Z in the equation. It becomes 

(bX - aY + Z)2 - Z3 - 2mXYZ = 0. 

Hence the new origin is a uniplanar node. 

Hence z = 0 is the uniplanar node locus. 

(C.) The Envelope Locus is 2xy + mz — m — 0. 

The equation can be written 

ary9, — 2ab (xy + mz) -j- Irx9 + 2a(m — 1) yz + 26 (m + 1) xz + p 

= p — z3 + z3 + 2 mxyz. 

Let p be determined as a function of x, y, z, so that the left-hand side of the 

equation may break up into factors linear with regard to a, h. 

Then 

p = 23 — 2 mxyz 
2 xy + 

It may then be verified that the equation can be written 

a + -2 [ — b (xy + mz) + (to — 1) yz\ 
J' 

- ^z(2xy + mz) | b - y + — 
y- 

2 xy + mz 

£ (2xy + mz — m) 

2 xy + mz 

Hence it may be concluded that 2xy + mz — m — 0 will touch the surface where 

both the factors of the left-hand side vanish, i.e., where 

a + — [— b (xy + mz) + (m — 1) yz] = 0, 

b - V + : 
yz 

2 xy + mz 
= 0, 

2 k 2 
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i.e., where 

a = x 1 + 
2 xy + mz )» b = yU - 2 xy + mz 

Hence the points of contact are determined by 

Hence 

2 xy + mz — m — 0, 

a — x J 

(z2 — to2) (z — 1) — 2dim = 0. 

Hence when a, b are given, there are three values of z, and three corresponding 

values of x, and three corresponding values of y. Hence each surface touches the 

envelope at three points. But each point on the envelope is the point of contact 

of only one surface of the system, since when the coordinates x, y, z of the point of 

contact are given, the values of a, b, the parameters of the surface touching the 

envelope there, are determined by the simple equations 

a = x (1 + z/m), b = y (I — z/m). 

The result may be verified thus :— 

The values of x, y, z satisfying the equations 

a = x (I + z!m), b — y (1 — zjm), (z2 — m2) («—!)— 2abm — 0 . . (a), 

will satisfy at the same time 

and 

(bx — ay + z)~ — 23 — 2mz (x — a) (y — b) = 0 

2 xy + mz — m = 0 

2 (bx — ay + z) b — 2mz {y — b)   — 2 (bx — ay + s) a — 2mz(x — a) 

2y 2x 

2 (bx — ay + z) — 3z2 — 2m (x — a) (y — b) 

m 

(0). 

(r)- 

If #, y, z satisfy (a), then 

, , 2 (z2 4- 2a&m — m3) 
— ay + 2 = -s-o- ■j zl — m“ 
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and substituting in the first of equations (/3), after making some reductions, the 

result is 
s2 

——fffi (22 + 2a&m — m2) [2abm — (z2 — m2) (z — 1)] = 0, 

which is satisfied by (a). 

Hence the first of equations (/3) is satisfied by the values of x, y, z given by (a). 

Again substituting for x, y in terms of 2 from (a) in (y) the ratios become equal to 

[zs (— m — 1) — m2z2 + (m2 — 2abm) z] / m (m + z) 

= [z3 (— m + 1) + m2z2 — (m2 — 2abm) z\ / m(m — z) 

— [324 — 22s + $ (2mob — 3m2) + 2 (2m2 — 4abm)] / m (m2 — z~). 

Hence it is necessary to show that 

[z2 (— m — 1) — m2z -f (m2 — 2abm)~\ (m — z) 

= [22( — m + 1) + m2z — (m3 — 2abm)] (m + 2) 

= 32s — 22s + z(2mab — 3m2) + (2m3 — 4 abm) .... (S). 

Equating the first and second quantities in (8) it is necessary to prove that 

23 — z2 — m2z + m2 — 2 abm = 0, 

which holds by (a). 

Equating the second and third quantities in (8) and removing the factor (m + 2), 

the same result is obtained. 

Hence the values of x, y, z given in (a) satisfy all the equations (/3), (y). 

Art. 23.—If the parameters of one of the two Surfaces having Conic Nodes become 

infinite, and if C = 0 be the equation of the Conic Node Locus, A contains C3 as 

a factor. 

The conditions that one value of a and one value of b satisfying the parametric 

quadratics (180) and (181) should be infinite are that 

4(to_w*) = o, |(«1.-w») = 0, l(uv-w*) = o. 

In this case the values of A and dA/dx, as given by (146) and (147), both vanish. 

Hence A contains C3 as a factor. 

Example 14.—Locus of one Conic Node. 

Let the surfaces be 

[a {x — a) + (3 (y — 8)]3 + 2gz (x — a) + 2hz (y — b) + kz2 = 0. 
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(A.) The Discriminant. 

It reduces to 
0 cr a/3 gz 

a/3 hz 

gz hz hz2 

The Conic Node Locus is z = 0. 

= — (^a — gfi) v. 

In this case equations (143), (161), (162), (163) are equivalent to the three 

equations 

a2 (x — a) + a/3 (y — b) + gz = 0, 

a/3 (x — a) + /32 (y — b) + hz = 0, 

g (x — a) + h (y — b) + kz — 0, 

the only solutions of which (unless g/3 — ha — 0) are 

x — a, y — b, z = 0. 

Hence there is now only one system of values of the parameters satisfying (143), 

(161), (162), (163). 

The same value of the parameter b would be obtained from the equation (181) 

which becomes in this case, after changing x into £, 

2b^(uJJ - VW) + ~ (uw - V3) = 0. 

Now 

uU -VW = (g/3 - ha) az, 

uw — V3 = 2 (ha — g/3) ayz + (ha2 — g3) 23 ; 

therefore, 

^ (uXJ — VW) = (g/3 — ha) a, 

0 
^ (uw — V3) =2 (ha — g/3) ay + 2 (ha2 — g2) z. 

On the conic node locus z = 0. 

Therefore the equation for b is 

2b (g/3 — ha) a + 2 (ha — g/3) ay = 0. 

Therefore 
b = y. 

There is only one conic node, since uv — W3 = 0, and, therefore, equation (181) 

reduces to a simple equation for b. 
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Art. 24.—If the parameters of both of the Surfaces having Conic Nodes become 

infinite, and E = 0 be the equation of the Envelope Locus, then A contains E3 
as a factor. 

In this case it is necessary that both roots of the parametric quadratics (180) 

and (181) should become infinite. 

Hence the first differential coefficients of 

uv - W\ Nv - UW, Uu - VW, 

with regard to any of the variables, must vanish on the envelope locus. 

[It may be noted that if 

_ W3) = 0, and ~ {Nv - UW) = 0, then ~ (Uu - VW) = 0. 
dx 

0 
^ (uv — W2) = uxv + uvx — 2WW.,. = 0 

1 (V„ - UW) = V,® + v®, - uyw - uw, = o 
(182). 

Multiplying these equations by V, u respectively, and subtracting 

ufifv + TJfiNu - uvNx - W, (2WV - Uu) = 0 ; 

therefore, using (158), after dividing by W, 

therefore 
u.TJ + Uxu - WY, - W,Y = 0 ; 

i(U»-VW)=0.] 

Now A, dA/dx both vanish by (158). 

Next consider b2Afx2 as given by (148). 

The first three determinants vanish by (158). 

The fourth and fifth determinants 

=2 {v4<wu - v”>+u4(vw - u«)+-ws)} 
= 0 by the above conditions. 

The sixth determinant is 

2 

ux "W x N x 

W, vx U, 

V U w 
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Substituting in it for nx, vx the values which can be obtained from 

i (yv _ UW) = 0, and - (Uu - YW) = 0, 

WY, + YW, — uUx UW, uv. 

2 YW, u,w + UW, 

\
 

>
 1 vu. 

UV V y„T VTT 
- u - w -Y 
u u u 

II 

WY, + YW, — wU, UW, UY, 

vw. uw,+ u,w - YXV YU, 

u w 
. 

V 

WY, + vw. UW, + WU, uv,+ YU, 
2 

= wU YW, UW, + WU, - -YXV vu. 

u w V 

WV, vYx UV, 

YW, UW, + WU, — Yxv YU, 

u W Y 

W v U 

= YW, UW,. + WU, - Yxv YU, 

u W Y 

= 0 by (158). 

Next take 33A/dxdy from (149). 

The first three determinants vanish by (158). 

The fifth and seventh determinants 

= Y, ^ (UW - Yv) + U, ~ (VW - \Ju) + wx ^ (uv - W2) = 0. 

The eighth and ninth determinants 

= v4 (UW - Vv) + U, 4 (VW - Uu) + w,l(uv - W) = 0. 
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The fourth and sixth determinants are 

Uy w vv.y 
y 
v y ux w. v. 

w. vx u, 1 + W u U, 
Y u w V u w 

UV 

WY, + VW, - llXJy UW, UV, 

YW, u,w + UW, - ” YgV YU, 

V 
— u 
u 

- w 
u 

— Y 
u 

+ UV 

WV, + VW, - ttU, UW, UY, 

YVY, U,W + UW, - -V,u VU, 

V 
— u 
it 

-w 
XL 

- V 
u 

U u 

WV, + YW, UWy + WU, UV, + vu, 
VW, U,W + UW, - Y.V YU, 

u W V 

+ 
XJu 

WY, + VW, UW, + WU, UV, + YU, 

YW„ 

u 

U,W + UW, - Yyv YU, 

W V 

Hence the coefficient of U, is 

JL 

U a 

0 w V wv,+vw, u\v.+" 
vw* u,w+uw,- Y,« YU, 4- i 

Uw 
0 W 

u w V XX w 

1 w Y 1 UW, UV, | 
~ ^ UW, - V*t> 0 + TT W V 

V 

Y 

I 
f (VvV. - VUW, + UVW, - UWV,) = 0. 

L MDCCCXCII. — A. 9 
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The coefficient of Y„ is 

Uu 

w 0 u WY, + YW, uw,+wu. UY,+YU, 

YW, UW + UW.-Ya YU, 

-i ks 
+

 0 — V 0 
u w V u w Y 

U u 

WO u 
vw, u,w+uw-Ya yu, 
0 W 0 

- f- (VWV,+VJW,-«UV,-«VU,) 
U tt 

W (WVD, - UVW.) - ~ (V!W.,; - uVU,) 
Uu 

= — {U, (uv - W3) Y + W, (U W - vV) V} = 0. 

The coefficient of Wy is 

JY 

Uu 

YU 0 

VW, U,W + UW,-Y,ti YU, 

u W Y 

WY + YW, UW, + Wffi UY + VU., 

+ 
Uu 

Y 

u 

U 

W 

0 

V 

= £ (U,W - V„„) + A (UWV, - YWUj.) 
Uw 

V 
= -{Y(UW-Y)) = o. 

Hence S2A/9a? 9y = 0. 

Hence all the differential coefficients of the second order vanish. 

Hence A contains E3 as a factor. 

Example 15.—Envelope Locus, the parameters of both the Surfaces having Conic 

Nodes being infinite. 

Let the surfaces be 
z3a3 + 2 + {ax b + fif = 0. 

(A.) The Discriminant, 

This is 
z2 + ad x xg 

x 1 y 

*y y y~ +2 



AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES. 259 

(B.) The Envelope Locus is z = 0. 

The tangent plane at £ g, £ is 

(X - f) 2a (of + h + g) + (Y — g) 2 (of + 6 + if) + (Z - Q (2«8£ + l) = 0. 

Hence at the point f, 17, £, where 

+ & + t? = o» c — 0, 
the tangent plane is Z = 0. 

Hence the factor z3 is accounted for. 

(C.) The Parameters of both Surfaces having Conic Nodes are infinite. 

In this case 

u = z2 -\~ x2, v = 1, iv = y2 z, U = y, V = xy, W = x. 

H ence the equations 

a2 | (MW _ W2) + 2a ~ (Vv - UW) + ^ (iw - U2) = 0, 

and 

621 (uv _ w2) + 26 (U« - VW) + | («w - V2) = 0, 

become, when 2=0, 

(0) a~ -J~ 0 (a) -f- 1 0, 

(0) 62 + 0 (6) + tf2 = 0. 

Hence both roots are infinite. 

If the differential coefficients in the parametric quadratics had been taken with 

regard to x or y, the equations would have been wholly indeterminate. 

Art. 25.—If the parameters of both of the Surfaces having Conic Nodes become 

indeterminate, then at every point of the Locus of Ultimate Intersections there are 

an infinite number of Biplanar Nodes; each Surface of the system has a Binodal 

Line lying on the Locus oj Ultimate Intersections, and if the locus of these 

Binodal Lines be B = 0, then A contains B4 as a, factor. 

In order that the parametric quadratics may become wholly indeterminate, the 

first differential coefficients, with regard to each of the three variables, of uv — W2, 

Uu — YW, Yv — UW, vw — U2, uw — V2 must vanish. These involve the 

vanishing of the first differential coefficients of UV — Wiv. 

It will be shown, first of all, that the ratios (164) are in this case equivalent only 

2 1. 2 



260 PROFESSOR M J. M. HILL ON THE LOOUS OF SINGULAR POINTS 

to the equation (143). [The same holds good in the previous article, but the condi¬ 

tion (161) is not satisfied there.] 

For consider the ratios 

uxa + WJ) + V.,: Wxa + v.Jo + TJ, = u : W. 

Therefore 

a (Wux - uWx) + b (WW, - uvx) + (W V, - uJJx) = 0. 

This will be the same equation as (143) if 

Hence if 

and 

i.e., if 

i.e.y if 

Wux - uWx _ WWX - uvx WV, - uVx 
u ~ W — V 

urW~ + u2vx - 2«WW.f = 0, 

VWW, - Vuvx - W2Y, + W7/U, = 0, 

uvux + u2vx — 2uW W, = 0, 

UuW,. — Vuvx — uvVx + WmU, == 0, 

0_ 
dx 

(uv — W2) = 0, 

P (TJW - Vv) = 0, 

which are satisfied. 

Similarly the other ratios in (164) hold. Hence if any point be taken on the curve 

in which the surface (143) intersects the locus of ultimate intersections, that point is 

a binode on the surface (142). Hence the surface (142) has a binodal line situated 

on the locus of ultimate intersections. Hence each surface of the system has a 

binodal line situated on the locus of ultimate intersections. 

It remains to show that if B = 0 be the locus of these binodal lines then A contains 

B1 as a factor. 

The proof in the last article will hold as far as the second differential coefficients of 

A are concerned. 

Consider, therefore, the value of 03A/3x3 given in (150). 

The first three terms vanish by (158). 

The next three are equal to three times 

u„ l (yw - TP) + 2 W.„ t (UV - Ww) + | (uw _ V*) 

+ 2V« |. (W U - Vv) + 2U„ £ (WV - Uu) + w„ V (uv - W3) 

= 0. 
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The last determinant is by (178) 

= - 6\*u^(uv - W2) = 0. 

Therefore 33A/d,x3 = 0. 

Next take 33A/3x^dy as given in (151). 

The first three terms vanish by (158). 

The next three 

= k„|(oto - U-) + 2W«|(UV-W#) + V2) 

+ 2V«| (WU - Vv) + 2V.„| (WV - U«) + (uv - W2) 

= 0. 

The next three 

= 2u„ £ (vw - U2) + i W, l (UV - Ww) + 2», l (uw - V2) 

+ 4V„ | (WU - Vv) + 4U,| (WV - U«) + 2w„l (uv - W2) 

= 0. 

The next three may be calculated by means of (179) by putting z = x, and there¬ 

fore v = X. 

Hence they are equal to 

- 4Aijlu ~ (uv - W2) - 2Xzu ~ (uv - W2) = 0. 

Hence 03Ajdx^dy = 0. 

Next take 33A/dxdydz as given in (152). 

The first three terms vanish by (158). 

The next six terms by (179) 

= — 2/xzvu (uv — W2) — 2v\u (uv — W2) — 2\/jlu v- (uv — W2) 

= 0. 

The next six terms 

= «, 3 (vw - U2) + 2W,| (UV - Ww) + («w - V2) 

+ 2V, ~ (WU - Vv) + 2U,| (WV - Uu) + JO, | (uv - W2) 

= 0. 
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The next six terms being obtainable from these last six by interchanging x and z 

vanish. 

The remaining six vanish in like manner. 

Hence all the third differential coefficients of A vanish. 

Hence A contains B4 as a factor. 

Example 16. —Locus of Binodal Lines, 

Let the surfaces be 

z2 {a2 + <£ (x, y, z)} — (ax + b + yf = 0. 

(A.) The Discriminant. 

This is 
z2 — x2 — x — xy 

— x — 1 — y 

- - y - y~ + 2V> (x> z) 

= - zty (x, y, z). 

(B.) Die Locus of Binodal Lines is Z — 0. 

For let £, 7), £ be any point on both the loci z = 0, ax -f- h + y = 0. 

Then put x = £ X, y = y Y, z = £ + Z, so that £ = 0, ai; + h + y = 0. 

Therefore 

z? (a* + $ (l V. o + x + Y ^ + Z | + . . .) - (af + b + v + aX + Yf = 0. 

Hence the lowest terms in X, Y,Z are 

Z*{a* + *(£i7, £)} - («X + Y)2 = 0. 

These break up into two factors. 

Hence the point ££ 17, £ is a binode on the surface. 

Hence the straight line z = 0, aa?-|-?> + ?/=0isa binodal line on the surface. 

And z = 0 is the locus of binodal lines. 

Hence the factor z4 of the discriminant is accounted for. 

(C.) The Locus <f> (x, y, z) = 0 is connected with a Curve Locus, not a Surface 

Locus, of Ult mate Intersections. 

For the fundamental equations are in this case 

{a2 + <f> (x, y, z)} — (ax + b + yf = 0, 

2z2a — 2* (ax -f b + y) = 0, 

2 (ax + b + y) = 0. 

z 
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Hence, if <f>(x, y, z) = 0, then, in order that the above equations may be satisfied, 

cix -j- b -J- y = 0, 

2 — 0, 

The locus of these points is the curve 

2 = 0, y, z) = 0. 

This belongs to one of the exceptional cases enumerated in the Section VI. of this 

paper. 

Example 17.—This example, shows the difference between the cases when the equation 

is of the Second Degree in the parameters and those in which it is of a Higher 

Degree, so jar as regards Binode and Unode Loci, 

Let the surfaces be 

cl(x — a)3 + 3/3 (x — a)2z + cz3 -fi ‘3d (y — b)2 + ez2 = 0. 

(A.) The Discriminant, 

It is the same as that of the equation 

«X3 + 3/LX-Z + 3dY2Z + (c‘23 + ez2) Z3 = 0. 

Therefore 

S = - 

T = 4d?z2 [a3 (e + cz) -(- 2/3%}. 

Therefore 

A = l6c/%4 (a4 (e + czf + 4a3/3% (e + cz)}. 

(B.) The Locus of Biplanar Nodes is 2 — 0. 

For putting x = a -j- X, y = b + Y, z — Z, the equation becomes 

aX3 + 3/3K2Z + cZ3 + 3 dY2 + eZ2 = 0. 

The edge of the biplanes is given by Y = 0, Z = 0. 

Hence the edge of the biplanes lies in the biplanar node locus 2—0, and, therefore, 

satisfies the condition for contact with the biplanar node locus. 

Hence the factor 24 is accounted for (Art. 15). 

(C.) If e — 0, the Locus of Uniplanar Nodes is 2 = 0, 

In this case, 
A = 16d6 («V2 + 4a3/33c) 29. 

Hence the factor 2fi is accounted for (Art. 12), 
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(D.) If* = 0, A appears to vanish, but then the equation of the Surfaces, 

3/3 (x - a)H + czs + 3d (y — b)~ -fi ez~ = 0, 

45 of the Second Degree in the parameters, and f the Discriminant be formed it does 

not really vanish. 

For the discriminant required is not that of the cubic 

3/3tX2Z + 3dY:Z + (cz3 + ez*) 

but of the quadric 
3/3zX2 -b 3dY'2 -f (cz3 + ez~) Z\ 

It is therefore 
9/5dz3 (cz Jr e). 

(E.) The Locus of Biplanar Nodes is now z— 0, the edge of the Biplanar Node 

being in the Biplanar Node Locus. 

The edge satisfies the condition for contact with the biplanar node locus. Hence 

the factor 23 is accounted for (Art. 21). 

(F.) If e — 0, the Locus of Uniplanar Nodes is 2=0. 

In this case the discriminant is 9f3cdz4. Hence the factor 24 is accounted for 

(Art. 22). 

Section Y. (Arts. 26-29).—The Intersections oe Consecutive Surfaces. 

It has been shown that when the analytical condition (76) is satisfied which expresses 

that the fundamental equations are satisfied by two coinciding systems of values, the 

number of factors in the discriminant corresponding to conic node, biplanar node, and 

uniplanar node loci, is less when the degree of the equation in the parameters is the 

second than when it is of a higher degree. 

It has also been shown that, when (76) holds and the degree in the parameters is 

the second, each surface of the system, its consecutive surfaces, and the locus of 

ultimate intersections, intersect in a common curve. 

It is desirable, therefore, to examine the nature of the intersections of consecutive 

surfaces in all other cases. 

Art. 26. — To prove that the Surfaces represented by the three fundamental equations 

intersect in one point on the Envelope Locus, unless the Envelope Locus have 

stationary contact with each Surface of the System, and then there are tzvo points 

of intersection. 

(A.) First consider the case of an ordinary envelope. 

Let ch rj, l be a point of intersection of the surfaces 



AND LINES IN THE INTERSECTIONS OF A SYSTEM OF SURFACES 265 

f(x, y, z, a, b) = 0, 

0, 
Bf 
Da 

w 

D b 
= 0. 

Let £ + X, y + Y, £ + Z be a neighbouring point on the same three surfaces, so 

that the values of a, b are the same. 

Therefore 

/+ [flX + M Y + raz + 1 {[£ f]X» + • • • } 

+ * (K ^ A X8+ = 0 (183), 

[a] + [£ a]X + [^]Y + [U]Z + HKf)«]S3 + ...}+... = 0 (184), 

Da + K fl X + [v, fi]Y + l£,fi]Z + t {[£ 6 0] X2 + o (185). 

Hence because f — 0, [a] = 0, [/3] = 0, the terms of lowest order in X, Y, Z in 

(183), (184), (185) are of the first degree in each case. Hence there is one solution 

X = 0, Y = 0, Z = 0. Hence there is one intersection at this point. 

(B.) Next consider the case where the contact is stationary. 

The equation of the tangent plane to the envelope locus is 

(x-a[a + (Y-^)M + (z-ora = o .... ase). 

But also from (28) and (29)# by means of (76) the equation of the tangent plane 

can also be shown to be 

[“> ft] {(X — f) [a, f] + (Y — 11) [a, 5)] + (Z — Cl [a, {]} 

- [«, a] {(X - f) [ft f] + (Y - v) [/3, ,] + (Z - {) 1/3, £]} = 0 (187). 

Hence 

ili {[«. ft] [«. f] - [«, «] [A Cl = ^ {[a, (3] [a, ,] - [«, a] [ft ,]} 

= [jj {[*> ft] [“> 0 - [*.»] [A {]}• 

Hence the lowest terms in (183), (184), (185) are not independent of each other; 

and if the three fractions last written be each = y, it is possible by multiplying (183) 

* Equations (28) and (29) are satisfied at any point of an envelope locus. Equations (16), (17), 
(18) are not. 

MDCCCXCII.—A. 2 M 
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by [1, (184) by — [a, /3], (185) by [a, a], and adding, to form a new equation in which 

the lowest terms in X, Y, Z are of the second degree. 

Hence the equations (183)—(185) are equivalent to three others in which the lowest 

terms in X, Y, Z are of degrees 2, 1, 1 respectively. Hence there are two sets of zero 

values of X, Y, Z. Hence there are two intersections. 

Art. 27.—To prove that the Surfaces represented by the three fundamental equations 

intersect in two points on the Conic Node Locus, unless it be also an Envelope Locus, 

and then there are three points of intersection. 

(A.) In the case of the Conic Node Locus [£] = 0, [ry] = 0, [£] = 0. 

Hence the lowest terms in X, Y, Z in (183) are of the second degree, in (184) and 

(185) of the first degree. 

Hence there are two intersections. 

(B.) In the case where the conic node locus is also an envelope, it will be shown 

that the values of X, Y, Z, which make 

[«, f] X + [a, y] Y + [a, £] Z = 0.(188), 

[(3, fl X + [A y] Y + [A 0 Z = 0.(189), 
also make 

[£ a X2 + [y, y] Ya + B, Q Z? + 2 [y, Q YZ 4- 2 B, f] ZX + 2 [£ y] XY = 0 (190), 

so that the lowest terms in the equations, by which (183)—(185) may be replaced, 

are of degree 3, 1, 1 respectively, and hence there are three intersections. 

Now the cone (190) touches the tangent plane to the conic node locus, viz. :— 

[«,/3]{[a, f]X + [a, y]Y + [*, £] Z} 

- [a, a] m f] X + [fi, y] Y + [(3, Q Z} = 0.(191), 

this being the form for the tangent plane to the conic node locus which can be 

deduced from (28), (29), and (76). 

Hence, to find the line of contact, whose equations are 

X/X' = Y/Y' = Z/Z', 

the origin of co-ordinates being taken at the singular point, 

f [f, f] X' + [(,Y' + [f, {] Z'J / {[a, /3] [a. f] - [a. a] [£, f]} 

= {[(, ,] X' + bl, V\ Y' + h, {] Z'} / {[a, /3] [a, ,] - [a, a] [fi, ,]} 

= {[?. a X' + [rj, {] Y' + [{, {] Z'J'/ {[a, ff] [a, Q - [a, a] [ft £]} . (192). 
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It will now be verified that 

xy {mi# a-[>> aDs^]} = ?'/{[>, £] [A a -[a, £][/?, £]} 

= zy{[a, vm fl}- 

For substituting these values in the first and second ratios of (192), they become 

P[[BM,m] / D [ M> pg]3 
D[ £, «,£]/ D[ £, « ] 

P[[BM,mi /p[[«],[£]] 
D[77,«,/3]/D[77,«] 

. (193). 

Now, since the equations (16), (17), (18), (28), (29), are equivalent to three 

equations only, it follows that 

DfCBW. [?].W] 
P [ £ * V , « > /3 ] 

= 0, 

which may be written 

r. p1P[[BW,h]] r .PClBl^im 
La> PJ n — La> aJ 

p [ I , v , « J P[t,’?>/3] 

, r r nD[[BW>[ri] n 

+ ^^dTTTTTF"] - [“’ Adc,...^-] - 0 

Also from (16), (17), (18), (28), (29) may be deduced 

which may be written 

P[[g]»M. [fl W = n 
p [ £ /3 ] ’ 

[/3>.]-D[ ?,,./3] 

+ r/3 -]Pnafei[«] _ r(3 fl punwm] __ 0 
+ LP’ Vi D [ | , « , /3 ] fJ 1) [ v , « , /3 ] “ 

Multiplying (194) by [a, /3], (195) by [a, a], and subtracting, 

P{[flM.ffl} rr ir m ro ir 1) 
p [£, « /3] ^-La’??JLa’Pj [P;i?][aJa]i 

pmid mi 
{[a, £] [a, /3] — [/3, £] [a, a]}, 

(194). 

(195). 

P [v, *, £] 
which proves (193). 

This proves that the first ratio of (192) is equal to the second. By symmetry the 

first ratio is also equal to the third. 

Hence the line of contact is the intersection of the planes 

2 M 2 
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[a, f]X + O^] Y + |>, £]Z = ol 

[A^]XH-[/3,r?]Y + [y85C]Z = 0j. 

Hence the values of X, Y, Z which, satisfy (188) and (189) also satisfy (190), which 

was to be proved. 

It may be noticed that the equations (196) are those of the tangent planes to the 

surfaces I)//Da = 0, DfjDfi = 0 at £ y, £. 

Art. 28. — To prove that the Surfaces represented by the three fundamental equations 

intersect in three points on the Biplanar Node Locus, unless the Edge of the Biplanar 

Node always touch the Biplanar Node Locus, and then there are four points of 

intersection. 

(A.) In this case 

[£ f] X* + [y, yj\ Y2 + K, £] Z2 + 2 [y, Q YZ + 2 K, a ZX + 2 [£ y] XY 

breaks up into the factors 

tefUte^x + MY + K^z} 

- {R vl ±C(R. v7 - R f] bi. vD) (R f] x + R,,] y + R, gz}. 

Now, since equations (16), (17), (18), (28), (29) are equivalent to only two 

independent equations, 

[MX+MY+K>17]Z and Kax+[^]Y + [^]Z 

are linear functions of 

te«]X + fo,a]Y + K,a]Z and [£ j8] X + [y, fl Y + [£, ffl Z. 

Hence the equations (183)—(185) may be reduced to others in which the degrees of 

the lowest terms in X, Y, Z are 3, 1, 1 respectively. Hence there are three intersec¬ 

tions. 

(B.) If, however, the edge of the binode always touches the binode locus, then by 

(126) it follows that 

K a] x + [y, a] Y + K, a] Z is a multiple of [£ 0] X + [y, 0] Y + [£ /3J Z. 

In this case 

[f.,]X + [,,,]Y + [d]Z and R, f] X + [£,] Y + [f, QZ 

are not, as in the last case, linear functions of 

R,a]X + [,,a]Y + [£,a]Z and R, /3] X + fo, /3] Y + [£, /?] Z, 
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for, if so, [£ f] X + [£ rj] Y + [£ Q Z would be a multiple of [£77] X+ [77,77] Y + [77, £]Z, 

and the biplanes would coincide, and there would be a uniplanar node. 

Consequently, in this case the equations can be reduced as follows :— 

The lowest terms in (183) to be of the second degree. 

The lowest terms in (184) to be of the first degree. 

The lowest terms in (185) by means of (184) to be of the second degree. 

Hence the degrees are respectively 2, 1, 2. 

Hence there are four intersections. 

Art. 29.—To prove that the Surfaces represented by the three fundamental equations 

intersect in six 'points on the Uniplanar Node Locus. 

In this case 

[£ a X3 + [77,77] Y3 + K, Q Z3 + 2 [77, Q YZ + 2 B, |] ZX + 2 [£ 77] XY 

is a perfect square, and is proportional to the square of [£, (*] X + [£, 77] Y + [£ £] Z ; 

and this by means of the ratios (48) is proportional to a] X 4- Tti, a] Y 4- [L oil Z 

and also to [£ 78] X + [77,78] Y + [£, 78] Z. 

Hence the lowest terms in X, Y, Z may be reduced as follows :— 

The lowest terms in (183) to be of the third degree; the lowest terms in (184) to 

be of the first degree; and the lowest terms in (185) by means of (184) to be of the 

second degree. 

Hence the degrees are 3, 1, 2 respectively. 

Hence there are six intersections. 

Section YI. (Art. 30).—Exceptional Cases. 

Art. 30. 

It remains to notice the exceptional cases in which the locus of ultimate intersec¬ 

tions is not a surface. 

A11 example is given of each, but the theory is not developed. 

The general case which has been considered in this paper is that in which the 

fundamental equations are satisfied by values of the coordinates which are functions 

of both parameters. 

The exceptional cases are :— 

(I.) When the fundamental equations are satisfied by values of the coordinates 

which are functions of one parameter. 

(II.) When the fundamental equations are satisfied by values of the coordinates 

which are functions of neither parameter, i.e., are independent of the parameters. 
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(III.) When the fundamental equations cannot be satisfied by any values of the 

coordinates which make the discriminant or a factor of it vanish, the values of the 

parameters being finite. 

(IV.) When the three fundamental equations, which contain the five quantities 

x, y, z, a, b are equivalent to two relations only between them. 

(V.) When the three fundamental equations, which contain the five quantities 

x, y, z, a, b are equivalent to one relation only between them. 

I. The Fundamental Equations are satisfied by values of the coordinates which are 

functions of one 'parameter only. 

In this case, eliminating the parameter, two relations between the coordinates are 

obtained. Hence the locus of ultimate intersections is a curve. 

Example 18. 

Let the surfaces be 

era?3 — 2abxy + bfi9, — 2a (a? + 1) — 2by + 2=0 . . . (197). 

(A.) The Discriminant. 

It is 
a?3 — xy — a? — 1 

-xy if -y 

— x — 1 — y z 

— — if (2a? + l)3. 

(B.) The coordinates of each point on the locus of ultimate intersections must 

satisfy (197) and 

a/jr bxy — (a? + 1) = 0 
(198). 

From (197) and (198) 

— axy + by1 — y = 0 

a (a? + 1) — by + 2 = 0.(199). 

(i.) Now a solution of the second of equations (198) is 

y = 0 .(200). 

Substituting in the first of equations (198) and in (199) 

aa?3 — (a? + 1) = 0.(201), 

— a (a? + 1) + 2= 0 .(202). 
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From (201) and (202) 
zx2 — {x + l)2 = 0 .(203). 

A part of the locus of ultimate intersections is, therefore, given by (200) and (203). 

In this case x, y, z may be considered to be functions of a only. It will be noticed 

that if (200) be satisfied, A = 0. But A = 0 does not suffice to determine this part 

of the locus of ultimate intersections. 

(ii.) Next take the other solution of the second of equations (198), viz. :— 

— ax + by — 1 = 0 .(204). 

Combining this with the first of equations (198), 

2x + 1 = 0 .(205). 

Hence, by (204), 

y = (2 — a)/2b.(206). 

Therefore, by (199), 

2= 1 .(207). 

Hence another portion of the locus of ultimate intersections is given by (205) and 

(207). 

In this case the coordinates of any point on the locus of ultimate intersections may 

be regarded as functions of the single parameter (2 — ci)/2b. 

It will be noticed that if (205) be satisfied, A = 0 ; but A = 0 is not sufficient to 

determine this part of the locus of ultimate intersections. 

II. The Fundamental Equations are satisfied by values ofi the coordinates which 

are independent of the parameters. 

In this case all the surfaces of the system pass through a finite number of fixed 

points, or a fixed curve. 

Example 19. 

Let the surfaces be 

^ (x, y, *) + «<£ {%, y> z) + H (x> y>z) — °- 

(A.) To find the locus of ultimate intersections, it is necessary to satisfy at the 

same time the above, and 

9 (x, y, z) = 0, 

x (x> y>z) = °- 
Hence it is necessary to satisfy 

xh (x, y, 2) = 0, 6 (x, y, 2) = 0, x (x> 2A z) = 0 
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The locus is, therefore, generally a finite number of points. 

The values of x, y, z are independent of the parameters. 

(B.) If two of the three expressions xJj, <f>, y, say xfj, <f>, have a common factor 6, then 

the curve 6 = 0, y = 0 is a part of the locus of ultimate intersections. 

(C.) If the equation of the system of surfaces be transformed to plane coordinates, 

then a point has an equation, and the locus of ultimate intersections would have 

an equation, which could be determined as a factor of the discriminant. 

III. The Fundamental Equations cannot be satisfied by any values of the coordinates 

which make the Discriminant vanish, the 'parameters being finite. 

Example 20. 

Let the surfaces be the spheres 

(z + c) (a° + b~) — (c + cl) (2ax + 2by — x2 — yz — (z — c) (z — d)} = 0, 

where c, d are fixed constants; a, b are the parameters. 

They all touch the plane z = d, and the sphere x 3 + r + *3 = c3. 

(A.) The Discriminant. 

It is 

z c 0 — (c + cl) x 

0 z -f c — (c + d) y 

— (c + d) x — (c + d)y (c + cl) {xz + y2 + (z — c) (z — d)} 

= (c + d) (z — d) (xz + y* + z2 — c3) (z + c). 

(B.) The Plane z — cl = 0 is a part ofi the Envelope. 

(C.) The Sphere x2 + y1 -j- s2 — e3 = 0 is a part ofi the Envelope. 

(D.) The remaining factor z -j- c requires explanation. It is on account of this 

factor that this example is introduced. 

Ifz + c = 0, the left-hand side of the equation of the system of surfaces, which is 

of the'Second degree in a, b breaks up into two factors, one of the first degree in a, b. 

the other of degree zero. 

But the fundamental equations being equivalent to 

a (z + c) — x (c + d) — 0, 

b (z + c) — y (c + d) =0, 

— a (c + cl) x — b (c + cl) y + (c + cl) [cc3 + y1 + (z — c) (z — d)~\ = 0, 

cannot be simultaneously satisfied by finite values of a, b when z -\- c — Q. 
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For if z -j- c = 0 and a, b be finite, the equations are equivalent to 

x = 0, y = 0, 2c (c + cl)2 = 0, 

which equations cannot be satisfied. 

Hence the values of a, b are infinite. 

IV. . The Fundamental Equations are equivalent to only two relations betiveen the 

coordinates and 'parameters. 

In such a case the discriminant must vanish identically. 

Example 21. 

Let the surfaces be 

oc(x — a)3 + 3/3 (y — b)2 = 0, 

where a, (3 are fixed constants ; a, b the arbitrary parameters. 

The other fundamental equations are 

3a (x — a)2 = 0, 

6/3(y-b) = 0. 

Hence the discriminant vanishes identically. 

It may be noticed that in this case each surface of the system has a unodal line. 

Hence the singularity is of a higher order than when each surface has a single unode. 

V. The Fundamental Equations are equivalent to only one relation between the 

coordinates and qiarameters. 

In such a case the discriminant must vanish identically. 

Analytically 

[/(«, y, z, a, b)J = 0 

is an example. 

But the left-hand side is resoluble. 

MDCCCXCII.—A 2 x 
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VI. Repulsion and Rotation produced by Alternating Electric Currents. 

By G. T. Walker, B.A., B.Sc., Fellow of Trinity College, Cambridge. 

Communicated by Professor J. J. Thomson. 

Received November 5,—Read December 10, 1891. 

In the ‘Electrical World/ May, 1887, p. 258, or the ‘Electrical Engineer’ (New 

York), June, 1887, p. 211, “ Novel Phenomena of Alternating Currents,” may be seen 
an account of some experiments by Professor Elihu Thomson on the mechanical 

force between conductors in which alternating currents are circulating. 

In the case of a ring of metal in the presence of an electromagnet, in the coils of 

which an alternating current is passing, a force of repulsion is experienced by the 
ring, and this may be accounted for in the words of Professor Thomson as follows :— 

“ It may be stated as certainly true that were the induced currents in the closed 

conductor unaffected by any self-induction, the only phenomena exhibited would be 

alternate equal attractions and repulsions, because currents would be induced in 

opposite directions to that of the primary current when the latter current was 

changing from zero to maximum positive or negative current, so producing repulsion; 

and would be induced in the same direction when changing from maximum positive 

or negative to zero, so producing attractions.” 
This may be illustrated by fig. 1. Here the strong line represents the primary and 

Fig. 1. 

the thin line the secondary, while of the dotted line any ordinate is the product 

of the ordinates of the lines representing the intensities of the currents and, hence, 

represents the mechanical force of attraction or repulsion. 
2.7.92 



280 MR. G. T. WALKER OK REPULSION AND ROTATION 

In the case of self-induction causing a lag, shift, or retardation of phase in the 

secondary current, the circumstances are described by Professor Elihu Thomson as 

follows :— 

“ It will be noticed that the period during which the currents are opposite, and 

during which repulsion can take place, is lengthened at the expense of the period 

during which the currents are in the right direction for attractive action. 

“ But far more important still in giving prominence to the repulsive effect than 

this difference of effective period, is the fact that, during the period of repulsion, both 

the induced and inducing currents have their greatest values, while, during the 

period of attraction, the currents are of small amounts comparatively. There is then a 

repulsion due to the summative effects of strong opposite currents for a lengthened 

period against an attraction due to the summative effects of weak currents of the same 

direction during a shortened period, the resultant effect being a greatly preponderating 

repulsion.” 

The diagram for this is given in fig. 2. 

Professor Thomson has proved experimentally that two circular coils, whose planes 

are perpendicular to the line joining their centres, repel one another when an 

alternating current traverses one of them. 

If the coils consist of circular wires of radii A, a, and the planes be distant h, while 

the current traversing the primary is of strength I sin pt, then I have shown that the 

force of repulsion is 

r [2F - (1 + COS’ y) F] [2F - (1 + sec2 y) E], 

where 
S = resistance of secondary circuit, 

N = its coefficient of self-induction, 

_ _ (Aft) 

‘Sm 7 ~ \/{(A + af + lr) ’ 

and F, E are complete elliptic integrals to modulus sin y. 
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This repulsion may easily be taken advantage of by using it as the basis of a meter 

for alternating currents. 

If the coils consist of two circles of radii a and c (the former the greater), with their 

centres coincident and planes making an angle 9, and we send a current I sin rpt 

through the larger, there will be a couple tending to increase the angle 9. 

This has been proved experimentally by Professor Thomson : its amount proves 

to be 

_2pY^_ 
1 S2 + f N2 

e4 

«4 
sin 9 cos 9 + | (^j sin 9 cos 9 (YO cos2 9 — 3) + . . . 

The positions 9=0 and 9 = tt/2 are positions of equilibrium, the former being 

unstable and the latter stable. 

By making the plane of the primary vertical and suspending the secondary inside 

so as to be capable of turning round a vertical axis by means of bifilar suspension 

with 9 = 0 as position of equilibrium, the deflection 9, when the alternating current 

is passing, will give the intensity of current. 

We might also get the intensity by suspending the secondary by a single thread 

and observing the time of a small oscillation about 9 = n/2. 

If the moment of inertia of the secondary about the vertical be mk2 it is not difficult 

to show that the number of oscillations per second is 

277-yc2 

2nd3 (S2 + 

N | 

Professor Elihu Thomson has devised other interesting experiments of which the 

followung is an example :— 

A sheet of copper is placed so as to half cover an alternating magnetic pole. Upon 

this, near the pole, is laid a hollow sphere of copper. The electromagnetic action 

produces a couple so powerful that the friction of rotation is overcome and the sphere 

is spun round. 

The mathematical analysis for this case being complicated I have evaluated the 

couples called into action in various combinations of hollow spherical and cylindrical 

shells. 

It is a known fact that in a spherical conductor no external field can give rise to 

induced currents that do not circulate in concentric spherical shells. After a 

preliminary theorem to the effect that there are no other families of surfaces which 

possess similar properties, the case has been considered of an infinitely long, thin, 

circular cylindrical shell in a field consisting of alternating currents parallel to its 

axis. 

If the electrokinetic momentum of the primary field be expanded in harmonics over 

the cylinder, it turns out that if all the terms of each harmonic have the same phase, 

MDCCCXCII.-A, 2 O 
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there will be no couple acting on the cylinder : as a particular case, if the external 

field have the same phase throughout there will be no couple. 

The next case considered is that of two long cylindrical shells in the presence of an 

alternating current in a long parallel wire. 

If the current in the wire be I cospt, and cr, <x' be the resistances (across unit length 

of the surface) and a, a' the radii of the shells, while p, p are their distances from 

the wire, d from one another, and c of the wire from the plane containing the two 

axes, then the couple on the a shell is in the direction represented in fig. 3, of amount 

where 

Fig. 3. 

v 87r2pWaV3c I" 1 4ft (p'2 - ft) 

p2p'*d LdiT>i D,p2ft + 

D,, EE 47 ftcdpr + crbr, 

D'n = 47ra'Y + 

In this case the couples on the two shells are, considering only the most important 

term, of equal magnitudes and of opposite signs. 

If a second wire conveying a current of strength — I cos 'pt be laid close to that 

already present, we obtain in effect a filament periodically magnetised in a direction 

Fig. 4. 

perpendicular to its length. Let this direction make a with the plane containing the 

axes. Then, if QQ' (the line of length d) subtend (f> at the magnet M, the couple on 

the a shell is 
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A3. 
87r2p2cro-,d3a/3 

d2 dx d 'lPy2 
sin 2</>, 

where A cos pt is the intensity of the magnet and terms of the eighth degree in the 

radii are omitted. 

Thus, to this order of approximation, we have the following results :— 

(a.) The couples exerted are independent of a, i.e., of the direction of the axis of 

the electromagnet. 

(f3.) The shells have equal couples in opposite directions, the parts of the shells 

directed towards one another being attracted towards the electromagnet if </> is less 

than a right angle, and driven away if <f> exceeds a right angle. 

Fig. 5. 

Fig. 6. 

If (f> be a right angle the couple is zero. 

We next discuss the case of a thin spherical shell in any field and show that— 

(a.) If the field be symmetrical round any diameter, there will be no couple about 

that diameter. 

(f3.) If the external field be completely in the same phase, or if, when the external 

magnetic potential is expanded in harmonics over the surface, the terms of the 

harmonic of any degree are in phases that are the same for the same degree, then the 

couple will vanish. From this it follows that if the primary field be in the same 

phase throughout, and any number of perfectly conducting bodies be introduced, 

their currents will be in the same phase as the primary field, and no couple will 

be produced. 

It has been stated that in the case of Professor Elihtt Thomson’s sphere, spinning 

on a sheet of copper, the effect was due to the sheet acting as a “ shield ” and pro¬ 

ducing an uusymmetrical fiekl. That this explanation is not satisfactory will be 

evident on considering that the field is unsymmetrical before the sheet is interposed, 

and that the better the sheet conducts the better the shielding effect; so that if it 

be a perfect conductor a large couple would be expected whereas in reality there is 

none whatever. 

The effect must, I think, be traced to the fact that the currents induced in the 

sheet are caused by self-induction to lag, so that the field in action on the sphere 

does not alternate in one phase. 

2 o 2 
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The results obtained in the preceding analysis are applied to the case of two thin 

spherical shells in the presence of an alternating current in a straight infinite wire. 

Fig. 7. 

If the line joining the centres of the spheres be taken as OX, and the axis OY be 

the shortest distance between OX and the wire W (the last two lines being taken 

perpendicular to one another), then calling the distances of the centres of the 

spheres from the origin b, b', and their radii a, a' (as with the cylinders), we have as 

the first terms of the couples upon the a, b and the a', b' shells— 

and 

where 

1 cfia'^c 

pV2 ds Aj A'x 
(2b + b') l\ 

1 (d^a^c 

p“p'~ ds At Aj (6 + 2b') V, 

A„ — 1677'2ay2 + (2 n + l)3o-2, 

and I cos pt, or, cb, c, and d hav^e the same meanings as before. 

If we write h for \ (b + b'), the couples are 

7 27T2p2crer/«%/4C 

Py*<p\ Aj 
(Gh ± d) I3. 

Hence 

(a.) If cr, a or c vanish, the couples vanish, as might be expected. 

()3.) The signs of the couples fall into three cases : — 
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(i.) When 6h is positive and greater than d, both couples are positive. 

Fig. 8. Fig. 9. 

(ii.) When 6h is numerically less than d, the a, h couple is positive and the 

a, b' negative. 

Fig. 10. 

I 

(iii.) When 6h is negative and 

negative. 

Fig. 11. 

numerically greater than d, both couples are 

If We place another wire by the side of that already in position, and thus make a 

filament alternately magnetised in a direction perpendicular to its length, and making 

an angle a with OX (as with the cylinder), then the couple on the a, b sphere is 

K" 
? elTr^'p*aia!icro-> 

p^p'" A] A’ 1# 
[sin 2 (y y) 4» 3 sin 2 (& «“ y — y')], 

and on the a, b' sphere 
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7 27r~piaia'i(Ta' 
K ~pY2 \A\d? L‘ 

am 2 (y — y) 4* 3 sin 2 (a — y - y')\ 

where K cos pt is the magnetic moment of unit length. 

To this order then 

(a.) If the couples on the shells be equal and opposite 

a y y — o, or 

(f3.) The couples will not vanish when c = 0 (and y = y — 0) unless, in addition, 

a = 0 or g77. 

In this case considerations of symmetry would give right results. 

(y.) For an example, take 

y = 30°, y = 60°, 

and the couples will be 

K 
9 7'lir-yfia^a'^cra' 

pV- A, A'x d3 ± 
v/3 

3 sin 2a 

the upper sign referring to the a, b shell. 

The sign of the bracket will be -f when a = — ±tt. 

,, ,, ,, I OL - 0 01 ’gTT. 

3? •> >•< 5> ® — Hh 47^"* 

(S.) In confirmation it may be noticed that when y — rr y (he., when the spheres 

are equidistant from the origin), and a is zero or a right angle, the couples are equal 

and opposite. 
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Their magnitudes are 
727r2p2aVW' . 

^ K" 'p*p'3AiA'i d3 Sm 2y’ 

and are negative and positive on the a, b and a, b' shells as long as the former is to 

the right of the latter. 

Fig. 16. 

We now consider the couples on two spherical shells in the presence of a magnetic 

pole of strength H cos jpt. 

We take the same axes as before with the magnetic pole at (o, c, o). 

The couple on the a, b shell proves to be 

and that on the a, V shell 

_ TT2 ko-Q- II | q7 /\ 

11 pspriAXA\ d* ^ + Z0 

_hs36^WW 

p*p 6AjA j d* v ' 

Hence 

(a.) The couples vanish* as they should, when c = 0, or cr = 0, or a — 0. 

(/3.) When b = — b' and a == ct, the figure is symmetrical to the plane YOZ, 

and the couples are equal and opposite : that on the a, b shell to the right is 

positive. 
Fig. 17. 

M 

(y.) For other cases the discussion is similar to that for the cylinders with parallel 

current T cos pb 
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Thus (i.), when h (b -f- b')} is positive, and greater than d/6 the couples are both 

negative. 
Eig. 18. 

(ii.) When 6h is numerically less than d, the signs are . 

(iii.) When 6h is negative and numerically greater than d, the couples are both 

positive. 

Pig. 21. Fig. 22. 

If we take two spherical shells in the presence of a small magnet of moment 

K cos pt, whose axis cuts the line joining the centres of the spheres at angle a, we find 

for the couple on the a, b shell 

~ K3 
2,l'jr‘p},odaicrcrl . 

2A, a', ,<vvs * (“’y’7)( 
where </> (a, y, y) is written for 
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sin 2a + 3 (sin 2y + sin 2y) + sin 2a — 2y — sin 2a — 2y 

— 3 sin 2y — 2y — 9 sin 2a — 2y — 2y\ 

Fig. 23. 

For the other shed, we interchange y and y. 

For the couples to be equal and opposite when y — tt — y, we must have a = 0 

or \tt. When y = the a, b couple is positive for both values of a, and when 

y = -g-77, it is negative. 

We now take as an example 
y = tt/6, y = tt/3, 

and the a, b couple is negative from 0° to about 98° 23', positive thence to 171° 37' 

and negative to 180°. The a, b' couple is negative from 0° to 112° 34', positive 

thence to 157° 26' and negative to 180°. 

In fig. 26, a = 45°; in fig. 27, a = 105°. 

Fig. 26. Fig. 27. 

2 P MDCCCXCII.—A. 



290 MR. G. T. WALKER OK REPULSION AND ROTATION 

In fig. 28, cl — 135°; in fig. 29, a = 165°. 

Pig. 28. Fig. 29. 

For general principles I have derived assistance from the paper by Professor C. 

Niven, in the ‘Philosophical Transactions’ of 1881, “On the Induction of Electric 

Currents in Infinite Plates and Spherical Shells.” 

The Mechanical Effects of the Currents Induced in One Coil hy those in Another. 

1. Adopting Maxwell’s notation and taking ylf y2, as the currents in the two 

circuits, we have 

2T = Ly* + 2My1y.2 + %2a. 

If It and S be the resistance of the primary and secondary circuits, and the current 

in the former be I sin pt, then for the second circuit 

whence 

where 

Jt (Myi + Ny2) + Sy2 — 0, 

y2 = A cos pt -f B sin pt, 

A B - I 
SMp “ MNp2 — p2Ns + S2' 

Thus the “lag” due to self-induction in the secondary coil is tan 1 Np/S, and the 

electromagnetic force tending to increase a coordinate x is 

• • dM 

ydx ’ 

the mean value of which is 
, I2MNp2 c!M 

~ ¥ S2 + N y dx • 

If the coils consist of circular wires of radii A and a, and their planes be perpen¬ 

dicular to the line of length h that joins their centres, then Maxwell shows (§ 701) 

that 
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where 

M= forv7 (Aft) ^ cos2 )F + 2E}, 
sm y c ' 

2\/ (Aa) 

“y = v/|(i + a?—}' 

and F and E are complete elliptic integrals to modulus sin y. 

Also 

dM _ 

db \/ (Aa) 
b sin y (2F — (1 + sec2 y) E}, 

so that the repulsion is 

r [2E - (1 + cos3 y) F] [2F - (1 + sec3 y) E], 

If the coils consist of two circles of radii a and c (the former the greater) with their 

centres coincident and planes inclined 9, we have from Maxwell (§ 697), 

M =[p'> (°>Ip. («) + ••• + rrdrr; (b) PMo)]3 P, (0) +... r (r + 1) \ct 

= 4A{o!p»w + oO‘®‘p*<9) + --- 
+ 

r.r + 1 \a 

3.5., 

where r must now be odd. 

The couple tending to increase 6 is 

_2.4...(r + 1)_ PrW-.. 

or 

1J2 -2 
2 S2 + ^2N2 ° 

1 MNp2 dU 

^ S2 + p2N2 ’ 

1 c n 1 (c\ /3\2 5 cos3 # — 3 cos 9 

OS^-TOW 2 -2-+••• 

X 

or 

27t^2Nc2 e2 . 

S2 + ^2N2 a2 
sin 6 cos 6 1 + I -) (10 cos2 9 — 3) -f- 

1 e „ 1 /c\3 /3\215cos2^ -3 

1.2 a + 3.4 W \2/ 2 
sin 

2. In the course of the following work it will often be necessary to know what kind 

of distribution of electric currents is likely to be set up in conductors of various shapes 

on the introduction of external fields : it is known that in a sphere no external field 

can give rise to currents that do not circulate in concentric spherical surfaces, and it 

2 P 2 
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might be thought that for some other surface an analogous property held, as that in 

an anchor ring the induced currents always lay in toroidal surfaces. 

The question may be stated as follows :— 

Given a system of orthogonal surfaces, 

a = constant, 

b = constant, 

c = constant, 

and a uniform conductor whose bounding surface has a constant, what is the condition 

that, whatever be the nature of the external field, the induced currents may lie in the 

a surfaces. 

If the length 85 of the line joining the consecutive points a, b, c, and a + Sa, 

6 + 86, c + Sc be given by 

Ss2 = A2 8a2 + B2 S/>2 + C2 8c2, 

and if 

u, v, iv, 

ft, y, 
F, G, H, 

denote the components of electric current, of magnetic force, and of electromagnetic 

momentum along the normals to the three orthogonal surfaces through any point, 

then Maxwell’s equations of electric currents become 

47tBC .« = A (Cy) - | (B/3) 

4„CA.„ = !(A*)-A(Cy, 

4HAB. w = A (E/3) _ A (Aa), 

and if there be no magnetisable matter in the conductor, a, /3, y are components of 

magnetic induction, and are given by 

bc« = A(Ch)-A(bg), 

with two similar equations. 

If cr denote the specific resistance of the conductor, and xfj the electrostatic potential, 

then within the conductor we have (it being at rest) 

3F df 

<TU dt A 8a’ 

with two similar equations. 
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Remembering that the surface has a constant over it, we have as the surface con¬ 

dition (Professor C. Niven, ‘Phil. Trans./ 1881, p. 313) 

it _ o 
A 3a ' 

the normal outwards being in the direction of a increasing: and (from the same 

source) within the conductor 

V2i/f = 0. 

Hence drp/dn being known, xjj is uniquely determined (Maxwell, vol. 5, § 100, e). 

Let us write xp = d^/di, and 

F = F + 
Ada 

then our equations are typified by 

G=G+H 

H=H + c%’ 

dF 

au ~ d t 

BCa = | (CH-) - I (BG-) y 
dc 

4ttmBC = |(Cy) -|(B/3) j 

If now the conductor be such that no external field can give rise to currents 

normal to a surfaces, then for all values of F, G', H' consistent with 

at the surface, and 

F = 0 
dt 

4 (BCF) +1 (CAG') + | (ABH') = 0 
da dc 

within the conductor, u must everywhere vanish; that is, inside, 

dF' -| 
0 = 

d t 

0 = | (Cy) -? m 

Now F' is everywhere zero before the external field is brought into existence, 

hence by the former equation (1) it is everywhere zero permanently. 
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On substituting in the latter equation from the equations connecting (3, y with 

F', G', H', and remembering that F' = 0, we get 

_a 

06 = 0, 

and this is to hold for all values of G', H' consistent with 

| (CAG') + | (ABH') = 0. 

This condition is replaced by taking 

CAG'= f 
oc 

ABH'=-f» 
CD 

and the former relation becomes 

or 

d_ "C 0^ P 3/V 0 ~ B 0 p e/q 
db AB 0a 1<AC dc)_ dc _AC 0a \AB 6/y_ 

_a 

db 
'*Lfl(2L\ + — 

Jo a.. \ A n I l ABJC da VAC/ ‘ A2 fat 

0 
dc 

b d_ 

AC da 

C 

AB + A?J ab = 0. 

therefore 

r_c_ 0^ /b_\ _ b_ _0 /_c_\ 
*bc [AB da \AC) AC 05 \AB/_ + /c06 

■_c a_/B_ 

AB 0a \ AC 
’A 1 /AY 
AC 0a VAB/ “^0c 

c db (a2 ^ IS = o. 

Now jf being arbitrary the coefficients of fic, &c. must vanish, therefore 

C 0 /B\ B 0 A \ 

AB 0a 1 [AC AC 0a ^ Iab) 
and 

A2 
= function of a (or constant) 

On differentiation, the relation 

A1 /JL\ _ A A /A\ 
AB 0a VAC/ ~ AC 0a \AB/ 

becomes 

Therefore 

_c_ 0_ /b\ i d_/r\_b_ 0_ /c\ i_ d_ n\ _ 
A‘2B 0a \C/ A0a\A/ A2C0a\B/ A0a\A/ 

C 0_ /B\ _ B 0_ /C\ _ 

B da \Cj C 0a \B/ ~ °* 

(iii.). 

Therefore 
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Hence B/C is a function of b, c only. 

Also it was proved that 

Therefore 

_C_ 
AB da \AC/ 

function of a (or constant). 

11 
A 3 a 

function of a (or constant). 

This, as well as the last condition (iii.), is satisfied by A = function of a. 

Geometrically this means that the normal distance between a and a -f- 8ci is every¬ 

where the same, i. e., that the a surfaces are parallel. 

Now the radius of curvature pab of the normal section of a constant along the 

normal to b is given by 
1_ _ JL_3B 

pal, AB da ’ 

and so too 
1__i_ dC 

pac AC da 

Hence, if B/C is independent of a, 

Pab — Pac ) 

i.e., the two curvatures at each point of an a surface are equal. 

Thus, the property in question is satisfied by a sphere, and only by a sphere or 

spherical shell, including, as a special case, a plane slab infinite in both directions. 

The Mechanical Effect of Currents set up in a Thin Circular Cylindric Shell of 

Infinite Length. 

3. We consider the case of a periodic field consisting of currents parallel to the 

axis of the shell. 

In this case the surface condition informs us that since there is no normal com¬ 

ponent of electromagnetic momentum, there will be no electrostatic potential; also, 

if the axis of the cylinder be taken as the axis of cylindric coordinates, we have 

<™=-|(H + H0).(iv.), 

where H0 is the momentum due to the external field and H that due to the induced 

currents, while <r and w represent the resistance and current across unit length of the 

surface. 
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Consider 
H0 = eln9 sin pt 

at the surface of the shell, and let the induced currents give rise to momentum at the 

surface of 

H = eine [B sin pt -f- C cos pt\. 

Since H is the potential of a distribution on the cylinder of imaginary matter of 

surface density w, we have 

7b 
w — -—- eine [B sin pt + C cos pt]. 

On substituting in (iv.) we see that 

an 

'lira 
[B sin pt -b C cos pi] — — p [B cos pt — C sin pt] — pA cos pt. 

Therefore 

Therefore 

Hence 

an -r-» ™ „ | 

2^B-^C=0 [_ 
•*>a + ^b + £c = °-J 

— 2napA B   C 

4:7T2ay2 + <x2/i2 'In a/p an 

A np (2nap sin pt + ancospt) in$ 
-A- . o o o o o ^ 

corresponding to a term 
H0 = Aeine sin pt. 

On differentiating with respect to t, we see that if 

H0 = A'ein0 cos pt, 

then 

w 
A , np (273-ap cos pt — an sin pt) in9 

= ~ A 4tr*a*p* + 0*1# ' ' 

On separating real and imaginary parts, it is clear that when 

H0 = [M cos nO -f- N sin n0] sin pt 

+ [Q cos nO -+■ It sin nff] cos pt, 
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then at the surface 

H= — 

and 

17rap 
>19 9 9, O : 
47T“C0~p“ + a-w 

2irctp 

2 [27rap sin pt + an cosp£] [M cos n6 + N sin n6"\ 

47r2a2_p2 + crn- 
— [27rap cos pt — an sinp£] [Q cos n6 + R sin iiff]. . . (v), 

n 

W = ^H- 

4. We now proceed to find the components of magnetic force. When there is no 

magnetic matter (as we assume to be the case) the equations in cylindrical connecting 

a, (3, y with F, G, H, are 

3G 
IO GL —— 60 r\ ? C0 OZ 

~ 9F 0H 

^ _ aj a»’ 
a 3f 

= di(sr&) ” Be' 

With the distribution that we have chosen, F = 0, G =£. 0, and hence 

1 0H ^ 

“ _ w de 

fi = 

_3H j>. 

003 

7 = 0 J 

When the value of H0 at the surface is 

then just outside, 

so that just outside, 

H0 = Aein6 sin pt, 

H« = A (- L° —- L| e sin pt, 

— 1 
aQ = in A eine sin pt 

Y 
/30= — nA --n- eine sin pt J 

or* 
(vi.). 

Now when we consider the mechanical effects, since, on Ampere’s theory the 

mechanical effects of two elements of currents upon each other are equal and oppo¬ 

sitely directed in the straight line joining them, the field, due to the induced currents, 

MDCCCXCH.—A. 2 Q 



298 MR. G, T. WALKER OX REPULSION AXD ROTATION 

will have no direct resultant mechanical effect on the cylinder, and it will suffice to 

lake the components of induction due to the external system. 

The components of electromagnetic force along S57, <77 89, 8z are 

— /3w, aw, 0, 

and hence the mechanical force on the shell, parallel to the initial line from which 9 is 

measured, is (per unit length) 

f2ir 
a \ 89 . w ( — (3 cos 9 — a sin 9). 

The force in the perpendicular direction (perpendicular to the axis of the shell) is 

a ( 89 . w (a cos 9-/3 sin 9). 
J 0 

The couple about the axis is 
r 2tt 

cr 89 . aw 
j 0 

tending to increase 9. 

Now, with the kind of field that we have taken, 

F0 = 0, 
G0 = 0, 

and the period being 27r/p, the value of H0 over the surface may be expanded in the 

series, 
71= 00 

H0 = E {[M„ cos n9 + N„ sin n9] sin pt -(- [Q„ cos n9 + R„ sin n9] cos pt}. 
n = 0 

We have already shown (vi.) that when 

H0 = Aeine sin pt 

at the surface, then at the surface 
in . . a . 

a0 = — Ac sin pt. 

Hence, with the expansion of H0, we get 

n = 00 yi 

a0 = E - {[ — M„ sin n9 -fi N„ cos n9] sin pt + [ — Q„ sin n9 -f ~Rn cos n9] cos pt}. 
n = 0 « 
or J 

The corresponding value of iv has been found to be (v.) 

n _ ^ 

E —. , „ - {[27Tap sin pt + oni cos pt] cos n9 + N„ sin n9] 
n = x 47Pay* + <r~n* L 

+ [Strap cos pt — <rn sin pi] [Q„ cos n9 + R,, sin n9]} 
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(• 2ir 

In finding the mean value of the couple, a2 | apv 80, we bear in mind that the 

mean values of sin3 pt and of cos" pt are and of siny>£ . cos pt, zero. On picking out 

the coefficients of sin2 pt and cos3 pt in a0w, we find for the mean value of the couple 

(— M#sinn0 + N„cosn0)(27rfflp{M»cosn0 + N„sinn0} 

— cm{Q«cosn0 + R„sinw0j) 

+ ( — Q„sin nO -f R„cosw0)(<xn{M„cos?i0 + N„sin nO} 

+ 27rap{Q „cosn0 + R„sinn0}). 

Also 

f sin2 n6S6 = ( cos2 nO $9 = n, 
Jo Jo 

and 
2tr 

sin nO cos nO SO = 0. 
0 

f £0 i _~ anl} 
I o n=i 2 (4tt2«2p2 + cr2?r) 

Thus the mean value of the couple becomes 

iravpp 

! 2 (47r2a2p2 + cr2w2) 
27Tap{— M„N„ + M„N„ — Q„R* + Q«R;J 

= 2 
7ran6pa 

+ an {Q„N n — M;/R// — M„R» — 

(N„Q„ - M„R»).(vii.). 7 \nrcdff + aV 

5. The couple vanishes when for all values of n, 

M» 

Q» 
7T = tan <f>ni say, 

so that H0 is of the form 

2 [Q„ cos n6 + R„ sin n0~\ cos(^ ^ 

in other words, the couple vanishes when both parts of each harmonic are in the same 

phase, though that phase be not the same for ail harmonics. As a particular case the 

remarkable result holds that whatever be the nature of the external field (it being 

made up, of course, of currents parallel to the axis), there will be no couple on the 

shell, provided the external field be altogether in the same phase. 

The Effect on an Infinite Cylindrical Shell, in the presence of an Alternating Current 

in a Parallel Wire, of the Interposition of a Parallel Cylindrical Shell. 

6. Take the plane through the axes of the shells as that of ZOX, and a perpen¬ 

dicular plane through the wire as that of YOZ. 

2Q2 
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The shells are thin; let their radii be a, a, and their distances from the origin b and 

b' ; let the distance of the wire from the origin be c, and the current in it I cospt. 

Let the position of a pt.P in space be determined by its distances r, r from the 

axes of the shells and the angles 6, 6'. 

Then if b — b' = d we have 

Hence 

therefore 

and if r < cl, 

r cos 6 = r cos 6' — d 

r sin 6 — r sin 6' 

re-w _ r'e-ie — P . 

_1 _ 

(— d + r’e~i6f )n 5 

otiiO 

cos nd  (—)“ 

rn dn 

, . nr' /1/ , n.n A 1 r'2 , 
l+TcOS0 +_T__C0S 2e + ... 

sin nd ( — )n 

cl'1 

n' . n.n + 1 /2 . 
n — sm 6 4- ——— ~2 sin 2d + . . . 

d 2! d? 

So, too, if r < d, 

and 

r'e ie = re}6 + d, 

cos nd' 1 

r'n dn 

sin nd' 1 

r'n ~~ dn 

\ . nr n.n + 1 r3 . 
1 + ~d C°S 6 +wi sm 2d + • • ‘ 2! d2 

r . _ , n.n + 1 r3 . - 

-ir#sm2(l + 

7. Hue to the alternating current in the wire we have, over the a, b cylinder, 

TT T , (c — a sin 0)2 + (& + «■ cos dY 
H0 = — I log-^-cos pt 

where D is a constant. 
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On putting 

we get when a < p, 

b = p cos y 

c = p sin y 

TT T i P2 + cos 7 + 6 + a2 
H0 = - I. log --—-cos pt 

= — cos pt 

21 cos pt - cos 0 + y — COS 20 + y + — cos 30 + y 
IP 

On substituting for 
p cos 6, p sin 20, he., 

we get to the fourth power of ajp, 

- —cos46 + y. . . 

H0 = + I cos pt 
— log 

+ 

+ 

+ 

b2 + <? 

D2 “ 

a? 

(6s + c2)2 

2a2 

(¥ + c2)2 

2 a 

b2 + & 
(b cos 6 — c sin 6) 

(— c3 + b2 cos 20 — 2be sin 20) 

(3bo2 — b3 cos 30 — c3 — 3b2c sin 30) 

2 (b2 + c2)4 
(64 + c4 — 6&2c3 cos 40 — 46c b2 — c2 sin 40) + .. 

8. The currents set up in both cylinders will clearly be parallel to their axes, and 

if those in the a, b shell produce at points on itself the momentum 

H = M0 sin pt + Q0 cos pt 

+ (Mx cos 6 + N: sin 6) sin pt + (Q2 cos 0 -f Rj sin 0) cos pt 

+ (Mo cos 20 No sin 20) sin pt + (Q3 cos 20 + R3 sin 20) cos pt 

+ higher harmonics, 

and if the currents in the a, b' shell produce on itself a momentum, distinguished 

from the above by the dashing of the letters 

H = M'0 sinp£ + Q'0 cos pt 

+ (M\ cos 0 + . . .) sinpt +(...) cos pt 

+ (M'a cos 20 + . . .) sin pt + . . . 

4- higher terms, 
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then in all we have, that on the a, 6 cylindrical surface, the momentum of the field 

that produces currents in that shell, is (to the 4th power of a, a, as will afterwards be 

explained) 

— 1 log cos pt 

2a 
— I 75-5 (6 cos 0 — c sin 0) cos pt 

0“ + C“ v ' ± 

eft - 
+ I ^/)2 + ~ °2 cos 20 — 2be sin 20) cos pt 

, T 2a3 - - 
+ t + (36c2 — 63 cos 30 — c3 — 362c sin 30) cos pt 

4- I 2 + py (^4 + °4 ~ 662c2 cos 40 + 46c c2 — 62 sin 40) cos pt 

+ 5th powers . . . 

+ M'0 sin pt + Q'0 cos pt 

+ (M\ sin pt + Q\ cos pt)a- + ^cos 0 + cos 20 . . 

+ (N\ sin pt + K x cos pt) ^sin 0 + ^ sin 20 . . )) 

a*% 

+ (Mhsin pt + Q 2 cospt) (1 + . . .) 

+ 5th and higher powers. 

9. But if D„ = 4iT2a2p° + <r2n2, an external field of momentum 

H0 = (VM„ cos n0 + 'N„ sin n0) sin pt fi- ('Q„ cos n0 + 'R„ sin n0) cos pt 

at the surface of the a, b shell will produce in it currents whose momentum at the 

surface is by (v.) 

H = — v [27jap sin pt + cm cos pt] ['M* cos n0 + VN„ sin n0] 
71 

illTCtrp 

- -p— [27ra_p cos pt — an sin pt] ['Q„ cos n0 + 'R,t sin 710]. 

Applying this to the values of H and H0 that we have recently found, we see that 

to the 4th powers of a. a (as we shall shortly explain) 
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Mt = 

Ni = 

Qi = 

Ri = 

m3 = 

No = 

Q2 — 

K2 = 

Mg = 

Ng = 

Q3 = 

R.3 = 

m4 = 

n4 = 

Q4 = 

K-4 = 

27rape 

^T 

2'irapc. 

2\ab ax>J_ 

+ ^ 1 

Di 

47T2«.2p2 

63 + c 

2Iac 

+ + C2 + ^ 1_ 

2la& aa' 

* + # ^ 1 i>i L v + 

47r2a2p2 [~ , 2 lac ( aar-D, 
+ LTUUi 

62 + c2 I>i 

47Taper 

D2 L(62 + c2)! 

'a2A2 
1 + ^rQ'i 

47T2«y aa' A/r, 

D, <PMl’ 

47T2<x2p2 aa! ,,, 

' ~dT ^ 15 

2irapcr aa' ^T, 

‘ ~dT * M l’ 

2irapa aa' AT, 

' 15 

47r2a2p2 aV , 

d7~ lJ 

47T027CT 

47r2a2p2 

D3 

kn2a2p2 

D 

2a2bc 

(b2 + c2) 

'a2.&2 — c2 ■2V 

_(&2 + c2)2 1 D" # MS 1 

2 L 

2a2bc 2V 
T a"a -p/ 

9\2 1 ~ c]i ^ ] 
(&2 + C2) 

47r2a2p2 era! 

"5T dF " 1* 

kirapcr a2 a' 

~dF~ IF M15 

47Taper a2a' AJ/ 

“ ”dT ^ 

67rapa 2asb (3c2 — 62) ^ 

D, (62 + e2)3 

Qirapcr 2asc (c2 — 3?>2) ^ 

_(62 + c)3 5 

47r2a2p2 2a35 (3c2 - b2 

D3 (b2 + c )3 L’ 

<kir2a2p2 2azc (c2 — 362) _ 

(62 + c2)3 L’ 

Snaper ai (64 + c4 — 6&2c2) 

D. 2 (b2 + c2)4 
I, 

871-aper 2aibc (b2 — c2) 

“©I (62 + c2)4 ’ 

47r2a2p2 a4 (J4 + c4 — G&2c2) 

D, 2 (62 + c2)4 I, 

47r2a2p2 2a45c (52 — c2) 

”1^ (JS + C2}4 
I. 

The equations that hold for the a, b' shell may be obtained from the above by 
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10. In order to justify the approximation we observe :— 

(a). For ordinary values of the letters, 27rap is comparable with cm; in the case, for 

instance, of a copper shell of diameter 10 cm., and thickness -g- cm., 

and if 

a = 5, 

a = 3 X 1640 about; 

2 Trap = cm, 

then p = 160n about, which means that the number of reversals per second is about 

55n. 

Hence, as far as we are concerned, we regard iirapcr/D^ or 87ra2p2/D3 as of no 

degree in a. 

((3). It only remains to remark that the degree in a, a of the most important term 

of each of the coefficients N1; Q3, &c, is that of their suffix 1, 3, &c. 

11. We have 

Q'i 

R'i 

Aira'pcr' a'b' 

Dd (tV2 + c2) 

+ 
4:7ra'pcr' a'c 

Dd b'2 + c2 

+ 
87rW2p2 a'b' 

D'i b’2 + c2 1 

87r2a'2p2 a'c -j- 

— I + cubes. 

DY b'2 + c2 
I + . • 

Hence, as far as the fourth degree, in a, a', 

M, 

Nx 

27Taper 

^T 
27rapa 

21 ab 8ttW aa'2b' ^ 
O I -n / 70 7 /o 2 

D l L 
+ 

b2 + c 

21 ac 

b2 + L 

D\d2 b'2 + c~ _ 

aa “c 87r2a'2p2 

D\ ~ d2(b'2 + c2) Y 

I67Tsa?a'pz<r' aanV _ 

+ I), D\d2 V2 + c2 1 

167r3a2aY3,T/ aa’2c 
(viii.), 

DjD'j d2(b'2 + c2) 
I 

with similar values for Q2 and Rx. 

M3 = I . 
4:7rapa Ta2 (Jr — c2) 

d2 L (&2 + c2)2 
+ 

87r2a'2p2 a2a'2b' 

dP (b'2 + c2)_ + 
16’jrsa2a'p'<r' a2a'2b' ^ 

B\ D3 # (b'2 + c2) L’ 

with similar values for N2, Qo, and R3. 

The values of the coefficients may be determined by the same method to a further 

degree of accuracy, and since the current w is given when the H due to it is given, 
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w = t s— [(M„ cos n0 + N» sin n0) sin pt + (Q» cos nO + R„ sin nd) cos 
1 ZiTTCt 

thus, the currents may be determined to any degree of closeness. 

12. In order to find the couple that acts on the a, b shell, we use our previous 

result (vii.), 
7rap an* 

D„ ' 
['Q„'N„ - 'M.'RJ. 

As far as terras of the sixth degree in a, a' this is (writing 62 + e2 = p2, 6'2 + c2 

= />'2) 

+ 

irapcr 

^T 

8irapa 

Do 

2a& «a 
? I + ^2 Q i 

aa 

d2" 

a.2. Zr — c2 t era’ vr/ . 
-T5 1 ’ d? 1 

N\ + 
2ac T aa' -p, 

71+# K 

era' ,r/ 2bca2 ~ 

~dF M > • / f 
5 

remembering that the third harmonic terms are (to this order) in the same phase and 

give no couple ('M3 = 0, 'N3 = 0). 

This expression is 

7Taper act 

"1)7 ‘ 

/ 2 db 

\ P2 
N'r + ^ M',) 1 + ~ (Q'rN', - M'jR'j) 

+ l'-7T “ [(52 - c2) N', + 2be M'J. 
L>2 Cl' p 

Now, — M'jR'j has to be calculated to the second order only, and on reference 

to the values of these coordinates to the first order it will be seen that it is zero. 

Within the first bracket M\ and N\ are required to the third degree. We 

have (viii.) 
2iraper' 21 a'b' I67r3a3a/2p3& w, = - 

N'1 = + 

D\ P'2 + D \T>\<Pp* 

2'ira'pa 21 ct'c I67r3a3a'2p3e 

I (a cr etc ), 

-I. It hv w A/ V -B- / f . / \ 

P'2 - nw ■ a +a(r )• 

Hence, for the couple we get 

irapcj aa' 2a T9 

157 l3 71 

+ 

L D'l P 

8irapa a2a' a11 2'n-a'pa 21a' 

2-na'pG 2a’ n, 7 . 167r3a3a,2p3 . , ,W7 7 x 
(5 c - 6c) + (« <r + efer ) (6c - 6c) 

DiDvzy 

—— [— 26c . b' + (&3 — c3) c]. 
D2 d* Pi T>\ p 

This consolidates finally into 

-j-o 87T2p2G(j'CO?a,% r 1 
■*- * 0/0 7 py'U + 

4a.3 (p'3 - d2)' 
. . . . (ix). 

L^W ' D,iD2P2^2 
13. It will be noticed that the more important term is symmetrical, except that it 

MDCCCXCII.—A. 2 R 
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changes sign if it be applied to the a, b' shell instead of the a, b; the direction of 

rotation is negative when b — b' is positive, i.e., is as indicated in the figure, and is 

d priori likely, since the repulsion is likelier to be stronger where the currents and 

Fig. 31. 

X 

Y 

field are stronger, i.e., on the side nearest the wire of the shell to the left and on the 

unshielded side of that to the right. The couple changes sign with c as it should, and 

vanishes if cr or a vanish. The term of the eighth degree vanishes when p = d, i.e., 

QQ' = Q'W. 

The Effects on two parallel Thin Infinite Circular Cylindrical Shells of a Thin 

Filament parallel to them, and alternately Magnetised in a direction perpendicular 

to its Length. 

14. Let the same axes and coordinates be taken as before ; the filament may be 

regarded as an electromagnet consisting of a current 

•A 
— cos pt (where k is small), 
K 

parallel to OZ at x = 0, y = c, and a current 

A 
-cos pt, 

K _ 

parallel to OZ at x — — k sin a, y — c — k cos a. 

The direction of magnetisation will then make an angle of a with OX, and the 

strength will be A cos pt per unit length. 

If L . f (b, b', c, cl) were a coefficient in the expansion of the electromagnetic 

momentum in the case of a current Icos£>£ at x — 0, y = c, then, with the electro¬ 

magnet, that coefficient will be the limit of 
o 7 

A A 
- f (b, b', c, cl) — — f (b + k sin a, b' + k sin a, c — k cos a, d), 

i.e., 

A 
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but the same plan will not avail when applied to find the new couple (by directly 

differentiating the couple due to the current I cospt), owing to the interaction of the 

currents set up by the two elementary currents of the electromagnet. 

We shall have to use our previous result, that if the external field on the surface of 

a shell has momentum 

% [('Mm cos nd + 'N„ sin nd) sin pt + ('Q„ cos nd + 'R„ sin nd) cos pt], 

the couple is by (vii.), 
irapard 

On reference it will be seen that due to the current I cos pt, we had 

v, r aa' iiira'rja' a'b' T . 
Ml = - —jyT- ^ I + cubes. 

, aa' 4z7ra'pa' a'c T 
N =4----1 . 

^ d3 D\ p'* 

_ ‘2ab T ( aa' 87f~a'~p2 a’V T 

^ 1 + ^ 1 • 1 • 

Vp   2ac t- aa' 87rV3p3 a'c r 

1 ~ + y 1 _ d3" T>\ ‘ ’ • 

Now, with the electromagnet instead of the single current (remembering 

p cos y —b, p sin y = c), — I will become 

+ A 

or 

A 

sm« 2b . , . 
— —— H-; + O sin a 4- c cos a) 

P" p" 

sin a 2 cos 7 . -' 
—r + —r~sm a + y 

Also — I will become 
P2 

[cos a — 2 sin y sin a -|- y] 

y c 
and for — I, — I, we have merely to add dashes to p and y. 

If we omit terms of the eighth degree in av a, the value of the couple will be 

2 r 2 
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where 

"Mj 

"N, 

"Qi 

"Ri 

4'Trpo-’aa'3 . , . , . -j- 
— 77 A (— sin a + 2 cos y sin a + y ), 

4TTVa'aa/3 . , . , . —:- 
- ,, A (cos a - 2 sin y sina + y , 
a AD ip6 ' 7 

87r2<m/4p2 

iP 

2aA _ „„ ^ 
— — ( —sina + 2cosysina + y) + -^7 

2aA , . -:— x 87r2aa'4»2 
— (COS a — 2 Sill y Sin a + y) + 

A (— sin a -f- 2 cos y' sin a + y)> 

A (cos a — 2 sin y sin a + V)- 

On multiplying up, we notice that the second terms of "Qt and "It1 cancel, when 

multiplied respectively by "N3 and "M1? and we get for the couple 

ira/pcr 2aA 4nrpa-'aa'3 K 

cPD\p'2 A 

X [(cos a — 2 sin y sin a -f- y') (— sin a + 2 cos y sin a + y) 

— (cos a — 2 sin y sin a + y) (— sin a + 2 cos y' sin a + y')] 

or 

. 9 87r2p3c^c^,a3a,3 r . --- . ... 
A" 2 ~/3 L2 srna-f-y (cos y cos a — sin y sm a) 

— 2 sin a -f- y' (cos y' cos a — sin y' sin a) 

— 4 sin a -f- y sin a + y* (cos y sin y' — cos y sin y)]. 

The expression within the bracket is 

sin 2 a + y — sin 2a -fi y' — 4 sin a -fi y sin a -(- y' sin y' — y 

or 

— 2 sin y — y [cos 2a + y + y + 2 sin a + y sin a -j- y7] 

or 

— 2 sin y — y cos y' — y. 

Hence, omitting terms of the eighth degree, the couple on the a, b shell is 

A3 
87r~p2aa'a3a'3 

sin 2(f), 

where (f) is (y7 — y), the angle subtended by the axes of the shells at the electro¬ 

magnetic filament. 

15. To this order then we have the following results 
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(a.) The couple exerted on a shell is independent of a, i.e., of the direction of the 

axis of the electromagnet. 

(/3.) The shells have equal couples in opposite directions, the parts of the shells 

directed towards one another being driven towards the electromagnet if (f> is less than 

a right angle and driven away from it if <f> exceeds a right angle. If <f> be a right 

angle the couple vanishes. 

Fig. 32. Fig. 33. 

The Mechanical Effect of Currents set up in a Thin Spherical Shell. 

16. In obtaining the currents set up by a given field we follow Professor C. Niven : 

T, using spherical coordinates and the ordinary notation, be the current function of 

Fig. 34. 

the distribution in the shell, P the potential of imaginary matter spread over it with 

surface density <£, then 

1 d 

n=-adr^’ F = °> 

G = - 
dV 

a sin 6 d$> ’ 
H = — 

a dd 

The components of the current are 

a sin 6 d<p ’ 
u = 0, v = — - 

a 
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If the external field have magnetic potential O0, and if 

1 d /T1 . 

D° = ~ adr^ °T) 

(ever distinguishing quantities that refer to tire externally applied system by a zero 

suffix), then the equations connecting the components of the vector potential with 

the components of induction are satisfied by 

Tfi _ p, r\ _ 2 ^^0 TT _ _ SPo 

o ~ ’ 0 “ a sin dd<j> ’ 0 “ add 

The equations giving the currents are 

— (7 
_ d 1 g 

sin 6 dcf> dt a sin 6 dcp (P + Po) 
0-v/^ 

a d6 

0<D d 
+ OTaV, = “ W . dd 

and are satisfied by 

Let us consider the case 

dt *J(p + p»> 
difr 

a sin d 0(/> 

= 0, 

«* = |(P + P0). 

n„ = A (-) Y„cK 

where a is the radius of the shell, and Yn is a spherical harmonic of degree n. 

We have 

P0 = — A ~ eVt _ _ A -JL 
a11 1 n + 1 n + 

- Yneipt at the surface. 

If due to this 

then 

<£ = B Yne?pl; 

p = sTTi ByA' 

at the surface, and the equation for B is 

<xB — ip 
47ra ,. a . 1 
o-r B — r-A I 
2n + 1 1 + n 

therefore 
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- A 

B = 

tap 

n + 1 

4inrpa 

2n + 1 
+ cr 

_ 2n + 1 ap 4nrpa — i 2n + l<r 

n + 1 I67r2a2p2 + 2?i + 1V2 

Denoting then 

I6ir2a2p)2 + 2n + 1 'o'2 

by Awe shall have corresponding to 

O0 = AY„ cos pt 

at the surface, the value 

4> = A ~“'1 + ,y'-- Ylt (4irpa cos pt -f 2?? + 1 cr sin pt), 
(n + 1) A„ v 1 1 

and corresponding to 

fl0 = BZ;l sin pt 

$ = BZ„ } (47r»a sin pt — Zn + 1 cr cos pt.) 
n + 1A„ v r 1 

17. If the components of magnetic induction or magnetic force along the directions 

Sr, r SO, r sin 6 S<f> 

be a, /3, y, the components of electromagnetic force in these directions will be 

04> „ 0<J> 
yv — pw, or — y ^ ^ Q ^ — p 

aw, or 

— av, or 

a sin 0 S<j) ^ aSO 

a SO 

04> 

a 

a ’ sin 0 S<f) 

The couple about the axis of z will be the integral over the surface of 

— av .a sin 0, 

where in a it will be sufficient to take into account the external field (as in the case 

of the cylinder), for the shell will not exert any couple on itself. This couple is 

0$ 

fbs-“af • 
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Now if Hn be periodic in the time 27rjp, it can be expanded near to the surface of 

the sphere in the series 

t (-) [Y„ cos pt + Z„ sin pi] 
n= 1 \®/ 

where Y„, Z,t include only harmonics of the 74th degree. 

Due to this value of H0 we shall have at the surface 

— - [Y„ cos pt + Z„ siny>t].(x.), 

and 

[47rP« (cos Pt + sin pt) 

+ 2n + 1 cr (Y„ sin pt — Z„ cos p£)] . . . (xi.). 

The mean value of sin3 pt and cos2 pt being and of sin pt cos pt zero, that of 

3<f> 

[K d(j) 

will be, denoting differentiation to <f) by dashes, 

Iff8 
n In + 1 pa 

-X -Y n)t 
\ct ] n + 1A„ 

(irrpaY'n — 2n + 1 crZh) 

In „ \ 2n + 1 pa - 

- S U Z" 2 + 2» + 1 «Y.) 

Now Y'n. z; are harmonics of the ?4th degree and will give zero when multiplied 

by harmonics of other degrees than nth and integrated over the sphere : hence it is 

sufficient to write for the couple 

4 [f ds i i? [(2» +1)<T (Y„Z'„ - Y'„Z„) - iirpa (Y„Y'„ + Z„Z',)]. 

Also Y„ (0Y„,/3(/j) being a perfect differential, vanishes when integrated to </> from 0 
to 277- : thus 

clS . Y„Y'„ = 0, 

ffrfS . Z„Z'„ = 0, 
and the couple is 

ffrfs , 2(n + l)A„ JJ 
' 34, _ 7 3Y,' 
_ " 3</> " 3</> • • • • (*£)• 
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[It might be objected that being given the external field, we have no right to take 

F0 = 0 at the surface ; we have proved, however, in our introductory work, that 

if 120 be given, an alteration in the normal component of the vector potential only 

introduces an alteration in the electrostatic potential.] 

18. Hence it follows that— 

(a.) If the external field be symmetrical round the axis of Z, so that 12 is 

independent of <f>, the couple will be zero ; 

(l3.) if the external field be completely in the same phase, or if when expanded in 

harmonics over the surface its form is 

nQ = t U« COS (pt + €*), 

where e„ is independent of the coordinates 0, <£, then the couple vanishes. 

From this it follows that if we have an exciting field in the same phase, and intro¬ 

duce any number of perfectly conducting bodies, the couple will still be zero. 

The Couples on two Thin Spherical Shells due to the presence of an Alternating 

Current in a Straight Infinite Wire. 

19. Let the line joining the centres of the shells he taken as OX and the shortest 

distance between this line and the infinite wire as OY. 

Let the radii of the shells be a, a', and their central distances from O, h and h': 

let the distance from O of the wire be c. 

Fig. 35, 

If a point in space have polar coordinates r, B, </> when referred to Q as origin and 

axes parallel to OX, OY, OZ, and coordinates /, <f>' to Q' as origin, its Cartesian 

coordinates will he 

2 s MDCCCXCIT -A, 
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x = b -j- r sin 0 cos ^ 

= b' + r sin O' cos ft 

y — r sin 0 sin <£ 

= r sin 0' sin (p' 

Thus (if b — V Ezd) 

so that 

z = r cos 6 

--- r cos O'. 

v sin O' cos <f>' = r sin 0 cos <f> d "j 

r sin O' sin ft = r sin 0 sin <£ h 

r cos O' = r cos 0 J 

r'2 = r2 + 2 dr sin 0 cos </> + d2, 

(xiii.), 

and when r — a and is less than d, 

1 _ 1 

r' ~ d 

a . n 
1 — - sm 0 cos <p . . . J > 

so that, omitting second harmonics, 

sin O’ cos </>' If 3 a . > , . a 
-- -— = — ( 1 — - sin 0 cos (p) (a + a sin 0 cos </>) 

d2 d* 
sin 0 cos <p -f- higher harmonics. 

sin O' sin cp' a sin 0 sin 

“d2 = dF~ 

cos O' a eos 0 

r'3 ~ d3 " • ‘ ‘ 

20. Hence if the currents in the a, b surface produce upon that surface a magnetic 

| )otential 

n = (A sin 0 cos </> -j— B sin 0 sin <f> + C cos 0) cos pt 

+ (D sin 0 cos -j- E sin 0 sin (p + F cos 0) sin pt 

+ harmonics of second and higher orders, 

and if the currents in the a', b' shell produce upon itself a potential Cl', whose value is 

distinguished by dashes from the above, then the value of fi upon the tt, b shell 

will be 



PRODUCED BY ALTERNATING ELECTRIC CURRENTS. 315 

Ci * 
— (A' cos pt + D' siny>£) 

+ 2A'sin 9 cos <f> B' sin 9 sin <p + C’ cos 9] cos pt 

dd^ 
+ — [— 2D' sin 9 cos </> + E' sin 9 sin <f> -f- F' cos 9~\ sin pt 

+ higher harmonics. 

The magnetic potential at or, y, z of the current in the infinite wire is 

2ltan 1 cos pt, 

and hence at 9, <p on the a, b sphere is 

21 
_ , c — a sin 6 sin <f>~l 

tan 1;-r—-i-7 cos pt, 
o + a sm 6 cos q> J 

or 

2l cos pt 
_! c ah sin 6 sin cp ac sin 6 cos cp 

fcan b I,2 + c? 

1 
••j, 

omitting hannonics of second and higher degrees. 

Hence the first harmonic of the magnetic potential of the system external to the 

a, b shell is upon its surface, 

fi0 = ('A sin 0 cos (p + 'B sin 9 sin <f> + 'C cos 9) cosyrt 

4- ('D sin 9 cos <p + 'E sin 9 sin <p + 'F cos 9) sin pt, 

where, if 63 -f c~ = p3, 

y   2I« 2aa'~ , , 

p: </3 

'T> _ 2Irt& I 0M'3 -D' 
— — c, -r ™ B 

p~ a* 

'D = 

'E = 

'C = 

'F = 

2 aa'2 

ds 
D' 

+ 
aa 

+ -rfT C 

+ F. 

2 s 2 
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Now we have shown (xi ) that a field 

produces a current function 
n0 = Y J*. 

The P of this is 

2n + 1 ap . . - . „ . 

* = (n+l)A. ^Pa ~ *' 2" + 1 ^ Y^‘ 

47rci /«\*H 

2n + 1 ' ' [rj ’ 

and its magnetic potential at the surface 

47rn 
-<t>. 
(2 n + 1) 

Hence the magnetic potential of the currents induced in the a, b shell by the system 

It0 = ('A sin 9 cos (f> -j- 'B sin 9 sin <£ -J- 'C cos 9) pt 

+ ('D sin 9 cos </>-}- 'E sin 9 sin (j> fi- F cos 9) sinpZ 
will be 

n = 
‘Inrpci 

[('A sin 9 cos <]> + 'B sin 9 sin (f> + 'C cos 0) (4 77-pa cos pt + 3cr sinpZ) 

+ {'D sin 9 cos <f) + 'E sin 9 sin rf> + 'F cos 9) (47rpa sin pt — 3cr cospZ)]. 

Comparing this with 

(A sin 9 cos <£ + B sin 9 sin <f> + C cos 9) cos pt 

-fi (D sin 9 cos <^» -J- E sin 9 sin <f> -f- F cos 9) sin pt, 

we have, on giving 'A . their values, 

A =- 
cirpa ■2Iac 

4 77-pa — — 
O to la a - 

A' 

B - 

C = 

D = 

E 

jirpa 

"aT 

Inrpa 

a7 

/ 2IaZ> aa'2 ^.A 
4^a (-7 + ^b)-3, 

/<m'2 ,N,\ „ aa'2 " 

c)~3ct #-F. 

an 
- E' 

2irpa r 

A, 

J7T/. 

A, 

2Iac 
OCT - , - 

2««'2 

p- fZ3 

21c5 «a'2 

A') + 477-pa ( - D' 
2aa 

n l \ P' 

F=T[3<r(>c')+4^^F ■ 

B') + 47rpa (^ E' 
aa '2 \ “I 



PRODUCED BY ALTERNATING ELECTRIC CURRENTS. 317 

21. There are, of course, six similar equations obtained from consideration of the 

currents in the a , b' shell: these equations are accurate, since the introduction of 

further approximations gives rise to harmonics of higher orders than the first. 

From the four equations giving C, F, C' and F', it follows that all these quan¬ 

tities are accurately zero, as might have been expected, since the system is unaltered 

on taking — 2 for -f- 2, i.e., putting (tt — 9) for 6. 

From these equations it follows, as in the case of the cylinder, that the principal 

terms of the first harmonics are of the first degree in the radii, but their next are of 

the fourth (not the third, as for the cylinder). 

It will also be obvious that the principal terms of the harmonics of the second 

order will be of the second degree in the radii. 

The values of the coefficients can be calculated with ease, as with the cylinder, but 

we wait to see which of them are involved in the couple. 

Writing the external field on the a, b shell in the form 

n0 = Y: cos pt + Zl sin pt, 

the couple will be (xii.) 

V 3Z, 7 SY, 
. 1 0^. 1 '4 j 

and the most important term omitted (that from the second harmonic) is of at least 

two degrees higher in powers of the radii. 

Also, 

Y1 = 'A sin 9 cos (f> + ' B sin 9 sin <f>, 

Z1 = 'D sin 9 cos (f> + 'E sin 9 sin <f>, 

so that the couple is 

9 pa 

4A 
- || dS [('A cos (f) -\- 'B sin <£)(—'D sin <£ + 'E cos <fi) 

— (— 'A sin (j) + 'B cos <£) ('D cos <f> + 'E sin <£)] sin2 9, 

or 

or 

9pa 

4A 
- f 89. a2 sin3 9 T 8<f> {('A'E - 'B'D) (sin3 <f> + cos3 <j>)}, 
i Jo Jo 

9pa- 

4A 
.fa3.2rr ('A'E — 'B'D).(xiv.). 

On reference to the values of'A, &c., it will be seen that to fourth powers of radii, 

'A'E — 'B'D = - ~ [cF/ + 26D']aa' 
r 

'2 

■ (f ’ 

also 
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D' = — l^r I + terms three degrees higher, 

tt./ _ 12irpana'b' 
n^A' -L . • . 
P A 1 

Hence the couple increasing 0 is 

67Tfd 

or 

~a 2I«V2 127rpa'~a' T , 7, 7 x 

a, • 1 (c* + 26c) 

1447r3w2cra-/a%''4C , 7 , ,,, TO 

^wT(26 + 6)i- 

22. In obtaining the couple on the a, V shell it will not do merely to interchange 

dashed and undashed letters, for the equations (xiii.) give when r = ci and < cl, 

,-1 — t 

so that 

1 -f- sin O' cos (f)' 

sin 0 cos 0 1 

~ = d* r~ 
1 -f- j sin O' cos 0' . . . [ — cl -j- ci sin O' cos </>'] 

1 2a' • a x’ =-^ — 77 sm 0 cos 0 , 
d- d6 

sin 6 sin 0 a' . A/ . , 
—- = sm 0 sm 0 , 

cos 0 a 
—T-- = — cos 0. 
r- d;‘ 

These equations may be obtained from (xiii.) by interchanging dashed and undashed 

letters, leaving the sign of d unaltered, with the exception of the term — (1 /d2) in 

(sin 0 cos 0)/r3, and as this term does not appear afterwards (being constant over the 

sphere), the exception is negligible. 

The subsequent work does not introduce d afresh, it only makes use of the formulae 

we have obtained, and thus it will be seen that the final couple on the a, b' shell is got 

by the changing of dashed and undashed letters, leaving the sign of d unaltered ; it is 

1447T2p2crcr,ft4ft'4C 

Py2 <P \ A\ 
(b + 2b’) I2. 

If we write h for 

couples are 

\ (b -f- b'), the mean of distances of the centres from 0, the 

7 27T2^2crcr'ft4ft,4c 

pf'fp \ A\ 
(6h ± cl) I2. 
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23. Hence 

(a.) If cr, cr' or c vanish, the couple vanishes, as might have been expected. 

(/3.) The signs of the couples fall into three cases :— 

(i.) When 6/i is positive and > d, both couples are positive, and tend to increase </>. 

Fig. 36. Fig. 37. 

m 

Iy 

(ii.) When 6h is numerically less than d, the a, b couple is positive, and the a 

negative. 

Fig. 38. 

v 
SI 

(iii.) When 6h is negative and numerically > d, both couples are negative. 

Fig. 39. 

fw 

i 
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The Couples on two Spherical Shells, produced ly a Filament of infinite length, per¬ 

pendicular to the Line joining their Centres, and alternately Magnetised in a 

direction at right angles to its length. 

Fig. 41. 

24. Let the same axes be taken as before, and let the direction of magnetisation 

make a with the plane XOZ. The filament is equivalent to an electromagnet formed 

by currents 
K 
— cos pt, 
K 

parallel to OZ at x — 0, y = c, and 

K 
— — cos pt 

K 

at x— — k sin a, y = c — /c cos a, in the limit when k is small; the strength of 

magnetisation will then be K cos pt. 

As before, a coefficient of magnetic potential 

1/(6, V, v) 

due to the current I cos pt, will become 

K — sin a fi- COS a 
06' 

due to the electromagnet, and if 

p cos y = h\ 

p sill y — C j 

then on reference to previous work it will be found that whereas we had for VA due 

to I cos pt, 

21 ac , , 
— —it — fourth powers, 

P' 

now we shall have 

2 Ivy 

o 
P 

[cos a -f- 2 sin y sin a — y 
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So, too, we shall have instead of 

'B = — 
21 ab 

2K a 

and 

'B =-— f — sin a + 2 cos y sin a — y], 

aa* , 

-■# -E 

(denoting by suffix Q that we have an electromagnet, not a current). 

Also 

Therefore, 

and similarly, 

and 

j,,   127rpa'^a'b' j 

AV3 

T7i/   12ir'pa a j-r p . i o / /”| 
h, =-K — sm a + 2 cos y sin a — y , 

' A jp “ 

9/y/y/2 

' D = - ,D', 

y\ / _ 12y?7rff o’ T7- p i o ' / /“| 
l) =--— K [cos a + 2 sm y sm a — y J. 

But the couple tending to increase cf> on the a, b shell is, by (xiv.), 

^ (>\E - ' B'D). 

or 

or 

f(AE' + 2'^D'), 
w 

ftirpcfia'2 2K« 12p7ra/2cr/ „ , . 

+ (“' r,y)’ 
where 

y* (a, y, y') = [cos a + 2 sin y sin a — y] [— sin a ffi 2 cos y' sin a — y'] 

-f 2 [— sin a + 2 cos y sin a — y] [cos a + 2 sin y' sin a — y'] 

= — 3 sin a cos a + sin a — y [4 cos a cos y — 2 sin a sin y] 

+ sin a — y' [2 cos a cos y — 4 sin a sin y] 

+ 2 sin a — y sin a — y' [2 sin y cos y + 4 cos y sin y'] 

= — f sin 2 a -j- sin a —y [cos a — y + 3 cos a + y] 

-f- sin a — y [3 COS a -f- y' — cos a — y'] 

+ [cos y — y' — COS 2 a — y — y'] [3 sill y + y' + sin y' — y]. 

MDCCCXCII.—A, 2 T 
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On multiplying out and replacing products of sines and cosines by sines and cosines 

of added or subtracted angles most of the terms cancel, and we are left with 

\ sin 2 (y — y) + f sin 2 (a — y — y'). 

Thus the couple on the a, b sphere is 

12ririp2aia'iaa' 

K> p"~\xlCp 

and on the a', b' sphere, 

[sin 2 y — y + 3 sin 2 (a — y — y)\ 

, ‘i2'jrip2aia'iacr' r . , . t 
K'~pY°-\AGr[_ sm2y-r+ osm2(»-y - y)]. 

25. From this we see that 

(a.) If the couples on the two shells be equal and opposite 

(a — y — y) = 0 or dz ^ tt, 

i.e., 

a = y + y or y + y7 dz •§- 7r. 

(/3.) The couples will not vanish when c = 0 (and y = y = 0), unless in addition 

a = 0 or ztz 2 tt (in which case there is by symmetry obviously no couple). 

(y.) We may take as an example 

y = 30°, 7 = 60c 

and the couples will be 

727r2p2rda/Vo-r , s/% 0 . 0 n 

.yxx,,- [± — -381112*I 

the upper sign referring to the a, 6 shell. 

The bracket will be positive when a = — 45° say. 

The bracket will be positive and negative when a = 0 or 90°. 

Fig. 43. 
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The bracket will be negative when a = +45°. 

(8.) In confirmation it 

symmetrical to OY), and 

The couples are then 

may be noticed that if y = -a — y (i,e., when the system is 

a — 0° or 90°, the couples are equal and opposite. 

TK3 
'12ir~]raia'icra' 

A'i 

sin 2y, 

and are negative and positive on the a, b and a', b' shells respectively, for all possible 

values of y, for which the a, b shell is to the right of a', b'. 

Fig. 45. 

The Couples on Two Spherical Shells in the presence of a Magnetic Pole of 

strength H cos pt. 

26. Take OX through the centres of the spheres and OY through the pole, whose 

distance from 0 is c. 
Fig. 46. 

2 t 2 
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Then, with the same notation as before, the magnetic potential due to the single 

pole will be, on the a, b shell, 

H cos pt 
= 

[/r + a2 + 2pa sin 9 cos 0 + 7]* 

H cos pt T_ a . 

P 
1-sin 9 cos y -j- (b -j~ second harmonics 

P 

The equations (xiii.) now give 

Ha 
'A =-v c°s y -|- fourth powers of a 

P~ 

v Ha . 
B = — sin y + . . . 

P“ 

_ _ 2aa'2 tv 

d? 

'E = + ~ E' 

• . (xv.), 

and since in fi0 there was no term cos 0, the coefficients 'C, 'F will be zero. 

Also 

D = [3<x. 'A] + fourth powers, 

E = -^p[3o- ,'B] . . . 

Therefore 

rv ^irpa , 
U = -77- ocr . 

Ai 

Jjy   -7TPa C))(j' 
- A\ 

' Ha' 
-7- COS y 

P 

.Ha' . / 
+ sm y 

p 

The couple on the a, b shell has been proved to be (xiv.) 

This is equal to 

^(WE - ‘B'D). 

~^<^3['A.E' + 2'B.D'], 

or 

or 

Qirpcda aa'2 Ha Girpa'cr' Ha' r . , n 
^ AT J- L- cosy sin y -2smycosy], 

- h2 3!slTr%AJ'd +26')- psp'3 Al A\ cP 
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The couple on the a, b' shell is 

36TTp^o^a/^c a a' 

" p3p'3 A1 A\ d? 
(26 + b'). 

27. Thus we see that 

(a.) The couples vanish (as they should) when c = 0. 

(/3.) When 6 = — b' and a — a, the figure is symmetrical to plane YOZ, and the 

couples will be equal and opposite (as they should): that on the a, b shell being 

positive if cl be positive. 
Fig. 47. 

(y.) For other cases the discussion of sign is similar to that for the current I cospt, 

and there are three cases :— 

I. When 6 and b' are positive, the couples are both negative, as also if 6' be 

negative and t (6 + 6') > d/6. 

Fig. 48. Fig. 49. 

i 

II. When ^ (6 + b') < d/6 numerically, the signs are +5 —. 

Fig. 50. 
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III. When ^ {b + b') is negative, and is numerically greater than d/6, the couples 

are both positive. 

Pig-. 51. Pig. 52. 

The Couples on two Spherical Shells in the presence of a small Magnet of Moment 

K cos pt, whose Axis cuts the Line joining the Centres of the Spheres at an 

angle cl. 

28. We regard the magnetic particle as having a pole of strength (K/k) cos pt at 

a? = 0, y = c, and a pole of strength — (K/k) cos pt at 

x = — k sin cl , y = c + k cos cl , where cl = (77/2) — a. 

Fig. 53. 

If a coefficient of magnetic potential due to a single pole at (0, c) of strength 

H cos pt, be 

Hf(b, b\ c) 

that due to the magnet will be the limit when k is small of 

(K/k) f(b, b'} c) — (K/k) f(b-\-K sin cl, b' + k sin a, c + k cos a'), 

i.e., will be 

-K S/.SA • ,,3/ 
» + adsm“ + a;cos “ 
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Now we had (xv.) 
v H« H ab 
A =-- cos y = — — 

P" P 

Thus, distinguishing coefficients arising from the magnet by a suffix (/) as distinct 

from the magnetic pole, we have 

' A = — Ka 

Ka 

1 363\ . , . 3 be 
-- -J- —r sin a + —r cos a 

p3 P5/ p5 

= — — [ sin a' + 3 cos y sin a + y] 

So too from 'B = Hac/p3 (xv.) 

Ka 

We had also 

' B = — [ — cos a + 3 sin y sin a' y 1 . 
'p6 

v 2aa'2 67rpa'a' Ha!V . . , 
= -^T • -+ higher powers, 

'E = 
act'2 (iTTpa'cr' Ha'c 

* Af ,'3 ‘ 

Hence 

p, _ T7 12irj)(m ^<j p . / 1 q / 7 . /“i 

,D = K ^3^ /3- [- sm « + 3 cos y sin a + y ] . . . 

\E = K -~v, — [— cos a' + 3 sin y sin a' + y'] . . . 

Thus the couple 

where 

# A'jp 

_ ('a' E — '/B\D), 
Aj 

P>Trpa2cr K% 67rpaa^cr' .. , , 

= ^r*7r'^A>^/(a r,y)’ 

/(a', y, y') = — [— sin a' + 3 cos y sin a' -{- y] [— cos a' -j- 3 sin y' sin a' -f- y'] 

— [ — cos a' + 3 sin y sin a' + 7] [ — 2 sin a + 6 cos y sin a' + y] 

= — £ {(sin a' + 3 sin a + 2y) (cos a' — 3 cos a' -f 2y') 

+ (cos a' — 3 cos a' + 2y) (sin a' + 3 sin a' + 2y')}. 

On multiplying and continuing the practice of replacing products by sines and 

cosines of sums or differences, we get 

= — f [sin 2cl + 3 (sin 2y + sin 2y) + (sin 2 a' + y' — sin 2a' + y) 

— 3 sin 2 (y — y) — 9 sin 2 a' + 2y + 2y']. 
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Expressed in terms of a, the couple on the two shells will be 

2 y — 2y'. 

29. Hence we have 

(a.) If y — tt — y, 

(f) (a, y, y) = 3 sin 4y + 2 sin 2y cos 2a — 8 sin 2a. 

For the couples to be equal and opposite we must have a = 0 or t, and then 

<f> (a, y, y) = 3 sin 4y dr 2 sin 2y. 

-K 
„ 2?7r'rPcfta'^ocr' . . 

- K2 
277r+3a%'4crcr/ 

<Ma> y'» y)> 

where 

(f> (a, y, y') = sin 2a + 3 (sin 2y + sin 2y') + sin 2a — 2y' 

— sin 2a — 2y — 3 sin 2y' — 2y — 9 sin 2a — 

If y — ^ u (fig. 54), the values of (a, y, y) are negative, both for a = 0 and 

a = ^ tt ; if y = ^ 77 (fig. 55), both values of <£(a, y, y) are positive. 

(j3.) If we take y = 30°, y — 60°, we find that 

/(a> 7> V) 

f(a> y, y) 

’3\/3 
2 

'V3 

+ 9 sin 2a 

+ 11 sin 2a • 

The former is negative when a increases from 0° to about 98° 23', and positive 

thence to 171° 37', being negative to 180°. The latter is negative from 0° to 112° 34', 

positive thence to 157° 26', and afterwai’ds negative to 180°. 
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a 

In fig. 56, a = 45°; in fig. 57, a = 105°; in fig. 58, a = 135°; and. in fig. 59, 

= 165°. 
Fig. 56. Fig. 57. 

2 u MDCCCXCII.— A. 
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VII. Re-determination of the Mass of a Cubic Inch oj Distilled Water. 

By H. J. Chaney. 

Communicated by Sir G. Gabriel Stokes, Bart., F.R.S. 

Received February 4,—Read June 19, 1890,—Revised January 16, 1892. 

The evaluation of the mass of a cubic inch of distilled water, as at present accepted, 

was based on weighings made in 1798 by Sir G. Shuckburgh (; Phil. Trans./ 1798, 

p. 133) ; and on measurements made in 1821 by Captain Kater (‘ Phil. Trans./ 1821, 

pp. 316 and 326). Subsecpient researches however, particularly those in relation to 

the mass of a cubic decimetre, show that it is desirable to re-determine the mass of 

the cubic inch of distilled water. 

The result of Shuckburgh’s experiments was that the cubic inch of distilled water 

at the temperature of 66° Fahr., the barometer being at 29'74 inches, weighed 

252*422 grains, and this value as corrected by Captain Kater, became 252*458 grains 

at the temperature of 62° Fahr., the barometer being at 30 inches ; or in vacuo 

(t. = 62° Fahr.) the cubic inch of distilled water weighed 252*724 grains. This 

corrected value, 252*458 grains, has been adopted in various legislative enactments ;— 

for instance the Weights and Measures Act, 5 Geo. IV., c. 74, section 5 (1824), 

declared that “ a cubic inch of distilled water, weighed in air by brass weights, at the 

temperature of sixty-two degrees of Fahrenheit’s thermometer, the barometer being 

at thirty inches, is equal to two hundred and fifty-two grains and four hundred 

and fifty-eight thousandth parts of a grain, of which the imperial standard Troy 

pound contains five thousand seven hundred and sixty.” 

Owing to doubt as to the true mass of a cubic inch of distilled water, the above 

section of the Act of 1824 was repealed in 1878, and has not been re-enacted. No 

re-determination of the mass of a cubic inch of distilled water in terms of the present 

imperial pound has yet been made; the above value, 252*458 grains, being based 

on the old Troy pound of 1758. Dr. Wild’s investigations* appear indeed to 

show that later results obtained in the evaluation of a definite volume of distilled 

water, differ appreciably from those obtained in terms of the old Troy pound. If, for 

instance, the mass of a cubic decimetre of distilled water at 4° C., as originally 

determined by Lefevre-Gineau and Tralles in 1799, is taken as 1000*000 gnus. 

* ‘ Bericlit iiber die Arbeiten zur Reform der Schweizerischen Urmaasse,’ Ziiricb, 1868. 

2 U 2 4.7.92 
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Then the equivalent value of the cubic decimetre, as deduced 

from the Shuckburgh and Kater value of the cubic inch, 

would be. 1000'480 grms. 

Other investigations have given :— 

(1825) Berzelius ' 

Svanberg > . . . . 

Akermann^ 

(1834) Stampfer. 

(1841) Kupffer. 

1000-296 

999-653 

999-989 

The arithmetical mean of these five results is 1000-084 grms., and there is a 

difference of 0"827 grm. between the highest and lowest result. The difference between 

the results appears to arise mainly from inaccuracy in the measurement of tem¬ 

perature, and uncertainty as to the condition of the water used. 

Dr. Broch* revised a report by Tralles on Lefevre-Gtneau’s original work, and 

arrived at the conclusion that probably the true mass of a cubic decimetre of distilled 

water at its maximum density, and in a vacuum, is from 90 to 120 mgrms. less than 

1000 grms. 

Methods and Instruments. 

It has been the object of the present investigation to ascertain the weight of water 

displaced by a body or gravimeter, whose masses, in air and in vacuo, and linear 

dimensions, had been carefully ascertained, rather than to determine the theoretical 

mass of a cubic inch of water. It has been considered that the mass of a definite 

volume of distilled water cannot well be ascertained by weighing the water contained 

in a vessel of a given capacity ; or by the use of gravimeters, made only of one 

material (as brass), and of one particular form (as a sphere). Three gravimeters (or 

hydrometers) therefore, of the following forms were now adopted :— 

Two gravimeters, C and Q, of cylindrical form, one hollow and the other solid, the 

third gravimeter S being hollow, and of spherical form. The hollow gun-metal 

circular cylinder C (fig. 1, page 340) was nearly nine inches in height and diameter, and 

was adopted as being a body the weight and dimensions of which might give the least 

probable error in the several operations of weighing in air and in water. The gravi¬ 

meter C was protected form oxidation by platinising, it having been first made air¬ 

tight. For the purpose of linear measurement, there were traced on the gravimeter 

a series of lines, as indicated in fig. 1. These lines were cut rather deeper than was 

desirable, but the space taken up by them on the surface of the cylinder has been 

considered. 

* ‘ Prcces-Verbaux—Commission Internationale du Metre. Reunions des Membres Franyais. 1873.’ 
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The cylinder Q was adopted as a solid gravimeter because the density and expansion 

of quartz are well known, as well as on account of the hardness of quartz, its 

capability of receiving a high polish and absence of hygroscopic properties. Q is a 

pure crystal, and was originally adjusted under the directions of Dr. Voit, its coeffi¬ 

cient of linear expansion for 1° C. being taken as 0'00000781 in a direction parallel to 

the principal axis of the crystal. 

The third gravimeter S, is a hollow brass sphere, having on its surface two engraved 

lines for the purpose of linear measurement, and its approximate diameter is six 

inches. 

Water, 

Expansion of Water.—As the weighings of the gravimeters in water could not be 

actually made at the normal temperature of 62° Fahr., corrections were necessary for 

the density of water at various temperatures. There has not yet been made any 

determination of the rate of expansion of water which might alone be accepted, 

and we have therefore to adopt the mean result of several selected determinations. 

Rossetti has stated the result of his experiments (‘ Atti del Istituto Veneto,’ 

1867-8), as well as those of Kopp (1847), Pierre (1845, 1852), Despretz (1839), 

Hagen (1855), and Mattiiiessen (1866), in a table which gives 1 ’001121 as the 

ratio of the density of water at 62° Fahr. (16°*6 C.) to its maximum density at 4° C. 

It does not appear 'whether Rossetti corrected the earlier results by more recent deter¬ 

minations of the rates of expansion of mercury and of glass; which corrections at 

some temperatures would affect the last place of decimals in the above expression 

(FOOl 121). The differences between the above determinations would also affect the 

present investigation to 0'0009 grain in the mass of the cubic inch of water. 

In 1870 Dr. Foerster,* after a critical examination of the results above referred 

to, as well as of those of Jolly (1864) and W. H. Miller (1856),t adopted the mean 

results of Miller and Rossetti (after Schiaparelli, 1868); which give 1'001118 

as the ratio at 62° Fahr. ; or if the maximum density of water is taken at the 

temperature of 4° C., then at 62° Fahr. the density of water may be expressed by 

0'998881 ; and these mean results have, therefore, been followed in the present 

investigation. 

* ‘ Metronomische Beitriige,’ No. 1, Berlin, 1870. 

t ‘Phil. Trans.,’ 1857 (Part III. for 1856). 
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Table I.—Density of Water. 

Logarithms of Ratios of the Maximum Density of Water to its Density at t. 

t. Log. Wt- Diff. t. Log. Wt- Diff. 

4° 0. o-ooooooo 17° C. 0-0005098 
5 36 36 18 5867 769 
6 136 100 19 6682 815 
7 299 163 20 7544 862 
8 524 225 21 8451 907 
9 808 284 22 9401 950 

10 1152 344 23 10393 992 
11 1553 401 24 11426 1033 . 
12 2011 458 25 12498 1072 
13 2523 512 26 13609 1111 
14 3090 567 27 14757 1148 
15 3708 618 28 15941 1184 
16 4378 670 29 17158 1217 
17 0-0005098 720 30 0-0018409 1251 

Condition of the Water.—The water was twice distilled in pure tin and glass stills, 

and was found to be free from any impurities likely to affect the weighings. It was 

deprived of air by boiling, and no correction for the absorption of air was therefore 

made. It was, however, found that at the temperature of 62° Fahr. (B. = 30 inches) 

a cubic foot of distilled water, freed from air, weighed about 321 grains more than 

when nearly “ saturated ” with air. 

Standards of Length and Comparators. 

Standards of length and Comparators.—For the purpose of measuring the external 

dimensions of the gavimeters in inches of the present imperial yard, four 9-inch end 

standards of length were used ; as well as a steel 6-inch and a steel 3-inch standard 

(1884). At 62° Fahr., the true mean length of the four 9-inch standards was 

8‘99975 inches ± O'OOOOl inch; the 6-inch and 3-inch standards having a true 

length of 6‘00020 and 2-99975 inches respectively. For intervals between O'l and 

O'Ol inch there was also used a subdivided inch “ D,” the accuracy of the subdivisions 

of which had been measured by the Standards Commission in 1868 to dz 0'000005 

inch. 

For the comparison of the dimensions of the gravimeters with the standards 

of length, there were used two comparators of well-known forms; one a Whitworth 

contact comparator, the other a micrometer-microscope comparator designed by Mr. 

J. Simms. By means of the former comparator measurements by touch might be 

made to O’OOOl inch ; and optically to 0,000025 inch, by means of the microscopes. 
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When two standards or measures of extension are to be compared by means of the 

Whitworth comparator, first one standard and then the other is placed in a horizontal 

position between two contact points ; one of which is a fixed point, the other being a 

movable point or the termination of a micrometer-screw. Any difference, in parts of 

an inch, between the two standards can then be measured by means of the screw, the 

value in parts of an inch of one revolution or whole turn of the screw being known. In 

this comparator, the appreciation of the moment of contact is ascertained by means of a 

“ gravity-piece.” When the gravimeter was placed in position, one of its sides was in 

contact with the fixed point, its other side being in contact with the gravity-piece? 

which was interposed between the gravimeter and the screw, and the moment of 

contact between the gravimeter and the screw was then ascertained by gradually 

turning or releasing the screw until the gravity-piece fell by its own weight. 

In the general form of the ordinary micrometer-microscope comparator, or optical 

beam-compass, there are two fixed microscopes, the distance between which is deter¬ 

mined by comparison with a standard of length. The micrometer heads of the 

microscopes are divided into 100 divisions, the mean value of one division being equal 

to nearly 0'00003 inch; and the linear standards or measures of extension are 

compared by being alternately placed under the microscopes, a microscope being fixed 

over either end of the standard under observation. 

As the comparators were only required for the purpose of measuring small differ¬ 

ences between the standards and the gravimeters, it wras unnecessary to verify the 

whole run of the micrometer screws ; but the particular parts of the screws used were 

verified by comparison with the subdivided inch D. 

There were no defining lines marked on the gravimeter Q by which its dimensions 

could be measured, although certain lines, as previously mentioned, were engraved on 

C and S, for the purpose of indicating generally the particular parts of the surface of 

the gravimeter brought under measurement. Therefore, in the microscopic compa¬ 

risons of Q, it became necessary to develop defining lines, visible through the 

microscope, and this was done after the method of Fizeau and Cornu. 

When the gravimeter was placed in position under the fixed microscopes, two 

pencil points, made of polished silver, were brought nearly into contact with the 

gravimeter, within O'OOl inch of the gravimeter at each end. The “points” did not 

therefore actually touch the sides of the gravimeter, but were so reflected as to form 

an apparent line of contact, visible through the microscope, on either side of the 

gravimeter. The actual distance between the two apparent lines formed by the 

“points” and their reflections, as measured by the fixed microscopes, vTas then com¬ 

pared with a standard of length which was placed under the microscopes after the 

removal of the gravimeter. 

Rates of Expansion of the Gravimeters by Heat.—The rates of expansion by heat of 

the three gravimeters were not ascertained by actual experiment, as the probable error 

which would arise in ascertaining the rate of expansion of a body having the particular 



336 MR. H. J. CHANEY’S RE-DETERMINATION OF 

form of either one of the gravimeters would be greater than the probable error of 

experiments on the dilatation of a body of the simple form of a rod or bar. 

The gravimeter C. for instance, is made of a gun-metal alloy, the coefficient of linear 

expansion of which alloy was found by Sheepshanks in 1848 to be O’OOOOCffil? for 

1° Fahr. Tt was subsequently found by Clarke (1860) to be 0'00000986 ; Fizeau, 

also, has shown that Sheepshanks’ coefficient was too low, owing possibly to the form 

of the mercurial thermometer adopted in 1848. For the gravimeter C, Clarke’s 

coefficient of linear expansion has been therefore taken. For the gravimeter S the 

coefficient of linear expansion for 1° Fahr., 0’0000104, has been taken; and for Q the 

cubic expansion 0 00001924 for 1° Fahr. 

Thermometers. 

Six standard mercurial thermometers were used— 

Centigrade .4,517 

? ? .4,518 

? ? .4,575 

Fahrenheit . 430 

5 5 .12,765 

?5 . 20,065 

The errors of these thermometers were originally determined in relation to the 

hydrogen thermometer at the Bureau International des Poids et Mesures, Paris, and 

were re-determined after the experiments. Thermometers 4517 and 4518 were made 

of a hard glass (including 71‘5 silica, 14"5 lime, 11‘2 soda, 1*3 alumina, 07 sulphuric 

acid, and 0'3 potash), and were highly sensitive. 

Thermometer No. 4517.—Divided into 00,1 C, from 40-3 to + 103o-4. Distance from 

middle of reservoir to 0° C. is 53 mm. Total length of thermometer is 

702 mm. Length of a degree is 5'290 mm. 

Correction for Calibration. 

Divisions. Corrections. Divisions. Corrections. 

O O O o 

0 o-oooo 50 + 0T668 
+ 2 0-0068 60 + 0-1599 

8 0-0393 62 + 0-1520 
16 + 0-0651 70 + 0-1163 
18 + 0-0639 80 - 0-0082 
20 + 0-0635 90 - 0-0257 
30 
40 

+ 0-1039 
+ 0-1246 

100 ± o-oooo 

Divisions equidistant. Probable error of correction ffi 0o,0010 C. 
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Coefficient of pressure (or pressure on reservoir) for one millimetre of mercury, as 

applied when thermometer was used in a vertical position is 0-0001025. 

Boiling-point in a horizontal position is 100o,0242 dr O'OOOOl 1. The value of a 

division in “normal” degrees being 0°*999758 dz0°'00001I. 

Error of zero-point, when the thermometer was placed in a horizontal position, 

was 0°‘074 C. 

Thermometer No. 4518, is a Centigrade thermometer of similar form to 4517. 

Boiling-point in a horizontal position is 100o,0665. The value of a division being 

0°-999335 ± 0-000017. 

Zero-point; horizontal position, — 0o-087. 

Thermometer No. 4575.—Divided into 0o,L C. from — 4°'l to 55°T. Distance from 

middle of reservoir to 0° C. is 64 mm. Total length of thermometer, 

482 mm. Divisions not equidistant, but by comparison with a standard 

thermometer the following corrections were obtained :— 

Scale. Corrections. 

O O 

5-1 + 0-014 
10-7 + 0-007 
152 + 0011 
20-2 - 0-006 
24-9 - 0-024 
30T - 0-045 
35-0 - 0-051 

Coefficient of pressure is 0-0002264. 

Zero-point; horizontal position, -f 0o,314. 

Thermometer ; Kew, 430.—Divided into 1° Fahr. from — 10° to + 217° Fahr. Nos. 

12,765 and 20,065. Divided into tenths of a degree from 20° to 84° Fahr. 

430. 12,765. 20,065. 

mm. mm. mm. 
Distance in millimetres from middle of tlie reservoir to 32° Fahr. . 228-3 134 80-3 
Length of a degree. 1-908 2-75 4-27 
Total length of the thermometer. 620 161 333 

It was found that the construction of the above thermometers, Kew, 12,765, and 

20,065, did not permit of exact calibration, and the following corrections were 

MPCCCXCII.—A, 2 X 
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determined in a vertical position, by comparison therefore with a standard ther¬ 

mometer. 

Kew No. 430. No. 12,765. No. 20,065. 

Scale readings. Corrections. Scale readings. Corrections. Scale readings. Corrections. 

° F. ° F. o p ° F. O Ji °F. 
41-5 + 0-013 41-6 + 0-121 41-7 - o-ooi 
50-2 + 0-047 50-4 + 0-045 50-4 + 0-071 
59-0 + 0-060 59-3 - 0-003 59-2 + 0124 
681 + 0-101 68-5 - 0-037 68-4 + 0-017 
76'8 + 0-013 77-0 -f 0-027 76-9 + 0-104 
864 + 0-080 86-4 + 0-065 
94-7 + 0-130 95-0 + 0-082 

Estimated probable error of correction is 0°’01 Fahr. 

The coefficients of interior pressure at 100° C. for one millimetre of mercury 

is 0-0004334, for No. 430 ; and for the other thermometers the coefficients of pressure 

were stated as :— 

Zero-points :— 

12,765 . 0-0002950 ± 0-0000014. 

20,065 . 0-0002039 ± 0-0000008. 

Kew, 430 . 32°-212 Fahr. 

12,765 . 32°-442 „ 

20,065 . 32°-418 „ 

Weighings. 

Weighings.—For the weighings .three balances were used, by means of which 

differences of y^th, 2'booth, and ryabiffh of a grain might be ascertained respectively ; 

for weighings in water it was possible, however, to weigh only to y-^yth of a grain. 

The weighings were made by Borda’s method of counterpoise, the position of equi¬ 

librium of the beam, and the weight of water displaced by the cylinder being- 

calculated after the methods given by Miller and Broch. 

The gravimeter was suspended in a glass vessel by a platinum wire hook, and 

was surrounded by at least two inches of water, the depth of the water being- 

regulated so that it always rose to the same height in the vessel, whether the 

gravimeter was suspended therein or the wire hook only. The wire hook was 

kept polished, any water found to adhere to its upper surface being either wiped 

off or dried off by a blowpipe before the weighings were taken. 
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In such weighings in water minute bubbles of air are found to be carried down 

by the gravimeter or by the wire by which it is suspended, but by repeated immer¬ 

sions, and examination with a small telescope and a glow-lamp, it is possible 

to avoid appreciable error in this direction. When not in use the gravimeters were 

kept in air of similar temperature to that at which the weighings were made. 

It is, of course, difficult, during such weighings, to find the precise temperature 

of a comparatively large volume of water, and as any uncertainty of 0°'2 Fahr. in 

the reading of the thermometer during the weighing of the cylinder C in water 

would amount to nearly three grains, it was desirable not only to use sensititive 

thermometers, but to place their bulbs at proper depths, and to read them quickly 

by means of cathetometers during the periods of weighing. 

All weighings in air were reduced to “ normal air/’ or air which at the tempe¬ 

rature of 62° Fahr., the barometer being at 30 inches at 32° Fahr., reduced to 

latitude 45° and at sea level, contains four volumes of carbonic anhydride in every 

10,000 volumes of air, and also contains two-thirds of the amount of aqueous vapour 

contained in saturated air. This is the average condition of the air at Westminster 

(latitude 51° 29' 53", at 16 feet above sea level), where the weighings were made. 

A litre of such air, if dry, but containing the above proportion of carbonic anhydride, 

would weigh 1'293934 grammes ; and, if dry, but containing no carbonic anhydride, 

would weigh 1'293519 grammes. 

2x2 
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Details of Measurements and Weighings. 

The following are details of the measurements and weighings of the three gravi¬ 

meters C, S, and Q ; together with statements of the results obtained. 

Fig. I. 

CYLINDER 

C 

UPPER FACE LOWER FACE 
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Height (ii — h', fig. 1). Centre. 

Mean reading of ' 
Date. t. Whitworth 

17-34. micrometer for 
1888. Fahr. standard 

9-inch bars. 

div. div. 
November 1 .... 62-5 509-5* 486 0 

„ 5 . . . . 63-2 506-7 484-5 
„ 7 ... . 61-5 512-1 484-9 

8 ... . 62-1 506-9 483-8 
„ 13 .... 63-0 506-5 484-5 

Mean = 62-46 508-34 484-74 

At 62° Fahr. the mean height of the cylinder C was therefore taken at 9‘00202 

inches. 

* Ten consecutive micrometer readings on November 1 (t = 62*5°), gave a result by one observer as 
follows:— 

509'8 div. 
•7 
•0 

•5 
2 

6 
6 

6 

5 
509-4 

509-5 Mean. 
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The lines traced on C have the effect of diminishing its cubic capacity ; these 

lines are V-shaped, and have a depth of nearly 0'018-inch, with an average breadth 

at the top of 0'01-inch. There are 24 vertical lines, each nearly 9 inches long; 

three circular lines, each nearly 28 inches long; besides two circular lines nearly 

] 4 inches long. The edges also of the cylinder were not quite sharp. 

If, therefore, the diameter of C is taken at 9'00115 inches, then the cubic 

contents of C may be taken at 572-80365 cubic inches. 

Weighing of Cylinder C in Air. 

Date, 1888. 

Nov. 16 

„ 19 

„ 22 

„ 29 

Description of Weights 
used (w). Result. 

Befor e immersion. 

14, 7, 4, 1 lb., R;* 2, 1 oz.; 
8 dr.; 100, 30,10, 5 grains 

14, 7, 4, 1 lb., R;* 2, loz 
8 dr.; 100, 30,10,5 grains | 

C w + 0'086 grain . 
Or C = 183676 25 + 0'086 
grains. 

C- :£ w + 0'009 grain . 
C = 183676-25 + 0'009 
grains. 

After immersion. 

14 lb.8 dr.; 100, 30, f 
10, 5 grains.| 

14 lb.8 dr.; 100, 30, 
10, 5 grams. 

C Ci iv + 0-998 grain . . 
Or C = 183675-25 + 0-998 
grains. 

l-052 grain . 
C = 183675-25 + 1-052 

grams 

Mean t. Barometer. 
Fahr. Inches. 

57-5 

57-3 

60-1 

58-2 

m. 

29-98 

29-98 

30-22 

29-34 

The following are the weights of air displaced by C and iv respectively. 

The density of the weights used (w) was 8'0298, but their values were always 

corrected to the density of 8T430, or to the density (A) of the brass representative 

of the Imperial Standard Pound adopted in this country. 

1888, Nov. 16 

33 

3? 

C displaces 

177'03 grains 

177'63 

178'66 

173*50 

w displaces 

28"20 grains. 

28T0 3 3 

28-27 

27-45 

3 3 

3 3 

In normal air, C displaces 176 08, and w 27"47 grains, whence the weight, in grains, 

of the cylinder was taken as follows :— 

In vacuo. In normal air. 

C = 183797*198 grains . . . 183676*066 grains. 

* R, Reference Avoirdupois Standards ; having small errors in relation to the present Imperial 

Pound, which errors were allowed for. 
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As the weighings of the gravimeters were made against standard weights, which 

were parts and multiples of the Imperial Standard Pound, it became necessary, in 

order to find the true masses of the gravimeters, to reduce the weighings to a vacuum, 

as the Imperial Standard Pound itself has its true mass stated in vacuo. 

Weighing of C in water. 

Date, 1888. Weight of counter¬ 
poise (w-1). 

Mean t. water. Mean t. air. B. 

grains. O O in. 
Nov. 20 ... 39091-84 58-87 56-0 30-14 

„ 21 . . . . 39109-85 58-10 57-2 3015 
„ 22 . . . . 39109-87 56-38 56-5 30-22 
„ 24 . . . . 39141-86 61-42 59"5 30-30 
„ 27 . . . . 39090-50 57-61 56-8 29-38 
„ 29 . . . . 39125-00 58-00 58-2 29-34 

39111-49 58-40 57-37 29-92 

The differences in the above weighings of C on the several days were considered to 

be owing partly to thermometric variations, and partly to the presence of minute 

bubbles of air 'carried down by this large cylindrical body. Results, however, could 

not be rejected merely because they did not always closely agree. 

At 32° Fahr., to which temperature densities are reduced : 

AC32o = 1-27029 

1 -27050 

1 -27061 

1-27055 

1-27036 

1-27064 

1-27049 

or log AC,a. = O'1040169. 

The logarithm of the volume of C in grains at 62° Fahr., may be expressed as 

follows :— 

Log vol. C = 5-1599338 

8626 

8272 

8476 

9102 

5-1598148 

or vC — 144499‘48 grains weight of water at 62° Fahr. 
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As the cubic contents of C = 572-80365 cubic inches, the mass of one cubic inch 

of distilled water (A 0‘998881) at 62° Fahr., B. = 30 inches, has been taken as 

252'267 grains. 

Diameter and Height of Q. 

The diameter of Q was measured at 25 different points, each measurement being 

the mean of three readings. The method of Fizeatj was followed, the true distance 

between the “ points” (p — p) being ascertained after the diameter of Q had been 

measured. 

1889. 
Mean readings 

in inches in terms of 
P “A- 

t. 

inches. 
(1) Jan. 8 . 3-083513 61-8 
(2) „ ... 3-083546 
(3) „ 9 . . . 3-083684 61-8 
(4) „ ... 3-083792 
(5) „ 10 . . . 3-083846 62-0 
(6) „ ... 3-083921 
(7) „ ... 3-084083 61-9 
(8) „ ... 3-084123 
(9) „ ... 3-084086 61-7 

(10) „ ... 3-083924 
(11) „ 3-083910 
(12) „ 11 • ■ • 3-083923 61-6 
(13) „ ... 3-083964 
(14) „ ... 3-083982 
(15) „ ... 3-084013 
(16) „ ... 3-084214 61-5 
(17) „ ... 3-084267 
(18) „ ... 3-084285 
(19) „ ... 3-084235 61-8 
(20) „ 15 . . . 3-084108 
(21) „ ... 3-084124 
(22) „ ... 3-084086 61-9 
(23) „ ... 3-084093 
(24) „ ... 3-084004 
(25) „ 3-083902 

At t. 62° the true distance been p—p' was found to be 3’08234 inches by the 

3-incli steel measure (2'999749 inch). Hence at 62° Fahr. the diameter of Q was 

taken at 3 08399 inches. 
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Height of Q as measured at 25 different points by Whitworth Micrometer. 

No. 1889. Mean reading. t. 

Divisions of micrometer. O 

1 Jan. 7 + 4555 61-8 
2 + 4500 
3 + 3998 
4 + 3842 
5 . + 3459 
6 „ 8 + 4335 6L7 
7 95 + 4257 
8 99 + 3980 
9 99 + 3938 

10 + 3935 
11 ?9 + 4203 
12 ? 5 + 4200 
13 ?? + 4000 
14 9? + 4000 • 

15 „ 10 ■ + 4000 62-0 
16 + 4038 
17 + 3925 
18 9? + 3875 
19 + 3928 
20 9? + 4054 
21 ?? i*j + 3695 61-8 
22 99 + 3700 
23 „ 15 + 4000 
24 + 4358 
25 95 + 4450 

Mean + 4049 

For the standard 3-inch measure, the mean reading was found to be = 4799'5 

divisions, hence the height of Q was taken as 3 ’08 84 8 5 inches. 

By the above measurements of the height of Q it may be seen that the quartz 

gravimeter is not of true cylindrical form, and that its height could only be approxi¬ 

mately ascertained. After allowing for bevels on the upper and lower edges of 

the cylinder, as measured by the microscopic comparator, its cubic contents were 

taken as 23,04015 cubic inches. 

Weighing of Q in Air. 

Date, 1888. Description of weights used (w). Result. Mean t. 
Fahr. 

Barometer 
inches. 

Jan. 3, 10 a.m. Gilt lbs. 31, 32, + gilt grains 1000, 300, 100, 1 
20, 10, 1, 0-5.f 

grains 
15426*68 57-35 30-81 

After immersion. 

,, 5 P.M. . 15426-68 57-33 30*81 
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The following are the weights of air displaced by Q (A 2 ’6505) and iv (A 8'4924) 

respectively:— 

Q. w. 

7'3496 gr. 2'2944 gr. 

7-3495 2-2943 

In normal air Q displaces 7*0865 gr. and w displaces 2"2123 gr., whence, in vacuo 

and in normal air respectively, the weight in grains of the sphere would be 

In vacuo. 

Q = 15429-55515 

In normal air. 

15426-95495 gr. 

Weighing of Q in Water. 

Date, 1888. Weight of counterpoise w . 
Mean t. 
water. 

Mean t. 
air. 

Barometer 
inches. 

Jan. 3 Gilt lb. 32 + 4 oz. + 500, 300, 50, 10, and f 
1 grains./ 49-92 57°57 30-82 

„ 4 ... Gilt lb. 32 + 4 oz. + 500, 300, 50, 10, and 1 
0\3 grains.J 62-75 57-62 30-75 

„ 5 ... Gilt lb. 32 + 4 oz. + 500, 300, 50, 10, 1, -5,1 
0"2, 01 grains.J 53-03 57-60 30-55 

Then at 62° Fahr., B = 30 inches, 

Log vol. Q in grains = 3"7643360, or 

vq = 5812"14 grains. 

The density of the quartz cylinder being :— 

At 62°. 

2-265425 

Therefore, as the cubic contents of Q are equal to 23*04015 cubic inches, the mass 

of one cubic inch at 62c Fahr. (B. 30 inches) may, by these experiments with Q, be 

taken as 252"261 grains. 
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After allowing for the difference between the rates of expansion of the steel 

standard 6-inch and the brass sphere, and the error of the steel standard in relation 

to the imperial yard, the diameter of the sphere is 5'992444 inches. On the sphere, 

however, two lines had been traced, for which a correction is to be made. These 

lines are triangular in section, being nearly O'Ol inch wide and 0'005 inch deep, 

therefore the actual contents of S would be at 62c Fahr. = 112'6694096 cubic inches. 

Weighing of Sphere S in Air. 

Date, 1888. 
Description of weights used. 

(w.) 
Aw = 8443. 

Result. i. Fahr. B. inches. 

Dec. 10 

„ 11 

„ 12 

„ 17 

„ 18 

Before immersion. 

2 lb. 4- gilt lbs. Nos. 31 + 32 ; 1 
+ gilt grains 300,100, 10 . / 

2 lb. + gilt lbs. Nos. 31 + 32; 1 
+ gilt grains 300, 100, 10 . j 

2 lb. + gilt lbs. Nos. 31 + 32 ; 1 
+ gilt grains 300, 100, 10 . ( 

2 lb. + gilt lbs. Nos. 31 + 32 ; 1 
4- gilt grains 300, 100, 10 . j 

S = 28410-113 gri 

S = 28409-813 

S = 28409-802 

S = 28409-917 

2 lb. + gilt lbs. Nos. 31 + 32 ; | : g _ 
+ gilt grains 300, 100,10 

After immersion. 

28409-918 

61’65 

57- 70 

60-28 

58- 32 

58-10 

m. 
3017 

30-26 

30-37 

30-35 

30-18 

The following are the weights of air displaced by S and w respectively :— 

S displaces w displaces 

Dec. 10 34'810 grains. . . 4-198 grains. 

„ 11 • • . . . 35'249 „ . . . . . 4-245 „ 

„ 12 . . . . . 35'200 „ . . . . . 4-239 „ 

r-H . . . 35-193 „ . . . . . 4-238 „ 

„ 18 . . . . . 35-129 „ . . . . . 4-230 „ 

In normal air S displaces 34’643 and w 4T71 grains respectively; whence in 

vacuo, and in normal air, the weights in grains of the sphere are as follows :— 
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In vacuo. 

28,440"725 grains. 

28.440- 817 „ 

28.440- 763 „ 

28.440- 772 „ 

28.440- 810 „ 

28,440"777 grains. 

In normal air. 

28,410"253 grains 

28.410- 345 „ 

28.410- 291 „ 

28.410- 300 „ 

28.410- 345 „ 

28,410"307 grains. 

Or the logarithms of the weights in grains are 

In vacuo. 

4-4539414 

In air. 

4-4534759 

Weighing of S in Water. 

Date, 1888. Difference of equipoise w' 
Mean t. 
water. Mean t. air. B. 

Dec. 12 ... Grilt grains weights added, 
gr. 

27-02 

O 

54-58 

0 

60-22 
inches. 
30-37 

„ 12 . . . . 27-01 54-72 60-50 3037 
„ 13 . . . . 24-70 56-63 59-20 30-30 
„ 17 . . . . 23-72 57-60 58-48 30-35 
„ 18 . . . . )> J 5 23-65 57-48 58-00 30-18 

S just floats in water and was suspended and kept in position by a “ sinker.” The 

weights of water displaced by the sinker, with and without the gravimeter attached 

to the sinker, were ascertained by separate equipoises, the small grain weights added 

each day representing the differences of such equipoises. 

The density of the weights w used was 8*143 ; hence the density of S is— 

As = 0-999333 

= 0-999331 

= 0-999302 

= 0-999177 

= 0-999181 

0-999265 

or log As = 1-9996553. 

As the weight of S in air is 28410"307 grains, the volume of S in grains at 62° Fahr. 

will be 28426"61 grains. As the cubic contents of S have been taken as 112"6694096 

cubic inches, the mass of one cubic inch of wrater (t. — 62°) would be 252"301 grains. 

MDCCCXCIL—A. 2 Z 
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Final Result. 

The measurements of the sphere S appear to afford more accurate results than 
the measurements of the cylinders. The measurements of the larger cylinder C afford 
a more accurate result than those of the cylinder Q ; although, on the other hand, 
there appears to be less uncertainty as to the volume of the solid quartz cylinder at 

the various temperatures. 
If all the weighings and measurements of the three gravimeters had been of equal 

value, then a mean (252'276) of the three results :— 

C. 252*267 grains 
S. 252*301 
Q. 252-261 

might have been taken as the final result k of the present experiments; but, for 
the considerations above stated, it was thought desirable to take as the final result 

k = C —b 3S+ Q/5, or 252-286 grains ± 0-0002 grain, as the mass of the cubic inch of 
distilled water freed from air, weighed in air at the temperature of 62° Fahr., the 
barometer being reduced to 30 inches, against brass weights of the density of 8 "143. 

A cubic foot of such water under the above conditions would weigh 435950"208 
grains, or 62"278601 lbs. avoirdupois. 
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VIII. On the Mechanical Stretching of Liquids: an Experimental Determination of 

the Volume-Extensibility of Ethyl-Alcohol. 

By A. M. Worthington, M.A., Professor of Physics and Head Master of the 

Royal Naval Engineering School, Devonport. 

Communicated by Professor Poynttng, F.R.S. 

Received February 1,—Read February 4, 1892. 

[Plate 10.] 

Three methods are known by which a liquid may be subjected to a bodily tension. 

(1) The method of the inverted barometer, familiar to most physicists, by which, 

with care, a mercury column of many times the barometric height may be supported 

by its adhesion to the top of the tube. In such a column the hydrostatic pressure is 

negative above the barometric height, or the liquid above this level is in a state of 

tension. This tension increases with the height and is propagated in all directions 

to the walls of the tube. When the upper part of the tube is made elliptical in cross- 

section and of thin glass, its yielding to the inward pull may be easily observed. 

(2) The centrifuged method, devised by Professor Osborne Reynolds, in which a 

U-tube, ABCD, of glass, closed at both ends, contains air-free liquid, ABC, and 

vapour, CD. This tube is fixed to a suitable board and whirled about an axis, C, a 

little beyond the end, A, and perpendicular to the plane of the board. If CE (see 

figure) be the arc of a circle described about 0, then while rotation continues the 

B 

liquid between E and A is in a state of tension, increasing from zero (if we ignore the 

vapour-pressure) at E to a maximum at A. By this method Professor Osborne 

Reynolds has subjected water to a tension of about 5 atmospheres or 72'5 pounds 

per square inch, while the author, experimenting in the Cavendish Laboratory in 

2 z 2 20-7.92. 
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1886, succeeded in reaching, with alcohol, a tension of 7‘9 atmospheres or 116 pounds 

per square inch, and, with strong sulphuric acid, 11'8 atmospheres or 173 pounds per 

square inch. 

(3) The method of cooling, discovered by M. Berthelot, and described by him in 

a paper entitled “ Sur la Dilatation Forcee des Liquides,” published in 1850 (‘ Ann. 

de Chimie/ vol. 30, 1850, pp. 232-237), by which he succeeded in obtaining a great 

variety of liquids in a state of very considerable mechanical extension, the amount of 

which he appears, however, rather to have estimated than to have measured, but 

which, according to his estimate, was as much as of the whole volume in the case 

of water, in the case of alcohol, and in that of ether. 

In M. Berthelot’s experiments the liquid, freed of air by long boiling, nearly 

filled a straight, thick-walled glass tube, the small residual space being occupied by 

its vapour. When slightly heated the liquid expanded and filled the whole tub.e, 

but on being again cooled remained extended, still filling the tube, of which it at last 

let go its hold with a loud metallic click, when the bubble of vapour re-appeared. It 

was from the length of this bubble that the extension vras calculated. 

It will be observed that methods (1) and (2) afford measures of the tensile stress, 

but not of the strain or extension; while, on the other hand, the method (3) affords 

a measure of the strain but not of the stress. The object of the present paper is to 

describe the process by which, after a great variety of trials made during the past 

six years, I have succeeded in what, so far as I am aware, has not been previously 

attempted, viz., in obtaining simultaneous measures of stress and strain in a liquid 

under tension. The measures are not, indeed, as numerous as could be wished, for 

reasons that will appear in the sequel, but they are fairly consistent, and mark a 

stage in an investigation with which I hope to proceed further, and to which I am 

anxious to attract the attention of more skilful experimenters. 

That a liquid can pass into and exist stably in a state of tension without any 

breach whatever of physical continuity has been denied or questioned by eminent 

physicists,* and the contrary is commonly asserted by writers on Hydrodynamics.! 

The experiments to be described will be found, I think, to remove the last possibility 

of doubt upon the matter. 

Method of Experimenting. 

The mode of subjecting the liquid to tensile stress is essentially that of Berthelot, 

and may be briefly described as follows :—'The liquid is contained in a strong closed 

glass vessel which it nearly fills at the ordinary temperature of the air. The small 

space not filled by liquid is occupied only by its vapour. Dissolved air, and especially 

the film of air which at first lies between the liquid and the walls of the vessel, is got 

rid of, as far as possible, by prolonged boiling before the vessel is sealed up. 

* See Balfour Stewart, ‘ Elementary Physics,’ § 69, p. 70. 

t See Lamb, ‘ Treatise on the Motion of Fluids,’ § 9, p. 7. 
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The temperature of part of the vessel and its contents is now raised. This causes 

the liquid to expand and fill the whole ; if the rise of temperature continued the 

vessel would burst; but before the pressure becomes dangerously great the liquid is 

cooled again by means of ice-cold water. It now, however, adheres so firmly to the 

walls of the vessel that, though cooled, it cannot contract, and it remains extended or 

stretched, tugging at the walls until at last, as the cooling proceeds, the tension 

becomes so great that the liquid lets go its hold, and releases the glass walls with a 

loud metallic click, and itself springs back to the smaller volume appropriate to the 

temperature and to the pressure of its saturated vapour. 

Fig. 1. 

Whether the cohesion of the liquid for itself or its adhesion to the glass is first 

overcome is not decisively determined, but all indications point rather to the latter 

than to the former supposition. 

The form and dimensions of the vessel used in my experiments are given by the 

accompanying diagram, vrhich is drawn to the scale of one quarter. 
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The vessel consists of two very strong cylindrical bulbs, AB and CD, with rounded 

ends, connected by a tube of narrow bore bent in the manner shown. 

The walls of the bulbs were about 2 millims. thick and the bore of the connecting 

tube was about 2'5 millims. internal diameter. The diagram being drawn to scale 

gives any other necessary information as to dimensions. 

DE is a narrow tube of very uniform bore (2.2 mm.), across which, at F, was sealed, 

with as little disturbance of the bore of the tube as possible, a very fine platinum wire. 

Measurement of the Tension. 

In order to measure the tension of the liquid at any instant, an ellipsoidal bulb T 

filled with mercury, and provided with a narrow graduated capillary stem AE is 

sealed into the bulb AB. This bulb had been previously subjected to various 

measured pressures in an hydraulic press up to GO atmospheres, and the correspond¬ 

ing rise of the mercury in the stem noted. This was found, within the limits of 

observational error, to be proportional to the pressure applied. This rise is due to 

the diminution in capacity of the bulb, which becomes less spherical under the 

external pressure. 

On the other hand, when the surrounding liquid is in a state of tension, it tugs at 

the walls of this bulb and makes it more spherical and of greater capacity, and since 

the bulb is thick-walled and fairly rigid, and the alteration of volume only a very 

small fraction of the whole, it appears quite safe to assume that the enlargement 

produced by a given tension is equal to the diminution of volume that is produced by 

an equal pressure applied over the same surface. 

This instrument for measuring the tension I call the Tonometer. In that actually 

used the relation between bulb and tube was such that a pressure of 1 atmosphere of 

15 lbs. to the square inch, as measured by a Bourdon gauge, gave a rise of 3'296 

millims. The actual observations from which this value was determined were the 

following:— 

Date. 

Pressure 
employed 

(Bourdon 
gauge). 

Resulting’ rise in 
tonometer reading for 

1 atmosphere of 15 
pounds per sq. inch. 

atmospheres. millims. 
Nov. 29, 1889 . 8 3-25 

99 99. 8 3’375 

’9 99. 8 3-3125 
Dec. 13, 1889 . 8 3125 

9 9 9 ?. , . 3T87 

99 9 9 . 10 3-450 
9 9 It. 10 3-333 

April 29, 1891 .... 12 3-333 

Mean . 3-296 
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The Bourdon gauge used was employed for other observations to be described later, 

and when all were completed it was re-tested for me by Mr. C. F. Casella, by means 

of a mercury column, at the beginning of December, 1891, up to 14 atmospheres, with 

the following results :— 

Bourdon gauge. Mercurial column. 

atmospheres. 

0 

pounds per sq. inch. 

0 

pounds per sq. inch. 
0 

2 30 30 
4 60 62 

6 90 89 
8 120 121-5 

10 150 151-5 
12 180 179 
14 210 209 

The deviations from the original calibration up to this range will be observed 

almost to fall within the errors of reading, and by an independent comparison, which 

I made myself in the same month, of this gauge with two official standard gauges, by 

E. Bourdon, belonging to the Admiralty, I could not detect with any certainty any 

appreciable divergence of the readings, which I think may therefore be taken as 

correct within 1 per cent. 

It may be mentioned, that in May, 1889, pressures of 36 gauge-atmospheres had 

been applied to the tonometer, giving a mean rise of 3'56 millims. per atmosphere, 

but in December, 1891, the higher readings of the gauge were found to be as much 

as 8 per cent, too low. The application of this correction reduced the reading to 3'275 

millims. which accords well with the results already quoted, but on account of the 

doubt as to whether the gauge was ever correct at this part of the scale, it seemed 

better to exclude these observations altogether in determining the tonometer calibra¬ 

tion, and to rely only on those within the range that I had myself tested. 

It was afterwards observed by using the tonometer as a thermometer that the rise 

of the mercury due to a rise of temperature of 10,85 C. was 2 centims., showing that 

the deformation of the bulb due to the maximum tension afterwards obtained, viz. 

17 atmospheres, amounted to only about 1/1000th of its whole volume. 

Measurement of the Strain or Extension. 

In order to ascertain the extension at any instant, the liquid was caused to let go 

its hold, and thus spring back to its unstretched volume, and then the volume of the 

space left empty of all but vapour was measured. 

For this purpose the straight tube AB was traversed at F by the fine platinum 

ware, already mentioned, running across the centre of the tube. One of the 

projecting ends of this wire was connected by a stouter copper wire to one pole of an 
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electric storage cell, and the other could at pleasure be touched by the bare end of a 

similar stout wire from the other pole. By this means the fine platinum wire could 

be heated suddenly to redness, when the liquid which was tugging at it immediately 

let go its hold. The bubble of vapour thus caused to appear had its upper end at the 

wire, and extended below to a distance along the fine tube, which could be accurately 

measured against a scale placed, to avoid parallax, on a mirror behind the tube. 

The relation of the bore of the tube to the whole internal volume of the apparatus 

had been previously ascertained, and thus the fraction of the whole volume which the 

extension represents was known. 

This extension is, however, only apparent, and it is necessary to determine and to 

subtract from it the amount by which the volume of the containing vessel has been 

diminished by the inward pull. The separate operation for determining this correc¬ 

tion will be described later. I shall now explain the mode of filling and sealing the 

apparatus, and of conducting an experiment, with the precautions and minor correc¬ 

tions necessary for securing good measures of the extension. 

Fig. 2. 

After thoroughly cleaning the apparatus with, first, a solution of potassium hydrate, 

then dilute hydrochloric acid, and then finally with distilled water, it is sealed at E 

to a second glass bulb HK, with arms HE, KLM, as shown in fig. 2. 
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The branch LM, which is more than the length of the mercury barometer, hangs 

vertically. For the sake of greater clearness of representation the diagram shows the 

bulbs HK, CD, and AB with their axes in the same plane, but in practice it is more 

convenient when making the connection at E to turn the apparatus that is to be filled 

through a right angle about EF as axis, since in this position liquid contained in 

either bulb can be more easily boiled by means of a small Bunsen flame. 

The liquid to be experimented on is placed in a large beaker N over a layer of 

quite clean mercury 2 or 3 centims. deep, and into this beaker the open end M of the 

tube ZM dips, not quite reaching the mercury. After the liquid in N has been 

boiled to expel dissolved air, it is allowed to enter the bulbs HK, CD, and AB, and 

is then boiled in each simultaneously by suitable flames.* Thus, on the removal of 

the flame from beneath AB, air-free liquid from CD enters and fills it ; and when 

that in CD ceases to boil, air-free liquid from GHK enters and fills CD, ancl so on. 

The process of alternately boiling out and filling is continued, with pauses, for 

several hours, till the residual bubbles disappear very quickly on cooling, and the 

tendency to boil by bumping threatens to endanger the apparatus. 

Then while the liquid in HK is kept gently boiling, the tube LM is heated nearly 

to redness, just below L, in order to drive off attached air which is carried off in the 

stream of passing vapour. 

Then when this tube has again cooled, and the vessel HK is about half-full, the 

vessel N is raised so as to submerge the open end M below the mercury, which, when 

all is cool, rises to nearly barometric height. Then after any liquid that has condensed 

above the mercury in ML has been, by judicious heating, driven over into the bulb 

GHK, the tube LM is heated just below L to the softening point, and allowed to 

close under atmospheric pressure. This process of sealing invariably liberates gas 

either from the surface of glass or by decomposition of the vapour of the liquid. It 

appears, however, to be less in quantity when the tube near the sealing point has 

been previously subjected to strong heating in the manner described. 

The portion of the apparatus thus cut off from the barometer tube is now turned 

about a horizontal axis along GE, through 180°, into the position shown in fig. 3, 

Fig. 3. 

and by careful heating the liquid filling the tube EF is boiled over into the bulb HK 

till when all has cooled to the temperature of the room, the surface stands at some 

* It is important that the stem AG of the tonometer shall be provided with an enlargement at the 

end in order that the instrument may not burst when the mercury in the ellipsoidal bulb is raised to the 

temperature of the surrounding hot liquid. 

MDCCCXCII,—A. 3 A 
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suitable place 0 between E and F, 2 or 3 centims. from the extremity E of the 

uniform capillary tube. Then the liquid in the bulbs YB, CD is cooled by ice or cold 

water, so that the surface recedes towards, or even beyond F. Next the liquid in 

ELK is cooled so as to diminish the vapour-pressure and cause a draught of vapour 

from the surface of the warmer liquid in the tube, and while this draught continues, 

the tube EE is heated just between 0 and E, and allowed to close under atmospheric 

pressure. Gases formed or liberated in this operation are for the most part carried 

over into the large bulb GEIK by the draught of vapour. 

The length of tube which it is desirable to leave empty above the surface of the 

liquid at 0 when all is at the temperature of the room again, should be just, but not 

more than, sufficient to secure that the instrument shall not be in danger of bursting 

when left to itself and exposed to unavoidable changes of temperature in the room 

where it is placed. 

The trace of gas that is liberated in sealing is readily dissolved in the liquid, but 

on this account the liquid in the tube EF becomes unduly charged with gas, and does 

not, at first, adhere very well to the walls. It is well, therefore, by raising the tem¬ 

perature of the bulbs, to compress the residual vajDour into a bubble small enough to 

be floated along the tube into the bulbs, where any residual gas it may contain is 

dispersed through a large mass of liquid. 

The apparatus is now ready for experimenting. For this it is set in the erect 

position shown in fig. 1. A beaker of water of the temperature of the room is 

placed round the bulb containing the tonometer to secure it from temperature 

changes. A second beaker, containing warm water, is placed round the other 

bulb, while a third beaker, which can be quickly substituted for this, contains ice 

and ice-cold water. Plane mirrors are placed behind the two tubes to prevent 

parallactic errors. 

It is convenient now to have two observers, Ox and 02, one to watch the tonometer, 

and the other to manipulate the beakers of warm and of ice-cold water, and the wire 

terminals of the storage cell, and to observe the bubble. Let us suppose that this is 

lying in the tube with its upper end at the platinum wire. On setting the warm 

water Y in place, the bubble closes in, and, just before it disappears, will begin to 

float up the tube, disappearing, however, before it has risen more than 1 or 2 centims. 

At the moment of its disappearance, and not before, does the observer of the tonometer 

notice a sudden rise of the mercury ; this shows the freedom from residual undissolved 

gas. The warm liquid is quickly removed, and the ice-cold liquid substituted ; this 

causes the mercury in the tonometer to fall, and its observer 0: calls aloud the 

divisions as it passes them ; when the tension is approached at which it is desired to 

observe the extension, the ice-cold water is removed, so that the cooling proceeds 

more slowly, and while 0! is carefully watching and calling the readings, 02 makes a 

momentary completion of the electric circuit, which results in the sudden reappearance 
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of a bubble of definite length, which he reads off while observer 0A notes the height 

to which the mercury in the tonometer has again risen. 
It is not always possible in practice to prevent the liquid from letting go its hold 

too soon, and it often happens that the bubble forms in one of the bulbs, and not in 
the tube, where only its volume can be read off, but this fact need not prevent an 
observation of the volume from being made, for, if the observer 03 only heats the 
platinum wire for an instant, the liquid below it, which has been clinging to it, 

separates, owing to its weight, and at once a bubble of hot vapour is formed, which, 
by its greater pressure, causes the bubble in the bulb, which also is at a lower level, 

to close up and vanish. Thus the bubble can be instantly transferred to the place 

where it can be measured. 
The method of liberating the bubble where it was wanted by means of the heated 

platinum wire was only hit upon after many other methods had been tried unsuccess¬ 
fully, but I had not foreseen that it would carry with it the advantage of enabling 
the observer to transfer the bubble in the manner just mentioned. This was a piece 

of good luck. 

Corrections to be applied to the Measure of the Bubble. 

(1.) Correction for Capillary Curvature.—This was applied in the usual way, the 
ends being considered as hemispheres of the diameter of the tube, which was 
2’20 millims. 

(2.) Correction for Inequality of the Bore near the Wire.—This was determined by 

floating the bubble when very small to a point in the tube 3 or 4 centims. below the 
platinum wire, and then allowing the whole liquid to cool to a steady temperature, 
thus forming a long bubble in a uniform part of the tube. The length of this bubble 
was then carefully measured, and then this bubble was “ transferred ” in the manner 

mentioned, so that its upper end was at the wire. The difference of the lengths 
gives the correction to be applied. The manner in which the upper end of the 
bubble was entangled with the platinum wire was not, however, always the same, 

but appeared to be always one or other of two configurations, and the correction to be 
applied for the variation of bore was -f- 1*55 millims. , or + ’015 millims., according to 
the configuration which was observed and recorded on each occasion. 

Sources of Error in Determining the Length of the Bubble. 

(1.) It was often impossible so to regulate the influx or efflux of heat as to secure 
that a stationary stage had been reached when the bubble was formed. Thus the 
liquid generally continued to shrink by cooling after having let go the walls, and on 
this account the bubble required to be read immediately. 

(2.) On the other hand, if the reading was made too soon there was not time for 
the liquid still clinging to the side of the tube to drain down. 

3 a 2 
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Each of these two sources of error tends to make the bubble appear too long, %. e. 5 the 

measure of the strain too great; and it is, without doubt, to their action that the 

irregularity of the observations must be chiefly attributed. Fortunately, the degree 

of steadiness of the tonometer just before the liquid is made to let go enables the 

observer to discriminate somewhat between “good"’ and “less certain” observations. 

Diffic ulties and General Observations. 

It is in this connection, and before passing to the measurements themselves, that 

the difficulties attendant on the experiments may be alluded to. In the first place, 

considerable tensions (above 12 atmospheres) are not easy to attain, the liquid letting- 

go its hold unexpectedly and too soon; sometimes this will continue for an hour or 

two, the bubble appearing perpetually in the same place in one or other of the bulbs, 

or at one of the bends. This is, perhaps, attributable to the liberation of air from 

minute crevices in the glass, which air has to be dispersed before adhesion can be re¬ 

established. For this purpose I have often found the application of ice or of a freezing- 

mixture to the affected part to be efficacious, especially when accompanied by judicious 

sharp tapping of the apparatus, so as to secure an impulsive pressure of the liquid 

against the surface at the non-adherent part of the glass, whereby I imagine that the 

minute bubble or film of air is the better dispersed. It is also useful, by manipulation 

and variation of the temperature of different parts of the liquid, to produce currents 

which sweep away from the narrow tubes into the wider bulbs portions of the liquid 

that may have become somewhat charged with dissolved gas. Yet at all times the 

behaviour of the liquid, as regards its adhesion, is somewhat uncertain. Thus, there 

may be no difficulty in reaching, time after time, a tension, say, of 9 atmospheres, the 

liquid always separating from the wall at some particular place ; and when, after an 

hour or more of patient manipulation, the observer is beginning to think the disease 

incurable, and that the apparatus must be reopened and the wffiole process of filling 

and boiling-out gone through again, the difficulty will unexpectedly disappear, or 

change. 

Meanwhile, and especially when high tensions have been reached, there is constant 

danger that the suddenness of the release may break the whole apparatus; and this 

is the more to be feared when the release is an accidental one, taking- place in one of 

the bulbs, than when it is intentionally effected at the wire in the narrow tube, for in 

the latter case the friction of the long column of liquid against the walls of the tube 

appears to act as a brake, and the shock to the apparatus is less sudden. Four pieces 

of apparatus similar to that described broke in this way, under the sudden release, 

before I was able to obtain any determinate measures. I have endeavoured to 

diminish this danger by connecting the two stems, AG and DE (fig. 1), and the cross¬ 

connecting tube as rigidly as possible to a light board when experimenting, so as to 

prevent these parts acquiring any considerable momentum. 
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It must not, however, be supposed that the condition of the liquid, when in a state 

of tension, is necessarily nearly unstable. Thus, before the method of detachment by 

heating the platinum wire was hit upon, it was often very difficult to effect a release. 

With the tonometer indicating a pull of from 8 to 12 atmospheres, the liquid could 

not be made to let go its hold by moving the apparatus about, nor by means of taps 

and jars as violent as it seemed safe to give, nor by strong local heating of the narrow 

tube. Meanwhile, specks of suspended impurity could be seen floating about in the 

interior, proving the liquidity of the substance ; and, when the release did take place, 

the immediate rise of the mercury in the tonometer to its normal position showed that 

no mistake had been made in the measurement of the tension to which the liquid was 

all the time subjected. 

The Observations. 

The accompanying diagram (Plate 10) is a graphic record of all the observations 

that I succeeded in obtaining. 

The first set were taken on May 17, 1890, and are distinguished thus 0. It was 

in making these that I became fully aware of the importance of aiming at steadiness 

of temperature before liberating the bubble, so as to permit of a little waiting till the 

liquid on the sides of the tube had drained down. Hence these measures are, with 

apparently one exception, probably all a little too high. The observations recorded + 

were made on May 19, with all possible care; two of them low down in the diagram 

were recorded as doubtful, and are marked (?). Those marked © correspond to cases 

in which the bubble formed at the top of the tube FE (fig. 1), from which position it 

could not be “ transferred” to the wire. This upper portion of the tube had not been 

calibrated with special attention, since its employment had not been anticipated, and 

the subsequent breakage of the apparatus prevented this being done afterwards. 

Nevertheless, I have thought it best to introduce the observations into the diagram. 

An eye estimate had to be made of the contraction of the tube due to the sealing at 

E, but in long bubbles an error on this score must have been comparatively small. It 

will be observed, however, that all the observations in question fall rather below the 

mean curve. The observations marked 0 were made on May 22, in order to fill in 

regions about which information was still needed. All of these were recorded as 

“good” observations. 

I interpret these observations as representing the straight line through the origin 

drawn in the diagram and making an angle with the axis of stress, whose tangent is 

0700. 

The vibrations set up, and the shock sustained by the apparatus on the sudden 

release from the highest tension reached (over 17 atmospheres) were so violent that it 

seemed unsafe to proceed further before making such observations as were necessary 
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to eliminate the effect of the yielding of the glass itself, and which could not be made 

if the vessel were broken.* 

The vessel was therefore opened, and the alcohol in it subjected to a pressure of 

12*38 atmospheres in excess of the external atmospheric pressure, corresponding to 40 

tonometer divisions, and the apparent compression of the liquid was observed. The 

measures of the retreat of the end of the column along the tube were 

millims. 

28*19 

27- 53 

28- 36 

28-02 

27-05 

27-6 

(Specially trustworthy) 27'78 

Mean . 27 79 

The observed apparent extension in the same vessel under an equal tension, as given 

by the line of the diagram, is 27*8 millims. The closeness of the agreement is, of 

course, in part fortuitous, for the line of the diagram cannot be placed with extreme 

precision; but the practical coincidence of the two numbers is a very satisfactory 

confirmation of the view that the observations correspond to a straight line, and, 

since the small yielding of the nearly rigid glass vessel must be proportional to the 

stress, permits us to draw the conclusion that in the neighbourhood of the zero pressure 

the absolute coefficient of volume elasticity of alcohol is the same for extension as for 

compression, and so far as the observations show is constant between a pressure of 

+ 12 and — 17 atmospheres. 

The best way to obtain the absolute value of the coefficient is probably by direct 

experiments on the compressibility of alcohol in the neighbourhood of the zero point. 

The value given in L upton’s tables is per 106 grms. per sq. centime, or "0000906 

per atmosphere of 1033"3 grms. Mr. Skinner by recent experiments made in the 

Cavendish Laboratory on alcohol at 13°"5 C. between 1 atmosphere and 1"3 atmo¬ 

spheres obtains the value '000093 per atmosphere. 

It seemed desirable, if only to serve as a check on the experiments, to mention 

the attempt that I made to determine directly the yielding of the glass vessel. For 

this purpose the alcohol was boiled out until only a very small residue was left, when 

mercury was allowed to enter which completely filled up the whole instrument. This 

mercury, whose compressibility is some fifty times less than that of alcohol, was then 

* As a matter of fact, the stem HE was unfortunately broken in setting up the apparatus for exhibi¬ 

tion in the rooms of the Royal Society, at the Soiree of June 18, 1890, but this was afterwards 

repaired without any interference with the neighbouring bulb. 
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subjected to pressures of 10 and 12 atmospheres (above the external atmospheric 

pressure), and the retreat of the end of the mercury column along the tube was 

noted. The following measures of this recession were obtained for a pressure of 10 

gauge-atmospheres of 15 pounds per sq. inch. 

millims 

Direct observation at 10 atmospheres . . . 7-31 

7-33 

From observation at 12 atmospheres . . 7'40 

7'40 

7-1 

Mean .... . . 7'31 

The mean value is equivalent to 7'22 millims. per 10 atmospheres of 1033 grms. 

per sq. centim. 

The measures were somewhat unsatisfactory on account of (1) the smallness of the 

total length to be measured, (2) the deformation of the meniscus due partly to a 

certain want of cleanness at the surface which dragged along the glass, (3) a 

tendency to entangle bubbles of alcohol between the mercury and the sides of the 

tube owing to the churning as the end of the column moved to and fro. This ulti¬ 

mately caused a separation of the column into segments, and must have had the 

effect of diminishing the apparent recession. (4) It should also be mentioned that 

the end of the column was situate in the upper part of the tube FE, which, owing to 

the subsequent breakage of the apparatus, I was not able to specially calibrate, but 

which, if we may judge from the measures of the bubbles, was probably somewhat 

wider than the part below the wire. On this account also the measured result is 

probably rather too small. 

If the mercury were quite incompressible, and if there were no residual alcohol in 

the vessel, this number would represent, in millims. of the tube, the yielding of the 

glass per 10 atmospheres, but by reason of the corrections required on these two 

accounts this length is reduced to 6’626 millims.'5' 

* The calculation of these corrections was made as follows :—Let the change required in the volume 

of the glass per 10 atmospheres, be vg millims. of the tube, and let the corresponding changes in 

the volume of the mercury, and of the residual alcohol be vm and va millims. of the tube respectively, and 

let the observed apparent alteration of volume be (a) millims. of tube. Then 

vff + vm + va = a.(i.). 

Let the vessel, when full, contain n times as much alcohol as this residue. Then admitting extension and 

compression under numerically equal stresses to have been proved equal (p. 367), we have 

(»•), v,j + nva = A 
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Subtracting this amount from the ordinate of the diagram corresponding to 10 

atmospheres, the remainder, of length 16*17 divisions, gives the corrected value of the 

absolute strain, and is equivalent to 10‘67 ten-thousandths of the whole volume, per 

stress of 10 atmospheres, or to ‘0001067 per atmosphere, a result which is about 

15 per cent, higher than that of Mr. Skinner. From the nature of my observations 

on this point, I do not think that much importance is to be attached to this discrep¬ 

ancy, which represents a possible error of 2 millims. to be divided between the 

measure of the length of the bubble on the release from 10 atmospheres tension, and 

the measure of the recession of the mercury in the experiments just quoted. 

wliere A is the observed apparent alteration of volume in millims. of tube, due to 10 atmospheres tension, 

when the vessel was full. 

Hence 

r — A _ vu 
n n 

Substituting this value for va in (i.), and multiplying up 

(n — 1) vg + nvm = na — A, 

n — 1 
a — 

A 

n — 1 1’ 

in which expression —Vm is a small corrective term due to the compressibility of the mercury, while 

^ is a small corrective term due to the compressibility of the residual alcohol present with 

the mercury in the bulb. 

The numerical values required were obtained as follows :— 

grms. 

The weight of mercury and alcohol together was found to be . . . 769-3 

„ ,, alone. 768’38 

Therefore, weight of residual alcohol alone = 0-92 

Hence the volume of the the mercury alone = 56'5 cub. centims., and the volume of the residual 

alcohol alone = T15 cub. centims. 

The volume of the alcohol used in the stretching experiments was 58'5 cub. centims., therefore 

58-5 
n = j-j^ = 50-6, and n — 1 = 49-6. 

The observed recession of the mercury (a) = 7'22 millims. of tube, as already stated in the text. 

A = 22'7 millims. of tube, as read off from the line in the diagram. 

vm = '273 millims. of tube (deduced from the value of the compressibility of mercury given in 

Lupton’s tables, viz., - per 106 grms. per sq. centim., and the fact that yoWo the 

Hence 

K /?. K 

volume of mercury employed = —of 1’513 millim. of the tube). 
OO'b 

v _ 50-6 7.99 506 7 22-7 

*' _ X ' “ S? X 273 ~ 

- 7-36 — 0-278 — 0-456. 

= 6‘626 millims. of tube. 
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General Remarks on the Experiments. 

It will be noticed that the manner of experimentation has the disadvantage that 

it does not permit of the whole of the liquid under tension being at the same 

temperature. The mean temperature was probably at no time more than 5° removed 

from 16° C. I am now endeavouring to make an apparatus in which it shall be 

possible to maintain the portion of the liquid, whose stretching is to be measured, at 

any desired constant temperature, whereby also the chief difficulty in the way of 

more exact measurements will be overcome. 

As regards the conclusion reached, that the changes of volume of a mass of liquid 

are equal for numerically equal increments of pressure, whether positive or negative, it 

may be justly observed that this was only to be expected. No one, however, could 

predict that the coefficient of extensibility would remain practically constant up to 

tensions of 17 atmospheres, and nothing but further experiment can decide what 

changes may take place in its value as the tension is increased. 

Bearing of the Observations on the Theory of Surface-Tension. 

The unequivocal proof that a liquid can exist in stable equilibrum, in a state of 

isotropic tensile strain, has a bearing on the theory of surface forces in fluids. For it 

can be shown to be necessary for equilibrium that a compressible liquid shall be, close 

to the free surface, less dense than in the interior ; in other words, the surface layers 

are in a condition to which interior liquid could be brought by stretching it, and are, 

therefore, a seat of energy in precisely the same way that stretched liquid is a seat of 

energy. A theory, such as that of Laplace, which assumes uniform density precludes 

us from admitting in the material itself any such modification correspondent to the 

surface energy, and drives us to seek it in the condition of the superjacent ether film. 

Note on a Curious Phenomenon of Adhesion between two Solids immersed in a 

Stretched Liquid. 

Desiring to ascertain whether an air-free liquid would adhere under tension, as well 

to a metal as to glass, I enclosed a small piece of folded sheet copper in a glass bulb, 

which was then filled with boiled-out, air-free alcohol. Experiments with this 

showed strong adhesion to the copper, as well as to the glass, provided the vessel was 

kept still, but any agitation at once caused the stretched liquid to let go its hold at 

the place of contact of the copper and the glass. Close attention showed that the 

copper seemed to “grow to the glass ” at the points of contact, when the surrounding 

liquid was in a state of tension. This led to experiments on bulbs, with smaller 

bulbs of glass inside, and in all cases the same phenomenon was observed : when the 

liquid was stretched, the loose bulb attached itself to the side of the vessel. The 

equilibrium was, however, very unstable. The release of the liquid took place on the 

MDCCCXCII.-A. 3 B 
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slightest jar, the bubble always appearing at the contact of the solid with the wall, and 

the loose piece being generally tossed up when the rupture took place. I succeeded 

best with one small irregular bulb with a projecting stem ; this could be gently 

waved about in the stretched liquid, while the foot of the stem adhered to a point on 

the side of the containing vessel (showing incidentally that considerable currents may 

exist in a stretched liquid). The explanation of this phenomenon, which at first 

puzzled me, may, I think, be given as follows. 

At the surface of glass, any liquid, such as alcohol, which wets it, is condensed. 

Over the area of contact of the loose piece with the side of the vessel, this condensed 

film is probably somewhat thinner than elsewhere, being squeezed out (as by 

hydrostatic pressure) by the cohesive attraction between the two solids. When the 

liquid is in a state of tension, there is everywhere a demand for liquid to stretch, 

which is met by any approach of the cohering surfaces, for such approach will increase 

both the closeness and the area of contact, and yield a supply of hitherto condensed 

liquid, by diminution of the surface over which it has been condensed. Any displace¬ 

ment in the direction of further approach will therefore be resisted only by the 

elasticity of the solids, called into play by the deformation at the area of contact. 

Under ordinary circumstances such displacement is resisted also by the hydrostatic 

pressures. To understand the instability, it is only necessary to remember that, with 

a comparatively rigid substance like glass, small relative motion of the parts may 

generate very large impulsive stresses at points where the relative motion is 

prevented. 
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IX. The Thermal Emissivity of Thin Wires in Air. 

By W. E. Ayrton, F.B.S., and H. Kilgour. 

Received July 2,—Read November 19, 1891. 

[Plates 11-15.] 

I. General Character of the Experiments. 

In 1884 it was observed experimentally that whereas the electric current required to 

maintain a thick wire of given material, under given conditions, at a given tem¬ 

perature, was roughly proportional to the diameter of the wire raised to the power 

three-halves, the current was more nearly proportional to the first power of the 

diameter if the wire were thin. When this difference in the behaviour of a thick and 

a thin wire was first noticed it was regarded as quite unexpected. But, as pointed 

out by one of us in the course of a discussion at a meeting of the Royal Society, the 

unexpected character of the result was due to people having assumed that the loss of 

heat from radiation and convection per square centimetre of surface per lc excess 

temperature was a constant for a given kind of surface and independent of the size 

and shape of the cooling body, although as early as 1868 Box had drawn attention 

to the great difference that existed between the rate of loss of heat from unit area of 

a horizontal cylinder and per unit area of a sphere. The interchange of heat between 

unit area of a body and the enclosure might be independent of fhe shape of the body 

as far as radiation alone was concerned, but it seemed nearly obvious that the cooling 

by convection must be materially affected by the shape of the cooling body. 

The very valuable investigations that have been made on emissivity by Mr. Mac- 

farlane, Professor Tait, Mr. Crookes, Mr. J. T. Bottomley, and by Mr. Schleier- 

MACHER, had for their object the determination of the variation of the emissivity 

with changes of the surface and with change in the density of the gas surrounding 

the cooling body, but it was not part of these investigations to determine the change 

in the emissivity that is produced by change in the shape and size of the cooling body. 

Indeed, so little has been the attention devoted to the very large change that can be 

brought about in the value of the emissivity by simply changing the dimensions of 

the cooling body, that in Professor Everett’s very valuable book on Units and 

Physical Constants, the absolute results obtained by Mr. Macfarlane are given as 

the “ results of experiments on the loss of heat from blackened and polished copper in 

air at atmosphere pressure,” and no reference is made either to the shape or to the 

size of the cooling body. 

[November 19, 1891.—Since this paper was sent in to the Royal Society, a new 

3 B 2 29.7.92. 
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edition of this book has appeared, and, in consequence of a suggestion made to 

Professor Everett, the word “balls” has been added after the word “copper” in 

this new edition, as well as the following paragraph :— 

“ Influence of Size. 

“ According to Professor Ayrton, who quotes a table in ‘ Box on Heat,’ the 

coefficient of emission increases as the size of the emitting body diminishes, and for a 

blackened sphere of radius r cm. may be stated as 

“ 0-0004928 + 
0-0003609 

r 

“ The value in Macfarlane’s experiments was 2.”] 

The laws which govern the loss of heat from thin cylindrical conductors have not 

only considerable scientific interest in showing how the shape of a body affects the 

convection currents, but they are of especial importance to the electrical engineer in 

connection with glow-lamps, hot-wire-voltmeters, fuses, &c. We, therefore, thought 

it desirable to ascertain the way in which the law of cooling for thick wires, which 

involved the diameter raised to the power three-halves, passed into the law for the 

cooling of thin wires, involving only the first power of the diameter. For this object 

the investigation described in the present communication was commenced at the 

beginning- of 1888. 

A considerable number of preliminary experiments having been conducted for the 

purpose of arriving at the best conditions to be adopted in the investigation, we 

finally, in April, 1888, decided to measure the emissivity at different temperatures 

from nine platinum wires, having respectively the diameters of 1, 2, 3, 4, 6, 8, 10, 12, 

and 15 mils, or thousandths of an inch. Wires of these sizes having been ordered 

from Messrs. Johnson, Matthey, and Co., they were found, when received, to have 

the following diameters at 15° C. : — 

Mils. Millimetres. 

1-2 0-031 
2-0 0-051 
2-9 0-074 

4-0 0-102 
6-0 0152 
81 0-206 

9-3 0-236 

111 0-282 
14-0 0-356 

Throughout this paper we have given the diameters of the wires both in mils and 

in millimetres. Tt may seem unscientific to mix up dimensions in thousandths of an 

inch with dimensions in centimetres, but, while it is convenient, for the purposes of 

comparison, to use one square centimetre as the unit of area in experiments on 
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ernissivity, it is also convenient to have some concrete conception of the wires spoken 

of. Now, fine wires are practically known in this country as wires of 1, 1|, 2 mils, 

&c., diameter, a wire of 1 mil diameter being, for example, the thinnest that has been 

practically used in the construction of electrical apparatus. A better idea is, there¬ 

fore, obtained from stating that the diameters of wires are 1, 2, or 3 mils, than from 

saying that they are 0'025, 0-051, or 0'074 millim. Attached to several of the 

curves are the diameters of the wires expressed in millimetres. These numbers are 

stated to four decimal places, but it would have been better to have given, as in the 

above Table, only three significant figures, this being the probable limit to the 

accuracy of the measurement of the diameters. 

Suspecting that some of the results of published experiments on the currents 

required to fuse wires had been much influenced by the cooling action of the blocks 

to which the ends of the wires were attached, we started by making a calculation on 

the length necessary to give to our wires so that the loss of heat by conduction 

should not introduce any important error into the determination of the ernissivity. 

To do this it was necessary to calculate the distribution of temperature along a wire 

through which a steady current was flowing, and from which heat was lost by 

radiation, convection, and conduction, and it was further necessary to improve on the 

calculation one of us had published on this subject in the ‘ Electrician,’ for 1879, by 

now taking into account the fact that the ernissivity, as well as the thermal and 

electric conducting powers of the wire, were different at different points in conse¬ 

quence of the difference of temperature. Such a calculation has not, as far as we are 

aware, been hitherto made, it having been assumed in all previous investigations that 

the effect due to the variation of the thermal and electric conducting power of the 

material with temperature, as well as the variation of the ernissivity per square 

centimetre with temperature and with the diameter of the wire, could be neglected. 

Until we had completed the experiments described in this paper we could of course 

only employ, in this calculation, values that we had guessed at as something near the 

truth for the ernissivity of platinum wire for different diameters and at different 

temperatures. Hence, after the completion of the experiments, we took up the 

mathematical investigation again, substituting for the ernissivity such a function of 

the diameter of the wire and the temperature of the point as we had experimentally 

found it to be. The investigation by which we finally arrived at the calculated 

distribution of temperature along the wire is given in § Y. of the paper. 

The rate at which heat was lost by any one of the wires was measured by the 

product of the current passing through it into the P. D. (potential difference) main¬ 

tained between its ends, while the ratio of the P. D. to the current gave the resist¬ 

ance of the wire, and therefore its temperature. As the variation of resistance with 

temperature of different specimens of platinum is knowm to differ, it was not con¬ 

sidered sufficiently accurate to deduce the temperature of the wire experimented on 

by using some supposed temperature coefficient for platinum ; consequently the 

variation of resistance, with temperature of each piece of platinum wire employed, 
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was experimentally determined up to 300° C. The investigation, therefore, divided 

itself into two distinct parts, viz. :— 

A, the measurement of the power required to be given to platinum wires of various 

diameters, so as to maintain them at various temperatures above that of the enclosure. 

B, the determination of the law connecting the resistance wfitli the temperature for 

each piece of wire employed in A. 
Fig. 1. 

And the second investigation also consisted of two parts, since a very considerable 

time had to be finally spent in determining the errors of the thermometers that had 

been employed in measuring the variation of the resistance of the wires with 

temperature. 

Fig. 2. 

For carrying out the first part of the investigation, each wire was placed hori¬ 

zontally along the axis of a water-jacketed cylinder shown in section A, B, C, D 

(fig. 1), 32-5 centims. long, 5‘08 centims. internal, and 7*62 centims. external diameter, 

the interior surface of the cylinder being coated with dull lamp black. A stream of 

water of constant temperature entering by the pipe at _D, and leaving by the pipe 
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at A, flowed through the water jacket and prevented the surface of the cylinder from 

becoming warmed by radiation and convection from the hot wire under experiment. 

Fig. 2 shows the water-jacketed cylinder in position. 

For inserting the wire to be tested into the enclosure-cylinder, it was attached at 

its two ends to a lamp-blacked brass carrier E, F (fig. 3), which could be slid, 

between guiding pins G, G (fig. 1), along the bottom of the inner cylinder into a 

definite position. The two ends of the wire were soldered to the tips a, a (fig. 3), of 

two wires a/3, a/3, 1 millim. in diameter, which were made of platinum-silver so as to 

Fig. 3. 

Fig. 4. 

have but a small heat conductivity. Two short pieces of platinum wire, 0’025 millim. 

in diameter, to be used as terminals for the voltmeter, were soldered with the slightest 

touch of solder to two points about 6 millims. distant from the ends a, a, of the wire 

under test, it having been determined that at this distance from the terminals a, a, 

the temperature would not be much lower than the average temperature of the 

wire. In the case of the two finest wires tested, having diameters of 0'025 and 

0'051 millim. respectively, it was not found necessary to adopt this arrangement, and 

the ends of the wires were themselves used as the voltmeter terminals, as seen in 

fig. 4; the platinum-silver wires, a/3, a/3, were, however, filed down quite thin to 

prevent the fine wire being cooled by heat being conducted away from its ends. The 

shaded portion of figs. 3 and 4 represents an ebonite cap used to insulate one end of 

the wire a, a, from the brass carrier E, F. 

To prevent draughts entering the enclosure-cylinder, each of its ends was closed 

with an ebonite plug, P, P (fig. 1) through two holes in which passed the platinum- 

silver wires, a/3, a/3, used as the terminals for the main current, and the fine platinum 

wire used for measuring the P. D. Connection was made between these latter and 

the wires which led to the voltmeter itself by their dipping into two mercury cups 

M, M (fig. 2), carried from the stand of the apparatus, and which were turned into 

position close to the holes in the ebonite plugs, after the latter had been inserted into 

position. 

For the experiments on the variation of resistance of the wires with temperature 

which were conducted during May, June, and July, 1888, the two ends of each wire 

were fastened to two thick rectangular copper bars, about 7 millims. thick by 20 

millims. wide. The fastening was effected by making a fine saw cut about 6 millims. 
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deep in the end of the bar (fig-. 5) inserting the end of the wire to be tested into the 

cut and gently hammering the copper so as to grip the wire. The copper was then 

heated in a blowpipe, and solder having a higher melting point than 350° C., run in 

so as to fill up all interstices. 
Fig. 5. 

These copper bars, B, B (fig. 6), dipped into oil contained in an iron pot P P 

wrapped round with asbestos cloth to prevent loss of heat, and were supported from a 

Fig. 6. 

wooden cross-piece W W, which carried the thermometer T T, the guide G G for 

the stirrer S S, and itself guided the handle H PI of the stirrer, the up and down 

motion of which was limited by two pins. 

Four thermometers of different ranges were used in these tests, and each of them 
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was subsequently compared with a Kew standard thermometer. Considerable diffi¬ 

culty was introduced into the carrying out of these comparisons from the fact that it 

is, or, at any rate, was not three years ago, possible to obtain a standard thermometer 

from the Kew Observatory to read, say, from 200° to 300° C., with a short wide 

chamber at the base in which the mercury expanded below 200° C. All that could 

be obtained was a long thermometer which had been carefully tested between 0° C. 

and 100° C., and the remainder of whose tube had been simply calibrated for 

uniformity of bore. The consequence was that when we desired to compare one of 

our thermometers reading say, from 200° C. to 300° C., with the Kew standard 

thermometer, their bulbs were very far apart when they were both immersed in oil so 

that the top of the mercury column of each was just at the top of the oil; secondly, 

whereas we had kept each of our thermometers with its bulb close to the wire whose 

resistance was being tested, and, therefore, at a fixed distance below the surface of 

the oil while it was being used, the Kew standard thermometer had to be continually 

lowered further and further into the oil as the temperature rose in order that correct 

reading’s could be obtained. 

By adopting, however, the following device, a satisfactory, although very laborious, 

comparison between the four thermometers and the Kew standard thermometer was 

finally carried out in the autumn of 1889, by three of the students of the Central 

Institution, Messrs. Muller, Stephens, and Wightman. The thermometer to be 

tested was placed in a deep oil bath in exactly the same position, relatively to the 

surface of the oil, as that in which it had previously been used. To obtain uniformity 

of temperature throughout the oil bath, the oil was kept constantly agitated by means 

of a stirrer driven by an electromotor, and further, the heat was applied not merely 

at the bottom of the bath but along the whole of its long vertical sides, which were 

covered with several layers of asbestos cloth to prevent the flames warming one part 

of the surface more than another. The bulb of the thermometer was surrounded by 

a bobbin of wire, the resistance of which was very carefully measured for many 

readings of the thermometer. Then the Kew standard thermometer was inserted in 

place of the thermometer to be tested, but now, as the temperature rose the coil and 

the standard thermometer were depressed together so as to keep the coil always 

surrounding the bulb of the thermometer, and so that the level of the mercury in the 

thermometer tube was always only just above the level of the oil. The temperatures 

were then read off on the standard thermometer which caused the coil of wire to have 

exactly the same resistances as before, and which were, therefore, the true temperatures 

corresponding with the readings of the thermometer to be tested. In consequence of 

the unwieldy length of a Kew standard thermometer reading to 300° C., it was 

necessary to use an oil bath 80 centims. deep for this experiment. 

Much thought and labour was given to the piece of apparatus, and many devices 

were introduced into it which it is not necessary to describe here, first because after 

we had completed this part of the investigation we learnt that much more suitable 

standard thermometers might have been obtained from abroad than could be purchased 

mdcccxcii.—A. 3 c 
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from the Kew Observatory ; secondly, because if one were making such an investiga¬ 
tion again, one would use as standards of comparison the coils of accurately known 

resistances at high temperatures which can now be purchased, but which we were 

advised three years ago had not then the necessary degree of accuracy. 

IT. Variation of Resistance of Platinum Wires with Temperature. 

We will now return to the main part of the investigation B, and it is to be under¬ 

stood that all temperatures mentioned are the true temperatures as corrected by using 
the results obtained from the comparison of the thermometers with the standard 

thermometer. 
The first point was to determine the variation of resistance with temperature of the 

copper bars BB, BB (fig. 6), and the thick copper wires that went to the Wheatstone’s 

bridge. The total resistance of the bars and wires at 0C C. was O'0050 ohm, and, as 
the wires were protected by an asbestos screen from the action of the heat, the total 

variation in the resistance of the copper bars and wires combined was very small, 
being only 0'0003 ohm between 0° C. and 325° C. This variation was, therefore, 

almost negligible compared with the variation of the resistance of even the thickest 
platinum wire experimented on, for which the following are the results. 

Table I.—Piece of the Platinum Wire that had been used in the Experiments on 

Emissivity. 

May 10th, 1888. Diameter 14 mils, or 0'356 millim. Length unknown, 
but about 23 centims. 

Temperature. 
Resistance, 

in ohms. 
Temperature. 

Resistance, 
in ohms. 

Temperature. 
Resistance, 

in ohms. 

° C. ° O. ° C. 
17-5 0-262 72-7 0-310 148-3 0-374 
179 0-262 81-8 0-318 154-4 0-382 
239 0-268 93-3 0-328 170-5 0-392 
37-5 0-280 105-3 0-338 182-0 0-402 
46-8 0-288 122-0 0-352 194-2 0-412 
61-1 0-300 135-1 0-362 

Although the exact length of the above wire was unknown, the results are not 

the less useful for giving the law of variation of resistance with temperature, 

for, as pointed out in § HI., “Ptesults of Emissivity Experiments,” the observations 

contained in Tables I. to V. were employed to give the ratios of the resistances of 
any one of the wires at any two temperatures, and not the specific resistance at any 

one temperature. Hence it was unnecessary to know the lengths of the wires used 
m the experiments, the results of which we recorded in Tables I. to V., and the 

lengths where mentioned are only approximate in some cases. 
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The next piece of wire used was of the same diameter, and was also a bit of the 

actual wire that had been used in the emissivity experiments. The length of this 

piece was, however, accurately known. 

Table II.—-Piece of Platinum Wire that had been used in the Experiments on 

Emissivity. 

May 14th and 15th, 1888. Diameter 14 mils, or 0'356 millim. Length 22’76 

centims. Curve No. 1, fig. 7 (Plate 11.) 

Temperature. Resistance, 
in ohms. Temperature. Resistance, 

in ohms. Temperature. 
Resistance, 

in ohms. 

0 C. 3 C. ° C. 

15-8 0-262 145-1 0-372 242-6 0-452 
16T 0-262 145-1 0-372 255-2 0-462 
52-3 0-294 157-3 0-382 256-9 0-462 
55-0 0-296 168-8 0-392 270 1 0-472 
63 1 0-303 171-6 0-394 271-1 0-472 
74-5 0-313 180-4 0-402 277-8 0-477 
85-8 0-323 193-1 0-412 278-8 0-478 
97-5 0-333 206-1 0-422 284-6 0-482 

0-343 207-3 0-422 291-0 0-487 
0 343 218-6 0-432 298-5 0-492 

121-4 0-352 230-3 0-442 306-1 0-497 
132-9 0-362 231-9 0-442 

The equation connecting the resistance and the temperature of the preceding 

specimens was determined in two distinct ways. First, a carve (No. 1, fig. 7) was 

drawn connecting all the values of temperature and resistance obtained on May 14th 

and 15th, then three points on this curve were selected, viz., those corresponding with 

Temperature. Resistance. 

15°-0 C. 0-262 

153°-3 C. 0-380 

300°-0 C. 0-493 

From these, on the assumption that r, the resistance at temperature t° C., could be 

expressed in terms of r0, the resistance at the temperature 0° C. by the equation 

r = r0 (1 -f- at + fit2) 

the values ot rQ, a, and fi were calculated. The values thus obtained were 

r0 = 0"2487 ohm' 

a — 0 00358 ,, >-.(1). 

fi = — O'OOOOOOIOI „ J 
3 c 2 
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Next, with the object of ascertaining the magnitude of the error that would be 

introduced into the values of r0, a, and j3 by a small error having been made in 

reading the temperature, the preceding calculation was repeated on the assumption 

that the second temperature instead of being 1530‘3 C. was 155° C. The values then 

obtained were 

r0 ■— 0'2488 ohm ~ 

a = 0'00354 „ > 

/?= — 0*000000896 „ 

(2). 

Thirdly, the method of least squares was applied to all the observations made on 

May 10th, and given in Table I. In this way there were obtained the values 

J3 = 

0-246987 

0-003560 

0-000000645 

ohm " 

” I ' 

5? _ 

(3). 

Lastly, the method of least squares was applied to all the observations made on 

May 14th and 15th, and given in Table II., the values thus obtained being 

r0 = 0'247338 ohm j 

a — 0-003650 „ l 

/3 = — 0-0000001091 „ 

(4). 

To compare the values of r0, a, and (3 obtained from the curve recording the obser¬ 

vations of May 14th and 15th with the values obtained by applying the method of 

least squares to the same observations, we may examine the value of the difference 

between rl0Q, the resistance of the wire at 100° C., and r0, the resistance at 0° C. ; 

using the values of r0, a, and /3 given in (1), we find 

Aloo r0 — 0*0862, 

whereas, using the values of r0, a, and /3 given in (4) we have 

t'loo — r0 = 0"086325. 

Again the mean coefficient of increase of resistance per 1° C., between 15° C. and 

85° C. when obtained from the curve alone, is 0"00350, whereas the mean coefficient 

per 1° C., between 0° C. and 100° C., using the means of the values of r0, a, and ft 

given in (l), (3), and (4), is 0"00348. 

We may, therefore, conclude that it is not necessary to use the lengthy method of 

least squares to obtain the values of r0, a, and /3, and that the values obtained by 
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using three points on a curve which graphically- records the results of the experiments 

on temperature and resistance are accurate enough for practical purposes. The three- 

point method was, therefore, alone adopted for the remaining wires. Indeed, for the 

purpose of determining the temperatures of the wires in the emissivity experiments 

which corresponded with the various observed resistances, it was found most easy and 

most accurate to simply read off the temperature at once from the curves which 

recorded the results of the experiments made on the variation of the resistance with 

temperature for the particular wires. Specimens of such curves are seen in curves 1, 

2, 3, 4, 5, 6, figs. 7 and 8. (Plates 11 and 12.) 

We were, however, led to study the various formulae that had been published by 

different investigators on the connection between the resistance and temperature of 

different metals, and this led us to carry out a considerable amount of calculation 

which brought to light some interesting results. Since these results, however, are 

not specially connected with this present investigation on emissivity, we purpose 

presenting them in a separate communication later on. 

Table III.—Piece of the Platinum Wire that had been used for the Experiments 

on Emissivity. 

June 11th and 12th, 1888. Diameter, 1P1 mils, or 0'282 millim. Length, 

14'02 centims. Curve No. 2, fig. 7 (Plate 11) 

Temperature. Resistance, 
in ohms. Temperature. Resistance, 

in ohms. 
Temperature. Resistance, 

in ohms. 

°C. 
15-3 0-2953 

°C. 
102-2 0-365 

0 0. 
214-0 0'455 

156 0-2959 0-375 225-6 0-465 
16-3 0-2962 0-375 226-8 0-465 
31-8 0-3096 141-5 0-395 226-8 0-465 
391 0-3150 164-9 0-415 238-8 0-475 
394 0-3150 176-2 0-425 239-2 0-475 
51-6 0-325 176-9 0-425 239-2 0-475 
64-9 0-335 188-8 0"435 251-8 0-485 
75-8 0-345 200-4 0-445 252-7 0-485 
77-3 0-345 200-8 0-445 264-3 0 495 
87-8 0-355 201-8 0-445 276-8 0-505 
89-4 0-355 212-8 0-455 
99-8 0-365 213-3 0-455 

The following results (Table IV.) were not obtained with a piece of wire that had 

been actually employed in the emissivity experiments, but with a piece of wire cut off 

the same reel from which was taken the wire used in the emissivity experiments. 

Before, however, making the measurements given in Table IV., the piece of wire used 

was heated by a strong current, so as to be brightly luminous for 40 minutes, in order 

to bring it to the same state as that of the piece that had been used in the emissivity 

experiments. 
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Table IV. 

July 16th, L888. Diameter, 11 ‘I mils, or 0‘282 millim. Length unknown. 

Curve No. 3, fig. 7 (Plate 11). 

Temperature. Resistance, 
in olims. 

Temperature. Resistance, 
in olims. Temperature. Resistance, 

in ohms. 

° C. ° C. °C. 
15-9 G'4496 0-577 222-1 0-711 
40-9 0-483 141-9 0-609 238-2 0-731 
59-9 0-507 150-3 0620 255-2 0-752 
68-2 0-518 162-6 0-635 272-0 0-771 
79-1 0-532 175-4 0-650 291-4 0-792 
89-2 0-545 187-6 0"665 0-809 

100-5 0-560 200-7 0-6801 292-5 0-792 
0-569 209-6 0-695 273 1 0-771 

The curves recording the results given in Tables III. and IV. are shown in Curves 2 

and 3, fig. 7. 

Table V.—Piece of Platinum Wire that had been used in Experiments on 

Emissivity. 

July 27th, 1888. Diameter, 9’3 mils, or 0'236 millim. Length, 20T9 ceutims. 

Temperature. Resistance, 
in ohms. Temperature. Resistance, 

in ohms. 
Temperature. Resistance, 

in ohms. 

°C. °C. °C. 
19-2 0-6844 150-8 0-905 276-5 1-104 
48-5 0-736 175-0 0-945 293-3 1-130 
79-2 0-789 207-2 0-996 304"0 1-145 
97-4 0-820 232-4 1-035 July 30th. 

113-0 0-847 256-9 L065 17-3 0-678 

July 20th, 1888. Diameter, 8T mils, or 0’206 millim. Length unknown. 

Temperature. Resistance, 
in ohms. Temperature. Resistance, 

in ohms. 
Temperature. Resistance, 

in ohms. 

°C. c. 0 C. 
18 1 0 6191 112-5 0'805 301 0 1-138 
43-7 0-670 205 "6 0-971 295-8 1130 
62-8 0-707 232-9 1-020 265-9 1-079 
78-1 0-737 262-9 1075 254-8 1-059 
94-8 0-770 284-3 1-110 

104-7 0-790 295-2 1-128 
? • 
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July 26th, 1888. Piece of the preceding wire. Length, 18’54 centims. 

Temperature. Resistance, 
in ohms. ' Temperature. Resistance, 

in ohms. Temperature. Resistance, 
in ohms. 

°C. ° C. °C. 
19-0 0-6184 106-3 0-790 216-9 0-990 
42-4 0-6G5 114-0 0-805 233-3 1-020 
58-9 0-697 149-2 0-865 251-9 1-055 
691 0-717 160-0 0-885 274-7 1-095 
79-2 0-737 170-7 0-905 284-1 1-110 
89-4 0-757 187-0 0-935 
961 0-770 206-5 0-971 

July 12th, 1888. Diameter, 6 mils, or 0J52 millim. Length, 17'07 centims. 

Fig. 14. 

Temperature. Resistance, 
in ohms. Temperature. Resistance, 

in ohms. 
Temperature. Resistance, 

in ohms. 

° C. ° 0. °C. 

14-8 1-047 1311 1-445 266-7 1-885 
32-7 1110 153-7 1-520 273-2 1-905 
45-0 1153 160-1 1-541 280-0 1-925 
53-85 1-183 176-8 1-595 289-0 1-950 
61-8 1-210 183-2 1-616 294-8 1-967 
73-0 1-248 195-2 1-657 302-0 1-988 
81-0 1-276 202-5 1-680 306-0 2-000 
93-3 1-318 213-7 1-715 309-0 2-010 

102-8 1-352 224-7 1-750 311-0 2-015 
110-2 1-377 231-3 1-772 305-0 1-995 
112-5 1-385 240-0 1-800 
1140 1-390 250-5 1-835 149-2 1-0475 
126-7 1-426 257-0 1-855 

July, 19th, 1888. Diameter, 4 mils, or 0T02 millim. Length, 15'37 centims. 

Curve 4, fig. 8 (Plate 11). 

Temperature. Resistance, 
in ohms. Temperature. 

Resistance, 
in ohms. Temperature. Resistance, 

in ohms. 

°C. "C. °C. 
173 4-127 113 4-645 233-5 5"245 
42-4 4-265 147-7 4-815 253-4 5345 
76-0 4-445 163-5 4-895 273-8 5 "445 
94-5 4-545 183-1 4-995 280-3 5’475 

103-6 4'595 207-8 5-115 

The smallness of the variation of resistance of the last wire with temperature 

shows that it is not a pure platinum wire, and that it possibly contains a trace of 

silver or iridium. 
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July 5th, 1888. Diameter, 2*9 mils, or 0’074 millim. Length, 18‘08 centims. 

Curve 5, fig. 8 (Plate 12). 

Temperature. 
Resistance, 

in ohms. 
Temperature. 

Resistance, 
in ohms. 

Temperature. 
Resistance, 

in ohms. 

0 0. ° C. °C. 

17 4-630 181-5 7-115 282 3 8-535 
35-1 4-915 194-0 7-295 
49-8 5T45 202-3 7-415 15-8 4-611 
59-6 5-295 211-7 7-545 69-2 5"445 
69-5 5"445 215-9 7"605 105-3 5-995 
791 5-595 2242 7-725 
89-0 5-745 232-5 7"845 9-3 4-515 
88'2 5-735 239-3 7-945 8-1 4'495 
98-7 5-895 249-8 8-095 5-1 4-445 

105-2 5-995 257-1 8-195 o-o 4-365 
111*7 6-095 261-1 8-255 - 0-8 4-355 
125-9 6-305 264-5 8-305 - 5-2 4-285 
132-1 6-395 268-9 8-365 - 7-8 4-275 
154-0 6-715 273-0 8-415 -11-0 4-225 
159-8 . 6-805 274 9 8-445 -11-75 4-215 
166-1 6-895 277-7 8-475 -12-5 4-205 
173-3 6-995 279-0 8-495 
180-0 7-095 280-5 8-515 The last set of results was 

obtained by placing the wire 
in alcohol and surrounding it 
with a freezing mixture. 

July 3rd, 1888. Diameter, 2 mils, or 0'051 millim. Length about 10-31 centims. 

Curve No. 6, fig. 8 (Plate 12). 

Temperature. 
Resistance, 

in ohms. Temperature. 
Resistance, 

in ohms. Temperature. Resistance, 
in ohms. 

° C. 0 C. ° c. 
16-4 5-375 94-0 6-795 160-1 7-945 
66-1 6-295 99-6 6-895 168-7 8-095 
71-7 6-395 105-4 6-995 175-1 8-195 
77-2 6-495 107-8 7-045 184-1 8-345 
82-3 6-595 1110 7 095 192-5 8-495 
88-4 6-695 155-3 7-865 203-3 8-645 

July 11th, 1888. Diameter, 1 ‘2 mil, or 0'031 millim. Length about 12’17 centims. 

Temperatnre. Resistance, 
in ohms. Temperature. Resistance, 

in ohms. Temperature. Resistance, 
in ohms. 

°C. 
1515 15-169 

0 c. 
85-7 18-52 

° C. 
157-3 21-81 

37-6 16-25 96-2 19-01 163-7 22-09 
53-2 16-99 102-5 19-31 174-9 22 59 
66-1 17-59 109-0 19-62 
74-6 17-99 129-9 20-56 
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III. Results of Emissivity Experiments. 

To determine the temperature of any one of the wires used in the emissivity 

experiments from its observed resistance, we might proceed as follows : calculate the 

specific resistance and then determine from the preceding curves, 1, 2, 3, &c. (figs- 7 

and 8), the temperature at which a piece of the same wire had the same specific 

resistance. To do this it would be, of course, necessary to know the lengths of the 

two pieces of the same wire used in the two sets of experiments. 

Now, whereas in each of the emissivity experiments a straight piece of wire of 

about 28 centims. was employed, the length of which could be measured with con¬ 

siderable accuracy, it was only possible to use shorter pieces for the experiments on 

the variation of resistance with temperature, for the latter pieces were parts of the 

wires that had actually been used in the emissivity experiments, and detaching 

a piece of wire from the apparatus seen in figs. 1 to 4, and attaching it to the clamp 

shown in figs. 5 and 6, necessarily shortened its length. 

Since, therefore, there was this greater difficulty in measuring the exact lengths of 

the wires used in the experiments recorded in Tables I, to V., curves 1, 2, 3, &c., figs. 

7 and 8, it was decided to regard these experiments as giving the relative resistances 

of each particular wire at different temperatures, but not the specific resistance at any 

particular temperature. 

In order then to use these curves of relative resistance with temperature 1, 2, 3, &e., 

for the purpose of determining the temperature of the wires in the emissivity experi¬ 

ments, we must know the resistance of each of the latter wires at some one tempera¬ 

ture. This might have been ascertained by means of the Wheatstone’s bridge, but, 

as a relative resistance rather than absolute resistance was required, the following 

method was employed instead, since it avoided the possible introduction of an error 

that might have arisen from some want of agreement in the unit of resistance of the 

Wheatstone’s bridge and the units of current and P. D. The ratio of P. D. to current, 

or the resistance of the wire, having been measured for a number of currents, a curve 

was plotted connecting the resistance of the wire for various currents flowing through 

it, and by continuing this curve until it cut the axis along which resistance was 

measured we obtained the limiting value of the ratio P. D. to current for current 

nought, that is, the resistance of the wire when at the temperature of the enclosure. 

Pig. 9 (Plate 13) shows the curve thus obtained for the thickest wire, viz., that of 

14 mils, and similar curves were drawn for all the other wires for the purpose of 

ascertaining their respective resistances when at the temperature of the enclosure. 

Let / and d be the length and diameter of the wire in centimetres, t0 be the tempera¬ 

tures ot the water jacket surrounding the enclosure cylinder ABCD (figs. 1 and 2); 

t be the temperature of the wire when A amperes are passing through it, and when 

V volts is the P. D. between the ends of the wire, e be the emissivity, that is the 

MDCCCXCII.—A. 3 D 
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number of calories (gramme C.) lost per second per square centimetre of surface per 

1° C. excess temperature, then 

0239 AY 

e 7r. I. d (t — t0) 

l and d are not, however, absolute constants for a given wire, since as the wire gets 

hotter and hotter its length and diameter become larger and larger. If y be the 

coefficient of linear increase of platinum per 1° C., which, according to Kohlrausch, 

is 0'000009, then allowing for the lengthening and thickening of the wire as it 

increases in temperature, we have, if l and d be the values at 15° C.— 

_ (1 + 15y)3 < 0-239 AY 

e~ (1 + y03 TT.l.d{t — t0) 

_ 0-076094 AY 

l.d (1 + (t — 0)) 

Now (l -j- y^)3 (t — t0) may be regarded as equal to (t — t0) + A (t — t0) where 

A (t — t0) is a correction that must be added to the observed excess temperature 

(t — t0), the amount of this correction depending on the value of t. The values of 

(1 + y£)3 (t — £0) and the amounts of the correction for different values of t are 

given in the following Table VI., and are shown plotted in fig. 10 (Plate 13). The 

corrections are but small, but they have nevertheless been taken into account in deter¬ 

mining the values of the emissivity given in the following Tables VII., VIII., and IX. 

Table VI. 

Tempei-ature t. (i + 7o3 0 - v>- o
 

i ■+* 

<
 

° 0. 

15 0-500065 0-00014 
30 15-5084 0-008 
50 35-532 0-032 
70 55-57 0-07 
85 70-61 Oil 

100 85-65 0-15 
120 105-73 0-23 
140 125-82 0-32 
160 145-92 0-42 
180 166-04 0-54 
200 186-17 0-67 
240 226-48 0-98 
280 266-84 1-34 
300 287-04 1-54 
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Table VII. 

Diameter, 14 mils, or 0*356 millim. Length, 28*09 centims. Water-jacket, 14°*5 C. 

May 3rd, 1888. Fig. 11. (Plate 14.) 

Current, 
iu amperes. 

P.D., 
in volts. 

Resistance, 
in ohms. 

Equivalent 
temperature of 

wire. 
Emissivity. 

° C. 
' 0-05 0-01584 0-3168 
0-075 0-02395 0-3195 
o-io 0-03198 0-3198 
0-15 0-04853 0-3235 
0-20 0-06386 0-3193 
0-25 0-07900 0-3160 
0-30 0-09464 0-3155 
0-40 0-1268 0-3170 
0-50 0-1602 0-3204 17-4 •002104 
0-60 0-1939 0-3232 19-7 •001705 
0-80 0-2627 0-3284 24-6 •001585 
1-00 0-3349 0-3349 30-0 ■001645 
1-20 0-4091 0-3409 35-7 •001764 
1-50 0-5334 0-3556 50-4 ■001698 
1-80 0-6667 0 3700 64-5 •001825 
2-10 0-8261 0-3934 87-0 •001820 
2-40 1-004 0-4182 111-0 •001899 
2-70 1-201 0-4449 137-4 •002005 
3-00 1-439 0-4796 172-5 •002074 
3-40 1-815 0-5338 226-6 •002207 
3-80 2-291 0-6029 304-0 •002278 

The first eight observations in the above Table were made to enable the early part 

of the curve in fig. 9 to be plotted, so as to find the resistance of the wire that 

corresponded with current nought; and this the curve shows to be 0*318 ohm. The 

wire, then, at the temperature of the water-jacket, viz., 14°*5 C., has this resistance, 

0*318 ohm. 

3 u 2 
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Table VIII. 

Diameter, 11T mils, or 0'282 millim. Length, 28‘35 centims. Water-jacket, 15° C 

May 2nd, 1888. Fig. II. 

Current, 
iu amperes. 

P.D., 
in volts. 

Resistance, 
in ohms. 

Equivalent 
temperature of 

wire. 
Emissivity. 

0-05 0-02817 0-5634 
°C. 

0-075 0-04241 0-5655 
o-io 0-05655 0-5655 
0-15 0-08532 0-5688 
0-20 0T133 0-5665 
0‘25 0-1415 0-5660 
0-30 0-1694 0-5647 
0-40 0-2260 0-5650 - 

0-50 0-2867 0-5734 
0-60 0-3479 0-5798 25-6 •002054 
0-80 0-4782 0-5978 37-3 •001705 
1-00 0-6148 0-6148 48-7 •001787 
1-20 0-7583 0-6319 60-0 •001965 
1-50 1-007 0-6713 84-9 •002081 
1-80 1-307 0-7261 121-1 •002123 
2-10 1-667 0-7938 166-0 •00221L 
2-40 2-088 0-8700 215-4 •002379 
2-70 2-587 0-9581 273-7 •002563 

As in the case of Table VII., the first nine observations in Table VIII. were made 

only for the purpose of enabling the early part of the curve in fig. 9 to be drawn. In 

the following Table IX., which gives the results for the remaining wires, the first 

eight or nine observations that were made in each case are omitted, since, although 

these observations were of value in enabling the early part of the curve, such as 

is shown in fig. 9, to be drawn for each wire, the difference between the temperature 

of the wire and of the water-jacket was too small to enable the corresponding emis- 

sivities to be accurately calculated. 

Table IX. 

Diameter, 9'3 mils, or 0-236 millim. Length, 27‘86 centims. Water-jacket, 15Q,9 C. 

April 28th, 1888. Fig. 11. 

Current, 
in amperes. 

P.D., 
in volts. 

Resistance, 
in ohms. 

Equivalent 
temperature of 

wire. 
Emissivity. 

0-60 0-5193 0-866 
0 C. 
40-9 •001441 

0-80 0-7078 0"885 49-9 •001926 
1-00 0-9206 0-921 66-9 •002087 
1-20 1T554 0-963 86-1 •002281 
1-40 1-423 1-016 113-6 •002353 
1-70 1-895 1115 164-8 •002495 
2-00 2-484 1-242 232-4 ■002642 
2-30 3-186 1-385 310-0 •002865 
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Table IX.—continued. 

Diameter, 8T mils, or 0'206 millim. Length, 27'86 centims. Water-jacket, 12°‘3 0. 

April 26th, 1888. Fig. 11. 

Current, 
in amperes. 

P.D., 
in volts. 

Resistance, 
in ohms. 

Equivalent 
temperature of 

wire. 
Emissivity. 

0-50 0-5200 1-040 
°0. 
24-8 •002761 

0-60 0-6366 1061 31-2 •002682 
0-70 0-7589 1-084 38-6 •002681 
0-80 0-8922 1115 48-0 •002654 
0-90 1-0336 1-148 58-0 •002696 
1-00 1-1855 1-186 69-5 •002747 
1-20 1-5423 1-285 101-3 •002755 
1-40 1-971 1-408 141-8 •002822 
1-60 2-478 1-549 188-7 •002974 
1-80 3-093 1-718 242-0 •003206 
2-00 3-792 1-896 309-0 •003375 

Diameter, 6 mils, or 0’152 millim. Length, 27*46 centims. Water-jacket, 12° C. 

April 24th, 1888. Fig. 11. 

Current, 
in amperes. 

P.D., 
in volts. 

Resistance, 
in ohms. 

Equivalent 
temperature of 

wire. 
Emissivity. 

0-075 0-1283 1-711 
0 C. 
15-2 •000547 

o-io 0-1716 1-716 16-4 •000709 
0-15 0-2600 1-734 19-3 •000972 
0-20 0-3488 1-744 20-8 •001442 
0-25 0-4390 1-756 23-0 •001814 
0-30 0-5334 1-778 26-6 •001993 
0-40 0-7238 1-810 32-6 •002556 
0-50 0-9414 1-883 45-9 •002525 
0-60 1179 1-965 60-2 •002663 
0-70 1-449 2-069 78-2 •002781 
0-80 1-744 2-180 97-8 •002954 
0-90 2-093 2-326 125-4 •003013 
1-00 2-466 2-466 150-8 •003222 
1-20 3-398 2-832 219-5 003560 
1-40 4-620 3-300 314-0 •003873 
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Table IX.—continued. 

Diameter, 4 mils, or 0T02 millim. Length, 27'69 centims. Water-jacket 13° C. 

April 14th, 1888. Fig. 12. (Plate 14.) 

Current, 
in amperes. 

P.D., 
in volts. 

Resistance, 
in ohms. 

Equivalent 
temperature of 

wire. 
Emissivity. 

0-04102 0-30934 7-540 
° C. 
17-9 •000701 

0-06154 0-46555 7-565 20-4 •001047 
0-08205 0-61868 7-540 17-9 •002803 
0-10256 0-77591 7-565 20-4 •002909 
0-12307 0-93418 7-590 23-0 •003110 
0-14358 1-0894 7-587 22-4 •004502 
0-17435 1-3319 7-639 27-8 •004245 
0-20512 1-5600 7-605 24-4 •007593 
0-24614 1-8951 7-699 33-8 •006067 
0-28717 2-2301 7-766 40-9 •006210 
0-32819 2-5877 7-884 52-4 •005831 
0-36922 2-9464 7-980 61-9 •006006 
0-41024 3-3246 8-104 74-6 •005980 
0-46152 3-8179 8-272 91-9 •006034 
0-5128 4-347 8-477 113-3 •006000 
0-5641 4-892 8-655 132-0 •006258 
0-6154 5-498 8-935 162-6 •006010 
0'6666 6-141 9-211 193-0 •006132 
0-7179 6-809 9-483 222-7 •006282 
0-8205 8-340 10-164 298-9 •006441 

We have already drawn attention to the fact that the above wire, of 4 mils or 

0T02 millim. in diameter, has a much smaller • variation of resistance with tempe¬ 

rature than the other wires, and therefore that it is probable that this wire has some 

iridium or silver in its composition. From the preceding table we see that the 

variation of emissivity with temperature is also much smaller with this wire than 

with the others. 
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Table IX.—continued. 

Diameter, 2'9 mils, or 0'074 millim. Length, 28'85 centims. 

May 4th, 1888. Fig. 12. 

Water-jacket, 15°'6 C. 

Current, 
in amperes. 

P.D., 
in volts. 

Resistance, 
in olims. 

Equivalent 
temperature of 

wire. 
Emissivity. 

0-020 0-1614 8-070 
° C. 

19-1 •000330 
0-030 0-2426 8-087 19-7 ■000635 
0-040 0-3268 8-170 22-8 •000650 
0-050 0-4120 8-241 25-3 •000760 
0-075 0-6266 8-266 26-2 •001587 
o-ioo 0-8471 8-471 33-5 •001694 
0-150 1-312 8-748 44-1 •002472 
0-200 1-817 9-083 56-5 •003181 
0-250 2-369 9-476 72-0 •003753 
0-300 2-989 9-965 89-5 •004339 
0-350 3-699 10-569 112-5 •004774 
0-400 4-574 11-435 146-2 •005001 
0-450 5-587 12-415 185-4 •005283 
0-500 6-817 13-634 234-2 •005559 
0-550 8-271 15-038 293-5 •005829 

Diameter, 2 mils, or 0'051 millim. Length, 24'46 centims. Water-jacket, 13° C. 

April 4th, 1888. Fig. 12. 

Current, 
in amperes. 

P.D., 
in volts. 

Resistance, 
in ohms. 

Equivalent 
temperature of 

wire. 
Emissivity. 

0-06155 0-7904 12-842 
° C. 
19-0 •004965 

0-08206 1-0690 13-026 23-6 •005068 
0-10258 1-3619 13-277 29-4 •005217 
0-13335 1-8296 13-710 39-4 •005660 
0-16413 2-3281 14-185 50-2 •006291 
0-19490 2-8615 14-682 61-7 •006999 
0-22568 3-4639 15-349 77-2 •007445 
0-25645 4-1443 16-160 96-3 •007804 
0-29748 5-1115 17T83 121-1 •008598 
0-33851 6-532 19-296 173-4 •008416 
0-38980 8-351 21-424 227-0 •009268 
0-44109 10-834 24-561 306-0 •009934 
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Table IX.—continued. 

Diameter, 1’2 mil, or 0‘031 millim. Length, 2500 centims. Water-jacket, 10o,5 C 

April 13th, 1888. Fig. 12. 

Current, 
in amperes. 

P.D., 
in volts. 

Resistance, 
in olims. 

Equivalent 
temperature of 

wire. 
Emissivity. 

0-01026 0-31863 31-062 
O 

130 •001301 
0-02052 0-64035 31-212 14-54 •003236 
0-03077 0-96618 31-396 16-5 •004930 
0-04103 1-3054 31-814 20-8 •005173 
0-06155 20177 32-782 30-4 •006208 
0-08206 2-7598 33-630 39-3 •007823 
010285 3-5564 34-669 49-5 •009306 
012310 4-4660 36-281 661 •009819 
0 14361 5-4784 38-148 85-0 •010492 
016413 6-6502 40-518 109-3 •010968 
0-18464 7-9247 42-919 135-4 •011627 
0-20516 9-4305 45-967 168-0 •012182 
0-23593 12-0567 51-102 224-5 •013168 
0-26671 15-1916 56-960 291-2 •014284 

Using the values of temperature and emissivity given in the preceding Tables VII., 
VIII., and IX., the curves shown in fig. 11 have been drawn for the five thicker wires, 

viz., those having diameters of 14 mils, or 0-356 millim. ; 11T mils, or 0-282 millim. ; 

9'3 mils, or 0'236 millim. ; 8T mils, or 0'206 millim. ; and 6 mils, or 0T52 millim., 

respectively; and the curves shown in fig. 12 have been similarly drawn for the four 

finer wires, viz., those having diameters of 4 mils, or 0T02 millim. ; 2‘9 mils, or 

0'074 millim. ; 2 mils, or 0‘051 millim. ; and 1‘2'mil, or 0'031 millim., respectively. 

The curves for the four finest wires on fim 12 and for two of the thicker wires on 
O 

fig. 11, appear to be fairly regular throughout their whole length, while the curves 

for the 14, the 11T, and the 8'1 mils wires appear doubtful for temperatures below 

60° C. 

On examining the curves we see that:— 

1. For any given temperature the emissivity is the higher the finer the wire. 

2. For each wire the emissivity increases with the temperature, and the rate of 

increase is the greater the finer the wire. For the finest wire the rate of increase of 

emissivity with temperature is very striking. 

3. Hence the effect of surface on the total loss of heat (by radiation and convection) 

per second per square centirn. per 1° C. excess temperature increases as the tempera¬ 

ture rises. 

The wire of 4 mils diameter appears to be an exception to these rules ; but we have 

already seen reasons for believing that this wire was not drawn from pure platinum 

like the rest, but possibly from platinum-iridium or platinum-silver. 
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On comparing the loss of heat from the wire of 1*2 mil diameter when at 300° C. 

with that from the wire of 6 mils diameter when at 15° C., both being in an enclosure 

at 10° C., we see that the former loses per square centimetre per second, not 

300 - 10 

15 - 10 
or 58 times 

as much heat as the latter (which it would do if the emissivity were the same) but 

instead, 
60 X 58 or 3480 times 

as much heat; arising from the fact that the emissivity, that is, the number of calories 

(gramme C.°) lost per second per square centim. of surface per 1° C. excess tempera¬ 

ture of the 1*2 mil wire at 300° C., is 60 times as great as that of the 6 mils wire at 

15°, the latter varying very rapidly with the temperature near 15° C. 

From the curves on figs. 11 and 12 the following table has been drawn up giving 

the emissivities of the various wires at eight useful even temperatures. 

Table X.—Emissivities at-— 

Diameter of 
wire in 

d
 

o O
 60° C. 

d
 

O o
 

00 100° 0. 150° 0. 200° C. 250° C. 300° C. 

Mils. 
T2 

Millims. 
0-031 0-00823 0-00956 0-01030 0-01085 0-01187 0-01278 0-01362 0-01440 

2-0 0-051 0-00595 0-00686 0-00750 0-00790 0-00860 0-00907 0-00948 0-00985 
2-9 0'074 0-00219 0-00334 0-00409 0-00455 0-00509 0-00538 0-00563 0-00584 
6-0 0-152 0-00246 0-00266 0-00280 0-00293 0-00321 0-00346 0-00367 0-00384 
8T 0-206 , . , # 0-00280 000294 0-00308 0-00322 0-00335 
9-3 0-236 0-00230 0-00245 0-00259 0-00272 0 00284 

111 0-282 . , 0-00205 0-00222 0-00236 0-00249 0-00261 
14-0 0-356 0-00189 

, 
0-00203 0-00214 0-00222 0*00229 

- 

The next step taken was to express mathematically the law connecting the emis¬ 

sivity of a wire with its diameter for a fixed temperature, and this was done for three 

fixed temperatures, viz., 100° C., 200° C , and 300° O. Using the values of the 

emissivity contained in the three columns headed with these temperatures in Table X. 

we obtained:— 

For 100° C., e = 0*001036 + 0*012078 cl~l.(5), 

„ 200° C., e = 0*001111 + 0*014303 cU1.(6), 

„ 300°C., e — 0-001135 + 0-016084 cl~l.(7), 

where d is the diameter of the wire in mils or thousandths of an inch. 

The following Tables, XL, XII., and XIII., give the actual emissivities, the emis- 

sitives calculated by means of the three preceding formulae respectively, the differ¬ 

ences, and the percentage differences. 

MDCCCXCII.—A. 3 E 
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Table XI.—Wire at 100° C. 

Diameter of wire. 
Actual 

emissivity. 
Calculated 
emissivity. Difference. Percentage 

difference. 

mils. 
1-2 

millims. 
0-031 0-01085 0-01104 + 0-00019 + 1-8 

2-0 0-051 0-00790 0-00707 - 0-00083 - 11-7 
2-9 0-074 0-00455 0-00520 + 0-00065 + 12-5 
6-0 0-152 0-00293 0-00305 + 0-00012 + 3-9 
8-1 0-206 0-00280 0-00253 - 0-00027 - 10-9 
9-3 0-236 0-00230 0 00233 + 0-00003 + 1-6 

111 0-282 0-00205 0-00212 + 0-00007 + 3-3 
14-0 0-356 0-00189 0-00190 + o-ooooi + 0'5 

Table XII.—Wire at 200° C. 

Diameter of wire. 
Actual 

emissivity. 
Calculated 
emissivity. 

• 

Difference. Percentage 
difference. 

mils. 
1-2 

millims. 
0-031 0-01278 0-01303 + 0-00025 + 1-9 

2-0 0-051 0-00907 0-00826 - 0-00081 - 9-8 
2-9 0-074 0-00538 000604 + 0-00066 + 11-0 
6-0 0-152 0-00346 0-00349 + 0-00003 + 1-0 
8-1 0-206 0-00308 0-00288 - 0-00020 - 6-9 
9-3 0-236 0-00259 0-00265 + 0-00006 + 2-4 

11-1 0-282 0-00236 0-G0240 - 0-00004 - 1-5 
140 0-356 0-00214 0-00213 - o-ooooi + 0-4 

Table XIII.—Wire at 300° C. 

Diamete r of wire. 
Actual 

emissivity. 
Calculated 
emissivity. Difference. Percentage 

difference. 

mils. 
1-2 

millims. 
0-031 0-01440 0-01454 + 0-00014 + i-o 

2-0 0-051 0-00985 0-00918 - 0-00067 - 7-3 
2-9 0-074 0-00584 0-00668 + 0-00084 + 12-6 
6-0 0-152 0-00384 0-00382 - 0-00002 - 0-5 
8-1 0-206 000335 0-00312 - 0 00023 - 7-4 
9-3 0-236 0-00284 0-00286 + 0-00002 + 0-7 

11-1 0-282 0-00261 0-00258 - 0-00003 - 1-2 
14-0 0-352 0-00229 0-00228 - o-ooooi - 0-4 

The values of the emissivity given in the last table are plotted in the curve shown 

in fig. 13 (Plate 15). 

The statement not unfrequently made that the current required to maintain a wire 

of a given material at a given temperature above that of the surrounding envelope is 

proportional to the diameter of the wire raised to the power three halves, is equivalent 

to stating that the emissivity is independent of the diameter. Now if we may 
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assume that the three formulae (5), (6), (7) given above for e may be used not merely 

for the platinum wires when fine, but also as giving at any rate a rough approximation 

of the value of e when the wire is as much as 4 or 5 millims. thick, we may conclude 

that for a temperature of 100° C. the value of d in the formula 

e = 0-001036 + 0-012078 

must be something of the order 220 mils, or 5"6 millims., so that the neglect of the 

second term may not make an error in e of more than 5 per cent., and something of 

the order 1"15 inch, or 29"3 millims., if the error is not to exceed 1 per cent.; that for 

a temperature of 200° C., the value of d in the formula 

e = 0-001111 + 0-014303 d~l 

must be something of the order 244 mils, or 6"2 millims., so that the neglect of the 

second term may not make an error in e of more than 5 per cent., and something of 

the order 1-28 inch, or 32"5 millims., if the error is not to exceed 1 per cent. ; and that 

for a temperature of 300° C., the value of d in the formula 

e — 0-001135 + 0-016084 d~l 

must be something of the order 267 mils, or 6*8 millims., so that the neglect of the 

second term may not make an error in e of more than 5 per cent , and something of 

the order 1 *39 inch, or 35"3 millims., if the error is not to exceed 1 per cent. 

Generally, then, although it may be possible to obtain only very rough approxima¬ 

tions of the values of the emissivities of thick wires by using the three formulae that 

we have deduced from the experiments on thin wires, still it follows that to assume 

that the emissivity is a constant for wires whose diameters vary from a small value 

up to 1 inch is to make a large error in the case of the greater number of the wires, 

and an error of hundreds per cent, in the case of some of them. 

The formulae (5), (6), (7) given above have been calculated from the results of 

experiments made on wires varying from 1"2 to 14 mils, and the method of calculation 

employed makes the percentage difference between the observed and calculated 

emissivity very small at each end of the range as well as in the middle. We may, 

therefore, use the formula to obtain some idea of what the emissivity is likely to be for 

a wire somewhat smaller than that used in the experiments, say, of 0"75 mil in diameter. 

Using formula (7) to obtain the emissivity at 300° C., we find it to be 0"02258. We 

can now make an approximate estimate of the current density, or amperes per square 

centimetre, it would be necessary to employ with a platinum wire of 0"75 mil in order 

to keep it at a temperature of 300° C., when the enclosure was, say, at 15° C. 

From the tables that we have given of the resistance of platinum wire at different 

temperatures, we see that the resistance of 17 centims. of wire 0"152 millim. in 

3 e 2 
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diameter is about 2 ohms at 300° C. Hence the resistance of 17 centims. of wire 

0'75 mil., or 0'0191 millim. in diameter, will be about 

/ 0-152 \» 

2 (from/ 5 or 128-0 ohms- 

If, therefore, x be the required current density, the rate of production of heat in 

calories (gramme-centigrade) per second will be 

r /0'00i9i\3i3 
X 7T X ( —) [ x 128-0 X 0*239, 

which must equal the number of calories lost per second, viz., 

17 X 7T X 0-00191 X 0-02258 X 285, or 0-6546, 

therefore, x = 51330 amperes per square centimetre. If the wire, instead of being 

platinum, had been made of copper, and if the emissivity for a copper wrire, 0"75 mil in 

diameter, were the same as that of a platinum wire of the same diameter, the current 

density that would be required to keep the copper wire at a temperature of 300° C., 

when the enclosure was at 15° C., would be about 

51330/57, 

that is, 122.600 amperes per square centimetre, or 790,500 amperes per square inch. 

[It may be useful to give the general formula which we have arrived at for 

calculating the current A amperes, required to be sent through any long thin 

platinum wire cl mils in diameter to maintain it at a temperature of 300° C. when 

the enclosure (having about the dimensions shown in fig. 1) is maintained at a 

temperature of 15° C. 

From the various measurements given in the paper it follows that the resistance 

per cubic mil of platinum at 300° C. is about 0"0086 ohm. Hence, equating the rate 

of production and loss of heat per mil length of the wire, we have 

A2 x 0-0086 x 4 x R24 

7rd2 
“/ (0-001135 + 0-016081 rf"1), 

therefore, 

A = 1-483/(0-001135 ds + 0-016084 cP) about. 

Also, if the wire having the conditions described above be l inches long, the watts 

that must be expended on it equal approximately (0"3869 + 0"02732 cl) l. 
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IY. Comparison of the Results with those obtained by MM. Dulong and Petit. 

All the emissivity carves in figs. 11 and 12 (Plate 14) have the same general 

shape, being concave to the axis of temperature, and it is interesting to see how far 

this general shape agrees with the results obtained in the classical researches of 

MM. Dulong and Petit for the loss of heat from thermometer bulbs in air. 

The formulae they developed for the loss of heat by radiation and convection in air 

lead to the following expression for the emissivity :— 

e = - {Hae(cd - 1) + Kp0'4^1’2333}, 

where 6 is the temperature of the enclosure, t the excess temperature of the cooling 

body, a a constant having the value 1"0077 if the temperature be measured in degrees 

Centigrade, p the pressure of the gas, H a constant depending on the nature of the 

surface of the cooling body and of the enclosure, and K a constant depending mainly 

on the nature of the gas surrounding the cooling body and but very slightly on the 

nature of the surface of the cooling body. 

Substituting the value of a and expanding in powers of t we have 

- e = 0-0076705 X POO770.H.{1 + 0-00383526 t + 0-000009806 t2 

+ 0-0000000188 $ + 0-0000000000029 C + . . .} 

+ K._p°'45.C333. 

If y be used to stand for the expression in the brackets and y' for £°'-33, calculation 

shows that y and y' have the following values for the different values of t:— 

Values of 

t. y■ y'- 

0 l 0 
10 1'03935 1-7100 

100 1-50067 2-9242 
200 2-31430 3-4367 
300 3-56405 3-7772 

And using for H and K the values found by Mr. Hopkins for polished limestone 

cooling in air at 760 millims. pressure, contained in an enclosure at 0° C., the 

expression given above for e becomes 
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e = X(0-069 y + 0*038 y), 

hence, substituting the values given in the last table for y and y, we have 

Values of 

, ejX. 

0 0069 
10 0-137 

100 0-222 
200 0-291 
300 0-389 

Consequently, if the law connecting the loss of heat from thermometer bulbs in air 

with the difference of temperature between the bulb and the enclosure is of the same 

nature as that connecting the loss of heat from very fine horizontal wires in air with 

the difference of temperature, we should expect to find that the curve connecting the 

values of e/X and t in the last table would, when plotted, be everywhere concave to the 

axis of t. But this is not the case, for we find on plotting this curve that wdiile it 

resembles our curves in being concave to the axis of t, for values of t less than about 

200° C. it changes its curvature at about this point and becomes distinctly convex. 

It is, of course, to be remembered the maximum value of t in the experiments of 

MM. Dulong and Petit was 240° C., while in some of ours t exceeded 300° C. We 

are, however, inclined to attribute the inability of the formulae of MM. Dulong and 

Petit to give even the general shape of the curves which we have obtained to the 

fact that the convection which occurs with thermometer bulbs hardly suggests the 

very great convective cooling that experiments show to occur with very fine wires at 

high temperatures.—May 31, 1892.] 

Y. Calculation of the Distribution of Temperature along a Platinum Wire Heated 

by an Electric Current. 

Let cl be the diameter of the wire in centimetres. 

t ,, temperature in degrees centigrade at any point of the wire distant 

x centimetres from the nearer of the two supports to which the 

ends of the wire are attached. 

t0 ., temperature of the supports. 

f(t) ,, electrical resistance, in ohms, of a cubic centimetre of the wire at a 

temperature t. 

4> (t) ,, thermal resistance of a cubic centimetre of the wire at a temperature t. 
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x/j (t) be the emissivity at a temperature t for a wire of diameter d. 

K ,, number of calories corresponding with one watt-second. 

A ,, current in amperes flowing through the wire ; 

then following the method of reasoning employed with such problems, we have 

7TtP d 

4 dx 
+ ApKA=/(0 = nd(t- t0)i(t) (8). 

</j (t) is in reality the reciprocal of the amount of heat in calories that would flow 

per second across one cubic centimetre of the material for 1° C. difference of tempera¬ 

ture between the opposite faces and for a mean temperature of the material of f. 

xjj (t) is the number of calories lost per second on account of radiation and con¬ 

vection for 1° C. excess temperature from a square centimetre of the platinum wire 

of diameter d and at a temperature t. 

In the preceding equation d is strictly the diameter of each part of the wire at the 

particular temperature it is at. As, however, an increase of the temperature from 

0° C. up to 300° C. only increases the linear dimensions of platinum by about 

0'26 per cent., d may be taken as the diameter of the wire at 15° C. 

fit) and xjf (t) are known from the various curves connecting resistance with 

temperature and emissivity with temperature for each of the various wires experi¬ 

mented on. The variation of the thermal resistance of platinum with temperature 

has not, as far as we can learn, been experimentally examined, nor does it appear to 

be even known whether the thermal resistance of platinum increases with tempe¬ 

rature, as does the thermal resistance of iron, or diminishes with the rise of 

temperature, as does the thermal resistance of copper and German silver. Under 

these circumstances we decided to assume that the thermal resistance of platinum 

was a constant, and had the value it is known to possess at ordinary temperatures, 

and to see what sort of result a mathematical assumption based on this result would 

lead to. 

As a matter of fact, even the thermal conductivity of platinum at ordinary tempera¬ 

tures is not stated explicitly in hooks, but it can be easily arrived at indirectly. For 

we find that Wiedemann and Franz determined that 

Thermal conductivity of platinum 8'2 

Thermal conductivity of copper 77'2 

and in the article “ Heat ” in the ‘ Encyclopaedia Britannica,’ the value of the thermal 

conductivity of copper, 0‘96 as determined by Angstrom, is stated to be trustworthy. 

From these numbers we deduce that the thermal resistance of platinum, at ordinary 

temperatures, is 9’858, which is the value we have taken for <f> (t). 

Equation (8) can then be written in the form 
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cl~t 
^- = p(^-g^(0-Q/(0 
Cl. (9) 

where 

P = 
4 x 9-858 

and 

_ 4KA2 > 4 x 9-858 

u 'ird? 7rd? 

P and Q are therefore constants for a particular wire with a particular current flowing 

through it. 

We next tried to expand xp (t) and f (t) as functions of t from the curves which we 

had experimentally obtained connecting emissivity with temperature and resistance 

with temperature, but we found that it was not possible to express these functions of 

t in any such simple shape as would allow the integration of equation (9) to be effected 

analytically, and a result obtained suitable to be used for easily determining the value 

of t for any value of x. We, therefore, consulted Professor Henrici regarding the 

integration of equation (9) in a practical form, and we have to express our thanks to 

him for the warm interest that he has taken in this mathematical problem, and for the 

many suggestions that he has kindly made, and which have enabled us to arrive at 

the following solution. We have also to thank one of our assistants, Mr. Walker, 

for carrying out the graphical and numerical calculations contained in this section of 

the paper. 

It is clear that the law of distribution of temperature along the wire will depend on 

the diameter of the wire among other things, also on the current passing through it, 

the variation of temperature with length of wire being the more rapid the thicker the 

wire and the greater the current passing through it. We therefore selected for 

consideration a wire of mean diameter, namely, that of G mils or 0'152 millim., 

and we took the case when L "4 ampere was passing through it, which is the greatest 

current that was passed through this wire in the emissivity experiments. 

Having selected this wire and current, the next step consisted in calculating 

P (t — t0) xfj (t) and Q f (t) for different values of t. t0 is 12° C., P is 2587*4, and the 

value of i/; (t) may be obtained from the emissivity curve for the 6 mils or 0-152 millim. 

wire given in fig. 11. Instead of calculating f (t) the resistance per cubic centimetre 

of the material for different values of (t) it is more convenient to write 

Q f(t) as 
KA2 

~ l 
4 x 9‘858 

7rd~ F(0, 

where l is the length, 17'07 eentims., of this 6-mil wire that was used in the experi¬ 

ments from the results of which the curve in fig. 14 (Plate 15) has been drawn, and 
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F (t) is the resistance in ohms of this 17‘07 centims. of this 6-mil wire at any 

particular temperature, t. Now, when A equals 1'4 ampere, and d equals 

0-152 millim., and l is 17’07 centims., 

KA2 4 x 9-858 , 
--— = 14.91-7 ; 

l 7r cV 

therefore, the equation (9) becomes 

£'3 = 2587-4 (t - 12) xjj(t) - 14917 F («).(10). 

To obtain a curve representing the first term on the right-hand side of this equation, 

the curve for $ (t), given for the 6-mil wire in fig. 11, was altered by simple geo¬ 

metrical construction so as to give a curve for t X xp (t). The ordinates of this curve 

were then altered, graphically, so as to give to a convenient, scale a curve for 

2587*4 t. xp (t), and, lastly, the ordinates of this curve were reduced, graphically, in 

the proportion of £ — 12 to t. 

To obtain the curve representing the second term on the right-hand side of equation 

(10), the ordinates of the curve on fig. 14 were multiplied by 1491 "7, and then the 

curve was re-drawn to the same scale as the curve representing 2587‘4 (t — 12) xp (t). 

The ordinates of the two curves were then subtracted from one another, and a curve, 

having for its ordinates the difference of the ordinates of the last two curves, was 

drawn, which gives the values of dHjdx3 for any value of t. This curve is seen 

in fig. 15 (Plate 15), it is parabolic in shape, cuts the axis along which temperature is 

reckoned at t equals 315° C.,and has its vertex approximately in the line along which 

dHjdx2 is reckoned. 

A similar investigation was made for the same wire for a current of 0'6 ampere, and 

it was found that the curve for dHjdx* in this case cut the axis of temperature at 

60°-3 C. 

The fact that dHjdx2 is nought at a particular temperature tells us, of course, 

mathematically nothing about the actual value of dtjdx, but from our general know¬ 

ledge of temperature curves, we know that when a current is passing through a fine 

wire, as in our experiments, the temperature will rise rapidly along the wire in the 

neighbourhood of the supports, then rise more slowly, and at no great distance from 

the supports the temperature curve will become nearly flat, and will be absolutely flat 

over the middle portion of the wire. 

We are, therefore, justified in assuming that dHjdx1 and dtjdx are nought at about 

the same point of the wire. 

On examining the numbers in Table V., which refer to the 6-mil wire, it will be 

noticed that the mean temperatures of the wire for currents of 1*4 and 0'6 ampere 

respectively, were 314° C. and 60°"2 C., which are almost exactly the temperatures 

MDCCCXCII.—A. 3 F 



402 MESSRS. W. E. AYRTON AND H. KILGOUR ON THE 

for which clH/dx1 are nought for these two currents in question. It is certainly 

surprising that a calculation based on the assumption that the thermal resistance of 
platinum is the same at all temperatures between 0° C. and 300° C. as it is at 
ordinary temperatures, should have led to the result that, both for a current of 
1*4 ampere and a current of 0'6 ampere passing through this 6-mil wire, d2tjdx° 
should be nought, that is, the temperature curve should be flat at almost exactly the 

mean temperature that the wire had in each case. It would, therefore, appear that 
the assumption regarding the thermal resistance of platinum having a constant value 

9’858 at different temperatures has not introduced any serious error. 
If we assume that the vertex of the parabolic curve for dH/dx3 is in the line along 

which dzxjdtz is reckoned, which is very nearly the case, then 

clH_ 
dx2 

(11). 

where a is minus the value of dH/dx2 when x equals nought, and T is the value of t 

when dHjdx2 equals nought. 
At the point of the wire where the temperature is the highest the temperature 

curve will be flat, that is, dtjdx will be nought, and at the end of the wire where it 

is attached to the support the temperature will have some definitive value, T0, in 

other words when 

t = T, f = 0, 

and when 
x = 0, 

dx 

< = T„. 

With these two conditions only and without any reference to the length of the wire, 

it is possible to integrate the equation (11), and the result we arrive at is 

x 
, /T </(t + 2T) - y/3T y/(T0 + 2T) + y/3T 

^ V 2a + 2T) + v/3T </(T0 + 2T) - </3T * ‘ K ’ 

An examination of this equation shows that in order that t may equal T, x must 

equal infinity, and, therefore, in obtaining this integral we have tacitly assumed that 

the maximum temperature of the wire is only obtained at an infinite distance from its 
end. But while great simplicity is obtained by this hypothesis, no more error is 

introduced by its employment than is met with by the use of the ordinary equation 

for the conduction of heat, and which leads to the result that two bodies initially at 

a different temperature take an infinite time to arrive at thermal equilibrium, even 

when connected together by a good conductor of heat. 

On examining the curve for dHjdx3 on fig. 15, which as already stated has been 
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calculated for the 6-mil wire for the maximum current used, viz., 1 ‘4 ampere, we 

find that 

a = 1592, 

T = 315° C. 

The temperature of the enclosure in the emissivity experiments with this wire was 

12° C., and as the temperature T0 of the point of the wire where it was joined to the 

support would be somewhat higher than this, we may take T0 as about I 5° C. It is 

to be noticed that the higher this temperature actually was the more uniform must 

have been the temperature of the whole wire and the more accurate will be our 

experiments on emissivity. 

Substituting these values for a, T and T0 in equation (12), we have 

x= ± 3148 log f- 10-58 -77* * -> 
8 \ y/(t + 630) + ^94b) 5 

and the following are the values of t obtained for the corresponding values of x :— 

Temperature, 
in degrees Centigrade. 

Distance in centimetres 
from the end of the wire. 

15 0 
100 0T23 
200 0'339 
270 0’646 
300 0-980 
312 1-498 
314 3296 

The actual length of this 6-mil wire between the points of support was 

29-18 centims., and the maximum temperature was 315° C. Therefore, as the 

calculated temperature is 300° C. at a distance of 0"98 centim. from the support, it 

follows that in 3*3 per cent, of the wire, reckoning from the support, the temperature 

rises to about 95 per cent, of the value it has at the middle of the wire; while at a 

distance of 1*498 centim. from the support, that is, in about 5 per cent, of the whole 

length, the temperature has reached about 99 per cent, of its value at the middle. 

The calculated distribution of temperature along this 6-mil wire, when traversed by 

the largest current employed with this wire, is shown in fig. 16. The distance 

between the voltmeter wires was 27 "46 centims., as indicated in the figure; and it is 

with the distribution of temperature over this portion of the wire only that we have to 

deal in the emissivity experiments. Of this length, about 25"70 centims. is seen to 

be at a temperature a little over 314° C. ; while 1*76 centim. has a mean temperature 

3 F 2 
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of about 308° C. The error, therefore, which we have made in assuming that the 

whole length of 27‘46 was at 314° C. was not serious. 

Fig. 16. 

0 2 4 6 8 10 12 14 16 IS 20 22 24 26 28 O0 

<--- Total lenuth.oj' were measur-ed. fram. one encl-> 

And, a fortiori, the lengths which were employed with all the finer wires in the 

emissivity experiments and the position of the voltmeter wires, were such that the 

temperature was practically constant over all the length of the wire used in the 

emissivity calculations. 

In the case of the wires thicker than 6 mils, the error arising from the conduction 

was necessarily greater; and the calculations that wre have made on the distribution 

of temperature along the 6-mil wire have led us to the conclusion that, if we were 

going to repeat the experiments, we should, in the case of the thickest wires 

employed, attach the voltmeter wires at about 2 centims. from the supports. We do 

not, however, think that any serious error has been introduced by attaching them at 

only about 7 millims., except, perhaps, in the case of the largest currents with the 

largest wires. 

When plotting the curve for d'H/dx2 given in fig. 15, it was noticed that this curve, 

where it cuts the axis along which dHjdx2 is reckoned, was not strictly parabolic. 

Professor Hekrici suggested that an idea might be obtained of the error ntroduced, 

by assuming the lower portion of this curve to be parabolic, if a tangent were drawn 

to the true curve for dH/dx3 at about t equals 315° C., and if calculations were made 

on the assumption that this tangent line were itself the curve for dH/dx2. 

Doing this, we obtain the following equation by integration for the temperature 

curve 

where T, as before, is 315C C., and where b is minus the value of the ordinate of this 

tangent when t equals nought. When measured, b is found to be 2388. 
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Solving equation (13) for various values of t, we find 

Temperature, 
in degrees Centigrade. 

Distance, in centimetres, 
from the end of the wire. 

15 0 
100 0-123 
200 0-339 
270 0-649 
320 0-980 
312 1-498 
314 3-296 

If now a distribution of temperature curve be drawn, similar to that seen in fig. 15, 

but using these values of t and x instead of those found from equation (9), it is found 

that the two curves showing the distribution of temperature along the wire are not 

very different. We may therefore conclude that the exact shape of the curve for 

dH/dx2 for small values of t, has but little effect on the resultant distribution of 

temperature curve, and therefore that no important error is made by assuming, as we 

have done, that the true curve for dH/dx3 is a parabola, with its vertex on the line 

along which dH/dx2 is reckoned in fig. 15. 
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X. On the Collision of Elastic Bodies. 

By S. H. Biirbury, F.R.S. 

Received October 24,—Read November 19, 1891. 

Revised June 25, 1892. 

In a paper read before the Society on June 11, Sir William Thomson expressed a 

doubt as to the general truth of the Maxwell-Boltzmann doctrine concerning the 

distribution of energy among a great number of mutually acting bodies, and suggested 

that certain test cases should be investigated. The test that he proposed on that 

occasion was a number of hollow elastic spheres, each of mass M, and each containing 

a smaller elastic sphere of mass m, free to move within a larger one. This pair he 

calls a doublet. This case is within the general proof of the doctrine given below. 

It is, however, I think amenable to a simpler treatment, which has been applied to 

the case of elastic spheres external to one another. 

1. Every doublet has a centre of inertia of the sphere M and its imprisoned m. 

Let V he the velocity of that centre of inertia, R the relative velocity of M and m. 

If V and R be given in magnitude, R given in direction, V may have any direction, 

and in Maxwell’s distribution, for given direction of R, all directions of Y are 

equally probable. Conversely, if, whatever be the values of Y and R, for given 

direction of R all directions of Y are equally probable, Maxwell’s law prevails. 

Now consider a very great number of doublets, all having their relative velocity and 

the velocity of centre of inertia within limits R, R + dR, and Y, Y -f dN. Consider 

them before and after collisions between M and m. Nothing is changed by collision 

except the direction of R, and that change of direction is independent of the direction 

of V. Therefore after collision for given direction of R all directions of Y are equally 

probable, and therefore Maxwell’s distribution prevails after as well as before col¬ 

lision, and is therefore not affected by collisions. 

To proceed to more general cases. 

2. The characteristic property of collisions of conventional elastic bodies is that 

with continuous variation of the coordinates, and without variation of the kinetic 

energy, the velocities at a certain instant change discontinuously. The general 

treatment adapted to systems of this kind is as follows :—Let there be a system 

defined by n coordinates p1 . . . pn, the corresponding velocities being px . . . pn, and 

the generalised components of momentum ql . . . qn. At a certain instant a collision, 

i.e., discontinuity of pY . . . p'n occurs. After the collision, let the velocities and 

3.8.92 
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momenta be denoted by p\ . . . p„, q\ . . . qn. Let U be the potential. In the con¬ 

figuration Jh ■ • • Pn there are n — 1 independent linear functions of the n forces, 

— 7^-... — each equal to zero. We might then find n new coordinates c, . . . c„, 
dpy dpn 1 ° 

. . = 0, and therefore if Sx, S2 . . . S„ he the components 
dcn—\ 

_ a&H_x 

dt 

dU 
such that 7- = 0 

dt] 

of momentum corresponding to c1 . . . c -y1 = ~ &c., and 1 are finite or 
dt dcj “ dt dt 

zero. In the limit when the remaining force becomes infinite and acts for an infinitely 

ft dS 
short time t, --1 dt = 0 or S'j — Sx = 0 ... S'„_1 — S„_1 = 0, and restoring the 

j o ci t 

original coordinates. 

«1 (Pi ~ P'l) + hl (P2 ~P\) + •■•+*! (Pn -Pn) = 01 

aAPi-p\) + • • • = 0' 
> 

= 0 

(A), 

««- (Pi ~ P 1) + • • • 

in which the coefficients are functions of the coordinates. 

And therefore n — 1 li near functions of the p’s are unaltered by the collision, namely 

aiPi + b±p2 + • ■ . + hP» = a\Pi + b}p'2 + . . . + kxpn = Sx supposel 

azPi “h baP* -}"••• + k2p/t = a2p 1 -f* a2P 2 + • • • + k2p n = So 

Ctn-lPl + t>n-\P2 + • • • + k>i-\P>i = Ctn-lP l 4" ^u-lP o + • • • + kn_^p n — S„_j J 

Again, since the kinetic energy is unchanged, 

tpq= tpq, 

and by the properties of generalised coordinates 

Therefore 

tp’q = tpq. 

- (q + q)(P ~p) = 0 

(B). 

. . . (C). 

The last equation forms, with the n — 1 equations (A), a system of n equations, 

all linear as regards p>\ ~ Pi> &c. Since px — p\, &c., are not all zero, we must 

equate the determinant of the system (A) and (C) to zero. That gives us a linear 

equation in qY + q\, q2 + qz, &c. We can now substitute for the qs their values in 

terms of pl . . . p„, and so obtain a linear equation 
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« (Pi + Pi) + £ (Pi + P a)» &c- = ffi 
or 

a-Pi + fat + • • • = R = — («p'i + ftp 2 • • .)» 

where a, /3, &c. are functions of the coordinates and constants. 

That is, we have in all n — 1 linear functions of the velocities, namely, S1. . . S„_l3 

which remain unaltered by the collision, and one other linear function, R, which 

remains unaltered in value, but changes sign. That must be the case on every 

collision of elastic bodies. 

3. The kinetic energy may be expressed in terms of the n variables Sx . . . S„_x, 

and It, in lieu of the n velocities px. . . pn, and since it is not altered by the collision, 

which changes the sign of R, leaving Sx. . . S,{_! unaltered, it must be of the form 

2E=/(S1...S,i_1) + XR2, 

in which f(Sj . . . S„_j) is a quadratic function of S: . . . S„_! with coefficients functions 

of the coordinates and constants of the system, and X is a function of the coordinates 

and constants. 

4. The system, after collision, has velocities p\, &c., which we will call the 

second state. We may conceive a system with the same coordinates having- 

velocities — p\, —p\, &c., and call this the second state with reversed velocities. In 

this state, S2 . . . S«_j will have opposite signs to those they have in the first state, 

and R has the same sign as in the first state. The system retraces its course, and a 

collision occurs changing — p\ into — px, See., leaving Sx . . . S„_x unaltered, and 

changing R into — R. 

5. To define a collision, we may suppose that a certain function, xfj, of the coordinates 

and constants is prevented by the physical conditions of the system from becoming 

positive. When tfj becomes zero, dxjj/dt from being positive becomes discontinuously 

negative, and a collision is said to take place. We may take \p for one of our 

generalised coordinates in lieu of pn, and ifj, or d\}j/dt, for the corresponding component of 

velocity. The kinetic energy is a function ofyq .. . pn_ h \p, and we may express it as 

a function of Sx.. . S„_l3 and xjj, where Sx. . . S„_j are the constants found above. 

Since the kinetic energy is not altered by the discontinuous change in ip, whatever the 

values of Sx. . . it must be of the form f(Sx .. . S„_j) + -gXi/r. That is ip is 

reversed in sign, but unaltered in magnitude by the collision, and is, therefore, equal 

or proportional to R found above. 

6. What we have proved for a system is of course true if for system we write pair 

of systems. For instance, let there be two sets of systems : (1) systems M defined by 

coordinates px . . . pr, and velocities px . . . pr, and (2) systems m defined by coordi 

nates and velocities pr+ \ • • . pn and pr + l . . , pn. If xjj is a function of px . . . pn such 
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that when \Jj = 0 a collision—i.e., a discontinuity of the velocities—occurs, we may 

treat the pair of systems M, m in all respects as a single system within the preceding 

investigation. 

7. All those systems, or pairs of systems, for which at any instant xjf lies between 

zero and — (chjt/dt) St, dxfj/dt being positive, will undergo collision within the time St 

after that instant. We may, therefore, take dxfj/dt or It as measuring the frequency 

of collisions for given values ofyq, &c. 

8. From the linear equations (B) above given we can find any of the velocities, for 

instance, p}) as a linear function of Sj . . . S„_j It, and p\ will be the same function 

with — It written for It. Hence p13 — pp = 4R2pS where 

YpS = pi&j + poS^ ~b &c., 

and the p’s are functions of the coordinates and constants. 

Also (pp — p\2) It = 4R22pS. 

Now, without altering E or It, or the coordinates, let us make S2 . . . S,t_! pass 

through the whole range of values consistent with 

2E = \3R3+/(S1...S„_1).(E). 

Also let (j) (Sj . . . dS1 . . . dS/l_l be the number of systems for which these 

variables lie between the limits 

Sx and Sj -f dS, 

S«_i and S„_! + 

E and R and the coordinates being constant. 

Then 

jj • •. (k - pV) r • t(s.... s,_,) dsl... ds._, 

= 4RJ ||... (f> (Sj. . . S„_]) S/xS ciS,. . . c/S,,-!, 

the integrations being over all values consistent with (E). 

Now, in the Maxwell-Boltzmann distribution </> (Sx . . . S«_x) is a function of 

the kinetic energy only, and is therefore constant throughout this integration. There¬ 

fore the right-hand member of the last equation is zero, because for any given set of 

values of Sj . . . S»_j satisfying (E), there is a corresponding set with the opposite 

signs also satisfying it. Therefore 

jj" . . . R<£ (Sj. . . S„_j) (_pj2 — p j3) dSj . . . dSil_l = 0, 

and, therefore, the average value of^pj3 —p\2 for all collisions given E and R is zero. 

The same is true for p.22 — p'p, &c. 
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And, therefore, since E and R are arbitrary, pf, &c., are not altered by collision 

at all, that is, the Maxwell-Boltzmann distribution, given existing, is not altered 

by collisions. _ 

The above proof also shows that p3 — p\2 is zero without the factor R, that is, the 

average value for all systems is zero, as well as for all collisions ; and in proving that 

p2 = p'2f it does not matter whether we introduce the factor R or not. 

9. We will give certain examples of the functions Sx . . . S„_! R. 

I. Elastic spheres of masses m and M respectively. Here a colliding pair, which 

corresponds to a system in the general treatment, has six degrees of freedom, there 

should, therefore, be five linear functions of the velocity unaltered by collision. They 

are x, y, X, Y, the tangential components of velocity at the instant of collision, and 

mu + MU = (M + m) V = mu’ + MU', 

where u, U are the normal components. 

We have from the last equation 

m (w-O + M(U-U') = 0, 

and by the equation of energy 

m (u* - uz) + M (U2 - U'2) = 0, 

whence 
u + u = U +Ur, 

or 
u - U = - (u - U') = R. 

II. The system consists of a sphere of mass m colliding with a spheroid of mass M. 

It is assumed that the spheroid will acquire no rotation about its axis of figure, but 

may have rotation about any other principal axis. It has then five degrees of 

freedom, and the system of sphere and spheroid has eight. 

We require, then, seven linear functions of the velocities to be invariable. 

Let 0 be the centre of the spheroid, OZ in the plane of the paper, its axis of 

figure, P the point of collision, PN normal at P, ON perpendicular to PN, and 
ON = c, A the moment of inertia of the spheroid round an axis through O perpen¬ 
dicular to OZ. Then our seven constants are 

3 g 2 
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(1), (2), (3), (4). Four tangential components of velocity. 

(5). The angular velocity 0 of the spheroid round an axis perpendicular to OZ in 

the plane of the paper. 

And if u, U he normal components of velocity, and co the angular velocity round an 

axis through 0 perpendicular to the plane of the paper, the following two, viz. :— 

By conservation of momentum, 

(6.) mu + MU = (M -b to) V = mu' + MU'. 

By conservation of moment of momentum round the axis through 0 perpendicular 

to the plane of the paper, 

(7.) - McU + Aw = S = - McU' + Ao>'. 

We then form the equations 

m(u-u') + M(U-U') =0, 

— Me (U — U') + A(o)-o/) = 0, 

and by conservation of energy, 

to (u + v!) (u - u) + M (U + U') (U - U') + A (w + co') (co - co') = 0; 

and equating the determinant to zero we obtain, neglecting common factors, 

U — U — Cco = p, 

u — U — Cco = — p, 

and, using Y, S, and p for S: . . . S„_j and It in the general equations, we see that if 

the Maxwell-Boltzmann distribution of energy exist, it is not disturbed by colli¬ 

sions between spheres and spheroids. 

III. Professor Burnside’s problem (see his paper, Bo}n Soc, Edinburgh, July 18, 

1887). He supposes a number of similar and equal spheres, each of unit mass, but 

each sphere, instead of being homogeneous, has its centre of inertia at a distance c 

from its centre, c being supposed very small compared with the radius. The principal 

moments of inertia are for each sphere A, B, C, and the direction cosines of c referred 

to the principal axes through the centre of inertia are for each sphere the same, viz., 

a, (3, y. The direction cosines of the line of centres at impact referred to the principal 

axes are for one sphere L, M, N, and for the other l, to, n. 

Further the normal velocities are U, u, and the angular velocities round the 

principal axes are 12^ I23, fl3, w1, co2, <o3 for the two spheres respectively. 

Finally we write, 

N/3 — My = P v/3 — my = p. 

Ly — Na = Q ly — net — q. 

Ma — L/3 = R TOa — 7/3 — r 
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The system of two spheres has twelve degrees of freedom. We require, there¬ 

fore, eleven linear functions of the velocities to be invariable. They are as follows, 

viz., four components of velocity in the common tangent plane, x, y, X, y, and seven 

others, viz., 

u + U = Y = u + U', 

cpu + Aw1 = s1 = c'pu + Aw'j, 

cqu + Bwo = s.2 = cqu + Bo/3, 

CTll —p Oci)g ^ Sg = CVU ~p Ooj o, 

cPU - An, = Sj = cPU' - An'i, 

cQU — Bn3 = So = cQU' ~ Bob, 

cKU - Ca3 = $3 = cKU' - Cfi'8. 

As before, we form the equations, 

u — u' + U — U' = 0, 
• < 

Cp (u — u) + A (aq — CO :) = 0, 

cq (u — u) B(a>.2 — oj'2) = 0, 

cr (u — u') + C (w3 — o/3) = 0, 

cP (U — U') - A (Xlj — n\) = 0, 

cQ (U — U') - B (n.2 - xi'3) = o, 

cB (U — CP) — C (fig — fl'g) = 0, 

and by the conservation of energy, 

(u -|- u ) (u — u') + (U -p U7) (U — U') -p A (wj -p (oq — a)\) -p &c. = 0 

and equating the determinant to zero, 

u — U — c i^p>(^\ ~P qvto -p xo)3 -p Pfij -p Qn3 -p Ilfig) = p, 

U — U — C (po) ^ -p q(0 3 -p T(x) 3 ~P Pfi j -P Qfi 3 ~P Pvfi g) ~ — p 

We can now substitute Y, sl5 s.2, s3, Sl5 S3, S3, p for S2 . . . in the general 

equation, and we obtain, as before, the result that the Maxwell-Boltzmann distri¬ 

bution, given existing, is not affected by collisions. 

10. Professor Burnside obtains the same eight equations as above given, and I 

acknowledge my obligation to him, but he originally deduced the result that the 

energy of rotation is twice the energy of translation, instead of equal to it, as, 

according to the theory, it should be. He has since seen reason to change his views 

with regard to this problem. 
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The equations given by Professor Burnside can easily be modified so as to meet the 

case of elastic bodies of any shape. 

11. It would not be difficult to extend the method of (8) and show that the 

Maxwell-Boltzmann distribution is a necessary, as well as a sufficient condition for 

stationary motion. But that is more completely done by following or extending 

Boltzmann’s method. 

Let there be a set of systems which we will call systems M, whose co-ordinates and 

velocities are . . . pr and /q . . . pr. 

Let the number of such systems for which at any instant the co-ordinates lie 

between the limits 

Pi and pi + dpi' 

.> 

pr and pr + dpr _ 

• ■ (A). 

and the velocities between the limits 

be 

or, shortly, 

lh and pi + dpi 

.>. 

pr and pr -f dpf. __ 

¥ (pi ... pr pi .. . p^ dpi . . . dpr dpi . . . dpr, 

¥dpi . . . dp,, dpi . . . dp,-. 

(A'), 

Let there be another set of systems, which we will call systems m, whose co¬ 

ordinates are p>r+1 ■ ■ • pit and velocities + 1 . . . p». 

And let the number of systems m for which at any instant the coordinates lie 

between the limits 

pr + i and £>,•+] -f- dpr + 1 

.> 

pit and p„ + dp„ 

(B), 

and the velocities between the limits 

be 

py+l andpr+i + dp,. + i 

p„ and p„ + dp„ 

f ( Pr +1 ■ • ■ _Pr +1 • • • pn) dpr+1 . . . dp„ dpr+ i . . . dpn 

(n 
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or, shortly, 

f. dp,+l . . . d/pn d/jp r+y ■ ■ . dp„ 

The number of pairs of systems, each consisting of one system from each set, whose 

coordinates and velocities at any instant lie within the above limits, is 

d'pi . . . d'p r dp r+i . . . dp n Yf. 

Now let \p be a function of the coordinates which cannot become positive, and 

such that when \fj — 0 the velocities change discontinuously, and a collision occurs. 

We may use \p for one of our coordinates, expressing pn in terms of px . . . pn-\ 

and and in like manner pn in terms of px . . . p„-i and \p. All those pairs for which 

at the given instant ip lies between zero and — \pbt, \p being positive, will undergo 

collision within the time at after that instant. And so the number of such collisions 

in unit time is, writing E for \p, 

dpi . . . dpn_i dpi . . . d/p,l_l dR. F/E. 

Here F is a function ofyq . . . pr only, but f by virtue of the elimination of pn and 

p>n, is now a function^ . . . pn_\ andy>x . . . pn_i E. 

Each of these collisions changes p>l into P\, &c., that is, changes the system from 

the first into the second state. The number in unit time of collisions, which with the 

same coordinates change the system from the second state with reversed velocities 

into the first state with reversed velocities, is 

dpi . . . dpH_i dp\ . . . dp'n_i dR F'/'E, 

in which Y',f' are the same functions of p\, &c., as F, f are of pjv &c. 

By a known theorem 

dp\ . . . dpn_ j = d/pi . . . dp,t_u 

and in Maxwell’s distribution Yf—Y'f. And so the number of reverse collisions 

is in that distribution equal to the number of direct collisions. And this insures the 

permanence of the distribution. It is assumed that there are always as many systems 

with any given set of velocities as with those velocities reversed. And so we speak 

of the second state with reversed velocities as equivalent to the second state. 

12. If Yf = Yf the number of reverse collisions is not equal to the number of 

direct collisions. And, therefore, more (or fewer) pairs of systems pass out of the 

first state into the second than vice versa. In that case the number of systems M. 

whose coordinates and velocities are within the limits A. A', Is increased by collisions 
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with systems on, whose coordinates and velocities lie within the limits B, B', by the 

quantity 

dpx . . . dpn_l dp1 . . . dp„_i c/R (F f — Ff) R per unit of time, 

and is increased per unit of time by collisions with systems on for all values of 

pr +1 . . . pn by the quantity 

dpi . . ■ dpr dpi . . . dpr ||. . . (Ff — F/) R dpr+l . . . dpn_Y eZR, 

all values of pr+i, &c., being included in the integration. 

We will now assume (see p. 418, post) that the velocities of M and on are not on 

average altered except by collision between M and on. And so the above-mentioned 

increments are the only increments by which the class of M systems within the limits 

A, A' is affected. 

In that case 

(1ff dpi . . . dpr = dpi . . . dpr ||. . . (Ff' — Ff) R dpr+1 . . . dpn_x r/R, 

and, therefore, 

r r fZF 
I j ... — log F dpi . . . dp,, (over all values of px . . . pr) 

= || • • • (F/' — Ff) R log F dpi . . . dpn_i dR. 

By symmetry, as the right-hand member includes all possible collision between 

M and on, 

ff • ■ • fh°g fdpr+l . . . dp, 

= {[... (F’f - Vf) E log f dp, . . . dp,., <£R, 

and, therefore, 

dF 
dt 

r- /» ^ 

log F dPl . . . dpr + j j . . . jt logfdpr+l .. . dpn 

= || • • • (W' ~ F/) Tt log (F/) dpl . . . dpn_j dR. 

By symmetry, as we may interchange the accents, 

jj • • • f-logFc¥i • . ■ dp, + . . . d£ log/ dp, +, 

= {[{... (Ff- Ff) R log (Ff) dp, . . . dp,!., dB, 
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and. therefore, 

= i f j| ■ • • (L/'' - F/) R log S. dPi.,. dpK_, dB. 

Now let 

H = HI. . . F (log F — 1 )dpl . . . dpr + HI. . . /(log/ — 1) dpr+l . . . dp„ 

and, therefore, 

^ = ill • • • f lo§F dP> ■ ■ ■ l!P' + ![[••• % l°sfdP'+‘ ■ ■ ■ 4. 

= i fj| • • • (W - rn R logdPl... dp„_, cm, 

as we have seen. 
Now, this expression is necessarily negative, unless F f = F/ whenever the pair of 

systems having coordinates and velocities px . . . can pass by collision, and, there¬ 

fore, with unchanged kinetic energy, into the state in which they are ■pl . . . p',„ that 
is, unless the Maxwell-Boltzmann distribution exist, and is then zero. H therefore 

tends to a minimum which it reaches when F/’= F f. 
We will now make 

H = H, + K 

where 1/ is the minimum value assumed by H when F f — F/i Then dll’dt = 0, 

and dK/dt = dH/dt, and is always negative. We may define the function K to be the 

disturbance, and (l/K) (dK/dt) to be the rate of subsidence of the disturbance by 
collision. In certain cases, we can calculate the rate. 

13. We have assumed that / varies only as the result of collisions. That is, if 
bf/dt denote the time variation of / due to causes other than collisions, and 8Hjdt be 
formed from df/dt as dK/dt from df jdt, then 8H/dt = 0, on average. It is worth 
while to consider on what condition this nra}^ be safely assumed. 

Let 

As we are dealing with rigid elastic bodies under the action of no forces, we may 

treat / as a function of three translation velocities, and three angular velocities, 
wv iv2, ivz, about three principal axes of the solids. Let A, B, C, be the principal 
moments of inertia. Evidently, there being no forces, the translation velocities cannot 
vary except as the result of collisions. But for each solid, wv w.z, may vary, the 
law of their variations being Euler’s equations. We may, therefore, in calculating 

dH/bt treat/as a function of u\, iv2, only. Then 
MDCCCXCII. —A. 3 H 
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and 

df 
dt 

df dvjj df dw2 df dws 

dwx dt dw2 dt dio% dt 

B - C df C - A df 
= - ,—w.2Wo H--—~ ivy Wo -f 

A du\ " 3 B dv:>„ 1 J C 

A - B tf/ 

dVJn 
W, 10. 1 

0H B - C 

df 
df 

A JJJ du\ 
log/, ivo Wo. dwx dwo dwz, 

with two other corresponding terms, the limits being in each dz co . Now, with these 

limits, 

j]( log/- W-2 uh • dwi dw2 d*h 

= || div2 dwz w\2 io3 {/ log ./1 = 00 -/ log /*=_»}. 

Now, we may assume /= 0 and/log/= 0, when any one of the three variables is 
infinite, whether positive or negative. And this assumption is sufficient to justify 

the statement 0H/dt = 0. 
14. It is possible to calculate, in a simple case, the rate at which a disturbance subsides 

by collisions. For example, two sets of elastic spheres, N of mass M, and n of mass 
m, in unit of volume. In the normal state, the number in unit of volume, whose 
velocities are represented by lines drawn from an origin to points within an element 
of volume U3 sin 9 dO df dXJ is for the M spheres 

N t^~J e -U3 sin 9 d9 df dXJ, 

where U, 9, f are usual spherical coordinates ; or, let us say, 

F(U) = N^Je-/iMub 

Similarly, for the m spheres, 

f(u) = e~hm'* 

expresses the law of distribution of velocities in the undisturbed state. We will 
write F and / for these expressions. 

We will now suppose there is a small disturbance consisting in h having different 
values for the two sets. ~Leth be written h (l + F) for the M spheres, and h (1 + d) 
for the m spheres. We shall neglect third and higher powers of D, d. Then F 
becomes in the disturbed state 

N ( ~J(1 + D)le_,l(1+D)MU2, 
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that is, 
(ii M \ 7 

N^V) ^ + D)=e-7iMU2{l - ADMIT" + terms in D3}. 

(It will appear that terms in D3, &c., are not required.) 

Similarly /becomes 

n ^~rn-^j (1 -f- df e-/m“2(i — dhmu3 + dd &c.). 

We will further suppose that the disturbance is introduced without changing the 

total energy. That gives the relation 

N. 
2h a + D) n 2h (1 + D) 2k 

or 
N 

+ 1 + D 1 1 + cl 
= N 4- n. 

15. The disturbance will subside by collisions between M and m. And we will 

treat of the case in which it subsides in such manner that the above values of F and f 

apply at every instant with the values that D and d at that instant have. Such a 

mode of subsidence is possible, at all events if our equations lead (as they do) to 

a relation of the form (1/K) (dK/dt) = constant. 

Let us then form the function 

H = fT r. F (log F - 1) IP sin a da d/3 dV, 
J 0 J 0 J 0 

where U, a, and (3 are usual spherical coordinates, 

r CO /*7T c2tt 

+ /(log/— l) u2 sin a da d/3 du, 
JO j0J 0 

where F and /have the values above given. 

That is 

H = | log (1 + D)j]jF.U3 sin «da d(3 dXJ 

+ f l°g (1 + d) \\\fu* sin a da d/3 du 

+ terms independent of D and d, 

H = N | log (1 + D) + n flog (1 + d), 

-j- terms independent of D and d, 

FIT3 sin a da d/3 c/ U = N 

\i~ sin a da d/3 du = n. 

3 ii 2 

or 

because 
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The terms independent of D and cl are equivalent to H1? the minimum value of H 

when there is no disturbance. 

And so 

K = H — Hj = |N log (I -4- D) -f£nlog(l +d). 

That is 

Now since 

and 

K = |re(cZ-f) + |N(,D-1,i 

N , n ,T . 
+ 4 AH = N + n, 1 + D 1 1 4 d 

D = - 
nd 

K = |w (d--0 -|N. 

N + (N + n) cl 

nd 

X + (X + n) d 4 ‘ {X 4- (X 4 n) cl}~ 

= | n ( cl — 7-) — # nd. {1 
X 4 n A 3 n-d2 

X 7 — T {X 4 (X 4 n) ciy 

= I N- (N + ») d3. 

In order to find dK/dt we will transform our coordinates thus : Let V denote the 

velocity of the centre of inertia of a pair of spheres M and m, p their relative velocity, 

6 the angle between Y and p. Then 

2 m m 

U' + Ul 4- m P) + M 4 m 
Yp cos 6 

3_™ . ( M 
— V ~ -f- ( vv-p 

\M + m' 

2M 
, T Yp cos 6 
M 4 m r 

and 

and so 

MU~ + mid = (M + m) V2 + 
Mm 

XM + in 

F/= Nn (~J (~~f (1 + D)*(l + d)U-h<du + m)Y1 + w^/2} (1 - D//MU- - clhmvd) 

Yf = Nw (^J (1 + D)* (1 + df e~h {(M + “)V2+W!} (1 - DAMU'2 - dhmu'*) 

where U', u' are the values of U, u after collision. 
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Therefore 

F/- F’f = Nn (^y (1 + D):’ (l + df €-*{(M + ».)v»+i^P*} 
7T / \ 7T 

2\ ) {D/Oi(U'3 - U3) + dhm (u2 -tr) 

Now, if 9' be what 6 becomes after collision, 

U'3 - U3 = 2Yp . —(cos - cos 0) 
r M + m v 

" — u~ - 2Yp M 

]\I + m 
(cos O’ — cos 0) 

Also by the relation 

N , n ,T , 

Hd + rr^ - N +,i 

D = - 
nd 

N + (N + n) d ’ 

and making; these substitutions 

F'f - Ff = Nn (~J M (1 + D)» (1 + dfe~k f + p 5 

hJ^-2 . Vp. 
N + a 

Also 

M + m ' r ’ N + (N + ft) 

N + » 

(cos 0' — cos 6) d). 

. py 7 Mm ,T 

°§’ py = ^ M + m PN + (N + n) d 
(cos 9 — cos 6') d. 

In forming (F'f' — Ff) log (Ff/F'f) we see that the last factor is squared, and so 

the product contains the factor d2. We may, therefore, now write 1 for (1 + D)1 and 

(1 + d) ’, and also write (N + n)/N for (N + ??)/{N -j- (N -f~ n)d], otherwise we 

should have terms in d3. 
Therefore 

(F f - W) l»g §’=- N» (ff (tY «" * 
] (M + m) . . - ,, . 
<- M + m 3 ) V* + Mill o ) p~ r 

a3 y3 
Jm 

M + m 

ITT.) O (N “P ^0 / /!/ 

4v~p~ —^.2 (cos 9 — cos u)\ 

Again, dK/dt contains the factor ifj denoting the frequency of collision. Now the 

number of collisions given V and p in unit of volume and time is proportional to 

7rs3p, where s is the sum of the radii of M and m. Also all directions of p before 

collision are equally probable, and given the direction before collision, all directions 

after collision are equally probable. Therefore, given Y and p, the number in unit of 
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volume and time of colliding pairs for which the angle between Y and p before 

collision is between 6 and 6 + clO is ^vs^p sin 6 cW, and the number for which after 

collision it lies between 6' and 6' + dO" is rs^p sin 6' dO'. Hence we have to 

multiply (cos O’ — cos 6f by ^vs°p sin 6 d6 sin 6' dd', and integrate in each case from 

7t to 0. The result is §7TS2p. 

And so we get 

dK 

dt 
= - f N n 

(N + nf 

N3 
hW 

/ Mm Y 

\M + m) 

x rr r y3 dv Sm«da ^ \\/P ^ 4y y. 
Jo-'O-’O •'ri 

where V, a, /3 are usual spherical coordinates 

4 n 

v/ttN 
(N + w3) 

-y/( M??l) 7TS3 „ 

(M + m)* \/h d~ 

Also, as we have seen 

K = |^(N + n)d\ 

and therefore 

= - A-(N +»> Y K dt o^/ir ^ ' (M + wi)s s/h 

— — C suppose. 

And if K0, D0, d0 be initial values, 

K = K0e-Ci, D = D0e-i<;i, d = d0e~ict, 

the rate of subsidence is directly proportional to the density and to the square root of 

the absolute temperature.* 

* Since writing the above I find that this result has already been obtained for the case of elastic 

spheres by Professor Tait, by an independent method. 
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XI. On the Forces, Stresses, and Fluxes of Energy in the Electromagnetic Field. 

By Oliver Heaviside, F.R.S. 

Received June 9,—Read June 18, 1891.* 

General Remarks, especially on the Flux of Energy. 

§ 1. The remarkable experimental work of late years has inaugurated a new era in 

the development of the Faraday-Maxwellian theory of the ether, considered as the 

primary medium concerned in electrical phenomena—electric, magnetic, and electro¬ 

magnetic. Maxwell’s theory is no longer entirely a paper theory, bristling with 

unproved possibilities. The reality of electromagnetic waves has been thoroughly 

demonstrated by the experiments of Hertz and Lodge, Fitzgerald and Trouton, 

J. J. Thomson, and others ; and it appears to follow that, although Maxwell’s theory 

may not be fully correct, even as regards the ether (as it is certainly not fully 

comprehensive as regards material bodies), yet the true theory must be one of the 

same type, and may probably be merely an extended form of Maxwell’s. 

No excuse is therefore now needed for investigations tending; to exhibit and 

elucidate this theory, or to extend it, even though they be of a very abstract nature. 

Every part of so important a theory deserves to be thoroughly examined, if only to 

see what is in it, and to take note of its unintelligible parts, with a view to their 

future explanation or elimination. 

§ 2. Perhaps the simplest view to take of the medium which plays such a necessary 

part, as the recipient of energy, in this theory, is to regard it as continuously filling all 

space, and possessing the mobility of a fluid rather than the rigidity of a solid. If 

whatever possess the property of inertia be matter, then the medium is a form of 

matter. But away from ordinary matter it is, for obvious reasons, best to call it as 

usual by a separate name, the ether. Now, a really difficult and highly speculative 

question, at present, is the connection between matter (in the ordinary sense) and 

ether. When the medium transmitting the electrical disturbances consists of ether 

and matter, do they move together, or does the matter only partially carry forward 

the ether which immediately surrounds it ? Optical reasons may lead us to conclude, 

though only tentatively, that the latter may be the case ; but at present, for the 

purpose of fixing the data, and in the pursuit of investigations not having specially 

* TyP°8'raphical troubles have delayed the publication of this paper. The footnotes are of date 

May 11, 1892. 

11.8.92 
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optical bearing, it is convenient to assume that the matter and the ether in contact 

with it move together. This is the working hypothesis made by H. Hertz in his 

recent treatment of the electrodynamics of moving bodies; it is, in fact, what we 

tacitly assume in a straightforward and consistent working out of Maxwell’s 

principles without any plainly-expressed statement on the question of the relative 

motion of matter and ether; for the part played in Maxwell’s theory by matter is 

merely (and, of course, roughly) formularised by supposing that it causes the etherial 

constants to take different values, whilst introducing new properties, that of dissipating 

energy being the most prominent and important. We may, therefore, think of merely 

one medium, the most of which is uniform (the ether), whilst certain portions (matter 

as well) have different powers of supporting electric displacement and magnetic induc¬ 

tion from the rest, as well as a host of additional properties; and of these we can 

include the power of supporting conduction current with dissipation of energy according 

to Joule’s law, the change from isotropy to eolotropy in respect to the distribution 

of the several fluxes, the presence of intrinsic sources of energy, &c.# 

§ 3. We do not in any way form the equations of motion of such a medium, even 

as regards the uniform simple ether, away from gross matter ; we have only to discuss 

it as regards the electric and magnetic fluxes it supports, and the stresses and fluxes 

of energy thereby necessitated. First, we suppose the medium to be stationary, and 

examine the flux of electromagnetic energy. This is the Poynting flux of energy. 

Next we set the medium into motion of an unrestricted kind. We have now neces¬ 

sarily a convection of the electric and magnetic energy, as well as the Poynting 

flux. Thirdly, there must be a similar convection of the kinetic energy, &c., of the 

translational motion; and fourthly, since the motion of the medium involves the 

working of ordinary (Newtonian) force, there is associated with the previous a flux of 

energy due to the activity of the corresponding stress. The question is therefore a 

complex one, for we have to properly fit together these various fluxes of energy in 

harmony with the electromagnetic equations. A side issue is the determination 

of the proper measure of the activity of intrinsic forces, when the medium moves ; in 

another form, it is the determination of the proper meaning of t£ true current ” in 

Maxwell’s sense. 

§ 4. The only general principle that we can bring to our assistance in interpreting 

electromagnetic results relating to activity and flux of energy, is that of the per- 

* Perhaps it is best to say as little as possible at present about tbe connection between matter and 

ether, but to take tbe electromagnetic equations in an abstract manner. Tbis will leave us greater 

freedom for future modifications without contradiction. There are, also, cases in which it is obviously 

impossible to suppose that matter in bulk carries on with it the ether in bulk which permeates it. 

Either, then, the mathematical machinery must work between the molecules ; or else, we must make such 

alterations in the equations referring to bulk as will be practically equivalent in effect. For example, 

the motional magnetic force VDq of equations (88), (92), (93) may be modified either in q or in D, by 

use of a smaller effective velocity q, or by the substitution in D or cE of a modified reckoning of c for 

the effective permittivity. 
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sistence of energy. But it would be quite inadequate in its older sense referring to 

integral amounts ; the definite localisation by Maxwell, of electric and magnetic 

energy, and of its waste, necessitates the similar localisation of sources of energy ; 

and in the consideration of the supply of energy at certain places, combined with the 

continuous transmission of electrical disturbances, and therefore of the associated 

energy, the idea of a flux of energy through space, and therefore of the continuity of 

energy in space and in time, becomes forced upon us as a simple, useful, and necessary 

principle, which cannot be avoided. 

When energy goes from place to place, it traverses the intermediate space. Only 

by the use of this principle can we safely derive the electromagnetic stress from the 

equations of the field expressing the two laws of circuitation of the electric and 

magnetic forces ; and this again becomes permissible only by the postulation of the 

definite localisation of the electric and magnetic energies. But we need not go so far 

as to assume the objectivity of energy. This is an exceedingly difficult notion, and 

seems to be rendered inadmissible by the mere fact of the relativity of motion, on 

which kinetic energy depends. We cannot, therefore, definitely individualise energy 

in the same way as is done with matter. 

If p be the density of a quantity whose total amount is invariable, and which can 

change its distribution continuously, by actual motion from place to place, its equation 

of continuity is 

couv qp = p,.(1) 

where q is its velocity, and qp the flux of p. That is, the convergence of the flux of 

p equals the rate of increase of its density. Here p may be the density of matter. 

But it does not appear that we can apply the same method of representation to the 

flux of energy. We may, indeed, write 

cony X = T,.(2) 

if X be the flux of energy from all causes, and T the density of localisable energy. 

But the assumption X = Tq would involve the assumption that T moved about like 

matter, with a definite velocity. A part of T may, indeed, do this, viz., when it is 

confined to, and is carried by matter (or ether) ; thus we may write 

conv (qT + X) = T,.(3) 

where T is energy which is simply carried, whilst X is the total flux of energy from 

other sources, and which we cannot symbolise in the form Tq; the energy which 

comes to us from the Sun, for example, or radiated energy. It is, again, often 

impossible to carry out the principle in this form, from a want of knowledge of how 

energy gets to a certain place. This is, for example, particularly evident in the case of 

gravitational energy, the distribution of which, before it is communicated to matter, 

MDCCCXCII.—A. 3 T 
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increasing its kinetic energy, is highly speculative. If it come from the ether (and 

where else can it come from ?), it should be possible to symbolise this in X, if not in 

qT; but in default of a knowledge of its distribution in the ether, we cannot do so, 

and must therefore turn the equation of continuity into 

S + conv (qT + X) = T,.(4) 

where S indicates the rate of supply of energy per unit volume from the gravitational 

source, whatever that may be. A similar form is convenient in the case of intrinsic 

stores of energy, which we have reason to believe are positioned within the element 

of volume concerned, as when heat gives rise to thermoelectric force. Then S is the 

activity of the intrinsic sources. Then again, in special applications, T is conveniently 

divisible into different kinds of energy, potential and kinetic. Energy which is 

dissipated or wasted comes under the same category, because it may either be regarded 

as stored, though irrecoverably, or passed out of existence, so far as any immediate 

useful purpose is performed. Thus we have as a standard practical form of the 

equation of continuity of energy referred to the unit volume, 

S + conv {X + q (U + T)} = Q + U + T.(5) 

where S is the energy supply from intrinsic sources, U potential energy and T kinetic 

energy of localisable kinds, q (U + T) its convective flux, Q the rate of waste of 

energy, and X the flux of energy other than convective, e.g., that due to stresses in 

the medium and representing their activity. In the electromagnetic application we 

shall see that U and T must split into two kinds, and so must X, because there is a 

flux of energy even when the medium is at rest. 

§ 5. Sometimes we meet with cases in which the flux of energy is either wholly or 

partly of a circuital character. There is nothing essentially peculiar to electromagnetic 

problems in this strange and apparently useless result. The electromagnetic instances 

are paralleled by similar instances in ordinary mechanical science, when a body is 

in motion and is also strained, especially if it be in rotation. This result is a necessary 

consequence of our ways of reckoning the activity of forces and of stresses, and serves 

to still further cast doubt upon the “ thinginess ” of energy. At the same time, the 

flux of energy is going on all around us, just as certainly as the flux of matter, and 

it is impossible to avoid the idea ; we should, therefore, make use of it and formularise 

it whenever and as long as it is found to be useful, in sjoite of the occasional failure to 

obtain readily understandable results. 

The idea of the flux of energy, apart from the conservation of energy, is by no 

means a new one. Had gravitational energy been less obscure than it is, it might 

have found explicit statement long ago. Professor Poynting* brought the principle 

* Potnting, ‘ Phil. Trans.,’ 1884. 
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into prominence in 1884, by making use of it to determine the electromagnetic flux of 

energy. Professor Lodge* gave very distinct and emphatic expression of the principle 

generally, apart from its electromagnetic aspect, in 1885, and pointed out how much 

more simple and satisfactory it makes the principle of the conservation of energy 

become. So it would, indeed, could we only understand gravitational energy ; but in 

that, and similar respects, it is a matter of faith only. But Professor Lodge attached, 

I think, too much importance to the identity of energy, as well as to another principle 

he enunciated, that energy cannot be transferred without being transformed, and 

conversely; the transformation being from potential to kinetic energy or conversely. 

This obviously cannot apply to the convection of energy, which is a true flux of 

energy; nor does it seem to apply to cases of wave motion in which the energy, 

potential and kinetic, of the disturbance, is transferred through a medium unchanged 

in relative distribution, simply because the disturbance itself travels without change 

of type; though it may be that in the unexpressed internal actions associated with 

the wave propagation there might be found a better application. 

It is impossible that the ether can be fully represented, even merely in its trans¬ 

missive functions, by the electromagnetic equations. Gravity is left out in the cold ; 

and although it is convenient to ignore this fact, it may be sometimes usefully 

remembered, even in special electromagnetic work ; for, if a medium have to contain 

and transmit gravitational energy as well as electromagnetic, the proper system of 

equations should show this, and, therefore, include the electromagnetic. It seems, 

therefore, not unlikely that in discussing purely electromagnetic speculations, one 

may be within a stone’s throw of the explanation of gravitation all the time. The 

consummation would be a really substantial advance in scientific knowledge. 

On the Algebra and Analysis of Vectors without Quaternions. Outline of Author s 

System. 

§ 6. The proper language of vectors is the algebra of vectors. It is, therefore, 

quite certain that an extensive use of vector-analysis in mathematical physics 

generally, and in electromagnetism, which is swarming with vectors, in particular, is 

coming and may be near at hand. It has, in my opinion, been retarded by the want of 

special treatises on vector analysis adapted for use in mathematical physics, Professor 

Tait’s well-known profound treatise being, as its name indicates, a treatise on 

Quaternions. I have not found the Hamilton-Tait notation of vector operations 

convenient, and have employed, for some years past, a simpler system. It is not, 

however, entirely a question of notation that is concerned. I reject the quaternionic 

basis of vector-analysis. The anti-quaternionic argument has been recently ably 

stated by Professor Willard Gibbs.! He distinctly separates this from the question 

* Lodge, ‘ Phil. Mag.,’ June, 1885, “ On the Identity of Energy.” 

t Professor Gibbs’s letters will he found in ‘Nature,’ vol. 43, p. 511, and vol. 44, p. 79; and Professor 

3 I 2 
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of notation, and this may be considered fortunate, for whilst I can fully appreciate and 

(from practical experience) endorse the anti-quaternionic argument, I am unable to 

appreciate his notation, and think that of Hamilton and Tait is, in some respects, 

preferable, though very inconvenient in others. 

In Hamilton’s system the quaternion is the fundamental idea, and everything 

revolves round it. This is exceedingly unfortunate, as it renders the establishment 

of the algebra of vectors without metaphysics a very difficult matter, and in its 

application to mathematical analysis there is a tendency for the algebra to get more 

and more complex as the ideas concerned get simpler, and the quaternionic basis forms 

a real difficulty of a substantial kind in attempting to work in harmony with ordinary 

Cartesian methods. 

Now, I can confidently recommend, as a really practical working system, the 

modification I have made. It has many advantages, and not the least amongst them is 

the fact that the quaternion does not appear in it at all (though it may, without 

much advantage, be brought in sometimes), and also that the notation is arranged so 

as to harmonise with Cartesian mathematics. It rests entirely upon a few definitions, 

and may be regarded (from one point of view) as a systematically abbreviated 

Cartesian method of investigation, and be understood and practically used by any one 

accustomed to Cartesians, without any study of the difficult science of Quaternions. 

It is simply the elements of Quaternions without the quaternions, with the notation 

simplified to the uttermost, and with the very inconvenient minus sign before scalar 

products done away with.'" 

Tait’s in vol. 43, pp. 535, 608. Tins rather one-sided discussion arose out of Professor Tait stigmatising 

Professor Gibbs as “ a retarder of quaternionic progress.” This may be very true; but Professor Gibbs 

is anything hut a retarder of progress in vector analysis and its application to physics. 

* §§ 7, 8, 9 contain an introduction to vector-analysis (without the quaternion), which is sufficient 

for the purposes of the present paper, and, I may add, for general use in mathematical physics. It is an 

expansion of that given in my paper “ On the Electromagnetic Wave Surface,” ‘ Phil. Mag.,’ June, 1885. 

The algebra and notation are substantially those employed in all my papers, especially in “ Electromag¬ 

netic Induction and its Propagation,” ‘ The Electrician,’ 1885. 

Professor Gibbs’s vectorial work is scarcely known, and deserves to be well known. In June, 1888, I 

received from him a little book of 85 pages, bearing the singular imprint Not Published. Newhaven, 

1881-4. It is indeed odd that the author should not have published what he had been at the trouble of 

having printed. His treatment of the linear vector operator is specially deserving of notice. Although 

“ for the use of students in physics,” I am bound to say that I think the work much too condensed for a 

first introduction to the subject. 

In ‘The Electrician’ for Nov. 13, 1891, p. 27, I commenced a few articles on elementary vector- 

algebra and analysis, specially meant to explain to readers of my papers how to work vectors. I am 

given to understand that the earlier ones, on the algebra, were much appreciated; the later ones, 

however, are found difficult. But the vector-algebra is identically the same in both, and is of quite a 

rudimentary kind. The difference is, that the later ones are concerned with analysis, with varying 

vectors; it is the same as the difference between common algebra and differential calculus. The 

difficulty, whether real or not, does not indicate any difficulty in the vector-algebra. I mention this on 

account of the great prejudice which exists against vector-algebra. 
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§ 7. Quantities being divided into scalars and vectors, I denote the scalars, as 

usual, by ordinary letters, and put the vectors in the plain black type, known, I 

believe, as Clarendon type, rejecting Maxwell’s German letters on account of their 

being hard to read. A special type is certainly not essential, but it facilitates the 

reading of printed complex vector investigations to be able to see at a glance which 

quantities are scalars and which are vectors, and eases the strain on the memory. 

But in MS. work there is no occasion for specially formed letters. 

Thus A stands for a vector. The tensor of a vector may be denoted by the same 

letter plain; thus A is the tensor of A. (In MS. the tensor is A0.) Its rectangular 

scalar components are A1? A3, A3. A unit vector parallel to A may be denoted by 

Aj, so that A = AAX. But little things of this sort are very much matters of taste. 

What is important is to avoid as far as possible the use of letter prefixes, which, 

when they come two (or even three) together, as in Quaternions, are very confusing. 

The scalar product of a pair of vectors A and B is denoted by AB, and is defined 

to be 

AB = AlBl + AML + A3B3 = AB cos AB = BA.(6) 

The addition of vectors being as in the polygon of displacements, or velocities, or 

forces ; he., such that the vector length of any closed circuit is zero; either of the 

vectors A and B may be split into the sum of any number of others, and the multi¬ 

plication of the two sums to form AB is done as in common algebra; thus 

(a t b) (c + d) = ac + ad + be + t>d. 

— C& “I- d-f- cb “l- db. 

If N be a unit vector, NN or N3 = I ; similarly A3 = A3 for any vector. 

The reciprocal of a vector A has the same direction ; its tensor is the reciprocal of 

the tensor of A. Thus 

AA-' = ^=1; 

and 

AB-1 = B-1 A = 4 ~ cos AB.(g) 
B r> 

The vector product of a pair of vectors is denoted by YAB, and is defined to be 

the vector whose tensor is AB sin AB, and whose direction is perpendicular to 

the plane of A and B. Or 

YAB - i (A3B3 - A3B3) + j (A3B3 - A3B3) + k (A1B3 - A^BQ - - VBA, ... (9) 

where i, j, k, are any three mutually rectangular unit vectors. The tensor of YAB is 

Y0AB; or 

V0AB = AB sin AB. (10) 
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Its components are iVAB, jVAB, kVAB. 

In accordance with the definitions of the scalar and vector products, we have 

i2 = I. J2 = h k2=l;] 

ij = 0, jk = 0, ki = 0; }.(11) 

Vij = k, Vjk = i, Vki = j ; J 
and from these we prove at once that 

V (a + b) (c + d) = Vac + Vad + Vbc + Vbd, 

and so on, for any number of component vectors. The order of the letters in each 

product has to be preserved, since Yab = — Yba. 

Two very useful formulae of transformation are 

and 

AVBC = SVGA ----- CVAB 

Ax (B2C3 - B3Co) + Ao (BgCj - B1Cg) + A3 (BLC3 - B^) ; 

VAVEC = B.CA - C.AB, ] 

= B(CA) -C(AB) 

• (12) 

• (13) 

Here the dots, or the brackets in the alternative notation, merely act as separators, 

separating the scalar products CA and AB from the vectors they multiply. A space 

would be equivalent, but would be obviously unpractical. 

As ~ is a scalar product, so in harmony therewith, there is the vector product Y -. 
JD 

Since YAB = — VBA, it is now necessary to make a convention as to whether the 

denominator comes first or last in Y-. Say therefore, VAB-1. Its tensor is 
B 

TT A _ A . A 
’ o b B sm (14) 

§ 8. Differentiation of vectors, and of scalar and vector functions of vectors with 

respect to scalar variables is done as usual. Thus, 

A = iAj + jA, + kAg. 

d . 
^ AB — AB -f- BA. 

d 
-77 AVBC - AVBC + AVBC + AVBC. 

(15) 

The same applies with complex scalar differentiators, e.</., with the differentiator 

0 d 
dt = dt + qV’ 
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used when a moving particle is followed, q being its velocity. Thus, 

0 0B 0A 
f=r AB — A ^ + B ~?r- 
0/ dt dt 

= AB + BA + A.qV.B + B.qV.A. 

Here qV is a scalar differentiator given by 

cl d d 

qV = q'dx + q*dy + q*~dz' ' 

• • (16) 

(17) 

so that A.qV.B is the scalar product of A and the vector qV.B ; the dots here again 

act essentially as separators. Otherwise, we may write it A (qV) B. 

The fictitious vector V given by 

V = iV1+jV2 + kV3 = i^ + j^ + k^.(18) 

is very important. Physical mathematics is very largely the mathematics of V. The 

name Nabla seems, therefore, ludicrously inefficient. In virtue of i, j, k, the operator 

V behaves as a vector. It also, of course, differentiates what follows it. 

Acting on a scalar P, the result is the vector 

VP = iVjP + jVoP + kV3P, (19) 

the vector rate of increase of P with length. 

If it act on a vector A, there is first the scalar product 

VA = ViAj + V2A3 + V3A3 = div A,.(20) 

or the divergence of A. Regarding a vector as a flux, the divergence of a vector is 

the amount leaving the unit volume. 

The vector product WA is 

YVA --= i (VoAs - V3A2) + j (V3A! - VjAg) + k (y^ - V.A,), 

== curl A.(21) 

The line-integral of A round a unit area equals the component of the carl of A 

perpendicular to the area. 

We may also have the scalar and vector products NV and VHV, where the vector 

M is not differentiated. These operators, of course, require a function to follow them 

on which to operate; the previous qV.A of (16) illustrates. 

The Laplacean operator is the scalar product V2 or VV : or 

V* = vy + Vo3 + V33; (22) 
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and an example of (13) is 

VVVVA = V.VA - V2A, 
or 

curPA = V cliv A - V3A,. 

which is an important formula. 

Other important formulae are the next three. 

cliv PA = P cliv A + AV.P,. 

(23) 

(24) 

P being scalar. Here note that AV.P and AVP (the latter being the scalar product 

of A and VP) are identical. This is not true when for P we substitute a vector. 

Also 

cliv YAB = B curl A — A curl B;.(_25) 

which is an example of (12), noting that both A and B have to be differentiated. 

And 

curl VAB = BV.A + A div B - AV.B - B cliv A. (26) 

This is an example of (13). 

§ 9. When one vector D is a linear function of another vector E, that is, con¬ 

nected by equations of the form 

Di = c11E1 + c12E2 + c13E3, I 

D2 - ~t CooBo + c23E3, >,.(27) 

H.3 = C31E1 + C32E2 + c33E3'J 

in terms of the rectangular components, we denote this simply by 

I) = cE, (28) 

where c is the linear operator. The conjugate function is given by 

D' = c'E,.(29) 

where D' is got from D by exchanging c13 and c21, &c. Should the nine coefficients 

reduce to six by c12 = c21, &c., I) and D are identical, or D is a self-conjugate or sym¬ 

metrical linear function of E. 

But, in general, it is the sum of D and D' which is a symmetrical function of E, 

and the difference is a simple vector-product. Thus 

X) = c0E + V€E,1 

D' - c0E - V€E, J 
(30) 

where c0 is a self-conjugate operator, and € is the vector given by 
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c __ 4 % ~ c23 I i C13 ~ C31 

2 J 2 

c12 
(31) 

The important characteristic of a self-conjugate operator is 

Ei Do — E2Di, | 
1 " 2 1 >.(32) 

or E1c0E2 = EsjCoEj, J 

where E1 and E3 are any two E’s, and D1} D3 the corresponding D’s. But when 

there is not symmetry, the corresponding property is 

E,D, = EJ>\, j 
12 >.(33) 

or ElcE2 = Eoc'E^ J 

Of these operators we have three or four in electromagnetism connecting forces and 

fluxes, and three more connected with the stresses and strains concerned. As it 

seems impossible to avoid the consideration of rotational stresses in electromagnetism, 

and these are not usually considered in works on elasticity, it will be desirable to 

briefly note their peculiarities here, rather than later on. 

On Stresses, irrotational and rotational, and their Activities. 

§ 10. Let PN be the vector stress on the N plane, or the plane whose unit normal 

is N. It is a linear function of N. This will fully specify the stress on any plane. 

Thus, if Pl5 P3, P3 are the stresses on the i, j, k planes, we shall have 

Px = iPn + jP12+kP13,'| 

Po = ip21 + jP2o + kP23, l.(34) 

= f?31 + JP32 + kP33- J 

Let, also, QN be the conjugate stress; then, similarly, 

Q-i = iPn + jP2i + kP31,'| 

a2 = iP12 +jP22 + kP32, l.(35) 

^3 — fPl3 + JP23 + ^I>33-' 

Half the. sum of the stresses PN and is an ordinary irrotational stress ; so that 

where (j>0 is self-conjugate, and 

MDCCCXCir.— A. 

PN = 0,N + V€N ] 

aN = 0oN-Y€N,J 

3 K 

(36) 
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-6 = i (IA3— P32) + J (P31 — P13) + ^ (P12 — ^*21 )• • • (37) 

Here 26 is the torque per unit volume arising from the stress P. 

The translational force, F, per unit volume is (by inspection of a unit cube) 

F — + V2P2 4- V3P3.(38) 

= i div dj + j div CD + k div Q,3;.(39) 

or, in terms of the self-conjugate stress and the torque, 

F = (i div 0oi + j div 0oj + k div 0ok) — curl €,.(40) 

where — curl € is the translational force due to the rotational stress alone, as in Sir 

W. Thomson’s latest theory of the mechanics of an “ ether,”* 

Next, let N be the unit normal drawn outward from any closed surface. Then 

2pn = 2f,.• . . . . (41) 

where the left summation extends over the surface and the right summation through¬ 

out the enclosed region. For 

PN = NfP, + N2P2 + N,PS 

= i.NCfi + j.Ndo + k.NQ,;.(42) 

so the well-known theorem of divergence gives immediately, by (39), 

2PN = 2 (i div Q,1 -f j div CD + k div Q3) = 2 F.(43) 

Next, as regards the equivalence of rotational effect of the surface-stress to that of 

the internal forces and torques. Let r be the vector distance from any fixed origin. 

Then VrF is the vector moment of a force, F, at the end of the arm r. Another 

(not so immediate) application of the divergence theorem gives 

2VrPN = 2 VrF + 226,.(44) 

Thus, any distribution of stress, whether rotational or irrotational, may be regarded as 

in equilibrium. Given any stress in a body, terminating at its boundary, the body 

will be in equilibrium both as regards translation and rotation. Of course, the 

boundary discontinuity in the stress has to be reckoned as the equivalent of internal 

divergence in the appropriate manner. Or, more simply, let the stress fall off 

continuously from the finite internal stress to zero through a thin surface-layer. We 

* ‘ Mathematical and Physical Papers,’ vol. 3, Art. 99, p. 436. 
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then have a distribution of forces and torques in the surface-layer which equilibrate 

the internal forces and torques. 

To illustrate; we know that Maxwell arrived at a peculiar stress, compounded of 

a tension parallel to a certain direction, and an equal lateral pressure, which would 

account for the mechanical actions apparent between electrified bodies, and endea¬ 

voured similarly to determine the stress in the interior of a magnetised body to 

harmonise with the similar external magnetic stress of the simple type mentioned. 

This stress in a magnetised body I believe to be thoroughly erroneous; nevertheless, 

so far as accounting for the forcive on a magnetised body is concerned, it will, when 

propei'ly carried out with due attention to surface-discontinuity, answer perfectly 

well, not because it is the stress, but because any stress would do the same, the only 

essential feature concerned being the external stress in the air. 

Here we may also note the very powerful nature of the stress-function, considered 

merely as a mathematical engine, apart from physical reality. For example, we may 

account for the forcive on a magnet in many ways, of which the two most prominent 

are by means of forces on imaginary magnetic matter, and by forces on imaginary 

electric currents, in the magnet and on its surface. To prove the equivalence of 

these two methods (and the many others) involves very complex surface- and volume- 

integrations and transformations in the general case, which may be all avoided by the 

use of the stress-function instead of the forces. 

§ 11. Next as regards the activity of the stress PN and the equivalent translational, 

distortional, and rotational activities. The activity of PN is PNq per unit area, if q 

be the velocity. Here 

PnQ. gq.NQi ~t 3r2,®'®2 "h .(45) 

bv (42); or, re-arranging, 

Pn*1 —1 X -f- g^CL + "— N2 Qq, 

= N2a2,.(46) 

where Q? is the conjugate stress on the q plane. That is, qQ? or 2Qq is the 

negative of the vector flux of energy expressing the stress-activity. For we choose 

PNN so as to mean a pull when it is positive, and when the stress PN works in the 

same sense with q energy is transferred against the motion, to the matter which is 

pulled. 

The convergence of the energy-flux, or the divergence of qQq, is therefore the 

activity per unit volume. Thus 

div + Q,2gr2 + 0,3^3) = q (i div Q,L + j div + k div Ct3) + (d1Vg1 + Q,2Vq% + Q3V23) . (47) 

- q (VjPi + V„P2 + V3P3) + PjVjq + P,V2q + P3V3q .... (48) 

where the first form (47) is generally most useful. Or 

3 k 2 
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div Sftg = Fq + 2ftVg ;. (49) 

where the first term on the right is the translational activity, and the rest is the sum 

of the distortional and rotational activities. To separate the latter introduce the 

strain velocity vectors (analogous to Pi, P* P3) 

Pi = i (v2i + viD, P3 = i (v?2 + v2l), P3 = i(V?3 +V3q); .... (50) 

and generally 

Pn = i (V-9N + NV.q).(51) 

Using these we obtain 

2 avq = alPl + a,p3 + a3p3 + ^ + a3 YzrzM 

= 2 ftp + \ CljVi curl q + \ CLVj curl q + \ ft3Vk curl q 

= 2 ftp + € curl q.(52) 

Thus 2Qp is the distortional activity and € curl q the rotational activity. But 

since the distortion and the rotation are quite independent, we may put 2Pp for the 

distortional activity ; or else use the self-conjugate stress, and write it ^ 2 (P + Q) p. 

§ T2. In an ordinary “ elastic solid,” when isotropic, there is elastic resistance to 

compression and to distortion. We may also imaginably have elastic resistance to 

translation and to rotation; nor is there, so far as the mathematics is concerned, any 

reason for excluding dissipative resistance to translation, distortion, and rotation ; 

and kinetic energy may be associated with all three as well, instead of with the 

translation alone, as in the ordinary elastic solid. 

Considering only three elastic moduli, we have the old k and n of Thomson and 

Tait (resistance to compression and rigidity), and a new coefficient, say %, such that 

€ = nY curl D,.(53) 

if D be the displacement and 2€ the torque, as before. 

The stress on the i plane (any plane) is 

= » (VDj + VXD) + i (h - f n) div D + V curl D.i 

= (n + wx) VjD + (n — «j) VDj + (h — § n) i div D;.(54) 

and its conjugate is 

d, = » (VDX + VXD) + i (k -1») div D - nx (VXD - VDX) 

= (n — 7?x) VjD + (n + nx) VDj + i (k — § n) div D ;.(55) 

from which 

Fj = div ft3 = (« — + It — f n) div D + (n + n:) V3D1 ..... (56) 

is the i component of the translational force; the complete force F is therefore 
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F = (n + wj V2D + (k + 3 n — «i) V div D;.(57) 

or, in another form, if 
P = - k div D, 

P being the isotropic pressure, 

F = — VP + n (V2D + ^ V div D) — nx curl2 D,.(58) 

remembering (23) and (53). 

We see that in (57) the term involving div D may vanish in a compressible solid 

by the relation nx — k + ^ n ; this makes 

n + n-y = k + f n, — n = k — § n,.. . . (59) 

which are the moduli, longitudinal and lateral, of a simple longitudinal strain ; that 

is, multiplied by the extension, they give the longitudinal traction, and the lateral 

traction required to prevent lateral contraction. 

The activity per unit volume, other than translational, is 

2Q,Vg = (n — (VfD.Vjj + V2D.Vg2 + V3D.Vg3) 

+ (n + n{) (VD1.Vj1 + VD2.Vg2 + VD3.Vg-3) 

+ (k — § n) div D div q 

= n (V^.Vjj + V.jD.V^o + V3D.Vg3 + VD1Vg,1 + VD2Vg3 + VD3Vg3) 

+ Qi ~ I n) div D div q + nY curl D curl q;.(60) 

or, which is the same, 

2QVg = ]fik (div D)2 + \nx (curl D)2 

+ i»{(VDx)9 + (VD2)2 + (VD3)2 + VDj.V^ + VD2.Y2D + VD3.t?3D} -> (div D)2], . (61) 

where the quantity in square brackets is the potential energy of an infinitesimal 

distortion and rotation. The itadicised reservation appears to be necessary, as we 

shall see from the equation of activity later, that the convection of the potential 

energy destroys the completeness of the statement 

2qv3 = u, 

if U be the potential energy, 

In an elastic solid of the ordinary kind, with nx — 0, we have 

PN = n (2 curl VDN + VN curl D), 

F = —* n curl2 D 
(62) 

In the case of a medium in which n is zero but nx finite (Sir W. Thomson’s 

rotational ether), 
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PN = n-^ V curl D. N, 

F = — n-^ curl2 D. 
(63) 

Thirdly, if we have both Jc = — § n and n — nx, then 

PN = 2n curl VDN, 

F = — 2n curl2 D, 
(€ = n curl D), (64) 

i.e., the sums of the previous two stresses and forces. 

§13. As already observed, the vector flux of energy, due to the stress, is 

— 2a q = — a,// = — (al2l + a2ga- + o^).(65) 

Besides this, there is the flux of energy 

q (H + T) 

by convection, where U is potential and T kinetic energy, Therefore, 

W = q(U+ T) .(66) 

represents the complete energy flux, so far as the stress and motion are concerned. 

Its convergence increases the potential energy, the kinetic energy, or is dissipated. 

But if there be an impressed translational force f its activity is fq. This supply of 

energy is independent of the convergence of W. Hence 

fq + Q + u = T + div [q (U + T) — 2a^].(67) 

is the equation of activity. 

But this splits into two parts at least. For (67) is the same as 

(f + F) q + Sav2 = Q + U + T + divq (U + T),.(68) 

and the translational portion may be removed altogether. That is, 

(f + F) q = Q0 + U0 + T0 + div q (U0 + Tp),.(69) 

if the quantities with the zero suffix are only translationally involved. For 

example, if 

*+’-'!.(7o> 

as in fluid motion, without frictional or elastic forces associated with the translation, 

then 
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(f + F)q = /Jq^ = T + divqT.(71) 

if T = the kinetic energy per unit volume. The complete form (69) comes 

in by the addition of elastic and frictional resisting forces. So deducting (69) from 

(68) there is left 

2ftV2 = Qi + lb + i\ + div q (Ux + Tx),.. (72) 

where the quantities with suffix unity are connected with the distortion and the 

rotation, and there may plainly be two sets of dissipative terms, and of energy (stored) 

terms. Thus the relation 

€=(„,+%| + »4)criD.(73) 

will bring in dissipation and kinetic energy, as well as the former potential energy of 

rotation associated with ny. 

That there can be dissipative terms associated with the distortion is also clear 

enough, remembering Stokes’s theory of a viscous fluid. Thus, for simplicity, do away 

with the rotating stress, by putting € = 0, making PN and Q,N identical. Then take 

the stress on the i plane to be given by 

P1 = („+^j + .|8)(VD1+V1D)-i{p + ,(.i + ^( + .|?)aivD}, . . (74) 

and similarly for any other plane ; where P = — Jc div D. 

When fx = 0. v = 0, we have the elastic solid with rigidity and compressibility. 

When n — 0, v = 0, we have the viscous fluid of Stokes. When v = 0 only, we 

have a viscous elastic solid, the viscous resistance being purely distortional, and 

proportional to the speed of distortion. But with n, fx, v, all finite, we still further 

associate kinetic energy with the potential energy and dissipation introduced by 

n and /x. 

We have 

SPVg = Qo + Uo + Tg 

for infinitesimal strains, omitting the effect of convection of energy ; where 

T2 = M-f(divqP + V2l(V2l + Viq) + Vg3(V?2 + V,q) + V23 (Vg3 + V3q)], .... (75) 

Q2 = ^ [-I(divq)2 + V?1 (V2l + V1q)+V?8(VSa + V8q) + Vg8 (V2s + V80], ■ • • • (76) 

U2 = in _ A (div D)2 + VDy (VDt + YjD) + VD2 (VD, + V3D) + VD3 (VD3 + V3D)]. (77) 
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Observe that T2 and Qa only differ in the exchange of /x to \v ; but U2, the potential 

energy, is not the same function of n and D that T3 is of v and q. But if we take 

k = 0, we produce similarity. An elastic solid having no resistance to compression is 

also one of Sir W. Thomson’s ethers. 

When n = 0, [x — 0, v = 0, we come down to the frictionless fluid, in which 

f-VP = 3,.(78) 
ot 

and 

2PV2 = -Pdivq,.(79) 

with the equation of activity 

fq = U + T + div (U + T + P) q,.(80) 

the only parts of which are not always easy to interpret are the Pq term, and the 

proper measure of U. By analogy, and conformably with more general cases, we 

should take 
P = — Jc div D, and U — \Jc (div D)2, 

reckoning the expansion or compression from some mean condition. 

The Electromagnetic Equations in a Moving Medium. 

§ 14. The study of the forms of the equation of activity in purely mechanical cases, 

and the interpretation of the same is useful, because in the electromagnetic? problem 

of a moving medium we have still greater generality, and difficulty of safe and sure 

interpretation. To bring it as near to abstract dynamics as possible, all we need say 

regarding the two fluxes, electric displacement I) and magnetic induction B, is that 

they are linear functions of the electric force E and magnetic force H, say 

B = /<H, D = cE,.(81) 

where c and /x are linear operators of the symmetrical kind, and that associated with 

them are the stored energies U and T, electric and magnetic respectively (per unit 

volume), given by 

U = l ED, T = \ HB, .(82) 

In isotropic media c is the permittivity, /x the inductivity. It is unnecessary to 

say more regarding the welhknown variability of /x and hysteresis than that a magnet 

is here an ideal magnet of constant inductivity. 

As there may be impressed forces, E is divisible into the force of the field and an 

impressed part; for distinctness, then, the complete E may be called the “ force of 

the flux ” D. Similarly as regards H and B. 
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There is also waste of energy (in conductors, namely) at the rates 

Q1 = EC, Q3 = HK,.(83) 

where the fluxes C and K are also linear functions of E and H respectively ; thus 

C = A-E, K = r/H,.(84) 

where, when the force is parallel to the flux, and l is scalar, it is the electric conduc¬ 

tivity. Its magnetic analogue is g, the magnetic conductivity. That is, a magnetic 

conductor is a (fictitious) body which cannot support magnetic force without con¬ 

tinuously dissipating energy. 

Electrification is the divergence of the displacement, and its analogue, magnetifica- 

tion, is the divergence of the induction ; thus 

p = div D, <j = div B.(85) 

are their volume densities. The quantity cr is probably quite fictitious, like K. 

According to Maxwell’s doctrine, the true electric current is always circuital, and 

is the sum of the conduction current and the current of displacement, which is the 

time rate of increase of the displacement. But, to preserve circuitality, we must add 

the convection current when electrification is moving, so that the true current 

becomes 

J — C T I) -)- q/>,.(86) 

where q is the velocity of the electrification p. Similarly 

G = K + B + q*.(87) 

should be the corresponding magnetic current. 

§ 15. Maxwell’s equation of electric current in terms of magnetic force in a 

medium at rest, say, 

curl H[ = C + D, 

where H1 is the force of the field, should be made, using H instead, 

curl (H — h0) = C + D + q/>, 

and here h0 will be the force of intrinsic magnetisation, such that gh0 is the intensity 

of intrinsic magnetisation. But I have shown that when there is motion, another 

impressed term is required, viz., the motional magnetic force 

MDCCCXCII.—A. 

h = VDq, 

3 L 

(88) 
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making the first circuital law become 

curl (H — h0 — h) = J = C + I) + qy>.(89) 

Maxwell’s other connection to form the equations of propagation is made through 

his vector-potential A and scalar potential 'F. Finding this method not practically 

workable, and also not sufficiently general, I have introduced instead a companion 

equation to (89) in the form 

— curl (E — e0 — e) = G = K + B + q^,.(90) 

where e0 expresses intrinsic force, and e is the motional electric force given by 

e = VqB, (91) 

which is one of the terms in Maxwell’s equation of electromotive force. As for e0, 

it includes not merely the force of intrinsic electrification, the analogue of intrinsic 

magnetisation, but also the sources of energy, voltaic force, thermoelectric force, &c. 

(89) and (90) are thus the working equations, with (88) and (91) in case the 

medium moves; along with the linear relations before mentioned, and the definitions 

of energy and waste of energy per unit volume. The fictitious K and cr are useful in 

symmetrizing the equations, if for no other purpose. 

Another way of writing the two equations of curl is by removing the e and h 

terms to the right side. Let 

curl h = j, j + j = j0, 

— curl e = g, G -f- g = G0. 

Then (89) and (90) may be written 

curl (H — h0) = J0 = C + D + q/. + j, 

curl (E — e0) = G,; = K + B + qrr + g. 
(93) 

So far as circuitality of the current goes, the change is needless, and stiil further 
complicates the make-up of the true current, supposed now to be J0. On the other 

hand, it is a simplification on the left side, deriving the current from the force of the 
flux or of the field more simply. 

A question to be settled is whether J or J0 should be the true current. There 
seems only one crucial test, viz., to find whether e(1J or e0J0 is the rate of supply of 

energy to the electromagnetic system by an intrinsic force e0. This requires, however, 
a full and rigorous examination of all the fluxes of energy concerned. 



FLUXES OF ENERGY IN THE ELECTROMAGNETIC FIELD. 443 

The Electromagnetic Flux of Energy in a stationary Medium. 

§16. First let the medium be at rest, giving us the equations 

curl (H - ho) = J = C + D, .(94) 

- curl (E - e„) = G = H + B (95) 

Multiply (94) by (E — e0), and (95) by (H — h0), and add the results. Thus, 

(E — e0) J + (H — h0) G = (E — e0) curl (H — h0) — (H — h0) curl (E — e0), 

which, by the formula (25), becomes 

e0J + IpG = EJ + HG + div V (E — e0) (H — h0) ; 

or, by the use of (82), (83), 

e0J + h0G = Q + U + T + div W,.(96) 

where the new vector W is given by 

W = V (E - e0) (H - h,,) (97) 

The form of (96) is quite explicit, and the interpretation sufficiently clear. The left 

side indicates the rate of supply of energy from intrinsic sources. These (Q + h: + T) 

shows the rate of waste and of storage of energy in this unit volume. The remainder, 

therefore, indicates the rate at which energy is passed out from the unit volume; and 

the flux W represents the flux of energy necessitated by the postulated localisation of 

energy and its waste, when E and H are connected in the manner shown by (94) 

and (95). 

There might also be an independent circuital flux of energy, but, being useless, 

it would be superfluous to bring it in. 

The very important formula (97) was first discovered and interpreted by Professor 

Poynting, and independently discovered and interpreted a little later by myself in an 

extended form. It will be observed that in my mode of proof above there is no 

limitation as to homogeneity or isotropy as regards the permittivity, inductivity, and 

conductivity. But c and g should be symmetrical. On the other hand, k and g do 

not require this limitation in deducing (97)." 

* The method of treating Maxwell’s electromagnetic scheme employed in the text (first introduced 

in “Electromagnetic Induction and its Propagation,” ‘The Electrician,’January 3, 1885, and later) 

3 L 2 
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It is important to recognize that this flux of energy is not dependent upon the 

translational motion of the medium, for it is assumed explicitly to be at rest. The 

vector W cannot, therefore, be a flux of the kind Qqq before discussed, unless possibly 

it be merely a rotating stress that is concerned. 

The only dynamical analogy with which I am acquainted which seems at all 

satisfactory is that furnished by Sir W. Thomson’s theory of a rotational ether. 

Take the case of e0 = 0, h0 = 0, k = 0, g — 0, and c and g, constants, that is, pure 

ether uncontaminated by ordinary matter. Then 

curl H = cE,.(98) 

- carl E = ,/<H.(99) 

Now, let H be velocity, [x density; then, by (99), — curl E is the translational 

force due to the stress, which is, therefore, a rotating stress; thus, 

PN = YEN, a, = VNE; (100) 

and 2E is the torque. The coefficient c represents the compliancy or reciprocal of 

the quasi-rigidity. The kinetic energy H3 represents the magnetic energy, and the 

potential energy of the rotation represents the electric energy ; whilst the flux of 

energy is VEH. For the activity of the torque is 

and the translational activity is 

Their sum is 

__ curl H 
2E. - v> E curl H, 

- H curl E. 

may, perhaps, be appropriately termed the Duplex method, since its characteristics are the exhibition of 

the electric, magnetic, and electromagnetic relations in a duplex form, symmetrical with respect to the 

electric and magnetic sides. But it is not merely a method of exhibiting the relations in a manner 

suitable to the subject, bringing to light useful relations which were formerly hidden from view by the 

intervention of the vector-potential and its parasites, but constitutes a method of working as well. 

There are considerable difficulties in the way of the practical employment of Maxwell’s equations of 

propagation, even as they stand in his treatise. These difficulties are greatly magnified when we pro¬ 

ceed to more general cases, involving heterogeneity and eolotropy and motion of the medium supporting 

the fluxes. The duplex method supplies what is wanted. Potentials do not appear, at least initially. 

They are regarded strictly as auxiliary functions which do not represent any physical state of the 

medium. In special problems they may be. of great service for calculating purposes; but in general 

investigations their avoidance simplifies matters, greatly. The state of the field is settled by E and H, 

and these are the primary objects of attention in the duplex system. 

As the papers to which I have referred are not readily accessible, I may take this opportunity of 

mentioning that a Reprint of my ‘ Electrical Papers’ is in the press (Macmillan and Co.), and that the 

first volume is nearly ready. 
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- div VEH, 

making VEH the flux of energy.* 

All attempts to construct an elastic solid analogy with a distortional stress fail to 

give satisfactory results, because the energy is wrongly localised, and the flux of 

energy incorrect. Bearing this in mind, the above analogy is at first sight very 

enticing. But when we come to remember that the d/dt in (98) and (99) should be 

0/3t, and find extraordinary difficulty in extending the analogy to include the conduc¬ 

tion current, and also remember that the electromagnetic stress has to be accounted 

for (in other words, the known mechanical forces), the perfection of the analogy, as 

far as it goes, becomes disheartening. It would further seem, from the explicit 

assumption that q = 0 in obtaining W above, that no analogy of this kind can be 

sufficiently comprehensive to form the basis of a physical theory. We must go 

altogether beyond the elastic solid with the additional property of rotational elasticity. 

I should mention, to avoid misconception, that Sir W. Thomson does not push the 

analogy even so far as is done above, or give to p and c the same interpretation. The 

particular meaning here given to p is that assumed by Professor Lodge in his “ Modern 

Views of Electricity,” on the ordinary elastic solid theory, however. I have found it 

very convenient from its making the curl of the electric force be a Newtonian force 

(per unit volume). When impressed electric force e0 produces disturbances, their real 

source is, as I have shown, not the seat of e0, but of curl e0. So we may with facility 

translate problems in electromagnetic waves into elastic solid problems by taking the 

electromagnetic source to represent the mechanical source of motion, impressed New¬ 

tonian force. 

Examination of the Flux of Energy in a moving Medium, and Establishment of the 

Measure of “ True ” Current. 

§17. Now pass to the more general case of a moving medium with the equations 

curl - curl (H-h0-h) = J = C + b + qy9,.(101) 

— curl Ej = — curl (E — e() — e) = G = K + B + qc,.(192) 

where E: is, for brevity, what the force E of the flux becomes after deducting the 

intrinsic and motional forces ; and similarly for H1. 

From these, in the same way as before, we deduce 

(e0 + e) J + (h0 + h) G — EJ + HG + div VE^;.(103) 

and it would seem at first sight to be the same case again, but with impressed forces 

* This form of application of the rotating ether I gave in ‘ The Electrician,’ January 23, 1891, p. 360. 



446 MR. 0. HEAVISIDE ON THE FORCES, STRESSES, AND 

(e -f- e0) and (h + ii0) instead of e0 and h0, whilst the Poynting flux requires us to 

reckon only Ex and H1 as the effective electric and magnetic forces concerned in it.* 

But we must develop (Q + U + T) plainly first. We have, by (86), (87), used in 

(103), 

e0J + h^G = E (C + I) T- q/fl + H (K + B + q^) — (eJ + h&) A div A E^H^. . . (104) 

Now here we hav7e 

CJ = — 4 ED = 4 ED + 4 BE 
dt “ 

= E±> + i (BE 

= ED - I EcE 

— ed — trc. 

1 

ED) 
> 

J 

(105) 

* It will be observed tlxat the constant 4?r, which usually appears in the electrical equations, is absent 

from the above investigations. This demands a few words of explanation. The units employed in the 

text are rational units, founded upon the principle of continuity in space of vector functions, and the 

corresponding appropriate measure of discontinuity, viz., by the amount of divergence. In popular 

language, the unit pole sends out one line of force, in the rational system, instead of 4?r lines, as in the 

irrational system. The effect of the rationalisation is to introduce 4tt into the formulae of central forces 

and potentials, and to abolish the swarm of 4?r’s that appear in the practical formulae of the practice of 

theory on Earadat-Maxwell lines, which receives its fullest and most appropriate expression in the 

rational method. The rational system was explained by me in ‘ The Electrician,’ in 1882, and applied to 

the general theory of potentials and connected functions in 1883. (Reprint, vol. 1, p. 199, and latex1, 

especially p. 262.) I then returned to irrational formulae because I did not think, then, that a reform of 

the units was practicable, partly on account of the labours of the B. A. Committee on Electrical Units, 

and partly on account of the ignorance of, and indifference to, theoretical matters which prevailed at 

that time. But the circumstances have greatly changed, and I do think a change is now practicable. 

There has been great advance in the knowledge of the meaning of Maxwell’s theory, and a diffusion of 

this knowledge, not merely amongst scientific men, but amongst a large body of practicians called into 

existence by the extension of the practical applications of electricity. Electricity is becoming, not only 

a master science, but also a very practical one. It is fitting, therefore, that learned traditions should not 

be allowed to control mattei's too greatly, and that the units should be rationalised. To make a begin¬ 

ning, I am employing rational units throughout in my work on “ Electi’omagnetic Theory,” commenced in 

‘ The Electrician,’ in January, 1891, and continued as fast as circumstances will permit; to be republished 

in book form. In Section XVII. (October 16, 1891, p. 655), will be found stated more fully the nature 

of the change proposed, and the reasons for it. I p oint out, in conclusion, that as regards theoretical 

ti’eatises and investigations, thei’e is no difficulty in the way, since the connection of the rational 

and irrational units may be explained sepai’ately; and I express the belief that when the merits of the 

rational system are fully recognised, there will arise a demand for the rationalisation of the practical 

units. We are, in the opinion of men qualified to judge, within a measurable distance of adopting 

the metric system in England. Surely the smaller reform I advocate should precede this. To pxxt the 

matter plainly, the present system of units contains an absurdity running all through it of the same 

nature as would exist in the metric system of common units were we to define the unit ai'ea to be 

the area of a circle of unit diameter. The absurdity is only different in being less obvious in the 

electrical case. It would not matter much if it were not that electricity is a practical science. 
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Comparison of the third with the second form of (105) defines the generalised mean¬ 

ing of c when c is not a mere scalar. Or thus, 

tje = E*d = i^(ED)e 

= 2 + IjCggEj2 "t 2 ^33®32 "t CijEiEj + C33E2E3 + C31EjEs,.(106) 

representing the time-variation of U due to variation in the c’s only. 

Similarly 

T = HB - i H/'(H = HB - T,,,.(107) 

with the equivalent meaning for p generalised. 

Using these in (104) we have the result 

e0J + h0G = (Q + U + T) + q (E/j + B>) + (i EcE + £ H/iH) - (eJ + liG) + div YE^. . (108) 

Here we have, besides (Q + U + T), terms indicating the activity of a transla¬ 

tional force. Thus Ep is the force on electrification p, and Eqp its activity. Again, 

Sc 
Wt 

= c + qV.e; 

so that we have 

and, similarly, > 

Sc _ 1 
c = s-4V.o, j 

S/t 
» = j 

the generalised meaning of which is indicated by 

suc , 
- -gy + |EcE = - IE (qV. c) E = - qVU, 

where, in terms of scalar products involving E and D, 

a 
+ \TSLiJSL = - qVT^ 

(109) 

. . (110) 

- qYU, = - \ (E.qV.D - D.qY.E).(Ill) 

This is also the activity of a translational force. Similarly, 

S.th 
• (H2) 

is the activity of a translational force. Then again 

- (eJ + hG) = - JYqB - GVDq = q (VJB + VDG) (113) 
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expresses a translational activity. Using them all in (108) it becomes 

e0J + h0G = (Q + U + T) + q(E/> + H* — VUC - VT’ + VJB + VDG) 

+ div VEjHj + g (Uc + Tm).(114) 

It is clear that we should make the factor of q be the complete translational force. 

But that has to be found; and it is equally clear that, although we appear to have 

exhausted all the terms at disposal, the factor of q in (114) is not the complete force, 

because there is no term by which the force on intrinsically magnetised or electrized 

matter could be exhibited. These involve e0 and h0. But as we have 

q (Vj„B + VDg0) = - (ej0 + hg0),.. . (115) 

a possible way of bringing them in is to add the left member and subtract the right 

member of (115) from the right member of (114) ; bringing the translational force to 

f, say, where 

f=E/> + H<r-VtJe-VT + V(J+j0)B +V(G + glJ)D.(116) 

But there is still the right number of (115) to be accounted for. We have 

- div (Veh0 + Ve0h) = ej0 f hg0 4- e0j 4 h0g,.(117) 

and, by using this in (114), through (115), (116), (117), we bring it to 

A 

e0J + h0G = (Q + U+ T) + fq - (e0j + h0g) + div (VE,H, - Veh0 - Ve0h) + ^ (Uc + U); (118) 

or, transferring the e0, h0 terms from the right to the left side, 

e0J0 + h(|G0 = Q + U + T + fq + div (YEjHj — Veh0 — Ve0h) 4- ^ (U<- +TM) . . (119) 

Here we see that we have a correct form of activity equation, though it may not be 

the correct lorm. Another form, equally probable, is to be obtained by bringing in 

Veil; thus 

di7 Veil = h curl e — e curl li = — (ej + hg) = q (VjB 4 VDg), .... (120) 

which converts (119) to 

e0J0 + hoG0 = Q + U + T 4 Fq + div (VE^, - Veh - Veh, - Ve0h) + | (Uc 4- T*) . (121) 

where F is the translational force 

F = E/i + H<t - VUf - VTU + V curl H. B + V curl E.D, . . . . (122) 
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which is perfectly symmetrical as regards E and H, and in the vector products 

utilises the fluxes and their complete forces, whereas former forms did this only 

partially. Observe, too, that we have only been able to bring the activity equation 

to a correct form (either (119) or (122)) by making e0J0 be the activity of intrinsic 

force e0, which requires that J0 should be the true electric current, according to the 

energy criterion, not J. 

^ 18. Now, to test (119) and (121), we must interpret the flux in (121), or say 

Y = VE1H1 - Veil - Veh0 - Ve(lh, (123) 

which has replaced the Poynting flux when q = 0, along with the other 

changes. Since Y reduces to VEjH, when q = 0, there must still be a Poynting 

flux when q is finite, though we do not know its precise form of expression. There 

is also the stress flux of energy and the flux of energy by convection, making a total 

flux 

X = W + q (U + T) - 20? + q (U0 + T0), .(124) 

where W is the Poynting flux, and — 2Qq that of the stress, whilst q (U0 + T0) 

means convection of energy connected with the translational force. We should 

therefore have 

e0J0 + h<A> = (Q + U + T) + (Q0 + U0 + T0) + div X .(125) 

to express the continuity of energy. More explicitly 

e0J0 + h0G-0 — Q + U + T + div [W + q (U + T)J 

+ Q0 + U0 + T0 + div [- 202 + q (U0 + T0)].(126) 

But here we may simplify by using the result (69) (with, however, f put = 0), making 

(126) become 

e0J0 + h„G0 = (Q + U + T) + Fq + Sa + div [w + q (U + T) - 2 ftj], . . . (127) 

where S is the torque, and a the spin. 

Comparing this with (121), we see that we require 

W + q (U + T) — 2 Ctg = VE1H1 - Veh - Ve0h - Veh0, .(128) 

with a similar equation when (119) is used instead ; and we have now to separate the 

right member into two parts, one for the Poynting flux, the other for the stress flux, 

in such a way that the force due to the stress is the force F in (121), (122), or the 

force f in (119), (116); or similarly in other cases. It is unnecessary to give the 

failures; the only one that stands the test is (121), which satisfies it completely. 

MDCCCXCII.—A. 3 M 
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I argued that 

W = V(E-e0) (H-h0) .(129) 

was the probable form of the Poynttng flux in the case of a moving medium, not 

VE^, because when a medium is endowed with a uniform translational motion, the 

transmission of disturbances through it takes place just as if it were at rest. With 

this expression (129) for W, we have, identically, 

VEjH, - Veil - Ve(Jh - Veh0 = W - VeH - VEh.(130) 

Therefore, by (128) and (130), we get 

2% = VeH + VEh + q (U + T),.(131) 

to represent the negative of the stress flux of energy, so that, finally, the fully 

significant equation of activity is 

eutJ0 + h0G0 = Q + U -f f + Fq + Sa + div ^V (E — e0) (H h0) + q (U + T)J 

- div [VeH + VEh + q (U + T)]. (132) 

This is, of course, an identity, subject to the electromagnetic equations we started 

from, and is only one of the multitude of forms which may be given to it, many being 

far simpler. But the particular importance of this form arises from its being the 

only form apparently possible which shall exhibit the principle of continuity of energy 

without outstanding terms, and without loss of generality; and this is only possible 

by taking J0 as the proper flux for e0 to work upon/"' 

* In the original an ei’roneons estimate of the value of (0/31) (Uc + TF) was used in some of the 

above equations. This is corrected. The following contains full details of the calculation. We require 

the value of (0/06) Uc, or of fE (dc/dt)E, where 3c/3i is the linear operator whose components are the 

time-variations (for the same matter), of those of c. The calculation is very lengthy in terms of these 

six components. But vectorially it is not difficult. In (27), (28), we have 

D = cE - i.c,E + j.c,E + k.cgE 

= (i.Cj + j.c3 + k.c3)E, 

if the vectors c,, c3, C3, are given by 

Cj = icn + jc13 + kc13, c2 = ic31 + jc33 + kc23, 

We, therefore, have 

c:’, — + jc32 + kr33. 

(132a) 

0c. 

ob 

ci 0j , 0k 
E 2*E - E ( 0^C1 + 0^>C2 + dt,Cs E + E (i- + j- g/ + k- 

0Ct . 0Co 0C3 

'dt 0^ 
(1326) 

The part played by the dots is to clearly separate the scalar products. 

Now suppose that the eolotropic property symbolised by c is intrinsically unchanged by the shift of 

the matter. The mere translation does not, therefore, affect it, nor does the distortion; but the rotation 
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Derivation of the Electric and Magnetic Stresses and Forces from the Flux of 

Energy. 

§19. It will be observed that the convection of energy disappears by occurring 

twice oppositely signed; but as it comes necessarily into the expression for the stress 

flux of energy, I have preserved the cancelling terms in (132). A comparison of the 

stress flux with the Poynting flux is interesting. Both are of the same form, viz., 

vector products of the electric and magnetic forces with convection terms ; but 

whereas in the latter the forces in the vector product are those of the field (i.e., only 

intrinsic forces deducted from E and H), in the former we have the motional forces 

e and h combined with the complete E and H of the fluxes. Thus the stress depends 

does. For if we turn round an eolotropic portion of matter, keeping E unchanged, the value of U is 

altered by the rotation of the principal axes of c along with the matter, so that a torque is required. 

In equation (132a), then, to produce (1326), we keep E constant, and let the six vectors, i, j, k, c1; c2, c3 

rotate as a rigid body with the spin a = curl q. Bat when a vector magnitude i is turned round in 

this way, its rate of time-change cijdt is Yai. Tints, for 9fit, we may put Ya throughout. Therefore, 

by (1326), 
3c 

EyE = E (Yai.Cj + Yaj.c2 + Yak.c3)E + E (i.Yac! + j.Vac., + k.Yac.,)E. . . (132c) 

In this use the parallelepidedal transformation (12), and it becomes 

3c 
E E = VEafi.Cx + j.c2 + k.c3)E + E (i.c1 + j.c3 + k.c3)VEa 

= (YEa)cE + Ec(VEa) = (D + D')YEa,. 1132d) 

by (132a), if Dr is conjugate to D ; that is, D' = c'E = Ec. So, when c = c', as in the electrical case, we 

have 

3U, , _ 3c 

and similarly 

?f = | E g- E = DVEa = aVDE, 

^=iH ^ H = BVHa = aVBH. 
31 2 dt 

> . (132e) 

Now the torque arising from the stress is (see (139)) 

S = YDE + VBH, 

3 
so we have 

01 
(Uc + Tm) = Sa = torque x spin. (132/) 

The variation allowed to i, j, k may seem to conflict with their constancy (as reference vectors) in 

general. But they merely vary for a temporary purpose, being fixed in the matter instead of in space. 

But we may, perhaps better, discard i, j, k altogether, and use any independent vectors, 1, m, n instead, 

making 

D = (l.cx + m.c2 + n.c3) E,.(132</) 

wherein the c’s are properly chosen to suit the new axes. The calculation then proceeds as before, half 

3 M 2 



452 MR. O. HEAVISIDE OH THE FORCES, STRESSES, ART) 

entirely on the fluxes, however they be produced, in this respect resembling the 

electric and magnetic energies. 

To exhibit the stress, we have (131), or 

-f" Q-fl-2 + Q'39,3 = YeH 4- 5/ Eh 4- q (U + T).(133) 

In this use the expressions for e and h, giving 

2Chy = VHVBq + VEVDq + q(U b T) 

= B.Hq — q.HB + D.Eq — q.ED + q (U + T) 

= (B.Hq - qT) + (D.Eq - qU) ;.(134) 

where observe the singularity that q (U -f- T) has changed its sign. The first set 

belongs to the magnetic, the second to the electric stress, since we see that the 

complete stress is thus divisible. 

The divergence of being the activity of the stress-variation per unit volume, 

its N component is the activity of the stress per unit surface, that is, 

(NB.Hq — Nq.T) -f (ND.Eq — Nq.U) = q (H.BN 4- E.DN — NU — NT) = PNq. . (135) 

The stress itself is therefore 

the value of 0Hcjdt arising from the variation of 1, m, n, and the other half from the c’s, provided c is 

irrotational. 

Or we may choose the three principal axes of c in the body, when 1, m, n will coincide with, and 

therefore move with them. 

Lastly, we may proceed thus :— 

E ^ E = E 
dt 

gy - D 'E = EVaD - DVaE = 2a\7DE. (1327r) 

That is, replace 3/91 by Va when the operands are E and D. This is the correct result, but it is not 

easy to justify the process directly and plainly; although the clue is given by observing that what we do 

is to take a difference, from which the time-variation of E disappears. 

If it is D that is kept constant, the result is 2aVED, the negative of the above. 

It is also worth noticing that if we split up E into Ej + E3 we shall have 

Ei | E3 = a [V(ElC)E3 - VEdcE,)], 

0C f 
E3^E1 = a[V(E3c)E1-Y^cE,)]. j 

(1320 

These are only equal when c — c', or Ec = cE ; so that, in the expansion of the torque, 

VDE = VDjEj + VD3E3 + VD.E! + VDjEo, 

the cross-torques are not VD^Ej and VDjEo, which are unequal, but are each equal to half the sum of 

these vector-products. 
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PN = (E.DN - NU) + (H.BN -NT),.(136) 

divided into electric and magnetic portions. This is with restriction to symmetrical 

fx aad c, and with persistence of their forms as a particle moves, but is otherwise 

unrestricted. 

Neither stress is of the symmetrical or irrotational type in case of eolotropy, and 

there appears to be no getting an irrotational stress save by arbitrary assumptions 

which destroy the validity of the stress as a correct deduction from the electro¬ 

magnetic equations. But, in case of isotropy, with consequent directional identity 

of E and D, and of H and B, we see, by taking N in turns parallel to, or 

perpendicular to E in the electric case, and to H in the magnetic case, that the 

electric stress consists of a tension U parallel to E combined with an equal lateral 

pressure, whilst the magnetic stress consists of a tension T parallel to H combined 

with an equal lateral pressure. There are, in fact. Maxwell’s stresses in an isotropic 

medium homogeneous as regards p, and c. The difference from Maxwell arises when 

fx and c are variable (including abrupt changes from one value to another of g and c), 

and when there is intrinsic magnetisation, Maxwell’s stresses and forces being then 

different. 

The stress on the plane whose normal is YEH, is 

E.DVEH + H.BYEH - (U + T) YEH 

V0EH 

E.HYDE + H.EVHB - (U + T) YEH 

Y0EH 
(137) 

reducing simply to a pressure (U + T) in lines parallel to YEH in case of isotropy. 

§ 20. To find the force F, we have 

FN = div dx = div (D.EN - NU + B.HN - NT) 

= EN./> + DV.EN - fE.NV.D - ^D.NV.E + &c. 

= EN.p + D (V.EN - NV.E) + f (D.NV.E - E.NV.D) + &c. 

= N [E/j + Y curl E.D - VITC + Ac.],.(138) 

where the unwritten terms are the similar magnetic terms. This being the N 

component of F, the force itself is given by (122), as is necessary. 

It is Y curl h0. B that expresses the translational force on i ntrinsically magnetised 

matter, and this harmonises with the fact that the flux B due to any impressed 

force h0 depends solely upon curl h0. 

Also, it is — VT^ that explains the forcive on elastically magnetised matter, e.g., 

Faraday’s motion of matter to or away from the places of greatest intensity of the 

field, independent of its direction. 
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If S be the torque, it is given by 

therefore 

VSN = PN - ax = E.DN - D.EN + &c. 

VN (VED + VHB) ; 

S = VDE + VBH .... (139) 

But the matter is put more plainly by considering the convergence of the stress 

flux of energy and dividing it into translational and other parts. Thus 

div 2ft? = Fq + (E.DV.q - U div q) + (H.BV.q - T div q),.(140) 

where the terms following Fq express the sum of the distortional and rotational 

activities. 

Shorter Way of going from the Circuital Equations to the Flux of Energy, Stresses, 

and Forces. 

§ 21. I have given the investigation in §§ 17 to 19 in the form in which it occurred 

to me before I knew the precise nature of the results, being uncertain as regards the 

true measure of current, the proper form of the Poynting flux, and how it worked in 

harmony with the stress flux of energy. But knowing the results, a short demonstra¬ 

tion may be easily drawn up, though the former course is the most instructive. Thus, 

start now from 
curl (H - ho) = J0, 

- curl (E — e0) ~ G0, 
(141) 

on the understanding that J0 and Gr0 are the currents which make e0J0 and h0G0 

the activities of e0 and h0 the intrinsic forces. Then 

where 
e0J0 F h0G,j = EJ0 + HG0 + div W,.(142) 

W = V(E —e0)(H —ho);.(143) 

and we now take this to be the proper form of the Poynting flux. Now develop 

EJ(I and HG0 thus :— 

EJ() F HGq = E (C + D + q/> + curl h) + H (K F B + q<x — curl e), by (93) ; 

= Qx + U F tic + Eq/; + E curl VDq 

+ Q3 + T 4- T(jl + Hqo- + H curl VBq, by (88) aud (91) ; 

= Qi + U + tic + Eqj> + E (D div q + qV.D - q div D - DV.q) 

+ Q2 F T + TM + Hq<7 + H (B div q + qV.B - q div B - BV.q), by (26), 

= Qa + U + Uc + 2U div q + E.qV.D — E.DV.q 

+ magnetic terms, 

= (Qi + U + div qU) + (U div q - E.DV.q) + (Uc - qV.U + E.qV.D) 

F magnetic terms...(144) 
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Now here 
qV.U = 4E.qV.D + iD.qV.E, 

so that the terms in the third pair of brackets in (144) represent 

U, + qV.U, = ^ = iE|cE, 
dt dt 

with the generalised meaning before explained. So finally 

p\ 
EJ0 + HG0 = Q+ U+ T + div q(U + T) + ^ (Ue + TM) 

+ (U div q — E.DV.q) + (T div q — H.BV.q), . . . (145) 

which brings (142) to 

e,,Jo -f-huG0 = Q + U + T + div {W + q (U + T)} 

+ g- (Uc + Tn) + (U div q — E.DV.q) + (T div q — H.BV.q), . . . (146) 

which has to be interpreted in accordance with the principle of continuity of energy. 

Use the form (127), first, however, eliminating Fq by means of 

div 2 QLq = Fq + 2 QVq, 

which brings (127) to 

e0J0 + h0G0 = G + U + T -j- div {W + q (U + T) q — 2QiVq + Sa ;.(147) 

and now, by comparison of (147) with (146) we see that 

riTT 
- Sa + iQVq = (E.DV.q - U div q) - 

+ (H.BV.q - T div q) - ~ 5.(148) 

from which, when p and c do not change intrinsically, we conclude that 

Gn = B.HN - NT + D.EN - NU, 

PN = H.BN - NT + E.DN - NU, 
(149) 

as before. In this method we lose sight altogether of the translational force which 

formed so prominent an object in the former method as a guide. 

Some Remarks on Hertz’s investigation relating to the Stresses. 

§ 22. Variations of c and p in the same portion of matter may occur in different 

ways, and altogether independently of the strain variations. Equation (146) shows 
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how their influence affects the energy transformations ; but if we consider only such 

changes as depend on the strain, i.e., the small changes of value which p and c 

undergo as the strain changes, we may express them by thirty-six new coefficients 

each (there being six distortion elements, and six elements in p, and six in c), and so 

reduce the expressions for 3Uc/dt and 3TJdt in (148) to the form suitable for 

exhibiting the corresponding change in QN and in the stress function PN. As is 

usual in such cases of secondary corrections, tire magnitude of the resulting formula 

is out of all proportion to the importance of the correction terms in relation to the 

primary formula to which they are added. 

Professor H. Hertz'”' has considered this question, and also refers to von Helmoltz’s 

previous investigation relating to a fluid. The c and p can then only depend on the 

density, or on the compression, so that a single coefficient takes the place of the 

thirty-six. But I cannot quite follow Hertz’s stress investigation. First, I would 

remark that in developing the expression for the distortional (plus rotational) activity, 

he assumes that all the coefficients of the spin vanish identically ; this is done in 

order to make the stress be of the irrotational type. But it may easily be seen that 

the assumption is inadmissible by examining its consequence, for which we need only 

take the case of c and p intrinsically constant. By (139) we see that it makes S = 0, 

and therefore (since the electric and magnetic stress are separable), YHB = 0, and 

VED — 0 ; that is, it produces directional identity of the force E and the flux D, 

and of the force H and the flux B. This means isotropy, and, therefore, breaks 

down the investigation so far as the eolotropic application, with six p and six c 

coefficients, goes. Abolish the assumption made, and the stress will become that used 

by me above. 

Another point deserving of close attention in Hertz’s investigation, relates to the 

principle to be followed in deducing the stress from the electromagnetic equations. 

Translating into my notation it would appear to amount to this, the d priori assump¬ 

tion that the quantity 

.(1S0) 

where v indicates the volume of a moving unit element undergoing distortion, may 

be taken to represent the distortional (plus rotational) activity of the magnetic 

stress. Similarly as regards the electric stress. 

Expanding (150) we obtain 

0T 

& 
T dv 

v dt 
= H 

0B 

dt 
+ T div q - 

at 
(151) 

Now the second circuital law (90) may be written 

0B 
— curl (E — e0) = K + -^ + (B div q — BV.q) (152) 

* ‘ Wiedemann’s Annalen,’ v. 41, p. 869. 



FLUXES OF ENERGY IN THE ELECTROMAGNETIC FIELD. 457 

Here ignore e0, K, and ignore the curl of the electric force, and we obtaii 

(152) in (151), 

H.BV.q — HE div q + T div q — 3TV 
dt 

H.BV.q - T div q 
oT„ 

dt ’ 

L by using 

. (153) 

which represents the distortional activity (my form, not equating to zero the 

coefficients of curl q in its development). We can, therefore, derive the magnetic 

stress in the manner indicated, that is, from (150), with the special meaning of 8B/91 

later stated, and the ig norations or nullifications. 

In a similar manner, from the first circuital law (89), which may be written 

( T) 
curl (H - ho) = C + + (D div q - DV.q),.(154) 

we can, by ignoring the conduction current and the curl of the magnetic force, obtain 

- | (®U) = E.DV.q - U div q - .(155) 
v ct ot 

which represents the distortional acti vity of the electric stress. 

The difficulty here seems to me to make it evident d priori that (150), with the 

special reckoning of 8B/dt should represent the distortional activity (plus rotational 

understood) ; this interesting property should, perhaps, rather be derived from the 

magnetic stress when obtained by a safe method. The same remark applies to the 

electric stress. Also, in (150) to (155) we overlook the Poyntjng flux. I am not 

sure how far this is intentional on Professor Hertz’s part, but its neglect does not 

seem to give a sufficiently comprehensive view of the subject. 

The complete expansion of the magnetic distortional activity is, in fact, 

0T 
H.BV.q — T div q — = Q2 + T + div qT — HG0;.(156) 

and similarly, that of the electric stress is 

r) FT 
E.DV.q - U div q — = Qx + U + div qU - EJ0.(157) 

cit 

It is the last term of (156) and the last term of (157), together, which bring in the 

Poynting flux. Thus, adding these equations, 

2aV3 - ^(U, + T,i) = Q + U + T + div q (U + T) - (EJ0 + HG0), . . . (158) 

where 

MDCCCXCII.—A. 

(EJn + HG,,) — (6(IJq + h0G()) — div W; 

3 N 

059) 
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and so we come round to the equation of activity again, in the form (146), by using 

(159) in (158). 

Modified Form of Stress-vector, and Application to the Surface separating two Regions. 

§ 23. The electromagnetic stress, PN of (149) and (136) may be put into another 

interesting form. We may write it 

PN = i (E.ND + V.VNE.D) + | (H.NB 4- V.VNH.B).(160) 

Now, ND is the surface equivalent of div D and NB of div B ; whilst YNE and YNH 

are the surface equivalents of curl E and curl K. We may, therefore, write 

PN = i (E// + VDG') + | (Ho-' + VJ'B), .(161) 

and this is the force, reckoned as a pull, on unit area of the surface whose normal is 

N. Here the accented letters are the surface equivalents of the same quantities 

unaccented, which have reference to unit volume. 

Comparing with (122) we see that the type is preserved, except as regards the 

terms in F due to variation of c and g in space. That is, the stress is represented in 

(101) as the translational force, due to E and H, on the fictitious electrification, 

magnetification, electric current, and magnetic current produced by imagining E and 

H to terminate at the surface across which PN is the stress. 

The coefficient which occurs in (161) is understandable by supposing the fictitious 

quantities (“ matter ” and “ current ”) to be distributed uniformly within a very thin 

layer, so that the forces E and H which act upon them do not then terminate quite 

abruptly, but fall off gradually through the layer from their full values on one side to 

zero on the other. The mean values of E and H through the layer, that is, -|E and 

-|H are thus the effective electric and magnetic forces on the layer as a whole, per 

unit volume density of matter or current; or f E and TH per unit surface density 

when the layer is indefinitely reduced in thickness. 

Considering the electric field only, the quantities concerned are electrification and 

magnetic current. In the magnetic field only they are magnetification and electric 

current. Imagine the medium divided into two regions A and B, of which A is 

internal, B external, and let N be the unit normal from the surface into the external 

region. The mechanical action between the two regions is fully represented by the 

stress PN over their interface, and the forcive of B upon A is fully represented by 

the E and H in B acting upon the fictitious matter and current produced on the 

boundary of B, on the assumption that E and H terminate there. If the normal 

and PN be drawn the other way, thus negativing them both, as well as the fictitious 

matter and current on the interface, then it is the forcive of A on B that is repre- 
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sentecl by the action of E and H in A on the new interfacial matter and current. 

That is, the E and H in the region A may be done away with altogether, because 

their abolition will immediately introduce the fictitious matter and current equivalent, 

so far as B is concerned, to the influence of the region A. Similarly E and H in B 

may be abolished without altering them in A. And, generally, any portion of the 

medium may be taken by itself and regarded as being subjected to an equilibrating 

system of forces, when treated as a rigid body. 

§ 24. When c and p do not vary in space, we do away with the forces — ^E2Vc 

and — -lEPVg, and make the form of the surface and volume translational forces 

agree. We may then regard every element of p or of cr as a source sending out 

from itself displacement and induction isotropically, and every element of J or G- as 

causing induction or displacement according to Ampere’s rule for electric current and 

its analogue for magnetic current. Thus 

H _ + VJu 
4<7rr“ 

(163) 

where iq is a unit vector drawn from the infinitesimal unit volume in the summation 

to the point at distance r where E or H is reckoned. Or, introducing potentials, 

E = - -curl 2-A,.(164) 
4 irr 4tirr 

H = — V2 ^ + curl .(165) 
Aiirr 4 ttv 

These apply to the whole medium, or to any portion of the same, with, in the 

latter case, the surface matter and current included, there being no E or H outside 

the region, whilst within it E and H are the same as due to the matter and current 

in the whole region (“matter,” p and cr ; “current,” J and G). But there is no 

known general method of finding the potentials when c and p. vary. 

We may also divide E and H into two parts each, say Ex and due to matter 

and current in the region A, and E2, H3 due to matter and current in the region B 

3 n 2 
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surrounding it, determinable in the isotropic homogeneous case by the above formulae. 

Then we may ignore E1 and Hj in estimating the forcive on the matter and current 

in the region A ; thus, 

+ VJjBo) + 2 (E.^ + \ D.iGj),.(166) 

where oq = div Bx = div B, and Jj = curl = curl K in region A, is the resultant 

force on the region A, and 

2(11] <To + \ JoB|) + 2 (Ej^o + A DjGo),.(167) 

is the resultant force on the region B ; the resultant force on A due to its own E and 

H being zero, and similarly for B. These resultant forces are equal and opposite, and 

so are the equivalent surface-integrals 

2 (HoA + VJfBo) + 2 (Eo/V + VDoGf),.(168) 

and 

2 (EbA + VJo'Bj) + 2 (E]A + VDjGo'),.(169) 

taken over the interface. The quantity summed is that part of the stress-vector, PN, 

which depends upon products of the H of one region and the B of the other, &c. 

Thus, for the magnetic stress only, 

H.BN - NAHB = (HpBjN - N.iHjBj) + (Hj.B.N - NAHjB.) 

+ (Ho.BoN - NAHtB,) + (IL.BjN - N.-pEBj), . . . (170) 

and it is the terms in the second and fourth brackets (which, be it observed, are not 

equal) which together make up the magnetic part of (168) and (169) or their nega¬ 

tives, according to the direction taken for the normal; that is, since HjB.} = H,B1, 

2pn = 2(H1.B3N + IH.BjN - N.HjBo) = 2(h.BN - NAHB) 

= 2(hiA + VJo'Bj) = 2(H2A + VJ/Bo) = 2(H(t' + VJ'B) 

= 2f = 2(Hjff3 + VJoBj) = 2(h,<x1 + VJ,Bo) = 2(h<t + vjb), . . . (171) 

where the first six expressions are interfacial summations, and the four last summa¬ 

tions throughout one or the other region, the last summation applying to either 

region. No special reckoning of the sign to be prefixed has been made. The 

notation is such that H = H-j fi- Eh, <x = oq -f- on, &c., &c. 

The comparison of the twro aspects of electromagnetic theory is exceedingly curious ; 

namely, the precise mathematical equivalence of “ explanation ” by means of instan¬ 

taneous action at a distance between the different elements of matter and current, 

each according to its kind, and by propagation through a medium in time at a finite 

velocity. But the day has gone by for any serious consideration of the former view 

other than as a mathematical curiosity. 
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Quaternionic Form of Stress- Vector. 

§25. We may also notice the Quaternion form for the stress function, which is so 

vital a part of the mathematics of forces varying as the inverse square of the distance, 

and of potential theory. Isotropy being understood, the electric stress may be 

written 

PN = ic[EN-1E],.(172) 

where the quantity in the square brackets is to be understood quaternionically. It 

is, however, a pure vector. Or, 

fPV c -E- 

_E _ = 2 _N_ 
(173) 

rp . 

that is, not counting the factor 1, c, the quaternion is the same as the quaternion 

; or the same operation which turns N to E also turns E to PN. Thus, N, E, 

and PN are in the same plane, and the angle between N and E equals that between 

E and PN; and E and PN are on the same side of N when E makes an acute angle 

with N. Also, the tensor of PN is U, so that its normal and tangential components 

are U cos 26 and U sin 26, if 6 = HE. 

Otherwise 

PN= -£C[ENE], (174) 

since the quaternionic reciprocal of a vector has the reverse direction. The corre¬ 

sponding volume translational force is 

F = — cV [EYE],.(175) 

which is also to be understood quaternionically, and expanded, and separated into 

parts to become physically significant. 1 only use the square brackets in this 

paragraph to emphasise the difference in notation. It rarely occurs that any 

advantage is gained by the use of the quaternion, in saying which, I merely repeat 

what Professor Willard Gibbs has been lately telling us; and I further believe the 

disadvantages usually far outweigh the advantages. Nevertheless, apart from practical 

application, and looking at it from the purely quaternionic point of view, I ought to 

also add that the invention of quaternions must be regarded as a most remarkable 

feat of human ingenuity. Vector analysis, without quaternions, could have been 

found by any mathematician by carefully examining the mechanics of the Cartesian 

mathematics ; but to find out quaternions required a genius. 
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Remarks on the Translational Force in Free Ether. 

§ 26. The little vector Veil, which has an important influence in the activity 

equation, where e and h are the motional forces 

e = YqB, h = YDq, 

has an interesting form, viz., by expansion, 

Yell = q.qVDB = | • qYEH,. (176) 

if v be the speed of propagation of disturbances. We also have, in connection there¬ 

with, the equivalence 
eD = hB,.(177) 

always. 

The translational force in a non-conducting dielectric, free from electrification and 

intrinsic force, is 

F = VJB + YDG + VjB + YDg, 

or, approximately, 
rZ I cl W 

= VDB + YDS = -n YSB = -5-3; YEH = —.(178) at vz dt v~ 

The vector VDB, or the flux of energy divided by the square of the speed of 

propagation, is, therefore, the momentum, (translational, not magnetic, which is quite 

a different thing), provided the force F is the complete force from all causes actiqg, 

and we neglect the small terms A7jB and VBg. 

But have we any right to safely write 

F = m^,.(179) 

where rn is the density of the ether ? To do so is to assume that F is the only force 

acting, and, therefore, equivalent to the time-variation of the momentum of a moving 

particle.* 

Now, if we say that there is a certain forcive upon a conductor supporting electric 

current; or, equivalently, that there is a certain distribution of stress, the magnetic 

stress, acting upon the same, we do not at all mean that the accelerations of momentum 

of the different parts are represented by the translational force, the “electromagnetic 

force.” It is, on the other hand, a dynamical problem in which the electromagnetic 

force plays the part of an impressed force, and similarly as regards the magnetic 

* Professor J. J. Thomson Las endeavoured to make practical use of the idea, ‘Phil. Mag.,’ March, 

1891. See also my article, ‘ The Electrician,’ January 15, 1886. 
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stress; the actual forces and stresses being only determinable from a knowledge of 

the mechanical conditions of the conductor-, as its density, elastic constants, and the 

way it is constrained. Now, if there is any dynamical meaning at all in the electro¬ 

magnetic equations, we must treat the ether in precisely the same way. But we do 

not know, and have not formularised, the equations of motion of the ether, but only 

the way it propagates disturbance through itself, with due allowance made for the 

effect thereon of given motions, and with formularisation of the reaction between the 

electromagnetic effects and the motion. Thus the theory of the stresses and forces in 

the ether and its motions is an unsolved problem, only a portion of it being known so 

far, i.e., assuming that the Maxwellian equations do express the known part. 

When we assume the ether to be motionless, there is a partial similarity to the 

theory of the propagation of vibrations of infinitely small range in elastic bodies, when 

the effect thereon of the actual translation of the matter is neglected. 

But in ordinary electromagnetic phenomena, it does not seem that the ignoration 

of q can make any sensible difference, because the speed of propagation of disturbances 

through the ether is so enormous, that if the ether were stirred about round a magnet, 

for example, there would be an almost instantaneous adjustment of the magnetic 

induction to what it would be were the ether at rest. 

Static Consideration of the Stresses.—Indeterminateness. 

§ 27. In the following the stresses are considered from the static point of view, 

principally to examine the results produced by changing the form of the stress func¬ 

tion. Either the electric or the magnetic stress alone may be taken in hand. Start 

then, from a knowledge that the force on a magnetic pole of strength m is Em, where 

R is the polar force of any distribution of intrinsic magnetisation in a medium, the 

whole of which has unit inductivity, so that 

div R = to = conv h0.(180) 

measures the density of the fictitious “ magnetic ” matter; h0 being the intrinsic 

force, or, since here P = !, the intensity of magnetisation. The induction is 

B = h + ft. This rudimentary theory locates the force on a magnet at its poles, 

superficial or internal, by 

F = R div R...(181) 

The N component of F is 

FN = RN. div R = div [R.RN - NAR3], (182) 

because curl R, = 0. Therefore 

PN = R.RN - N.4R- (183) 

is the appropriate stress, of irrotational type. Now, however uncertain we may be 
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about the stress in the interior of a magnet, there can be no question as to the 

possible validity of this stress in the air outside our magnet, for we know that the 

force R is then a polar force, and that is all that is wanted, m and h being merely 

auxiliaries, derived from R. 

Now consider a region A, containing magnets of this kind, enclosed in B, the rest 

of space, also containing magnets. The mutual force between the two regions is 

expressed by 2PN over the interface, which we may exchange for 2Em through 

either region A or B, still on the assumption that R remains polar. 

But if we remove this restriction upon the nature of R, and allow it to be arbitrary, 

say in region B or in any portion thereof, we find 

NF = div PN = RN aiv R + NV curl R . R; 

or 
F = Rm + A JR, 

if J = curl R. This gives us, from a knowledge of the external magnetic field of polar 

magnets only, the mechanical force exerted by a magnet on a region containing J. 

whatever that may be, provided it be measurable as above ; and without any experi¬ 

mental knowledge of electric currents, we could now predict their mechanical effects in 

every respect by the principle of the equality of action and reaction, not merely as 

regards the mutual influence of a magnet and a closed current, but as regards the 

mutual influence of the closed currents themselves; the magnetic force of a closed current, 

for instance, being the force on unit of m, is equivalently the force exerted by m on the 

closed current, which, by the above, we know. Also, we see that according to this 

magnetic notion of electric current, it is necessarily circuital. 

At the same time, it is to be remarked that our real knowledge must cease at the 

boundary of the region containing electric current, a metallic conductor for instance; 

the surface over which PN is reckoned, on one side of which is the magnet, on the 

other side electric current, can only be pushed up as far as the conductor. The stress 

PN may therefore cease altogether on reaching the conductor, where it forms a distri¬ 

bution of surface force fully representing the action of the magnet on the conductor. 

Similarly, we need not continue the stress into the interior of the magnet. Then, so 

far as the resultant force on the magnet as a whole, in translating or rotating it, and, 

similarly, so far as the action on the conductor, is concerned, the simple stress PN of 

constant tensor -|R3, varying from a tension parallel to R to an equal pressure laterally, 

acting in the medium between the magnet and conductor, accounts, by its terminal 

pulls or pushes, for the mechanical forces on them. The lateral pressure is especially 

prominent in the case of conductors, whilst the tension goes more or less out of sight, 

as the immediate cause of motion. Thus, when parallel currents appear to attract one 

another, the conductors are really pushed together by the lateral pressure on each 

conductor being greater on the side remote from the other than on the near side : 

whilst if the currents are oppositely directed, the pressure on the near sides is greater 

than on the remote sides, and they appear to repel one another, 
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The effect of continuing the stress into the interior of a conductor of unit induc¬ 

tivity, according to the same law, instead of stopping it on its boundary, is to 

distribute the translational force bodily, according to the formula 2VJR, instead of 

superficially, according to 2PN. In either case, of course, the conductor must be 

strained by the magnetic stress, with the consequent production of a mechanical stress. 

But the strain (and associated stress) will be different in the two cases, the applied 

forces being differently localised. The effect of the stress on a straight portion of a 

wire supporting current, due to its own field only, is to compress it laterally, and to 

lengthen it. Besides this, there will be resultant force on it arising from the different 

pressures on its opposite sides due to the proximity of the return conductor or rest of 

the circuit, tending to move it so as to increase the induction through the circuit per 

unit current, that is, the inductance of the circuit. 

§ 28. If now, we bring an elastically magnetisable body into a magnetic field, it 

modifies the field by its presence, causing more or less induction to go through it 

than passed previously in the air it replaces, according as its inductivity exceeds or is 

less than that of the air. The forcive on it, considered as a rigid body, is completely 

accounted for by the simple stress PN in the air outside it, reckoned according to the 

changed field, and supposed to terminate on the surface of the disturbing body. This 

is true whether the body be isotropic or heterotropic in its inductivity ; nor need the 

induction be a linear function of the magnetic force. It is also true when the body is 

intrinsically magnetised ; or is the seat of electric current. In short, since the 

external stress depends upon the magnetic force outside the body, when we take the 

external field as we may find it, that is, as modified by any known or unknown causes 

within the body, the corresponding stress, terminated upon its boundary, fully 

represents the forcive on the body, as a whole, due to magnetic causes. This follows 

from the equality of action and reaction ; the force on the body due to a unit pole is 

the opposite of that of the body on the pole. 

If we wish to continue the stress into the interior of the body, surrounded on all 

sides by the unmagnetised medium of unit inductivity, as we must do if we wish to 

arrive ultimately at the mutual actions of its different parts, and how they are modified 

by variations of inductivity, by intrinsic magnetisation, and by electric current in the 

body, we may, so far as the resultant force and torque on it are concerned, do it in 

any way we please, provided we do not interfere with the stress outside. For the 

internal stress, of any type, will have no resultant force or torque on the body, and 

there is merely left the real external stress. 

Practically, however, we should be guided by the known relations of magnetic 

force, induction, magnetisation, and current, and not go to work in a fanciful manner; 

furthermore, we should always choose the stress in such a way that if, in its expres¬ 

sion, we take the inductivity to be unity, and the intrinsic magnetisation zero, it 

must reduce to the simple Maxwellian stress in air (assumed to represent ether here). 

MLCCCXCII.-—A. 3 O 
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But as we do nob know definitely the forcive arising from the magnetic stress in the 

interior of a magnet, there are several formulae that suggest themselves as possible. 

Special Kinds of Stress Formulas statically suggested. 

5 29. Thus, first we have the stress (183); let this be quite general, then 

J PN = R.RN - N.I-R3,.(184) 

M ' [ F = R div R + VJR.(185) 

Here It is the magnetic force of the field, not of the flux B. If g = 1, div It is 

the density of magnetic matter, the convergence of the intrinsic magnetisation, but 

not otherwise. In general, it is the density of the matter of the magnetic potential, 

calculated on the assumption g = 1. The force on a magnet is located in this system 

at its poles, whether the magnetisation be intrinsic or induced. The second term in 

(185) represents the force on matter bearing electric current (J = curl It), but has to 

be supplemented by the first term, unless div R = 0 at the place. 

§ 30. Next, let the stress be g times as great for the same magnetic force, but be 

still of the same simple type, g being the inductivity, which is unity outside the body, 

but having any positive value, which may be variable, within it. Then we shall have 

f Px = R.N/.R - N.VR/.R, .(186) 
(2) < 

[ F = Rw + VJ/<R - *R2V/(,.(187) 

where m = conv g\ = div /xR is the density of magnetic matter, gh0 being the 

intensity of intrinsic magnetisation. 

The electromagnetic force is made g times as great for the same magnetic force ; 

the force on an intrinsic magnet is at its poles ; and there is, in addition, a force 

wherever g varies, including the intrinsic magnet, and not forgetting that a sudden 

change in g, as at the boundary of a magnet, lias to count. This force, the third term 

in (187), explains the force on inductively magnetised matter. It is in the direction 

of most rapid decrease of g. 

§ 31. Thirdly, let the stress be of the same simple type, but taking H instead of 

R, H being the force of the flux B = gB. = g (R + h0), where h0 is as before. 

We now have 
fPN = H.NB - N.1HB, .(188) 

(O) J 

\f = VJB + Vj(1B - |H-V/(,.(189) 

where j0 = curl h0 is the distribution of fictitious electric current which produces the 

same induction as the intrinsic magnetisation gh0, and J is, as before, the real current. 

It is now qwasi-electromagnetic force that acts on an intrinsic magnet, with, 

however, the force due to y/x, since a magnet has usually large g compared with air. 
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The above three stresses are all of the simple type (equal tension and perpendicular 

pressure), and are irrotational, unless p, be the eolotropic operator. No change is, in 

the latter case, needed in (186), (188), whilst in the force formulae (187), (189), the 

only change needed is to give the generalised meaning to Vp,. Thus, in (I 89), instead 

of H'Vp., use 2VTm, 

(H/iH), 

(VB- Vh)HB, 

i (HVjB - BVjH) + j (HV,B - BY.H) + k (HY.B - BV3H), 

showing the i, j, k components. 

Similarly in the other cases occurring later. 

The following stresses are not of the simple type, though all consist of a tension 
parallel to R or H combined with an isotropic pressure. 

§ 32. Alter the stress so as to locate the force on an intrinsic magnet bodily upon 
its magnetised elements. Add R.p,h0N to the stress (186), and therefore pih().RN 

to its conjugate ; then the divergence of the latter must be added to the N-component 
of the force (187). Thus we get, if I = ph0, 

f PN = R.BN - Nff R/«R, .(190) 
(4) s 

[F = IY.R + YJ/.R - iR-Y/<.(191) 

But here the sum of the first two terms in F may be put in a different form. Thus, 

Also 

IY.R — I]YjR -j- IjVoR T" IgVgR 

= i.IVRj + j.IVRj + k.IYR3. 

IVRj = IVjR + I (VRj - VjR) = IVXR + iVJI. 

These bring (191) to 

F = (i.IVjR + j.IVgR + k.IVgR) + YJB - 4 R-V/-, (192) 

where the first component (the bracketted part) is Maxwell’s force on intrinsic 
magnetisation, and the second his electromagnetic force. The third, as before, is 
required where p. varies. 

§ 33. To the stress (190) add — N.^ RIj without altering the conjugate stress 

making 

3 o 2 
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fPN = R.BN - N.iRB,.(193) 
(5) < 

|_F .- VJB - i {i (RVjB - BViR) + j (RV2B - BV2R) + k (RVSB - BV,R)}. . (194) 

= VJB - (VB- Vk)ARB. 

This we need not discuss, as it is merely a transition to the next form. 

§ 34. To the stress (193) add h^.NB ; we then get 

fPx = H.NB - NARB,.(195) 

(6) -j F = VJB + [i.BV^j + j.BV/o + k.BV/q} 

L - i {i. (RVjB - BVjR) + j. (RV2B - BV2R) + k. (RV3B - BV3R)}, .... (196) 

- VJB + BV.h0 - (VB - VR) 1RB, 

where /q, h2, h3 are the components of h0. 

Now if to this last stress (195) we add — N.^h0B, we shall come back to the 

third stress, (188), of the simple type. 

Perhaps the most instructive order in which to take the six stresses is (l), (2), (4), 

(5), (6), and (3); merely adding on to the force, in passing from one stress to the 

next, the new part which the alteration in the stress necessitates. 

To the above we should add Maxwell’s general stress, which is 

fPN = R.NB - N.-pt3,.(197) 

(7) J F = VJB + {i.IVjR + j.IV3R + k.IVsR} 

L + {i-MVjR + j.MV.R + k.MV3Rj..(198) 

= VJB + Vr[R(I+ M)], 

where M = (g — l)R=: intensity of induced magnetisation. There is a good deal 

to be said against this stress ; some of which later. 

Remarks on Maxwell’s General Stress. 

§ 35. All the above force formulae refer to the unit volume; whenever, therefore, 

a discontinuity in the stress occurs at a surface, the corresponding expression per unit 

surface is needed; i.e., in making a special application, for it is wasted labour else. 

It might be thought that as Maxwell gives the force (198), and in his treatise 

usually gives surface expressions separately, so none is required in the case of this his 

force system (198). But this formula will give entirely erroneous results if carried 

out literally. It forms no exception to the rule that all the expressions require 

surface additions. 

Maxwell’s general stress has the apparent advantage of simplicity. It merely 

requires an alteration in the tension parallel to R, from R'3 to RB, whilst the lateral 

pressure remains 1,R3, when we pass from unmagnetised to magnetised matter. The 
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force to which it gives rise is also apparently simple, being merely the sum of two 

forces, one the electromagnetic, VJB, the other a force on magnetised matter whose i 

component is (I + M)V1R, both per unit volume, the latter being accompanied (in 

case of eolotropy) by a torque. Now I is the intrinsic and M the induced magneti¬ 

sation, so the force is made irrespective of the proportion in which the magnetisation 

exists as intrinsic or induced. In fact, Maxwell’s “ magnetisation ” is the sum of 

the two without reservation or distinction. But to unite them is against the whole 

behaviour of induced and intrinsic magnetisation in the electromagnetic scheme of 

Maxwell, as I interpret it. Intrinsic magnetisation (using Sir W. Thomson’s term) 

should be regarded as impressed (I = ph,„ where h0 is the equivalent impressed 

magnetic force); on the other hand, “ induced ” magnetisation depends on the force 

of the field {M = (p — 1) Rj. Intrinsic magnetisation keeps up a field of force. 

Induced magnetisation is kept up by the field. In the circuital law I and M 

therefore behave differently. There may be absolutely no difference whatever 

between the magnetisation of a molecule of iron in the two cases of being in a 

permanent or a temporary magnet. That, however, is not in question. We have no 

concern with molecules in a theory which ignores molecules, and whose element of 

volume must be large enough to contain so many molecules as to swamp the charac¬ 

teristics of individuals. It is the resultant magnetisation of the whole assembly that 

is in question, and there is a great difference between its nature according as it 

disappears on removal of an external cause, or is intrinsic. The complete amalgama¬ 

tion of the two in Maxwell’s formula must certainly, I think, be regarded as a false 

step. 

We may also argue thus against the probability of the formula. If we have a 

system of electric current in an unmagnetisable (p = 1) medium, and then change p 

everywhere in the same ratio, we do not change the magnetic force at all, the 

induction is made p times as great, and the magnetic energy p times as great, and is 

similarly distributed. The mechanical forces are, therefore, p times as great, and are 

similarly distributed. That is, the translational force in the p = 1 medium, or YJR, 

becomes YJpR in the second case in which the inductivity is p, without other 

change. But there is no force brought in on magnetised matter per se. 

Similarly, if in the p = 1 medium we have intrinsic magnetisation I, and then 

alter p in any ratio everywhere alike, keeping I unchanged, it is now the induction 

that remains unaltered, the magnetic force becoming p-1 times, and the energy p_1 

times the former values, without alteration in distribution (referring to permanent 

states, of course). Again, therefore, we see that there is no translational force 

brought in on magnetised matter merely because it is magnetised. 

Whatever formula, therefore, we should select for the stress function, it would 

certainly not be Maxwell’s, for cumulative reasons. When, some six years ago, I 

had occasion to examine the subject of the stresses, I was unable to arrive at any 

very definite results, except outside of magnets or conductors. It was a perfectly 
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indeterminate problem to find the magnetic stress inside a body from the existence of 

a known, or highly probable, stress outside it. All one could do was to examine the 

consequences of assuming certain stresses, and to reject those which did not work 

well. After going into considerable detail, the only two which seemed possible were 

the second and third above (those of equations (186) and (188) above). As regards 

the seventh (Maxwell’s stress equation (198) above), the apparent simplicity produced 

by the union of intrinsic and induced magnetisation, turned out, when examined into 

its consequences, to lead to great complication and unnaturalness. This will be 

illustrated in the following example, a simple case in which we can readily and fully 

calculate all details by different methods, so as to be quite sure of the results we 

ought to obtain. 

A ivorJced-out Example to Exhibit the Forcives contained in Different Stresses. 

§36. Given a fluid medium of inductivity in which is an intrinsic magnet of 

the same inductivity. Calculate the attraction between the magnet and a large solid 

mass of different inductivity /x.,. Here it is only needful to calculate the force on a 

single pole, so let the magnet be infinitely thin and long, with one pole of strength m 

at distance a from the medium which may have an infinitely extended plane 

boundary. By placing a fictitious pole of suitable strength at the optical image in 

the second medium of the real pole in the first, we may readily obtain the solution. 

Let PQ be the interface and the real pole be at A and its image at B. We have 

first to calculate the distribution of R, magnetic force, in both media due to the 

pole m, as disturbed by the change of inductivity. We have div p1R1 = m in the 

first medium, and div p.2IL2 = 0 in the second, therefore R has divergence only on 

the interface. Let a be the surface density of the fictitious interfacial matter to 

correspond ; its force goes symmetricallv both ways; the continuity of the normal 

induction therefore gives, at distance r from A, the condition 
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via 

4 w/tj}-3 
+ 

/ 
(199) 

because is the tensor of the magnetic force due to m in the medium when 

of infinite extent. Therefore 

a = ;<1 ~ fe- . .(200) 
/“l + /L 

The magnetic potential fl, such that R = — VH is the polar force in either region, is 

therefore the potential of at A and of cr over the interface. 

But if we put matter n at the image B, of amount 

n = K 
/li + H 

m 

p r 

the normal component of R1 on the [jl1 side due to n and the pole m will be 

(201) 

ma na 

47r/u1r3 4ttt3 

ma j 

49r/r1r8 2 ’ 
(202) 

the same value as before; the force Rx on the side is, therefore, the same as that 

due to matter m/^ at A and matter n at B; whilst on the /x2 side the force R2 is 

2??z 
that due to matter m/u,T at A and matter also at A, that is, to matter-at A. 

Pi + P» 
Thus in the /x3 medium the force R2 is radial from A as if there were no change of 

inductivity, though altered in intensity. 

The repulsion between the pole m and the solid mass is not the repulsion between 

the matters w/p.1 and n of the potential, but is 

= m x magnetic force at A due to matter n at B, 

= n X magnetic force at B due to matter m/A at A, 

mn _/<] — fin to2 

4-n- (2a)2 + fi2 4^/^ (2a)2’ 
(203) 

becoming an attraction when > /rl5 making n negative. When /x2 = 0, the 

repulsion is 
W? 

477-yUj (2a-)2 ’ 

when /x2 — oo, it is turned into an attraction of equal amount. 

Similarly, if we consider the attraction to be the resultant force between m and the 

interfacial matter cr, we shall get the same result by 

4wr3 
(204) 

the quantity summed (over the interface) being cr X normal component of magnetic 
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force due to matter m in a medium of unit inductivity, or the normal component of 

induction due to m in its own medium. For this is 

ji] — fia ma 

/<-i + H 2 TTytjr3 
%tt dr = 

m2a2 fj.i — [i2 

47T/41 + /lo. 
dr = (203) again. 

Another way is to calculate the variation of energy made by displacing either the 

pole m or the mass. The potential energy is expressed by 

i (P + p) m = 1 Pm + i 2p^,.(205) 

where P = mf^Trppr and p = 2 a/Anr, the potentials of matter m//y and <x, where r 

is the distance from m or from cr to the point where P and p are reckoned. 

The value of the second part in (205), depending upon cr, comes to 

i/M — Ma _ ra2 
fij -)- /tj 4^^ • 2 a 

(206) 

and its rate of decrease with respect to a expresses the repulsion between the pole 

and the region. This gives (203) again. 

A fourth way is by means of the g^ast-electromagnetic force on fictitious interfacial 

electric current, instead of matter, the current being circular about the axis of 

symmetry AB. The formula for the attraction is 

2v curl B.Rn, (207) 

if R0 be the radial magnetic force from m in its own medium, tensor 

Here the curl of B is represented by the interfacial discontinuity in the tangential 

induction, or 

2zm yMq 

4?rr3 yUj + JUo 

Also the tangential component of R0 is Therefore the repulsion is 

[2mz — yttjj mz 
J4Trr3 /x1 + /i3 4 

2 irr dr — 
4i7Tfl-y 

/a — h 
H + H 

m2 /<i — /<j 

4^1 ‘ /a + /O 
(208) 

as before, equation (203). This method (207) is analogous to (204). 

§37. There are several other ways of representing the attraction, employing fictitious 

matter and current ; but now let us change the method, and observe how the attrac¬ 

tion between the magnetic pole and the iron mass is accounted for by a stress dis¬ 

tribution, and its space-variation. The best stress is the third, equation (188), § 31. 

Applying this, we have simply a tension of magnitude I/hIV = Tj in the first medium 
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and -gp2,Tt32 = To in the second, parallel to RL and R2 respectively, each combined 

with an equal lateral pressure, so that the tensor of the stress vector is constant. 

But, so far as the attraction is concerned, we may ignore the stress in the second 

medium altogether, and consider it as the 2P>, of the stress-vector in the first medium 

over the surface of the second medium. The tangential component summed has zero 

resultant; the attraction is therefore the sum of the normal components, or 2rJ\ cos 20lf 

where 6X is the angle between Rt and the normal. This is the same as 21^ (RN2 — R/), 

if RN and Rx are the normal and tangential components of R, ; or 

2 Trrdr\fi^ £ -/L 
\4tTfXy^ fly + fX„J 

i mz I. 
fly'll* (fly + fly)/ J ’ (209) 

which on evaluation gives the required result (203). 

But this method does not give the true distribution of translational force due to the 

stresses. In the first medium there is no translational force, except on the magnet. 

Nor is there any translational force in the second p2 medium. But at the interface, 

where p changes, there is the force — i|R2Vp per unit volume, and this is represented 

by the stress-difference at the interface. It is easily seen that the tangential stress- 

difference is zero, because 

T sin 20 = yuRNRT,.("210) 

and both the normal induction and the tangential magnetic force are continuous. 

The real force is, therefore, the difference of the normal components of the stress- 

vectors, and is, therefore, normal to the interface. This we could conclude from the 

expression — 4rR2Vp. But since the resultant of the interfacial stress in the second 

medium is zero, we need not reckon it, so far as the attraction of the pole is concerned. 

The normal traction on the interface, due to both stresses, is of amount 

Wl" /.l.i 

87rV6 (fly + fly)2 
t2 + a2 ^ dlj (211) 

per unit area. Summed up, it gives (203) again. 

That (211) properly represents the force — ^R'3Vp when p is discontinuous, we may 

also verify by supposing p to vary continuously in a very thin layer, and then proceed 

to the limit. 

The change from an attraction to a repulsion as p3 changes from being greater 

to being less than p1; depends upon the relative importance of the tensions parallel to 

the magnetic force and the lateral pressures operative at different parts of the 

interface. In the extreme case of p3 = 0, we have RL tangential, with, therefore, a 

pressure everywhere. For the other extreme, R! is normal, and there is a pull on the 

second medium everywhere. When p3 is finite there is a certain circular area on the 

interface within which the translational force due to the stress in the medium 

containing the pole m is towards that medium, whilst outside it the force is the other 

MDCCCXCII.—A. 3 P 
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way. But when both stresses are allowed for, we see that when g.2>g1 the pull 

is towards the first medium in all parts of the interface, and that this becomes a push 

in all parts when g1 > g2. 

A definite Stress only obtainable by Kinetic Consideration of the Circuital Equations 

and Storage and Flux of Energy. 

§ 38. We see that the stress considered in the last paragraph gives a rationally 

intelligible interpretation of the attraction or repulsion. The same may be said of 

other stresses than that chosen. But the use of Maxwell’s stress, or any stress 

leading to a force on inductively magnetised matter as this stress does, leads us into 

great difficulties. By (198) we see that there is first a bodily force on the whole of the 

g2 medium, because it is magnetised, unless g2 =1. When summed up, the resultant 

does not give the required attraction. For, secondly, the gl medium is also magnetised, 

unless g1 = 1, and there is a bodily force throughout the whole of it. When this is 

summed up (not counting the force on the magnet), its resultant added on to the 

former resultant still does not make up the attraction (i.e., equivalently, the force on 

the magnet). For, thirdly, the stress is discontinuous at the interface (though not in 

the same manner as in the last paragraph). The resultant of this stress-discontinuity, 

added on to the former resultants, makes up the required attraction. Tt is unneces¬ 

sary to give the details relating to so improbable a system of force. 

Our preference must naturally be for a more simple system, such as the previously 

considered stress. But there is really no decisive settlement possible from the theo¬ 

retical statical standpoint, and nothing short of actual experimental determination of 

the strains produced and their exhaustive analysis would be sufficient to determine 

the proper stress-function. But when the subject is attacked from the dynamical 

standpoint, the indeterminateness disappears. From the two circuital laws- of variable 

states of electric and magnetic force in a moving medium, combined with certain dis¬ 

tributions of stored energy, we are led to just one stress-vector, viz. (136). It is, in 

the magnetic case, the same as (188); that is, it reduces to the latter when the 

medium is kept at rest, so that J„ and Gr0 become J and G-. 

It is of the simple type in case of isotropy (constant tensor), but is a rotational 

stress in general, as indeed are all the statically probable stresses that suggest 

themselves. The translational force due to it being divisible conveniently into (a) 

the electromagnetic force on electric current, (b) the ditto on the fictitious electric 

current taking the place of intrinsic magnetisation, (c) force depending upon space- 

variation of g ; we see that the really striking part is (6). Of all the various ways of 

representing the forcive on an intrinsic magnet it is the most extreme. The magnetic 

“matter” does not enter into it, nor does the distribution of magnetisation; it is 

where the intrinsic force h0 has curl that the translational force operates, usually on 
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the sides of a magnet. From actual experiments with bar magnets, needles, &c., one 

would naturally prefer to regard the polar regions as the seat of translational force. 

But the equivalent forcive 2j0B has one striking recommendation (apart from the 

dynamical method of deducing it), viz., that the induction of an intrinsic magnet is 

determined by curl h0, not by h() itself; and this, I have shown, is true when h0 is 

imagined to vary, the whole varying states of the fluxes B, D, C due to impressed 

force being determined by the curls of e(l and h0, which are the sources of the dis¬ 

turbances (though not of the energy). 

The rotational peculiarity in eolotropic substances does not seem to be a very 

formidable objection. Are they not solid ? 

As regards the assumed constancy of p, a more complete theory must, to be correct, 

reduce to one assuming constancy of p, because, as Lord Rayleigh* has shown, the 

assumed law has a limited range of validity, and is therefore justifiable as a preparation 

for more complete views. Theoretical requirements are not identical with those of 

the practical engineer. 

But, for quite other reasons, the dynamically determined stress might be entirely 

wrong. Electric and magnetic “ force ” and their energies are facts. But it is the 

total of the energies in concrete cases that should be regarded as the facts, rather 

then their distribution ; for example, that, as Sir W. Thomson proved, the '‘mechanical 

value ” of a simple closed current C is -§LC3, where L is the inductance of the circuit 

(coefficient of electromagnetic capacity), rather than that its distribution in space is 

given by ^HB per unit volume. Other distributions may give the same total amount 

of energy. For example, the energy of distortion of an elastic solid may be expressed 

in terms of the square of the rotation and the square of the expansion, if its boundary 

be held at rest; but this does not correctly localise the energy. If, then, we choose 

some other distribution of the energy for the same displacement and induction, we 

should find quite a different flux of energy. But I have not succeeded in making any 

other arrangement than Maxwell’s work practically, or without an immediate intro¬ 

duction of great obscurities. Perhaps the least certain part of Maxwell’s scheme, 

as modified by myself, is the estimation of magnetic energy as -gHB in intrinsic 

magnets, as well as outside them, that is, by -|Ep_1B, however B may be caused. Yet, 

only in this way are thoroughly consistent results apparently obtainable when the 

electromagnetic field is considered comprehensively and dynamically. 

* ‘ Phil. Mag.,’ January, 1887. 



MR. 0. HEAVISIDE ON THE FORCES, STRESSES, AND 47 6 

Appendix. 

Receiver! June 27, 1891. 

Extension of the Kinetic Method of arriving at the Stresses to cases of Non-linear 

Connection between the Electric and Magnetic Forces and the Fluxes. Preserva¬ 

tion of Type of the Flux of Energy Formula. 

§ 39- It may be worth while to give the results to which we are led regarding the 

stress and flux of energy when the restriction of simple proportionality between 

“ forces ” and “ fluxes,” electric and magnetic respectively, is removed. The course to 

be followed, to obtain an interpretable form of the equation of activity, is sufficiently 

clear in the light of the experience gained in the case of proportionality. 

First assume that the two circuital laws (89) and (90), or the two in (93), hold 

good generally, without any initially stated relation between the electric force E and 

its associated fluxes C and D, or between the magnetic force H and its associated 

fluxes K and B. When written in the form most convenient for the present appli¬ 

cation, these laws are 

curl (H - hn) = J0 = C + + (D div q - DV.q),.(212) 
Bt 

- curl (E - e0) = G0 = K + ^ + (B div q - BV.q).(213) 
Bt 

Now derive the equation of activity in the manner previously followed, and arrange 

it in the particular form 

e0J0 + h()G0 + conv V (E — e0) (H — h0) 

E 0D + H rS \ + (KDViq _ ED diy q) + (n.BV.q - HB div q), . (214) 
Bt Bt) 

which will best facilitate interpretation. 

Although independent of the relation between E and D, &c., of course the dimensions 

must be suitably chosen so that this equation may really represent activity per unit 

volume in every term. 

Now, guided by the previous investigation, we can assume that (e0J0 -}- h,,Gr0) 

represents the rate of supply of energy from intrinsic sources, and also that 

V (E — e0) (H-h„), which is a flux of energy independent of q, is the correct form in 

general. Also, if there be no other intrinsic sources of energy than e0, h0, and no 

other fluxes of energy besides that just mentioned except the convective flux and that 

due to the stress, the equation of activity should be representable by 

- (EC + HK) + 
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(e0j0.+ h„Gr(1) + cony [V (E - e„) (H - hj + q (U + T)] 

= (Q + U + T) + Fq + conv %q 

= (Q + u + T) + 2a Vq,.(215) 

where Q is the conjugate of the stress vector, F the translational force, and Q, U, 

and T the rate of waste and the stored energies, whatever they may be. 

Comparing with the preceding equation (214), we see that we require 

2av^ = (Q-EC - HK) + + 

+ [E.DV.q - (ED - U) div q] + [H.BV.q - (HB - T) divq] (216) 

Now assume that there is no waste of energy except by conduction ; then 

Also assume that 
Q = EC + HK. (217a) 

0U ?D 0T 0B 
-= E — - - — H — 
dt dt * dt df 

(217b) 

These imply that the relation between E and D is, for the same particle of matter, 

an invariable one, and that the stored electric energy is 

U = |DE,/D.(218) 
J 0 

where E is a function of D. Similarly, 

T = jB H dB.(219) 

expresses the stored magnetic energy, and H must be a definite function of B. 

On these assumptions, (216) reduces to 

2aV3 = [E.DV.q - (ED — U) dir qj + [H.BV.q — (HB — T) div q j, 

from which the stress-vector follows, namely, 

Or, 

PN = [E.DN - N (ED - U)] + [H.BN - N (HB - T)]. 

PN = (VDVEN + NU) + (VBVHN + NT). . . . 

(220) 

(221) 

(222) 

Thus, in case of isotropy, the stress is a tension U parallel to E combined with 

a lateral pressure (ED — U); and a tension T parallel to H combined with a lateral 

pressure (HB — T). 

The corresponding translational force is 

F = E div D + DV.E - V (ED - U) 

+ H div B + BV.H - V (HB - T), 

which it is unnecessary to put in terms of the currents. 

(223) 
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Exchange E and D, and H and B, in (221) or (222) to obtain the conjugate vector 

Qn ; from which we obtain the flux of energy due to the stress, 

- = B.Eq - q (ED - U) + B.Hq - q (KB - T) 

= VEVRq + VHVBq + q (U + T),.. . (224) 

or 
- q% = VeH + VEh + q (U + T), .(225) 

where e and h are the motional electric and magnetic forces, of the same form as before 

(88) and (91); so that the complete form of the equation of activity, showing the 

fluxes of energy and their convergence, is 

e0J0 + h0G0 + cony [V(E - e0) (H - h„) + q (U + T)] - conv [VeH + VEh + q( U + T)] = Fq + (Q + U + T), (226) 

where F has the above meaning. 

There is thus a remarkable preservation of form as compared with the corresponding 

formulae when there is proportionality between force and flux. For we produce 

harmony by means of a Poynting flux of identical expression and a flux due to the 

stress, which is also of identical expression, although U and T now have a more general 

meaning, of course.* 

Example of the above, and Remarks on Intrinsic Magnetisation when there is 

Hysteresis. 

§ 40. In the stress-vector itself (for either the electric or the magnetic stress) the 

relative magnitude of the tension and the lateral pressure varies unless the curve 

* As the investigation in this Appendix has some pretensions to generality, we should try to settle 

the amount it is fairly entitled to. No objection is likely to be raised to the use of the circuital equations 

(212), (213), with the restriction of strict proportionality between E and H and the fluxes D and B, or 

C and K entirely removed ; nor to the estimation of J0 and G0 as the “ true ” currents ; nor to the use of 

the same form of flux of electromagnetic energy when the medium is stationary. For these things are 

obviously suggested by the preceding investigations, and their justification is in their being found to 

continue to work, which is the case. But the use in the text of language appropriate to linear functions, 

which arose from the notation, &e., being the same as before, is unjustifiable. We may, however, remove 

this misuse of language, and make the equation (226), showing the flux of energy, rest entirely upon 

the two circuital equations. In fact, if we substitute in (226) the relations (217a), (2175), it becomes 

merely a particular way of writing (214). 

It is, therefore, to (217a), (2175) that we should look for limitations. As regards (217a), there does 

not seem to be any limitation necessary. That is, there is no kind of relation imposed between E and C, 

and H and K. This seems to arise merely from Q meaning energy wasted for good, and having’ no 

further entry into the system. But as regards (2175), the case is different. For it seems necessary, in 

order to exclude terms corresponding to E(0c/0£)E and H(0/<./0t)H in the linear theory, when there is 
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connecting the force and the induction be a straight line. Thus, if the curve be 

of the type shown in the first figure, the shaded area will represent the stored 

energy and the tension, and the remainder of the rectangle will represent the lateral 

pressure. They are equal when H is small; later on the pressure preponderates, and 

more and more so the bigger H becomes 

But if the curve be of the type shown in the second figure, then, after initial 

equality the tension preponderates; though, later on, when H is very big the 

pressure preponderates. 

To obtain an idea of the effect, take the concrete example of an infinitely long rod, 

uniformly axially inductized by a steady current in an overlapping solenoid, and 

consider the forcive on the rod. Here both H and B are axial or longitudinal; and 

so, by equation (223), the translational force would be a normal force on the surface of 

the rod, acting outwards, of amount 

(HB - T) - ttK0B0 

per unit area ; this being the excess of the lateral pressure in the rod over -|H0B0, the 

lateral pressure just outside it. 

In case of proportionality of force to flux, the first pressure is ^HB, and if there is 

no intrinsic magnetisation H and H0 are equal. The outward force is therefore 

positive for paramagnetic, and negative for diamagnetic substances, and the result 

would be lateral expansion or contraction, since the infinite length would prevent 

elongation. 

rotation, that E and D should be parallel, and likewise H and B. At any rate, if such terms be allowed, 

some modification may be required in the subsequent reckoning of the mechanical force. In other respects, 

it is merely implied by (2176) that E and D are definitely connected, likewise H and B, so that there is 

no waste of energy other than that expressed by Q. 
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But if the curve in the rod be of the type of the first figure, and the straight 

line ac be the air curve to correspond, it is the area abc that now represents the 

outward force per unit area when the magnetic force has the value ad. If the 

straight line can cross the curve ab, we see that by sufficiently increasing H we can 

make the external air pressure preponderate, so that the rod, after initially expand¬ 

ing, would end by contracting. 

If the rod be a ring of large diameter compared with its thickness, the forcive 

would be approximately the same, viz., an outward surface force equal to the 

difference of the lateral pressures in the rod and air. The result would then be 

elongation, with final retraction when the external pressure came to exceed the 

internal. 

Bidwell found a phenomenon of this kind in iron, but it does not seem possible 

that the above supposititious case is capable of explaining it, though of course the 

true explanation may be in some respects of a similar nature. But the circumstances 

are not the same as those supposed. The assumption of a definite connexion between 

H and B, and elastic storage of the energy T, is very inadequate to represent the facts 

of magnetisation of iron, save within a small range. 

Magneticians usually plot the curve connecting H — h0 and B, not between H and B, 

or which would be the same, between H — h0 and B — B0, where B0 is the intrinsic 

magnetisation. Now when an iron ring is subjected to a given gaussage (or magneto 

motive force), going through a sequence of values, there is. no definite curve connecting 

H — h0 and B, on account of the intrinsic magnetisation. But, with proper allowance 

for h0, it might be that the resulting curve connecting H and B in a given specimen, 

would be approximately definite, at any rate, far more so than that connecting H — h0 

and B. Granting perfect definiteness, however, there is still insufficient information 

to make a theory. lire energy put into iron is not wholly stored ; that is, in 

increasing the coil current we increase B0 as well as B, and in doing so dissipate 

energy ; and although we know, by Ewing’s experiments, the amount of waste in 

cyclical changes, it is not so clear what the rate of waste is at a given moment. 

There is also the further peculiarity that the energy of the intrinsic magnetisation at 

a given moment, though apparently locked up, and really locked up temporarily, 

however loosely it may be secured, is not wholly irrecoverable, but comes into play 

again when H is reversed. Now it may be that the energy of the intrinsic magnetisa¬ 

tion plays, in relation to the stress, an entirely different part from that of the elastic 

magnetisation. It is easy to make up formulae to express special phenomena, but 

very difficult to make a comprehensive theory. 

But in any case, apart from the obscurities connected with iron, it is desirable to be 

apologetic in making any application of Maxwell’s stresses or similar ones to 

practice when the actual strains produced are in question, bearing in mind the 

difficulty of interpreting and harmonising with Maxweil’s theory the results of 

Kerr, Quincke, and others. 
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Introduction. 

Our knowledge of the Thermal Conductivities of Crystals is derived mainly from the 

experiments of de Senarmont, von Lang, and Jannetaz/'' who, using the wax 

melting or analogous methods, have determined the ratios of what may be called the 

“ principal conductivities ” and the positions of the axes of conductivity within a 

number of crystals belonging to the simple systems. According to their experi¬ 

ments the isothermal surfaces about a heated point in a crystal are, in general, 

ellipsoids, having their axes parallel to the optical axes. In the case of a uniaxal 

crystal, this ellipsoid becomes a spheroid of revolution about the axis, and is, as a 

rule, oblate or prolate according as the wave-surface for the extraordinary ray is 

oblate or prolate. Although this rule has a number of exceptions, it is sufficiently 

general to render it probable that there may be some relation between the passage of 

light and of heat through a crystal. The recent determinations of the refractive 

indices of metals by Kundt have shown that they stand in the same order as con¬ 

ductors of heat, and as to the velocity of propagation of light through them, and this 

fact brings again into prominence the old determinations with respect to crystals. That 

the comparison which Kundt has made for the metals cannot be carried to other 

bodies is at once seen from the fact that the index of refraction of iron differs little 

from those of glass and several commoner crystals, the conductivities of which are 

shown to be very small compared to that of iron. A comparison may, however, be 

possible among transparent bodies themselves, and the following experiments were 

made with the object of furnishing data for this comparison, the results given by 

previous observers differing greatly from each other. They have, however, been 

extended to embrace non-transparent bodies commonly in use in a physical laboratory, 

and about the conductivity of which we have had a very meagre or absolutely no 

knowledge. 

* Senarmont, ‘ Ann. de China, et de Phys.,’ (3), vols. 21, 22, and 23 (1848) ; von Lang, ‘ Pogg. Ann.,’ 

vol. 135 (1868) ; Jannetaz, ‘Ann. de China, et de Pliys.,’ (4), vol. 29 (1873), 
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Outline of Method. 

The most important consideration in determining the method to be used is the fact 

that it is difficult to get large pieces of the crystals to be experimented on. This 

excludes methods requiring large plates, such as that of Weber aud Tuschmid, or 

large spheres or cubes, such as that of Kirchhoff or Thomson. A method which 

seemed to present several advantages was the one first suggested by Lodge/" and 

which may be called the “divided bar” method, and after some preliminary experi¬ 

ments had been made to determine its suitability, it was finally adopted. It consists 

in observing the temperature along a bar heated at one end and cooled at the other, 

and divided halfway between the two ends by a plane perpendicular to its axis, 

when (l) the divided ends are together, (2) a disc of the crystal or other body is 

between. 

If temperature observations are taken at several points iir each half of the bar, the 

corrections to be applied to the second set of observations for the distances of the 

points of observation from the contacts can be determined from the first set, and thus 

the temperature at each side of the crystal disc can be found. If, in addition, we 

know the thermal conductivity of the bar used, the amount of heat flowing through 

the disc can be found from the temperature slope ; and thence we have the thermal 

conductivity of the crystal. 

It may be noticed that there would be considerable uncertainty as to the nature of 

the contacts between bar and crystal unless some special precautions were taken. 

Lodge proposed to use pads of tinfoil to obviate this difficulty, but this method is 

not satisfactory. The difficulty has, however, been completely overcome by using 

bars of a material which would amalgamate, and making the contacts by means of 

mercury. 

Description of Apparatus. (Fig. 1.) 

The bar used in the experiments was one of brass, which presents several advantages. 

(1) It readily amalgamates, and therefore enables good contacts to be made. 

(2) Its conductivity is not so high as to make comparison between it and that of 

crystals, &c., impossible. 

(3) Its conductivity, according to Lorenz, increases with the temperature, a fact 

which, as will be seen later, partly neutralises the deviation of the cooling from 

Newton’s law. 

The diameter of the bar was l-93 cm., and its length 67 cm. To each end of the 

bar was soldered a can, through one of these cans steam was sent and through the other 

water. The whole was arranged in a wooden frame, so that the bar was horizontal and 

exposed to the air over a covered tank through which a current of water could be 

sent to keep the temperature constant. The apparatus was surrounded by paper 

screens to protect the bar as far as possible from air currents in the room. 

* ‘ Phil. Mag.,’ (5), vol. 5, p. 110 (1878). 
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The cans at the extremities of the bar were supported on slides attached to the 

framework in such a way that the bar could be moved parallel to itself by screws 

passing through the framework and bearing in conical indentations in the backs of the 

cans in the prolongation of the axis of the bar. These supports were sufficient while 

the bar was entire, and the experiments to determine its conductivity were being 

made. After the bar wms cut for the insertion of the discs, it became necessary to 

support the cut ends in such a way as (1) to enable the motion of the bar parallel to 

its axis still to take place ; (2) to enable the cut faces to be adjusted parallel to each 

other ; (3) to cause as small as possible a disturbance of the isothermal surfaces. 

These objects were secured by supporting each free end in a loop of thin string, 

hanging from the upper part of the framework. The ends of this loop were attached 

to screws for the purpose of raising or lowering it as required. The sides of the loop 

made an angle of 60° or 70° with each other at the bar. These loops were sufficient 

to support the bars properly if the arrangement was kept horizontal. It was, 

however, found that the mercury contacts could be made with much greater certainty 

if the bars were vertical and the mercury surfaces horizontal. On this account two 

other loops were attached to the lower part of the framework and passed over the bars. 

These were elastic, and served merely to keep the upper loops taut, and the bars in the 

same positions with respect to each other, whether the framework was horizontal, as 

in the experiments, or vertical, as in making the mercury contacts. 

Measurement of Temperature. 

The most direct method of measuring the temperature along the bar is to sink 

thermometers into holes in the bar, but this method, although it has been used by 

Forbes, Tait, and Mitchell for their large bars, is very objectionable, as it 

diminishes the available area of flow, and therefore makes the change of temperature 

along the bar more rapid than it would be for a continuous bar. The method first 

3 Q 2 
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used by Wiedemann and Franz of measuring the temperature by means of a thermo¬ 

junction brought into contact with the bar is free from this objection, and will produce 

no appreciable effect on the distribution of temperature in the bar if the mass of the 

junction is not large. 

The bars used by Wiedemann and Franz had a silvered surface, and it was suffi¬ 

cient to bring the thermo-couple into contact with the surface in order to get the 

temperature. In the later of the following experiments the bars were painted, so that 

contact could not be made in this way. Small conical holes about '5 mm. deep were, 

however, made at opposite extremities of horizontal diameters of the bars, and at 

regular distances along. Eight such diameters were taken, the two nearest the centre 

of the uncut bar being 1 cm. apart, and the rest 10*5 cms. apart. Each of these 

small holes was amalgamated, and sufficient mercury left in them to make good 

contact with the ends of the two wires which were used as a thermo-couple. The 

thermo-circuit would thus consist at the bars of—first wire of couple; mercury of 

first hole ; brass of bar; mercury of hole at opposite extremity of diameter; second 

wire of couple. The mercury in the holes was constantly cleaned by touching the 

surface with dilute nitric acid, washing and drying, and the ends of the thermo¬ 

couple wires were kept bright. Under these conditions the arrangement worked 

satisfactorily. 

The wires used originally for the thermo-couple were of brass and iron, but these 

gave unsatisfactory readings, mainly on account of the poor contact between iron and 

mercury. As there is an advantage in using copper as one of the elements, a few 

combinations of copper with other metals and alloys were tried, and eventually the 

platinum-silver alloy used for resistance coils was selected as the other element. This 

couple gives an E.M.F. of about ‘00016 volt for 70° difference of temperature, and its 

constant only increases about 7 per cent, for 100° C. It is, therefore, vrell suited for 

thermo-electric measurement of temperature. The wires used for the thermo-couple 

were about 20 cms. long and ‘2 mm. diameter. The ends which served to make 

contact with the galvanometer circuit dipped into mercury cups in blocks of wood 

which could be moved along guides parallel to the bars in order that the wdrole of the 

temperature observations could be made with one couple. The cup into which the 

platinum-silver wire dipped was provided with a thermometer graduated in -j3^0 C. 

The galvanometer was a low resistance one of the Wiedemann type, with Siemens’ 

bell-magnet and copper damping sphere. The resistance of the whole circuit was only 

about 1*5 ohm, and as the resistances of the contacts at the holes in the bar might 

vary, it was necessary to take measurements of the resistance of the circuit when a 

galvanometer deflection was taken. For this purpose Thomson’s modification of the 

bridge method was used. The diagram (fig. 2) shows the arrangement of the circuit. 

G is the galvanometer in series with the thermo-element. C, D, E are three 

mercury cups, arranged so that when E and D are connected, the galvanometer and 

thermo-element are in circuit alone, and when C and D are connected the galvano- 
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meter and element form one side of the bridge. K is a reversing switch, and L a key. 

AB and AF are each 100 ohms from post-office box; FE is a multiple arc box 

capable of adjustment to y-go ohm. The resistance R of the galvanometer circuit is 

found by adjusting FE so that there is no effect on the galvanometer on pressing 

down L, first with K in one direction and then in the other. The coil M is intro- 

Fig. 2. 

F 

duced in the battery circuit to counteract the effect of the current through the 

galvanometer while making these observations. It will be noticed that the current 

in it is reversed by the operation which reverses the current in the galvanometer 

coils, and that the galvanometer needle is therefore kept close to the zero of the scale 

during the whole of the observations. 

Let the values of the resistance EF determined as above be Rx and R2, and let P 

be the resistance of each of the arms AF, AB, W that of the coil M, E the E.M.F. of 

the battery, e that of the thermo-element. Then writing down the condition that A 

and E have the same potential in each case, we have 

Hence 

which gives 

(E 4- e)-- 
v ^ ’ P + E + 2W P + E: + 2W 

_ \ _E -e_ E 
^ ' P + E + 2W P + Ra + 2W ' 

2 1 , 1 
P + R + 2W P + E1 + 2¥tP + E, + 2W’ 

+ r-3 _ ncffi-iy}2 
2 P + i(E1 + E2) + 2W' 

The last term of the right member of this equation never exceeds y^o, and may 

therefore be neglected, and we have R = y (Ri + Ro). 

The constants of the thermo-couple were determined by comparison with a thermo¬ 

meter reading to yg- degree Centigrade. An auxiliary iron bar of 80 cms. length and 

2'5 cms. square cross-section, was placed horizontal arid heated at one end and cooled 

at the other by the waste steam and water respectively from the principal bar. The 

upper surface of this auxiliary bar was tinned and amalgamated. On this surface two 

copper mercury cups of 1 cm. diameter and 1'8 cm. height were placed. The under 
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surfaces of these cups were amalgamated so as to make good contact with the iron bar. 

The insides of the cups were amalgamated, and each cup contained sufficient mercury 

to fill it entirely when the thermometer was placed in it. At opposite extremities of 

a diameter, about half way down each cup, two small holes, like those in the divided 

bar were punched, and into these holes, which were amalgamated, the wires of the 

thermo-couple could be inserted. The constants of the couple are in this way deter¬ 

mined under exactly the same conditions as when they are in use. The iron bar was 

buried in sawdust, and the copper mercury cups placed in such positions on the 

upper surface that the thermometer read in them 90° C. and 55° C. respectively. 

After the insertion of the wires of the thermo-couple into the holes of the mercury 

cups, the cups were surrounded with sawdust, and 10 minutes allowed for the tem¬ 

perature of the cups to get as nearly as possible uniform before observations were 

taken. 

In an experiment made in the early part of the work the following observations 

were taken :— 

(a) Temperature of hot junction, 85°'90 C. 

Temperature of cold junction, 150,67. 

Deflection of galvanometer in scale divisions, 296. 

Resistance of circuit, mean of observations taken, as previously described 

1-431 ohm. 

E.M.F. of element in units used, 423’6. 

(b) Temperature of hot junction, 55o,60. 

Temperature of cold junction, 150,74. 

Deflection of galvanometer, 162"3. 

Resistance of circuit, 1'448 ohms. 

E.M.F. of element in units used, 235-0. 

These observations are sufficient to determine the constants in the formula 

e = a(t2 — h) (1 + b t2 + tx) where t2 and t1 are the temperatures of the hot and 

cold junctions respectively. It was found more convenient for the reduction of 

observed E.M.F.’s to temperature, to draw up a small table of values of a (1 + b t2 + tx) 

for different values of t2 -fi tv Thus, for the above observations, wre have :— 

h ~t h- a (1 + 6 L + ij). Differences. 

101 6-030 + 2 + -009 
91 5-985 4 •018 
81 5-940 6 •027 
71 5-895 8 •036 
61 5-850 
51 5-805 
41 5-760 
31 5-715 
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By inspection, we have the divisor for converting E.M.F. observations to temperature 

difference, since in every case q + t2 is known approximately to within one or two 

degrees. 

The value of a (1 + b + h) is seen from the above table to change only about 

7 per cent, for 100° C. of change of tz -j- tl ; the platinum-silver-copper element is 

therefore well suited for thermo-electric observations of temperature. 

The determination of the constants of the element was repeated every few days 

during the progress of the work. The value of a was found to diminish slowly, the 

total change during the three months during which the couple was used being 

about 1 "5 per cent. 

The temperature of the enclosure in which the divided bar was suspended was 

determined by means of a thermometer graduated in degrees, placed about 7 cms. 

above the top of the water-tank and about 15 cms. below the bar. The bulb of the 

thermometer was protected from radiation from the hot bar by a small sheet of paper? 

just large enough to screen the bulb. 

Determination of the Thermal Conductivity of the Brass Bar. 

The thermal conductivity of the bars was determined, following the method of 

Forbes, by two series of experiments, the first to determine the law connecting the 

rate of loss of heat from a heated surface, with the temperature of that surface, and 

the second to determine the law of steady distribution of temperature along a bar 

heated at one end, and exposed to the air along its entire length. These twTo obser¬ 

vations furnish data for determining the thermal conductivity required. 

Cooling Experiments. 

It is customary in making these experiments to use a short length of the bar used 

in the steady experiments. I have, however, shown that the law of cooling is the 

same for bars of different material, but of the same cross-section and surface; and 

as a knowledge of the specific heat of the bar is required, it seemed better to make 

use of a bar of a material the specific heat of which is well known, rather than a 

brass bar in these experiments. As the values found by different observers for the 

specific heat of copper are practically identical, this metal was chosen. As it is a 

better conductor than brass, it also enables the assumption that the temperature 

throughout the bar is the same to be made without much chance of error. The bar 

was of the same diameter as the brass bar, l-93 cm. and 26 cms. long. It had a 

polished nickel-plated surface. To make the cooling experiment correspond more 

closely to that of an infinitely long bar, the ends of the bar were covered with a layer 

of sulphur about 5 mms. thick. This was done by placing the bar vertical, wrapping 

a sheet of paper round the upper end so as to project about 1 cm. above the end, 
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and then pouring melted sulphur into the paper cylinder. Since sulphur is an 

extremely poor conductor of heat, it may be assumed that the loss of heat from the 

ends of the bar is very small. 

The bar was suspended in the position occupied afterwards by the divided bar by 

means of threads. The temperature was determined by means of the platinum-silver- 

copper wires inserted into small holes amalgamated and filled with mercury, on oppo¬ 

site sides of a diameter at the middle of the bar. Observation of current, resistance, 

temperature of the cool junction, and of the enclosure, were made every two minutes 

during the experiments. From these observations the temperature of the bar at any 

time is determined, and curves drawn for each experiment showing the connection 

between time and temperature of bar and of enclosure. Of these curves that which 

corresponded most nearly with the mean of all was selected, and is referred to in 

what follows. 

If m is the mass of the bar, s its surface, c the specific heat of the material of the 

bar, v the excess of the temperature of the bar over that of the enclosure, which will 

be supposed constant, we have, as the connection between v and time, 

dv , 7 . . 
me — + shv.v = 0.(1), 

where hv is a quantity which is generally assumed to be constant (Newton’s law), but 

which I have shown increases for a nickel-plated bar of the size used 70 or 80 per 

cent, for 100° C. rise of v* In the paper referred to this rise is expressed by writing 

hv = hvn where n is a small fraction = y about. In that paper v was always positive. 

As in the following work v is sometimes negative, in which case vn would require 

special interpretation, it is preferable to write hv = h{l + hv) where b is a small 

positive quantity. The foregoing equation becomes, then, 

me — -j- sh (1 + hv) v = 0.(2), 

the solution of which is 

^ fi- b = KeiMcm)t.(3), 

where A is an arbitrary constant. 

The following table shows that this equation represents the cooling with a fail 

amount of accuracy for b = "008. The temperature of the enclosure has been assumed 

constant = 15 "2C C., but in reality it varied from 15 '3° at the commencement to 15'4° 

at t = 10 minutes, and then down to 15'2 at 40 minutes, 15T8 at 60 minutes, 15T 

at 70 minutes. On this account no attempt has been made to determine b with 

greater accuracy; the value given above is determined by trial. 

* ‘Phil. Mag.,’ vol. 28, p. 429 (1889) 
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Cooling of Nickel-plated Bar. 

t in minutes. 

Temperature. 
- 15-2° C. l/v. 

0 75-4 •01326 

2 69-2 1445 

4 64-03 1562 

6 58-67 1704 

8 54-36 1840 

10 50T4 1994 

12 46'58 2147 
14 43-30 2309 

16 40T6 2490 

18 37-37 2676 

20 34-80 2874 

22 32-43 3084 

24 30-31 3299 
26 28-28 3536 

28 26-43 3784 
30 24-72 4045 

32 23-16 4318 
34 21-77 4593 

36 20-44 4892 
38 19-10 5236 
40 17-93 5576 

43 16-22 6165 

46 14-95 6689 
49 13-67 7315 
52 12-49 8006 
55 11-41 •08764 

60 9-88 •1013 

65 8A1 1175 
70 7-21 1387 
75 6-26 1597 

-l/g/ + b 

1 /i'/ h-2 + b 
— p — (th/cm) 120. 

•9469 
504 
434 

485 
448 

482 

479 

450 
466 

460 

459 
475 
454 
459 
463 

467 
490 
474 

430 

467 

428 

528 
479 
470 

465 

•9454 

Means. 

y -9468 

I 
J 

0 

•9467 

•9462 

•9466 

•9474 

•9454 

The mean of the values of e Wfl,,l>120 js -9466. 

Hence we have 

Therefore 

p 120 (s/i.'cii!,) __ 1 

•9466 
1-0564. 

sh -02383 

cm ~~ -4343 
X 

1 

120 
•0004572. 

Now, m -- 676 grms., .s = 157*6 sq. cms., c = "093. Hence we have 

MDCCCXOit.—a. 

h — -0001804. 

3 it 
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The heat lost from a nickel-plated surface exposed to air is, therefore, 

•0001804V (l + •008'?’) gram degrees per sq. cm. per second, 

where v is the excess of temperature of the surface over that of the air. 

Statical Experiments. 

These experiments were made with the brass bar before it was cut. One end was 

heated by steam, and the other cooled by water. Eight observations of temperature 

were taken at different points of the bar in the way previously described. 

Let v be the excess of temperature at point x of bar over that of surrounding air, 

p — perimeter of cross-section of bar, 

q = area of cross-section of bar, 

kv— thermal conductivity at temperature excess = v. 

Then, at any point of the surface of the bar, we have 

yq + hv (l + bv) = 0, 

where clv/dn is the rate of change of v along the normal to the surface, s, h, and b 

having the meanings assigned to them in last section. 

At v = 60° C. this gives 

k„ ~ = - -00018 X 60 X 1-5 
an 

= — -0162. 

Now kv will be seen later to have the value "27 approximately. Hence, at a point 

of surface, at the temperature of G0° C. excess, dvjdn = — *06. 

At the same point on the surface dvjdx = 2'5 approximately. Hence, the inclina¬ 

tion of the normal to the isothermal surface at this point to the axis of the bar is 

arctan -06/2-5 = arctan ‘024 — 1° 25'. If the isothermal surface be assumed to be 

part of a sphere, the radius of curvature is about 4 2 cms. At 1 5° C. excess, a similar 

calculation gives the radius of curvature of the isothermal surface to be GO cms. 

Hence we may assume the isothermal surfaces to be planes perpendicular to the 

axis of the bar. 

The equation for the motion of heat in the bar is under these conditions 

?£(*"!)=^(i + h.(4) 

The conductivity has generally been considered constant in treating this 

equation, but this is scarcely justifiable, as most experimenters find changes of 



OF CRYSTALS AND OTHER BAD CONDUCTORS. 491 

-F 20 per cent, in conductivity for 100° C. change of temperature. Taking therefore 

k0 as equal to &(1 + av) the above equation becomes 

dh 
(1 + av) — 4- a 

do\~ ph 

hi = §Ui + H 

Multiplying through by 2 (1 + av) (dvjclx), this becomes 

d2v dv do\z dv ph do 

2d + <*>?■&s + 2«(» +av)U) i, =2ikU1 + Hd + <«)i, 
or, 

dv 

d /-—- dv\° ^ ph , , , dv 

i + avdi) + « + + 

From which by integration we obtain 

(5) 

1 -j- av c~) = ~ (v3 + 2 ' vs + -y4) + constant. 
dxj qk \ o 1: ' 

If the value of dvjdx when v — 0 be dvjdx, the above equation becomes 

dvV 
1 + av dx) - 

do. h>h c, ( « + & . cib 0 . 

= #,r(l + s'T ^+2 "*)• 
(6) 

If dvjdx = 0, the integral of this equation can be expressed in terms of logarithmic 

and circular functions. If clvjdx 4= 0, the integration introduces circular functions 

and elliptic integrals of the 1st and 3rd kind. If the problem under discussion were 

—given the conductivities—to determine the distribution of temperature throughout 

the bar, this integration would be necessary, but as we are given the distribution and 

have to find the conductivity, the problem can be solved without further integration. 

Although this method is probably not as accurate as that depending on the integrated 

equation, its accuracy is sufficient for the present purpose, where the value of the 

conductivity is only required over a small range (25°-37° C.) of temperature. 

To determine dvjdx at the points of observation v is represented by an empirical 

function of x and the differential coefficient with respect to x taken. The known 

conditions which v satisfies, fix, to some extent, the function to be used ; we see, 

e.g., that it vanishes for some value of x, and that at that point the first differential 

coefficient is finite ; that it increases in one direction with x in an approximately 

exponential manner. 

These considerations lead at once to the function A sinh (ax -f /3), and this function 

has been used. It evidently cannot express v accurately throughout the bar, since it 

is the solution of a linear differential equation, but it can be made by a proper choice 

of the constants to represent the main feature of the curve, the differences between 

its values and those observed being afterwards represented by an additional expression, 

which has generally only small values. 

3 r 2 
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For the curve which corresponded best with the mean of the three sets of observa¬ 
tions taken, the value of v is represented along the cooler part of the bar by 
”795 cosh ’0378 x -j- 11 ‘86 sinli ’0378 x. 

X. v calculated. v observed. Difference. civ 
dx 

0 •8 •8 0 •448 
10-56 5-72 5-72 0 •497 
21-04 11-52 11-53 + -01 •624 
81'55 19-17 19-18 + -01 •852 
32-59 20-07 20-09 + -02 •881 
43 15 31-23 31-20 - -03 1-262 
53-59 4724 47-88 + -64 1-971 
64-03 
_ 

70-64 73-47 + 2-83 3-002 

The differences, with the exception of the last two, are within the limits of error of 
observation, and may be neglected. The last two may be taken into account by 
adding to the above expression for v, between x = 43 and x = 64, an expression of 

the form 

a 
X — 4o 

10-5 

(X   4t8\^ 
+ b ( — j , where a = '572, b = '06/, 

The values of the differential coefficient of this expression at x — 43T5, 53'59, 
64'03 are 0, T28, '294 respectively. Differentiating the hyperbolic expression for v 

we have dv/dx = '03005 sinh '0378 x -f '4483 cosh ’0378 x, which gives, on substituting 
for x the coordinates of the points of observation, the required values of dv/clx, to 

which, at x = 53'59 and 64'03, Ave must add the quantities T28 and '294 to get the 

true temperature slope. The values thus obtained are given in the above table. 
Having thus got the values of v and dv/dx at eight points on the bar, we can by 

trial determine a so that the equation (6) holds. A few trials sIioav that a is 
positive and equal approximately to '092. It is not necessary to determine a witli 
any great accuracy as it affects very little the subsequent Avork. Assuming a = '002 
we have the following' table of results 

X. V. 
, (- n a + b ah , \ 

" ( + r « + rff 
/ rl 1* \ ° 

(5.) (6.) 
( 1+ UVIc) 

0 •8 "643 •201 -001 0016 
10-56 5'72 33-96 •253 •053 •0015 
21-04 11-53 143-3 •406 •206 •00143 
31-55 19-18 415 •781 •581 •00140 
32-59 20-09 459 •839 ■639 •00139 
43-15 31-20 1174 1-796 1-596 ■00136 
53-59 4780 3067 4"666 4'4-66 •0ol45 
64-03 73-47 8269 11-860 11-660 •00141 
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Column (5) gives the values of (l + av-~j — j , and column (6) gives the 
i/,r 

values of 

—— Jv\z (dv„y 
1+a"ffa) "life) 

v% ^ 1 4* 2 —v + V 

which by equation (6) = ph/qk. 

Neglecting the first two numbers in column (6), which are uncertain on account 

of the smallness of the quantity (5) at the cool end of the bar, we have, as the 

mean value of ph/qk, ‘00141. 

Hence 

ph 
k = 

•00141q 
2'093 x ‘0001804 _ ‘0003777 _ p gram. 

•00141 ~ AmTl” “ “ b cm. sec. 

The temperature of the air in this experiment was 17° C. hence we have for the 

thermal conductivity of the brass bar used* 

k = ‘268 (1 + ‘002 v - 17°) 
cst gram. 

cm. sec. 

Experiments on Crystals, &c. 

Before cutting the bar for the insertion of the discs the conductivities of which 

were to be measured, several observations were made of the distribution of tempera¬ 

ture along the bar after it had been painted with Aspinall’s enamel. It is necessary 

to have the radiating surfaces of bar and discs the same, and this is most easily 

secured by painting both. The loss of heat from a point of the surface at any 

temperature is about 40 per cent, greater than the loss at the same temperature 

for the nickel-plated surface, but it does not increase as rapidly with rise of tempera¬ 

ture. On this account it is possible to express the distribution of temperature along 

the bar in the empirical form v = Asinb (ax + B), and A, a, and j3 can be determined 

so that this equation holds with a closer approximation than in the case of the 

unpainted bar, throughout the whole length of the bar. It is assumed to hold in 

what follows for each half of the divided bar, a having the same, but A, /3 having- 

different values for each half. 

The bar was divided in the middle, between the contact holes 1 cm. apart, and the 

ends ground down to be as nearly as possible planes perpendicular to the axis of the 

bar. To secure this a vertical hole, a little larger than the bar, was drilled in a prism 

* The following values of Tc for brass have been found by different experimenters :—Neumann, ‘ Ann. 

de Chim. et de Phys.’ (III.), vol. 66 (1862), -302 ; Weber, ‘ Monatsber. Berlin Akad.,’ for 1880, p. 457, -150 ; 

Lorenz,‘Wied. Ann.,’ vol. 13 (1881) ; ‘red brass,’ '252 (1 + '0018 t.) ; ‘yellow brass,’ -212 (1 + -0020 t.). 
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of wood, 30 cms. X 20 cms. base, and 15 cms. height. This was done in a drilling 

machine the table of which was found to be perpendicular to the spindle. One of the 

bars was then fixed by wedges into this hole in such a way that a point, which when 

the bar was in position would be the highest point of the cut surface, came in contact 

with a mark on the block of wood. The block and bar were then moved about on a 

stone and afterwards on a slate slab, till the surface was plane and smooth. The 

other bar was then fixed so that the lowest point of the cut surface came into contact 

with the same mark, and the surface rubbed down. This process secured that the 

cut surfaces should be parallel to each other when the bars were coaxal. To secure 

and test that the surfaces were parallel when the bars were in position in the 

framework, two test gauges were made, one for testing the upper surface and the 

other the side of the bars. The bars were taken out of the frame and placed vertical, 

the upper bar resting with its cut surface accurately on the cut surface of the lower 

bar, and not being supported by any other means. Four screws on each gauge were 

then adjusted so that they would touch four points, two on each bar near its 

extremities. By applying these gauges to the bars when in position, either in contact 

with each other or with a disc between, it is therefore easy to make the required 

adjustment of the cut surfaces. 

The surfaces were now amalgamated, the amalgamated surfaces brought together, 

and experiments made on the distribution of temperature throughout the bar, to test 

the efficiency of the mercury contact. When the bar was uncut, the difference of 

temperature observed between the points in the middle, 1 *05 cm. apart, was, as a mean 

of three experiments, '76° C. With the cut bar and the mercury contact, the distribution 

of temperature in the other parts of the bars being the same, the difference of tempera¬ 

ture observed was ‘04° C. The cutting and grinding of the bar had reduced the distance 

between the points of observation to '88 cm., hence if the mercury contact has no 

*76 x *88 
appreciable resistance the fall should be —— = '65°, which is, within the limits of 

error, what was observed. Hence, as far as the distribution of temperature along the 

bar is concerned, the mercury contact secures practical continuity. Occasional tests 

were made during the course of the work to see if this continued to hold. The 

resistance of the contact was found to increase slightly. Three tests made at the end 

of the work gave '78° as the difference of temperature. This is equivalent to an 

increase of distance between the points of observation from '88 cm. to 1'06 cm., and 

is probably caused by the gradual soaking of the mercury into the brass. Account 

is taken of this in the following calculations. 

The conditions of the above experiments are not quite the same as in experiments 

with crystals, &c., for while in the above there is only one mercury film, in the 

crystal experiments there are two. To investigate the effect of this, a thin film of 

mica, about '0003 cm. thick, was inserted. Although there are then two films 

of mercury and a film of mica between the bars, no change could be detected in the 
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difference of temperature of the observing points. The same held on insertion of a 

piece of platinum foil '0025 cm. thick. The corrections for the short length of bar 

and mercury contact between the points at which the temperatures are observed and 

the surfaces of the discs, can, therefore, be determined from the observation with the 

amalgamated ends of the bars in contact. 

In preparing the apparatus for an experiment, the bars and framework were 

placed so that the bars were vertical, with the cool bar at the top. The bars were 

taken out of the frame and the holes and contacts cleaned with dilute nitric acid, 

provided with mercury, washed, and then dried by filter paper. The hot bar was 

then inserted into lower part of the frame, and if a disc was to be experimented on, 

it was placed on the mercury surface and the excess of mercury forced from under it. 

In the case of a transparent disc it was possible to see that the mercury formed a 

perfect mirror. The cool bar was then put into the upper part of the frame, and held 

up, in contact with the centre screw at the top of the frame, by means of a spring. 

The amalgamated end would be thus brought about ’5 cm. above the upper surface 

of the disc. It was then supplied with mercury, which hung down as a pendent drop. 

The upper screw was then turned till the end of the upper bar was about '5 mm. 

from the upper surface of the disc. In this position the gauges were applied to the 

bars, and the loops so adjusted by means of the screws at their ends, that the four 

points of each gauge touched the bars. The upper screw was then rotated till the 

upper bar came into contact with the disc, and the excess of mercury was forced out. 

The frame was then placed over the water tank with the bars horizontal and con¬ 

nections made to the steam and water supplies. The apparatus was allowed to stand 

about one and a half hours, in order that the distribution of temperature might become 

steady before observations were taken. Almost invariably on taking the bars apart 

at the conclusion of an experiment, the discs were found to adhere to the cool bar, 

and in the case of transparent discs this enabled it to be seen if the contact between 

the cool bar and the disc had been good. It was generally found as good a mirror 

as the contact between the hot bar and the disc. Some experiments were however 

made to try the effect of making contacts which were poor as far as could be judged 

by the appearance of the mirrors. No difference could be detected in the observations 

between an optically good and a bad mirror, so that a few experiments, in which the 

contacts were optically defective, have been included in the results given. 

Reduction of Observations with Discs. 

We have seen that the temperature throughout any short length of the bar may 

be represented by the empirical equation v = A cosh ax -j- B sink ax. We assume 

that this equation holds for the first three observations on each side of the disc, and 

thus have, if xv x.2, x3 are the coordinates of the points of observation, measured from 

the surface of the disc, and vlf v2, % the observed temperatures, 
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v1 — A cosh ctXy + B sinh axl | 

v.2 = A cosh ax2 + B sinh ax2 V 

r3 = A cosh a.r3 -j- B sinh a.r3 

These three equations are sufficient to fix the values of the constants A, B, a, but 

their solution is difficult unless x3 — x% — x% — xv This relation is very nearly 

satisfied by the points of observation, in the hot bar, x2 — xl = 10*56 cms. x3 — x2 

= 10*44 cms. ; in the cool bar, x2 — x1 = 10*51 cms. xs — x2 = 10*48 cms. 

The error introduced by assuming each of these intervals =10*5 cms. is small 

enough to be neglected in the cool bar, but a small correction is necessary in the 

case of the hot bar. 

If dvjdx be the value of dv/dx at the point x2 we have for the temperature v2 at 

the point x1 -f* 10*5, 

vd = Vo — *06 ~ . 
ax 

Now dv„Jdx is found to differ little from 1 for any of the experiments,4* and we 

may, therefore, with sufficient accuracy, take v2 = r2 — *06. 

Making use of v2 we have from the three temperatures, v1} v2, v3 

cosh od = ■ , 

where l = x2 —xy — x3 — x2, &c. This equation determines a from any three obser¬ 

vations of temperature. The mean of the values thus determined for different points 

along the bars and for different experiments is used in the subsequent work. 

We have then the equations 

vl = A cosh axy -fi B sinh axy 

V2 = A cosh ax2 + B sinh ax2 

* The value of dv^dx may be determined as follows. By Tailor’s Theoi’em we have— 

/ o + o -/(») = if oo + |r (*) +|r (») + &c. 

/ (a;) - / (a -/) = If (x) - If O) + If" (x) + Ac. 

Therefore 

f(X+T) 2, f(X-- =/ 00 + | f" («0- 

Putting v —f (re) we have, since for any short length of the bar = a~v, 

f" (re) = (®). 

/» =/J;.+ 0-/(y.-0, 

2!(1 + wj 
Tlie value of i(Z-ar) for this-point of the bar is in nil the experiments approximately *04. 

Therefore 
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where cosh axx, sinh axx, cosh ax2, sinh ax2 are known quantities, to determine the 

values of A and B. 

Differentiating the equation v = A cosh ax + B sinh ax and putting a — 0, we have 

at the surface in contact with the disc, v = A, dv/dx = aB. 

The isothermal surfaces in the discs themselves may be assumed to be planes, for a 

small calculation, like that ma.de (p. 490) for the bar itself, shows that the radius of 

curvature of these surfaces is about 40 cms. Writing ctx, a2 for the coordinates of the 

surfaces of the disc, Ax, A3 the temperatures determined as above, Qt, Q2 the values of 

ZqaB in the bars at the surfaces in contact with the disc, kx being the conductivity of 

bars, and k that of the disc, we have, for the temperature in the disc itself: 

Ao sinh • x - ax + Ax sinh . a„ - 
qk 

X 

sinh P4ct2- ax 

Differentiating and writing down the expressions for the flow of heat into and out 

of the disc we have the equations— 

, , Ajj-Ajcosh \/ 'k «a ~ «i 

Q* = # V-'-—- qk 

and 

QafZi — Qk \J 
7 Ao cosh 

ph * 

qk 

sinh 

V 

pll 

qk 

vli- 
— — a, 
qk 1 A: 

sinh \/^ ‘ % - 

where p, h, q, k refer to the disc and have the usual meanings, q being = qx in most 

cases, differing only slightly in others. Now a3 — al5 the thickness of the discs, is 

small enough to make /\J'a2 — ax small. Hence, writing a2 — ax = t, and ex¬ 

panding the hyperbolic functions, we have, as a close approximation— 

QiQi = qk \/\ 

Therefore 

W,(.+g-f 
■VS ■(■+'--?v 
'ph 

qk 6 

k = (& 
2/ 

Ao — Aj (1 -f- 

similarly 

k = 

ph t~ 

qk ’ 2 

3 s MDCCCXCII.—A. 
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either of which equations determines k, the conductivity of the disc, if its approximate 

value is substituted in the terms involving £3. The value of h used is that for a 
• 7)1 l 

painted surface, at the mean temperature of the disc, and the value of tz is given 

with sufficient accuracy for the above substitution by the equation 

4Lrt*= *00056 
qk 

Ag—A 

Q 

Observations * 

I Transparent Isotropic Bodies.—-The temperatures given are the means of 

three experiments. 

Crown Glass Disc, 193 cm. chain., -169 cm. thick. Air, 160-2 C. 

Cool bar. Hot bar. 

vl 8'58 Aj 8’83 

v3 4-20 Qx ’1365 

. % _ '1365 x -169 x 1-001 _ .qq246 

vx 18-44 A3 18-25 

v2 26-54 Q, -1336 

h _-1336 x "169 x 1‘001 _ ,nn0/t1 
1 18’25 — S’83 x 1'003 18-25 X 1-003 — 8-83 

k mean = -00244. 

Flint Glass Disc, 1'93 cm. diam., -177 cm. thick. Air, 16°'6 C. 

Cool bar. Hot bar. 

7'60 Aj 7'83 
Vo 3 54 Q: -1254 

. 7. -1254 x -177 x 1-002 _ ,nn9no 

19-02 Ao 18-84 

r2 26'80 Q3 "1246 

j-_-1246 x -177 x 1-002 _.m]po 
1 18-84 — 7-83 x 1-006 - 18-84 x 1-006 - 7-83 

k mean = ’00201. 

Bock Salt Disc, D95 cm. diam., *83 cm. thick. Air, 15o,0 C. 

Cool bar. Hot bar. 

9-24 Ai 9-50 

v2 4-61 Qi 1457 

k — CQ8) ’14u7 x 83 x rOOo _ 

18-47 Ao 18 "22 

v2 27-31 Qo -1515 

/■ — p98) ’1515 x -83 x 1"005 _ .njgg 
1 1 } 18 22 - 9-50 x L014 ^ * " { } 18-22 x 1-014 - 9-50 

k mean = ’0138. 

* The results are collected in a table on page 506. 



OF CRYSTALS AND OTHER BAD CONDUCTORS. 499 

II. Crystals.—Temperatures, mean of three experiments. 

Quartz Disc, 1-91 cm. diam., 1-005 cm. thick. Thermal stream lines parallel to 

optical axis. Air, 15°T C. 

Cool bar. Hot bar. 

v1 10-09 Ax 10-50 
Vn 4'64 Qj -1680 

k — (1-02) x 1 005 x 1’003 — -0298 

16-69 A2 16-40 

v2 26-28 Q3 -1763 

k — (1-02) 1763 x 1005 x 1 003 — 0299 
1 ^ ' 16-40 - 10-5 x 1-010 2 C ; 16-40 x 1-010 - 10-5 

h mean = '0299. 

Quartz Disc, 1 ’93 cm. diam., ’811 cm. thick. Thermal stream lines perpendicular 

to optical axis. Air, 16°'2 C. 

Cool bar. Hot bar. 

9-09 Aj 9-39 vx 17-71 Ao 17-45 
*s 4-07 Qj -1545 v2 26-86 Qo -1616 
1545 x -811 x 1-004 k _ 4616 x -811 x 1-004 _ .Q-^gq 
17-45 - 9-36 x 1-011 2 17-45 x 1-011 - 9-36 

h mean = '0158. 

Iceland Spar Disc, 1*91 cm. diam., '70 cm. thick. Thermal stream lines parallel to 

optical axis. Air, ] 6°’4 C. 

Cool bar. Hot bar. 

t?j 7-82 A1 8-10 
v2 3 36 Qx "1436 

jc — Cl-02) 4436 x -7 x 1 004 _ .Q^nru 

vx 1873 A3 18-49 
v2 27-41 Q3 -1478 

j. _ q.q2) 4478 x 7 x 1"004 _ .q^qq 
1 1 } 18-49 - 8-10 x 1-013 4 { 18-49 x 1-013 - 810 

k mean = '0100. 

Iceland Spar Disc, 1"93 cm. diam., ‘602 cm. thick. Thermal stream lines perpendicular 

to optical axis. Air, 16°’3 C. 

Cool bar. Hot bar. 

i\ 7'95 Aj 8'12 

Vo 3"33 Qx "1405 
_-1405 x -602 x 1-004 _ 

rj 18'61 Ao 18"37 

v2 27 31 Q2 -1475 
-1475 x -602 x 1-004 _ .nflfW 

1 18-37-8-12x1-012 2 18-37 x 1-012 - 8-12 

k mean = '00845. 

3 S 2 
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Mica, large plate, *18 cm. thick. Thermal stream lines perpendicular to cleavage 

planes. Air, 15°‘G C. 

Cool bar. Hot bar. 

v-y 6'36 Aj 6'58 

v.2 2'77 Qx 1093 

fr _:1093 x '18 x L002 _.nA1,4 

18-90 A2 18'67 

t'o 27 44 Qo '1436 
■1436 x AS x 1'0°2 _ 

18'67 — 6'58 x 1'05 8 18'67 x 1-05 - 6-58 

Te mean = '00181. 

As the mica was in the form of a large plate, the above method of finding k is not 

strictly correct, and this accounts for the difference between the calculated values of 

ky and k2. It was found impossible to use a disc, as in the other experiments, on 

account of the mica splitting. The value of k given must be taken as approximate 

only. 

III. Rock Specimens. 

Marble Disc, l-93 cm. diam., '26 cm. thick. The marble was the white 

variety used for statues. Air, 15°*5 C. 

Cool bar. Hot bar. 

Vy 10-15 Ay 10-40 
v2 4-38 Qy -1767 

lc — '17t)7 x -26 x 1-001 _ .00000 

Vy 17-31 A3 17-01 
v.2 27 27 Q3 -1839 

j _ -1839 x -26 x l’OOl _ .QQ^jg 
1 17-01 - 10-4 x 1-003 3 17 01 x 1-003 - 10-4 

Tc mean = '00709. 

Slate Disc, I *93 cm. diam., ‘31 cm. thick, cut from an ordinary school slate. 

Air, 14°-9 C. 

Cool bar. Hot bar. 

Vy 8-80 Ay 9-08 
v2 4-27 Q, -1508 

. /, _'-150Sx -31 x 1-002 _ 

vy 19-40 A3 19-15 

v2 28-58 Q, "1581 

j -1581 x -31 x 1"002 _ .QQ432 
1 19-15 -9-08 x 1-006 a 19-15 x 1-0U6 - 9-08 

k mean = '00475. 
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IV. Various Bodies Constantly Used in Physical Work. 

Where no diameter is given the plate is of irregular shape, and rather larger than the section 

of the bars. 

Shellac Plate, '068 cm. thick. Air, 140,2 C. 

This plate was made between two microscope slides having plane surfaces. One 

slide was placed horizontal, and the upper surface covered with a smooth sheet of 

tinfoil. On the foil was laid a sufficient number of the thin films of shellac supplied 

by varnishmen to make a plate of the requisite size and thickness. The slide was 

then warmed gently from underneath till the shellac was soft, and the cold slide 

brought down on to the soft mass. In order to get the requisite thickness, and the 

surfaces of the plate parallel to each other, the two slides were kept apart by two 

short lengths of wire '068 cm. diameter laid across the lower slide near its ends, the 

upper slide being pressed against these. The tinfoil which attaches itself to the 

plate is readily dissolved off by mercury. This method is very convenient and gives 

excellent plates. 

Cool bar. Hot bar. 

vx 746 Aj 7'40 

v, 3-32 Qx 4183 

7 4183 x '068 x 1-001 

vx 20 95 Ao 2046 
v.2 28-74 Q, -1159 

T -1159 x -068 x 1-001 
^ ~ 20-76 - 7'40 x 1-002 “ 000604 3 ~ 20-76 x 1-002 - 7-40 _ UUUwU0' 

k mean = '000596. 

Paraffin Plate, '038 cm. thick. Air, 130,4 C. 

This plate was made by dropping a little melted paraffin on to the cold upper 

surface of the lower slide, and placing the upper slide on it as described above. The 

cold surfaces are sufficient to ensure the paraffin being detachable from the glass. 

Cool bar. Hot bar. 

vx 8-90 Ax 9-19 
v2 4-49 Qj 4378 

j 'I378 x -°38 x 1 0002 

vx 18-10 A, 17-87 
v2 26'48 Qn '1407 

, -1407 x -038 x 1-0002 „ 
~ 17-87 - 949 x 1-0006 ~ 000604 ~ 17-87 x 1-0006 - 9-19 “ UWDio 

k mean = •000610. 
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Para Pujbber, pure. Sheet *0264 cm. thick. Air, 130,8 C. 

Cool bar. Hot bar. 

9'00 Ax 9'26 

5'01 Qj T401 
-1401 x '0264 x 1 0002 

vj 19-23 Aj 19-00 
27'87 Q3 '1433 

_ '1433 x '0264 x 1-0002 
A- 19-00-9-26 x 1 0005 “ uuu'JwU - 19-00 x 1-0005 - 9-26 _ UUUuu0 

Jc mean = '000384. 

Sulphur Plate, -0584 cm. thick. Air, 140,2 C. 

This plate was made in the same way as the plate of shellac, except that it was 

found better to use a sheet of tinfoil on the surface of each slide. 

Cool bar. Hot bar. 

Vi 6"60 Aj 6"83 

v„ 3"08 Qj "1082 

-1082 x -0584 x 1-0007 

vl 20-92 A3 20-74 

v2 28-42 Q2 -1085 

7 -1085 x -0584 x 1-0007 
^ “ 20-74 - 6-83 x 1‘002 ~ 2 ~ 20-74 x 1-002 - 6-83 ~ UUU40y 

h mean = '000455. 

Ebonite Disc,* P93 cm. diam., -0414 cm. thick. Air, 140,9 C. 

Cool bar. Hot bar. 

vY 7-35 A1 7-61 
v2 3-36 Ql -1227 

7 -1227 x -0414 x 1-0004 
&1 ~ 20-10 - 7-61 x 1-0013, ~ 000407 

vx 20-30 Ao 20-10 
v2 28-16 Q, -1202 

7 -1202 x -0414 x 1-0004 
- 20-10 x 1-0013 --701 “ UU0°98 

k mean = '000403. 

* Kindly supplied to me by Mr. C. H. Gray, of the Silver town Company. 
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Gutta Percha Sheet, '0617 cm. thick. Air, 14° 4 C. 

This sheet was made of the material used for insulating wire. A small quantity 

was cut from a wire, melted, and pressed into a sheet between the two cold microscope 

slides. 

Cool bar. Hot bar. 

wj 5-97 Aj 619 

Wg-2-35 Qi 1087 
, 1087 x -0617 x 10006 _ „ 

t-j 20-94 Ao 20-76 

v2 28 40 Q3 1076 

j W6 x-0617 x 10006 
A “ 2076 - 619 x 1002 ~ 000401 12 _ 20'76 X 1-002 - 6-19 ~ 0004aG 

h mean = '000458. 

Paper Disc, 1'93 cm. diam., '019 cm. thick. Air, 15°*4 C. 

This was cut from an ordinary visiting card. 

Cool bar. Hot bar. 

vt 9-42 Ax 9-73 
v2 4-56 Q1 -1515 

, 'ISIS x -010 x 10001 

v1 19-05 A, 18-81 
v2 27-91 Qo -1496 

, 1496 x -019 x 10001 
A - 18-81 - 9-73 x 1-0003 “ U00ui, A “ 18-81 x 10003 - 9-73 ~ UOO"1,J 

Ic mean = '000315. 

“Asbestos Paper” Disc, 1*93 cm. diam., *047 cm. thick. Air, 140,9 C. 

This was the ordinary asbestos millboard of commerce. It consists of paper to the 

pulp of which sufficient asbestos has been added to render it incombustible. 

Cool bar. Hot bar. 

v1 8-40 Aj, 8-68 

v2 4-02 Qx -1358 

/• — '13o8 x -047 x 10004 _ .nnnpog 

vx 20-16 An 19-93 

Vo 28-67 Q3 -1368 
"1368 x -047 x 10004 

11 19-93 - 8-68 x 1-001 2“ 19-93 x 1-001 - 8-68 “ u J ' 

h mean = '000570. 
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Mahogany Disc, 1'93 cm. diam., '056 cm. thick, cut from a sheet of “veneer” 

used by cabinet makers. Air, 15c,9 C. 

Cool bar. Hot bar. 

rx 6'67 Aj 6'89 vx 20-75 A2 20-07 

v2 3'06 Qx T107 v2 28'51 Qo 1167 

fr — 41()7 x "056 x 1'0006 _ ,nQn^ ■1167 x -056 x 1-0006 
A'2 ~ 20-57 x 1-002 - 6r89 _ '0004/ ‘ 1 20-57 - 6'89 x i'002 

h mean = '000465. 

Walnut Disc, 1'93 cm. diam., '069 cm. thick, cut from a sheet of veneer. 

Air, 16°'0 C. 

Cool bar. Hot bar. J 

i\ 511 Ax 5’29 

v2 2-14 Qx -0917 

A-, — x ’009 x — -0L0363 

rj 22'60 A2 22 46 
v2 29-52 Q2 -0888 

, -0888 x -069 x L001 
1 22-46 — 5-29 x L004 ~ - 22-46 x 1-004 - 5-29 ~ UUUu&u 

h mean = '000360. 

Cork Disc, 1'93 cm. diam., '05 cm. thick, cut by a section-cutting machine from 

sound cork. Air, 15°T C. 

Cool bar. Hot bar. 

vx 2-22 Ax 2-33 

v2 -34 Qx -0530 
, -0530 x -05 x 1-002 

t-j 23-39 A3 23 30 

v2 29-10 Q2 -0547 
7 -0547 x -05 x 1-002 

1 “ 23-30 - 2-33 x 1-005 ~ hn — r\o .)A l LA - n oO   UvUJLOU 23-30 x l'OOo — 2'33 

A- mean = '000129. 

Silk Sheet, '0084 cm. thick. This was cut from a dress piece of plain brown silk 

Air, ] 6°'4 C. 

Cool bar. Hot bar. 

vx 10-06 Ax 10-39 
v2 4-95 Qx -1600 

, -16 x -0084 
k' “ 16-76 - 10-39 “ 000210 

vx 17-03 A2 16"76 

v2 26-35 Q2 "1690 
, -169 x -0084 A 

~ 16-76 - 10-39 — 00CL‘j3 

k mean = '000216. 
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Silk Sheet, ‘017 ctn. thick, cut from a piece of ribbed silk ribbon. The thickness given 

is the mean of that across ribs and across grooves. Air, 1 6°’6 C. 

Cool bar. Hot bar. 

8‘03 Ax 8-30 

v2 372 Qx ‘1333 

1333 x ‘017 
_ 18-65 - 8-30 “ UUU^ 

18-88 Ac, 18‘65 

v, 27-37 Qo -1415 
_ -1415 x -017 _ 
~ 18-65 - 8-30 “ UU ^ 

k mean = ‘00023. 

Cotton Sheet, ‘085 cm. thick. A piece of thick tape. Air, 16°*4 C. 

Cool bar. Hot bar. 

vx 5-23 Ax 5-43 
v2 1-95 Qx -100 
-100 X-085 x 1-001 

21-41 Ac, 21-24 

v2 28-79 Q3 -1044 

7 -1044 x -085 x 1-001 _ .nnriKK>7 
/li ~ 21-24 - 5-43 x 1-004 “ UUUiW ~ 21-24 x 1-004 - 5-43 

7c mean = ‘00548. 

Flannel Sheet, *1 cm. thick. Air, 15°-1 C. 

Cool bar. Hot bar. 

vx 2"34 Ax 2"44 

v2 "59 Qj -0504 

-0504 x -1 x 1-006 

vx 24-67 A, 24-58 

v2 30-39 Qo -0505 
7 -0505 x -1 x 1-006 7- - . ■ rionoo k 

1~ 24-58 - 2-44 x 1-018 _ 00°—9 /l3 ~ 24-58 x 1-018 - 2-44 - 00°—0 

k mean ~ ‘000227. 

As the silk, cotton, and flannel yield somewhat, the measurements of thickness 

are not very accurate in these three cases. The error will be greatest in the cases 

of flannel and cotton, and probably small in the case of silk. 

3 T MDCCCXCII.—A. 
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Table of Results. 

Material and direction of stream Thermal conductivity between 25 and 35° C. Refractive 

lines. C.G.S. units. Index. 

Copper. •7 to -8 Lorenz, F. Weber, &c. 

Brass. 
Brass bar used. ■27 

•25 to -3 Lorenz, Neumann, &c. 

Bismuth. •017 Lorenz 

Mercury. •018 Angstrom 

Crown glass. •00243 •0016 H. Meter. 1-53 
Elint glass. •00201 •0014 „ . 1-64 

Glass. 
f-0021 Peclet 
\ ’0005 G. Forbes 

Rock salt. •0138 •016 Tuschmidt. 1-55 

Quartz along axis. •0299 
f 026 Tuschmidt. 

[ ‘001 G. Forbes 
1-55 

,, perpendicular to axis . . •0158 
J -016 Tuschmidt. 
\'004 G. Forbes 

1-56 

Iceland spar along axis. •0100 •016 Tuschmidt. 1-66 
,, perpendicular to axis . •0084 •0086 „ . 1-49 

Mica perpendicular to cleavage . •0018 1-57 

G0075 Peclet 

White marble. •0071 < -0073 Yamagawa 

|_ '0011 G. Forbes 
Slate . •0047 •0008 

W ater. •0015 Winkelmann 
Glycerine. •0007 
Olive oil. ■0004 F. Weber 

Shellac. •00060 
Paraffin. •00061 ■00014 G. Forbes 
Pure Para rubber. 
Rubber. 

•00038 
•00046 Peclet 

Vulcanised rubber. 
Sulphur. •00045 

•00009 G. Forbes 

Ebonite. •00040 ■00008 
Gutta pei’cha.- . •00046 

Paper. •00031 •00045 G. Forbes 
Asbestos paper. •00057 

Mahogany across fibre. •00047 
Walnut across fibre. •00036 
Cork. •00013 

Silk. •00022 
Cotton. •00055 
Flannel. •00023 
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In the foregoing table the conductivities of a few metals and liquids are given in 

order to show the position of the bodies experimented on amongst other conductors. 

Where experiments have been previously made by other experimenters their results 

are given for comparison. 

Such comparison shows a fair degree of concordance between the present results 

and those obtained by totally different methods, with the exception of the results of 

G. Forbes, which were obtained by the fob owing met hod. A can about 9 cms. 

diameter was filled with a freezing mixture, placed on a sheet of the material the 

conductivity of which was to be determined, and the lower surface of the sheet 

brought down on to a surface of water at 0° C. Ice is formed on the surface of the 

sheet, and Forbes works out an expression for the thickness of this ice in terms of 

the temperature of the freezing mixture (which was observed by a thermometer placed 

in it), the thickness of the material, the time, and the conductivities of ice and the 

material. In working out this expression, however, he assumes the conductivity of 

the materials between the thermometer in the freezing mixture and the upper surface 

of the sheet to be infinitely great, which, when one considers the layers of liquid, 

metal, and air present, is scarcely justifiable. On this account almost all Forbes’s 

results are low. 

Peclet’s results for metals were all found to be low, and this led to the assumption 

that all his results were the same. It is, however, evident from the present experi¬ 

ments that his results for bad conductors are correct. This is probably owfing to the 

fact that the layers of still water which, in his experiments, adhered to the surfaces 

of the sheet experimented on, are of much less importance when the sheet is a bad 

conductor. 

Tuschmidt’s results are obtained by a method which Weber used for liquids. 

The sheet of liquid is simply replaced by one of the crystal, the contacts being made 

by means of glycerine. As glycerine has a conductivity which is only about -doth of 

those of the crystal plates, the glycerine layers have a great effect on the flow of heat 

through the plates. This is a defect of the method, and, in addition, the plates them¬ 

selves must be large, and are therefore expensive. Tuschmidt’s results and those of 

3 t 2 
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the present paper agree fairly, the only great difference being in the case of Iceland 

spar along the axis. 

Meyer’s determinations depend on the rate of rise of the temperature of a calori¬ 

meter into which a heated cube of the material is plunged. It is questionable whether 

the assumption which he makes, that the temperature of the surface of the cube at 

any instant is that given by the thermometer in the calorimeter, is justifiable on 

account of the difficulty of preventing a layer of water adhering to the surface. The 

same objection applies to the method which he used to confirm the results obtained by 

his first method. 

Remarks. 

From the Table of Results it is at once evident that, for transparent bodies, no such 

comparison between thermal conductivity and velocity of propagation of light can be 

made, as has been made by Kundt for the metals. The thermal conductivities vary 

enormously for very small change of refractive index, and the variations are sometimes 

in the same direction as the variation of the index of refraction, sometimes in opposite. 

It is remarkable that the bodies quartz and rock salt, which are diathermanous 

bodies, should also be good thermal conductors, quartz being a better conductor than 

bismuth. To prove that the high value of the conductivity is not due to heat passing 

through these bodies by radiation from the hot bar to the cold, several experiments 

were made with the apparatus arranged as it was during the experiment in quartz, 

but the quartz disc was removed, thus allowing the hot bar to radiate heat through 

the intervening air space to the cool bar. Under these conditions, no change of 

temperature at the point of observation near the end of the cool bar, could be 

detected when the hot bar was suddenly cooled. As air is a more diathermanous 

body than quartz, it is thus evident that the amount of heat radiated through the 

quartz from one bar to the other, is too small to affect the above results. 

The high conductivity of quartz would render the use of fused quartz (the conductivity 

of which does not probably differ much from that of quartz crystal) advantageous for 

vessels subject to sudden change of temperature, and for delicate thermometers. 

The results for Iceland spar and marble seem to indicate that the irregular arrange¬ 

ment of the crystals in marble interferes with the passage of heat. 

Water and salt solutions have conductivities about equal to that of glass. 

The solid insulations used in electrical work rank with glycerine and the oils, so far 

as thermal conductivity is concerned. 

Silk has about one-third the conductivity of shellac. Hence, if a silk covered wire 

has the covering saturated with shellac, it will have its heat conducted away to 

surrounding bodies much faster than previously. The practice of soaking galvanometer 

coils in shellac is, therefore, good from a thermal point of view, as it enables the heat 

generated in the wire to pass more rapidly to the exterior of the coils, and be 

radiated away. 
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On account of the low conductivity of paraffin, standard resistance coils with 

temperature coefficients ought not to be embedded in paraffin, as the B.A. standard is. 

Cork is the worst conductor experimented on. 

Almost all the substances experimented on are insulators electrically. Although 

tables of their electrical conductivities are available, the values given seem to depend 

more on the condition of the surface of the body experimented on than on its material, 

and, on this account, it is of little use to make any comparisons between the electrical 

and the thermal conductivities of these substances. 

The above experiments were carried on in the Physical Laboratory of the Owens 

College. 
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§ 1. Touracos, Turacin, and Copper in Animals. 

Since the publication of my paper on Turacin,'1' read before the Society in May, 18G9, 

several interesting facts have come to light in reference to the Touracos, and to the 

occurrence of copper in the animal kingdom. Before giving the results of my own 

- farther researenes, I would first of all mention the book on “ Angola and the River 

Congo ” by the late J. J. Monteiro.! In the second volume of this work, pp. 75 to 

79, will be found some curious particulars about two species of Turacus (Corythaix), 

as well as an account of Mr. H. Bassett’s experiments with turacin, to which further 

reference will presently be made. Mr. Monteiro describes a singular trait manifested 

by one of his tame plantain-eaters, a Turacus schcdowi, which showed marked 

delight in gaily coloured dresses and pictures. Several instances are given of Touracos 

in captivity having moulted and then renewed their crimson plumage with all its 

original richness of colour. Some feathers from these birds, which Mr. Monteiro 

handed to me for examination, were found, by optical tests, to contain a turacin 

identical with that which colours them in their native countries. Yet these feathers had 

been produced in captivity, and after the birds had been for several years in England, 

where they were fed upon imported bananas and other vegetable foods. Certainly 

they had not had the opportunity of picking up “ the grains of malachite and of 

other copper minerals to which, it has been suggested, they may have had access in 

* ‘Phil. Trans.,’ vol. 152, PartII., pp. 627-636 (1870). 

f London : Macmillan and Co., 1875. 

28.10.92. 
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their African homes, and from which they might have derived the copper necessary 

for the formation of their cupreous pigment. Such a suggestion appears, however, of 

doubtful value, for the plantain-eaters are arboreal feeders ; and it is unnecessary, 

since copper is now known to be very widely distributed in plants, and I have shown 

it to be present in decided traces in bananas, the chief food of many species of Touraco 

In 1881 Dr. M. Giunti published a paper entitled “ Ricerche sulla Diffusione del 

Kamo nel Regno Animate.”* This memoir gives a resume of the work previously 

done on this subject, but also contains many new observations. Dr. Giunti found in 

the ash of the animals and animal products named below the following percentages of 

copper oxide (CuO) :— 

Chrysomela americana.D293 

Lizard skins, Podarcis muralis.I-049 

Blatta orientalis.0‘826 

Bat-guano (from Calabria).0-817 

Catonia hirtella.0'661 

Julus terrestris.. . 0’221 

Swallows.0'217 

Armadillidium vulgare.0‘197 

Helix pisana. . . .  0’089 

Hedgehog . . .   0'016 

These results are of value not only as confirming the view that copper is widely 

diffused in the animal kingdom, but because they render probable further discoveries 

as to the occurrence of definite organic cupreous compounds in nature. 

The researches of Dr. C. F. W. Krukenberg, on “Die Farbstoffe der Federn,”t 

must now be considered. This investigator has described a green colouring matter 

obtained from the green feathers of Turaeus corythaix, and of other plantain-eaters, 

by the employment of a 2 per cent, caustic soda-solution as the solvent. He calls this 

pigment “ turacoverdin,” and, although he did not obtain enough of it for quan¬ 

titative analysis, states that it contains “ much iron, but no great quantity of copper 

and manganese,” and that “ perhaps, like turacin, it is free from sulphur and 

nitrogen.” Here I must observe that Dr. Krukenberg, on referring to my paper on 

turacin, with which he was acquainted, would have found that turacin contains 

between 6 and 7 per cent, of nitrogen. The Author goes on to say : “ This colouring 

matter (turacoverdin) becomes of high interest through the results of the experiments 

made by Church on turacin.” And then he proceeds as follows—I quote the 

original German of Dr. Krukenberg—“ In seiner ausgezeichneten Arbeit uber das 

Turacin—einem, auf dem Continente durchaus unbekannt gebliebenen und von mir in 

der grossen Katakombe des ‘Philosophical Transactions’ deshalb aucli erst so spat 

aufgefundenen Meisterwerke auf dem Felde der physiologischen Chemie—mit welcher 

'* ‘ Accademia Reale delle Scienze,’ Napoli, 1881. 

t Heidelberg, ‘ Vergl.-physiol. Studien,’ 1881. 
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ich leider erst zu einer Zeit bekannt geworden bin, wo diese Untersuchungen bereits 

abgeschlossen waren und ausgearbeitet vorlagen, theilt Church Folgendes rnit : 

* Turacin, by long exposure to air and moisture, or by continued ebullition with water 

or alkaline liquids, acquires a colour closely resembling that of chlorophyll.’ ’ 

Dr. Krukenberg decides, after comparing the spectrum of altered turacin, as given 

in my memoir (loc. cit., fig. 4), with the spectrum of turacoverdin, that the presence 

of the absorption band on the less refrangible side of line D indicates the presence of 

his turacoverdin in my “altered turacin,” and proves that I had, in 1869, 

transformed turacin into turacoverdin, although there remained, as I had at the 

time conjectured, some unaltered turacin in the preparation examined. Although I 

cannot but appreciate very highly the handsome way in which Dr. Krukenberg 

speaks of my work and bis confirmation of my results, I am unable to agree with 

Mr. F. E. Beddard* * * § when he states that Dr. Krukenberg has added important 

details to those furnished by its discoverer with regard to turacin. And I may add 

in this place the remark that, if turacin be transformable in the way above described 

into turacoverdin, it is impossible that the latter can contain as essential elements 

either iron or manganese. 

The numerous observations which have been made from time to time as to the 

occurrence of copper in certain Mollusks and Arthropods have finally resulted in the 

detection of a definite cupreous pigment in the blood of certain members of these two 

groups. This body exists in two states, and possesses, like haemoglobin, respiratory 

functions : oxidized it is blue, but in the reduced condition colourless. Its spectrum 

has no definite absorption bands. It was named haemocyanin by Leon Fredericq,! 

to whom we owe some admirable researches on this important compound. It has 

been recognised in several genera of Crustacea, of Arachnida, of Gastropoda, and of 

Cephalopoda. It is a coagulable proteid belonging to the globulin group, and 

contains a very small proportion of copper—a proportion which may be just high 

enough to be comparable with the proportion of iron present in haemoglobin.J 

Haemocyanin is thus widely removed by its chemical and physical characters, as well 

as by its physiological role, from turacin. It is a far less stable body, and contains a 

comparatively insignificant percentage of the characteristic metallic element. It 

would, I think, be desirable to learn if there could be obtained from haemocyanin a 

cupreous derivative bearing to its source a relation analogous with that borne by 

haematin to haemoglobin. At present, haemocyanin and turacin are the only definite 

animal pigments containing copper which have been recognised. 

In this place reference may be made to a letter§ on the subject of copper in Birds 

* 1 Nature,’ December 19, 1889. 

f ‘Bulletin de l’Academie Royale de Belgique,’ 2nie serie, vol. 46 (1878). 

+ [P. Heim bas recently (‘ Comptes Rendus,’ vol. 114, pp. 771-4) controverted several of the statements 
made by Bredericq as to the composition and properties of hasmocyanin; he denies that copper is an 
essential constituent of this compound.—Postscript, September 1, 1892.] 

§ ‘ Chemical News,’ vol. 28, p. 212. 

MDCCCXCII.—A. 3 U 
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— a letter written by Mr. Sydney Lupton in 1873. Mr. Lufton detected copper in 

the ash of seven or eight feathers of an Australian love-bird, Melopsittacus undulcitus. 

He suggested that the plumage of this bird might contain a green cupreous pigment. 

§ 2. Occurrence of Turacin. 

In my previous paper I named twelve species of Touracos, in which I had recog¬ 

nised, by chemical or optical methods, the occurrence of turacin; from four of these 

species I had actually extracted this pigment. Since the publication of that memoir 

several new species have been discovered, and old species split, while the nomencla¬ 

ture of the whole family of the Musophagidse has been revised. The order Picariae, 

to which that family belongs, contains two sub-orders of equal rank, Scansores and 

Coccyges. The Coccyges comprise four families, namely, Indicatoridae, Capitonidae, 

Cuculidse, and Musophagidse. The Musophagidse are arranged under five genera, and 

comprise twenty-five species. I am now able to state that turacin occurs in eighteen 

species, namely, in all the fourteen species of Turacus, in the two species of Gallirex, 

and in the two species of Musophaga. It is absent from the seven species com¬ 

prised in the genera Corythccola, Schizorhis, and Gymnoschizorhis. It is of interest to 

note that the zoological classification of these Birds is now in accord with what may 

be called their “ chemical ” sequence. Formerly, a single Bird destitute of turacin, 

and now constituting the solitary species of Corythceola, was included in Corythaix, 

that is, Turacus ; the anomaly of its presence among the turacin-bearers has now been 

removed. I ought to say that I have had the opportunity of examining specimens of 

17 out of the 18 known species of Turacus, Gcdlircx, and Musophaga with the 

spectroscope, and have recognised the presence of turacin by means of its characteristic 

spectrum in them all. I have, moreover, actually separated the pigment from the 

wing feathers of eleven different species of Touraco ; the species not available for this 

experiment were : Turacus reichenoivi, T. livingstoni, T. schuetti, T. fischeri, T. leuco- 

loplius, T. hartlaubi, and Musophaga rosscr, most of which are very rare Birds A 

The following conspectus of the'genera and species of Musophagidse is taken from 

the account of this family recently written by Captain G. E. Shelley ;t the seven 

African ornithological sub-regions, in which the plantain-eaters are distributed, 

are those which the same most competent authority has suggested to me in a private 

communication, dated 26th October, 1891 ; they may be thus defined :— 

W. Tlie whole coast from Senegal to the Quanza Paver, and inland to 30° E. long. 

S.W. South of the Quanza to the Orange Biver, and inland to Lake Ngami. 

* [Turacin occurs not only in the wing-feathers of Turacus meriani, but in those of the crest, the tips 
of which are crimson; these tips yield up their pigment to dilute ammonia with some difficulty. I have 

extracted turacin also from the red head-feathers of Musophaga violacea. It should be stated that two 

species of Schizorhis (S. africana and S. zonura) show on their wing-feathers white patches destitute 

of pigment bub corresponding in position with the red tracts of the vanes in the turacin-bearers.— 

Postscript, September 1, 1892.] 

t ‘ Catalogue of the Birds in the British Museum.’ vol. 19, pp. 435-456 (1891). 
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S. Cape Colony and north to the Orange Paver. 

S.E. Natal, Transvaal, Zambesi, with the Shire tributary, and north to 15° S. lat, 

E. The coast from Mozambique (15° S. lat.) to 5C N. lat., and inland to 35-° E. long. 

C. The Central or Lakes sub-region, comprising Victoria Nyanza, Albert Nyanza, 

south-east portion of Niam-Niam country, and extending south to Ta.njan- 

yika Lake. 

N.E. The northern half of Niam-Niam, the whole Nile district from the Albert 

Nyanza, east through Gala land and Somali, and north to the mouths of the 

Nile. 

The countries north of the Sahara desert to the Mediterranean coast belong, not to 

the Ethiopic, but to the European region. 

It must be noted that our acquaintance with the African avi-fauna is too imperfect 

to admit of the construction of a distribution-chart of the Musophagidse which shall 

be exhaustive and final. 

Table Showing Distribution of the Touracos in West, South-West, South, South- 

East, East, Central, and North-East Africa. 

Genera and species. 

1 Turacus leucotis (Rupp.). 
2 T. persa (L.). 
3 T. b-uffoni (V.). 
4 T. schaloici (Reichen.). 
5 T. livingstoni (Gray) . . 
6 T. reiclienowi (Fischer). 
7 T. corythaix (Wagl.). 

8 T. schuetti (Cab.). 
9 T. macroi'hynchus (Fraser). 

10 T. meriani (Rupp.). 
11 T. fischeri (Reichen.). 
12 T. erythroLophus (V.). 
13 T. leucolophus (Hengl.). 
14 T. hartlaubi (Fischer and Reichen.) . . 
15 Gallirex porphyreolophus (ViG.) .... 
16 G. chlorochlamys (Shelley). 
17 Musophciga violacea (Isert.). 
18 M. rossae (Gould). 

19 Corythceola cristata (V.) ....... 
20 Schizorhis africann (Lath.). 
21 8. zonura (Rupp.). 
22 S. leucogaster (Rupp.). 
23 8. concolor (Smith). 
24 Gymnoschizorhis personata (Rupp.) . 
25 G. leopoldi (Shelley). 

25 

w. 

10 

s.w. s. S.E. E. C. N.E. 

Note.-—The 18 species above the dotted line constitute 3 genera, and may be considered to contain 
turacin, which is certainly absent from the remaining 7 species of tlie family. 

3 u 2 
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With regard to the formation of turacin in the organism of these birds we have 

much to learn. That the pigment is not always present in the blood is certain. I 

could not detect a trace of it in a specimen of Turacus persa, which was examined 

immediately after death, although I did recognise the presence of a minute quantity 

of copper in the ash of its flesh. It is desirable that the blood of the birds should 

be tested for turacin during the moulting period. 

§ 3. Isolation of Turacin. 

The mode of extracting turacin from Touraco feathers has been slightly improved. 

The red parts of the vane are first thoroughly washed with distilled water, and then, 

after drying, treated successively with absolute alcohol and with ether. The material 

is allowed to dry before being extracted, not, as previously, with very dilute sodium 

hydrate solution, but with exceedingly weak aqueous ammonia. The crimson solution 

thus obtained is filtered, and then precipitated by pouring it into a large excess of 

pure strong hydrochloric acid diluted with twice its bulk of water. It is curious to 

observe the immense bulk assumed by freshly-precipitated turacin. Thus, in an 

operation in which about 4 grms. of this pigment were dealt with, it was necessary to 

increase the volume of the mixture of turacin, hydrochloric acid, and water to nearly 

one gallon before its thick consistency could be so reduced as to permit of its being 

brought upon the filter. Filters of the finest calico were found to be far preferable to 

those of paper; they were first thoroughly cleansed by means of boiling distilled 

water: the method of vacuum filtration was adopted. All the operations should be 

conducted quickly; exposure of the moist turacin to light should be avoided as far as 

possible. 

§ 4. Characters of Turacin. 

The account given in my previous paper of the properties of turacin and of its 

behaviour with several reagents needs one addition. When powdered turacin is 

dissolved in cold oil of vitriol* it is profoundly changed, a part of its copper being 

removed and a new colouring matter produced. On pouring the sulphuric acid solu¬ 

tion into a considerable volume of water, a flocculent precipitate of a reddish-chocolate 

colour appears. Collected on a filter and thoroughly washed with hot water, this 

precipitate is found to be still rich in copper, although a part of the metal has been 

withdrawn by the action of the sulphuric acid, and is found in the filtrate. The 

precipitate dissolves in dilute ammonia-water, with a crimson hue.t Dr. C. A. 

MacMunn, of Wolverhampton, lias kindly examined this solution for me, and states 

* Oil of vitriol (containing 96 per cent, of H2S04) appeal’s to exert the same action on turacin, and to 

yield the same derivative, at temperatures much higher than 14° C., at -which the first experiment was 
tried. 

f [The ammoniacal solution of this substance, which I have called turacoporphyrin, exhibits a bright 

red fluorescence which is not seen in a similar solution of turacin ; the solution in dilute sulphuric acid 
also fluoresces red.—Postscript, September 1, 1892.] 
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that its spectrum bears a very close resemblance to that of alkaline haematoporphyrin. 
It has four well-marked absorption-bands (shown in fig. A), the wave-lengths of 
which, in millionths of a millimetre, are—1st band, X 619 to 601 ; 2nd band, 577 to 
550'5 ; 3rd band, 545 to 526 ; 4tli band, 512*5 to 488. These bands differ in position 

Fig. A 

Fig. XB 

and relative intensity and breadth from those of a similar solution of turacin (compare 
figs. 6 and 7). The resemblance of this new derivative of turacin to haematoporphyrin 
is strongly accentuated by the further observation, that the acid filtrate from the 

precipitate above described possesses a spectrum which Dr. MacMunn says has “ a most 
remarkable resemblance to that of acid haematoporphyrin.” It has a purple rather 

than a crimson hue ; and, though its spectrum has four bands (shown in fig. B), they 

differ in position and in relative intensity from those of the alkaline solution just 
described, and from those of an alkaline solution of turacin. Their wave-lengths are— 

1st band, 601 to 587 ; 2nd band, 579 to 569 ; 3rd band, 562 to 535 ; 4th band, 523 
to 499 ; the 2nd band is faint, the 4th a slight shading only. This acid solution, 
when very nearly neutralised with ammonia, becomes colourless, depositing a floccu- 

lent precipitate, which proves to be identical with that previously separated on pouring 
the oil of vitriol solution into cold water. It is, in fact, soluble in some dilute acids, 
but not in pure water nor in solutions of neutral salts. 

From the analyses which will be presently given, it seemed likely that the atomic 
ratio of metal to nitrogen in turacin might prove to be 1 : 4, as in hae matin ; and it was, 

indeed, the resemblance between these two pigments which induced me to try and 
ascertain whether turacin would yield, by solution in oil of vitriol, a coloured metal- 

free derivative similar to that which hsematin produces under the same circumstances. 
My expectation has, it will be seen, been partially realised ; but the new coloured 

derivative of turacin still retains much copper. Its solubility in dilute sulphuric acid 
and the spectra of its alkaline and acid solutions afford, however, strong corroborative 
evidence in favour of the view that the new derivative of turacin is nearly related to 
haematoporphyrin, and that turacin itself, though nearly related to haematin, has a 

somewhat more complex constitution. 
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My former description of the effects of heat upon turacin needs one important 

addition. The violet, or rather purple vapour given off when dry turacin is strongly 

and suddenly heated, consists of, or contains, an organic compound of which copper is 

an essential constituent. This vapour condenses on cooling into a partly crystalline 

sublimate, which, unlike turacin, is soluble in ether and in alcohol, but insoluble in 

dilute ammonia. It is of a reddish colour, and is obtained in the crystalline state by 

the spontaneous evaporation, in dry air, of its etherial solution. It well deserves 

further investigation, for the complete analysis of this derivative could hardly fail to 

throw light upon the constitution of turacin itself. For the same reason, the derived 

pigment obtained by means of sulphuric acid merits extended study; for this latter 

body I propose the name of turacoporphyrin. 

If the very limited amount df turacin at my command has prevented me from 

making with it certain chemical and physical experiments which might have helped 

to elucidate its nature, and to determine its molecular weight, yet the study of its 

characteristic spectra has afforded invaluable aid in its recognition, especially in the 

case of the rarer species of Turacus. The chief features of these spectra were given in 

my former paper. The two well-marked absorption bands in the spectrum of turacin 

as it exists in the feather, closely resemble those of oxyhsemoglobin; the two chief 

bands in an alkaline turacin solution are not unlike those of CO-hsemoglobin. But it 

was desirable to investigate the spectroscopy of this unique pigment more thoroughly 

by examining solutions of different strengths, and prepared in different ways. 

For the series of drawings of turacin-spectra reproduced on p. 519, I am indebted 

to the skill and kindness of Dr. C. A. MacMtjnn, of Wolverhampton. This able 

experimenter, whose acquaintance with the spectroscopy of animal pigments is 

unrivalled, gives the following explanatory notes concerning the chart of spectra. 

The spectra were mapped by means of a one-prisnr chemical spectroscope made by 

Mr. Adam Hilger. The solutions were examined in a Preyer’s hsematinometer, 

which is provided with plane parallel glass sides one centimetre apart; the layer of 

solution examined was thus one centimetre thick. 

Fig. 1. Solar spectrum with some of the Fraunhofer lines, the scale at the top being 

the arbitrary one of the instrument. 

Fig. 2. Spectrum of the crimson web of a feather of Musophaga violcicea with 

transmitted light. The feather was mounted in front of the slit, the light of a 

so-called “ Sun ” Argand gas-burner being condensed upon it it by means of a bull’s- 

eye lens. All the remaining spectra figured were observed by means of the same 

light source. The following are the approximate measurements, in millionths of a 

millimetre, of the wave-lengths of the absorption-bands in the spectrum of this 

feather:—1st band, named a : shading begins at X 599, is dark at 597, extends dark 

to 571, shades off to 567*5 ; centre is at 585 or 583. 2nd band, named /3 : is feebly 

shaded at 557, becomes dark at 553*5, extends dark to 529, is shaded off to 521*5 ; 

oentre is at 538. The shading at the violet end begins about 510. 
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Fig. 3. Spectrum of a freshly-prepared aqueous and faintly ammoniaeal solution, 

obtained directly from a feather. The measurements, in wave-lengths, of the bands 

shading 

Eh 
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i r n-r 

extends back to 55(P5, is shaded off to 548. 2nd band, or f3 : is shaded feebly at 540, 

is dark at 536‘5, extends dark to 511, is shaded off to 505 ; centre of band a = 562 ; 

centre of band /3 = 523. Note, also, the faintly-shaded band S on either side of F ; 

this extends from 496 to 475. 
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Fig. 4. Spectrum of a weaker solution prepared as above. 1st band, or a : shading 

begins at 577, is dark at 573, extends dark to 553'5, is shaded off to 549 ; centre of 

band n = 562. 2nd band, or f3 : begins to be shaded at 538, is dark at 533, extends 

dark to 514, is shaded of to 506 ; centre of band (3 = 523. 

Fig. 5. Spectrum of a strong solution of pure isolated turacin in faintly ammoniacal 

water. Note the occurrence, beside the band 8 already described, of a fourth and 

stronger, though narrower, band y near the line D. Measurements :—Band y: 605 

to 589 : centre 597. Band a: shading begins at 581, is black 577, extends black to 

547 ; there is a shaded space from 547 to 540. Band /3; extends from 540 to 506, is 

shaded to 503. Band 8 extends from 494 to 473. 

Fig. 6. Spectrum of a weaker solution of turacin than that shown in fig. 5, but pre¬ 

pared in the same way. Measurements :—Band y : 605 to 589. Band a : begins to 

be shaded at 577, is black at 573, extends black to 552, is shaded off to 547 ; centre 

at 562. Band (3 : begins to be shaded at 540, is dark at 533\5, extends dark to 511, 

is shaded off to 506 ; centre at 523. Band 8 extends from 494 to 473. 

Fig. 7. Spectrum of a solution, prepared in the year 1868, of turacin in weak 

ammonia water. Measurements : Band y, 605 to 589. Band «.: begins to be shaded 

at 579, is black at 573, extends black to 552, is shaded off to 549 ; centre at 562. 

Band /3 : begins to be shaded at 540, is dark at 535, extends dark to 514, is shaded 

off to 506 ; centre at 523. Band 8 extends from 494 to 473. 

[The bands y and 8 in the spectra are shown too dark in the figures—8 is, in fact, 

barely perceptible.] 

The general results of these spectrum observations may be summarised thus :— 

Turacin, as it exists in the feathers, possesses two absorption bands, one of which; 

a, is rather darker and less wide than the other, and is situated about the line D, 

extending some distance on its more refrangible side; the other band, /8, lies between 

the first-named and the line b. Turacin in alkaline solution always shows the same 

two bands, the first being, as before, darker and narrower than the second, but both 

bands are shifted towards the more refrangible end of the spectrum. When an 

alkaline solution of turacin is weak, it shows the above-named pair of bands only ; 

when its strength is increased, a third band, 8, faint but broad, appears near the 

line F. But if some isolated and dried turacin be dissolved in weak ammonia water, 

a liquid is obtained which, if strong enough to show the band 8, will also show a 

fourth band, y, darker and much narrower than 8, and situated on the less refrangible 

side of D. The recognition of the bands 8 and y is due to Dr. MacMunn ; the 

remaining features of these spectra were figured in my previous memoir, but with 

less completeness and exactitude. A question arises as to whether the band y—which 

is not seen in the spectra of turacin solutions freshly and directly prepared from the 

feathers, but only in the spectra of solutions of such turacin as had been previously 

isolated and dried—belongs to the unaltered pigment, or whether its occurrence is a 

sign of the presence of a decomposition or oxidation-product of turacin. The spectral 
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position of the band is, I think, identical with that of the characteristic band (as 

figured in my previous paper) of “altered turacin,” and with the band of 

Krukenberg’s turacoverdin. But the band y is so much fainter and so much 

narrower than the bands in question, that it can betoken the existence of no more 

than a trace of an alteration-product in the carefully prepared sample of turacin with 

which the majority of the analyses here recorded were performed ; the presence of 

such a trace can scarcely have affected in an appreciable degree the figures obtained. 

In connection with the probable presence of traces of an alteration-product of turacin 

in solutions made from the isolated pigment it is important to compare the spectra 

6 and 7 in the cut, p. 519, they are virtually identical. There is no increase in 

the prominence of the suspicious y band in the spectrum of a solution of isolated 

turacin in ammonia water after the lapse of twenty-three years. The particular 

specimen of turacin solution examined had been kept in a white glass bottle nearly 

full, but from which the stopper had been several times withdrawn ; it had been 

exposed to moderately strong diffused daylight during fifteen years, but had been 

preserved in the dark for the eight years which immediately preceded its spectro¬ 

scopic examination. Such a result is in striking contrast with that which is obtained 

when turacin, precipitated in flocculi by an acid from an alkaline solution, is allowed 

to remain for some time in contact with distilled water and atmospheric air. The 

precipitate loses its red hue, becoming dull and dark at first, and then acquiring a 

decided green colour. The same changes occur when a red Touraco feather is 

repeatedly wetted with pure water and dried, or when a piece of paper, stained with 

an ammoniacal solution of turacin, is kept for some time under the varying conditions 

of ordinary atmospheric moisture. The green turacin derivative produced in these 

experiments shows the spectral band y with great distinctness, but it is always 

accompanied by the three bands proper to pure turacin in alkaline solution; this 

observation is true, even when every endeavour is made to complete the process of 

change. 

Although the two spectra of turacoporphyrin described at the beginning of this 

section closely resemble the spectra of hsematoporphyrin (obtained from hsematin bv 

the same treatment), yet the presence of a metallic constituent in the former 

derivative, and its absence from the latter is sufficient to prove that the two bodies 

are not exact analogues. 

§ 5. Nitrogen in Turacin. 

The production of the volatile derivative of turacin, when that pigment is strongly 

heated, is probably the cause of the difficulty experienced in determining correctly its 

percentage of nitrogen, this volatile product being formed in varying proportions, 

and being very difficult of combustion. The mean percentage of nitrogen given in 

my former paper was 6'38, a figure which, on a careful recalculation of the analytic 

data, comes out rather ower, and which was founded on three determinations by 

MDCCCXCII.—A. 3 X 
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Dumas’ method. A fourth determination by the same process had given me 

7'01 per cent., a figure which I rejected at the time as not being in accord with the 

three other analyses, which agreed well with one another. Subsequently I made a 

large number of other “absolute” nitrogen determinations, with more discrepant 

results, some yielding figures a good deal higher, and others, again, a good deal lower 

than those previously obtained. Many of these analyses were performed with the 

same sample of turacin ; in one instance only did the percentage obtained, 6'75, show 

a fair agreement with the earlier numbers. I then secured the aid of two expert 

analysts, accustomed to the use of all the modern refinements in apparatus and 

processes for the determination of nitrogen by the absolute method, and constantly 

performing analyses of the most varied and complex niti’ogenous bodies. But their 

results, six in number, though all obtained with the same sample of turacin, agreed 

neither with one another nor with any of my own previous determinations, the 

highest figure in the whole set being only 6*15 per cent. I had previously tried 

once more the soda-lime combustion method, making two analyses, in a current of dry 

hydrogen, with the following results :— 

i. ii. 

grm. grm. 
Turacin taken, corrected for ash ..... ■2448 •478 
(NH4)oPtCl6 obtained ......... •2713 •5265 
Platinum obtained from above salt .... 1222 •233 
Nitrogen percentage, calculated front platinum f 

found (Pt — 194*8)./ 
7-17 7 01 

These results, it will be observed, tended to confirm the higher figures obtained in 

some of the Dumas’ analyses. I therefore made two more determinations by the 

soda-lime method, conducting the combustion, as before, in a current of hydrogen, 

but receiving the evolved ammonia in a standard sulphuric acid. On subsequent 

titration of the contents of the bulbs, the percentages of nitrogen obtained were 

7'23 and 7'38. This volumetric estimation was difficult to complete, owing to the 

hue of the indicator being interefered with by that of some coloured distillation- 

products in the bulbs, and I do not attach much importance to these very high 

figures, the mean of which is no less than 7'3. It seemed, however, worth while 

to make further experiments with the modified soda-lime method, and Dr. F. E. 

Matthews, of Cooper’s Hill College, very kindly undertook to determine the 

nitrogen by this process, which he had brought to great perfection, and had practised, 

with undoubted success, in the case of substances very difficult to analyse satis¬ 

factorily. Dr. Matthews purposely employed very small quantities of turacin, and 

he used the Nessler method of estimating the evolved ammonia, but I have every 

reason to believe that his results are the most exact obtainable under the conditions 

named. He used part of the same sample of turacin (the whole weighed 4 grms.) 
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which had been employed in the six estimations of nitrogen by Dumas method, 

to which reference has already been made, as discrepant and low. The results 

obtained by Dr. Matthews were as follows :—1 centigrm. of turacin, dried for 

15 hours at 100° C., was mixed with soda-lime and burnt in a stream of hydrogen. 

The contents of the nitrogen-bulbs (previously faintly acidulated with hydrochloric 

acid), were diluted to 250 c.c,, and then Nesslerized. 

i. 50 c.c. required 13‘5 c.c. of a solution of NH^Cl, 1 c.c. of which = '00001 gram of 

nitrogen ; result = 675 per cent. N. 

ii. 10 c.c. required 275 c.c. ; result = 6'825 per cent. N. 

A second combustion was made of the same amount of turacin, the same solutions 

being employed. 

iii. 50 c,c. required 13*55 c.c. = 6775 per cent. N, 

iv. 10 c.c. required 275 c.c. = 6'87 per cent. N. 

The mean of these four percentages is 6'8, or, when corrected for ash, 6'87. Before 

considering the value of this number it will be advisable to give some results obtained 

by means of Kjeldahl’s process. My friend, Professor Kinch, of Cirencester, having 

had great experience with this method, was good enough to make two estimations of 

nitrogen in turacin by its means, using the identical sample which had been employed 

by Dr. Matthews. Here are the results :— 

i. *1718 grin, turacin gave '01335015 grm. NH3 = 6'399 per cent. N. 

ii. '3075 grm. turacin gave '0236034 grm. NH3 = 6'321 per cent, N. 

The mean of these two results, when corrected for ash, becomes 6'419, In the face 

of the higher percentages obtained by other methods, and of the known difficulty in 

oxidising turacin completely, I incline to regard this figure as too low. 

We are now in possession of five pairs of nitrogen determinations, all made with 

great care and by methods differing more or less in character. The percentages 

obtained, duly corrected for ash, are arranged in this table. 

Series A. Series B. Series 0, Series D. Series E. 

By Dumas’ By soda-lime and By soda-lime and By soda-lime and By Kjeldahl’s 
method. platinum. standard acid. Nessler. method. 

i. 7-01 i. 717 i. 7 23 i. 6"855 i. 6-453 
ii. 6-82 ii. 7*01 ii. 7’38 ii. 6-895 ii. 6-384 

Mean 6'92 7-09 7-30 6-87 
. 

6-419 

3 x 2 
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The mean percentage deduced from the live series is 6‘92. If Series C be omitted 

the percentage becomes 6*82 ; if Series E, it is 7‘05 ; if both these series be excluded 

the percentage stands at 6*96. These three numbers are so near together that it 

seems hardly material which we accept, but after having given due weight to the 

various circumstances likely to affect the validity of the several results obtained, 

I incline to adopt the figure 6‘96. I may here mention that this percentage of 

nitrogen corresponds to 7'7 per cent, of copper, if the ratio N4 : Cu be assumed, or to 

7 per cent, of copper in the case of the ratio N9: Cu3, 

§ G. Copper in Turacin. 

For the copper-determinations recorded in my first paper (loc. cit., p. 632) I was not 

able, through scarcity of material, to employ adequate amounts of turacin. But the 

differences between my earlier results and those which will be given presently arose 

mainly from a strange and unsuspected peculiarity of turacin. When the pure dry 

pigment is quickly and strongly heated it gives off, as I mentioned in my previous 

memoir, “a violet vapour resembling that of iodine.” Now this vapour contains an 

organic copper compound, capable of being condensed into a red crystalline solid, 

which is soluble in ether and insoluble in alkalies—unlike the original body which 

yields it. If the turacin be slowly heated it gives off no visible or coloured vapours, 

even when the temperature is subsequently raised to a dull red heat. Here, then, is 

to be found the cause of the discrepancy between the six per cent, of copper found in 

my earlier determinations and the seven per cent, recorded below, In all the older 

analyses, the turacin, after having been dried at 100° C,, was heated alone in a 

crucible, whereby it lost about one-sixth or one-seventh of its metallic constituent in 

the form of the violet (or rather, purple) vapour mentioned above. When it was 

found that turacin, if first submitted for ten minutes to the temperature of boiling 

mercury, gave off no visible vapours when afterwards more strongly heated or even 

incinerated, an easy method for estimating both the copper and the accidental ash- 

constituents of this pigment seemed available ; accordingly, two quantitative experi¬ 

ments were carried out in the following way. The turacin was dried at 100° C. until 

constant in weight; it was then heated for one houi- in a bath of boiling mercury, and 

finally incinerated over a Bunsen burner until the weight of the residue became con¬ 

stant. The total ash was weighed, and then the copper present in it was determined, 

first, by titration with potassium iodide and sodium thiosulphate, according to 

Brown’s method ; and, secondly, by a gravimetric process, the iodine and the organic 

matter from the starch-indicator having been removed. The copper was precipitated 

as sulphide, and afterwards converted into and weighed as oxide. The total ash in 

the sample having been first of all ascertained in these analyses, an opportunity was 

afforded for the estimation of the fixed matter other than copper oxide left on the 

incineration of turacin. Here are the results :— 
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i. ii. 

Turacin taken, dried at 100° C. 
Total ash obtained. 

’Turacin taken, corrected for ash. 
Copper, volumetrically determined .... 
Copper oxide, gravimetrically determined . 
Copper, gravimetrically determined .... 

gnu. 

•4627 
'0454 
'4581 
•0322088 
•0413 

•03297 

grin. 
•6832 
•066 
•6764 

•0464738 
•0588 
•046936 

These results correspond to the following percentages :— 

Total ash . . 

i. 

9 81 

ii. 

9 66 
Ash other than CuO ....... 10 109 

Copper, volumetrically determined . 7-03 <•'87 
Copper, gravimetrically determined . 779 6'94 

In the above calculations it has been assumed that the proportion of adventitious 

ash in turacin amounts to 1 per cent. This figure has been amply confirmed by other 

determinations, and has been adopted throughout the present paper as a correction. 

The mean corrected percentage of copper in turacin, as deduced from the four 

determinations just given, is 7'01.'5' This figure, which corresponds to 8'79 per cent, 

of CuO, though higher than that obtained in my early experiments, is lower than that 

found by Mr, H. Bassett,t who by incinerating turacin with nitre and sodium car¬ 

bonate obtained, in two analyses, oxide of copper equal to 7’6 and 8'0 per cent, of the 

metal. As no correction was made for ash these numbers are probably 1 percent, below 

the truth, and may be safely taken to correspond to a mean percentage of 778. Now 

this number is confirmed by a determination which I made so long ago as September 14, 

1874. The turacin employed was prepared from Turacus corythaix, and was 

purified and dried in the usual way. It was oxidised by long warming with con¬ 

centrated nitric acid in a flask. The solution became at last of a clear green 

colour; it was cautiously evaporated to dryness and the residue incinerated. The 

residue was treated with nitric acid, and the solution filtered to remove a trace of 

silica. Finally the copper was precipitated hy caustic potash and weighed as oxide. 

The figure obtained was :— 

* In another experiment ’2318 grin, turacin, oxidized by repeated treatments with fuming nitric acid, 

gave, by Brown’s thiosulphate method, 6‘87 per cent, of copper—a figure which when corrected for ash 

becomes 6'94 per cent. During the progress of this analysis and of another determination made in the 

same way, it was observed that turacin, if treated at first with an insufficient amount of nitric acid, 

yields an intermediate product having a “ beetle-wing” lustre, and very difficult to oxidise by subsequent 

treatment with fresh portions of acid. 

t ‘ Chemical News,’ vol. 28, p. 201 (1873), 
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Turacin taken, corrected for ash , , , , '3178 grm. 

CuO obtained.. . . , '0323 ,, 

This result corresponds to 8'11 per cent, of metallic copper. But on testing the black 

oxide of copper it was found to contain calcium phosphate and traces of ii’on and 

manganese. 
© 

A sample of turacin from Musophaga violacea was examined for copper b)T Professor 

Kinch, in November, 1891, the weighed substance being incinerated with every pre¬ 

caution in a crucible with sodium carbonate and potassium nitrate. The cupric oxide 

formed was dissolved in nitric acid, and precipitated by sodium hydrate, the precipi¬ 

tate being again dissolved, to remove silica, and re-precipitated. 

The figures in this analysis were— 

Turacin taken, corrected for ash , , '1635 grm, 

CuO obtained.'0168 ,, 

This result corresponds to 8'2 per cent, of copper. 

The mean percentage of copper in turacin, as deduced from the four determinations 

last recorded is 8'03. But there is a very good reason for not accepting this figure, 

for we have no guarantee that the precipitate produced by a fixed alkali in the solu¬ 

tions of turacin ash was pure. I conclude, indeed, that in Mr. Bassett’s two analyses 

and in the pair just recorded, the apparent percentage of copper has been raised, 

because the substance weighed really included the calcium phosphate and the traces 

of oxides of manganese and iron known to be present in turacin ash, and regarded as 

accidental or adventitious constituents thereof. This conclusion is strengthened by 

the following argument:—If turacin contains 8 per cent, of copper it must yield, when 

so incinerated that no loss occurs, quite 1 0 per cent, of CuO, which, added to the 1 per 

cent, of extraneous ash ascertained to be present, amounts to 11 per cent. But the 

true percentage of total ash is just under 10—a figure based on numerous determina¬ 

tions, and confirmed by a recent result of Professor Kinch, who, by oxidising '1522 

grm. of turacin with nitric acid, evaporating the solution to dryness and incinerating 

the residue, obtained '0149 grm. of total ash, equal to 9'79 per cent. If, then, turacin 

be a definite compound possessing but one essential metallic constituent, there cannot 

be more than about 7 per cent, of copper in it. It might perhaps be argued that the 

iron and manganese are not accidental impurities, and that turacin may, after all, 

contain 8 per cent, of metal, namely, about 7 parts of copper and 1 part of iron and 

manganese. This assumption is, however, untenable, for the oxides of iron and 

manganese found in the ash of all preparations of turacin constitute but a small 

part of the 1 per cent, of so-called accidental ash, and are accompanied by other 

bodies such as calcium phosphate. I conclude, therefore, that the volumetric deter¬ 

minations of copper are to be accepted in preference, and that the higher figures 

obtained by precipitation w.th sodium hydrate arose from the presence of impurities. 
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It may be well to state here that there is no evidence, chemical or spectroscopic, 

that turacin suffers any loss of copper when treated with the somewhat diluted hydro¬ 

chloric acid used in its preparation, or even when boiled with a mixture of one volume 

of the fuming acid with one volume of water. 

§ 7. Carbon and Hydrogen in Turacin, 

The percentages of these elements, as deduced from my previously published 

analyses, were, respectively, 54'63 and 5*22. The results of combustions of the very 

carefully prepared sample of turacin with which the greater number of the analyses 

recorded in the present paper were made gave somewhat lower figures. The smaller 

proportion of carbon found may be due to the precautions taken to remove the last 

traces of fatty matter from the sample, and to decompose any oxides of nitrogen formed 

in the combustion ; the great care exercised in excluding accidental moisture may 

have reduced the percentage of hydrogen. These are the analytical numbers :— 

Combustions of Turacin. 

Substance taken. H20 obtained. 

| 

C02 obtained. 

grm. gi-m. gl-LU. 
i. -1362 •055 •2653 

ii. '2085 •0834 •4076 

iii. -1435 0611 •2792 

These numbers correspond to the following percentages :— 

Hydrogen. 
Hydrogen corrected 

for ast. 
Carbon. 

Carbon corrected 
for asb. 

i. 4'48 453 53-12 53-65 
ii. 4'44 4-48 53 31 53-84 

iii. 473 4-78 53-06 53-59 

The mean corrected percentages are ;— 

Carbon ... ..... 53'69 

Hydrogen s 4 . 4'60 

§ 8. Summary of Analytical Results. 

On the assumption that the only metallic constituent of turacin is copper its 

centesimal composition may be given as •—- 
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Carbon 

Hydrogen 

Copper 

Nitrogen 

Oxygen , 

53-69 

4-60 

7-01 

6-96 

27-74 

It is somewhat rash to suggest an empirical formula for a body which can neither 

be crystallised nor distilled, and to which few of the ordinary criteria of purity can be 

applied. The experimental percentages do not agree closely with any formula in 

which the ratio Cu : N4 occurs—a ratio which analogy with heematin (which has 

Fe : N4) would lead one to prefer, but they do correspond very nearly with the 

following more complex expression 

Theory, C82H81Cu2N9032. Experiment. 

Per cent. Per cent. 
C8, = 984 = 5378 53-69 
H81 = 81 = 4-43 4-60 
Cu2 = 126-6 = 6-92 701 
N9 =126 = 6-89 6-96 
03o = 512 = 27-98 27-74 

The agreement of these theoretical and experimental numbers is satisfactory. 

Although I should have preferred a simpler empirical formula, and the atomic ratio 

between metal and nitrogen of 1 : 4 rather than the ratio 2 : 9, yet there exist two 

arguments in favour of a more complex expression. One of these arguments is based 

on the partial loss of copper which turacin suffers when strongly heated—a loss 

which seems to indicate that the whole of the copper present does not exist in the 

same state of combination. The other argument is founded on the partial retention 

of copper by turacoporphyrin. This shows that its formation does not proceed upon 

exactly the same lines as those of hsematoporphyrin, which retains none of the metallic 

constituent present in its parent-substance, hsematin. 

I wish it to be understood that I lay no stress upon the formula which I have 

suggested, regarding it merely as a mode of expressing the results of analysing a 

substance which I believe to be constant in composition and very nearly pure. And, 

in the absence of sufficient data of control, I do not think it worth while to compare 

the experimental percentages with those demanded by such simpler formulae as— 

C^H^CuN^o; C40H40CuN4O15 ; C40H38CuN4O16; and C40H38CuN/)15. 

§ 9. Summary and Conclusions. 

The more important positions established by the present research are these : — 

I. The constant occurrence, in 18 out of 25 known species of Musophagidae, of a 
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definite organic pigment containing as an essential constituent about 7 per cent, of 

metallic copper. 

II. The “ turacin-bearers ” comprise all the known species of the three genera, 

Turacus, Gallirex, and Musophaga, while from all the species of the three remaining 

genera of the family Musophagidse, namely Corythceola, Schizorhis, and Gyrnno- 

schizorhis, turacin is absent. Furthermore, the zoological arrangement of the genera 

constituting this family is in accord with that founded on the presence of turacin. 

III. The spectrum of turacin in alkaline solution shows, besides the two dark 

absorption bands previously figured, a faint, broad band on either side of line F, and 

extending from X 496 to X 475. 

IY. The spectrum of isolated turacin in annnoniacal solution shows, besides the 

three bands already named, a narrow fourth band, lying on the less refrangible side 

of line D, and extending from X 605 to X 589. It probably arises from the presence 

of traces of the green alteration-product of turacin formed during the preparation of 

that pigment in the isolated condition, an alteration-product which is likely to prove 

identical with Krukenberg’s turacoverdin. 

Y. Turacin in ammoniacal solution remains unchanged after the lapse of 23 years. 

VI. Turacin in the dry state, when suddenly and strongly heated, yields a volatile, 

copper-containing red derivative, which, though undissolved by weak ammonia-water, 

is not only soluble in, but may be crystallised from ether. 

VII. Turacin in the dry state, when heated in a tube surrounded by the vapour of 

boiling mercury, becomes black, gives off no visible vapour, is rendered insoluble in 

alkaline liquids, and is so profoundly changed that it evolves no visible vapour when 

afterwards strongly heated. 

VIII. The percentage composition of turacin is probably carbon 53*69, hydrogen 4*6, 

copper 7*01, nitrogen 6*96, and oxygen 27*74 ; turacin may possibly be represented by 

the empirical formula, C83H81Cu2N9032. 

IX. Turacin presents some analogies with hsematin, and yields by solution in oil 

of vitriol a coloured derivative having a spectrum much resembling that of lnemato- 

porphyrin, the corresponding derivative of hsematin, but retaining, unlike hsemato- 

porphyrin, part of the metallic constituent of the parent-substance. 

The rarity of turacin and the singular difficulty experienced in burning it com¬ 

pletely may, I hope, be regarded as furnishing a legitimate apology for offering to the 

Society a long discussion of analytical results, for the lack of absolute decisiveness in 

the evidence brought forward as to the centesimal composition of the pigment, for the 

limited information obtained as to the behaviour of turacin with reagents, and as to 

its relationships and derivatives. When one looks back upon the steps by which the 

true formula of so definite and abundant a crystalline pigment as alizarin was finally 

established ; when one recalls the mystery still shrouding haemoglobin and chlorophyll, 

some excuse may perhaps be allowed for my failure to accomplish more towards the 

elucidation of a colouring matter so anomalous and costly as turacin. It is, however, 

mdcccxcit.—a. 3 v* 
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certain that the chemical and physiological interest belonging to this pigment amply 

warrant its farther and more thorough investigation. 

In conclusion I have to express my thanks to the Royal Society for a handsome 

money grant in aid of the prosecution of this inquiry. My acknowledgments are 

also due to the several friends whose names have been recorded in the present 

paper, especially to Dr. McMunn, whose help in the spectroscopy of turacin has been 

invaluable. 
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XIV. Colour Photometry.—Part III. 

By Captain W. de W. Abney, C.B., R.E., D.C.L., F.R.S., and Major-General 

E. Pv. Festing, R.E., F.R.S. 

Received December 14, 1891,—Road January 28, 1892. 

§ XLIY.—Measurement of Luminosity * 

In the paper on Colour Photometry (Bakerian Lecture, 1886) a curve of luminosity 

of the spectrum of the light from the “ crater” of the positive pole of the electric (arc) 

light was given. 

The apparatus used for measuring the luminosity was described in that paper, and 

certain modifications afterwards made were described in the appendix, and in a 

further paper with the same title in ‘ Phil. Trans.,’ 1888. 

Shortly, the arrangement of the apparatus was as follows : a collimator, two prisms, 

and lens were used to form a spectrum ; a second lens, placed a little obliquely, re-com¬ 

bined the rays so as to form a white patch 3 inches square on a screen. A slide, 

having a slit in it, being placed in the spectrum, any ray could be selected and made 

to fall on the patch. 

The beam of white light reflected from the surface of the first prism was, by an 

arrangement of mirror and lens, made to fall on the same patch. By placing an 

upright rod in the path of the two beams, one half of the patch was illuminated by 

the monochromatic ray7, and the other by the beam of white light, which, for con¬ 

venience, we call the “ reference ” beam, as it has been used throughout our late 

observations as the standard of reference. The relative luminosity of the two beams 

could then be compared by reducing one or other by the rotating sectors until the 

two halves of the patch appeared of equal brightness, the aperture of the sectors 

being a measure of the proportional brightness of the two beams. 

The patch of light was viewed at a distance of somewhere about three feet, its 

image thus occupied an angular field on the retina of 5°. As all the observations 

referred to in both papers, whether taken by ourselves or by others, were made with 

the same apparatus and under similar circumstances, they were strictly comparable 

* The numbering of the paragraphs and figures in this paper is a continuation of that of Parts I. 

and TL, ‘Phil. Trans,’ 1886 and 1888. 

3 Y 2 14.11.92 
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with each other, and the angular dimensions of the patch had not to be taken 

into account. 

An extension of the measurements to embrace a part of the physiological aspect of 

colour has, however, necessitated a slight modification of the apparatus wfith which a 

new series of observations have been made. The length of the spectrum, before 

re-combination, has been more than doubled by using a lens of greater focal length than 

formerly for collecting the rays proceeding from the prisms. The size of the white 

surface on which the shadows are received has been reduced to inch square, and the 

observations now recorded were made from a distance of 4 feet from it. This allows the 

image of the whole of the patch, when viewed direct, to fall on the middle of the yellow 

spot of the eye, which occupies a central position in the retina, and has an approximate 

angular aperture of from 6° to 8°. As the absorption of the yellow spot diminishes 

towards its boundary, it follows that, within certain limits, the smaller the patch that 

is viewed the greater will be the loss of luminosity in that part of the spectrum where 

the absorption takes place. From observations made in the manner shortly to be 

described, it was found that, for our eyes, there was no sensible difference in the 

results when the two shadows fell on the white square of l|~inch side, or a square of 

1-inch side, but that, if the side were increased to 2 inches, the measures differed 

slightly but unmistakably. This will account for the fact that the original luminosity 

curve slightly differs from that now recorded for the centre of the eye, as part of the 

image of the larger patch must have fallen on the less absorbing part of the yellow 

spot. It is not quite apparent why the eye should not distinguish between the 

differing luminosities of the different parts of the shadows, but it is probable that the 

average luminosity was observed. 

Table I., Col. IV., gives the observed measurements, and fig. 33 gives the curve A 

plotted from them. 

Equalisation of the luminosities of the coloured and white shadows was effected by 

opening and closing the rotating sectors (which were described in the former paper) 

in the white beam of light, and confirmation of the measurement was obtained by 

setting the sectors at fixed angles, thus cutting off definite proportions of white light 

and shifting the slide carrying the slit which traverses the spectrum till equality of 

illumination was obtained at each ancle so set. 
O 

From our experience we believe that the most accurate measurements are those 
% 

made by altering the angular aperture of the sectors during rotation ; as to produce a 

certain difference of luminosity a greater motion of the hand is required on the lever 

of the rotating sectors than on the slit in the spectrum. Near the place of maximum 

luminosity the latter plan fails, as pointed out in our previous paper. 

§ XLV.—Absorption of the Yello w Spot. 

Though it was not the first inquiry which was undertaken, it will be well thus 



ON COLOUR PHOTOMETRY. 533 

early to record the method by which the character and amount of the absorption of 

the yellow spot was ascertained. 

A white spot, very feebly illuminated, was placed six inches from the patch on 

which the beams to be compared were thrown. One eye was closed and the other 

directed centrally to the white spot, the observer being at a distance of 4 feet from 

it. The image of the patch was thus received on a part of the retina beyond the 

boundary of the yellow spot. It may appear strange to others, as it did to ourselves 

at first, that the luminosities of the two shadows could be compared with almost 

greater facility than they could be when looked at centrally. When a comparison 

was to be made, the presence of colour often appeared not exactly to vanish but to 

offer no difficulty to the reading. The luminosity was thus determined, and it was 

found practically that the same curve was obtained in whatever angular position the 

white spot was placed, so long as it was six inches from the patch. The luminosities 

of the colours on the patch were also measured when looking directly at them. Any 

difference between the readings by the eye in the two cases showed a lessened or 

increased sensitiveness of the central part of the retina under observation for the 

particular colour. Table I, Col. III., and fig. 33, curve B, gives the results of these 

observations. 

If two square patches of l^-inch side are placed six inches apart, and illuminated 

with white light of the same intensity, and one be looked at centrally, the image of 

the other will fall outside the yellow spot. 

By diminishing the illumination of one or other, the two may be rendered equally 

bright to the parts of the retina used, and by first looking at one centrally then at the 

other, two sets of observations can be obtained. Adopting this plan, and after a large 

number of estimations (it was necessary to take a large number owing to the 

difficulty of the observation), it was found that the relative sensitiveness for white 

light of the centre of the retina to that of the outer part was approximately as 

37 to 33. The areas of the curves of luminosity plotted from the readings are in 

the ratio of 167 to 156, which is so nearly the same ratio that each of their ordinates 

may be taken to indicate the relative amounts of light seen by either part of the 

retina in the different parts of the spectrum. 

Whilst there is, as might be expected, an increase in the luminosity to the outer 

part of the retina of the portion of the spectrum from about E to the violet end, over 

that to the central part of the retina, it is remarkable that the reverse is the case 

with respect to the portion from the green to the red. Evidently, therefore, the 

outer part of the retina is less sensitive than the central part to the less refrangible 

rays of the spectrum. The curve for this part of the retina is very similar to that 

obtained from the observations made with the centre of the eye by persons who 

have a slightly shortened spectrum, and who are, therefore, what is termed partially 

red-blind. 

It should be noted that the luminosity curve given in our former paper, and which 



534 CAPTAIN W. DE W. ABNEY AND MAJOR-GENERAL E. R. FESTING 

0 p 

0 © 

O o 
0 0 

0 

0 

£ £ 
O 0 
O o 

0 0 
c3 

-43 -43 

u +-> 'r-( C'H ^ 
~ 0 

C/2 

C/2 0 

|| J 
V, O oo 

OO. 

o ° ® > 2 -_s f- 
! 93 £ 2 0 

i ci ^ C3 0 
0 

0 ^ 

5 s 
o 

. f"! 
^ rP ^ 

c3 

bo fl 

rQ 
o 

. CD t>* © 
CO CZ2 O c3 

11 

°l 
CC C/2 

Jj3 -43 -43 
c3 

l o 
0 

_Q ^ 

O C/2 
o 

o3 .2 
-g a 

0 0 

a +3 

0 

0 

c3 

0 

rS 

*3 
bo 

. 3 

CO 

s 

0 

o 
p 

fH 
0 

P ^ 
0 

rP 
-43 

C 0 
C't r-' 

rg ' CC P3 

-£<!.«■ 
O rj O ^ on 

a J i) 5 2 
£ & a B-P P t>>S o g O o * 

o o ,~S 

*P 0 
a sfc 
a PP 

2 p. 
s ^ 
a * 
3-S 

<B P 0 „*-< 
K ^ 
0 o 

O 0 0 0 0 © ^ 
rBrB J 
-+3 -4-3 -4^ -4-3 

C$ iC 
iS^crcTm^mas 



ON COLOUR PHOTOMETRY. 535 

was made from observations in which the image of the colour patch covered the 

yellow spot and some of the outer part of the retina as well, lies between the curves 

A, B, of fig. 33. 

The curve II in fig. 33 shows the absolute absorption of the rays between the green 

and violet by the yellow spot. Fig. 34 gives the proportionate absorption of the same. 

The colour of the absorbing medium in the yellow spot can be shown on the screen 

by using a template cut out in the way described in Colour Photometry, Part II., 

§ XXXY. 

Table I.—Luminosity Curves. 

I. II. III. IV. Y. I. II. III. IY. Y. 

Scale Wave- 
Outside 
yellow 
spot. 

Yellow Fovea Scale W ave- Outside 
yellow 
spot. 

Yellow Fovea 
number. length. spot. centralis. number. length. spot. centralis. 

64 7217 32 4924 21 8'5 6'5 
63 7082 . , 1 31 4885 18-5 7-0 5-5 
62 6957 1 2 2 30 4848 16-5 5-5 4-0 
61 6839 2 4 4 29 4812 14-5 4-7 3-5 
60 6728 3-5 7 8 28 4776 13-0 4-0 3-0 
59 6621 7-5 12-5 15-5 27 4742 11-5 3'5 2-0 
58 6520 12-5 21 24 26 4707 10-5 2-8 2'4 
57 6423 19 33 37-5 25 4675 9-4 2 3 2-1 
56 6330 27-5 50 60 24 4639 8-2 1-82 1-9 
55 6242 35 65 77 23 4608 7-3 1-6 1-5 
54 6152 43 80 90 22 4578 6-3 1-4 
53 6074 52-5 90 97 21 4548 5-7 1-2 
52 5996 61-0 96 100 20 4517 5-0 1-08 10 
51 5219 71-0 99 100 19 4488 4-5 •94 
50 5850 79 0 100 98 18 4459 4-0 •86 
49 5873 84 99 95 17 4437 3 6 •78 
48 4720 85 97 90 16 4404 31 •70 
47 5658 83-5 92-5 85 15 4377 2-7 •62 •62 
46 5596 81-0 87 79 14 4349 2-3 •56 
45 5538 77-0 81 72'5 13 4323 21 •50 
44 548 L 72-5 75 66 12 4296 1-9 •45 
43 5427 68-0 69 59 11 4271 1‘65 •40 
42 5373 62-5 62-5 51 10 4245 1-4 •34 
41 5321 57 57 45 ,9 4221 1-2 •30 
40 5270 52 50 40 8 4197 1-0 •26 
39 5221 46 42-5 32 7 4174 •88 •22 
38 5172 41-5 36 27-5 6 4151 '75 •18 
37 5128 37-5 29-5 22-0 5 4131 •63 T6 
36 5085 335 24 18 4 4106 •50 •14 
35 5043 300 18-2 14 3 
34 5002 26-5 14-2 10 2 
33 4963 24 10-5 8-4 1 

1 

The following are the scale numbers of the different fiduciary Fraunhofer and 

bright lines :—B 61 *3, Li 597, C 587, D 50‘6, E 39S, b 28, F 30'2, Li (blue) 22'8, 

G 117. 
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Fig. 34. 

Absorption by tbe macula luiea. 

§ XLVI.—The Fovea Centralist 

The question of visual sensation^at the fovea centralis, if that be admitted to be 

coincident with the visual axis of the eye, has occupied our attention, and we have 

thought it worth while to give the measures of luminosity when the images of the 

illuminated shadows fell on this portion of the retina. A cube of ^-inch side was 

prepared, and the beams of light allowed to fall on it in the usual manner. The 

luminosities of the white and coloured shadows were equalised when they were 

observed at a distance of 60 inches from the eye. One eye was closed during 

the observations. The measures made are given in Table I., Col. Y. It will be 

noticed the fovea is rather more sensitive to the red rays than the macula lutea, and 

is in general much less sensitive to the green rays. A calculation of the areas of the 

curves of luminosity shows that the fovea is ^ more sensitive to D light than the 

macula lucea as a whole. It is somewhat remarkable that the sensitiveness to green 

and blue of the fovea is not greater, and is even less at certain places, than of the 

macula lutea, considering the almost entire absence of pigment from the former. 

If the small cube be examined at still further distances there is a still further 

increase in the luminosity of the red and a further decrease in that of the green. 

Ydiat the limit may be where no further change takes place we are not at present 

prepared to say. If a star or a distant light be observed in the point where the 

visual axis of the eye cuts the retina, and then on the part of the retina slightly 

removed from this point, the different colour of the images will be evident. 

* Added July 20. 
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§ XLVII.—The Limit of Colour Vision. 

It is well-known that as light of any colour becomes enfeebled the eye fails to see 

colour, though it can recognise the presence of light. From a physical as well as 

from a physiological point of view, it appeared to be of interest to ascertain the amount 

of illumination of a screen at which all appreciation of colour in the different rays of the 

spectrum disappeared, leaving a sensation of what, for want of a better word, we may 

call grey light. In order to ascertain this, an apparatus (fig. 36) was devised as a 

Fig. 35. 

Curves stowing the luminosity of the spectrum when measured (1) with the fovea centralis, (2) with the 
area of the yellow spot or macula lutea, (3) with the retina 10° from the fovea centralis and outside the 

macula lutea. 

supplement to that already described, by which a white light of very low intensity 

could be compared with the spectrum colours. 

A.t one end of a box, shown in plan, is an eye-piece E. The other end has at its 

centre a patch S, 1^ inches square, whitened with zinc oxide, the rest of the inside of 

the box being blackened. The monochromatic beam a coming from the spectrum 

through the side slit, and the reference beam b, are reflected by jflain glass mirrors 

MXM% to apertures in opposite sides of the box, and from just inside these apertures, 

by right-angled prisms P1P2 so as to fall on and cover S. Rods RXR2 are inserted in 

the box in the paths of the beams so that they illuminate opposite halves of S. 

MDCCCXCII.—A. 3 Z 
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Diaphragms inside the box cut off any stray rays of light, and rotating sectors placed 

at A and B regulate the strength of the beams. The room containing the apparatus 

is darkened. The sectors A are closed until no colour is discernible in the mono¬ 

chromatic beam, whilst the intensity of the white beam regulated by the sectors B 

gives the standard of whiteness to which the coloured beam is to be reduced. It is 

worthy of notice that when the white beam is entirely cut off, or made very feeble, 

colour often seems absent from the monochromatic light, but is again perceived when 

the beam is brightened. This is especially the case with the red part of the spectrum. 

The strength of the coloured beam was therefore always reduced to the point that no 

colour was apparent whatever was the strength of the white beam. The aperture of 

the sector A was noted for each colour. The direct measurement of such a feeble 

Fig. 36. 

light would be very difficult, the luminosity was therefore determined in the following 

manner. The box and sectors were removed, and a white screen was placed at the 

same distance from M that S was. The card carrying the slit in the spectrum was 

also removed so that a patch of white light was received on the screen, the luminosity 

of this was measured by direct comparison with an amyl-acetate lamp. The mirror 

l/i was next removed, and the beam then fell on the screen of the original apparatus. 

Its luminosity was then compared with the reference beam. The slit slide being put 

back in the spectrum, the luminosity of the D light was measured against the same 

comparison light. The proportion that the luminosity of the D light bore to the 



ON COLOUR PHOTOMETRY. 559 

re-combined white patch was thus determined. As the value of the white light 

reflected from M to the end of the box was known from the first observation, the 

luminosity of the D light so reflected was calculated. The luminosity of the D light 

having been found, that of all the other rays was calculated from the luminosity curve 

derived from observations made with the central portion of the retina (see fig. 33, A), 

as it was with this part that the observations now being described were made. 

The actual value of each ray when the colour disappeared was calculated from the 

aperture of the sectors. 

Table II.—Limit of Colour Vision. 

Scale number. Wave-length. 

Mean reading of 
the colour limit 
of the spectrum 
D, being 1 amyl 

lamp m 10-J00ths. 

Luminosity of 
the ordinary 
spectrum. 

Luminosity of the 
rays when each 

colour disappears, 
each ray having the 
original luminosity 
of 1 amyl lamp in 

1 f|1C! 
lOOOOO 

61 6839 120 4 48-0 
60 6728 67 7 46-9 
58 6520 26 21 54-6 
56 6330 13 50 65-0 
54 6152 9-5 80 76-0 
52 5996 9-0 96 86-4 
50 5850 9-0 100 90-0 
48 5720 9-0 97 87-3 
44 5481 9-5 75 71-3 
40 5270 10-5 50 52-5 
36 5085 12-5 24 30-0 
32 4924 18 8-5 15-3 
28 4776 32 40 12-8 
24 4639 55 1-8 120 
20 4517 90 1-08 97 
16 4404 160 •70 11-2 
12 4296 250 •45 110 

8 4197 400 •26 10-4 
4 4106 700 T4 9-8 

In fig. 37 the continuous curve is constructed from these observations,* and the 

dotted curve B is that derived from curve A, supposing that each ray had an original 

luminosity of one amyl light at the distance of 1 foot. 

It will be seen that the colour of the central portion of the spectrum is discernible 

with much greater reduction of light than is that of the extremities. This accounts 

for the fact that objects illuminated by moonlight appear of a greenish hue. The 

light from the full moon, as is well known, is somewhere about half a million times 

less bright than that of the sun, or about yuo of an amyl lamp at 1 foot. The figure 

* The extreme left end being plotted to a different scale so as to bring it within the paper. 

3 z 2 
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shows that at this point most of the spectrum has lost its colour. The faint spectrum 

when re-combined will be pale green, mixed, of course, with a fair proportion of 

grey, due to those portions of the spectrum from which the colour has disappeared. 

Fig. 37. 

Diagram of limit of colour vision. 

§ XLVIII.—Extinction of the Light of Different Parts of the Spectrum. 

A preliminary note has already been published by one of us (Captain Abney) on 

this subject. It was expected that the results then given might be liable to correction, 

as in work of this kind it is only after repeated experiment that sources of error 

can be discovered and eliminated. The errors which have since been discovered by 

comparing the results of some hundreds of observations are not serious, though their 

correction alters the extinction curve to some small extent. 

In the first experiments the readings of the scale had to be made by the observer, 

and it has been found that the light used to illuminate the scale, small though it was, 

fatigued the eye sufficiently to vitiate, to a small but sensible extent, the observations. 

This source of error has, in the latter experiments, been eliminated. 
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The necessity of resting the eye for some time in darkness in order to give it the 

full sensitiveness to feeble light was soon recognised. When extinction has been 

made and the instrument left untouched, if the eye was exposed to the light of day 

for some time, and then an observation was made, even after two minutes rest, no light 

from any ray of the spectrum was visible in the extinction box, even with the sectors 

removed ; after a further rest of two minutes the rays last to be extinguished could 

be perceived ; and finally, after about ten minutes’ rest, the eye became of the same 

sensitiveness as before it was exposed. When several successive extinction readings 

of the same ray agreed, it was considered that the eye was in a fit state to commence 

a series of observations. 

The apparatus used was usually of the form described below, but variations in its 

arrangement and in the methods of observations were made from time to time, in 

order to track out any possible error. 

Fig. 38. 

B B 

Apparatus to measure extinction of light. 

BB (fig. 38), is a closed box 3 feet long and about 1 foot wide and 1 foot high, 

having two circular apertures 1\ inches in diameter in the positions shown. The 

aperture at the side is covered on the inside by a piece of glass, a, finely ground on 

both sides, and a tube, T, is inserted in which diaphragms, D, of any required 

aperture can be inserted. E is a tube fixed into the other aperture, and should 

for comfort be fitted with an end shaped to receive the eye, as the observations are 

made through it. S is a cardboard screen inserted from the top of the box, the 
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aperture being rendered light-tight by a batten. The screen is black except one 
circular patch which can be altered at pleasure in colour or size, but which in the 
experiments now to be described was white and § inch in diameter. 

When using this instrument the beam to be extinguished was directed through 
the tube T and diaphragm D on to the ground glass by which it was diffused. A 
portion of the diffused beam was reflected by the mirror M to the white patch on the 
screen at S. By altering the diaphragm D the amount of light falling on .S can be 

varied at pleasure, and it can be still further regulated by putting the rotating sectors 

in the path of the incident beam outside T. 

Fig. 39. 

Screen for measuring illumination. 

The point of extinction was observed as follows. The slits of the collimator and of 
the slide were closed to convenient widths, and the light was subsequently diminished 

by inserting diaphragms. Two methods of extinction were tried, (1) The slit tra¬ 
versing the spectrum was moved until the ray was found which was just 
extinguished with each diaphragm; and (2) after placing the slit in fixed positions 

in the spectrum at a known ray the light was diminished by the rotating sectors as 
well as by the diaphragms. The latter is evidently the more convenient plan, but 
both were fully tried in order to determine whether the method of reducing the light 
by the rotating sectors could be relied on in experiments of this nature. The agree¬ 

ment between the results obtained, which was as close as could be expected in such 
experiments, convinced us of the trustworthiness of the latter method. 

A means had to be devised by which a beam of sufficient intensity to be easily 
measured could be reduced to the point of extinction, and the proportion in which it 
had been reduced ascertained. The slit slide was taken away from the spectrum, and 
the intensity of the re-combined beam determined in terms of the light of the amyl- 
acetate lamp as follows. A card (fig. 39) was pierced with a square aperture B, as 
shown, and a piece of Saxe paper pasted over the whole. A black paper mask was 
then applied, so as to leave B and an equal area A visible. From one side the paper 
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appeared as a white oblong, though B was translucent and A opaque. The re-combined 
beam was then allowed to fall on the back of the card, and B became illuminated. 
On the other side of the card an amyl-acetate lamp illuminated A, B being screened 

by a rod in the path of the light. The brightness of A and B were made equal by 
placing the rotating sectors in the path of the beam of the amyl lamp, and thus the 
proportion of light passing through the paper was measured in terms of that reflected 
from a white surface. The card then replaced the screen S in the box, the end of the 
box was opened, and A and B were exposed to view. The light of the re-combined 
beam was directed on to T so as to illuminate S. A was made equally bright by the 
amyl-acetate lamp and the illumination calculated ; knowing from the former observa¬ 

tion what proportion of the light falling on B is visible from the other side, the 
amount of light falling on the screen, and, therefore, its proportion to that received at 
T could be determined. Measurements were taken with each diaphragm, and the 

illumination of the screen in terms of the light received at T, was found to be 
proportional to the areas of the apertures, as might be expected, and, as follows, for 
the diaphragms used :— 

No. 0, -§7) j No. 1, j5 5 ; No. 2, ; No. 3, ; No. 4, No. 5, ; No. 6, 

_JL_ • No 7 _1_* 
9 5 6 ’ u- •> 2430* 

The method of diminishing the illumination of the screen by ground-glass was 
found to be most effective. A beam of monochromatic light from the brightest part 
of the spectrum can be diminished to such an extent as to come within the limits of 
extinction by the rotating sectors, with the apertures of such an angular dimension 

as to be properly read (say more than 6°). 
The D light coming through the spectrum slit was measured against an amyl lamp 

by placing a white opaque screen at the aperture a (the tube T being removed). 

The luminosity of the D light being thus known, that of any other ray could be 

calculated from the curve A in fig. 33. Another method of observation was as 

follows : a diaphragm with a small circular aperture was placed in front of the last 

prism of the apparatus. The patch of light on the screen was now a small circular 

disc, instead of being square, as before. A similar box was prepared to that of fig. 38, 

but the ground-glass was omitted. The ray of light now falling on M formed a 

circular patch on the screen S, but the beam of light so formed is too powerful to be 

extinguished by any readable aperture of the rotating sectors, it was therefore 

further reduced by placing in its path, and at an angle of 45° to it, two parallel 

mirrors A, B (see fig. 40). Each mirror can be either silvered or plain glass ; three 

combinations of different reducing powers are therefore possible, viz. : (a) both mirrors 

silvered, (6) one plain and one silvered, (c) both plain. 

The proportion of the light reflected with each combination can be readily deter* 

* [This method of measuring the ratio of light falling on the screen to that on the ground glass has 

been subsequently modified, the two being directly compared one with the other.—July 20.] 
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mined. When the last was used the intensity of c was almost exactly y-gro of that of 

a. As the rotating sectors gave a further extreme reduction of, say, yj, a could be 

used of a manageable intensity. 
Fig. 40. 

Method of double reflection into extinction box. 

When employing this method the collecting lens in front of the spectrum was so 

adjusted, that the re-combined beam from the whole spectrum formed a circular spot 

on S, the position of the spot of light on S was, therefore, the same for all parts of 

the spectrum. 

The absolute luminosity of the beam from D of the spectrum was measured by 

placing an open screen at the same distance from the mirror M (fig. 38) that S was, 

two silvered mirrors being used at A and B, and using the amyl-acetate lamp for 

comparison. The absolute luminosities of beams from other parts of the spectrum 

were then calculated from this by means of the luminosity curves, fig. 33. 

The results obtained by using the rotating sectors with this apparatus were also 

tested by the method before described, and were found to be perfectly trustworthy. 

From the observations made, a curve was plotted showing what was the proportion 

of the beam from each part of the spectrum which was just not visible. The absolute 

luminosity of each part of the spectrum having been determined in the way explained 

above, a second curve was plotted of which the ordinates represent the absolute 

luminosity of each part of the spectrum at the extinction point, or, in other words, 

the proportion which would be just not visible, supposing that eacli part had been 

originally of the uniform luminosity of, say, one candle. This curve rose from the 

blue-green towards the red, when, after reaching a maximum, it tended to drop again. 

There appeared to be a similar irregularity at the violet end. It was suspected that 

these irregularities might be caused by some admixture of white light due to want of 

perfect transparency of the prisms, and further investigation showed that this was 

the case, and that when this stray white light was eliminated the curve became of 

the form shown by the dotted line, fig. 41. 

Helmholtz’s plan of dispersing this white light was first tried. A prism was placed 

in the path of the beam from the collecting lens at such a distance that the beam 



ON COLOUR PHOTOMETRY. 545 

filled the prism, and by using a second lens the faint, continuous spectrum so formed 

was cut off. This plan was found, however, to be too complicated, and was abandoned 

for the simpler one of using absorbing media. A combination of “ cobalt blue ” and 

“ signal green ” glass was used for the violet end of the spectrum, and “ stained-red ” 

glass—i.e., glass flashed on one side with copper, and on the other with gold—for the 

red end. 

Fig-. 41. 

Extinction curves of normal eye. 

The continuous line curves show the proportion of the beam from each part of the spectrum which is 

just not visible, the illumination by the beam from D when unreduced being equal to that of one 

amyl-acetate lamp at one foot from a screen. 

The dotted curves show the proportion, supposing that all beams had equal intensity to that of D. 

The luminosity of each beam after passing the medium was determined, a,Iso the 

proportion left when it was reduced so as just to extinguish the light, the product of 

the numbers representing these quantities would evidently represent the absolute 

luminosity at the point of extinction, or, in other words, the proportion left on the 

supposition of a uniform luminosity for all parts of the spectrum. 

Tables III. and IV. give the results of these observations with which the ob¬ 

servations of Table V. are combined. The figures in the third column represent the 

4 A MDCCCXCII.—A. 
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proportion to which each beam was reduced at extinction, those in the fourth column 

the absolute luminosity of the beam. The last column gives the products of these 

two quantities, which are the luminosities at the extinction point. 

Table III.—Extinction by Central Portion of Normal Eye. 

I. 11. III. IY. Y. j VI. 

Scale Wave- 

E. 
Reduction of 

original 
luminosity 

in millionths 
to cause 

extinction. 

L. 

Luminosity E x L 

Persistency curve 
650 

E 
(Maximum = 100). 

. 

number. length. of 
original beam. 

100 ' 

64 
63 

7,217 
7,082 

55,000 
30,000 1 300-0 

62 7,957 15,000 2 300-0 
61 6,839 7,500 4 300-0 
60 6.728 3,750 7 262-5 
59 6,621 1,900 125 237-5 •34 
58 6,520 1,050 21 220-5 •62 
57 6,423 650 33 214-5 1-0 
56 6,330 380 50 190-0 1-71 
55 6,242 272 65 176-8 2-38 
54 6,152 196 80 156-0 3-32 
53 6,074 140 90 1260 4-64 
52 5,996 97 96 93-12 6-70 
51 5,919 57 99 56-43 11-40 
50 5,850 35 100 35-0 18-6 
49 5,783 24 99 23-76 27-1 
48 5,720 17 97 16-49 38-2 
47 5,658 12-6 92-5 11-65 51-6 
46 5,596 10-2 87 8-87 63-7 
45 5,538 8-6 81 6-97 75-6 
44 5,481 7-4 75 5-55 87-8 
43 5,427 6-7 69 4-62 97-0 
42 5,373 6-55 62-5 4-09 99-5 
41 5,321 6-5 57 3-705 100 
40 5,270 6-55 50 3-27 98-5 
39 5,221 6-65 42-5 2-83 97-5 
38 5,172 6'85 36 2-46 95-0 
37 5,128 7-2 29-5 2T2 90-0 
36 5,085 7-6 24 1-82 81-3 
35 5,043 805 18-2 1-48 80-0 
34 5,002 8-8 14-2 1-25 74-0 
33 4,963 10-2 10-5 1-07 63-0 
32 4,924 11-6 8-5 •988 56-0 
31 4.885 13-6 7-0 •952 47-7 
30 4,848 163 5-5 •896 40-0 
29 4,812 20-5 47 •963 31-7 
28 4,776 26-0 4-0 1-040 25-0 
27 4,742 31-0 3-5 1-085 20-9 
26 4.707 38-5 2-3 1-078 16-9 
25 4,674 46-0 2-3 1-058 14-1 
24 4,639 56-0 1-82 1-019 11-6 
23 4,608 67-0 1-6 1-072 9-7 
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Table III. (continued). 

I. II. III. IY. Y. VI. 

E. 
Reduction of 

L. 
Persistency curve 

Scale Wave- original 
luminosity 

in millionths 
to cause 

extinction. 

Luminosity E x L 650 
IT 

number. length. of 
original beam. 

100 ' ( Maximum = 100). 

22 4578 80 1-4 1T20 8-41 
21 4548 95 1-2 1-140 7-22 
20 4517 107 1-08 1T56 61 
19 4488 124 •94 1-165 5-23 
18 4459 140 •86 1-204 4-64 
17 4437 160 •78 1-228 4-1 
16 4404 180 •70 1-260 3-60 
15 4377 200 •62 1-240 3-25 
14 4349 220 •56 1-232 2-95 
13 4323 240 •50 1-200 2-7 
12 4296 270 •45 1-215 24 
11 4271 300 •40 1-200 2-18 
10 4245 335 •34 1T39 1-94 

9 4221 375 •30 1125 173 
8 4197 430 •26 1-118 1-51 
7 4174 490 ■22 1-078 1-32 
6 4151 510 •18 •918 1-27 
5 4131 640 •16 1-024 1-01 
4 4106 750 •14 1-050 0-86 

4 A 2 
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Table IV.—Extinction by Whole Eye. 

I. II 
1 

III. IV. V. VI. 

Scale 
number. 

Wave¬ 
length. 

E. 
Reduction of 

original 
luminosity 

in millionths 
to cause 

extinction. 

L. 

Luminosity 
of 

original beam. 

E x L 
160 ' 

Persistency curve 
650 
E 

(Maximum —100). 

38 5172 6-9 41-5 2-86 94-2 
37 5128 7-1 37-5 2-66 91-6 
36 5085 7'4 335 2-48 87-8 
35 5043 77 30-0 231 84-4 
34 5002 8-0 26-5 2-12 81-2 
33 4963 8-4 24-0 2-02 77-5 
32 4924 8-8 21-0 1-85 73-8 
31 4885 9-4 18-5 1-74 69-2 
30 4848 10-0 16-5 1-65 65-0 
29 4812 107 14-5 1-55 60-6 
28 4776 11-5 13-0 1-49 56-5 
27 4742 13-0 11-5 1-49 50-0 
26 4707 14-5 10-5 1-52 44-8 
24 4639 18-5 8-2 1-52 341 
22 4578 23-0 6-3 1-45 28-3 
20 4517 30-0 5-0 1-50 21-7 
18 4459 39-0 4-0 1-56 16-7 
16 4404 51 31 1-59 12-3 
14 4349 66 23 1-52 9-85 
12 4296 80 1-9 1-52 8-12 
10 4245 110 1-4 1-54 591 
8 4197 154 1-0 1-54 4-22 
6 4151 204 •75 1-54 318 
4 4106 307 •5 1-54 211 
2 4063 513 •3 1-54 1-26 
0 4020 770 •2 1-54 •84 
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Table Y.—Extinction Curves of Light transmitted through Blue and B-ed 

Glasses. 

Scale number. Wave length. 
Reduction to produce 

extinction, E. 
(Sector readings). 

Comparative 
Luminosities of 

unreduced beams, L. 
E x L. 

r 14-5 4363 4 148 592 
135 4.336 4-5 132 594 
12-5 4309 5 120 600 
11-5 4284 5-5 108 594 

CO 10-5 4258 6-2 96 595 
d 9-5 4233 7-0 86 602 
CL 

8-5 4209 8-0 76 608 
7-5 4186 8-8 68 594 
6'5 4163 9-8 62 617 

bo 5-5 4141 11-0 56 616 
d 
o 4-5 4118 12-0 50 600 
r—< 

rS 3-5 4094 13 45 585 
2-5 4070 16 37 592 
1-5 4047 19 35-5 598 

•5 4025 25 24 600 
— -5 4023 35 17 595 

Tj r 64 7212 73 8 584 
0) 63'5 7147 45 13 585 
— go Tn W > 62-5 7022 25 23 575 

61-5 6900 12 49 588 
GO-5 6785 5-5 101 555 

^ 59-5 6675 .3 168 504 

From Table Y. it is seen that from the extreme violet end of the spectrum, to 

No. 14*5, the luminosities of extinction are practically the same ; in fact the curve at 

this part is horizontal; the same is the case with regard to the part between scale 

No. 61 ‘5 and the extreme red end of the spectrum. 

This seems to confirm the view that the colour sensation of the eye for each of 

these parts is a simple one. These results have been, as already said, incorporated 

in Tables III. and IY. 

In the diagrams, fig. 41, two curves of extinction are given. One shows what 

proportion of the beam, at different parts of the spectrum, is just not visible to the 

central portion of the eye, the other, the curve with regard to the ivhole eye. These 

curves correspond with each other, except where the absorption by the yellow spot 

takes place. The part of the retina which appears most sensitive to the light of this 

part of the spectrum is about 20° below the centre, and about 45° from the vertical 

line. The light is certainly most persistent at this point. 

If the reciprocals of the ordinates of either of the curves just referred to—that is to 

say, of the reduction of the beam at different points—-be taken as ordinates, the 

curve so constructed may be called a “persistency” curve, and should relate to some 

colour sensation in our eyes. Such curves (with ordinates so reduced that the 
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maximum is 100) were constructed for the centre of the eye, and for the whole eye 

(fig. 33, C, D). Column VI. in the tables gives the ordinates. 

§ XLIX.—Extinction of Light to the Colour Blind. 

In a paper in the £ Proc. Pioy. Soc.’ (1891) one of us has given a curve of luminosity 

of the spectrum as seen by two brothers whose sensation was monochromatic. On 

comparing this with our persistency curve for the centre of the eye (which must repre¬ 

sent the luminosity of the spectrum to some sensation which we have), we were 

surprised to find that the curves corresponded except in the yellow spot absorption 

portion, when ours fell below theirs, see fig. 33. It, therefore, appears that the sensa¬ 

tion of the two brothers very nearly corresponds with what must be the dominant 

sensation in our eyes. 

Before commenting on this, it will be of interest to give a further confirmation 

of the existence of this one sensation. A gentleman, whom we will call M., had 

his vision tested. His is a case we have never tested before, and is most 

remarkable. The only two colours he saw are what he called red and black. He 

called all green and blue black, green however he called bright black, blue being 

described as a darker black. Yellow he called white. At 52 on the scale he saw a 

“little red,” at 50 “no colour”; his neutral point—if it may be so called—or the 

point where he saw the spectrum colourless, would be about 495 or about 5800. 

His luminosity curve is given at M, fig. 33. The following is the table from which 

it was plotted. The mean readings being multiplied by l-8, the curve of luminosity 

of the red part of the spectrum almost exactly coincides with that of the authors. 

Column I. gives the scale number, II. the wave-length, III. the actual mean reading, 

IV. the last X 1‘8, V. the ordinates of the normal luminosity curve of the central 

part of the eye, VI. the difference between M.’s curve and the normal luminosity 

curve, whilst VII. gives the difference multiplied by 5‘15 to bring the maximum to 

100 for comparison with other curves. It will be seen that this curve (F., fig. 33) very 

nearly coincides with our persistency curve, except in the part of the spectrum affected 

by the yellow spot. 

No measures were taken to ascertain if the eye of M. had any central absorption, 

and, therefore, we do not know what correction should be made to the curve to make 

it comparable with the others; but taken as it is, it is remarkable how closely this, 

which represents the deficiency in M.’s sensations, corresponds with the one sensation 

of either of the brothers. In fact, it seems as if the eyes of M. and P. together 

would make up a pair of normal eyes. 
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Table VI.—M.’s Luminosity Curve compared with the Normal. 

I. II. III. IV. V. VI. VII. 

Scale 
number. 

Wave¬ 
length. 

Mean 
reading. 

Mean 
reading 

X 1'8. 

Normal lumi¬ 
nosity curve, 
centre of eye. 

Difference 
of last two 

columns. 

(difference 
x 5T5. 

61 6839 2 36 4 •4 2-57 
59 6621 7 126 12-5 -•1 •51 
57 6423 18 32-4 33 + •6 3-09 
55 6242 36 64-8 65 •2 1-03 
53 6074 49 88'2 89-5 13 671 
52 5996 52 95-4 96-5 IT 5-66 
51 5919 54 97-2 99-5 2-3 11 8 
50 5850 54 97-2 100 2-8 14-4 
49 5782 52-5 94-5 99'5 5-0 25-7 
48 5720 50 90 97 7-0 360 
47 5658 46 82-8 92-5 9-7 49-9 
46 5596 41 73-8 87 13-2 68-0 
44 5481 32 57'6 75 17-4 89 
42 5373 23 43-2 62-5 193 99 
40 5270 17 30-6 50 19-4 100 
38 5172 10 17-5 35-5 18 93 
36 5085 4 7-2 24 16-8 86-5 
34 5002 1-0 1-8 14-5 127 65-5 
31 4885 •5 •7 6-5 5-8 37-7 
28 4776 0 0 4 4 20 6 

A further examination into cases of colour-blindness cannot fail to be interesting, 

and appears to us to throw considerable light on the subject of colour vision. 

Several red and green colour-blind people have been tested in the manner 

described, but the difficulty in many cases of inducing them to note whether the 

observations of extinction were made with the whole eye or the central part only, was 

very great, and there has, therefore, been some uncertainty as to the results. 

We give, however, the results in three cases which may be considered typical, and 

in which the observations appear to have been extremely well made. The first 

(H. R.) is red blind, the second (V. H.) green blind, the third (P.) has monochromatic 

vision. The first two were educated men who understood exactly what they had to 

look for, the last (one of the brothers P. and Q.) was an excellent observer, sharp 

and intelligent, and anxious to help on the experimenter. (See Tables VII., VIII., 

and IX.) 

We are aware that the Yoxjng-Helmholtz theory of vision is open to criticism 

from certain points of view, but we adopt it tentatively as being at least convenient. 

On this theory we should expect, if the monochromatic vision of the third was sup¬ 

posed to consist of the blue (or violet) sensation, that all three of the observers would 

give approximately the same curves in the most refrangible part of the spectrum, since 

in the red blind and green blind this same sensation may be supposed to be existent. 

That the monochromatic sensation is blue, and corresponds to the dominant sensation 
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iii the normal eye seems to be fairly probable. A glance at the extinction curves of the 

spectrum shows how similar in many respects P.’s is to those of H. Pt. and V. H., as 

well as to that of the normal eye. It is also worth remarking that if a bright red 

and blue be mixed together by rays coming through two slits placed in the spectrum, 

so as to form a reddish purple, the red sensation is extinguished some time before the 

blue pales to any great degree, and in that part of the spectrum where the existence 

of this monochromatic sensation is evident, the last colour visible is always bluish 

even when very faint, whilst in the yellow part of the spectrum there seems a 

tendency before extinction for a greenish hue to appear, whereas, almost to the 

moment of extinction in the extreme red, the colour is of a ruddy grey. The 

strongest evidence, however, is to be found in the persistency curves of the red and 

green blind, which only slightly differ from one another and from that of the normal 

eye, and to an extent which might be expected from the nature of the observations. 

The persistency curve (fig. 43) of V. H. differs but little in any respect from the 

normal, and this tends to show that the persistency is far greater in the blue sensation 

than in the green, in other words, that the green part of the spectrum excites the 

blue sensation in the normal eye after the light has been so much reduced that the 

green sensation has ceased to be excited. V. H. is the first case in which the total 

absence of a green sensation is an established fact, and the probable luminosity of 

such green sensation is derived by subtracting the ordinates of his curve from those of 

the curve of the normal eye. That H. R. is not totally red blind, we have on several 

occasions had the opportunity of proving. He has a slight perception of red, and 

hence the difference between his curve and that of the normal eye cannot be treated 

in the same manner, as it would not represent the luminosity of the red sensation in 

its entirety. Tables VI., VII., VIII. give the observations made by P., V. H., and 

H. R. respectively, and figs. 43, 44, 45 give their luminosity and extinction curves, 

together with the normal luminosity curve for the centre of the eye. 

The persistency of the blue sensation, or, we might say, perhaps, of the sensation 

which is confined principally to the most refrangible part of the visible spectrum, is 

very remarkable, and affords some clue to the reason of the disappearance of the red 

and green before the blue in cases of colour-blindness induced by disease. 

We believe it probable that, adopting the Young-Helmholtz theory, the three 

colour sensations obtained from these observations by colour-blind people can be 

made to form the luminosity curve of the normal eye, and, at the same time, to be in 

accordance with the colour equations which have been found by Clerk Maxwell, as 

well as by ourselves. 

M.’s observations of extinction were sometimes erratic, and we therefore cannot 

make much use of the results. But they appear to afford proof that his dominant 

sensation is not more than yso as powerful as that of the normal eye, and may even 

be considerably less. An inspection of his results also shows that the extinction of 

the part of the spectrum in the red very closely resembles that of the normal eye in 
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character and in amount. What is M.’s dominant sensation is not quite apparent, 

for, although he described the light between E and D as “ white ” when of ordinary 

intensity, yet he averred that it always appeared ruddy at the moment of extinction. 

Table YII.—P.’s Curves.'5'' 

I. II. III. IV. V. VI. VII. 

Scale 
number. 

Wave¬ 
length. 

Mean reading 
of extinction in 
millionths of 

original 
luminosity. 

Adopted 
reading in 

millionths of 
original 

luminosity. 

Persistency 
curve 

680 

P.’s 
luminosity 

curve. 

Absolute 
luminosity 

of extinction 
IV. x VI. 

14 ’ ad. reading 

52 5996 68 68 10 7- 34 
50 5850 35 35 19-4 19' 47-5 
48 5720 17 17 40 39 473 
46 5596 10-2 10 68 65 46-4 
45 5538 9-3 9-0 76 76 48-8 
44 5481 8-0 87 84 90 52-8 
42 5373 7-2 7-2 94-5 98 50-3 
40 5270 67 6-8 100 99 487 
38 5172 7-2 7-0 97 97-5 487 
36 5085 8-05 77 90 90 49-5 
34 5002 8-05 8-4 81 80 47-9 
32 4924 9-9 9-8 69 65 45'5 
30 4848 13 2 12-5 54 50 44-6 
28 4776 13-9 15-0 45-3 36 38-6 
27 4742 16-8 17-0 40 31-5 38-2 
26 4707 21-6 20-5 32 26-5 38-8 
24 4639 30 27 25 19-5 37-6 
22 4578 36 35 19 14 35 
20 4517 42 45 15-5 10 32-2 
16 4404 79 79 8-5 5-5 312 
10 4245 180 190 3-6 2-5 32-2 

6 4151 270 270 27 

* In this and the next two Tables tbe intensity of the illumination of the D ray before reduction is 

equal to that of an amyl-acetate lamp at one foot from a screen. The figures in Col. VII. are in 

millionths of the illumination of an amyl-acetate lamp at one foot distant, every ray being made of that 

intensity. 

4 B MDCCCXCIL-—A. 
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Fig. 42. 

Extinction curve of monochromatic vision. 

Fig. 43 

Extinction and luminosity curves of a green blind. 
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Table VIII.—V. H.’s Curves. 

I. II. III. IY. V. YI. YII. 

Scale 
number. 

Wave¬ 
length. 

Mean 
reading of 

extinction in 
millionths of 

original 
luminosity. 

Adopted 
reading in 

millionths of 
original 

luminosity. 

Persistency 
curve 
530 

Luminosity 
curve. 

Absolute 
luminosity 

of extinction 
IY. x YI. 

ad. reading' 75 ' 

57 6423 500 500 11 31 206 
56 6330 350 350 1-5 43 200 
54 6152 200 180 2-9 61 146-4 
52 5996 100 100 5-3 70 93-3 
50 5850 40 40 133 73 38-9 
48 5720 . # 25 21-2 69 23 
46 5596 10 10 53-0 63 8-4 
45 5538 6-5 6-5 81-6 58 5-0 
44 5481 6-0 57 93 54 4-1 
42 5373 5-5 5-3 100 46 3-3 
40 5270 5-5 5-4 98-2 36 2-6 
38 5172 57 5-7 93 24 1-8 
36 5085 6'7 6-5 81-6 15 1-3 
34 5002 7-0 7-0 75-7 9-5 •89 
32 4924 8-5 8-5 62-3 7-0 •79 
30 4848 107 10-5 50-5 5-0 •70 
28 4776 16 16 331 3-7 •79 
26 4707 , , 22-5 23-5 27 •81 
24 4639 30 31 171 1-82 •75 
22 4578 42-5 42 12-6 1-4 •78 
20 4517 55 55 9-6 1-0 •73 
16 4404 105 100 5-3 •7 •93 
12 4296 175 170 31 •45 1-02 
10 4245 200 200 2-7 •34 •91 

4 b 2 
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Table IX.—H. R’s Curves. 

I. II. III. IY. Y. YI. 
I I 

VII. 

Scale 
number. 

Wave¬ 
length. 

Mean reading 
of extinction 
in millionths 

of original 
luminosity. 

Adopted 
reading in 

millionths of 
original 

luminosity. 

Persistency 
curve 
590 

Luminosity 
curve. 

r 

Absolute 
luminosity 

of extinction ; 
IY. x VI. 

ad. reading 

C
O

 

57 6423 1200 1200 •49 5 125 
56 6330 900 850 •69 7 124 
55 6242 500 550 1-07 10 115 
54 6152 250 250 2-36 17 88 
53 6074 # . 150 3-93 25 78 
52 5996 90 90 6-56 35 66 
51 5919 60 45 13-1 47 44 
50 5850 27 27 21-8 57 32 
48 5720 18 15 39-3 66 21 
46 5596 10 10 59 69 14 
44 5481 9-3 8 73-8 64 11 
42 5373 65 6'2 95-1 56-5 7 
40 5270 5-9 5-9 100 45 5-5 
38 5172 6 6 98-3 32 4 
36 5085 . , 6-6 89-4 20 2-7 
35 5043 7 7-2 81-9 16 2-4 
34 5002 # , 8 73-8 12-5 21 
32 4924 10 9-6 61-5 8 1-6 
30 4848 11-5 12 49-2 6 1-5 
28 4776 14-5 14-5 40-7 5 P5 
26 4707 20 17 5 337 4 1-5 
24 4639 20 22 26-8 3 1-4 
22 4578 , , 30 19-7 2-4 1-5 
18 4459 55 57 10-4 1-3 1-5 
14 4349 115 115 51 •7 1-7 
10 4245 , , 160 3-7 •5 1-7 

6 4151 200 200 2-9 •4 1-7 

§ L.—Luminosity of a Spectrum produced by Feeble Light. 

Having found that the persistency curve was apparently and presumably the same 

as the luminosity curve of the two persons who had but one colour sensation, it almost 

followed that if the beam of light producing the spectrum were sufficiently reduced 

its curve of luminosity would approach these. An experiment was therefore made. 

The reference beam was introduced into the measuring box already described (fig. 36), 

and, when uninterrupted by the sectors, had a luminosity of T3V5 °f an amyl 

lamp at one foot off. The beams from the spectrum of the colour patch apparatus 

were also introduced into the apparatus so that they fell as before on S. The luminosity 

of the different rays was taken in the ordinary manner interposing the rotating 

sectors in the reference beam. The following results were obtained (see Table XI), 

the mean of the readings being given. This mean in Column III. is multiplied by 1*25 
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to bring the maximum to 100. This curve (fig. 45), that of the monochromatic sensa¬ 

tion, and the persistency curve are tabulated together in Table X., to show how closely 

they agree. Here we have a proof that the normal eye is as little sensitive to the red 

end of the spectrum formed from a very much reduced light as those of the two brothers 

when ordinary light is used. It must be remarked, however, that all colour was not 

entirely absent, though it was very considerably reduced in saturation. The measure¬ 

ments were made with some trouble at first, owing to the inclination of the eye to 

direct its axis to some point other than the centre of the patch where the white strip 

and the colour strip touch one another. The diversion of the axis of the eye in some 

cases made the colour more luminous, and in other cases less so, than it did when the 

eye was properly directed, as might be surmised from the luminosity curves of light 

of ordinary intensity. By reducing the light in less degrees it became possible to 

obtain curves of luminosity which agreed very closely with those of the different 

degrees of red blindness (that is, where the spectrum is shortened at the red end), of 

which we have had many cases to try. As already pointed out, the outer part of the 

retina of our own eyes is really in one stage of red blindness, having a slightly 

shortened spectrum. 

Table X.—Luminosity of Spectrum Reduced in Intensity so that D = T3i2r5 amyl 

lamp 1 foot distant. 

Scale number. Mean reading. 
Mean reading, 
reduced to 100 

ruax. 

P. and Q.’s read¬ 
ings, 100 max. 

Persistency curve 
for the centre of 

the eye. 

55-6 •5 •6 2 2 
53'6 5-5 7-0 3-6 3-6 
51-6 13 167 8 8 
49-6 23 29-7 22 22 
47-6 40 50-0 44 44 
45-6 57 71-2 69 69 
43-6 70 87-5 93 93 
41-6 79 98-7 100 995 
396 78 97-5 99-5 98-5 
37-6 74 92-5 96 93 
35-6 66 82-5 89 84 
33-6 55 68-7 77-5 71 
31-6 44-5 55-2 61 53-5 
29-6 35 437 45-5 365 
27-6 24 30-0 335 24 
25-6 17 21-7 25 16 
23-6 13 16-7 18 10 
21-6 10 12 5 13 8 
19-6 8 io-o 9-5 6 
13-6 3 37 4-2 3 

9-6 2 2-5 25 2 

i 
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§ LI.—Relative Luminosity of Rays for Different Spectrum Intensity. 

Having found that the curves of luminosity of a spectrum when feeble and when 

bright differed, it became a matter of some importance to ascertain in what manner 

the relative luminosity of the rays varied when the intensity of the light which 

formed the spectrum was altered in a definite ratio. Evidently the most satisfactory 

method of ascertaining this was to throw a patch of white light on the screen and 

then to diminish its luminosity to known amounts, and having selected some ray of 

the spectrum, to equalize their luminosities. The box already described (fig. 36) was 

brought into requisition, and a beam of white light was caused to illuminate one half 

of the white patch on the screen at the end of the box, and the other half was 

illuminated by the ray whose luminosity was to be tried. Rotating sectors were 

placed in each beam ; the apertures of those in the white were fixed at different 

angles, whilst those of the sectors in the coloured beam were opened or closed till 

the luminosities appeared the same to the eye, a series of readings being taken for 

each ray. The results thus obtained were plotted, and some typical ones are shown 

Fig. 46. 

k, 0 10 20 30 - 40 50 60 - 70 80 90 100 NO 120 130 140 150 160 170 180 
-v Degrees of sector aperture in- white beam. 

Relative luminosities of rajs with different intensities of the spectrum. 

in fig. 46. The ordinates are the apertures of the sectors in the monochromatic rays, 

and the abscissse the apertures of the sectors in the white beam. The tangent of 

the inclination to the vertical of the curve at any point, therefore, represents the 

ratio of the luminosity of the coloured to that of the white beam for a certain 

intensity of light. If this ratio were the same for all intensities the curve would 

become a straight line starting from the origin. This is the case, it will be seen, 

with one ray only, that at scale number 46’3, or about X 5618. This ray and 
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white light would therefore be extinguished together. It may be more than a 

coincidence that this ray does not differ much in wave length from that ray which, as 

stated by one of us in a paper on the Transmission of Sunlight through the Earth’s 

Atmosphere (see ‘Phil. Trans.,’ present volume) was found to be affected to the 

same degree as the integrated light of the whole spectrum, no matter what was 

the thickness of the atmosphere through which it had passed. 

It will be seen, however, from the diagram, that the other curves become straight 

lines when certain degrees of intensity, different in each case, are reached ; and if 

these straight lines are produced to cut the axis the ordinates of the rays which lie 

towards the blue end of the spectrum above 46'3 have a negative value at the zero of 

white light, whilst those which lie toward the red side of 46’3 have a positive value ; 

showing that the blue part of the spectrum is extinguished last, and the red part first, 

as we have already seen to be the case. 

It is, moreover, evident, and this has been demonstrated by experiments described 

above, that for low intensities the luminosity curve of the spectrum will vary with 

difference of intensity, but that a degree of intensity is soon reached, when all the 

curves have become straight lines, and that the distances from the origin at which they 

cut the axis are so small compared with the distance where the curves of all the rays 

become straight, that the relative luminosities of the different rays in spectra of 

ordinary intensity are practically the same. In the experiments last described, the 

D light on the screen when not reduced by the sectors was equivalent to '027 of an 

amyl lamp at one foot. This would bring it far beyond the point where its curve, and 

indeed those of all other rays, would become straight. * 

The following table shows the agreement of the results of these last measurements 

with those of the observations, from which the luminosity curve for the central part of 

the eye was constructed. The quotient of the difference of two abscissse in the straight 

part of each curve divided by the difference of the corresponding ordinates evidently 

is the tangent of the inclination to the vertical, which, as stated above, is a measure 

of the luminosity of the corresponding ray. In Column V. of the table the first five 

of these quotients are multiplied by 28'2 in order to make them easily comparable 

with the ordinates of the normal curve which are given in Column VI. In the case of 

the last three entries in the table, the beam of white light was necessarily diminished 

in intensity before it passed through the sectors, the quotients have therefore to be 

multiplied by 5‘03. 

* It must Tbe remembered that we are only dealing with light reflected from a white screen, and it 

does not follow that the lines may continue straight indefinitely when the light is of the brilliancy 
seen when looking direct at a bright spectrum, such as that of the sun, with a fairly wide slit to the 
collimator. 
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Table XI.—Relative Luminosities of Rays. 

I. II. III. IY. V. VI. 

Scale Wave- Diff. abscissae Tan. of incli- Tan. x Luminosity 
number. lengths. Diff. ordinates nation. 28-2 or 5-03. of normal curve. 

563 6358 
50-20 
62-42 

1-5 42-3 43-5 

50-6 5889 
180-40 
58-18 

3-5 98-6 99-5 

46'3 5618 
180 

57 
316 88 88 

393 5246 
135-45 
76-18 

1-55 43-7 44" 5 

35-3 5066 
75-25 
80-15 

•77 21-7 20-2 

333 4975 
105 

48—4 
2-39 12 12 

29-3 4822 
50 

66-15 
•96 4-9 5 

19-3 4497 
10 

80 — 50 
•33 1-68 1'5 

- I 

4 c MDCCCXCII.—A. 
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Addendum. 

(Added July 20, 1892.) 

§ LII.—A Case of Green Monochromatic Vision. 

Since the foregoing paper was read a very phenomenal case of colour-blindness has 

been investigated by us for the Colour Vision Committee of the Royal Society. It is 

the case of a type so rare that we have not hesitated to publish it at the earliest 

opportunity. The patient (B. C.) had been examined by Mr. Nettleship, who 

kindly secured his attendance at South Kensington for the purpose of being examined 

by the spectrum and other tests. B. C. is a youth of 19, who has served as an 

apprentice at sea. His form vision is perfect, and he is not night blind. He can see 

well at all times, though he states that on a cloudy day his vision seemed to be 

slightly more acute than in sunshine. He was first requested to make matches with 

the Holmgren wools in the usual manner, with the result that he was found to possess 

monochromatic vision. He matched reds, greens, blues, dark yellows, browns, greys, 

and purples together; and it was a matter of chance if he selected any proper match 

for any of the test colours. Finally, when pressed, he admitted that the whole of 

the heap of wools were “ blue ” to him, any one only differing from another in bright¬ 

ness. The brighter colours he called “ dirty ” or “ pale ” blue, terms which eventually 

proved to be synonymous. We then examined him with patches of monochromatic 

spectrum colours by means of the colour patch apparatus. He designated every colour 

as “ blue,” except a bright yellow, which he called white, but when the luminosity of 

this colour was reduced he pronounced it a good blue. So with white, as the illumi¬ 

nation was decreased, he pronounced it to pass first into dirty blue, and then into a 

full blue. 

Maxwell’s discs were then brought into requisition, and it was hard at first to know 

how to make the necessary alterations, owing to the terms he employed to express 

the difference which existed between the inner disc and the outer grey ring. By noting 

that a pale “blue” passed into a pure blue when the amount of white in the outer 

ring was diminished, and that the inner disc was described as “ pale ” or “ dirty ” 

when the outer ring was described as a “ a very full blue,” we were enabled to make 

him match accurately a red, a green, and a blue disc separately with mixtures of 

black and white. 

The following are the equations : — 

360 red =315 black —f- 45 white. 

360 green = 258 black + 102 white. 

360 blue = 305 black + 55 white. 



ON COLOUR PHOTOMETRY. 563 

With these proportions he emphatically stated that all were good blues, and that 

the inner disc and outer ring were identical in brightness and in colour. 

It may be remarked that this is a case of congenital colour blindness, and that 

there is reason to believe that some of his ancestors were colour blind. 

Before using the discs an attempt was made to ascertain the luminosity of the 

spectrum as it appeared to him. His readings, however, were so erratic that nothing 

could be made out from these first observations, except to fix the place of maximum 

luminosity, the terms “pale” and “dirty” puzzling us as to their real meanings. After 

the experience with the discs we had a clue as to what he wished to express by 

pale or dirty blue, which only meant that the colour or white was too bright, and on 

making a second attempt he matched the luminosities of the two shadows as easily as 

did P. and Q., the other cases of monochromatic vision. The method adopted was to 

diminish the white light illuminating one shadow to the point at which he pronounced 

it a good blue, when a slight alteration in the intensity was always sufficient to 

secure to his eye equality of luminosity between it and the coloured shadow without 

his perceiving any alteration in the saturation. 

The curve of luminosity, fig. 47, is a very remarkable one, being different in 

character to that of P. and Q., the maximum being well on the D side of E. A great 

falling off in the luminosity when compared with that measured by the normal eye 

will be noticed both in the blue and in the red. The evidence was, therefore, pre¬ 

sumptive that B. C.’s colour sensation was neither red nor blue, but probably a green. 

The next test was made to throw light on this point. He made observations of 

the extinction of the different parts of the spectrum (see § XLVIII.). His observa¬ 

tions were very fair, except on the violet side of F, where they became slightly 

erratic, but by requesting him to use all parts of his retina to obtain the last glimpse 

of light, a very concordant curve resulted, as shown in fig. 47. Some of his observa¬ 

tions at this part were evidently made with the centre of the retina, for they gave 

readings which, when the “ persistency ” curve was calculated, and these observations 

treated as part of the extinction, agreed with the luminosity curve. We may, there¬ 

fore, conclude that B. C. has a region in the retina in which there is an absorbing 

medium corresponding to the yellow spot of the normal eyed. This is diagrammati- 

cally shown in fig. 47 by the difference in height of ordinates in the persistency and 

the luminosity curves. On the red side of the maximum the two curves are practically 

identical, except from Scale number 54. At this point for similar reasons, as given in 

§ XLVIII., it is probable that the white light which illuminated the prism vitiated 

the readings to some degree, as Column VI. of the following table shows. At the 

violet end something similar, doubtless, occurs, but it is masked by the difference in 

extinction by the central part of the retina and that of the whole eye. 

It must, however, be remarked that the amount of reduction of the intensity of a 

ray to produce extinction is very different for B. C. and for the normal eyed, or for 

the red- and green-blind or for P. and Q. B. C. can bear nearly 200 times less 

4 c 2 
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reduction for the rays near E. We have already pointed out that the same is practi¬ 

cally the case with M., whom we presume to be violet blind. We may therefore deduce 

the fact that the monochromatic vision in this case is of a totally different type to that 

of P. and Q., and that the last sensation to be lost is the same as that of M. If any 

violet sensation were present in either, the fact would be made evident by the order 

of the extinction. The sensation of B. C. is thus apparently the green sensation, 

though that this particular sensation is exactly the same as that absent in the green 

blind is not certain ; his curve agrees very closely in form and position with that 

deduced by Kqsnig by different methods as that of the green sensation. 

Fisr. 47. 

B. C.’s luminosity and extinction curves. 



ON COLOUR PHOTOMETRY. 565 

Table XII.—B. C/s Curves. 

I. II. III. 1Y. V. YI. 

Scale 
Adopted Persistency Luminosity 

of original 
beam. 

Absolute 
W ave- reading in curve, luminosity of 

number. length. hundred 12,500 extinction 
thousandths. readings in V. 111. and V. 

61 6839 7,500 1-6 
60 6728 5,500 23 *5 27-5 
59 6622 4,000 3-1 i 40 
58 6520 2,800 4-5 2 56 
57 6423 2,000 6-2 4 80 
56 6330 1,500 8-3 6 90 
55 6242 1,150 10-8 8 92 
54 6152 950 131 11-5 1092 
53 6074 750 16-6 16 120 
52 5996 580 21-6 21-5 125 
51 5919 430 29 28-5 122-5 
50 5850 350 36 37 129-5 
49 5783 275 45-5 47 129-2 
48 5720 215 58 60 129 
47 5658 170 73 4 76 129-2 
46 5596 140 89-3 92 129 
45 5538 125 100 98 122-5 
44 5481 125 100 100 125 
43 5427 130 961 97 126 
42 5373 150 83 85 127-5 
41 5321 180 69-4 65 117 
40 5270 215 59 45 96-7 
39 5221 250 50 30 75 
38 5172 290 43 215 72-3 
37 5128 335 37 16 53-6 
36 5055 380 33 115 43-7 
34 5002 500 25 7 35 
32 4994 650 19 4 26 
30 4848 850 14 2-5 23-3 
28 4776 1,100 11-4 2 22 
26 4707 1,500 8 3 1-5 22 
24 4639 2,000 6-2 1 20 
22 4578 2,700 4-6 5 13-5 
18 4459 4,750 
14 4349 7,500 
10 4245 11,000 
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Part I.—On the Absolute Electromotive Force of a Clark Cell. 

§ 1. Introduction. 

The experiments recorded in the following paper were undertaken with the object 

of testing various points in the manufacture and use of the Clark cell as a standard of 

electromotive force, specially with a view of investigating the most simple method of 

setting up a number of such cells which should have, within certain limits, a definite 

electromotive force, and of determining the limits within which, it is safe to say, that 

the E.M.F. of such a cell will lie. 

We have also determined afresh the relation between the E.M.F. of a Clark cell and 
the electrochemical equivalent of silver. The experiments have been conducted in 

the main on the lines of those described in Lord Rayleigh’s papers “ On the 
Electrochemical Equivalent of Silver and on the Absolute Electromotive Force of 

Clark Cells” (‘Phil. Trans.,’ Part II., 1884), and “On the Clark Cell as a Standard 

of Electromotive Force” (‘ Phil. Trans.,’ Part II., 1885). 
The investigation was undertaken in connection with the work of the Committee 

appointed by the Board of Trade on Standards for the Measurement of Electricity. 

Resolution No. 14 of the Report of that Committee is as follows :— 

“ That the electrical pressure at a temperature of 62° F. between the poles or 
electrodes of the voltaic cell known as Clark’s cell may be taken as not differing from 

a pressure of 1*433 volt by more than an amount which will be determined by a 

Sub-Committee appointed to investigate the question, who will prepare a specification 
for the construction and use of the cell.” 

The following paper contains an account of some of the experiments made during 
the investigation. 

In the same Report, Resolution 10 states that an unvarying current, wdiich, when 

passed through a solution of nitrate of silver in water, in accordance with the 

specification attached to this report, deposits silver at the rate of O'OOlllS of a 

gramme per second, may be taken as a current of 1 ampere. 

The specification referred to is as follows :— 
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In the following specification the term silver voltameter means the arrangement of apparatus by 

means of which an electric current is passed through a solution of nitrate of silver in water. The 

silver voltameter measures the total electrical quantity which has passed during the time of the 

experiment, and by noting this time the time-average of the current, or if the current has been kept 

constant, the current itself can be deduced. 

In employing the silver voltameter to measure currents of about 1 ampere the following arrange¬ 

ments should be adopted. The kathode on which the silver is to be deposited should take the form of 

a platinum bowl not less than 10 cm. in diameter, and from 4 to 5 cm. in depth. 

The anode should be a plate of pure silver some 30 square cm. in area, and 2 or 3 millims. in thickness. 

This is supported horizontally in the liquid near the top of the solution by a platinum wire passed 

through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on 

the anode from falling on to the kathode, the anode should be wrapped round with pure filter paper, 

secured at the back with sealing-wax. 

The liquid should consist of a neutral solution of pure silver nitrate, containing about 15 parts by 

weight of the nitrate to 85 parts of water. 

The resistance of the voltameter changes somewhat as the current passes. To prevent these changes 

having too great an effect on the current, some resistance, besides that of the voltameter, should be 

inserted in the circuit. The total metallic resistance of the circuit should not be less than 10 ohms. 

Method of malting a Measurement. 

The platinum bowl is washed with nitric acid and distilled watei’, dried by heat, and then left to cool 

in a desiccator. When thoroughly dry it is weighed carefully. 

It is nearly filled with the solution, and connected to the rest of the circuit by being placed on a 

clean copper support to which a binding screw is attached. This copper support must be insulated. 

The anode is then immersed in the solution so as to be well covered by it and supported in that posi¬ 

tion ; the connections to the rest of the circuit are made. 

Contact is made at the key, noting the time of contact. The current is allowed to pass for not less 

than half-an-hour, and the time at which contact is broken is observed. Care must be taken that the 

clock used is keeping correct time during this interval. 

The solution is now removed from the bowl, and the deposit is washed with distilled water and left to 

soak for at least six hours. It is then rinsed successively with distilled water and absolute alcohol, and 

dried in a hot-air bath at a temperature of about ICO9 C. After cooling in a desiccator it is weighed 

again. The gain in weight gives the silver deposited. 

To find the current in amperes, this weight, expressed in grammes, must be divided by the number of 

seconds during which the current has been passed, and by ’001118. 

The result will be the time-average of the current, if during the interval the current has varied. 

In determining by this method the constant of an instrument the current should be kept as nearly 

constant as possible, and the readings of the instrument taken at frequent observed intervals of time. 

These observations give a curve from which the reading corresponding to the mean current (time-average 

of the current) can be found. The current, as calculated by the voltameter, corresponds to this reading. 

In our experiments the method above described, which is that adopted by Lord 

Rayleigh, was carefully adhered to. 

While our work was in progress, a paper on “ The Causes of Variation of Clark 

Standard Cells” was communicated to the British Association by Mr. J. Swinburne 

(‘Electrical Review,’ August 28th, 1891). The results of our investigations confirm 

his conclusions in many respects. 

In the first part of the paper we shall deal with the experiments on the absolute 

4 D MLCCCXCH. —A. 
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electromotive force of a Clark cell, and, in the second, with the comparisons between 

various cells and the conclusions to be drawn from them. 

§ 2. Theory of the Method. 

The theory of the method is very simple. A fairly constant current is passed 

through a silver voltameter and a known resistance. The value of the current is given 

by the voltameter, and from this the potential difference between the terminals of the 

resistance is found. This potential difference is compared by a potentiometer method 

with the E.M.F. of a Clark cell, and thus an absolute value is obtained for the E.M.F. 

of the cell. 

We shall describe in turn the various parts of the apparatus and the method of 
experimenting. 

§ 3. The Standard Cell. 

Lord Rayleigh left at Cambridge, in the charge of one of us (It. T. G.), three of 

the cells he constructed during the year 1883. One of these has since dried up. The 

other two, which have been carefully kept, have been compared from time to time, 

and differ very slightly in E.M.F. (see Part II.). We took one of these, which we 

call Rayleigh No. 1, as our standard. Rayleigh No. 1 is a cell of the pattern originally 

adopted by Latimer Clark. According to the data in Lord Rayleigh’s paper, “ the 

saturated solution of zinc sulphate was nearly neutral. The metallic zinc was bought 

as pure from Messrs. Hopkin and Williams. The mercurous sulphate was from the 

same source, and the metallic mercury was redistilled in the laboratory.” 

It seems probable that the cell Rayleigh No. 1, is No. 4 of Lord Rayleigh’s 

paper, though it is difficult to be quite certain of this point. In his paper, £ Phil. 

Trans.,’ 1885, Lord Rayleigh says : “ Cells (4), (8), (9), were, I think, left at Cam¬ 

bridge.” Of these it is clear (‘Phil. Trans.,’ 1 884, p. 442), that No. 4 was of the 

original pattern, the others were made at a later date. Our cell, No. 1, is of the 
pattern originally devised by Latimer Clark, while No. 2 is of the form used later 
by Lord Rayleigh. We therefore infer that our No. 1 is Lord Rayleigh’s No. 4. 

In the earlier experiments, the E.M.F. of this cell was compared directly with the 

difference of potential between the ends of the resistance. As in this procedure there 

was some slight risk of passing an appreciable current through the cell, it was 

modified. A large cell, denoted in what follows by No. 90, or the bottle cell, was 

constructed in a glass bottle, and the E.M.F. of this was determined. This cell was 

from time to time compared with the standard. 

§ 4. The Voltameters. 

Fi ve different platinum bowls were used. 
I. The large bowl employed by Lord Rayleigh, in shape approximately the 

segment of a sphere, diameter across the top 10 cms., depth 4’5 cms. 
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II. A bowl, kindly lent us by Professor Liveing, 10 cms. in diameter, 3'5 cms. in 

depth, the bottom of this is flatter than that of I., and the sides more nearly vertical. 

III. A bowl, very similar to I., and of about the same dimensions, also lent us by 

Professor Liveing. 

IV. A third bowl, similar to I., and of about the same size, though much lighter, 

lent us by Mr. F. H. Neville. 

V. A deep cup-shape bowl, 7'25 cms. in diameter, 8 cms. deep, belonging to the 

Laboratory. 

Of these, No. II. had been used a good deal for chemical work. Its surface was 

somewhat dull, and we never succeeded in obtaining an adhesive deposit with it. Traces 

of the silver always came away in the washing, and when weighed, the silver was 

always less than that deposited in the other bowl. We have not used the deposits 

from this bowl. 

In each experiment two bowls were used in series. 

The anode was usually a circular piece of silver plate, about 7 or 8 cms. in diameter, 

and '12 cm. in thickness, supplied by Messrs. Johnson and Matthey as “Ordinary 

Fine Silver Sheet,” price 5s. per oz. This was supported horizontally in the liquid by 

three platinum wires, the w hole being covered with filter paper secured at the back 

with sealing wax. 

In the case of Bowl V., the anode was bent into the form of a cylinder, which was 

immersed in the liquid with its axis vertical. 

The bowls rested on clean copper plates insulated on ebonite and paraffin blocks. 

The supports which carried the anodes were insulated in the same way. The insula¬ 

tion was tested by connecting up the voltameters before they had been filled with the 

liquid with a battery of six Leclanche cells and a delicate high-resistance galvano¬ 

meter. No trace of a leak could be found. 

The liquid used was a solution of silver nitrate, containing 85 parts by weight of 

distilled water and 15 parts of pure recrystallised silver nitrate, supplied by Messrs. 

Johnson and Sons, as containing 63'5 per cent, of fine silver, or 99-f per cent, of pure 

anhydrous nitrate of silver. 

A coil of wire, having about the same resistance as two of the voltameters, was 

connected up in parallel with them, in such a way that, by means of a key consisting 

of mercury cups cut in a block of paraffin, the current could be sent either through the 

voltameters or through the coil. The adjustments were made with the current 

flowing through the wire, when all wras complete the key was shifted so as to send the 

current through the voltameters, and the time taken. 

§ 5. The Standard Resistance. 

It was necessary that this should not be seriously heated by a current of about 

1 ampere. 

4 d 2 
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It was, therefore, constructed of a strip of platinoid about 1 cm. wide and '05 cm. 

thick. This was wound on an open frame about 50 cms. long and 50 cms. wide 

by 6 cms. deep. The frame was of wood covered with strips of ebonite which 

insulated the metal from the wood. 

The whole was immersed horizontally in a bath of paraffin, containing about 60 litres 

of oil. A stirrer, in the form of a T-shaped piece of wood, passed under the coil 

between it and the bottom of the bath, and by means of this the liquid could be kept 

in a state of agitation. This stirrer was worked frequently during an experiment. A 

delicate thermometer, placed with its bulb very close to the strip, showed an immediate 

slight rise in temperature, one or two tenths of a degree, if the oil was not stirred. If 

the stirring w7as maintained the rise during an experiment was usually only slight. 

The ends of the platinoid strip were soldered to thick copper rods, which dipped 

into two mercury cups insulated on a paraffin block. 

By means of copper rods, these cups could be put into communication with the 

B.A. bridge, and the resistance of the strip measured in situ in terms of the standard 

coil “ Flat.” This was done without shifting the coil both before and after each experi¬ 

ment ; the two results never differed by more than '0007 B.A. unit, and the mean has 

been taken in calculating the result. The resistance of the strip at 17° C. was 

1-0011 B.A. unit. 

For some of the experiments this resistance might, with advantage, have been 

higher, though the fact that it was nearly equal to the standard secured accuracy in 

the comparison with it, and it was thought desirable, from this point of view, to 

use the same resistance throughout. 

In order to reduce the effects due to variations in the resistance of the voltameters, 

a resistance of thick platinoid wire, usually some twelve or fifteen ohms in amount, 

was included in the circuit. This was varied until the current was of the right 

amount. 

§ 6. The Balance. 

A short beam balance by Oertling was used for the weighings. This and the 

weights were the same as those employed in the determination of the specific 

resistance of mercury by Glazebrook and Fitzpatrick (‘Phil. Trans.,’ A., 1888). 

The weights had been compared with the standard, and the correction found to be 

inappreciable. Some of the weighings were done in both pans in order to determine 

the ratio of the arms of the beam. This was found to be 1'00002. The correction 

to the weight in vacuo varied between P000030 and 1 — '000013, according to the 

number of platinum weights used ; both these are too small to affect our results, and 

have not been introduced into the calculations. 
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§ 7. The Clock 

The Laboratory chronometer, beating half-seconds, was used to give the time during 

which the current flowed, and the rate of the chronometer was determined by a series 

of comparisons with a clock belonging to the Cambridge Philosophical Society, which 

is rated from the Observatory. 

It was found that the chronometer was losing at the rate of about '16 seconds per 

hour. A small correction for this has been introduced in the final result. 

§8. The Resistance Boxes and Apparatus for the Comparison of Electromotive Forces. 

For the comparison of the electromotive forces two resistance boxes by Elliott Bros. 

were used. The coils in these boxes agreed together sufficiently nearly to introduce 

no serious error. The current from two Leclanche cells ran continuously through 

10,000 ohms, taken out of the two boxes in series. The standard Clark or the bottle 

cell was connected with one of the boxes through a sensitive galvanometer and a resist- 

ance coil of 10,000 ohms, and plugs transferred from one box to the other until there 

was no deflection on closing the galvanometer circuit. The Leclanches remained very 

steady during the whole course of the experiments. The resistance required in the main 

circuit to balance the Clark changed in about a fortnight from 5722 to 5784, or about 

1 per cent. This comparison was made from time to time during each individual 

experiment, to check the constancy of the Leclanches, with satisfactory results. On 

August 7 an extreme variation of 6 ohms occurred. On other occasions the change 

during the time an experiment lasted was only 2 or 3 ohms. In making the reduc¬ 

tions the mean value was taken. 

The galvanometer, battery, and resistance boxes were all insulated on separate 

paraffin blocks. 

The temperature of the bath containing the Clark was observed from time to time 

during the experiments. It usually rose slightly by about 0°'l C. 

The thermometers employed had been tested at Kew, and the necessary corrections 

are introduced. 

Fig. 1 gives a diagrammatic representation of this part of the apparatus; I. and II. 

are the two resistance boxes through which the current from the two Leclanches passes. 

A, B, C, D, L, M are six mercury cups in a block of paraffin. Of these L is 

connected through the galvanometer G with one end of the box I., while M is in com 

nection with the junction of the two boxes. The poles of the Clark are connected to 

A and C, and well insulated wires join B and D to the ends of the strip resistance B, 

Connections can be made as needed among the cups by means of pieces of wire bent 

into the required form and attached to pieces of sealing wax as insulating handles. 

When a current, i, is maintained in the resistance It, the difference of potential 

between B and D is Bi. By connecting L to B and M to D, and adjusting the plugs 
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in I. and II., keeping their sum constant until there was no deflection of the galvano¬ 

meter, this difference of potential was expressed in terms of the E.M.F. of the 

Leclanclffs, while by connecting A to L and C to M the ratio between the E.M.F. of 

the Clark and that of the Leclanches was found. This method was adopted in some of 

the experiments. In other experiments, C and D were connected together, while A 

was joined to L and B to M. In this arrangement, the electromotive force between 

A and B was the difference between that of the Clark and Pa. The difference was 

expressed in terms of the Leclanches, and then compared as before with that of the 

Clark. By employing a proper current in the main circuit through the voltameters, 

the difference between the E.M.F. of the Clark and Bi could be made small, and thus 

the result was more nearly independent of changes in the Leclanches. 

The sensitiveness of the galvanometer was such that an alteration of the resistance 

in I. by 1 ohm produced a deflection of about 3 cms. on the scale, this corresponds to 

a variation in the E.M.F. between L and M of about one six-thousandth of a Clark 

cell. Thus variations of ’0001 volt could be detected without difficulty. 

§ 9. Details of the Method. 

The theory of the experiment just outlined supposes that the current i in the main 

circuit remains constant. In practice this is not the case; two methods were 

adopted for meeting the difficulty. 
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Let V be the resistance taken out of the Box I. when the ends of the resistance Pt 

are connected to L and M. Then as the current varies Y varies also, being always 

proportional to i. During the time the current was passing a series of observations 

of the value of Y, regulated to produce a balance, was made and the corresponding 

times noted. These observations were plotted on squared paper, and a curve formed 

with the times for abscissae and the values of Y for ordinates; the area of this curve 

is proportional to the quantity of electricity which has passed, and it is easy to 

calculate from the curve the mean value of the current and the corresponding value 

of Y. This method was followed in the observations on July 31, August 5, and 

August 7. 

On July 31 the value of Y changed considerably, viz., from 3876 to 3917'5. With 

one exception, however, the observations lie on a very regular curve, and the mean 

value, 390P5, got from the curve is probably accurate to 1 or 2 ohms. 

On August 5 the changes were very small, and, as shown by the corresponding 

curve for the Clark cells, are almost entirely due to alterations in the Leclanche cells. 

The curves are given in Plate 16, tigs. 1, 2, 3. 

In all the other experiments an adjustable mercury resistance was introduced into 

the main circuit with the voltameters. The plugs in the boxes were adjusted until 

on making the galvanometer key there was no deflection. The galvanometer circuit 

was then kept closed, and the mercury resistance adjusted so that no deflection should 

take place. Occasionally it happened that the changes needed in the resistance of 

the main circuit to maintain i constant were outside the limits of the mercury 

rheostat. When this was the case a suitable change was made in the plugs in I. 

and II. and in the rheostat simultaneously, and the time noted. The change needed, 

except on the morning of August 12, was always small, some 4 or 5 ohms at most, 

and the mean value of Y was readily determined with all the accuracy required. On 

August 12, after the current had been flowing steadily for 25 minutes, a sudden drop of 

over 1 per cent, took place. As during the next five minutes the current continued 

somewhat unsteady, the experiment was concluded at the end of 30 minutes 

45 seconds, a much shorter time than in any of the other experiments. 

In this second method of making the observations the very slight heating effect 

produced in the strip coil when the bath was not stirred was just observable. A 

balance was obtained, the bath being unstirred for a few moments. On moving the 

stirrer the spot was very slightly deflected in the direction indicating a fall in the 

resistance R, and the rheostat required a slight readjustment to restore the balance. 

The readjustment necessary, however, was extremely slight, being equivalent to a 

change of only a small fraction of an ohm in the Box I. As 1 ohm in the box means 

an alteration of ‘00024 volt in the E.M.F., the error produced by heating in the strip 

was quite negligible. 
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§ 10. Method of Carrying out an Experiment. 

The usual method of conducting the observations was as follows :— 

The platinum bowls were washed with nitric acid and distilled water, dried by 

heating in a gas flame, and left to cool, usually overnight, in a desiccator. They were 

then weighed and placed in position, being tilled with the solution, the anodes were 

immersed and the necessary connections made ; "while this was being done the current 

was allowed to flow in the main circuit through the alternative wire, and the value ot 

the resistances required in the boxes to balance the Clark and the potential difference 

then existing between the ends of the strip coil approximately determined. 

In cases in which the bottle cell No. 90 was used the difference between its E.M.F. 

and that of the standard Rayleigh No. 1 was found by the usual opposition method. 

The main current was then broken and the difference in resistance between the 

strip coil and the standard “Flat” determined by Carey-Foster’s method, the neces¬ 

sary temperatures being observed. 

The main current was then made, still through the alternative wire, and the 

resistances in the boxes required to balance the Clark accurately taken. The plugs 

were then set to the approximate value required to balance the potential difference 

between the ends of the strip coil, and the key in the main circuit shifted so as to 

send the current through the voltameters, the time being noted on the chronometer. 

Some small changes in the resistance boxes or in the mercury rheostat were usually 

required to obtain a balance in the galvanometer circuit. These were made and the 

spot of light watched, as already described, the necessary changes being made from 

time to time to keep it at rest. 

After the experiment had proceeded for some time a comparison between the Clark 

and Leclanches was usually again made as rapidly as possible. This was done by 

shifting the connections from L and M into the cups A and C, the current in the 

main circuit not being interfered with. The connections were again restored to their 

original position and the experiment proceeded as before. After the current had passed 

for some time, usually from forty minutes to an hour, it was again broken, the time 

being noted. 

A comparison between the Clark and the Leclanches was again made, and the 

differences between the electromotive forces of the bottle cell No. 90 and the standard 

and between the resistances of the strip coil and flat were observed. 

The temperatures of the bath containing the strip coil and of the bottle and 

standard cells were noted from time to time during the experiment. 

While the comparisons of E.M.F. and of resistance were in progress the bowls 

were rinsed with distilled water and then left to soak overnight in distilled water. 

The next morning they were again rinsed with distilled water and alcohol and then 

dried in a hot air bath, at a temperature of from 1G0° to 180° C. 

After cooling for some hours in a desiccator the}7 were weighed. The weighings 
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were repeated on the following day, the bowls having usually been left for the interval 

in the balance case. In some cases during the interval the bowls were again heated. 

In none of the observations was there any difference sufficient to affect the result 

between the weighings. 

Temperature corrections had to be introduced into the comparison between the 

bottle cell and the standard, for these could not conveniently be put into the same 

bath, and consequently differed slightly in temperature. 

This was done by the aid of Lord "Rayleigh's value for the coefficient, viz., ’00078 

—a value which our own experiments (see p. 615) sufficiently confirmed—in the 

following way. Since the plugs required out of the Box I. to balance the Clark were 

about 5800 ohms, a change of ’00078 in the E.M.F. of the Clark will mean a 

change in the resistance of 5800 X ’00078, or about 4’5 ohms in the box. Thus an 

increase of 1° in the temperature of the cell means a fall of 4’5 ohms in the resistance 

required to balance it. The actual change in E.M.F. corresponding to this will 

be 1’43 X ’00078, or ’00112 volt, and the change corresponding to one ohm of 

the box is found by dividing this by 4’5. This gives ’00025 volt. 

The temperature of the bottle cell and of the Leclanches varied slightly during 

the progress of each experiment, and part of the variations observed in the ratios of 

the two are no doubt due to temperature changes. 

§11. Details of Experiments. 

We proceed now to the details of each experiment. Most of these can be best 

given in tabular form, and this is done in Table I. (p. 581). 

Some explanation is needed, however, of the method by which the values of some 

of the tabulated numbers, specially those in columns 3, 6, 10, and 15, are arrived at, 

and of the notation employed. 

Let V be the resistance out of the box required to balance the difference of 

potential Bf between the ends of the strip coil, W that required to balance the 

Clark, E the E.M.F. of the Clark which was compared with Bi at the temperature of 

the observation. 

B is, as above, the resistance of the strip, i the current. Let M be the mass of 

silver deposited, T the time the current has passed, and y the electrochemical equi¬ 

valent of silver in grammes per ampere per second. 

Then 

y = ’001118. 
Then we have 

M = fyT, 

therefore, 
E/Bi = W/V, 

E = B. 
W 

V 

4 E 

M 

7 • T ’ 

MDCCCXCII.—A 
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The values of E thus found require correcting (1) to reduce them to a common 

temperature of J 5° C. (2) for the difference between the bottle cell and the standard 

Itayleigh 1. 

Experiment 1, July 31, 1891. 

The observed values of Y and W are shown on Plate 16. In these one vertical 

division represents 5 ohms, and one horizontal division 5 minutes. The curves 

from which the numbers were calculated were drawn to a larger scale. It will be 

seen that the value of i, as indicated by the values of Y, rose gradually for about 

25 minutes, then remained fairly steady for about 15 minutes, and afterwards began 

to fall. The mean value for Y, calculated as already described, is 3875 + 29"5, or 

3904-5. 

Three observations were taken for W; the mean value is 5722*5. Bowls I. and II. 

were used. 

Experiment 2, August 3, 1891. 

The observations are given in Plate 16. The current remained fairly steady for 

about 25 minutes, then suddenly increased considerably, the resistance changing 

in five minutes from 4585 to 4600, dropping in the next 15 minutes to 4595. The 

mean value of Y is 4591 ohms, while that of W is 5756’5. Bowls I. and II. were 

used. 

After these two experiments precautions were taken to work only when no other 

electrical work was going on in the laboratory. The current was supplied from 

storage cells in the battery room of the laboratory, and the wires conveying the 

current into the room in which the experiment was conducted were not satisfactorily 

insulated from other wires conveying a current from other cells into a different room. 

Fluctuatious in the current were caused when these other cells were working. 

Experiment 3, August 5. 

The curves are shown in Plate 16. It will be seen that the variations are much 

less ; in fact, the curves for Y and W are very approximately parallel straight 

lines, showing that the changes are almost entirely due to the alterations in the 

Leclanches. The mean values are— 

Y = 369P2, 

W = 5751-5. 

Bowds I. and II. used. 

In each of these three experiments some of the deposit in Bowl No. II. was lost in 

the washing, and the results from this bowl have not been used. 

After this the mercury rheostat was used. This consists of two parallel grooves in 

a piece of dry mahogany which were filled with mercury. A movable copper bridge 

put the two columns into electrical connection. The current entered at one end of 
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one column, passed along it, and after traversing the bridge emerged from the similar 

end of the second column. By sliding the bridge, the length of column traversed by 

the current was varied. A scale of centimetres w7as fitted parallel to the grooves, and 

it was found that with a current of about 1 ampere, shifting the bridge by 50 divi¬ 

sions of the scale produced an alteration in the current, which required a change of 

1 ohm in the Box No. 1 to balance it; in other words, the difference of potential 

between the ends of the strip coil was changed by '00025 volt, and the current by 

about '00025 ampere. 

Experiment 4, August 7. 

Values for W 5773, 5775, 5770 ; mean, 5772'5. The difference between the E.M.F. 

of the Clark and Bi was observed, and the resistance out, which was 2149, remained 

unchanged. 

Thus 
W - V = 2149, 

therefore 
V = 3623'5. 

The slide of the rheostat was moved over only about 10 divisions, so that the 

current wras very constant. Bowls I. and II. used. 

Experiment 5, August 10. 

In this experiment a very large current, about 1'6 ampere, was used. The silver 

was deposited in four bowls, Nos. I. and IV. being arranged in parallel and then in 

series with them, Nos. III. and V. also in parallel. The value of W remained steady 

at 5784, and the value of W — V was also steady. By an oversight the plugs out 

for W — V were not noted till after the experiment w7as concluded. They lay 

certainly between 220 and 225, but there is some doubt as to the exact unit; we 

incline to think it wras 223. With this value we have 

V = 5561. 

The slide was shifted about 24 divisions, so that the variation in the current was 

small. 

Experiment 6, August 12, morning. 

The value of W varied from 5756 to 5754 ; mean W = 5755. The value of 

W — V remained steady at 1176 for 25 minutes, when a sudden change took place. 

The main current was stopped, the time being noted on the chronometer, and the plugs 

altered to 1238. The current was again started, the time being taken, and remained 

fairly steady for 2'5 minutes, when the plugs were altered to 1233 without breaking 

the main current, and the slide correspondingly adjusted. The current remained 

steady for a time, but at the end of 3'25 minutes more showed signs of variation, so 

the experiment was ended and the time taken. 

4 e 2 
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The current lasted, in the first instance, for 25 minutes, and in the second, for 

5 minutes 45 seconds, thus we have for T the value 1845 seconds. 

The value of W — Y was 1176 for 25 minutes, 1238 for 2-5 minutes, and 1233 for 

3'25 minutes. 

From these we obtain, as the mean value of AY — Y, 11 87, and hence A" = 4568. 

The fact that there was a break in the middle so that four readings of the 

chronometer are involved, renders the time measurement less trustworthy than in the 

other experiments. 

Bowls I. and IY. were used. 

Experiment 7, August 12, afternoon. 

AY changed from 5753 to 5756 during the experiment, the mean value was 5754‘5. 

The value of AY — Y was changed after the current had been passing for 5 minutes 

from 3349 to 3344, but without breaking the current, the slide being readjusted 

to suit. It remained very steady at this value while the experiment lasted. The 

whole time of the experiment was 50 minutes 5 seconds. 

Thus the mean value of AY — Y is 3344'5, therefore 

V = 2410. 

Bowls III. and Y. were used. 

Experiment 8, August 14, morning. 

The value of AY changed from 5738 to 5737 ; mean value, 5737'5. The value 

of AY — Y was steady all the time at 1120, and the slide was very little altered ; thus 

the current was very steady, and we have 

V = 4617-5. 

Bowls I. and IY. were used. 

Experiment 9, August 14, afternoon. 

The value of AY changed from 5730 to 5729’5 ; mean value, 5729'S. The current 

ran for 1 hour and 5 seconds. 

The values of AY — V were 3290 for 6 minutes, then 3288 for 26 minutes, changing 

during the next minute to 3280, and after that being steady at 3280 ; for the remaining 

27 minutes the current was not broken, but the slide of the rheostat was altered as the 

resistances were changed. From this we have as the mean value of AY — Y, 3284-5, 

whence 

V = 2445-3. 

Bowls III. and Ah were used. 

It should be noticed, in the cases in which the current varied, that an accurate 

value of the time at which the changes in the position of the slide took place, is not 

needed, provided the whole time is known accurately. 

These are all the experiments made. 
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§ 12. Discussion of Results. 

The mean of the above values is 1*4341 volt at 15° C. The variation from the 

mean is small. The smaller result in Experiment 2 may be due to the unsteadiness 

of the current during the experiment. It will be remembered it rose in value 

suddenly by about one part in 300 during the observations. The result in Experi¬ 

ment 9 is too high. This is, no doubt, due to the fact that the temperature of the 

bottle cell was varying somewhat. The temperature of the bath changed between the 

morning and afternoon observations on August 14 by 0°*5 C. Now, our observations 

have shown us that the E.M.F. of the cell lags behind the temperature when this is 

changing. This lag is due to the time taken in changing the state of concentration 

of the zinc sulphate solution. It is practically certain that on the afternoon of 

August 14 the cell had not reached the steady state corresponding to 180,3, and that, 

therefore, the correction to 15° of "0036 volt is too high. 

It will be remembered that some uncertainty of one or two units is attached to the 

value of Y in Experiment 5, August 10. 

The weighings of the second bowl, No. 2, in Experiments 1, 2, 3, 4 have not been 

used because some small amount of silver was visibly lost in the washings. 

The weighings in the other experiments agree with each other by about one part in 

2000. This agreement is rather less good than that attained in Lord Rayleigh’s 

experiments. It must be remembered that the rate of deposition was about three 

times as great as in his work, and this affects the deposit. The value of the E.M.F. 

thus found needs increasing by about one part in 20,000 for the error of the clock, 

and we thus obtain as the E.M.F. of the standard cell, Rayleigh No. 1, at a tem¬ 

perature of 15° C. the value 
1*4342 volt. 

The English standard legal temperature is 62° Fahr., or 1 6f° C. 

Reducing to this temperature we find the value 

1*4324 volt at 62° Fahr. 

The value found by Lord Rayleigh for his standard No. 1, was 1*435 volt at 15°, 

if we include another figure, the value given in Lord Rayleigh’s Table becomes 

1*4348. Now, his cell No. 4, which is probably our No. 1, was two parts in 10,000 

below his No. 1; and again we have, in accordance with the resolution of the Board of 

Trade Committee, taken *9866 as the value of the B.A. unit in ohms, Lord Rayleigh 

used. *9867. On this account our result needs to be raised by one part in 10,000 to 

compare with his; thus altogether our result needs to be raised by three parts in 

10,000, or by about *0004 volt, to give the E.M.F. of his original cell, No. 1, in his 

units. We thus get for this cell the value 1*4346 volt, as against 1*4348 found by 

Lord Rayleigh, and the agreement is within the errors of the observations. 



CLARK CELL AS A STANDARD OF ELECTROMOTIVE FORCE. 583 

A reference to the table shows that our bottle cell No. 90 is about three parts in 

10,000 above the cell Rayleigh 1. It agrees more nearly, therefore, with Lord 

Rayleigh’s original standard. 

In comparing our result with that of other experimenters it must be remarked 

that it is given in “ volts.” To reduce it to the “legal volts ” of the Paris Congress 

it must be multiplied by the ratio 1063/1060, and it then becomes at 15° C. 1‘4382 

“ legal volt.” 

Part II.—Comparison of Various forms of Cells and of the Materials used. 

§ 13. Introduction. General Remarks. Methods of Testing. 

A normal Clark cell is one prepared according to certain definite directions, and the 

electromotive force of such a cell has been determined in Part I. above. Various 

causes may lead to a deviation from the normal value for the E.M.F. of any given 

cell, and it becomes important to consider these. We have in the course of the work 

met with at least one batch of cells which agree very closely among themselves, but 

Fig. 2. 

which differ very considerably in E.M.F. from the standard. Directions for the con¬ 

struction of a normal Clark cell have been provisionally drawn up by a sub-committee 

of the Electrical Standards Committee of the Board of Trade, and have been issued 

to various laboratories for the purpose of gaining experience and enabling the Com¬ 

mittee to issue at some future date a definite memorandum. These instructions in 
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their latest form, June 23, 1891, are given here. Fig. 2 shows the arrangements of 

the parts of the cell as described in the memorandum. 

Memorandum on the Preparation or the Clark’s Standard Cell. 

Definition of the Cell. 

The cell consists of zinc and mercury in a saturated solution of zinc sulphate and mercurous sulphate 

in water, prepared with mercurous sulphate in excess, and is conveniently contained in a cylindrical 

glass vessel. 

Preparation of the Materials. 

1. The Mercury.—To secure purity it should be first treated with acid in the usual manner, and 

subsequently distilled in vacuo. 

2. The Zinc.—Take a portion of a rod of pure zinc, solder to one end a piece of copper wire, clean the 

whole with glass paper, carefully removing any loose pieces of the zinc. Just before making up the 

cell dip the zinc into dilute sulphuric acid, wash with distilled water, and dry with a clean cloth or 

filter paper. 

3. The Zinc Sulphate Solution.—Prepare a saturated solution of pure (“ pure re-crystallised ”) zinc 

sulphate by mixing in a flask distilled water with nearly twice its weight of crystals of pure zinc 

sulphate, and adding a little zinc carbonate to neutralise any free acid. The whole of the crystals should 

be dissolved with the aid of gentle heat, i.e., not exceeding a temperature of 30° C., and the solution 

filtered, while still warm, into a stock bottle. Crystals shonld fonn as it cools. 

4. The Mercurous Sulphate.—Take mercurous sulphate, purchased as pure, and wash it thoroughly 

with cold distilled water by agitation in a bottle; drain off the water, and repeat the process at least 

twice. After the last washing drain off as much of the water as possible. 

Mix the washed mercurous sulphate with the zinc sulphate solution, adding sufficient crystals of zinc 

sulphate from the stock bottle to ensure saturation, and a small quantity of pure mercury. Shake these 

up well together to form a paste of the consistence of cream. Heat the paste sufficiently to dissolve the 

crystals, but not above a temperature of 30°. Keep the paste for an hour at this temperature, agitating 

it from time to time, then allow it to cool. Crystals of zinc sulphate should then be distinctly visible 

throughout the mass; if this is not the case, add more crystals from the stock bottle, and repeat the 

process. 

This method ensures the formation of a saturated solution of zinc and mercurous sulphates in water. 

The presence of the free mercury throughout the paste preserves the basicity of the salt, and is of the 

utmost importance. 

Contact is made with the mercury by means of a platinum wii’e about No. 22 gauge. This is 

protected from contact with the other materials of the cell by being sealed into a glass tube. The ends 

of the wire project from the ends of the tube ; one end forms the terminal, the other end and a portion 

of the glass tube dip into the mercury. 

To set up the Cell. 

The cell may conveniently be set up in a small test tube of about 2 cm. diameter, and 6 or 7 cm. 

deep. Place the mercury in the bottom of this tube, filling it to a depth of, say, l-5 cm. Cut a cork 

about '5 cm. thick to fit the tube; at one side of the cork bore a hole through which the zinc rod can 

pass tightly; at the other side bore another hole for the glass tube which covers the platinum wire; at 

the edge of the cork cut a nick through which the air can pass when the cork is pushed into the tube. 

Pass the zinc rod about 1 cm. through the cork. 

Clean the glass tube and platinum wire carefully, then heat the exposed end of the platinum red hot 

and insert it in the mercury in the test tube, taking care that the whole of the exposed platinum is 

covered. 
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Shake up the paste and introduce it without contact with the upper part of the walls of the test tube, 

filling the tube above the mercury to a depth of rather more than 2 cm. 

Then insert the cork and zinc rod, passing the glass tube through the hole prepared for it. Pash 

the cork gently down until its lower surface is nearly in contact with the liquid. The air will thus be 

nearly all expelled, and the cell should be left in this condition for at least 24 hours before sealing, 

whieh should be done as follows. 

Melt some marine glue until it is fluid enough to pour by its own weight, and pour it into the tes 

tube above the cork, using sufficient to cover completely the zinc and soldering. The glass tube should 

project above the top of the marine glue. 

The cell thus set up may be mounted in any desirable manner. It is convenient to arrange the 

mounting so that the cell may be immersed in a water bath up to the level of, say, the upper surface of 

the cork. Its temperature can then be determined more accurately than is possible when the cell 

is in air. 

It is clearly desirable to determine whether these instructions are sufficient to 

enable different makers to produce cells having the same E.M.F., and to investigate 

in what points a slight departure from the instructions may be made without 

materially affecting the E.M.F. of the cell. 

The following paper contains an attempt to answer the questions :— 

(1.) How far cells made with different samples of materials have the same E.M.F. ? , 

(2.) How far batches of cells from different makers agree with our standard ? 

(3.) What are the chief sources of variation in a Clark cell? 

We have examined over 100 cells, of which we shall now give the details. 

The values have generally been given in terms of the cell No. 1, constructed by Lord 

Rayleigh over eight years ago. 

The constancy of this cell has been ascertained by comparison with other standards, 

and by the fact that it was our ultimate standard of reference for the absolute value 

of the E.M.F. in the investigation already described. The result of this agrees 

almost exactly with Lord Rayleigh’s. 

The method of comparison already described in Part I. has been employed in all 

the later comparisons. Two Leclanche cells are allowed to work through two 

resistance boxes, with a total resistance of 10,000 ohms, in circuit. One of the 

Clarks, usually the bottle cell, is connected through a galvanometer and a high 

resistance to two points on this circuit, and the resistances adjusted until the 

potential difference between these points just balances the E.M.F. of the Clark. 

This Clark is then connected in turn in opposition with the other cells of which the 

E.M.F. is required, and the difference between the electromotive forces of the two 

determined in terms of the fall of potential along the Leclanche circuit. 

We found that this fall of potential changed very slightly throughout our experi¬ 

ments. The fall corresponding to 1 ohm is very approximately '00025 volt, and we 

have expressed the differences between the various cells examined in terms of this 

unit. We will collect, in a series of Tables, the results obtained, together with 

descriptions of the method of construction. 

MDCCCXCII.—A. 4 F 
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§ 14. Tests on various Cells used as Standards. Cells set up by Lord Rayleigh, 

Dr. Schuster, Mr. Elder, and Mr. Callendar. 

Table II. refers to cells of which most were not made by ourselves, but which have 

either been in the Laboratory for some time or have been lent us by other makers. 

In some cases comparisons of an early date made by other experimenters have been 

included. In such cases the standard used is not always quite definite, but details 

will be given. We proceed to describe the cells. 

Cell No. 1.—This is our standard cell, made in 1883 by Lord Rayleigh, probably 

the No. 4 of his paper, ‘ Phil. Trans.,’ 1884 : “ It was prepared generally according to 

directions given by Dr. Alder Wright (‘Phil. Mag.,’ July, 1883). The saturated 

solution of zinc sulphate was nearly neutral. The metallic zinc was bought as pure 

from Messrs. Hopkin and Williams. The mercurous sulphate was from the same 

source, and the mercury was re-distilled in the laboratory.” 

Cell No. 2.—Two other cells, probably Nos. 8 and 9 of Lord Rayleigh’s jiaper, were 

left by him in Cambridge. They were set up in January, 1884. One of these has 

since dried up, the other is our Cell No. 2. The same materials as for the Cell No. 1 

were used. According to Lord Rayleigh’s tests, when first made, they were slightly 

higher—by some two or three of our units, than our Cell No. 1. 

Cells Nos. 3a, 3, 4, 5.—These are cells of the Hform suggested by Lord Rayleigh, 

made in 1886, at Wellington College, by Mr. H. M. Elder. Originally there were 

five cells ; the other has been destroyed through the bursting of the tube containing 

the zinc amalgam. They were prepared according to the descriptions given by Lord 

Rayleigh in his paper, from materials obtained from various sources, and when tested 

soon after being made, were fairly close to his standard. 

The first set of comparisons cpioted were made by Mr. E. H. Griffiths, who, at 

the same date, tested the Rayleigh cells Nos. 1 and 2. 

Cells Nos. 6, 7, 8, 9, 10, are five cells made in 1886, by Mr. H. L. Callendar, 

marked by him as I., II., III., IV., V. They are of the pattern described by Lord 

Rayleigh in his Second Paper, ‘ Phil. Trans.,’ 1885. It will be convenient to quote 

here his directions, as they will be frequently referred to. 

“ The zinc sulphate is prepared in a flask by mixing distilled water with about twice 

its weight of crystals. A little carbonate of zinc is added to neutralize the free acid, 

and the solution is effected with the aid of gentle heat. If time can be afforded, it 

is a good plan to let the solution stand, as a good deal of iron is usually deposited, 

even when ‘ pure ’ zinc sulphate is used. The solution may then be filtered in a warm 

place, into the stock-bottle. 

“ When it is intended to charge H cells, or to prepare paste, the bottle should be 

exposed to gentle warmth for a few hours, and the solution drawn with a pipette from 

near the crystals at the bottom of the bottle. Otherwise there is no security that the 

liquid used will be saturated. 
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“ To prepare paste we may rub up together in a mortar 150 gTms. mercurous sulphate, 

as purchased, 5 grms. zinc carbonate, and as much of the saturated solution as is 

required to make a thick paste. Carbonic anhydride is liberated, and must be allowed 

a sufficient time to separate. I have found it convenient to leave the paste in a mortar 

for two or three days, rubbing it up at intervals with additions of the zinc sulphate 

solution, until the gas has escaped. By the addition of a small crystal, and by 

evaporation, we have security that the paste is saturated, and will remain so, not¬ 

withstanding such moderate elevation of temperature as the cells are expected to bear. 

The paste may then be transferred to a tightly corked bottle, and, so far as my 

experience extends, will remain available for many months at least. Before pouring 

the bottle of paste should be well shaken up.” 

Fig. 3. 

Sealing wax' 

The cell takes the form of a small tube with the platinum wire sealed in at 

its lower end. (See fig. 3.) “In charging the cells the first step is to pour in 

sufficient pure mercury to cover the platinum effectively. The paste is introduced 

with the aid of a small funnel, care being taken not to soil the sides above the 

proper level. The rods, cut from rods of pure zinc, as supplied by Hopkin and 

Williams and not re-cast, are soldered to copper wires and cleaned in the lathe. 

Just before use they are dipped in dilute sulphuric acid, washed in distilled water, 

and dried with a clean cloth or filter paper. Each zinc is mounted in a short 

piece of cork fitting the tube (but not too tightly) and nicked in order to allow 

of the passage of air. The cork is pushed gradually down until its lower face 

is almost in contact with the paste. The object is to leave but little air, and at the 

4 f 2 
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same time to avoid squeezing up the paste between the cork and the glass. The 

whole is now made tight by pouring marine glue over the cork, high enough to cover 

the zinc and soldering and leave only the wire projecting. The tube should rise high 

enough to receive the glue and thus secure a good adhesion. 

In the operation of pouring in the marine glue the glass is heated by the glue 

sufficiently for adhesion ; but this heat does not extend appreciably below the cork. 

Neither in this nor in any other stage of the process of charging is heat applied to 

the paste." 

Mr. Callendar’s cells were prepared in this way, except that the zinc sulphate 

solution was boiled with zinc oxide. Lord Rayleigh recommends the use of “gentle 

heat,” not boiling. The area of the zinc immersed is various in the different cells, 

being small in No. 6, large in Nos. 9 and 8. These cells have always been very close 

to the standard. They were compared with the standard No. 1 by Mr. Griffiths, 

in August, 1890. In February, 1891, they were taken to London and compared 

there with the cells in the possession of the Board of Trade. 

Cell No. 90.-—This is a large cell made in a wide-mouthed bottle, about 10 cm. 

high and 7 or 8 cm. in diameter, by one of us (S. S.) in July, 1891. The paste was 

prepared according to the Board of Trade memorandum, and is the same as that used 

in cells Nos. 71-79. (See later, p. 603.) 

The zinc was ordinary commercial plate zinc not amalgamated. At first the cell 

was too high by 25 of our units ; crystals of zinc sulphate were dropped in on July 9, 

and on July 10 it was 14 units too high. From this date onwards the tests are given 

in the Table. 

Cell No. 97.—A large cell set up by Professor Schuster, and brought by R.T.G. from 

Manchester, on July 11. The cell is set up in a kind of small Woulfe’s bottle about 

5 cm. across, and some 7 or 8 cm. high. The central opening at the top contains a 

thermometer ; the zinc and platinum pass in glass tubes through the other openings, 

being secured with sealing wax into glass tubes. There is also a mercury valve 

which permits of the escape of gas if any is evolved. 

Dr. Schuster writes as follows of the cell:—“ The cell was made with mercurous 

sulphate prepared and treated as follows :—Mercurous nitrate was prepared by 

dissolving mercury in nitric acid and boiling up the solution thus formed with mercury 

in a flat-bottomed ilask, the mercury completely covering the bottom of the flask. 

The salt was crystallised out from the solution and dried with filter paper. The 

mercurous nitrate was then dissolved in an 8 per. cent, solution of nitric acid and 

precipitated with sodium sulphate. The precipitate was filtered, washed, and strained 

by pressure, then once washed with a saturated solution of zinc sulphate. The 

sulphate was then boiled for half-an-hour in a conical flat-bottomed flask containing 

enough mercury to cover the bottom, some zinc sulphate solution and crystals being- 

added before treating ; the mercurous sulphate was then transferred directly to the 

cells, the E.M.F. directly after setting up (April 30) was — 28, the unit being 10~4 



CLARK CELL AS A STANDARD OE ELECTROMOTIVE FORCE. 589 

of a Clark cell. On May 5, it was — 12, and on May 25, ff; 0, the standard being 

an old carefully prepared small cell agreeing closely with a number of other cells. 

About a dozen comparisons were made between the end of May and July 11, and it 

was within a few parts in 10,000 of the standard always.” 

These last two cells could be immersed in a water bath, and were always so used, 

side by side. The two Rayleigh cells Nos. 1 and 2, were enclosed in two large test 

tubes, and these were immersed in water. In some of the earlier experiments they 

could not conveniently be put into the same bath as Nos. 90 and 97 ; in the later 

experiments the four cells were side by side. Even when this was done there was 

some slight uncertainty as to the temperatures of Nos. 1 and 2, on occasions when the 

temperature of the air differed by 1° or so from that of the bath ; for then the tem¬ 

perature given by a thermometer placed in the test tubes with the cells, differed 

somewhat from that of the water. In these cases the temperature of the thermometer 

in the tube was taken as the temperature of the cell. The other cells could not be 

immersed, and their temperatures were taken by a thermometer supported close to 

them. As in all cases, with one exception noted below, in which experiments were 

made, the air temperature varied very slowly, the uncertainty introduced was not 

large. In the numbers given in the Table, allowance has been made for the difference 

in temperature, if any, between the cells and the standard. The numbers are reduced 

on the assumption that the standard has the same temperature as the cell, and that 

its E.M.F decreases by 4’3 of our units per 1° C., and give the excess of the E.M.F. of 

the cell in question over our Standard No. 1 in all cases except those in which there 

is a special note. 

It will be seen from the Table that the Cells 1, 2, 90, and 97, remained very close 

together throughout, and that too, over a considerable range of temperature. An 

exception must be made for No. 97 on November 3, when it was unaccountably low. 

Finding it remain so, we removed the zinc by withdrawing the glass stopper, and 

rubbed it on a clean silk handkerchief. We also dried and rubbed with emery cloth 

the upper part of the cell and the ebonite terminals to which the wires were attached. 

After this the cell recovered its value. 

The experiments on November 19 were made with the object of testing the effect of 

a rather sudden change of temperature. The heating apparatus in the room had been 

turned off for about a week previous to November 18. After the observations of that 

day it was turned on, and the temperature of the bath rose about 5° C. in 24 hours. 

It will be seen that the cells are all wrong. The large cells 90 and 97 are too high 

(assuming the standard right). They have the E.M.F. corresponding to a lower tem¬ 

perature, lower by about 20,5 C. The liquid which was saturated at 80,5 has not had 

time to reach the state of saturation corresponding to the new condition. But the 

standard is itself too high, for No. 2 has fallen with respect to it bv some seven divisions. 

Now No. 2 is a smaller cell than No. 1 and contains more liquid. The zinc 

sulphate in No. 1 is very full of crystals, and it is reasonable to suppose that it takes 



T
a
b
le
 
I
I
. 

590 MESSRS. R. T. GLAZEBROOK AND S. SKINNER ON THE 

T68I ‘IT Amnucp 
CM 

00 
rH 

! 

'S681 ‘6 xIoa'BW 
lit 
I—1 r—H 

I 1 cq co ^ co 

•1681 ‘ZZ -isqmoooQ o o i ..... Id o 1 ..... 
1 

•1681 ‘91 Jaqraaooa 15
-6

 

15
-4

 

-1
 0 1 16
-2

 

3 0 3 3 2 

’1681 ‘l -laqraooaa 16
 

15
-5

 

O O S3 ! 

•1681 ‘Z Jaqraoooa 
I>» lit) 
rH rH 

cq cq co • I ! ! I I 
1 

'1681 ‘08 .iaqtaoAo^ 13
-3

 

12
-9

 

rH O rH • • • • • • 

1 

‘1681 ‘SZ J9qm9A0_M 14
T

 

13
T

 

O rH r-H . • • • • • 

’1681 ‘61 JaqraeAOft 
OO 00 
CO CO 
rH rH -

 
9 14

 

11
 

‘1681 ‘81 -raqmoAojsj 
JlO lit) 
CD GO Ol CO O I ] ' 

1 

T68I ‘fl "laqnxoAoj^ 
CM CM 

CG Oti 

-
2

 2 

-1
 

1
1

1
 

-
 

8 

-2
0

 

-
 

9 

-
 

7 3 5 5 5 3 

- [681 ‘8 -laqaioAoj^ 14
-2

 

14
-2

 

1 1 

*1681 ‘I JaqmoAo^ 11
1 

1
1

1
 

. ^ CM . 

1 

‘1681 ‘ZZ IsnSny cb <*b i—H f—i 1 

•1681 ‘01 IsnSny cb cb 
rH r—t 

-
2

 

1
 1 

17
-4

 

3 3 4 4 3 
’1681 ‘9 IsnSny 

lit 
cb cb 
I-H rH 

CO 
CM (d rH J^COCOI^OrHrHdrHi-H 

1 ^ 1 1 1 1 

•1681 ‘0Z 
CO 00 

hH 
. lit ^ . 

'1681 ‘is 15
-2

 

15
-2

 

0
 

15
-2

 

-
3

 

-6
 

-
5

 

—
5

 

•1681 ‘Annuqstf ; : 
. . . CO . . . . rH CO o o o 

^ • 1 1 

•0681 ‘isnSny 15
 

15
 

-
2

 

-
4

 

-
5

 

-
2

 

-
2

 

-
1

 

0
 

0
 

CG 

HH 
O 

H—1 
o 

-HH 
o 

9 
3 

o 
cq 

0
6

 97
 <D 

$ CO CO H< lit co 00 05 

1
0

 

3 
PH 
a> 
Ph 

o 
£ 

p. 
CD 
Ph 

o 

a 
<15 

EH 
o 

Q 

s 
05 

Eh O 

C
o

m
p

a
ri

so
n
 w

it
h
 t

h
e
 B

o
a
rd

 o
f 

T
ra

d
e
 
S

ta
n

d
a
rd

. 



CLARK CELL AS A STANDARD OF ELECTROMOTIVE FORCE. 591 

this semi-solid mass longer to reach the equilibrium condition than is required for the 

liquid in No 2. 

To obtain the observations on December 22, the heating apparatus had been 

turned off and the windows of the room left open on the two previous nights. 

On December 21 there was a thick coating of ice on the bath which continued for 

one or two days; longer observations were made on December 22. Dr. Schuster’s 

cell, No. 97, had been taken to London a few days previously. 

A number of observations on the difference between the Cell No. 90 and the 

standard were made during the absolute determination of the E.M.F. Several of 

these confirm the fact that No. 90 gained its temperature equilibrium more slowly 

than No. 1. Thus, between the morning and evening of August 14, the tempera¬ 

ture of the bath rose by 1°. The difference between No. 90 and No. 1 increased from 

2 to 5 units. 

Other observations again showed that it takes some time for No. 1 to change its 

value. Thus, on August 15, the bath was at 18°‘l, and the air in the test tube 

round No. 1 was about 0U‘5 higher; the difference in E.M.F. between Nos. 90 and 1 

was 5. No. 1 was then taken out of the test tube and placed in the bath with 

No. 90. In about three hours the difference had fallen to 3, at which it remained 

for some time. 

Similar effects were noted again during the early part of this year. On January 19 

the room had been cooled down to about 9° C. About a week later the difference 

between No. 90 and No. 1 was 11, the temperature being 13°. The next day the 

difference was 8, and it was noticed that there was a thick compact layer of crystals 

at the bottom of the clear liquid. The cell was slightly shaken so as to mix up the 

sulphate of zinc which was clearly saturated below, but not above. The next day, 

Tuesday, January 26, the cells were together. On January 28, the temperature 

having risen to 15°, the difference had increased to 4 ; this increased to 5 the next 

day, the temperature of both cells being 16°, and some time more elapsed before the 

cells again came together. 

It will be seen that the other cells are fairly near the standard. 

Mr. Elder’s H cells, 3a-5, are slightly too low, and it would appear as if their 

temperature coefficients were different. 

The observation for No. 3, on November 14, shows distinct change, but we cannot 

attach great weight to the one isolated observation. It must be remembered, also, 

that it is difficult to read the temperature with great exactness. 

It would appear as if Mr. Callendar’s cells, Nos. 6-10, had risen in value 

between February and August. This is quite possible, for the insulation was 

originally somewhat defective—the wires from both poles of each cell were fastened 

down to a piece of deal. 

It is probable, however, that their temperature, specially on November 14, is not 

very accurately known. The temperature of the room on that day, as indicated by a 
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thermometer placed near the cells, rose by about 0°'4 in about an hour previous to the 

experiment, it is probable, therefore, that the E.M.F. of the cells corresponds to a 

temperature some few tenths lower than that given, and that the numbers are slightly 

too high; in any case the differences are small. 

§ 15. Tests on Old Cells in the Cavendish Laboratory. 

The cells of this set have been made at various dates by members of the advanced 

class in practical electricity at the Cavendish Laboratory, and are all of the pattern 

described by Lord Rayleigh (‘Phil. Trans.,’ 1885). Their comparison was begun 

in November, 1889, and has been continued. The standard against which the earlier 

comparisons up to December, 1889, were made is slightly doubtful, and also the 

temperature at which these were made. 

The cells are interesting, for they show the kind of accuracy reached by experi¬ 

menters putting up one or two cells from printed directions, with only such help as is 

usually given by the demonstrator. The materials have been purchased from the 

same sources as they were at the time when Lord Rayleigh was at Cambridge, and so 

they may be taken to be of approximately the same quality. Several cells belonging 

to this set have unfortunately been broken. Cell No. 23, which shows a very high 

E.M.F., is known to have been unsaturated with ZnS04. 

Table III. 

Date. Nov. 7, 
1889. 

Nov. 13, 
1889. 

Dec. 3, 
1889. 

Mar. 16, 
1891. 

Mar. 21, 
1891. 

April 21, 
1891. 

May 2, 
1891. 

May 21, 
1891. 

Aug. 11, 
1891. 

Tempera¬ 
ture. 

I 
i " 

13° 10° 13° 16°’4 15°-2 17°-6 

Number 
11 + 4 + 0 - 4 + 1 - 3 -3 -5 -1 
12 + 2 + 8 - 5 - 0-5 - 5 -4 -6 -4 
13 + 8 + 8 - 1 - 1 — 2 -3 -5 -1 
14 - 4 + 2 - 9-5 + 4 -11 -4 -5 + 2 
16 + 8 + 16 - 0-5 - 2 + 1-5 + 7 -3 + 3 
17 + 64 + 16 - 5 -10 - 5-5 + 2 -3 + 6 
19 . . , # + 6 + o - 6 - 1 
20 . . , # , , + o + 1 - 2-5 
21 - 4 + 6 + 0 - 2 - 7 - 5 
22 . . - 2 + o + 2 - 3 
23 + 32 + 36 + 28 + 31 
24 • * + 8 + 2 + 2 + 0 + 1 

In these cells the paste was neutralised with zinc carbonate. 
W e come now to the observations on cells set up for the purposes of this enquiry. 
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§ 16. Treatment of the Mercurous Sulphate. 

In studying the effect of variations in the materials, the impurities usually found 

in the mercurous sulphate appeared to be of primary importance. It is not easy to 

purchase this substance in a state of purity. The common preparations usually met 

with are either grey or very white. The grey powder contains mercury in excess ; 

this does not appear to be hurtful to the cell; the white contains a considerable 

quantity of mercuric sulphate. This is shown by the substance turning yellow on 

adding water, with the formation of turpeth mineral or basic mercuric sulphate. 

This also is not harmful in small quantities, but its presence shews that the original 

powder has contained mercuric sulphate. This has been resolved by the water with 

the formation of the yellow substance and a soluble acid mercuric sulphate, and 

unless this process is complete and all traces of the original mercuric salt have been 

removed, error will be introduced.* Thus good cells may be set up with paste which 

is yellow at starting, provided the change is complete, but if the paste of a cell turns 

yellow after the cell has been made, it means that the mercuric salt is present, and 

this affects the E.M.F. On treating a sample containing mercuric sulphate with 

mercury, the mercuric sulphate is converted into mercurous, and may be used 

with safety. 

The fact that the mercury mixes shows, as Mr. Swinburne has remarked, that the 

sulphate is bad, but the result of the mixing is that the evil is cured. This, then, is 

the rationale of the method of preparing the paste given in the memorandum. The 

washing with water resolves most, if not all, of the mercuric salt present into the 

yellow basic sulphate 3HgO.SOs, and the soluble sulphate HgS04.2S03; the latter is 

dissolved and removed. The shaking with mercury at a temperature near 30° removes 

any further traces of the acid mercuric salt. The temperature should not exceed 30°, 

for, when, cooling from a temperature in excess of this, crystals may form which are 

not of the proper composition ZnS04.7H20. 

§ 17. Cells set up by Mr. L. It. Wilberforce, March, 1891. 

This set of cells was made by Mr. L. It. Wilberforce during March, 1891 (probably 

on March 19), and are in short test tubes with platinum wires fused through 

their bases for terminals. They cannot, therefore, be directly immersed in water. 

They were constructed with a view of finding the alterations in E.M.F. which 

would result from slight modifications in the materials and in the modes of pre¬ 

paring the cells. The last tests show them to be all in very close agreement 

amongst themselves and with cell No. 1. 

* According to Watts’ ‘ Dictionary ’ the mercuric sulphate in presence of water becomes 

/HgS04.2S03 soluble. 
\3HgO.SCL turpeth mineral. 

4 U MDCCCXCII.—A. 
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We shall now describe the materials of which these cells were prepared. 

The zinc rods in all were of pure stick zinc from Messrs. Johnson and Matthey. 

They were cleaned with a file and sand-paper, and generally washed in a little dilute 

sulphuric acid. They were allowed to stand in distilled water until required for use, 

when they were carefully dried. 

The nature of each of the materials used in setting up the cells is indicated by 

Greek letters a ... k in the earlier columns of the Table (p. 596). 

a is a saturated solution of zinc sulphate prepared by boiling a strong solution 

with zinc oxide, filtering whilst hot to remove excess of zinc oxide, and again when 

cold to remove the basic zinc sulphate ZnO.ZnS04, which had then crystallised. 

Afterwards it was evaporated to such a strength that crystals of ZnS04.7H30 

separated at the temperature of the room. The solution was so thoroughly 

neutralised that it only turned a blue litmus paper to a port-wine colour. Although 

great care had been thus taken to remove all basic zinc sulphate, it is very probable 

that the solution still contained some traces of this compound. 

/3 is a saturated solution of zinc sulphate prepared entirely below 30° C. Zinc 

carbonate was added to remove any excess of acid. This solution, when cooled to the 

temperature of the room, deposited crystals which were, without doubt, ZnS04.7H30. 

It turned a blue litmus to a port-wine colour. The reason for limiting the heating to 

30° only was to ensure that the crystals separated on cooling should contain the 

right number of molecules of water of crystallisation. Solutions which deposit 

crystals above this temperature may give hydrates containing less water. The zinc 

sulphate had been prepared according to the directions of the c British Pharmacopoeia,’ 

and was marked (Brit. Pharm.). 

For the mercurous sulphate five different specimens were tried. 

y and e are two samples of paste prepared in the same way from a specimen of 

mercurous sulphate supplied by Messrs. Harrington, of Cork. This substance was 

not pure, it contained some mercuric and basic mercuric sulphates, which was clearly 

shown by its turning bright yellow on adding water. These pastes were prepared by 

mixing at the temperature of the room some of the mercurous sulphate, a little pure 

mercury, and sufficient of the saturated zinc sulphate /3 to make a cream. This was 

vigorously shaken at intervals for two days before use. In general appearance it was 

white, with minute grey globules, which were collected in a more dense layer in the 

lower part of the bottle. 

§ and £. These pastes were prepared at the temperature of the room from very 

pure mercurous sulphate and the zinc sulphate solutions a and j8. The mercurous 

sulphate was prepared at the laboratory by precipitating pure mercurous nitrate 

(which was obtained by allowing an excess of pure mercury to stand with nitric acid), 

with sodium or potassium sulphate, when mercurous sulphate falls down as a white 

crystalline powder, and the nitrate of the alkaline metal remains in solution. This 

white precipitate is collected on a filter paper and washed with cold distilled water 
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until the washings no longer give any reaction for a nitrate. It is useless to test the 

wash water for sulphate as mercurous sulphate is slightly soluble in water. The 

moist precipitate, after proper washing, is dried in a current of air at about 17° C. 

Prepared in this way, the powder, which is dull white, will not become yellow when 

moistened with water, nor will the water give an acid reaction. There is no mercuric 

sulphate present. It will slowly become grey if, whilst moist, it be exposed to light. 

£ is a paste containing mercurous sulphate prepared according to this method. In the 

preparation of the mercurous sulphate for 8, however, very dilute solutions were used 

so that no immediate precipitate of sulphate came down. After four or five days 

white crystals about | to 1 millim. in diameter separated. This is the purest 

mercurous sulphate we have used.'* 

rj. The sample of mercurous sulphate in these cells was prepared from mercuric 

sulphate by reducing it with an excess of pure mercury. The white mercuric salt is 

placed in a mortar, and some pure mercury added, with sufficient water to convert 

the whole into a paste ; it is then ground until the whole becomes grey. The end of 

the reaction is easily recognised by the appearance of the surface of the globules of 

mercury, for, during the time that chemical action is going on, their surfaces will 

appear tarnished. The sulphate prepared in this way is grey with excess of mercury. 

The various samples of mercury are denoted by 6, i, and k. 

9. Pure mercury distilled under reduced pressure in the laboratory. 

l. Mercury which had been used for general purposes, and was only filtered before 

being used for the cells. 

k. Mercury distilled in a small glass retort at atmospheric pressure. 

* A very useful suggestion is made by Mi’. Swinburne in his paper before the British Association, 1891, 

in which he recommends the use of zinc sulphate solution for the purpose of precipitating the mercurous 

sulphate, and washing with saturated zinc sulphate to remove zinc nitrate. The sulphate then does not 

require drying. 

4 G 2 
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10 13 17 15 16-8 17-8 10-8 16-5 

Number. 
25 OC 7 6 - 2 1 2 1 -1 2 2 0 
26 oc 7 0 - 3 4 8 5 0 4 4 2 
27 oc s 0 1 6 7 6 0 3 2 2 
28 oc s 0 0 5 10 3 0 4 3 6 
29 oc € 0 - 2 - 1 1 3 1 2 1 -1 N 0 crystals 

30 oc € 0 - 8 1 5 0 -2 2 2 4 
added 

Much crystals 

31 P r i -40 -16 -12 4 -1 3 6 3 
added 

32 p r L -51 -28 -19 -25 -1 4 6 3 
33 P r K - 3 1 3 2 1 5 4 2 
34 P V K - 9 2 3 0 -1 4 4 0 
35 P V 

K - 5 - 8 — 2 - 6 — 2 3 4 2 

The results are of much interest. All the cells are now within about 1 in 1000 

of the standard ; for, as we have said, one of our units is '00025 volt; thus six of 

these units is *0015 volt, or rather over ] in 1000. The first six cells have been, 

it will be seen, nearly right from the beginning; those with the good mercurous 

sulphate S were, two days after being set up, extremely ^ close to the standard, while 

25 and 26, 29 and 30, in which the bad sulphates, y and e, were used after treatment 

with the mercury, were rather too low. Nos. 31 and 32 were originally far too low 4 

this would appear to be due to impurity in the mercury, for the zinc and mercurous 

sulphates were good, while the mercury was only cleaned by filtering. Moreover 

No. 33, which only differs from No. 32 in having distilled mercury, is nearly right. 

The mercury used in Nos. 33, 34, 35 was distilled at atmospheric pressure, and the 

somewhat low results given by these cells may be due to this ; in the case of Nos. 34 

and 35 it would appear more likely that they have a similar source to the low 

numbers found in Nos. 25, 26, 27, and 30. The differences of E.M.F. had, however, 

been considerably reduced, except in the case of No. 32, some two months after 

making the cells, while at the next observation, after an interval of three months 

more, the differences had practically vanished. I11 the first three comparisons the 

reference to the standard was somewhat indirect; the absolute values of the numbers 

given cannot be trusted to very high accuracy, and the temperature is a little 

uncertain. It appears as if the values of the E.M.F. of Nos. 31 and 32 are still 

rising. 
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This set then shows the tendency of Clark cells made with different materials to 

settle down to the same value in time. 

§18. Cells set up by S.S. in March and April, 1891. 

This set of cells are all in short test tubes of the Rayleigh pattern, and were 

set up by one of us (S.S.) in March and April, 1891. They contain materials which 

are indicated as above by Greek letters. Some of these are the same as wrere used by 

Mr. Wilberforoe ; particulars of the others are given. \. This paste was prepared 

from Harrington’s specimen of mercurous sulphate, which was washed by decan¬ 

tation and on a filter paper until the washings were no longer acid. During this 

operation the paste became yellow from the conversion of the mercuric sulphate present 

into basic mercuric sulphate and sulphuric acid. The basic mercuric sulphate or 

turpeth mineral being insoluble, remained with the mercurous sulphate, whilst the 

acid passed away with the washings. After washing, pure mercury was mixed with 

the paste, and heated with it in a pan of boiling water, with the view of attacking 

any yet undecomposed mercuric sulphate. The paste was allowed to remain with the 

mercury for two or three days, and then it was dried at the room temperature. To 

prepare it for use in the cells it was rubbed with saturated zinc sulphate to the con¬ 

sistence of a cream. The paste, therefore, contained mercurous sulphate, zinc sulphate, 

mercury, and traces of basic mercuric sulphate. This was an attempt to prepare the 

paste in accordance with instructions given verbally to one of us (R.T.G.) by Dr. 

Alexander Muirhead, to whose great knowledge of the subject we are much indebted. 

Different mercury was used in some of these cells. This (p) was a sample treated 

with nitric acid for some days, then washed and afterwards distilled in vacuo. 

It will be seen from Table V. that the cells all start by being too low, but that in 

from three to four weeks of the time they were set up, the first seven, those made in 

March, have attained a steady value not far from the standard. The observation of 

52, on August 7, is abnormal. The first six cells were lent for some other experi¬ 

ments in August. 

The cells 50 and 51, made of the same materials as 25 and 26. agree with them in 

being too low. At first, the cells in which the mercury k was used, are a good deal 

too low. Nos. 48 and 49 are of the same material as 27 and 28. 

The first two tests recorded on these cells, made immediately after the cells were 

set up, were very rough, being performed by joining the cell up in opposition with 

another Clark, and passing a current from the two through a galvanometer and 

20,000 ohms. They were merely intended to see that there was no great error. They 

give us, however, some important information, for the E.M.F. sank rapidly between 

March 17 and March 21, but regained its normal value by April 12. 

The observations, given in Table IV., on Mr. Wilberforce’s cells, Nos. 25-35, 

were made two days after they were set up, and we do not possess for them in such 
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full detail the same information as to the changes which occur immediately after 

setting up. These do not occur in the cells 50, 51, and 53, at least to so marked an 

extent, but the effect is shown in 52. 

Now, Nos. 50 and 51 are made of the same materials but crystals of zinc sulphate 

were added to 50, and the zinc rod was pushed a good deal further down so as to be 

well immersed in the paste which settles above the mercury. This may produce an 

important difference. 

Nos. 57 and 58 were made simultaneously on April 25. The liquid used was 

purposely not warmed at all, and had been standing for some time in the room. It 

was saturated at the temperature of the room. The two cells agree in having a 

smaller temperature coefficient than the standard, but they differ in E.M.F. There 

is probably some slight difference in the temperatures at which the two are saturated. 

The results are only of interest as emphasising the importance often insisted on by 

others of introducing crystals of zinc sulphate, and making sure that they are in 

excess at all the temperatures at which the cell will be used. 

In cells 59 and 60 the treatment was the same, except that in 59 the zinc rod was 

washed as usual with dilute sulphuric acid, and in 60 this was omitted. No. 60 has 

agreed with the standard throughout, in No. 59 there was a sudden and unexplained 

drop in E.M.F. between May 21 and August 7. Of the above cells, Nos. 57 and 58 

are not Clark cells as defined in the specification. The others, with the exception 

of No. 59, attained their normal value within a month of being set up, and have 

retained it since. 

§ 19. Cells of Modified Pattern set up by L.R.W. and S.S. in March, 1891. 

The next set of cells were put up in the form indicated in the Board of Trade 

specification, p. 601, though at some time previous to its issue. The test tubes used, 

however, were rather larger, being about 10 cm. high and 2 to 2'5 in diameter. The 

platinum wires making contact with the mercury are enclosed in glass tubes, and 

were heated to a red heat before being placed in the mercury, so that proper contact 

was ensured. 

Nos. 36 to 41 were put up by Mr. Wilberforce on March 18. In the first three 

the platinum wire is sealed into the glass tube which encloses it, in the last three 

this has not been done. On April 21 Nos. 36, 37, 40, and 41 were much too low, and 

it was noticed that there was a thick grey deposit on the zincs, the zincs from these 

cells and from No. 38 were withdrawn and scraped, they were then replaced and 

again tested, the results are somewhat too high, but from that time on, with the 

exception of No. 41, they have been fairly consistent. Nos. 61, 62, 63 were cells of 

the same pattern, made on March 18, by one of us (S.S.), at the same time as No. 56 

and of the same materials, while No. 64 was made in the same way as No. 60 on 

Apri] 24. 
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The Table shows that while Nos. 62 and 64 are about right, Nos. 61 and 63 were 

decidedly too low, though at the time of the latest tests they are all fairly close 

together. Rough tests of the cells had been made on March 20, one or two days 

after they were set up. It will be seen that they were then too low, but that they 

afterwards got worse. 

It thus appears that many of the cells we have examined up to this date began by 

being low, and that this fault increases at first; a grey deposit is also formed on the 

zinc. After a time, however, in most cases a change takes place, and in about a 

month or so the cells have ordinarily come right. In the case of this last set the 

natural development was stopped, and the fault corrected by scraping the zincs and 

removing the deposit. 

It should also be noticed that the solutions are very free from acid. 

§ 20. First Form of Board of Trade Specif cation and Cells Set up in 

accordance with it. 

Early in May a provisional memorandum on the cell was prepared, and on May 25 

six cells, Nos. 65 to 70, were set up by one of us (S.S.) in accordance with it. 

Hopkin and Williams’ mercurous sulphate was used and treated as prescribed in 

the memorandum annexed. 

Memorandum on the Preparation of the Clark’s Standard Cell. 

Definition of the Cell. 

The cell consists of zinc and mercury in a saturated solution of zinc sulphate and mercurous sulphate 

in water, prepared with mercurous sulphate in excess, and is conveniently contained in a cylindrical 

glass vessel. 

Preparation of the Materials. 

1. The Mercury.—To secure purity it should first be treated with acid in the usual manner, and 

subsequently distilled in vacuo. 

2. The Zinc.—Take a portion of a rod of pure zinc, solder to one end a piece of copper wire, clean the 

whole with glass paper, carefully removing any loose pieces of the zinc. Just before making up the cell 

dip the zinc into dilute sulphuric acid, wash with distilled water, and dry with a clean cloth or filter 

paper. 

3. The Zinc Sulphate Solution.—Prepare a zinc sulphate solution of pure (“pure re-crystallised”) 

zinc sulphate by mixing in a flask distilled water with about twice its weight of crystals of pure zinc 

sulphate, and adding a little zinc car’bonate to neutralise any free acid. The whole of the crystals 

should be dissolved with the aid of gentle heat; and the solution filtered, while still warm, into a stock 

bottle. Crystals will form as it cools, and when the solution is to be used a little should be taken from 

the bottom of the bottle near the crystals with a pipette. While this is being done the liquid should 

be at a decidedly higher temperature than that at which the cells will ordinarily be used. 

4. The Mercurous Sulphate.—Take mercurous sulphate, purchased as pure, and wash it with distilled 

water. Drain off as much of the water as possible. Mix the washed mercurous sulphate in a mortar 

with the zinc sulphate solution, adding sufficient crystals of zinc sulphate from the stock bottle and a 

small quantity of pure mercury. Mix these well together to form a paste of the consistence of cream, 

MDCCCXCII.—A. 4 H 



602 MESSRS. R. T. GLAZEBROOK AND S. SKINNER ON THE 

and then heat the paste sufficiently to dissolve the crystals, afterwards allowing the mixture to cool, and 

thus to form a saturated solution of mercurous sulphate in a saturated solution of zinc sulphate. The 

presence of the free mercury throughout the paste preserves the basicity of the salt, and is of the 

utmost importance. 

Contact is made with the mercury by means of a platinum wire about No. 22 gauge. This is pro¬ 

tected from contact with the other materials of the cell by being sealed into a glass tube. The ends of 

the wire project from the end of the tube; to one end a piece of copper wire is soldered, the other end 

and a portion of the glass tube dip into the mercury. 

When tested it was found that the E.M.F. of all the cells was about 1 per cent, too 

high, though they agreed fairly among themselves. The cells were not saturated with 

the zinc sulphate, and were probably acid as well. 

On May 26, Nos. 65 and 69 were opened, and crystals of zinc sulphate were 

inserted, while two days later 66 and 70 were also opened. Crystals were dropped 

into these latter cells and stirred into the paste. 

The history of the four cells thus treated is given in Table VII. On August 14 

Nos. 65, 69, and 70, with some other cells, were lent to Mr. E. H. Griffiths. The 

history of these cells is continued in Table IX. Nos. 66, 67, and 68 have been tested 

from time to time since, with the result that No. 66 is about right, while Nos. 67 and 

68 are not far apart, but are about 30 too high. 

Table VII. 

o ci 
CO r—1 rH r—1 CD 

Date. 
O AD AD l>» 00 CO CA o -P -P P -P 
CM CM CM CM CM CM Ol CO 02 cn 

P 
02 
P 

02 
P 3 

t>* >> t>* to cu bo c3 c3 P Cj p 2 
l-H PH § Pd 1 l-H f^ § < <3 <1 < 

Tempera- 
ture , . • • • • • • 14-5 • • • • 15 16-2 16-3 17-3 17-5 15 

Number 
65 67 * 30 33 19 # t 17 12 - 3 — 2 — 2 0 
66 67 . 0 73 66 fl6 14 21 10 8 7 9 - 4 
67 67 . . 71 65 60 59 60 61 . . 30 
68 62 , , 69 61 56 61 58 60 # , 30 
69 72 * 15 26 10 8 5 -2 - 2 — 2 0 , , 
70 68 • • 68 59 f24 18 19 5 3 o 4 

" 

It will be noticed that these unsaturated cells were fairly close together from the 

first, and show every sign of continuing to give results which, though wrong, are 

consistent among themselves. 

* Crystals of zinc sulphate were inserted. 

t Crystals of zinc sulphate were inserted and stirred into the paste. 
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§21. Cells set up in accordance with the Second Form of the Specification. 

Of tlie cells described in Table VIII., Nos. 71, 72, 73 were made on May 30. The 

paste was prepared according to Lord Rayleigh’s instructions, already quoted, from 

mercurous sulphate, supplied by Hopkin and Williams. The zinc rod was supplied 

by Harringtons, and is stated to contain a trace of iron. Before using the paste was 

shaken up with mercury. The mercury used in 72 and 73 was supplied by Hopkin 

and Williams as “ pure redistilled.” 

No. 71 is Muirhead’s portable form ; the platinum wire is bent into a spiral, and 

dipped while red-hot into mercury. There is no free mercury at the bottom of the 

test tube. 

Nos. 74, 75, 76 were made on June 3, and Nos. 77, 78, 79 on June 11, following 

the directions of the second form of the Board of Trade memorandum, which was 

issued June 23 (see p. 584). Mercury distilled in the laboratory was used; the zincs 

were from Harringtons, and the mercurous sulphate from Hopkin and Williams. 

The zinc sulphate, marked “Brit, Pharm.,” from Hopkin and Williams, was used in 

all the cells. The cells Nos. 71-76 were taken to the Board of Trade towards the 

end of June, and brought back to Cambridge on July 18. Nos. 77, 78, 79 were lent 

to Mr. Griffiths on August 14. Details of their further history are given in 

Table IX. 

It will be seen that the above cells, with the exception of No. 76, agreed with the 

standard to within one in a thousand from the beginning. 

No. 73 was somewhat low during three tests in June, resembling in this respect 

the cells already put up ; in all the other cases the agreement is very close. 

Two comparisons with the Board of Trade standards are given at the end of the 

Table. These will be discussed later. The cells were brought back to Cambridge on 

July 20. Two other cells, Nos. 86, 87, were made on July 20 in the same way, 

using mercurous sulphate from Bchuckharts. They were both within one of the 

standard. 

Table IX. gives the tests on the cells lent to Mr. Griffiths. He made careful 

daily comparisons, using No. 43 as a standard. The results of two of his observations 

are given in the first two columns; the others were quite consistent. Nos. 69 and 70 

were also treated by him as standards. The other four, Nos. 65, 77, 78, 79, were 

allowed to produce current through a resistance of 20,000 ohms. 

On September 13 the E.M.F. of No. 43 fell suddenly by nearly two per cent., and 

gradually recovered, regaining its normal value on September 17. On September L8 

No. 70 was too high, and continued so till September 23, when the tests ceased. 

On September 21 and 23 No. 43 was too low. 

4 h 2 
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Table IX. 

Date. Sept. 12. Sept. 17. Nov. 11. Nov. 23. Nov. 25. Dec. 2. Dec. 7. 

Tempera¬ 

ture. 
14-6 14-4 11-1 13-2 12-8 14-4 15-5 

65 0 0 0 — 4 0 0 -2 
69 1 1 -6 -2 -1 -1 -3 
70 -3 -3 — 2 -3 -2 0 -1 
77 -1 -4 3 — 2 1 -1 -1 
78 -1 -1 0 -5 -3 -1 -3 
79 -1 -1 -1 -4 -2 -1 -3 
43 S S 1 -1 1 1 0 

The cells were returned at the beginning of November. The tests given in 

Table IX. show that they have retained their E.M.F. with practically no change. 

Thus we may say that all the cells set up by us after the last date of the Board of 

Trade circular agree among themselves and with our standard to about one part in 

three thousand. 

§ 22. Errors Arising at the Zinc Pole. Effect of Amalgamation of the Zinc. 

After a cell has been made, the paste, which, when poured into the test tube is 

fairly homogeneous, and of the consistency of cream, separates into two portions. The 

more solid part, the mercurous sulphate, settles to the bottom, resting on the mercury, 

and a clear liquid remains on the top. The zinc rods used varied somewhat in length ; 

in some cells they were entirely in the clear liquid, in others they extended partly 

into the more solid portion below. Various observations had shown us that this 

might produce some difference in the behaviour of the ceil. 

The differences appear to arise from the fact that when the zinc rod touches the 

mercurous sulphate it becomes properly amalgamated. A small trace of iron in the 

zinc, or in the zinc sulphate solution, does not, then, produce any serious effect. If, 

however, the zinc is only in the clear liquid, the amalgamation does not always take 

place. The zinc, instead, frequently becomes covered with a grey deposit. This grey 

deposit consists in the main of mercury in very fine globules, and when it is formed 

all over the zinc the E.M.F. of the cell falls, and it becomes unsteady. 

The experiments recorded in Table X. show the effects of this deposit and of the 

method of treating it. 

The cells in question were six, Nos. 42-47, constructed towards the end of April by 

Mr. L. It. Wilberforce. The materials of the cells are indicated as above, by Greek 

letters. They are of the Board of Trade pattern, but rather larger, being put up in 

test tubes about 10 cm. high and 2'5 cm. in diameter. It will be seen from the Table 

that while on April 27 they were nearly right, on May 2 they had most of them fallen 

considerably, and by May 26 they were, on the average, some 35 units too low. It 
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will be remembered that a good many other cells showed a fall at first, but most of 

them recovered in time. 

The observations on July 22 show a tendency to recover here also. 

The mercury used in the cells was the purest attainable, and the cells contained 

visible crystals of ZnS04.7JI30 of the proper form. It was not possible, therefore, 

to attribute the fall of E.M.F. to impurity of the mercury or to supersaturation, and 

some other source had to be sought for the difficulty. 

It was noticed that the grey deposit had formed on the zincs, and we had seen (see 

Table VI., April 20) that by removing this deposit arise in the E.M.F. was produced. 

From this, and from some experiments which were being made on two cells, Nos. 80 

and 81, it appeared probable that the fault lay at the zinc pole; that, in order that 

the cell should, have its proper E.M.F., some action between the zinc and the soluble 

mercurial compounds was necessary, and that this action did not occur when the 

grey deposit was formed all over the zinc, but only when part, at least, of the zinc 

surface became bright. It is not clear whether the necessity for this action arises 

from impurities or from some other unexplained cause. 

Clark liquor-- 

Zinc filings 

Paste ' 

-Zinc rod 

Pure saturated Zinc 

Sulphate 

--Crystals of ZnSO+7H20 

N Parchment paper 

membrane 

Crystals of ZnSQJ.7H,0 

The diagram (fig. 4) shows how Nos. 80 and 81 were constructed. There is inside 

the cell surrounding the zinc rod a small glass tube, closed at its lower end by a 

membrane of parchment paper. On this is a layer of zinc filings. The tube sur¬ 

rounding the zinc is filled with saturated solution of zinc sulphate with an excess of 

crystals, and dips into the ordinary Clark liquor in the outer cell. Thus none of the 

soluble mercurial compounds in the liquor can reach the zinc pole, for in diffusing into 

the inner cell they have to pass the zinc filings which would react with them. 

The cell is not really a Clark cell for the liquid in the glass tube is not a saturated 

solution of zinc sulphate and mercurous sulphate. 

Observations on these cells showed that they were always considerably lower than 

the standard. After they had been compared the zinc of No. 80 was removed and 

amalgamated ; the cell then became correct. This is shown in Table XI. 
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Table XI. 

Number. 
00 
>> 

13 

J
u

ly
 9

. o 
r—1 

13 
d J

u
ly

 
1
1
. o 

CO 

3 

J
u

ly
 2

1
. 

J
u
ly

 2
2

. 

J
u
ly

 2
3
. 

J
u

ly
 3

0
. 

80 
81 

- 25 
0 

- 24 
— 53 

- 26 

- 29 
- 23 
- 23 

- 19 
- 21 

Zinc amalgamated + 2 
- 16 

+ 2 
- 15 

+ 2 
- 13 

+ 8 
- 20 

Since the result of amalgamation had been to bring No. 80 into agreement with the 

standard it was thought worth while to try the effect of amalgamating the zinc of one 

of the cells Nos. 42-47 now under consideration. On July 22 the zinc rod of No. 43 

which, as has been remarked, was covered with the grey deposit, was removed and 

amalgamated. After careful washing and drying it was restored to the cell which, 

since that date, has agreed well with our standard (see Table X.). 

On July 24 the zinc rod from No. 42 w~as removed and a new rod inserted in its 

place. There is some doubt as to whether this rod was amalgamated or not; the 

entry in the note book is not quite clear; the cell was still too low, although better 

than before. The rod which had been taken out was placed in some fresh Clark liquor, 

and the difference of potential between it and a well amalgamated rod measured. It 

proved to be 8 or 9 units lower than the amalgamated rod. 

Experiments were commenced on August 17 to test this point with a special form 

of cell. 
Fig. 5. 

A Clark cell was set up in a three-necked Woulfe’s bottle. Two of the apertures, a 

and b, contained the ordinary zinc and platinum of the cell. The third, e, was left 

free for the insertion of the zincs to be tested. In fig. 5, X represents this cell and 

Y the Clark cell, the contents of which are to be examined, d being the platinum and 

c the zinc pole of Y„ The plan of the experiment was to insert a well-amalgamated 

zinc in e, and compare the E.M.F. between a and b, e and b, respectively. These 

were practically the same, and equal to the standard Clark. The differences between 
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their values and those of the standard are given in the first two columns of Table XII. 

In column 5 is given c—d, the difference between the E.M.F. of the Clark Y and the 

standard; it is negative, as Y had too small an E M.F. The zinc, c, was then trans¬ 

ferred to the Woulfe’s bottle, e being placed in Y. If the error is due to the zinc, 

and it retains its properties in the new liquid, the E.M.F. between b and c will be 

less than that of the standard, that between d and e will have its normal value, and 

there will be a difference of potential between the two zincs, a and c. On making 

the transference these effects took place, as is shown by the last three columns of 

Table XII., but the zinc c, when transplanted into the new liquor, rapidly changed, 

and the E.M.F. between b and c soon became nearly normal in amount. Columns G 

and 7 give the differences between the electromotive forces of c — b and e — d, respec¬ 

tively, and the Clark; while column 8 gives the difference of potential actually 

observed between a and c. It is clear that some effect had taken place in the cell Y 

on the zinc which produced the low E.M.F. observed. The liquid of X acted in a 

short time on this zinc in such a way as to counteract this effect. 

Table XII. 

Cell. 
Tempera¬ 

ture. 

Before changing zincs. After chan ging zincs. 

a — b. e — b. c — d. c — b. e — d. 
Difference 
between 
a and c. 

No. 47, 

O 

17-2 -1 0 -33 -11 -14 9 

on Aug. 19 - 9 - 4 8 
- 3 

Q 
— O 

_ 2 

- 8 - 2 8 

No. 46, 17-6 -1 0 -23 -15 - 1 23 
on Ang. 19 10 

6 
- 6 — 2 6 

No. 45, 16-9 0 0 -23 -21 
on Aug. 21 -20 

-16 
-15 • 

- 8 - 3 

No. 44, 16-8 0 0 -36 -501 Immediately 

on Aug. 21 -45 after insertion 

-351 In a few 

-30 minutes 

— 25" 
-18 
-10 - 1 

- 7 

4 i MDOCCXCII. — A. 
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Since with the new zincs the cells Y give normal readings, we infer that the rest of 

their contents were not at fault, though there probably was some difference between 

the solutions in X and Y, for the zinc from Y soon became right when put into X. 

Since the new zincs were inserted the cells have remained nearly normal. 

It will be remembered that the fall noted in the cells described in Table YI. was 

also corrected by the removal of the grey deposit. 

The evidence we have collected on these points is not conclusive, and we are still 

engaged in experiment. There is no doubt that there is a tendency in many cases 

for cells set up with good materials to fall in E.M.F. at first. This drop appears to 

reach a maximum, and in good cells to correct itself fairly soon. In other cells the 

recovery is very slow ; indeed, the experiments must go on for some time longer 

before we can say in all cases whether it will be complete. In such cells a grey 

deposit is formed on the zinc. This deposit is mainly mercury.On removing it 

from the zinc the E.M.F. rises ; the same is the case on substituting an amalgamated 

zinc for the original one; but it is not clear whether this happens because some 

action of the nature of amalgamation is required to prevent slight impurities in the 

zinc sulphate from having an injurious effect, or because even with a pure zinc and 

mercurous sulphate solution an amalgamated surface is required, or again, because the 

action which has led to the formation of the grey deposit has removed from the 

solution injurious impurities. These points are still under examination. 

We are also inclined to think that a trace of acidity in the solutions is useful in 

preventing the formation of the grey deposit; on this point also we are continuing the 

work.! The slight acidity in time corrects itself by its action on the zinc. The 

important fact remains that the formation of this grey deposit must be, as far 

as possible, prevented, and, if it does form, the deposit must be removed. 

The experience of Dr. Schuster with regard to this grey deposit somewhat 

resembles our own. He has kindly sent us the results of measurements of a set of 

rather large cells prepared from commercial sulphate. 

Soon after being set up these cells were tested against some cells made two years 

since. Taking the E.M.F. of this set as unity, the new cells were as follows :— 

* It is only necessary to dip the grey covered zinc rods for a moment in a dilute acid to obtain a 

bright amalgamated surface ; no fresh mercury is required. Dr. Schuster informs us in a letter that 

he has analysed the grey deposit, and found it to be nearly pure mercury. 

t The solutions used in the bad cells Nos. 42-47 were, as tested by litmus paper, distinctly less acid 

than those employed in the good cells Nos. 72-79. While the solution in the cell No. 90 is now less 

acid than that in the bottle from which the cell was originally filled. 
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Date. January 23. January 30. February 6. March 11. 

Number. 
5 •9777 •9587 •9633 1-0005 

6 •9823 •9590 •9658 1-0072 

7 •9848 •9627 •9629 1-0159 

8 •9969 •9516 •9626 •9943 

9 •9892 •9632 •9711 

10 •9695 •9459 

Writing in May, 1891, .Dr. Schuster says :— 

“ My present opinion is that the cell only arrives at its steady state after some 

action has taken place between the zinc and the solution, and it is necessary that the 

zinc surface exposed should not be too small compared with the quantity of liquid. 

At any rate, most of my large cells prepared with good sulphate seem to settle down 

at an E.M.F. about ^ per cent, too low, and the lower the smaller the surface of zinc 

exposed. Amalgamation seems a mistake, for it is just the action of the zinc previous 

to amalgamation which brings the cell into a steady state.” 

Writing at a later date, February, 1892, Dr. Schuster expresses the opinion that 

the action required to bring the cell to a steady state is the formation of a basic zinc 

sulphate. This process may be facilitated by the introduction of zinc oxide into the 

cell, and in that case amalgamation will probably be an advantage, but if the cell is 

left to settle down of itself, the process of amalgamation helps the formation of the 

basic zinc sulphate, and it is desirable, therefore, that this process should go on 

in the cell. 

He also tells us that in the cells made in the Bnichsanstalt at Berlin the zinc 

sulphate is boiled with zinc to secure the formation of the basic salt. 

On this point, however, our own view would be somewhat different from that 

expressed by Dr. Schuster, for it has been observed by one of us (S.S.), and by 

Mr. E. H. Griffiths, and is in accordance with the chemical theory of the interchange 

of bases, that the mercurous sulphate which is used in preparing the paste reacts with 

the basic zinc sulphate, producing zinc sulphate and probably basic mercurous sulphate ; 

thus, if the zinc oxide used to neutralize the zinc sulphate does form with it a basic 

salt, the mercurous sulphate clears this out of the solution. 

Dr. Schuster has also confirmed our results as to the danger of the grey deposit 

and the rise in E.M. F. produced by removing it. 

Mr. Swinburne, in his paper already quoted, also recommends amalgamation. He 

found differences of potential amounting to '4 per cent, of the E.M.F. of a Clark cell 

between different specimens of zinc immersed in saturated zinc sulphate. These he 

assigns partly to “ impurities, probably iron, in the zinc sulphate.” They disappeared, 

practically entirely, when the zincs were amalgamated. 

It may be noted that Lord Bayleigh did not meet with this source of error, for his 

4 i 2 
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zincs, being generally plunged into the more solid part of the paste, were immediately 

amalgamated. 

§ 23. Effect of Shaking on the Cells. 

The history of these cells illustrates another point. Dr. Hopkinson called our 

attention to the fact that he had observed that while slight mechanical shaking did 

not affect the E.M.F. of a good cell it produced considerable change in the E.M.F. of 

one which was too low. This fact we have repeatedly verified. 

Thus, on August 12, Nos. 41, 45, 46, and 47 were all to low. Their E.M.F. in 

each case rose considerably when the cell was tapped, but fell back towards the old 

value when the tapping ceased. Cell No. 40 was right, and no effect was produced by 

tapping it. 

The effect of the shaking would appear to take place through its bringing fresh 

zinc surfaces into contact with the solution. 

A similar result took place with some cells which were too high, only, in this case, 

the E.M.F. was lowered. Thus, on August 6th, No. 68 was 56 too high ; on tapping, 

its E.M.F. fell till it was only 23 too high; it then rose to about its original value ; 

and hence, on further tapping, fell to within 5 of the standard. Cells No. 71 and 72 

were quite unaffected by the tapping, remaining within 1 or 2 of the standard 

throughout. Another cell sent us to test was about 20 too high ; on slight tapping it 

fell to about 10. 

Thus, it appears that slight tapping produces a change in bad cells; we have never 

found it produce any change in good ones. 

§ 24. Mr. E. H. Griffiths’ II Cells. 

Table XIII. contains details of a set of II cells, constructed in February, 1888, by 

Mr. E. IT. Griffiths, which have been subject to much careful examination. They 

were tested against the Board of Trade cells. The results are important, because 

the cells are very consistent among themselves, and, at the same time, they are 

undoubtedly wrong. They appear to be unsaturated, and have, in consequence, a 

lower temperature coefficient than our cells, and agree with them more nearly at low 

than at high temperatures. It is clear, then, that a set of cells may be made which 

will agree among themselves, and yet be wrong. Mr. Griffiths writes as follows of 

the materials used :— 

“ Re-distilled zinc and mercurous sulphate were used. The solution of zinc sulphate 

was allowed to stand and not used unless it deposited crystals of the proper form. 

The mercury was some which I had purified and distilled myself.” 

The first three series of observations given in the table were made by Mr. Griffiths. 

The temperature was in each case nearly 15°, and the observations were corrected to 

15° by the use of Lord Rayleigh’s coefficient. This coefficient is clearly wrong for 
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these cells, as the observations show, but the error produced will be small. The 

change per 1° relative to our standard is about 2'8 of our units. Our standard 

changes by about 4-5 units, so that the change in the Griffiths cells is only about 

4'5 — 2'8 or 17, and this implies a coefficient of about one-third that of the standard 

cell. The last column gives the values found at the Board of Trade in terms of 

their standards. 

This, and the cells described in Table VII. are, so far as our experience has gone, 

the only sets of cells which have been quite wrong and yet have remained consistent 

among themselves for some time, and that over a considerable range of temperature. 

Table XIII. 

Date. 
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*

 

Temperature .... 15 15 15 16-8 17-4 11T 16-2 11-5 

Number. 
91 26 27 26 26 29 12 23 12 
92 28 29 28 28 31 15 26 15 
93 24 24 24 25 27 10 22 11 
94 28 28 26 26 28 12 24 12 
95 28 28 26 27 29 12 24 13 
96 28 28 28 28 31 14 25 14 

§ 25. Comparison with the Board of Trade Standard Cells. 

A means of comparing the E.M.F. of our cells with those of the standards of the 

Board of Trade at Westminster, which were set up by Dr. Muirhead, is afforded by 

the last columns of Tables II., VIII,, and XIII., which give, in terms of the unit we 

have adopted, viz., '00025 volt, the differences between our cells and the standards of 

the Board of Trade. The comparisons were kindly made for us by Mr. Bennie, 

Major Gardew’s assistant. It will be seen at once that the agreement is very close. 

For the cells Nos. 7, 8, 9, 10, Table II., constructed by Mr. Callendar, the differ¬ 

ences observed are rather greater than those found by us either before the cells were 

sent or soon after they returned. 

The last two columns of Table VIII. give the results for the live cells Nos. 71-76 

No. 71 appears to have been low at one of these observations, for the rest we see 

that the differences are rather greater than those with our own cells. 

* Comparison with the Board of Trade standards. 
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A similar comparison is also afforded by the last column on Table XIII., and here 

there is almost exact agreement between our results on November 1 4 and the Board 

of Trade measurements on March 9. 

The standards would appear to be exactly equal, but these observations hardly 

deserve as much weight as the others, for the temperature of the large H cells is not 

very easy to be sure of. 

It would seem then the Board of Trade standards are lower in E.M.F. than our 

standard by, possibly, one or two of our units, that is, by about ‘0003 volt. This 

clearly is very small. The Board of Trade standards are a set of 72 cells constructed 

by Dr. Muirhead. These cells are from time to time compared against each other, and 

Mr. PtENNiE states that the greatest variation among them is less than ‘00068 volt, 

that is, distinctly under three of our units. The cells used were known to be good 

average cells. 

Dr. Schuster’s cell No. 97 was taken to London on December 21, and on 

January 11 it was compared, with the following results given by Mr. PtENNiE. 

At 8o,0 C. the E.M.F. of B.T. 822/35 exceeds that of Schuster’s cell by 0‘00021 volt. 

At 8°T C. the excess was 0‘00017 volt. 

At 80,3 C. the E.M.F. of B.T. 822/34 was less than that of Schuster’s cell by 

0‘00005 volt. 

Thus Schuster’s cell lies between the two Board of Trade standards, and falls 

short in E.M.F. of the mean of the two by less than one of our units. 

§ 26. The Temperature Coefficient of the Cells. 

We have also made some experiments with a view of investigating the temperature 

coefficient of our cells. 

It has already appeared from Table II. extending over a range of temperature 

from 0° to 18° that our more important cells, including the standard Itayleigh 1, have 

practically the same coefficient. When we were engaged in the experiments in 

August we did not expect them to be continued so long, and therefore a cell was 

fitted up which could be packed in ice. 

It Avas a cell of the ordinary form, but contained a delicate thermometer, the bulb 

of which was in the paste. The cell was placed inside a long test tube, packed with 

glass-wool and asbestos; the thermometer passed through a cork closing the test 

tube. The stem of the thermometer was so long that most of its graduations were 

outside the cork. It could be read, therefore, without seriously disturbing the cell 

when packed in ice. With this cell a number of measurements were taken. 

The results of these are given in the accompanying Table XIV”. 
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Table XIV. 

Date. 
Temperature Difference Temperature 

Notes. 
of cell. from JNo. 1. of No. 1. 

August 10 .... 

O 

16-4 0 16-4 
2.30 . . 167 0 167 Packed in ice. 

„ 3.50 . . 51 
„ 4.30 . . 63 
„ 5.30 . . 71 167 Readings still changing. 

August 12, 10.30 0 74 16-9 Repacked in ice at 10.32. 
„ 10.55 . . 0 74 16-9 
„ 1.15 . . 0 74 17 
„ 4.30 . . 0 75 17 Repacked at 5.10. 
» 5.15 . . 0 75 + 171 

„ 7. 0 . . 0 76 17-4 
August 13, 10. 0 a.m. . 0 74 167 Placed in water of temperature 

16°7 at 10.5. 
„ 10.30 . . 13 30 
„ 11. 5 . . 16-6 11 
„ 6.10 . . 17-5 6 167 

August 14, 9.40 . . 17-8 7 177 
„ 4.50 . . 18-8 7 18-5 

August 15, 10. 0 . 18-4 6 18-4 Placed in water at 32° at 12.30 
on August 17, and allowed to 
cool. 

August 18 .... 18-3 2 18-3 

„ 19 .... 17-2 2 17-2 

November 2 ... 14-4 1 + 14-4 ) 
„ 14 ... 9-2 1 + 9-2 > Cells all at one temperature. 

December 22 ... 0 2- 0 

When the cell was left on August 10 the readings were still changing though it 

had been in ice for three hours. 

On August 11 it appeared that some moisture had got among the glass-wool, the 

cell was taken out and repacked, taking care to insulate the leads thoroughly with 

gutta percha. After this the difference rose to 66, but was still increasing at 5.40. 

Throughout the next day and up to 10 a.m. on August 13 it was steady, the mean 

reading being 74'6, and the average temperature of the standard 17°. After the last 

observation the cell was placed in water at 16°*7. At first there was a rapid fall, but 

after a time the fall ceased and a steady difference of some 6 or 7 of our units 

persisted all through the next day. 

On August 17 the cell was placed in warm water at 32° and allowed to cool. On 

August 18 the difference at about 18° was 2, and this continued through the next 

day. Before the cell was placed in ice the difference between it and the standard 
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was 0. The mean gives us as the difference when the two cells are at the same 

temperature the value 1, so that the change for 17° is 74‘6 — 1, and the change per 

1° C. is 4-33. 

On August 12 the E.M.F. of the Clark was found to correspond to 5736 of our 

units, and we have then as the coefficient of change of E.M.F. with temperature the 

value 4*33/5736 or ’000755. Lord Rayleigh gives as the value of the coefficient 

from about 0° to about 15° ‘000765, for another it is ‘00073, and for a third ‘00083. 

The hist three observations in Table XIV. show that for a range of temperature 

from 14°*4 to 0° our cell and Lord Rayleigh’s cell No. 1 have the same E.M.F. 

When the cell was put into the warm water on August 17 readings were taken of 

the E.M.F. and temperature. 

About half-an-hour after being put into the bath the E.M.F. was 45 units below 

the standard, the temperature was 31°, that of the standard 17°‘3. The readings 

remained steady at this for five minutes. 

This would correspond to an increase of only about 3‘3 units per 1° C. instead of 

4‘3, and again emphasizes the fact that the E.M.F. of the cell is not a fixed quantity 

at a given temperature unless the temperature has remained steady for some time 

previously. 

Most of our cells were compared with the standard at various temperatures 

between 9° and 18°. The observations show that all the cells except those known to 

lie unsaturated have the same coefficient, and the average value of that coefficient 

between 0° and 15° is ‘00076. Our experiments do not show whether the relation 

between E.M.F. and temperature is linear or not. 

§ 27. Portable Form of Cells. 

Cells which contain much mercury are not suitable for carrying about for testing- 

purposes, as the mercury may be thrown in contact with the zinc rod and become 

contaminated with zinc. It has been shown that a very small percentage of zinc 

dissolved in mercury causes that to behave as though it were zinc. To avoid the 

use of much mercury cells have been constructed with merely an amalgamated 

platinum wire for their negative metal. The platinum being more negative than 

mercury does not interfere with the E.M.F. of the cell. Cell No. 71, described in 

Section 20, is constructed with an amalgamated platinum wire. Since it is only 

necessary to use a metal more negative than mercury for the negative pole and to 

amalgamate its surface, we have tried the use of small antimony rods. A small rod 

of antimony is cast and boiled in mercury to amalgamate its surface. It is then 

fitted into the cell, as shown in the diagram, fig. 6. It is of importance that the 

antimony be pure, for should it contain metals more positive than mercury the 

electromotive force of the cell will be reduced by their solution in the mercury. For 

this purpose, therefore, antimony metal reduced from pure tartar emetic should be 

used. 
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Fig. 6. 

With a large stout antimony plate cells of low resistance could easily be made. 

The tests made on this cell are shown in the following table. 

Table XV. 

July 9. July 10. July 11. J uly 20. July 21. July 22. July 30. Aug. 6. Aug. 17. Nov. 14. Dec. 16. 

No. 
18° 18° 19° 18°-5 17° 16°-6 17°-2 11°T 16°-2 

82 -32 -5 -9 -3 — 2 -3 -3 — 5 -3 2 — 2 
83 -6 —4 -4 -5 -4 3 -3 

Cell 82 was made on July 9th, 1891. 

Cell 83 was made on July 21st, 1891. 

During several of the tests the cells were inverted top to bottom without producing 

any effect. It is clear that at temperatures of 16° to 18° they are rather less than 

the standard, while at 11° they appear to be greater. Thus their temperature 

coefficient is rather greater than that of the usual form. Over the range worked 

with the difference between their E.M.F. and that of the standard is well within 

'1 per cent. 

MDCCCXCII.—A. 4 K 
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§ 28. Yon Helmholtz Standards. 

In the ‘Sitzber. tier Akatl. der Wiss., Berlin,’ 1882, p. 26, yon Helmholtz 

has described an electromotive force standard consisting of mercury, mercurous 

chloride, zinc chloride, and zinc. Similar cells have been prepared and used by 

Ostwald (‘ Zeitschrift fur Physikalische Chemie,’ vol. 1.) We have prepared a set 

of six cells like these, and have tested them at intervals. They are put up in small 

test tubes, with platinum wires sealed through the bases. The solution of zinc 

chloride was prepared from solid sticks of zinc chloride, and therefore probably con¬ 

tains some oxychloride. It had a specific gravity 1*445 at about 15°. Since the 

solution alters in strength if a current be taken from these cells, it is necessary to be 

very careful that they do not become short-circuited. These cells had an E.M.F. of 

about '98 volt; if the solution be taken slightly more dilute they may be adjusted to 

be exactly 1 volt at 15°. Ostwald has attempted to do this, and states that it is 

secured by using a solution of specific gravity 1 *41. 

Three series of observations were raa.de of these cells, and the following table gives 

the results in terms of the E.M.F. of a Clark as unity at the temperatures mentioned. 

Table XYI. 

Date .... February 17. March 16. August 22. 

Temperature 16 13 17-4 

Number. 

101 6890 6879 6892 
102 6891 6882 6894 
103 6892 6882 6895 
104 6890 6879 6892 
105 6891 6882 6892 
106 6891 6882 6894 

Mean .... 0891 6881 6893 

Value in volts . •9876 •9881 •9870 

The last line gives the value in volts, assuming the E.M.F. of a Clark at 15° C. to 

be 1‘4242 volt. 

The absolute values at the earlier dates are somewhat uncertain because of the 

uncertainty attaching to the actual value of the Clark used as standard. In this case 

the values, on February 17, were referred to Callend Ait’s cells, but it is clear that the 

cells cannot have changed much, and that they retain unaltered their relative 

values. 
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§ 29. Gouy’s Cells. 

Another modification of the cells has been suggested by M. Goijy (“ Sur une Pile 

Etalon,” ‘Journal de Physique,’ 1888.) 

It consists of zinc, zinc sulphate, mercuric oxide, and mercury. According to 

M. Gouy, the E.M.F. at any temperature, t, is given in legal volts by 

E = 1-390 — -0002 (t - 12). 

The zinc sulphate solution is prepared by boiling a saturated solution for an hour 

with a few thousandths of its own weight of oxide of silver. The liquid, when cooled 

and filtered, has sticks of zinc put into it, which precipitate any silver remaining. 

Four cells were made ; of these two, viz., Nos. 54 and 55, contain the yellow oxide, the 

other two, Nos. 88 and 89, the red oxide of mercury. The values of the E.M.F. have 

been reduced to 12° by M. Gouy’s coefficient. 

Table XVII. 

Numbers . 54 55 88 89 

r 1-3794 1-3793 1-3906 1-3896 

allies . . .s 1-3803 1-3806 1-3867 
1-3806 1-3869 1-3890 

L 1-3809 • • 1-3839 

Mean .... 1-3803 1-3823 1-4875 1-3896 

i , i 

Mean o£ two . . 1-3810 1-3879 

To reduce them to “ legal volts,” and so to compare them with M. Gouy’s results, 

we must multiply these results by the ratio 1063/1060, we have thus the values 1‘385 

and 1-392. The latter is nearly 2 pants in 1000 above M. Gouy’s result. 

4 k 2 
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Appendix. 

(August 18, 1892.) 

§ 30. Further Comparisons of the Cells already described. 

Since the foregoing paper was communicated, the experiments have been continued, 

and numerous other residts have been obtained. The more important of these are 

described in the following Appendix. The cells already described have been 

repeatedly compared with the standard. 

Table XVII I. 

Cells described in Table II. 

No. of cell. 

2 90 3 a o 4 5 6 7 8 9 10 

Difference, Dec., 1891 -2 0 _3* — 3* _yy? -6* 3 0 3 3 2 
„ J uly, 1892 .. _2 1 -i -2 _4 -1 1 3 3 3 ' 3 

Cells described in Table IV. 

No. of cell. 

25 26 27 28 29 30 31 32 33 34 35 

Diffei’ence, Dec., 1891 0 2 2 6 -1 4 3 3 2 0 2 
„ July, 1892 .. Q 

O broken 2 2 1 1 3 3 3 3 3 

Cedes described in Tables V. and VI. 

No. of cell. 

56 57 58 59 60 36 37 38 39 40 41 61 62 63 64 

Difference, Dec., 1891- . 2 17 2 -39 -3 i 3 -3 1 3 -3 2 
„ July, 1892.. 0 17 6 -36 -6 1 -1 0 0 2 2 -8 

* These observations were made in August, 1891. 
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Cells described in Tables VIII. and IX. 

No. of cell. 

71 72 73 74 75 76 65 69 70 77 78 79 

Difference, Dec., 1891 _2 1 0 -1 -1 0 -2 -3 -1 -1 - 3 -3 
„ July 14, 1892.. -1 -1 -1 -1 -3 -5 
„ „ 21,1892.. _2 -1 -1 -1 -1 -2 0 -3 -1 -1 -1 -1 

„ 22,1892.. -3 -1 -1 -1 -1 — 2 1 -4 -1 -2 _2 o — o 

Cells described in Tables X. and XV. 

No. of cell. 

42 43 44 45 46 47 82 83 

Difference, Dec., 1891.. -1 1 1 2 0 4 i -2 - 3 
,, Jnly, 1892.. -9 -1 -4 -2 -1 -1 — 2 -16 

The results of comparisons made at the end of 1891, and of the latest compari¬ 

sons we have made, are given in Table No. XVIII. The Table shows that, with few 

exceptions, the relative values of the cells remain closely the same as before. 

It will be remembered that Nos. 57 and 58 were known to be unsaturated, while 

No. 59 dropped suddenly in value between May and August, 1891, and has remained 

low ever since. 

The behaviour of No. 76 requires some notice. Some comparisons were made 

on July 13 and it was observed that it wTas then five units too low. This 

continued on July 14; but when the cells were next tested, on July 21, it had 

recovered, and has since remained right, having been frequently re-tested. The cause 

of this is not quite clear, but it is probable that it was due to the following circum¬ 

stance —The binding screw which connected No. 76 to the circuit was allowed by 

accident to fall into the bath; the water was dirty, having been standing for some 

time; and possibly some of the moisture adhered to the screw, and set up a small 

E.M.F. at the junction. It was found by experiment on July 21 that, by wetting 

this binding screw, small changes could be produced in the E.M.F. observed. 

With this exception, the sets Nos. 71 to 76 and 65 to 79 show very steady agree¬ 

ment. These, it will be recollected, are cells set up in accordance with the second 

form of the Board of Trade Memorandum. 

The set Nos. 42 to 47 shows some change. These are the cells from which the 

grey deposit was removed. They were left unsealed for some time, and after the 

treatment to which they have been subjected, can hardly be considered standards. 
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In June the portable cell No. 82 was sent by parcel post to London, and thence to 

Manchester, where it was compared by Dr. Schuster with his standards. About 

the same time No. 83 was taken to Manchester by one of us (R. T. G.) in a handbag. 

The cells were brought back to Cambridge in a portmanteau which travelled as 

passenger’s luggage. Dr. Schuster found that No. 82 was less than his standard by 

two of our units, while No. 83 was less by six units. The Table shows that on their 

return No. 82 had not changed relative to our standard, while No. 83 had varied 

considerably. Other comparisons confirmed these results. 

A large number of comparisons have been made from time to time between the 

large bottle cell, No. 90, and the standard. The two remain practically equal so long 

as the temperature remains steady for some time, but some experiments in March and 

April emphasize the importance of maintaining this very constant, at any rate, for 

large cells. 

Towards the end of March the weather was very cold. On March 30 the room 

temperature was 6°; it had been lower, and the baths in the room were as low as 

3D,5 : the cells were not examined at this date. On March 31, when the bath was at 

10°'8 C., No. 90 exceeded the standard by nine units. On April 1, the temperature 

being 11°‘2, the difference was five units. A rod was then put through a hole in the 

cork of the bottle cell, and the zinc sulphate was stirred up. The difference fell 

immediately to less than one unit, the temperature remaining unchanged. Thus, on 

March 31, the E.M.F of No. 90 corresponded to a temperature more than 2° below the 

temperature of the cell, and on April 1 it was still too high by an amount equivalent 

to the change due to 1 degree. The crystals had formed in a hard mass on the top 

of the paste ; the zinc was some little way above these, and the E.M.F remained too 

high until they were broken up. 

§ 31. Cells set up by Mr. E. H. Griffiths. 

In January and February of the present year, Mr. E. H. Griffiths set up a number 

of cells, following in the main the directions of the second issue of the Board of Trade 

Memorandum. These cells are numbered from 131 to 160. In one batch of these, 

No. 149 to 154, the zinc sulphate was treated with mercurous sulphate in the manner 

described on page 611. 

We give the description of these cells, kindly furnished to us by Mr. Griffiths, to 

whom our best thanks are due. 

Cells Nos. 131-142, made January 26, 1892. Chemicals supplied by Harring¬ 

tons. The ZnS04 was saturated at 33° C. The HguSO^ was used as supplied, except 

that it was shaken up with mercury, but not washed. 

Cells Nos. 143-148. January 31, 1892. The Board of Trade directions followed 

implicitly. 

Cells Nos. 149-154. February 6, 1892. To the ZnSG4 solution saturated at 33° C., 



CLARK CELL AS A STANDARD OF ELECTROMOTIVE FORCE. G2.°> 

neutralised with ZnO and filtered at 303 C., a small quantity of HggSO^ was added, and 

the black deposit was filtered off. In other respects the cells were the same as 

143-148, the Board of Trade directions being followed. These cells assumed the 

standard E.M.F. immediately on formation. 

Cells Nos. 155-157, made according to Lord Rayleigh’s directions from paste 

which had been in stock since Michaelmas, 1889. 

Cell No. 158 the same as Nos. 131-142. except that the zinc was amalgamated. 

Cell No. 159 the same as Nos. 143-148, except that the zinc was amalgamated. 

Cell No. 160 the same as Nos. 149-154, except that the zinc was amalgamated. 

Cells Nos. 131-136 were compared with our standards repeatedly for about a fort¬ 

night after being set up, and showed very close agreement. 

The other cells were compared by Mr. Griffiths with our cell No. 65 ; the set of 

cells described in Table IX., viz., Nos. 65, 69, 70, 77, 78, 79 had again been lent to 

him for this purpose. It appears from our Tables that No. 65 is in very close agree¬ 

ment with our standard, and we may take, therefore, this comparison as giving the 

E.M.F. of Mr. Griffiths cells in terms of the standard. 

Table XIX. —Cells constructed by Mr. E. H. Griffiths. 

Number of cell. 

Date. 

131 132 133 134 135 136 137 138 139 140 141 142 158 143 144 

Differences Feb., 1892 1 1 1 1 2 2 0 1 1 1 2 2 3 2 1 
July, 1892 0 0 1 0 -1 0 1 1 1 1 0 ( 0 -1 3 2 

145 146 147 148 159 149 150 151 152 153 154 160 155 156 157 

Differences Feb., 1892 1 1 2 0 -1 -1 -1 0 -1 0 -1 0 -4 -4 -4 
55 July, 1892 2 3 3 2 2 0 0 0 0 0 0 0 -4 -4 -4 

Table XIX. shows the results ; the unit is slightly less than in our measurements, 

being about "0002 volt. 

In February the temperature was about 13°, in July it was 14-4. 

It will be seen that the cells are all fairly close to the standard. Nos. 131-148 are 

on the whole a little too high. A comparison between Nos. 158, 159, and 160, with 

the batches immediately preceding them, respectively shows that amalgamating the 

zinc has in these cases no distinct effect ; the mercurous sulphate in the solution of 

itself insures amalgamation in the cell. 

The series, Nos. 149-154, in which Mr. Griffiths’ method of clearing the zinc 

oxide or basic zinc sulphate from the solution by the action of mercurous sulphate 
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and filtration was employed, is most closely in agreement with our standard, and this 

agreement was attained immediately after the cells were set up. It will he noticed, 

however, that the ceils, Nos. 155-157, in which the old paste was used, are too low 

by about ’0008 volt, though they agree well together. 

§ 32. Professor Ayrton’s Standards. 

By the kindness of Professor Ayrton we have been able to compare two cells set 

up Dr. Mujrh ead, and used as standards at the Central Institute, with ours. These 

two cells have a thermometer sealed into the case which contains them. This case 

was packed in sawdust, and one of our own thermometers verified at Kew last 

November was placed in the sawdust. The thermometer in the cell was found on 

some five or six different occasions to read 0o,4 or 0°"5 below our own. The Kew 

correction for our standard is — 0°T6, at about 16°, the temperature of the obser¬ 

vations. According to this there is a correction of about + 0o-3 required to the 

thermometer in the cell. 

Making this correction, the following values were found for the excess of E.M.F. of 

Professor Ayrton’s cell over our own reduced to the same temperature :— 

Table XX. 

Cells. July 13. July 14. July 21. 

Number. 

1 - 1-5 0 — 2 
2 •5 1 - 1 

The differences, it will be seen, are within the errors arising from uncertainty of 

temperature. 

§ 33. Cells set up by Dr. Kahle in Berlin. 

In July last four cells were brought to Cambridge from Berlin, by Dr. Lindeck. 

Two of these, Nos. 69 and 70, were cells of the pattern devised by Dr. Beussner and 

described by Dr. Kahle, (£ Electrotechnische Zeitschrift,’ July 22, 1892.) 

The positive pole is a piece of amalgamated platinum sheet. This and the mer¬ 

curous sulphate are contained in a porous pot. The outer vessel surrounding the 

porous pot contains saturated zinc sulphate solution and crystals of zinc sulphate. 

The negative pole is a rod of solid zinc amalgam, bent at right angles so that one 

part is vertical, the other horizontal. The vertical portion is surrounded by a tightly 

fitting tube of glass, the horizontal part is among the crystals, so that the effective 

portion of the zinc is always surrounded by saturated liquid. 

The other two cells, Nos. 29 and 12, are H cells, of the form devised by Lord 
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Rayleigh. The cells had been compared with each other and with other standards 

before leaving Berlin, the differences being determined in hundred-thousandths of 

a volt. 

Table XXI. gives the differences between these cells and our standards in hundred- 

thousandths of a volt. 

Table XXI. 

Date .... July 26. July 27. July 29. 

Temperature 16°-1 15°'9 15°-9 

N umber. 

69 - 15 - 18 - 14 
71 - 11 - 15 Taken away 
29 - 36 - 35 - 36 
12 - 39 - 38 - 39 

In comparing these results with the numbers given in other tables, it must be borne 

in mind that the unit here is only one-twenty-fifth of that previously employed. 

It appears then that the standard form in use at Berlin has a slightly lower E.M.F. 

than that of our standard, while the H-cells are distinctly lower, differing by nearly 

•0004 volt. 

Dr. Kahle has made an important series of observations, ‘ Zeitschrift fur Instru- 

mentenkunde/ April, 1892, on the effect of impurities on the E.M.F. of an H cell, 

and has determined absolutely their E.M.F., and that of Dr. Feussner’s form of cell. 

On reducing his numbers to the units employed by us, we find for the E.M.F. of 

the Feussner cell the value 1’4339 volt, and for that of the H-cell 1’4337 volt. 

The value obtained by us for the E.M.F. of our standard is F4342 volt. Thus 

Dr. Kahle’s experiments agree with our own in making the E.M.F. of our cells rather 

higher than those constructed by him, though the difference is small. 

As we have already mentioned, the differences between the Cell No. 69 and the 

others were found at Berlin ; the same differences can be obtained from our experi¬ 

ments. They are shown in the following :— 

4 L MDCCCXCII.-A. 
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Table XXII. 

Values of E.M.F. of 

Place of experiment. 

69-71 69-29 69-12 

| Berlin. - 2 29 29 
Berlin. - 4 23 25 
Berlin. - 4 25 26 

Cambridge .... - 4 21 24 
Cambridge .... - 3 19 20 
Cambridge .... • • 22 25 

The differences between the cells at Berlin and at Cambridge are practically the 

same. Thus, we may fairly suppose they have not been affected by the journey. 

Dr. Kahle states that it is his experience that an H cell always has a rather lower 

E.M.F. than one with a porous pot put up with the same materials. On this point 

we have made no direct experiments. 

§ 34. Third form of the Board of Trade Memorandum. 

As experience has been gained in the construction of the cells, the Board of Trade 

Memorandum has been somewhat modified. We give it in its third form here. 

The cells constructed in accordance with it are not readity portable, and may possibly 

in time get damaged by the accidental contact of the mercury and zinc. To avoid 

this the porous pot of the Feussner cell, or the cork diaphragm used by Professor 

Carhart, may with advantage be employed. 

Memorandum on the Preparation of the Clark Standard Cell. 

Definition of the Cell. 

The cell consists of zinc and mercury in a saturated solution of zinc sulphate and mercurous sulphate 

in water, prepared with mercurous sulphate in excess, and is conveniently contained in a cylindrical 
glass vessel. 

Preparation of the Materials. 

1. The Mercury.—To secure purity it should be first treated with acid in the usual manner, and 
subsequently distilled in vacuo. 

2. The Zinc.—Take a portion of a rod of pure redistilled zinc, solder to one end a piece of copper 

wire, clean the whole with glass paper, carefully removing any loose pieces of the zinc. Just before 
making up the cell dip the zinc into dilute sulphuric acid, wash with distilled water, and dry with a 
clean cloth or filter paper. 
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3. The Zinc Sulphate Solution.—Prepare a saturated solution of pure (“ pure re-crystallised ”) zinc 

sulphate by mixing in a flask distilled water with nearly twice its weight of ci'ystals of pure zinc 

sulphate, and adding about 2 per cent, of zinc oxide to neutralize any free acid.* The crystals should 

be dissolved with the aid of gentle heat, but the temperature to which the solution is raised should not 

exceed 30° C.; about 12 per cent, of mercurous sulphate treated as described in 4 should be added, and 

the solution filtered, while still warm, into a stock bottle. Crystals should form as it cools. 

4. The Mercurous Sulphate.—Take mercurous sulphate, purchased as pure, and wash it thoroughly 

with cold distilled water by agitation in a bottle; drain off the water, and repeat the process at least 

twice.* After the last washing drain off as much of the water as possible. 

Mix the washed mercurous sulphate with the zinc sulphate solution, adding sufficient crystals of zinc 

sulphate from the stock bottle to ensure saturation, and a small quantity of pure mercury. Shake these 

up well together to form a paste of the consistence of cream. Heat the paste, but not above a tempera¬ 

ture of 30°. Keep the paste for an hour at this temperature, agitating it from time to time, then allow 

it to cool; continue to shake it occasionally while it is cooling. Crystals of zinc sulphate should then 

be distinctly visible, and should be distributed throughout the mass ; if this is not the case, add more 

crystals from the stock bottle, and repeat the whole process. 

This method ensures the formation of a saturated solution of zinc and mercurous sulphates in water. 

Contact is made with the mercury by means of a platinum wire about No. 22 gauge. This is pro¬ 

tected from contact with the other materials of the cell by being sealed into a glass tube. The ends of 

the wire project from the ends of the tube ; one end forms the terminal, the other end and a poi’tion of 

the glass tube dip into the mercury. 

To set up the Cell. 

The cell may conveniently be set up in a small test tube of about 2 centimetres diameter, and 6 or 

7 centimetres deep. Place the mercury in the bottom of this tube, filling it to a depth of, say, P5 centi¬ 

metre. Cut a cork about -5 centimetre thick to fit the tube ; at one side of the cork bore a hole through 

which the zinc rod can pass tightly; at the other side bore another hole for the glass tube which covers 

the platinum wire ; at the edge of the cork cut a nick through which the air can pass when the cork is 

pushed into the tube. Pass the zinc rod about 1 centimetre through the cork. 

Clean the glass tube and platinum wire carefully, then heat the exposed end of the platinum red hot, 

and insert it in the mercury in the test tube, taking care that the whole of the exposed platinum is 

covered. 

Shake up the paste and introduce it without contact with the upper part of the walls of the test tube, 

filling the tube above the mercury to a depth of rather more than 2 centimetres. 

Then insert the cork and zinc rod, passing the glass tube through the hole prepared for it. Push the 

cork gently down until its lower surface is nearly in contact with the liquid. The air will thus be 

nearly all expelled, and the cell should be left in this condition for at least 24 hours before sealing, 

which should be done as follows :— 

Melt some marine glue until it is fluid enough to pour by its own weight, and pour it into the test 

tube above the cork, using sufficient to cover completely the zinc and soldering. The glass tube should 

project above the top of the marine glue. 

The cell thus set up may be mounted in any desirable manner. It is convenient to arrange the 

mounting so that the cell may be immersed in a water bath up to the level of, say, the upper surface of 

the cork. Its temperature can then be determined more accurately than is possible when the cell is 

in air. 

In using the cell sudden variations of temperature should as far as possible be avoided. 

* See notes at the end of the memorandum. 

4 L 2 
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Notes to the Memorandum on Clark’s Cell. 

The Zinc Sulphate Solution.—The object to be attained is the preparation of a neutral solution of pure 

zinc sulphate saturated with ZnS04.7 H20. 

At temperatures above 30° C. the zinc sulphate may crystallise out in another form; to avoid this, 

30° C. should be the upper limit of temperature. At this temperature water will dissolve about 

1'9 times its weight of the crystals. If any of the crystals put in remain undissolved they will be 

removed by the filtration. 

The amount of zinc oxide required depends on the acidity of the solution, but 2 per cent, will, in all 

cases which will arise in practice with reasonably good zinc sulphate, be ample. Another rule would be 

to add the zinc oxide gradually until the solution became slightly milky. The solution, when put into 

the cell, should not contain any free zinc oxide; if it does then, when mixed with the mercurous 

sulphate, zinc sulphate and mercurous oxide are formed; the latter may be deposited on the zinc and 

affect the E.M.F. of the cell. The difficulty is avoided by adding as described about 12 per cent, of 

mercurous sulphate before filtration; this is more than sufficient to combine with the whole of the zinc 

oxide originally put in, if it all remains free ; the mercurous oxide formed together with any undissolved 

mercurous sulphate is removed by the filtration. 

The treatment of the mercurous sulphate has for its object the removal of any mercuric sulphate 

which is often present as an impurity. 

Mercuric sulphate decomposes in the pi’esence of water into an acid and a basic sulphate. The latter 

is a yellow substance—turpeth mineral—practically insoluble in water; its presence at any rate in 

moderate quantities has no effect on the cell. If, however, it is formed, the acid sulphate is formed also. 

This is soluble in water and the acid produced affects the E.M.F. The object of the washings is to 

dissolve and remove this acid sulphate, and for this purpose the three washings described in the 

memorandum will in nearly all cases suffice. If, however, a great deal of the turpeth mineral is formed, 

it shows that there is a great deal of the acid sulphate present, and it will then be wiser to obtain a fresh 

sample of mercurous sulphate rather than to try by repeated washing to get rid of all the acid. 

The free mercury helps in the process of removing the acid, for the acid mercuric sulphate attacks it, 

forming mercurous sulphate and acid which is washed away. 

$ 35, Conclusion. 

We conclude, then, as the result of these experiments, that Clark cells put up at 

very different times and in very different manners have very approximately the same 

E.M.F. 

1-434 volts at 15°, 

and that they may very conveniently be used as standards of electromotive force. 



Iv
fe

^c
vt

'L
y 

\f
cb

cL
es
 
o

C
'C

L
ca

C
t,

 5
7
5

6
-5

 
jlcuzebroofo &>Shircrber. 

Orcbcruxt&s fo~r CLajrJo. 

0~rcbuncub&s fo~r Ccurr&rub. 

s. ■ 

§ 
o 

i 

Phil. Tra ns. UY.)2 .A. PI a tv K 

Ordznat&s Pou (Clar-hs 

o 

A 

A 

£ 
So 
o 

N 

a 

OvcbcruxZes fov Cicvrh/. 

Or'diJisCub&s fo r MPcuuny Cccrr&nts. 

C
u

rv
'e

, 
o

f
 E

M
.F

 J
u

l
y

 S
f

sL
‘ 

C
c
u

-v
e
, 

o
P

 E
.M

.F
 
A

u
.q

. 
5

fh
 





[ 629 ] 

XVI. On the Liquation of Metals of the Platinum Group. 

By Edward Matthey, F.S.A., F.C.S., Assoc. Roy. Sch. of Mines. 

Communicated by Sir G. G. Stokes, Bart., F.P.S. 

Received March 3,—Read May 5, 1892. 

In the present paper, which is a continuation of a former one which has already been 

submitted to the Royal Society and has been published in the “ Proceedings,”* an 

attempt is made to ascertain whether liquation occurs in alloys of the rarer metals, 

notably in those of platinum, with palladium, and with rhodium, and of gold with 

aluminium. 

In the paper communicated to the Royal Society in 1890 upon this subject, I stated 

that ninety parts of fine gold melted with ten parts of pure platinum, and cast into 

a spherical mould showed a liquation of the platinum to the centre of the sphere, as 

shown in Diagram C in that paper. 

Subjoined are the full details proving that such liquation occurred. 

A. Gold . 

Platinum 

900 parts. 

100 33 

Parts in 1000 of gold :— 

Ontside. Intermediate. Centre. 

903 888 845 

908 888-5 
905 

902-5 
905 
900 

Average . 903-9 

Maximum difference in the gold between centre and mean of outside, 58'9 per thousand. 

* ‘ Proceedings of the Royal Society,’ 1890, vol. 47, pp. 180-186. 

1.12.92 
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A. 

In order to prove incontestably this liquation of platinum to the centre of the 

mass, I again melted together ninety parts of fine gold with ten parts of pure 

platinum. 

This alloy was melted in a plumbago crucible in the intense heat of an oil furnace, 

and when melted several times and stirred, was cast into a spherical mould of cast- 

iron. The weight of the sphere was about 5 kilogs. This, cut into two hemispheres, 

showed the results given in Diagram B. 

B. Gold. . 

Platinum 

900 parts. 

100 

Parts of gold in 1000 :— 

Outside. Intermediate. Centre. 

904-6 893-6 874 
905 893-6 
903 897 
904 

905- 3 
906- 3 
903 
906 

Average . 904'6 

900-6 

Maximum difference m the gold between centre and mean of outside, 30 6 per thousand. 
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D 

Au DO&-3 

Pt 04 2 

The re-arrangement in this instance (B) is less than in the case of (A). 

I re-melted this metal, and again made analyses, with a view to determining the 

amount of the gold at the points indicated on one of the hemispheres obtained (BB) 

and these results go very far to confirm those immediately preceding. 

BB. Gold.. 900 parts. 

Platinum.100 ,, 

Parts of gold in 1000 :— 

Outside. Intermediate. Centre. 

904 895 886-1 
906-5 895-3 
907-5 896 
903-5 

905 
906- 6 
907- 7 

Average . 905-8 

895-6 

Maximum difference in the gold between centre and mean of outside, 19’7 per thousand. 

BB 

Au 905 
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Having obtained these castings by melting in a crucible in a wind-oil furnace, 

I now re-fused this metal (B, BB) by means of the oxyhydrogen flame in a lime 

furnace at the most intense white heat. 

The metal was cast into a spherical mould and divided by cutting into two 

hemispheres in the usual way. The relative distribution of the gold is shown in 

diagram C. 

C. Gold.900 parts. 

Platinum.100 „ 

Parts of gold in 1000 :— 

Outside. Intermediate. Centre. 

902-9 897 875 

902 894-7 
901 
903 

Average . 902'2 

Maximum difference in tlie gold between centre and mean of outside, 27‘2 per thousand. 

C. 

It is evident that the temperature at which the metal is cast, materially affects the 

extent to which the platinum liquates towards the centre. 

In the next experiment, an alloy consisting of pure gold ten parts, and pure 

platinum ninety parts, was fused together. 

This was conducted by melting the two metals in a lime furnace, by means of the 

oxyhydrogen flame. When the alloy was thoroughly liquid, it was poured into a 

mould and again melted and cast, to ensure a thorough mixture of the two metals. 

The alloy was melted for a third time, and then poured into a spherical mould 

made of lime. The quantity operated upon was about 5^ kilogs. The sphere showed, 

when cut into two halves, a brilliant white crystalline structure (D). The gold in 

the portions of metal removed for examination was very carefully determined by the 
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method which will be described subsequently ; the platinum will of course be the 

difference. 

D. Gold 100 parts. 

Platinum 900 1J 

Parts of gold in 1000 :— 

Outside. Intermediate. Centre. 

96T 97-3 93 
99-1 97-9 

100-6 
101-8 
102 

Average . 99'9 

Maximum difference in the gold between centre and mean of outside, G'9 per thousand. 

D. 

To follow this up : an alloy of gold twenty-five per cent, and of platinum seventy- 

five per cent, was then made in a similar manner to the alloy D, and the utmost care 

was taken to ensure a thorough mixture of the two metals. This alloy was also 

melted in a lime furnace by the oxyhydrogen flame and cast into a spherical lime 

mould. The sphere weighed between 5 and 6 kilogs., and the alloy was hard and 

brittle, resembling somewhat one of grey cast-iron. 

The following are the results obtained from the hemispheres into which the sphere 

was divided :— 

4 M mdcccxcii. —A. 
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E. Gold . 

Platinum 

250 parts. 

750 „ 

Parts of gold in 1000 :— 

Outside. Intermediate. Centre. 

249-3 245-5 249-2 
250-2 245-4 

248-7 248-3 
251-7 244 
251-6 

248 

Average . 249 "9 

Maximum difference in the gold between centre and outside, 2'5 per thousand. 

Maximum difference in the gold between intermediate and outside, 7'7 per thousand. 

251-7 
758 

It will be observed that in the spheres D and E, in which platinum constitutes the 

bulk of the mass, the platinum is still driven to the centre. This point requires 

further investigation ; but it may be pointed out that the same effect occurs in the 

case of standard silver. The most fusible alloy of the copper-silver series is the one 

which contains about 650 parts of silver in 1000, and it might, therefore, be expected 

that the centre of an alloy containing more silver than 65 per cent, would be poorer 

in silver than the outside; nevertheless, the authorities, Levol, Poberts-Austen, 

and in fact, all who have worked with silver-copper alloys know the contrary to be 

the case. Silver is driven inwards notwithstanding the fact that an alloy poor in 

silver remains fluid long after the mass as a whole has become comparatively solid. 

The platinum-gold alloys now in question behave like the silver-copper series. 
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Palladium-Gold Alloys. 

It is not an easy matter to obtain trustworthy assays from alloys of gold and 

palladium, and this fact first called my attention to the liquation of this metal from 

gold. 

I melted an alloy of ninety parts pure gold with ten parts of pure palladium in a 

plumbago crucible in a wincl-oil furnace (several times to ensure mixture), and then 

cast this into a spherical mould, which gave a sphere of about 5 kilogs. of the alloy. 

This sphere, which I call F, was cut into halves. The following are the determina¬ 

tions of the gold results from various parts of the hemisphere—the palladium can 

safely be taken by the difference :— 

F. Gold. 900 parts. 

Palladium.100 ,, 

Parts of gold in 1000 :— 

Outside. Intermediate. Centre. 

902-5 901-2 
902 899-2 
902-4 900-3 897 
902-1 900 
902 
901- 9 
902- 5 
902-3 

Average . 902'2 

Maximum difference in the gold between centre and mean of outside, 5"2 per thousand. 

F 

This same metal was now re-melted under the oxyhydrogeri flame in a lime furnace, 

and re-cast into the same spherical iron mould as before, the alloy therefore was at a 

much higher temperature than in the previous case. 

4 M 2 
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The sphere, which I call G, being cut equally into two, the following are the results 

from the various indicated portions of the hemisphere :— 

G. Gold. 900 parts. 

Palladium.100 „ 

Parts of gold in 1000 :— 

Outside. Intermediate. Centre. 

902 900-3 893'6 

901-6 900-4 

901-6 900 

901-5 899 

899-5 
899-5 
901-4 
902 

Average . 901’1 

Maximum difference in tlie gold between centre and mean of outside, 7'5 per thousand. 

G. 

It seems therefore clearly demonstrated by these experiments that the metal 

palladium is driven towards the centre of the mass in alloys of gold and palladium 

in a similar manner, though not perhaps to the same extent, as platinum-gold alloys, 

and the experiments shown by the diagrams given prove this fact incontestably. 

The methods adopted for the determination of the gold in the respective platinum 

and palladium alloys were the following:— 

In the alloys of gold, 10 per cent., and platinum, 90 per cent. Two carefully 

weighed portions of the alloys to be analysed were weighed and cupelled with two and 

three-quarter times their weight of fine silver—in identically the same manner as in 

conducting the process of gold assaying—one of the resulting buttons being then 

“ parted ” in nitric acid, and the other by sulphuric acid. In the first instance, the 

whole of the platinum dissolves with the silver by employing two distinct treatments 
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with nitric acid; in the latter, the silver only separates, leaving the whole of the 

gold and of the platinum together, the proportion of platinum in the alloy being 

the difference. The two resulting products weighed against each other yield the 

gold and the platinum. This is a simple but very accurate process, and is the 

recognised method adopted by the professional assayer when determining gold alloys 

containing small proportions of platinum. 

With each set of analyses I employed standards synthetically made with ten parts 

pure platinum and ninety parts pure gold, by means of which any possible error 

which might arise was completely checked and controlled. 

In the case of the estimation of the gold in the alloys of 90 per cent, platinum, and 

10 per cent, of gold, the foregoing process was obviously unavailable, and I was com¬ 

pelled to try several methods in order to obtain trustworthy results. The following, 

however, proved to be an exceedingly satisfactory process, and was therefore adopted. 

Exact weighings of 50 grains each, in duplicate, were taken of each of the portions 

of the hemispheres removed for examination. These were dissolved in aqua regia, 

evaporated to ensure the elimination of all free acid, and then diluted with distilled 

water to about 20 c.c. capacity, which was ascertained by experiment to be the best 

for the complete precipitation of the gold; the gold was precipitated by crystals of 

pure oxalic acid, washed and weighed. All the duplicate results agreed most satis¬ 

factorily. To corroborate these gold results, I precipitated the platinum by means 

of pure zinc, boiled the precipitated platinum in hydrochloric acid, and after washing 

and drying weighed the resulting pure platinum. With every set of analyses of 

metal from their respective spheres, I made up standards synthetically, each of 

37’5 grains pure platinum and 12‘5 grains pure gold to ensure accuracy, it being 

practically impossible to extract the whole of the constituent metals within y§^ths 

per cent. I tried other known processes with a view to obtain absolutely correct 

results, but I consider that the methods employed were very accurate. 

I am confirmed in this view by the experience gained in similar experiments by 

Mr. W. Bettel, in a paper contributed to the ‘Chemical News,’ vol. 56, No. 1452, 

which is evidently the result of much careful work. 

With alloys of gold and palladium it is usual to determine the amount of gold by 

quartation with pure silver, and parting by nitric acid. 

Carefully weighed portions of the alloys are cupelled in pure lead with two and 

three-quarter times their own weight of fine silver. 

These cupelled buttons are laminated and annealed, and then treated by boiling in 

nitric acid three distinct times. By these means the palladium becomes dissolved, as 

well as the silver, leaving the pure gold, which, after washing and annealing, is 

weighed. The difference is, of course, the palladium. 

With alloys of gold and palladium, say of gold 90 parts and of palladium 10 parts 

in the hundred, it is preferable to re-cupel and re-part the gold obtained with a further 

proportion of fine silver, as sometimes, and where there is as much as 10 per cent, of 

palladium, the whole of the palladium is not removed in one parting operation. 
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It is also of importance to work side by side with the portions of metal under 

examination checks or standards, made of pure gold and pure palladium as nearly to 

the composition of the alloy to be tested as possible. 

The results by this process of quartation are very accurate. 

Platinum and Palladium. 

The first alloy operated upon in this next series was one of palladium and platinum, 

in proportions of— 

H. Palladium. 85 per cent. 

Platinum. 15 „ 

To ensure accuracy, the alloy was made from the pure metals in the spongy condi¬ 

tion, fused separately, and then alloyed in the foregoing proportions. 

The alloy was melted and re-melted in a lime furnace with oxyhydrogen gas, and 

cast into a mould, to ensure a complete mixture of the two metals. 

The alloy was then again remelted, and cast into a lime sphere of about 3 inches 

diameter. About 4 kilogs. of the alloy was made for this experiment. 

The sphere so produced was afterwards cut, and divided into two hemispheres. 

The alloy, which had been melted and cast at a temperature of about 2000° C., was 

decidedly brittle and of a dark grey colour, and the casting was slightly honeycombed 

from its centre to the tube, or “ gate,” through wdiich the metal had been poured into 

the mould. The alloy was very hard. 

In the lower portion of the sphere, shown by the dotted line, the peculiar bluish- 

purple characteristic of palladium showed itself as a distinct feature. 

Pieces cut from the places indicated showed the results respectively of palladium 

and of platinum. 

Alloy H. Palladium. 850 parts. 

Platinum ...... 150 ,, 
Parts in 1000 :— 

Outside. Intermediate. Centre. 

Palladium. Platinum. Palladium. Platinum. Palladium. Platinum. 

835 157-5 830 160 845 152-5 
850 147-5 835 155 
845 145 840 155 
855 142-5 837-5 160 
842-5 155 

Average . 845’5 149-5 835-6 157-5 

Maximum difference between centre and mean of outside: Palladium, 5 per thousand; Platinum, 
30 per thousand 
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H. 

These results distinctly prove that, although there is not much evidence of true 

“liquation”—that is, rejection of a constituent of an alloy—the palladium does 

become concentrated by gravity towards the bottom of the “ freezing” mass. It is 

noteworthy that this alloy, when heated to bright redness in vacuo by means of a 

Sprengel pump, did not yield hydrogen. It was, in fact, singularly free from occluded 

gas. 

Following the matter up, the proportions of the same metals were reversed, and an 

alloy of— 

I. Platinum. 85 per cent. 

Palladium. 15 „ 

was then operated on. 

The constituent metals for this alloy were, as in the case of the former one, twice 

melted in a lime furnace by means of the oxyhydrogen flame, and cast to ensure 

perfect homogeneity, then re-melted, and cast into a lime sphere of 3 inches diameter. 

About 5 kilogs. was the quantity of the alloy made for this experiment. 

The alloy, when cut into two hemispheres showed a bright white crystalline 

structure, not brittle, but tough from the peculiar crystallization, which consisted of 

interlaced planes. 

The casting was perfectly solid, but toward the gate or tube the casting was slightly 

honeycombed. 

The following proportions of platinum and palladium were found at the points 

indicated :— 
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Alloy I. Platinum 
Palladium 

Parts in 1000 :— 

850 parts. 
150 

Outside. Intermediate. Centre. 

Platinum. Palladium. Platinum. Palladium. Platinum. Palladium. 

854 146 848 150 842 150 
849 150 854 147 
847 150 850 146 
847 149 
852 148 

Average . S49'8 148-6 850-6 147-6 

Maximum difference between centre and mean of outside:—Platinum, 7'8 per thousand ; Palladium, 

P4 per thousand. 

y. 

The foregoing results distinctly prove that there is still a slight concentration of 
palladium at the centre. 

II and I. 

As the results of the two foregoing alloys were non-malleable, the first being 

decidedly brittle, I proceeded to investigate this point further by intimately mixing 
pure sponge platinum and pure sponge palladium in the same proportions as in these 
two alloys, subjecting the mixed sponge metals to hydraulic pressure in a steel mould, 
heating them and forging the alloys so heated, in the same manner as with ingot 

platinum made from sponge platinum. In both cases these alloys, which had been 
prepared by welding and not fusion, were perfectly tough and malleable, proving 
that the high temperature necessary for melting these alloys enables them to pass into 
a crystalline state. 

I then melted these two malleable alloys, II and I, by means of the oxyliydrogen 
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flame in lime crucibles, and allowed them to cool in the crucibles. I employed about 

65 grms. for each of these experiments. 

Upon examination I found both of these alloys to be malleable, so that the difference 

between these results, as regards brittleness, is probably to be accounted for by the 

fact that the slow cooling enables a fine network of ci’ystals to form with resulting 

toughness. 

The process adopted for the determinations in the platinum-palladium series of 

alloys was the following :— 

Of each portion of the alloy to be analysed fifty grain determinations were taken 

and dissolved in nitrohydrochloric acid and evaporated nearly to dryness, these 

resulting chlorides re-acidified with hydrochloric acid and again evaporated nearly to 

dryness. 

The re-evaporated chlorides then dissolved up in water and the respective solutions 

of each determination diluted to about 150 c.c. liquid capacity; when cold the palla¬ 

dium was precipitated by mercury cyanide. The precipitate thus obtained was 

allowed to stand for twenty-four hours in a slightly warmed atmosphere, as I have 

found by experience that the precipitate of palladium cyanide comes down better 

under these circumstances. 

This precipitate, collected on filters, washed, dried, and ignited, gives the whole 

quantity of pure metallic palladium in the alloy. 

To obtain the platinum from the mother liquors, from which the palladium cyanide 

had been precipitated, these solutions were in each determiatnion evaporated to about 

30 c.c. capacity, and the platinum was then precipitated by ammonium chloride. 

The precipitate of the double salt of platinum ammonium chloride was then 

collected on filters, dried, ignited, and weighed, the result being pure platinum. 

The small proportion of platinum remaining in the mother liquors was precipitated 

by means of pure metallic zinc as metallic platinum, which, washed and digested in 

weak hydrochloric acid, was collected, ignited, and weighed, the results being added 

to those obtained by the ammonium chloride precipitation. 

All these results were checked by standards of pure palladium and of pure platinum 

in the proportion of— 

Palladium . 

P latinum . 

and also of— 

Platinum . 

Palladium . 

in the case of the alloys marked H, 

85 1 

15 j 
in those marked I. 

the results of which confirmed the accuracy of the process employed. 

mdcccxcii.—A, 
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Platinum and Rhodium. 

Much attention has lately been drawn to an alloy of pure platinum, with 10 per 

cent, of rhodium, which has become important from the excellent service it has 

rendered in the determination of high temperatures. The alloy of platinum with 

10 per cent, of rhodium is used with pure platinum as a thermo-couple, and it is, 

therefore, interesting to be able to set at rest any doubt which might arise as to this 

alloy being uniform in composition when melted and drawn into wire. 

For this purpose I prepared an alloy, J, of:— 

Platinum.90 per cent. 

Rhodium.10 ,, 

by fusing together in a lime furnace by the oxyhydrogen gas flame pure melted 

platinum with pure melted rhodium in the above proportions. 

About one and a half kilogs. of this alloy was made, and after three times melting 

and casting, the alloy was re-melted and poured into a lime sphere of two inches 

diameter. 

Upon cutting the sphere into hemispheres I found that a beautiful white malleable 

alloy was the result, with very slight evidence of shrinkage, care being taken to 

provide against this by an extra long gate or pour. 

The following are the proportions of platinum and rhodium found by analysis at the 

points indicated :— 

Alloy J. Platinum 

Rhodium 

Parts in 1000 : — 

Outside. Intermediate. Centre. 

Platinum. Rhodium. Platinum. Rhodium. Platinum. Rhodium. 

902 99 900 95 899 97 
898' 98 894 100 
904 100 904 94 
902 94 
892 96 

Average . 899 6 97-4 

900 parts. 

100 „ 

Maximum difference between centre and mean of outside:—Platinum ‘6 per thousand; Rhodium, '4 per 

thousand. 
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This result proves that the alloy is not subject to liquation, and fully justifies the 

high opinion that H. le Chatellier and Roberts-Austen have formed as to its 

suitability for thermometric measurements. 

The process adopted for the separation and determination of the rhodium and 

platinum in this alloy is one that I have found by experience to be exceedingly 

accurate if conducted with care. (It is described by Turner, * Elements of 

Chemistry,’ 5th Ed., 1834, p. 652.) 

Fifty grains of each determination were dissolved in nitrohydrochloric acid, and 

evaporated to dryness. The dry chlorides were then dissolved up in a warm solution 

of sodium chloride, and again evaporated to dryness. The resulting dry mass was 

then taken from the evaporating dishes and triturated in a porcelain mortar, from 

which each determination was then transferred to closed flasks, and digested in 

absolute alcohol in a very slightly warmed atmosphere for 24 hours, the bottles being 

shaken from time to time. 

At the end of this period the whole of the platinum chloride is taken up in 

solution by the alcohol, and the rhodium chloride left combined with the sodium 

chloride as a double salt of rhodium and sodium chloride insoluble in alcohol. This 

latter salt was washed with alcohol to remove all platinum chloride, and then 

dissolved in water. 

From this solution the metallic rhodium was obtained by direct precipitation with 

pure zinc, washed digested in weak hydrochloric acid, collected, dried, ignited, and 

weighed. 

The platinum from the alcoholic chlorides when evaporated and re-dissolved in 

water was determined by precipitation with ammonium chloride and pure zinc, as in 

the palladium-platinum series, and weighed as metallic platinum. 

With these analyses accurately weighed portions of pure rhodium and pure 

platinum, in the proportions of platinum 900, and rhodium 100 parts, were dissolved 

and treated as standards to ensure accuracy in the results of the analyses. 

It will be observed that, in some cases of members of the platinum group, the 

results of the analyses add up in excess of 1000. 

This is to be explained by the exceptional difficulty which attends the accurate 

determination of the metals of this group. 

4 n 2 
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Gold and Aluminium. 

The interest of the problems connected with the liquation of alloys of the rare 

and precious metals, suggested the desirability of investigating the behaviour of a 

metal with a very high specific gravity alloyed with a metal with a very low one. 

For this purpose gold, which has a specific gravity of 19*3, and aluminium, whose 

specific gravity is 2'6, were selected. 

In order to show an absolute contrast, two alloys were adopted, viz.: — 

and 

K. Aluminium.90 parts, 

Gold.10,. 

L. Gold . . 

Aluminium 

90 parts. 

10 3 3 

The alloy K was the first one experimented with. The ten parts of gold were first 

melted in a crucible, and the 90 parts of aluminium gradually introduced, the alloy 

being stirred as each portion of aluminium was added. When the whole quantity of 

aluminium had been added to the melted gold, the crucible was withdrawn from the 

fire, the contents thoroughly stirred and cast into a spherical mould. This alloy was 

white and tough, but the fracture at the lower part of the hemisphere exhibited a 

purple-pink mottled appearance, of which more will be said subsequently. 

The specific gravity of this alloy was 2*89. The sphere was then cut into two 

equal halves from top to bottom. About I kilog. of the alloy was employed for this 

experiment. 

Alloy K. Aluminium 

Gold . . 

Parts in 1000 of gold— 

Outside. Intermediate. Centre. 

90-9 76-1 771 
93-5 72 

107'5 117 
144o 
113-8 
1010 

80-2 

Average . 104'4 

110-5 

Maximum difference in the gold between centre and mean of outside, 27-3 per thousand. 

Maximum difference in the gold between centre and mean of bottom of casting, 67'4 per thousand. 

900 parts. 

100 „ 
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K. 

The above figures show the proportion of gold found by analysis at the different 

points of the hemisphere Iv. The result is a complex one, a rich alloy of gold and 

aluminium falls to the bottom of the mass by gravity, about 8 per cent, remaining in 

solution, and, on freezing, the gold becomes concentrated externally from the mother 

liquor. 

The alloy L, of gold 90 per cent, and aluminium 10 per cent., was then made by 

first melting the gold and subsequently adding the 10 per cent, of aluminium, w'ell 

stirring, and casting into a similar spherical mould as with the other alloy (K). 

This alloy was very fluid, its fracture hard, white, crystalline, and very brittle. 

The whole of the interior, when the sphere was cut in two halves from top to bottom, 

showed purple-pink spots throughout; but from the bottom of the hemisphere to the 

centre a pyramidal cone of white crystalline metal showed itself distinctly through 

the mass, in the direction shown by the dotted line. Its specific gravity was 11 '96. 

About kilogs. were employed for this experiment. 

Alloy L. Gold. 900 parts. 

Aluminium. 100 ,, 

Parts in 1000 of gold :— 

Outside. Intermediate. Centre. 

888-3 866’6 882-3 
899-5 892-3 
883-3 903-8 
864-7 

864-8 
879-5 

Average . 880 

Maximum difference in the gold between centre and mean of outside, 2‘3 per thousand, 
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L 

The above are the proportions of gold found at the different points of the hemi¬ 

sphere. 

It will be evident that the cooling of the alloy has been attended with much 

re-arrangement, but it is difficult to say that there has been true liquation or 

concentration of any given constituent of the alloy, as the mass seems to be a congeries 

of complex alloys of aluminium and gold. 

The beautiful rose-purple alloy of aluminium and gold, prepared in accor¬ 

dance with Professor Roberts-Austen’s instructions in 'Nature/ June 21, 1891— 

viz., 786 parts of pure gold and 214 parts of aluminium—were melted together, 

thoroughly mixed, and cast into a 3-inch sphere. 

This alloy, which I call M, is extremely brittle, but the beauty of its magnificent 

fracture was most striking; and the purple-pink appearances in the fractured spheres 

K and L are evidently reproductions of this alloy in some other proportions. 

Evidences of this colouring have been alluded to as showing in the alloys K and L. 

Trials made from various parts of the sphere, when broken up, showed proportions 

of gold as under. 

Alloy M. Gold. 786 parts. 

Aluminium. 214 ,, 

Parts in 1000 of gold :— 

Outside. Centre. 

7831 783-2 
781-5 
781-5 
784-3 
782-9 

Average . . 782"6 

Maximum difference in the gold between centre and mean of outside, '6 per thousand. 
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M. 

This result is of special interest. The alloy has a composition which corresponds 

to the formula AhAu, the constituent metals therefore exist in atomic proportions; 

it would appear to be a true chemical compound. There is little or no evidence of 

liquation, the maximum difference between any two assays being only 2'8 parts in a 

thousand. As this is the most highly coloured alloy yet known, the simple atomic 

relations between its constituents is of much theoretical importance. It would appear 

to be as uniform in its composition as any alloy known. 

Several methods were tried for the determination of the gold in these various 

alloys of gold and aluminium. 

Cupellation with excess of lead to remove the aluminium proved quite useless. 

The removal of the aluminium by digestion in hydrochloric acid, and collecting the 

residual gold did not yield satisfactory results. 

The process adopted, therefore, was as follows :— 

Accurately weighed portions of fifty grains each of the alloys under examination 

were fused with litharge, under a flux of potassium carbonate and borax with a 

small proportion of powdered charcoal, and the resulting slag re-fused with a further 

small quantity of litharge and powdered charcoal. 

The lead buttons containing all the gold (the aluminium having combined with the 

fluxes employed) were cupelled, and the resulting gold cupelled with silver and 

parted with nitric acid in the usual manner. All these determinations were worked 

with checks or standards of fine gold and pure aluminium. 

This process for the determination of gold was employed for every one of the fore¬ 

going aluminium-gold alloys. 

Conclusions. 

I regret that time has not enabled me to examine more members of each particular 

series of alloys, so as to present results in fuller detail ; in fact, the silver-copper 

series is the only one upon which anything like exhaustive work has been done. No 

doubt, in every series of alloys there is one definite alloy which would yield a uniform 
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mass on cooling, and it is known that in the silver-copper series this alloy (Leyol’s) 

contains 718 parts of silver per thousand. It is not certain, however, that this is the 

euctectic alloy of the series—that is, the one with the lowest melting point—but it is 

well known that when silver-copper alloys which contain more silver than 718 parts 

per thousand are cooled, the centre of the solidified mass is richer than the exterior. 

This is the case with standard silver for instance, which contains 925 parts of silver 

per thousand, and it is safe to conclude that an alloy rich in copper is the first to fall 

out from the mass, and that this alloy sets round the inner surface of the mould, 

driving a still fluid alloy—rich in silver—to the centre. The general rule in the 

present results, seems to be that in the cooling of a fluid mass of two united metals, 

an alloy rich in the more fusible constituent of the mass falls out first driving the less 

fusible constituent to the centre. The gold-platinum alloys (A, B, C, D, and E) seem 

to be always rich in gold externally. 

It is remarkable that the metals of the platinum group do not show much liquation 

among themselves, but, on the other hand, when gold is united to the members of the 

platinum group there is evidence of liquation. 

The gold-palladium one (F), follows the above rule. 

There is evidence that the alloy E, containing 750 parts of platinum and 250 

of gold, is near the composition of a true compound, as it shows hut little sign of 

liquation, and is, moreover, hard and brittle, differing materially from the rest of the 

series. The purple alloy of gold and aluminium M, AuAh, is almost certainly a 

true chemical compound, the solidified mass being as nearly uniform in composition 

as may be. The uniformity of the alloy (J) of platinum with 10 per cent, of rhodium 

is of much interest in view of the important part which the alloy is playing in 

pyrometric work. 

Conducting the experiments, the results of which are embodied in the present 

paper, has been very laborious, and although, as already stated, no complete series of 

the alloys of any two metals has been examined, quite sufficient data have been 

collected to afford valuable guidance to the metallurgist, who will now know what 

behaviour may be expected from the other members of the groups of the alloys in 

question. The gold-platinum series of alloys are of industrial importance, as native 

gold is so often associated with platinum, and it is somewhat surprising to find that 

assays made on pieces of metal cut from the exterior of an ingot cannot be trusted 

to rooresent the composition of the mass. The aim of the investigation has been to 

show tnat notwithstanding the great difficulty which attends the preparation of alloys 

of metals with very high melting points, it is possible to elicit from them the same 

kind of information which has proved to be so useful in the case of the more ordinary 

and tractable alloys. 
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Methods adopted for the Analysis of the several Alloys Experimented upon. 

(Added June 13, 1892.) 

For alloys of gold 100, and platinum 900 parts.—Two carefully weighed portions 

of the alloys to be analysed were weighed and cupelled in pure lead with two and 

three-quarter times their weight of pure silver, in identically the same manner as in 

conducting the process of gold assaying; one of the buttons so obtained was then, 

after lamination and annealing, parted in nitric acid, which by two distinct treat¬ 

ments removes the whole of the silver and the platinum, leaving the gold in a 

pure state, which, when washed, annealed and weighed accurately, gives the pro¬ 

portion of pure gold in the alloy. 

The other button, after being laminated and annealed in precisely the same way, 

was parted in sulphuric acid, which removes the silver only, leaving the whole of the 

gold and the platinum intact. By weighing the gold obtained by parting in nitric 

acid against the gold and platinum left by the sulphuric acid parting, the proportion 

of platinum obtained is the difference. This is a simple but very accurate method, 

and is universally recognised and employed by professional assayers when deter¬ 

mining alloys of gold containing platinum. By working checks or standards of gold 

and platinum, made synthetically of platinum ten and gold ninety parts, any error 

which might arise is completely checked and controlled. 

In the case of the alloys of platinum 900, and gold 100 parts, the foregoing- 

process was obviously unavailable. After many different experiments, the following 

method was one which I found to be accurate and trustworthy ; and duplicate 

analyses, each on 50 grains of metal, were carefully made by this process on each of 

the portions of the hemispheres removed for examination. 

Exact weighings of fifty grains each were taken cf each of the alloys under exami¬ 

nation and treated with an excess of nitrohydrochloric acid, which gradually dis¬ 

solved the whole. The resulting solutions of platinum-gold chloride were then 

evaporated nearly to dryness to ensure the elimination of all free acid, so as to 

obtain perfectly neutral solutions. These chloride solutions were then diluted with 

distilled water to about 20 cub. centims. capacity, a degree of strength which was 

ascertained by experiment to be the best for ensuring complete precipitation of the 

gold. The metallic gold was thrown down by means of crystals of oxalic acid and 

was carefully washed, dried, and weighed. 

From the mother liquors the metallic platinum was then precipitated by means of 

pure metallic zinc, and the resulting precipitated platinum was thoroughly washed, 

and boiled in diluted hydrochloric acid. The platinum thus purified was then 

washed, dried, and weighed. 

Side by side, with each set of analyses, standards synthetically prepared were 

used, each of 37'5 grains pure platinum and 12-5 grains pure gold. This was 

4 o MDCCOXCTT.—A. 
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necessary to ensure accuracy, as in practice it is found impossible to obtain the whole 

of the constituent metals from these alloys within y§^ths Per cent. 

I tried other known processes for these determinations, but none gave such 

accurate results ; and in this view I am confirmed by Mr. W. Bettel whose paper in 

the £ Chemical News,’vol. 56, No. 1452, shows that he has devoted much patient 

attention to the subject. 

The method of analysis adopted in the case of the alloys of gold 900 and 

palladium 100 parts, consisted in removing the palladium by the process of 

“ quartation ” with fine silver. Carefully weighed portions of the alloys under 

examination were cupelled in pure lead with two-and-three-quarter times their 

weight of fine silver. Each cupelled button so produced was then laminated, 

annealed, and treated with and “ parted ” by boiling in nitric acid three distinct 

times. By these means the palladium is dissolved out as well as the silver, the gold 

being left. The resulting gold, after being washed and annealed, was again cupelled in 

lead with a further proportion of two-and-three-quarter times its weight of fine silver, 

and again parted by boiling in nitric acid three distinct times, to ensure the removal of 

the whole of the palladium, the gold so obtained after being washed, annealed, and 

weighed, yielding the percentage of pure gold in the alloy. The proportion of 

palladium was then found by the difference 

To ensure accuracy, checks or standards, made up of pure gold 900 parts and palla¬ 

dium 100 parts, were worked side by side with all the analyses made. 

All the results by this process are trustworthy and accurate. 

The process adopted for the determinations of the platinum and palladium in the 

series of alloys made of these metals was as follows :— 

Of each portion of the alloy to be analysed, accurately weighed portions of 50 

grains each were attacked by nitrohydrochloric acid, which gradually dissolved the 

whole of the alloy under digestion. The resulting chlorides were then carefully 

evaporated nearly to dryness, then re-acidified with hydrochloric acid, and again 

evaporated almost to dryness. These re-evaporated chlorides were then dissolved 

in distilled water, and the respective solutions of each analysis were diluted to a 

volume of about 5 ounces, and allowed to become quite cold. 

Cyanide of mercury was then added in slight excess to precipitate the palladium, 

and the whole allowed to remain for twenty-four hours in a warm atmosphere, 

experience showing that this precipitate of palladium cyanide comes down better 

under these circumstances. At the end of tnis time the precipitate of palladium 

cyanide was collected on filters, washed, dried, ignited, and weighed as pure palla¬ 

dium. 

The whole contents of the palladium in the alloys is precipitated by these means. 

To obtain the platinum from the mother liquors, from which the palladium had 

been removed, they were evaporated to a capacity of about 30 cub. centim. Ammonium 

chloride was then added, and the platinum precipitated as the double salt of platinum- 
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ammonium chloride. This precipitate was then carefully collected on filters, dried, 

ignited, and weighed, the result being pure platinum. 

The small proportion of platinum remaining in the mother liquors was precipitated 

by means of pure metallic zinc as metallic platinum, which, when washed and digested 

in diluted hydrochloric acid, was collected, ignited, and weighed, the results being 

added to those obtained by the ammonium chloride precipitation. All these results 

were checked by standards of pure palladium and pure platinum in the propor¬ 

tions of— 

and of- 

Palladium . . . 85 

Platinum . . 15 

Platinum . . 85 

Palladium . . . 15 

j- in the case of the alloys marked H, 

5 
in those marked I, 

and the results obtained by analysing these standards confirmed my views as to the 

accuracy of the process employed. 

Alloy J. Platinum.90 parts. 

Phodium.10 ,, 

The process adopted for the separation and determination of the rhodium and 

platinum in this alloy is one that I have found by experience to be exceedingly 

accurate if conducted with care. (It is but little known, although it was described 

many years ago in Turner’s ‘ Elements of Chemistry, 5th edition, 1834, page 652.) 

Fifty grains of each of the alloys under examination were dissolved in nitro- 

hydrochloric acid, and evaporated to dryness. The dry chlorides were then dissolved 

in a warm solution of sodium chloride, and again evaporated to dryness. The resulting 

dry mass was then taken from the evaporating dishes and triturated in a porcelain 

mortar, from which the mass was then transferred to closed flasks and digested in 

absolute alcohol in a slightly warm atmosphere for 24 hours, the bottles being shaken 

from time to time. At the end of this period the whole of the platinum chloride is 

taken up in solution by the alcohol, and the rhodium chloride is left combined with 

the sodium chloride as a double chloride of rhodium and sodium insoluble in alcohol. 

This latter salt was washed with alcohol to remove any platinum chloride, and then 

dissolved in water. From this solution the metallic rhodium was obtained by direct 

precipitation with pure zinc ; it was washed, digested in w7eak hydrochloric acid, 

collected, dried, ignited, and weighed. 

The alcoholic chlorides containing the platinum chloride were evaporated and 

re-dissolved in distilled water. The platinum was then thrown down by means of 

4 O 2 
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ammonium chloride and by pure zinc, as in the palladium-platinum series, and 

weighed as metallic platinum. 

In these analyses, accurately weighed portions of pure rhodium and pure platinum, 

in the proportions of platinum 900, and rhodium 100 parts, were dissolved and 

treated as standards to ensure accuracy in the results of the analyses. 

In the case of the gold-aluminium alloys, several methods were tried for the 

determination of the gold in these various alloys, direct cupellation with lead, and 

the removal of the aluminium by dissolution in hydrochloric acid, but neither yielded 

satisfactory results. The process adopted, therefore, was to ascertain accurately the 

proportion of gold in the various portions of the alloys removed for analysis by 

the following method, the aluminium being found by the difference. 

Determinations of 50 grains each from the various portions of the alloys removed 

for examination were carefully fused in small clay crucibles with litharge under a 

flux of borax and potassium carbonate, with a small proportion of powdered charcoal. 

The button of lead so obtained was removed, and the slag re-fused with a further 

small quantity of litharge and powdered charcoal. The resulting lead buttons were 

then cupelled, and yielded the gold contained in the alloy (the whole of the aluminium 

having combined with the fluxes employed). The gold so obtained was then 

cupelled in pure lead with two-and-three-quarter times their weight of fine silver, 

and parted in nitric acid. The gold thus purified was washed, dried, annealed, and 

weighed. 

This process for the determination of the gold was employed for every one of the 

aluminium gold alloys. 

All these analyses were checked by means of synthetical standards made up of 

gold and aluminium in the same proportions as in the alloys for examination. 
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XVII. Bakerian Lecture.—On the Grand Currents of Atmospheric Circulation. 
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Received March 10,—Read March 10, 1892. 

[Professor Thomson died on May 8, 1892, before this Lecture was printed.] 

In the early times of the Royal Society (a little more than 200 years ago) a spirit of 

inquiry and of speculation as to the causes of the Trade Winds arose among its 

members. The papers which we may presume to have first brought the subject into 

special notice in the Society, and which were published in the ‘ Transactions,’ offered 

viewrs which, in the light of subsequent knowledge and theory, show themselves as 

being untenable, and in part even grotesque. But those papers were soon followed 

by, and probably had an effect in leading to, a much more important paper by the 

eminent astronomer Edmund Halley ; and this was followed 49 years later by one, 

more important still, by George Hadley, in which we may with confidence judge 

that a substantially true theory of a large part of the system of Atmospheric 

Circulation in its grandest and most dominant conditions was for the first time 

offered to the world through the pages of the ‘ Philosophical Transactions.’ 

Further speculations on the subject and advances in our knowledge of it have been 

made in later times and have been brought into notice in various ways. I believe 

that I have myself arrived at some improved considerations which are to a large 

extent trustworthy and go far towards completing the true theory of the grand 

currents of atmospheric circulation, and I entertain the ambition to have my views 

placed on record by this Society—the Society in which the subject had its most 

important beginnings. 

With this in view it appears indispensable that some historical recital should be 

adduced of the progress made by others previously: but still, for those who may 

at any time wish to direct their attention specially to the physical conditions 

irrespective of the history of the progress of thought or of discovery on the subject, 

it appears desirable that an exposition of the resultant theory which I have devised 

should be presented without being itself encumbered by historical details of the 

courses through which it has been ultimately arrived at. I propose, therefore, to 

present, in a first section, a historical sketch of all the speculations and theories 

which, as far as known to me, have conduced in any important way towards the 

resulting theory that I have to offer as being tenable and trustworthy ; and then to 

set forth that new theory itself divested as far as possible of historical or personal 

19 12.92 
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references; and to conclude with some considerations as to the reasons for or against 

the views put forward by various persons. 

The first opening up of considerations and discussions in the Royal Society on the 

subject of Atmospheric Circulation appears to have been made in a paper submitted 

to the Society, in 1684, by Dr. Martin Lister, Doctor of Physic of the University 

of Oxford, and published in the ‘ Transactions.’* As an illustration of the scanty 

and crude condition of knowledge and of thought on this great subject at that time— 

the middle period of the life of Sir Isaac Newton—I may be permitted to cite the 

views of Dr. Lister in his own words as offered briefly in that paper :— 

“ Among the known Sea Plants, the Sargosse, or Lenticula Marina, is not to be 

forgot; this grows in vast quantities from 36 to 18 Degrees Northern Latitude, and 

elsewhere, upon the deepest Seas. And I think (to say something by the by of that 

great Phenomenon of the Winds) irom the daily and constant breath of that Plant, the 

Trade or Tropick Winds do in great part arise : because the matter of that Wind, 

coming (as we suppose) from the breath of only one Plant it must needs make it 

constant and uniform : Whereas the great variety of Plants and Trees at Land must 

needs furnish a confused matter of Winds : Again the Levant Breezest are briskest 

about Noon, the Sun quickening the Plant most then, causing it to breathe faster, and 

more vigorously ; and that Plants mostly languish in the night is evident from many 

of them which contract themselves and close at that time ; also from the effects of 

our winters upon them, which cause them to cast both fruit and leaves too; whereas 

they are said (the same Plants for kind) universally to flourish all the year alike 

within the Tropicks. 

“ As for the direction of this Breeze from East to West, it may be owing to the 

General current of the Sea, for a gentle Air will still be led with the stream of our 

Rivers, for example. Again every Plant is in some measure an Heliotrope, and 

bends itself, and. moves after the Sun, and consequently emits its vapours thither¬ 

ward, and so its direction is in that respect also owing in some measure to the 

Course of the Sun.” 

[Note.—The above is the whole passage given by Dr. Lister about Trade Winds. 

The rest of his paper relates, to entirely different subjects, chiefly to salt springs and 

brines.] 

In scrutinizing these utterances of Dr. Lister, we may notice that he must have 

been in possession of some information, more or less vague, to the effect that over 

extensive regions of the great oceans between the Tropics, or near to them, winds 

blowing from east towards west are prevalent; and that he has attempted to explain 

this prevalence by attributing it to the breath of a plant floating on the sea and 

turning “as an heliotrope” so as to blow its breath westward according to the 

* ‘ Phil. Trans.,’ No. 156, p. 494. Date February, 1683-84. 

t By “ Levant Breezes,” here Dr. Lister obviously means breezes from the east, in fact, the Trade 

Winds of the tropics.—James Thomson. 
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direction of the Sun’s diurnal relative motion through the sky from its rising in the 

east to its setting in the west. He does not indicate any knowledge of the fact that 

on the two sides of the Equator in tropical regions there are two Trade-Wind zones, 

one on each side, in each of which the wind prevails from east to west, with an 

accompanying motion in each case towards the Equator. 

We may, indeed, suppose, that such knowledge was only gradually acquired, chiefly 

by mariners, and was but vaguely and imperfectly intercommunicated among them, 

and was spread very little among others during a long period of time. I do not 

suppose that any remarkable step in the discovery and promulgation of knowledge of 

the prevalent courses of the winds in those seas in and about the Torrid Zone is to be 

attributed to any one person in particular, nor that there was, indeed, any very 

important and clear promulgation of the floating knowledge on the subject until the 

time when the astronomer, Halley, collected and systematized a large amount of 

valuable information, and presented it to the Boyal Society, in his paper in the 

‘ Transactions ’ of 1686, to which I shall make particular reference a little further on. 

It may be well at the present stage, before going further into the history of 

speculations, to draw attention to the chief features of the Trade Winds and other 

perennially prevalent air currents, as they present themselves very manifestly to the 

notice of mariners. 

The mariners on board a ship at sea, it is to be observed, however, have direct 

cognizance only of the wind blowing at the spot on the ocean’s expanse where for the 

time being their ship is situated. They can make no observations on the winds 

blowing at the same moment 100 miles away, and the vault of the sky above them 

presents to their eyes no adequate indication of the upper currents, or of the places 

whence these come or whither they are going in their circuits. But even long ago, by 

the collation among navigators of facts contemporaneously observed by various seamen, 

important knowledge was acquired gradually as to the general character of contempo¬ 

raneously existing air currents at the surface of the sea, without the aid of any 

trustworthy theory as to the continuations of such currents in circulation through the 

upper regions of the atmosphere. It is further to be noticed that the geographical 

distribution of sea and land, presenting as it does great regions of ocean, and large 

continents themselves varied with mountain ranges and Jow-lying plains, introduces 

great local variations in the conditions determining the courses of winds, and prevents 

the institution of any complete uniformity in the character of the air currents all 

round the Equator, or throughout zones between any parallels of latitude. 

But in the Atlantic and Pacific Oceans there are extensive regions within, and 

adjacent to, the Torrid Zone, in which the winds blow with remarkable constancy 

from the east while converging also from north and south at the two sides, towards a 

medial belt of calms and rains which is situated along, or very near to, the Equator. 

These remarkably persistent winds blowing in the northern hemisphere from the 

north-east, and in the southern from the south-east, are called the Trade Winds. The 
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outer limits of the two Trade Winds vary in different seasons of the year, and are 

affected by casually varying conditions of the atmosphere in other parts of the world, 

and by the geographical configurations of the surrounding continents affecting them 

unequally in different parts; but, without minute exactitude, they may be regarded 

as occupying some such breadth as perhaps 25° or 30° on each side of the Equator. 

It was also found by mariners in those early times previous to the development of 

theories of atmospheric circulation, that in the great oceans, in the higher latitudes, 

outside of the trade-wind bands, west winds are prevalent in frequency and strength 

over winds in other directions. It became the practice of traders when going on a 

voyage from east to west to make their way into the trade-wind region, where they 

were sure of finding favouring breezes, and on their return voyage to get into higher 

latitudes, so as to take advantage of the prevailing west winds there. 

Until recent years no information was definitely gathered from observations or 

otherwise as to whether or not there be any prevalent general average tendency in those 

west winds to blow in their variations more towards the Pole or towards the Equator; 

and I avoid entering on any statements on the subject at the present historical stage, 

as that matter will be better associated with the subsequent progress of theories than 

with the early history. 
Fig. 1. 

A/ 

Q 

The explanations just given in words as to the chief features of the trade winds and 

of the west winds of higher latitudes may be supplemented so as to come more vividly 

before the imagination by aid of fig. 1. 

This figure is sketched without regard to the disturbing influences of continents and 

mountain ranges. It may be regarded as being suggestive of the most remarkable 

features which would probably present themselves in the winds if the surface of the 

world were all ocean, or were ocean mottled very uniformly with small islands. 

Now, to revert to the historical sketch already entered on, of speculations and 

theories as to perennially prevalent winds, and to variable winds which mani¬ 

fest perennial prevalence in special directions, the next theory to which I have 
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to refer, is that of Dr. Garden of Aberdeen, which, about one year after that of Dr. 

Lister, was placed on record in the ‘ Transactions of the Royal Society.’ Dr. Garden, 

in his paper,'" attributes the east to west motion of the Trade Winds of the Atlantic 

and Pacific Oceans to the supposed vortices of a supposed ether, or all-pervading 

atmosphere, which, according to the planetary system proposed by Des Cartes, and at 

that period still believed in by some, were imagined to be the agents carrying on or 

sustaining the revolutions of tlie Planets round the Sun, and of the Moon round the 

Earth, and of the Earth round its own axis. Dr. Garden’s paper gives indication of 

his having some knowledge, not only of prevalence of winds from the east within the 

tropics, but also of prevalence of winds from the west in higher latitudes outside of 

the tropical regions. He gives no indication of knowledge of the Trade Winds having, 

along with their westward motion, also motions towards the Equator from both sides ; 

and is, in this respect, apparently on an equality with Dr. Lister. They had both 

made praiseworthy exertions in collecting and bringing into notice important results 

from the observations of mariners and other travellers. When, however, Dr. Garden 

offers explanations of his supposed reasons for the blowing from east to west within 

the Tropics, and from west to east in latitudes higher than those of the tropical regions, 

his statements, in their meaninglessness, quite transcend the inadequacy of the 

explanations in the amusing attempt of Dr. Lister. 

The papers of these two men may probably have had a beneficial effect in instigating 

Halley to prepare, for the Royal Society, a paper presenting the results of his 

researches as to the observable facts of the winds, and. his speculations to account for 

the prevalent directions of them motions. In 1G86, about one year after Dr. 

Garden’s paper, Halley, then at the age of thirty, submitted to the Society an 

elaborate and very clear account of the information as to the winds in different parts of 

the world which he could collect from numerous sources, including observations carefully 

made by himself on voyages and on land between the Tropics. The title of his paper 

in the ‘ Transactions,’ is “ An Historical Account of the Trade Winds, and Monsoons 

observable in the Seas between and near the Tropicks, with an attempt to assign the 

Physical Causes of the said Winds.”+ His description of the observed facts and his 

theoretical considerations on the subject, have constituted an important step in the 

development of the science of that subject, even though his theory in its most important 

part—that which relates to the east to west motion of the Trade Winds—turns out to 

be fundamentally untenable. He adduced, no doubt, in his explanation, an important 

part of the real truth as to causes of the wind, a part which, if not first suggested by 

him, was clearly either not generally known or not generally adopted at the time. 

This true element in his theory consisted in his assigning as the primary motive 

cause of the winds, the expansion of the air of hot regions, accompanied by its outflow 

in its upper parts from those regions towards places of less heat and entailing a 

* ‘ Phil. Trans.,’ vol. 15, No. 175. September and October, 1685. 

t ‘ Phil. Trans.,’ No. 183, p. 153. 
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diminished pressure at the base of the ascending heated current, and consequently 

entailing an influx at bottom from the lower part of the atmosphere at the colder 

places where descending currents are generated. In applying this general principle 

further to the explanation of the observed winds, he rightly explained the influx of 

the air from both sides towards the Equator or some medial part of the trade-wind 

region as being due to the more intense heating effects of the Sun in the Equatorial 

regions. But in the more important, because less obvious, element for explanation of 

the Trade Winds and of atmospheric circulation generally—that which is requisite for 

explaining the east to west motions of the Trade Winds, and the prevalence of winds 

from west to east in higher latitudes—he quite missed the true explanation. He 

attributed the east to west flow of the Trade Winds to the diurnal revolution round 

the equatorial zone from east to west of the maximum of accumulation of heating 

effect from the daily sunshine, which gives an accumulation of heat in the afternoon 

in each successive locality. Briefly, he said to the effect that as the maximum of 

accumulated heat runs round the Torrid Zone from east to west, passing each place at 

a few hours after noon of that place, and as the maximum of heat in travelling round 

always causes an indraught towards itself, so the atmosphere of the Torrid Zone must 

be brought into flowing round from east to west likewise. But this conclusion from 

the submitted premises is really quite inconsequential. 

In inference to this speculation, and treating for the present the direction which we 

will call the forward direction round the Torrid Zone as being that of the Sun’s progress 

from east to west, we may entertain considerations such as the following :—That 

consequent on the indraught from all sides towards the hot region, where the baro¬ 

metric pressure is most reduced, the backward-tending forces acting on the air in 

front of the maximum may be acting as much in respect to time and duration back¬ 

ward on the air in front of the maximum as do the forward-tending forces on the air 

behind that maximum, and that, through this consideration by itself, we might not 

be entitled to suppose that any resultant tendency to the generation of a current 

round the Torrid Zone one way or other, east to west, or west to east, would be pro¬ 

duced. But when we further consider the unsymmetrical character of the conditions 

of the two influxes towards the maximum region from before and from behind, and 

the to us very unknown accompanjdng frictional conditions between these unsym- 

metrically conditioned currents of air and the surface of the earth or sea over which 

they pass, we may be led to think it very unlikely that the forwarding and back- 

warding influences would exactly counteract one another ; and I certainly think they 

would not do so, and I think some resultant flow from east to west, or from west to 

east would be produced, but in which way, east to west or west to east, it would 

occur I am quite unprepared to say.# 

* As a matter of curiosity I think it might he interesting in a time of comparative leisure for some 

person to make experiments with a spirit lamp or other heater kept revolving slowly round in a circular 

path under a circular tray filled with water, the path being of a little smaller radius than the tray. The 
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The theory or speculation in the terms in which it was set forth by its author 

makes no reference to the inertial conditions of the atmosphere concerned in its 

diurnal revolution along with the Earth, to which, as a matter of fact, it clings so as 

to have at all times and all places almost the same revolutional speed or angular 

velocity of diurnal rotation as the Earth has. In fact, Halley’s theory would be 

equally applicable to the case of the world being non-rotative and having the Sun, 

or an equivalent source of heat, revolving round it from east to west. 

But, in view of the very powerfully influencing conditions subsequently brought to 

light in the theory of Hadley which will next be adduced, any such feeble causes as 

those relied on by Halley must fall practically into insignificance, the indubitable 

cause shown in Hadley’s theory being such as to be dominant. 

In 1735 George Hadley (brother of the John Hadley who invented the instru¬ 

ment commonly known as Hadley’s Quadrant) submitted to the Boyal Society the 

paper of which I have made mention already as supplying for the first time a substantially 

true theory of the primarily dominant conditions of atmospheric circulation." The 

paper is entitled “ Concerning the Cause of the General Trade-Winds,” and it is right 

here to notice that Hadley applied the name General Trade-Winds, not merely to 

those winds of equatorial regions to which the name Trade Winds is ordinarily 

restricted, but uses it as including also the west to east winds known to be prevalent 

in higher latitudes, and used in trade by mariners for ocean passages from west to 

east. Thus the scope of his theory must be understood as being much wider than 

what would be conveyed in ordinary nomenclature by the name, Theory of the Trade- 

Winds. 

In his paper, Hadley commences by adopting, as a part of the whole truth, the 

view already in his time currently held by others, that the Sun’s heat, intensely 

applied and greatly accumulated in the equatorial regions of the Earth, conjointly 

with the cooler temperatures of the regions in higher latitudes, is the main and 

primary cause of the Trade Winds and other currents of the atmosphere. In this 

way he supposes that at the Equator or near to it there is a belt of air ascending 

because of its high temperature and consequent rarefaction, and an influx from both 

sides towards a zonal region of diminished pressure at its base ; and that from its 

upper part currents float away to both sides, northward and southward, and that 

these continue in the upper regions of the atmosphere advancing pole-ward until, by 

cooling in the higher latitudes, their substance gradually becoming less buoyant sinks 

down gradually and returns towards the equatorial regions as a lower current along 

the Earth’s surface, thence to renew the circulation by ascent again in the equatorial 

region. While indicating virtually that such atmospheric circulation would be 

generated, whether in an irrotative world with a source of heat revolving round it, 

qaestion being, would or would, not the water be set into revolutional motion, and if so would it revolve 

in the same direction as the lamp or other source of heat does P 

‘ Phil. Trans.,’ vol. 39, No. 437, for April, May, and June, 1735, p. 58. 

4 p 2 
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corresponding to the Sun in its apparent diurnal revolution, or in a world revolving 

on its axis as does the Earth, he shows that in the latter case—the case, namely, of 

the revolving Earth—in addition to such circulation as has just been described, east- 

to-west and west-to-east motions relative to the Earth’s surface would necessarily 

come into being for reasons which may be stated or suggested as follows :— 

If we consider the air in a nearly calm region at the outer limits of the trade-wind 

zone, and regard the air at that place as being at rest relatively to the Earth’s surface, 

and if we consider it to be drawn over the surface by indraught towards the Equator 

without application to it of any other force than that of the indraught, except what 

it may receive by friction from the surface of the Earth, be that land or ocean, this 

air in arriving at places always lower and lower in latitude (and consequently further 

and further out from the Earth’s axis) is coming to places in succession each moving 

eastward quicker than the previous one ; and thus the air is arriving successively at 

places each going quicker eastward than the air itself was going when at the previous 

place ; consequently the air in arriving at each new place must obviously have a slower 

motion eastward than the Earth’s surface at that place has. 

Thus throughout that course the Earth must be rushing forward under the air 

eastward quicker than the air goes, and that is the same as to say that the air 

must be blowing westward over the surface of the Earth. 

In connection with this part of his theory he brings into notice that, while the 

surface of the Earth at the outer edges of the Trade Winds has much less of absolute 

velocity eastward in diurnal revolution round the Earth’s axis than the surface at or 

near the Equator has, yet the trade-wind air, on arriving at the foot of the equatorial 

belt of rising air after its course from those outer parts in higher latitudes, has become 

imbued with eastward velocity little less than that of the equatorial surface of the 

Earth, the only deficiency in this eastward velocity from that of the equatorial 

surface being what is manifested as wind blowing westward over the Earth’s surface, 

or having in relation to that surface a moderate westward velocity. He shows, for an 

example, that the eastward velocity of the Earth at either of the tropic circles is less 

than that at the Equator by about 87 miles per hour, but yet that the air which comes 

from calm regions near the tropic circles to the equatorial belt has, on its arrival at 

that belt, an eastward absolute velocity which is only a few miles per hour in defect 

of the velocity of the Earth there, the actual defect being manifested in the relative 

velocity with which the wind at the equatorial parts blows westward over the surface 

of the land or sea. He explains that this result is brought about by reason that the air, 

during its course from the outer edge of the trade-wind zone to the foot of the equa¬ 

torial rising belt, is perpetually being dragged forward eastward by the quicker-moving 

land or sea below it, and so its velocity is kept nearly assimilated to that of the part 

of the Earth over which, for the time being, it exists, and is allowed only to be a 

little less than that velocity. 

Such, then, is Hadley’s theory, in so far as it relates to the origin of the Trade 
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Winds of the equatorial regions on both sides of the Equator. His theory further 

extends to explain the cause of the prevalence of winds from west to east in latitudes 

higher than those of the winds of equatorial regions, to which, except in the nomen¬ 

clature of Hadley himself, the name Trade Winds has been usually restricted; and 

this part of his theory may be represented as follows :— 

The equatorial surface of the Earth has a velocity of diurnal revolution from west 

to ea.st of about 1000 miles per hour. The air of the land and sea at and near the 

Equator participates nearly in the same velocity. The ascending equatorial belt of 

heated air retains as it ascends an absolute velocity from west to east nearly the same 

as that of the equatorial surface of the Earth. He supposes, then, in his theory, that 

the air floating out from the upper part of the rising belt to north and south over the 

equatorial zones of Trade Winds, and thence, still in the upper parts of the atmosphere, 

spreading over extensive regions of land and sea in latitudes higher than those of the 

Trade Winds, will, on reaching those regions whose velocities of diurnal revolution are 

much slower, be rushing forward from west to east quicker than do the portions of the 

Earth’s surface over which it successively arrives in floating poleward ; that greater 

speed of eastward motion of the air than of the Earth beneath being, however (as he 

indicates with a fair approach to clearness), kept in moderation by influences from the 

surface of the land or sea offering resistance to relative motions of the air above it. 

Further, he supposes that this upper air, while moving eastward quicker than does 

the Earth below it, gradually loses a great part of its previously acquired heat, and 

becomes less buoyant, and consequently descends gradually towards the surface of the 

Earth, the supply above being always maintained by fresh arrivals from the equatorial 

regions ; and he supposes that the descending air brings from aloft perpetually new 

supplies of west-to-east motion relative to the surface, and so maintains winds blowdng 

over the surface from west to east. The air then, after its descent from the sky 

towards the surface throughout extensive regions, must, I think, necessarily, under his 

theory—although he does not explicitly mention this—be supposed to flowT gradually 

back in the lower levels of the atmosphere towards the Equator, while also blowing 

prevalently from west to east, till it reaches again the outer border of the trade-wind 

region, thence to go forward repeating such a circulation as has just been described. 

Hadley concludes his paper with a short passage which, considered in reference to 

the crude condition of progressive opinions prevalent in respect to atmospheric circu¬ 

lation up to the time of the promulgation of his theory, is to be regarded as suggesting, 

though in somewhat vague and not entirely correct expression, a very notable and 

important principle. 

The passage is as follows :—“ That the N.E. and S.E. Winds within the Tropicks 

must be compensated by as much N.W. and S.W. in other Parts, and generally all 

Winds from any one Quarter must be compensated by a contrary wind somewhere or 

other ; otherwise some Change must be produced in the Motion of the Earth round its 

Axis.” 
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The really important idea which it appears to me is suggested in this passage, is 

that in respect to the Earth’s rotation round its axis the sum of all the forward 

turning-force-influences applied by the winds to the surface of the Earth, land and sea 

included, must be equal to the sum of all the backward turning-force-influences like¬ 

wise ajoplied to the Earth’s surface; so that these force influences may be such as 

conjointly to produce no acceleration or retardation in the revolution of the Earth 

round its axis. 

In putting forward this idea he was doubtless assuming as a principle that we are 

not to attribute to the thermal influence of the Sun any effects in altering the rotation 

of the Earth by producing winds blowing upon the Earth more effectually on the whole 

forward than backward, or the reverse. He did not, nor probably did anyone else till 

long after his time, notice the now known principle that the Sun and Moon can, by 

their attractions, apply' to fluids on the Earth—to the sea or to the atmosphere— 

turning forces* which these fluids must communicate to the solid earth, and which 

must, in very long periods of time, make changes on the Earth's rotation. Such 

influences, however, are certainly so very small comparatively to those Hadley had 

under consideration as occurring in the action of the equatorial Trade Winds from the 

east, and the winds of higher latitudes from the west, that his not knowing of them 

is not to be regarded as derogating from the practical or substantial truth and 

validity of his Theory of the Winds in its main features. 

In the account I have given of Hadley’s theory of -the primarily important 

perennial features of atmospheric circulation, I have endeavoured faithfully to give a 

fair and favourable account of the truths which he brought to linlit, I have not held 
o O 

it as a duty to bring under review every statement or phrase to which objection might 

be taken by an adverse critic. There is one mistake, however, into which Hadley 

fell, and which is too important to be passed over without notice. This error, 

although incorporated by himself along with his true explanations in respect to the 

causes of the equatorial Trade Winds and of prevalent westerly winds of higher 

latitudes is quite separable from those true explanations; and its elimination does 

not make any break down in any essential part of his reasoning as to the real condi¬ 

tions of the atmospheric motions. His error pertained not to his suppositions as to 

the actual motions of the real air, but to supposed motions and behaviour of air in an 

ideal case which he adduced as a simplified illustration intended to be helpful to the 

consideration of the more complex conditions of the real case. The two cases—the 

ideal and the real—are not explicitly and distinctively specified by himself, but they 

are brought implicitly under consideration in his statements to the following effect :— 

Firstly.—That air having been in an approximately calm condition at one of the 

Tropic Circles, and having moved thence in the Trade Wind to the Equator, will, on 

arriving at the Equator, retain still the same absolute eastward velocity that it had 

'* Any system of forces which can be balanced by what nnder the nomenclature of Poinsot is called a 

couple, may be described as a turning-force-influence, and may now with advantage be called a torque. 
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when at the Tropic, and so will at the Equator have less velocity of absolute eastwai’d 

motion than the Earth there has, by 2083 miles per day, or 87 miles per hour, and 

that so it will be moving relatively to the Earth there as a wind blowing at the rate 

of 2083 miles per day from east to west. 

And Secondly:—That as an amendment on the previous statement, it is to be 

considered that “ before the air from the Tropicks can arrive at the Equator, it must 

have gained some motion eastward from the surface of the earth or sea, whereby its 

relative motion will be diminished, and in several successive circulations may be 

supposed to be reduced to the strength it is found to be of.” 

In reading these two statements conjointly we may writh confidence judge that the 

first of them is not meant to convey the actual truth in respect to the real behaviour 

of the atmosphere, but that it is only a theoretical utterance as to an ideal case, in 

which the frictional drag between the surface of the ocean and the atmosphere is left 

out of account, and that the second is that which is meant to convey the real truth. 

Now the important error into which he has here fallen, consists in his supposing that 

in an ideal case, in which the trade-wind air is regarded as frictionless and free from 

receiving any eastward or westward force-influences from the ocean below it, or as 

I will add, from the atmosphere immediately above it, it ought to be expected on 

arriving at the Equator, from a calm at the tropic circle, to retain the same amount of 

eastward absolute motion which it had when at the tropic. Instead of that, in the 

ideal case, if fully specified with due limitations, such as we may suppose were 

tacitly contemplated, without being fully thought out, the true averment would have 

been that the air on arriving at the Equator would have a velocity of eastward 

absolute motion less than that at the tropic, in ratio inverse of that of the distances 

of the two places respectively from the Earth’s axis. What I mean here to say, 

may, perhaps, without elaborate definitions and specifications, be tolerably well 

suggested in brief words, by saying that, in a vortex of free mobility, with circular 

motions round an axis, the velocities at different distances from the axis must be 

inversely as those distances. 

But now, in truth, the ideal case which Hadley touched upon, was quite outside 

of the scope of the real conditions of the atmospheric motions, which he professed to 

explain better than had been done in the attempts of others before his time. He had 

amply sufficient reason for his averment, to the effect that the real trade-wind air in 

its approach from the tropic to the Equator, under the influence of indraught towards 

the Equator, should be expected at each new place nearer to the Equator than the 

previous one, to have a less velocity of eastward absolute motion than the surface of 

the sea has at that new place, and that the frictional drag eastward applied to the 

air by the sea surface will only act towards assimilation of the eastward velocity of 

the air to that of the water, while still in principle, as in fact, leaving the air to go 

slower eastward than does the water—that is, to blow as a westward wind relative 

to the ocean. If what he professed to do had been to bring into notice a special 
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variety of vortex motion, constituting what we may call a vortex of free mobility in 

a frictionless fluid, and to offer a dynamic theory of its motions, and if his theory had 

included such an error as the one in question ; then his theory would have been 

fundamentally erroneous. But such was not at all what he professed to do. He 

proposed to explain certain large and very remarkable phenomena of the observed 

winds. This he did well, and in doing so he made a very important advance in 

development of true theory in respect to atmospheric motions. 

I have touched in some detail on these matters, because 1 think that remarks 

making inadequate recognition of the importance of Hadley’s true discoveries have 

sometimes been put forward in our own times. 

During a period of more than a century from the time of the promulgation of 

Hadley’s theory, in 1735, there was, I consider, little if any remarkable progress 

made in development of new speculations for better or for worse in respect to the 

grand or perennial currents of atmospheric circulation. A long time elapsed, in which 

there seems to have been little or no vigorous spirit of investigation into the signi¬ 

ficances or the relative merits of the speculations which had been propounded, or of 

effort to amend the existing theories, or to discover new truths on the subject. In 

confirmation of this it may be noticed that we find that 58 years after the publication 

of Hadley’s paper, Dalton arrived independently at substantially the same theory 

as that part of Hadley’s which dealt with the equatorial Trade Winds, and in his 

book entitled “ Meteorological Observations and Essays,”* which in 1793 he was 

preparing for publication, he gave an account of his theory, supposing it to be 

original, but he discovered, before the book was issued to the public, that he had 

been completely anticipated by Hadley’s paper, of the existence of which he had not 

been previously aware. In his preface to that book, after making recognition of 

Hadley’s priority, he goes on to say :—“ I cannot help observing here, that the 

following fact appears to be one of the most remarkable that the history of the 

progress of natural philosophy could furnish.—Dr. Halley published in the ‘ Philo¬ 

sophical Transactions ’ a theory of the trade-winds which was quite inadequate and 

immechanical, as will be shown, and yet the same has been almost universally 

adopted; at least I could name several modern productions of great repute in 

which it is found and do not know of one that contains any other.” . . . “ On the 

other hand G. Hadley, Esq., published in a subsequent volume of the said 

‘ Transactions ’ a rational and satisfactory explanation of the trade-winds, but where 

else shall we find it ?” 

It is right hereto remark further that Dalton in his own speculations did not touch 

at all upon the prevalence of west winds in extra-tropical regions, either as to its 

explanation or even as to its existence : and that he does not seem to have noticed or 

appreciated the great importance of Hadley’s theory in this respect. 

* “Meteorological Observations and Essays,” by John Dalton, D.C.L., F.R.S., 1793. Of this work 

there is also a second edition, which is a verbatim reprint issued by Dr. Dalton himself, in 1S34. 
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Not only before, but also after this episode of Dalton’s speculations and researches so 

published, the theory of Hadley must certainly have remained but little read in its 

author’s original paper. 

Within the first half of the present century writings on the winds, including the 

Trade Winds and general circulation of the atmosphere, have been very numerous, 

some of these have appeared in our encyclopaedias, and others in works on meteorology 

and navigation, and have been widely diffused in atlases containing maps and charts 

on physical geography. 

In such ways many sketches have been presented to the public as explanations of 

the Trade Winds and other currents of the atmosphere related to them, embodying 

more or less of the fundamental principles of Hadley’s theory, but often without 

reference to his name, and usually without due appreciation of the meaning and 

importance of his theory. In many of these cases we may suppose that the authors 

had never seen his own original paper, but had obtained their information indirectly 

through the writings of others. 

On the other hand, within the period just mentioned—the first half of the present 

century—real progress was made in many ways, in the gaining of new knowledge and 

the making of a few new discoveries, chiefly in connection with the temporary and 

local disturbances of the atmosphere, and in the bringing together of information of 

various kinds to help in the elucidation of the subject of the winds. The influence of 

moisture in air of any given temperature and pressure in rendering the fluid more 

buoyant was brought effectually into consideration. 

The attainment of information from the practical observations of mariners and 

travellers, and especially explorers of the polar regions, and also from meteorological 

observatories, was making gradual but important progress. Considerable progress was 

made in the collecting and correlating by many persons of observational results as to 

winds and weather and barometric pressures in various latitudes, and in the presenting 

for practical use among navigators and others of the generalized conclusions so derived. 

In that course of progressive labours there were included various speculations or 

theories as to great storms, commonly designated as hurricanes, tornadoes, or cyclones. 

In beginning to touch on this subject I have to mention that from among the many 

persons who may have taken part in researches and speculations regarding cyclones, 

those whom I deem the most noteworthy are Capper, Dove, Redfield, Thom, Eeid, 

and Piddington. 

Now, within the period which we have at present under consideration—the first half 

of the present century—by a very gradual course of experience, chiefly maritime, and 

of speculation based on such experience, it came to be promulgated that violent storms 

were generally great whirlwinds; and so the old name tornado, of Portuguese origin, 

suggestive of turning, and the new name cyclone, used in the sense not merely of 

circular form, but also of revolving motion, came to be accepted as well suited for the 

designation. 

MDCCCXCTI.—A. 4 Q 
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Also it was found that in the centre of a cyclone there is a region of comparative 

calm, and that the centre does not remain stationary, but travels at some moderate 

speed, taking generally a curved course over the surface of sea or land. 

The discovery also was established beyond room for doubt that cyclones in the 

northern hemisphere revolve in the direction opposite to that of the hands of a watch 

situated in their locality with its face up; while in the southern hemisphere they 

revolve in the same direction as do the hands of a watch situated in their locality 

with its face up. 

Also it was discovered and promulgated that in the central region of a cyclone the 

barometric pressure is remarkably diminished as compared with that of the general 

surrounding atmosphere, and that this condition must necessarily subsist as a con¬ 

comitant of the centrifugal tendency or “ centrifugal force ” of the revolving air, but 

whether the diminished pressure was to be regarded as a result of the centrifugal 

force of the revolving air, or as one of the primary causes of the institution of the 

cyclonic revolution, seems commonly to have been left unnoticed or to have been 

adverted to under erroneously imperfect views. 

Dove, for instance, when discussing the tremendously violent whirling motion 

which is met with in the inner part of a cyclone immediately around the central 

region of remarkable calm, says, “the diminution of barometrical pressure is not the 

cause of the violent disturbance of the air, but rather a secondary effect of it,”* and 

through that passage with its context it seems doubtless that, while entertaining the 

view that the rapid revolving motion of the air somehow instituted maintains by 

centrifugal tendency the diminished pressure in the central region, he fails to notice 

the more complete truth, that without the actual occurrence of centripetal motion 

caused by predominating influence of inward suction the rapid revolving motion 

would not institute itself at all. 

This being said, however, there is yet, of the whole truth, another element which 

must be brought into notice, and which I here briefly describe, with some perhaps 

new ideas that have occurred to myself. 

It is, that while for a beginning an accumulation of buoyant air at bottom 

elongates itself upwards into a shape approaching to a columnar form, and so effects 

an abatement of pressure at its base ; and this abatement of pressure (or suction) 

induces a centripetal flow towards that place from outer regions where some slight, 

though it maybe almost imperceptible, motions having revolutional momentum (or, in 

other words, moment of momentum) round that place may already exist, and the 

revolving mass of air through the action of the centreward forces applied to it, takes 

an increasingly rapid revolving motion ; and further, this rapid motion reacts on the 

buoyant central column, keeping that from scattering through the air around it, and 

so institutes a very lofty continuous column of the buoyant air. 

* Dovk, ‘ Law of Storms,’English translation by Robert H. Scott, M.A., p. 198. 



GRAND CURRENTS OF ATMOSPHERIC CIRCULATION. 667 

To make this clearer we may notice that if a buoyant central column were for a 

moment existing surrounded by non-rotative air having greater pressure in its lower 

parts than that in the column at the same level, that column could not continue its 

existence. The outer air with its greater pressure would press in on the column, and 

would increase the pressure in its substance instantly, hut the weight of the upper 

portion of the buoyant column would be inadequate to resist the upward thrust so 

produced in the lower part, and so the lower parts would shoot those above them 

upwards with violently accelerating motion. Through the rushing upwards so gene¬ 

rated a breaking up of the column would supervene, and its substance would scatter 

itself in rolling masses among the surrounding air; and the two commingling would 

ascend gradually, and at the same time the pressure of the surrounding air would 

communicate itself to the region where the base of the column had been. 

But now, on the other hand, if the mass of air around the central buoyant column 

be whirling, it will keep itself out by the centrifugal tendency accompanying its own 

rapid revolution, and so will not press in upon and break up that central column of 

air of diminished pressure, and thus the abatement of pressure at the foot of the 

column will be maintained and will become further intensified. 

To Bedfield is due much credit for his able and long-sustained labours in collect¬ 

ing and correlating observed facts as to cyclones and the smaller kinds of whirlwinds. 

He gathered and published# a very interesting collection of accounts of violent 

columnar whirlwinds which formed themselves over large fires of circular masses of 

brushwood, the flame and smoke in each case ascending as a lofty rotating column ; 

and this has had part in suggesting to me some elements in the theoretical considera¬ 

tions here brieffy sketched out. In his remarks on these whirlwinds he emphatically 

brought into contrast the distinction between the flames and smoke ascending with¬ 

out whirling motion from hot furnaces and various ordinary fires, on the one hand, 

and, on the other hand, the revolving columns of flame and smoke often met with in 

those great fires of brushwood in the open air. By his various researches into the 

actions and effects of great storms, Redfield contributed more, perhaps, than any 

other man to the advancement of observationally-derived knowledge of their cyclonic 

character and features. 

Wild and fantastic notions were, however, afloat in those times as to the origin 

of cyclones. Thus Piddington, in his well-known work entitled the ! Sailor’s 

Hornbook,’ even in the edition so late as 1860,t in stating his resultant opinions 

and conclusions, makes such statements as the following :— 

That he considers cyclones to be flat circular disks which may be formed at the sides 

and upper and lower surfaces of clouds, and which, once formed, may either rise 

* “ Some account of Violent Columnar Whirlwinds which appear to have resulted from the action of 

large Circular Fires,” by W. C. Redfield. Read before the Connecticut Academy of Arts and Sciences, 

Jan. 22,1839. Printed in the ‘ American Journal of Science and Arts ” (Silliman’s), 1839, vol. 36. p. 50. 

f The ‘ Sailor’s Hornbook,’ third edition. 

4 q 2 
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higher or descend downwards, and may extend themselves greatly or contract in 

diameter, and which may be “parallel to the surface of the globe’' or “inclined 

forwards he goes on to say : “It appears to me that a simple flattened spiral stream 

of electric fluid generated above in a broad disk, and descending to the surface of the 

Earth, may amply, and simply, account for the commencement of a Cyclone.”# 

After making careful search through numerous writings on the subject of cyclones, 

1 have to say that I have no reason to think that the investigators who took 

part in the discovery of the directions of turning of cyclones in the northern and 

southern hemispheres had generally, or that any of them in particular had, any clear 

dynamic theory explanatory of the connection between these modes of turning and 

the rotation of the Earth, nor even of the origin of the very rapid whirling motion 

itself, but I have found strong indications of deficiency of such knowledge. Even 

Herschel, so late as 1857, in his article on “Meteorology,” in the ‘Encyclopaedia 

Britannica,’+ stated that a complete account of the phenomena of cyclones had been 

afforded “ by Hadley’s theory as developed by Dove in his ‘ Law of Dotation,’ 

and applied to this specific class of aerial movements by Professor Taylor,” and 

then went on to give what we may presume to be that explanation, but the ex¬ 

planation he gives, although containing enough of truth to prove the connection 

between the direction of the Earth’s rotation and that of the mode of turning1 of 

cyclones in each hemisphere, is incomplete, and is vitiated by important errors of 

principle. 

Mr. Wm, Ferrel, of Nashville, Tennessee, in a paper of date 1856 (to be referred 

to further on in connection with other matters), adduced dynamic considerations of 

more advanced character for explanation of causes of the gyratory motions of cyclones ; 

but his treatment, although in some respects usefully suggestive and indicating 

sufficient reason for the direction of turning in each hemisphere, I cannot regard as 

being on the whole to very good effect. 

Also, as a further result of the researches and scrutinies and efforts towards 

generalization told of already, it came gradually into notice and into acceptance as an 

established truth that in the latitudes outside the limits of the Trade Winds extending 

far towards the poles, sometimes for brevity called the middle latitudes, the wind, 

while prevailing from the west as had been long previously known, prevails also for 

each hemisphere more from the Equator towards the Pole than from the Pole towards 

the Equator, so that, on the whole, to take for simplicity the case of the northern 

hemisphere, the prevalent average atmospheric current at the surface of the Earth in 

those latitudes was judged to be from the south-west; or, rather, without particu¬ 

larizing one exact point of the compass, and with allowance for great variations in 

different localities, and at different times, w^e may better say from south of west 

towards north of east. 

* ‘ Sailor’s Hornbook,’ third edition, p. 338, section 4-10. 

f 1 Encyc. Brit.,’ eighth edition, vol. 14, p. 650. 
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To account for the component from the south in these westerly winds of our 
middle latitudes, it came to be supposed, for instance, by Leopold yon Buch# 

prominently, as also by many others, that the air departing for the northern 

hemisphere from the top of the Equatorial Belt of buoyant air, while flowing north¬ 
ward still in the lofty regions of the atmosphere and over the Trade-wind zone, soon 
becomes a current from the south-west, and continues after descending to the Earth’s 
surface at the northern border of the trade-wind region still to move forward in 
continuation of its old course as a current from the south-west. But why in the 
lower regions a pole-ward motion should be maintained rather than a return flow 

towards the Equator, and how the return from higher to lower latitudes to com¬ 
pensate for this supposed pole-ward surface current should be accomplished, are 

questions which appear to have been scarcely mooted or to have been left enshrouded 
in vagueness. 

Many examples might be cited indicating the wide currency which such conclusions 

attained to, but one or two may suffice. Thus, for instance, in Johnston’s 

‘National Atlas,’ of date 1843, we have a map of the winds by Dr. Heinrich 

Bercihaus, of Berlin, on which the zone of south-westerly winds of middle latitudes 
is described in mysteriously poetic words more captivating to the imagination than 
satisfying to the reason, as “Region of South-Westerly Currents of Air, or of the 

downward returning North-Eastern Trade Wind in Triumphal Conflict with the 
Northern Polar Currents.” 

Herschel, in his ‘Astronomy,’! of date 1850, gives an account for explanation of 

the south-west winds of middle latitudes substantially to the same effect as that of 
Leopold yon Buch and Berghaits, and with like vagueness as to the return 
currents from higher towards lower latitudes. 

But from the shelter of that prevalent vagueness, Maury, in 1855, stepped out and 
boldly offered a scheme of the general currents of atmospheric circulation which he 
supposed to prevail, in courses extending from Pole to Pole, and traversing in 
different ways the lower regions of the atmosphere next the surface of the Earth, and 

the upper regions which present themselves less directly to the observation of men. 
Fig. 2 is a copy of his diagram which, in conjunction with his printed explanations, 
sets forth his scheme of supposed circulation .| 

That figure shows a hemisphere of the Earth’s surface taken from Pole to Pole. 

* Leopold ton Buch, ‘ G-esammelte Scliriften,’ vol. 3, Berlin, 1877, where there is to be found his 

‘ Physikalische Beschreibung der Canarischen Inseln,’ Berlin, 1825, chapter 2, ‘ Bemerkung iiber das 

Klima der Canarischen Inseln,’ pp. 288, 289, and 290. A slightly abbreviated translation of the passage 

in question is given in Dove’s ‘ Law of Storms,’ Scott’s translation, 1862, p. 39, in a chapter entitled 

“ The Upper Return Trade Wind.” 

f Third edition. 

f Maury’s ‘ Physical Geography of the Sea.’ The first and second editions appeared in 1855. The 

statements here made apply alike to his 2nd and 6th editions, and presumably also to other editions. 
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The continents and lands generally are not exhibited, and their disturbing effects on 

the atmospheric motions are left almost entirely out of consideration. The cir¬ 

culation imagined and described by Maury in connection with the diagram is meant 

to be a fair representation of what he would suppose likely to be realised in case of 

local and temporary disturbances and irregularities being only in a small degree 

effective. His supposed circulation may be thus described :—He supposes that the air 

entering the Belt of Equatorial Calms from the southern hemisphere rises there to the 

lofty regions of the atmosphere, and flows thence as an upper current to the Belt of 

the Calms of Cancer where it descends to the bottom, from whence it travels on as a 

south-west wind over the surface of the sea to the high latitudes round the Pole ; 

Fig. 2. 

M AU RY -1 855. 

and that then ascending at and near the Pole, it flows as an upper current out to the 

Calms of Cancer, where it sinks again to the bottom of the atmosphere crossing the 

current already mentioned as descending there, and then passes along the surface of 

the sea as a bottom current forming the north-east Trade Wind, and then enters the 

Belt of Equatorial Calms, rises there, crossing the previously mentioned rising current 

there, and thence departs as an upper current towards the Calms of Capricorn, to go 

through a circulation in the Southern Hemisphere which is an exact counterpart of 

that already described for the Northern Hemisphere. The supposed currents are 

further indicated by arrows in the diagram, which, on inspection, may easily be 
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understood. It is to be understood that the diagram shows a hemisphere of the 

surface of the Earth with the two Trade Wind Zones exhibited one on each side of the 

Equator, and separated by the Equatorial Belt of Calms and Rains, which is often also 

called the Doldrum Belt. And that it also shows the two Border Belts, or Calms of 

Cancer and Capricorn; and also, in the Northern Hemisphere, the zonal region of 

wind prevailing from south of west, and, in the Southern Hemisphere, the corre¬ 

sponding zone of prevalent winds from north of west. The arrows shown on the 

surface of the globe throughout these various zones indicate the directions of motion 

of the bottom currents of the atmosphere constituting the winds blowing on the 

surface of the sea. Around the representation of the globe the atmosphere is shown 

in section with arrows to indicate the north and south, and up and down motions in 

the circulation, which has just now been described in words. 

In offering this scheme of atmospheric circulation, Maury himself, in respect to the 

part of it which he propounds as taking place in the regions between the Trade Wind 

Zones and the Poles, confesses that it is “ for some reason which does not appear to 

have been very satisfactorily explained by philosophers ” that the currents he 

supposes do take place instead of their contraries. In short, he admits that he does 

not think reason has been found why in those regions the lower current should be 

towards the Pole and the upper towards the Equator, instead of what we might more 

obviously expect—namely, a flow towards the Pole in the upper regions of the 

atmosphere, and a return current towards the Equator in the lower regions close upon 

the surface of the sea. He even describes the known prevalent motion of the bottom 

layers of the atmosphere towards the Pole in extra-tropical latitudes as being 

seemingly paradoxical as to its reason, and although he offers an argument for 

abatement of the paradox, that argument on the slightest consideration may readily 

be seen to be futile. 

In 1856—the year following after the publication of Maury’s scheme of circulation 

in his book entitled ‘ The Physical Geography of the Sea ’—quite a new theory was 

put forward by Ferrel in a paper on “ The Winds and the Currents of the Ocean,” 

published in the ‘Nashville Journal of Medicine and Surgery.’* The scheme of 

circulation which he then proposed and upheld by mathematical reasonings is illus¬ 

trated in his paper by a diagram, from which fig. 3 here is taken as a copy. This 

scheme, as may be noticed by reference to the diagram, and as may be further 

ascertained by reference to the original paper, includes for each hemisphere three 

zonal rings of atmosphere, making six in all, each having a separate circulation for 

itself, except that some small amount of commingling would necessarily take place at 

each narrow annular interface of meeting between two contiguous zonal rings. For 

either hemisphere one of these zonal rings of atmosphere covers the trade-wind region 

* October and November, 1856. This essay is to be found reprinted in ‘ Professional Papers of the 

U.S.A. Signal Service,’ No. 12, published by authority of the Secretary of Wai’, Washington, Office of 

the Chief Signal Officer, 1882. 
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of that hemisphere, another covers the middle latitudes in which winds prevail from 

south of west in the northern hemisphere, and north of west in the southern, and the 

third covers the polar region. 

Now, attention for simplicity being confined to the northern hemisphere, explana¬ 

tions of the scheme may be continued as follows :— 

In the trade-wind zonal ring the bottom current flows from the Calms of Cancer as 

the Trade Wind to the Equatorial Belt and rises there, and flows then in the upper 

regions of the atmosphere till it comes to a situation aloft nearly over the Calms of 

Cancer, and thence it descends obliquely to the Calms at bottom to flow again 

towards the Equator, and so to begin another circuit alike in character to the one 

now described. Next in the zonal ring of the middle latitudes, according to the 

scheme, the current of air taken as beginning at the Calms of Cancer advances in the 

lower regions over the surface of the sea as a wind from south of west till it comes to 

about the Arctic Circle where it ascends to the upper regions, to begin a return 

course proceeding southwards as an upper current till it comes to places aloft nearly 

over the Calms of Cancer, thence to descend to those Calms below, and so to complete 

its circulation from some part of that belt back again to the same belt. Next as to 

the supposed circulation in the zonal ring of the Arctic Regions, it may suffice to say 

briefly that the lower current is asserted to be from the Pole and the upper current 

towards the Pole, the ascent from the lower to the upper being at or near to the 

Arctic Circle, and the descent being in a region closely surrounding the Pole, all as 

may be seen by inspection of the diagram. 

Ferrel, in setting forth in his paper his scheme of circulation and his theoretical 

reasonings on the subject, introduces as a fundamental principle in it the assertion 
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that there must be a heaping up of the top layers of the atmosphere to a maximum 

height at about the parallel of 28° and a “ depression ” of them over the Equator, and 

also a “ depression ” of them at and around the poles and in high latitudes generally, 

and his diagram is purposely drawn to represent these features. 

What has now been said is enough to give a good general idea of Ferrel’s scheme 

of Atmospheric Circulation of 1856. His assumptions, his reasonings, and his 

conclusions are, I may say with confidence, pervaded by impossibilities and incon¬ 

gruities. But notwithstanding this his paper is deserving of credit for the praise¬ 

worthy efforts it manifests towards a more complete consideration of important 

principles bearing on the subject, which had previously been unknown or neglected 

or imperfectly touched upon by others. 

While I have told of this paper by Mr. Ferrel at the present stage in order of 

dates, yet I deem it right to explain here that I had no knowledge of its existence, 

nor of any of its author’s views, until some years after the publication of the new 

theory by myself, about which I have to tell forthwith in the present paper. 

Through a paper* read before the Natural History and Philosophical Society of Belfast 

in 1 856, by Mr. Joseph John Murphy, of that town, interest was strongly aroused 

in my mind, in the question of what ought to be supposed to be the true state of the 

case as to the courses of atmospheric circulation in the zonal regions situated between the 

trade-wind zone and the Pole in each hemisphere. In that paper Mr. Murphy brought 

under notice of the Society the scheme of currents of atmospheric circulation set forth 

by Maury, as the truth ; and gave a theory or course of reasoning formed by himself, for 

explaining on dynamic principles how those supposed motions should be accounted for. 

On the subject so presented for consideration, I had to judge that Mr. Murphy’s 

course of reasoning was not valid for sustaining Maury’s theory of the atmospheric 

motions, and I had to judge moreover, that Maury’s theory was itself, in so far as it 

dealt with the circulation outside of the trade-wind zones, entirely untenable and 

impossible. 

Mr. Murphy’s course of reasoning, however, included within it one important 

element not limited in its scope to the application made of it in that particular course 

of reasoning. It was the supposition that the low barometric pressure of Polar 

regions and other high latitudes, already discovered as a fact, through observations of 

voyagers and others, was to be regarded as due to the centrifugal force of the air 

revolving from west to east throughout the great cap of atmosphere covering the 

middle and high latitudes. 

Having rejected Maury’s theory, and having got the benefit of the valuable 

suggestion just referred to in Mr. Murphy’s paper, I succeeded in framing a new 

theory for the circulation in the regions outside of the trade-wind zones. That new 

theory I put forward in a paper read by me at the meeting of the British Association, 

* On the ‘ Circulation of the Atmosphere,’ by Mr. Joseph John Murphy, Belfast Natural History and 

Philosophical Society, 27th February, 1856. 

MDCCCXCII.—A. 4 R 
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held at Dublin, in the following year, 1857 ; and a clear account of it is to be found in 

the Abstract of the paper published in the British Association volume for that year. 

The verbal explanations given in the reading of that paper before the meeting were 

illustrated by a drawing showing the scheme of circulation described in the paper. 

Fig. 4, here given, is an accurate copy of that drawing, differing from it only in some 

unimportant matters, such as in the number of arrows shown, and in its being drawn 

with abatement of some exaggerations which were made in the original in order to 

render small features more readily visible at a distance in a large room. The full 

significance of the original in all respects is retained unchanged in the copy here. 

In endeavouring to penetrate the mystery as to what the courses of circulation 

might be in the middle and higher latitudes, I was in preliminary ways fully satisfied 

that Hadley’s theory* in its main features—those, in fact, which in the present paper 

I have already described with commendation—must be substantially true, and must 

form the basis of any tenable theory that could be devised. 

Now, under Hadley’s theory, when we come to consider what may be the courses 

of circulation that we should attribute to the atmosphere in the latitudes outside ot 

the trade-wind zones, we should naturally be led to expect (as I have pointed out in 

some detail in an earlier part of the present paper in describing his theory) that the 

great sheet of air floating out from the Equator in the upper regions of the atmosphere 

towards either Pole, while having a motion towards the east also, would gradually cool 

in advancing to higher latitudes, and would therefore descend in middle and high 

latitudes to the Earth’s surface and would next, as a bottom current, flow back 

towards the Equator while also flowing eastward, and so would be a current towards 

the Equator, not towards the Pole. But, on the other hand, it had been brought out 

through accumulated observational results that the winds of middle latitudes while 

blowing towards the east, which so far is in agreement with Hadley’s theory, do, in 

opposition to what would be expected under that theory, blow more towards the Pole 

than from the Pole. Thus the facts and theory seemed to be at variance. It then 

occurred to me that facts and theory could be reconciled by supposing that the great 

circulation brought into probability under Hadley’s theory does actually occur, but 

occurs subject to this modification, that a thin stratum of air on the surface of the 

Earth in the latitudes higher than about 30°—a stratum in which the inhabitants of 

those latitudes have their existence, and of which the movements constitute the 

observed winds of those latitudes—being by friction and impulses on the surface of 

* Reference having been made in the text here to my paper read at the British Association Meeting 

for 1857, on the “ Grand Currents of Atmospheric Circulation,” and to the Abstract of it printed in the 

volume of the Association for that year, I have to mention as a correction that the theory here described 

and correctly designated as Hadley’s Theory, was in the printed Abstract erroneously named as 

Halley’s Theory. I was led into that mistake as to authorship of the commonly accepted explanation 

of the trade winds, through my finding it designated as “ Halley’s theory of the trade winds ” by Mauky', 

in his “ Physical Geography of the Sea,” to whose newly proposed views in that book my attention 

was at the time specially applied. 
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the Earth retarded with reference to the rapid whirl or vortex motion from west to 

east of the great mass of air above it, tends to flow towards the Pole, and actually 

does so flow under the indrawing influence of the partial void in the central parts of 

that vortex, due to the centrifugal force of its revolution. Thus it appeared to me 

that in temperate latitudes there are three currents at different heights :—That the 

uppermost moves towards the Pole and is part of a grand primary circulation between 

Equatorial and Polar Regions ;—that the lowermost moves also towards the Pole, but 

is only a thin stratum forming part of a secondary circulation ;—that the middle 

Fig. 4. 

THOMSOH - 1857. 

current moves from the Pole and constitutes the return current for both the pre¬ 

ceding ;—and that all these three currents have a prevailing motion from west to east 

in advance of the Earth. This was the substance of the new theory which I framed 

and which, in 1857, I submitted to the British Association at its Dublin meeting. 

The atmospheric currents supposed under this theory are indicated by arrows in the 

diagram, fig. 4, and may be traced out readily on inspection. This drawing it is to 

be understood is not intended to offer any indications of supposed variations in 

height from bottom to top of the atmosphere in different latitudes. 

I exhibited a,t the meeting, as an illustration, a simple experiment easily extem- 

4 r 2 



676 PROFESSOR JAMES THOMSON ON THE 

porizable on any occasion. It is mentioned in the printed abstract briefly in the 

following: words :—“ If a shallow circular vessel with flat bottom, be filled to a moderate 

depth with water, and if a few small objects, very little heavier than water, and 

suitable for indicating to the eye the motions of the water in the bottom, be put in, 

and if the water be set to revolve by being stirred round, then, on the process of 

stirring being terminated, and the water being left to itself, the small particles in the 

bottom will be seen to collect in the centre. They are evidently carried there by a 

current determined towards the centre along the bottom in consequence of the centri¬ 

fugal force of the lowest stratum of the water being diminished in reference to the 

strata above, through a diminution of velocity of rotation in the lowest stratum by 

friction on the bottom. The particles being heavier than the water, must, in respect 

of their density, have more centrifugal force than the water immediately in contact 

with them ; and must, therefore, in this respect have a tendency to fly outwards from 

the centre, but the flow of water towards the centre overcomes this tendencv and 

carries them inwards ; and thus is the flow of water towards the centre in the stratum 

in contact with the bottom palpably manifested.” 

The general hydraulic principle intended thus to be illustrated by the exhibition 

of an easily conducted simple case of it is, that if water were lying on a revolving 

flat-bottomed circular plate or tray, and were revolving at each part quicker than the 

tray immediately below that part, a flow would institute itself in the bottom layer 

towards the centre, and that this would occur alike for different speeds of revolution 

of the tray, and would still take place, likewise, in the case of the speed of revolution of 

the tray being abated to zero. The case of the non-rotative tray was taken for illustra¬ 

tion of the more general proposition simply because of the facility which that particular 

case presents for being brought into visible manifestation, so as to form to an intel¬ 

ligent mind a help to the imagination in considering the action of the great cap of 

air lying on the middle and higher latitudes, and revolving prevalently at each part 

quicker than the Earth below that part does. I offer these explanatory remarks here 

because in a paper by Mr. Fereel, to be told of a little further on, my illustration by 

means of the non-revolving tray has been made a point of adverse criticism as to both 

the nature and the value of the theory I had offered. 

Now, before passing quite away from the subject of the original framing of my own 

theory ; I feel it right to make special reference to two considerations which were put 

forward by Mr. Fekrel in his paper of October, 1856. 

Firstly.—Ideas were put forward in that paper by Mr. Fere el to the effect, that 

the low barometric pressure found observationally to exist in polar regions and other 

high latitudes, is due to the centrifugal force or tendency of the air of the surrounding 

middle latitudes revolving from west to east quicker than does the earth below : but 

his views on the matter being unknown to Mr. Murphy and to myself, did not happen 

to influence my considerations. 

And secondly, Mr. Feerel in that paper adduced in connection with other suppo- 
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sitions an idea which, taking it in a wider scope than that in which he applied it, and 

with congruity in application not pertaining to the case for which he adduced it, I 

may describe as implying considerations to the effect that in an atmosphere covering 

a zonal region such as that of the middle latitudes, and having eastward motion 

relative to the Earth’s surface or, what is the same, having a speed of eastward 

revolution quicker than that of the Earth below it, a layer at bottom retarded 

by friction on the Earth’s surface, and so having less centrifugal tendency than has 

the quicker eastward-going air above will be caused to take, along with its eastward 

motion, a motion also towards the Pole. 

The principle is an important one in its applicability to atmospheric circulation ; 

but Mr. Ferrel did not apply it to good account. He applied it only in reference 

to a system of motions already assumed by him, but which in the actual atmosphere 

are impossible as to causes for their origin and maintenance, and are incongruous in 

their mutual relations. His purpose in this matter was to show reason for the 

bottom current flowing towards the Pole while he had the upper current assumed 

as flowing towards the Equator. He assumed throughout the whole depth from 

bottom to top in his zonal ring of the atmosphere a motion eastward relative to the 

Earth, and thereby explained that the frictionally resisted bottom part should flow 

towards the Pole. But now we have to observe that the only reason why under his 

theory he can be entitled to assume eastward motion in the lower portion is because 

of that portion having been previously assumed to flow towards the Pole ; and as to 

the upper portion which he assumes to flow from the Pole, that reason does not hold 

at all, and the upper portion should rather be supposed, under his theory, to flow 

westward than eastward. Thus it comes out that he explained the motion towards 

the Pole in the lower part of the atmosphere by first assuming, for no valid reason, a 

motion towards the Pole of that lower part. But now, for the primary assumption of 

that motion towards the Pole in the lower portion of the atmosphere, the reason 

which he assigned, and which I have just now treated as being not valid, was his 

supposed heaping up of the atmosphere at top, and consequent increased pressure at 

bottom at about the parallel of 28°; but, for the heaping up of the atmosphere there 

he needs in the upper region of the atmosphere over the middle latitudes a speed of 

revolutional motion greater than that of the Earth’s surface immediately below, briefly 

a relative eastward motion, so that there may be the necessary centrifugal tendency 

for producing the heaping up, and that is incongruous with the flow in those upper 

regions taking place, as under his theory he made it do from higher to lower lati¬ 

tudes—from the Arctic Circle to about the parallel of 28°. 

He has not thereby anticipated the new and, I think I may say, the true theory 

offered by me, in which the great body of the lower half of the atmosphere is already 

shown for good reason to have motion towards the Equator along with motion from 

west to east, but that a comparatively thin lamina at bottom of it, in virtue of fric¬ 

tional retardation of its eastward motion and consequent abatement of centrifugal 



678 PROFESSOR JAMES THOMSON ON THE 

tendency in it as compared to the air above, is caused to reverse what would otherwise 

be its motion towards the Equator, and to take its course towards the Pole instead. 

The next publication to which I have to advert is a second paper by Mr. Ferrel. 

It is entitled “ The Motions of Fluids and Solids, relative to the Earth’s Surface; 

comprising Applications to the Winds and the Currents of the Ocean,”* and is dated 

at its close, “ Cambridge, Mass., February, 1860,” and is noted on its title-page as 

being “ Taken from the First and Second Volumes of the ‘Mathematical Monthly.’” 

In that paper he offered a scheme of atmospheric circulation totally different from 

his previous one of 1856, and entailing a fundamentally altered theory. In fact, he 

Fig-. 5. 

FE RREL- 1 860. 

there abandoned his arrangement of six zonal vortex rings of circulation, three for the 

northern hemisphere and three for the southern, and, instead, he adopted really the 

scheme that had been put forward by me in 1857 with its two great currents of 

primary circulation, one flowing from equatorial to polar regions above, and the other 

flowing as a great return current from polar to equatorial regions below’; together 

with the bottom subordinate current close on the surface of the Earth in middle 

latitudes or middle and higher latitudes, flowing pole-ward on account of the frictional 

retardation by the Earth’s surface of its eastward relative motion and consequent 

diminution of centrifugal tendency. 

* New York, Ivison, Phinney, and Company. London, Tkubnee and Co., 1860. It appears that this 

paper was subsequently republished by the United States Signal Service in ‘ Professional Papers,’ 

No. VIII., with extensive notes giving the mathematical processes in detail by Professor Frank Waldo. 
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These currents are shown distinctly by arrows in his diagram, notwithstanding 

some puzzling confusion introduced by lines which present the appearance of being 

meant to indicate average current lines, but which, in some parts, would suggest 

impossible courses, and which show signs of their having been put in without deli¬ 

berate care. Fig. 5 here is a copy of that diagram.* 

The diagram retains two vestiges of his original scheme. Thus it exhibits distinctly 

a depression of the top of the atmosphere at the Equator making a place of minimum 

height for the atmosphere there ; and it retains systems of arrows throughout the 

polar regions representing winds having, relatively to the Earth’s surface, motion 

Fig. 6. 

FERREL-1 889. 

N 

towards the west together with motion towards the Equator; and so in the polar 

region of the northern hemisphere representing north-east winds. Both of these 

features I regard as having been introduced through mistaken apprehension. In a 

later work, indeed, by Mr. Ferrel, entitled, ‘ A Popular Treatise on the Winds,’ 

1889,f both these features of his former scheme of circulation are completely 

eliminated from his scheme and theory as there presented. This is shown by his 

diagram^ taken in connection with the printed explanations by which it is accom 

panied. Fig 6 is a copy of this diagram. The depression of the top of the atmosphere, 

or more strictly speaking, the depression of any isobaric interface in the very lofty 

* The same diagram exhibiting his scheme of the winds is repeated in a subsequent paper by Ferrel 

of date 1861, which he offered as being more popular and less mathematical. It is to be found reprinted 

in ‘ Professional Papers of the United States Signal Service,’ No. XII. 

f London, Macmillan and Co. 

J Ferrel’s ‘ Popular Treatise on the Winds,’ 1889, § 105, p. 155. 
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regions to a minimum height over the Equator remains in the diagram, but it is 

expressly eliminated by words in the accompanying text. This diagram, when cor¬ 

rected according to Mr. Ferrel’s printed words is, as may readily be seen, essentially 

the same as my own. 

In the closing passage of his second paper, 1860, Ferrel made mention of the 

theory given by me at the British. Association meeting in Dublin, 1857, but he did 

this with erroneous representation of the theory, and with inadequate recognition of 

its importance and of the fundamental changes he had made from his own previous 

theory in adopting the main features of mine and incorporating them with some 

remnants of his own previous views or modes of consideration. 

I proceed next to offer some considerations which, I think, may be of intrinsic 

interest in themselves, besides helping towards the development and elucidation of 

true theory in regard to atmospheric motions and other conditions. 

I have to mention, at this stage, that it may sometimes be convenient, as an 

aid towards brevity and clearness in expression, to characterize air which has no east¬ 

ward or westward motion relative to the Earth’s surface as having par, or being at 

par of revolutional velocity and, likewise, to use the designation over par of 

revolutional velocity to signify eastward relative motion, and under par to signify 

westward relative motion. 

(a.) Recalling to notice the theory of Maury and the first theory of Ferrel 

given in his 1856 paper, and drawing attention to the confluence supposed, under both 

these theories, of two great upper currents of the atmosphere meeting aloft over the 

belt called the Calms of Cancer in the Northern Hemisphere, and of other two 

currents likewise meeting over the belt called the Calms of Capricorn in the Southern, 

I think it is well to remark that, if such a confluence were to take place of two 

currents, one coming from higher latitudes and the other from lower to a zonal belt of 

meeting, the current from the higher latitudes would have a rapid westward motion 

relatively to the Earth below, that is, a revolutional velocity greatly under par, and 

the current from lower latitudes would have a rapid relative motion eastward, or, in 

other words, a revolutional velocity greatly over par. They would meet one another 

obliquely with a velocity of each relative to the other very great because of its having 

had no frictional mitigating resistance such as the Earth’s surface would afford to 

currents meeting in like manner at bottom of the atmosphere. Thus the belt of 

meeting aloft would be a place of extraordinary commotion, and this commotion would 

be propagated with the two descending currents down to the surface of the Earth 

below ; and thus, instead of the Calms of Cancer or Capricorn we ought to expect to 

find there a belt of wild and varying storms. This very simple, and, I think, very 

obvious principle, is one of the numerous objections which might singly or conjointly 

have checked both Maury and Ferrel in the early inception of their theories, and 

might reasonably have prevented them from propagating views so fallacious. 

(b.) Next we may raise questions, and proceed to solve them more or less completely. 
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as to what must be the general character of the motions of the air at various places in 

the Trade-Wincl Zone, both in the lower great current approaching to the Equatorial 

or Doldrum Belt,'" and in the upper great current departing from that Equatorial Belt 

and flowing aloft over the Trade-Wind Zone to pass over the Border Belt and thence 

into what, for want of a better name, we may for the present call the middle latitudes. 

In doing this, we shall have to consider and bring to light some features of the 

motions of the atmosphere in the middle latitudes more fully in detail than hitherto 

in the present paper. 

Let us accompany in thought the progress of a point advancing with the current 

along an average stream line, or rather an average current course in the great under¬ 

current from Polar to Equatorial Regions. For simplicity, let us confine attention to 

the Northern Hemisphere. Let us begin the course somewhere within the middle 

latitudes. To help imagination we may fix on a point of commencement situated 

vertically over New York. The moving point may, if we please, be idealized as being 

a small balloon constrained by frictionless guidance to keep in an average current 

course while being propelled along that average course by the more or less varying 

motions of the surrounding air. Now, during the progress of the travelling point 

in its course making way both eastward and southward, so long as the bottom lamina 

close to the surface of the Earth directly beneath the travelling point is blowing 

eastward with over-par revolutional velocity, the air above the bottom lamina there 

must be going forward with still greater over-par velocity. The reason for this state¬ 

ment is, that the only cause for maintenance of eastward relative motion in the 

frictionally restrained bottom lamina is, that the air above in virtue of revolutional 

momentum brought from equatorial regions, and not yet exhausted, is blowing with 

over-par revolutional velocity, and driving forward the resisted lamina below. Also, 

as long as the over-par velocity is existing in the frictionally resisted bottom lamina 

under our travelling point, a flow pole-ward also must exist in that bottom lamina at 

the place, for the time being, directly below the travelling point. This is for reasons 

fully explained in the account already given of my own theory. When further, the 

travelling point, in making its way southward, arrives at a stage where that eastward 

bottom over-par motion no longer exists directly below, and the travelling point then 

goes on making progress further south, it comes to places where the bottom lamina at 

the place then below it is moving equator-ward because of indraught thither, and 

because all reason for that lamina’s going northward has ceased. Thereafter in the 

* This equatorial belt of rising air may also well be called the Medial Belt, while the Calms of Cancer 

and Capricorn may be referred to as the Border Belts, this last especially when it is wished to speak of 

either of these two indifferently, without distinction as to whether it be in the northern or southern 

hemisphere. Also, either of these border belts may very well be described, or may be named when 

desirable, as the Belt of Offturn Parting or briefly as the Offturn Parting. The reason for this name will 

be seen readily by inspec tion of the diagram, where the great return current towards the Equator is 

parted into two currents, one going on southwards, and the other turning off towards the north. 

MDCCCXCII.—A. 4 S 
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Trade-Wind region now entered upon the surface of the Earth is dragging the bottom 

air forward revolutionally, and so is helping it briskly towards the Equator through 

increasing its centrifugal tendency. 

Then we have to notice that the air, during its course equatorwards and back 

again through the Trade-Wind Zone, receives forward revolutional momentum through 

the frictional forward drag applied to it by the Earth’s surface, and it loses no 

revolutional momentum, as the vacuum above the atmosphere can take none from 

it. So in departing northwards, as the grand upper current, it must carry with it 

far more revolutional momentum than it had in entering, as the great under current 

from the north across the Border Belt; but that great under current in entering was 

either at par, or partly at par, and partly at over-par, of revolutional velocity; 

consequently the grand upper current must depart across the Border Belt with great 

over-par of revolutional velocity. 

It follows from this, as a corollary, that the top of the atmosphere, or any 

isobaric interface near the top, must have a declivit}^ in approaching the Border 

Belt from the top of the Equatorial Belt; and the Border Belt must not have a 

maximum height with declivity thence to a minimum at the Equator. 

The foregoing demonstration seems also likely to give help towards the proper inter¬ 

pretation to be put on observational results recorded by the Krakatoa Committee, and 

to render highly improbable any suggestions such as seem to be conveyed in some 

parts of the report, to the effect that in the very lofty regions of the atmosphere—at 

such elevations as 13 miles above the sea level—a velocity such as 70 miles per hour 

from east to west has been indicated in the atmosphere, through the phenomena 

manifested after the great Krakatoa eruption. 

(c.) In connection with the reasoning or demonstration I have just given, there is 

another element which I regard as forming part of the whole truth, and which must, 

I think, form an important element towards the development of the theory more 

completely. I have already indicated in the demonstration just now offered, that the 

bottom lamina of the atmosphere in the trade-wind region, is especially helped to 

advance towards the Equator by the increased absolute centrifugal tendency super¬ 

imposed on it by the forward revolutional drag it there receives from the Earth’s 

surface; and which communicates to it, throughout its course towards the Equator, 

new accessions of revolutional momentum, and prevents it from getting into under- 

par of revolutional velocity, so much as does the air above it in the great under¬ 

current towards the Equator. For ready apprehension of this, it is well to notice 

that the under-par and increased under-par of revolutional velocity imply westward 

relative motion in the bottom lamina, and quicker westward, relative motion in the 

air next above within the great under current towards the Equator. 

This greater abatement of absolute revolutional velocity below par, or increase of 

relative velocity westward, constitutes a condition opposing flow towards the Equator 

in the main body of the great under current, and we may reasonably suppose that 
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the principal flow towards the Equator takes place in the bottom lamina—the lamina 

whose motions constitute the winds noticeable by action on the sails of ships. So we 

may suppose that the main body of that great under-current blows nearly due west¬ 

ward with only a small component of motion equator-ward. I could not venture, 

through theoretical considerations alone, to form an opinion as to the velocity of 

westward relative motion which might thus be attained to in the main body of the 

great under-current, or the velocity of westward relative motion which might remain 

in some parts of the upper current proceeding from the Equator before it has made 

much advance in latitude to places importantly nearer the Earth’s axis. The com¬ 

plications involved in the frictional conditions attendant on the flow of sheets of air 

with others below and with others above going at very different velocities render the 

question practically unsolvable by theory alone. But I have to point out emphatically 

that the Dolclrum air, deadened as it is to the condition commonly spoken of as 

equatorial calm, is very approximately at par of revolutional velocity, and when it 

rises to the top, or to the very high regions, of the atmosphere, it will have scarcely 

any westward relative motion, and therefore will not be able to make its way thence 

as an upper current pole-ward except by flowing as we may say down hill, or as we 

may better say, among isobaric interfaces down-sloping forward. The lower part of 

this sheet of deadened air departing aloft pole-ward, and which lower part is much 

below the top of the atmosphere, and is in close contiguity with the current of 

westward relatively moving air (already just now mentioned) commencing to move 

pole-ward without ever having attained to par of revolutional velocity, will we may 

suppose, by buffeting and commingling between it and that westward relatively 

moving air, be dragged forward from the Equator, even among up-sloping isobaric 

interfaces, in a manner that may be likened to being dragged up hill. 

I might at present extend the explanations and reasonings on this matter some¬ 

what further, but I abstain from doing so in order not to prolong unduly the present 

paper. I prefer to leave the subject over for further consideration and exposition by 

myself, perhaps, and probably by others. 

(cl.) I propose next to offer some considerations in respect to the atmosphere of the 

polar regions. For simplicity of expression I shall speak, in particular, of the polar 

regions of the Northern Hemisphere ; and I intend that in this, as indeed throughout 

nearly all I have said in the present paper, the complications introduced into 

atmospheric motions by local distinctions of the Earth’s surface into land and sea are 

to be, primarily at least, disregarded. 

I consider that we should take as one element of our theories the principle that 

we have to suppose a stagnation of impounded air around the Pole over a great 

extent of the Polar Regions, this impounded air being maintained by the influx along 

the surface of the Earth of air frictionally deprived of the over-par of revolutional 

velocity which is possessed by the great cap of air higher up above the surface of the 

Earth. This impounded air lags, I affirm, in the Polar Regions, being unable, for want 

4 s 2 
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of revolutional momentum, and accompanying want of centrifugal inertial tendency, to 

take part readily in the great circulation between polar and equatorial regions. In fact, 

it cannot get out from its imprisonment there except by being dragged away through 

gradual entanglement with the comparatively rapidly revolving air arriving by the 

great upper current from regions having more rapid revolutional motion and passing 

away in the great middle return current towards the Equator. 

(e.) Further, I may now offer some considerations as to whether, according to 

theory, we should expect very clear skies to prevail in the Polar Region of impounded 

deadened air. I think we must suppose the great upper atmospheric current con¬ 

verging towards the Pole and having over-par of revolutional velocity must be already 

very dry, owing to its greatly reduced pressure and cold temperature. So, when its 

air descends in level to return towards the Equator, that air must, I think, be greatly 

under its saturation point with water-substance ; or, in other words, must be far from 

ready to form clouds, or to precipitate rain or snow. We have to recollect that 

descending air is generally very rainless. 

On the other hand the bottom flow along the surface of the land and sea converging 

towards the Pole I affirm to be moist. It will be from lower latitudes and generally 

warmer climates, and will carry moisture with it from sea and land. This bottom 

current will supply water-substance for cloud and snow in the impounded deadened 

polar air. The cold of radiation out to interstellar space, coupled with expansion in 

ascending before it can join the great middle current of return towards the Equator, 

will cause clouds and snow. 

I will now conclude this paper by offering a sketch of a contemplated experimental 

apparatus for affording practical illustration of the theory of Atmospheric Circulation 

which I have propounded. 

The apparatus would consist mainly of a horizontal circular tray kept revolving 

round a vertical axis through its centre. The tray would be filled to some suitable 

depth with water. Heat would be applied round its circumference at bottom, and 

cold would be applied or cooling would be allowed to proceed in and around the 

central part at or near the surface. Under these circumstances I would expect that 

motions would institute themselves, which would be closely allied to those of the 

great general currents supposed under the theory to exist in either hemisphere of the 

Earth’s atmosphere. The motions of the water, I would propose, should be rendered 

perceptible to the eye by dropping in small particles of aniline dye, and perhaps by 

other contrivances. Great variations would be available in respect to the velocity of 

rotation given to the tray, and in respect to the depth of water used, and the intensity 

of the heating and cooling influences applied. By various trials with variations in 

these respects I think it likely that the phenomena expected could be made manifest. 
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I. Introduction. 

A Electromagnetic Coordinates. 

1. It has been thought advisable to reserve an account of the general aims and scope 

of the following paper till a few preliminary matters have been disposed of. 

2. Consider the following statement, of the truth of which probably no one will 

doubt. If a body on being moved from a position A to a position B were found 

thereby to have lost a charge of electricity, physicists would not be content to explain 

the circumstance on the mere ground that it had left its charge behind. They would 

hold that processes had gone on, precisely similar to such as would have been required 

to divest it of its charge, had it remained in its first position A. 

This has an important bearing on the way in which the “ electric displacement ” is 

related to matter. The polarisation thus called is some sort of ^polarisation of matter, 

and this polarisation is carried about by the matter when it moves. There certainly is 

no lack of evidence that electric actions go on in space where there is, to the best of 

our knowledge, no matter. In this space, however, is a medium of some sort, which 

is intimately related to matter, and certainly affected in some way by the motion of 

matter. For the present we must, for the sake of simplicity, be content to assume 

that the strains of this medium are, if it only bounds matter, continuous with those 

of matter, and if it permeates matter, are at places common to both matter and the 

medium identical with those of matter. (This may or may not be true. I only say 

that in the first development of the theory of this paper it must for simplicity be 

assumed.) This will not prevent us from regarding the slipping of the one medium 

over the other as the limit of a rapid shear. With this assumption the medium in 

question will appear in our equations merely as matter with zero density, but other 

physical quantities not zero. 

Both for the medium referred to, and for matter, the statement would seem to 

remain true that the polarisation called electric displacement is a property that is 

carried about by the medium experiencing it. 

9.1.93 
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3. In choosing the coordinates of any mechanical system it is, of course, only 

necessary to take them so that when given they completely specify the instantaneous 

position of the system. But as in all ordinary dynamical problems, so in the general 

electromagnetic problem, there may be all the difference in the world between one set 

and another in respect to the simplicity of the investigations in which they are 

employed, and the amount of light they throw on the interdependence of the parts 

of the system. 

Now, I believe I am right in saying that all writers on the present subject take as 

the electric coordinates the three coordinates of the vector DcZs* for every element of 

volume d<s in space where D is the electric displacement at the point. According to 

the view just advanced that D is the measure of a property of the matter occupying 

the element ds, which is carried about with the matter, these are unsuitable coordi¬ 

nates. According to that view it is probable that the electric current is as intimately 

connected with the matter in which it resides, as is the electric displacement. It 

would seem to follow that the current components could not in general be considered 

as the rates of variation of the corresponding electric coordinates. 

4. Suppose all space split up into a series of elementary parallelepipeda which move 

with matter. Let A d%a', A d%', A dXcr be the six vector faces of one such parallele¬ 

piped. We shall take for our electric coordinates the three quantities SD'c/2/, SD'dS/, 

SD'dtc', where D' is the electric displacement at the point, for every element in space. 

[The reason for the dashes will appear immediately.] 

Moreover, we assume that the same expressions, when 3)' is replaced by C', the 

current, are the rates of variation of the corresponding coordinates. In other words, 

the current C' at any point is defined by the equation 

SC' dt 
clt (0> 

where d%' is any vector element of surface which moves with matter, and d/dt denote 

differentiation with regard to the time which follows the motion of matter. Thus the 

whole current through any surface which moves with matter = the rate of variation 

of the whole displacement through that surface. 

B. Mathematical Machinery. 

5. As might be expected, the mathematical machinery that appears to be most 

convenient for investigating as fully as possible the consequences of these assump¬ 

tions, and others intimately connected with them, is novel. And I may remark in 

passing that what Professor Tait persistently and with complete justice emphasizes 

as one of the greatest boons that Quaternions grant to ungrateful physicists, viz., 

* Throughout this paper Mr. Heaviside’s practice of replacing Maxwell’s German letters by thick 

ordinary type is followed. 
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their perfect naturalness, seems to me to receive illustration in the methods about to 

be described. 

The notation in the present paper will be mainly the same as that of my former 

paper on a “ Proposed Extension of the Powers of Quaternion Differentiation.”* 

As in that paper (which will for the future be referred to as “ the former paper”), 

a fixed position of all the matter in space will he taken as a standard of reference. 

Most of the following symbols have exactly the same meaning as before. 

p is the coordinate vector of any particle of matter in the standard position ; p the 

coordinate of the same particle in the present position, so that p may be regarded as 

a function of the independent variables, t (the time), and p. ch, dd denote elements 

of volume of the same particle in the standard and present positions ; ds, ds similar 

elements of surface ; and U^, UP the unit normals at ds, ds. In the present paper 

another notation will also be used, defined by 

dt = lJvds, dt = UP ds.(1), 

whence 

JJv = U dt, ds = T d%.(2), 

and similarly for U dt', T df. This meaning of t is scarcely likely to clash with the 

usual summation meaning (which will also be freely used in the present paper), since 

in the present use the t will alw'ays be preceded by d, a combination that would be 

rare with the ordinary meaning. 

With this notation equations (2) and (3) of the former paper take the somewhat 

briefer form 

j\f)dp= jj<£Ve£SA.(3), 

jj<M2 = ds ..(4). 

In connection with these equations it is well to call attention to the following usual 

conventions which will be strictly adhered to. The right-handed system of rotation 

is adopted. Ur, or dt, when regarded, as in the last equation, as the normal of the 

boundary of any region, is always drawn from the region bounded. Thus, if UJv is 

regarded as the normal to the boundary of a dielectric at its junction with a con¬ 

ductor, it is drawn from the point of the bounding surface into the conductor. The 

positive direction, that of dp in equation (3), round the boundary of a surface, is that 

of positive rotation round a proximate positive normal, dt in equation (3). Thus the 

positive direction round the boundary of a magnetic shell whose positive normal is 

in the direction of magnetisation is that of the equivalent current. 

V will have the usual meaning with regard to p, and V' the same meaning with 

* ‘ Proceedings of the Royal Society of Edinburgh,’ 1890-91, p. 98. 
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regard to p. A, a particular form of V, is used when we wish to imply that the differ¬ 

entiations of the V are to refer to all the factors of a term. Thus 

V DAE = t 9 (VDiE)/Sas. 

If cr he an independent variable vector, aV, aA, have the same meanings with regard 

to cr as V, A, with regard to p. 

Q is a symbol of differentiation which is thus defined if trr be an independent 

variable self-conjugate linear vector function of a vector, given in terms of the scalars 

P and c by means of the equations 

mi = Pi ~b Nj -j- ML 

7ttj — Nt -f- Q? -j- LJc 

ml' = Mt -f Lj -j- P/c, 

jd is a symbolic self-conjugate linear vector function of a vector given by 

2aQi = 2i wj + j + Jc 
0P 

_0_ 

0N 

0M 

— i~-\- 2j -Jr + k 

2mQZ; — i 0 + y 57 + 2Jc 

0N 

0 
0Q 

0_ 

0L 

0M 

0_ 

0L 

0_ 

0Pt ‘ 

Numerical suffixes are used exclusively to denote to what symbols the differentiations 

of a V or Q refer, the operator and the operand having for this purpose the same 

suffix. 

Let Q (a, /3) be any function of two independent vectors a, /3, which is linear in 

each Then £ is defined by the equation 

Q (£, £) = Q (Vi, pi) = Q (i, i) + Q(j>j) + Q (k, k). 

Similarly if P (a, {3, y, S) be linear in each of its constituents 

P (£n £]> £%> £2) — P (^n Pu V2, p.2), 

and so to any number of pairs of £’s. 

At a given instant p is a function of p only, and, therefore, 

dp — — S dpV . p = y dp, 

where x is a linear vector function which is called the strain function, q, ip, 'VP, to are 

all functions of y given by the equations 

Xw — qxpivq*1, 

where q is a quaternion and xb a self-conjugate linear vector function of a vector. 

X being the conjugate of x> 

XX =:: ^ = % 
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where dpa, dpb, dpc are three arbitrary independent increments of p, and dpj, dpi, dp' 

the consequent increments of p. 

F and <£ will have meanings closely connected but not identical with their meanings 

in the former paper. This will be explained later. 

6. The displacement, current, magnetic force, &c., at the point p will not be denoted 

by D, C, H, &c., but by D, C', H' , &c., with which the former symbols are connected in a 

way now to be described. In Maxwell’s ‘ Elect, and Mag.,’ 2nd ed., § 12, he* 

remarks : “ Physical vector quantities may be divided into two classes, in one of 

which the quantity is defined with reference to a line, while in the other the quantity 

is defined with reference to an area. ... In electrical science, electromotive and 

magnetic intensity belong to the first class, being defined with reference to lines. 

When we wish to indicate this fact we may refer to them as intensities. On the 

other hand, electric and magnetic induction, and electric currents, belong to the 

second class, being defined with reference to areas. When we wish to indicate this 

fact we shall refer to them as fluxes.” Now in connecting dashed with undashed 

letters it is absolutely necessary to bear in mind whether the vectors indicated are 

intensities or fluxes. The connection between D and D' will differ from that between 

H and H'. 

7. Nearly all the physical vectors at a point will belong then to one of the 

following classes :— 

Class I. Intensities. 

(Examples : V, A, E, H, 0, dS/ds, TV/.) 

cr being a vector of this class, the three allied vectors, cr, a, cr", are connected by 

the equations 

Sdpcr = Sdpcr', cr =y,~lcr, cr" — 1 <j'q =z \fj~lcr .... (5). 

Class II. Fluxes. 

(Examples : B, C, D, dp/ds, vVl.) 

t being a vector of this class, the three allied vectors, r, r', t", are connected by the 

equations 

Sd%r = S dlir, t = 7ii-1yT, t‘ — = m~1xfjT .... (6). 

* This part of the present paper should be read in connection with Maxwell’s paper “ On the 

Mathematical Classification of Physical Quantities,” ‘ Collected Scientific Papers,’ vol. 2, p. 257, or 

‘ Proc. London Math. Soc.,’ vol. 3, No. 34. In connection with the naturalness of the present methods, it 

may be of interest to note that the present paper was completed before I had seen this most suggestive 

paper of Maxwell’s. 

MDCCCXCII.—A. 4 T 
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I have not hesitated to put the symbolic vector, V, among the intensities since it 
obeys all the laws thereof. The definitions of the connection between cr. cr', and cr", 
and between r, Y , and Y, may be taken as the first and third of equations (5) and (6) 
respectively. The second and fourth equation of each set are easily deduced from 

these by observing that dp' = yc/p, ^ — mX~1^ [equations (26) and (37) of former 
paper], and that both dp and dt, are arbitrary vectors. 

It should, perhaps, be noticed that these connections between a,a, and cr" and between 
r, Y, and t", although very useful and intimately connected with the physical nature 
of the vectors indicated are, after all, only definitions, and thus the phrase “ where 
such and such a symbol is defined as a flux ” will frequently occur below. This merely 

means that, having assigned the meaning of one of the three vectors, say t', by 
a physical definition, the allied symbols, r and t", are defined by saying that the 
symbol in question is a flux. 

The connection between cr and cr' may be put in words, thus :—If cr be an intensity, 
any line integral of cr' referred to the present position of matter is equal to the corre¬ 
sponding line integral of cr referred to the standard position of matter. Of course, by 

the word “corresponding” it is implied that the two line integrals are to be taken 
through the same chains of matter. Similarly as to r :—If t be a flux, any surface 

integral of t referred to the present position of matter is equal to the corresponding 
surface integral of t referred to the standard position of matter. 

8. It is convenient to give here the following four simple but useful propositions. 
Prop. I. If au, <Th be two intensities, X a na/j is a flux.—By this is meant that 

Vo-sV/ bears the same relation to Xauab as does t' to r in equations (6). To prove 

SdScracrb = mr^fidt'ficrafio-b [eq. (5) § 7] 

= Sdfa-fcTb [Tait’s ‘ Quaternions,’ 3rd ed., § 158, eq. (3)]. 

Prop. II. If cr, t be an intensity and flux respectively, we have Sards = Sard! 

= Sa'I'cls'.—For by equations (5) and (6) § 7, ScrV = to-1 Sot, and ScYY = ScrY, 

As particular cases we have 

SBHcZs = SB'H'cZs', SCAcZs = SC'AkZY, SD0c/s — SD'0'cZs' . . . (7). 

Prop. III. If a be an intensity YVcr is a flux.—By this is meant that VVV bears 

the same relation to YVcr as does Y to r in equations (6). For any surface 

j"jScZ2Vcr = j'sdpcr [eq. (3) § 5 above] = jScZp'Y [eq. (5)] = jJScZS'V'Y [eq. (3)]. 

Hence, SdtXa = Sd%'X'a', or YVcr is a flux. 
As particular cases, note that if, as we shall do directly, we assert that 

4770' = YV H', B = VVA, 
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and that B, C are fluxes, and H, A intensities, it will follow that 

4ttC = VVH, B' = VV'A'. 

Prop. IV. If t be a flux SVrc/s = SWcA'.— Proved by applying eq. (4), as we 

applied eq. (3) to prove Prop. III. As particular cases notice that 

SVDcfe = SV'DW, SVCtA = SV'CW.(8). 

9. Intimately connected with these two classes of vectors are two classes of linear 

vector funct ions of a vector. 

In the following statements, as indeed throughout the paper, a will denote an 

intensity, and r a flux. 

Class I. of Linear Vector Functions of a Vector. 

(Examples :—The reciprocal of any function of Class II. ; ordinary stress, cf>, d>; 

heat and electric conductivity, y, It-1 ; specific inductive capacity, K ; magnetic 

permeability, f). 

42 being of this class, the three allied symbols, 42, 42', 42", are connected by the 

equations 

S<raCla/jds = ScrfD.'aiids' — Scr„' Q 'crCds ~) 

42' = m~l y42y', H' = J . (9) 

aa and ai being any two intensities. 

Class II. of Linear Vector Functions of a Vector. 

(Example.—The reciprocal of any function of Class I., e.g., electric resistance, R). 

T being of this class, the three allied symbols T, T', T" are connected by the 

equations 

SrAAcA = St^'T Ciidf = Sr/'T'V/'cfe' 

T' = mx~l Ty-1, T" = 

ra and rb being any two fluxes. 

Of course, it is understood that 42' and T' are not, as usual, the conjugates of 

42 and T. Note, that if 42 or T is self-conjugate, then 42''and 42" or T' and T" are 

also self-conjugate. The first and second of each of the sets of equations (9) and (10) 

may be taken as the definitions of 42', 42", T', T". The third and fourth equations of 

each set can easily be proved by equations (5) and (6) to follow. 

4 t 2 
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10. The following easily-proved propositions should be noticed :— 

Prop. V. If Cl be of Class I., then H-1 is of Class II, and if T be of Class II., 

then T_1 is of Class I. 

Prop. VI. Her is a flux, and Tr is an intensity. 

Prop. VII. SV (Do-) ds = SV' (flV) cW. (Props. IV. and VI.) 

Prop. VIII. Cl'dS' is the same function of CldS as dp' is of dp, and T'dp is the same 

function ofTdp as dS is of d% or Cl'dS = yflcZS, T ip' = mf~lTdp. 

Prop. IX. Cl'A'dI = yflAcG. [Prop. VIII. and eq. j(4).] 

11. Going, now, back to our definition of electric coordinates (§ 4), since for each 

element they may now be written SDd$a, SDd%6, SDdtc, and since dta, &c., are constants, 

we see that the choice of coordinates is equivalent to regarding D and not D' as the 

independent electric variable at any point. Further from eq. (1) § 4, and eq. (6) § 7, 

we have 
SC d% = dSDdS/dt, 

or, since dS is an arbitrary constant vector, 

C = dB/dt.(11), 

which is, of course, inconsistent with the equation C' = clD'/dt. 

C.—Preliminary Justification of the Foundations of the Present Theory. 

12. I have deliberately led up as quickly as possible to a description of the mathe¬ 

matical machinery to be used subsequently, as it has been necessary to notice 

incidentally some of the essential chai'acteristics of the fundamental assumptions and 

the methods of investigating their consequences advocated in the present paper. As 

a preliminary justification of these assumptions, I cannot do better than indicate the 

line of thought which led up to them. 

In studying Maxwell’s theory, and seeing how beautifully it was built up step by 

step from a mass of experimental facts, till the consistent whole stood revealed, it 

seemed to me that, notwithstanding the general harmony of its different parts, there 

was just here still something to be desired, some single plan that should govern the 

whole. This statement may not seem justifiable, so I instance two examples of the 

want of harmony. In one part of his treatise, the kinetic part, he works out the con¬ 

nections between the different parts of his theory by the general methods of 

Dynamics. But not so in the statical part. It would seem that the statical part of 

the subject, in such a plan as just mentioned, ought to appear as a particular case of 

the kinetic, whereas, in Maxwell’s treatise, the statical terms in the equations are 

merely added on to those deduced from dynamical reasoning. The same remark 

applies to the terms necessary to produce the mechanical effects of magnetism 
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[compare for proof § 603 eq. (II) with the corresponding’ eq. (the last on p. 239) of 

§ 619], and similar remarks, apply to the treatment in § 630 et seq. of the energy of 

the field. How to bring these various parts of the subject under the dynamical 

treatment I did not see. strictly on Maxwell’s own lines. Again, in considering the 

general equations of the electromagnetic field (§§ 608, 609) he speaks of a generalised 

force E. This generalised force, quite contrary apparently to dynamical analogies, 

has, not a single definite effect, partly kinetic and partly static, but two independent 

effects, one static and the other kinetic. On trying to trace out the reason of this, I 

could not arrive at any certain result strictly on Maxwell’s own lines. It seemed to 

me as if the double effect of E was simply assumed. [If it merely were analogous to 

an ordinary dynamical reaction, then it could not be associated with such external 

forces as result from electrolysis.] 

13. Whether these and many other similar questions which occurred, some of which 

will appear below, can, strictly speaking, be denominated difficulties, is of no conse¬ 

quence. Suffice it that they Jed to the following considerations. Maxwell has 

built up a theory whose axioms can* be put down in a definite form. Cannot, then, 

all his results (electrostatic, electrodynamic, magnetic, and electromagnetic) be 

developed as consequences of these axioms in one application of dynamical reasoning \ 

Cannot we by such a single application obtain all Maxwell’s equations from (A) to 

(L) in §§591 to 614, as well as his stress results contained in other parts of the 

treatise, and by particular simplifying assumptions, shew that the ordinary electro¬ 

static and magnetic theories are particular consequences of our general results ? 

This led me to attempt to apply in a perfectly rigorous and general manner the 

well-known equation 

8 dt -f- % jQSgc^ = 0 . . . . .U) 

(where L is the Lagrangian function, i:modified” if necessary, of any mechanical s5Tstem 

of which q is a coordinate, and Q the external force of type q, and where the initial 

and final positions and times are not subject to variation) to the present case. The 

way I proposed to apply it was to assume all matter to be in any possible state as to 

strain and as to electric phenomena, then to vary all the geometrical coordinates by 

simply giving to each element of matter an arbitrary displacement, and also to vary 

all the electric coordinates, and trace the mathematical consequences. [Note that on 

Maxwell’s theory (at least as I understand it) these two variations are all that can 

be made, a variation in the magnetism being determined by the above variations.] 

14. And it was here at the outset that the greatest difficulty of any met with in 

the investigation occurred. Consider a particular consequence of assuming that the 

electric coordinates are the three components of D for every point of space. If by 

* It would be more correct to say “ some of whose axioms.” I wish to imply that I thought it advis¬ 

able to till iu the remainder tentatively and seek the result. 
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the variation of geometrical coordinates an element ds of surface where there is finite 

surface density of electricity be moved from P to P', then in general the element of 

matter will by the variation of the geometrical coordinates only be entirely deprived of 

its charge, for this charge will be left behind at P. This result is, to say the least, 

an unfortunate one, and to be avoided, if by legitimate means it is possible. Still 

more disastrous results are arrived at if we assume that the components of D for every 

element of matter are the electric coordinates, for then the charge in the whole of 

space is varied by a mere variation of the geometrical coordinates. 

The legitimate way out of the difficulty seemed to be to assert that these electric 

coordinates, though theoretically permissible, were very unsuitable. To find suitable 

ones it was natural to use the principle that the electric coordinates must be such that 

the variation in the geometrical coordinates does not alter the charge of any portion 

of matter. This is, of course, ensured by assuming that SD'dX is unaltered by 

variation of the geometrical coordinates, and from this it is but a step to the asser¬ 

tion that SD'dX is itself a suitable electric coordinate. 

Intimately connected with this question of the independent variation of geometrical 

and electrical coordinates is that of the correct expression for an electric current in 

(say) an arbitrarily moving fluid. It is not necessary to present all the reasons that 

occurred to me for the form already described (§ 4) as these are sufficiently indicated 

in the above considerations of variation of coordinates. 

D. An Analogy. 

15. The resemblances and differences between the present fundamental assumptions 

and what I take to be Maxwell’s, are, perhaps, more clearly brought out by 

analogy. 

I will first describe what I understand to be the analogy which Maxwell allows 

himself throughout his theory, in order more closely to realise the interdependence of 

the various physical quantities considered, and as an aid to memory. The analogy 

contemplates the whole of space as being filled with an incompressible liquid. In 

dielectrics the liquid is, as it were, held in elastic meshes, in the form of closed cells, 

so that if it be displaced it tends to return to its original position. In the ideal 

conductor there are no such meshes, or rather there are meshes which do not 

form closed cells, so that the liquid can move through them, but is resisted while in 

motion. An actual body which admits some conduction, but behaves also like a 

dielectric will be typified by meshes which allow a slow leakage of the liquid. Now 

suppose into any space we introduce from some external source more liquid. This 

foreign liquid will be what is called the electric charge of that space, and it may be 

measured (since the liquid is incompressible) by the surface integral over the 

boundary of the space considered of the displacement of the original liquid outwards. 

Thus, <£ electric displacement ” is represented in the analogy by a flux of the liquid. 
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The “ conduction ” current is measured by the current of foreign liquid, and the 

“displacement” current (indicated in the present paper by the term “dielectric” 

current) by that of the original liquid. In a simple conductor there is nothing to 

distinguish foreign from original liquid, and the conduction current in this case is 

represented by the whole liquid current. 

A similar but not identical analogy will hold in the theory now advocated. For 

fixed matter the whole of the foregoing would be true, but not for moving matter. 

The liquid in the present analogy must not be incompressible, but must have a 

property in connection with matter which corresponds to the property of an incom¬ 

pressible liquid with reference to space. An incompressible liquid is one of which 

only one definite quantity can occupy an assigned space. In the present analogy we 

must say, instead, that the liquid is contained by matter, and that a given portion of 

matter always contains the same quantity of liquid. If by any means we pump 

foreign liquid into this portion, then an equal quantity of liquid must pass out of 

the boundary of that portion of matter into neighbouring matter, and thus in the 

present analogy as in the former, electric displacement will have for analogue the flux 

of the liquid, but not as in that case, across a surface fixed in space, but across a 

surface fixed relatively to matter. 

Similar remarks apply to currents. 

E. Plan of the Paper. 

16. It will conduce to clearness to give some account here of the objects and aims 

of what is to follow. The part of the paper succeeding this introduction is in three 

main divisions : The groundivork of the theory; The establishment of general results. 

and The detailed examination of these results. 

The groundwork of the theory, though not the longest of these, calls for most 

attention here. It is divided into two parts, Fundamental assumptions and Pre¬ 

liminary dynamical and thermodynamical considerations. I do not propose to give 

here a resume of the different parts, but to call attention to certain prominent features. 

The two most important of the fundamental assumptions are, perhaps, first, that in all 

cases 477-0 = WEE, which I take to be one of the most characteristic features, if not the 

most characteristic, of Maxwell’s theory, and secondly, that the modified Lagrangian 

function per unit volume, though, of course, it contains H, does not contain any term 

involving magnetic moment per unit volume or magnetic induction. Neither of these 

assumptions seems to be at variance with Maxwell’s, and, as hinted, the first is 

taken up mainly because it is a fundamental feature in his theory. From the first it 

follows that C must obey the laws of incompressibility, and this naturally leads to 

the assumption that D also invariably obeys those laws. The second leads to very 

important consequences, which, I believe, have not before been traced, and which I 

wish to call attention to here. Though not put quite in this form below they amount 

to this, that HV/, where l is the modified Lagrangian function per unit volume of the 



696 ME. A. McAULAY ON THE MATHEMATICAL 

standard position of matter, obeys the laws of incompressibility that round every 

circuit there is an electromotive force equal to the rate of decrease of the surface 

integral of 47rHV/ through the circuit, and that KVZ — H/47T appears in subsequent 

equations in such a manner as to compel us to identify it with the magnetic moment 

per unit volume.* It is clear, then, that 47rHV/ is, according to the present theory, the 

magnetic induction. As the theory is developed below it is convenient to define B 

as equal to 477-HV/ and call B the magnetic induction, leaving the justification till we 

examine the detailed consequences of the theory. It is well to insist on this result 

here, as it does not appear obvious in the work below, but only comes out when a 

general review of a great part of the paper is made. To put the matter in the form 

of a proposition :— 

If the two fundamental assumptions are made—(1) that 47tC = ArVH, and. (2), that 

l, the Lagrangian function per unit volume, can be expressed in terms involving H 

but independent of magnetic induction and of magnetic moment per unit volume, then 

the magnetic induction must be = 47thV?. 

17. The other most important features of the fundamental assumptions are first 

those already described with reference to the electric coordinates, and the expression 

for the current in terms of the displacement ; and secondly the manner in which are 

treated the two currents, conduction and dielectric (the latter being inappropriately, 

on the present theory, denominated the “ displacement current”). If there are (and 

physicists seem agreed on the point) two independent currents whose sum appears in 

the equation 47tC = VVH, and whose sum obeys the laws of incompressibility, it seems 

to me of the nature of a truism that there must be also two independent electric dis¬ 

placements whose sum obeys the laws of incompressibility. I therefore, from the very 

beginning, recognise two displacements, d and k, which 1 call, for want of better 

names, the dielectric and conduction displacements.t This naturally leads to the 

contemplation of two independent kinds of electromotive force. This last, however, 

is subsequently satisfactorily disposed of. 

18. Before leaving the fundamental assumptions, let me remark that though in some 

important respects the present theory may seem to differ from Maxwell’s, it will be 

found, I think, that just where the difference seems to be most marked, is Maxwell’s 

theory most vague. All the differences, if they really be such, have been forced on 

me unwillingly in the attempt to put into definite form what I take to be the essence 

* Strictly speaking, the last clause should be modified by the condition “ if the present position be 

taken as the standard position.” This, however, is only an accident of the particular form of enunciation, 

which, at the present stage, is unavoidable. 

t Perhaps it would be better to call them the elastic and frictional displacements or the reversible and 

irreversible displacements. I wish to leave this point open for those better qualified to decide. Of the 

three sets of terms suggested above, the last seems to be the best. The only reason for adopting in the 

present paper the names given in the text is to imply the origin of the assumption that there are two 

such displacements. Of course, if we call the two displacements reversible and irreversible, we must 

also call the corresponding currents reversible and irreversible. 
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of Maxwell’s theory. At any rate the results, though not in every respect identical 

with Maxwell’s, are yet so nearly identical that the true matter for surprise is that 

they differ so little, and in such unimportant ways, from his. 

It must be added, to prevent misconception of my own views, that I by no means 

consider proven what I regard as the key to Maxwell’s theory, and what I have 

strictly adhered to in this paper, the assumption that under all circumstances 

4ttC = WH. My position rather is, that while this assumption may or may not be 

true, it is desirable to investigate as generally as possible what must be true, and 

what cannot be true if the assumption is made. In other words, I do not think that 

Maxwell’s theory has yet had a fair trial, even at the hands of mathematicians, and 

the present paper is an attempt to provide more ways and means than hitherto have 

been available for such a trial. The methods adopted are equally applicable to other 

sets of fundamental assumptions. 

19. Turning to the second part of the groundwork, the preliminary dynamical 

and thermodynamical considerations, it is necessary to remark that these considerations 

though not limited to an electric field, seemed absolutely necessary in order thoroughly 

to investigate the consequences of the assumptions. With regard to the first two 

sections of this part of the paper on the modified kinetic energy and the free energy, 

and on the entropy there is nothing which is likely to be questioned. In the third 

section on frictional forces, conduction of heat and dissfation of energy, I enunciate 

a principle which opens the way for much criticism. I would beg any readers to whom 

the form of enunciation is repugnant, to suspend their judgment as to the validity of 

the principle, not only until the first justification of it, but until they have seen it in 

action as it were, later in the paper. W hat was wanted was to bring this group of 

phenomena, which are undoubtedly closely connected, under the same sort of treatment 

as is accorded to the reversible phenomena of a system by means of its Lagrangian 

function, and the (dependent) entropy. 

20. The way being thus paved, in the next principal division of the paper are 

deduced the general results of the theory, the most important of which are the equa¬ 

tions of motion. These are considerably more general than the ordinary equations of 

the field, and thus we are led to the last division of the paper, the detailed examina¬ 

tion of these results. The chief sub-divisions of this part are the comparison with 

Maxwell’s results, a discussion from the point of view of the present theory of 

thermoelectric, thermomagnetic, and the Hall effects, and the transference of 

intrinsic energy through the field. 

In comparing with Maxwell’s results, wherever there is agreement, it is considered 

unnecessary to investigate further the detailed consequences. Where there is dis¬ 

agreement the physical consequences are traced with more detail, and in no case can 

it, I think, be said that the results of this part of the paper are condemnatory of the 

present theory. In this place, too, the bearing of the present theory on the question 

of convection currents is discussed. 

mdcccxcii.—A. 4 u 



G98 MR. A. McAULAY OX THE MATHEMATICAL 

Perhaps a clearer insight into the true bearings of the present theory is obtained by 

the attempt below to explain thermoelectric, thermomagnetic, and the Hall effects 

than by any other part of the paper. Especially clearly do some of the restrictions 

imposed by the condition 47tC = YVH come out. 

21. In the last sub-division it will be found that I disagree entirely with Professor 

Poynting’s interpretation of his own results, and show how quite a different and, I 

think, simpler flux of energy may be made to account for the changes of intrinsic 

energy in different parts of the field. In particular, this interpretation would restore 

credence in what Professor Poynting considers he has shown to be a false view, viz., 

that among other aspects of a current of electricity it may be looked upon as some¬ 

thing conveying energy along the conductor. This part of the subject, although 

deduced from the present theory, is shown to be true on Professor Poyntlng’s own 

premisses. 

22. It is wrell here to call attention to what might prove confusing otherwise. In 

what follows E, e, E, $, and some allied symbols, stand for certain external forces. 

But there are three different meanings given in different parts of the paper to these 

symbols. They are originally defined as the whole external forces of the different 

types. But in treating of frictional forces, &c. (§§ 35 to 42) it is convenient to regard 

them as meaning only those parts of the forces which are due to friction and the like. 

Again from § 50 onwards it is convenient to regard them as meaning only those parts 

of the forces which are independent of friction and the like. This inconvenience is 

incurred to avoid the greater evil of a large additional array of symbols. 

With this exception,and one or two other trifling ones, which are noticed in their 

places, nowhere has the meaning of a symbol been changed throughout the paper. 

II. Groundwork of Theory. 

A. Fundamental Assumptions. 

23. We assume that the Lagrangian function, L, of all matter in space can be 

expressed in the form 

.(i). j|Ws + . . 

where l, ls are functions of certain independent variables which determine the state of 

the body at the point. The volume integral extends throughout space, and the sur¬ 

face integral over certain specified surfaces. The entropy F of all matter in space 

will be assumed to be of the form 

* Since completing the paper I have discovered a notable exception which is not otherwise noted than 

in this footnote. It does not seem likely to lead to confusion; therefore I retain it. Most frequently in 

the present paper q stands for the typical scalar coordinate of a dynamical system, but it is not 

infrequently used, as in the former paper, for the quaternion of the rotation-operator q ( ) q-1. 



THEORY OF ELECTROMAGNETISM. '699 

F • [J] fck + ((/,*.(2), 

and f and fs will be determined from the values of l and ls in a manner that will he 

described later on. All thermal phenomena not determined by F, and all forces of the 

nature of friction, will be supposed g’iven by a third function X, given by 

X = [j[ xch +- jjxsds.(3), 

where x, xs, unlike ffs, do not in any way depend upon L. The way in which these 

forces and the thermal phenomena depend upon X will be explained later. We shall 

call X the dissipation function. It is, in fact, a generalisation of Lord Rayleigh’s 

dissipation function (‘Theory of Sound,’ 1st ed., §81). 

24. The absolute temperature of any element of matter will be denoted by 0. The 

vector © (assumed an intensity—§ 7 above) is defined by the equation 

0 = Vd .(4). 

Since both © and V are intensities, we have 

©' = V9.(5). 

All electric and magnetic phenomena are supposed ultimately to depend upon the 

magnitudes and rates of variation of two fluxes (§ 7), d, k, called respectively the 

dielectric displacement and the conduction displacement. The whole displacement, 

D, is defined as the sum of these two, so that 

D = d + k .(6). 

D must satisfy the two conditions of incompressibility for vectors, i.e., 

SVD=0, [Sc7SD]a + i:= 0.(7), 

the notation [ \ + h being as defined on p. 119 of former paper, i.e. the suffixes a and b 

denote the two regions bounded by a surface of discontinuity, and [ ~]a + 6 stands for 

]« + [ ]&• Since D is a flux, it follows by Prop. IV., § 8, above, that 

SV'D' = 0, [ScZVD']^ =0.(8). 

The dielectric current, c, the conduction current, K, and the whole current, C, all 

assumed to be fluxes, are given by the equations 

c = d, K = k 

C = D — c -f K 

4 U 2 

(9), 
(10). 
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25. The differentiations with regard to time implied by these dots are differentia¬ 

tions for a fixed element of the standard position of matter, i.e., they are differentiations 

that follow the motion of matter. It is clear then that they are commutative with V, 

hut not with V'. Hence, from equations (7) and (10), 

SVC = 0, [SdZG]a + 0= 0.(LI), 

and, therefore, [equation (8) § 8 above] 

SV'C'= 0, [SdtV]a+6= 0.. . (12). 

Since C satisfies the conditions of incompressibility, its surface integral over any 

surface only depends on the boundary of the surface, and may be expressed as the line 

integral of a vector K/47T round it. Thus, by equation (3), § 5, 

4ttC = VVH.(13). 

H is called the magnetic force, and is assumed to be an intensity, so that (Prop. III., 

§8) 

47rC' = VV'H'.(14). 

All the vectors, including II, hitherto mentioned, may be discontinuous. But they 

are assumed to be finite, so that JjjCdy = 0 for any infinitely small volume. Suppose 

this volume is a disc enclosing a part of a surface of discontinuity in H. Then we 

have 

0 = jjjvVHefc = jjVcZSH 

by equation (4), §5 above. Hence 

[VcfcH]„ + j=0.(15), 

so that the discontinuity in II is entirely normal to the surface. Similarly 

[Ydt lTWa=0.(16). 

26. From what has been said it follows that if d, k and their rates of variation are 

given for every point of space, H is not yet completely determined. It is, however, so 

determined by one more condition which is proved in § 48 below, and which is given 

here as we shall want to use it before proving it. H is one of the independent 

variables of which l is supposed an explicit function. The condition mentioned is that 

HVZ satisfies the conditions of incompressibility. In other words, putting 
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4irHVZ = B.(17), 

SVB = 0, [SdXB]a+4=0.(18), 

and B is called the magnetic induction. 

These are proved by previously proving that 

B = WA.(19), 

where A is a vector which satisfies the condition 

{Yd%A]a + 6=0.(20). 

A is assumed to be an intensity, and B a flux, so that (§ 8 above), 

SV'B' = 0 , [8cfc'B']. + 4 =0.(21), 

B' = VV'A' , [VdZA']a + b= 0.(22). 

This relation between B and H is not the usually accepted one, but it is certainly 

true on the present theory. It will appear later on that the value thus arrived at 

of B , the magnetic induction at the point p , is independent of the particular position 

which is chosen as a standard of reference. 

In the present theory I—assumed a flux—called the magnetic moment per unit 

volume is defined by the equation 

B'-H' = 4771'.(23), 

from which it does not follow that B — H = ini, since B and I are fluxes and H is 

an intensity. It does follow, however, that 

B" - H" = 4nl".(24). 

27. The equations of last article, it will be observed, do not represent fundamental 

assumptions. They are given here merely to indicate how the familiar symbols 

involved appear in the present theory. We now return to the fundamental 

assumptions. 

The independent* variables, of which l is supposed a given explicit function, are 

6, 0 ; p, p', V; d, D, C, H.. (25) ; 

x is supposed a given explicit function of 

0, 0 ; ¥, K, H.(26). 

* See § 31 below. 
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Nothing is here said about ls and xs, as it has been thought advisable to see how 

much can be explained without their aid. When we come to consider electrostatic 

contact potential difference—which for brevity we will in the future call contact-force 

—it will be found necessary to suppose ls not zero. For ordinary friction, also, xs 

must not be zero. The above assumptions will enable us to take account of (1) all 

Maxwell’s results, or results corresponding thereto; (2) the stresses, &c., resulting 

from variation of specific inductive capacity and magnetic permeability with strain 

and temperature ; (3) thermoelectric, thermomagnetic, and the Hall effects ; (4) many 

purely mechanical results whose details will be reserved for future treatment. They 

do not enable us to take account of (l) sliding friction ; (2) electrolysis ; (3) hysteresis 

and similar phenomena ; (4) contact-force. All these, however, except (3), can be 

taken account of by slight additions to our present assumptions, as in the case of (4) 

will appear later. 

The object of limiting as above the number of the independent variables entering 

into l and x is to free the mind from unnecessary vagueness. Moreover, the above 

assumptions are in one sense necessarily simpler than those made by Professor J. J. 

Thomson (‘ Applications of Dynamics to Physics and Chemistry,’ 1st ed., chap, vii.) to 

explain thermoelectric and thermomagnetic effects, in that the only quantity whose 

space-variations appear above in l or x is 6, a statement not true of Professor 

Thomson’s assumptions. With regard to the forms of l and x as functions of their 

independent variables, it is simplest at present to make no restrictions. 

28. I am a little doubtful whether writers on the present subject recognize two 

semi-independent electric displacements at every point, but, as already remarked, it 

seems to me to follow, as a matter of course, from the assumption of two independent 

currents. The independent variables which have [§ 27 (25)] above been chosen to 

take account of these are d and D, though, of course, d and k or k and D might have 

been chosen instead. Maxwell generally, but not quite without exception, seems to 

use the symbol D for what I have called d. I thought, however, that I should be 

following the usual custom of subsequent writers by using D for the whole displace¬ 

ment. 

If there be two independent electrical displacements, it would seem as though we 

must assume, at any rate provisionally, the existence of two independent external 

electromotive forces of type D and d. These we shall denote by — E and —■ e respec¬ 

tively. This, of course, means that the work done by the said external forces 

at the element ch, while D, d change to D-f c/B and d + c/d respectively, is 

(SE c/D -f- Se c/d) ch. We shall also assume external surface forces of these types 

— — e.,, external ordinary forces E and F,y per unit volume and surface of the 

present position of matter,# and an external stress <4>, <3> being a self-conjugate linear 

vector function of Class I of § 9 above. This last statement means that the real 

' In the former paper y meant the force per unit volume of the standard position of matter. The 

change has been made, since the equations of this paper are thereby simplified. 
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stress-function is not <b, but <t>', i.e., that the force exerted on a region at the element 

of its boundary is clS = d%'. 

29. The meaning of “external” may be defined as “not included in the form of 

L.” Thus, the external forces include (1) all frictional forces given by X ; (2) forces 

that, though not now included in the form of L, can be so included by generalising 

the meaning of l and ls, so as to explain electrolysis, contact-force, and chemical 

phenomena; (3) forces that, through present ignorance we cannot include in X or L, 

though they should be so included. Thus, for.instance, the external stress <£> may be 

supposed to be due entirely to viscosity and elastic fatigue, and the first of these will 

be accounted for by X. 

30. SD' is due partly to variation of strain and partly to SD ; let S'D' be the latter 

part. E and e are assumed to be intensities. Hence (§ 8, Prop. II.) 

(SE SI) + Se Sd) ds = (SE7 SD7 + Se' Sd7) dd . . . . (27). 

A similar theorem is supposed to hold with regard to E,, e,, viz.: 

(SE,. SD + Se, Sd) ds = (SE', S'D7 + Se', S'd') ds . . . (28), 

from which, since [§ 7, eq. (6)] S'D' = m~lx SD, and 

ds Ids = T dt'JT dt = mTx'-l\Jv = mT“ yiL/ 

E'^x'-'E/Tx"1^, E, = x'BVTx'U^.(29), 

and similarly for e„ e',s. 

31. We must distinguish carefully between the independent variables of an element 

of matter which are given in the two lists (25) and (26) of § 27 and the independent 

variables of the system in general. These last consist only of 

0, p, d, D.(30), 

for every element of matter, for when these last and their time-rates of variation are 

assigned for all space, all the other quantities are determined. [It is not quite correct 

to talk of D as an independent variable on account of the equations of condition (7) of 

§ 24-J 
To enable us to develop the consequences of these fundamental assumptions, a 

digression on dynamics and thermodynamics must be made. 
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B. Preliminary Dynamical and Thermodynamical Considerations. 

Ba. The “Modified Kinetic” Energy and the “Free” Energy. 

32. It is not to be supposed that the coordinates we have assumed are sufficient to 

fix the position of all matter in space. The mathematical machinery we use cannot 

be supposed sufficiently fine to trace the motion of molecules. Such coordinates as 

would be required for that purpose are “ ignored.” Now (Larmor, £ Proc. London 

Math. Soc.,’ vol. 15, 1884, p. 173) in order that the principle expressed in eq. (1) of 

§ 13, above, may be true under these circumstances, L must be, not the true 

Lagrangian function, but what Bouth (‘ Elem. Big. Dyn.,’ 4th ed., § 420) has called 

a modified Lagrangian function. And that our principle may be true the particular 

type of modification is assigned, i.e., the ignored coordinates are those whose momenta 

appear explicitly. And a further restriction is necessary (Larmor, as above), viz., 

that the ignored coordinates must only appear through their momenta. That is, the 

ignored coordinates must be what Professor J. J. Thomson (‘ Applications,’ 1st ed., 

§ 7) has called kinosthenic or speed coordinates. This last restriction, however, is 

not absolutely necessary if we take L to be the average value of the modified 

Lagrangian function for a small time, sufficiently large to allow the molecules to go 

through all their types of motion many times. 

33. Whether these restrictions be imposed or not we have the following relation :— 

A = ZqdL/dq-L ......... (1), 

where A is the whole energy of the motion due to a modified function L, and q is a 

coordinate whose velocity appears explicity. (Notice that if A were supposed 

expressed, not as a function of the q s, but as a function of the d~L/dqs, it would be the 

reciprocal function of L with regard to the q s [Booth’s ‘ Elem. Big. Dyn.,’ 4th ed., 

§ 410.] It is not this reciprocal function only, because, for our purposes, it is more 

convenient to assume it an explicit function of the same quantities as L). To prove 

this, let" <f.>, <k be a coordinate, whose momentum appears, and its momentum respec¬ 

tively, and let L0 be the Lagrangian function of which L is the modified form. 

Thus 

'Iq 0L/dq — L = %q 0LJdq — (L0 — S</><1>). 

[Bouth’s £ El. Big. Dyn.,’ 4th ed., §§ 410, 420]. 

= 2 (q 9L Jdq + (/>3L— L0. \ibidh] 

— 2© — (X — S3). [T = kinetic energy, © = potential energy.] 

— T -p © = A. 

* There is no danger of confusion of these meanings of 0, <t> with the stress meanings these symbols 

bear through the rest of this paper. 
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Equation (1) can be put in a more convenient form for our purpose. We have 

0L /0L d 3L\ ~ ^ /3L ~ , 3L » \ 

8L = It2 aj s2 + 2 f - It fis* + 2 (a* ^ **■) 

With the restrictions just mentioned, we have 3L/0</> = 0 and S<3? = 0. Elence 

sr dxdLs >v/0L d3L)s 1 

n d _ /0L d 0L\ - , 

~~ ^7tX(Sqa’ Sqb’ * ' •) + -Jtdq)Sq J 

y • • • (*)> 

where 2.T (Sqa, Sq/j . . .) is to be defined as the function which appears under the 

operator d/dt when SL is expressed as the sum of two quantities, one of which is a 

linear function of the variations of the retained coordinates, and the other is the rate 

of variation of a similar function. We now have 

A = 2£ (qa, qh . ) — L . . (3). 

We shall show how, for our particular system, % (qa . . .) can be expressed in the 

form 

X (?«, q_h • • •) = f 11 t ds + 11 t ds.(4), 

where t, ts are functions of the same independent variables as l, ls. 

It is convenient to call X (qa . . .) the whole modified kinetic energy, and t, ts the 

modified kinetic energies per unit volume and surface respectively. And, similarly 

putting 

X = 2t-l, K = 2p - ls .(5), 

we shall call A and \s the free energy* per unit volume and surface respectively. We 

thus have 

A = jfjxcZs + [jx/7s.(6). 

We shall then assume that the energy in any finite region is the integral on the 

right of this equation for that region. The surface integral in this case, of course, 

only applies to surfaces of discontinuity (as to physical quantities) in (his region, and 

not to the true boundary of the region. 

* This term is adopted as a translation of Helmholtz’s ‘/me Energie’ (‘ Wiss. Abh.,’ II., 959). It is 

not, of course, the same as the intrinsic energy ■which we are about to determine by a method analogous 

to Helmholtz's. 

MDCCCXCII.— A. 4 X 
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Bb. The Entropy. 

34. If Q be the external force of type q, we have 

clA = 2 Q dq, 

where dq is the actual increment in q during the element of time. This can, of 

course, be proved directly from eq. (2). It must now be remembered that all the 

above variations are only true if we suppose the temperature of eveiy element of 

matter kept constant. In other words, the last equation must, when we do not make 

this restriction, be replaced by 

dA — deA = t Qdq.(7), 

where deA stands for that part of the increment in A which is due to increment in 

temperature in all elements of matter during the element of time. Let now E be the 

intrinsic energy (including under this term the ordinary kinetic energy of matter as 

well as all other forms of energy) of all the matter in space. Thus by the fundamental 

property of entropy (Tait’s ‘Heat,’ §§ 377, 378), 

cZE = tQdq +1 jj ddfds + ^0dfsds.(8), 

whence, from the last equation, 

d[— E+A+jjj Ofds + || Of/Is] = deA + ||jfdOds + ^fsd0ds . (9). 

will be seen later on to be independent of ®. Hence 

d,A = 111 (|+ - Sctoevx) ds + fe‘ dOds 

= {j|(|; + sv6v\)<» + (H' - [su^vx].++e*. 

[by putting d® = VdO, and applying § 5, eq. (4)]. Thus eq. (9) becomes 

d(- E + A + {+/* + +/+ 
1 

fjj (/+1 + sv.vx) dOd, + (/, + |= - [SUx.VX]. + j)<M* 
K10)- 

Since the left of this equation is a perfect differential, so is the right. Hence we 

see that 

/+ 3\/00 + SV0V\ and /, + 0X,/00 - [SU*/0V\]s + i 

% 
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must be functions of 6 only. And further, by including these functions in — dljdd 

and — dls/dd respectively—a proceeding that will not affect the equations of motion 

deduced from the form of L—we see that each of these quantities may be put equal 

to zero. With this extended meaning of L, then 

/= - a\/06> - SV0V\.(11), 

fs= - ax,/30 + [SU»0V\]«+*.(12). 

We now see also from eq. (10) that 

E = A + jljVcfe + \[ofds.(13), 

or 

E = jjjeds -f [j'e5ds.(14), 

where 

e = A + 0f= X - 0d\/B9 - dSV0VA.(15), 

et — K + @fs = K ~ Od\s/d0 + 6 [SUz^eVX]ff + 4 .... (16), 

so that e, es may be called the intrinsic energy per unit volume and surface respee 

tively. 

Be. Frictional Forces, Conduction of Heat, and Dissipation of Energy. 

35. It has already [§ 27 (26)] been mentioned that a? is a function of 

6, ©; % V; K, H.(17). 

Of these ■'F and K are of the nature of velocities, and from the equation 4trG = YVH 
the same may be said of H. Let us, then, briefly speak of them as “the velocities 

involved in x. Similarly in the general theory where xs is not assumed zero, it also 

will involve certain variables for like reasons called velocities. Let f £s be the 

functions which are reciprocal (Routh’s £ El. Rig. Dyn.,’ 4th ed., § 410) wuth regard 

to © and the velocities, to the functions x and xs. Thus 

x + £ = - S©0Vx - SKkVx - SHhVx - <Jx£*.(18), 

* This seems a good opportunity to place on record a suggestion. There are some obvious objections 

to the method used, in the present and former papers of indicating the independent yariable of 

differentiation of a V or Q by an affix. It is somewhat hard to distinguish between C and c in the 

4x2 
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and a similar equation would hold with regard to xs + which, however, requires 

definite information as to the velocities involved in xs. £ is supposed (Rodth, ibid.) 

expressed as a function, not of the variables (17), but of 

6, ©Va: ; dq idx ; KVa:, HVx.(19). 

It is best at first to regard x as a function, not of K, but of C and c [§ 24, eq. (10)]. 

When later we make the assumption that, so far as it depends on these last two, it is 

a function of their difference (K) only, it will only have to be noticed that 

cV.r = KVx = — cVx.. . . (20). 

Note that this gives 

SKKVtc = SCcVaj + SccVx.(21), 

which shows [eq. (18)] that the statement that £ is the reciprocal of x with regard to 

© and the velocities is still true. 

Similarly, if it were assumed, as on a future occasion it will be assumed, that Xs 

was a function of 

0; [p']a-b, %u dq; TSUrK.(22), 

it would be best first to regard it as a function of 

0; pa\ pb, dq, dq; Ca, Ci} ca, cb.(23), 

and later make the necessary restrictions. 

36. We shall now suppose that the symbols Q, F, F*, <f>, E, E,., e, e,. stand for 

those parts only of the external forces of the various types, which are owing to 

friction and the like. To determine their values we shall use the principle* 

present paper and F and q in the former paper [paragraph, following eq. 40)] when nsed as affixes. 

There are objections from the printer’s and proof-reader’s point of view when the affix is anything other 

than a mere letter. For instance, *CI in the present case, and, still more, g V in eq. (2), § 44, below, are 

objectionable on these grounds. Is it not, then, desirable to have, at any rate, an alternative notation ? 

As an alternative to ^.V, let me here suggest any one of the following: V|<r| |V<r| [Vcr] V|er V;<r 

V a Vo-1 V<r;. Of these I should personally be inclined to favour [Vo-] or Vc ; , the latter rather than 

the former. For instance, in this notation, eq. (18) would become 

SB + f = - Seve; x - SKVK; * - SHVH ; x - S*£a*; 

which, I think, shows that the notation is sufficiently striking, while it has the advantage of great- 

simplicity. 

* I have not been able to reduce this to simpler form or to substitute a simpler principle leading to 

the same results. I merely wished to make all the phenomena of the kind now being considered depend 

cn some single scalar function X, much as the reversible phenomena depend on the single scalar 
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+ 0 / ) + 00 \ ^ -Q ” 0 • • . . (24), 

where now S only implies such variations as are the consequences of varying the 

velocities of the dynamical system and the temperature, and where of course 2Q 8q is 

given in our case by 

2Q 8q = | | f {- SF SP' cW + (SE SC + Se Sc) tU} 

+ j j { - SF, df els' + (SE, SC + Se, Sc) ds].(25). 

This last equation would have to be modified if we contemplated finite sliding of one 

surface over another. In this paper, as already stated, we simplify by supposing this 

never to take place (except in § 64 below). 

Equation (24) is more general than in this paper is required. Throughout this 

paper xs, and therefore will be assumed zero. 

37. The truth of the principle can be verified (as, admitting the restrictions just 

mentioned, will be shown directly) by proving that its consequences are in complete 

harmony with three recognised principles :—(1) that frictional forces can be explained 

by what Lord Rayleigh (‘Sound,’ 1st eel., vol. I., § 81) calls a dissipation function ; 

(2) that the heat which is created by the destruction of energy in other forms, 

appears, in the first instance, at the elements of matter where the destruction takes 

place; (3) the fundamental principle of conduction of heat, that the rate of flow of 

heat out of any region across the element c/2' of its boundary = S c/2'y'®' where y is 

a self-conjugate linear vector function, which is itself a function of the state of the 

medium at the point. 

38. To show the truth of these statements in the limited circumstances mentioned, 

viz., when xs is zero and there is no slipping, notice first what the effects of varying 

0 and c only are. A variation in C will cause a variation in H, since IwC = WH 

and [VUVH]a+i = 0. The device used in the calculus of variations to take account 

function L. When there are heat sources not included in our system (L and X) we ought to put 

/— h and/, — hs instead of / and/, in eq. (24), hO and hs0 being the rate of supply of external heat per 

unit volume and surface respectively. The form of eq. (24) would perhaps he made more instructive by 

grouping together the terms 

| j j*/ c0 ds + || fs cO ds + XQ cq. 

If H be the rate of “absorption of heat” by a body (ds or ds) of the system, this expression 

transforms into 2 (H d6/0 + Q8q). 
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of such equations of condition is well known. In the present case it takes the 

following form : to the left of equation (24) add 

- | I | Sa (SC - YV SH/477) ch + (47r)-1 j [ Sa, dZ SH 

where a, a, are vectors ; S C and S II may then be regarded as independent. It is to 

be noted that there is but one a* for an element of the bounding surface, i.e., there is 

not one for each region bounded. In our notation this may be expressed by saying 

that [a,]a = [aji. 

Now, by eq. (4), § 5, above, 

SaV SH ds + | 

Hence, since the part contributed to the left of eq. (24) by SH is — JJj S SHHVa; ds, 

we get, by equating to zero the coefficient of the arbitrary vector SH, 

j Sa, dZ SH = f (| S SHVa ds + jj S (a, + a) dZ SH. 

4tthVx = VVa = b.(26) 

[VUvaJ^s = 0 .(27), 

a, disappearing, since [ajfl = [ ajj. 

Again, before considering what is contributed to the left of eq. (24) by SC, it must 

be remembered that SC is not quite arbitrary, by reason of the equations of condition 

SVC = 0, [SU^C]cl + 5 = 0. This is taken account of by adding to the left of# 

eq. (24) 

[[[ YSV SC c7s + f f Y,S dZ SC = - fff S SCVY ds + [[ (Y + Y,) S dZ SC 

* It may be objected that these equations of condition have already been taken account of in the 

treatment accorded to the more general equations of 4~C = VVH, [VUrH]a+s = 0, and, therefore, it is 

erroneous to take account of them again. The answer to this is that it is not necessary to do this, but, on 

the other hand, it is not erroneous. We must expect as the result that the Y’s will be, in a mathematical 

sense, redundant. That this actually is the case will appear in § 65 below. The reason for introducing 

them is to obtain the equations of the field in as familiar a form as possible, and to show the mathe¬ 

matical dependence of the existence of a potential on the equations SVC = 0, [SITrCjn+j = 0. The 

process may be paralleled in the subject of the Calculus of Variations. IT, V, W being three functions 

of x, y, . . . , cx, cy, ... , linear in the latter group, let it be required to satisfy the equation IT = 0 

subject to the equations of condition V = 0, W = 0. The recognised method is to use the single 

equation IT + AV + BW = 0 instead of the three, A and B being functions of x, y, . . . determinable 

by the problem in hand. It would not be erroneous to add to the left of the last equation CW, where 

C was a function of the same kind as A and B. One of the two, B or C, would be mathematically 

redundant, but it might bo convenient to introduce both and give arbitrarily, later on, some method of 

assigning a definite meaning to each. 
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[eq. (4), § 5], where Y, Y* are scalars, and, as with as, [YJ„ = [YJj. Equating now 

to zero the coefficients of SC, Sc, we get 

E = cVx + a + VY, e = cVx . . .... (28), 

E, = — [Yffi](1+j, e, = 0.(29). 

It should be noticed that b, defined by eq. (26), satisfies both the conditions of 

incompressibility 

SVb = 0, [SUrb]n + i = 0 . .  .(30). 

The first condition is obvious from the equation b = VVa. The second is easily 

deduced from the equation [VUVa]a + i = 0. For this last asserts that the component 

of a parallel to the surface is the same for both regions bounded. Thus the line 

integral J S dpa,, which, by eq. (3), § 5, = JJ Sb d%, taken over any closed curve on the 

surface, is the same for both regions. It follows that [Scfcffi]a + 6 = 0. We naturally 

assume that a is an intensity and b a flux. Hence, by § 8, 

VVa' = b' , [YUn]s+} = 0.(31) 

SV'b' = 0 , [StVb']a + 6 = 0.(32). 

39. Next suppose that the only variation implied in equation (24) is in p, and, 

therefore, in 'VP. Thus 

j jj 6B(x/6) ds = — jjjsS'T'fk.CIxfyZs [eq. (13) of former paper] 

= — \ f{fs8<Kx-vx'-w, 

where is defined by saying that 

3>=2i(Ia:.(33), 

and that <3> is a function of Class I. of § 9 above.'" Now since [former paper, eq. (39)] 

^ = x'x> we have 

8^ = Sx'. x + XSX 

* What immediately follows is a particular case of a theorem required more than once below. Let 

O, x and a be as usual in this paper and let Qa> = — 2/3S<nx. Then 

Sx'QfCfcL = 2S/3Q 'ads. 
* 

More generally, if (w, w') be any function of two vectors w, to' linear in each 

(Qf> * = 2 (/3, QV) . ds. 
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and, therefore, 

sS'Hx“lcl),x,_1£ = yVx£x-l4>Y-1£ + SxYx£x~1<hY~1£ 

= 2SSx£3)Y“1£ [ibid., eq. (6)] 

and Syw = — SojV. Bp [ibid., eq. (25)]. Hence [ibid., eq. (7)] 

j j f<9S (x/6)ds = - fffsSp'^V-’V^s' 

= — [[|SSp/'NV/c/?' [ibid., eq. (27)] 

= - ffsBp'&dZ + (([sSp'^V/ds' [eq. (4), § 5, above]. 

Hence, from equations (24) (25), above, 

P = ®'A' , F, = - [*'U„3, + 1.(34), 

showing [ibid., p. 107] that the presence in x of 4' leads to a stress <t>. 

40. Now, suppose the only variation of eq. (24) is that of temperature. In this 

case 

Y \+ ) = 4 rY- 8 89^ 
= - ' Be - SV B9qVx, 

u 

since [Routh’s ‘ El. Rig. Dyn./ 4th ed., § 410], 0 (x + £)/B9 — 0. Also [§ 5, eq. (4) 

above] 

- ( jjsv B9eVx ds= - [ (BeS d$&Vx + |[[ 8^SV0Va: c?5 

Hence, the variation of 9 leads to 

j = (x + fye - sveVx.(35), 

f, = [SU^V®].+J.(36). 

41. The first of the three statements in § 37 is now obvious, as far as c is con¬ 

cerned. With regard to C it must be remembered that C cannot be made to vary 

without varying H. Now [Rayleigh’s ‘ Sound,’ 1st ed., I., § 81] in order that frictional 

forces may be explained by a dissipation function X, in Lord Rayleigh’s sense, the 

frictional force Q corresponding to an independent coordinate q should be = — B'X./dq. 

For our purposes this is put more conveniently by saying that 2Q Bq = — X B'X, 
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where the % implies that any assigned group of independent velocities, and no others, 

are varied, and where S,;X is the increment in X due to the particular variation By. 

Now, on account of the conditions, 

4ttC = WE, [Vt/SH]„ + i = 0, SVC = 0, [Sc72C]„+* = 0, 

it is necessary that we consider the whole group of velocities, SC, throughout space 

together. It is, then, as far as C is concerned, only necessary to prove that 

f j[SE SC ds + f f SE, SC ds = [f j(SSCcVtc + SSHHV;r) ds, 

the integrals extending throughout space. (A.s to the sign of these terms, it must 

be remembered that the force corresponding to C is not E, hut — E). This is proved 

quite easily* by means of eq. (4) § 5. 

Similarly, with regard to 'P, it is only necessary to prove that 

- f [ jSF Bp ds' - f fSF,, Bp' ds' = (ffs Sd^Ckr £ ds, 

and this is obvious from the mode in which equations (33) (34) were established. 

42. To prove the second and third statements, let for any finite region JJj denote an 

integration taken over the true boundary of that region, and JJb an integral taken over 

both sides of any surface of discontinuity, as to physical quantities in the region, so 

that 

[HI,+11..<”>■ 
Then, if we can prove that for any finite region, 

(Kate of increase of heat + rate of doing work of frictional forces) 

= - f f {Sdt (0eVx + VaH/47r - YC) + Sp'&dt) 

it will follow that the energy supply required to account for (l) the increment of 

heat, (2) the work (negative) done by the frictional forces, consists of three parts, (1) 

* It should, perhaps, be noticed that cC and tH are now not perfectly arbitrary. We may assume 

that 

Sv cC = 0 , 47r fC = Yv 

and from the equations [VUba]«+j = 0, [VUrH] a+b = 0 

[SaUr 3H]«+s = 0. 

MDCCCXCII.—A. 4 Y 
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the work done on the boundary by the viscosity stress, (2) the work done on the 

boundary by the frictional electric forces, (3) a flux — 0&Vx of energy at every point 

of space. This may be put in, perhaps, the more familiar form:—the increment of 

heat in the region consists of three parts, (1) the work done against the frictional 

forces throughout the region, (2) the work done by the frictional forces (viscosity and 

electric) on the boundary, and (3) the surface integral taken inwards at the boundary 

of a flux — 0qVx. Stated in this way we see that equation (38) is equivalent to 

saying that the conduction of heat is due to a flux of heat — 0qVx at every point of 

space, and that the frictional forces are sources of heat.# These are statements (2) 

and (3) of § 37 (except that here we have — 0qVx, and there we have a more definite 

form for flux of heat due to conduction.) 

To prove eq. (38), note that the expression on the left 

= jjj’{(0/+ SEC + Sec) cfe - SFp'cW] + {^{(0/, +SE,C + Se,c)ds - SFSp'ds'} 

= J|[ {O + f - 6>SV0Vx + SC {cVx + a + VY) + SccVafj ch - SP'<P\V1 cW] 

+ j] {Sc& {0@Vx + VaH/47r - YC) + SpV dt}. + 

Now put Jjh = jj — JJS [equation (37)], and transform the integral |J by means of 

equation (4) § 5 above into a volume integral. In doing this note that by reversing 

the process of § 39 we get 

- fff SfV,V', cW + ff Sp'4>' dt = fff S'Ffcdatfds. 

* It is possible at this stage that two objections maybe taken to this reasoning. First it may be said 

that there ought to be no terms in the surface integral leading to the result that the frictional electric 

forces do work on the boundary. That this is not a sound objection will come out more clearly below, 

when the effect of TC will be found to in no way alter the ordinary views of the transference of electric 

energy through the field, and the effect of VaH will be only to modify them in a way which would 

naturally be anticipated from the new hypothesis that Hhas some influence on the frictional forces of the 

field. Secondly, it may be said that besides the three terms mentioned in the text as contributing to rate 

of increase of heat, there should be a fourth due to such causes as the Thomson and Peltier effects. 

This statement is, however, undoubtedly wrong, as will appear more clearly when we come to the con¬ 

sideration of these effects. The explanation is that these effects are explained by terms in /. Hence, 

in equation (38) they are included on the left. If this is not considered convincing, let me call attention 

to equation (25), § 49 below, which asserts that the rate of increase of intrinsic energy (including that of 

the Thomson effect, &c.),in any space = rate of doing work throughout the region of the external forces 

which are not due to friction + the rate of heat supply from external sources situated in the region + such 

a surface integral as now is under consideration (i.e., confined to the true boundary). 

f We have here for the sake of the next transformation added the term JJ,;SdSaH/4w, since from 

the equations [VIL'H]a + { = 0, [VUi'a]a + j = 0, it follows that [SUi'aH]a+j = 0. 
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Thus we get for the expression on the left of eq. (38) 

(||{a; + £ + S©0Va; + SCcV;r + SccV,x + SHhV^c -f S'FG<M} ch 

- J| {Sd2 {0&Vx + YaH/47r - YC) + SpV dt] 

of which the volume integral is zero [equations (18), (21)], and the surface integral is 

the expression on the right of equation (38). 
To get the ordinary expression for the flux of heat due to conduction we have merely 

to suppose x to contain the term — S©y©/2$, where y is a self-conjugate linear vector 
function of Class I., of § 9 above. The heat flux referred to the standard position of 

matter due to this term 
= 9f7 (S©y©/20) = - y©, 

and, therefore, by Prop. VI., § 10, the actual flux of heat is — y'©'. 
43. It is known (Tait’s ‘Heat,’ 1st ed., §412) that if 90 be the lowest available 

temperature, 0O F is the rate of dissipation or degradation of energy in Sir William 

Thomson’s sense. Now by equations (35), (36), 

F = J||(* + {)/$&.(39), 

so that (x + £) 9J0 may be called the rate of dissipation of energy per unit volume. 
There seems very good reason then to call X the dissipation function. It only differs 
from Lord Rayleigh’s function in the terms that lead to the conduction of heat. 

If, as will usually be the case, x is quadratic in © and the velocities, £ = x, and the 
rate of dissipation per unit of volume will be 2x0J6. For instance, the rate of dissipa¬ 

tion per unit volume of the standard position due to conduction = — S©y©#0/#3, and, 
therefore, per unit volume of the present position it is — S©'y'©'^/^. * 

III. Establishment of General Results. 

A. Value of SL for a Finite ‘portion of Matter. 

44. As already remarked (§ 34) the 8 in equation (1) § 1 3 implies variation in every¬ 
thing but the temperature. This will be assumed for the present. Thus 81 depends 
[§ 27 (25)] on the variations of 

p> p, 'k ; d, D, C, H. 

* I suppose this result has been noticed before, though I do not know by whom. 

4 y 2 
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So far as it depends on p, l will be supposed only to contain the term — DmW, where 

Dm is the density of matter in the standard position, and W an ordinary potential 

(quite independent, however, of electromagnetic phenomena). Of course, so far as 

it depends on p, l is supposed only to contain the term — Dmp'*/2. Thus S1 consists of 

the following parts :— 

- S SpV'l = DJ3 Sp'V'W.(1), 

— S Sp'pWl = — D,«Sp Sp' — — d(DmSp Sp')/dt + DmSp' Sp . . (2), 

- S SDDVZ.   (3), 

- S SddVZ.(4), 

- S SCcVl = - S SDCVZ = - dScVl SD/dt + SS DdcVl/dt . . . (5), 

- S SHEVl = - SB SH/4n-.(6), 

— S Sd^G^ = wS Sp\(j>V\.•.(7), 

where G stands, as throughout the present paper it will stand, for *G, and where </>' 

is defined by saying that 

<£ = - 2ai.. (8), 

and that <f) is of Class I. in § 9 above. The proof of equation (7) is exactly parallel 

to the treatment of <£> in § 39 above, and, therefore, need not be given here. 

45. The part of SL due to (7) is 

jjjs &p\tfV\ds = - [jjsSp'^V'jA' + jjsSp'f 82' 

bv eq. (4), § 5, above. The part* due to (6) is [§ 26, eq. (19)] 

- (47T)"1 (jjsVASHds = - (47T)"1 (jjSAVSHefe - (Ttt)"1 jj SA SH d$. 

When considering the whole of space this surface integral can be neglected, since 

by eq. (15), § 25, [V dSK\a + b = 0, and by eq. (20), § 26, [Vd2A]a + 6 = 0. If, as for 

* This transformation which assumes a fact still to be proved (viz., that B = YYA, [Y d2A]„+a = 0) 

is given, not wdth the object of determining the equations of motion, in which process this fact will not 

be assumed, but to find the rate of change of energy in an assigned space. 
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the present we assume, we are considering that part of L contributed by a finite 

portion of matter we must retain the part of the surface integral due to the true 

boundary of the portion (jj$ of § 42). Thus the part of SL due to (6) is 

- ||[ SA SC (U - (4 v)~11| SA SH dt 

= - | HI SA SD ds + HI SA SD ds - (4tt)-1|J SA SH dt. 

Collecting terms we have for any finite portion of matter 

SL = - IfffjDjy-Sp' + S8D(CV« + A)} ck 

+ fj]{Sy[D„(p- + V'W) - mfV,] - SSd„v; 

+ S 3d (dcVl/dt + A - DVZ)} ds 

S Sp'f dt - (47T)-11| SA SH dt.. (9). 

B. The Free Energy and Rate of Increase of Intrinsic Energy for any Finite portion 

of Matter. 

46. We now see from the principle enunciated in § 33, above, that the modified 

kinetic energy for all space is given by 

2L = - iff + SC (cVl + A)} ck. 

Now 

47r||fsCAds = JIJsAVHcZs [§ 25, eq. (13)] 

= J|JSHVAds +f|SHAc& [§ 5, eq. (4)] 

= [§ 26, eq. (19)], 

the surface integral vanishing by § 25, eq. (15) and § 26, eq. (20). Thus 

2$. = - |||{Dwp'3 + SCcV/+SBH/47t} ds = ffj(Z + X) ds . . (10), 

where X is in value, but not in form (since we suppose it expressed in terms of the 
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same independent variables as l) equal to the function which is reciprocal to l with 

regard to p, C and H. These three vectors may be [§ 35] called velocities, and thus 

X is in value the reciprocal of l with regard to all the velocities involved in the latter. 

Adopting now the notation of § 33 and its assumption (end of § 33), we have 

l + X = 2t = - (Dmp'2 + SCcVZ + SBH/4tt).(11) 

K = ts = 0.(12). 

That l, the Lagrangian function (per unit volume), and X, the free energy, should be 

reciprocal functions (in value only) with regard to the velocities they contain, is 

in accord with the fact (but not deducible from it) that a similar statement is true 

for an ordinary dynamical system [§ 33, eq. (1) above]. 

Let now A stand for the part of the free energy due to a finite portion of matter. 

Required A. To find this, first obtain the rate of increase of A that would occur if 

all the circumstances were such as actually occur, except that the temperature of each 

element of matter is kept constant, and then add the part due to the rate of variation 

of temperature. To get the first of these we have at first to find the corresponding 

part of L by changing all the S’s of eq. (9) into differentiations with regard to the 

time. Then we have to subtract the result from A -f- L, which is given by eq. (11). 

Thus we get 

A = j"jj [6 d\/dO — S@0VX) ds 

- ||| {S p' [D,„ (p‘ + V'W) - ro^'V,'] - Sc(lV/ + SC (dcYl/dt+ A -BVl)}ds >- (13). 

— || Sp<f>'d%' — (47t) —1 j]yAHc£2 J 

It should be shown perhaps how the last integral appears. It comes from the term 

— SBH/47T in l -fi- X and from the two terms f 

-IIIIsasd*-4vILsa8hcK 

in SL. These three terms contribute to A 

I III (SA0 - SBH/4ir) * +^\l «AH dt. 

But, since, 4vC = YVH, 47tSAC — SBH = SAAH, so that the volume integral can be 
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transformed into a surface integral. Transforming and noticing that the part of the 

surface integral is zero, the last term in equation (13) is obtained. 

We may now obtain E. To do this, combine the first integral of equation (13) with 

d (Jlf Of ds + If Ofsds)jdt. We thus get by equations (11), (12) of § 34, and equation 

(4)> § 5 

[j] Ofds + [j Ofds - [J 0S dtfJX. 

Thus, from eq. (13), § 34, 

E = [j] 9}<h + J] Bf.ds - fffjS/ [D„ (p' + V'W) - 

- ScdV/ + SC (dcVl/dt + A - f7l)} ds > 

- [| Spy dt - f[ iSdt (YAH/477 + 00VA) 
J 

(14). 

C. The Equations of Motion. 

47. The symbols E, F, <J>, &c., will now again be supposed to stand for the whole 

external forces including those due to friction. The parts contributed by all of these 

except d> to SQ Sq can be written down at once. By the former paper p. 107 the 

force per unit volume (of present position of matter) due to d> is d>'A'. d? is assumed 

to be self-conjugate* and of Class I of § 9 above. Thus d>' is also self-conjugate, and 

therefore there is, due to it, no couple per unit volume. The force per unit surface at 

a surface of discontinuity is — [d>'UV]K +Thus the part contributed to XQ Sq 

by <f> is 

jj S 3p'& dt - f jj S Sp'dq'V/ ds. 

Hence collecting all the terms 

SQ Sq = - [j] S Bp (F + dq'V/) ds - j] S Bp' (F, ds - d>' dt) J 

<■ • (15)- 
+ | j] (Se Sd + SE SD) ds + jj (Se, Sd + SE, SD) ds 

48. To obtain the equations of motion from these results, it must be remembered 

(§ 38) that while Sp' and Sd are quite arbitrary, this is not the case with SD and SH. 

We adopt the same method here as in § 38, i.e., we add to the SL for all space 

* It is clear by the work in tbe former paper (pp. 106 to 108) that there is no necessity to make 

this simplification. On the other hand nothing seems gained by not making it. 
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- jjjySV SD ch - (jy,S dt SD - jj]SA(SC - VSH/4tt) ds + ^tt)"1 ff SA, dt SH. 

where 
[2/Ja = [jZjij [Aja — [Aji, 

and where y, ys are scalars and A, A^, vectors ; SD and SH may then both be regarded 

as arbitrary. The expression to be added to SL may, by equation (4) § 5, be written :— 

- | jjjSA SD S? + j]j{S SD (A + Vy) + S SHVA/4tt} d? 

- jj{(y + 2/,)SSDSS- SSH(A + ks)dtli7r] . . . (16). 

Equating now to zero, the coefficient of SH in the extended SL, we get 

B = VVA, [V dtA]a+i = 0, 

the As disappearing on account of the relation [AJ0 = [AJ4. This is the promised 

proof of equations (19) (20) of §26, and, therefore, also of equation (18) of the 

same article. 

49. SL and 2Q Sy are, [(9), (15), (16)], now in such a form that the consequences of 

equation (l), § 13, are seen by inspection. They give (writing D'm for Dm/m, so that 

D',„ is the density of matter in the present position) 

D>' = - D'.V'W + (f + 4»,)1V'1 + F.(17), 

b — — [(<£ + ) Ur ]«+i + F,.(18), 

e = dVZ ..  (19), 

E = DVZ — dcVl/di — A — Vy.(20), 

e.f = 0.(21), 

E, = [yTJvja + b.(22). 

Let, for afinite region 

P — rate of doing work of external forces 

-f- rate of supply of heat from external sources 
(23), 
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so that P may be called the “ power ” of the external forces and heat sources. P may 

be divided into Py the part due to the frictional forces, i.e., the expression on the 

left of eq. (38) § 42, and P6, the power of the really external forces and sources, i.e., 

forces and sources included neither in l nor x. From the equations of motion just 

obtained, and from eq. (14) § 46 above, 

E = P + jjjscVy* - [j^SCdS - j]«{ Sp'fdt + Sdt (VAH/4tt + 00VX)}. 

Now, SCVy = SV(Cy), since SVC = 0. Hence [eq. (4), § 5] 

— [LySCd£ =[[ySCdS — j'pySCdS = 

Hence 

E = P - J[4{Sp'fidZ + Sdt {-yC + VAH/47T + 0eVX)} . . (24). 

Putting now P = Pc + Py and substituting the expression on the right of eq. (38), 

§ 42 for Py, we get 

E = P„ — j|,{Sp' (f + 4>» dt + SdS [ - (y + Y) C + V (A + a) H/4*- 

+ (0eVX + deVx)]}.(25), 

where now 4?/ has been put for the 4>' of eq. (38), § 42, to distinguish it from the 4>' of 

equations (26), (27) below. 

50. In §§ 38, 39, it will be remembered that E, F, &c., stood for those parts only of 

the external forces which were due to X. Let, now, these symbols stand for those 

parts only of the external forces which are not involved in X. Thus in equation (20) 

we must change E into E -f cVx -bad- VY [eq. (28), § 38], and similarly for the 

rest of the equations of motion. We thus get 

D/p' = - D,YW + (f + $>/ + 4>,)ivi/ + F.(26). 

0 = — [(</> -f- dy + d>) JJv ]a +1 + Pj.(27). 

e = dVZ - cVx .(28). 

E = DV/ — (dcVl/dt + cV£c) - (dA/dt + a) - V (y 4 Y) . . (29). 

e, = 0.(80). 

E* = \_(y + T ) TJvl + ij .(31). 

MDCCCXCII.—A. 4 Z 
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We collect here, partly for reference, partly to show more clearly the actual stage 

we have now reached, the other chief equations of the field. 

(f> = — 20.1 .(32). 

<E>/= .(33). 

477 HVZ = B = YVA, [VUvA]b + * = °1 
SVB = 0, [SU^B]a + l = 

47thVx = b = VVa, [ Y UTa]re + i, = o] 

SVb = 0, [SUvb]„ + 6 = °i 
4ttC = VVH, [VUj'H]u + 6 = cr 

SVC = 0, [SUvC]0 + t = o l 
SVD = 0, [SUM)]a+i = 0 

D = d q- k, C = c + Kl 

c = d, K = k , C = DJ 

(34) . 

(35) . 

(36) . 

(37). 

c' = i' + vv'Wdy, = sd'/a t + wvay - ,/sv'd' 
c' = d' + y v, VDp'i = aD'/a t + wtd>' 

(38). 

[The last set has not yet been proved, as it is more convenient to discuss it along 

with the detailed results, though clearly itself a general result.] Roughly speaking, 

of these equations [(25) to (38)], it may be said that (36) and (37) contain the 

assumptions of the present theory, and the rest the consequences of those assump¬ 

tions. 

Two remarks may be made here. It is clear that, since in the equations (25) to 

(38), y and Y occur only under the form y -f- Y, there is nothing by means of which 

we could experimentally distinguish them. Putting, then, 

y -f Y = v.(39), 

we shall generally in the future speak only of v. It may be conveniently called the 

potential, though, as we shall see later, this is not in accordance with Maxwell’s 

usage of the term ; and, what is perhaps of more importance, there is something 

arbitrary about it apart from the arbitrary additive constant which every potential 

involves. 
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The second thing to notice is that the E of equation (29) is not what is usually 

known as the electromotive force. The physical fact that is usually stated by saying 

that E = ItK, must with the present notation be stated by saying that E = 0, since 

— IlK appears on the right of equation (29) as a part of the term — cVx. This, of 

course, is due to the fact that E of equation (29) is physically defined as the part of 

the electromotive force not depending on friction. 

D. Change of Variables in l, X, and x. 

51. In what follows with reference to change of variables, we shall always speak as 

if the change had reference only to l. Exactly similar reasoning applies to similar 

changes of variables in any other function such as X, x, or a part only of any one of 

these. There is, indeed, no reason why the function should be a scalar. 

So far, l has been assumed an explicit function of the list of variables (25), § 27. 

These are by far the most convenient variables for most mathematical operations, and 

we shall continue as often as otherwise so to regard l. For many physical interpreta¬ 

tions, however, it is necessary to regard l, or a part of it, expressed in terms of other 

variables. Consider, for instance, air as a dielectric. This will be taken account of by 

supposing l to contain a term quadratic in d. Suppose, now, we compress the air till 

its density is (say) doubled. We know as a matter of experimental fact, that the 

specific inductive capacity will not thereby be largely altered. This will mean, not 

that the quadratic expression in d is but slightly altered in form, but that the equal 

expression in d' is thus slightly altered. Moreover, to express simply the fact of 

electric and magnetic isotropy of fluids requires that the independent variables should 

be the dashed letters. Let then 

where 

Ids = I'ds = l"ds or l = mV = ml".(l), 

l is an explicit function of 0, © ; p', p , T'; d, D, C, H 

v » „ 0, e#; p\'p't\k; d', D', C', H'; q }. . (2). 

I" » „ 0, 0"; p, p, T ; d", D", C", H" 

Defining X', X" similarly, it may be said here what will appear incidentally later, 

that X' and l', and again, X" and l", are related to one another exactly as are X and l; 

i.e. [§ 46, eq. (11)] 

V + X' = - DV3 - SC' CV' V - Sir HV' V 1 

V’ + X" = - DV3 - SC"cV"*" - SH"hV'T'J ’ 

where CV' is put for C,V, &c. 

4 z 2 
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52. In (2) it is to be noticed that one more variable, viz., q, occurs in l' than in 

l or l". The reason is obvious, but on account of the fact, it is easiest to arrive at 

formulas transforming differentiations of l into the corresponding ones of V by first 

considering the similar relations between l and l". 

Let a and r be taken as a typical independent variable intensity and flux respec¬ 

tively. V is obtained from l" merely by changing every ct" and r" into q~l cr'q and 

q~l r'q respectively. (§ 7.) 

By considering the increment in V and l" due to an increment in a a" or t", we at 

once obtain 

yi' = qyrq~\ yr = qyrq-1.(4). 

By a similar process it is easy to see that 

3/ j _dl' , , 
~ ds = gj9 ClS 

yds = yds 

VI = V (ini') 

(IV 

Dr 

= m * 

= jVW 

= V' (ml") 

= ar 

(5). 

53. We proceed to find the corresponding relations for the other variables. Let us 

in l and l" vary T and every cr and r, and cr" and t". Thus. 

— SSSo-^VZ — ]£SSttW — SST'^GZZ; — S l — l '8m -{- mSl'' 

= l"Sm + m {- SSSo-'VVT' - %SSt"7V'1" - SS¥£(ir£}. 

Now (§7) 

Hence 

Sr" = m~} (Si/s — m~l Sm.xjj) t -f- m~l xpSr. 

Scr' — — xjj~l 8xfj\p~i cr -f- \jj~] Scr. 

Substituting these values and equating the vector coefficients of the arbitrary 

vectors So- and Sr, we obtain 

y = y'l" = mx-Lyi' 

y = xjy'i" = x'yr . . 

• (6). 

• (7), 

the last result in each of these being given by equation (4). These equations show 

that y, „V7', y'l" bear to one another exactly the same relations as r, r, r", which 
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may be expressed by saying that they are fluxes.* Similarly, TVl is an intensity. 

This particular result can, of course, be proved by a simpler process than the above. 

We now see that the meaning of B', obtained by defining B as a flux, = 47rHVl, and 

likewise the meaning of b' is independent of the particular position of matter we take 

as the standard. We also see similarly that the various terms in E', e', resulting 

from regarding these vectors as intensities, and utilising equations (28), (29), § 50, 

will be independent of the particular standard position chosen. And again, by 

Prop. II., § 8, we now see that equations (3) of last section must be true. 

54. Putting now Scr = 0, St = 0, the equation SI = l" Sm + m SI" gives 

- S S¥£(K£ = - mS 8¥£<ir£ + (l" + m'^S^V'T') Sm 

+ (»;2Sv/;-1 Sipxjj~lcrirv"r — xs S\fjrTv"i'). 

Now, by former paper, eq. (18), 

6m = SCiUWti'l’M- 
Hence 

2 Sm = S 

or, by eq. (10) of former paper, 

Sm = — mS Sxjjt,xjj .(8). 

Similarly, since m3 is the same function of df as m is of xfj, 

Sm= -^SSnv-'C.(9). 

Also, for future use, note that since Sm = — S S= — S Sd^Ctm^ these 

equations give (former paper, p. 105), 

0Qm = mxjj 1, (1m — (10). 

* It is interesting to notice a particular result of this. Since 9 is an intensity, 0VZ is a flux. Hence 

[Prop. IV., § 8] SV0VZ — mSV'eVT. Dismissing the particular notation of this paper for the moment, 

and putting x, y, z for the coordinates of p and X, p, v for those of p, this may be written 

0\ 
_0_ / Sv \ 
dp i ~ Se ) 
W 

If we add [equation (5), §52, above] — m-10Z/09 to the left of this equation and —dl'/dd to the 

right, we get a well-known theorem of Jacobi’s. Comparing with the form of this theorem given in 

Todhunter’s ‘History of the Calculus of Variations,’ §323, equation (2), his G, r, v, 0, II are our 

l, ml', 0 (regarded as a function of p), 0 (regarded as a function of p), and ra~x respectively. See also 

Todhunter’s ‘Functions of Laplace, Lame, and Bessel,’ §298, equation (17), and the supplementary 

volume of Boole’s ‘Differential Equations,’ p. 216. 
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In the equation for SI put = - SvgS^~l<r and S^VT = - S^S^VT'; for 

8m substitute from eq. (9); and for l”, rVT and aV'l", substitute in terms of l, TVl and 

aVl. Thus 

- S 8VlQll = - S 8V£{mQn + i (l + SSrTVt)^-^}, 

- - SrSty-yi}. 

Now, let 12, u be two functions of Class I. of § 9, the first given by 

n = — 2(1/ + 2mQl" + (l + 2SttVZ)¥-1.(11), 

from which [eq. (9) § 9, ecp (32) § 50, and Prop. II. § 8] 

n' = f + 2Xarx + v + tSr'yr.(12). 
Let v be given by 

va> = "% (tS7V/i//_~a) — a.V/Scn//-'cu).(13), 

from which are easily deduced 

?/ft> = 2 (r'Syi'co—yi'So-'aj).(14), 

v"oj = 2-V (qc^"1) q = x (t'UVT'oi - yTSa'to). . . . (15). 

From the last value for SZ we now have 

S = 2S Si/>£ui//£, 

or 

Hence (former paper, p. 105) the pure part of fhfj = ditto vi/j, fie., 

fhfj = vxp -j- mV7] ( ), 

where rj is a vector to be determined. Hence 

CIoj = voj -f- mVrjxjj~^co .... 

Therefore 

Cl'a> = -|- x^VQ Lct)q 

(16). 

(17). 
and 

TCgj = i/Tj ~p xpVyjoj.(18)* 

I rom the last equation and the fact that £ = 0, it is easy to deduce that 

V = (* + SW)"1 SV (cr'VV'T' + t"tV"1") (19). 
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and by taking the pure part of both sides of eq. (17) we get 

m'co = sv(i-vvr - o-'coyv) + wss(T'yr - <r'yv) + xvn~^q + <Fx<*n• <i~\ 

whence, putting 

y]= -2x(ll"x =~ 2X(JI'X • • • ■ 
we have from eq. (12) 

2f = 2[f] - [2V + SS (r'.VT + o-’yT)} + SV {t ( ),VT - <x'( 

+ (xVW_1( )2 + '2vx'( )v-7~1} 

Note that the terms here depending on rj may be put in the form 

xYw-1( )^ + 2vx'( W-?-1 

wliere — is the self-conjugate linear vector function given by 

zr = \pVr)( )+V0( )y . . . . 

(20), 

(21). 

(22), 

(23). 

For purposes of physical interpretation it is often legitimate to assume the present 

and standard positions to coincide. In this case ^ = 1, x = x" = 1, so that 

2f = 2 [f ] - {21+ tS (rTVZ + ayl)} + 2V {t ( )TVl - a ( )yl} (24), 

and if, further, l is a homogeneous quadratic function of the o-’s and r’s, 

2f = 2[f] + 2V{r( )yl-cr{ )yl}.(25). 

55. For future use we will make two deductions from these results. First suppose 

that 

l = /0 + m(2^K0-1 d'3 — ...... (26), 

where K0, p,0 are absolute constant scalars—the specific inductive capacity and magnetic 

permeability of a vacuum, and where l0 is expressed in terms of the undashed letters. 

Thus it is only in the part of l independent of l0 that the change of variables is made. 

In this part there is one r, viz., d', and one a', viz., H' ; and 77 = 0. Hence 

(f>' a) = — 2vi~1x^-Iox'oj — 2ttK0~1 dw d — p,0H<uH.,/87r . . . (27). 

Next let l0' be what l0 becomes when expressed in terms of the dashed letters. 
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Note that l0' does not stand towards l0 in the same way as V towards l, as appears by 

the equations 

ml' = l, Iq = l0.(28). 

In utilising equation (21), then, the analogue of V will be TIius the part 

contributed by l'Q to the terms [<£'] — V on the right of equation (21) will be 

— 2yC= — 2m-1x®oVH“ m~1h'xliP~1X ~~'m~\> [equation (10)], 

= -2m-1xffl0,x', 

since [former paper, equation (39)] 'Sf-1 = X-1X -1- Assuming, then, <£0 to be of the 

first class of § 9, and defined by 

^=-2 ai,;.(29), 

equation (21) gives 

2 4> — 2</>'0 + (/r0H'Y47r — 47tK0_1 d'3) 

-zs(r'yr+ a'yr) + zv {r\ )tvt-o-'( )Xn 

+ {XV^(/-1( ) q + qVx ( )v-(l~1}.(-80), 

where l\ cr', t, and r) have exactly the same meanings as before, so that, indeed, 

r = l'olm+ 27rK0-1d,:J-/x0H/3/87r.(31). 

E. Connection hetioeen E and e. 

56. So far it has been assumed that there are two independent kinds of external 

force denoted by E and e, and by E4 and e*. This is contrary to the usual custom, but 

seems to me to be a necessary consequence of assumptions always made as to the 

difference in nature between what is ordinarily called the displacement current and 

the conduction current. 

The independent variables required to fix the electric state at a point have for 

mathematical convenience been taken as D and d. These are, perhaps, not the most 

natural. It would seem from the ordinary views as to the two kinds of current as if 

the dielectric displacement d, and the conduction displacement k are the most natural. 

Moreover, I believe it is generally held that d has exclusively to do with the potential 

energy of electrification. It seems, then, likely to lead to correct results to assume 

that if d and k were taken as the independent coordinates, there would never be any 

external force of type d. 

As this conclusion may seem open to question let us put the matter in a different 
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way. If (regarding d and k as the independent electric coordinates) we could be 

certain that we had found the full expressions for /, ls, x, xs, both types of external 

electromotive force would he zero. But vve can with considerable certainty say that 

we have not found these completely, so far as they depend upon k and K (electrolysis, 

&c.). On the other hand, it is by no means so obvious that we have not found them 

completely so far as they depend on d and c. Let us then assume that the external 

force (exclusive of frictional forces, of course) of the latter type is zero. If we can 

point to no experimental facts contradicted by this assumption, we may consider that 

the simplification is warranted. 

57. Now (§ 28) the work done per unit volume by the external forces E, e of 

equations (28), (29), § 50 above, while D and d suffer the increments d.D and c/d respec¬ 

tively, is 

SE dD + Se c/d = SE (c/d -j- c/k) + Se c/d 

= S (E + e) c/d + SEc/k. 

Hence, if d and k be taken as the coordinates, the forces of those types would be 

E + e and E respectively. The assumption just made then leads to 

E -f- e = 0, E* + e,, = 0.(1), 

where it must be remembered that the exact meaning of these four symbols is that 

given to them in § 50 above, not the meaning they had previous to that section. If 

we assumed that x was independent of H, equation (l) would be equally true of the 

previous meanings of the symbols. 

We shall now always suppose e to be replaced by — E. With regard to e,. and E„ 

note that by means of equation (l) and equations (30), (31), and (39) of § 50 

OU^u = 0.(2), 

which shows that what we have called the potential is continuous throughout space. 

This will be found to lead to the result that contact-force cannot be explained without 

a slight extension of the independent variables of /, or the assumption that ls is not 

zero. It does not, however, prevent on present assumptions an explanation of the 

Peltier effect. 

IV. Detailed Examination of these Results. 

A. MaxivelVs Results. 

58. The justification of the present theory, where it differs from accepted theory, 

must be based on an examination of its results in detail. First, then, let us compare 

MDCCCXCII.—A. 5 A 
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with Maxwell’s resuits. With the exception of (1) the expression for current in 

terms of displacement for a moving body, and (2) certain of his mechanical results 

which I hold to be inconsistent with certain others of his own, it will be found that 

his results flow from the equations now established. 

We put down, then, simple forms of l and x, the first involving as independent 

variables % d and H, and the second \P and K only, and compare the results with 

Maxwell’s. Besides Maxwell’s results we shall find that this form of l is sufficient 

to take account of the interdependence of magnetisation and strain, and of specific 

inductive capacity and strain. After that we add certain terms to, and otherwise 

generalise l and x, still, however, regarding them as involving no independent vari¬ 

ables except such as occur in the lists (25), (26), of § 27. Thermoelectric, thermo- 

magnetic, and the Hall phenomena are thereby accounted for and discussed in 

detail. Finally, to account for electrostatic contact-force (and incidentally capillary 

phenomena), we shall assume l to contain certain independent variables not in the 

list (25) of § 27, and shall adopt a certain form for ls. 

59. For Maxwell’s results it is only necessary to assume 

l = 2ttS dK”1 d - SH/xH/Stt - SI0H.(1), 

x = - SKRK/2 ..(2), 

where I0 is a flux, /x and K# are self-conjugate functions of Class I. of § 9, and It is 

one of Class II, all four being functions of strain and temperature. From these 

statements, and § 9, it follows that 

* I did not notice when first [former paper, p. 119] using K in this signification that it already had a 

special quaternion meaning (conjugate of a quaternion). As this meaning is never required in the 

present paper, and very rarely in physical applications, I have nevertheless retained the present meaning 

for K. 

I take this opportunity of apologising for the apparent want of system in my notation. It has been 

brought about by an attempt to compromise between accepted notation and a system of notation more 

suitable for quaternion methods. May I suggest the following system F First, let the Greek alphabet 

be left as a happy hunting ground for symbols of every denomination (vectors, scalars, linear vector 

functions, &c.) ; secondly, let the ordinary alphabets, A, B . . a, b . . be used for scalars and linear 

vector functions of a vector (which so often in important cases reduce to scalars) only; thirdly, let bold 

type be used for vectors only and write i, j, k instead of i, j, 1c; fourthly, let Hamilton’s K, S, T, U, Y 

be transferred to the German alphabet; fifthly, let the rest of the two German alphabets be retained for 

mathematicians who are hard pressed for suitable symbols ; sixthly, let the symbols of differentiation be 

quite independent of the above restrictions. The following somewhat chaotic but classified list of some 

of the chief symbols used in the present paper may serve to convince the sceptic that some such system 

is necessary. (1.) Linear vector functions of a vector (20), A B, C K, R, a, b, c, r, Y, 4>, F, 0, y, p, w, v, 

0) X. 0- (29 Vectors (31), i, j, Tc, A, B, C, D, E, F, H, I. K, L, N, P, a, b, c, d, e, h, 0, d2, a, e, y, Ui', p, 

a, t, ilk (3.) Scalars (32), D, E, F, H, P, Q, W, X, Y, Z /, g, In, l, m, n, q, s, t, u, v, x, y, z, 0, \, 

T>, S, 93, t. (4.) Symbols of differentiation and variation, G, d, d, A, V. £, (5.) Symbols of peculiar 

quaternion meaning, S, T, U, Y. 
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V - 27rSd/K/_1 d' - SH'/x'S'/Stt - SI'0H' 

r = 27rSd,,K//-1 d" - SH/>//H/787T - kSI"0H" 

x' = - SK'RX/Z, a;" = - SK"R"K72.(4). 

60. Most of Maxwell’s results are collected together in § 619 of his ‘ Electricity 

and Magnetism,’ 2nd edition. In our notation they are 

B' = VV'A'.(A) (5), 

E'0 = Yp'B’ - dA'/dt -Vz.(B) (6), 

where djdt denotes differentiation with regard to time at a fixed point of space, and 

where 2 is some scalar put for Maxwell’s ML Equation (C) we omit for the present, 

as it requires more detailed discussion than the others. 

B' = H' + 4771'.(D) (7). 

4ttC' = VV'H'.(E) (8). 

d' = K'E'o/Itt.(F) (9). 

r = R'-iE'o.(G) (10). 

Equation (H) we also omit as in this, the present theory certainly gives a result 

different from Maxwell’s. 

B' = n'K.(L) (11), 

“when the magnetisation arises from the magnetic induction,” Maxwell adds. The 

equations omitted are 

Mechanical force due to field = YC'B' — D'Vz — rdV'H . (C) (12). 

C' = K' + 9d70<.(H) (13). 

D' = - SV'd'*.(J) (14). 

11 = SV1'.(15). 

* The omission of the minus sign in Maxwell’s equation e = SV2> is obviously a misprint. [See 

eqnation (J) § 612.] 

5 A 2 
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In these, D', n have been substituted for Maxwell’s e, m, as the latter symbols 

already have, in the present paper, a different meaning. “ When the magnetic force 

can be derived from a potential ” 

H' = ~ Vn.(16). 

[There is no risk of this scalar being confused with the H of §§ 9, 10, 54 of the 

present paper.] In addition to these, he gives in § 613 the surface equation corre¬ 

sponding to equation (14), viz., 

D/ = [SUffd']„ + /).(K) (17), 

where D/ has been put for his cr. 

61. Equation (5) is the same as equation (22), § 26, above, (7) as (23) § 26, (8) as 

(14) § 25. We can now show that equations (6), (9), (10), (11) all follow if we 

assume that there is no external force other than that due to friction. 

By the last paragraph of § 50 above, we see that what Maxwell calls E is not 

likely to be what on the present theory we call E'. To compare with ordinary 

theories, then, it is convenient to introduce a new intensity E0 defined by 

E0 = RK.(18). 

Since E0 and RK (§ 10, Prop. VI, above) are both intensities, equation (10) 

follows. To prove (9), note that 

cV.r = — KVx = — RK = — E0 

dV£ = — 4rrK ~1 d, 

so that putting e of equation (28), § 50, equal to zero, 

d = KEo/477% 

from which equation (9) follows by Prop. VI, § 10. Again, 

B = 47thVZ = /a H -f- 47tI0 

and therefore 

B = /PH' + Anl0'.(19), 

which implies that the part of B' “induced” by magnetic force, is /x’H'. This is 

equation (11). 

62. To prove equation (6), note first that putting E = 0, equation (29) of § 50 

[modified by equation (39) of § 50] gives 

E0 = — A — Vf (20). 
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Next note that by d/dt, or a dot, is denoted differentiation with regard to time, 

which follows the motion of matter, and by d/dt, a differentiation at a fixed point of 

space, so that djdt is commutative with V, but not with V', and d/dt with V', but not 

with V. Hence, as is well known, 

d/dt =-SpV. +d/dt.(21). 

Now, by equation (20), 

E'0 - x'-'Eo = - X - WA’)/dt - V'v 

= ~ A' - x'-'x'A' - V>. 

Now [former paper, equation (25)], 

x'co = — Vfiup'y, 

so that 

“ X,_1X'A' = x,_1V1SA'p,1 = V'jSA'p\, 

and, by equation (21.), 

- A' = - dA'/dt + SpV . A', 

therefore 

E'0 = - dA'/dt, + SpV. A' + V'iSA'p7! - V'v 

= - dA'/dt + SpV. A' - V'-lSAV - V' (v - SA'p') 

= - dA'/dt + Yp'WA' - Vz 

— - dA'/dt + Yp'B - Vz, 

where 

2 = v — SA'p'.(22). 

This proves equation (6). Of course, this more complicated form of equation (20) 

is necessary for some purposes, but the simpler form is more useful in discussing the 

general theory. From the simpler form, indeed, we may see at once that Maxwell’s 

result must follow, since it implies the truth of the principle from which he deduces 

his result. That principle is (‘ Elect, and Mag.,’ 2nd ed., § 598) that the line integral 

of E 0 round any closed curve moving with matter equals the rate of decrease of the 

line integral of A' round the same curve. Since both E0 and A are intensities, this 

may in our notation be expressed by saying that the line integral of E0 round the 

corresponding fixed curve equals the rate of decrease of the line integral of A round 

the fixed curve. This last is clearly insured by the equation E0 = — A — Vv. 

Thus in the results contained in equations (5) to (11) the present theory is in 

complete agreement with Maxwell’s. Equations (14), (15), (17) may be taken as 
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definitions. Equations (12), (13), (16) remain. Of these the last implies several 

other equations involving H and I. It may be left for the present. On the present 

theory equations (12), (13) are not true. 

63. It remains then to investigate the physical hearing of the points of difference. 

Equation (13), of course, could not be expected to represent the results of the present 

theory, from the definition of a current adopted in § 4 above. Equation (13) asserts 

that the dielectric current is 8d' jdt. The question is by what on the present theory 

this statement must be replaced. Since c a flux = d, 

c' = m-1yc = m~1xd (my-1d')/cfr = d' + m-1y ~qt(mX~l) d- 

Now by former paper equations (9), (11), 

mx ](o = ~ 
Hence 

~ (my-1) (o = — YVjVjjSo)p'lp'z = VV1xhrojp\ [ibicl., equation (25)] 

= VxV^VVi = fnx-'YV'.Vvp’,, 

by Tait’s ‘Quaternions,’ 3rd. ed., § 157, equation (2). Hence 

c = d' + YV'jYd'p\ = M'/dt -f YV'VdV - p'SV'd' ] 

C' = D' + YV'jY B'P\ = dV'/dt + YVYD'p' J (23), 

which equations have already been given m anticipation, in equation (38), § 50. In 

the case of an incompressible substance (solid or fluid) SV'p' = 0, and, therefore, 

o'= d' + Sd V'.’p.(24), 

and for a rigid body whose angular velocity (vector) is rj this simplifies further to 

c' = d' - Y^d'.(25). 

• 

Thus, on the present theory neither d' nor 8d7dt is the dielectric current. 

The effect of the difference between the theories will be very slight in most 

experimental work, though it will, of course, lead to different results in the solution 

of certain problems which involve currents in moving bodies. 

64. There is one experimental result, however, in connection with which equation (23) 

has considerable interest. In the ‘Phil. Mag./ V., vol. xxvii [1889], p. 445, Professor 
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Rowland and Mr. Hutchinson describe the experiments by which they have proved 

that a moving charged body acts on surrounding bodies as it should on the convection 

current theory. Now, this can be shown accurately to follow from equation (23) if 

we make the double assumption (I) that the medium in contact with the moving 

conductor is at rest, and (2) that the slipping which thus takes place may be regarded 

as the limit of a rapid shear ; and approximately to follow without the assumption. 

First, then, assume there is no slipping. Let the motion be steady. If the moving 

dielectric be itself charged, we see by the term — p'SV'd' in c' that the effect of its 

motion is to cause the current due on the convection current theory to its charge. Since 

the motion is steady, dd'/dt — 0. To take account of the remaining term VV'Vd'p' of c', 

consider the current through a strip of surface constructed thus :—Take an elementary 

line PQ in the surface of the conductor. Through all points of PQ draw the lines of 

electrostatic induction (lines at every point of which the tangent is parallel to d'). 

Bound the strip of surface thus obtained at any distance from PQ by another element 

pq. In fig. 1 the arrows indicate (l) the direction of motion of the conductor, (2) the 

Fig. 1. 

positive direction (PQqy>) round the strip when the positive direction through it is 

that of the motion at PQ. The current through PQgy? = — jjSc'c/2' taken over the 

strip. The part contributed to this by the term YVYd'p of c is 

by equation (3), § 5. The parts contributed to the line integral by the lines of 

induction pV, Qq are zero. Hence the current through the strip 

= - SFQd>' + SpqXp 

where PQ, pq stand as usual for the vectors PQ, pq. The first of these terms is the 

rate of flow in the direction of motion of electrostatic charge through the element 
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PQ. Hence, if at pq p is small enough to be neglected in the above expression, 

the whole current which on the present theory would be flowing through the strip 

VQqp is the same as the current due to surface charge, which on the convection 

current theory would be flowing in the same direction across the element PQ. The 

extension to the case when slipping is allowed and the dielectric is at rest is obvious. 

With regard to the plausibility of this explanation, it must be remembered that in 

this paper we admittedly do not take account of the independent motion in the very 

same space of two mediums such as air and ether. Now, probably,* the ether is at 

rest relative to the conductor, and it is reasonable to suppose that the relative motion 

of the conductor and the ether is of more importance in connection with the part 

W'V dp' of c' than the relative motion of the air and the conductor. On the other 

hand, as the air carries about with it any charge it possesses, it is the motion of the 

air we must consider in interpreting the term — p'SV'd'. Indeed, if we suppose the 

ether only to bound the conductor and the molecules of air, and that the ether is 

mainly at rest (i.e., acts to the conductor and the molecules of air much as an ocean 

of perfect fluid, which could slide over surfaces, and was originally at rest, would act 

to the conductor and molecules supposed immersed in it) the explanation is complete. 

[I do not wish to imply that I endorse this theory of the relative behaviour of the 

ether and matter]. 

On the whole, I think it may be said that this test of the correctness of eq. (23) is 

fairly well met. 

65. Before comparing eq. (12) with the corresponding results of the present theory, 

it is necessary to make one or two remarks on passages from Maxwell’s ‘ Electricity 

and Magnetism.’ In the quotations I am about to make I have in every case changed 

Maxwell’s notation to the notation used above, as leading to a clearer comparison of 

results. Consistently with this, I have always substituted Quaternion language for 

the corresponding Cartesian. 

In the first placet I wish to discuss Maxwell’s views concerning the scalar he calls 

■'b, and which has been above denoted by z [equations (6) (12) (22)]. In his second 

volume he seems to intend the symbol always to have the same meaning. The first 

place in which it occurs in this volume is in § 598, where he is investigating the 

expression for E'0. After proving that 

E'0 = Vp B' - dA'/dt - Vz, 

he proceeds : “ The terms involving the new quantity 2 are introduced for the sake of 

giving generality to the expression for E'0. They disappear from the integral when 

* According to a report in ‘ Nature,’ September, 1891, p. 454, Professor Lodge described to the 

British Association experiments which go to prove this. I have not yet seen details of the experiments. 

t Before going further, attention may be recalled to the footnote of § 38 abova 
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extended round the closed circuit. The quantity z is, therefore, indeterminate as far 

as regards the problem now before us, in which the total electromotive force round 

the circuit is to be determined. We shall find, however, that when we know all the 

circumstances of the problem, we can assign a definite value to 2, and that it repre¬ 

sents, according to a certain definition, the electric potential at the point p.” Now, 

I have looked in vain through the subsequent part of his treatise to find the promised 

definition of electric potential, and I have tried hard on Maxwell’s own assumptions 

to see how the definite value he here speaks of is to be assigned, and I have totally 

failed. He nowhere shows how to assign a definite value to A'; whereas he certainly 

assigns a definite value to B', and also from equations (9) (10) above, he also clearly 

assigns a definite value to E0'. From the equation just given, then, it follows that V'z 

must be indefinite in order to counterbalance the arbitrary part of 0A'/dt, which is 

necessarily of the form V' (some scalar).* Leaping over this difficulty of Maxwell’s 

assertions, however, i.e., supposing 3A'jdt definite, the question still remains what is 

the definite value of z ? Light seems to be thrown on the question by the assertion 

above that it is the “electric potential,” and the following, taken from § 630 of his 

treatise :— 

“ The energy of the system may be divided into the Potential Energy and the 

Kinetic Energy. 

“ The potential energy, due to electrification, has already been considered in § 85. 

It may be written 

W = A2$>2, 

where T) is the charge of electricity at a place where the electric potential is 2, and 

the summation is to be extended to every place where there is electrification. 

“If d7 is the electric displacement, the quantity of electricity in the element of 

volume df is 

2) = - SV'dW, 

and 

W = - a ([[ zSV'dW 

where the integration is to be extended throughout all space.” He then shows that 

it follows that 

W = 1 j|j Sd'V'zdf, 

and proceeds r 

* For VV' A' is assigned for every point of space and [Yd2'A'j«+* ~ 0. It is well known that when 

this much and no more of a vector is known, it contains an arbitrary term V' (a scalar), and that this is 

the full extent of its arbitrariness. 

5 B MDCCCXCII.—A. 
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“ If we now write E0' the electromotive force instead of — V'z, we find 

W = _i|f|sd'E0W. 

“ Hence, the electrostatic energy of the whole field will be the same if we suppose 

that it resides in every part of the field where electrical force and electrical displace¬ 

ment occur, instead of being confined to the places where free electricity is found.’' 

Were it not for this last statement, the interpretation I should put on the whole of 

the above passage would be expressed thus :—In the particular case of electrostatics 

E0' = — V'z and W = —- JjjSd'EQ'cfc'. In the general case, where the electricity 

is not stationary, E0' cannot be put in the form — Y'z; but we shall nevertheless 

assume that the equation 2W = — |||Sd/Eu,c?s/ is still true. This seems to me the 

interpretation that presents least difficulty, but it seems hard to reconcile it with the 

last sentence quoted, which implies that the equation 2W = JJJSd'V'zcW is exactly 

the same as the equation 2W = —|||Sd'E(JV?s'. There seems only one other possible 

interpretation of the passage, but that lands us in hopeless difficulties. This expla¬ 

nation is that the E0' which occurs in § 598, where it cannot be put in the form — Y’z, 

has a different meaning from the E0' which occurs in §§ 630, 631, where it is = — Y'z. 

If he has changed the meaning of E0', we may presume that matters have not been 

further complicated by a change in the meaning of 2. In this case §§ 630, 631 may 

be put thus :— 

(1) It is assumed that the energy of the field can be divided into two parts, 

electrostatic and electromagnetic. 

(2) The former of these, in the absence of electric currents, can be put in the 

form \ JJJSd'VW where e is a scalar. It is assumed that this statement 

is also true when there are electric currents present. 

(3) It is assumed that the z appearing in this expression is the same as the z 

which occurs in the general equation E0' = Yp B' — a A'/dt — Y'z; and it 

is convenient to give it the name electric potential. 

It will he acknowledged that these assumptions are more unwarrantable than the 

one required for the first interpretation, and therefore I shall understand the passage 

to be thus, as at first, correctly interpreted. But if this be so, we are as far off as 

ever from the conclusion that z has a definite value which can appropriately be called 

the electric potential. 

66. This is no mere question of terms, for [equation (12), above] Maxwell asserts 

that in the expression for the force due to the field occurs a term — D'Yz, and here 

the indefiniteness is not counterbalanced by the corresponding indefiniteness of dA'fdt. 

There are more ways than one of compromising to get out of the difficulty.* The 

* For instance, we may (arbitrarily) render A' definite by tbe equations SV'A' = 0 [Sd2'A']a+i = 0, 

and tbus render Vz definite; and we may then assert that equation (12) is correct. 
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course followed here is, of course, to abide by what the present theory leads to, and 

then to choose that particular interpretation of the above passages which appears 

least at variance with our results. [It will be seen from the above that the state¬ 

ments at the end of § 50, above, are true, viz., that the potential v of the present 

theory is certainly not [equation (22), § 62] the same as Maxwell’s potential z, and 

that without some such assumption as SV'A' = 0, [ScZX'A']^ = 0 our potential, 

like Maxwell’s, is indefinite apart from an arbitrary additive constant. This 

question of the arbitrariness of the potential is one merely of terms.] 

It is, perhaps, unnecessary now to say that the position I wish to maintain is that 

Maxwell has not investigated in a perfectly general manner the consequences of his 

own theory, and that, consequently, some of his general equations may prove incon¬ 

sistent with that theory. Equation (12) I hold to be such an equation. So little 

right, indeed, has he to put this down as one of his general results that it is, I hold, 

inconsistent with other parts of his treatise. For instance, if the equation were 

consistent with equation (4), § 640 (‘ Elect, and Mag.,’ 2nd edition), we should 

have V/SH/I' = V'OSVT, which is certainly* not the case in general on Maxwell’s 

theory. I shall not, then, compare the mechanical results of the present theory with 

equation (12) at all, but shall adopt the simpler process of comparing the stress which 

results from the present theory with that which Maxwell obtains in Chapter V. of 

Part I., and Chapter XI. of Part IV. 

67. Before this comparison another matter must be considered. Maxwell, in 

accordance with, I think, universal custom, supposes that a molecular couple exists 

due to magnetism. In the first place this extraordinary exception to our ordinary 

* As might be expected, the relation is true in very many important problems whose details have been 

worked out, but it is not true in general, even when there are no currents. Dropping the special nota¬ 

tion of this paper for the moment, let r, x have their usual Cartesian meanings. Denote differentiations 

with regard to r by dashes. Let E be any function of r. If there be no currents, and if 

Q = xF, 

then will 

— H = VQ = iE + pxF'/r, 

and [from the relation SV (H + 4ttI) = 0, which is the only equation to be satisfied] 

I = i (VF' + 3E)/4v. 

In this case 

IvVjSIHj = - 4vSIV.Vfi = OF' + 3F) {i2xF'/r + P [F + x*d (F'/fificfr]/?-}, 

and 

4/tVOSVI = — O/r) d OF' + 3F)/Jr,fiF -f pxF'/r}, 

which are clearly not in general equal. The above expression for I is, of course, not the general one for 

this case, as we may add to it a term Wo- where a is any vector. Also, it is assumed that F is such 

that both H and I are everywhere continuous, i.e., F and F' are everywhere continuous. For instance, 

put F = 0 — a)~ from r = 0 to r = a, and F = 0 from r = a to r = oo. 

5 B 2 
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conceptions of stress seems to me quite unnecessary on general grounds. It is well 

known that to every magnetic distribution there is an analogous conceivable distribu¬ 

tion of ordinary statical electricity. In the ordinary action-at-a-distance theories the 

mutual mechanical effects of different parts of a magnetic system would be exactly 

the same as the corresponding effects in the analogue. Why, then, should it be con¬ 

sidered unnecessary in the case of electrostatics, but necessary in the case of magnetics, 

to postulate a molecular couple ? Why not, in other words, say that the stress which 

Maxwell would suppose existent in the electric analogue is exactly the stress really 

existent in the magnetic system ? In the second place, although the process seems 

viciously needless, we may, if we like, conceive any physical phenomena involving 

stress as causing a molecular couple which is exactly balanced by a stress-couple. [It 

must be so equilibrated in order to insure against infinite angular acceleration of an 

element of matter—supposing, of course, that the ultimate constitution of matter 

were not heterogeneous.] This latter stress-couple will be entirely of the nature of a 

reaction, since (former paper, p. 108) it is entirely independent of the potential energy 

of strain. In the present case, then, in which we suppose electromagnetic phenomena 

to produce stress, we shall have one stress exactly equilibrating another stress, neither 

of them having anything to do with the Lagrangian function. This is only another 

way of saying that no physical conception whatever is gained by the supposition that 

the particular physical phenomenon produces a stress-couple. We shall, then, consider 

it necessary to compare our results only with the pure part of the stress which 

Maxwell supposes to exist. 

Thus in §641 Maxwell arrives at the conclusion that the stress required to pro¬ 

duce observed electromagnetic phenomena is v where 

8ttvoj = - 2H/SwB' + coK'1 = 8ir{<f>}a> + V(YB'H'.w) . . . (26), 

where {<£'} denotes the pure stress given by 

8tt{f }w = - H'SwB' - B'SwH' -f wH'3 = - YB'odT - 47rwSl'H' . (27). 

Now, what in the former paper (p. 108) was called the couple stress part of v, namelv, 

V (VB'H'. w)/8tt, produces a couple per unit volume YB'H'/Itt = VI'H', and this 

must be equilibrated by some other couple per unit volume even when the body is 

not in equilibrium. This couple can only result from a couple stress, Yew, which 

produces a couple, 2e, per unit volume ; and this is quite independent of the potential 

energy of strain, and therefore of the Lagrangian function. Thus, 2e + A I H = 0. 

If now, in addition to the stress uw we take account of the reactionary stress Yew, 

we simply get the pure stress (<£'}w. We shall then merely compare the stress (pure) 

which flows from the present theory with {<f7}. 

68. It is well-known that Maxwell’s stress can only be looked on as a normal 
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type of stress. It by no means explains all the known facts. It does explain 

satisfactorily such known mechanical actions of real conductors—conveying currents 

and bearing charges—and magnets on one another as are of the nature of apparent 

actions at a distance. It does not at all explain the many known mechanical actions 

of one part of a conductor or magnet on another part which can be tested only by 

observing the (small) strains resulting. In other words, conductors and magnets are 

found to behave mechanically, as they would if Maxwell’s supposed stress acted 

outside them, but not as if this stress existed internally. It need not therefore be 

matter for surprise if, on the present theory, what would appear as the most suitable 

stress to regard as normal should differ from Maxwell’s. It is only necessary that 

just outside conductors and magnets it should be identical with Maxwell’s. 

To see what on the present theory should be regarded as a normal type we must 

discuss, from the physical point of view, the results of §§ 54, <55 above. As far as I 

can see (but this is, of course, largely a matter for personal judgment) on the present 

theory we should recognize two normal types of stress—one for fluids and one for 

solids. The reason is that we may assume fluids to be magnetically and electrically 

isotropic, and that fluids are subject to indefinitely large strains. On the other hand, 

solids, even if magnetically and electrically isotropic when unstrained, cannot be 

considered so when strained and, moreover, their strains cannot exceed a certain — 

usually very small—amount without the form of l being permanently altered. 

For bodies which are electrically isotropic, however large their strain, it is needless 

to say that we must regard the Lagrangian function as given in terms of the dashed 

letters. For such bodies, y of equation (19) § 54 is zero. [For let a", f3" . . . be the 

vectors of which l" is an explicit function. Since the body is isotropic the value of 

l" must remain unaltered if we rotate a", /3" . . . all to the same extent round the 

same axis. In particular, if we increase a", (3" . . . by Yea", Ye/3", . . . where e is an 

infinitely small vector, l" must remain unaltered, i.e., the increment — 2Sea"aV'T' = 0. 

Since e is arbitrary, it follows that tYcc'y'T = 0]. By equation (20) § 54 above, 

we see that the assumption that [<£'] = 0 amounts to assuming that the Lagrangian 

function of unit volume of the body when strained, however largely, is the same as the 

Lagrangian function of unit volume of the body when unstrained. By equation (29), 

§ 55, we see that the assumption fj = 0 amounts to assuming that that part of the 

Lagrangian function which causes the body to differ from vacuum, and which is 

contributed by a given mass of the body, is unaffected by strain. Hence from 

equations (21), § 54, and (30), § 55, we have 

For an isotropic body, of which the Lagrangian function per unit ”j 

volume is unaffected by strain I 

2f = - {2Z' + S3 (t'.VT + a-’,VI')} 

+ 2V{r'( ),VT-a'( )yi'} J 
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For an isotropic body, of which that part of the Lagrangian" 

function per unit mass, which causes the body to differ from 

vacuum, is unaffected by strain [ . (29). 

2f = (//.X'Al-- 4-K.A1 d'2) - SS (t',Vl + rr\VV) 

+ 2V{/( ),VT-«r'( )„VTjJ 

It is scarcely necessary to say, that of course it is not meant to be here implied 

that there is any body whatsoever whose general Lagrangian function—whether 

per unit mass or per unit volume—is even approximately unaffected by strain. It is 

only for brevity that we verbally contemplate such a body. There seems little or no 

reason for choosing one rather than the other of these two stresses as the normal 

type of stress for fluids., Both of them would satisfy the condition that for a gas 

which, however large its strain, always behaved like a vacuum, the normal stress 

would be the vacuum stress which resulted from identical values of H and d'. As 

the stress of equation (29), however, agrees more closely with the pure part of 

Maxwell’s stress than that of equation (28), we will call the stress of (29) the 

normal stress for fluids. 

For solids it is harder to find a suitable normal stress, but as by far the greater 

number of them (non-magnetic bodies) behave magnetically approximately like a 

vacuum, it seems to me that the most suitable is obtained by supposing CO0 of 

equation (27), § 55 to be zero. In this case, of course, we assume that for solids the 

normal type of stress is the stress that, with identical values of H' and d' would exist 

in a vacuum. Thus 

For a vacuum, fo) = — 27tK0-1 dead7 — yfl' a>H'/8tt (30), 

but it is needless to say that this is not perfectly satisfactory. The question may be 

asked why, in the present case, the stress of equation (29) should not be still retained 

as the normal one? The answer is, that the equation [(30), § 55] from which it is 

derived, and which actually must, in every exact discussion, be taken in its place, is a 

wholly unsuitable one for a solid, while equation (27), § 55, is a suitable one. 

Again it may be asked, Why not retain the stress equation in its original form 

(f>' = — 2m”1 for solids ? The answer to this is, that the important fact that 

the great majority of solids behave magnetically like a vacuum is not thereby readily 

taken account of. 

69. To compare these stresses and their effects with Maxwell’s, it must first 

be noted that Maxwell has only investigated the electrostatic part of his stress 

for the case of a series of charged conductors surrounded by a dielectric that behaves 

electrostatically like a vacuum. I consider myself at liberty then to substitute any¬ 

thing for the electrostatic part of his stress which reduces to his for that particular 

case. The stress he obtains in Chapter V. of Part I. of his treatise is — 27tK0-1 d' ( ) d'. 

For the particular case mentioned this may he written 



THEORY OF ELECTROMAGNETISM. 743 

Vd' ( ) dV7'/2 - Sd' (dV7' + d')/2, 

since for that case dV7' = — 47rK0-1 d'. We shall assume that this is the correct 

expression in general, since thereby the stress of equation (29) is rendered identical 

with the pure part of Maxwell’s stress. The pure part of his electromagnetic stress 

is the {<jf} of equation (27) above. Let us then put 

4>m'oj = Vd'<udV7'/2 - coSd' (dVT + dvrE,"1 d')/2 - r ~ wSI'ir/2 (31), 

or)rif we assume that the complete expression for x is — SKTTK72 [equations (28), 

§ 50 and (20), § 35], 

= - Yd'ojE'o/2 + wSd' (E'0 - inKp1 d')/2 - YB'coK/8n - coSl/H//2 (31a), 

and call cf>m' Maxwell’s stress. [Of course I do not thereby mean to render Maxwell 

responsible for this form.] If we regard Vd' ( ) dV7'/2 as the correct generalisation of 

Maxwell’s electrostatic stress we may indicate it by calling [<£„/] the second form of 

Maxwell’s stress where 

[</>,/] w = Yd/wdV7//2 - YB^H'/Stt - cuSI'H',/2 .... (32), 

which gives, on the assumption that the complete expression for x is — SK'It K'/2, 

[(/.„/] - Vd'wE'o/2 - YB'wH'/Stt - wSI'H'/2 . . . (32a). 

If we now assume that the only variables of l are H and d', equation (28) gives 

2f = - {21' -f S (d'dVT + B'H'/Itt)} + Vd' ( ) dV7' - VB' ( ) H'/47r . (28a), 

of which the following particular cases should be noted :— 

If l' he quadratic in d' and H , 1 

f = Yd' ( )dV772 -YB'( )H78ttJ 

If l' he c/iven by (3), S 59, and x by (4), 

f = - Vd' ( ) E 0/2 - VB' ( ) H'/st + SI0'H'/2 

(286), 

(28c). 

from which it follows from equation (32a) that in this case 

f = [M+S(r0 + r)H72 (28d, 326), 

so that this stress differs from the second form of Maxwell’s stress by a hydrostatic 

pressure which is zero for nonmagnetic bodies. 
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Under the same circumstances (?' a function of H' and d' only), equation (29) gives 

<j>' = Yd' ( ) dV7/2 - Sd' (dVT + d')/2 

-VB'( )H78tt - SrH'/2 + (mo — 1)H'2/8tt .... (29a). 

Hence, with the electromagnetic system of units for which /x0 = 1, 

</>' - <^7.(296, 316), 

in which it should be noticed there is no necessity to assume that the complete form 

of x is — SK'R/lT/2, nor is it assumed, as in equation (28c?, 326) that V has the 

particular form given in equation (3), § 59. 

To sum up, of the two equations (28) and (29), (28) agrees more closely with 

Maxwell as to the electrostatic part, and (29) more closely as to the electro¬ 

magnetic part. On the whole, equation (29) agrees more closely than (28).* 

Of course, the normal stress [eq. (30)] we have adopted for solids is by no means 

the same as Maxwell’s, except for non-magnetic bodies whose specific inductive 

capacities are the same as for a vacuum. But this does not prevent our normal 

stress explaining all that Maxwell’s stress explains, and, indeed, from the remarks 

at the beginning of last section, it is now evident that for all useful purposes either 

the one stress or the other will serve equally well. 

70. We have now compared the results of the present theory with all Maxwell’s 

results contained in equations (5) to (17), § 60, above, except (16). Except for 

equations (12), (13), the agreement is exact, and I think it may now be claimed that 

what the present theory gives instead of equation (12), agrees, as well as (12), with 

known facts, and what it gives instead of (13) agrees better than (13). 

Equation (16) itself is obvious enough since it merely asserts that H' has a potential 

when there are no currents in the field. But it suggests another question—does the 

present theory lead to the ordinary mathematical theory of electromagnetism ? It 

can be easily shown to do so. The mechanical results when expressed in terms of 

IT and I' have just been shown to result in the same forces and moments on conductors 

and magnets regarded as wholes, as does Maxwell’s stress. These are all the 

mechanical demands of the ordinary theory. Equation (19), § 61, shows that the 

relations between the whole magnetic moment per unit volume, the permanent 

magnetic moment per unit volume, and the magnetic force at the point, may on the 

present theory, be regarded as the same as in the ordinary theory. Only one other 

* Notwithstanding this, and the fact that I have in this paper called the stress of equation (29) the 
normal stress, I think equation (28) is to he preferred, partly because of the greater simplicity of the 
assumptions which lead to it, and partly because of the greater simplicity of the electrostatical results 
flowing from it. 
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demand is made by the ordinary theory. IT and A' on the one hand, must be deter¬ 

mined in terms of C' and I', on the other, by means of particular relations. 

Let us suppose—merely to get rid of the dashes—the standard position to coincide 

with the actual position. One difference between Maxwell’s theory and the ordinary 

theory is that according to the latter it is assumed that each individual magnetic 

molecule and each elementary current has its own influence—independently of the 

rest—in producing terms in A and H. Thus, H consists of two parts, the flrst 

depending only on the magnetism and the second only on the currents. The 

firstT= — Vfl, where O = — JjjSlVwhs [Maxwell’s ‘Elect, and Mag.,’ 2nd ed., 

§ 383, equation (3)], where u~l is the distance of the element e/? from the point 

under consideration, and where in the differentiations of Vu the end of u~i at the 

element ds is supposed varied. The second part is obtained on the assumption that 

each closed current causes a term in H which the corresponding magnetic shell would 

cause. The second part is thus found to be Vjjj? tCcta"" The first part of A is 

supposed to depend on I in the same way as the A, called the vector potential, of 

Part III. of Maxwell’s treatise depends, i.e., = jjJVTVuJs [§ 405, equation (22)]. 

The second part, as with H is obtained by assuming that any closed current will 

cause a term in A equal to the term in A that would be caused by the corresponding 

magnetic shell. The second part is thus found to be jjjwChs.t We will suppose 

that the ordinary theory also admits that A is arbitrary in containing a term Viv, 

where w is a scalar. (This is only to render the comparison with the present theory 

simpler. Perhaps it ought to be said that the A thus obtained in terms of I and C 

on the ordinary theory is found to satisfy the conditions SVA = 0, [SchSA],, + h— 0, 

and that the present theory only agrees with the ordinary theory if we arbitrarily 

impose those relations.) All this may be expressed thus. Defining A0 and H by 

A0= fjjwCefe, n = - ([jsiVcoh.(33), 

we shall have 

A = A0 +||| YI Vitrfs + Vw.(34) 

H = — vn + VA0.(35). 

If q be any quaternion function of the position of a point which may be dis¬ 

continuous at certain surfaces, we have 

* The magnetic force at an external point due to a shell of strength c = cYjJSdXVn = — cJJ Sd2V.Y?t 

= cfjVdSV.Vtt [since V2m = 0] = cj+V?t = cV|W/>. The reason for the change of sign in V on crossing 

the integral sign is that when outside one end and when inside the other end of u~l is naturally 

supposed in the differentiations of Vu to vary. 

- f- This is not inconsistent with §§ 616. 617 of ‘ Elect, and Mag.,’ 2nd edit., for there Maxwell is 

considering the two parts together. 

MDCCCXCII.—A. 5 C 
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477-q = V - j 11 uqd<5 = — V j 11 Vuqds = V (1|| uVqds — j j udtq 'j. 

Now, on the present theory (by means of the equations 4ttC = VVH, [V<ASH]„ + b = 0, 

and by elimination of B from the equations B = H + 47rl, SVB = 0, [S /’2B]a + J = 0), 

VH = 4tt (C - SVI), [dtR\ + h = - 4tt [Sdtl]a + b. 

Hence substituting H for q, 

H = V (jj| uC ds - ||| wSVI + [f «S d%lj = V ( [|| uC ds + ||| SlVw ch ). 

This is equation (35). Again substituting A for q, and putting 

47tw = wS VA d? — j j «S dtk, 

we get [equations (19), (20), § 26] 

4tt- (A - Vic) = V [ 11 uB cU = - 111 VVnB d? = 4tt |f j YIVu d? + [ [j VRVu ds 

Also, 

|j| VHVfi d? = f j j wVVH ds — uY dtH = 4tt ||| uC d?. 

This proves equation (34). 

That the present theory (and Maxwell’s), so far as H and A depend upon I and C, 

thus leads exactly to the ordinary theory is of some importance. One consequence is, 

that the mechanical action between bodies carrying currents and the induction of 

currents by the variation of position and magnitude of other currents and magnets, 

must necessarily be independent of the nature of the medium separating them, so long 

as that medium is non-magnetic. This is in direct contrast with the known large 

influence the medium separating two charges of electricity has on the mutual actions 

of the bodies bearing the charges. On the present, as on Maxwell’s theory, this is 

simply owing to the fact that the ordinary theory of magnetism is in the points just 

mentioned, accurately true, whereas the ordinary theory (action-at-a-distance, with 

consequently no difference of specific inductive capacity for different media) of 

electrostatics is not even approximately true. [Whether or not the theory I have 

called the “ ordinary ” theory has actually ever been formulated is of little conse¬ 

quence. I have, in the above, accurately enough described what I mean by the 

term.] 
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B. Modifications necessary on account of Hysteresis. 

71. This seems to be the place to consider what bearing the phenomena of hysteresis 

have upon such theories as the present. No theory of electromagnetism can be 

considered complete unless it takes this important group of facts into account. I do 

not here propose to give a theory of hysteresis—so that the present theory must be 

in this sense confessed incomplete—but it is necessary to notice what modifications 

ought strictly to be made in the assumptions hitherto adopted. 

Professor Ewing (‘Phil. Mag.,’* V., vol. 30 [1890], p. 205), has given a theory 

which adapts itself to dynamical methods such as the present. In his theory the 

phenomena of hysteresis depend upon the fact that groups of molecules can have 

various stable configurations, different groups at any instant having very different 

degrees of stability. The stability of a group is liable by variation of H and 'F to 

break down, so that the group takes up another configuration of greater or less 

stability, and the oscillations which necessarily ensue on the change result to our 

senses in the production of heat. On this view hysteresis is a phenomenon that 

prevents us, if we would take full account of the facts, from ignoring certain coordi¬ 

nates we have hitherto ignored. We can, however, go on ignoring these coordinates 

if we suppose l not to have a constant form in terms of the variables not ignored 

above, but a form which depends on the particular state as to these groups of mole¬ 

cules of an element of volume. We must, then, suppose certain variables—call them 

hysteresis-coordinates—which define the relative numbers of groups of different kinds. 

Of these l will be a function, but they are not of the nature of ordinary dynamical 

coordinates. Their value merely determines the instantaneous form of l as a function of 

ordinary coordinates, so that if one or more of the hysteresis-coordinates change, the 

form of l changes and a new dynamical era begins. In fact, they are very analogous 

to 6, and like 6 they must not be varied when the dynamical coordinates are varied 

in order to obtain the equations of motion. A mathematical development of Professor 

Ewing’s theory may be supposed to furnish the nature of these variables, and experi¬ 

ment must then be appealed to at once to test the theory, and if the test be favour¬ 

able, to find the exact form of l in terms of the variables. And from the mathematical 

development, or that combined with experiment, we must look to find the laws of 

variation of the hysteresis coordinates when H and 'F vary. 

72. This, of course, is only to be looked upon as an ideal procedure of events, 

which, perhaps, for many years cannot come about. Meanwhile, tentative hypotheses 

as to the nature of these variables might be made. For instance, it might be 

assumed that l is always correctly given by equation (1), § 59 above, and that the 

vector I0 is the sole hysteresis coordinate. In this case g, (and K ?) would, of course, 

be assumed a function of I0 as well as of 'F. Though this is probably much too 

* Or ‘Nature,’ Oct., L891, p. 566. 

5 C 2 



7 48 MR. A. McAULAY OX THE MATHEMATICAL 

simple a theory for the explanation of all hysteresis phenomena, yet I believe it could 

be made to account for nearly all the known facts.# But, at present, even if this 

simple assumption were made, we are very much in the dark as to how I0 varies with 

H and 'VF, and are compelled to fall back on such pure conjectures as are illustrated in 

the foot-nore. To mention only one thing—nearly all the detailed experiments on 

hysteresis deal only with variations of H parallel to itself. 

73. Thus it is useless to attempt a satisfactory theory of hysteresis at present, 

though we can see vaguely how, perhaps, in the future it may be made to fit into the 

present theory. 

But these considerations show that we must be very cautious in discussing results 

which depend upon the form of l in terms of H, for they imply that we are very 

ignorant of this form, even when we know how I varies with H under assio-ned 

circumstances. Thus, for instance, in equation (30), § 55, we can learn little of the 

true meaning of <j>'0 so far as it depends upon H. The rest of ft in this equation, 

however, being independent of the form of l, gives us information of no doubtful 

character. 

C. On the Strains accompanying these Stresses. 

74. The object of the present paper is to discuss the general theory of electro¬ 

magnetism. It is not proposed, therefore, to deal more than is absolutely necessary 

in particular problems. A word, however, must be said as to a certain class of 

problems connected with the stresses just investigated. 

After the question of hysteresis has been settled in some such way as just 

indicated, it will be possible to discuss in detail the exact form of l'Q of equation (29), 

§55 above. To do this, the data on which to argue will generally be the strains 

which accompany electromagnetic phenomena. This necessitates the consideration of 

such strains. 

75. It must not be supposed that these strains will bear the same relation to the 

stresses as strains bear to the ordinary stresses considered in the mathematical theory 

of elasticity. From equations (26), (27), § 50 above, we see that in the case of 

equilibrium (no external stress) 

D.'V'W - F = f A', F, = [f UV]„ + 6. 

* By suitably choosing the form of /i in terms of I0, and the four functions now to be introduced. 

Let | |, [a>], {«.'} be three positive scalar functions of Tw, and let Qw be a vector function of the form 

T«; function (Uto)—not in general linear—such that StoQw is always negative. The form of Q, like that 

of fi, is a function of I0. Let H be the present and h any previous value of H. Then assume that 

i0 = QN where N = | H | H |H [h] e~ jf Tt?hT (cth + UHTdhj, 

the lower limit of the first integral sign being, strictly, the value of H at an indefinitely remote epoch, 

but practically at a time determined by the exponential. I give this merely to show in what sort of 

way we may suppose I0 to depend on the history of.the body. 
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Taking for simplicity the case where there is no external force (F), or force potential 

(W), we have 
<£'A'= 0, [<£'UV]a + 6= 0. 

Substituting now from equation (27), § 55 for we see that this means that there 

is equilibrium owing to the simultaneous existence of three stresses : (1) the 

qrdinary elasticity theory stress, owing to terms which onty involve ^ ; (2) the stress 

which is independent of lQ and, therefore, depends only on electromagnetic quantities; 

(3) a stress due to terms in l0, which involve both 'F and electromagnetic quantities. 

When these last are linear in NF, the resulting stress will depend, like the second, upon 

electromagnetic quantities only. If not linear, they will depend both upon T and the 

electromagnetic quantities. It is quite possible that there should be no strain at all, 

and yet a very sensible stress due to electromagnetic actions. 

In fact, in solving the elasticity problem—having given the distribution throughout 

the field, of dielectric displacements, of currents, and of magnetisation, required the strain 

at any point—the only wa,y in which the electromagnetic data can be used is, by 

finding the force per unit volume and surface respectively due to them, and then 

treating these forces as external. That is, the knowledge of the stress which produces 

the mechanical effects of electromagnetism is of no use in discovering the strain 

actually resulting; all the knowledge we can thus utilise is that of the forces (per 

unit volume and surface) due to such stresses. This shows that, to find the true 

expression for l it is not sufficient to investigate experimentally what strain accom¬ 

panies a given displacement, or current, or magnetisation at a point.4' The problem 

is much more complicated. The shapes of all the bodies present must be assumed of 

quite as great importance as the electromagnetic quantities in deciding the form of l 

from such experiments. 

76. These remarks may be illustrated by considering the effect of Maxwell’s stress 

in two different cases. Choosing one shape of soft-iron body it will be found that the 

magnetisation will, according to Maxwell’s stress, compress the body ; choosing 

another shape, expansion results. 

Suppose we have (l) an anchor ring of soft iron, (2) surrounding this a layer of air 

of uniform thickness, (3) surrounding this n coils of insulated uniformly distributed 

wire carrying a current c. Take columnar coordinates r, ■'), z, the axis of z being the 

axis of the anchor ring, and let i, j, h be unit vectors (functions of the position of a 

point) in the directions of dr, dS, dz respectively. At any point inside the coil 

we have H' = 2ncjjr. Assuming f to be a constant scalar I' = (f —• 1) JL'/in. 

Hence, from equation (27), § 67, 

{f} A' = - A'SI'H'/Z = - (ft - 1) Vj'SH'HV/47r = - n2c° (f - 1) i/irr3. 

* This seems to be the meaning of the third sentence of the small print on p. 269 of vol. 15., 

‘ Encyc. Brit.,’ 9th ed. 
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At the surface of the soft iron H' is tangential, and therefore continuous. From this 

it easily follows that 
[{f} Uv'l + V = Q. 

Hence, due to Maxwell’s stress, there is in this case no superficial force and no 

bodily force in the air, but there is a bodily force in the iron directed towards the 

axis. The iron will therefore be compressed. 

77. For the other case, notice that the force per unit surface due to the electro¬ 

magnetic part of Maxwell’s stress is — [{</}UV]ft + 6 and by equation (27), §67, 

- 8tt [{</>' }XJv']a + b = [B'SH'UV + H'SB'UV - UFH'3]„+6. 

This can be put in several different forms, of which, perhaps, the following are the 

most useful 

- 8tt [{</>/U/]0+6 = 4tt [I'SUfH']s+i + (H/ + B/)[SU^rul 

= (47rT + H/ + B/) [SUVH']a + 6 -f- 47? [rSUFH']a + 6 J * 1 }’ 

where the bar indicates the mean value for the two regions bounded by the surface, 

and the suflixes n and t denote normal and tangential components respectively. Thus 

B/ and H/ have the same value on both sides of the surface. When B' is parallel to 

H', B' = ,x H' where /x' is a scalar, not necessarily constant. (But if not constant it 

lias here a different meaning from what it has in the rest of this paper.) In this 

case the tangential component of — 87t[{<//}UV]C(+6 is zero. For the first expression 

of equation (36) gives for the component in question 

[(477-1/ + H/) SUFH']tt + 6 H/[/SUfH']a + c = H/ [SLVB'], + 6 = 0. 

So long then as we deal with magnetically isotropic media this surface traction is 

normal. 

Consider a magnetically isotropic body surrounded by a non-magnetic medium, and 

let the magnetic region be denoted by the suffix a, so that 1/ = 0. In accordance 

with what has been just proved we consider only the normal part of the traction. 

Thus, 

- 8ir[{f} U./]. + 6 = 47r[IbSWH/]a + , + B/ [SIVH']a + i. 

Let now = HUV„. Thus 

to [I'„]„ = (y - 1) HTV„ B', = n'HU»'„ 

[S WH'i = - h, [surH']„+i = (y — 1) H, 

the last coming from the fact that H',,], = E „ Thus 
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— 877 [{<£') UV]a + 6 = (ff — lfG.2\Jv'a; 

or 

- [{*'} W]n + 4 = - 277 [I7WI.(37). 

Hence for both paramagnetic and diamagnetic isotropic bodies surrounded by non¬ 

magnetic media, Maxwell’s stress leads to a surface traction which is always a 

r tension (except as in the anchor-ring -when it is zero). 

78. Consider now the well-known ordinary case of a soft-iron ellipsoid (ff a constant 

scalar) brought into a uniform field. Inside the ellipsoid B , H , and I' are all constant, 

and therefore [ff] A' = 0, so that there is no bodily force. Also since [equation (27), 

§67] 

= VCB' - V,1SI,H'1 + W'vnr/a ..... (38), 

there is no bodily force in the surrounding medium. Hence, in the present case, the 

only force is the tension at the surface. The ellipsoid will therefore be expanded by 

Maxwell’s stress. 

D. Thermoelectric, Thermomagnetic, and Hall Effects. 

79. It will be found convenient to discuss these various effects together. 

The natures of the thermoelectric and Hall effects are well known and need 

no description here. The thermomagnetic effects are perhaps not so well-known. 

The original papers of von Ettingshausen and Nernst (the discoverers of these 

effects) are in ‘ Wied. Ann.,’ xxxi. (1887), 737 and 760, xxxiii. (1888), 126, 129,. 

474. The effects are briefly described in Professor J. J. Thomson’s 'Applications 

of Dynamics to Physics and Chemistry,’ 1st ed., § 57. The principal features of 

these effects are that the electromotive forces due to differences of temperature 

are modified in two ways by the presence of magnetic force. First, parallel to © 

there is an electromotive force that varies approximately as H2T© (the “ longitudinal ” 

thermomagnetic effect); and, secondly, at right angles to both © and H there is an 

electromotive force BV0K, where B is a scalar dependent on the temperature, but 

approximately independent of T© and TH (the “ transversal ” thermomagnetic effect). 

The latter effect is especially large in bismuth. There is evidence that these effects 

are closely connected with the Hall effect. 

80. The natural way to discuss these results would appear to be to attempt to 

explain them by suitable terms in l. But on the present theory it is possible that 

they may be explained by terms in x. According to the first explanation they would 

be reversible phenomena, and according to the second irreversible phenomena involving- 

dissipation of energy. Thermoelectric effects are certainly at present looked upon by 

physicists as reversible phenomena. 

The two explanations—which will for the future be referred to as the theory of 

reversibility and the theory of irreversibility respectively—will be found in many 

respects very analogous, though, of course, we must expect some striking difference of 
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results. On the theory of this paper the most striking would seem to be that, while 

thermoelectric effects must in the main be explained on the theory of reversibility, 

the explanation of the thermomagnetic effects by this theory is inadmissible by reason 

of certain collateral consequences. 

81. Let c«T—which has no connection with the or of § 54 above—be a linear vector 

function of a vector, itself a function of 6. \Er, and H ; and let 

— [0] + M + [2] = 2 [n] .(1), 

where [n] is a homogeneous function of degree n in the vector H. 

In particular, let — be given by 

WO = Aco + BYcoH - a>SUCH.(2), 

where A, B, 0 are linear vector functions of a vector, themselves functions of T' and 0 

only. B and C, but not A, may for simplicity be assumed self-conjugate. Notice 

that SHhV. \n\ = — n [«], and therefore 

(1 + SHhV.) rrr = 2 (l — n) [«] = A + SHCH.(3). 

Similarly, 

(SKkV. + SHhV. + S©eV.) SKsr© = - SK (2 [0] + 3 [1] + 4 [2]) © . (4), 

ct and A will be assumed to be of a class given by 

Sttwctc/s = St zs'cr'ds = Stts" a"d<s 

= X~l ^X’ — \p~l 

and, of course, exactly similarly for A. It should be noticed that unlike the two 

classes of § 9 above, vr and A have not the property that if trr or A is self-conjugate, 

so also is zo' or A' and ur" or A". But they have another simple property, namely, 

that if tjt is a scalar, 

It may also be noticed that zocr is an intensity, and zsct a flux where orc stands for 

the conjugate of ct. 

B is assumed to be of Class II. of § 9 above, and C of a class given by 

Scr„Co7, = Sov/CV/ = S(T,//C"o-6" ] 

C' = xcy, c" = xfiCxfi J.(7)' 

so that it is very closely allied to Class I. of § 9 above. 
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It will now be seen that to obtain m' or ur" from ur it is only necessary to change 

A, B, C, and H into A', B', C', and H', or into A”, B", C", and II" respectively. The 

statement is obvious so far as A, C, and H are concerned. With regard to B, we 

have, by §§ 7, 9, 

B'VwH' = 

=■ x^BVx'ojB. [Tait’s ‘Quaternions/ 3rd ed., § 157, eq. (2)], 

which, with equation (5), proves the statement. 

82. For the theory of reversibility, it is assumed that l contains a term g given by 

g = — SDct©. For the theory of irreversibility, it is assumed that x contains a 

term g given by g = — SKut0. Denote the various parts of E, f &c., depending 

upon g by the suffix g. It conduces to clearness to arrange the general results of 

these two assumptions in parallel columns thus :— 

Theory of Reversibility. 

I contains a term g given by 

g = - SD^0 .... (8). 

This contributes terms Ey, "E^ to the right of 

equations (29), (31), § 50, given by 

Ey = -wQ , E*, = 0 . . . (9). 

In this is not included the part of A due to g, 

but this is practically given by equations (15), 

(16), below. By equation (11), § 46, 

Xy = SD (1 + SHhV.) . . (10). 

By equations (11), (12), § 34 (putting vrg for 

0sr/06>) 

fy = - SD (l + shhv.) 

+ SD (1 + SHhY.) -srA . (11). 

ft = - [SD (1 + SHhV.) wUQa + i . . . (12). 

Hence to the left of equations (35), (36), § 40, 

are contributed for a steady field 

6ft = 6{— SC (1 + SHhV.) we0 

+ SCX (1 + SH1hV.) ^Vj} . (13). 

Ofsy = - e [SC (1 + SEhV.) wUQfl + J . . (14). 

By equations (34), § 50 

By = — 4~hVSDv0 

= 4tr {VBD0 - 2CHSD0} . . (15). 

MDCCCXCIL— A. 

Theory of Irreversibility. 

x contains a term g given by 

g = — SKwO .... (8a). 

This contributes terms Ey, E.,y/ to tbe right of 

equations (29), (31), § 50, given by 

Ey = — w©, Ejy = 0 . . (9a). 

In this is not included the part of a, due to g, 

but this is practically given by equation (16a) 

below. 

Contributed to the right of equations (35), (36), 

§ 40, are terms (for any field, steady or not) 

given by 

efg = - SK (2 [0] + 3 [l] 

+ 4 [2]) 0 - . . (13a). 

efts = 0[SKwUr]„ + }.(14a). 

5 D 
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Theory of Reversibility. 

Hence for a steady field 

Bg = 4tt (YBC0 — 2CHSC0) . (16). 

and if this is the only part of B for a steady field, 

we have 

Theory of Irreversibility. 

For any field, steady or otherwise, 

b(/ = 4tt (VBKO - 2CHSK0) . (16a) 

and if g is the only term in x containing H, we 

have 

0 = SYBy = 4ttSV (YBC0 — 2CHSC0) . . (17). 

0 = [SUrBy]a+j = 4tt [SUr (YBC0 

— 2CHSC0)]« + j . . . (18). 

The following equations will be explained 

below :— 

a = o (dP/do - dP;do) . . (19). 

n = 0[P]a_i .(20). 

dfUjG) , [> - 0Pfl]a_4 _ A _ 

do 
+ = o 

E = - S E(/ = (n/6>) do 

= n — n0 + [<r — op g]a-i> do 

I • (22). 

Contributed to equation (27) § 55 we have 

0/ = 2to-1SI)st10.x(IiX' . . (23). 

Hence, for a steady field, 

0/ = 2m-1SCw'10.xQlX' . . (24). 

0 = SVhy = 4ttSV (YBK0 — 2CHSK0) . (17a). 

0 = [SOVb*],+i = 4:tt [SUv (YBK0 

- 2CHSK0)]a + j . . . (18a). 

The following equations will be explained 

below :— 

G = — (2 A -f 9 tZA/ dO) (19a). 

n — 0 [A]a_ b ... . (20a). 

d !Y) + (,w*-*=0 • 
(21a). 

~ — s dpE, - - p (n/<9 dO J 

re h (22a). 

= II - ~ H0 + 1 [cr] «-i dO 
J 

1 
J 

83. Before discussing these equations in detail, it will be shown how in the theory 

of reversibility certain very important restrictions must be imposed on the generality 

of nr as a function of 9, "4-q and H, in order that known experimental facts shall not be 

contradicted. These restrictions seem, for the most part, to depend on the particular 

form of theory adopted in this paper; but as the particular features of the theory 

which are thus involved are held by many physicists, it is of interest to notice exactly 

what part of our fundamental assumptions causes the restrictions. The direct cause 

of the trouble is the equation B = 47thV/. Now, it will be remembered (§16 above) 

that this equation flows from the assumptions (l) that l contains H and not B 

explicitly, and (2) that = YVH. If, then, it can be proved experimentally that 

the consequences of the restrictions developed below (the chief of which is that 

thermomagnetic phenomena involve dissipation of energy, and that a part of the 

thermoelectric phenomena do the same), are contrary to fact; one or both of these 

assumptions must be relinquished. Thus, perhaps, in this unexpected quarter, will be 

found a practical test of the truth of Maxwell’s fundamental assumption 47tC = YVH. 

The consequences of relinquishing either of the above assumptions would probably be 

much the same, since it would lead to the physicist being compelled to recognise with 
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Professor J. J. Thomson [‘Applications,’ § 17 (4)] magnetic coordinates independently 

of electric coordinates. It is interesting to note in this connection that Professor 

J. J. Thomson (ibid., § 59) working on somewhat different lines from this paper, has 

also found that thermomagnetic phenomena have a distinct bearing on the equation 

477C = VVH. His conclusion is that this equation must be given up, and that 

instead we shall have 

VVH = 4ttC + (4tt/3) B (@SVd - S@V. d), 

B being here assumed to be a scalar. He assumes that thermomagnetic phenomena 

are reversible. 

84. The first equation that challenges attention is (16). It might be thought that 

it was a truism that B should remain constant in a steady field. This, however, is 

not the case. If the steady increase of B implied by this equation does not produce 

a steady increase in some physical quantity which can be measured directly, the field 

will remain steady in the ordinary sense though B increases. Now the physically 

measurable phenomena depending on B can be conveniently divided into three groups, 

(1) the stress at the point — which leads to mechanical phenomena capable of measure¬ 

ment, (2) the effect it has in modifying the value of H at all points of the field — 

which again leads to mechanical phenomena capable of measurement, (3) its effect on 

the induction of currents. As to (1) it is certainly true that in many instances above 

B does occur in the expression for the stress at a point, but this is in the case of 

solids purely a mathematical result. By equation (27) § 55 we see that the rate 

of variation of B will in general have no effect on the stress at a point. With regard 

to (2) the question must be asked, how does the value of B affect the values of H, C, 

&c., at points other than that considered? The answer is — solely by reason of the 

equations SYB = 0, [SUVB]'0+6 = 0, where it must be remembered B is an explicit 

function of H, C, &c. If then the rates of variation SVB [SUrB]((+6 due to g are 

zero, the steady increase of B,, will not produce a steady increase of H, C, &c., at any 

point of space. But these conditions are insured by equations (17), (18). Hence we 

see that Brj need not cause time variation of any mechanical phenomena. As to (3) 

the only electric effect of B (due to — A in E) is one which remains constant so long 

as B remains constant, and, therefore, does not affect the steadiness of the field. 

Hence equation (16) presents no difficulty. 

Equations (15), (17), and (18), however, do present very formidable difficulties. 

It has been stated that the influence of B on the electromagnetic quantities of the 

field is due to the equations SVB = 0, [SUz/B]a+6 = 0. It must now be added that 

the manner in which it thus affects the field depends on the form of its expression in 

terms of H, C, &c. Now unless the principal term in B is one depending on H only, 

the behaviour of the body in question would not at all approximate to the magnetic 

behaviour we know that bodies exhibit. For instance, we know that bismuth 

always behaves very approximately as if it were non-magnetic. This requires that 

5 d 2 
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the principal term in B' should be p0H'. It is needless to say that this will not in 

general be the case if B involves 3). In fact, in a steady field, the only conditions we 

should be able to assert that B imposed upon the field would be those which resulted 

from equations (17), (18), which do not contain p,0Hat all. 

85. The conclusion we are bound to come to is that on the present theory there 

must be no term in l which will result in HVZ containing D. Thus the thermo- 

magnetic effects must be left to the theory of irreversibility. 

It might be thought that all difficulty wrould vanish if, in g, instead of D we substi¬ 

tuted d, since this would involve terms in e similar to those given above for E and 

since E = — e. This, however, is not the case. No term in e can affect steady 

currents. The equation E + e = 0 determines the value of d but does not affect the 

value of C. Again, since in equations (13) (14) we should have c instead of C, we 

see that no thermal effects would, owing to g, occur in a steady field. 

86. None of these difficulties and restrictions are met with in the theory of 

irreversibility. We shall find, however, that the thermoelectric consequences of 

that theory are inconsistent with known facts. Both theories, therefore, are assumed 

as true in jiart. 

In connection with thermoelectricity it is necessary first to establish equations (19) 

to (22) and (19a) to (22a). In these equations the notation adopted is that of 

Professor Chrystal’s article in the ‘ Encyc. Brit.,’ 9th ed., vol. viii., p. 97. He 

there considers a circuit of two unstressed isotropic metals a and b, one of the 

junctions being at temperature 6, and the other at temperature 90. The positive 

direction round the circuit is taken as that from the metal a to the metal b at the 

junction 9. n, ct* are the Peltier and Thomson effects at the temperature 6, and n0 

the Peltier effect at the temperature 90. E is the electromotive force round the 

circuit due to thermoelectric effects. 

To consider such a case as this, B and C are, of course, ignored, and A is supposed 

a scalar. For the future, in order to distinguish more clearly between the theories, 

P will be substituted for A on the theory of reversibility. It is necessary now to 

distinguish between d/dO and d/d9. The former denotes differentiation when 9, T' 

are taken as independent variables. Now7 in all the commoner experiments on 

thermoelectricity, different parts of the circuit are not similarly strained, but 

similarly stressed. This may be taken account of by regarding 'P as a function of 9. 
Regarding it as such d/d9 denotes total differentiation with regard to 9. 

87. cr, the Thomson effect, is defined by saying that the heat “absorbed” by the 

metal between two sections at temperature 9 and 9 + d9, while a unit quantity of 

electricity passes in the direction from the first to the second section, is add, or the 

rate at which heat is absorbed in this part equals the rate at which electricity is flowing 

* There seems no danger in using a here for this scalar, though in the rest of the present paper it is 

taken as the type of an intensity {vector'), nor in using E here for the electromotive force round the 

circuit, though in the rest of the paper it stands for intrinsic energy. 
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in the assigned direction X crdd. Consider an elementary (generally oblique) cylinder 

whose generating lines are parallel to C or K and whose faces are coincident with the 

isothermal surfaces 9 and 6 -j- cW. Let dp be the vector in the direction from the 

section 9 to the section 9 d9, representing a generating line, and d% the vector area 

of either face, drawn inwards at the section 9 and outwards at the section 9 + d9 

(tig. 2). The rate of “ absorption ” of heat means the rate at which energy dis- 

Fig. 2. 

d 22 d 22 

appears as heat (positive when it causes fall of temperature) and appears as some 

other form of energy, in the present case that of “ electrical separation.” Taken per 

unit volume of the standard position of matter this = 9 X what is contributed to 

the left of equation (35), § 40. [The truth of this statement should be clearly 

recognised. The principal term on the left of equation (35), §40, is c9j9 where c is 

the capacity for heat per unit volume. Any other positive term contributed to this 

side will therefore tend to render 9 negative.] Hence the rate of absorption of heat 

per unit volume due to the terms now under consideration will be + the expression 

on the right of equation (L3), § 82, and —■ the expression on the right of equation (13a). 

Putting = the scalar P or A, and noting that SVC = 0, and that for a steady field 

SVK = 0, we see that on the theory of reversibility the rate of absorption of heat 

for our element — SdSdp of volume is 

e (- PeSCVd + SC VP) (- S dtdp) 

and on the theory of irreversibility 

(2ASKV0 + 0SKVA) (— S dtdp). 

Now VP = Vd . dP/d9 and VA = Vd . dk./d9, and since C is parallel to dp, these 

two may be interchanged in the expressions just given. Thus the rates of absorption 

of heat on the theories of reversibility and irreversibility respectively, are 

- 9(- 0Pfi9 + dVjd9) Sc/pVdSC dt 
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and 
- (2A + o dk/dO) ScZpVdSC dt. 

But the rate of absorption of heat also = cr d6 X the rate of flow through the element 

from 9 to 9 -f dO 

= O-S dpVOSC dt. 

Equating these different expressions for the same quantity, we get equations (19) and 

(19a). 

Equations (20) and (20a) are obtained in an exactly similar way. It need only 

now be said that from equation (14) the rate of absorption of heat at an element of 

the boundary of the metals a and b [fig. 3] is 

6 [PSC dt~]a+b = — 9 [P]a _ b SC dta, 

Fig. 3. 

and also that by the definition of the Peltier, effect IT, it is = 14 X the rate of flow 

from the metal a to the metal b 

= - nsc dta, 

from which equation (20) follows. Similarly for equation (20a). Equations (21) and 

(21a) are easily deduced from those now established. 

88. In connection with equations (22) and (22a) it is advisable to make what may be 

looked upon as a digression, to examine whether, on the present theory, we have 

a right to identify the line integral of any part of E round a circuit with what, in the 

laboratory, is known as the electromotive force of the particular kind round it. To test 

this, we must see whether the total line integral of IlK round the circuit = what is 

called the whole resistance of the circuit X the whole current. 

In equations (29), (31), § 50 occurs a scalar y -f- Y or v which, unlike the other 

terms in the equations, does not depend directly or indirectly (as is the case with 

dk/dt + a) upon the form of l or x. Consider now any closed curve which, if it anywhere 

crosses a surface of discontinuity, passes, we shall suppose, from the region a to the 

region b. Then, in the expression — J SE dp — SSE,U^a this unknown scalar does not 

appear as can be easily seen by equations (29), (31). Before taking this line integral, 

remove PJ£ to the left of equation (29), § 50, keeping all the other terms on the right. 
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It is the line integral {including the terms contributed by SSEJJr,,) that thus appears 

on the right, which is ordinarily called the total electromotive force round the curve. 

Let us examine whether this statement is consistent with the one above about 

whole current and whole resistance. Suppose the motion steady so that K obeys the 

laws of incompressibility. Consider an infinitely small tube of flow, and let this be 

the line along which the integral is taken. Let c be the whole current flowing along 

the tube. Consider an elementary right section of the tube of length Tdp, and cross- 

section T d%. Thus 

K = cXJK/Td2, dp = UKTc/p, 

and, therefore, the part contributed to the integral — JScZpRK by the element in 

question is 

- cSUKRUK. Tdp/Tdt. 

If then we choose to define as follows : (1) — SUKRUK = the specific resistance 

of the body at the point, (2) specific resistance X Tc/p/Tc/2 = the resistance of the 

element, (3) the sum of the resistances of all the elements = the whole resistance of 

the tube, we shall have 

— JScZpRK = current flowing along tube X whole resistance of tube, 

or 

conductivity of tube X (— JSc/pRK) = current flowing along tube, 

which defines the conductivity as the reciprocal of the whole resistance. Now split 

any finite tube of flow into an infinite number of such elementary tubes, call the sum 

of the conductivities of the elementary tubes the whole conductivity of the finite tube, 

and call the reciprocal of this last the whole resistance of the finite tube. We shall 

then have that the mean of the values of — JScZpPtK for the elementary tubes = the 

whole resistance of the finite tube X the whole current along it. All this may, I 

think, be said to be in complete agreement with the ordinary theory, but it serves to 

call attention to the fact—important in connection with the longitudinal effect 

mentioned in § 79 above—that anything which interferes with the ordinary lines of 

flow will alter the apparent resistance. 

89. To return to our immediate purpose, we are now at liberty to say that the line 

integral of any term contributed to the right of equation (29), § 50, round a closed 

circuit implies an equal electro-motive force round the circuit in the ordinary sense. 

Equations (22) and (22a) are easily seen to follow. 

Comparing, now, equations (20), (21), (22), (20a), (21a), and (22a), with equations 

(4), (5), (6), and (7) on p. 97, vol. 8, ‘ Encyc. Brit.,’ 9th ed., we see the results of the 

theory of reversibility only differ from the ordinary theory in having cr — 6Pg in place 

of o', while those of the theory of irreversibility differ widely. 
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Thus the former theory explains thermoelectric effects satisfactorily. But we shall 

see that we cannot suppose A zero. Hence we must on the present theory suppose 

that the main thermoelectric effects are reversible, but that there are subsidiary 

irreversible ones that with the present means of experiment it would be practically 

impossible to disentangle from the former. 

90. The detailed comparison between the two theories is most clearly made by 

means of the thermoelectric diagram. From equation (22a) we see that on the 

theory of irreversibility the thermoelectric power, instead of being U/9, is — TijO. To 

any one who is acquainted with the ordinary thermoelectric diagram, the following- 

statements will be sufficiently obvious from the accompanying figures :— 

Theory of Reversibility. 

Abscissa = 0. 

Ordinate = — thermoelectric power with respect 

to lead 
II (lead) _ _ p 

0 

E = the area marked in fig. 4. 

a — 0Ve = PS of fig. 5. 

FT = + area marked in fig. 6. 

n - n0 = + area marked in fig. 7. 

fe 
[o- — 6Re\a-i d6 = — area marked in fig. 8. 

Jf>0 

Theory of Irreversibility. 

Abscissa = 6. 

Ordinate = — thermoelectric power with respect 

to lead 
Id (lead) 

0 
+ A. 

E = the area marked in fig. 4. 

a — — 3PR of fig. 5 = - 2PQ - PS. 

Id = — area marked in fig. 6. 

n — n0 = — area marked in fig. 7. 

re 
[<t] «_} dO — + (area marked in fig. 8). 

ho 
+ 2 (area marked in fig. 4). 

= + (area marked in fig. 7). 

+ (area marked in fig. 4). 

Fig. 4. Fig. 5. 

Fig. 7. 

[In this figure OQ is the 

axis and QS = 3QR.] 

Fig. 8. 
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The following- results may be noted :— 

No series of experiments confined to determinations of the electromotive forces 

resulting from differences of temperature at the junctions of thermoelectric circuits can 

distinguish between the two theories. 

On the theory of reversibility the following statement is true; on the theory of 

irreversibility the contrary is true. In a thermoelectric circuit of two metals, if a 

galvanic current be passed across the junction in the same direction as that of the 

current that would be produced' by heating the junction, the effect is absorption, and 

vice versd [Tait’s ‘ Heat,' 1st ed., § 192]. In many cases this statement has been 

verified experimentally, and no one, I think, has ever asserted that he has obtained 

the contrary. Hence the main thermoelectric effects cannot be explained on the 

theory of irreversibility. 

On the theory of reversibility cr — 6P0 takes the place of a in the ordinary theory. 

91. This last statement is of importance in connection with a difficulty purposely 

passed over till now. By equation (23) § 82 it appears that D enters into the 

expression for the stress unless P be independent of the strain. Thus the stress 

depends on the electric history of the substance. This involves difficulties of two 

kinds. First it shows that in all bodies for which P is not thus independent the 

stress would probably be widely different from what it is ordinarily assumed to be. 

This, however, would not affect the apparent mechanical effect on a conductor as a 

whole since, as already noticed, that effect depends upon the stress just outside the 

conductor, i.e., the stress in the surrounding dielectric in -which D does not increase 

indefinitely. Bat one would think that its effects on the mutual behaviour of 

different parts of a conductor would have been observed. The second difficulty is 

connected with equation (24). It might be thought a truism that should remain 

constant in a steady field. But as with Bj (§ 84) this is not the case. We saw' in § 75 

that so long as any term which contributes to ff contributes zero to ffA' and [</>'UV]a+6, 

it produces no effect on the motion and strains of bodies, that is, no mechanical effect 

whatever. The conditions for a steady field, so far as stress is concerned, are, 

therefore, that f A' = 0 and [j'OJv'']a+b = 0. If then g is the only term in l con¬ 

taining D, equation (24) gives for a steady field 

m^SCnq© . = °> [m^SCraqQ . = 0 . . . (25). 

To see what may be the approximate effect of this, let us assume ar to be a scalar 

(P) wffiatever be the strain, and let the scalar be a function of the temperature and 

the density of the body only. Then 

<*>/ = 2m-1SC© . XCID.Y. 0P/0D,/ 

= 2D* m^SC© . xa (m"1) x'. 0P/0D*' [§ 49] 

= - DW/SC'©'. 0P/3D* [(10) § 54 and II. § 8]. 

5 E MDCCCXCII.—i\. 
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From the first of equations (25) it follows that the scalar SC'©' DT 9P/3D,/ must 

be constant throughout any single conductor; and from the second, that it must be 

constant throughout any number of conductors in contact, and if the conductors are 

anywhere bounded by a dielectric, i.e., invariably, this constant value must be zero. 

Hence with present assumptions SC'©' must be zero everywhere in a steady field. 

[This is not quite accurate since if P, regarded as a function of D,J is a maximum or 

minimum, 3P/0D*' = 0. It does not seem hopeful to pursue this supposition how¬ 

ever.] This presents no difficulty in ordinary cases, since C and ©—to drop the 

dashes as no longer necessary—would generally be very approximately at right angles 

in any case. If, however, we contemplate such a case as the attempt by ordinary 

means to force a galvanic current and a stream of heat in the same direction through 

a conductor, some very curious consequences are involved. The most obvious of them 

seem to be that both the heat and electric apparent conductivities would be largely 

altered. That no such large alterations in these physical quantities have been 

observed I believe to be the case. These difficulties may be wholly imaginary. If, 

which seems on other grounds most probable, P is not even approximately a scalar 

when the body is strained, we should not be able to deduce that SC© was even approxi¬ 

mately zero. In this case, the adjustments brought about in a steady field of the 

kind just contemplated by reason of the equations (25), would probably be mainly 

strain adjustments that would not cause C and © to vary much, if at all, from paral¬ 

lelism. These strains, of course, might very well have hitherto escaped detection. 

These difficulties are, however, sufficiently serious to make it necessary to consider 

the results of assuming P independent of the strain. The most important of these 

results are easily seen to be (1) that, although the connections between the Peltier 

effect and the electromotive forces in a circuit of different metals whose junctions are 

at different temperatures would on the theory of reversibility be the same as is usually 

supposed, yet there would on that theory, taken alone, be no Thomson effect [equa¬ 

tion (19)], and (2) that there would be no thermoelectric effects in a circuit of a single 

metal whose various parts were variously stressed. These two, then, would have to 

be explained on the theory of irreversibility, and no quantitative connection need be 

expected between the Thomson effect and the main thermoelectric effects. 

92. These difficulties seem to me not to be confined to the particular form of theory 

developed in this paper. For instance, there seems as much reason to suppose 

Professor J. J. Thomson’s crx, <x;/, cr~ (‘ Applications,’ 1st ed., §53) to be independent 

of the strain as the present P. And I may remark in passing that similar statements 

may be made with regard to the Cf {ibid., § 43) introduced to explain the Hall 

effect. [By §84 above, it is obvious that on the present theory it is impossible to 

explain the Hall effect by such a term owing to the results other than the Hall 

effect that would ensue from the term.] 

93. Our chief conclusions, so far, may be thus summarised:— 
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(1.) If P be assumed to be dependent upon F, the theory of r ever sib ility suffices to 

explain all the known experimental facts of thermoelectricity. 

(2.) If as there is some reason to believe, P be independent of F, the main thermo¬ 

electric effects must be explained on the theory of reversibility, but the Thomson effect 

and the thermoelectric effects observed in a circuit of a single metal differently stressed, 

in different parts must be explained on the theory of irreversibility. In this case 

there is no such connection between the Thomson effect and other thermoelectric effects 

as is usually supposed. 

(3.) On the present theory it is impossible to expjlain thermomagnetic phenomena, 

by the theory of reversibility. 

94. There is little to be said with regard to the thermomagnetic phenomena them¬ 

selves, as our knowledge of them is almost confined to what is expressed by equations 

(2) and (9a). It is necessary to remark, however, that the C of equation (2) may be— 

probably is—not the main cause of what has been described in §79 above as the 

longitudinal effect, since an apparent longitudinal effect would be caused (§88 above) 

by any interference with the lines of flow of electricity, and by the variation in the 

resistance due to any cause. More than one effect of these I In eh v. i notice 

bel eiow. 

But, of course, the existence of B and C may involve results of a kind other than 

thermomagnetic, which are practically measurable. Besides equations (2) and (9a), 

B and C occur in equations (13a) to (18a). Equations (13a) (14a) do not require 

notice, since in the present state of accuracy of experimental knowledge of thermo¬ 

electric quantities the influence of B and C in these equations is negligible. With 

regard to equations (16a) to (18a), we can trace approximately the effects of B and C 

in one important class of cases. 

95. Suppose we have a plate of uniform thickness (small) in which a current is 

flowing placed in a strong uniform magnetic field. On account of the current, of 

course, the uniformity will be disturbed, but only slightly if the strength is great 

enough. Outside the plate (except in certain conducting wires) we assume that there 

is no current. Hence by equation (18a) we see that at every point of the boundary 

of the plate 

SU*> (VBK© - 2CHSK0) = 0.(26). 

Equation (17a) gives by equation (4) § 5 for any portion of the plate 

(VBK0 — 2CHSK0) = 0 ....... (27). 

This is the form in which can be most easily discussed the effect of equation (17a). 

Let the region to-which equation (27) refers be taken as a cylinder, one face of the 

cylinder being in .one face of the plate, and the parallel face somewhere inside the 

5 E 2 
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plate. Since the plate is thiq, we may suppose the faces of the cylinder large com¬ 

pared with the curved surface, and may, therefore, neglect the portion contributed to 

the integral of equation (27) by the curved surface compared with the rest of the 

integral. Now by equation (26) the part of the integral contributed by the face of 

the plate is zero. Hence putting i for UV we have, approximately, at any point of 

the plate 

Si (VBK0 - 2CHSK0) = 0.(28). 

Assuming B and C to be scalars, this may be put in the form 

S/K-1 0 = 2CB-1 S?HSK_1© (29). 

Now assuming, which will be approximately—exactly at the boundary—true, that 

i is perpendicular to K, we have 

0 = - iSi® + KSK-1 0 + fKSfK-10. 

Hence by equation (2), § 81, 

7* (0 + iSi®) = (A - CH2) (KSK"1 © + fKSt'K-10) 

+ B (VKHSK-1 0 + VTKHS/K-1 0). 

Let us split this vector up into its components parallel to the three vectors K, i, and 

VKH. For this purpose notice that since K is perpendicular to i, 

VfKH = - KSi'H + fSKH 

iK = (VKH + fS/KH)/SiH. 

Thus 

(0 + fSf@) = K {(A - CH2) SK-1 © - BS/K"1 ©SiH} 

+ iStK"1 0{(A - CH2) SfKH/SfH + BSKH} 

+ VKH {(A - CH2) SiK"1 ©/SfH + BSK"1 0} . . (30) 

from which, by substituting for S/K_10 from equation (29), we obtain 

ot (© + i'Si‘0) = B-1SK-T0[KB {A - C(H3 + 2SVH)} 

+ i2C {(A — CH2) SiKH + BSKHS/H} 

+ VKH {2C (A - CH2) + B2}].(31). 

96. This transformation is not likely to give us clearer ideas of what takes place 

when a stream of heat is made to flow in the plate which is large compared with the 
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streams due to ordinary electric resistance and thermoelectric phenomena. The 

original form of zz is more suitable for that purpose. We assume then that the only 
heat effects are due to purely electrical causes. In this case, if the faces of the plate 
are thermally similar, we may assume that Si® has opposite values at points situated 

symmetrically on opposite sides of the plane midway between the faces of the plate. 
The effect of mSi® will be then merely to make the current stronger or weaker in 

the middle of the plate than near the faces, and, therefore, to increase the apparent 
resistance of the plate. We have already seen that unless P (assumed invariably to 
be a scalar in this connection) be independent of the strain, SK-1© is zero, so that the 
whole expression on the right of equation (31) is zero. If, however, P be independent 

of the strain, the term in VKH in equation (31) would indicate a Hall effect. The 

presence of SK-1© in this term, however, serves to show that probably this is not 

the true explanation of the Hall effect. 
The Halt, effect may be explained by saying that there is an electromotive force 

A VKH, where h may be called the coefficient of the Hall effect. It has been found 
experimentally that this coefficient is by no means independent of TH—that, in fact, 

in certain cases it changes sign when a definite strength of magnetic field is reached. 
The above work indicates how, on the present theory, we may seek to explain such 

an effect. For this purpose it must be remembered that equations (30) and (31) are 
only true if g is the only term in x which involves H. 

97. Let us now assume that the electric resistance is a function of H, and let us 

incorporate in g the term of x thus depending upon H. We must add a term 
— SKrK/2 to the former value of g ; r being a function (of Class II. of § 9) of 0, 'F and 

H. For the sake of definiteness give r the form — 6SHcH, where b, c are functions 
of the same classes as B and C respectively. Thus, as can be easily seen, to get 

r or r" from r we have merely to change b, c and H into b', c, and K' or b", c", and 

H" respectively. Equations (8a), (9a), (13a), and (16a) must now be changed to 

g = - SKst© + SK6KSHcH/2.(32), 

E^= -sr© + 6KSHcH.(33), 

6fg = - SK (2 [0] + 3 [1] + 4 [2]) © + 2SK6KSHcH - . (34), 

V4tt = VBK© - 2CHSK0 — cHSK6K.(35). 

Hence, in place of equation (28) we now have 

Si (VBK© - 2CHSK© - cHSK&K) =0.(36). 

Assuming B, C, b, c, to be all scalars, and putting, as is permissible in this case, 6=1, 

instead of equation (29) we have 
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S/K"1 ® — B_1 Si'H . (2CSK-1 0 + c).(37), 

and in place of (31), 

E,; - mSi© = — B-1 [KB [SK"10 [A - C (H2, + 2SHR)] - c (H2 + S2iH)} 

+ i (2CSK-1 © + c){(A - CPA) SiKH + BSKHSfH] 

+ YKE {(2CSK-1 0 + c) (A - CH2) + B2SK-1 0)] . . . . (38) 

which simplifies when SK-1© is zero (which it certainly approximately is in the 

experiments made to determine the coefficient of the Hall effect, whether P be inde¬ 

pendent of VP or not) to 

Ey - m'Si*0 = B-1c[KB(H2 + Sh'H) 

— i {(A — CH2) SIKH + BSKHSiH} 

- YKH (A - CH2)].(39). 

Owing to the term in i on the right as well as the term in i on the left, there may 

be an apparent increase of resistance. The term in K shows that there will also be 

an increase — c (K2 + Sh’H) in the resistance. The term in YKH shows that the 

present assumptions lead to a Hall effect, whose coefficient — — B_1 c (A — CH2). 

With regard to the new term 2SK6KSHcH in equation (34), it should be noticed 

that since it is quadratic in K, it would have no influence on the apparent Thomson 

effect, but only upon the apparent resistance as measured by heat effects. 

That we can explain the Hall effect on the present theory is of some interest, 

because, as remarked in § 92 above, we cannot explain it on the present theory in the 

ordinary way. Nor can we hope to explain it by the term — KVai in E [equations (29), 

§50, and (20), § 35] for YkVYKH = V£Y£H = — 2H, whereas YKV (kVx) = 0. It 

should be noticed that the difficulties in the way of explaining the Hall effect by a 

term — C'SCDH/2 do not apply to explaining the magnetic rotation of the plane of 

polarised light, since this is equally well explained by substituting d for D. 

98. One effect of g still remains for consideration. It is necessary to consider it if 

only to show that it leads to no results large enough to be experimentally tested. It 

also helps to show how the various interferences with the lines of flow, several times 

mentioned above, are mainly brought about. 

In writing down equation (9a) it was mentioned that E(/ did not contain the part 

of a due to g. We have indirectly taken account of the effect of ay in part, by the 

considerations just given in leading up to the explanation of the Hall effect. We 

have not, however, thereby taken full account of ar To do this in the manner 

illustrated above, we should require to study the effect had in modifying the whole 

electromotive force instead of the part Er We proceed then, to a more general 

examination of the effect of the term — a^ in E. 

We will now drop the suffix g from a and b, since we shall not suppose x to contain 
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H except by reason of the term g, so that of equation (35) now stands for the full 

value of b. SVa and [SUFa]a+i are arbitrary. Let us, since it does not affect any 

physically measurable quantity, assume them both to be zero. Since b = VVa, 

[Vc?Sa]a+6 = 0, if we considered an analogue in which b stood for an electric current, 

477a would be the magnetic force due to the currents in a space containing no magnets. 

This analogue will serve to give us a very fair general idea of the effect of — a in E. 

Since [equation (35)] every term of b contains K, b will be confined to conductors 

where there are conduction currents. Thus, in the same conductor we shall have the 

“ real current ” and the “ current of the analogue.” The current of the analogue 

may be disposed with reference to the real current in one of three ways. It may be 

mainly parallel to the real current, or it may circulate round the real current 

mainly at right angles to it, or it may circulate round it spirally. In the first 

and third cases we see by the analogy that there would be an electromotive force due 

to a in the general field approximately parallel everywhere to the part of the magnetic 

force due to the real current. In the conductor itself, then, the resulting electro¬ 

motive force would cause the real current to move spirally, and would, therefore, 

apparently increase the resistance. In the second and third cases we see by the 

analogy that there would result effects due to the local state of affairs, so that where 

b was large there the effect of a on E would be large. In a case of this sort we should 

have to examine further before we could say what the local effect would be. 

It is easy to see that in the experiments for determining the quantities con¬ 

nected with the Hall and. thermomagnetic effects, the second of the above cases 

very approximately represents the state of affairs. For, by equation (35), it is only in 

the plate, where © or H is very large compared with the rest of the circuit, that b 

will have a sensible value. Hence there must be a strong local current of the 

analogue, that is, a current which does not go round the circuit parallel to the 

real current. 

It follows that the main physical effects of a are those that were considered in 

dealing with the Hall effect. 

E. Contact Electromotive Force. 

99. Our knowledge of this is not very accurate, but, besides the fact that contact- 

force certainly exists, and that it has been in numerous individual cases measured 

with fair accuracy, the following seems to stand out with considerable certainty. 

If the (apparent) electromotive force from one material, a, to another, b, when they 

are in contact be denoted by a | b, then the equation 

a|6d-6|c+c|a = 0.(1) 

is true if all three materials are conductors, but is not true if they are not all 

conductors. 
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This force cannot apparently be explained by any term in l of the kind we have 

hitherto supposed l to contain. Suppose, then, l to contain a term# SdaA where a is 

of the same class as A or ur [equations (5), § 81.] Thus ctcr is an intensity, and aj a 

flux, ac being the conjugate of a . 

The portion of L contributed by this term is JjjSdaAc/?, or [eq. (4), § 5], jJSdac?2. 

Hence the effects of supposing l to contain a term SdoA are identical with those of 

supposing ls to contain a term [SdrtUV] a + &. 

So far as electric phenomena are concerned it is quite easy to see the eflect of this 

term. In place of equations (31), § 50, and (2), § 57, we shall have 

E,s. = [rU v]a + h = [aU v\a + h.(2), 

or, if a be a scalar, 

= .(3)- 

100. Although this term involves a contact force it does not explain the known 

facts, since, as can be easily seen, the contact force here obtained is such that 

equation (1) would be invariably true. We seem then to be driven to the conclusion 

that to explain contact force, ls cannot any longer be assumed to be zero. 

Adopting the suggestion of Professor Chrystal, £Encyc. Brit.,’ 9th ed., vol. 8, p. 85, 

we will assume that there is no real contact force between conductors. This simplifi¬ 

cation is not, of course, necessary on the present theory, but the simpler the 

assumptions—-so long as they are not intrinsically improbable—the better. Professor 

Chrystal shows that the assumption serves to explain all the known facts, the 

apparent contact force between conductors being explained by the difference of their 

contact forces with one and the same dielectric. 

We now assume that ls contains the termt SaUVc [d]a + i/2 where a is of the same 

class as before, but now depends on ^ and 6, and where of course the suffix a has 

nothing to do with the linear vector function a. It is assumed that a is zero for a 

surface of separation of two conductors. 

In place of equations (2), (3), we now have 

Es — [_vJJv]a + b = a\Jvo;.(4) 

W.-1 = «.(5). 

* It may be asked, Why make the differentiations act on a as well as d, why not assume the term to 

he Sd1aV1 ? The answer is that this leads to a more complicated result, namely (1), to the same contact 

force as the term chosen, (2), to a term — aA in E, and (3), to a stress which involves the space deriva¬ 

tives of d. It is best to assume, if possible, a term which involves what we know to be true and 

nothing more. 

f Perhaps it would be better, as more g’eneral to suppose l, to contain the term [SMJV d]a + j where ot. 

is of the same class as a, and ah is not merely characteristic of the substance b, but depends on both the 

substances hounded, i.e., where, in general, j + a/,_c + is not zero. Equations (4), (5), (6) will 

still be true if we put a — 
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It might be thought that equation (4) could not be true in general unless a was 

a scalar in general. This, however, is not the case. From equation (4) it certainly 

follows that VUva\Jv = 0, but this, by virtue of the dependence of a on strain is merely 

an equation of condition satisfied by the strain. The equation \y\Jv]a + b = aUva may 

indeed be written 

M«_6 = — TJWLJV.(6), 

which is, of course, more general than equation (5), since here a is not assumed a 

scalar. It may be noted that V dtia d%' = mfV dta d%, so that the two conditions, 

VUVa'UV = 0 and YJJvaTJv = 0, are identical. 

101. It should be remarked here that on the present theory the term just introduced 

would have no thermal effect in steady fields, and, therefore, no connection with the 

Peltier effect. (See § 85 above.) 

We have been obliged to suppose ls no longer zero. Before discussing the modifica¬ 

tions this entails in the general results above, the last application in the present paper 

of those results will be made. 

This is the place where it would be proper to discuss electrolysis in connection with 

the present theory. This I do not propose to do, because the mathematical machinery 

of this paper would require some important modifications to enable us to deal with 

such subjects as diffusion, the motion of the ions, &c., and because the subject is a 

very large one, and would, perhaps, unduly extend the length of the present paper. 

F. The Transference of Energy through the Field. 

102. On the present theory, in which the principle enunciated in equations (24), 

(25), § 36, required strong confirmation, it was necessary to show that it agreed in 

every particular with the generally accepted views as to frictional forces being 

derivable from a dissipation function in Lord Rayleigh’s sense, and also with the 

much more certainly established truths treated of in the theory of conduction of heat. 

The only way to establish this last seemed to be to show that as a result of the 

principle there was a time flux of intrinsic energy, one term of which was what, in the 

theory of conduction of heat, is .called the time flux of heat. This led to the necessity 

of finding the time flux of intrinsic energy in general. We are thus brought on to 

ground which has hitherto been regarded as belonging exclusively to Professor 

Poynting—the transference of energy through the field. 

103. Let us now examine how far the results of the present theory are consistent 

with those of Professor Poynting. Let L be a flux such that 

E - P. = [f SL <K.(1), 

5 F MDCCCXCIT.—A. 



770 MR. A. McAULAY ON THE MATHEMATICAL 

so that L may be called the time flux of intrinsic energy. By Proposition YIII., 

§ 10, 
{4> + ) d% — x (4* + <A/) 

Hence we see by equation (25), § 49, that 

L =—(<£ + 3>/) XP + vC ~ V (A + a) H/477 - (<9©V\ + 0&Vx) . . (2). 

Now, (‘Phil. Trans.,’ 1884, Part II., pp. 343 to 349) Professor Poynting's result 

expressed in similar notation would be (calling the time flux of energy P) 

P = - {4> + d>/) XP - V {Vv + (A + a)} H/477 - (0&V\ + O^x). . (3). 

It is scarcely necessary to remark that we have here generalised his expression* by 

the insertion of the terms — (4> + <fy) XP ~ YaH/477 — (0eV\ + d^Vx) and have 

substituted for his E what he means by it, namely, — (A + Vv). It might be thought 

at first that this is not quite what he means by E since he incorporates in it terms 

depending on the motion of the body with reference to the lines of magnetic induction. 

Remembering, however, that equation (6), § 60, and the equation E0 = — (A fi- Vv) 

are identical, it will be seen that these terms have been here incorporated. 

104. The direct interpretation of equations (2) and (3) is, of course, widely different. 

Let us see if they have the same physical significance, that is, whether they lead to 

the same rate of increase of intrinsic energy in any finite space. 

For this purpose it must be asked whether or not jj6S (L — P) is zero. Now 

477 (L - P) = &7tvC + YVAH = YV (AH).(4). 

Hence 47rjj6S (L — P) d% = jj6SdSV (AH), or by equation (3), § 5, 

4ttjj S (L - P) dt = [ vSdpJL .(5), 

where the line integral! is to be taken over all lines of discontinuity on the true 

* I only say—generalised lais expression—sinee some such terms as liave been added in the text would, 

on Professor Poynting’s own theory, he included in the vector L, defined by equation (1), as the time 

flux of intrinsic energy. The result of the present paper is, however, in all strictness much more 

geueral than his, since it has not among other things been assumed that all the bodies in space are 

isotropic with reference to specific inductive capacity, resistance, and magnetic permeability. 

t It may he well to notice that by the conventions of § 5, above, if the closed curve be regarded as 

bounding, not the regions of the true boundary, but the part of the surface of discontinuity in the region 

of space under consideration, the sign of the line integral must be changed. 
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boundary of the region considered, that is, over the trace on that surface of surfaces 

of discontinuity. The element dp is, of course, taken twice, namely, once for each of 

the two regions of the true boundary which it bounds. Since dp is in the surface of 

discontinuity, and the component of H parallel to that surface is not discontinuous, 

we see that [ScZpH]„ + & = 0. Hence the part contributed by dp to the line integral 

may be written \y]a _ b [Sc?pH]„ or 

vtt_bSdp0K .(6). 

If then v is continuous, the line integral is zero. It has already appeared [equation (2), 

§57] that if ls is everywhere zero this is the case. Hence, unless ls exist, the 

physical results of supposing P to be the time flux of intrinsic energy are identical 

with those of supposing L. 

If ls exist, we have at present no right to say that on the present theory L may be 

taken as the time flux; but in §111, below, this will be proved. The conclusion is 

then that, to explain the rate of variation of energy, Professor Poynting’s flux P 

must be supplemented by a finite flux P* along surfaces of discontinuity in the 

potential, where 

4irP, = [uVUVH]„ + 6 = v0_jVUVc,H.(7). 

[In verifying the sign of this expression attention must be paid to the caution in the 

last foot-note.] This of course is rather an unnatural, though by no means absurd, 

result, and therefore I think it better to regard L as, more probably than P, repre¬ 

senting the true time flux of intrinsic energy. Another reason for preferring L to P 

is that for a field at rest, i.e., such that p, 6, ©, C and c are everywhere zero, L is zero, 

whereas P = YHVu/47r. 

In now contrasting Professor Poynting’s result with that of the present paper, we 

will suppose v continuous. 

105. Very shortly after the first publication of Professor Poynting’s paper, 

Professor J. J. Thomson in criticising it remarked (‘ B. A. Reports,’ 1885, p. 151). 

“ This [Professor Poynting’s] interpretation of the expression for the variation in the 

energy seems open to question. In the first place it would seem impossible, d priori, 

to determine the way in which the energy flows from one part of the field to another 

by merely differentiating a general expression for the energy in any region, with 

respect to the time, without having any knowledge of the mechanism which produces 

the phenomena which occur in the electromagnetic field; for although we can, by 

means of Hamilton’s or Lagrange’s equations, deduce from the expression for the 

energy the forces present in any dynamical system, and therefore the way in which 

the energy will move, yet for this purpose we require the energy to be expressed in 

terms of the coordinates fixing the system, and it will not do to take any expression 

which happens to be equal to it. The problem of finding the way in which the 

energy is transmitted in a system whose mechanism is unknown, seems to be an 

5 F 2 
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indeterminate one ; thus, for example, if the energy inside a closed surface remains 

constant we cannot, unless we know the mechanism of the system, tell whether this 

is because there is no flow of energy either into or out of the surface, or because as 

much flows in as flows out. The reason for this difference between what we should 

expect and the result obtained in this paper is not far to seek.” He then goes on to 

point out'1' how, so far from P being necessarily the time flux of energy, P + We 

where e is any vector, such that at surfaces of discontinuity [VUVe]a + b = 0, might 

equally well be taken as the time flux of energy. It so happens that (assuming v 

continuous) L — P is such a vector, so that the difference between the result arrived 

at in this paper and Professor Poynting’s is just such a case as Professor Thomson 

warned us to expect. 

We cannot then say that either L or P is the time flux of energy, but only that if 

we assume either the one or the other (P being supplemented with Ps) to be the flux, 

the real changes of intrinsic energy will be accounted for. 

106. Notwithstanding Professor Thomson’s warning, many subsequent writers seem 

to have taken Professor Poynting’s theories for established facts. The following 

statement of Professor Poynting especially seems to have grown to be accepted 

almost universally as a commonplace truth [‘Phil. Trans.,’ 1884, Part II., p. 361] :— 

“ I think it is necessary that we should realise thoroughly, that if we accept 

Maxwell’s theory of energy residing in the medium, we must no longer consider a 

current as something conveying energy along the conductor. A current in a conductor 

is rather to be regarded as consisting essentially of a convergence of electric and 

magnetic energy from the medium upon the conductor, and its transformation there 

into other forms.” Now, if we take L as the true time flux of energy, we see that 

one way in which we must regard a current is precisely the way Professor Poynting 

denies us, namely, “ as something conveying energy along the conductor.” In fact, 

from the term vC in L, we see that in this respect, as in so many others, a current and 

the potential are the exact analogue of a liquid current and its pressure. Without 

doubt, the view that L is the true flux is simpler for steady fields than the view that 

P is. This statement is not so obvious—perhaps on the whole not true—for varying 

fields. 

It is easy to contrast in detail the two views in all the particular cases Professor 

Poynting considers. This may, therefore, be omitted here. 

G. The General Effects of the Existence of ls. 

107. The general equations above established must now be modified on account of ls. 

In considering electrolysis on the present theory it would be necessary to suppose 

ls to contain D or C or both, as well as d. For the sake of simplicity we shall not 

* This is not put quite in the form Professor Thomson puts the case. 
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make this supposition. ls will be assumed a function, then, of d(„ d^, 0, TV, TV As 

throughout the rest of this paper, we assume that there is no slipping at the surface. 

This leads to a relation between TV and TV Let i,j, k as usual stand for a set of 

mutually perpendicular unit vectors, which are, however, functions of the position of a 

point. Let 

i — Uva, i = TJvJ.(1); 

j and k are thus parallel to the surface. 

We have 

T'oj = tiSi'YiSio) + S (j$ka> + Jc&j(o) SjxYk 

= tiSico (yt)2 + S (jSko) + kSj(o) Sxjx^> 

where the summation sign implies that i, j, k are to be changed cyclically. Since 

there is no slipping the strains in the surface of each region bounded are the same or 

XJ = xJ> Xoh = XbJc 
Hence, putting 

2V = „ 2r = = [¥WU:.(2), 

it at once follows that 

Tv_5&> = — 2rSA) + 2i {SjrSjoj + SkTSkco).(3). 

Thus TV and TV can be expressed in terms of the independent variables T' and T. 

That these last are independent is seen thus. The deformation in the neighbourhood 

of a point on the bounding surface requires for complete specification a knowledge of 

the following three things : (l) the pure strain of an element of the surface, (2) the 

displacement of a point in the region a near to the element of surface relative to the 

latter when purely strained, (3) a similar displacement in the region b. These three 

are independent, and each requires three scalars to specify it—nine in all, the same 

number as is required to specify Tr and T. Thus ls is a function of the variables 

dn, d6, Tr and T. 

103. The part of Sls depending on STV and STq is — SST^GVC —_SSrrV//“ where 

G stands for *G. Put now 

* We may dispense with T altogether thus. Put ^ + Vr( ) = n. Then with the meaning 

of nG explained on page 103 of former paper, 

rv = Y^nGr, a = na - VrV ( )/2, 

i.e., G is the pure part, and rV/2 the rotation-vector of nd. 
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ms = ds Ids = Td’Z'/TdX = mT^' 1 i. 

{</>/} = — m~l ix^sX — i [XrV^S ( ) xU^ + xU^S ( )"xrV/J] 1 

<£/— [{<£/}]«+& 1 

Then it is easy to show, after the manner of § 39, that 

Bls = m, [SSp/ {<£/} V/]ffi+ 6 — SSd [dVZJ(6 + b. . . . 

(4). 

(5). 

(6). 

To see what modifications must be made in equation (9), § 45, consider first the 

first term on the right of equation (6). This contributes to SL for a finite portion of 

space JJSSp/ {<£/} V/cfo'. Put in this V/ = — i'Si'Vj' — f'WV/. Thus 

jjssP'{<!>;} v.'ds' = - [fsf'v/sap/ {$;] i'ds - (fssp/ {<£/} (i'wv/)ds. 

109. We will anticipate somewhat here, as the effect is a considerable simplification. 

The first of the terms on the right involves the vector —Sf'V'.Sp', and this is the 

only term involving space derivatives of Sp' that cannot be transformed into terms 

involving Sp' only. Now the vector coefficient of this vector, like that of Sp' in 

SL + SQSgt must be zero. For — Sf'V'.Sp' is the normal space rate of variation of 

Sp', and it is clear that we can at the surface change this arbitrarily without changing 

Sp at any point of space. [This cannot be said of the tangential space rates of varia¬ 

tion of Sp, for a change in these causes a change of the same order of magnitude in 

Sp at all points of the surface.] Hence we obtain the equation 

=0.(7), 

or by equation (5), since i — mms~1 x" 1 b 

[mx {(IbUi' + l (rVls — UvSU*rVZ,)}]a_6 

= [»ix]« + 6 + 2 Vmx}a-b (rVb - iSiTVls) = 0 

The geometrical meaning of equation (7) should be noticed. It reduces the six 

coordinates of the self-conjugate <£/ to three. <£/ operating on any vector reduces it to 

the tangent plane. It may be said to act only on vectors in the plane and to strain 

them m the plane. 

110. We now have 

jjsv {$;} v/ ds = - f(ssPl'f - (i'vrv/) ds\ 
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ds on the left being taken, as usual, twice, but on the right only once. That we may 

substitute SSpifc (i'WV/), or SSp{ [{^/}]a + j (t'Wt'V/) for [SSp/ {<£/} (fYf/V1,)]a + b is 

obvious, from the fact that the space derivatives of Bp' involved are only the tangential 

ones, which are the same for both regions bounded, because there is no slipping. 

The boundary of the surface in question, like the boundary of any volume, must be 

supposed to involve not only the geometrical boundary, but also any lines of dis¬ 

continuity on it. With this meaning for the boundary, we have, by equation (3), § 5, 

jfsdP; {</>/} v,'ds = - jssp’t;(Up) + jjss^,,'(h'wv,')ds. . (9). 

The geometrical meaning of s/Vt'V/ should be noticed. By equation (3), § 5, we 

have 

=\i’dp .(10), 

from which, by limiting the portion of surface considered to an element bounded by 

lines of curvature, it can easily be deduced that 

'i/WV/ = i' (r~l + r'~l).(11), 

where r, r are the principal radii of curvature, reckoned positive or negative, 

according as the centre of the corresponding curvature is in the region a or b 

\i' — Uvd,~\. Thus — ^‘i/V^vV1/, or Yi'V'.i' may be called the vector curvature of the 

surface at the point.* 

Since = 0, we see by equation (11) that equation (9) may be written 

ffsSp,'{<(>/} V,'efe' = + . (12), 

ough this last simplification is not needed for our purposes. 

111. We are now in a position to see what alterations ls occasions in the various 

equations given above. This may be done in the following semi-tabular form.t 

Add to right of 45 (9) 

— j" [ SSd [dVZJ„ + 6 ds + IjsSp'^/ (i'Yi'Vi) ^s' ~ [ SS p'<f>s' (i'dp) . . (13). 

* Using, for the moment, the notation of Tait’s ‘Quaternions,’ 3rd edition, §§ 296, et seq., for p and 

dashes, it seems to me that lucidity would be gained by calling p" the vector curvature of the curve at 

the point considered. Thus the vector curvature of a curve is a vector whose tensor is the ordinary 

scalar curvature, and which is drawn from the point on the curve in question towards the centre of 

curvature. By analogy, I would call the vector, drawn from a point on a surface towards the concave 

side, and equal in magnitude to the sum of the principal curvatures, the vector curvature of the surface 

at the point. 

f In what follows “ 45 (9) ” stands for “ § 45, equation (9).” 
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Add to 3rd term of 46 (10) 

||(4 + K) ds.(1^)* 

46 (11) Unaltered.(15). 

In place of 46 (12) 

K = - Is, ts= 0.. . • . (16). 

Add to right of 46 (13) 

j](- m,/d$ + Sdjvy ds - *' + fs(uP') . (17). 

Add to right of 46 (14) 

||SddV4c?s — ||(i'YiV^ds + |Sp'</>/(i'dp). . . . (18). 

47 (15), 49 (17), 50 (26) Unaltered . . . . . . . . . . (19). 

Add to right of 49 (18) and 50 (27) 

- <f>sl' (i'YiY') ..(20). 

Besides the equation (f>s'i' — 0, we here have 

l<f>s (i'dp%+f+ = °.(2i)> 

the suffix e + f + indicating two or more superficial regions bounded by the curve. 

49 (19), 49 (20), 50 (28), 50 (29) Unaltered.(22). 

In place of 49 (21) and 50 (30) 

es = [d^Ja + i.(23). 

49 (22), 50 (31) Unaltered.(24). 

49 (23), (24), (25) Unaltered.(25), 

[since all the new terms added to 46 (14) are clearly accounted for by P,,. It will 

be observed that this statement is true of any term of L not involving a velocity, i.e., 

of any term which merely contributes to the potential energy]. 

57 (1) Unaltered.(26). 
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In place of 57 (2) 

[y\Jv -f- dV^]a + u — 0.(27). " 

112. It is well to point out what the exact physical significance of is. It 

implies the existence of a membranous stress, i.e., a stress such as a perfectly flexible 

membrane could exhibit. 

To investigate the properties of such a stress in a membrane coincident with the 

actual surface, let % , j', Jc be three mutually perpendicular unit vectors, so that 

[equation (l), § 107] the two latter are parallel to the surface. Consider an elemen¬ 

tary triangle in the surface at the point under consideration, whose vector edges, taken 

in the positive direction round the triangle, are yj’, — yj + zk' = clp and — zk'. Let 

yFy, F, and zF~ be the forces exerted by the rest of the membrane on the triangle 

across these three faces respectively. Since all other forces on the element are of a 

higher order of smallness than these three, we have as the equation of motion 

F = — yFtJ — zFz 

= - F;/Sy dp + F,S/d dp 

= - F,S k' (i dp') - F..S\) (i dp) 

= - y dp), 

where <E>/ is a linear vector function of a vector. This equation does not completely 

determine <t>/ since i'dp is not perfectly arbitrary, but confined to a plane. The 

arbitrary part of <3?/ having no physical bearing on the problem in hand may be chosen 

at will. For present purposes it is convenient to define <E>/ completely by the 

equation 
q>/fc) = — FyS/fw — F.S/w, 

where <y is a perfectly arbitrary vector. This gives 

cE>,V =0.. (28). 

[This is not always the most convenient way of choosing the arbitrary part of <E>/ as, 

for instance, in the study of surface tension.] 

Since the membrane is perfectly flexible F(/ and F, are parallel to the tangent plane 

and, therefore, <E>/ only operates on vectors in the plane, and strains them in the 

plane. Thus <E>/ has four disposable scalars. 

Calling the side of dp towards which i’dp points the negative side, the above 

amounts to saying that the force exerted across the element dp by the part of the 

membrane on the positive side on the part on the negative side is — <£>/ (■idp'). [The 

direction round any closed curve on the membrane, which is that of positive rotation 

* As with, equation (6), § 100, this may be put in the form va~b = [UrdV4]«_6 

MLCCCCXIl.—A. 5 G 
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round i is, of course, considered positive. Thus, for such a. closed curve, i dp points 

inwards. This is the reason for taking the positive and negative sides as just defined. 

It also accounts for the sign given to <£/, since the latter is thus brought into harmony 

with the sign of the linear vector function which represents an ordinary stress.] This 

stress will be called the stress <E>/. 

113. We now seek the force and couple per unit surface due to the stress <£>/. For 

this purpose, first take a finite portion of the surface. The force exerted by the 

stress on any portion of the surface is 

—[<*>/(Up) = - fjV(iji'v;)ds' 

by equation (3), § 5. Hence the force per unit surface due to the stress is 

- &a (W). 

Again, the couple for a finite portion of the surface round any arbitrary origin is 

- fv*/ (i-dP') = - 

Hence (by the force per unit surface just obtained) the couple per unit surface 

= - (ivi't) = y - v^v = v&x 

by equation (28). Assuming, which will be the case if there be no other couple per unit 

surface, as is certainly true in our case, that there is no such stress couple per unit 

surface, wre see that V£<!>/£ = 0 or <E>/ is self-conjugate. Thus <j>/ is of exactly the 

same type as </>/ and has three disposable coordinates only. [It is not necessary to 

assume this couple zero since the problem may be treated in an exactly similar 

manner to that of general stress (former paper, p. 106, et seq.)d\ 

114. Now suppose <E>/ is an “external’’ stress in the actual surface under con¬ 

sideration. The part of SQSq due to it will be JJ’SSp'cff/ ds' — JSSp'dff (i'dp), 

so that the only way in which the expression (13) is affected by these new terms is 

that </>/ must be changed into <£/ + <£>/• Similarly for all the subsequent expressions 

in which (/>/ occurs. This shows that <f>/ is a stress of the kind contemplated. 

The bearing of this on capillary phenomena will not be discussed here, because this 

is foreign to the objects of the present paper. It was necessary in this paper to show 

the general results flowing from the existence of ls. 

It should, however, be remarked that this stress, though not affecting the 

mechanical action of the field on a body as a whole, would affect the strains of a 

body, and probably be sometimes comparable in this effect with the similar effects 

resulting from the dependence of l on strain. 
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115. In conclusion, let me remark that in several respects the above investigations 

might be generalised. It is not bard to take account of the slipping of surfaces over 

one another, both with regard to reversible and irreversible phenomena. It is harder, 

but not impossible, to take account of the existence and relative motion in identically 

the same portion of space of two media, such as the ether and air, or as two different 

kinds of matter, as in diffusion and chemical phenomena (though, of course, in the 

two last cases, the two media do not probably really exist in the same portion of space 

—a statement not proven). I have refrained from this in the present paper for two 

reasons: first, to keep the length of the paper within reasonable bounds, and 

secondly, not to render the subject more intricate than is absolutely necessary. My 

aim has been not so much to establish incontrovertible results as to develone a new 
x 

method of treatment, more powerful, and in reality much simpler than those which 

are in use to-day. If I have succeeded in convincing my readers that this method is 

worthy of study, the main object of the present paper is attained. Meanwhile the 

matters that have been just indicated can be left over for future consideration. 

5 g 2 
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- Part II... 1 1 0 - Part II... 0 12 0 1875. Part I... 3 0 0 

1831. Part I... 1 10 0 Part III... 1 2 0 - Part II. ,. 3 0 0 

- Part II... 1 12 0 1854. Part I... 0 12 0 1876. Part I... 2 8 0 

1832. Part I... 1 1 0 - Part II... 0 16 0 - Part II... 2 8 0 

- Part II... 2 0 0 1855. Part I... 0 16 0 1877. Part I. .. 1 16 0 

1833. Part I... 1 1 0 - Part II... 1 6 0 - Part II... 2 5 0 

- Part II... 2 18 0 1856. Part I... 2 0 0 Vol. 168 (extra) 3 0 0 

1834. Part I... 0 17 0 - Part II... 1 4 0 1878. Part I... 1 16 0 

- Part II... 2 2 0 Part III... 1 4 0 - Part II... 3 0 0 

1835. Part I... 1 2 0 1857. Part I... 1 8 0 1879. Part I... 2 0 0 

- Part II... 0 14 0 - Part II... 1 4 0 - Part II... 1 12 0 

1836. Part I... 1 10 0 - Part III. .. 1 2 0 1880. Part I... 2 5 0 

-—— Part II... 2 0 0 1858. Part I. .. 1 8 0 - Part II... 2 0 0 

1837. Part I... 1 8 0 - Part II... 3 0 0 Part III... 1 1 0 

- Part II... 1 8 0 1859. Part I... 2 10 0 1881. Part I... 2 10 0 

1838. Part I... 0 13 0 - Part II... 2 5 0 - Part II... 1 10 0 

- Part II... 1 8 0 1860. Part I... 0 16 0 - Part III... 2 2 0 

1839. Part I... 0 18 0 - Part II... 2 1 6 1882. Part I... 1 14 0 

- Part II... 1 1 6 1861. Part I... 1 3 0 - Part II... 2 0 0 

1840. Part I... 0 18 0 - Part II... 1 5 0 Part III... 2 10 0 

- Part II... 2 5 0 Part III... 1 7 6 - Part IV... 1 0 0 

1841. Part I... 0 10 0 1862. Part I... 2 14 0 1883. Part I... 1 10 0 

- Part II... 1 10 0 - Part II... 3 0 0 - Part II... 2 10 0 

1842. Part I... 0 16 0 1863. Part I... 1 14 0 Part III... 1 12 0 

- Part II... 1 2 0 - Part II... 1 7 6 1884. Part I... 1 8 0 

1843. Part I... 0 10 0 1864. Part I... 0 11 0 - Part II... 1 16 0 

- Part II... 1 10 0 - Part II... 1 7 6 1885. Part I... 2 10 0 

1844. Part I... 0 10 0 Part III... 1 10 0 - Part II... 2 5 0 

- Part II... 1 10 0 1865. Part I... 2 2 0 1886. Part I... 1 8 0 

1845. Part I... 0 16 0 - Part II... 1 5 0 - Part II... 1 15 0 

- Part II... 1 0 0 1866. Part I... 1 14 0 1887. (A ) .... 1 3 0 

1846. Part I... 0 7 6 - Part II... 2 7 6 - (B-) .... 1 16 0 

- Part II... 1 12 0 1867. Part I... 1 O *) 0 1888. (A.) • • . . 1 10 0 

Part III... 1 12 0 - Part II... 1 15 0 - (B.) • • • • 2 17 6 

Part IV... 1 12 0 1868. Part I... 2 5 0 1889. (A.) .... 1 18 0 

1847. Part I... 0 14 0 - Part II.., 2 0 0 - (B.) • • • • 1 14 0 

- Part II... 0 16 0 1869. Part I... 2 10 0 1890. (A.) • • • • 1 16 6 
1848. Part I... 1 0 0 -Part II... 3 3 0 - (B.) • • • • 1 5 0 

- Part II... 0 14 0 1870. Part I... 1 10 0 1891. (A.) • • • • 2 2 0 

1849. Part I... 1 0 0 —— Part II... 1 18 0 - (B.) .... 3 3 0 

- Part II... 2 5 0 1871. Part I... 1 10 0 1892. (A.) .... 2 1 0 

1850. Part I... 1 10 0 - Part II... 2 5 0 - (B.) .... 2 2 0 

i hand exceeds One Hundred Copies, the volumes preceding the last Five 
Fellows at One-Third of the Price above stated. 

BY HARRISON AND SONS, ST. MARTIN’S LANE, 

AND ALL BOOKSELLERS. 
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